Science.gov

Sample records for wilt fusarium oxysporum

  1. First Report on Fusarium Wilt of Zucchini Caused by Fusarium oxysporum, in Korea.

    PubMed

    Choi, In-Young; Kim, Ju-Hee; Lee, Wang-Hyu; Park, Ji-Hyun; Shin, Hyeon-Dong

    2015-06-01

    Fusarium wilt of zucchini in Jeonju, Korea, was first noticed in May 2013. Symptoms included wilting of the foliage, drying and withering of older leaves, and stunting of plants. Infected plants eventually died during growth. Based on morphological characteristics and phylogenetic analyses of the molecular markers (internal transcribed spacer rDNA and translation elongation factor 1α), the fungus was identified as Fusarium oxysporum. Pathogenicity of a representative isolate was demonstrated via artificial inoculation, and it satisfied Koch's postulates. To our knowledge, this is the first report of F. oxysporum causing wilt of zucchini in Korea.

  2. Genome sequence of Fusarium oxysporum f. sp. melonis, a fungus causing wilt disease on melon

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This manuscript reports the genome sequence of F. oxysporum f. sp. melonis, a fungal pathogen that causes Fusarium wilt disease on melon (Cucumis melo). The project is part of a large comparative study designed to explore the genetic composition and evolutionary origin of this group of horizontally ...

  3. Genome Sequence of Fusarium oxysporum f. sp. melonis, a fungus causing wilt disease on melon

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This manuscript reports the genome sequence of F. oxysporum f. sp. melonis, a fungal pathogen that causes Fusarium wilt disease on melon (Cucumis melo). The project is part of a large comparative study designed to explore the genetic composition and evolutionary origin of this group of horizontally ...

  4. Genome Sequence of Fusarium oxysporum f. sp. melonis Strain NRRL 26406, a Fungus Causing Wilt Disease on Melon

    PubMed Central

    Shea, Terrance; Young, Sarah; Zeng, Qiandong; Kistler, H. Corby

    2014-01-01

    Horizontal chromosome transfer introduces host-specific pathogenicity among members of the Fusarium oxysporum species complex and is responsible for some of the most destructive and intractable plant diseases. This paper reports the genome sequence of F. oxysporum f. sp. melonis (NRRL 26406), a causal agent of Fusarium wilt disease on melon. PMID:25081257

  5. Fusarium wilt of lentil

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fusarium wilt of lentil is caused by the soil borne fungus Fusaium oxysporum f. sp. lentis. The pathogen is widespread. The disease shows symptoms of wilting, and stunted plants. Other symptoms include wilting of top leaves resemble water deficiency, shrinking and curling of leaves from the lower...

  6. Fusarium Wilt of Banana Is Caused by Several Pathogens Referred to as Fusarium oxysporum f. sp. cubense.

    PubMed

    Ploetz, Randy C

    2006-06-01

    ABSTRACT Fusarium wilt of banana (also known as Panama disease) is caused by Fusarium oxysporum f. sp. cubense. Where susceptible cultivars are grown, management is limited to the use of pathogen-free planting stock and clean soils. Resistant genotypes exist for some applications, but resistance is still needed in other situations. Progress has been made with this recalcitrant crop by traditional and nontraditional improvement programs. The disease was first reported in Australia in 1876, but did the greatest damage in export plantations in the western tropics before 1960. A new variant, tropical race 4, threatens the trades that are now based on Cavendish cultivars, and other locally important types such as the plantains. Phylogenetic studies indicate that F. oxysporum f. sp. cubense had several independent evolutionary origins. The significance of these results and the future impact of this disease are discussed.

  7. Extracellular chitinases of fluorescent pseudomonads antifungal to Fusarium oxysporum f. sp. dianthi causing carnation wilt.

    PubMed

    Ajit, Naosekpam Singh; Verma, Rajni; Shanmugam, V

    2006-04-01

    Vascular wilt of carnation caused by Fusarium oxysporum f. sp. dianthi (Prill. & Delacr.) W. C. Synder & H.N. Hans inflicts substantial yield and quality loss to the crop. Mycolytic enzymes such as chitinases are antifungal and contribute significantly to the antagonistic activity of fluorescent pseudomonads belonging to plant-growth-promoting rhizobacteria. Fluorescent pseudomonads antagonistic to the vascular wilt pathogen were studied for their ability to grow and produce chitinases on different substrates. Bacterial cells grown on chitin-containing media showed enhanced growth and enzyme production with increased anti-fungal activity against the pathogen. Furthermore, the cell-free bacterial culture filtrate from chitin-containing media also significantly inhibited the mycelial growth. Both the strains and their cell-free culture filtrate from chitin-amended media showed the formation of lytic zones on chitin agar, indicating chitinolytic ability. Extracellular proteins of highly antagonistic bacterial strain were isolated from cell-free extracts of media amended with chitin and fungal cell wall. These cell-free conditioned media contained one to seven polypeptides. Western blot analysis revealed two isoforms of chitinase with molecular masses of 43 and 18.5 kDa. Further plate assay for mycelial growth inhibition showed the 43-kDa protein to be antifungal. The foregoing studies clearly established the significance of chitinases in the antagonism of fluorescent pseudomonads, showing avenues for possible exploitation in carnation wilt management.

  8. Discovery of a new source of resistance to Fusarium oxysporum, cause of Fusarium wilt in Allium fistulosum, located on chromosome 2 of Allium cepa Aggregatum group.

    PubMed

    Vu, Hoa Q; El-Sayed, Magdi A; Ito, Shin-Ichi; Yamauchi, Naoki; Shigyo, Masayoshi

    2012-11-01

    This study was carried out to evaluate the antifungal effect of Allium cepa Aggregatum group (shallot) metabolites on Fusarium oxysporum and to determine the shallot chromosome(s) related to Fusarium wilt resistance using a complete set of eight Allium fistulosum - shallot monosomic addition lines. The antifungal effects of hexane, butanol, and water extraction fractions from bulbs of shallot on 35 isolates of F. oxysporum were examined using the disc diffusion method. Only hexane and butanol fractions showed high antifungal activity. Shallot showed no symptom of disease after inoculation with F. oxysporum f. sp. cepae. The phenolic content of the roots and the saponin content of root exudates of inoculated shallot increased to much higher levels than those of the control at 3 days after inoculation. Application of freeze-dried shallot root exudates to seeds of A. fistulosum soaked in a spore suspension of F. oxysporum resulted in protection of seedlings against infection. Among eight monosomic addition lines and A. fistulosum, FF+2A showed the highest resistance to Fusarium wilt. This monosomic addition line also showed a specific saponin band derived from shallot on the thin layer chromatography profile of saponins in the eight monosomic addition lines. The chromosome 2A of shallot might possess some of the genes related to Fusarium wilt resistance.

  9. Fungal cell wall polymer based nanoparticles in protection of tomato plants from wilt disease caused by Fusarium oxysporum f.sp. lycopersici.

    PubMed

    Sathiyabama, M; Charles, R Einstein

    2015-11-20

    Cell wall polymer (chitosan) was isolated from Fusarium oxysporum f.sp. lycopersici. They were cross linked with sodium tripolyphosphate (TPP) to synthesize nanoparticles (CWP-NP). The nanoparticles were characterized by FTIR, DLS, SEM, XRD and NMR analyses. The isolated CWP-NP exhibit antifungal activity under in vitro condition. The foliar application of the CWP-NP to tomato plants challenged with F. oxysporum f. sp. lycopersici showed delay in wilt disease symptom expression and reduce the wilt disease severity. Treated plants also showed enhanced yield. These results suggested the role of the CWP-NP in protecting tomato plants from F. oxysporum f.sp. lycopersici infection.

  10. Proteomics of Fusarium oxysporum race 1 and race 4 reveals enzymes involved in carbohydrate metabolism and ion transport that might play important roles in banana Fusarium wilt.

    PubMed

    Sun, Yong; Yi, Xiaoping; Peng, Ming; Zeng, Huicai; Wang, Dan; Li, Bo; Tong, Zheng; Chang, Lili; Jin, Xiang; Wang, Xuchu

    2014-01-01

    Banana Fusarium wilt is a soil-spread fungal disease caused by Fusarium oxysporum. In China, the main virulence fungi in banana are F. oxysporum race 1 (F1, weak virulence) and race 4 (F4, strong virulence). To date, no proteomic analyses have compared the two races, but the difference in virulence between F1 and F4 might result from their differentially expressed proteins. Here we report the first comparative proteomics of F1 and F4 cultured under various conditions, and finally identify 99 protein species, which represent 59 unique proteins. These proteins are mainly involved in carbohydrate metabolism, post-translational modification, energy production, and inorganic ion transport. Bioinformatics analysis indicated that among the 46 proteins identified from F4 were several enzymes that might be important for virulence. Reverse transcription PCR analysis of the genes for 15 of the 56 proteins revealed that their transcriptional patterns were similar to their protein expression patterns. Taken together, these data suggest that proteins involved in carbohydrate metabolism and ion transport may be important in the pathogenesis of banana Fusarium wilt. Some enzymes such as catalase-peroxidase, galactosidase and chitinase might contribute to the strong virulence of F4. Overexpression or knockout of the genes for the F4-specific proteins will help us to further understand the molecular mechanism of Fusarium-induced banana wilt.

  11. Fusarium Wilt of Banana.

    PubMed

    Ploetz, Randy C

    2015-12-01

    Banana (Musa spp.) is one of the world's most important fruits. In 2011, 145 million metric tons, worth an estimated $44 billion, were produced in over 130 countries. Fusarium wilt (also known as Panama disease) is one of the most destructive diseases of this crop. It devastated the 'Gros Michel'-based export trades before the mid-1900s, and threatens the Cavendish cultivars that were used to replace it; in total, the latter cultivars are now responsible for approximately 45% of all production. An overview of the disease and its causal agent, Fusarium oxysporum f. sp. cubense, is presented below. Despite a substantial positive literature on biological, chemical, or cultural measures, management is largely restricted to excluding F. oxysporum f. sp. cubense from noninfested areas and using resistant cultivars where the pathogen has established. Resistance to Fusarium wilt is poor in several breeding targets, including important dessert and cooking cultivars. Better resistance to this and other diseases is needed. The history and impact of Fusarium wilt is summarized with an emphasis on tropical race 4 (TR4), a 'Cavendish'-killing variant of the pathogen that has spread dramatically in the Eastern Hemisphere.

  12. A MAP kinase of the vascular wilt fungus Fusarium oxysporum is essential for root penetration and pathogenesis.

    PubMed

    Di Pietro, A; García-MacEira, F I; Méglecz, E; Roncero, M I

    2001-03-01

    The soil-borne vascular wilt fungus Fusarium oxysporum infects a wide variety of plant species by directly penetrating roots, invading the cortex and colonizing the vascular tissue. We have identified fmk1, encoding a mitogen-activated protein kinase (MAPK) of F. oxysporum that belongs to the yeast and fungal extracellular signal-regulated kinase (YERK1) subfamily. Targeted mutants of F. oxysporum f. sp. lycopersici carrying an inactivated copy of fmk1 have lost pathogenicity on tomato plants but show normal vegetative growth and conidiation in culture. Colonies of the fmk1 mutants are easily wettable, and hyphae are impaired in breaching the liquid-air interface, suggesting defects in surface hydrophobicity. Fmk1 mutants also show reduced invasive growth on tomato fruit tissue and drastically reduced transcript levels of pl1 encoding the cell wall-degrading enzyme pectate lyase. Conidia of the mutants germinating in the tomato rhizosphere fail to differentiate penetration hyphae, resulting in greatly impaired root attachment. The orthologous MAPK gene Pmk1 from the rice leaf pathogen Magnaporthe grisea complements invasive growth and partially restores surface hydrophobicity, root attachment and pathogenicity in an fmk1 mutant. These results demonstrate that FMK1 controls several key steps in the pathogenesis of F. oxysporum and suggest a fundamentally conserved role for the corresponding MAPK pathway in soil-borne and foliar plant pathogens.

  13. Draft Genome Sequence of an Isolate of Fusarium oxysporum f. sp. melongenae, the Causal Agent of Fusarium Wilt of Eggplant

    PubMed Central

    Hsiang, Tom; Luo, Mei

    2017-01-01

    ABSTRACT Here, we present the genome sequence of an isolate (14004) of Fusarium oxysporum f. sp. melongenae, an eggplant pathogen. The final assembly consists of 1,631 scaffolds with 53,986,354 bp (G+C content, 46.4%) and 16,485 predicted genes. PMID:28209821

  14. Vinegar residue compost as a growth substrate enhances cucumber resistance against the Fusarium wilt pathogen Fusarium oxysporum by regulating physiological and biochemical responses.

    PubMed

    Shi, Lu; Du, Nanshan; Yuan, Yinghui; Shu, Sheng; Sun, Jin; Guo, Shirong

    2016-09-01

    Fusarium wilt caused by the fungus Fusarium oxysporum f. sp. cucumerinum (FOC) is the most severe soil-borne disease attacking cucumber. To assess the positive effects of vinegar residue substrate (VRS) on the growth and incidence of Fusarium wilt on cucumber, we determined the cucumber growth parameters, disease severity, defense-related enzyme and pathogenesis-related (PR) protein activities, and stress-related gene expression levels. In in vitro and pot experiments, we demonstrated the following results: (i) the VRS extract exhibited a higher biocontrol activity than that of peat against FOC, and significantly improved the growth inhibition of FOC, with values of 48.3 %; (ii) in response to a FOC challenge, antioxidant enzymes and the key enzymes of phenylpropanoid metabolic activities, as well as the PR protein activities in the roots of cucumber, were significantly increased. Moreover, the activities of these proteins were higher in VRS than in peat; (iii) the expression levels of stress-related genes (including glu, pal, and ethylene receptor) elicited responses to the pathogens inoculated in cucumber leaves; and (iv) the FOC treatment significantly inhibited the growth of cucumber seedlings. Moreover, all of the growth indices of plants grown in VRS were significantly higher than those grown in peat. These results offer a new strategy to control cucumber Fusarium wilt, by upregulating the activity levels of defense-related enzymes and PR proteins and adjusting gene expression levels. They also provide a theoretical basis for VRS applications.

  15. Genome and Transcriptome Analysis of the Fungal Pathogen Fusarium oxysporum f. sp. cubense Causing Banana Vascular Wilt Disease

    PubMed Central

    Zeng, Huicai; Fan, Dingding; Zhu, Yabin; Feng, Yue; Wang, Guofen; Peng, Chunfang; Jiang, Xuanting; Zhou, Dajie; Ni, Peixiang; Liang, Changcong; Liu, Lei; Wang, Jun; Mao, Chao

    2014-01-01

    Background The asexual fungus Fusarium oxysporum f. sp. cubense (Foc) causing vascular wilt disease is one of the most devastating pathogens of banana (Musa spp.). To understand the molecular underpinning of pathogenicity in Foc, the genomes and transcriptomes of two Foc isolates were sequenced. Methodology/Principal Findings Genome analysis revealed that the genome structures of race 1 and race 4 isolates were highly syntenic with those of F. oxysporum f. sp. lycopersici strain Fol4287. A large number of putative virulence associated genes were identified in both Foc genomes, including genes putatively involved in root attachment, cell degradation, detoxification of toxin, transport, secondary metabolites biosynthesis and signal transductions. Importantly, relative to the Foc race 1 isolate (Foc1), the Foc race 4 isolate (Foc4) has evolved with some expanded gene families of transporters and transcription factors for transport of toxins and nutrients that may facilitate its ability to adapt to host environments and contribute to pathogenicity to banana. Transcriptome analysis disclosed a significant difference in transcriptional responses between Foc1 and Foc4 at 48 h post inoculation to the banana ‘Brazil’ in comparison with the vegetative growth stage. Of particular note, more virulence-associated genes were up regulated in Foc4 than in Foc1. Several signaling pathways like the mitogen-activated protein kinase Fmk1 mediated invasion growth pathway, the FGA1-mediated G protein signaling pathway and a pathogenicity associated two-component system were activated in Foc4 rather than in Foc1. Together, these differences in gene content and transcription response between Foc1 and Foc4 might account for variation in their virulence during infection of the banana variety ‘Brazil’. Conclusions/Significance Foc genome sequences will facilitate us to identify pathogenicity mechanism involved in the banana vascular wilt disease development. These will thus advance

  16. Suppression of Fusarium oxysporum and induced resistance of plants involved in the biocontrol of Cucumber Fusarium Wilt by Streptomyces bikiniensis HD-087.

    PubMed

    Zhao, Shuai; Du, Chun-Mei; Tian, Chang-Yan

    2012-09-01

    Cucumber Fusarium Wilt, caused by Fusarium oxysporum f. sp. cucumerinum, which usually leads to severe economic damage, is a common destructive disease worldwide. To date, no effective method has yet been found to counteract this disease. A fungal isolate, designated HD-087, which was identified as Streptomyces bikiniensis using physiological-biochemical identification and 16S rRNA sequence analysis, is shown to possess distinctive inhibitory activity against F. oxysporum. The fermentation broth of HD-087 leads to certain abnormalities in pathogen hyphae. It peroxidizes cell membrane lipids, which leads to membrane destruction along with cytoplasm leakage. This broth also restrains germination of the conidia. The activities of the enzymes peroxidase, phenylalanine ammonia-lyase, and β-1,3-glucanase in cucumber leaves were dramatically increased after treated with fermentation broth of HD-087. The levels of chlorophyll and soluble sugars were also found to be increased, with the relative conductivity of leaves being reduced. In short, the metabolites of strain HD-087 can effectively suppress F. oxysporum and trigger induced resistance in cucumber.

  17. Modified primers for the identification of nonpathogenic Fusarium oxysporum isolates that have biological control potential against Fusarium wilt of cucumber in Taiwan.

    PubMed

    Wang, Chaojen; Lin, Yisheng; Lin, Yinghong; Chung, Wenhsin

    2013-01-01

    Previous investigations demonstrated that Fusarium oxysporum (Fo), which is not pathogenic to cucumbers, could serve as a biological control agent for managing Fusarium wilt of cucumber caused by Fo f. sp. cucumerinum (Foc) in Taiwan. However, thus far it has not been possible to separate the populations of pathogenic Fo from the nonpathogenic isolates that have biological control potential through their morphological characteristics. Although these two populations can be distinguished from one another using a bioassay, the work is laborious and time-consuming. In this study, a fragment of the intergenic spacer (IGS) region of ribosomal DNA from an Fo biological control agent, Fo366, was PCR-amplified with published general primers, FIGS11/FIGS12 and sequenced. A new primer, NPIGS-R, which was designed based on the IGS sequence, was paired with the FIGS11 primer. These primers were then evaluated for their specificity to amplify DNA from nonpathogenic Fo isolates that have biological control potential. The results showed that the modified primer pair, FIGS11/NPIGS-R, amplified a 500-bp DNA fragment from five of seven nonpathogenic Fo isolates. These five Fo isolates delayed symptom development of cucumber Fusarium wilt in greenhouse bioassay tests. Seventy-seven Fo isolates were obtained from the soil and plant tissues and then subjected to amplification using the modified primer pair; six samples showed positive amplification. These six isolates did not cause symptoms on cucumber seedlings when grown in peat moss infested with the isolates and delayed disease development when the same plants were subsequently inoculated with a virulent isolate of Foc. Therefore, the modified primer pair may prove useful for the identification of Fo isolates that are nonpathogenic to cucumber which can potentially act as biocontrol agents for Fusarium wilt of cucumber.

  18. Resistance to Fusarium wilt in chickpea

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fusarium wilt of chickpea, caused by the fungal pathogen Fusarium oxysporum f. sp. ciceris (Foc), is a destructive disease and is distributed in almost all chickpea producing regions of the world. Foc has eight physiological races designated as 0, 1A, 1B/C, 2, 3, 4, 5 and 6. The races are different...

  19. Influence of plant root exudates, germ tube orientation and passive conidia transport on biological control of fusarium wilt by strains of nonpathogenic Fusarium oxysporum.

    PubMed

    Mandeel, Qaher A

    2006-03-01

    In earlier studies, biological control of Fusarium wilt of cucumber induced by Fusarium oxysporum f. sp. cucumerinum was demonstrated using nonpathogenic strains C5 and C14 of Fusarium oxysporum. Strain C14 induced resistance and competed for infection sites whether roots were wounded or intact, whereas strain C5 required wounds to achieve biocontrol. In the current work, additional attributes involved in enhanced resistance by nonpathogenic biocontrol agents strains to Fusarium wilt of cucumber and pea were further investigated. In pre-penetration assays, pathogenic formae specials exhibited a significantly higher percentage of spore germination in 4-day-old root exudates of cucumber and pea than nonpathogens. Also, strain C5 exhibited the lowest significant reduction in spore germination in contrast to strain C14 or control. One-day-old cucumber roots injected with strain C14 resulted in significant reduction in germ tube orientation towards the root surface, 48-96 h after inoculation with F. o. cucumerinum spores, whereas strain C5 induced significantly lower spore orientation of the pathogen and only at 72 and 96 h after inoculation. In post-penetration tests, passive transport of microconidia of pathogenic and nonpathogens in stems from base to apex were examined when severed plant roots were immersed in spore suspension. In repeated trials, strain C5, F. o. cucumerinum and F. o. pisi were consistently isolated from stem tissues of both cucumber and pea at increasing heights over a 17 days incubation period. Strain C14 however, was recovered at a maximum translocation distance of 4.6 cm at day 6 and later height of isolation significantly declined thereafter to 1.2 cm at day 17. In pea stem, the decline was even less. Significant induction of resistance to challenge inoculation by the pathogen in cucumber occurred 72 and 96 h after pre-inoculation with biocontrol agents. Nonetheless, strain C14 induced protection as early as 48 h and the maximum resistance was

  20. Proteomic analysis of conidia germination in Fusarium oxysporum f. sp. cubense tropical race 4 reveals new targets in ergosterol biosynthesis pathway for controlling Fusarium wilt of banana.

    PubMed

    Deng, Gui-Ming; Yang, Qiao-Song; He, Wei-Di; Li, Chun-Yu; Yang, Jing; Zuo, Cun-Wu; Gao, Jie; Sheng, Ou; Lu, Shao-Yun; Zhang, Sheng; Yi, Gan-Jun

    2015-09-01

    Conidial germination is a crucial step of the soilborne fungus Fusarium oxysporum f. sp. cubense tropical race 4 (Foc TR4), a most important lethal disease of banana. In this study, a total of 3659 proteins were identified by isobaric tags for relative and absolute quantitation (iTRAQ)-based comparative proteomic approach, of which 1009 were differentially expressed during conidial germination of the fungus at 0, 3, 7, and 11 h. Functional classification and bioinformatics analysis revealed that the majority of the differentially expressed proteins are involved in six metabolic pathways. Particularly, all differential proteins involved in the ergosterol biosynthesis pathway were significantly upregulated, indicating the importance of the ergosterol biosynthesis pathway to the conidial germination of Foc TR4. Quantitative RT-PCR, western blotting, and in vitro growth inhibition assay by several categories of fungicides on the Foc TR4 were used to validate the proteomics results. Four enzymes, C-24 sterol methyltransferase (ERG6), cytochrome P450 lanosterol C-14α-demethylase (EGR11), hydroxymethylglutaryl-CoA synthase (ERG13), and C-4 sterol methyl oxidase (ERG25), in the ergosterol biosynthesis pathway were identified and verified, and they hold great promise as new targets for effective inhibition of Foc TR4 early growth in controlling Fusarium wilt of banana. To the best of our knowledge, this report represents the first comprehensive study on proteomics profiling of conidia germination in Foc TR4. It provides new insights into a better understanding of the developmental processes of Foc TR4 spores. More importantly, by host plant-induced gene silencing (HIGS) technology, the new targets reported in this work allow us to develop novel transgenic banana leading to high protection from Fusarium wilt and to explore more effective antifungal drugs against either individual or multiple target proteins of Foc TR4.

  1. Dynamics of Colonization and Expression of Pathogenicity Related Genes in Fusarium oxysporum f.sp. ciceri during Chickpea Vascular Wilt Disease Progression

    PubMed Central

    Upasani, Medha L.; Gurjar, Gayatri S.; Gupta, Vidya S.

    2016-01-01

    Fusarium wilt caused by Fusarium oxysporum f.sp. ciceri (Foc) is a constant threat to chickpea productivity in several parts of the world. Understanding the molecular basis of chickpea-Foc interaction is necessary to improve chickpea resistance to Foc and thereby the productivity of chickpea. We transformed Foc race 2 using green fluorescent protein (GFP) gene and used it to characterize pathogen progression and colonization in wilt-susceptible (JG62) and wilt-resistant (Digvijay) chickpea cultivars using confocal microscopy. We also employed quantitative PCR (qPCR) to estimate the pathogen load and progression across various tissues of both the chickpea cultivars during the course of the disease. Additionally, the expression of several candidate pathogen virulence genes was analyzed using quantitative reverse transcriptase PCR (qRT-PCR), which showed their characteristic expression in wilt-susceptible and resistant chickpea cultivars. Our results suggest that the pathogen colonizes the susceptible cultivar defeating its defense; however, albeit its entry in the resistant plant, further proliferation is severely restricted providing an evidence of efficient defense mechanism in the resistant chickpea cultivar. PMID:27227745

  2. CCR4-Not Complex Subunit Not2 Plays Critical Roles in Vegetative Growth, Conidiation and Virulence in Watermelon Fusarium Wilt Pathogen Fusarium oxysporum f. sp. niveum

    PubMed Central

    Dai, Yi; Cao, Zhongye; Huang, Lihong; Liu, Shixia; Shen, Zhihui; Wang, Yuyan; Wang, Hui; Zhang, Huijuan; Li, Dayong; Song, Fengming

    2016-01-01

    CCR4-Not complex is a multifunctional regulator that plays important roles in multiple cellular processes in eukaryotes. In the present study, the biological function of FonNot2, a core subunit of the CCR4-Not complex, was explored in Fusarium oxysporum f. sp. niveum (Fon), the causal agent of watermelon wilt disease. FonNot2 was expressed at higher levels in conidia and germinating conidia and during infection in Fon-inoculated watermelon roots than in mycelia. Targeted disruption of FonNot2 resulted in retarded vegetative growth, reduced conidia production, abnormal conidial morphology, and reduced virulence on watermelon. Scanning electron microscopy observation of infection behaviors and qRT-PCR analysis of in planta fungal growth revealed that the ΔFonNot2 mutant was defective in the ability to penetrate watermelon roots and showed reduced fungal biomass in root and stem of the inoculated plants. Phenotypic and biochemical analyses indicated that the ΔFonNot2 mutant displayed hypersensitivity to cell wall perturbing agents (e.g., Congo Red and Calcofluor White) and oxidative stress (e.g., H2O2 and paraquat), decreased fusaric acid content, and reduced reactive oxygen species (ROS) production during spore germination. Our data demonstrate that FonNot2 plays critical roles in regulating vegetable growth, conidiogenesis and conidia morphology, and virulence on watermelon via modulating cell wall integrity, oxidative stress response, ROS production and FA biosynthesis through the regulation of transcription of genes involved in multiple pathways. PMID:27695445

  3. Fusarium Wilt of Orchids

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fusarium wilt of orchids is highly destructive and economically limiting to the production of quality orchids that has steadily increased in many production facilities. Important crops such as phalaenopsis, cattleyas, and oncidiums appear to be especially susceptible to certain Fusarium species. Fu...

  4. The Tomato Wilt Fungus Fusarium oxysporum f. sp. lycopersici shares Common Ancestors with Nonpathogenic F. oxysporum isolated from Wild Tomatoes in the Peruvian Andes

    PubMed Central

    Inami, Keigo; Kashiwa, Takeshi; Kawabe, Masato; Onokubo-Okabe, Akiko; Ishikawa, Nobuko; Pérez, Enrique Rodríguez; Hozumi, Takuo; Caballero, Liliana Aragón; de Baldarrago, Fatima Cáceres; Roco, Mauricio Jiménez; Madadi, Khalid A.; Peever, Tobin L.; Teraoka, Tohru; Kodama, Motoichiro; Arie, Tsutomu

    2014-01-01

    Fusarium oxysporum is an ascomycetous fungus that is well-known as a soilborne plant pathogen. In addition, a large population of nonpathogenic F. oxysporum (NPF) inhabits various environmental niches, including the phytosphere. To obtain an insight into the origin of plant pathogenic F. oxysporum, we focused on the tomato (Solanum lycopersicum) and its pathogenic F. oxysporum f. sp. lycopersici (FOL). We collected F. oxysporum from wild and transition Solanum spp. and modern cultivars of tomato in Chile, Ecuador, Peru, Mexico, Afghanistan, Italy, and Japan, evaluated the fungal isolates for pathogenicity, VCG, mating type, and distribution of SIX genes related to the pathogenicity of FOL, and constructed phylogenies based on ribosomal DNA intergenic spacer sequences. All F. oxysporum isolates sampled were genetically more diverse than FOL. They were not pathogenic to the tomato and did not carry SIX genes. Certain NPF isolates including those from wild Solanum spp. in Peru were grouped in FOL clades, whereas most of the NPF isolates were not. Our results suggested that the population of NPF isolates in FOL clades gave rise to FOL by gaining pathogenicity. PMID:24909710

  5. Proteomic analysis of Fusarium oxysporum f. sp. cubense tropical race 4-inoculated response to Fusarium wilts in the banana root cells

    PubMed Central

    2013-01-01

    Background Fusarium wilt of banana is one of the most destructive diseases in the world. This disease has caused heavy losses in major banana production areas. Except for molecular breeding methods based on plant defense mechanisms, effective methods to control the disease are still lacking. Dynamic changes in defense mechanisms between susceptible, moderately resistant, and highly resistant banana and Fusarium oxysporum f. sp. cubense tropical race 4 (Foc4) at the protein level remain unknown. This research reports the proteomic profile of three banana cultivars in response to Foc4 and transcriptional levels correlated with their sequences for the design of disease control strategies by molecular breeding. Results Thirty-eight differentially expressed proteins were identified to function in cell metabolism. Most of these proteins were positively regulated after Foc4 inoculation. These differentially regulated proteins were found to have important functions in banana defense response. Functional categories implicated that these proteins were associated with pathogenesis-related (PR) response; isoflavonoid, flavonoid, and anthocyanin syntheses; cell wall strengthening; cell polarization; reactive oxygen species production and scavenging; jasmonic acid-, abscisic acid-, and auxin-mediated signaling conduction; molecular chaperones; energy; and primary metabolism. By comparing the protein profiles of resistant and susceptible banana cultivars, many proteins showed obvious distinction in their defense mechanism functions. PR proteins in susceptible ‘Brazil’ were mainly involved in defense. The proteins related to PR response, cell wall strengthening and antifungal compound synthesis in moderately resistant ‘Nongke No.1’ were mainly involved in defense. The proteins related to PR response, cell wall strengthening, and antifungal compound synthesis in highly resistant ‘Yueyoukang I’ were mainly involved in defense. 12 differentially regulated genes were

  6. Studies on the management of root-knot nematode, Meloidogyne incognita-wilt fungus, Fusarium oxysporum disease complex of green gram, Vigna radiata cv ML-1108

    PubMed Central

    Haseeb, Akhtar; Sharma, Anita; Shukla, Prabhat Kuma

    2005-01-01

    Studies were conducted under pot conditions to determine the comparative efficacy of carbofuran at 1 mg a.i./kg soil, bavistin at 1 mg a.i./kg soil, neem (Azadirachta indica) seed powder at 50 mg/kg soil, green mould (Trichoderma harzianum) at 50.0 ml/kg soil, rhizobacteria (Pseudomonas fluorescens) at 50.0 ml/kg soil against root-knot nematode, Meloidogyne incognita–wilt fungus, Fusarium oxysporum disease complex on green gram, Vigna radiata cv ML-1108. All the treatments significantly improved the growth of the plants as compared to untreated inoculated plants. Analysis of data showed that carbofuran and A. indica seed powder increased plant growth and yield significantly more in comparison to bavistin and P. fluorescens. Carbofuran was highly effective against nematode, bavistin against fungus, A. indica seed powder against both the pathogens and both the bioagents were moderately effective against both the pathogens. PMID:16052706

  7. Identification of a Novel Small Cysteine-Rich Protein in the Fraction from the Biocontrol Fusarium oxysporum Strain CS-20 that Mitigates Fusarium Wilt Symptoms and Triggers Defense Responses in Tomato

    PubMed Central

    Shcherbakova, Larisa A.; Odintsova, Tatyana I.; Stakheev, Alexander A.; Fravel, Deborah R.; Zavriev, Sergey K.

    2016-01-01

    The biocontrol effect of the non-pathogenic Fusarium oxysporum strain CS-20 against the tomato wilt pathogen F. oxysporum f. sp. lycopersici (FOL) has been previously reported to be primarily plant-mediated. This study shows that CS-20 produces proteins, which elicit defense responses in tomato plants. Three protein-containing fractions were isolated from CS-20 biomass using size exclusion chromatography. Exposure of seedling roots to one of these fractions prior to inoculation with pathogenic FOL strains significantly reduced wilt severity. This fraction initiated an ion exchange response in cultured tomato cells resulting in a reversible alteration of extracellular pH; increased tomato chitinase activity, and induced systemic resistance by enhancing PR-1 expression in tomato leaves. Two other protein fractions were inactive in seedling protection. The main polypeptide (designated CS20EP), which was specifically present in the defense-inducing fraction and was not detected in inactive protein fractions, was identified. The nucleotide sequence encoding this protein was determined, and its complete amino acid sequence was deduced from direct Edman degradation (25 N-terminal amino acid residues) and DNA sequencing. The CS20EP was found to be a small basic cysteine-rich protein with a pI of 9.87 and 23.43% of hydrophobic amino acid residues. BLAST search in the NCBI database showed that the protein is new; however, it displays 48% sequence similarity with a hypothetical protein FGSG_10784 from F. graminearum strain PH-1. The contribution of CS20EP to elicitation of tomato defense responses resulting in wilt mitigating is discussed. PMID:26779237

  8. Production of anti-fungal volatiles by non-pathogenic Fusarium oxysporum and its efficacy in suppression of verticillium wilt of cotton

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Aims: The study aimed to identify volatile organic compounds (VOCs) produced by the non-pathogenic Fusarium oxysporum (Fo) strain CanR-46, and to determine the anti-fungal spectrum and the control efficacy of the Fo-VOCs. Methods: The Fo-VOCs were identified by GC-MS. The antifungal activity of the...

  9. Elite-upland cotton germplasm-pool assessment of Fusarium wilt resistance in California

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Host-plant resistance is currently the most economic and effective strategy for managing Fusarium wilt [Fusarium oxysporum f. sp. vasinfectum (FOV)] disease. Over the past nine years, a new race of Fusarium (FOV race 4) has increasingly impacted cotton (Gossypium spp.) in production fields in the Sa...

  10. In vitro antifugal activity of medicinal plant extract against Fusarium oxysporum f. sp. lycopersici race 3 the causal agent of tomato wilt.

    PubMed

    Isaac, G S; Abu-Tahon, M A

    2014-03-01

    Medicinal plant extracts of five plants; Adhatoda vasica, Eucalyptus globulus, Lantana camara, Nerium oleander and Ocimum basilicum collected from Cairo, Egypt were evaluated against Fusarium oxysporum f. sp. lycopersici race 3 in vitro conditions using water and certain organic solvents. The results revealed that cold distilled water extracts of O. basilicum and E. globulus were the most effective ones for inhibiting the growth of F. oxysporum f. sp. lycopersici. Butanolic and ethanolic extracts of the tested plants inhibited the pathogen growth to a higher extent than water extracts. Butanolic extract of O. basilicum completely inhibited the growth of F. oxysporum f. sp. lycopersici at concentrations 1.5 and 2.0% (v/v). Butanolic extracts (2.0%) of tested plants had a strong inhibitory effect on hydrolytic enzymes; β-glucosidase, pectin lyase and protease of F. oxysporum f. sp. lycopersici. This study has confirmed that the application of plant extracts, especially from O. basilicum for controlling F. oxysporum f. sp. lycopersici is environmentally safe, cost effective and does not disturb ecological balance. Investigations are in progress to test the efficacy of O. basilicum extract under in vivo conditions.

  11. Fusaric acid production and pathogenicity of Fusarium oxysporum f. sp. vasinfectum

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In recent years, Fusarium wilt of cotton has gained increased importance with the emergence of extremely virulent strains of Fusarium oxysporum f. sp. vasinfectum. The recent discovery of new pathotypes not previously found in the U.S. is of particular concern to the cotton industry. In addition, a ...

  12. Mechanism of disease suppression of Fusarium wilt of watermelon by cover crop green manures

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A fall planted Vicia villosa cover crop incorporated in spring as a green manure can suppress Fusarium wilt [Fusarium oxysporum f. sp. niveum (FON)] of watermelon in Maryland and Delaware. Experiments were conducted to determine whether the mechanism of this suppression was general or specific, and ...

  13. A major quantitative trait locus is associated with Fusarium Wilt Race 1 resistance in watermelon

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fusarium wilt is a major disease of watermelon caused by the soil-borne fungus Fusarium oxysporum Schlechtend.:Fr. f. sp. niveum (E.F. Sm.) W.C. Snyder & H.N. Hans (Fon). A genetic population of 186 F3 families (24 plants in each family) exhibited continuous segregation for Fon race 1 response. Geno...

  14. Impact of five cover crop green manures and Actinovate on Fusarium Wilt of watermelon

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Triploid watermelon cultivars are grown on more than 2,023 ha in Maryland and in Delaware. Triploid watermelons have little host resistance to Fusarium wilt of watermelon (Fusarium oxysporum f. sp. niveum). The effects of four different fall-planted cover crops that were tilled in the spring as gree...

  15. Isolation and identification of biocontrol agent Streptomyces rimosus M527 against Fusarium oxysporum f. sp. cucumerinum.

    PubMed

    Lu, Dandan; Ma, Zheng; Xu, Xianhao; Yu, Xiaoping

    2016-08-01

    Actinomycetes have received considerable attention as biocontrol agents against fungal plant pathogens and as plant growth promoters. In this study, a total of 320 actinomycetes were isolated from various habitats in China. Among which, 77 strains have been identified as antagonistic activities against Fusarium oxysporum f. sp. cucumerinum which usually caused fusarium wilt of cucumber. Of these, isolate actinomycete M527 not only displayed broad-spectrum antifungal activity but also showed the strongest antagonistic activity against the spore germination of F. oxysporum f. sp. cucumerinum. In pot experiments, the results indicated that isolate M527 could promote the shoot growth and prevent the development of the disease on cucumber caused by F. oxysporum f. sp. cucumerinum. The control efficacy against seedling fusarium wilt of cucumber after M527 fermentation broth root-irrigation was up to 72.1% as compared to control. Based on 16S rDNA sequence analysis, the isolate M527 was identified as Streptomyces rimosus.

  16. Predisposition of Broadleaf Tobacco to Fusarium Wilt by Early Infection with Globodera tabacum tabacum or Meloidogyne hapla

    PubMed Central

    LaMondia, J. A.

    1992-01-01

    In greenhouse experiments, broadleaf tobacco plants were inoculated with tobacco cyst (Globodera tabacum tabacum) or root-knot (Meloidogyne hapla) nematodes 3, 2, or 1 week before or at the same time as Fusarium oxysporum. Plants infected with nematodes prior to fungal inoculation had greater Fusarium wilt incidence and severity than those simultaneously inoculated. G. t. tabacum increased wilt incidence and severity more than did M. hapla. Mechanical root wounding within 1 week of F. oxysporum inoculation increased wilt severity. In field experiments, early-season G. t. tabacum control by preplant soil application of oxamyl indirectly limited the incidence and severity of wilt. Wilt incidence was 48%, 23%, and 8% in 1989 and 64%, 60%, and 19% in 1990 for 0.0, 2.2, and 6.7 kg oxamyl/ha, respectively. Early infection of tobacco by G. t. tabacum predisposed broadleaf tobacco to wilt by F. oxysporum. PMID:19283018

  17. Investigation of Genetic Diversity of Fusarium oxysporum f. sp. fragariae Using PCR-RFLP

    PubMed Central

    Kim, Ji-Su; Kang, Nam Jun; Kwak, Youn-Sig; Lee, Choungkeun

    2017-01-01

    Fusarium wilts of strawberry, caused by Fusarium oxysporum f. sp. fragariae, is a serious soil-borne disease. Fusarium wilt causes dramatic yield losses in commercial strawberry production and it is a very stubborn disease to control. Reliable chemical control of strawberry Fusarium wilt disease is not yet available. Moreover, other well-known F. oxysporum have different genetic information from F. oxysporum f. sp. fragariae. This analysis investigates the genetic diversity of strawberry Fusairum wilt pathogen. In total, 110 pathogens were isolated from three major strawberry production regions, namely Sukok, Hadong, Sancheong in Gyeongnam province in South Korea. The isolates were confirmed using F. oxysporum f. sp. fragariae species-specific primer sets. Polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) analyses were executed using the internal transcribed spacer, intergenic spacer, translation elongation factor1-α, and β-tubulin genes of the pathogens and four restriction enzymes: AluI, HhaI, HinP1I and HpyCH4V. Regarding results, there were diverse patterns in the three gene regions except for the β-tubulin gene region. Correlation analysis of strawberry cultivation region, cultivation method, variety, and phenotype of isolated pathogen, confirmed that genetic diversity depended on the classification of the cultivated region. PMID:28381961

  18. Virulence and secondary metabolite profiles of vascular competent and vascular incompetent pathotypes of Fusarium oxysporum f. sp. vasinfectum

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fusarium wilt of cotton, caused by Fusarium oxysporum f. sp. vasinfectum (Fov), occurs in most cotton growing areas of the world. Pathotypes of Fov have been categorized into eight races based on virulence to different hosts. However, lack of reciprocal resistance reactions among cotton cultivars t...

  19. Development and evaluation of a TaqMan Real-Time PCR assay for Fusarium oxysporum f. sp. spinaciae

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fusarium oxysporum f. sp. spinaciae, causal agent of spinach Fusarium wilt, is an important soilborne pathogen in many areas of the world where spinach is grown. The pathogen is persistent in acid soils of maritime western Oregon and Washington, the only region of the USA suitable for commercial spi...

  20. Activity of Haliscosamine against Fusarium oxysporum f.sp. melonis: in vitro and in vivo analysis.

    PubMed

    El Amraoui, Belakssem; Biard, Jean François; Ikbal, Fatima Ez-Zohra; El Wahidi, Majida; Kandil, Mostafa; El Amraoui, Mohammed; Fassouane, Aziz

    2015-01-01

    Marine sponges are a potential source of new molecules with diverse biological activities. We have previously isolated a sphingosine derivative, (9Z)-2-amino-docos-9-ene-1,3,13,14-tetraol (Haliscosamine) from the Moroccan sea sponge Haliclona viscosa. The aim of this study was to test Haliscosamine in vitro and in vivo for its antifungal activity against Fusarium oxysporum f.sp. melonis causing fusarium wilt of melon. Overall, in vitro test showed that haliscosamine has a similar effect as DESOGERME SP VEGETAUX®. In addition, in vivo showed a significant effect against Fusarium oxysporum f.sp. melonis. Taking to gather, our results suggest that haliscosamine constitutes a potential candidate against Fusarium oxysporum f.sp. melonis and the possibility to use in phytopathology.

  1. Evaluations of Fusarium wilt resistance in Upland cotton from Uzbek cotton germplasm resources.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fusarium oxysporum f. sp. vasinfectum Atk. Sny & Hans (FOV), in combination with Verticillium dahliae Kleb, causes a wilt disease complex in cotton that significantly reduces yield. A highly virulent strain of FOV, No. 316, was isolated that caused up to 80% plant death in commercial cotton in Uzbe...

  2. Phenazine antibiotics produced by fluorescent pseudomonads contribute to natural soil suppressiveness to Fusarium wilt.

    PubMed

    Mazurier, Sylvie; Corberand, Thérèse; Lemanceau, Philippe; Raaijmakers, Jos M

    2009-08-01

    Natural disease-suppressive soils provide an untapped resource for the discovery of novel beneficial microorganisms and traits. For most suppressive soils, however, the consortia of microorganisms and mechanisms involved in pathogen control are unknown. To date, soil suppressiveness to Fusarium wilt disease has been ascribed to carbon and iron competition between pathogenic Fusarium oxysporum and resident non-pathogenic F. oxysporum and fluorescent pseudomonads. In this study, the role of bacterial antibiosis in Fusarium wilt suppressiveness was assessed by comparing the densities, diversity and activity of fluorescent Pseudomonas species producing 2,4-diacetylphloroglucinol (DAPG) (phlD+) or phenazine (phzC+) antibiotics. The frequencies of phlD+ populations were similar in the suppressive and conducive soils but their genotypic diversity differed significantly. However, phlD genotypes from the two soils were equally effective in suppressing Fusarium wilt, either alone or in combination with non-pathogenic F. oxysporum strain Fo47. A mutant deficient in DAPG production provided a similar level of control as its parental strain, suggesting that this antibiotic does not play a major role. In contrast, phzC+ pseudomonads were only detected in the suppressive soil. Representative phzC+ isolates of five distinct genotypes did not suppress Fusarium wilt on their own, but acted synergistically in combination with strain Fo47. This increased level of disease suppression was ascribed to phenazine production as the phenazine-deficient mutant was not effective. These results suggest, for the first time, that redox-active phenazines produced by fluorescent pseudomonads contribute to the natural soil suppressiveness to Fusarium wilt disease and may act in synergy with carbon competition by resident non-pathogenic F. oxysporum.

  3. Progress in breeding for tolerance to Fusarium wilt (FOV) races 1 and 4 in the San Joaquin Valley (SJV) of California.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The vulnerability of cotton production in California to Fusarium wilt [Fusarium oxysporum f. sp. vasinfectum (FOV)] highlights the need for comprehensive research to protect the future of the cotton industry in the San Joaquin Valley (SJV). A recently identified problematic strain of Fusarium (race ...

  4. The rhizosphere microbial community in a multiple parallel mineralization system suppresses the pathogenic fungus Fusarium oxysporum

    PubMed Central

    Fujiwara, Kazuki; Iida, Yuichiro; Iwai, Takashi; Aoyama, Chihiro; Inukai, Ryuya; Ando, Akinori; Ogawa, Jun; Ohnishi, Jun; Terami, Fumihiro; Takano, Masao; Shinohara, Makoto

    2013-01-01

    The rhizosphere microbial community in a hydroponics system with multiple parallel mineralization (MPM) can potentially suppress root-borne diseases. This study focused on revealing the biological nature of the suppression against Fusarium wilt disease, which is caused by the fungus Fusarium oxysporum, and describing the factors that may influence the fungal pathogen in the MPM system. We demonstrated that the rhizosphere microbiota that developed in the MPM system could suppress Fusarium wilt disease under in vitro and greenhouse conditions. The microbiological characteristics of the MPM system were able to control the population dynamics of F. oxysporum, but did not eradicate the fungal pathogen. The roles of the microbiological agents underlying the disease suppression and the magnitude of the disease suppression in the MPM system appear to depend on the microbial density. F. oxysporum that survived in the MPM system formed chlamydospores when exposed to the rhizosphere microbiota. These results suggest that the microbiota suppresses proliferation of F. oxysporum by controlling the pathogen's morphogenesis and by developing an ecosystem that permits coexistence with F. oxysporum. PMID:24311557

  5. Water balance altered in cucumber plants infected with Fusarium oxysporum f. sp. cucumerinum

    PubMed Central

    Wang, Min; Sun, Yuming; Sun, Guomei; Liu, Xiaokang; Zhai, Luchong; Shen, Qirong; Guo, Shiwei

    2015-01-01

    Fusarium wilt is caused by the infection and growth of the fungus Fusarium oxysporum in the xylem of host plants. The physiological responses of cucumbers that are infected with Fusarium oxysporum f. sp. cucumerinum (FOC) was studied in pot and hydroponic experiments in a greenhouse. The results showed that although water absorption and stem hydraulic conductance decreased markedly in infected plants, large amounts of red ink accumulated in the leaves of infected cucumber plants. The transpiration rate (E) and stomatal conductance (gs) of the infected plants were significantly reduced, but the E/gs was higher than healthy plants. We further found that there was a positive correlation between leaf membrane injury and E/gs, indicating that the leaf cell membrane injury increased the non-stomatal water loss from infected plants. The fusaric acid (FA), which was detected in the infected plant, resulted in damage to the leaf cell membranes and an increase in E/gs, suggesting that FA plays an important role in non-stomatal water loss. In conclusion, leaf cell membrane injury in the soil-borne Fusarium wilt of cucumber plants induced uncontrolled water loss from damaged cells. FA plays a critical role in accelerating the development of Fusarium wilt in cucumber plants. PMID:25579504

  6. Water balance altered in cucumber plants infected with Fusarium oxysporum f. sp. cucumerinum.

    PubMed

    Wang, Min; Sun, Yuming; Sun, Guomei; Liu, Xiaokang; Zhai, Luchong; Shen, Qirong; Guo, Shiwei

    2015-01-12

    Fusarium wilt is caused by the infection and growth of the fungus Fusarium oxysporum in the xylem of host plants. The physiological responses of cucumbers that are infected with Fusarium oxysporum f. sp. cucumerinum (FOC) was studied in pot and hydroponic experiments in a greenhouse. The results showed that although water absorption and stem hydraulic conductance decreased markedly in infected plants, large amounts of red ink accumulated in the leaves of infected cucumber plants. The transpiration rate (E) and stomatal conductance (gs) of the infected plants were significantly reduced, but the E/gs was higher than healthy plants. We further found that there was a positive correlation between leaf membrane injury and E/gs, indicating that the leaf cell membrane injury increased the non-stomatal water loss from infected plants. The fusaric acid (FA), which was detected in the infected plant, resulted in damage to the leaf cell membranes and an increase in E/gs, suggesting that FA plays an important role in non-stomatal water loss. In conclusion, leaf cell membrane injury in the soil-borne Fusarium wilt of cucumber plants induced uncontrolled water loss from damaged cells. FA plays a critical role in accelerating the development of Fusarium wilt in cucumber plants.

  7. Quantitative trait loci mapping of resistance to Fusarium oxysporum f. sp. niveum race 2 in Citrullus lanatus var. citroides using genotyping-by-sequencing

    Technology Transfer Automated Retrieval System (TEKTRAN)

    One of the most devastating watermelon diseases worldwide, Fusarium wilt, is caused by Fusarium oxysporum f. sp. niveum (Fon). Spread of the particularly virulent Fon race 2 in the United States, coupled with the lack of resistance in edible cultivars of the sweet cultivated watermelon Citrullus lan...

  8. Interaction between Meloidogyne incognita and Fusarium oxysporum f. sp. phaseoli on Selected Bean Genotypes

    PubMed Central

    France, R. A.; S.Abawi, G.

    1994-01-01

    Four bean genotypes (IPA-1, A-107, A-211, and Calima), representing all possible combinations of resistance and susceptibility to Fusarium oxysporum f. sp. phaseoli (Fop) and Meloidogyne incognita, were each inoculated with three population densities of these pathogens. Calima and A-107 were resistant to Fop; A-107 and A-211 were resistant to M. incognita; and IPA-1 was susceptible to both pathogens. In Fop-susceptible lines (IPA-1 and A-211), the presence of M. incognita contributed to an earlier onset and increased severity of Fusarium wilt symptoms and plant stunting. However, the Fop-resistant Calima developed symptoms of Fusarium wilt only in the presence of M. incognita. Genotype A-107 (resistant to both M. incognita and Fop) exhibited Fusarium wilt symptoms and a moderately susceptible reaction to Fop only after the breakdown of its M. incognita resistance by elevated incubation temperatures (27 C). Root galling and reproduction of M. incognita was generally increased as inoculum density of M. incognita was increased on the M. incognita susceptible cultivars. However, these factors were decreased as the inoculum density of Fop was increased. It was concluded that severe infections of bean roots by M. incognita increase the severity of Fusarium wilt on Fop-susceptible genotypes and may modify the resistant reaction to Fop. PMID:19279917

  9. Interaction between Meloidogyne incognita and Fusarium oxysporum f. sp. phaseoli on Selected Bean Genotypes.

    PubMed

    France, R A; S Abawi, G

    1994-12-01

    Four bean genotypes (IPA-1, A-107, A-211, and Calima), representing all possible combinations of resistance and susceptibility to Fusarium oxysporum f. sp. phaseoli (Fop) and Meloidogyne incognita, were each inoculated with three population densities of these pathogens. Calima and A-107 were resistant to Fop; A-107 and A-211 were resistant to M. incognita; and IPA-1 was susceptible to both pathogens. In Fop-susceptible lines (IPA-1 and A-211), the presence of M. incognita contributed to an earlier onset and increased severity of Fusarium wilt symptoms and plant stunting. However, the Fop-resistant Calima developed symptoms of Fusarium wilt only in the presence of M. incognita. Genotype A-107 (resistant to both M. incognita and Fop) exhibited Fusarium wilt symptoms and a moderately susceptible reaction to Fop only after the breakdown of its M. incognita resistance by elevated incubation temperatures (27 C). Root galling and reproduction of M. incognita was generally increased as inoculum density of M. incognita was increased on the M. incognita susceptible cultivars. However, these factors were decreased as the inoculum density of Fop was increased. It was concluded that severe infections of bean roots by M. incognita increase the severity of Fusarium wilt on Fop-susceptible genotypes and may modify the resistant reaction to Fop.

  10. Root Rot of Balloon Flower (Platycodon grandiflorum) Caused by Fusarium solani and Fusarium oxysporum.

    PubMed

    Jeon, Chi Sung; Kim, Gyoung Hee; Son, Kyeong In; Hur, Jae-Seoun; Jeon, Kwon-Seok; Yoon, Jun-Hyuck; Koh, Young Jin

    2013-12-01

    Balloon flower (Platycodon grandiflorum) is a kind of mountain herbs whose roots have restorative properties and the cultivating acreage of balloon flower has been steadily increasing in Korea. More frequent rain and high amount of rainfalls as a result of climate changes predisposed balloon flower to the outbreaks of root rot at high-density cultivation area in recent years. Root crowns were usually discolored into brown to blackish brown at first and the infected plants showed slight wilting symptom at early infection stage. Severely infected roots were entirely rotted and whole plants eventually died at late infection stage. The overall disease severities of root rot of balloon flower were quite variable according to the surveyed fields in Jeonnam, Gyeongnam and Jeju Provinces, which ranged from 0.1% to 40%. The root rot occurred more severely at the paddy or clay soils than the sandy soils and their severities were much higher at lowland than upland in the same localty. The disease increased with aging of the balloon flower. The causal fungi were identified as Fusarium solani and F. oxysporum on the basis of their mycological characteristics. The optimum temperature ranges of their mycelial growths was found to be 24°C. The pathogenic characters of F. solani and F. oxysporum treated by artificial wounding inoculation on healthy roots of balloon flower revealed that F. solani was more virulent than F. oxysporum. This study identified the causal agents of root rot of balloon flower as Fusarium solani and F. oxysporum, probably for the first time.

  11. Success evaluation of the biological control of Fusarium wilts of cucumber, banana, and tomato since 2000 and future research strategies.

    PubMed

    Raza, Waseem; Ling, Ning; Zhang, Ruifu; Huang, Qiwei; Xu, Yangchun; Shen, Qirong

    2017-03-01

    The Fusarium wilt caused by Fusarium oxysporum strains is the most devastating disease of cucumber, banana, and tomato. The biological control of this disease has become an attractive alternative to the chemical fungicides and other conventional control methods. In this review, the research trends and biological control efficiencies (BCE) of different microbial strains since 2000 are reviewed in detail, considering types of microbial genera, inoculum application methods, plant growth medium and conditions, inoculum application with amendments, and co-inoculation of different microbial strains and how those affect the BCE of Fusarium wilt. The data evaluation showed that the BCE of biocontrol agents was higher against the Fusarium wilt of cucumber compared to the Fusarium wilts of banana and tomato. Several biocontrol agents mainly Bacillus, Trichoderma, Pseudomonas, nonpathogenic Fusarium, and Penicillium strains were evaluated to control Fusarium wilt, but still this lethal disease could not be controlled completely. We have discussed different reasons of inconsistent results and recommendations for the betterment of BCE in the future. This review provides knowledge of the biotechnology of biological control of Fusarium wilt of cucumber, banana, and tomato in a nut shell that will provide researchers a beginning line to start and to organize and plan research for the future studies.

  12. Integrated management of fusarium wilt of chickpea with sowing date, host resistance, and biological control.

    PubMed

    Landa, Blanca B; Navas-Cortés, Juan A; Jiménez-Díaz, Rafael M

    2004-09-01

    ABSTRACT A 3-year experiment was conducted in field microplots infested with Fusarium oxysporum f. sp. ciceris race 5 at Córdoba, Spain, in order to assess efficacy of an integrated management strategy for Fusarium wilt of chickpea that combined the choice of sowing date, use of partially resistant chickpea genotypes, and seed and soil treatments with biocontrol agents Bacillus megaterium RGAF 51, B. subtilis GB03, nonpathogenic F. oxysporum Fo 90105, and Pseudomonas fluorescens RG 26. Advancing the sowing date from early spring to winter significantly delayed disease onset, reduced the final disease intensity (amount of disease in a microplot that combines disease incidence and severity, expressed as a percentage of the maximum possible amount of disease in that microplot), and increased chickpea seed yield. A significant linear relationship was found between disease development over time and weather variables at the experimental site, with epidemics developing earlier and faster as mean temperature increased and accumulated rainfall decreased. Under conditions highly conducive for Fusarium wilt development, the degree of disease control depended primarily on choice of sowing date, and to a lesser extent on level of resistance of chickpea genotypes to F. oxysporum f. sp. ciceris race 5, and the biocontrol treatments. The main effects of sowing date, partially resistant genotypes, and biocontrol agents were a reduction in the rate of epidemic development over time, a reduction of disease intensity, and an increase in chickpea seedling emergence, respectively. Chickpea seed yield was influenced by all three factors in the study. The increase in chickpea seed yield was the most consistent effect of the biocontrol agents. However, that effect was primarily influenced by sowing date, which also determined disease development. Effectiveness of biocontrol treatments in disease management was lowest in January sowings, which were least favorable for Fusarium wilt. Sowing

  13. Volatile organic compounds: a potential direct long-distance mechanism for antagonistic action of Fusarium oxysporum strain MSA 35.

    PubMed

    Minerdi, Daniela; Bossi, Simone; Gullino, Maria Lodovica; Garibaldi, Angelo

    2009-04-01

    Fusarium oxysporum MSA35 [wild-type (WT) strain] is an antagonistic Fusarium that lives in association with a consortium of bacteria belonging to the genera Serratia, Achromobacter, Bacillus and Stenotrophomonas in an Italian soil suppressive to Fusarium wilt. Typing experiments and virulence tests provided evidence that the F. oxysporum isolate when cured of the bacterial symbionts [the cured (CU) form], is pathogenic, causing wilt symptoms identical to those caused by F. oxysporum f. sp. lactucae. Here, we demonstrate that small volatile organic compounds (VOCs) emitted from the WT strain negatively influence the mycelial growth of different formae speciales of F. oxysporum. Furthermore, these VOCs repress gene expression of two putative virulence genes in F. oxysporum lactucae strain Fuslat10, a fungus against which the WT strain MSA 35 has antagonistic activity. The VOC profile of the WT and CU fungus shows different compositions. Sesquiterpenes, mainly caryophyllene, were present in the headspace only of WT MSA 35. No sesquiterpenes were found in the volatiles of ectosymbiotic Serratia sp. strain DM1 and Achromobacter sp. strain MM1. Bacterial volatiles had no effects on the growth of the different ff. spp. of F. oxysporum examined. Hyphae grownwithVOCfrom WT F. oxysporum f. sp. lactucae strain MSA 35 were hydrophobic whereas those grown without VOCs were not, suggesting a correlation between the presence of volatiles in the atmosphere and the phenotype of the mycelium. This is the first report of VOC production by antagonistic F. oxysporum MSA35 and their effects on pathogenic F. oxysporum. The results obtained in this work led us to propose a new potential direct long-distance mechanism for antagonism by F. oxysporum MSA 35 mediated by VOCs. Antagonism could be the consequence of both reduction of pathogen mycelial growth and inhibition of pathogen virulence gene expression.

  14. Nitrate Increased Cucumber Tolerance to Fusarium Wilt by Regulating Fungal Toxin Production and Distribution

    PubMed Central

    Zhou, Jinyan; Wang, Min; Sun, Yuming; Gu, Zechen; Wang, Ruirui; Saydin, Asanjan; Shen, Qirong; Guo, Shiwei

    2017-01-01

    Cucumber Fusarium wilt, induced by Fusarium oxysporum f. sp. cucumerinum (FOC), causes severe losses in cucumber yield and quality. Nitrogen (N), as the most important mineral nutrient for plants, plays a critical role in plant–pathogen interactions. Hydroponic assays were conducted to investigate the effects of different N forms (NH4+ vs. NO3‒) and supply levels (low, 1 mM; high, 5 mM) on cucumber Fusarium wilt. The NO3‒-fed cucumber plants were more tolerant to Fusarium wilt compared with NH4+-fed plants, and accompanied by lower leaf temperature after FOC infection. The disease index decreased as the NO3‒ supply increased but increased with the NH4+ level supplied. Although the FOC grew better under high NO3− in vitro, FOC colonization and fusaric acid (FA) production decreased in cucumber plants under high NO3− supply, associated with lower leaf membrane injury. There was a positive correlation between the FA content and the FOC number or relative membrane injury. After the exogenous application of FA, less FA accumulated in the leaves under NO3− feeding, accompanied with a lower leaf membrane injury. In conclusion, higher NO3− supply protected cucumber plants against Fusarium wilt by suppressing FOC colonization and FA production in plants, and increasing the plant tolerance to FA. PMID:28287458

  15. Quantitative and Microscopic Assessment of Compatible and Incompatible Interactions between Chickpea Cultivars and Fusarium oxysporum f. sp. ciceris Races

    PubMed Central

    Jiménez-Fernández, Daniel; Landa, Blanca B.; Kang, Seogchan; Jiménez-Díaz, Rafael M.; Navas-Cortés, Juan A.

    2013-01-01

    Background Fusarium wilt caused by Fusarium oxysporum f. sp. ciceris, a main threat to global chickpea production, is managed mainly by resistant cultivars whose efficiency is curtailed by Fusarium oxysporum f. sp. ciceris races. Methodology We characterized compatible and incompatible interactions by assessing the spatial-temporal pattern of infection and colonization of chickpea cvs. P-2245, JG-62 and WR-315 by Fusarium oxysporum f. sp. ciceris races 0 and 5 labeled with ZsGreen fluorescent protein using confocal laser scanning microscopy. Findings The two races colonized the host root surface in both interactions with preferential colonization of the root apex and subapical root zone. In compatible interactions, the pathogen grew intercellularly in the root cortex, reached the xylem, and progressed upwards in the stem xylem, being the rate and intensity of stem colonization directly related with the degree of compatibility among Fusarium oxysporum f. sp. ciceris races and chickpea cultivars. In incompatible interactions, race 0 invaded and colonized ‘JG-62’ xylem vessels of root and stem but in ‘WR-315’, it remained in the intercellular spaces of the root cortex failing to reach the xylem, whereas race 5 progressed up to the hypocotyl. However, all incompatible interactions were asymptomatic. Conclusions The differential patterns of colonization of chickpea cultivars by Fusarium oxysporum f. sp. ciceris races may be related to the operation of multiple resistance mechanisms. PMID:23613839

  16. Suppression of Fusarium wilt of cucumber by ammonia gas fumigation via reduction of Fusarium population in the field.

    PubMed

    Zhao, Jun; Mei, Zhong; Zhang, Xu; Xue, Chao; Zhang, Chenzhi; Ma, Tengfei; Zhang, Shusheng

    2017-02-23

    Cucumber plants subjected to consecutive monoculture for 9 years were found to suffer from severe Fusarium wilt disease, caused by the soil-borne fungus Fusarium oxysporum f. sp. Cucumerinum J. H. Owen. In the present study, greenhouse experiments were performed to evaluate the influence of ammonia gas fumigation on Fusarium wilt suppression, fungal abundance and fungal community composition. Results showed that ammonia gas fumigation remarkably reduced disease incidence from 80% to 27%, resulting in a four-fold increase in yield, compared to the control. Total fungal abundance declined dramatically after fumigation and reached the lowest level at day 32, at 243 times lower than the control. Moreover, fumigation significantly increased soil fungal diversity, though it also decreased considerably coinciding with cucumber growth. Fumigation also significantly altered soil fungal community composition, relative to the control. Fusarium was strongly inhibited by fumigation in both relative abundance (3.8 times lower) and targeted quantification (a decrease of 167 fold). Collectively, the application of ammonia gas fumigation to control Fusarium wilt of cucumber resulted in a re-assembly of the fungal community to resemble that of a non-disease conducive consortium. Additional strategies, such as bioorganic fertilizer application, may still be required to develop sustainable disease suppression following fumigation.

  17. Suppression of Fusarium wilt of cucumber by ammonia gas fumigation via reduction of Fusarium population in the field

    PubMed Central

    Zhao, Jun; Mei, Zhong; Zhang, Xu; Xue, Chao; Zhang, Chenzhi; Ma, Tengfei; Zhang, Shusheng

    2017-01-01

    Cucumber plants subjected to consecutive monoculture for 9 years were found to suffer from severe Fusarium wilt disease, caused by the soil-borne fungus Fusarium oxysporum f. sp. Cucumerinum J. H. Owen. In the present study, greenhouse experiments were performed to evaluate the influence of ammonia gas fumigation on Fusarium wilt suppression, fungal abundance and fungal community composition. Results showed that ammonia gas fumigation remarkably reduced disease incidence from 80% to 27%, resulting in a four-fold increase in yield, compared to the control. Total fungal abundance declined dramatically after fumigation and reached the lowest level at day 32, at 243 times lower than the control. Moreover, fumigation significantly increased soil fungal diversity, though it also decreased considerably coinciding with cucumber growth. Fumigation also significantly altered soil fungal community composition, relative to the control. Fusarium was strongly inhibited by fumigation in both relative abundance (3.8 times lower) and targeted quantification (a decrease of 167 fold). Collectively, the application of ammonia gas fumigation to control Fusarium wilt of cucumber resulted in a re-assembly of the fungal community to resemble that of a non-disease conducive consortium. Additional strategies, such as bioorganic fertilizer application, may still be required to develop sustainable disease suppression following fumigation. PMID:28230182

  18. Genetic Diversity of Fusarium oxysporum Strains from Common Bean Fields in Spain

    PubMed Central

    Alves-Santos, Fernando M.; Benito, Ernesto P.; Eslava, Arturo P.; Díaz-Mínguez, José María

    1999-01-01

    Fusarium wilt is an endemic disease in El Barco de Avila (Castilla y León, west-central Spain), where high-quality common bean cultivars have been cultured for the last century. We used intergenic spacer (IGS) region polymorphism of ribosomal DNA, electrophoretic karyotype patterns, and vegetative compatibility and pathogenicity analyses to assess the genetic diversity within Fusarium oxysporum isolates recovered from common bean plants growing in fields around El Barco de Avila. Ninety-six vegetative compatibility groups (VCGs) were found among 128 isolates analyzed; most of these VCGs contained only a single isolate. The strains belonging to pathogenic VCGs and the most abundant nonpathogenic VCGs were further examined for polymorphisms in the IGS region and electrophoretic karyotype patterns. Isolates belonging to the same VCG exhibited the same IGS haplotype and very similar electrophoretic karyotype patterns. These findings are consistent with the hypothesis that VCGs represent clonal lineages that rarely, if ever, reproduce sexually. The F. oxysporum f. sp. phaseoli strains recovered had the same IGS haplotype and similar electrophoretic karyotype patterns, different from those found for F. oxysporum f. sp. phaseoli from the Americas, and were assigned to three new VCGs (VCGs 0166, 0167, and 0168). Based on our results, we do not consider the strains belonging to F. oxysporum f. sp. phaseoli to be a monophyletic group within F. oxysporum, as there is no correlation between pathogenicity and VCG, IGS restriction fragment length polymorphism, or electrophoretic karyotype. PMID:10427016

  19. Paenibacillus polymyxa NSY50 suppresses Fusarium wilt in cucumbers by regulating the rhizospheric microbial community.

    PubMed

    Shi, Lu; Du, Nanshan; Shu, Sheng; Sun, Jin; Li, Shuzhan; Guo, Shirong

    2017-02-13

    Paenibacillus polymyxa (P. polymyxa) NSY50, isolated from vinegar residue substrate, suppresses the growth of Fusarium oxysporum in the cucumber rhizosphere and protects the host plant from pathogen invasion. The aim of the present study was to evaluate the effects of NSY50 application on cucumber growth, soil properties and composition of the rhizospheric soil microbial community after exposure to Fusarium oxysporum. Bacterial and fungal communities were investigated by Illumina sequencing of the 16S rRNA gene and the internal transcribed spacer (ITS) regions (ITS1 and ITS2). The results showed that NSY50 effectively reduced the incidence of Fusarium wilt (56.4%) by altering the soil physico-chemical properties (e.g., pH, Cmic, Rmic, total N and Corg) and enzyme activities, especially of urease and β-glucosidase, which were significantly increased by 2.25- and 2.64-fold, respectively, relative to the pathogen treatment condition. More specifically, NSY50 application reduced the abundance of Fusarium and promoted potentially beneficial groups, including the Bacillus, Actinobacteria, Streptomyces, Actinospica, Catenulispora and Pseudomonas genera. Thus, our results suggest that NSY50 application can improve soil properties, shift the microbial community by increasing beneficial strains and decreasing pathogen colonization in the cucumber rhizosphere, and reduce the occurrence of cucumber Fusarium wilt, thereby promoting cucumber growth.

  20. Paenibacillus polymyxa NSY50 suppresses Fusarium wilt in cucumbers by regulating the rhizospheric microbial community

    PubMed Central

    Shi, Lu; Du, Nanshan; Shu, Sheng; Sun, Jin; Li, Shuzhan; Guo, Shirong

    2017-01-01

    Paenibacillus polymyxa (P. polymyxa) NSY50, isolated from vinegar residue substrate, suppresses the growth of Fusarium oxysporum in the cucumber rhizosphere and protects the host plant from pathogen invasion. The aim of the present study was to evaluate the effects of NSY50 application on cucumber growth, soil properties and composition of the rhizospheric soil microbial community after exposure to Fusarium oxysporum. Bacterial and fungal communities were investigated by Illumina sequencing of the 16S rRNA gene and the internal transcribed spacer (ITS) regions (ITS1 and ITS2). The results showed that NSY50 effectively reduced the incidence of Fusarium wilt (56.4%) by altering the soil physico-chemical properties (e.g., pH, Cmic, Rmic, total N and Corg) and enzyme activities, especially of urease and β-glucosidase, which were significantly increased by 2.25- and 2.64-fold, respectively, relative to the pathogen treatment condition. More specifically, NSY50 application reduced the abundance of Fusarium and promoted potentially beneficial groups, including the Bacillus, Actinobacteria, Streptomyces, Actinospica, Catenulispora and Pseudomonas genera. Thus, our results suggest that NSY50 application can improve soil properties, shift the microbial community by increasing beneficial strains and decreasing pathogen colonization in the cucumber rhizosphere, and reduce the occurrence of cucumber Fusarium wilt, thereby promoting cucumber growth. PMID:28198807

  1. Synergistic Effect of Dazomet Soil Fumigation and Clonostachys rosea Against Cucumber Fusarium Wilt.

    PubMed

    Tian, Tian; Li, Shi-Dong; Sun, Man-Hong

    2014-12-01

    Soil fumigation and biological control are two control measures frequently used against soilborne diseases. In this study, the chemical fumigant dazomet was applied in combination with the biocontrol agent (BCA) Clonostachys rosea 67-1 to combat cucumber wilt caused by Fusarium oxysporum f. sp. cucumerinum KW2-1. When the mycoparasite C. rosea 67-1 was applied after dazomet fumigation, disease control reached 100%, compared with 88.1 and 69.8% for dazomet and 67-1 agent, respectively, applied alone, indicating a synergistic effect of dazomet and C. rosea in combating cucumber Fusarium wilt based on analysis of Bliss Independence. To understand the synergistic mechanism, the effects of chemical fumigation on the colonization potential and activity of F. oxysporum f. sp. cucumerinum, and the interaction between the BCA and the pathogen were investigated. The results showed that growth of the pathogen decreased with increasing dazomet concentration subsequent to fumigation. When exposed to dazomet at 100 ppm, the fungal sporulation rate decreased by 94.4%. Severe damage was observed in fumigated isolates using scanning electron microscopy. In the greenhouse, disease incidence of cucumber caused by fumigated F. oxysporum f. sp. cucumerinum significantly decreased. Whereas germination of C. rosea 67-1 spores increased by >sixfold in fumigated soil, and its ability to parasitize fumigated F. oxysporum f. sp. cucumerinum significantly increased (P = 0.014).

  2. Effect of silicates and electrical conductivity on Fusarium wilt of hydroponically grown lettuce.

    PubMed

    Chitarra, W; Pugliese, M; Gilardi, G; Gullino, M L; Garibaldi, A

    2013-01-01

    Silicon can stimulate natural defense mechanisms in plants, reducing foliar diseases like powdery arid downy mildew on several crops, including lettuce. The effect of silicate on Fusarium wilt, caused by Fusarium oxysporum f. sp. lactucae was evaluated under greenhouse conditions on lettuce grown in soilless systems. Silicon, as potassium silicate, was added at 100 mg L(-1) of nutrient solution at three levels of electrical conductivity; 1.5-1.6 mS cm(-1) (E.C.1), 3.0-3.2 mS cm(-1) (E.C.2) and 4-4.2 mS cm(-1) (E.C.3). Pots containing lettuce plants were first inoculated with F. oxysporum f. sp. lactucae (3x10(5) chlamidospores ml(-1)) 15-20 days before transplanting. Disease severity and physiological parameters, including chlorophyll content, were analyzed weekly after transplanting. The addition of potassium silicate slightly reduced Fusarium wilt, at all levels of electrical conductivity under study, compared to the control. On the contrary, the increase of electrical conductivity of the nutrient solution showed no effect on the disease. The use of silicon was previously demonstrated to significantly reduce downy mildew on lettuce in soilless systems, and in this trial it demonstrated to slightly reduce disease severity of an important soil-borne pathogen like F. oxysporum f. sp. lactucae, suggesting the possibility to apply it successfully in soilless crops.

  3. Identification of pathogenicity‐related genes in Fusarium oxysporum f. sp. cepae

    PubMed Central

    Vágány, Viktória; Jackson, Alison C.; Harrison, Richard J.; Rainoni, Alessandro; Clarkson, John P.

    2016-01-01

    Summary Pathogenic isolates of Fusarium oxysporum, distinguished as formae speciales (f. spp.) on the basis of their host specificity, cause crown rots, root rots and vascular wilts on many important crops worldwide. Fusarium oxysporum f. sp. cepae (FOC) is particularly problematic to onion growers worldwide and is increasing in prevalence in the UK. We characterized 31 F. oxysporum isolates collected from UK onions using pathogenicity tests, sequencing of housekeeping genes and identification of effectors. In onion seedling and bulb tests, 21 isolates were pathogenic and 10 were non‐pathogenic. The molecular characterization of these isolates, and 21 additional isolates comprising other f. spp. and different Fusarium species, was carried out by sequencing three housekeeping genes. A concatenated tree separated the F. oxysporum isolates into six clades, but did not distinguish between pathogenic and non‐pathogenic isolates. Ten putative effectors were identified within FOC, including seven Secreted In Xylem (SIX) genes first reported in F. oxysporum f. sp. lycopersici. Two highly homologous proteins with signal peptides and RxLR motifs (CRX1/CRX2) and a gene with no previously characterized domains (C5) were also identified. The presence/absence of nine of these genes was strongly related to pathogenicity against onion and all were shown to be expressed in planta. Different SIX gene complements were identified in other f. spp., but none were identified in three other Fusarium species from onion. Although the FOC SIX genes had a high level of homology with other f. spp., there were clear differences in sequences which were unique to FOC, whereas CRX1 and C5 genes appear to be largely FOC specific. PMID:26609905

  4. Identification of pathogenicity-related genes in Fusarium oxysporum f. sp. cepae.

    PubMed

    Taylor, Andrew; Vágány, Viktória; Jackson, Alison C; Harrison, Richard J; Rainoni, Alessandro; Clarkson, John P

    2016-09-01

    Pathogenic isolates of Fusarium oxysporum, distinguished as formae speciales (f. spp.) on the basis of their host specificity, cause crown rots, root rots and vascular wilts on many important crops worldwide. Fusarium oxysporum f. sp. cepae (FOC) is particularly problematic to onion growers worldwide and is increasing in prevalence in the UK. We characterized 31 F. oxysporum isolates collected from UK onions using pathogenicity tests, sequencing of housekeeping genes and identification of effectors. In onion seedling and bulb tests, 21 isolates were pathogenic and 10 were non-pathogenic. The molecular characterization of these isolates, and 21 additional isolates comprising other f. spp. and different Fusarium species, was carried out by sequencing three housekeeping genes. A concatenated tree separated the F. oxysporum isolates into six clades, but did not distinguish between pathogenic and non-pathogenic isolates. Ten putative effectors were identified within FOC, including seven Secreted In Xylem (SIX) genes first reported in F. oxysporum f. sp. lycopersici. Two highly homologous proteins with signal peptides and RxLR motifs (CRX1/CRX2) and a gene with no previously characterized domains (C5) were also identified. The presence/absence of nine of these genes was strongly related to pathogenicity against onion and all were shown to be expressed in planta. Different SIX gene complements were identified in other f. spp., but none were identified in three other Fusarium species from onion. Although the FOC SIX genes had a high level of homology with other f. spp., there were clear differences in sequences which were unique to FOC, whereas CRX1 and C5 genes appear to be largely FOC specific.

  5. Efficacy of sludge and manure compost amendments against Fusarium wilt of cucumber.

    PubMed

    Huang, Xiao; Shi, Dezhi; Sun, Faqian; Lu, Haohao; Liu, Jingjing; Wu, Weixiang

    2012-11-01

    Fusarium wilt of cucumber caused by the fungus, Fusarium oxysporum, is one of the most destructive soilborne diseases and can result in serious economic loss. No efficient fungicide is currently available to control the disease. The aim of this study was to examine the disease suppression ability of pig manure and sludge composts in peat-based container media and explore the possible disease suppression mechanisms. Pig manure and sewage sludge compost were made in laboratory-scale tanks. Plant growth media were formulated with peat mixture and compost (or 60 °C heated compost) in a 4:1 ratio (v/v). Cucumber seedlings were artificially inoculated with F. oxysporum conidia (5 × 10(5) conidia mL(-1)) by the root-dip method. Cucumber Fusarium wilt was effectively suppressed in sludge compost-amended media, while the disease suppression effect of pig manure compost was limited. The ammonia levels in the manure compost-amended media were significantly higher than those of sludge compost-amended media, which could explain its lower disease suppression ability. Heated composts behaved similarly with respect to disease suppression. Adding composts increased microbial biomass, microbial activity, and the microbial diversity of the growth media. PCR-DGGE results indicated that the fungal community had a significant correlation to the disease severity. The artificially inoculated pathogen was retrieved in all treatments and one possible biocontrol agent was identified as a strain of F. oxysporum by phylogenetic analyses. The results indicated that the sludge compost used in this study could be applied as a method for biocontrol of cucumber Fusarium wilt.

  6. Biocontrol of Fusarium wilt disease in tomato by Paenibacillus ehimensis KWN38.

    PubMed

    Naing, Kyaw Wai; Nguyen, Xuan Hoa; Anees, Muhammad; Lee, Yong Seong; Kim, Yong Cheol; Kim, Sang Jun; Kim, Myung Hee; Kim, Yong Hwan; Kim, Kil Yong

    2015-01-01

    This study was conducted to investigate biocontrol potential of Paenibacillus ehimensis KWN38 against Fusarium oxysporum f.sp. lycopersici causing Fusarium wilt disease in tomato. Our result showed that P. ehimensis KWN38 produced extracellular organic compounds and crude enzyme to inhibit F. oxysporum f.sp. lycopersici conidial germination in in vitro assays. Tomato seedlings were treated with water (W), grass medium (G), G with P. ehimensis KWN38 inoculation (GP) and G along with synthetic fungicide (GSf). Disease symptoms were was first observed in G and W at 12 days after infection (DAI) while symptoms were noticeable in the GP and GSf treatments at 20 and 24 DAI, respectively. Tomato plants treated with P. ehimensis KWN38 or fungicide significantly reduced Fusarium wilt disease incidence and severity as compared to control tomato plants treated with water and grass medium. The similar results were also found in the root mortality of tomato plants. At 25 DAI, most plants in control treatments (W and G) wilted and the brown vascular systems of infected plants was clearly differentiable from normal green vascular system of healthy plants from GP and GSf. Plants in the GP showed higher fresh and dry weights of both root and shoots than those in W and G treatments. Leaf peroxidase and polyphenol oxidase activities of tomato plants in G and W were higher than those in GP and GSf. Root enzyme activities showed a similar pattern but the values were higher than leaf enzyme. The results clearly demonstrated that P. ehimensis KWN38 may be considered as biocontrol agent of Fusarium wilt disease in tomato.

  7. Constitutive expression of a novel antimicrobial protein, Hcm1, confers resistance to both Verticillium and Fusarium wilts in cotton

    PubMed Central

    Zhang, Zhiyuan; Zhao, Jun; Ding, Lingyun; Zou, Lifang; Li, Yurong; Chen, Gongyou; Zhang, Tianzhen

    2016-01-01

    Fusarium and Verticillium wilts, two of the most important diseases in cotton, pose serious threats to cotton production. Here we introduced a novel antimicrobial protein Hcm1, which comprised harpin protein from Xanthomonas oryzae pv. oryzicola (Xoc), and the chimeric protein, cecropin A-melittin, into cotton. The transgenic cotton lines with stable Hcm1 expression showed a higher resistance to Verticillium and Fusarium wilts both in greenhouse and field trials compared to controls. Hcm1 enabled the transgenic cotton to produced a microscopic hypersensitive response (micro-HR), reactive oxygen species (ROS) burst, and caused the activation of pathogenesis-related (PR) genes in response to biotic stress, indicating that the transgenic cotton was in a primed state and ready to protect the host from pathogenic infection. Simultaneously, Hcm1 protein inhibited the growth of Verticillium dahliae (V. dahliae) and Fusarium oxysporum (F. oxysporum) in vitro. The spread of fungal biomass was also inhibited in vivo since the V. dahliae biomass was decreased dramatically in transgenic cotton plants after inoculation with V. dahliae. Together, these results demonstrate that Hcm1 could activate innate immunity and inhibit the growth of V. dahliae and F. oxysporum to protect cotton against Verticillium and Fusarium wilts. PMID:26856318

  8. An Evaluation Method for the Suppression of Pathogenic Fusarium oxysporum by Soil Microorganisms Using the Dilution Plate Technique

    PubMed Central

    Mitsuboshi, Masahiro; Kioka, Yuuzou; Noguchi, Katsunori; Asakawa, Susumu

    2016-01-01

    Soil-borne diseases caused by pathogenic microorganisms are one of the main factors responsible for the decline in crop yields in farmlands. Pathogenic Fusarium oxysporum causes serious damage to various crops, and, thus, a feasible diagnostic method for soil-borne diseases is required. We herein examined a simple method to evaluate the suppressiveness of soil microorganisms against a pathogen by co-cultivating indigenous soil microorganisms and a pathogenic fungus (F. oxysporum f. sp. spinaciae). We inoculated F. oxysporum onto the center of agar medium plates mixed with a dilution series of a suspension of organic fertilizers or soil. After an approximately one-week cultivation, the growth degree of F. oxysporum was estimated based on the size of the colonies that formed on the plates. The growth degree of F. oxysporum significantly differed among the organic fertilizers tested, indicating the usefulness of the method for evaluating suppressiveness by organic fertilizers. Differences in the growth degrees of F. oxysporum were associated with the incidence of disease in spinach on soil treated with organic fertilizers and inoculated with a pathogenic F. oxysporum strain. These results suggested that this method provides some useful information on the suppressiveness of organic fertilizers and soil against Fusarium wilt. PMID:27558588

  9. An Evaluation Method for the Suppression of Pathogenic Fusarium oxysporum by Soil Microorganisms Using the Dilution Plate Technique.

    PubMed

    Mitsuboshi, Masahiro; Kioka, Yuuzou; Noguchi, Katsunori; Asakawa, Susumu

    2016-09-29

    Soil-borne diseases caused by pathogenic microorganisms are one of the main factors responsible for the decline in crop yields in farmlands. Pathogenic Fusarium oxysporum causes serious damage to various crops, and, thus, a feasible diagnostic method for soil-borne diseases is required. We herein examined a simple method to evaluate the suppressiveness of soil microorganisms against a pathogen by co-cultivating indigenous soil microorganisms and a pathogenic fungus (F. oxysporum f. sp. spinaciae). We inoculated F. oxysporum onto the center of agar medium plates mixed with a dilution series of a suspension of organic fertilizers or soil. After an approximately one-week cultivation, the growth degree of F. oxysporum was estimated based on the size of the colonies that formed on the plates. The growth degree of F. oxysporum significantly differed among the organic fertilizers tested, indicating the usefulness of the method for evaluating suppressiveness by organic fertilizers. Differences in the growth degrees of F. oxysporum were associated with the incidence of disease in spinach on soil treated with organic fertilizers and inoculated with a pathogenic F. oxysporum strain. These results suggested that this method provides some useful information on the suppressiveness of organic fertilizers and soil against Fusarium wilt.

  10. Fusarium oxysporum Triggers Tissue-Specific Transcriptional Reprogramming in Arabidopsis thaliana

    PubMed Central

    Lyons, Rebecca; Stiller, Jiri; Powell, Jonathan; Rusu, Anca; Manners, John M.; Kazan, Kemal

    2015-01-01

    Some of the most devastating agricultural diseases are caused by root-infecting pathogens, yet the majority of studies on these interactions to date have focused on the host responses of aerial tissues rather than those belowground. Fusarium oxysporum is a root-infecting pathogen that causes wilt disease on several plant species including Arabidopsis thaliana. To investigate and compare transcriptional changes triggered by F. oxysporum in different Arabidopsis tissues, we infected soil-grown plants with F. oxysporum and subjected root and leaf tissue harvested at early and late timepoints to RNA-seq analyses. At least half of the genes induced or repressed by F. oxysporum showed tissue-specific regulation. Regulators of auxin and ABA signalling, mannose binding lectins and peroxidases showed strong differential expression in root tissue. We demonstrate that ARF2 and PRX33, two genes regulated in the roots, promote susceptibility to F. oxysporum. In the leaves, defensins and genes associated with the response to auxin, cold and senescence were strongly regulated while jasmonate biosynthesis and signalling genes were induced throughout the plant. PMID:25849296

  11. Root defense analysis against Fusarium oxysporum reveals new regulators to confer resistance

    PubMed Central

    Chen, Yi Chung; Wong, Chin Lin; Muzzi, Frederico; Vlaardingerbroek, Ido; Kidd, Brendan N.; Schenk, Peer M.

    2014-01-01

    Fusarium oxysporum is a root-infecting fungal pathogen that causes wilt disease on a broad range of plant species, including Arabidopsis thaliana. Investigation of the defense response against this pathogen had primarily been conducted using leaf tissue and little was known about the root defense response. In this study, we profiled the expression of root genes after infection with F. oxysporum by microarray analysis. In contrast to the leaf response, root tissue did not show a strong induction of defense-associated gene expression and instead showed a greater proportion of repressed genes. Screening insertion mutants from differentially expressed genes in the microarray uncovered a role for the transcription factor ETHYLENE RESPONSE FACTOR72 (ERF72) in susceptibility to F. oxysporum. Due to the role of ERF72 in suppressing programmed cell death and detoxifying reactive oxygen species (ROS), we examined the pub22/pub23/pub24 U-box type E3 ubiquitin ligase triple mutant which is known to possess enhanced ROS production in response to pathogen challenge. We found that the pub22/23/24 mutant is more resistant to F. oxysporum infection, suggesting that a heightened innate immune response provides protection against F. oxysporum. We conclude that root-mediated defenses against soil-borne pathogens can be provided at multiple levels. PMID:24998294

  12. Marker-assisted selection of Fusarium wilt-resistant and gynoecious melon (Cucumis melo L.).

    PubMed

    Gao, P; Liu, S; Zhu, Q L; Luan, F S

    2015-12-08

    In this study, molecular markers were designed based on the sex determination genes ACS7 (A) and WIP1 (G) and the domain in the Fusarium oxysporum-resistant gene Fom-2 (F) in order to achieve selection of F. oxysporum-resistant gynoecious melon plants. Markers of A and F are cleaved amplified polymorphic sequences that distinguish alleles according to restriction analysis. Twenty F1 and 1863 F2 plants derived from the crosses between the gynoecious line WI998 and the Fusarium wilt-resistant line MR-1 were genotyped based on the markers. The results showed that the polymerase chain reaction and enzyme digestion results could be effectively used to identify plants with the AAggFF genotype in F2 populations. In the F2 population, 35 gynoecious wilt-resistant plants were selected by marker-assisted selection and were confirmed by disease infection assays, demonstrating that these markers can be used in breeding to select F. oxysporum-resistant gynoecious melon plants.

  13. The Nuclear Protein Sge1 of Fusarium oxysporum Is Required for Parasitic Growth

    PubMed Central

    Reijnen, Linda; Manders, Erik M. M.; Boas, Sonja; Olivain, Chantal; Alabouvette, Claude; Rep, Martijn

    2009-01-01

    Dimorphism or morphogenic conversion is exploited by several pathogenic fungi and is required for tissue invasion and/or survival in the host. We have identified a homolog of a master regulator of this morphological switch in the plant pathogenic fungus Fusarium oxysporum f. sp. lycopersici. This non-dimorphic fungus causes vascular wilt disease in tomato by penetrating the plant roots and colonizing the vascular tissue. Gene knock-out and complementation studies established that the gene for this putative regulator, SGE1 (SIX Gene Expression 1), is essential for pathogenicity. In addition, microscopic analysis using fluorescent proteins revealed that Sge1 is localized in the nucleus, is not required for root colonization and penetration, but is required for parasitic growth. Furthermore, Sge1 is required for expression of genes encoding effectors that are secreted during infection. We propose that Sge1 is required in F. oxysporum and other non-dimorphic (plant) pathogenic fungi for parasitic growth. PMID:19851506

  14. A major QTL associated with Fusarium oxysporum race 1 resistance identified in genetic populations derived from closely related watermelon lines using selective genotyping and genotyping-by-sequencing for SNP discovery

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fusarium wilt is a major soil-borne disease of watermelon caused by the fungus Fusarium oxysporum Schlechtend.:Fr. f. sp. niveum (E.F. Sm.) W.C. Snyder & H.N. Hans (Fon). In this study, a genetic population of 186 F3 families (24 plants in each family) exhibited continuous distribution for Fon race ...

  15. A genotype-by-sequencing-single nucleotide polymorphism based linkage map and quantitative trait loci (QTL) associated with resistance to Fusarium oxysporum f. sp. niveum race 2 identified in Citrullus lanatus var. citroides

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fusarium wilt, a fungal disease caused by Fusarium oxysporum f. sp. niveum (Fon), devastates watermelon crop production worldwide. Several races, which are differentiated by host range, of the pathogen exist. Resistance to Fon race 2, a particularly virulent strain prevalent in the United States, do...

  16. Visualizing and quantifying Fusarium oxysporum in the plant host.

    PubMed

    Diener, Andrew

    2012-12-01

    Host-specific forms of Fusarium oxysporum infect the roots of numerous plant species. I present a novel application of familiar methodology to visualize and quantify F. oxysporum in roots. Infection in the roots of Arabidopsis thaliana, tomato, and cotton was detected with colorimetric reagents that are substrates for Fusarium spp.-derived arabinofuranosidase and N-acetyl-glucosaminidase activities and without the need for genetic modification of either plant host or fungal pathogen. Similar patterns of blue precipitation were produced by treatment with 5-bromo-4-chloro-3-indoxyl-α-l-arabinofuranoside and 5-bromo-4-chloro-3-indoxyl-2-acetamido-2-deoxy-β-d-glucopyranoside, and these patterns were consistent with prior histological descriptions of F. oxysporum in roots. Infection was quantified in roots of wild-type and mutant Arabidopsis using 4-nitrophenyl-α-l-arabinofuranoside. In keeping with an expectation that disease severity above ground is correlated with F. oxysporum infection below ground, elevated levels of arabinofuranosidase activity were measured in the roots of susceptible agb1 and rfo1 while a reduced level was detected in the resistant eir1. In contrast, disease severity and F. oxysporum infection were uncoupled in tir3. The distribution of staining patterns in roots suggests that AGB1 and RFO1 restrict colonization of the vascular cylinder by F. oxysporum whereas EIR1 promotes colonization of root apices.

  17. Effector profiles distinguish formae speciales of Fusarium oxysporum

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Formae speciales (ff. spp.) of the fungus Fusarium oxysporum are often polyphyletic in their origin, meaning that strains that infect a particular plant species are not necessarily more closely related to each other than to strains that cause disease in another host. Nevertheless, since strains of t...

  18. Genetic and Pathogenic Variability of Fusarium oxysporum f. sp. cepae Isolated from Onion and Welsh Onion in Japan.

    PubMed

    Sasaki, Kazunori; Nakahara, Katsuya; Tanaka, Shuhei; Shigyo, Masayoshi; Ito, Shin-ichi

    2015-04-01

    Fusarium oxysporum f. sp. cepae causes Fusarium basal rot in onion (common onion) and Fusarium wilt in Welsh onion. Although these diseases have been detected in various areas in Japan, knowledge about the genetic and pathogenic variability of F. oxysporum f. sp. cepae is very limited. In this study, F. oxysporum f. sp. cepae was isolated from onion and Welsh onion grown in 12 locations in Japan, and a total of 55 F. oxysporum f. sp. cepae isolates (27 from onion and 28 from Welsh onion) were characterized based on their rDNA intergenic spacer (IGS) and translation elongation factor-1α (EF-1α) nucleotide sequences, vegetative compatibility groups (VCGs), and the presence of the SIX (secreted in xylem) homologs. Phylogenetic analysis of IGS sequences showed that these isolates were grouped into eight clades (A to H), and 20 onion isolates belonging to clade H were monophyletic and assigned to the same VCG. All the IGS-clade H isolates possessed homologs of SIX3, SIX5, and SIX7. The SIX3 homolog was located on a 4 Mb-sized chromosome in the IGS-clade H isolates. Pathogenicity tests using onion seedlings showed that all the isolates with high virulence were in the IGS-clade H. These results suggest that F. oxysporum f. sp. cepae isolates belonging to the IGS-clade H are genetically and pathogenically different from those belonging to the other IGS clades.

  19. Effect of vinegar residue compost amendments on cucumber growth and Fusarium wilt.

    PubMed

    Du, Nanshan; Shi, Lu; Du, Lantian; Yuan, Yinghui; Li, Bin; Sang, Ting; Sun, Jin; Shu, Sheng; Guo, Shirong

    2015-12-01

    Fusarium wilt of cucumber caused by Fusarium oxysporum f. sp. cucumerinum J. H. Owen is one of the major destructive soilborne diseases and results in considerable yield losses. Methyl bromide was once the most effective disease control method but has been confirmed as harmful to the environment. Using suppressive media as biological controls to assist crop growth is becoming popular. In this study, Fusarium wilt of cucumber was successfully controlled by a newly identified suppressive media: vinegar residue compost-amended media (vinegar residue compost mixed with peat and vermiculite in a 6:3:1 ratio (v/v) vinegar residue substrate (VRS). Greenhouse experiments were carried out to evaluate the effect of VRS on the growth of cucumber seedlings and disease suppression. The control was peat/vermiculite (2:1, v/v). To identify the mixed media most suitable for the growth of plants and their suppressiveness indicators, we evaluated the biological characteristics of cucumber, the physicochemical and biochemical properties of the growth media, and the enzyme activities. Total organic C (C(org)), microbial biomass C (C(mic)), basal respiration (R(mic)), and enzyme (catalase, invertase, urease, proteinase, phosphatase, β-glucosidase, and hydrolysis of fluorescein diacetate) activities increased significantly after vinegar waste compost amendment. The compost media also showed a significantly positive effect on the growth of cucumber seedlings and the suppression of the disease severity index (DSI, 38% reduction). The cucumber rhizosphere population of F. oxysporum f. sp. cucumerinum (FOC) was significantly lower in VRS than in the control. These results demonstrate convincingly that vinegar residue compost-amended media has a beneficial effect on cucumber growth and could be applied as a method for biological control of cucumber Fusarium wilt.

  20. Biocontrol of Fusarium wilt disease in cucumber with improvement of growth and mineral uptake using some antagonistic formulations.

    PubMed

    Moharam, Moustafa H A; Negim, Osama O

    2012-01-01

    Fusarium wilt disease in Cucumber (Cucumis sativus L.) is widespread, responsible for serious economic losses. Amongst totally 15 isolates of Fusarium spp., obtained from different localities of Sohag governorate, Egypt, only the identified isolates as F. oxysporum were pathogenic on cucumber Denmark Beta-Alpha cv. and caused wilt symptoms. Totally 22 isolates of Trichoderma spp., B. subtilis and Pseudomonas spp., were obtained from rhizosphere of cucumber and some available commercial formulations and then tested for antagonistic activity against F. oxysporum (FO5) in vitro. The highest inhibitory effect on growth of FO5 was observed by isolate Trichodex of T. harzianum (89.29%) followed by Th4 of T. harzianum, Serenade and MBI 600 of B. subtilis, PS3 of Pseudomonas spp., and Treico and Tv2 of T. viride. Pot experiments were performed to investigate the effects of formulated antagonists as seed treatment on Fusarium wilt incidence, growth and mineral uptake of cucumber. Results showed that all tested formulations significantly reduced percent of wilted plants and disease severity, and improved plant growth by increasing length of shoot and root, fresh and dry weight of shoot and root system, and number of leaves and flowers per plant compared with untreated control. They also significantly increased nutrient contents of plant shoot including N, P, K, Ca, Fe, Mn, Cu, and Zn. Magnesium content in shoot slightly not significantly increased. Formulation of Trichodex was the most effective ones followed by Serenade, Th4 and PS3.

  1. Thermographic visualization of leaf response in cucumber plants infected with the soil-borne pathogen Fusarium oxysporum f. sp. cucumerinum.

    PubMed

    Wang, Min; Ling, Ning; Dong, Xian; Zhu, Yiyong; Shen, Qirong; Guo, Shiwei

    2012-12-01

    Infection with the soil-borne pathogen Fusarium oxysporum f. sp. cucumerinum (FOC), which causes Fusarium wilt of cucumber plants, might result in changes in plant transpiration and water status within leaves. To monitor leaf response in cucumber infected with FOC, digital infrared thermography (DIT) was employed to detect changes in leaf temperature. During the early stages of FOC infection, stomata closure was induced by ABA in leaves, resulting in a decreased transpiration rate and increased leaf temperature. Subsequently, cell death occurred, accompanied by water loss, resulting in a little decrease in leaf temperature. A negative correlation between transpiration rate and leaf temperature was existed. But leaf temperature exhibited a special pattern with different disease severity on light-dark cycle. Lightly wilted leaves had a higher temperature in light and a lower temperature in dark than did in healthy leaves. We identified that the water loss from wilted leaves was regulated not by stomata but rather by cells damage caused by pathogen infection. Finally, water balance in infected plants became disordered and dead tissue was dehydrated, so leaf temperature increased again. These data suggest that membrane injury caused by FOC infection induces uncontrolled water loss from damaged cells and an imbalance in leaf water status, and ultimately accelerate plant wilting. Combining detection of the temperature response of leaves to light-dark conditions, DIT not only permits noninvasive detection and indirect visualization of the development of the soil-borne disease Fusarium wilt, but also demonstrates certain internal metabolic processes correlative with water status.

  2. Tomatidine and lycotetraose, hydrolysis products of alpha-tomatine by Fusarium oxysporum tomatinase, suppress induced defense responses in tomato cells.

    PubMed

    Ito, Shin-ichi; Eto, Tomomi; Tanaka, Shuhei; Yamauchi, Naoki; Takahara, Hiroyuki; Ikeda, Tsuyoshi

    2004-07-30

    Many fungal pathogens of tomato produce extracellular enzymes, collectively known as tomatinases, that detoxify the preformed antifungal steroidal glycoalkaloid alpha-tomatine. Tomatinase from the vascular wilt pathogen of tomato Fusarium oxysporum f. sp. lycopersici cleaves alpha-tomatine into the aglycon tomatidine (Td) and the tetrasaccharide lycotetraose (Lt). Although modes of action of alpha-tomatine have been extensively studied, those of Td and Lt are poorly understood. Here, we show that both Td and Lt inhibit the oxidative burst and hypersensitive cell death in suspension-cultured tomato cells. A tomatinase-negative F. oxysporum strain inherently non-pathogenic on tomato was able to infect tomato cuttings when either Td or Lt was present. These results suggest that tomatinase from F. oxysporum is required not only for detoxification of alpha-tomatine but also for suppression of induced defense responses of host.

  3. Routine mapping of Fusarium wilt resistance in BC1 populations of Arabidopsis thaliana

    PubMed Central

    2013-01-01

    Background Susceptibility to Fusarium wilt disease varies among wild accessions of Arabidopsis thaliana. Six RESISTANCE TO FUSARIUM OXYSPORUM (RFO) quantitative trait loci (QTLs) controlling the resistance of accession Columbia-0 (Col-0) and susceptibility of Taynuilt-0 to Fusarium oxysporum forma specialis matthioli (FOM) are detected in a recombinant population derived from a single backcross of the F1 hybrid (BC1). In particular, the RFO1 QTL appears to interact with three other loci, RFO2, RFO4 and RFO6, and is attributed to the gene At1g79670. Results When resistance to FOM was mapped in a new BC1 population, in which the loss-of-function mutant of At1g79670 replaced wild type as the Col-0 parent, RFO1’s major effect and RFO1’s interaction with RFO2, RFO4 and RFO6 were absent, showing that At1g79670 alone accounts for the RFO1 QTL. Resistance of two QTLs, RFO3 and RFO5, was independent of RFO1 and was reproduced in the new BC1 population. In analysis of a third BC1 population, resistance to a second pathogen, F. oxysporum forma specialis conglutinans race 1 (FOC1), was mapped and the major effect locus RFO7 was identified. Conclusions Natural quantitative resistance to F. oxysporum is largely specific to the infecting forma specialis because different RFO loci were responsible for resistance to FOM and FOC1. The mapping of quantitative disease resistance traits in BC1 populations, generated from crosses between sequenced Arabidopsis accessions, can be a routine procedure when genome-wide genotyping is efficient, economical and accessible. PMID:24172069

  4. Sterilization of Fusarium oxysporum by treatment of non-thermalequilibrium plasma in nutrient solution

    NASA Astrophysics Data System (ADS)

    Yasui, Shinji; Seki, Satoshi; Yoshida, Ryohei; Shoji, Kazuhiro; Terazoe, Hitoshi

    2016-01-01

    Fusarium wilt of spinach due to F. oxysporum infection is one of the most destructive root diseases in hydroponics in factories using the nutrient film technique. We investigated new technologies for the sterilization of microconidia of F. oxysporum by using a non-thermalequilibrium plasma treatment method in nutrient solution. Specifically, we investigated the sterilization capabilities of five types of gas (air, O2, N2, He, and Ar) used for plasma generation. The highest sterilization capability was achieved by using O2 plasma. However, ozone, which causes growth inhibition, was then generated and released into the atmosphere. The sterilization capability was lower when N2 or air plasma was used in the nutrient solution. It was confirmed that sterilization can be achieved by plasma treatment using inert gases that do not generate ozone; therefore, we determined that Ar plasma is the most preferable. In addition, we investigated the sterilization capabilities of other factors associated with Ar plasma generation, without direct plasma treatment. However, none of these other factors, which included Ar bubbling, pH reduction, increased temperature, hydrogen peroxide concentration, and UV radiation, could completely reproduce the results of direct plasma treatment. We assume that radicals such as O or OH may contribute significantly to the sterilization of microconidia of F. oxysporum in a nutrient solution.

  5. Modeling competition for infection sites on roots by nonpathogenic strains of Fusarium oxysporum.

    PubMed

    Mandeel, Qaher A

    2007-01-01

    By use of plane and solid geometry and probability models, efficiencies of infection and competition for nutrients and infection sites by a nonpathogenic strain of Fusarium oxysporum (C14) with F. oxysporum f. sp. cucumerinum on the rhizoplane of cucumber were calculated. The model is derived from previously published data. Efficiencies for successful infection were 0.04 chlamydospores per infection site for both pathogen and nonpathogen. Observed successful infections by the pathogen in competition with the nonpathogen were close in values to the competition ratio (CR) calculated as the number of chlamydospores on the infection court of the pathogen divided by the total number of both pathogen and nonpathogen at relatively low densities. When total chlamydospores were, on average, closer than 175 microm apart, however, competition for nutrients/mutual inhibition occurred. At such densities there was an overestimation of the effect of competition for infection sites. These relationships were modeled at inoculum densities of pathogen and/or nonpathogen of 5000 chlamydospores per g soil and above, however, in the field, maximum densities of 1000 colony forming units/g (cfu) were observed. Most likely models of competition for infection sites at this density of the pathogen revealed that infection efficiency was only approximately halved, even when 0.98 of the possible 30 infection sites were occupied by the nonpathogen. It is conclude that competition for nutrients and/or infection sites is an insignificant factor in biocontrol of Fusarium wilt diseases by nonpathogenic fusaria.

  6. Controlling fusarium wilt of California strawberries by anaerobic soil disinfestation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In the 2014-15 season, the ASD-treated berry acreage exceeded 1,000 acres in California; more than doubled from the previous season. Fusarium wilt an emerging lethal disease of strawberries in California, can also be controlled by ASD. However, a study has shown that higher soil temperatures are n...

  7. [Differential gene expression in incompatible interaction between Lilium regale Wilson and Fusarium oxysporum f. sp. lilii revealed by combined SSH and microarray analysis].

    PubMed

    Rao, J; Liu, D; Zhang, N; He, H; Ge, F; Chen, C

    2014-01-01

    Fusarium wilt, caused by a soilborne pathogen Fusarium oxysporum f. sp. lilii, is the major disease of lily (Lilium L.). In order to isolate the genes differentially expressed in a resistant reaction to F. oxysporum in L. regale Wilson, a cDNA library was constructed with L. regale root during F. oxysporum infection using the suppression subtractive hybridization (SSH), and a total of 585 unique expressed sequence tags (ESTs) were obtained. Furthermore, the gene expression profiles in the incompatible interaction between L. regale and F. oxysporum were revealed by oligonucleotide microarray analysis of 585 unique ESTs comparison to the compatible interaction between a susceptible Lilium Oriental Hybrid 'Siberia' and F. oxysporum. The result of expression profile analysis indicated that the genes encoding pathogenesis-related proteins (PRs), antioxidative stress enzymes, secondary metabolism enzymes, transcription factors, signal transduction proteins as well as a large number of unknown genes were involved in early defense response of L. regale to F. oxysporum infection. Moreover, the following quantitative reverse transcription PCR (QRT-PCR) analysis confirmed reliability of the oligonucleotide microarray data. In the present study, isolation of differentially expressed genes in L. regale during response to F. oxysporum helped to uncover the molecular mechanism associated with the resistance of L. regale against F. oxysporum.

  8. The Membrane Mucin Msb2 Regulates Invasive Growth and Plant Infection in Fusarium oxysporum[W

    PubMed Central

    Pérez-Nadales, Elena; Di Pietro, Antonio

    2011-01-01

    Fungal pathogenicity in plants requires a conserved mitogen-activated protein kinase (MAPK) cascade homologous to the yeast filamentous growth pathway. How this signaling cascade is activated during infection remains poorly understood. In the soil-borne vascular wilt fungus Fusarium oxysporum, the orthologous MAPK Fmk1 (Fusarium MAPK1) is essential for root penetration and pathogenicity in tomato (Solanum lycopersicum) plants. Here, we show that Msb2, a highly glycosylated transmembrane protein, is required for surface-induced phosphorylation of Fmk1 and contributes to a subset of Fmk1-regulated functions related to invasive growth and virulence. Mutants lacking Msb2 share characteristic phenotypes with the Δfmk1 mutant, including defects in cellophane invasion, penetration of the root surface, and induction of vascular wilt symptoms in tomato plants. In contrast with Δfmk1, Δmsb2 mutants were hypersensitive to cell wall targeting compounds, a phenotype that was exacerbated in a Δmsb2 Δfmk1 double mutant. These results suggest that the membrane mucin Msb2 promotes invasive growth and plant infection upstream of Fmk1 while contributing to cell integrity through a distinct pathway. PMID:21441438

  9. Environmental Influences on Pigeonpea-Fusarium udum Interactions and Stability of Genotypes to Fusarium Wilt

    PubMed Central

    Sharma, Mamta; Ghosh, Raju; Telangre, Rameshwar; Rathore, Abhishek; Saifulla, Muhammad; Mahalinga, Dayananda M.; Saxena, Deep R.; Jain, Yogendra K.

    2016-01-01

    Fusarium wilt (Fusarium udum Butler) is an important biotic constraint to pigeonpea (Cajanus cajan L.) production worldwide. Breeding for fusarium wilt resistance continues to be an integral part of genetic improvement of pigeonpea. Therefore, the study was aimed at identifying and validating resistant genotypes to fusarium wilt and determining the magnitude of genotype × environment (G × E) interactions through multi-environment and multi-year screening. A total of 976 genotypes including germplasm and breeding lines were screened against wilt using wilt sick plot at Patancheru, India. Ninety two genotypes resistant to wilt were tested for a further two years using wilt sick plot at Patancheru. A Pigeonpea Wilt Nursery (PWN) comprising of 29 genotypes was then established. PWN was evaluated at nine locations representing different agro-climatic zones of India for wilt resistance during two crop seasons 2007/08 and 2008/09. Genotypes (G), environment (E), and G × E interactions were examined by biplot which partitioned the main effect into G, E, and G × E interactions with significant levels (p ≤ 0.001) being obtained for wilt incidence. The genotype contributed 36.51% of resistance variation followed by the environment (29.32%). A GGE biplot integrated with a boxplot and multiple comparison tests enabled us to identify seven stable genotypes (ICPL 20109, ICPL 20096, ICPL 20115, ICPL 20116, ICPL 20102, ICPL 20106, and ICPL 20094) based on their performance across diverse environments. These genotypes have broad based resistance and can be exploited in pigeonpea breeding programs. PMID:27014287

  10. Environmental Influences on Pigeonpea-Fusarium udum Interactions and Stability of Genotypes to Fusarium Wilt.

    PubMed

    Sharma, Mamta; Ghosh, Raju; Telangre, Rameshwar; Rathore, Abhishek; Saifulla, Muhammad; Mahalinga, Dayananda M; Saxena, Deep R; Jain, Yogendra K

    2016-01-01

    Fusarium wilt (Fusarium udum Butler) is an important biotic constraint to pigeonpea (Cajanus cajan L.) production worldwide. Breeding for fusarium wilt resistance continues to be an integral part of genetic improvement of pigeonpea. Therefore, the study was aimed at identifying and validating resistant genotypes to fusarium wilt and determining the magnitude of genotype × environment (G × E) interactions through multi-environment and multi-year screening. A total of 976 genotypes including germplasm and breeding lines were screened against wilt using wilt sick plot at Patancheru, India. Ninety two genotypes resistant to wilt were tested for a further two years using wilt sick plot at Patancheru. A Pigeonpea Wilt Nursery (PWN) comprising of 29 genotypes was then established. PWN was evaluated at nine locations representing different agro-climatic zones of India for wilt resistance during two crop seasons 2007/08 and 2008/09. Genotypes (G), environment (E), and G × E interactions were examined by biplot which partitioned the main effect into G, E, and G × E interactions with significant levels (p ≤ 0.001) being obtained for wilt incidence. The genotype contributed 36.51% of resistance variation followed by the environment (29.32%). A GGE biplot integrated with a boxplot and multiple comparison tests enabled us to identify seven stable genotypes (ICPL 20109, ICPL 20096, ICPL 20115, ICPL 20116, ICPL 20102, ICPL 20106, and ICPL 20094) based on their performance across diverse environments. These genotypes have broad based resistance and can be exploited in pigeonpea breeding programs.

  11. Trichoderma harzianum and Glomus intraradices modify the hormone disruption induced by Fusarium oxysporum infection in melon plants.

    PubMed

    Martínez-Medina, Ainhoa; Pascual, Jose Antonio; Pérez-Alfocea, Francisco; Albacete, Alfonso; Roldán, Antonio

    2010-07-01

    The plant hormones salicylic acid (SA), jasmonic acid (JA), ethylene (ET), and abscisic acid (ABA) are known to play crucial roles in plant disease and pest resistance. Changes in the concentrations of these plant hormones in melon plant shoots, as a consequence of the interaction between the plant, the pathogen Fusarium oxysporum, the antagonistic microorganism Trichoderma harzianum, and the arbuscular mycorrhizal fungus Glomus intraradices were investigated. Attack by F. oxysporum activated a defensive response in the plant, mediated by the plant hormones SA, JA, ET, and ABA, similar to the one produced by T. harzianum. When inoculated with the pathogen, both T. harzianum and G. intraradices attenuated the plant response mediated by the hormones ABA and ET elicited by the pathogen attack. T. harzianum was also able to attenuate the SA-mediated response. In the three-way interaction (F. oxysporum-T. harzianum-G. intraradices), although a synergistic effect in reducing disease incidence was found, no synergistic effect on the modulation of the hormone disruption induced by the pathogen was observed. These results suggest that the induction of plant basal resistance and the attenuation of the hormonal disruption caused by F. oxysporum are both mechanisms by which T. harzianum can control Fusarium wilt in melon plants; while the mechanisms involving G. intraradices seem to be independent of SA and JA signaling.

  12. Eugenol oil nanoemulsion: antifungal activity against Fusarium oxysporum f. sp. vasinfectum and phytotoxicity on cottonseeds

    NASA Astrophysics Data System (ADS)

    Abd-Elsalam, Kamel A.; Khokhlov, Alexei R.

    2015-02-01

    The current research deals with the formulation and characterization of bio-based oil-in-water nanoemulsion. The formulated eugenol oil nanoemulsion was characterized by dynamic light scattering, stability test, transmission electron microscopy and thin layer chromatography. The nanoemulsion droplets were found to have a Z-average diameter of 80 nm and TEM study reveals the spherical shape of eugenol oil nanoemulsion (EON). The size of the nanoemulsion was found to be physically stable up to more than 1-month when it was kept at room temperature (25 °C). The TEM micrograph showed that the EON was spherical in shape and moderately mono or di-dispersed and was in the range of 50-110 nm. Three concentrations of the nanoformulation were used to evalute the anti-fusarium activity both in vitro and in vivo experiments. SDS-PAGE results of total protein from the Fusarium oxysporum f. sp. vasinfectum (FOV) isolate before and after treatment with eugenol oil nanoemulsion indicate that the content of extra cellular soluble small molecular proteins decreased significantly in EON-treated fungus. Light micrographs of mycelia and spores treated with EON showed the disruption of the fungal structures. The analysis of variance (ANOVA) for Fusarium wilt incidence indicated highly significant ( p = 0.000) effects of concentration, genotype, and their interaction. The difference in wilt incidence between concentrations and control was not the same for each genotype, that is, the genotypes responded differently to concentrations. Effects of three EON concentration on germination percentage, and radicle length, were determined in the laboratory. One very interesting finding in the current study is that cotton genotypes was the most important factors in determining wilt incidence as it accounted for 93.18 % of the explained (model) variation. In vitro experiments were conducted to evaluate the potential phytotoxic effect of three EON concentrations. Concentration, genotype and

  13. [Biodegradation of agricultural plant residues by Fusarium oxysporum strains].

    PubMed

    Chepchak, T P; Kurchenko, I N; Iur'eva, E M

    2014-01-01

    The cellulolytic and endoglucanase activity of Fusarium oxysporum strains isolated from soil and plants in the media with plant waste as carbon source has been studied. It was established that the majority of studied strains were able to hydrolyze the filter paper, husk of sunflower seeds, wheat straw and corn stalks. Cellulolytic activity depended on the strain of microscopic fungi, type of substrate and duration of cultivation. The maximum cellulase activity 1 U/ml and the concentration of reducing sugars -0.875 mg/ml were found in soil strain F. oxysporum 420 in the medium with corn stalks. Endoglucanase activity of plant pathogenic strains was higher than that of soil ones.

  14. Dynamics of the Establishment of Multinucleate Compartments in Fusarium oxysporum

    PubMed Central

    Shahi, Shermineh; Beerens, Bas; Manders, Erik M. M.

    2014-01-01

    Nuclear dynamics can vary widely between fungal species and between stages of development of fungal colonies. Here we compared nuclear dynamics and mitotic patterns between germlings and mature hyphae in Fusarium oxysporum. Using fluorescently labeled nuclei and live-cell imaging, we show that F. oxysporum is subject to a developmental transition from a uninucleate to a multinucleate state after completion of colony initiation. We observed a special type of hypha that exhibits a higher growth rate, possibly acting as a nutrient scout. The higher growth rate is associated with a higher nuclear count and mitotic waves involving 2 to 6 nuclei in the apical compartment. Further, we found that dormant nuclei of intercalary compartments can reenter the mitotic cycle, resulting in multinucleate compartments with up to 18 nuclei in a single compartment. PMID:25398376

  15. Temperature effects on the interactions of sugar beet Fusarium yellows caused by Fusarium oxysporum f. sp. betae

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fusarium yellows of sugar beet (Beta vulgaris L.), caused by Fusarium oxysporum f. sp. betae, causes a significant reduction in root yield, sucrose percentage, and juice purity. The environmental or agronomic factors that contribute to development and severity of Fusarium yellows have not been desc...

  16. MicroRNAs suppress NB domain genes in tomato that confer resistance to Fusarium oxysporum.

    PubMed

    Ouyang, Shouqiang; Park, Gyungsoon; Atamian, Hagop S; Han, Cliff S; Stajich, Jason E; Kaloshian, Isgouhi; Borkovich, Katherine A

    2014-10-01

    MicroRNAs (miRNAs) suppress the transcriptional and post-transcriptional expression of genes in plants. Several miRNA families target genes encoding nucleotide-binding site-leucine-rich repeat (NB-LRR) plant innate immune receptors. The fungus Fusarium oxysporum f. sp. lycopersici causes vascular wilt disease in tomato. We explored a role for miRNAs in tomato defense against F. oxysporum using comparative miRNA profiling of susceptible (Moneymaker) and resistant (Motelle) tomato cultivars. slmiR482f and slmiR5300 were repressed during infection of Motelle with F. oxysporum. Two predicted mRNA targets each of slmiR482f and slmiR5300 exhibited increased expression in Motelle and the ability of these four targets to be regulated by the miRNAs was confirmed by co-expression in Nicotiana benthamiana. Silencing of the targets in the resistant Motelle cultivar revealed a role in fungal resistance for all four genes. All four targets encode proteins with full or partial nucleotide-binding (NB) domains. One slmiR5300 target corresponds to tm-2, a susceptible allele of the Tomato Mosaic Virus resistance gene, supporting functions in immunity to a fungal pathogen. The observation that none of the targets correspond to I-2, the only known resistance (R) gene for F. oxysporum in tomato, supports roles for additional R genes in the immune response. Taken together, our findings suggest that Moneymaker is highly susceptible because its potential resistance is insufficiently expressed due to the action of miRNAs.

  17. MicroRNAs Suppress NB Domain Genes in Tomato That Confer Resistance to Fusarium oxysporum

    DOE PAGES

    Ouyang, Shouqiang; Park, Gyungsoon; Atamian, Hagop S.; ...

    2014-10-16

    MicroRNAs (miRNAs) suppress the transcriptional and post-transcriptional expression of genes in plants. Several miRNA families target genes encoding nucleotide-binding site–leucine-rich repeat (NB-LRR) plant innate immune receptors. The fungus Fusarium oxysporum f. sp. lycopersici causes vascular wilt disease in tomato. Here, we explored a role for miRNAs in tomato defense against F. oxysporum using comparative miRNA profiling of susceptible (Moneymaker) and resistant (Motelle) tomato cultivars. slmiR482f and slmiR5300 were repressed during infection of Motelle with F. oxysporum. Two predicted mRNA targets each of slmiR482f and slmiR5300 exhibited increased expression in Motelle and the ability of these four targets to be regulatedmore » by the miRNAs was confirmed by co-expression in Nicotiana benthamiana. Silencing of the targets in the resistant Motelle cultivar revealed a role in fungal resistance for all four genes. All four targets encode proteins with full or partial nucleotide-binding (NB) domains. One slmiR5300 target corresponds to tm-2, a susceptible allele of the Tomato Mosaic Virus resistance gene, supporting functions in immunity to a fungal pathogen. The observation that none of the targets correspond to I-2, the only known resistance (R) gene for F. oxysporum in tomato, supports roles for additional R genes in the immune response. In conclusion, taken together, our findings suggest that Moneymaker is highly susceptible because its potential resistance is insufficiently expressed due to the action of miRNAs.« less

  18. MicroRNAs Suppress NB Domain Genes in Tomato That Confer Resistance to Fusarium oxysporum

    SciTech Connect

    Ouyang, Shouqiang; Park, Gyungsoon; Atamian, Hagop S.; Han, Cliff S.; Stajich, Jason E.; Kaloshian, Isgouhi; Borkovich, Katherine A.

    2014-10-16

    MicroRNAs (miRNAs) suppress the transcriptional and post-transcriptional expression of genes in plants. Several miRNA families target genes encoding nucleotide-binding site–leucine-rich repeat (NB-LRR) plant innate immune receptors. The fungus Fusarium oxysporum f. sp. lycopersici causes vascular wilt disease in tomato. Here, we explored a role for miRNAs in tomato defense against F. oxysporum using comparative miRNA profiling of susceptible (Moneymaker) and resistant (Motelle) tomato cultivars. slmiR482f and slmiR5300 were repressed during infection of Motelle with F. oxysporum. Two predicted mRNA targets each of slmiR482f and slmiR5300 exhibited increased expression in Motelle and the ability of these four targets to be regulated by the miRNAs was confirmed by co-expression in Nicotiana benthamiana. Silencing of the targets in the resistant Motelle cultivar revealed a role in fungal resistance for all four genes. All four targets encode proteins with full or partial nucleotide-binding (NB) domains. One slmiR5300 target corresponds to tm-2, a susceptible allele of the Tomato Mosaic Virus resistance gene, supporting functions in immunity to a fungal pathogen. The observation that none of the targets correspond to I-2, the only known resistance (R) gene for F. oxysporum in tomato, supports roles for additional R genes in the immune response. In conclusion, taken together, our findings suggest that Moneymaker is highly susceptible because its potential resistance is insufficiently expressed due to the action of miRNAs.

  19. Challenges in ethanol production with Fusarium oxysporum through consolidated bioprocessing.

    PubMed

    Anasontzis, George E; Christakopoulos, Paul

    2014-01-01

    Fusarium oxysporum has been reported as being able to both produce the enzymes necessary to degrade lignocellulosic biomass to sugars and also ferment the monosaccharides to ethanol under anaerobic or microaerobic conditions. However, in order to become an economically feasible alternative to other ethanol-producing microorganisms, a better understanding of its physiology, metabolic pathways, and bottlenecks is required, together with an improvement in its efficiency and robustness. In this report, we describe the challenges for the future and give additional justification for our recent publication.

  20. Effects of iron and boron combinations on the suppression of Fusarium wilt in banana

    PubMed Central

    Dong, Xian; Wang, Min; Ling, Ning; Shen, Qirong; Guo, Shiwei

    2016-01-01

    The effects of mineral nutrient on banana wilt disease, which are the result of a competitive relationship between host plants and pathogens, can affect the interactions of plants with microorganisms. To investigate the mineral nutrient effect, hydroponic experiments were conducted in glasshouse containing combinations of low, medium, and high iron (Fe) and boron (B) concentrations, followed by pathogen inoculation. High Fe and B treatment significantly reduced the disease index and facilitated plants growth. With increasing Fe and B concentrations, more Fe and B accumulated in plants. High Fe and B treatment dramatically reduced the Fusarium oxysporum conidial germination rate and fungal growth compared with the other two treatments, contributing to decreased numbers of the pathogen on infected plants. Furthermore, High Fe and B treatment decreased the fusaric acid production of F. oxysporum in vitro and also increased the mannitol content of the plants, which in turn decreased the phytotoxin production of infected plants and finally reduced the disease index due to the virulence factor of phytotoxin. Taken together, these results indicate that Fe and B play a multifunctional role in reducing the severity of diseases by affecting the growth of F. oxysporum and the responses between plants and pathogens. PMID:27941854

  1. Rapid and Efficient Estimation of Pea Resistance to the Soil-Borne Pathogen Fusarium oxysporum by Infrared Imaging

    PubMed Central

    Rispail, Nicolas; Rubiales, Diego

    2015-01-01

    Fusarium wilts are widespread diseases affecting most agricultural crops. In absence of efficient alternatives, sowing resistant cultivars is the preferred approach to control this disease. However, actual resistance sources are often overcome by new pathogenic races, forcing breeders to continuously search for novel resistance sources. Selection of resistant accessions, mainly based on the evaluation of symptoms at timely intervals, is highly time-consuming. Thus, we tested the potential of an infra-red imaging system in plant breeding to speed up this process. For this, we monitored the changes in surface leaf temperature upon infection by F. oxysporum f. sp. pisi in several pea accessions with contrasting response to Fusarium wilt under a controlled environment. Using a portable infra-red imaging system we detected a significant temperature increase of at least 0.5 °C after 10 days post-inoculation in the susceptible accessions, while the resistant accession temperature remained at control level. The increase in leaf temperature at 10 days post-inoculation was positively correlated with the AUDPC calculated over a 30 days period. Thus, this approach allowed the early discrimination between resistant and susceptible accessions. As such, applying infra-red imaging system in breeding for Fusarium wilt resistance would contribute to considerably shorten the process of selection of novel resistant sources. PMID:25671514

  2. Transcriptome Profiling of Resistance to Fusarium oxysporum f. sp. conglutinans in Cabbage (Brassica oleracea) Roots

    PubMed Central

    Xing, Miaomiao; Lv, Honghao; Ma, Jian; Xu, Donghui; Li, Hailong; Yang, Limei; Kang, Jungen; Wang, Xiaowu; Fang, Zhiyuan

    2016-01-01

    Fusarium wilt caused by Fusarium oxysporum f. sp. conglutinans (FOC) is a destructive disease of Brassica crops, which results in severe yield losses. There is little information available about the mechanism of disease resistance. To obtain an overview of the transcriptome profiles in roots of R4P1, a Brassica oleracea variety that is highly resistant to fusarium wilt, we compared the transcriptomes of samples inoculated with FOC and samples inoculated with distilled water. RNA-seq analysis generated more than 136 million 100-bp clean reads, which were assembled into 62,506 unigenes (mean size = 741 bp). Among them, 49,959 (79.92%) genes were identified based on sequence similarity searches, including SwissProt (29,050, 46.47%), Gene Ontology (GO) (33,767, 54.02%), Clusters of Orthologous Groups (KOG) (14,721, 23.55%) and Kyoto Encyclopedia of Genes and Genomes Pathway database (KEGG) (12,974, 20.76%) searches; digital gene expression analysis revealed 885 differentially expressed genes (DEGs) between infected and control samples at 4, 12, 24 and 48 hours after inoculation. The DEGs were assigned to 31 KEGG pathways. Early defense systems, including the MAPK signaling pathway, calcium signaling and salicylic acid-mediated hypersensitive response (SA-mediated HR) were activated after pathogen infection. SA-dependent systemic acquired resistance (SAR), ethylene (ET)- and jasmonic (JA)-mediated pathways and the lignin biosynthesis pathway play important roles in plant resistance. We also analyzed the expression of defense-related genes, such as genes encoding pathogenesis-related (PR) proteins, UDP-glycosyltransferase (UDPG), pleiotropic drug resistance, ATP-binding cassette transporters (PDR-ABC transporters), myrosinase, transcription factors and kinases, which were differentially expressed. The results of this study may contribute to efforts to identify and clone candidate genes associated with disease resistance and to uncover the molecular mechanism underlying

  3. Transcriptome Profiling of Resistance to Fusarium oxysporum f. sp. conglutinans in Cabbage (Brassica oleracea) Roots.

    PubMed

    Xing, Miaomiao; Lv, Honghao; Ma, Jian; Xu, Donghui; Li, Hailong; Yang, Limei; Kang, Jungen; Wang, Xiaowu; Fang, Zhiyuan

    2016-01-01

    Fusarium wilt caused by Fusarium oxysporum f. sp. conglutinans (FOC) is a destructive disease of Brassica crops, which results in severe yield losses. There is little information available about the mechanism of disease resistance. To obtain an overview of the transcriptome profiles in roots of R4P1, a Brassica oleracea variety that is highly resistant to fusarium wilt, we compared the transcriptomes of samples inoculated with FOC and samples inoculated with distilled water. RNA-seq analysis generated more than 136 million 100-bp clean reads, which were assembled into 62,506 unigenes (mean size = 741 bp). Among them, 49,959 (79.92%) genes were identified based on sequence similarity searches, including SwissProt (29,050, 46.47%), Gene Ontology (GO) (33,767, 54.02%), Clusters of Orthologous Groups (KOG) (14,721, 23.55%) and Kyoto Encyclopedia of Genes and Genomes Pathway database (KEGG) (12,974, 20.76%) searches; digital gene expression analysis revealed 885 differentially expressed genes (DEGs) between infected and control samples at 4, 12, 24 and 48 hours after inoculation. The DEGs were assigned to 31 KEGG pathways. Early defense systems, including the MAPK signaling pathway, calcium signaling and salicylic acid-mediated hypersensitive response (SA-mediated HR) were activated after pathogen infection. SA-dependent systemic acquired resistance (SAR), ethylene (ET)- and jasmonic (JA)-mediated pathways and the lignin biosynthesis pathway play important roles in plant resistance. We also analyzed the expression of defense-related genes, such as genes encoding pathogenesis-related (PR) proteins, UDP-glycosyltransferase (UDPG), pleiotropic drug resistance, ATP-binding cassette transporters (PDR-ABC transporters), myrosinase, transcription factors and kinases, which were differentially expressed. The results of this study may contribute to efforts to identify and clone candidate genes associated with disease resistance and to uncover the molecular mechanism underlying

  4. Contamination of Bananas with Beauvericin and Fusaric Acid Produced by Fusarium oxysporum f. sp. cubense

    PubMed Central

    Kuang, Ruibin; Yang, Qiaosong; Hu, Chunhua; Sheng, Ou; Zhang, Sheng; Ma, Lijun; Wei, Yuerong; Yang, Jing; Liu, Siwen; Biswas, Manosh Kumar; Viljoen, Altus; Yi, Ganjun

    2013-01-01

    Background Fusarium wilt, caused by the fungal pathogen Fusarium oxysporum f. sp. cubense (Foc), is one of the most destructive diseases of banana. Toxins produced by Foc have been proposed to play an important role during the pathogenic process. The objectives of this study were to investigate the contamination of banana with toxins produced by Foc, and to elucidate their role in pathogenesis. Methodology/Principal Findings Twenty isolates of Foc representing races 1 and 4 were isolated from diseased bananas in five Chinese provinces. Two toxins were consistently associated with Foc, fusaric acid (FA) and beauvericin (BEA). Cytotoxicity of the two toxins on banana protoplast was determined using the Alamar Blue assay. The virulence of 20 Foc isolates was further tested by inoculating tissue culture banana plantlets, and the contents of toxins determined in banana roots, pseudostems and leaves. Virulence of Foc isolates correlated well with toxin deposition in the host plant. To determine the natural occurrence of the two toxins in banana plants with Fusarium wilt symptoms, samples were collected before harvest from the pseudostems, fruit and leaves from 10 Pisang Awak ‘Guangfen #1’ and 10 Cavendish ‘Brazilian’ plants. Fusaric acid and BEA were detected in all the tissues, including the fruits. Conclusions/Signficance The current study provides the first investigation of toxins produced by Foc in banana. The toxins produced by Foc, and their levels of contamination of banana fruits, however, were too low to be of concern to human and animal health. Rather, these toxins appear to contribute to the pathogenicity of the fungus during infection of banana plants. PMID:23922960

  5. Biochemical Defenses Induced by Mycorrhizae Fungi Glomus Mosseae in Controlling Strawberry Fusarium Wilt.

    PubMed

    Yanan, Wang; Xusheng, Zhao; Baozhong, Yin; Wenchao, Zhen; Jintang, Guo

    2015-01-01

    The effect of VAM on reducing wilt caused by Fusarium oxysporum Schlecht. f.sp. fragariae Winks et Williams (FO) infection in strawberry and the possible mechanisms involved were investigated. Two key substance involved in disease defenses, lignin and hydroxyproline-rich glycoprotein were induced and formed in the cell wall of strawberry root, and the peak content of lignin and hydroxyproline-rich glycoprotein occurred on the 25(th) day (149.52mg/g) and on the 15(th) day (10.08 mg/g). The activity of protective enzymes SOD, POD and CAT inoculation with VAM significantly increased when compared with the control under both CK (natural growth) and inoculated with FO. The conductivity of VAM plus FO treatment was higher than the CK treatment, but significantly was lower than the FO treatment.

  6. Fusarium foetens, a new species pathogenic to begonia elatior hybrids (Begonia x hiemalis) and the sister taxon of the Fusarium oxysporum species complex.

    PubMed

    Schroers, H-J; Baayen, R P; Meffert, J P; de Gruyter, J; Hooftman, M; O'Donnell, K

    2004-01-01

    A new disease recently was discovered in begonia elatior hybrid (Begonia × hiemalis) nurseries in The Netherlands. Diseased plants showed a combination of basal rot, vein yellowing and wilting and the base of collapsing plants was covered by unusually large masses of Fusarium macroconidia. A species of Fusarium was isolated consistently from the discolored veins of leaves and stems. It differed morphologically from F. begoniae, a known agent of begonia flower, leaf and stem blight. The Fusarium species resembled members of the F. oxysporum species complex in producing short monophialides on the aerial mycelium and abundant chlamydospores. Other phenotypic characters such as polyphialides formed occasionally in at least some strains, relatively long monophialides intermingled with the short monophialides formed on the aerial mycelium, distinct sporodochial conidiomata, and distinct pungent colony odor distinguished it from the F. oxysporum species complex. Phylogenetic analyses of partial sequences of the mitochondrial small subunit of the ribosomal DNA (mtSSU rDNA), nuclear translation elongation factor 1α (EF-1α) and β-tubulin gene exons and introns indicate that the Fusarium species represents a sister group of the F. oxysporum species complex. Begonia × hiemalis cultivars Bazan, Bellona and Netja Dark proved to be highly susceptible to the new species. Inoculated plants developed tracheomycosis within 4 wk, and most died within 8 wk. The new taxon was not pathogenic to Euphorbia pulcherrima, Impatiens walleriana and Saintpaulia ionantha that commonly are grown in nurseries along with B. × hiemalis. Inoculated plants of Cyclamen persicum did not develop the disease but had discolored vessels from which the inoculated fungus was isolated. Given that the newly discovered begonia pathogen is distinct in pathogenicity, morphology and phylogeny from other fusaria, it is described here as a new species, Fusarium foetens.

  7. ITS-RFLP fingerprinting and molecular marker for detection of Fusarium oxysporum f.sp. ciceris.

    PubMed

    Dubey, S C; Tripathi, A; Singh, S R

    2010-11-01

    Genetic diversity of 11 representative isolates of Fusarium oxysporum f.sp. ciceris causing chickpea wilt was determined through internal transcribed spacer (ITS) region of the ribosomal DNA-restriction fragment length polymorphism (ITS-RFLP). ITS1+5.8s+ITS2 regions of the isolates were amplified with a set of primers ITS1 and ITS4 and amplified products were digested with 4 restriction enzymes (AluI, MboI, RsaI, MseI). Six different kinds of ITS-RFLP patterns were obtained. The ITS region of these isolates was sequenced and deposited to NCBI GeneBank. The nucleotide sequence homology of ITS region grouped the isolates into 5 categories. Primers were designed with sequence information using Primer 3 software. F. oxysporum f.sp. ciceris specific markers (FOC F2 and FOC R2) based on ITS region were developed for the first time for detection of the pathogen. The markers produced an amplicon of 292 bp; they were validated against the isolates of the pathogen collected from different locations of India.

  8. Molecular Characterization of Fusarium oxysporum and Fusarium commune Isolates from a Conifer Nursery.

    PubMed

    Stewart, Jane E; Kim, Mee-Sook; James, Robert L; Dumroese, R Kasten; Klopfenstein, Ned B

    2006-10-01

    ABSTRACT Fusarium species can cause severe root disease and damping-off in conifer nurseries. Fusarium inoculum is commonly found in most container and bareroot nurseries on healthy and diseased seedlings, in nursery soils, and on conifer seeds. Isolates of Fusarium spp. can differ in virulence; however, virulence and colony morphology are not correlated. Forty-one isolates of Fusarium spp., morphologically indistinguishable from F. oxysporum, were collected from nursery samples (soils, healthy seedlings, and diseased seedlings). These isolates were characterized by amplified fragment length polymorphism (AFLP) and DNA sequencing of nuclear rDNA (internal transcribed spacer including 5.8S rDNA), mitochon-drial rDNA (small subunit [mtSSU]), and nuclear translation elongation factor 1-alpha. Each isolate had a unique AFLP phenotype. Out of 121 loci, 111 (92%) were polymorphic; 30 alleles were unique to only highly virulent isolates and 33 alleles were unique to only isolates nonpathogenic on conifers. Maximum parsimony and Bayesian analyses of DNA sequences from all three regions and the combined data set showed that all highly virulent isolates clearly separated into a common clade that contained F. commune, which was recently distinguished from its sister taxon, F. oxysporum. Interestingly, all but one of the nonpathogenic isolates grouped into a common clade and were genetically similar to F. oxysporum. The AFLP cladograms had similar topologies when compared with the DNA-based phylograms. Although all tested isolates were morphologically indistinguishable from F. oxysporum based on currently available monographs, some morphological traits can be plastic and unreliable for identification of Fusarium spp. We consider the highly virulent isolates to be F. commune based on strong genetic evidence. To our knowledge, this is the first reported evidence that shows F. commune is a cause of Fusarium disease (root rot and dampingoff) on Douglas-fir seedlings. Furthermore

  9. Detection of tomatinase from Fusarium oxysporum f. sp. lycopersici in infected tomato plants.

    PubMed

    Lairini, K; Ruiz-Rubio, M

    1997-08-01

    The antifungal glycoalkaloid alpha-tomatine of the tomato plant (Lycopersicon esculentum) is proposed to protect the plant against phytopathogenic fungi. Fusarium oxysporum f. sp. lycopersici, a vascular pathogen of tomato, produces a tomatinase enzyme which hydrolyses the glycoalkaloid into non-fungitoxic compounds. Detoxification of alpha-tomatine may be how this fungus avoids the plant glycoalkaloid barrier. As an initial step to evaluate this possibility we have studied the induction of tomatinase; (i) in fungal cultures containing extracts from leaf, stem or root of tomato plants; and (ii) in stem and root of tomato plants infected with the pathogen at different infection stages. The kinetics of tomatinase induction with leaf extract (0.6% dry weight) was similar to that observed with 20 micrograms ml-1 of alpha-tomatine. In the presence of stem extract, tomatinase activity was less than 50% of that induced with leaf extract, whereas in the presence of root extract tomatinase activity was very low. In the stem of infected tomato plants tomatinase activity was higher at the wilt stage than in previous infections stages and in root, tomatinase activity appeared with the first symptoms and was maintained until wilting. TLC analysis showed that the tomatinase induced in culture medium with plant extracts and in infected tomato plants had the same mode of action as the enzyme induced with pure alpha-tomatine, hydrolysing the glycoalkaloid into its non-fungitoxic forms, tomatidine and beta-lycotetraose. The antisera raised against purified tomatinase recognized in extracts of root and stem of infected tomato plants a protein of 50000 (45000 when proteins were deglycosylated), corresponding to the tomatinase enzyme. Therefore, it is concluded that F. oxysporum f. sp. lycopersici express tomatinase in vivo as a result of the infection of tomato plant.

  10. The application of high-throughput AFLP's in assessing genetic diversity in Fusarium oxysporum f. sp. cubense.

    PubMed

    Groenewald, Susan; Van Den Berg, Noëlani; Marasas, Walter F O; Viljoen, Altus

    2006-03-01

    Fusarium oxysporum f. sp. cubense (Foc) is responsible for fusarium wilt of bananas. The pathogen consists of several variants that are divided into three races and 21 vegetative compatibility groups (VCGs). Several DNA-based techniques have previously been used to analyse the worldwide population of Foc, sometimes yielding results that were not always consistent. In this study, the high-resolution genotyping method of AFLP is introduced as a potentially effective molecular tool to investigate diversity in Foc at a genome-wide level. The population selected for this study included Foc isolates representing different VCGs and races, isolates of F. oxysporum f. sp. dianthi, a putatively non-pathogenic biological control strain F. oxysporum (Fo47), and F. circinatum. High-throughput AFLP analysis was attained using five different infrared dye-labelled primer combinations using a two-dye model 4200s LI-COR automated DNA analyser. An average of approx. 100 polymorphic loci were scored for each primer pair using the SAGA(MX) automated AFLP analysis software. Data generated from five primer pair combinations were combined and subjected to distance analysis, which included the use of neighbour-joining and a bootstrap of 1000 replicates. A tree inferred from AFLP distance analysis revealed the polyphyletic nature of the Foc isolates, and seven genotypic groups could be identified. The results indicate that AFLP is a powerful tool to perform detailed analysis of genetic diversity in the banana pathogen Foc.

  11. Analyses of Fusarium wilt race 3 resistance in Upland cotton (Gossypium hirsutum L.).

    PubMed

    Abdullaev, Alisher A; Salakhutdinov, Ilkhom B; Egamberdiev, Sharof Sh; Kuryazov, Zarif; Glukhova, Ludmila A; Adilova, Azoda T; Rizaeva, Sofiya M; Ulloa, Mauricio; Abdurakhmonov, Ibrokhim Y

    2015-06-01

    Fusarium wilt [Fusarium oxysporum f.sp. vasinfectum (FOV) Atk. Sny & Hans] represents a serious threat to cotton (Gossypium spp.) production. For the last few decades, the FOV pathogen has become a significant problem in Uzbekistan causing severe wilt disease and yield losses of G. hirsutum L. cultivars. We present the first genetic analyses of FOV race 3 resistance on Uzbek Cotton Germplasm with a series of field and greenhouse artificial inoculation-evaluations and inheritance studies. The field experiments were conducted in two different sites: the experimental station in Zangiota region-Environment (Env) 1 and the Institute of Cotton Breeding (Env-2, Tashkent province). The Env-1 was known to be free of FOV while the Env-2 was known to be a heavily FOV infested soil. In both (Env-1 and Env-2) of these sites, field soil was inoculated with FOV race 3. F2 and an F3 Upland populations ("Mebane B1" × "11970") were observed with a large phenotypic variance for plant survival and FOV disease severity within populations and among control or check Upland accessions. Wilt symptoms among studied F2 individuals and F3 families significantly differed depending on test type and evaluation site. Distribution of Mendelian rations of susceptible (S) and resistant (R) phenotypes were 1S:1R field Env-1 and 3S:1R field Env-2 in the F2 population, and 1S:3R greenhouse site in the F3 population. The different segregation distribution of the Uzbek populations may be explained by differences in FOV inoculum level and environmental conditions during assays. However, genetic analysis indicated a recessive single gene action under high inoculum levels or disease pressure for FOV race 3 resistance. Uzbek germplasm may be more susceptible than expected to FOV race 3, and sources of resistance to FOV may be limited under the FOV inoculum levels present in highly-infested fields making the breeding process more complex.

  12. A high efficiency gene disruption strategy using a positive-negative split selection marker and electroporation for Fusarium oxysporum.

    PubMed

    Liang, Liqin; Li, Jianqiang; Cheng, Lin; Ling, Jian; Luo, Zhongqin; Bai, Miao; Xie, Bingyan

    2014-11-01

    The Fusarium oxysporum species complex consists of fungal pathogens that cause serial vascular wilt disease on more than 100 cultivated species throughout the world. Gene function analysis is rapidly becoming more and more important as the whole-genome sequences of various F. oxysporum strains are being completed. Gene-disruption techniques are a common molecular tool for studying gene function, yet are often a limiting step in gene function identification. In this study we have developed a F. oxysporum high-efficiency gene-disruption strategy based on split-marker homologous recombination cassettes with dual selection and electroporation transformation. The method was efficiently used to delete three RNA-dependent RNA polymerase (RdRP) genes. The gene-disruption cassettes of three genes can be constructed simultaneously within a short time using this technique. The optimal condition for electroporation is 10μF capacitance, 300Ω resistance, 4kV/cm field strength, with 1μg of DNA (gene-disruption cassettes). Under these optimal conditions, we were able to obtain 95 transformants per μg DNA. And after positive-negative selection, the transformants were efficiently screened by PCR, screening efficiency averaged 85%: 90% (RdRP1), 85% (RdRP2) and 77% (RdRP3). This gene-disruption strategy should pave the way for high throughout genetic analysis in F. oxysporum.

  13. Apoptosis-related genes confer resistance to Fusarium wilt in transgenic 'Lady Finger' bananas.

    PubMed

    Paul, Jean-Yves; Becker, Douglas K; Dickman, Martin B; Harding, Robert M; Khanna, Harjeet K; Dale, James L

    2011-12-01

    Fusarium wilt, caused by Fusarium oxysporum f. sp. cubense (Foc), is one of the most devastating diseases of banana (Musa spp.). Apart from resistant cultivars, there are no effective control measures for the disease. We investigated whether the transgenic expression of apoptosis-inhibition-related genes in banana could be used to confer disease resistance. Embryogenic cell suspensions of the banana cultivar, 'Lady Finger', were stably transformed with animal genes that negatively regulate apoptosis, namely Bcl-xL, Ced-9 and Bcl-2 3' UTR, and independently transformed plant lines were regenerated for testing. Following a 12-week exposure to Foc race 1 in small-plant glasshouse bioassays, seven transgenic lines (2 × Bcl-xL, 3 × Ced-9 and 2 × Bcl-2 3' UTR) showed significantly less internal and external disease symptoms than the wild-type susceptible 'Lady Finger' banana plants used as positive controls. Of these, one Bcl-2 3' UTR line showed resistance that was equivalent to that of wild-type Cavendish bananas that were included as resistant negative controls. Further, the resistance of this line continued for 23-week postinoculation at which time the experiment was terminated. Using TUNEL assays, Foc race 1 was shown to induce apoptosis-like features in the roots of wild-type 'Lady Finger' plants consistent with a necrotrophic phase in the life cycle of this pathogen. This was further supported by the observed reduction in these effects in the roots of the resistant Bcl-2 3' UTR-transgenic line. This is the first report on the generation of transgenic banana plants with resistance to Fusarium wilt.

  14. Rhizosphere Inhibition of Cucumber Fusarium Wilt by Different Surfactin- excreting Strains of Bacillus subtilis.

    PubMed

    Jia, Ke; Gao, Yu-Han; Huang, Xiao-Qin; Guo, Rong-Jun; Li, Shi-Dong

    2015-06-01

    Bacillus subtilis B006 strain effectively suppresses the cucumber fusarium wilt caused by Fusarium oxysporum f. sp. cucumerinum (Foc). The population dynamics of Foc, strain B006 and its surfactin over-producing mutant B841 and surfactin-deficient mutant B1020, in the rhizosphere were determined under greenhouse conditions to elucidate the importance of the lipopeptides excreted by these strains in suppressing Foc. Results showed that B. subtilis strain B006 effectively suppressed the disease in natural soil by 42.9%, five weeks after transplanting, whereas B841 and B1020 suppressed the disease by only 22.6% and 7.1%, respectively. Quantitative PCR assays showed that effective colonization of strain B006 in the rhizosphere suppressed Foc propagation by more than 10 times both in nursery substrate and in field-infected soil. Reduction of Foc population at the cucumber stems in a range of 0.96 log10 ng/g to 2.39 log10 ng/g was attained at the third and the fifth weeks of B006 treatment in nursery substrate. In field-infected soil, all three treatments with B. subtilis suppressed Foc infection, indicated by the reduction of Foc population at a range of 2.91 log10 ng/g to 3.36 log10 ng/g at the stem base, one week after transplanting. This study reveals that the suppression of fusarium wilt disease is affected by the effective colonization of the surfactin-producing B. subtilis strain in the rhizosphere. These results improved our understanding of the biocontrol mechanism of the B. subtilis strain B006 in the natural soil and facilitate its application as biocontrol agent in the field.

  15. The influence of different concentrations of bio-organic fertilizer on cucumber Fusarium wilt and soil microflora alterations

    PubMed Central

    Huang, Nan; Wang, Weiwei; Yao, Yanlai; Zhu, Fengxiang; Wang, Weiping; Chang, Xiaojuan

    2017-01-01

    Fusarium wilt is one of the main diseases of cucumber, and bio-organic fertilizer has been used to control Fusarium wilt. In this study, a pot experiment was conducted to evaluate the effects of bio-organic fertilizer applied at four levels on the suppression of Fusarium wilt disease in cucumber, the soil physico-chemical properties and the microbial communities. In comparison with the control (CK), low concentrations of bio-organic fertilizer (BIO2.5 and BIO5) did not effectively reduce the disease incidence and had little effect on soil microorganisms. High concentrations of bio-organic fertilizer (BIO10 and BIO20) significantly reduced the disease incidence by 33.3%-66.7% and the production was significantly improved by 83.8%-100.3%. The soil population of F. oxysporum f. sp. cucumerinum was significantly lower in bio-organic fertilizer treatments, especially in BIO10 and BIO20. The microorganism activity increased with the bio-organic fertilizer concentration. High-throughput sequencing demonstrated that, at the order level, Sphingomonadales, Bacillales, Solibacterales and Xylariales were significantly abundant in BIO10 and BIO20 soils. At the genus level, the abundance and composition of bacterial and fungal communities in BIO10 and BIO20 were similar, illustrating that high concentrations of bio-organic fertilizer activated diverse groups of microorganisms. Redundancy analysis (RDA) showed that Xanthomonadales, Sphingomonadales, Bacillales, Orbiliales, Sordariales, and Mucorales occurred predominantly in the BIO10 and BIO20. These microorganisms were related to the organic matter, available potassium and available phosphorus contents. In conclusion, a high concentration of bio-organic fertilizer application suppressed the Fusarium wilt disease and increased cucumber production after continuous cropping might through improving soil chemical condition and manipulating the composition of soil microbial community. PMID:28166302

  16. The influence of different concentrations of bio-organic fertilizer on cucumber Fusarium wilt and soil microflora alterations.

    PubMed

    Huang, Nan; Wang, Weiwei; Yao, Yanlai; Zhu, Fengxiang; Wang, Weiping; Chang, Xiaojuan

    2017-01-01

    Fusarium wilt is one of the main diseases of cucumber, and bio-organic fertilizer has been used to control Fusarium wilt. In this study, a pot experiment was conducted to evaluate the effects of bio-organic fertilizer applied at four levels on the suppression of Fusarium wilt disease in cucumber, the soil physico-chemical properties and the microbial communities. In comparison with the control (CK), low concentrations of bio-organic fertilizer (BIO2.5 and BIO5) did not effectively reduce the disease incidence and had little effect on soil microorganisms. High concentrations of bio-organic fertilizer (BIO10 and BIO20) significantly reduced the disease incidence by 33.3%-66.7% and the production was significantly improved by 83.8%-100.3%. The soil population of F. oxysporum f. sp. cucumerinum was significantly lower in bio-organic fertilizer treatments, especially in BIO10 and BIO20. The microorganism activity increased with the bio-organic fertilizer concentration. High-throughput sequencing demonstrated that, at the order level, Sphingomonadales, Bacillales, Solibacterales and Xylariales were significantly abundant in BIO10 and BIO20 soils. At the genus level, the abundance and composition of bacterial and fungal communities in BIO10 and BIO20 were similar, illustrating that high concentrations of bio-organic fertilizer activated diverse groups of microorganisms. Redundancy analysis (RDA) showed that Xanthomonadales, Sphingomonadales, Bacillales, Orbiliales, Sordariales, and Mucorales occurred predominantly in the BIO10 and BIO20. These microorganisms were related to the organic matter, available potassium and available phosphorus contents. In conclusion, a high concentration of bio-organic fertilizer application suppressed the Fusarium wilt disease and increased cucumber production after continuous cropping might through improving soil chemical condition and manipulating the composition of soil microbial community.

  17. Characterization of Novel Trichoderma asperellum Isolates to Select Effective Biocontrol Agents Against Tomato Fusarium Wilt

    PubMed Central

    El_Komy, Mahmoud H.; Saleh, Amgad A.; Eranthodi, Anas; Molan, Younes Y.

    2015-01-01

    The use of novel isolates of Trichoderma with efficient antagonistic capacity against Fusarium oxysporum f. sp. lycopersici (FOL) is a promising alternative strategy to pesticides for tomato wilt management. We evaluated the antagonistic activity of 30 isolates of T. asperellum against 4 different isolates of FOL. The production of extracellular cell wall degrading enzymes of the antagonistic isolates was also measured. The random amplified polymorphic DNA (RAPD) method was applied to assess the genetic variability among the T. asperellum isolates. All of the T. asperellum isolates significantly reduced the mycelial growth of FOL isolates but the amount of growth reduction varied significantly as well. There was a correlation between the antagonistic capacity of T. asperellum isolates towards FOL and their lytic enzyme production. Isolates showing high levels of chitinase and β-1,3-glucanase activities strongly inhibited the growth of FOL isolates. RAPD analysis showed a high level of genetic variation among T. asperellum isolates. The UPGMA dendrogram revealed that T. asperellum isolates could not be grouped by their anta- gonistic behavior or lytic enzymes production. Six isolates of T. asperellum were highly antagonistic towards FOL and potentially could be used in commercial agriculture to control tomato wilt. Our results are consistent with the conclusion that understanding the genetic variation within Trichoderma isolates and their biochemical capabilities are required for the selection of effective indigenous fungal strains for the use as biocontrol agents. PMID:25774110

  18. Biochemical markers assisted screening of Fusarium wilt resistant Musa paradisiaca (L.) cv. puttabale micropropagated clones.

    PubMed

    Venkatesh; Krishna, V; Kumar, K Girish; Pradeepa, K; Kumar, S R Santosh; Kumar, R Shashi

    2013-07-01

    An efficient protocol was standardized for screening of panama wilt resistant Musa paradisiaca cv. Puttabale clones, an endemic cultivar of Karnataka, India. The synergistic effect of 6-benzyleaminopurine (2 to 6 mg/L) and thidiazuron (0.1 to 0.5 mg/L) on MS medium provoked multiple shoot induction from the excised meristem. An average of 30.10 +/- 5.95 shoots was produced per propagule at 4 mg/L 6-benzyleaminopurine and 0.3 mg/L thidiazuron concentrations. Elongation of shoots observed on 5 mg/L BAP augmented medium with a mean length of 8.38 +/- 0.30 shoots per propagule. For screening of disease resistant clones, multiple shoot buds were mutated with 0.4% ethyl-methane-sulfonate and cultured on MS medium supplemented with Fusarium oxysporum f. sp. cubense (FOC) culture filtrate (5-15%). Two month old co-cultivated secondary hardened plants were used for screening of disease resistance against FOC by the determination of biochemical markers such as total phenol, phenylalanine ammonia lyase, oxidative enzymes like peroxidase, polyphenol oxidase, catalase and PR-proteins like chitinase, beta-1-3 glucanase activities. The mutated clones of M. paradisiaca cv. Puttabale cultured on FOC culture filtrate showed significant increase in the levels of biochemical markers as an indicative of acquiring disease resistant characteristics to FOC wilt.

  19. Stable integration and expression of a plant defensin in tomato confers resistance to fusarium wilt.

    PubMed

    Abdallah, Naglaa A; Shah, Dilip; Abbas, Dina; Madkour, Magdy

    2010-01-01

    Plant defensins are small cysteine-rich peptides which belong to a group of pathogenasis related defense mechanism proteins. The proteins inhibit the growth of a broad range of microbes and are highly stable under extreme environmental stresses. Tomato cultivation is affected by fungal disease such as Fusarium wilt. In order to overcome fungal damages, transgenic tomato plants expressing the Medicago sativa defensin gene MsDef1 under the control of the CaMV 35S promoter were developed. The Fusarium-susceptible tomato (Lycobersicum esculentum Mill) cultivar CastleRock was used for transformation to acquire fungal resistance. Hypocotyl with a part of cotyledon (hypocotyledonary) for young tomato seedlings were used as an explant material and transformation was performed using the biolistic delivery system. Bombarded shoots were selected on regeneration medium supplemented with hygromycin and suitable concentrations of BA, zeatin ripozide and AgNO(3). Putative transgenic plantlets of T(0) were confirmed by PCR analysis using primers specific for the transgene and the transformation frequency obtained was 52.3%. Transformation and transcription of transgenes were confirmed in T(1) by PCR, Southern hybridizations, and reverse-transcription PCR (RT-PCR). The copy numbers of integrated transgene into tomato genome ranged between 1-3 copies. Greenhouse bioassay was performed on the transgenic T(1) and T(2) young seedlings and non-transgenic controls by challenging with a vigorous isolate of the fungal pathogen Fusarium oxysporum f. sp. Lycopersici. The level of fungal infectivity was determined using RT-PCR with tomatinase specific primers. Transgenic lines were more resistant to infection by fusarium than the control plants. These results indicated that overexpressing defensins in transgenic plants confer resistance to fungal pathogens.

  20. Changes induced by Trichoderma harzianum in suppressive compost controlling Fusarium wilt.

    PubMed

    Blaya, Josefa; López-Mondéjar, Rubén; Lloret, Eva; Pascual, Jose Antonio; Ros, Margarita

    2013-09-01

    The addition of species of Trichoderma to compost is a widespread technique used to control different plant diseases. The biological control activity of these species is mainly attributable to a combination of several mechanisms of action, which may affect the microbiota involved in the suppressiveness of compost. This study was therefore performed to determine the effect of inoculation of Trichoderma harzianum (T. harzianum) on compost, focusing on bacterial community structure (16S rRNA) and chitinase gene diversity. In addition, the ability of vineyard pruning waste compost, amended (GCTh) or not (GC) with T. harzianum, to suppress Fusarium wilt was evaluated. The addition of T. harzianum resulted in a high relative abundance of certain chitinolytic bacteria as well as in remarkable protection against Fusarium oxysporum comparable to that induced by compost GC. Moreover, variations in the abiotic characteristics of the media, such as pH, C, N and iron levels, were observed. Despite the lower diversity of chitinolytic bacteria found in GCTh, the high relative abundance of Streptomyces spp. may be involved in the suppressiveness of this growing media. The higher degree of compost suppressiveness achieved after the addition of T. harzianum may be due not only to its biocontrol ability, but also to changes promoted in both abiotic and biotic characteristics of the growing media.

  1. Variability in Fusarium oxysporum from sugar beets in the United States – Final Report

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fusarium yellows can cause significant reduction in root yield, sucrose percentage and juice purity in affected sugar beets. Research in our laboratory and others on variability in Fusarium oxysporum associated with sugar beets demonstrated that isolates that are pathogenic on sugar beet can be hig...

  2. Genetic transformation of Fusarium oxysporum f.sp. gladioli with Agrobacterium to study pathogenesis in Gladiolus

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fusarium rot caused by Fusarium oxysporum f.sp. gladioli (Fog) is one of the most serious diseases of Gladiolus, both in the field and in stored bulbs. In order to study the pathogenesis of this fungus, we have transformed Fog with Agrobacterium tumefaciens binary vectors containing the hygromycin B...

  3. Effect of Iron Availability on Induction of Systemic Resistance to Fusarium Wilt of Chickpea by Pseudomonas spp.

    PubMed

    Saikia, Ratul; Srivastava, Alok K; Singh, Kiran; Arora, Dilip K; Lee, Min-Woong

    2005-03-01

    Selected isolates of Pseudomonas fluorescens (Pf4-92 and PfRsC5) and P. aeruginosa (PaRsG18 and PaRsG27) were examined for growth promotion and induced systemic resistance against Fusarium wilt of chickpea. Significant increase in plant height was observed in Pseudomonas treated plants. However, plant growth was inhibited when isolates of Pseudomonas were used in combination with Fusarium oxysporum f. sp. ciceri (FocRs1). It was also observed that the Pseudomonas spp. was colonized in root of chickpea and significantly suppressed the disease in greenhouse condition. Rock wool bioassay technique was used to study the effect of iron availability on the induction of systemic resistance to Fusarium wilt of chickpea mediated by the Pseudomonas spp. All the isolates of Pseudomonas spp. showed greater disease control in the induced systemic resistance (ISR) bioassay when iron availability in the nutrient solution was low. High performance liquid chromatography (HPLC) analysis indicated that all the bacterial isolates produced more salicylic acid (SA) at low iron (10µM EDDHA) than high iron availability (10µFe(3+) EDDHA). Except PaRsG27, all the three isolates produced more pseudobactin at low iron than high iron availability.

  4. Comparison of Fungal Community in Black Pepper-Vanilla and Vanilla Monoculture Systems Associated with Vanilla Fusarium Wilt Disease

    PubMed Central

    Xiong, Wu; Zhao, Qingyun; Xue, Chao; Xun, Weibing; Zhao, Jun; Wu, Huasong; Li, Rong; Shen, Qirong

    2016-01-01

    Long-term vanilla monocropping often results in the occurrence of vanilla Fusarium wilt disease, seriously affecting its production all over the world. In the present study, vanilla exhibited significantly less Fusarium wilt disease in the soil of a long-term continuously cropped black pepper orchard. The entire fungal communities of bulk and rhizosphere soils between the black pepper-vanilla system (i.e., vanilla cropped in the soil of a continuously cropped black pepper orchard) and vanilla monoculture system were compared through the deep pyrosequencing. The results showed that the black pepper-vanilla system revealed a significantly higher fungal diversity than the vanilla monoculture system in both bulk and rhizosphere soils. The UniFrac-weighted PCoA analysis revealed significant differences in bulk soil fungal community structures between the two cropping systems, and fungal community structures were seriously affected by the vanilla root system. In summary, the black pepper-vanilla system harbored a lower abundance of Fusarium oxysporum in the vanilla rhizosphere soil and increased the putatively plant-beneficial fungal groups such as Trichoderma and Penicillium genus, which could explain the healthy growth of vanilla in the soil of the long-term continuously cropped black pepper field. Thus, cropping vanilla in the soil of continuously cropped black pepper fields for maintaining the vanilla industry is executable and meaningful as an agro-ecological system. PMID:26903995

  5. Antagonistic Activities of Novel Peptides from Bacillus amyloliquefaciens PT14 against Fusarium solani and Fusarium oxysporum.

    PubMed

    Kim, Young Gwon; Kang, Hee Kyoung; Kwon, Kee-Deok; Seo, Chang Ho; Lee, Hyang Burm; Park, Yoonkyung

    2015-12-09

    Bacillus species have recently drawn attention due to their potential use in the biological control of fungal diseases. This paper reports on the antifungal activity of novel peptides isolated from Bacillus amyloliquefaciens PT14. Reverse-phase high-performance liquid chromatography revealed that B. amyloliquefaciens PT14 produces five peptides (PT14-1, -2, -3, -4a, and -4b) that exhibit antifungal activity but are inactive against bacterial strains. In particular, PT14-3 and PT14-4a showed broad-spectrum antifungal activity against Fusarium solani and Fusarium oxysporum. The PT14-4a N-terminal amino acid sequence was identified through Edman degradation, and a BLAST homology analysis showed it not to be identical to any other protein or peptide. PT14-4a displayed strong fungicidal activity with minimal inhibitory concentrations of 3.12 mg/L (F. solani) and 6.25 mg/L (F. oxysporum), inducing severe morphological deformation in the conidia and hyphae. On the other hand, PT14-4a had no detectable hemolytic activity. This suggests PT14-4a has the potential to serve as an antifungal agent in clinical therapeutic and crop-protection applications.

  6. Optimization of Biological Synthesis of Silver Nanoparticles using Fusarium oxysporum

    PubMed Central

    Korbekandi, Hassan; Ashari, Zeynab; Iravani, Siavash; Abbasi, Sajjad

    2013-01-01

    Silver nanoparticles are increasingly used in various fields of biotechnology and applications in the medicine. Objectives of this study were optimization of production of silver nanoparticles using biotransformations by Fusarium oxysporum, and a further study on the location of nanoparticles synthesis in this microorganism. The reaction mixture contained the following ingredients (final concentrations): AgNO3 (1-10 mM) as the biotransformation substrate, biomass as the biocatalyst, glucose (560 mM) as the electron donor, and phosphate buffer (pH= 7, 100 mM). The samples were taken from the reaction mixtures at different times, and the absorbance (430 nm) of the colloidal suspensions of silver nanoparticles hydrosols was read freshly (without freezing) and immediately after dilution (1:40). SEM and TEM analyses were performed on selected samples. The presence of AgNO3 (0.1 mM) in the culture as enzyme inducer, and glucose (560 mM) as electron donor had positive effects on nanoparticle production. In SEM micrographs, silver nanoparticles were almost spherical, single (25-50 nm) or in aggregates (100 nm), attached to the surface of biomass. The reaction mixture was successfully optimized to increase the yield of silver nanoparticles production. More details of the location of nanoparticles production by this fungus were revealed, which support the hypothesis that silver nanoparticles are synthesized intracellularly and not extracellularly. PMID:24250635

  7. Antifungal activities of selected essential oils against Fusarium oxysporum f. sp. lycopersici 1322, with emphasis on Syzygium aromaticum essential oil.

    PubMed

    Sharma, Abhishek; Rajendran, Sasireka; Srivastava, Ankit; Sharma, Satyawati; Kundu, Bishwajit

    2017-03-01

    The antifungal effects of four essential oils viz., clove (Syzygium aromaticum), lemongrass (Cymbopogon citratus), mint (Mentha × piperita) and eucalyptus (Eucalyptus globulus) were evaluated against wilt causing fungus, Fusarium oxysporum f. sp. lycopersici 1322. The inhibitory effect of oils showed dose-dependent activity on the tested fungus. Most active being the clove oil, exhibiting complete inhibition of mycelial growth and spore germination at 125 ppm with IC50 value of 18.2 and 0.3 ppm, respectively. Essential oils of lemongrass, mint and eucalyptus were inhibitory at relatively higher concentrations. The Minimum inhibitory concentration (MIC) of clove oil was 31.25 ppm by broth microdilution method. Thirty one different compounds of clove oil, constituting approximately ≥99% of the oil, were identified by gas chromatography-mass spectroscopy analysis. The major components were eugenol (75.41%), E-caryophyllene (15.11%), α-humulene (3.78%) and caryophyllene oxide (1.13%). Effect of clove oil on surface morphology of F. oxysporum f. sp. lycopersici 1322 was studied by scanning electron microscopy (SEM) and atomic force microscopy (AFM). SEM observation revealed shrivelled hyphae while AFM observation showed shrunken and disrupted spores in clove oil treated samples. In pots, 5% aqueous emulsion of clove oil controlled F. oxysporum f. sp. lycopersici 1322 infection on tomato plants. This study demonstrated clove oil as potent antifungal agent that could be used as biofungicide for the control of F. oxysporum f. sp. lycopersici in both preventive and therapeutic manner.

  8. Mechanistic aspects of biosynthesis of silver nanoparticles by several Fusarium oxysporum strains

    PubMed Central

    Durán, Nelson; Marcato, Priscyla D; Alves, Oswaldo L; De Souza, Gabriel IH; Esposito, Elisa

    2005-01-01

    Extracellular production of metal nanoparticles by several strains of the fungus Fusarium oxysporum was carried out. It was found that aqueous silver ions when exposed to several Fusarium oxysporum strains are reduced in solution, thereby leading to the formation of silver hydrosol. The silver nanoparticles were in the range of 20–50 nm in dimensions. The reduction of the metal ions occurs by a nitrate-dependent reductase and a shuttle quinone extracellular process. The potentialities of this nanotechnological design based in fugal biosynthesis of nanoparticles for several technical applications are important, including their high potential as antibacterial material. PMID:16014167

  9. United States Department of Agriculture-Agricultural Research Service studies on polyketide toxins of Fusarium oxysporum f sp vasinfectum: potential targets for disease control.

    PubMed

    Bell, Alois A; Wheeler, Michael H; Liu, Jinggao; Stipanovic, Robert D; Puckhaber, Lorraine S; Orta, Heather

    2003-01-01

    A group of 133 isolates of the cotton wilt pathogen Fusarium oxysporum Schlecht f sp vasinfectum (Atk) Sny & Hans, representing five races and 20 vegetative compatibility groups within race 1 were used to determine the identity, biosynthetic regulation and taxonomic distribution of polyketide toxins produced by this pathogen. All isolates of F oxysporum f sp vasinfectum produced and secreted the nonaketide naphthazarin quinones, bikaverin and norbikaverin. Most isolates of race 1 (previously denoted as races 1, 2 and 6; and also called race A) also synthesized the heptaketide naphthoquinones, nectriafurone, anhydrofusarubin lactol and 5-O-methyljavanicin. Nine avirulent isolates of F oxysporum from Upland cotton roots, three isolates of race 3 of F oxysporum f sp vasinfectum, and four isolates of F oxysporum f sp vasinfectum from Australia, all of which previously failed to cause disease of Upland cotton (Gossypium hirsutum L) in stem-puncture assays, also failed to synthesize or secrete more than trace amounts of the heptaketide compounds. These results indicate that the heptaketides may have a unique role in the virulence of race 1 to Upland cotton. The synthesis of all polyketide toxins by ATCC isolate 24908 of F oxysporum f sp vasinfectum was regulated by pH, carbon/nitrogen ratios, and availability of calcium in media. Synthesis was greatest below pH 7.0 and increased progressively as carbon/nitrogen ratios were increased by decreasing the amounts of nitrogen added to media. The nonaketides were the major polyketides accumulated in synthetic media at pH 4.5 and below, whereas the heptaketides were predominant at pH 5.0 and above. The heptaketides were the major polyketides formed when 10 F oxysporum f sp vasinfectum race 1 isolates were grown on sterilized stems of Fusarium wilt-susceptible cotton cultivars, but these compounds were not produced on sorghum grain cultures. Both groups of polyketide toxins were apparently secreted by F oxysporum f sp vasinfectum

  10. Isolation and Heterologous Expression of a Polygalacturonase Produced by Fusarium oxysporum f. sp. cubense Race 1 and 4

    PubMed Central

    Dong, Zhangyong; Wang, Zhenzhong

    2015-01-01

    Fusarium wilt (Panama disease) caused by Fusarium oxysporum f. sp. cubense (FOC) represents a significant threat to banana (Musa spp.) production. Musa AAB is susceptible to Race 1 (FOC1) and Race 4 (FOC4), while Cavendish Musa AAA is found to be resistant to FOC1 but still susceptible to Race 4. A polygalacturonase (PGC3) was purified from the supernatant of Fusarium oxysporum f. sp. cubense race 4 (FOC4), which is the pathogen of Fusarium wilt. PGC3 had an apparent molecular weight of 45 kDa according to SDS-PAGE. The enzyme hydrolyzed polygalacturonic acid in an exo-manner, as demonstrated by analysis of degradation products. The Km and Vmax values of PGC3 from FOC4 were determined to be 0.70 mg·mL−1 and 101.01 Units·mg·protein−1·min−1, respectively. Two pgc3 genes encoding PGC3 from FOC4 and FOC1, both genes of 1368 bp in length encode 456 amino-acid residues with a predicted signal peptide sequence of 21 amino acids. There are 16 nucleotide sites difference between FOC4-pgc3 and FOC1-pgc3, only leading to four amino acid residues difference. In order to obtain adequate amounts of protein required for functional studies, two genes were cloned into the expression vector pPICZaA and then expressed in Pichia pastoris strains of SMD1168. The recombinant PGC3, r-FOC1-PGC3 and r-FOC4-PGC3, were expressed and purified as active proteins. The optimal PGC3 activity was observed at 50 °C and pH 4.5. Both recombinant PGC3 retained >40% activity at pH 3–7 and >50% activity in 10–50 °C. Both recombinant PGC3 proteins could induce a response but with different levels of tissue maceration and necrosis in banana plants. In sum, our results indicate that PGC3 is an exo-PG and can be produced with full function in P. pastoris. PMID:25854430

  11. Root exudates from grafted-root watermelon showed a certain contribution in inhibiting Fusarium oxysporum f. sp. niveum.

    PubMed

    Ling, Ning; Zhang, Wenwen; Wang, Dongsheng; Mao, Jiugeng; Huang, Qiwei; Guo, Shiwei; Shen, Qirong

    2013-01-01

    Grafting watermelon onto bottle gourd rootstock is commonly used method to generate resistance to Fusarium oxysporum f. sp. niveum (FON), but knowledge of the effect of the root exudates of grafted watermelon on this soil-borne pathogen in rhizosphere remains limited. To investigate the root exudate profiles of the own-root bottle gourd, grafted-root watermelon and own-root watermelon, recirculating hydroponic culture system was developed to continuously trap these root exudates. Both conidial germination and growth of FON were significantly decreased in the presence of root exudates from the grafted-root watermelon compared with the own-root watermelon. HPLC analysis revealed that the composition of the root exudates released by the grafted-root watermelon differed not only from the own-root watermelon but also from the bottle gourd rootstock plants. We identified salicylic acid in all 3 root exudates, chlorogenic acid and caffeic acid in root exudates from own-root bottle gourd and grafted-root watermelon but not own-root watermelon, and abundant cinnamic acid only in own-root watermelon root exudates. The chlorogenic and caffeic acid were candidates for potentiating the enhanced resistance of the grafted watermelon to FON, therefore we tested the effects of the two compounds on the conidial germination and growth of FON. Both phenolic acids inhibited FON conidial germination and growth in a dose-dependent manner, and FON was much more susceptible to chlorogenic acid than to caffeic acid. In conclusion, the key factor in attaining the resistance to Fusarium wilt is grafting on the non-host root stock, however, the root exudates profile also showed some contribution in inhibiting FON. These results will help to better clarify the disease resistance mechanisms of grafted-root watermelon based on plant-microbe communication and will guide the improvement of strategies against Fusarium-mediated wilt of watermelon plants.

  12. Fusarium oxysporum as a multihost model for the genetic dissection of fungal virulence in plants and mammals.

    PubMed

    Ortoneda, Montserrat; Guarro, Josep; Madrid, Marta P; Caracuel, Zaira; Roncero, M Isabel G; Mayayo, Emilio; Di Pietro, Antonio

    2004-03-01

    Fungal pathogens cause disease in plant and animal hosts. The extent to which infection mechanisms are conserved between both classes of hosts is unknown. We present a dual plant-animal infection system based on a single strain of Fusarium oxysporum, the causal agent of vascular wilt disease in plants and an emerging opportunistic human pathogen. Injection of microconidia of a well-characterized tomato pathogenic isolate (isolate 4287) into the lateral tail vein of immunodepressed mice resulted in disseminated infection of multiple organs and death of the animals. Knockout mutants in genes encoding a mitogen-activated protein kinase, a pH response transcription factor, or a class V chitin synthase previously shown to be implicated in virulence on tomato plants were tested in the mouse model. The results indicate that some of these virulence factors play functionally distinct roles during the infection of tomato plants and mice. Thus, a single F. oxysporum strain can be used to study fungal virulence mechanisms in plant and mammalian pathogenesis.

  13. Fusarium oxysporum as a Multihost Model for the Genetic Dissection of Fungal Virulence in Plants and Mammals

    PubMed Central

    Ortoneda, Montserrat; Guarro, Josep; Madrid, Marta P.; Caracuel, Zaira; Roncero, M. Isabel G.; Mayayo, Emilio; Di Pietro, Antonio

    2004-01-01

    Fungal pathogens cause disease in plant and animal hosts. The extent to which infection mechanisms are conserved between both classes of hosts is unknown. We present a dual plant-animal infection system based on a single strain of Fusarium oxysporum, the causal agent of vascular wilt disease in plants and an emerging opportunistic human pathogen. Injection of microconidia of a well-characterized tomato pathogenic isolate (isolate 4287) into the lateral tail vein of immunodepressed mice resulted in disseminated infection of multiple organs and death of the animals. Knockout mutants in genes encoding a mitogen-activated protein kinase, a pH response transcription factor, or a class V chitin synthase previously shown to be implicated in virulence on tomato plants were tested in the mouse model. The results indicate that some of these virulence factors play functionally distinct roles during the infection of tomato plants and mice. Thus, a single F. oxysporum strain can be used to study fungal virulence mechanisms in plant and mammalian pathogenesis. PMID:14977985

  14. A molecular insight into the early events of chickpea (Cicer arietinum) and Fusarium oxysporum f. sp. ciceri (race 1) interaction through cDNA-AFLP analysis.

    PubMed

    Gupta, Sumanti; Chakraborti, Dipankar; Rangi, Rumdeep K; Basu, Debabrata; Das, Sampa

    2009-11-01

    Wilt of chickpea caused by Fusarium oxysporum f. sp. ciceris is one of the most severe diseases of chickpea throughout the world. Variability of pathotypes of F. oxysporum f. sp. ciceris and breakdown of natural resistance are the main hindrances to developing resistant plants by applying resistant breeding strategies. Additionally, lack of information of potential resistant genes limits gene-transfer technology. A thorough understanding of Fusarium spp.-chickpea interaction at a cellular and molecular level is essential for isolation of potential genes involved in counteracting disease progression. Experiments were designed to trigger the pathogen-challenged disease responses in both susceptible and resistant plants and monitor the expression of stress induced genes or gene fragments at the transcript level. cDNA amplified fragment length polymorphism followed by homology search helped in differentiating and analyzing the up- and downregulated gene fragments. Several detected DNA fragments appeared to have relevance with pathogen-mediated defense. Some of the important transcript-derived fragments were homologous to genes for sucrose synthase, isoflavonoid biosynthesis, drought stress response, serine threonine kinases, cystatins, arginase, and so on. Reverse-transcriptase polymerase chain reaction performed with samples collected at 48 and 96 h postinfection confirmed a similar type of differential expression pattern. Based on these results, interacting pathways of cellular processes were generated. This study has an implication toward functional identification of genes involved in wilt resistance.

  15. Salicylic acid-induced resistance to Fusarium oxysporum f. sp. lycopersici in tomato.

    PubMed

    Mandal, Sudhamoy; Mallick, Nirupama; Mitra, Adinpunya

    2009-07-01

    We demonstrated that exogenous application of 200 microM salicylic acid through root feeding and foliar spray could induce resistance against Fusarium oxysporum f. sp. Lycopersici (Fol) in tomato. Endogenous accumulation of free salicylic acid in tomato roots was detected by HPLC and identification was confirmed by LC-MS/MS analysis. At 168h of salicylic acid treatment through roots, the endogenous salicylic acid level in the roots increased to 1477ngg(-1) FW which was 10 times higher than control plants. Similarly, the salicylic acid content was 1001ngg(-1) FW at 168h of treatment by foliar spray, which was 8.7 times higher than control plants. The activities of phenylalanine ammonia lyase (PAL, EC 4.3.1.5) and peroxidase (POD, EC 1.11.1.7) were 5.9 and 4.7 times higher, respectively than the control plants at 168h of salicylic acid feeding through the roots. The increase in PAL and POD activities was 3.7 and 3.3 times higher, respectively at 168h of salicylic acid treatments through foliar spray than control plants. The salicylic acid-treated tomato plants challenged with Fol exhibited significantly reduced vascular browning and leaf yellowing wilting. The mycelial growth of Fol was not significantly affected by salicylic acid. Significant increase in basal level of salicylic acid in noninoculated plants indicated that tomato root system might have the capacity to assimilate and distribute salicylic acid throughout the plant. The results indicated that the induced resistance observed in tomato against Fol might be a case of salicylic acid-dependent systemic acquired resistance.

  16. Dry heat and hot water treatments for disinfesting cottonseed of Fusarium oxysporum f. sp. vasinfectum

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The potential of low- and high-temperature dry heat, and hot water treatments, for disinfesting cottonseed of Fusarium oxysporum f. sp. vasinfectum was investigated. Naturally infected seeds from Louisiana were air-heated in incubators set at temperatures of 30, 35, and 40 degrees C for up to 24 we...

  17. Comparison of virulence between vascular competent and incompetent Fusarium oxysporum f. sp. vasinfectum pathotypes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Australian biotype and California race 4 isolates of Fusarium oxysporum f. sp. Vasinfectum (Fov) are pathologically distinct from the Fov U.S. race 1 isolates in that they do not cause disease when stem-puncture inoculated while race 1 isolates do. When root-dip inoculation method was used, bot...

  18. Molecular markers for improving control of soil-borne pathogen Fusarium oxysporum in sugar beet

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fusarium oxysporum f. sp. betae (FOB) is an important pathogen of sugar beet worldwide causing leaf yellowing and vascular discoloration. The use of tolerant varieties is one of the most effective methods for managing this disease. In this study, a large germplasm collection,comprised of 29 sugar be...

  19. Survival of Fusarium oxysporum f. sp. vasinfectum chlamydospores under solarization temperatures

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Solarization is an effective soil treatment against race 4 of Fusarium oxysporum f. sp. vasinfectum. Despite the lack of effective alternatives, solarization is rarely used in cotton because of its high cost. Use of solarization might be increased if soil temperatures could be used to predict redu...

  20. On the reliability of Fusarium oxysporum f. sp. niveum research: Do we need standardized testing methods?

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fusarium oxysporum f. sp. nivium (Fon) is a pathogen highly variable in aggressiveness that requires a standardized testing method to more accurately define isolate aggressiveness (races) and to identify resistant watermelon lines. Isolates of Fon vary in aggressiveness from weakly to highly aggres...

  1. Release of pea germplasm with Fusarium resistance combined with desirable yield and anti-lodging traits

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fusarium root rot caused by Fusarium solani f. sp. pisi (Fsp) and Fusarium wilt caused by Fusarium oxysporum f. sp. pisi (Fop) races 1, 2 and 5, negatively impact the pea industry worldwide. Limited pea germplasm with agronomically acceptable characteristics combined with resistance to these disease...

  2. Predictive factors for the suppression of fusarium wilt of tomato in plant growth media.

    PubMed

    Borrero, Celia; Trillas, M Isabel; Ordovás, José; Tello, Julio C; Avilés, Manuel

    2004-10-01

    ABSTRACT Fusarium wilts are economically important diseases for which there are no effective chemical control measures. However, biological control and fertility management are becoming efficient alternatives for controlling this disease. Growth media formulated with composts that are able to suppress Fusarium wilt of tomato provide a control system that integrates both strategies. The aim of this study was to predict Fusarium wilt suppression of growth media using abiotic and biotic variables. Grape marc compost was the most effective medium used to suppress Fusarium wilt. Cork compost was intermediate, and light peat and expanded vermiculite were the most conducive growth media. The growth media evaluated were in a pH range of 6.26 to 7.97. Both composts had high beta-glucosidase activity. When pH and beta-glucosidase activity were taken into account as predictive variables, more than 91% of the variation in severity of Fusarium wilt was explained. This relationship illustrates the effect of nutrient availability and the degree of microbiostasis, two key factors in this pathosystem. Microbial populations involved in suppressiveness were cellulolytic and oligotrophic actinomycetes, fungi, and the ratios cellulolytic actinomycetes/cellulolytic bacteria, oligotrophic bacteria/copiotrophic bacteria, and oligotrophic actinomycetes/oligotrophic bacteria. Based on community level physiological profiles, different community structures were evident among growth media evaluated.

  3. Expression and distribution of extensins and AGPs in susceptible and resistant banana cultivars in response to wounding and Fusarium oxysporum

    PubMed Central

    Wu, Yunli; Fan, Wei; Li, Xiaoquan; Chen, Houbin; Takáč, Tomáš; Šamajová, Olga; Fabrice, Musana Rwalinda; Xie, Ling; Ma, Juan; Šamaj, Jozef; Xu, Chunxiang

    2017-01-01

    Banana Fusarium wilt caused by Fusarium oxysporum f. sp. cubense (Foc) is soil-borne disease of banana (Musa spp.) causing significant economic losses. Extensins and arabinogalactan proteins (AGPs) are cell wall components important for pathogen defence. Their significance for Foc resistance in banana was not reported so far. In this study, two banana cultivars differing in Foc sensitivity were used to monitor the changes in transcript levels, abundance and distribution of extensins and AGPs after wounding and Foc inoculation. Extensins mainly appeared in the root cap and meristematic cells. AGPs recognized by JIM13, JIM8, PN16.4B4 and CCRC-M134 antibodies located in root hairs, xylem and root cap. Individual AGPs and extensins showed specific radial distribution in banana roots. At the transcript level, seven extensins and 23 AGPs were differentially expressed between two banana cultivars before and after treatments. Two extensins and five AGPs responded to the treatments at the protein level. Most extensins and AGPs were up-regulated by wounding and pathogen inoculation of intact plants but down-regulated by pathogen attack of wounded plants. Main components responsible for the resistance of banana were MaELP-2 and MaPELP-2. Our data revealed that AGPs and extensins represent dynamic cell wall components involved in wounding and Foc resistance. PMID:28218299

  4. User-friendly markers linked to Fusarium wilt race 1 resistance Fw gene for marker-assisted selection in pea

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fusarium wilt is one of the most widespread diseases of pea. Resistance to Fusarium wilt race 1 was reported as a single gene, Fw, located on linkage group III. The previously reported AFLP and RAPD markers linked to Fw have limited usage in marker-assisted selection due to their map distance and l...

  5. Mutation of FVS1, encoding a protein with a sterile alpha motif domain, affects asexual reproduction in the fungal plant pathogen Fusarium oxysporum.

    PubMed

    Iida, Yuichiro; Fujiwara, Kazuki; Yoshioka, Yosuke; Tsuge, Takashi

    2014-02-01

    Fusarium oxysporum produces three kinds of asexual spores: microconidia, macroconidia and chlamydospores. We previously analysed expressed sequence tags during vegetative growth and conidiation in F. oxysporum and found 42 genes that were markedly upregulated during conidiation compared to vegetative growth. One of the genes, FVS1, encodes a protein with a sterile alpha motif (SAM) domain, which functions in protein-protein interactions that are involved in transcriptional or post-transcriptional regulation and signal transduction. Here, we made FVS1-disrupted mutants from the melon wilt pathogen F. oxysporum f. sp. melonis. Although the mutants produced all three kinds of asexual spores with normal morphology, they formed markedly fewer microconidia and macroconidia than the wild type. The mutants appeared to have a defect in the development of the conidiogenesis cells, conidiophores and phialides, required for the formation of microconidia and macroconidia. In contrast, chlamydospore formation was dramatically promoted in the mutants. The growth rates of the mutants on media were slightly reduced, indicating that FVS1 is also involved in, but not essential for, vegetative growth. We also observed that mutation of FVS1 caused defects in conidial germination and virulence, suggesting that the Fvs1 has pleiotropic functions in F. oxysporum.

  6. pH Response Transcription Factor PacC Controls Salt Stress Tolerance and Expression of the P-Type Na+-ATPase Ena1 in Fusarium oxysporum

    PubMed Central

    Caracuel, Zaira; Casanova, Carlos; Roncero, M. Isabel G.; Di Pietro, Antonio; Ramos, José

    2003-01-01

    Fungi possess efficient mechanisms of pH and ion homeostasis, allowing them to grow over a wide range of environmental conditions. In this study, we addressed the role of the pH response transcription factor PacC in salt tolerance of the vascular wilt pathogen Fusarium oxysporum. Loss-of-function pacC+/− mutants showed increased sensitivity to Li+ and Na+ and accumulated higher levels of these cations than the wild type. In contrast, strains expressing a dominant activating pacCc allele were more salt tolerant and had lower intracellular Li+ and Na+ concentrations. Although the kinetics of Li+ influx were not altered by mutations in pacC, we found that Li+ efflux at an alkaline, but not at an acidic, ambient pH was significantly reduced in pacC+/− loss-of-function mutants. To explore the presence of a PacC-dependent efflux mechanism in F. oxysporum, we cloned ena1 encoding an orthologue of the yeast P-type Na+-ATPase ENA1. Northern analysis revealed that efficient transcriptional activation of ena1 in F. oxysporum required the presence of high Na+ concentrations and alkaline ambient pH and was dependent on PacC function. We propose a model in which PacC controls ion homeostasis in F. oxysporum at a high pH by activating expression of ena1 coordinately with a second Na+-responsive signaling pathway. PMID:14665459

  7. Antifungal activity of (KW)n or (RW)n peptide against Fusarium solani and Fusarium oxysporum.

    PubMed

    Gopal, Ramamourthy; Na, Hyungjong; Seo, Chang Ho; Park, Yoonkyung

    2012-11-15

    The presence of lysine (Lys) or arginine (Arg) and tryptophan (Trp) are important for the antimicrobial effects of cationic peptides. Therefore, we designed and synthesized a series of antimicrobial peptides with various numbers of Lys (or Arg) and Trp repeats [(KW and RW)(n)-NH(2), where n equals 2, 3, 4, or 5]. Antifungal activities of these peptides increased with chain length. Light microscopy demonstrated that longer peptides (n = 4, 5) strongly inhibited in vitro growth of Fusarium solani, and Fusarium oxysporum, at 4-32 μM. Furthermore, longer peptides displayed potent fungicidal activities against a variety of agronomical important filamentous fungi, including F. solani and F. oxysporum, at their minimal inhibitory concentrations (MICs). However, RW series peptides showed slightly higher fungicidal activities than KW peptides against the two strains. Taken together, the results of this study indicate that these short peptides would be good candidates for use as synthetic or transgenic antifungal agents.

  8. Hyperkeratotic Warty Skin Lesion of Foot Caused by Fusarium oxysporum

    PubMed Central

    Kaur, Ravinder; Maheshwari, Megha

    2013-01-01

    Fusarium species are common soil-inhabiting organisms and plant pathogens. Human infections are usually precipitated by local or systemic predisposing factors, and disseminated infection is associated with impaired immune responses. Skin infections caused by Fusarium spp. include keratitis, onychomycosis, mycetoma, painful discrete erythematous nodules. Hyperkeratotic skin lesions caused by Fusarium spp. are, however, rarely reported. We report a case of hyperkeratotic verrucous warty skin lesion in the foot of a 50-year-old immunocompetent male, farmer by occupation. PMID:23716829

  9. Screenhouse and field persistence of nonpathogenic endophytic Fusarium oxysporum in Musa tissue culture plants.

    PubMed

    Paparu, Pamela; Dubois, Thomas; Gold, Clifford S; Niere, Björn; Adipala, Ekwamu; Coyne, Daniel

    2008-04-01

    Two major biotic constraints to highland cooking banana (Musa spp., genome group AAA-EA) production in Uganda are the banana weevil Cosmopolites sordidus and the burrowing nematode Radopholus similis. Endophytic Fusarium oxysporum strains inoculated into tissue culture banana plantlets have shown control of the banana weevil and the nematode. We conducted screenhouse and field experiments to investigate persistence in the roots and rhizome of two endophytic Fusarium oxysporum strains, V2w2 and III4w1, inoculated into tissue-culture banana plantlets of highland cooking banana cultivars Kibuzi and Nabusa. Re-isolation of F. oxysporum showed that endophyte colonization decreased faster from the rhizomes than from the roots of inoculated plants, both in the screenhouse and in the field. Whereas rhizome colonization by F. oxysporum decreased in the screenhouse (4-16 weeks after inoculation), root colonization did not. However, in the field (17-33 weeks after inoculation), a decrease was observed in both rhizome and root colonization. The results show a better persistence in the roots than rhizomes of endophytic F. oxysporum strains V2w2 and III4w1.

  10. Phenylpropanoid pathway is potentiated by silicon in the roots of banana plants during the infection process of Fusarium oxysporum f. sp. cubense.

    PubMed

    Fortunato, Alessandro Antônio; da Silva, Washington Luís; Rodrigues, Fabrício Ávila

    2014-06-01

    Fusarium wilt, caused by Fusarium oxysporum f. sp. cubense, is a disease that causes large reductions in banana yield worldwide. Considering the importance of silicon (Si) to potentiate the resistance of several plant species to pathogen infection, this study aimed to investigate, at the histochemical level, whether this element could enhance the production of phenolics on the roots of banana plants in response to F. oxysporum f. sp. cubense infection. Plants of cultivar Maçã, which is susceptible to F. oxysporum f. sp. cubense, were grown in plastic pots amended with 0 (-Si) or 0.39 g of Si (+Si) per kilogram of soil and inoculated with race 1 of F. oxysporum f. sp. cubense. The root Si concentration was increased by 35.6% for +Si plants in comparison to the -Si plants, which contributed to a 27% reduction in the symptoms of Fusarium wilt on roots. There was an absence of fluorescence for the root sections of the -Si plants treated with the Neu and Wilson's reagents. By contrast, for the root sections obtained from the +Si plants treated with Neu's reagent, strong yellow-orange fluorescence was observed in the phloem, and lemon-yellow fluorescence was observed in the sclerenchyma and metaxylem vessels, indicating the presence of flavonoids. For the root sections of the +Si plants treated with Wilson's reagent, orange-yellowish autofluorescence was more pronounced around the phloem vessels, and yellow fluorescence was more pronounced around the metaxylem vessels, also indicating the presence of flavonoids. Lignin was more densely deposited in the cortex of the roots of the +Si plants than for the -Si plants. Dopamine was barely detected in the roots of the -Si plants after using the lactic and glyoxylic acid stain, but was strongly suspected to occur on the phloem and metaxylem vessels of the roots of the +Si plants as confirmed by the intense orange-yellow fluorescence. The present study provides new evidence of the pivotal role of the phenylpropanoid pathway in

  11. Nuclear Magnetic Resonance (NMR) studies on the biosynthesis of fusaric acid from Fusarium oxysporum f. sp. vasinfectum

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fusarium oxysporum is a fungal pathogen that attacks many economically important plants. Uniquely pathogenic strains of F. oxysporum f. sp. vasinfectum were inadvertently imported into the United States on live cottonseed for dairy cattle feed. These strains produce exceptionally high concentratio...

  12. Progress report on a contemporary survey of the Fusarium wilt fungus in the United States

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The last survey of Fusarium oxysporum f. sp. vasinfectum in the U.S. was conducted in 1985. Since that time, race 4, previously thought to occur only in Asia, appeared in California in 2001, causing significant problems for the San Joaquin Valley cotton industry. Also, the presence of race 8 has bee...

  13. Identification and evaluation of two diagnostic markers linked to Fusarium wilt resistance (race 4) in banana (Musa spp.).

    PubMed

    Wang, Wei; Hu, Yulin; Sun, Dequan; Staehelin, Christian; Xin, Dawei; Xie, Jianghui

    2012-01-01

    Fusarium wilt caused by the fungus Fusarium oxysporum f. sp. cubense race 4 (FOC4) results in vascular tissue damage and ultimately death of banana (Musa spp.) plants. Somaclonal variants of in vitro micropropagated banana can hamper success in propagation of genotypes resistant to FOC4. Early identification of FOC4 resistance in micropropagated banana plantlets is difficult, however. In this study, we identified sequence-characterized amplified region (SCAR) markers of banana associated with resistance to FOC4. Using pooled DNA from resistant or susceptible genotypes and 500 arbitrary 10-mer oligonucleotide primers, 24 random amplified polymorphic DNA (RAPD) products were identified. Two of these RAPD markers were successfully converted to SCAR markers, called ScaU1001 (GenBank accession number HQ613949) and ScaS0901 (GenBank accession number HQ613950). ScaS0901 and ScaU1001 could be amplified in FOC4-resistant banana genotypes ("Williams 8818-1" and Goldfinger), but not in five tested banana cultivars susceptible to FOC4. The two SCAR markers were then used to identify a somaclonal variant of the genotype "Williams 8818-1", which lost resistance to FOC4. Hence, the identified SCAR markers can be applied for a rapid quality control of FOC4-resistant banana plantlets immediately after the in vitro micropropagation stage. Furthermore, ScaU1001 and ScaS0901 will facilitate marker-assisted selection of new banana cultivars resistant to FOC4.

  14. Comparative mapping of Raphanus sativus genome using Brassica markers and quantitative trait loci analysis for the Fusarium wilt resistance trait.

    PubMed

    Yu, Xiaona; Choi, Su Ryun; Ramchiary, Nirala; Miao, Xinyang; Lee, Su Hee; Sun, Hae Jeong; Kim, Sunggil; Ahn, Chun Hee; Lim, Yong Pyo

    2013-10-01

    Fusarium wilt (FW), caused by the soil-borne fungal pathogen Fusarium oxysporum is a serious disease in cruciferous plants, including the radish (Raphanus sativus). To identify quantitative trait loci (QTL) or gene(s) conferring resistance to FW, we constructed a genetic map of R. sativus using an F2 mapping population derived by crossing the inbred lines '835' (susceptible) and 'B2' (resistant). A total of 220 markers distributed in 9 linkage groups (LGs) were mapped in the Raphanus genome, covering a distance of 1,041.5 cM with an average distance between adjacent markers of 4.7 cM. Comparative analysis of the R. sativus genome with that of Arabidopsis thaliana and Brassica rapa revealed 21 and 22 conserved syntenic regions, respectively. QTL mapping detected a total of 8 loci conferring FW resistance that were distributed on 4 LGs, namely, 2, 3, 6, and 7 of the Raphanus genome. Of the detected QTL, 3 QTLs (2 on LG 3 and 1 on LG 7) were constitutively detected throughout the 2-year experiment. QTL analysis of LG 3, flanked by ACMP0609 and cnu_mBRPGM0085, showed a comparatively higher logarithm of the odds (LOD) value and percentage of phenotypic variation. Synteny analysis using the linked markers to this QTL showed homology to A. thaliana chromosome 3, which contains disease-resistance gene clusters, suggesting conservation of resistance genes between them.

  15. Members of Gammaproteobacteria as indicator species of healthy banana plants on Fusarium wilt-infested fields in Central America

    PubMed Central

    Köberl, Martina; Dita, Miguel; Martinuz, Alfonso; Staver, Charles; Berg, Gabriele

    2017-01-01

    Culminating in the 1950’s, bananas, the world’s most extensive perennial monoculture, suffered one of the most devastating disease epidemics in history. In Latin America and the Caribbean, Fusarium wilt (FW) caused by the soil-borne fungus Fusarium oxysporum f. sp. cubense (FOC), forced the abandonment of the Gros Michel-based export banana industry. Comparative microbiome analyses performed between healthy and diseased Gros Michel plants on FW-infested farms in Nicaragua and Costa Rica revealed significant shifts in the gammaproteobacterial microbiome. Although we found substantial differences in the banana microbiome between both countries and a higher impact of FOC on farms in Costa Rica than in Nicaragua, the composition especially in the endophytic microhabitats was similar and the general microbiome response to FW followed similar rules. Gammaproteobacterial diversity and community members were identified as potential health indicators. Healthy plants revealed an increase in potentially plant-beneficial Pseudomonas and Stenotrophomonas, while diseased plants showed a preferential occurrence of Enterobacteriaceae known for their plant-degrading capacity. Significantly higher microbial rhizosphere diversity found in healthy plants could be indicative of pathogen suppression events preventing or minimizing disease expression. This first study examining banana microbiome shifts caused by FW under natural field conditions opens new perspectives for its biological control. PMID:28345666

  16. Expression of Rice Chitinase Gene in Genetically Engineered Tomato Confers Enhanced Resistance to Fusarium Wilt and Early Blight

    PubMed Central

    Jabeen, Nyla; Chaudhary, Zubeda; Gulfraz, Muhammad; Rashid, Hamid; Mirza, Bushra

    2015-01-01

    This is the first study reporting the evaluation of transgenic lines of tomato harboring rice chitinase (RCG3) gene for resistance to two important fungal pathogens Fusarium oxysporum f. sp. lycopersici (Fol) causing fusarium wilt and Alternaria solani causing early blight (EB). In this study, three transgenic lines TL1, TL2 and TL3 of tomato Solanum lycopersicum Mill. cv. Riogrande genetically engineered with rice chitinase (RCG 3) gene and their R1 progeny was tested for resistance to Fol by root dip method and A. solani by detached leaf assay. All the R0 transgenic lines were highly resistant to these fungal pathogens compared to non-transgenic control plants. The pattern of segregation of three independent transformant for Fol and A. solani was also studied. Mendelian segregation was observed in transgenic lines 2 and 3 while it was not observed in transgenic line 1. It was concluded that introduction of chitinase gene in susceptible cultivar of tomato not only enhanced the resistance but was stably inherited in transgenic lines 2 and 3. PMID:26361473

  17. Environmental conditions that contribute to development and severity of Sugar Beet Fusarium Yellows caused by Fusarium oxysporum f. sp. betae: temperature

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fusarium yellows in sugar beet, caused by Fusarium oxysporum f. sp. betae, continues to cause significant problems to sugar beet production by causing considerable reductions in root yield, sucrose percentage, and juice purity in affected sugar beets. Environment plays a critical role in pathogen i...

  18. Fusarium oxysporum infection of stasis ulcer: eradication with measures aimed to improve stasis.

    PubMed

    Mansur, A Tülin; Artunkal, Seza; Ener, Beyza

    2011-07-01

    Fusarium species may cause localised skin infections in immunocompetent individuals. At least half of these infections are preceded by skin breakdown. The lesions are characterised by slow progression and good response to therapy. Here we present a 60-year-old non-diabetic man with stasis ulcers showing Fusarium oxysporum growth in culture of both pus swabs and skin biopsy specimens. The patient was confined to wheelchair because of recurrent sacral chordoma of 15 years duration, which was not under treatment for the last 3 years. Leg ulcers were resistant to antifungal therapy, and healed rapidly after improving of stasis with local and systemic measures.

  19. Molecular variability among isolates of Fusarium oxysporum associated with root rot disease of Agave tequilana.

    PubMed

    Vega-Ramos, Karla L; Uvalle-Bueno, J Xavier; Gómez-Leyva, Juan F

    2013-04-01

    In this study, 115 isolates of Fusarium oxysporum from roots of Agave tequilana Weber cv azul plants and soil in commercial plantations in western Mexico were characterized using morphological and molecular methods. Genetic analyses of monosporic isolates included restriction enzyme analysis of rDNA (ARDRA) using HaeIII and HinfI, and genetic diversity was determined using Box-PCR molecular markers. Box-PCR analysis generated 14 groups. The groups correlated highly with the geographic location of the isolate and sample type. These results demonstrate the usefulness of ARDRA and Box-PCR techniques in the molecular characterization of the Fusarium genus for the discrimination of pathogenic isolates.

  20. Innovative Approach to the Accumulation of Rubrosterone by Fermentation of Asparagus filicinus with Fusarium oxysporum.

    PubMed

    Li, Ying; Cai, Le; Dong, Jian-Wei; Xing, Yun; Duan, Wei-He; Zhou, Hao; Ding, Zhong-Tao

    2015-07-29

    Rubrosterone, possessing various remarkable bioactivities, is an insect-molting C19-steroid. However, only very small amounts are available for biological tests due to its limited content from plant sources. Fungi of genus Fusarium have been reported to have the ability to convert C27-steroids into C19-steroids. In this study, Asparagus filicinus, containing a high content of 20-hydroxyecdysone, was utilized to accumulate rubrosterone through solid fermentation by Fusarium oxysporum. The results showed that F. oxysporum had the ability to facilitate the complete biotransformation of 20-hydroxyecdysone to rubrosterone by solid-state fermentation. The present method could be an innovative and efficient approach to accumulate rubrosterone with an outstanding conversion ratio.

  1. Comparative Transcriptomics Atlases Reveals Different Gene Expression Pattern Related to Fusarium Wilt Disease Resistance and Susceptibility in Two Vernicia Species

    PubMed Central

    Chen, Yicun; Yin, Hengfu; Gao, Ming; Zhu, Huiping; Zhang, Qiyan; Wang, Yangdong

    2016-01-01

    Vernicia fordii (tung oil tree) is a promising industrial crop. Unfortunately, the devastating Fusarium wilt disease has caused its great losses, while its sister species (Vernicia montana) is remarkably resistant to this pathogen. However, the genetic mechanisms underlying this difference remain largely unknown. We here generated comparative transcriptomic atlases for different stages of Fusarium oxysporum infected Vernicia root. The transcriptomes of V. fordii and V. montana were assembled de novo and contained 258,430 and 245,240 non-redundant transcripts with N50 values of 1776 and 2452, respectively. A total of 44,310 pairs of putative one-to-one orthologous genes were identified in Vernicia species. Overall, the vast majority of orthologous genes shared a remarkably similar expression mode. The expression patterns of a small set of genes were further validated by quantitative real-time PCR. Moreover, 157 unigenes whose expression significantly correlated between the two species were defined, and gene set enrichment analysis indicated roles in increased defense response and in jasmonic and salicylic acid signaling responses during pathogen attack. Co-expression network analysis further identified the 17 hub unigenes, such as the serine/threonine protein kinase D6PK, leucine-rich repeat receptor-like kinase (LRR-RLK), and EREBP transcription factor, which play essential roles in plant pathogen resistance. Intriguingly, the expression of most hub genes differed significantly between V. montana and V. fordii. Based on our results, we propose a model to describe the major molecular reactions that underlie the defense responses of resistant V. montana to F. oxysporum. These data represent a crucial step toward breeding more pathogen-resistant V. fordii. PMID:28083008

  2. Synthesis of a natural gamma-butyrolactone from nerylacetone by Acremonium roseum and Fusarium oxysporum cultures.

    PubMed

    Gliszczyńska, Anna; Switalska, Marta; Wietrzyk, Joanna; Wawrzeńczyk, Czesław

    2011-03-01

    Natural gamma-butyrolactone - (4R, 5R)-5-(4'-methyl-3'pentenyl)-4-hydroxy-5-methyl-dihydrofuran-2-one (2) was isolated as the product of microbial transformation of nerylacetone (1) by fungal strains. This product was obtained as the enantiomer (+) in high yields 24% and 61% with ee=94% and 82% by the biotransformation in the cultures of Acremonium roseum AM336 and Fusarium oxysporum AM13 respectively.

  3. Resistance to Fusarium oxysporum f. sp. gladioli in transgenic Gladiolus plants expressing either a bacterial chloroperoxidase or fungal chitinase genes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Three antifungal genes, a non-heme chloroperoxidase from Pseudomonas pyrrocinia, and an exochitinase and endochitinase from Fusarium venetanum under regulation by the CaMV 35S promoter, were used to transform Gladiolus for resistance to Fusarium oxysporum f. sp. gladioli. Gladiolus plants were conf...

  4. Continous application of bioorganic fertilizer induced resilient culturable bacteria community associated with banana Fusarium wilt suppression.

    PubMed

    Fu, Lin; Ruan, Yunze; Tao, Chengyuan; Li, Rong; Shen, Qirong

    2016-06-16

    Fusarium wilt of banana always drives farmers to find new land for banana cultivation due to the comeback of the disease after a few cropping years. A novel idea for solving this problem is the continuous application of bioorganic fertilizer (BIO), which should be practiced from the beginning of banana planting. In this study, BIO was applied in newly reclaimed fields to pre-control banana Fusarium wilt and the culturable rhizobacteria community were evaluated using Biolog Ecoplates and culture-dependent denaturing gradient gel electrophoresis (CD-DGGE). The results showed that BIO application significantly reduced disease incidences and increased crop yields, respectivly. And the stabilized general bacterial metabolic potential, especially for the utilization of carbohydrates, carboxylic acids and phenolic compounds, was induced by BIO application. DGGE profiles demonstrated that resilient community structure of culturable rhizobacteria with higher richness and diversity were observed in BIO treated soils. Morever, enriched culturable bacteria affiliated with Firmicutes, Gammaproteobacteria and Actinobacteria were also detected. In total, continuous application of BIO effectively suppressed Fusarium wilt disease by stabilizing culturable bacterial metabolic potential and community structure. This study revealed a new method to control Fusarium wilt of banana for long term banana cultivation.

  5. Continous application of bioorganic fertilizer induced resilient culturable bacteria community associated with banana Fusarium wilt suppression

    PubMed Central

    Fu, Lin; Ruan, Yunze; Tao, Chengyuan; Li, Rong; Shen, Qirong

    2016-01-01

    Fusarium wilt of banana always drives farmers to find new land for banana cultivation due to the comeback of the disease after a few cropping years. A novel idea for solving this problem is the continuous application of bioorganic fertilizer (BIO), which should be practiced from the beginning of banana planting. In this study, BIO was applied in newly reclaimed fields to pre-control banana Fusarium wilt and the culturable rhizobacteria community were evaluated using Biolog Ecoplates and culture-dependent denaturing gradient gel electrophoresis (CD-DGGE). The results showed that BIO application significantly reduced disease incidences and increased crop yields, respectivly. And the stabilized general bacterial metabolic potential, especially for the utilization of carbohydrates, carboxylic acids and phenolic compounds, was induced by BIO application. DGGE profiles demonstrated that resilient community structure of culturable rhizobacteria with higher richness and diversity were observed in BIO treated soils. Morever, enriched culturable bacteria affiliated with Firmicutes, Gammaproteobacteria and Actinobacteria were also detected. In total, continuous application of BIO effectively suppressed Fusarium wilt disease by stabilizing culturable bacterial metabolic potential and community structure. This study revealed a new method to control Fusarium wilt of banana for long term banana cultivation. PMID:27306096

  6. Continous application of bioorganic fertilizer induced resilient culturable bacteria community associated with banana Fusarium wilt suppression

    NASA Astrophysics Data System (ADS)

    Fu, Lin; Ruan, Yunze; Tao, Chengyuan; Li, Rong; Shen, Qirong

    2016-06-01

    Fusarium wilt of banana always drives farmers to find new land for banana cultivation due to the comeback of the disease after a few cropping years. A novel idea for solving this problem is the continuous application of bioorganic fertilizer (BIO), which should be practiced from the beginning of banana planting. In this study, BIO was applied in newly reclaimed fields to pre-control banana Fusarium wilt and the culturable rhizobacteria community were evaluated using Biolog Ecoplates and culture-dependent denaturing gradient gel electrophoresis (CD-DGGE). The results showed that BIO application significantly reduced disease incidences and increased crop yields, respectivly. And the stabilized general bacterial metabolic potential, especially for the utilization of carbohydrates, carboxylic acids and phenolic compounds, was induced by BIO application. DGGE profiles demonstrated that resilient community structure of culturable rhizobacteria with higher richness and diversity were observed in BIO treated soils. Morever, enriched culturable bacteria affiliated with Firmicutes, Gammaproteobacteria and Actinobacteria were also detected. In total, continuous application of BIO effectively suppressed Fusarium wilt disease by stabilizing culturable bacterial metabolic potential and community structure. This study revealed a new method to control Fusarium wilt of banana for long term banana cultivation.

  7. Monitoring of pathogenic and non‐pathogenic Fusarium oxysporum strains during tomato plant infection

    PubMed Central

    Validov, Shamil Z.; Kamilova, Faina D.; Lugtenberg, Ben J. J.

    2011-01-01

    Summary Monitoring of pathogenic strains of Fusarium oxysporum (Fox), which cause wilt and rots on agricultural and ornamental plants, is important for predicting disease outbreaks. Since both pathogenic and non‐pathogenic strains of Fox are ubiquitous and are able to colonize plant roots, detection of Fox DNA in plant material is not the ultimate proof of an ongoing infection which would cause damage to the plant. We followed the colonization of tomato plants by strains Fox f. sp. radicis‐lycopersici ZUM2407 (a tomato foot and root rot pathogen), Fox f. sp. radicis‐cucumerinum V03‐2g (a cucumber root rot pathogen) and Fox Fo47 (a well‐known non‐pathogenic biocontrol strain). We determined fungal DNA concentrations in tomato plantlets by quantitative PCR (qPCR) with primers complementary to the intergenic spacer region (IGS) of these three Fox strains. Two weeks after inoculation of tomato seedlings with these Fox strains, the DNA concentration of Forl ZUM2407 was five times higher than that of the non‐compatible pathogen Forc V03‐2g and 10 times higher than that of Fo47. In 3‐week‐old plantlets the concentration of Forl ZUM2407 DNA was at least 10 times higher than those of the other strains. The fungal DNA concentration, as determined by qPCR, appeared to be in good agreement with data of the score of visible symptoms of tomato foot and root rot obtained 3 weeks after inoculation of tomato with Forl ZUM2407. Our results show that targeting of the multicopy ribosomal operon results in a highly sensitive qPCR reaction for the detection of Fox DNA. Since formae speciales of Fox cannot be distinguished by comparison of ribosomal operons, detection of Fox DNA is not evidence of plant infection by a compatible pathogen. Nevertheless, the observed difference in levels of plant colonization between pathogenic and non‐pathogenic strains strongly suggests that a concentration of Fox DNA in plant material above the threshold level of 0.005% is due to

  8. Monitoring of pathogenic and non-pathogenic Fusarium oxysporum strains during tomato plant infection.

    PubMed

    Validov, Shamil Z; Kamilova, Faina D; Lugtenberg, Ben J J

    2011-01-01

    Monitoring of pathogenic strains of Fusarium oxysporum (Fox), which cause wilt and rots on agricultural and ornamental plants, is important for predicting disease outbreaks. Since both pathogenic and non-pathogenic strains of Fox are ubiquitous and are able to colonize plant roots, detection of Fox DNA in plant material is not the ultimate proof of an ongoing infection which would cause damage to the plant. We followed the colonization of tomato plants by strains Fox f. sp. radicis-lycopersici ZUM2407 (a tomato foot and root rot pathogen), Fox f. sp. radiciscucumerinum V03-2g (a cucumber root rot pathogen) and Fox Fo47 (a well-known non-pathogenic biocontrol strain). We determined fungal DNA concentrations in tomato plantlets by quantitative PCR (qPCR) with primers complementary to the intergenic spacer region (IGS) of these three Fox strains. Two weeks after inoculation of tomato seedlings with these Fox strains, the DNA concentration of Forl ZUM2407 was five times higher than that of the non-compatible pathogen Forc V03-2g and 10 times higher than that of Fo47. In 3-week-old plantlets the concentration of Forl ZUM2407 DNA was at least 10 times higher than those of the other strains. The fungal DNA concentration, as determined by qPCR, appeared to be in good agreement with data of the score of visible symptoms of tomato foot and root rot obtained 3 weeks after inoculation of tomato with Forl ZUM2407. Our results show that targeting of the multicopy ribosomal operon results in a highly sensitive qPCR reaction for the detection of Fox DNA. Since formae speciales of Fox cannot be distinguished by comparison of ribosomal operons, detection of Fox DNA is not evidence of plant infection by a compatible pathogen. Nevertheless, the observed difference in levels of plant colonization between pathogenic and non-pathogenic strains strongly suggests that a concentration of Fox DNA in plant material above the threshold level of 0.005% is due to proliferation of pathogenic Fox.

  9. Highly Diverse Endophytic and Soil Fusarium oxysporum Populations Associated with Field-Grown Tomato Plants

    PubMed Central

    Demers, Jill E.; Gugino, Beth K.

    2014-01-01

    The diversity and genetic differentiation of populations of Fusarium oxysporum associated with tomato fields, both endophytes obtained from tomato plants and isolates obtained from soil surrounding the sampled plants, were investigated. A total of 609 isolates of F. oxysporum were obtained, 295 isolates from a total of 32 asymptomatic tomato plants in two fields and 314 isolates from eight soil cores sampled from the area surrounding the plants. Included in this total were 112 isolates from the stems of all 32 plants, a niche that has not been previously included in F. oxysporum population genetics studies. Isolates were characterized using the DNA sequence of the translation elongation factor 1α gene. A diverse population of 26 sequence types was found, although two sequence types represented nearly two-thirds of the isolates studied. The sequence types were placed in different phylogenetic clades within F. oxysporum, and endophytic isolates were not monophyletic. Multiple sequence types were found in all plants, with an average of 4.2 per plant. The population compositions differed between the two fields but not between soil samples within each field. A certain degree of differentiation was observed between populations associated with different tomato cultivars, suggesting that the host genotype may affect the composition of plant-associated F. oxysporum populations. No clear patterns of genetic differentiation were observed between endophyte populations and soil populations, suggesting a lack of specialization of endophytic isolates. PMID:25304514

  10. Systemic acquired resistance in Cavendish banana induced by infection with an incompatible strain of Fusarium oxysporum f. sp. cubense.

    PubMed

    Wu, Yuanli; Yi, Ganjun; Peng, Xinxiang; Huang, Bingzhi; Liu, Ee; Zhang, Jianjun

    2013-07-15

    Fusarium wilt of banana is caused by the soil-borne fungus Fusarium oxysporum f. sp. cubense (Foc). The fact that there are no economically viable biological, chemical, or cultural measures of controlling the disease in an infected field leads to search for alternative strategies involving activation of the plant's innate defense system. The mechanisms underlying systemic acquired resistance (SAR) are much less understood in monocots than in dicots. Since systemic protection of plants by attenuated or avirulent pathogens is a typical SAR response, the establishment of a biologically induced SAR model in banana is helpful to investigate the mechanism of SAR to Fusarium wilt. This paper described one such model using incompatible Foc race 1 to induce resistance against Foc tropical race 4 in an in vitro pathosystem. Consistent with the observation that the SAR provided the highest level of protection when the time interval between primary infection and challenge inoculation was 10d, the activities of defense-related enzymes such as phenylalanine ammonia lyase (PAL, EC 4.3.1.5), peroxidase (POD, EC 1.11.1.7), polyphenol oxidase (PPO, EC 1.14.18.1), and superoxide dismutase (SOD, EC 1.15.1.1) in systemic tissues also reached the maximum level and were 2.00-2.43 times higher than that of the corresponding controls on the tenth day. The total salicylic acid (SA) content in roots of banana plantlets increased from about 1 to more than 5 μg g⁻¹ FW after the second leaf being inoculated with Foc race 1. The systemic up-regulation of MaNPR1A and MaNPR1B was followed by the second up-regulation of PR-1 and PR-3. Although SA and jasmonic acid (JA)/ethylene (ET) signaling are mostly antagonistic, systemic expression of PR genes regulated by different signaling pathways were simultaneously up-regulated after primary infection, indicating that both pathways are involved in the activation of the SAR.

  11. Purification and identification of two antifungal cyclic dipeptides from Bacillus cereus subsp. thuringiensis associated with a rhabditid entomopathogenic nematode especially against Fusarium oxysporum.

    PubMed

    Kumar, S Nishanth; Nambisan, Bala; Mohandas, C

    2014-04-01

    The cell-free culture filtrate of Bacillus cereus subsp. thuringiensis associated with an entomopathogenic nematode (EPN), Rhabditis (Oscheius) sp., exhibited strong antimicrobial activity. The ethyl acetate extract of the bacterial culture filtrate was purified by silica gel column chromatography to obtain two cyclic dipeptides (CDPs). The structure and absolute stereochemistry of this compound were determined based on extensive spectroscopic analyses (FABMS, (1)H NMR, (13)C NMR, (1)H-(1)H COSY, (1)H-(13)C HMBC) and Marfey's method. The compounds were identified as cyclo(D-Pro-L-Met) and cyclo(D-Pro-D-Tyr). CDPs showed significantly higher activity than the standard fungicide bavistin against agriculturally important fungi, viz., Fusarium oxysporum, Rhizoctonia solani and Penicillium expansum. The highest activity of 2 µg/ml by cyclo(D-Pro-D-Tyr) was recorded against F. oxysporum, a plant pathogen responsible for causing fusarium wilt followed by R. solani, a pathogen that causes root rot and P. expansum. To our knowledge, this is the first report on the isolation of these compounds from Rhabditis EPN bacterial strain Bacillus cereus subsp. thuringiensis.

  12. Genome wide transcriptome profiling of Fusarium oxysporum f sp. ciceris conidial germination reveals new insights into infection-related genes

    PubMed Central

    Sharma, Mamta; Sengupta, Anindita; Ghosh, Raju; Agarwal, Gaurav; Tarafdar, Avijit; Nagavardhini, A; Pande, Suresh; Varshney, Rajeev K

    2016-01-01

    Vascular wilt caused by Fusarium oxysporum f. sp. ciceris (Foc) is a serious disease of chickpea (Cicer arietinum L.) accounting for approximately 10–15% annual crop loss. The fungus invades the plant via roots, colonizes the xylem vessels and prevents the upward translocation of water and nutrients. Infection is initiated by conidia that invade the host tissue often by penetration of intact epidermal cells. Here, we report the characterization of the transcriptome of Foc sequenced using Illumina Hiseq technology during its conidial germination at different time points. Genome-wide expression profiling revealed that genes linked to fungal development are transcribed in successive ways. Analysis showed that Foc have large sets of germination-related genes and families of genes encoding secreted effectors, cell wall/pectin-degrading enzymes, metabolism related enzymes, transporters and peptidases. We found that metabolism related enzymes are up-regulated at early time point whereas most transporters and secondary metabolites important for tissue colonization and pathogenicity are up-regulated later as evident from the qRT-PCR. The study demonstrated that early conidial germination in Foc is accompanied by rapid shifts in gene expression that prepare the fungus for germ tube outgrowth, host cell invasion and pathogenesis. This work lays the foundation for facilitating further research towards understanding this host-pathogen interaction. PMID:27853284

  13. Field resistance to Fusarium oxysporum and Verticillium dahliae in transgenic cotton expressing the plant defensin NaD1

    PubMed Central

    Anderson, Marilyn A.

    2014-01-01

    The plant defensin NaD1, from Nicotiana alata, has potent antifungal activity against a range of filamentous fungi including the two important cotton pathogens, Fusarium oxysporum f. sp. vasinfectum (Fov) and Verticillium dahliae. Transgenic cotton plants expressing NaD1 were produced and plants from three events were selected for further characterization. Homozygous plants were assessed in greenhouse bioassays for resistance to Fov. One line (D1) was selected for field trial testing over three growing seasons in soils naturally infested with Fov and over two seasons in soils naturally infested with V. dahliae. In the field trials with Fov-infested soil, line D1 had 2–3-times the survival rate, a higher tolerance to Fov (higher disease rank), and a 2–4-fold increase in lint yield compared to the non-transgenic Coker control. When transgenic line D1 was planted in V. dahliae-infested soil, plants had a higher tolerance to Verticillium wilt and up to a 2-fold increase in lint yield compared to the non-transgenic Coker control. Line D1 did not exhibit any detrimental agronomic features compared to the parent Coker control when plants were grown in non-diseased soil. This study demonstrated that the expression of NaD1 in transgenic cotton plants can provide substantial resistance to two economically important fungal pathogens. PMID:24502957

  14. Genetic Variation Among Vegetative Compatibility Groups of Fusarium oxysporum f. sp. cubense Analyzed by DNA Fingerprinting.

    PubMed

    Bentley, S; Pegg, K G; Moore, N Y; Davis, R D; Buddenhagen, I W

    1998-12-01

    ABSTRACT Genetic variation within a worldwide collection of 208 isolates of Fu-sarium oxysporum f. sp. cubense, representing physiological races 1, 2, 3, and 4 and the 20 reported vegetative compatibility groups (VCGs), was analyzed using modified DNA amplification fingerprinting. Also characterized were 133 isolates that did not belong to any of the reported VCGs of F. oxysporum f. sp. cubense including race 3 isolates from a Heliconia species and isolates from a symptomatic wild banana species growing in the jungle in peninsular Malaysia. The DNA fingerprint patterns were generally VCG specific, irrespective of geographic or host origin. A total of 33 different genotypes were identified within F. oxysporum f. sp. cu-bense; 19 genotypes were distinguished among the isolates that belonged to the 20 reported VCGs, and 14 new genotypes were identified among the isolates that did not belong to any of the existing VCGs. DNA fingerprinting analysis also allowed differentiation of nine clonal lineages within F. oxysporum f. sp. cubense. Five of these lineages each contained numerous closely related VCGs and genotypes, and the remaining four lineages each contained a single genotype. The genetic diversity and geographic distribution of several of these lineages of F. oxysporum f. sp. cubense suggests that they have coevolved with edible bananas and their wild diploid progenitors in Asia. DNA fingerprinting analysis of isolates from the wild pathosystem provides further evidence for the coevolution hypothesis. The genetic isolation and limited geographic distribution of four of the lineages of F. oxysporum f. sp. cubense suggests that the pathogen has also arisen independently, both within and outside of the center of origin of the host.

  15. Morphological and molecular characterization of Fusarium. solani and F. oxysporum associated with crown disease of oil palm

    PubMed Central

    Hafizi, R.; Salleh, B.; Latiffah, Z.

    2013-01-01

    Crown disease (CD) is infecting oil palm in the early stages of the crop development. Previous studies showed that Fusarium species were commonly associated with CD. However, the identity of the species has not been resolved. This study was carried out to identify and characterize through morphological approaches and to determine the genetic diversity of the Fusarium species. 51 isolates (39%) of Fusarium solani and 40 isolates (31%) of Fusarium oxysporum were recovered from oil palm with typical CD symptoms collected from nine states in Malaysia, together with samples from Padang and Medan, Indonesia. Based on morphological characteristics, isolates in both Fusarium species were classified into two distinct morphotypes; Morphotypes I and II. Molecular characterization based on IGS-RFLP analysis produced 27 haplotypes among the F. solani isolates and 33 haplotypes for F. oxysporum isolates, which indicated high levels of intraspecific variations. From UPGMA cluster analysis, the isolates in both Fusarium species were divided into two main clusters with the percentage of similarity from 87% to 100% for F. solani, and 89% to 100% for F. oxysporum isolates, which was in accordance with the Morphotypes I and II. The results of the present study indicated that F. solani and F. oxysporum associated with CD of oil palm in Malaysia and Indonesia were highly variable. PMID:24516465

  16. Morphological and molecular characterization of Fusarium. solani and F. oxysporum associated with crown disease of oil palm.

    PubMed

    Hafizi, R; Salleh, B; Latiffah, Z

    2013-01-01

    Crown disease (CD) is infecting oil palm in the early stages of the crop development. Previous studies showed that Fusarium species were commonly associated with CD. However, the identity of the species has not been resolved. This study was carried out to identify and characterize through morphological approaches and to determine the genetic diversity of the Fusarium species. 51 isolates (39%) of Fusarium solani and 40 isolates (31%) of Fusarium oxysporum were recovered from oil palm with typical CD symptoms collected from nine states in Malaysia, together with samples from Padang and Medan, Indonesia. Based on morphological characteristics, isolates in both Fusarium species were classified into two distinct morphotypes; Morphotypes I and II. Molecular characterization based on IGS-RFLP analysis produced 27 haplotypes among the F. solani isolates and 33 haplotypes for F. oxysporum isolates, which indicated high levels of intraspecific variations. From UPGMA cluster analysis, the isolates in both Fusarium species were divided into two main clusters with the percentage of similarity from 87% to 100% for F. solani, and 89% to 100% for F. oxysporum isolates, which was in accordance with the Morphotypes I and II. The results of the present study indicated that F. solani and F. oxysporum associated with CD of oil palm in Malaysia and Indonesia were highly variable.

  17. Tomatinase from Fusarium oxysporum f. sp. lycopersici defines a new class of saponinases.

    PubMed

    Roldán-Arjona, T; Pérez-Espinosa, A; Ruiz-Rubio, M

    1999-10-01

    Plants produce a variety of secondary metabolites, many of which have antifungal activity. Saponins are plant glycosides that may provide a preformed chemical barrier against phytopathogenic fungi. Fusarium oxysporum f. sp. lycopersici and other tomato pathogens produce extracellular enzymes known as tomatinases, which deglycosylate alpha-tomatine to yield less toxic derivatives. We have cloned and characterized the cDNA and genomic DNA encoding tomatinase from the vascular pathogen of tomato F. oxysporum f. sp. lycopersici. This gene encodes a protein (FoTom1) with no amino acid sequence homology to any previously described saponinase, including tomatinase from Septoria lycopersici. Although FoTom1 is related to family 10 glycosyl hydrolases, which include mainly xylanases, it has no detectable xylanase activity. We have overexpressed and purified the protein with a bacterial heterologous system. The purified enzyme is active and cleaves alpha-tomatine into the less toxic compounds tomatidine and lycotetraose. Tomatinase from F. oxysporum f. sp. lycopersici is encoded by a single gene whose expression is induced by alpha-tomatine. This expression is fully repressed in the presence of glucose, which is consistent with the presence of two putative CREA binding sites in the promoter region of the tomatinase gene. The tomatinase gene is expressed in planta in both roots and stems throughout the entire disease cycle of F. oxysporum f. sp. lycopersici.

  18. A DNA-Based Procedure for In Planta Detection of Fusarium oxysporum f. sp. phaseoli.

    PubMed

    Alves-Santos, Fernando M; Ramos, Brisa; García-Sánchez, M Asunción; Eslava, Arturo P; Díaz-Mínguez, José María

    2002-03-01

    ABSTRACT We have characterized strains of Fusarium oxysporum from common bean fields in Spain that were nonpathogenic on common bean, as well as F. oxysporum strains (F. oxysporum f. sp. phaseoli) pathogenic to common bean by random amplified polymorphic DNA (RAPD) analysis. We identified a RAPD marker (RAPD 4.12) specific for the highly virulent pathogenic strains of the seven races of F. oxysporum f. sp. phaseoli. Sequence analysis of RAPD 4.12 allowed the design of oligonucleotides that amplify a 609-bp sequence characterized amplified region (SCAR) marker (SCAR-B310A280). Under controlled environmental and greenhouse conditions, detection of the pathogen by polymerase chain reaction was 100% successful in root samples of infected but still symptomless plants and in stem samples of plants with disease severity of >/=4 in the Centro Internacional de Agricultura Tropical (CIAT; Cali, Colombia) scale. The diagnostic procedure can be completed in 5 h and allows the detection of all known races of the pathogen in plant samples at early stages of the disease with no visible symptoms.

  19. Fusarium Oxysporum Volatiles Enhance Plant Growth Via Affecting Auxin Transport and Signaling.

    PubMed

    Bitas, Vasileios; McCartney, Nathaniel; Li, Ningxiao; Demers, Jill; Kim, Jung-Eun; Kim, Hye-Seon; Brown, Kathleen M; Kang, Seogchan

    2015-01-01

    Volatile organic compounds (VOCs) have well-documented roles in plant-plant communication and directing animal behavior. In this study, we examine the less understood roles of VOCs in plant-fungal relationships. Phylogenetically and ecologically diverse strains of Fusarium oxysporum, a fungal species complex that often resides in the rhizosphere of assorted plants, produce volatile compounds that augment shoot and root growth of Arabidopsis thaliana and tobacco. Growth responses of A. thaliana hormone signaling mutants and expression patterns of a GUS reporter gene under the auxin-responsive DR5 promoter supported the involvement of auxin signaling in F. oxysporum volatile-mediated growth enhancement. In addition, 1-naphthylthalamic acid, an inhibitor of auxin efflux, negated F. oxysporum volatile-mediated growth enhancement in both plants. Comparison of the profiles of volatile compounds produced by F. oxysporum strains that differentially affected plant growth suggests that the relative compositions of both growth inhibitory and stimulatory compounds may determine the degree of plant growth enhancement. Volatile-mediated signaling between fungi and plants may represent a potentially conserved, yet mostly overlooked, mechanism underpinning plant-fungus interactions and fungal niche adaption.

  20. Fusarium Oxysporum Volatiles Enhance Plant Growth Via Affecting Auxin Transport and Signaling

    PubMed Central

    Bitas, Vasileios; McCartney, Nathaniel; Li, Ningxiao; Demers, Jill; Kim, Jung-Eun; Kim, Hye-Seon; Brown, Kathleen M.; Kang, Seogchan

    2015-01-01

    Volatile organic compounds (VOCs) have well-documented roles in plant-plant communication and directing animal behavior. In this study, we examine the less understood roles of VOCs in plant-fungal relationships. Phylogenetically and ecologically diverse strains of Fusarium oxysporum, a fungal species complex that often resides in the rhizosphere of assorted plants, produce volatile compounds that augment shoot and root growth of Arabidopsis thaliana and tobacco. Growth responses of A. thaliana hormone signaling mutants and expression patterns of a GUS reporter gene under the auxin-responsive DR5 promoter supported the involvement of auxin signaling in F. oxysporum volatile-mediated growth enhancement. In addition, 1-naphthylthalamic acid, an inhibitor of auxin efflux, negated F. oxysporum volatile-mediated growth enhancement in both plants. Comparison of the profiles of volatile compounds produced by F. oxysporum strains that differentially affected plant growth suggests that the relative compositions of both growth inhibitory and stimulatory compounds may determine the degree of plant growth enhancement. Volatile-mediated signaling between fungi and plants may represent a potentially conserved, yet mostly overlooked, mechanism underpinning plant-fungus interactions and fungal niche adaption. PMID:26617587

  1. Identification, transcriptional and functional analysis of heat-shock protein 90s in banana (Musa acuminata L.) highlight their novel role in melatonin-mediated plant response to Fusarium wilt.

    PubMed

    Wei, Yunxie; Hu, Wei; Wang, Qiannan; Zeng, Hongqiu; Li, Xiaolin; Yan, Yu; Reiter, Russel J; He, Chaozu; Shi, Haitao

    2017-01-01

    As one popular fresh fruit, banana (Musa acuminata) is cultivated in the world's subtropical and tropical areas. In recent years, pathogen Fusarium oxysporum f. sp. cubense (Foc) has been widely and rapidly spread to banana cultivated areas, causing substantial yield loss. However, the molecular mechanism of banana response to Foc remains unclear, and functional identification of disease-related genes is also very limited. In this study, nine 90 kDa heat-shock proteins (HSP90s) were genomewide identified. Moreover, the expression profile of them in different organs, developmental stages, and in response to abiotic and fungal pathogen Foc were systematically analyzed. Notably, we found that the transcripts of 9 MaHSP90s were commonly regulated by melatonin (N-acetyl-5-methoxytryptamine) and Foc infection. Further studies showed that exogenous application of melatonin improved banana resistance to Fusarium wilt, but the effect was lost when cotreated with HSP90 inhibitor (geldanamycin, GDA). Moreover, melatonin and GDA had opposite effect on auxin level in response to Foc4, while melatonin and GDA cotreated plants had no significant effect, suggesting the involvement of MaHSP90s in the cross talk of melatonin and auxin in response to fungal infection. Taken together, this study demonstrated that MaHSP90s are essential for melatonin-mediated plant response to Fusarium wilt, which extends our understanding the putative roles of MaHSP90s as well as melatonin in the biological control of banana Fusarium wilt.

  2. Genetic mapping of resistance to Fusarium oxysporum f. sp. tulipae in tulip.

    PubMed

    Tang, Nan; van der Lee, Theo; Shahin, Arwa; Holdinga, Maarten; Bijman, Paul; Caser, Matteo; Visser, Richard G F; van Tuyl, Jaap M; Arens, Paul

    Fusarium oxysporum is a major problem in the production of tulip bulbs. Breeding for resistant cultivars through a conventional approach is a slow process due to the long life cycle of tulip. Until now, marker-assisted selection (MAS) has been hampered by the large genome size and the absence of a genetic map. This study is aimed at construction of the first genetic map for tulip and at the identification of loci associated with resistance to F. oxysporum. A cross-pollinated population of 125 individuals segregating for Fusarium resistance was obtained from Tulipa gesneriana "Kees Nelis" and T. fosteriana "Cantata." Fusarium resistance of the mapping population was evaluated through a soil infection test in two consecutive years, and a spot inoculation test in which a green fluorescent protein tagged Fusarium strain was used for inoculation. The genetic maps have been constructed for the parents separately. The genetic map of "Kees Nelis" comprised 342 markers on 27 linkage groups covering 1707 cM, while the map of "Cantata" comprised 300 markers on 21 linkage groups covering 1201 cM. Median distance between markers was 3.9 cM for "Kees Nelis" and 3.1 cM for "Cantata." Six putative quantitative trait loci (QTLs) for Fusarium resistance were identified, derived from both parents. QTL2, QTL3, and QTL6 were significant in all disease tests. For the flanking markers of the QTLs, phenotypic means of the two allelic groups, segregating from a parent for such a marker, were significantly different. These markers will be useful for the development of MAS in tulip breeding.

  3. RNA-seq Transcriptome Response of Flax (Linum usitatissimum L.) to the Pathogenic Fungus Fusarium oxysporum f. sp. lini

    PubMed Central

    Galindo-González, Leonardo; Deyholos, Michael K.

    2016-01-01

    Fusarium oxysporum f. sp. lini is a hemibiotrophic fungus that causes wilt in flax. Along with rust, fusarium wilt has become an important factor in flax production worldwide. Resistant flax cultivars have been used to manage the disease, but the resistance varies, depending on the interactions between specific cultivars and isolates of the pathogen. This interaction has a strong molecular basis, but no genomic information is available on how the plant responds to attempted infection, to inform breeding programs on potential candidate genes to evaluate or improve resistance across cultivars. In the current study, disease progression in two flax cultivars [Crop Development Center (CDC) Bethune and Lutea], showed earlier disease symptoms and higher susceptibility in the later cultivar. Chitinase gene expression was also divergent and demonstrated and earlier molecular response in Lutea. The most resistant cultivar (CDC Bethune) was used for a full RNA-seq transcriptome study through a time course at 2, 4, 8, and 18 days post-inoculation (DPI). While over 100 genes were significantly differentially expressed at both 4 and 8 DPI, the broadest deployment of plant defense responses was evident at 18 DPI with transcripts of more than 1,000 genes responding to the treatment. These genes evidenced a reception and transduction of pathogen signals, a large transcriptional reprogramming, induction of hormone signaling, activation of pathogenesis-related genes, and changes in secondary metabolism. Among these, several key genes that consistently appear in studies of plant-pathogen interactions, had increased transcript abundance in our study, and constitute suitable candidates for resistance breeding programs. These included: an induced RPMI-induced protein kinase; transcription factors WRKY3, WRKY70, WRKY75, MYB113, and MYB108; the ethylene response factors ERF1 and ERF14; two genes involved in auxin/glucosinolate precursor synthesis (CYP79B2 and CYP79B3); the flavonoid

  4. Effect of Endophytic Fusarium oxysporum on Host Preference of Radopholus similis to Tissue Culture Banana Plants.

    PubMed

    Athman, Shahasi Y; Dubois, Thomas; Coyne, Daniel; Gold, Clifford S; Labuschagne, Nico; Viljoen, Altus

    2006-12-01

    The burrowing nematode Radopholus similis is one of the major constraints to banana (Musa spp.) production worldwide. Resource-poor farmers can potentially manage R. similis by using naturally occurring banana endophytes, such as nonpathogenic Fusarium oxysporum, that are inoculated into tissue culture banana plantlets. At present, it is unclear at what stage in the R. similis infection process the endophytes are most effective. In this study, the effect of three endophytic F. oxysporum isolates (V5w2, Eny1.31i and Eny7.11o) on R. similis host preference of either endophyte-treated or untreated banana plants was investigated. No differences were observed between the proportion of nematodes attracted to either root segments excised from endophyte-treated or untreated plants, or in experiments using endophyte-treated and untreated tissue culture banana plantlets. These results imply that the early processes of banana plant host recognition by R. similis are not affected by endophyte infection.

  5. Development of a thematic collection of Musa spp accessions using SCAR markers for preventive breeding against Fusarium oxysporum f. sp cubense tropical race 4.

    PubMed

    Silva, P R O; de Jesus, O N; Bragança, C A D; Haddad, F; Amorim, E P; Ferreira, C F

    2016-03-11

    Bananas are one of the most consumed fruits worldwide, but are affected by many pests and diseases. One of the most devastating diseases is Fusarium wilt, caused by Fusarium oxysporum f. sp cubense (Foc). Recently, Fusarium tropical race 4 (Foc TR4) has been causing irreparable damage, especially in Asia and Africa where it has devastated entire plantations, including areas with Cavendish, which is known to be resistant to Foc race 1. Although this race is not yet present in Brazil, results obtained by Embrapa in partnership with the University of Wageningen, The Netherlands, indicate that 100% of the cultivars used by Brazilian growers are susceptible to Foc TR 4. In our study, 276 banana accessions were screened with sequence characterized amplified region (SCAR) markers that have been linked to the resistance of Foc TR 4. Two SCAR primers were tested and the results revealed that SCAR ScaU1001 was efficient at discriminating accessions with possible resistance in 36.6% of the evaluated accessions. This is the first attempt to develop a thematic collection of possible Foc TR 4 resistant banana accessions in Brazil, which could be tested in Asian or African countries to validate marker-assisted selection (MAS), and for use in the preventive breeding of the crop to safeguard our banana plantations against Foc TR 4. We believe that this is an important step towards the prevention of this devastating disease, especially considering that our banana plantations are at risk.

  6. Thyme essential oil as a defense inducer of tomato against gray mold and Fusarium wilt.

    PubMed

    Ben-Jabeur, Maissa; Ghabri, Emna; Myriam, Machraoui; Hamada, Walid

    2015-09-01

    The potential of thyme essential oil in controlling gray mold and Fusarium wilt and inducing systemic acquired resistance in tomato seedlings and tomato grown in hydroponic system was evaluated. Thyme oil highly reduced 64% of Botrytis cinerea colonization on pretreated detached leaves compared to untreated control. Also, it played a significant decrease in Fusarium wilt severity especially at7 days post treatment when it was reduced to 30.76%. To explore the plant pathways triggered in response to thyme oil, phenolic compounds accumulation and peroxidase activity was investigated. Plant response was observed either after foliar spray or root feeding in hydroponics which was mostly attributed to peroxidases accumulation rather than phenolic compounds accumulation, and thyme oil seems to be more effective when applied to the roots.

  7. Autophagy contributes to regulation of nuclear dynamics during vegetative growth and hyphal fusion in Fusarium oxysporum.

    PubMed

    Corral-Ramos, Cristina; Roca, M Gabriela; Di Pietro, Antonio; Roncero, M Isabel G; Ruiz-Roldán, Carmen

    2015-01-01

    In the fungal pathogen Fusarium oxysporum, vegetative hyphal fusion triggers nuclear mitotic division in the invading hypha followed by migration of a nucleus into the receptor hypha and degradation of the resident nucleus. Here we examined the role of autophagy in fusion-induced nuclear degradation. A search of the F. oxysporum genome database for autophagy pathway components identified putative orthologs of 16 core autophagy-related (ATG) genes in yeast, including the ubiquitin-like protein Atg8, which is required for the formation of autophagosomal membranes. F. oxysporum Foatg8Δ mutants were generated in a strain harboring H1-cherry fluorescent protein (ChFP)-labeled nuclei to facilitate analysis of nuclear dynamics. The Foatg8Δ mutants did not show MDC-positive staining in contrast to the wild type and the FoATG8-complemented (cFoATG8) strain, suggesting that FoAtg8 is required for autophagy in F. oxysporum. The Foatg8Δ strains displayed reduced rates of hyphal growth, conidiation, and fusion, and were significantly attenuated in virulence on tomato plants and in the nonvertebrate animal host Galleria mellonella. In contrast to wild-type hyphae, which are almost exclusively composed of uninucleated hyphal compartments, the hyphae of the Foatg8Δ mutants contained a significant fraction of hyphal compartments with 2 or more nuclei. The increase in the number of nuclei per hyphal compartment was particularly evident after hyphal fusion events. Time-lapse microscopy analyses revealed abnormal mitotic patterns during vegetative growth in the Foatg8Δ mutants. Our results suggest that autophagy mediates nuclear degradation after hyphal fusion and has a general function in the control of nuclear distribution in F. oxysporum.

  8. Identification of an Endophytic Antifungal Bacterial Strain Isolated from the Rubber Tree and Its Application in the Biological Control of Banana Fusarium Wilt.

    PubMed

    Tan, Deguan; Fu, Lili; Han, Bingyin; Sun, Xuepiao; Zheng, Peng; Zhang, Jiaming

    2015-01-01

    Banana Fusarium wilt (also known as Panama disease) is one of the most disastrous plant diseases. Effective control methods are still under exploring. The endophytic bacterial strain ITBB B5-1 was isolated from the rubber tree, and identified as Serratia marcescens by morphological, biochemical, and phylogenetic analyses. This strain exhibited a high potential for biological control against the banana Fusarium disease. Visual agar plate assay showed that ITBB B5-1 restricted the mycelial growth of the pathogenic fungus Fusarium oxysporum f. sp. cubense race 4 (FOC4). Microscopic observation revealed that the cell wall of the FOC4 mycelium close to the co-cultured bacterium was partially decomposed, and the conidial formation was prohibited. The inhibition ratio of the culture fluid of ITBB B5-1 against the pathogenic fungus was 95.4% as estimated by tip culture assay. Chitinase and glucanase activity was detected in the culture fluid, and the highest activity was obtained at Day 2 and Day 3 of incubation for chitinase and glucanase, respectively. The filtrated cell-free culture fluid degraded the cell wall of FOC4 mycelium. These results indicated that chitinase and glucanase were involved in the antifungal mechanism of ITBB B5-1. The potted banana plants that were inoculated with ITBB B5-1 before infection with FOC4 showed 78.7% reduction in the disease severity index in the green house experiments. In the field trials, ITBB B5-1 showed a control effect of approximately 70.0% against the disease. Therefore, the endophytic bacterial strain ITBB B5-1 could be applied in the biological control of banana Fusarium wilt.

  9. Identification of an Endophytic Antifungal Bacterial Strain Isolated from the Rubber Tree and Its Application in the Biological Control of Banana Fusarium Wilt

    PubMed Central

    Sun, Xuepiao; Zheng, Peng; Zhang, Jiaming

    2015-01-01

    Banana Fusarium wilt (also known as Panama disease) is one of the most disastrous plant diseases. Effective control methods are still under exploring. The endophytic bacterial strain ITBB B5-1 was isolated from the rubber tree, and identified as Serratia marcescens by morphological, biochemical, and phylogenetic analyses. This strain exhibited a high potential for biological control against the banana Fusarium disease. Visual agar plate assay showed that ITBB B5-1 restricted the mycelial growth of the pathogenic fungus Fusarium oxysporum f. sp. cubense race 4 (FOC4). Microscopic observation revealed that the cell wall of the FOC4 mycelium close to the co-cultured bacterium was partially decomposed, and the conidial formation was prohibited. The inhibition ratio of the culture fluid of ITBB B5-1 against the pathogenic fungus was 95.4% as estimated by tip culture assay. Chitinase and glucanase activity was detected in the culture fluid, and the highest activity was obtained at Day 2 and Day 3 of incubation for chitinase and glucanase, respectively. The filtrated cell-free culture fluid degraded the cell wall of FOC4 mycelium. These results indicated that chitinase and glucanase were involved in the antifungal mechanism of ITBB B5-1. The potted banana plants that were inoculated with ITBB B5-1 before infection with FOC4 showed 78.7% reduction in the disease severity index in the green house experiments. In the field trials, ITBB B5-1 showed a control effect of approximately 70.0% against the disease. Therefore, the endophytic bacterial strain ITBB B5-1 could be applied in the biological control of banana Fusarium wilt. PMID:26133557

  10. Crude extract of Fusarium oxysporum induces apoptosis and structural alterations in the skin of healthy rats.

    PubMed

    de Paulo, Luis F; Coelho, Ana C; Svidzinski, Terezinha I E; Sato, Francielle; Rohling, Jurandir H; Natali, Maria Raquel M; Baesso, Mauro L; Hernandes, Luzmarina

    2013-09-01

    We evaluate the biological and physicochemical effects of a Fusarium oxysporum crude extract (CE) on the skin of healthy rats. The CE is topically applied and subsequently the skin is collected after 3, 6, 12, and 24 h. The samples are analyzed by Fourier transform infrared photoacoustic spectroscopy (FTIR-PAS) and histomorphometric analysis. Terminal dUTP nick end labeling (TUNEL assay) is performed to detect both the cells in apoptosis and proliferation. There is a thickening of the epidermis after 6, 12, and 24 h and dermis after 12 and 24 h of CE application. A reduction of the dermis thickness is observed at 3 and 6 h. The treated skin shows higher labeling intensity by TUNEL at 3 h, while a higher intensity by proliferating cell nuclear antigen occurs at 3 and 12 h. FTIR-PAS data support the histology observations showing an increase in the absorption peaks in the dermis after the application of the CE. F. oxysporum CE permeated through the epidermis and the dermis, reaching the subcutaneous tissue, inducing cell apoptosis, and causing physicochemical changes in the organic molecules located in the dermis. This is the first known study associating histopathological and physical chemistry changes on healthy skin after the application of F. oxysporum CE.

  11. Heterologous expression of transaldolase gene Tal from Saccharomyces cerevisiae in Fusarium oxysporum for enhanced bioethanol production.

    PubMed

    Fan, Jin-Xia; Yang, Xiao-Xue; Song, Jin-Zhu; Huang, Xiao-Mei; Cheng, Zhong-Xiang; Yao, Lin; Juba, Olivia S; Liang, Qing; Yang, Qian; Odeph, Margaret; Sun, Yan; Wang, Yun

    2011-08-01

    The filamentous fungus Fusarium oxysporum is known for its ability to ferment xylose-producing ethanol. However, efficiency of xylose utilization and ethanol yield was low. In this study, the transaldolase gene from Saccharomyces cerevisiae has been successfully expressed in F. oxysporum by an Agrobacterium tumefaciens-mediated transformation method. The enzymatic activity of the recombinant fungus (cs28pCAM-Sctal4) was 0.195 times higher than that of the wild-type strain (cs28). The recombinant strain also exhibited a 28.83% increase in ethanol yield on xylose media compared to the parental strain. Enhanced ethanol production and a reduction in the biomass were observed during xylose fermentation. Ethanol yield from rice straw by simultaneous saccharification and fermentation with cs28pCAM-Sctal4 was 0.25 g g⁻¹ of rice straw. The transgenic strain of F. oxysporum cs28pCAM-Sctal4 might therefore have potential applications in industrial bioenergy production.

  12. Exploiting the inter-strain divergence of Fusarium oxysporum for microbial bioprocessing of lignocellulose to bioethanol.

    PubMed

    Ali, Shahin S; Khan, Mojibur; Fagan, Brian; Mullins, Ewen; Doohan, Fiona M

    2012-03-15

    Microbial bioprocessing of lignocellulose to bioethanol still poses challenges in terms of substrate catabolism. A targeted evolution-based study was undertaken to determine if inter-strain microbial variability could be exploited for bioprocessing of lignocellulose to bioethanol. The microorganism studied was Fusarium oxysporum because of its capacity to both saccharify and ferment lignocellulose. Strains of F. oxysporum were isolated and assessed for their genetic variability. Using optimised solid-state straw culture conditions, experiments were conducted that compared fungal strains in terms of their growth, enzyme activities (cellulases, xylanase and alcohol dehydrogenase) and yield of bioethanol and the undesirable by-products acetic acid and xylitol. Significant inter-strain divergence was recorded in regards to the capacity of studied F. oxysporum strains to produce alcohol from untreated straw. No correlation was observed between bioethanol synthesis and either the biomass production or microbial enzyme activity. A strong correlation was observed between both acetic acid and xylitol production and bioethanol yield. The level of diversity recorded in the alcohol production capacity among closely-related microorganism means that a targeted screening of populations of selected microbial species could greatly improve bioprocessing yields, in terms of providing both new host strains and candidate genes for the bioethanol industry.

  13. First Report of Potato Stem-End Rot Caused by Fusarium oxysporum in Korea.

    PubMed

    Aktaruzzaman, Md; Xu, Sheng-Jun; Kim, Joon-Young; Woo, Jae-Hyoun; Hahm, Young-Il; Kim, Byung-Sup

    2014-06-01

    In this study, we identified the causative agent of stem-end rot in potatoes that were grown in Gangwon alpine areas of Korea in 2013. The disease symptoms included appearance of slightly sunken circular lesion with corky rot on the potato surface at the stem-end portion. The fungal species isolated from the infected potatoes were grown on potato dextrose agar and produced white aerial mycelia with dark violet pigments. The conidiophores were branched and monophialidic. The microconidia had ellipsoidal to cylindrical shapes and ranged from 2.6~11.4 × 1.9~3.5 µm in size. The macroconidia ranged from 12.7~24.7 × 2.7~3.6 µm in size and had slightly curved or fusiform shape with 2 to 5 septate. Chlamydospores ranged from 6.1~8.1 × 5.7~8.3 µm in size and were present singly or in pairs. The causal agent of potato stem-end rot was identified as Fusarium oxysporum by morphological characterization and by sequencing the internal transcribed spacer (ITS1 and ITS4) regions of rRNA. Artificial inoculation of the pathogen resulted in development of disease symptoms and the re-isolated pathogen showed characteristics of F. oxysporum. To the best of our knowledge, this is the first study to report that potato stem-end rot is caused by F. oxysporum in Korea.

  14. Fungitoxic phenols from carnation (Dianthus caryophyllus) effective against Fusarium oxysporum f. sp. dianthi.

    PubMed

    Curir, Paolo; Dolci, Marcello; Dolci, Paola; Lanzotti, Virginia; De Cooman, Luc

    2003-01-01

    The phenol compositions of two cultivars of carnation (Dianthus caryophyllus) namely "Gloriana" and "Roland", which are partially and highly resistant, respectively, to Fusarium oxysporum f. sp. dianthi have been investigated with the aim of determining if endogenous phenols could have an anti-fungal effect against the pathogen. Analyses were performed on healthy and F. oxysporum-inoculated in vitro tissues, and on in vivo plants. Two benzoic acid derivatives, protocatechuic acid (3,4-dihydroxybenzoic acid) and vanillic acid (4-hydroxy-3-methoxybenzoic acid), were found within healthy and inoculated tissues of both cultivars, together with the flavonol glycoside peltatoside (3-[6-O-(alpha-L-arabinopyranosyl)-beta-D-glucopyranosyl] quercetin). These molecules proved to be only slightly inhibitory towards the pathogen. 2,6-Dimethoxybenzoic acid was detected in small amounts only in the inoculated cultivar "Gloriana", while the highly resistant cultivar "Roland" showed the presence of the flavone datiscetin (3,5,7,2'-tetrahydroxyflavone). The latter compound exhibited an appreciable fungitoxic activity towards F. oxysporum f. sp. dianthi.

  15. Nuclear dynamics during germination, conidiation, and hyphal fusion of Fusarium oxysporum.

    PubMed

    Ruiz-Roldán, M Carmen; Köhli, Michael; Roncero, M Isabel G; Philippsen, Peter; Di Pietro, Antonio; Espeso, Eduardo A

    2010-08-01

    In many fungal pathogens, infection is initiated by conidial germination. Subsequent stages involve germ tube elongation, conidiation, and vegetative hyphal fusion (anastomosis). Here, we used live-cell fluorescence to study the dynamics of green fluorescent protein (GFP)- and cherry fluorescent protein (ChFP)-labeled nuclei in the plant pathogen Fusarium oxysporum. Hyphae of F. oxysporum have uninucleated cells and exhibit an acropetal nuclear pedigree, where only the nucleus in the apical compartment is mitotically active. In contrast, conidiation follows a basopetal pattern, whereby mononucleated microconidia are generated by repeated mitotic cycles of the subapical nucleus in the phialide, followed by septation and cell abscission. Vegetative hyphal fusion is preceded by directed growth of the fusion hypha toward the receptor hypha and followed by a series of postfusion nuclear events, including mitosis of the apical nucleus of the fusion hypha, migration of a daughter nucleus into the receptor hypha, and degradation of the resident nucleus. These previously unreported patterns of nuclear dynamics in F. oxysporum could be intimately related to its pathogenic lifestyle.

  16. [Keratomycosis due to Fusarium oxysporum treated with the combination povidone iodine eye drops and oral fluconazole].

    PubMed

    Diongue, K; Sow, A S; Nguer, M; Seck, M C; Ndiaye, M; Badiane, A S; Ndiaye, J M; Ndoye, N W; Diallo, M A; Diop, A; Ndiaye, Y D; Dieye, B; Déme, A; Ndiaye, I M; Ndir, O; Ndiaye, D

    2015-12-01

    In developing countries where systemic antifungal are often unavailable, treatment of filamentous fungi infection as Fusarium is sometimes very difficult to treat. We report the case of a keratomycosis due to Fusarium oxysporum treated by povidone iodine eye drops and oral fluconazole. The diagnosis of abscess in the cornea was retained after ophthalmological examination for a 28-year-old man with no previous ophthalmological disease, addressed to the Ophthalmological clinic at the University Hospital Le Dantec in Dakar for a left painful red eye with decreased visual acuity lasting for 15 days. The patient did not receive any foreign body into the eye. Samples by corneal scraping were made for microbiological analysis and the patient was hospitalized and treated with a reinforced eye drops based treatment (ceftriaxone+gentamicin). The mycological diagnosis revealed the presence of a mold: F. oxysporum, which motivated the replacement of the initial treatment by eye drops containing iodized povidone solution at 1% because of the amphotericin B unavailability. Due to the threat of visual loss, oral fluconazole was added to the local treatment with eye drops povidone iodine. The outcome was favorable with a healing abscess and visual acuity amounted to 1/200th. Furthermore, we noted sequels such as pannus and pillowcase. The vulgarization of efficient topical antifungal in developing countries would be necessary to optimize fungal infection treatment.

  17. Divergent Expression Patterns in Two Vernicia Species Revealed the Potential Role of the Hub Gene VmAP2/ERF036 in Resistance to Fusarium oxysporum in Vernicia montana

    PubMed Central

    Zhang, Qiyan; Gao, Ming; Wu, Liwen; Wang, Yangdong; Chen, Yicun

    2016-01-01

    Tung oil tree (Vernicia fordii) is a promising industrial oil crop; however, this tree is highly susceptible to Fusarium wilt disease. Conversely, Vernicia montana is resistant to the pathogen. The APETALA2/ethylene-responsive element binding factor (AP2/ERF) transcription factor superfamily has been reported to play a significant role in resistance to Fusarium oxysporum. In this study, comprehensive analysis identified 75 and 81 putative Vf/VmAP2/ERF transcription factor-encoding genes in V. fordii and V. montana, respectively, which were divided into AP2, ERF, related to ABI3 and VP1 (RAV) and Soloist families. After F. oxysporum infection, a majority of AP2/ERF superfamily genes showed strong patterns of repression in both V. fordii and V. montana. We then identified 53 pairs of one-to-one orthologs in V. fordii and V. montana, with most pairs of orthologous genes exhibiting similar expression in response to the pathogen. Further investigation of Vf/VmAP2/ERF gene expression in plant tissues indicated that the pairs of genes with different expression patterns in response to F. oxysporum tended to exhibit different tissue profiles in the two species. In addition, VmAP2/ERF036, showing the strongest interactions with 666 genes, was identified as a core hub gene mediating resistance. Moreover, qRT-PCR results indicated VmAP2/ERF036 showed repressed expression while its orthologous gene VfAP2/ERF036 had the opposite expression pattern during pathogen infection. Overall, comparative analysis of the Vf/VmAP2/ERF superfamily and indication of a potential hub resistance gene in resistant and susceptible Vernicia species provides valuable information for understanding the molecular basis and selection of essential functional genes for V. fordii genetic engineering to control Fusarium wilt disease. PMID:27916924

  18. Chitosan and oligochitosan enhance ginger (Zingiber officinale Roscoe) resistance to rhizome rot caused by Fusarium oxysporum in storage

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The ability of chitosan and oligochitosan to enhance the resistance of ginger (Zingiber officinale) to rhizome rot, caused by Fusarium oxysporum, in storage was investigated. Both chitosan and oligochitosan at 1 and 5 g/L significantly inhibited rhizome rot, relative to the untreated control, with...

  19. The FonSIX6 gene acts as an avirulence effector in the Fusarium oxysporum f. sp. niveum - watermelon pathosystem

    Technology Transfer Automated Retrieval System (TEKTRAN)

    There are three generally accepted Fusarium oxysporum f. sp. niveum (Fon) physiological races (0, 1, and 2) that infect watermelon (Citrullus lanatus). Among them, race 1 is the most prevalent on watermelon throughout the world, while race 2 is highly aggressive to all commercial watermelon cultivar...

  20. Characterization of small RNAs and their targets of Fusarium oxysporum infected and non-infected cotton seedlings

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In this study, we characterized small RNA (sRNA) or microRNA (miRNA) profiles during Fusarium oxysporum f.sp. vasinfectum (FOV) race 3 pathogenesis in cotton (Gossypium hirsutum L.) seedlings. sRNAs or miRNA are known to play important roles in gene expression, including stress responses, influencin...

  1. FUBT, a putative MFS transporter, promotes secretion of fusaric acid in the cotton pathogen Fusarium oxysporum f.sp. vasinfectum

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fusaric acid (FA), a phytotoxic polyketide produced by Fusarium oxysporum f. sp. vasinfectum (FOV), has been shown to be associated with disease symptoms on cotton. A gene located upstream of the polyketide synthase gene responsible for the biosynthesis of FA is predicted to encode a member of the ...

  2. A Two-locus DNA Sequence Database for Typing Plant and Human Pathogens Within the Fusarium oxysporum Species Complex

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We constructed a two-locus database, comprising partial translation elongation factor (EF-1alpha) gene sequences and nearly full-length sequences of the nuclear ribosomal intergenic spacer region (IGS rDNA) for 850 isolates spanning the phylogenetic breadth of the Fusarium oxysporum species complex ...

  3. Validation of molecular markers for resistance among Pakistani chickpea germplasm to races of Fusarium oxysporum f. sp. ciceris

    Technology Transfer Automated Retrieval System (TEKTRAN)

    DNA markers in chickpea have been identified against different races of Fusarium oxysporum f.sp. ciceris (Foc), but validation of these markers is essential for their effective use in resistant breeding. In view of this, different simple sequence repeats (SSR) markers were analysed in Pakistani ger...

  4. Constitutive homologous expression of phosphoglucomutase and transaldolase increases the metabolic flux of Fusarium oxysporum

    PubMed Central

    2014-01-01

    Background Fusarium oxysporum is among the few filamentous fungi that have been reported of being able to directly ferment biomass to ethanol in a consolidated bioprocess. Understanding its metabolic pathways and their limitations can provide some insights on the genetic modifications required to enhance its growth and subsequent fermentation capability. In this study, we investigated the hypothesis reported previously that phosphoglucomutase and transaldolase are metabolic bottlenecks in the glycolysis and pentose phosphate pathway of the F. oxysporum metabolism. Results Both enzymes were homologously overexpressed in F. oxysporum F3 using the gpdA promoter of Aspergillus nidulans for constitutive expression. Transformants were screened for their phosphoglucomutase and transaldolase genes expression levels with northern blot. The selected transformant exhibited high mRNA levels for both genes, as well as higher specific activities of the corresponding enzymes, compared to the wild type. It also displayed more than 20 and 15% higher specific growth rate upon aerobic growth on glucose and xylose, respectively, as carbon sources and 30% higher biomass to xylose yield. The determination of the relative intracellular amino and non-amino organic acid concentrations at the end of growth on glucose revealed higher abundance of most determined metabolites between 1.5- and 3-times in the recombinant strain compared to the wild type. Lower abundance of the determined metabolites of the Krebs cycle and an 68-fold more glutamate were observed at the end of the cultivation, when xylose was used as carbon source. Conclusions Homologous overexpression of phosphoglucomutase and transaldolase in F. oxysporum was shown to enhance the growth characteristics of the strain in both xylose and glucose in aerobic conditions. The intracellular metabolites profile indicated how the changes in the metabolome could have resulted in the observed growth characteristics. PMID:24649884

  5. Photodynamic treatment with phenothiazinium photosensitizers kills both ungerminated and germinated microconidia of the pathogenic fungi Fusarium oxysporum, Fusarium moniliforme and Fusarium solani.

    PubMed

    de Menezes, Henrique Dantas; Tonani, Ludmilla; Bachmann, Luciano; Wainwright, Mark; Braga, Gilberto Úbida Leite; von Zeska Kress, Marcia Regina

    2016-11-01

    The search for alternatives to control microorganisms is necessary both in clinical and agricultural areas. Antimicrobial photodynamic treatment (APDT) is a promising light-based approach that can be used to control both human and plant pathogenic fungi. In the present study, we evaluated the effects of photodynamic treatment with red light and four phenothiazinium photosensitizers (PS): methylene blue (MB), toluidine blue O (TBO), new methylene blue N (NMBN) and the phenothiazinium derivative S137 on ungerminated and germinated microconidia of Fusarium oxysporum, F. moniliforme, and F. solani. APDT with each PS killed efficiently both the quiescent ungerminated microconidia and metabolically active germinated microconidia of the three Fusarium species. Washing away the unbound PS from the microconidia (both ungerminated and germinated) before red light exposure reduced but did not prevent the effect of APDT. Subcelullar localization of PS in ungerminated and germinated microconidia and the effects of photodynamic treatment on cell membranes were also evaluated in the three Fusarium species. APDT with MB, TBO, NMBN or S137 increased the membrane permeability in microconidia and APDT with NMBN or S137 increased the lipids peroxidation in microconidia of the three Fusarium species. These findings expand the understanding of photodynamic inactivation of filamentous fungi with phenothiazinium PS.

  6. A nonpathogenic Fusarium oxysporum strain enhances phytoextraction of heavy metals by the hyperaccumulator Sedum alfredii Hance.

    PubMed

    Zhang, Xincheng; Lin, Li; Chen, Mingyue; Zhu, Zhiqiang; Yang, Weidong; Chen, Bao; Yang, Xiaoe; An, Qianli

    2012-08-30

    Low biomass and shallow root systems limit the application of heavy metal phytoextraction by hyperaccumulators. Plant growth-promoting microbes may enhance hyperaccumulators'phytoextraction. A heavy metal-resistant fungus belonged to the Fusarium oxysporum complex was isolated from the Zn/Cd co-hyperaccumulator Sedum alfredii Hance grown in a Pb/Zn mined area. This Fusarium fungus was not pathogenic to plants but promoted host growth. Hydroponic experiments showed that 500 μM Zn(2+) or 50 μM Cd(2+) combined with the fungus increased root length, branches, and surface areas, enhanced nutrient uptake and chlorophyll synthesis, leading to more vigorous hyperaccumulators with greater root systems. Soil experiments showed that the fungus increased root and shoot biomass and S. alfredii-mediated heavy metal availabilities, uptake, translocation or concentrations, and thus increased phytoextraction of Zn (144% and 44%), Cd (139% and 55%), Pb (84% and 85%) and Cu (63% and 77%) from the original Pb/Zn mined soil and a multi-metal contaminated paddy soil. Together, the nonpathogenic Fusarium fungus was able to increase S. alfredii root systems and function, metal availability and accumulation, plant biomass, and thus phytoextraction efficiency. This study showed a great application potential for culturable indigenous fungi other than symbiotic mycorrhizas to enhance the phytoextraction by hyperaccumulators.

  7. Trichoderma asperellum strain T34 controls Fusarium wilt disease in tomato plants in soilless culture through competition for iron.

    PubMed

    Segarra, Guillem; Casanova, Eva; Avilés, Manuel; Trillas, Isabel

    2010-01-01

    Trichoderma asperellum strain T34 has been reported to control the disease caused by Fusarium oxysporum f.sp. lycopersici (Fol) on tomato plants. To study the importance of iron concentration in the growth media for the activity and competitiveness of T34 and the pathogen, we tested four iron concentrations in the nutrient solution [1, 10, 100, and 1000 microM provided as EDTA/Fe(III)] in a biological control experiment with T34 and Fol in tomato plants. The reduction of the Fusarium-infected shoot by T34 was only significant at 10 microM Fe. We hypothesized that Fe competition is one of the key factors in the biocontrol activity exerted by T34 against Fol, as an increase in Fe concentration over 10 microM would lead to the suppression of T34 siderophore synthesis and thus inhibition of Fe competition with Fol. T34 significantly reduced the populations of Fol at all the doses of Fe assayed. In contrast, Fol enhanced the populations of T34 at 1 and 10 microM Fe. Nevertheless, several plant physiological parameters like net CO(2) assimilation (A), stomatal conductance (g(s)), relative quantum efficiency of PSII (Phi(PSII)), and efficiency of excitation energy capture by open PSII reactive centers (Fv'/Fm') demonstrated the protection against Fol damage by treatment with T34 at 100 microM Fe. The first physiological parameter affected by the disease progression was g(s). Plant dry weight was decreased by Fe toxicity at 100 and 1,000 microM. T34-treated plants had significantly greater heights and dry weights than control plants at 1,000 microM Fe, even though T34 did not reduce the Fe content in leaves or stems. Furthermore, T34 enhanced plant height even at the optimal Fe concentration (10 microM) compared to control plants. In conclusion, T. asperellum strain T34 protected tomato plants from both biotic (Fusarium wilt disease) and abiotic stress [Fe(III) toxic effects].

  8. Adaptation of Fusarium oxysporum and Fusarium dimerum to the specific aquatic environment provided by the water systems of hospitals.

    PubMed

    Steinberg, Christian; Laurent, Julie; Edel-Hermann, Véronique; Barbezant, Marie; Sixt, Nathalie; Dalle, Frédéric; Aho, Serge; Bonnin, Alain; Hartemann, Philippe; Sautour, Marc

    2015-06-01

    Members of the Fusarium group were recently detected in water distribution systems of several hospitals in the world. An epidemiological investigation was conducted over 2 years in hospital buildings in Dijon and Nancy (France) and in non-hospital buildings in Dijon. The fungi were detected only within the water distribution systems of the hospital buildings and also, but at very low concentrations, in the urban water network of Nancy. All fungi were identified as Fusarium oxysporum species complex (FOSC) and Fusarium dimerum species complex (FDSC) by sequencing part of the translation elongation factor 1-alpha (TEF-1α) gene. Very low diversity was found in each complex, suggesting the existence of a clonal population for each. Density and heterogeneous distributions according to buildings and variability over time were explained by episodic detachments of parts of the colony from biofilms in the pipes. Isolates of these waterborne populations as well as soilborne isolates were tested for their ability to grow in liquid medium in the presence of increasing concentrations of sodium hypochlorite, copper sulfate, anti-corrosion pipe coating, at various temperatures (4°-42 °C) and on agar medium with amphotericin B and voriconazole. The waterborne isolates tolerated higher sodium hypochlorite and copper sulfate concentrations and temperatures than did soilborne isolates but did not show any specific resistance to fungicides. In addition, unlike waterborne isolates, soilborne isolates did not survive in water even supplemented with glucose, while the former developed in the soil as well as soilborne isolates. We concluded the existence of homogeneous populations of FOSC and FDSC common to all contaminated hospital sites. These populations are present at very low densities in natural waters, making them difficult to detect, but they are adapted to the specific conditions offered by the complex water systems of public hospitals in Dijon and Nancy and probably other

  9. Molecular evidence for the involvement of a polygalacturonase-inhibiting protein, GhPGIP1, in enhanced resistance to Verticillium and Fusarium wilts in cotton

    PubMed Central

    Liu, Nana; Zhang, Xueyan; Sun, Yun; Wang, Ping; Li, Xiancai; Pei, Yakun; Li, Fuguang; Hou, Yuxia

    2017-01-01

    Polygalacturonase-inhibiting protein (PGIP), belonging to a group of plant defence proteins, specifically inhibits endopolygalacturonases secreted by pathogens. Herein, we showed that purified GhPGIP1 is a functional inhibitor of Verticillium dahliae and Fusarium oxysporum f. sp. vasinfectum, the two fungal pathogens causing cotton wilt. Transcription of GhPGIP1 was increased in cotton upon infection, wounding, and treatment with defence hormone and H2O2. Resistance by GhPGIP1 was examined by its virus-induced gene silencing in cotton and overexpression in Arabidopsis. GhPGIP1-silenced cotton was highly susceptible to the infections. GhPGIP1 overexpression in transgenic Arabidopsis conferred resistance to the infection, accompanied by enhanced expression of pathogenesis-related proteins (PRs), isochorismate synthase 1 (ICS1), enhanced disease susceptibility 1 (EDS1), and phytoalexin-deficient 4 (PAD4) genes. Transmission electron microscopy revealed cell wall alteration and cell disintegration in plants inoculated with polygalacturonase (PGs), implying its role in damaging the cell wall. Docking studies showed that GhPGIP1 interacted strongly with C-terminal of V. dahliae PG1 (VdPG1) beyond the active site but weakly interacted with C-terminal of F. oxysporum f. sp. vasinfectum (FovPG1). These findings will contribute towards the understanding of the roles of PGIPs and in screening potential combat proteins with novel recognition specificities against evolving pathogenic factors for countering pathogen invasion. PMID:28079053

  10. Factors affecting ferulic acid release from Brewer's spent grain by Fusarium oxysporum enzymatic system.

    PubMed

    Xiros, Charilaos; Moukouli, Maria; Topakas, Evangelos; Christakopoulos, Paul

    2009-12-01

    In this study, the factors affecting ferulic acid (FA) release from Brewer's spent grain (BSG), by the crude enzyme extract of Fusarium oxysporum were investigated. In order to evaluate the importance of the multienzyme preparation on FA release, the synergistic action of feruloyl esterase (FAE, FoFaeC-12213) and xylanase (Trichoderma longibrachiatum M3) monoenzymes was studied. More than double amount of FA release (1 mg g(-1) dry BSG) was observed during hydrolytic reactions by the crude enzyme extract compared to hydrolysis by the monoenzymes (0.37 mg g(-1) dry BSG). The protease content of the crude extract and the inhibitory effect of FA as an end-product were also evaluated concerning their effect on FA release. The protease treatment prior to hydrolysis by monoenzymes enhanced FA release about 100%, while, for the first time in literature, FA in solution found to have a significant inhibitory effect on FAE activity and on total FA release.

  11. The fine structure of mature and germinating chlamydospores of Fusarium oxysporum.

    PubMed

    Stevenson, I L; Becker, S A

    1979-07-01

    A number of features not described previously has been revealed in electron-microscope studies of mature chlamydospores of Fusarium oxysporum. On the maturation of one isolate, many spores formed a thick matrix-like layer containing electron-dense particles on the exterior surface of the spore wall. In thin sections of mature chlamydospores of the same isolate, cisternae of endoplasmic reticulum surrounding, and in close apposition to, the limiting boundary of the lipid bodies were revealed. The germination of chlamydospores was accompanied by (a) the rapid appearance of polysaccharide deposits and changes in the configuration of some subcellular organelles, (b) the formation of a new wall layer between the plasma membrane and the innermost layer of the spore wall, (c) the rupture of the outermost coats of the spore wall, and (d) the emergence of the germ tube as an extension of the new wall layer.

  12. Glucose-induced activation of the plasma membrane H(+)-ATPase in Fusarium oxysporum.

    PubMed

    Brandão, R L; Castro, I M; Passos, J B; Nicoli, J R; Thevelein, J M

    1992-08-01

    Addition of glucose and other sugars to derepressed cells of the fungus Fusarium oxysporum var. lini triggered activation of the plasma membrane H(+)-ATPase within 5 min. Glucose was the best activator while galactose and lactose had a lesser effect. The activation was not prevented by previous addition of cycloheximide and it was fully reversible when the glucose was removed. The activation process in vivo also caused changes in the kinetic properties of the enzyme. The non-activated enzyme had an apparent Km of about 3.2 mM for ATP whereas the activated enzyme showed an apparent Km of 0.26 mM. In addition, the pH optimum of the H(+)-ATPase changed from 6.0 to 7.5 upon activation. The activated enzyme was more sensitive to inhibition by vanadate. When F. oxysporum was cultivated in media containing glucose as the major carbon source, enhanced H(+)-ATPase activity was largely confined to the period corresponding to the lag phase, i.e. just before the start of acidification of the medium. This suggests that the activation process might play a role in the onset of extracellular acidification. Addition of glucose to F. oxysporum var. lini cells also caused an increase in the cAMP level. No reliable increase could be demonstrated for the other sugars. Addition of proton ionophores such as DNP and CCCP at pH 5.0 caused both a large increase in the intracellular level of cAMP and in the activity of the plasma membrane H(+)-ATPase. Inhibition of the DNP-induced increase in the cAMP level by acridine orange also resulted in inhibition of the activation of plasma membrane H(+)-ATPase.(ABSTRACT TRUNCATED AT 250 WORDS)

  13. Miltefosine is effective against Candida albicans and Fusarium oxysporum nail biofilms in vitro.

    PubMed

    Machado Vila, Taissa Vieira; Sousa Quintanilha, Natália; Rozental, Sonia

    2015-11-01

    Onychomycosis is a fungal nail infection that represents ∼50 % of all nail disease cases worldwide. Clinical treatment with standard antifungals frequently requires long-term systemic therapy to avoid chronic disease. Onychomycosis caused by non-dermatophyte moulds, such as Fusarium spp., and yeasts, such as Candida spp., is particularly difficult to treat, possibly due to the formation of drug-resistant fungal biofilms on affected areas. Here, we show that the alkylphospholipid miltefosine, used clinically against leishmaniasis and cutaneous breast metastases, has potent activity against biofilms of Fusarium oxysporum and Candida albicans formed on human nail fragments in vitro. Miltefosine activity was compared with that of commercially available antifungals in the treatment of biofilms at two distinct developmental phases: formation and maturation (pre-formed biofilms). Drug activity towards biofilms formed on nail fragments and on microplate surfaces (microdilution assays) was evaluated using XTT [2,3-bis(2-methoxy-4-nitro-5-sulfophenyl)-2H-tetrazolium-5-carboxanilide] assays, and drug effects on fingernail biofilms were analysed by scanning electron microscopy (SEM). For F. oxysporum, miltefosine at 8 μg ml- 1 inhibited biofilm formation by 93%, whilst 256 μg ml- 1 reduced the metabolic activity of pre-formed nail biofilms by 93%. Treatment with miltefosine at 1000 μg ml- 1 inhibited biofilm formation by 89% and reduced the metabolic activity of pre-formed C. albicans biofilms by 99%. SEM analyses of biofilms formed on fingernail fragments showed a clear reduction in biofilm biomass after miltefosine treatment, in agreement with XTT results. Our results show that miltefosine has potential as a therapeutic agent against onychomycosis and should be considered for in vivo efficacy studies, especially in topical formulations for refractory disease treatment.

  14. Methyl Salicylate Level Increase in Flax after Fusarium oxysporum Infection Is Associated with Phenylpropanoid Pathway Activation

    PubMed Central

    Boba, Aleksandra; Kostyn, Kamil; Kostyn, Anna; Wojtasik, Wioleta; Dziadas, Mariusz; Preisner, Marta; Szopa, Jan; Kulma, Anna

    2017-01-01

    Flax (Linum usitatissimum) is a crop plant valued for its oil and fiber. Unfortunately, large losses in cultivation of this plant are caused by fungal infections, with Fusarium oxysporum being one of its most dangerous pathogens. Among the plant's defense strategies, changes in the expression of genes of the shikimate/phenylpropanoid/benzoate pathway and thus in phenolic contents occur. Among the benzoates, salicylic acid, and its methylated form methyl salicylate play an important role in regulating plants' response to stress conditions. Upon treatment of flax plants with the fungus we found that methyl salicylate content increased (4.8-fold of the control) and the expression profiles of the analyzed genes suggest that it is produced most likely from cinnamic acid, through the β-oxidative route. At the same time activation of some genes involved in lignin and flavonoid biosynthesis was observed. We suggest that increased methyl salicylate biosynthesis during flax response to F. oxysporum infection may be associated with phenylpropanoid pathway activation. PMID:28163709

  15. Homologous overexpression of xylanase in Fusarium oxysporum increases ethanol productivity during consolidated bioprocessing (CBP) of lignocellulosics.

    PubMed

    Anasontzis, George E; Zerva, Anastasia; Stathopoulou, Panagiota M; Haralampidis, Kosmas; Diallinas, George; Karagouni, Amalia D; Hatzinikolaou, Dimitris G

    2011-03-10

    In an effort to increase ethanol productivity during the consolidated bioprocessing (CBP) of lignocellulosics by Fusarium oxysporum, we attempted the constitutive homologous overexpression of one of the key process enzymes, namely an endo-xylanase. The endo-β-1,4-xylanase 2 gene was incorporated into the F. oxysporum genome under the regulation of the gpdA promoter of Aspergillus nidulans. The transformation was effected through Agrobacterium tumefaciens and resulted in 12 transformants, two of which were selected for further study due to their high extracellular xylanase activities under normally repressing conditions (glucose as sole carbon source). During natural induction conditions (growth on xylan) though, the extracellular enzyme levels of the transformants were only marginally higher (5-10%) compared to the wild type despite the significantly stronger xylanase 2 mRNA signals. SDS-PAGE verified enzyme assay results that there was no intracellular xylanase 2 accumulation in the transformants, suggesting the potential regulation in a post transcriptional or translational level. The fermentative performance of the transformants was evaluated and compared to that of the wild type in simple CBP systems using either corn cob or wheat bran as sole carbon sources. Both transformants produced approximately 60% more ethanol compared to the wild type on corn cob, while for wheat bran this picture was repeated for only one of them. This result is attributed to the high extracellular xylanase activities in the transformants' fermentation broths that were maintained 2-2.5-fold higher compared to the wild type.

  16. Molecular characterization of alkaline protease of Bacillus amyloliquefaciens SP1 involved in biocontrol of Fusarium oxysporum.

    PubMed

    Guleria, Shiwani; Walia, Abhishek; Chauhan, Anjali; Shirkot, C K

    2016-09-02

    An alkaline protease gene was amplified from genomic DNA of Bacillus amyloliquefaciens SP1 which was involved in effective biocontrol of Fusarium oxysporum. We investigated the antagonistic capacity of protease of B. amyloliquifaciens SP1, under in vitro conditions. The 5.62 fold purified enzyme with specific activity of 607.69U/mg reported 24.14% growth inhibition of F. oxysporum. However, no antagonistic activity was found after addition of protease inhibitor i.e. PMSF (15mM) to purified enzyme. An 1149bp nucleotide sequence of protease gene encoded 382 amino acids of 43kDa and calculated isoelectric point of 9.29. Analysis of deduced amino acid sequence revealed high homology (86%) with subtilisin E of Bacillus subtilis. The B. amyloliquefaciens SP1 protease gene was expressed in Escherichiax coli BL21. The expressed protease was secreted into culture medium by E. coli and exhibited optimum activity at pH8.0 and 60°C. The most reliable three dimensional structure of alkaline protease was determined using Phyre 2 server which was validated on the basis of Ramachandran plot and ERRAT value. The expression and structure prediction of the enzyme offers potential value for commercial application in agriculture and industry.

  17. Identification of Immunity Related Genes to Study the Physalis peruviana – Fusarium oxysporum Pathosystem

    PubMed Central

    Enciso-Rodríguez, Felix E.; González, Carolina; Rodríguez, Edwin A.; López, Camilo E.; Landsman, David; Barrero, Luz Stella; Mariño-Ramírez, Leonardo

    2013-01-01

    The Cape gooseberry (Physalisperuviana L) is an Andean exotic fruit with high nutritional value and appealing medicinal properties. However, its cultivation faces important phytosanitary problems mainly due to pathogens like Fusarium oxysporum, Cercosporaphysalidis and Alternaria spp. Here we used the Cape gooseberry foliar transcriptome to search for proteins that encode conserved domains related to plant immunity including: NBS (Nucleotide Binding Site), CC (Coiled-Coil), TIR (Toll/Interleukin-1 Receptor). We identified 74 immunity related gene candidates in P. peruviana which have the typical resistance gene (R-gene) architecture, 17 Receptor like kinase (RLKs) candidates related to PAMP-Triggered Immunity (PTI), eight (TIR-NBS-LRR, or TNL) and nine (CC–NBS-LRR, or CNL) candidates related to Effector-Triggered Immunity (ETI) genes among others. These candidate genes were categorized by molecular function (98%), biological process (85%) and cellular component (79%) using gene ontology. Some of the most interesting predicted roles were those associated with binding and transferase activity. We designed 94 primers pairs from the 74 immunity-related genes (IRGs) to amplify the corresponding genomic regions on six genotypes that included resistant and susceptible materials. From these, we selected 17 single band amplicons and sequenced them in 14 F. oxysporum resistant and susceptible genotypes. Sequence polymorphisms were analyzed through preliminary candidate gene association, which allowed the detection of one SNP at the PpIRG-63 marker revealing a nonsynonymous mutation in the predicted LRR domain suggesting functional roles for resistance. PMID:23844210

  18. Characterization and regulation of glycine transport in Fusarium oxysporum var. lini.

    PubMed

    Castro, I M; Lima, A A; Nascimento, A F; Ruas, M M; Nicoli, J R; Brandão, R L

    1996-08-01

    Glycine was transported in Fusarium oxysporum cells, grown on glycine as the sole source of carbon and nitrogen, by a facilitated diffusion transport system with a half-saturation constant (Ks) of 11 mM and a maximum velocity (Vmax) of 1.2 mM (g dry weight)-1 h-1 at pH 5.0 and 26 degrees C. Under conditions of nitrogen starvation, the same system was present together with a high-affinity one (Ks) of about 47 microM and Vmax of about 60 microM (g dry weight)-1 h-1). The low-affinity system was more specific than the high-affinity system. Cells grown on gelatine showed the same behavior. In cells grown on glucose-gelatine medium, the low-affinity system was poorly expressed even after carbon and nitrogen starvation. Moreover, addition of glucose to cells grown on glycine and resuspended in mineral medium caused an increase of the glycine transport probably due to a boost in protein synthesis. This stimulation did not affect the Ks of the low-affinity system. These results demonstrate that, as is the case for other eukaryotic systems, F. oxysporum glycine transport is under control of nitrogen sources but its regulation by carbon sources appears to be more complex.

  19. Identification of immunity related genes to study the Physalis peruviana--Fusarium oxysporum pathosystem.

    PubMed

    Enciso-Rodríguez, Felix E; González, Carolina; Rodríguez, Edwin A; López, Camilo E; Landsman, David; Barrero, Luz Stella; Mariño-Ramírez, Leonardo

    2013-01-01

    The Cape gooseberry (Physalisperuviana L) is an Andean exotic fruit with high nutritional value and appealing medicinal properties. However, its cultivation faces important phytosanitary problems mainly due to pathogens like Fusarium oxysporum, Cercosporaphysalidis and Alternaria spp. Here we used the Cape gooseberry foliar transcriptome to search for proteins that encode conserved domains related to plant immunity including: NBS (Nucleotide Binding Site), CC (Coiled-Coil), TIR (Toll/Interleukin-1 Receptor). We identified 74 immunity related gene candidates in P. peruviana which have the typical resistance gene (R-gene) architecture, 17 Receptor like kinase (RLKs) candidates related to PAMP-Triggered Immunity (PTI), eight (TIR-NBS-LRR, or TNL) and nine (CC-NBS-LRR, or CNL) candidates related to Effector-Triggered Immunity (ETI) genes among others. These candidate genes were categorized by molecular function (98%), biological process (85%) and cellular component (79%) using gene ontology. Some of the most interesting predicted roles were those associated with binding and transferase activity. We designed 94 primers pairs from the 74 immunity-related genes (IRGs) to amplify the corresponding genomic regions on six genotypes that included resistant and susceptible materials. From these, we selected 17 single band amplicons and sequenced them in 14 F. oxysporum resistant and susceptible genotypes. Sequence polymorphisms were analyzed through preliminary candidate gene association, which allowed the detection of one SNP at the PpIRG-63 marker revealing a nonsynonymous mutation in the predicted LRR domain suggesting functional roles for resistance.

  20. Metabolic Engineering of Fusarium oxysporum to Improve Its Ethanol-Producing Capability

    PubMed Central

    Anasontzis, George E.; Kourtoglou, Elisavet; Villas-Boâs, Silas G.; Hatzinikolaou, Dimitris G.; Christakopoulos, Paul

    2016-01-01

    Fusarium oxysporum is one of the few filamentous fungi capable of fermenting ethanol directly from plant cell wall biomass. It has the enzymatic toolbox necessary to break down biomass to its monosaccharides and, under anaerobic and microaerobic conditions, ferments them to ethanol. Although these traits could enable its use in consolidated processes and thus bypass some of the bottlenecks encountered in ethanol production from lignocellulosic material when Saccharomyces cerevisiae is used—namely its inability to degrade lignocellulose and to consume pentoses—two major disadvantages of F. oxysporum compared to the yeast—its low growth rate and low ethanol productivity—hinder the further development of this process. We had previously identified phosphoglucomutase and transaldolase, two major enzymes of glucose catabolism and the pentose phosphate pathway, as possible bottlenecks in the metabolism of the fungus and we had reported the effect of their constitutive production on the growth characteristics of the fungus. In this study, we investigated the effect of their constitutive production on ethanol productivity under anaerobic conditions. We report an increase in ethanol yield and a concomitant decrease in acetic acid production. Metabolomics analysis revealed that the genetic modifications applied did not simply accelerate the metabolic rate of the microorganism; they also affected the relative concentrations of the various metabolites suggesting an increased channeling toward the chorismate pathway, an activation of the γ-aminobutyric acid shunt, and an excess in NADPH regeneration. PMID:27199958

  1. Structure-Activity Relationship of α Mating Pheromone from the Fungal Pathogen Fusarium oxysporum.

    PubMed

    Vitale, Stefania; Partida-Hanon, Angélica; Serrano, Soraya; Martínez-Del-Pozo, Álvaro; Di Pietro, Antonio; Turrà, David; Bruix, Marta

    2017-03-03

    During sexual development ascomycete fungi produce two types of peptide pheromones termed a and α. The α pheromone from the budding yeast Saccharomyces cerevisiae, a 13-residue peptide that elicits cell cycle arrest and chemotropic growth, has served as paradigm for the interaction of small peptides with their cognate G protein-coupled receptors. However, no structural information is currently available for α pheromones from filamentous ascomycetes, which are significantly shorter and share almost no sequence similarity with the S. cerevisiae homolog. High resolution structure of synthetic α-pheromone from the plant pathogenic ascomycete Fusarium oxysporum revealed the presence of a central β-turn resembling that of its yeast counterpart. Disruption of the-fold by d-alanine substitution of the conserved central Gly(6)-Gln(7) residues or by random sequence scrambling demonstrated a crucial role for this structural determinant in chemoattractant activity. Unexpectedly, the growth inhibitory effect of F. oxysporum α-pheromone was independent of the cognate G protein-coupled receptors Ste2 and of the central β-turn but instead required two conserved Trp(1)-Cys(2) residues at the N terminus. These results indicate that, despite their reduced size, fungal α-pheromones contain discrete functional regions with a defined secondary structure that regulate diverse biological processes such as polarity reorientation and cell division.

  2. Metabolic Engineering of Fusarium oxysporum to Improve Its Ethanol-Producing Capability.

    PubMed

    Anasontzis, George E; Kourtoglou, Elisavet; Villas-Boâs, Silas G; Hatzinikolaou, Dimitris G; Christakopoulos, Paul

    2016-01-01

    Fusarium oxysporum is one of the few filamentous fungi capable of fermenting ethanol directly from plant cell wall biomass. It has the enzymatic toolbox necessary to break down biomass to its monosaccharides and, under anaerobic and microaerobic conditions, ferments them to ethanol. Although these traits could enable its use in consolidated processes and thus bypass some of the bottlenecks encountered in ethanol production from lignocellulosic material when Saccharomyces cerevisiae is used-namely its inability to degrade lignocellulose and to consume pentoses-two major disadvantages of F. oxysporum compared to the yeast-its low growth rate and low ethanol productivity-hinder the further development of this process. We had previously identified phosphoglucomutase and transaldolase, two major enzymes of glucose catabolism and the pentose phosphate pathway, as possible bottlenecks in the metabolism of the fungus and we had reported the effect of their constitutive production on the growth characteristics of the fungus. In this study, we investigated the effect of their constitutive production on ethanol productivity under anaerobic conditions. We report an increase in ethanol yield and a concomitant decrease in acetic acid production. Metabolomics analysis revealed that the genetic modifications applied did not simply accelerate the metabolic rate of the microorganism; they also affected the relative concentrations of the various metabolites suggesting an increased channeling toward the chorismate pathway, an activation of the γ-aminobutyric acid shunt, and an excess in NADPH regeneration.

  3. Bacillus amyloliquefaciens Q-426 as a potential biocontrol agent against Fusarium oxysporum f. sp. spinaciae.

    PubMed

    Zhao, Pengchao; Quan, Chunshan; Wang, Yingguo; Wang, Jianhua; Fan, Shengdi

    2014-05-01

    In recent years, Bacillus species have received considerable attention for the biological control of many fungal diseases. In this study, Bacillus amyloliquefaciens Q-426 was tested for its potential use against a variety of plant pathogens. Our screen for genes involved in the biosynthesis of antifungal agents revealed that the fen and bmy gene clusters are present in the Q-426 genome. Lipopeptides such as bacillomycin D, fengycin A, and fengycin B were purified from the bacterial culture broth and subsequently identified by ESI-mass spectrometry. The minimal inhibitory concentration of fengycin A against Fusarium oxysporum f. sp. spinaciae W.C. Snyder & H.N. Hansen O-27 was determined to be 31.25 μg ml(-1) . However, exposure of fungal cells to 50 μg ml(-1) of fengycin A did not allow permeation of fluorescein diacetate into the cytoplasm through the cell membrane. Moreover, leakage of intracellular inorganic cations, nucleic acid and protein were also not detected, indicating that the fungal cell membrane is not the primary target of action for fengycin A. Profound morphological changes were observed in the F. oxysporum strain and spore germination was completely inhibited, suggesting that 50 μg ml(-1) of fengycin A acts, at least, as a fungistatic agent.

  4. Nuclear dynamics and genetic rearrangement in heterokaryotic colonies of Fusarium oxysporum.

    PubMed

    Shahi, Shermineh; Beerens, Bas; Bosch, Martin; Linmans, Jasper; Rep, Martijn

    2016-06-01

    Recent studies have shown horizontal transfer of chromosomes to be a potential key contributor to genome plasticity in asexual fungal pathogens. However, the mechanisms behind horizontal chromosome transfer in eukaryotes are not well understood. Here we investigated the role of conidial anastomosis in heterokaryon formation between incompatible strains of Fusarium oxysporum and determined the importance of heterokaryons for horizontal chromosome transfer. Using live-cell imaging we demonstrate that conidial pairing of incompatible strains under carbon starvation can result in the formation of viable heterokaryotic hyphae in F. oxysporum. Nuclei of the parental lines presumably fuse at some stage as conidia with a single nucleus harboring both marker histones (GFP- and RFP-tagged) are produced. Upon colony formation, this hybrid offspring is subject to progressive and gradual genome rearrangement. The parental genomes appear to become spatially separated and RFP-tagged histones, deriving from one of the strains, Fol4287, are eventually lost. With a PCR-based method we showed that markers for most of the chromosomes of this strain are lost, indicating a lack of Fol4287 chromosomes. This leaves offspring with the genomic background of the other strain (Fo47), but in some cases together with one or two chromosomes from Fol4287, including the chromosome that confers pathogenicity towards tomato.

  5. Detoxification of the Fusarium toxin fusaric acid by the soil fungus Aspergillus

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The fungal pathogen Fusarium oxysporum f. sp. vasinfectum (Fov) causes Fusarium wilt in cotton (Gossypium hirsutum L.) and produces the toxin fusaric acid (FA). Previous research indicates that in the high producing strains of Fov, FA plays an important role in virulence. To address the problems o...

  6. Analysis of root-knot nematode and fusarium wilt disease resistance in cotton (Gossypium spp.) using chromosome substitution lines from two alien species.

    PubMed

    Ulloa, M; Wang, C; Saha, S; Hutmacher, R B; Stelly, D M; Jenkins, J N; Burke, J; Roberts, P A

    2016-04-01

    Chromosome substitution (CS) lines in plants are a powerful genetic resource for analyzing the contribution of chromosome segments to phenotypic variance. In this study, a series of interspecific cotton (Gossypium spp.) CS lines were used to identify a new germplasm resource, and to validate chromosomal regions and favorable alleles associated with nematode or fungal disease resistance traits. The CS lines were developed in the G. hirsutum L. TM-1 background with chromosome or chromosome segment substitutions from G. barbadense L. Pima 3-79 or G. tomentosum. Root-knot nematode (Meloidogyne incognita) and fusarium wilt (Fusarium oxysporum f. sp. vasinfectum) (races 1 and 4) resistance alleles and quantitative trait loci (QTL) previously placed on cotton chromosomes using SSR markers in two interspecific recombinant inbred line populations were chosen for testing. Phenotypic responses of increased resistance or susceptibility in controlled inoculation and infested field assays confirmed the resistance QTLs, based on substitution with the positive or negative allele for resistance. Lines CS-B22Lo, CS-B04, and CS-B18 showed high resistance to nematode root-galling, confirming QTLs on chromosomes 4 and 22 (long arm) with resistance alleles from Pima 3-79. Line CS-B16 had less fusarium race 1-induced vascular root staining and higher percent survival than the TM-1 parent, confirming a major resistance QTL on chromosome 16. Lines CS-B(17-11) and CS-B17 had high fusarium race 4 vascular symptoms and low survival due to susceptible alleles introgressed from Pima 3-79, confirming the localization on chromosome 17 of an identified QTL with resistance alleles from TM1 and other resistant lines. Analyses validated regions on chromosomes 11, 16, and 17 harboring nematode and fusarium wilt resistance genes and demonstrated the value of CS lines as both a germplasm resource for breeding programs and as a powerful genetic analysis tool for determining QTL effects for disease

  7. Skin and subcutaneous mycoses in tilapia (Oreochromis niloticus) caused by Fusarium oxysporum in coinfection with Aeromonas hydrophila.

    PubMed

    Cutuli, M Teresa; Gibello, Alicia; Rodriguez-Bertos, Antonio; Blanco, M Mar; Villarroel, Morris; Giraldo, Alejandra; Guarro, Josep

    2015-09-01

    Subcutaneous mycoses in freshwater fish are rare infections usually caused by oomycetes of the genus Saprolegnia and some filamentous fungi. To date, Fusarium infections in farmed fish have only been described in marine fish. Here, we report the presence of Fusarium oxysporum in subcutaneous lesions of Nile tilapia (Oreochromis niloticus). Histopathologic evaluation revealed granuloma formation with fungal structures, and the identity of the etiological agent was demonstrated by morphological and molecular analyses. Some of the animals died as a result of systemic coinfection with Aeromonas hydrophila.

  8. Down-regulation of Fusarium oxysporum endogenous genes by Host-Delivered RNA interference enhances disease resistance

    NASA Astrophysics Data System (ADS)

    Hu, Zongli; Parekh, Urvi; Maruta, Natsumi; Trusov, Yuri; Botella, Jimmy

    2015-01-01

    Fusarium oxysporum is a devastating pathogen causing extensive yield losses in a variety of crops and development of sustainable, environmentally friendly methods to improve crop resistance is crucial. We have used Host-Derived RNA interference (HD-RNAi) technology to partially silence three different genes (FOW2, FRP1 and OPR) in the hemi-biotrophic fungus Fusarium oxysporum f. sp. conglutinans. Expression of double stranded RNA molecules targeting fungal pathogen genes was achieved in a number of transgenic Arabidopsis lines. F. oxysporum infecting the transgenic lines displayed substantially reduced mRNA levels on all three targeted genes, with an average of 75%, 83% and 72% reduction for FOW2, FRP1 and OPR respectively. The silencing of pathogen genes had a clear positive effect on the ability of the transgenic lines to fight infection. All transgenic lines displayed enhanced resistance to F. oxysporum with delayed disease symptom development, especially FRP1 and OPR lines. Survival rates after fungal infection were higher in the transgenic lines compared to control wild type plants which consistently showed survival rates of 10%, with FOW2 lines showing 25% survival; FRP1 lines 30-50% survival and FOW2 between 45-70% survival. The down-regulation effect was specific for the targeted genes without unintended effects in related genes. In addition to producing resistant crops, HD-RNAi can provide a useful tool to rapidly screen candidate fungal pathogenicity genes without the need to produce fungal knockout mutants.

  9. Cloning of nitroalkane oxidase from Fusarium oxysporum identifies a new member of the acyl-CoA dehydrogenase superfamily

    PubMed Central

    Daubner, S. Colette; Gadda, Giovanni; Valley, Michael P.; Fitzpatrick, Paul F.

    2002-01-01

    The flavoprotein nitroalkane oxidase (NAO) from Fusarium oxysporum catalyzes the oxidation of nitroalkanes to the respective aldehydes with production of nitrite and hydrogen peroxide. The sequences of several peptides from the fungal enzyme were used to design oligonucleotides for the isolation of a portion of the NAO gene from an F. oxysporum genomic DNA preparation. This sequence was used to clone the cDNA for NAO from an F. oxysporum cDNA library. The sequence of the cloned cDNA showed that NOA is a member of the acyl-CoA dehydrogenase (ACAD) superfamily. The members of this family share with NAO a mechanism that is initiated by proton removal from carbon, suggesting a common chemical reaction for this superfamily. NAO was expressed in Escherichia coli and the recombinant enzyme was characterized. Recombinant NAO has identical kinetic parameters to enzyme isolated from F. oxysporum but is isolated with oxidized FAD rather than the nitrobutyl-FAD found in the fungal enzyme. NAO purified from E. coli or from F. oxysporum has no detectable ACAD activity on short- or medium-chain acyl CoAs, and medium-chain acyl-CoA dehydrogenase and short-chain acyl-CoA dehydrogenase are unable to catalyze oxidation of nitroalkanes. PMID:11867731

  10. Antimicrobial activity and physical characterization of silver nanoparticles green synthesized using nitrate reductase from Fusarium oxysporum.

    PubMed

    Gholami-Shabani, Mohammadhassan; Akbarzadeh, Azim; Norouzian, Dariush; Amini, Abdolhossein; Gholami-Shabani, Zeynab; Imani, Afshin; Chiani, Mohsen; Riazi, Gholamhossein; Shams-Ghahfarokhi, Masoomeh; Razzaghi-Abyaneh, Mehdi

    2014-04-01

    Nanostructures from natural sources have received major attention due to wide array of biological activities and less toxicity for humans, animals, and the environment. In the present study, silver nanoparticles were successfully synthesized using a fungal nitrate reductase, and their biological activity was assessed against human pathogenic fungi and bacteria. The enzyme was isolated from Fusarium oxysporum IRAN 31C after culturing on malt extract-glucose-yeast extract-peptone (MGYP) medium. The enzyme was purified by a combination of ultrafiltration and ion exchange chromatography on DEAE Sephadex and its molecular weight was estimated by gel filtration on Sephacryl S-300. The purified enzyme had a maximum yield of 50.84 % with a final purification of 70 folds. With a molecular weight of 214 KDa, it is composed of three subunits of 125, 60, and 25 KDa. The purified enzyme was successfully used for synthesis of silver nanoparticles in a way dependent upon NADPH using gelatin as a capping agent. The synthesized silver nanoparticles were characterized by X-ray diffraction, dynamic light scattering spectroscopy, and transmission and scanning electron microscopy. These stable nonaggregating nanoparticles were spherical in shape with an average size of 50 nm and a zeta potential of -34.3. Evaluation of the antimicrobial effects of synthesized nanoparticles by disk diffusion method showed strong growth inhibitory activity against all tested human pathogenic fungi and bacteria as evident from inhibition zones that ranged from 14 to 25 mm. Successful green synthesis of biologically active silver nanoparticles by a nitrate reductase from F. oxysporum in the present work not only reduces laborious downstream steps such as purification of nanoparticle from interfering cellular components, but also provides a constant source of safe biologically-active nanomaterials with potential application in agriculture and medicine.

  11. Molecular characterization of races and vegetative compatibility groups in Fusarium oxysporum f. sp. vasinfectum.

    PubMed Central

    Fernandez, D; Assigbese, K; Dubois, M P; Geiger, J P

    1994-01-01

    Restriction fragment length polymorphism (RFLP) and vegetative compatibility analyses were undertaken to assess genetic relationships among 52 isolates of Fusarium oxysporum f. sp. vasinfectum of worldwide origin and representing race A, 3, or 4 on cotton plants. Ten distinct vegetative compatibility groups (VCGs) were obtained, and isolates belonging to distinct races were never in the same VCG. Race A isolates were separated into eight VCGs, whereas isolates of race 3 were classified into a single VCG (0113), as were those of race 4 (0114). Ribosomal and mitochondrial DNA (rDNA and mtDNA) RFLPs separated four rDNA haplotypes and seven mtDNA haplotypes. Race A isolates displayed the most polymorphism, with three rDNA haplotypes and four mtDNA haplotypes; race 4 isolates formed a single rDNA group but exhibited three mtDNA haplotypes, while race 3 isolates had unique rDNA and mtDNA haplotypes. Two mtDNA molecules with distinct sizes were identified; the first (45-kb mtDNA) was found in all race A isolates and seven race 4 isolates, and the second (55-kb mtDNA) was found in all race 3 isolates and in two isolates of race 4. These two mtDNA molecules were closely related to mtDNAs of F. oxysporum isolates belonging to other formae speciales (conglutinans, lycopersici, matthioli, and raphani). Isolates within a VCG shared the same rDNA and mtDNA haplotypes, with the exception of VCG0114, in which three distinct mtDNA haplotypes were observed. Genetic relationships among isolates inferred from rDNA or mtDNA site restriction data were different, and there was not a strict correlation between race and RFLPs.(ABSTRACT TRUNCATED AT 250 WORDS) Images PMID:7993090

  12. Changes in the Proteome of Xylem Sap in Brassica oleracea in Response to Fusarium oxysporum Stress.

    PubMed

    Pu, Zijing; Ino, Yoko; Kimura, Yayoi; Tago, Asumi; Shimizu, Motoki; Natsume, Satoshi; Sano, Yoshitaka; Fujimoto, Ryo; Kaneko, Kentaro; Shea, Daniel J; Fukai, Eigo; Fuji, Shin-Ichi; Hirano, Hisashi; Okazaki, Keiichi

    2016-01-01

    Fusarium oxysporum f.sp. conlutinans (Foc) is a serious root-invading and xylem-colonizing fungus that causes yellowing in Brassica oleracea. To comprehensively understand the interaction between F. oxysporum and B. oleracea, composition of the xylem sap proteome of the non-infected and Foc-infected plants was investigated in both resistant and susceptible cultivars using liquid chromatography-tandem mass spectrometry (LC-MS/MS) after in-solution digestion of xylem sap proteins. Whole genome sequencing of Foc was carried out and generated a predicted Foc protein database. The predicted Foc protein database was then combined with the public B. oleracea and B. rapa protein databases downloaded from Uniprot and used for protein identification. About 200 plant proteins were identified in the xylem sap of susceptible and resistant plants. Comparison between the non-infected and Foc-infected samples revealed that Foc infection causes changes to the protein composition in B. oleracea xylem sap where repressed proteins accounted for a greater proportion than those of induced in both the susceptible and resistant reactions. The analysis on the proteins with concentration change > = 2-fold indicated a large portion of up- and down-regulated proteins were those acting on carbohydrates. Proteins with leucine-rich repeats and legume lectin domains were mainly induced in both resistant and susceptible system, so was the case of thaumatins. Twenty-five Foc proteins were identified in the infected xylem sap and 10 of them were cysteine-containing secreted small proteins that are good candidates for virulence and/or avirulence effectors. The findings of differential response of protein contents in the xylem sap between the non-infected and Foc-infected samples as well as the Foc candidate effectors secreted in xylem provide valuable insights into B. oleracea-Foc interactions.

  13. Hypersensitive response of Sesamum prostratum Retz. elicitated by Fusarium oxysporum f. sesame (Schelt) Jacz Butler.

    PubMed

    Rajab, Reeja; Rajan, S Sajitha; Satheesh, L Shilpa; Harish, S R; Sunukumar, S S; Sandeep, B S; Mohan, T C Kishor; Murugan, K

    2009-10-01

    Aim of this study was to investigate the intensity and timing of the ROS formation, lipid peroxidation and expression of antioxidant enzymes as initial responses of calli of Sesamum prostratum (SP) against Fusarium oxysporum f. sesame crude toxin metabolite of varying concentrations. 2,4 dichlorophenoxy acetic acid (2,4-D) / coconut milk combinations were found to be more efficient among different hormonal regimes (2,4 -D, 2,4-D/casein hydrosylate and 2,4-D/ coconut milk). The concentration of hydrogen peroxide and lipid peroxidation were higher (13.2 and 5.7-folds, respectively) after 6 h in the treated callus confirmed the oxidative stress. An increase in total phenolics was also detected in inoculated callus. Increased activity of antioxidative enzymes viz., NADPH oxidase and superoxide dismutase (SOD) corroborate with the high level of ROSs, such as O2*- and H2O2. The poor activity of catalase confirmed the oxidative burst in the callus leading to necrosis. Activity of peroxidase was at par with total phenolics. Similarly, phenylalanine ammonia lyase (PAL) also showed high activity revealing the active phase in the synthesis of secondary metabolites in the plant. The oxidative burst generated in the interaction between Sesamum and F. oxysporum f. sesame toxin might be the first line of defense by the host mounted against the invading necrotrophic pathogen. The results suggested that the rapid production of reactive oxygen species in the callus in response to fungal toxin had been proposed to orchestrate the establishment of different defensive barriers against the pathogens.

  14. Identification of Biomarkers for Resistance to Fusarium oxysporum f. sp. cubense Infection and in Silico Studies in Musa paradisiaca Cultivar Puttabale through Proteomic Approach

    PubMed Central

    Ramu, Venkatesh; Venkatarangaiah, Krishna; Krishnappa, Pradeepa; Shimoga Rajanna, Santosh Kumar; Deeplanaik, Nagaraja; Chandra Pal, Anup; Kini, Kukkundoor Ramachandra

    2016-01-01

    Panama wilt caused by Fusarium oxysporum f. sp. cubense (Foc) is one of the major disease constraints of banana production. Previously, we reported the disease resistance Musa paradisiaca cv. puttabale clones developed from Ethylmethanesulfonate and Foc culture filtrate against Foc inoculation. Here, the same resistant clones and susceptible clones were used for the study of protein accumulation against Foc inoculation by two-dimensional gel electrophoresis (2-DE), their expression pattern and an in silico approach. The present investigation revealed mass-spectrometry identified 16 proteins that were over accumulated and 5 proteins that were under accumulated as compared to the control. The polyphosphoinositide binding protein ssh2p (PBPssh2p) and Indoleacetic acid-induced-like (IAA) protein showed significant up-regulation and down-regulation. The docking of the pathogenesis-related protein (PR) with the fungal protein endopolygalacturonase (PG) exemplify the three ionic interactions and seven hydrophobic residues that tends to good interaction at the active site of PG with free energy of assembly dissociation (1.5 kcal/mol). The protein-ligand docking of the Peptide methionine sulfoxide reductase chloroplastic-like protein (PMSRc) with the ligand β-1,3 glucan showed minimum binding energy (−6.48 kcal/mol) and docking energy (−8.2 kcal/mol) with an interaction of nine amino-acid residues. These explorations accelerate the research in designing the host pathogen interaction studies for the better management of diseases. PMID:28248219

  15. Fusarium oxysporum f.sp. ciceri Race 1 Induced Redox State Alterations Are Coupled to Downstream Defense Signaling in Root Tissues of Chickpea (Cicer arietinum L.)

    PubMed Central

    Chatterjee, Moniya; Das, Sampa

    2013-01-01

    Reactive oxygen species are known to play pivotal roles in pathogen perception, recognition and downstream defense signaling. But, how these redox alarms coordinate in planta into a defensive network is still intangible. Present study illustrates the role of Fusarium oxysporum f.sp ciceri Race1 (Foc1) induced redox responsive transcripts in regulating downstream defense signaling in chickpea. Confocal microscopic studies highlighted pathogen invasion and colonization accompanied by tissue damage and deposition of callose degraded products at the xylem vessels of infected roots of chickpea plants. Such depositions led to the clogging of xylem vessels in compatible hosts while the resistant plants were devoid of such obstructions. Lipid peroxidation assays also indicated fungal induced membrane injury. Cell shrinkage and gradual nuclear adpression appeared as interesting features marking fungal ingress. Quantitative real time polymerase chain reaction exhibited differential expression patterns of redox regulators, cellular transporters and transcription factors during Foc1 progression. Network analysis showed redox regulators, cellular transporters and transcription factors to coordinate into a well orchestrated defensive network with sugars acting as internal signal modulators. Respiratory burst oxidase homologue, cationic peroxidase, vacuolar sorting receptor, polyol transporter, sucrose synthase, and zinc finger domain containing transcription factor appeared as key molecular candidates controlling important hubs of the defense network. Functional characterization of these hub controllers may prove to be promising in understanding chickpea–Foc1 interaction and developing the case study as a model for looking into the complexities of wilt diseases of other important crop legumes. PMID:24058463

  16. Identification of Biomarkers for Resistance to Fusarium oxysporum f. sp. cubense Infection and in Silico Studies in Musa paradisiaca Cultivar Puttabale through Proteomic Approach.

    PubMed

    Ramu, Venkatesh; Venkatarangaiah, Krishna; Krishnappa, Pradeepa; Shimoga Rajanna, Santosh Kumar; Deeplanaik, Nagaraja; Chandra Pal, Anup; Kini, Kukkundoor Ramachandra

    2016-02-24

    Panama wilt caused by Fusarium oxysporum f. sp. cubense (Foc) is one of the major disease constraints of banana production. Previously, we reported the disease resistance Musa paradisiaca cv. puttabale clones developed from Ethylmethanesulfonate and Foc culture filtrate against Foc inoculation. Here, the same resistant clones and susceptible clones were used for the study of protein accumulation against Foc inoculation by two-dimensional gel electrophoresis (2-DE), their expression pattern and an in silico approach. The present investigation revealed mass-spectrometry identified 16 proteins that were over accumulated and 5 proteins that were under accumulated as compared to the control. The polyphosphoinositide binding protein ssh2p (PBPssh2p) and Indoleacetic acid-induced-like (IAA) protein showed significant up-regulation and down-regulation. The docking of the pathogenesis-related protein (PR) with the fungal protein endopolygalacturonase (PG) exemplify the three ionic interactions and seven hydrophobic residues that tends to good interaction at the active site of PG with free energy of assembly dissociation (1.5 kcal/mol). The protein-ligand docking of the Peptide methionine sulfoxide reductase chloroplastic-like protein (PMSRc) with the ligand β-1,3 glucan showed minimum binding energy (-6.48 kcal/mol) and docking energy (-8.2 kcal/mol) with an interaction of nine amino-acid residues. These explorations accelerate the research in designing the host pathogen interaction studies for the better management of diseases.

  17. Fusarium oxysporum f.sp. ciceri race 1 induced redox state alterations are coupled to downstream defense signaling in root tissues of chickpea (Cicer arietinum L.).

    PubMed

    Gupta, Sumanti; Bhar, Anirban; Chatterjee, Moniya; Das, Sampa

    2013-01-01

    Reactive oxygen species are known to play pivotal roles in pathogen perception, recognition and downstream defense signaling. But, how these redox alarms coordinate in planta into a defensive network is still intangible. Present study illustrates the role of Fusarium oxysporum f.sp ciceri Race1 (Foc1) induced redox responsive transcripts in regulating downstream defense signaling in chickpea. Confocal microscopic studies highlighted pathogen invasion and colonization accompanied by tissue damage and deposition of callose degraded products at the xylem vessels of infected roots of chickpea plants. Such depositions led to the clogging of xylem vessels in compatible hosts while the resistant plants were devoid of such obstructions. Lipid peroxidation assays also indicated fungal induced membrane injury. Cell shrinkage and gradual nuclear adpression appeared as interesting features marking fungal ingress. Quantitative real time polymerase chain reaction exhibited differential expression patterns of redox regulators, cellular transporters and transcription factors during Foc1 progression. Network analysis showed redox regulators, cellular transporters and transcription factors to coordinate into a well orchestrated defensive network with sugars acting as internal signal modulators. Respiratory burst oxidase homologue, cationic peroxidase, vacuolar sorting receptor, polyol transporter, sucrose synthase, and zinc finger domain containing transcription factor appeared as key molecular candidates controlling important hubs of the defense network. Functional characterization of these hub controllers may prove to be promising in understanding chickpea-Foc1 interaction and developing the case study as a model for looking into the complexities of wilt diseases of other important crop legumes.

  18. Effects of Fusarium solani and F. oxysporum Infection on the Metabolism of Ginsenosides in American Ginseng Roots.

    PubMed

    Jiao, Xiaolin; Lu, Xiaohong; Chen, Amanda Juan; Luo, Yi; Hao, Jianjun J; Gao, Weiwei

    2015-06-08

    American ginseng (Panax quinquefolius L.) is a highly valuable herb widely used for medicinal treatments. Its pharmacologically important compounds are the ginsenosides, which are secondary metabolites in American ginseng root. The concentrations of ginsenoside in roots can be changed by fungal infection, but it is unclear what specific root tissues are impacted and whether the change is systemic. In this study, American ginseng roots were inoculated with two fungal pathogens (Fusarium solani or F. oxysporum) and the levels of six ginsenosides (Rb1, Rb2, Rc, Rd, Re, and Rg1) were then measured in the phloem and xylem around the discolored lesions and adjacent healthy areas of the root. Results indicated that the growth of Fusarium spp. was strictly limited to phloem, and correspondingly the ginsenoside concentration was only altered in this infected phloem. The concentration of Rg1, Rd, and Rc significantly changed in phloem tissues where F. solani was inoculated, while only Rg1 and Rd changed significantly after F. oxysporum inoculation. However, no changes of any ginsenoside occurred in either xylem or phloem tissue adjacent to the inoculation point. In addition, when two Fusarium spp. were grown on ginsenoside-amended Czapek medium, the majority of ginsenosides were depleted. Therefore, pathogenic Fusarium spp. may reduce ginsenoside levels by consuming them.

  19. Differentially Expressed Genes in Resistant and Susceptible Common Bean (Phaseolus vulgaris L.) Genotypes in Response to Fusarium oxysporum f. sp. phaseoli

    PubMed Central

    Xue, Renfeng; Wu, Jing; Zhu, Zhendong; Wang, Lanfen; Wang, Xiaoming; Wang, Shumin; Blair, Matthew W.

    2015-01-01

    Fusarium wilt of common bean (Phaseolus vulgaris L.), caused by Fusarium oxysporum Schlechtend.:Fr. f.sp. phaseoli (Fop), is one of the most important diseases of common beans worldwide. Few natural sources of resistance to Fop exist and provide only moderate or partial levels of protection. Despite the economic importance of the disease across multiple crops, only a few of Fop induced genes have been analyzed in legumes. Therefore, our goal was to identify transcriptionally regulated genes during an incompatible interaction between common bean and the Fop pathogen using the cDNA amplified fragment length polymorphism (cDNA-AFLP) technique. We generated a total of 8,730 transcript-derived fragments (TDFs) with 768 primer pairs based on the comparison of a moderately resistant and a susceptible genotype. In total, 423 TDFs (4.9%) displayed altered expression patterns after inoculation with Fop inoculum. We obtained full amplicon sequences for 122 selected TDFs, of which 98 were identified as annotated known genes in different functional categories based on their putative functions, 10 were predicted but non-annotated genes and 14 were not homologous to any known genes. The 98 TDFs encoding genes of known putative function were classified as related to metabolism (22), signal transduction (21), protein synthesis and processing (20), development and cytoskeletal organization (12), transport of proteins (7), gene expression and RNA metabolism (4), redox reactions (4), defense and stress responses (3), energy metabolism (3), and hormone responses (2). Based on the analyses of homology, 19 TDFs from different functional categories were chosen for expression analysis using quantitative RT-PCR. The genes found to be important here were implicated at various steps of pathogen infection and will allow a better understanding of the mechanisms of defense and resistance to Fop and similar pathogens. The differential response genes discovered here could also be used as molecular

  20. Differentially Expressed Genes in Resistant and Susceptible Common Bean (Phaseolus vulgaris L.) Genotypes in Response to Fusarium oxysporum f. sp. phaseoli.

    PubMed

    Xue, Renfeng; Wu, Jing; Zhu, Zhendong; Wang, Lanfen; Wang, Xiaoming; Wang, Shumin; Blair, Matthew W

    2015-01-01

    Fusarium wilt of common bean (Phaseolus vulgaris L.), caused by Fusarium oxysporum Schlechtend.:Fr. f.sp. phaseoli (Fop), is one of the most important diseases of common beans worldwide. Few natural sources of resistance to Fop exist and provide only moderate or partial levels of protection. Despite the economic importance of the disease across multiple crops, only a few of Fop induced genes have been analyzed in legumes. Therefore, our goal was to identify transcriptionally regulated genes during an incompatible interaction between common bean and the Fop pathogen using the cDNA amplified fragment length polymorphism (cDNA-AFLP) technique. We generated a total of 8,730 transcript-derived fragments (TDFs) with 768 primer pairs based on the comparison of a moderately resistant and a susceptible genotype. In total, 423 TDFs (4.9%) displayed altered expression patterns after inoculation with Fop inoculum. We obtained full amplicon sequences for 122 selected TDFs, of which 98 were identified as annotated known genes in different functional categories based on their putative functions, 10 were predicted but non-annotated genes and 14 were not homologous to any known genes. The 98 TDFs encoding genes of known putative function were classified as related to metabolism (22), signal transduction (21), protein synthesis and processing (20), development and cytoskeletal organization (12), transport of proteins (7), gene expression and RNA metabolism (4), redox reactions (4), defense and stress responses (3), energy metabolism (3), and hormone responses (2). Based on the analyses of homology, 19 TDFs from different functional categories were chosen for expression analysis using quantitative RT-PCR. The genes found to be important here were implicated at various steps of pathogen infection and will allow a better understanding of the mechanisms of defense and resistance to Fop and similar pathogens. The differential response genes discovered here could also be used as molecular

  1. How Phytohormones Shape Interactions between Plants and the Soil-Borne Fungus Fusarium oxysporum

    PubMed Central

    Di, Xiaotang; Takken, Frank L. W.; Tintor, Nico

    2016-01-01

    Plants interact with a huge variety of soil microbes, ranging from pathogenic to mutualistic. The Fusarium oxysporum (Fo) species complex consists of ubiquitous soil inhabiting fungi that can infect and cause disease in over 120 different plant species including tomato, banana, cotton, and Arabidopsis. However, in many cases Fo colonization remains symptomless or even has beneficial effects on plant growth and/or stress tolerance. Also in pathogenic interactions a lengthy asymptomatic phase usually precedes disease development. All this indicates a sophisticated and fine-tuned interaction between Fo and its host. The molecular mechanisms underlying this balance are poorly understood. Plant hormone signaling networks emerge as key regulators of plant-microbe interactions in general. In this review we summarize the effects of the major phytohormones on the interaction between Fo and its diverse hosts. Generally, Salicylic Acid (SA) signaling reduces plant susceptibility, whereas Jasmonic Acid (JA), Ethylene (ET), Abscisic Acid (ABA), and auxin have complex effects, and are potentially hijacked by Fo for host manipulation. Finally, we discuss how plant hormones and Fo effectors balance the interaction from beneficial to pathogenic and vice versa. PMID:26909099

  2. Biological Activities of a Mixture of Biosurfactant from Bacillus subtilis and Alkaline Lipase from Fusarium oxysporum

    PubMed Central

    Pereira de Quadros, Cedenir; Cristina Teixeira Duarte, Marta; Maria Pastore, Gláucia

    2011-01-01

    In this study, we investigate the antimicrobial effects of a mixture of a biosurfactant from Bacillus subtilis and an alkaline lipase from Fusarium oxysporum (AL/BS mix) on several types of microorganisms, as well as their abilities to remove Listeria innocua ATCC 33093 biofilm from stainless steel coupons. The AL/BS mix had a surface tension of around 30 mN.m-1, indicating that the presence of alkaline lipase did not interfere in the surface activity properties of the tensoactive component. The antimicrobial activity of the AL/BS mix was determined by minimum inhibitory concentration (MIC) micro-assays. Among all the tested organisms, the presence of the mixture only affected the growth of B. subtilis CCT 2576, B. cereus ATCC 10876 and L. innocua. The most sensitive microorganism was B. cereus (MIC 0.013 mg.mL-1). In addition, the effect of the sanitizer against L. innocua attached to stainless steel coupons was determined by plate count after vortexing. The results showed that the presence of the AL/BS mix improved the removal of adhered cells relative to treatment done without the sanitizer, reducing the count of viable cells by 1.72 log CFU.cm-2. However, there was no significant difference between the sanitizers tested and an SDS detergent standard (p<0.05). PMID:24031642

  3. Synthesis of gold nanoparticles from different cellular fractions of Fusarium oxysporum.

    PubMed

    Deepa, Kannan; Panda, Tapobrata

    2014-05-01

    The addition of varying concentrations of precursor gold salt to different cellular fractions of Fusarium oxysporum, viz., the culture filtrate and the intracellular extract obtained in the growing and resting phase of the cells had a profound influence on the size, shape, and state of aggregation of the nanoparticles. Multiply-twinned nanoparticles were obtained when the culture filtrate was used for synthesizing nanoparticles while mostly irregular shapes were obtained with the intracellular extract. The time taken for the formation of gold nanoparticles in the culture filtrate of resting cells was very less (< 30 min) while it took more than 8 h when the intracellular extract was used for synthesis of nanoparticles. There was a reduction in size of the nanoparticles with decreasing concentration of the gold salt from 1 mM to 0.05 mM. With the intracellular extract, the initial rate of increase in surface plasmon absorption maximum was linearly proportional to the initial concentration of the gold salt used. Gold nanoparticles were also obtained with the heat-inactivated culture filtrate which suggests alternatively the role of peptides and amino acids besides proteins in reducing and/or stabilizing the nanoparticles.

  4. Immobilization of a cutinase from Fusarium oxysporum and application in pineapple flavor synthesis.

    PubMed

    Nikolaivits, Efstratios; Makris, Georgios; Topakas, Evangelos

    2017-04-13

    In the present study, the immobilization of a cutinase from Fusarium oxysporum was carried out as cross-linked enzyme aggregates. Under optimal immobilization conditions, acetonitrile was selected as precipitant, utilizing 9.4 mg protein/mL and 10 mM glutaraldehyde as cross-linker. The immobilized cutinase (imFocut5a) was tested in isooctane for the synthesis of short-chain butyrate esters, displaying enhanced thermostability compared to the free enzyme. Pineapple flavor (butyl butyrate) synthesis was optimized leading to a conversion yield of >99% after 6 h, with an initial reaction rate of 18.2 mmol/L/h. Optimal reaction conditions found to be 50 (ο)C, vinyl butyrate:butanol molar ratio 3:1, vinyl butyrate concentration 100 mM and enzyme loading of 11U. Reusability studies of imFocut5a showed that after 4 consecutive runs, the reaction yield reaches the 54% of the maximum. The efficient bioconversion offers a sustainable and environmentally friendly process for the production of "natural" aroma compounds essential for the Food Industry.

  5. Regiospecific synthesis of prenylated flavonoids by a prenyltransferase cloned from Fusarium oxysporum

    PubMed Central

    Yang, Xiaoman; Yang, Jiali; Jiang, Yueming; Yang, Hongshun; Yun, Ze; Rong, Weiliang; Yang, Bao

    2016-01-01

    Due to their impressive pharmaceutical activities and safety, prenylated flavonoids have a high potent to be applied as medicines and nutraceuticals. Biocatalysis is an effective technique to synthesize prenylated flavonoids. The major concern of this technique is that the microbe-derived prenyltransferases usually have poor regiospecificity and generate multiple prenylated products. In this work, a highly regiospecific prenyltransferase (FoPT1) was found from Fusarium oxysporum. It could recognize apigenin, naringenin, genistein, dihydrogenistein, kampferol, luteolin and hesperetin as substrates, and only 6-C-prenylated flavonoids were detected as the products. The catalytic efficiency of FoPT1 on flavonoids was in a decreasing order with hesperetin >naringenin >apigenin >genistein >luteolin >dihydrogenistein >kaempferol. Chalcones, flavanols and stilbenes were not active when acting as the substrates. 5,7-Dihydroxy and 4-carbonyl groups of flavonid were required for the catalysis. 2,3-Alkenyl was beneficial to the catalysis whereas 3-hydroxy impaired the prenylation reaction. Docking studies simulated the prenyl transfer reaction of FoPT1. E186 was involved in the formation of prenyl carbonium ion. E98, F89, F182, Y197 and E246 positioned apigenin for catalysis. PMID:27098599

  6. The in vitro physiological phenotype of tomato resistance to Fusarium oxysporum f. sp. lycopersici.

    PubMed

    Storti, E; Latil, C; Salti, S; Bettini, P; Bogani, P; Pellegrini, M G; Simeti, C; Molnar, A; Buiatti, M

    1992-06-01

    With the aim of dissecting host-parasite interaction processes in the system Lycopersicon aesculentum-Fusarium oxysporum f. sp. lycopersici we have isolated plant cell mutants having single-step alterations in their defense response. A previous analysis of the physiological phenotypes of mutant cell clones suggested that recognition is the crucial event for active defence, and that polysaccharide content, fungal growth inhibition, peroxidase induction in in vitro dual culture and ion leakage induced by cultural filtrates of the pathogen can be markers of resistance. In this paper we present the results of a similar analysis carried out on cell cultures from one susceptible ('Red River'), one tolerant ('UC 105') and three resistant ('Davis UC 82', 'Heinz', 'UC 90') tomato cultivars. Our data confirm that the differences in the parameters considered are correlated with resistance versus susceptibility in vivo. Therefore, these parameters can be used for early screening in selection programmes. These data, together with those obtained on isolated cell mutants, suggest that the selection in vitro for altered fungal recognition and/or polysaccharide or callose content may lead to in vivo - resistant genotypes. The data are thoroughly discussed with particular attention paid to the importance of polysaccharides in active defense initiation.

  7. Cutinase production by Fusarium oxysporum in liquid medium using central composite design.

    PubMed

    Pio, Tatiana Fontes; Macedo, Gabriela Alves

    2008-01-01

    The objective of the present study was to measure the production of cutinase by Fusarium oxysporum in the presence of several carbon and nitrogen sources (glycides, fatty acids and oils, and several organic and inorganic nitrogen sources), trying to find a cost-effective substitute for cutin in the culture medium as an inducer of cutinase production. The results were evaluated by the Tukey test, and flaxseed oil was found to give the best results as a cutinase inducer. The authors optimized the composition of the growth medium employing response surface methodology. The experimental results were fitted to a second-order polynomial model at a 95% level of significance (p < 0.05). The greatest cutinolytic activity was obtained in a liquid mineral medium supplemented with flaxseed oil, showing an increase in enzymatic activity from 11 to 22.68 U/mL after 48 h of fermentation. A CCD study of the fermentation conditions was carried out, and the best production of cutinase was registered with the use of 30 degrees C and 100 rpm. These results support the use of flaxseed oil as a substitute for cutin, which is difficult and expensive to obtain, for the production of cutinase in a larger scale.

  8. The effector repertoire of Fusarium oxysporum determines the tomato xylem proteome composition following infection

    PubMed Central

    Gawehns, Fleur; Ma, Lisong; Bruning, Oskar; Houterman, Petra M.; Boeren, Sjef; Cornelissen, Ben J. C.; Rep, Martijn; Takken, Frank L. W.

    2015-01-01

    Plant pathogens secrete small proteins, of which some are effectors that promote infection. During colonization of the tomato xylem vessels the fungus Fusarium oxysporum f.sp. lycopersici (Fol) secretes small proteins that are referred to as SIX (Secreted In Xylem) proteins. Of these, Six1 (Avr3), Six3 (Avr2), Six5, and Six6 are required for full virulence, denoting them as effectors. To investigate their activities in the plant, the xylem sap proteome of plants inoculated with Fol wild-type or either AVR2, AVR3, SIX2, SIX5, or SIX6 knockout strains was analyzed with nano-Liquid Chromatography-Mass Spectrometry (nLC-MSMS). Compared to mock-inoculated sap 12 additional plant proteins appeared while 45 proteins were no longer detectable in the xylem sap of Fol-infected plants. Of the 285 proteins found in both uninfected and infected plants the abundance of 258 proteins changed significantly following infection. The xylem sap proteome of plants infected with four Fol effector knockout strains differed significantly from plants infected with wild-type Fol, while that of the SIX2-knockout inoculated plants remained unchanged. Besides an altered abundance of a core set of 24 differentially accumulated proteins (DAPs), each of the four effector knockout strains affected specifically the abundance of a subset of DAPs. Hence, Fol effectors have both unique and shared effects on the composition of the tomato xylem sap proteome. PMID:26583031

  9. Sesquiterpene emissions from Alternaria alternata and Fusarium oxysporum: Effects of age, nutrient availability, and co-cultivation

    PubMed Central

    Weikl, Fabian; Ghirardo, Andrea; Schnitzler, Jörg-Peter; Pritsch, Karin

    2016-01-01

    Alternaria alternata is one of the most studied fungi to date because of its impact on human life – from plant pathogenicity to allergenicity. However, its sesquiterpene emissions have not been systematically explored. Alternaria regularly co-occurs with Fusarium fungi, which are common plant pathogens, on withering plants. We analyzed the diversity and determined the absolute quantities of volatile organic compounds (VOCs) in the headspace above mycelial cultures of A. alternata and Fusarium oxysporum under different conditions (nutrient rich and poor, single cultures and co-cultivation) and at different mycelial ages. Using stir bar sorptive extraction and gas chromatography–mass spectrometry, we observed A. alternata to strongly emit sesquiterpenes, particularly during the early growth stages, while emissions from F. oxysporum consistently remained comparatively low. The emission profile characterizing A. alternata comprised over 20 sesquiterpenes with few effects from nutrient quality and age on the overall emission profile. Co-cultivation with F. oxysporum resulted in reduced amounts of VOCs emitted from A. alternata although its profile remained similar. Both fungi showed distinct emission profiles, rendering them suitable biomarkers for growth-detection of their phylotype in ambient air. The study highlights the importance of thorough and quantitative evaluations of fungal emissions of volatile infochemicals such as sesquiterpenes. PMID:26915756

  10. Down-regulation of Fusarium oxysporum endogenous genes by Host-Delivered RNA interference enhances disease resistance

    PubMed Central

    Hu, Zongli; Parekh, Urvi; Maruta, Natsumi; Trusov, Yuri; Botella, Jose R.

    2015-01-01

    Fusarium oxysporum is a devastating pathogen causing extensive yield losses in a variety of crops and development of sustainable, environmentally friendly methods to improve crop resistance is crucial. We have used Host-Delivered RNA interference (HD-RNAi) technology to partially silence three different genes (FOW2, FRP1, and OPR) in the hemi-biotrophic fungus F. oxysporum f. sp. conglutinans. Expression of double stranded RNA (dsRNA) molecules targeting fungal pathogen genes was achieved in a number of transgenic Arabidopsis lines. F. oxysporum infecting the transgenic lines displayed substantially reduced mRNA levels on all three targeted genes, with an average of 75, 83, and 72% reduction for FOW2, FRP1, and OPR, respectively. The silencing of pathogen genes had a clear positive effect on the ability of the transgenic lines to fight infection. All transgenic lines displayed enhanced resistance to F. oxysporum with delayed disease symptom development, especially FRP1 and OPR lines. Survival rates after fungal infection were higher in the transgenic lines compared to control wild type plants which consistently showed survival rates of 10%, with FOW2 lines showing 25% survival; FRP1 lines 30–50% survival and OPR between 45 and 70% survival. The down-regulation effect was specific for the targeted genes without unintended effects in related genes. In addition to producing resistant crops, HD-RNAi can provide a useful tool to rapidly screen candidate fungal pathogenicity genes without the need to produce fungal knockout mutants. PMID:25654075

  11. Endophytic fungi from Vitis labrusca L. ('Niagara Rosada') and its potential for the biological control of Fusarium oxysporum.

    PubMed

    Brum, M C P; Araújo, W L; Maki, C S; Azevedo, J L

    2012-12-06

    We investigated the diversity of endophytic fungi found on grape (Vitis labrusca cv. Niagara Rosada) leaves collected from Salesópolis, SP, Brazil. The fungi were isolated and characterized by amplified ribosomal DNA restriction analysis, followed by sequencing of the ITS1-5.8S-ITS2 rDNA. In addition, the ability of these endophytic fungi to inhibit the grapevine pathogen Fusarium oxysporum f. sp herbemontis was determined in vitro. We also observed that the climatic factors, such as temperature and rainfall, have no effect on the frequency of infection by endophytic fungi. The endophytic fungal community that was identified included Aporospora terricola, Aureobasidium pullulans, Bjerkandera adusta, Colletotrichum boninense, C. gloeosporioides, Diaporthe helianthi, D. phaseolorum, Epicoccum nigrum, Flavodon flavus, Fusarium subglutinans, F. sacchari, Guignardia mangiferae, Lenzites elegans, Paraphaeosphaeria pilleata, Phanerochaete sordida, Phyllosticta sp, Pleurotus nebrodensis, Preussia africana, Tinctoporellus epiniltinus, and Xylaria berteri. Among these isolates, two, C. gloeosporioides and F. flavus, showed potential antagonistic activity against F. oxysporum f. sp herbemontis. We suggest the involvement of the fungal endophyte community of V. labrusca in protecting the host plant against pathogenic Fusarium species. Possibly, some endophytic isolates could be selected for the development of biological control agents for grape fungal disease; alternatively, management strategies could be tailored to increase these beneficial fungi.

  12. Evaluation of Streptomyces sp. strain g10 for suppression of Fusarium wilt and rhizosphere colonization in pot-grown banana plantlets.

    PubMed

    Getha, K; Vikineswary, S; Wong, W H; Seki, T; Ward, A; Goodfellow, M

    2005-01-01

    Streptomyces sp. strain g10 exhibited strong antagonism towards Fusarium oxysporum f.sp. cubense (Foc) races 1, 2 and 4 in plate assays by producing extracellular antifungal metabolites. Treating the planting hole and roots of 4-week-old tissue-culture-derived 'Novaria' banana plantlets with strain g10 suspension (10(8) cfu/ml), significantly (P < 0.05) reduced wilt severity when the plantlets were inoculated with 10(4) spores/ml Foc race 4. The final disease severity index for leaf symptom (LSI) and rhizome discoloration (RDI) was reduced about 47 and 53%, respectively, in strain g10-treated plantlets compared to untreated plantlets. Reduction in disease incidence was not significant (P < 0.05) when plantlets were inoculated with a higher concentration (10(6) spores/ml) of Foc race 4. Rhizosphere population of strain g10 showed significant (P = 0.05) increase of more than 2-fold at the end of the 3rd week compared to the 2nd week after soil amendment with the antagonist. Although the level dropped, the rhizosphere population at the end of the 6th week was still nearly 2-fold higher than the level detected after 2 weeks. In contrast, the root-free population declined significantly (P = 0.05), nearly 4-fold after 6 weeks when compared to the level detected after 2 weeks. Neither growth-inhibiting nor growth-stimulating effects were observed in plantlets grown in strain g10-amended soil.

  13. Insights from the fungus Fusarium oxysporum point to high affinity glucose transporters as targets for enhancing ethanol production from lignocellulose.

    PubMed

    Ali, Shahin S; Nugent, Brian; Mullins, Ewen; Doohan, Fiona M

    2013-01-01

    Ethanol is the most-widely used biofuel in the world today. Lignocellulosic plant biomass derived from agricultural residue can be converted to ethanol via microbial bioprocessing. Fungi such as Fusarium oxysporum can simultaneously saccharify straw to sugars and ferment sugars to ethanol. But there are many bottlenecks that need to be overcome to increase the efficacy of microbial production of ethanol from straw, not least enhancement of the rate of fermentation of both hexose and pentose sugars. This research tested the hypothesis that the rate of sugar uptake by F. oxysporum would enhance the ethanol yields from lignocellulosic straw and that high affinity glucose transporters can enhance ethanol yields from this substrate. We characterized a novel hexose transporter (Hxt) from this fungus. The F. oxysporum Hxt represents a novel transporter with homology to yeast glucose signaling/transporter proteins Rgt2 and Snf3, but it lacks their C-terminal domain which is necessary for glucose signalling. Its expression level decreased with increasing glucose concentration in the medium and in a glucose uptake study the Km((glucose)) was 0.9 mM, which indicated that the protein is a high affinity glucose transporter. Post-translational gene silencing or over expression of the Hxt in F. oxysporum directly affected the glucose and xylose transport capacity and ethanol yielded by F. oxysporum from straw, glucose and xylose. Thus we conclude that this Hxt has the capacity to transport both C5 and C6 sugars and to enhance ethanol yields from lignocellulosic material. This study has confirmed that high affinity glucose transporters are ideal candidates for improving ethanol yields from lignocellulose because their activity and level of expression is high in low glucose concentrations, which is very common during the process of consolidated processing.

  14. Extracellular chitin deacetylase production in solid state fermentation by native soil isolates of Penicillium monoverticillium and Fusarium oxysporum.

    PubMed

    Suresh, P V; Sakhare, P Z; Sachindra, N M; Halami, P M

    2014-08-01

    Extracellular chitin deacetylase production by native soil isolates of Penicillium monoverticillium CFR 2 and Fusarium oxysporum CFR 8 in solid state fermentation (SSF) using commercial wheat bran (CWB) and shrimp processing by-products (SPP) as solid substrate has been studied. P. monoverticillium produced maximum chitin deacetylase activity of 547.7 ± 45 and 390.2 ± 31 units/g initial dry substrate (U/g IDS) at 96 h of incubation in CWB and SPP media, respectively. While, F. oxysporum produced maximum chitin deacetylase activity of 306.4 ± 22 U/g IDS at 72 h of incubation in CWB medium and 220.1 ± 20 U/g IDS at 120 h of incubation in SPP medium. Along with chitin deacetylase, P. monoverticillium and F. oxysporum produced other chitin degrading enzymes such as endo-chitinase and β-N-acetylhexosaminidase. P. monoverticillium produced maximum activity (U/g IDS) of endo-chitinase 4.6 ± 0.20 at 120 h incubation and β-N-acetylhexosaminidase 82.6 ± 03 at 120 h incubation in CWB medium. While, F. oxysporum produced maximum activity (U/g IDS) of endo-chitinase 7.8 ± 0.20 at 144 h incubation and β-N-acetylhexosaminidase 38.3 ± 02 at 120 h incubation in CWB medium. Production of extracellular chitin deacetylase by P. monoverticillium CFR 2 and F. oxysporum CFR 8 in SSF is being reported for the first time.

  15. Purification and characterization of tomatinase from Fusarium oxysporum f. sp. lycopersici.

    PubMed

    Lairini, K; Perez-Espinosa, A; Pineda, M; Ruiz-Rubio, M

    1996-05-01

    The antifungal compound alpha-tomatine, present in tomato plants, has been reported to provide a preformed chemical barrier against phytopathogenic fungi. Fusarium oxysporum f. sp. lycopersici, a tomato pathogen, produces an extracellular enzyme inducible by alpha-tomatine. This enzyme, known as tomatinase, catalyzes the hydrolysis of alpha-tomatine into its nonfungitoxic forms, tomatidine and beta-lycotetraose. The maximal tomatinase activity in the fungal culture medium was observed after 48 h of incubation of germinated conidia at an alpha-tomatine concentration of 20 micrograms/ml. The enzymatic activity in the supernatant was concentrated against polyethylene glycol 35,000, and the enzyme was then purified to electrophoretic homogeneity by a procedure that includes preparative isoelectric focusing and preparative gel electrophoresis as main steps. The purification procedure had a yield of 18%, and the protein was purified about 40-fold. Tomatinase was found to be a monomer of 50 kDa by both native gel electrophoresis and sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The analytical isoelectric focusing of the native tomatinase showed at least five isoforms with pIs ranging from 4.8 to 5.8. Treatment with N-glycosidase F gave a single protein band of 45 kDa, indicating that the 50-kDa protein was N glycosylated. Tomatinase activity was optimum at 45 to 50 degrees C and at pH 5.5 to 7. The enzyme was stable at acidic pH and temperatures below 50 degrees C. The enzyme had no apparent requirement for cofactors, although Co2+ and Mn2+ produced a slight stimulating effect on tomatinase activity. Kinetic experiments at 30 degrees C gave a K(m) of 1.1 mM for alpha-tomatine and a Vmax of 118 mumol/min/mg. An activation energy of 88 kJ/mol was calculated.

  16. Analysis of miRNAs targeting transcription factors in Persicaria minor induced by Fusarium oxysporum

    NASA Astrophysics Data System (ADS)

    Samad, Abdul Fatah A.; Ali, Nazaruddin Muhammad; Ismail, Ismanizan; Murad, Abdul Munir Abdul

    2016-11-01

    A recent discovery showed small non-coding RNA known as microRNA has a crucial role in plant development and plant survival in extreme condition. In the past few years, researchers have managed to identify the various families of transcription factors that play a crucial role in regulating plant development and plant responses to stresses. This study focuses on the expression pattern of miRNA targeted transcription factor under biotic stress in a plant rich with secondary metabolite, Persicaria minor. A pathogenic fungus, Fusarium oxysporum was used in the biotic stress treatment since the previous study revealed this fungus could trigger plant defense system. Two small RNA libraries were constructed which consist of control and treated samples. In order to identify the potential target, psRobot target prediction software was used for each miRNA that shows significant change due to the infection. The result showed miR156b/c, miR172a, miR319, miR858, and miR894 were found to be targeting a wide range of transcription factors that involve in plant development and plant response towards stresses. The expression of miR156b/c and miR172 were up-regulated while the expression of miR319, miR858, and miR894 was found to be down-regulated. These results may provide a certain level of networking between those two regulatory molecules in plant genetic system under biotic stress.

  17. Compost and biochar alter mycorrhization, tomato root exudation, and development of Fusarium oxysporum f. sp. lycopersici

    PubMed Central

    Akhter, Adnan; Hage-Ahmed, Karin; Soja, Gerhard; Steinkellner, Siegrid

    2015-01-01

    Soil amendments like compost and biochar are known to affect soil properties, plant growth as well as soil borne plant pathogens. Complex interactions based on microbial activity and abiotic characteristics are supposed to be responsible for suppressive properties of certain substrates, however, the specific mechanisms of action are still widely unknown. In the present study, the main focus was on the development of the soil borne pathogen, Fusarium oxysporum f.sp. lycopersici (Fol) in tomato (Solanum lycopersicum L.) and changes in root exudates of tomato plants grown in different soil substrate compositions, such as compost (Comp) alone at application rate of 20% (v/v), and in combination with wood biochar (WB; made from beech wood chips) or green waste biochar (GWB; made from garden waste residues) at application rate of 3% (v/v), and/or with additional arbuscular mycorrhizal fungi (AMF). The association of GWB and AMF had a positive effect on tomato plants growth unlike to the plants grown in WB containing a soil substrate. The AMF root colonization was not enhanced by the addition of WB or GWB in the soil substrate, though a bio-protective effect of mycorrhization was evident in both biochar amended treatments against Fol. Compost and biochars altered root exudates differently, which is evident from variable response of in vitro growth and development of Fol. The microconidia germination was highest in root exudates from plants grown in the soil containing compost and GWB, whereas root exudates of plants from a substrate containing WB suppressed the mycelial growth and development of Fol. In conclusion, the plant growth response and disease suppression in biochar containing substrates with additional AMF was affected by the feedstock type. Moreover, application of compost and biochars in the soil influence the quality and composition of root exudates with respect to their effects on soil-dwelling fungi. PMID:26217373

  18. Purification and characterization of an extracellular trypsin-like protease of Fusarium oxysporum var. lini.

    PubMed

    Barata, Ricardo Andrade; Andrade, Milton Hercules Guerra; Rodrigues, Roberta Dias; Castro, Ieso Miranda

    2002-01-01

    An alkaline serineprotease, capable of hydrolyzing Nalpha-benzoyl- dl arginine p-nitroanilide, was secreted by Fusarium oxysporum var. lini grown in the presence of gelatin as the sole nitrogen and carbon source. The protease was purified 65-fold to electrophoretic homogenity from the culture supernatant in a three-step procedure comprising QSepharose chromatography, affinity chromatography, and FPLC on a MonoQ column. SDS-PAGE analysis of the purified protein indicated an estimated molecular mass of 41 kDa. The protease had optimum activity at a reaction temperature of 45 degrees C and showed a rapid decrease of activity at 48 degrees C. The optimum pH was around 8.0. Characterization of the protease showed that Ca2+ and Mg2+ cations increased the activity, which was not inhibited by EDTA or 1,10-phenanthroline. The enzyme activity on Nalpha-benzoyl-DL arginine p-nitroanilide was inhibited by 4-(2-aminoethyl)-benzenesulfonyl fluoride hydrochloride, p-aminobenzamidine dihydrochloride, aprotinin, 3-4 dichloroisocoumarin, and N-tosyl-L-lysine chloromethyl ketone. The enzyme is also inhibited by substrate concentrations higher than 2.5 x 10(-4)M. The protease had a Michaelis-Menten constant of 0.16 mM and a V(max) of 0.60 mumol released product.min(-1).mg(-1) enzyme when assayed in a non-inhibiting substrate concentration. The activity on Nalpha-benzoyl- dl arginine p-nitroanilide was competitively inhibited by p-aminobenzamidine dihydrochoride. A K(i) value of 0.04 mM was obtained.

  19. Compost and biochar alter mycorrhization, tomato root exudation, and development of Fusarium oxysporum f. sp. lycopersici.

    PubMed

    Akhter, Adnan; Hage-Ahmed, Karin; Soja, Gerhard; Steinkellner, Siegrid

    2015-01-01

    Soil amendments like compost and biochar are known to affect soil properties, plant growth as well as soil borne plant pathogens. Complex interactions based on microbial activity and abiotic characteristics are supposed to be responsible for suppressive properties of certain substrates, however, the specific mechanisms of action are still widely unknown. In the present study, the main focus was on the development of the soil borne pathogen, Fusarium oxysporum f.sp. lycopersici (Fol) in tomato (Solanum lycopersicum L.) and changes in root exudates of tomato plants grown in different soil substrate compositions, such as compost (Comp) alone at application rate of 20% (v/v), and in combination with wood biochar (WB; made from beech wood chips) or green waste biochar (GWB; made from garden waste residues) at application rate of 3% (v/v), and/or with additional arbuscular mycorrhizal fungi (AMF). The association of GWB and AMF had a positive effect on tomato plants growth unlike to the plants grown in WB containing a soil substrate. The AMF root colonization was not enhanced by the addition of WB or GWB in the soil substrate, though a bio-protective effect of mycorrhization was evident in both biochar amended treatments against Fol. Compost and biochars altered root exudates differently, which is evident from variable response of in vitro growth and development of Fol. The microconidia germination was highest in root exudates from plants grown in the soil containing compost and GWB, whereas root exudates of plants from a substrate containing WB suppressed the mycelial growth and development of Fol. In conclusion, the plant growth response and disease suppression in biochar containing substrates with additional AMF was affected by the feedstock type. Moreover, application of compost and biochars in the soil influence the quality and composition of root exudates with respect to their effects on soil-dwelling fungi.

  20. Purification and characterization of tomatinase from Fusarium oxysporum f. sp. lycopersici.

    PubMed Central

    Lairini, K; Perez-Espinosa, A; Pineda, M; Ruiz-Rubio, M

    1996-01-01

    The antifungal compound alpha-tomatine, present in tomato plants, has been reported to provide a preformed chemical barrier against phytopathogenic fungi. Fusarium oxysporum f. sp. lycopersici, a tomato pathogen, produces an extracellular enzyme inducible by alpha-tomatine. This enzyme, known as tomatinase, catalyzes the hydrolysis of alpha-tomatine into its nonfungitoxic forms, tomatidine and beta-lycotetraose. The maximal tomatinase activity in the fungal culture medium was observed after 48 h of incubation of germinated conidia at an alpha-tomatine concentration of 20 micrograms/ml. The enzymatic activity in the supernatant was concentrated against polyethylene glycol 35,000, and the enzyme was then purified to electrophoretic homogeneity by a procedure that includes preparative isoelectric focusing and preparative gel electrophoresis as main steps. The purification procedure had a yield of 18%, and the protein was purified about 40-fold. Tomatinase was found to be a monomer of 50 kDa by both native gel electrophoresis and sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The analytical isoelectric focusing of the native tomatinase showed at least five isoforms with pIs ranging from 4.8 to 5.8. Treatment with N-glycosidase F gave a single protein band of 45 kDa, indicating that the 50-kDa protein was N glycosylated. Tomatinase activity was optimum at 45 to 50 degrees C and at pH 5.5 to 7. The enzyme was stable at acidic pH and temperatures below 50 degrees C. The enzyme had no apparent requirement for cofactors, although Co2+ and Mn2+ produced a slight stimulating effect on tomatinase activity. Kinetic experiments at 30 degrees C gave a K(m) of 1.1 mM for alpha-tomatine and a Vmax of 118 mumol/min/mg. An activation energy of 88 kJ/mol was calculated. PMID:8633858

  1. Transcription Factors Encoded on Core and Accessory Chromosomes of Fusarium oxysporum Induce Expression of Effector Genes

    PubMed Central

    van der Does, H. Charlotte; Schmidt, Sarah M.; Langereis, Léon; Hughes, Timothy R.

    2016-01-01

    Proteins secreted by pathogens during host colonization largely determine the outcome of pathogen-host interactions and are commonly called ‘effectors’. In fungal plant pathogens, coordinated transcriptional up-regulation of effector genes is a key feature of pathogenesis and effectors are often encoded in genomic regions with distinct repeat content, histone code and rate of evolution. In the tomato pathogen Fusarium oxysporum f. sp. lycopersici (Fol), effector genes reside on one of four accessory chromosomes, known as the ‘pathogenicity’ chromosome, which can be exchanged between strains through horizontal transfer. The three other accessory chromosomes in the Fol reference strain may also be important for virulence towards tomato. Expression of effector genes in Fol is highly up-regulated upon infection and requires Sge1, a transcription factor encoded on the core genome. Interestingly, the pathogenicity chromosome itself contains 13 predicted transcription factor genes and for all except one, there is a homolog on the core genome. We determined DNA binding specificity for nine transcription factors using oligonucleotide arrays. The binding sites for homologous transcription factors were highly similar, suggesting that extensive neofunctionalization of DNA binding specificity has not occurred. Several DNA binding sites are enriched on accessory chromosomes, and expression of FTF1, its core homolog FTF2 and SGE1 from a constitutive promoter can induce expression of effector genes. The DNA binding sites of only these three transcription factors are enriched among genes up-regulated during infection. We further show that Ftf1, Ftf2 and Sge1 can activate transcription from their binding sites in yeast. RNAseq analysis revealed that in strains with constitutive expression of FTF1, FTF2 or SGE1, expression of a similar set of plant-responsive genes on the pathogenicity chromosome is induced, including most effector genes. We conclude that the Fol

  2. Activation of salicylic acid metabolism and signal transduction can enhance resistance to Fusarium wilt in banana (Musa acuminata L. AAA group, cv. Cavendish).

    PubMed

    Wang, Zhuo; Jia, Caihong; Li, Jingyang; Huang, Suzhen; Xu, Biyu; Jin, Zhiqiang

    2015-01-01

    Fusarium wilt caused by the fungus Fusarium oxysporum f. sp. cubens (Foc) is the most serious disease that attacks banana plants. Salicylic acid (SA) can play a key role in plant-microbe interactions. Our study is the first to examine the role of SA in conferring resistance to Foc TR4 in banana (Musa acuminata L. AAA group, cv. Cavendish), which is the greatest commercial importance cultivar in Musa. We used quantitative real-time reverse polymerase chain reaction (qRT-PCR) to analyze the expression profiles of 45 genes related to SA biosynthesis and downstream signaling pathways in a susceptible banana cultivar (cv. Cavendish) and a resistant banana cultivar (cv. Nongke No. 1) inoculated with Foc TR4. The expression of genes involved in SA biosynthesis and downstream signaling pathways was suppressed in a susceptible cultivar and activated in a resistant cultivar. The SA levels in each treatment arm were measured using high-performance liquid chromatography. SA levels were decreased in the susceptible cultivar and increased in the resistant cultivar. Finally, we examined the contribution of exogenous SA to Foc TR4 resistance in susceptible banana plants. The expression of genes involved in SA biosynthesis and signal transduction pathways as well as SA levels were significantly increased. The results suggest that one reason for banana susceptibility to Foc TR4 is that expression of genes involved in SA biosynthesis and SA levels are suppressed and that the induced resistance observed in banana against Foc TR4 might be a case of salicylic acid-dependent systemic acquired resistance.

  3. The tomato I-3 gene: a novel gene for resistance to Fusarium wilt disease.

    PubMed

    Catanzariti, Ann-Maree; Lim, Ginny T T; Jones, David A

    2015-07-01

    Plant resistance proteins provide race-specific immunity through the recognition of pathogen effectors. The resistance genes I, I-2 and I-3 have been incorporated into cultivated tomato (Solanum lycopersicum) from wild tomato species to confer resistance against Fusarium oxysporum f. sp. lycopersici (Fol) races 1, 2 and 3, respectively. Although the Fol effectors corresponding to these resistance genes have all been identified, only the I-2 resistance gene has been isolated from tomato. To isolate the I-3 resistance gene, we employed a map-based cloning approach and used transgenic complementation to test candidate genes for resistance to Fol race 3. Here, we describe the fine mapping and sequencing of genes at the I-3 locus, which revealed a family of S-receptor-like kinase (SRLK) genes. Transgenic tomato lines were generated with three of these SRLK genes and one was found to confer Avr3-dependent resistance to Fol race 3, confirming it to be I-3. The finding that I-3 encodes an SRLK reveals a new pathway for Fol resistance and a new class of resistance genes, of which Pi-d2 from rice is also a member. The identification of I-3 also allows the investigation of the complex effector-resistance protein interaction involving Avr1-mediated suppression of I-2- and I-3-dependent resistance in tomato.

  4. The Transcription Factor Con7-1 Is a Master Regulator of Morphogenesis and Virulence in Fusarium oxysporum.

    PubMed

    Ruiz-Roldán, Carmen; Pareja-Jaime, Yolanda; González-Reyes, José Antonio; Roncero, M Isabel G

    2015-01-01

    Previous studies have demonstrated the essential role of morphogenetic regulation in Fusarium oxysporum pathogenesis, including processes such as cell-wall biogenesis, cell division, and differentiation of infection-like structures. We identified three F. oxysporum genes encoding predicted transcription factors showing significant identities to Magnaporthe oryzae Con7p, Con7-1, plus two identical copies of Con7-2. Targeted deletion of con7-1 produced nonpathogenic mutants with altered morphogenesis, including defects in cell wall structure, polar growth, hyphal branching, and conidiation. By contrast, simultaneous inactivation of both con7-2 copies caused no detectable defects in the resulting mutants. Comparative microarray-based gene expression analysis indicated that Con7-1 modulates the expression of a large number of genes involved in different biological functions, including host-pathogen interactions, morphogenesis and development, signal perception and transduction, transcriptional regulation, and primary and secondary metabolism. Taken together, our results point to Con7-1 as general regulator of morphogenesis and virulence in F. oxysporum.

  5. Suppressor of fusion, a Fusarium oxysporum homolog of Ndt80, is required for nutrient-dependent regulation of anastomosis.

    PubMed

    Shahi, Shermineh; Fokkens, Like; Houterman, Petra M; Rep, Martijn

    2016-10-01

    Heterokaryon formation is an essential step in asexual recombination in Fusarium oxysporum. Filamentous fungi have an elaborate nonself recognition machinery to prevent formation and proliferation of heterokaryotic cells, called heterokaryon incompatibility (HI). In F. oxysporum the regulation of this machinery is not well understood. In Neurospora crassa, Vib-1, a putative transcription factor of the p53-like Ndt80 family of transcription factors, has been identified as global regulator of HI. In this study we investigated the role of the F. oxysporum homolog of Vib-1, called Suf, in vegetative hyphal and conidial anastomosis tube (CAT) fusion and HI. We identified a novel function for an Ndt80 homolog as a nutrient-dependent regulator of anastomosis. Strains carrying the SUF deletion mutation display a hyper-fusion phenotype during vegetative growth as well as germling development. In addition, conidial paring of incompatible SUF deletion strains led to more heterokaryon formation, which is independent of suppression of HI. Our data provides further proof for the divergence in the functions of different members Ndt80 family. We propose that Ndt80 homologs mediate responses to nutrient quality and quantity, with specific responses varying between species.

  6. Genetic diversity of Fusarium oxysporum f.sp. cubense isolates (Foc) of India by inter simple sequence repeats (ISSR) analysis.

    PubMed

    Thangavelu, R; Kumar, K Muthu; Devi, P Ganga; Mustaffa, M M

    2012-07-01

    To find out the genetic diversity of Indian Foc isolates of banana, a total of 107 isolates of Fusarium which includes 98 Foc isolates obtained from different banana growing regions of India and seven Foc isolates belong to all known VCGs obtained from Australia and two non-pathogenic Fusarium oxysporum (npFo) isolates were subjected to ISSR analysis. In the initial screening of ISSR primers, out of 34, 10 primers which generated more polymorphic bands were selected for further analysis. The Phylogenetic analysis carried out based on the fingerprints obtained through ISSR analysis indicated the presence of wide genetic diversity among the Foc isolates of India and also its polyphyletic nature. Totally, seven different clusters were obtained and these clusters differentiated the Foc isolates of India based on the races/VCGs. Besides, the cluster analysis clearly distinguished the freshly emerged Foc strain obtained from cv. Grand Naine (Cavendish-AAA) and Poovan (Mysore-AAB) from the other Foc isolates. The non-pathogenic F. oxysporum isolates which have been included for comparison purpose also clustered separately. All these above said findings indicates for the first time the discriminatory power of ISSR to clearly distinguish and separate the Foc isolates according to its race/VCGs and also its virulence. This study would be useful not only to design and develop effective management strategies but also useful for quarantine purposes.

  7. Volatile Substances Produced by Fusarium oxysporum from Coffee Rhizosphere and Other Microbes affect Meloidogyne incognita and Arthrobotrys conoides

    PubMed Central

    Freire, E. S.; Campos, V. P.; Pinho, R. S. C.; Oliveira, D. F.; Faria, M. R.; Pohlit, A. M.; Noberto, N. P.; Rezende, E. L.; Pfenning, L. H.; Silva, J. R. C.

    2012-01-01

    Microorganisms produce volatile organic compounds (VOCs) which mediate interactions with other organisms and may be the basis for the development of new methods to control plant-parasitic nematodes that damage coffee plants. In the present work, 35 fungal isolates were isolated from coffee plant rhizosphere, Meloidogyne exigua eggs and egg masses. Most of the fungal isolates belonged to the genus Fusarium and presented in vitro antagonism classified as mutual exclusion and parasitism against the nematode-predator fungus Arthrobotrys conoides (isolated from coffee roots). These results and the stronger activity of VOCs against this fungus by 12 endophytic bacteria may account for the failure of A. conoides to reduce plant-parasitic nematodes in coffee fields. VOCs from 13 fungal isolates caused more than 40% immobility to Meloidogyne incognita second stage juveniles (J2), and those of three isolates (two Fusarium oxysporum isolates and an F. solani isolate) also led to 88-96% J2 mortality. M. incognita J2 infectivity decreased as a function of increased exposure time to F. oxysporum isolate 21 VOCs. Gas chromatography-mass spectrometry (GC-MS) analysis lead to the detection of 38 VOCs produced by F. oxysporum is. 21 culture. Only five were present in amounts above 1% of the total: dioctyl disulfide (it may also be 2-propyldecan-1-ol or 1-(2-hydroxyethoxy) tridecane); caryophyllene; 4-methyl-2,6-di-tert-butylphenol; and acoradiene. One of them was not identified. Volatiles toxic to nematodes make a difference among interacting microorganisms in coffee rhizosphere defining an additional attribute of a biocontrol agent against plant-parasitic nematodes. PMID:23482720

  8. Draft Genome Sequence of Rhizobium sp. Strain TBD182, an Antagonist of the Plant-Pathogenic Fungus Fusarium oxysporum, Isolated from a Novel Hydroponics System Using Organic Fertilizer.

    PubMed

    Iida, Yuichiro; Fujiwara, Kazuki; Someya, Nobutaka; Shinohara, Makoto

    2017-03-16

    Rhizobium sp. strain TBD182, isolated from a novel hydroponics system, is an antagonistic bacterium that inhibits the mycelial growth of Fusarium oxysporum but does not eliminate the pathogen. We report the draft genome sequence of TBD182, which may contribute to elucidation of the molecular mechanisms of its fungistatic activity.

  9. Involvement of fub4, a putative serine hydrolase, in fusaric acid biosynthesis in the cotton pathogen Fusarium oxysporum f. sp. vasinfectum

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Previous work has determined that fusaric acid is required for virulence in the Australian isolate of Fusarium oxysporum f. sp. vasinfectum (Fov), which produce copious amounts of fusaric acid. Race 4 isolates, identified in the San Joaquin Valley of California, has caused serious losses and is a p...

  10. Detection of Fusarium oxysporum f. sp. vasinfectum race 3 by single-base extension method and allele-specific polymerase chain reaction

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We developed allele specific (AS) SNP primers for rapid detection of Fusarium oxysporum f.sp vasinfectum (FOV) race 3. FOV_BT_SNP_R3 and FOV_BT_AS_R3 primers were designed based on single nucleotide polymorphisms of partial sequence alignment of the ß-tubulin (BT) gene from several FOV races. These ...

  11. Induction of Phytoalexins in Seabrook Sea Island, Pima S-7 and Pima S-6 Cottons after Inoculation with Fusarium oxysporum f. sp. vasinfectum Race-4

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In 2002, a strain of Fusarium oxysporum f. sp. vasinfectum was found in California cotton fields and identified as race 4. Stem inoculations with isolates of the California strain (CA Fov-4) do not elicit symptoms in controlled-environmental chamber experiments, while stem inoculations with Fov rac...

  12. Strain of Fusarium oxysporum Isolated From Almond Hulls Produces Styrene and 7-Methyl-1,3,5-Cyclooctatriene as the Principal Volatile Components

    Technology Transfer Automated Retrieval System (TEKTRAN)

    An isolated strain of Fusarium oxysporum from the hulls of Prunus dulcis (sweet almond) was found to produce relatively large quantities of the hydrocarbons styrene and three isomers of 7-methyl-1,3,5-cyclooctatriene (MCOT). Production of styrene and MCOT was reproduced on small scale using potato d...

  13. Comparative genomics and prediction of conditionally dispensable sequences in legume-infecting Fusarium oxysporum formae speciales facilitates identification of candidate effectors

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Focusing on the identification of pathogenicity gene content, we leveraged the reference genomes of Fusarium pathogens F. oxysporum f. sp. lycopersici (tomato-infecting) and F. solani (pea-infecting) and their well-characterised core and dispensable chromosomes to predict genomic organisation in the...

  14. Draft Genome Sequence of Rhizobium sp. Strain TBD182, an Antagonist of the Plant-Pathogenic Fungus Fusarium oxysporum, Isolated from a Novel Hydroponics System Using Organic Fertilizer

    PubMed Central

    Fujiwara, Kazuki; Someya, Nobutaka; Shinohara, Makoto

    2017-01-01

    ABSTRACT Rhizobium sp. strain TBD182, isolated from a novel hydroponics system, is an antagonistic bacterium that inhibits the mycelial growth of Fusarium oxysporum but does not eliminate the pathogen. We report the draft genome sequence of TBD182, which may contribute to elucidation of the molecular mechanisms of its fungistatic activity. PMID:28302768

  15. Specific PCR detection of Fusarium oxysporum f. sp. vasinfectum California Race 4 based on a unique Tfo1 insertion event in the PHO gene

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A highly virulent race 4 (Cal race 4) of Fusarium oxysporum f. sp. vasinfectum (Fov) was identified in California cotton fields in 2001, and has since been found in increasing numbers of fields. Cal race 4 isolates contain a unique Tfo1 transposon insertion in the PHO gene that was not found in othe...

  16. Escherichia coli can produce recombinant chitinase in the soil to control the pathogenesis by Fusarium oxysporum without colonization.

    PubMed

    Chung, Soohee; Kim, Sang-Dal

    2007-03-01

    Fusarium wilt of cucumbers was effectively controlled by Escherichia coli expressing an endochitinase gene (chiA), and the rate was as effective (60.0%) as the wildtype strain S. proteamaculans 3095 (55.0%) where the gene was cloned. However, live cells of soil inoculated E. coli host harboring the chiA gene did not proliferate but declined 100-fold from 108 CFU during the first week and showed less than 10 cells after day 14, suggesting that E. coli was able to express and produce the chitinase enzyme to the soil even as the population was gradually decreasing. Because the majority of the strains was alive for only a short period of time and the Fusarium-affected seedlings showed symptoms of wilting within 7-10 days, it seems that the pathogen control was decided early after the introduction of the biocontrol agent, eliminating the survival of the antagonist. These results indicated that soil inoculated E. coli could sufficiently express and produce the recombinant protein to control the pathogen, and root or soil colonization of the antagonist might not be a significant factor in determining the efficacy of biological control.

  17. Evaluations of shorter exposures of contact lens cleaning solutions against Fusarium oxysporum species complex and Fusarium solani species complex to simulate inappropriate usage.

    PubMed

    Ramani, Rama; Chaturvedi, Vishnu

    2011-05-01

    An outbreak of Fusarium keratitis in contact lens users resulted in withdrawal of ReNu with MoistureLoc solution, although the exact cause of the outbreak remains enigmatic. We evaluated current and discontinued multipurpose cleaning solutions (MPSs; MoistureLoc, Equate, MultiPlus, and OptiFree Express) against plankton- and biofilm-derived cells of Fusarium oxysporum species complex (FOSC) and F. solani species complex (FSSC). The methods included a traditional assay based on CFU counts and a novel flow cytometry (FC) assay based on percent cell subpopulation (PCS) stained with two fluorochromes (Sytox Red and 5-chloromethylfluorescein diacetate). The tests were done with the respective manufacturers' recommended cleaning regimens (240 to 360 min) and under shorter exposures (15 to 60 min) to simulate inappropriate usage by the customers. FC assay measured PCS, which was available rapidly, in 5 to 7 h, whereas 24 to 48 h was needed for CFU counts, and there was good correlation between the two methods (r2=0.97). FC assays allowed identification of injured fungal cells, which are likely to be missed with growth assays. In general, a time- and inoculum-dependent survival pattern was seen for both FOSC and FSSC cells, and biofilm-derived cells were more resistant than plankton-derived cells. MultiPlus and Equate produced 100% sterilization of fungi even under shorter exposures. However, biofilm FOSC and FSSC cells survived for up to 4 h in MoistureLoc solution and up to 6 h in OptiFree Express solution under shorter exposure times. This finding was enigmatic, as OptiFree Express is not associated with any outbreak of Fusarium keratitis. This study provides additional support for possible roles that improper lens cleaning regimens and fungal biofilms could play as predisposing factors for Fusarium keratitis.

  18. Structural and Biochemical Changes in Salicylic-Acid-Treated Date Palm Roots Challenged with Fusarium oxysporum f. sp. albedinis

    PubMed Central

    Dihazi, Abdelhi; Serghini, Mohammed Amine; Jaiti, Fatima; Daayf, Fouad; Driouich, Azeddine; Dihazi, Hassan; El Hadrami, Ismail

    2011-01-01

    Histochemical and ultrastructural analyses were carried out to assess structural and biochemical changes in date palm roots pretreated with salicylic acid (SA) then inoculated with Fusarium oxysporum f. sp. albedinis (Foa). Flavonoids, induced proteins, and peroxidase activity were revealed in root tissues of SA-treated plants after challenge by Foa. These reactions were closely associated with plant resistance to Foa. Host reactions induced after inoculation of SA-treated plants with Foa included the plugging of intercellular spaces, the deposition of electron-dense materials at the sites of pathogen penetration, and several damages to fungal cells. On the other hand, untreated inoculated plants showed marked cell wall degradation and total cytoplasm disorganization, indicating the protective effects provided by salicylic acid in treated plants. PMID:22567327

  19. Identification of I-7 expands the repertoire of genes for resistance to Fusarium wilt in tomato to three resistance gene classes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The tomato I-3 and I-7 genes confer resistance to Fusarium oxysporum f. sp. lycopersici (Fol) race 3 and both genes were introgressed into the cultivated tomato, Solanum lycopersicum, from the wild relative Solanum pennellii. I-3 was identified previously and encodes a S-receptor-like kinase, but li...

  20. The Fusarium oxysporum gnt2, encoding a putative N-acetylglucosamine transferase, is involved in cell wall architecture and virulence.

    PubMed

    López-Fernández, Loida; Ruiz-Roldán, Carmen; Pareja-Jaime, Yolanda; Prieto, Alicia; Khraiwesh, Husam; Roncero, M Isabel G

    2013-01-01

    With the aim to decipher the molecular dialogue and cross talk between Fusarium oxysporum f.sp. lycopersci and its host during infection and to understand the molecular bases that govern fungal pathogenicity, we analysed genes presumably encoding N-acetylglucosaminyl transferases, involved in glycosylation of glycoproteins, glycolipids, proteoglycans or small molecule acceptors in other microorganisms. In silico analysis revealed the existence of seven putative N-glycosyl transferase encoding genes (named gnt) in F. oxysporum f.sp. lycopersici genome. gnt2 deletion mutants showed a dramatic reduction in virulence on both plant and animal hosts. Δgnt2 mutants had αalterations in cell wall properties related to terminal αor β-linked N-acetyl glucosamine. Mutant conidia and germlings also showed differences in structure and physicochemical surface properties. Conidial and hyphal aggregation differed between the mutant and wild type strains, in a pH independent manner. Transmission electron micrographs of germlings showed strong cell-to-cell adherence and the presence of an extracellular chemical matrix. Δgnt2 cell walls presented a significant reduction in N-linked oligosaccharides, suggesting the involvement of Gnt2 in N-glycosylation of cell wall proteins. Gnt2 was localized in Golgi-like sub-cellular compartments as determined by fluorescence microscopy of GFP::Gnt2 fusion protein after treatment with the antibiotic brefeldin A or by staining with fluorescent sphingolipid BODIPY-TR ceramide. Furthermore, density gradient ultracentrifugation allowed co-localization of GFP::Gnt2 fusion protein and Vps10p in subcellular fractions enriched in Golgi specific enzymatic activities. Our results suggest that N-acetylglucosaminyl transferases are key components for cell wall structure and influence interactions of F. oxysporum with both plant and animal hosts during pathogenicity.

  1. Extraction optimization of water-extracted mycelial polysaccharide from endophytic fungus Fusarium oxysporum Dzf17 by response surface methodology.

    PubMed

    Li, Peiqin; Lu, Shiqiong; Shan, Tijiang; Mou, Yan; Li, Yan; Sun, Weibo; Zhou, Ligang

    2012-01-01

    Water-extracted mycelial polysaccharide (WPS) from the endophytic fungus Fusarium oxysporum Dzf17 isolated from Dioscorea zingiberensis was found to be an efficient elicitor to enhance diosgenin accumulation in D. zingigerensis cultures, and also demonstrated antioxidant activity. In this study, response surface methodology (RSM) was employed to optimize the extraction process of WPS from F. oxysporum Dzf17 using Box-Behnken design (BBD). The ranges of the factors investigated were 1-3 h for extraction time (X(1)), 80-100 °C for extraction temperature (X(2)), and 20-40 (v/w) for ratio of water volume (mL) to raw material weight (g) (X(3)). The experimental data obtained were fitted to a second-order polynomial equation using multiple regression analysis. Statistical analysis showed that the polynomial regression model was in good agreement with the experimental results with the determination coefficient (R(2)) of 0.9978. By solving the regression equation and analyzing the response surface contour plots, the extraction parameters were optimized as 1.7 h for extraction time, 95 °C for extraction temperature, 39 (v/w) for ratio of water volume (mL) to raw material weight (g), and with 2 extractions. The maximum value (10.862%) of WPS yield was obtained when the WPS extraction process was conducted under the optimal conditions.

  2. Solid-state cultures of Fusarium oxysporum transform aromatic components of olive-mill dry residue and reduce its phytotoxicity.

    PubMed

    Sampedro, Inmaculada; D'Annibale, Alessandro; Ocampo, Juan A; Stazi, Silvia R; García-Romera, Inmaculada

    2007-12-01

    The present study mainly investigated the ability of solid-state cultures of the non-pathogenic Fusarium oxysporum strain BAFC 738 to transform aromatic components to reduce the phytotoxicity in olive-mill dry residue (DOR), the waste from the two-phase manufacturing process. Lignin, hemicellulose, fats and water-soluble extractives contents of DOR colonized by the fungus for 20 weeks were reduced by 16%, 25%, 71% and 13%, respectively, while the cellulose content increased by 25%. In addition, the ethyl acetate-extractable phenolic fraction of the waste was reduced by 65%. However, mass-balance ultra-filtration and size-exclusion chromatography experiments suggested that the apparent removal of that fraction, mainly including 2-(3,4-dihydroxyphenyl)ethyl alcohol and 2-(4-hydroxyphenyl)ethyl alcohol, was due to polymerization. Mn-peroxidase and Mn-independent peroxidase activities were found in F. oxysporum solid-state cultures, while laccase and aryl alcohol oxidase activities were not detected. Tests performed with seedlings of tomato (Lycopersicum esculentum L.), soybean (Glycine maximum Merr.), and alfalfa (Medicago sativa L.) grown on soils containing 6% (w/w) of bioconverted DOR (kg soil)(-1) showed that the waste's phytotoxicity was removed by 20 weeks-old fungal cultures. By contrast, the same material exhibited a high residual toxicity towards lettuce (Lactuca sativa L.).

  3. Extraction Optimization of Water-Extracted Mycelial Polysaccharide from Endophytic Fungus Fusarium oxysporum Dzf17 by Response Surface Methodology

    PubMed Central

    Li, Peiqin; Lu, Shiqiong; Shan, Tijiang; Mou, Yan; Li, Yan; Sun, Weibo; Zhou, Ligang

    2012-01-01

    Water-extracted mycelial polysaccharide (WPS) from the endophytic fungus Fusarium oxysporum Dzf17 isolated from Dioscorea zingiberensis was found to be an efficient elicitor to enhance diosgenin accumulation in D. zingigerensis cultures, and also demonstrated antioxidant activity. In this study, response surface methodology (RSM) was employed to optimize the extraction process of WPS from F. oxysporum Dzf17 using Box-Behnken design (BBD). The ranges of the factors investigated were 1–3 h for extraction time (X1), 80–100 °C for extraction temperature (X2), and 20–40 (v/w) for ratio of water volume (mL) to raw material weight (g) (X3). The experimental data obtained were fitted to a second-order polynomial equation using multiple regression analysis. Statistical analysis showed that the polynomial regression model was in good agreement with the experimental results with the determination coefficient (R2) of 0.9978. By solving the regression equation and analyzing the response surface contour plots, the extraction parameters were optimized as 1.7 h for extraction time, 95 °C for extraction temperature, 39 (v/w) for ratio of water volume (mL) to raw material weight (g), and with 2 extractions. The maximum value (10.862%) of WPS yield was obtained when the WPS extraction process was conducted under the optimal conditions. PMID:22754306

  4. Silver nanoparticle production by the fungus Fusarium oxysporum: nanoparticle characterisation and analysis of antifungal activity against pathogenic yeasts

    PubMed Central

    Ishida, Kelly; Cipriano, Talita Ferreira; Rocha, Gustavo Miranda; Weissmüller, Gilberto; Gomes, Fabio; Miranda, Kildare; Rozental, Sonia

    2013-01-01

    The microbial synthesis of nanoparticles is a green chemistry approach that combines nanotechnology and microbial biotechnology. The aim of this study was to obtain silver nanoparticles (SNPs) using aqueous extract from the filamentous fungus Fusarium oxysporum as an alternative to chemical procedures and to evaluate its antifungal activity. SNPs production increased in a concentration-dependent way up to 1 mM silver nitrate until 30 days of reaction. Monodispersed and spherical SNPs were predominantly produced. After 60 days, it was possible to observe degenerated SNPs with in additional needle morphology. The SNPs showed a high antifungal activity against Candida and Cryptococcus , with minimum inhibitory concentration values ≤ 1.68 µg/mL for both genera. Morphological alterations of Cryptococcus neoformans treated with SNPs were observed such as disruption of the cell wall and cytoplasmic membrane and lost of the cytoplasm content. This work revealed that SNPs can be easily produced by F. oxysporum aqueous extracts and may be a feasible, low-cost, environmentally friendly method for generating stable and uniformly sized SNPs. Finally, we have demonstrated that these SNPs are active against pathogenic fungi, such as Candida and Cryptococcus . PMID:24714966

  5. Shifts in banana root exudate profiles after colonization with the non-pathogenic Fusarium oxysporum strain Fo162.

    PubMed

    Kurtz, Andreas; Schouten, Alexander

    2009-01-01

    The non-pathogenic fungus Fusorium oxysporum strain Fo162 can efficiently colonize banana roots and reduce infecting by the burrowing nematode Radopholus similis. It is assumed that the fungus triggers a systemic reaction in the plant, which is affecting the biochemical composition of the root exudates and is thus causing the reduction in nematode colonization. To characterize these shifts, a continuous flow experiment was set up to collect root metabolites on a matrix (XAD-4). Based on HPLC analysis, the extracts, collected from the XAD-4, showed no differences in the composition of the root exudates between plants colonized by the endophyte and the controls. However, the accumulation of several compounds differed significantly. When these extracts were used in a bioassay with Radopholus similis none of the sample-treatment combinations had a significant attracting or repelling effect on the nematodes. This experiment shows that non-pathogenic Fusarium oxysporum strain Fo162 is able to upregulate the synthesis of at least some, so far unidentified compounds released by banana roots under hydroponic conditions. Further studies and optimization of the experimental setup are required to determine whether or not increase in metabolite concentration can affect nematode responses in vitro and ultimately in vivo.

  6. Silver nanoparticle production by the fungus Fusarium oxysporum: nanoparticle characterisation and analysis of antifungal activity against pathogenic yeasts.

    PubMed

    Ishida, Kelly; Cipriano, Talita Ferreira; Rocha, Gustavo Miranda; Weissmüller, Gilberto; Gomes, Fabio; Miranda, Kildare; Rozental, Sonia

    2014-04-01

    The microbial synthesis of nanoparticles is a green chemistry approach that combines nanotechnology and microbial biotechnology. The aim of this study was to obtain silver nanoparticles (SNPs) using aqueous extract from the filamentous fungus Fusarium oxysporum as an alternative to chemical procedures and to evaluate its antifungal activity. SNPs production increased in a concentration-dependent way up to 1 mM silver nitrate until 30 days of reaction. Monodispersed and spherical SNPs were predominantly produced. After 60 days, it was possible to observe degenerated SNPs with in additional needle morphology. The SNPs showed a high antifungal activity against Candida and Cryptococcus , with minimum inhibitory concentration values ≤ 1.68 µg/mL for both genera. Morphological alterations of Cryptococcus neoformans treated with SNPs were observed such as disruption of the cell wall and cytoplasmic membrane and lost of the cytoplasm content. This work revealed that SNPs can be easily produced by F. oxysporum aqueous extracts and may be a feasible, low-cost, environmentally friendly method for generating stable and uniformly sized SNPs. Finally, we have demonstrated that these SNPs are active against pathogenic fungi, such as Candida and Cryptococcus.

  7. Characterization of a JAZ7 activation-tagged Arabidopsis mutant with increased susceptibility to the fungal pathogen Fusarium oxysporum.

    PubMed

    Thatcher, Louise F; Cevik, Volkan; Grant, Murray; Zhai, Bing; Jones, Jonathan D G; Manners, John M; Kazan, Kemal

    2016-04-01

    In Arabidopsis, jasmonate (JA)-signaling plays a key role in mediating Fusarium oxysporum disease outcome. However, the roles of JASMONATE ZIM-domain (JAZ) proteins that repress JA-signaling have not been characterized in host resistance or susceptibility to this pathogen. Here, we found most JAZ genes are induced following F. oxysporum challenge, and screening T-DNA insertion lines in Arabidopsis JAZ family members identified a highly disease-susceptible JAZ7 mutant (jaz7-1D). This mutant exhibited constitutive JAZ7 expression and conferred increased JA-sensitivity, suggesting activation of JA-signaling. Unlike jaz7 loss-of-function alleles, jaz7-1D also had enhanced JA-responsive gene expression, altered development and increased susceptibility to the bacterial pathogen PstDC3000 that also disrupts host JA-responses. We also demonstrate that JAZ7 interacts with transcription factors functioning as activators (MYC3, MYC4) or repressors (JAM1) of JA-signaling and contains a functional EAR repressor motif mediating transcriptional repression via the co-repressor TOPLESS (TPL). We propose through direct TPL recruitment, in wild-type plants JAZ7 functions as a repressor within the JA-response network and that in jaz7-1D plants, misregulated ectopic JAZ7 expression hyper-activates JA-signaling in part by disturbing finely-tuned COI1-JAZ-TPL-TF complexes.

  8. Impact of biological control agents on fusaric acid secreted from Fusarium oxysporum f. sp. gladioli (Massey) Snyder and Hansen in Gladiolus grandiflorus corms.

    PubMed

    Nosir, Walid; McDonald, Jim; Woodward, Steve

    2011-01-01

    Fusaric acid (FA) (5-n-butylpuridine 2-carboxyl acid), a highly toxic secondary metabolite produced by Fusarium oxysporum strains, plays a significant role in disease development. The abilities of three F. oxysporum f. sp. gladioli (Massey) Snyder and Hansen isolates (G010; 649-91; and 160-57) to produce FA in infected Gladiolus corm tissues was evaluated in vitro in relation to the presence of two biological control agents, Trichoderma harzianum T22, and Aneurinobacillus migulanus. Pathogenicity tests were used to differentiate between the abilities of the F. oxysporum strains to secrete FA. FA was identified using LC/MS and quantified using HPLC. Isolate G010 was significantly more virulent (P < 0.01) on Gladiolus grandiflorus corms; it secretes 1.8 μM FA/g fresh weight corm into inoculated Gladiolus. Moreover, G010 was the only isolate that produced FA among the three examined isolates. There was a correlation between the corm lesion area and the FA secretion ability of F. oxysporum f. sp. gladioli (P < 0.001; r (2) = 0.96). No FA was detected in PDA cultures of F.oxysporum f. sp. gladioli isolates. The presence of T. harzianum T22 appeared to prevent FA secretion into the corms. In the presence of A. migulanus, however, the amount of FA secreted into the corm tissues increased. These results support the use of T. harzianum as an effective biological control agent against F. oxysporum f. sp. gladioli.

  9. Registration of five pima cotton germplasm lines (SJ-FR05 - FR09) with improved resistance to fusarium wilt race 4 and good lint yield and fiber quality

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cotton breeders continue to need alternative sources of cotton breeding lines for improving Fusarium wilt (FOV race 4) resistance in Pima cotton in California. FOV race 4 is a fungus that has impacted cotton yields in the San Joaquin Valley (SJV) for the last 12 years. For this purpose, the Agricult...

  10. Priming of seeds with methyl jasmonate induced resistance to hemi-biotroph Fusarium oxysporum f.sp. lycopersici in tomato via 12-oxo-phytodienoic acid, salicylic acid, and flavonol accumulation.

    PubMed

    Król, P; Igielski, R; Pollmann, S; Kępczyńska, E

    2015-05-01

    Methyl jasmonate (MeJA) was tested by seed treatment for its ability to protect tomato seedlings against fusarium wilt caused by the soil-borne fungal pathogen Fusarium oxysporum f.sp. lycopersici. Isolated from Solanum lycopersicon L. seeds, cv. Beta fungus was identified as F. oxysporum f.sp. lycopersici Race 3 fungus by using phytopathological and molecular methods. MeJA applied at 0.01, 0.1 and 1 mM reduced spore germination and mycelial growth in vitro. Soaking of tomato seeds in MeJA solution at 0.1 mM for 1 h significantly enhanced the resistance level against the tested fungus in tomato seedlings 4 weeks after inoculation. The extracts from leaves of 15-day-old seedlings obtained from previously MeJA soaked seeds had the ability to inhibit in vitro spore germination of tested fungus. In these seedlings a significant increase in the levels phenolic compounds such as salicylic acid (SA), kaempferol and quercetin was observed. Up-regulation of phenylalanine ammonia-lyase (PAL5) and benzoic acid/salicylic acid carboxyl methyltransferase (BSMT) genes and down-regulation of the isochorysmate synthase (ICS) gene in response to exogenous MeJA application indicate that the phenylalanine ammonia-lyase (PAL), not the isochorismate (IC) pathway, is the primary route for SA production in tomato. Moreover, the increased accumulation of the flavonols quercetin and kaempferol appears closely related to the increase of PAL5, chalcone synthase (CHS) and flavonol synthase/flavanone 3-hydroxylase-like (FLS) genes. Elevated levels of salicylic acid in seedlings raised from MeJA-soaked seeds were simultaneously accompanied by a decrease of jasmonic acid, the precursor of MeJA, and an increase of 12-oxo-phytodienoic acid (OPDA), the precursor of jasmonic acid. The present results indicate that the priming of tomato seeds with 0.1mM MeJA before sowing enables the seedlings grown from these seeds to reduce the attack of the soil-borne fungal pathogen F. oxysporum f.sp. lycopersici

  11. [Characteristics of micromycets Fusarium oxysporum recovered from an artificial soil for space greenhouse after chronic exposure to low doses of ionizing radiation].

    PubMed

    Smolianina, S O; Tsetlin, V V; Berkovich, Iu A; Korsak, I V

    2007-01-01

    Growth and development of Fusarium oxysporum intact strain and strains subjected to irradiation by low gamma-neutron doses were studied during cultivation on intact substrate and substrate irradiated by a gamma-source at 29 microGy. There was a striking difference in growth and sporification between the strains cultivated on irradiated and intact substrates. Irradiated Fusarium oxysporum strains exhibited manifest antagonism to one another and the non-irradiated strain. Electroconductivity of substrate after gamma-irradiation at low doses was noted to slow down markedly. The authors come to the conclusion that nutrient molecules may become more available to micromycets because of alteration of proton activity in consequence of preliminary irradiation.

  12. A newly developed real-time PCR assay for detection and quantification of Fusarium oxysporum and its use in compatible and incompatible interactions with grafted melon genotypes.

    PubMed

    Haegi, Anita; Catalano, Valentina; Luongo, Laura; Vitale, Salvatore; Scotton, Michele; Ficcadenti, Nadia; Belisario, Alessandra

    2013-08-01

    A reliable and species-specific real-time quantitative polymerase chain reaction (qPCR) assay was developed for detection of the complex soilborne anamorphic fungus Fusarium oxysporum. The new primer pair, designed on the translation elongation factor 1-α gene with an amplicon of 142 bp, was highly specific to F. oxysporum without cross reactions with other Fusarium spp. The protocol was applied to grafted melon plants for the detection and quantification of F. oxysporum f. sp. melonis, a devastating pathogen of this cucurbit. Grafting technologies are widely used in melon to confer resistance against new virulent races of F. oxysporum f. sp. melonis, while maintaining the properties of valuable commercial varieties. However, the effects on the vascular pathogen colonization have not been fully investigated. Analyses were performed on 'Charentais-T' (susceptible) and 'Nad-1' (resistant) melon cultivars, both used either as rootstock and scion, and inoculated with F. oxysporum f. sp. melonis race 1 and race 1,2. Pathogen development was compared using qPCR and isolations from stem tissues. Early asymptomatic melon infections were detected with a quantification limit of 1 pg of fungal DNA. The qPCR protocol clearly showed that fungal development was highly affected by host-pathogen interaction (compatible or incompatible) and time (days postinoculation). The principal significant effect (P ≤ 0.01) on fungal development was due to the melon genotype used as rootstock, and this effect had a significant interaction with time and F. oxysporum f. sp. melonis race. In particular, the amount of race 1,2 DNA was significantly higher compared with that estimated for race 1 in the incompatible interaction at 18 days postinoculation. The two fungal races were always present in both the rootstock and scion of grafted plants in either the compatible or incompatible interaction.

  13. Risk Levels of Invasive Fusarium oxysporum f. sp. in Areas Suitable for Date Palm (Phoenix dactylifera) Cultivation under Various Climate Change Projections

    PubMed Central

    Shabani, Farzin; Kumar, Lalit

    2013-01-01

    Global climate model outputs involve uncertainties in prediction, which could be reduced by identifying agreements between the output results of different models, covering all assumptions included in each. Fusarium oxysporum f.sp. is an invasive pathogen that poses risk to date palm cultivation, among other crops. Therefore, in this study, the future distribution of invasive Fusarium oxysporum f.sp., confirmed by CSIRO-Mk3.0 (CS) and MIROC-H (MR) GCMs, was modeled and combined with the future distribution of date palm predicted by the same GCMs, to identify areas suitable for date palm cultivation with different risk levels of invasive Fusarium oxysporum f.sp., for 2030, 2050, 2070 and 2100. Results showed that 40%, 37%, 33% and 28% areas projected to become highly conducive to date palm are under high risk of its lethal fungus, compared with 37%, 39%, 43% and 42% under low risk, for the chosen years respectively. Our study also indicates that areas with marginal risk will be limited to 231, 212, 186 and 172 million hectares by 2030, 2050, 2070 and 2100. The study further demonstrates that CLIMEX outputs refined by a combination of different GCMs results of different species that have symbiosis or parasite relationship, ensure that the predictions become robust, rather than producing hypothetical findings, limited purely to publication. PMID:24340100

  14. Molecular phylogeny, pathogenicity and toxigenicity of Fusarium oxysporum f. sp. lycopersici

    PubMed Central

    Nirmaladevi, D.; Venkataramana, M.; Srivastava, Rakesh K.; Uppalapati, S. R.; Gupta, Vijai Kumar; Yli-Mattila, T.; Clement Tsui, K. M.; Srinivas, C.; Niranjana, S. R.; Chandra, Nayaka S.

    2016-01-01

    The present study aimed at the molecular characterization of pathogenic and non pathogenic F. oxysporum f. sp. lycopersici strains isolated from tomato. The causal agent isolated from symptomatic plants and soil samples was identified based on morphological and molecular analyses. Pathogenicity testing of 69 strains on five susceptible tomato varieties showed 45% of the strains were highly virulent and 30% were moderately virulent. Molecular analysis based on the fingerprints obtained through ISSR indicated the presence of wide genetic diversity among the strains. Phylogenetic analysis based on ITS sequences showed the presence of at least four evolutionary lineages of the pathogen. The clustering of F. oxysporum with non pathogenic isolates and with the members of other formae speciales indicated polyphyletic origin of F. oxysporum f. sp. lycopersici. Further analysis revealed intraspecies variability and nucleotide insertions or deletions in the ITS region among the strains in the study and the observed variations were found to be clade specific. The high genetic diversity in the pathogen population demands for development of effective resistance breeding programs in tomato. Among the pathogenic strains tested, toxigenic strains harbored the Fum1 gene clearly indicating that the strains infecting tomato crops have the potential to produce Fumonisin. PMID:26883288

  15. Naphthalene Acetic Acid Potassium Salt (NAA-K(+)) Affects Conidial Germination, Sporulation, Mycelial Growth, Cell Surface Morphology, and Viability of Fusarium oxysporum f. sp. radici-lycopersici and F. oxysporum f. sp. cubense in Vitro.

    PubMed

    Manzo-Valencia, María Karina; Valdés-Santiago, Laura; Sánchez-Segura, Lino; Guzmán-de-Peña, Dora Linda

    2016-11-09

    The response to exogenous addition of naphthalene acetic acid potassium salt (NAA-K(+)) to Fusarium oxysporum f. sp radici-lycopersici ATCC 60095 and F. oxysporum f. sp. cubense isolated from Michoacan Mexico soil is reported. The in vitro study showed that NAA-K(+) might be effective in the control of Fusarium oxysporum. Exogenous application of NAA-K(+) affected both spores and mycelium stages of the fungi. Viability testing using acridine orange and propidium iodide showed that NAA-K(+) possesses fungal killing properties, doing it effectively in the destruction of conidia of this phytopathogenic fungi. Analysis of treated spores by scanning electron microscopy showed changes in the shape factor and fractal dimension. Moreover, NAA-K(+) repressed the expression of brlA and fluG genes. The results disclosed here give evidence of the use of this synthetic growth factor as a substance of biocontrol that presents advantages, and the methods of application in situ should be explored.

  16. Genetic and physical mapping of candidate genes for resistance to Fusarium oxysporum f.sp. tracheiphilum race 3 in cowpea [Vigna unguiculata (L.) Walp].

    PubMed

    Pottorff, Marti; Wanamaker, Steve; Ma, Yaqin Q; Ehlers, Jeffrey D; Roberts, Philip A; Close, Timothy J

    2012-01-01

    Fusarium oxysporum f.sp. tracheiphilum (Fot) is a soil-borne fungal pathogen that causes vascular wilt disease in cowpea. Fot race 3 is one of the major pathogens affecting cowpea production in California. Identification of Fot race 3 resistance determinants will expedite delivery of improved cultivars by replacing time-consuming phenotypic screening with selection based on perfect markers, thereby generating successful cultivars in a shorter time period. Resistance to Fot race 3 was studied in the RIL population California Blackeye 27 (resistant) x 24-125B-1 (susceptible). Biparental mapping identified a Fot race 3 resistance locus, Fot3-1, which spanned 3.56 cM on linkage group one of the CB27 x 24-125B-1 genetic map. A marker-trait association narrowed the resistance locus to a 1.2 cM region and identified SNP marker 1_1107 as co-segregating with Fot3-1 resistance. Macro and microsynteny was observed for the Fot3-1 locus region in Glycine max where six disease resistance genes were observed in the two syntenic regions of soybean chromosomes 9 and 15. Fot3-1 was identified on the cowpea physical map on BAC clone CH093L18, spanning approximately 208,868 bp on BAC contig250. The Fot3-1 locus was narrowed to 0.5 cM distance on the cowpea genetic map linkage group 6, flanked by SNP markers 1_0860 and 1_1107. BAC clone CH093L18 was sequenced and four cowpea sequences with similarity to leucine-rich repeat serine/threonine protein kinases were identified and are cowpea candidate genes for the Fot3-1 locus. This study has shown how readily candidate genes can be identified for simply inherited agronomic traits when appropriate genetic stocks and integrated genomic resources are available. High co-linearity between cowpea and soybean genomes illustrated that utilizing synteny can transfer knowledge from a reference legume to legumes with less complete genomic resources. Identification of Fot race 3 resistance genes will enable transfer into high yielding cowpea varieties

  17. Enhancement of trichothecene mycotoxins of Fusarium oxysporum by ferulic acid aggravates oxidative damage in Rehmannia glutinosa Libosch

    PubMed Central

    Li, Zhen Fang; He, Chen Ling; Wang, Ying; Li, Ming Jie; Dai, Ya Jing; Wang, Tong; Lin, Wenxiong

    2016-01-01

    Rehmannia glutinosa is an important medicinal herb that cannot be replanted in the same field due to the effects of autotoxic substances. The effects of these substances on R. glutinosa in continuous cropping systems are unknown. In the present study, bioassays revealed that R. glutinosa exhibited severe growth restriction and higher disease indices in the FO+FA (F.oxysporum pretreated with ferulic acid) treatment. The increases in the contents of MDA and H2O2 were greater in the FA+FO treatment than in the FA or FO only treatments, respectively. Consistent with this result, the enzyme activities in the seedlings increased with treatment time. To identify the main factor underlying the increased pathogenicity of FO, macroconidia and trichothecene mycotoxins coproduced by FO were separated and used to treat R. glutinosa seedlings. The MDA and H2O2 contents were similar in the seedlings treated with deoxynivalenol and in the FA+FO treatment. Quantification of the relative expression of certain genes involved in Ca2+ signal transduction pathways suggested that trichothecene mycotoxins play an important role in the increased pathogenicity of FO. In conclusion, FA not only directly enhances oxidative damage in R. glutinosa but also increases wilting symptom outbreaks by promoting the secretion of trichothecene mycotoxins by FO. PMID:27667444

  18. A proteomics approach to study synergistic and antagonistic interactions of the fungal-bacterial consortium Fusarium oxysporum wild-type MSA 35.

    PubMed

    Moretti, Marino; Grunau, Alexander; Minerdi, Daniela; Gehrig, Peter; Roschitzki, Bernd; Eberl, Leo; Garibaldi, Angelo; Gullino, Maria Lodovica; Riedel, Kathrin

    2010-09-01

    Fusarium oxysporum is an important plant pathogen that causes severe damage of many economically important crop species. Various microorganisms have been shown to inhibit this soil-borne plant pathogen, including non-pathogenic F. oxysporum strains. In this study, F. oxysporum wild-type (WT) MSA 35, a biocontrol multispecies consortium that consists of a fungus and numerous rhizobacteria mainly belonging to gamma-proteobacteria, was analyzed by two complementary metaproteomic approaches (2-DE combined with MALDI-Tof/Tof MS and 1-D PAGE combined with LC-ESI-MS/MS) to identify fungal or bacterial factors potentially involved in antagonistic or synergistic interactions between the consortium members. Moreover, the proteome profiles of F. oxysporum WT MSA 35 and its cured counter-part CU MSA 35 (WT treated with antibiotics) were compared with unravel the bacterial impact on consortium functioning. Our study presents the first proteome mapping of an antagonistic F. oxysporum strain and proposes candidate proteins that might play an important role for the biocontrol activity and the close interrelationship between the fungus and its bacterial partners.

  19. A rapid inoculation technique for assessing pathogenicity of Fusarium oxysporum f. sp. niveum and F. o. melonis on Cucurbits

    USGS Publications Warehouse

    Freeman, S.; Rodriguez, R.J.

    1993-01-01

    A continuous-dip inoculation technique for rapid assessment of pathogenicity of Fusarium oxysporum f. sp. niveum and F. o. melonis was developed. The method, adapted from a similar procedure for determining pathogenicity of Colletotrichum magna (causal agent of anthracnose of cucurbits), involves constant exposure of seedlings and cuttings (seedlings with root systems excised) of watermelon and muskmelon to conidial suspensions contained in small scintillation vials. Disease development in intact seedlings corresponded well to disease responses observed with the standard root-dip inoculation/pot assay. The continuous-dip inoculation technique resulted in rapid disease development, with 50% of watermelon cuttings dying after 4–6 days of exposure to F. o. niveum. A mortality of 30% also was observed in watermelon cuttings exposed to conidia of F. o. melonis, as opposed to only a 0–2.5% mortality in seedlings with intact roots. Disease response was similar with muskmelon seedlings and cuttings continuously dip-inoculated with F. o. melonis isolates. However, no disease symptoms were observed in muskmelon seedlings or cuttings inoculated with F. o. niveum. Four nonpathogenic isolates of F. oxysporum did not cause disease symptoms in either watermelon or muskmelon cuttings and seedlings when assayed by this technique. The proposed method enables a rapid screening of pathogenicity and requires less time, labor, and greenhouse space than the standard root-dip inoculation/pot assay. The reliability of the continuous-dip inoculation technique is limited, however, to exposure of intact seedlings at a concentration of 1 × 106conidia per milliliter; the method is not accurate at this range for excised seedlings.

  20. Enhancement of diosgenin production in Dioscorea zingiberensis cell cultures by oligosaccharides from its endophytic fungus Fusarium oxysporum Dzf17.

    PubMed

    Li, Peiqin; Mao, Ziling; Lou, Jingfeng; Li, Yan; Mou, Yan; Lu, Shiqiong; Peng, Youliang; Zhou, Ligang

    2011-12-19

    The effects of the oligosaccharides from the endophytic fungus Fusarium oxysporum Dzf17 as elicitors on diosgenin production in cell suspension cultures of its host Dioscorea zingiberensis were investigated. Three oligosaccharides, DP4, DP7 and DP10, were purified from the oligosaccharide fractions DP2-5, DP5-8 and DP8-12, respectively, which were prepared from the water-extracted mycelial polysaccharide of the endophytic fungus F. oxysporum Dzf17. When the cell cultures were treated with fraction DP5-8 at 20 mg/L on day 26 and harvested on day 32, the maximum diosgenin yield (2.187 mg/L) was achieved, which was 5.65-fold of control (0.387 mg/L). When oligosaccharides DP4, DP7 and DP10 were individually added to 26-day-old D. zingiberensis cell cultures at concentrations of 2, 4, 6, 8 and 10 mg/L in medium, DP7 at 6 mg/L was found to significantly enhance diosgenin production, with a yield of 3.202 mg/L, which was 8.27-fold of control. When the cell cultures were treated with DP7 twice on days 24 and 26, and harvested on day 30, both diosgenin content and yield were significantly increased and reached the maximums of 1.159 mg/g dw and 4.843 mg/L, both of which were higher than those of single elicitation, and were 9.19- and 12.38-fold of control, respectively.

  1. The influence of environmental factors on growth and interactions between Embellisia allii and Fusarium oxysporum f. sp. cepae isolated from garlic.

    PubMed

    Lee, Hyang Burm; Magan, Naresh

    2010-04-15

    Embellisia allii results in the formation of a bulb canker and black soot on the surface of different alliums and it has been frequently detected on garlic bulbs together with the spoilage fungus, Fusarium oxysporum f. sp. cepae, which causes bulb basal plate rot. In this study, the influence of water activity (a(w)) and temperature on mycelial growth of E. allii and F. oxysporum f. sp. cepae, conidial size and sporulation of E. allii, interactions between E. allii and F. oxysporum f. sp. cepae, Index of Dominance (I(D)), and in situ virulence on garlic were examined. Mycelial growth of E. allii was optimal (5.97 mm/day) at 0.995 a(w) and 25 degrees C, slower at 30 degrees C. However, almost no growth occurred at 0.937 a(w)/30 degrees C. F. oxysporum f. sp. cepae grew faster than E. allii, (6.3-7.4mm/day) at 30 degrees C. Interactions between E. allii and F. oxysporum f. sp. cepae were influenced by a(w) and temperature. Sporulation of E. allii was more abundant on PDA than on MEA, especially at high a(w) (0.995) and low temperature (20 degrees C), but almost no sporulation occurred at 30 degrees C regardless of nutritional medium or a(w) level. The spore length of E. allii was longer on PDA than MEA, and was significantly influenced by water availability. F. oxysporum f. sp. cepae was competitive against E. allii and had a higher I(D) value in comparison with E. allii especially at a higher temperature (30 degrees C). In situ virulence tests showed that E. allii was weakly virulent on the garlic bulb cloves while that of F. oxysporum f. sp. cepae was highly dependent on a(w).

  2. Development and utility of cleaved amplified polymorphic sequences (CAPS) and restriction fragment length polymorphisms (RFLPs) linked to the Fom-2 fusarium wilt resistance gene in melon (Cucumis melo L.).

    PubMed

    Zheng, X Y; Wolff, D W; Baudracco-Arnas, S; Pitrat, M

    1999-08-01

    Fusarium wilt, caused by Fusarium oxysporum Schlecht f. sp. melonis Snyder & Hans, is a worldwide soil-borne disease of melon (Cucumis melo L.). Resistance to races 0 and 1 of Fusarium wilt is conditioned by the dominant gene Fom-2. To facilitate marker-assisted backcrossing with selection for Fusarium wilt resistance, we developed cleaved amplified polymorphic sequences (CAPS) and restriction fragment length polymorphisms (RFLP) markers by converting RAPD markers E07 (a 1.25-kb band) and G17 (a 1.05-kb band), respectively. The RAPD-PCR polymorphic fragments from the susceptible line 'Vedrantais' were cloned and sequenced in order to construct primers that would amplify only the target fragment. The derived primers, E07SCAR-1/E07SCAR-2 from E07 and G17SCAR-1/G17SCAR-2 from G17, yielded a single 1.25-kb fragment (designated SCE07) and a 1.05-kb fragment (designated SCG17) (the same as RAPD markers E07 and G17), respectively, from both resistant and susceptible melon lines, thus demonstrating locus-specific associated primers. Potential CAPS markers were first revealed by comparing sequence data between fragments amplified from resistant (PI 161375) and susceptible ('Vedrantais') lines and were then confirmed by electrophoresis of restriction endonuclease digestion products. Twelve restriction endonucleases were evaluated for their potential use as CAPS markers within the SCE07 fragment. Three (BclI, MspI, and BssSI) yielded ideal CAPS markers and were subsequently subjected to extensive testing using an additional 88 diverse melon cultigens, 93 and 119 F(2) individuals from crosses of 'Vedrantais' x PI 161375 and 'Ananas Yokneam'×MR-1 respectively, and 17 families from a backcross BC(1)S(1) population derived from the breeding line 'MD8654' as a resistance source. BclI- and MspI-CAPS are susceptible-linked markers, whereas the BssSI-CAPS is a resistant-linked marker. The CAPS markers that resulted from double digestion by BclI and BssSI are co-dominant. Results

  3. BIOTRANSFORMATION OF 2,4,6-TRINITROTOLUENE (TNT) BY A PLANT-ASSOCIATED FUNGUS FUSARIUM OXYSPORUM

    EPA Science Inventory

    The capability of a plant-associated fungus, Fusarium oxyvorum, to transform TNT in liquid cultures was investigated. TNT was transformed into 2-amino-4, 6-dinitrotoluene (2-A-DNT), 4-amino-2, 6-dinitrotoluene (4-A- DNT), and 2, 4-diamino-6-nitrotoluene (2, 4-DAT) via 2- and 4-hy...

  4. Primary Metabolism of Chickpea Is the Initial Target of Wound Inducing Early Sensed Fusarium oxysporum f. sp. ciceri Race I

    PubMed Central

    Gupta, Sumanti; Chakraborti, Dipankar; Sengupta, Anindita; Basu, Debabrata; Das, Sampa

    2010-01-01

    Background Biotrophic interaction between host and pathogen induces generation of reactive oxygen species that leads to programmed cell death of the host tissue specifically encompassing the site of infection conferring resistance to the host. However, in the present study, biotrophic relationship between Fusarium oxysporum and chickpea provided some novel insights into the classical concepts of defense signaling and disease perception where ROS (reactive oxygen species) generation followed by hypersensitive responses determined the magnitude of susceptibility or resistant potentiality of the host. Methodology/Principal Findings Microscopic observations detected wound mediated in planta pathogenic establishment and its gradual progression within the host vascular tissue. cDNA-AFLP showed differential expression of many defense responsive elements. Real time expression profiling also validated the early recognition of the wound inducing pathogen by the host. The interplay between fungus and host activated changes in primary metabolism, which generated defense signals in the form of sugar molecules for combating pathogenic encounter. Conclusions/Significance The present study showed the limitations of hypersensitive response mediated resistance, especially when foreign encounters involved the food production as well as the translocation machinery of the host. It was also predicted from the obtained results that hypersensitivity and active species generation failed to impart host defense in compatible interaction between chickpea and Fusarium. On the contrary, the defense related gene(s) played a critical role in conferring natural resistance to the resistant host. Thus, this study suggests that natural selection is the decisive factor for selecting and segregating out the suitable type of defense mechanism to be undertaken by the host without disturbing its normal metabolism, which could deviate from the known classical defense mechanisms. PMID:20140256

  5. Development of a real-time fluorescence loop-mediated isothermal amplification assay for rapid and quantitative detection of Fusarium oxysporum f. sp. cubense tropical race 4 in soil.

    PubMed

    Zhang, Xin; Zhang, He; Pu, Jinji; Qi, Yanxiang; Yu, Qunfang; Xie, Yixian; Peng, Jun

    2013-01-01

    Fusarium oxysporum f. sp. cubense (Foc), the causal agent of Fusarium wilt (Panama disease), is one of the most devastating diseases of banana (Musa spp.). The Foc tropical race 4 (TR4) is currently known as a major concern in global banana production. No effective resistance is known in Musa to Foc, and no effective measures for controlling Foc once banana plants have been infected in place. Early and accurate detection of Foc TR4 is essential to protect banana industry and guide banana planting. A real-time fluorescence loop-mediated isothermal amplification assay (RealAmp) was developed for the rapid and quantitative detection of Foc TR4 in soil. The detection limit of the RealAmp assay was approximately 0.4 pg/µl plasmid DNA when mixed with extracted soil DNA or 10(3) spores/g of artificial infested soil, and no cross-reaction with other relative pathogens were observed. The RealAmp assay for quantifying genomic DNA of TR4 was confirmed by testing both artificially and naturally infested samples. Quantification of the soil-borne pathogen DNA of Foc TR4 in naturally infested samples was no significant difference compared to classic real-time PCR (P>0.05). Additionally, RealAmp assay was visual with an improved closed-tube visual detection system by adding SYBR Green I fluorescent dye to the inside of the lid prior to amplification, which avoided the inhibitory effects of the stain on DNA amplification and makes the assay more convenient in the field and could thus become a simple, rapid and effective technique that has potential as an alternative tool for the detection and monitoring of Foc TR4 in field, which would be a routine DNA-based testing service for the soil-borne pathogen in South China.

  6. Immunohistochemical analysis of cell wall hydroxyproline-rich glycoproteins in the roots of resistant and susceptible wax gourd cultivars in response to Fusarium oxysporum f. sp. Benincasae infection and fusaric acid treatment.

    PubMed

    Xie, Dasen; Ma, Li; Samaj, Jozef; Xu, Chunxiang

    2011-08-01

    Hydroxyproline-rich glycoproteins (HRGPs) play a defensive role in host-pathogen interactions. However, specific roles of individual HRGPs in plant defense against pathogen are poorly understood. Changes in extracellular distribution and abundance of individual cell wall HRGPs were investigated on root sections of two wax gourd (Benincasa hispida Cogn.) cultivars (Fusarium wilt resistant and susceptible, respectively), which were analyzed by immunolabelling with 20 monoclonal antibodies recognizing different epitopes of extensins and arabinogalactan proteins (AGPs) after being inoculated with Fusarium oxysporum f. sp. Benincasae or treated with fusaric acid (FA). These analyses revealed the following: (1) The levels of JIM11 and JIM20 interacting extensins were higher in the resistant cultivar. Either treatment caused a dramatic decrease in signal in both cultivars, but some new signal appeared in the rhizodermis. (2) The AGPs or rhamnogalacturonan containing CCRCM7-epitope were enhanced in the resistant cultivar, but not in the susceptible one by either treatment. (3) Either treatment caused a slight increase in the levels of the AGPs recognized by LM2 and JIM16, but there were no differences between two cultivars. (4) The MAC204 signal nearly disappeared after FA treatment, but this was not the case with pathogen attack. (5) The LM14 signal slightly decreased after both treatments in both cultivars, but a less decrease was observed with the resistant cultivar. These results indicate that the CCRCM7 epitope likely contributed to the resistance of wax gourd to this pathogen, and JIM11 and JIM20 interacting extensins as well as LM2, LM14, MAC204 and JIM16 interacting AGPs were involved in the host-pathogen interaction.

  7. Development of a Real-Time Fluorescence Loop-Mediated Isothermal Amplification Assay for Rapid and Quantitative Detection of Fusarium oxysporum f. sp. cubense Tropical Race 4 In Soil

    PubMed Central

    Pu, Jinji; Qi, Yanxiang; Yu, Qunfang; Xie, Yixian; Peng, Jun

    2013-01-01

    Fusarium oxysporum f. sp. cubense (Foc), the causal agent of Fusarium wilt (Panama disease), is one of the most devastating diseases of banana (Musa spp.). The Foc tropical race 4 (TR4) is currently known as a major concern in global banana production. No effective resistance is known in Musa to Foc, and no effective measures for controlling Foc once banana plants have been infected in place. Early and accurate detection of Foc TR4 is essential to protect banana industry and guide banana planting. A real-time fluorescence loop-mediated isothermal amplification assay (RealAmp) was developed for the rapid and quantitative detection of Foc TR4 in soil. The detection limit of the RealAmp assay was approximately 0.4 pg/µl plasmid DNA when mixed with extracted soil DNA or 103 spores/g of artificial infested soil, and no cross-reaction with other relative pathogens were observed. The RealAmp assay for quantifying genomic DNA of TR4 was confirmed by testing both artificially and naturally infested samples. Quantification of the soil-borne pathogen DNA of Foc TR4 in naturally infested samples was no significant difference compared to classic real-time PCR (P>0.05). Additionally, RealAmp assay was visual with an improved closed-tube visual detection system by adding SYBR Green I fluorescent dye to the inside of the lid prior to amplification, which avoided the inhibitory effects of the stain on DNA amplification and makes the assay more convenient in the field and could thus become a simple, rapid and effective technique that has potential as an alternative tool for the detection and monitoring of Foc TR4 in field, which would be a routine DNA-based testing service for the soil-borne pathogen in South China. PMID:24376590

  8. Chitosan and oligochitosan enhance ginger (Zingiber officinale Roscoe) resistance to rhizome rot caused by Fusarium oxysporum in storage.

    PubMed

    Liu, Yiqing; Wisniewski, Michael; Kennedy, John F; Jiang, Yusong; Tang, Jianmin; Liu, Jia

    2016-10-20

    The ability of chitosan and oligochitosan to enhance ginger (Zingiber officinale) resistance to rhizome rot caused by Fusarium oxysporum in storage was investigated. Both chitosan and oligochitosan at 1 and 5g/L significantly inhibited rhizome rot, with the best control at 5g/L. Chitosan and oligochitosan applied at 5g/L also reduced weight loss, measured as a decrease in fresh weight, but did not affect soluble solids content or titratable acidity of rhizomes. The two compounds applied at 5g/L induced β-1,3-glucanase and phenylalanine ammonia-lyase enzyme activity and the transcript levels of their coding genes, as well as the total phenolic compounds in rhizome tissues. Therefore, the ability of chitosan and oligochitosan to reduce rot in stored rhizomes may be associated with their ability to induce defense responses in ginger. These results have practical implications for the application of chitosan and oligochitosan to harvested ginger rhizomes to reduce postharvest losses.

  9. Extracellular biosynthesis of CdTe quantum dots by the fungus Fusarium oxysporum and their anti-bacterial activity

    NASA Astrophysics Data System (ADS)

    Syed, Asad; Ahmad, Absar

    2013-04-01

    The growing demand for semiconductor [quantum dots (Q-dots)] nanoparticles has fuelled significant research in developing strategies for their synthesis and characterization. They are extensively investigated by the chemical route; on the other hand, use of microbial sources for biosynthesis witnessed the highly stable, water dispersible nanoparticles formation. Here we report, for the first time, an efficient fungal-mediated synthesis of highly fluorescent CdTe quantum dots at ambient conditions by the fungus Fusarium oxysporum when reacted with a mixture of CdCl2 and TeCl4. Characterization of these biosynthesized nanoparticles was carried out by different techniques such as Ultraviolet-visible (UV-Vis) spectroscopy, Photoluminescence (PL), X-ray Diffraction (XRD), X-ray Photoelectron spectroscopy (XPS), Transmission Electron Microscopy (TEM) and Fourier Transformed Infrared Spectroscopy (FTIR) analysis. CdTe nanoparticles shows antibacterial activity against Gram positive and Gram negative bacteria. The fungal based fabrication provides an economical, green chemistry approach for production of highly fluorescent CdTe quantum dots.

  10. Roles of three Fusarium oxysporum calcium ion (Ca(2+)) channels in generating Ca(2+) signatures and controlling growth.

    PubMed

    Kim, Hye-Seon; Kim, Jung-Eun; Frailey, Daniel; Nohe, Anja; Duncan, Randall; Czymmek, Kirk J; Kang, Seogchan

    2015-09-01

    Spatial and temporal changes of cytoplasmic calcium ions ([Ca(2+)]c), caused by external stimuli, are known as the Ca(2+) signature and presumably control cellular and developmental responses. Multiple types of ion channels, pumps, and transporters on plasma and organellar membranes modulate influx and efflux of Ca(2+) to and from the extracellular environment and internal Ca(2+) stores to form Ca(2+) signatures. Expression of a fluorescent protein-based Ca(2+) probe, Cameleon YC3.60, in Fusarium oxysporum enabled us to study how disruption of three Ca(2+) channel genes, including FoCCH1, FoMID1 and FoYVC1, affects Ca(2+) signature formation at polarized hyphal tips and whether specific changes in the Ca(2+) signature caused by these mutations are related to growth-related phenotypes. Resulting mutants displayed altered amplitude, interval, and duration of Ca(2+) pulses under various external Ca(2+) concentrations as well as changes in sporulation and growth. Loss of FoMID1 and FoCCH1, genes encoding putative plasma membrane channel proteins, had a major impact on Ca(2+) signatures and growth, while disruption of FoYVC1, which encodes a vacuolar channel, only subtly affected both traits. Results from our study provide new insights into the underpinning of Ca(2+) signaling in fungi and its role in controlling growth and also raise several new questions.

  11. A nuclear localization for Avr2 from Fusarium oxysporum is required to activate the tomato resistance protein I-2

    PubMed Central

    Ma, Lisong; Cornelissen, Ben J. C.; Takken, Frank L. W.

    2013-01-01

    Plant pathogens secrete effector proteins to promote host colonization. During infection of tomato xylem vessels, Fusarium oxysporum f. sp. lycopersici (Fol) secretes the Avr2 effector protein. Besides being a virulence factor, Avr2 is recognized intracellularly by the tomato I-2 resistance protein, resulting in the induction of host defenses. Here, we show that AVR2 is highly expressed in root- and xylem-colonizing hyphae three days post inoculation of roots. Co-expression of I-2 with AVR2 deletion constructs using agroinfiltration in Nicotiana benthamiana leaves revealed that, except for the N-terminal 17 amino acids, the entire AVR2 protein is required to trigger I-2-mediated cell death. The truncated Avr2 variants are still able to form homo-dimers, showing that the central region of Avr2 is required for dimerization. Simultaneous production of I-2 and Avr2 chimeras carrying various subcellular localization signals in N. benthamiana leaves revealed that a nuclear localization of Avr2 is required to trigger I-2-dependent cell death. Nuclear exclusion of Avr2 prevented its activation of I-2, suggesting that Avr2 is recognized by I-2 in the nucleus. PMID:23596453

  12. Fusarium oxysporum induces the production of proteins and volatile organic compounds by Trichoderma harzianum T-E5.

    PubMed

    Zhang, Fengge; Yang, Xingming; Ran, Wei; Shen, Qirong

    2014-10-01

    Trichoderma species have been used widely as biocontrol agents for the suppression of soil-borne pathogens. However, some antagonistic mechanisms of Trichoderma are not well characterized. In this study, a series of laboratory experiments were designed to characterize the importance of mycoparasitism, exoenzymes, and volatile organic compounds (VOCs) by Trichoderma harzianum T-E5 for the control of Fusarium oxysporum f. sp. cucumerinum (FOC). We further tested whether these mechanisms were inducible and upregulated in presence of FOC. The results were as follows: T-E5 heavily parasitized FOC by coiling and twisting the entire mycelium of the pathogen in dual cultures. T-E5 growing medium conditioned with deactivated FOC (T2) showed more proteins and higher cell wall-degrading enzyme activities than T1, suggesting that FOC could induce the upregulation of exoenzymes. The presence of deactivated FOC (T2') also resulted in the upregulation of VOCs that five and eight different types T-E5-derived VOCs were identified from T1' and T2', respectively. Further, the excreted VOCs in T2' showed significantly higher antifungal activities against FOC than T1'. In conclusion, mycoparasitism of T-E5 against FOC involved mycelium contact and the production of complex extracellular substances. Together, these data provide clues to help further clarify the interactions between these fungi.

  13. Selection and differentiation of Bacillus spp. Antagonistic to Fusarium oxysporum f.sp. lycopersici and Alternaria solani infecting Tomato.

    PubMed

    Shanmugam, Veerubommu; Atri, Kamini; Gupta, Samriti; Kanoujia, Nandina; Naruka, Digvijay Singh

    2011-03-01

    Antagonistic Bacillus spp. displaying in vitro production of siderophore, chitinase, and β-1,3-glucanase were identified from dual culture assays. In independent greenhouse studies, seed bacterization and soil application of Bacillus atrophaeus S2BC-2 challenge inoculated with Fusarium oxysporum f.sp. lycopersici (FOL) and Alternaria solani (AS) recorded low percent disease index of 25.3 and 28.7, respectively, over nonbacterised pathogen control (44.3 and 56.4). The low disease incidence corroborated with tomato growth promotion with high vigor index (8,041.2) and fresh plant weight (82.5 g) on challenge inoculation with FOL. Analysis of root and leaf samples in rhizobacterial treatment challenged with FOL and AS revealed maximum induction of chitinase (1.9 and 1.7 U/mg of protein, respectively) and β-1,3-glucanase (23.5 and 19.2 U/mg of protein, respectively). In native gel activity assays, the rhizobacterial treatment on challenge inoculation strongly expressed three high intensity PO isoforms along with one low intensity isoform. In studies on genetic diversity of the Bacillus strains by repetitive extragenomic palindromic-polymerase chain reaction (REP-PCR) and amplified rDNA restriction analysis (ARDRA) patterns, ARDRA was more highly discriminant than REP-PCR and allowed grouping of the strains and differentiation of the antagonistic strains from other isolates.

  14. Extracellular biosynthesis of silver nanoparticles using Bacillus sp. GP-23 and evaluation of their antifungal activity towards Fusarium oxysporum

    NASA Astrophysics Data System (ADS)

    Gopinath, V.; Velusamy, P.

    2013-04-01

    In last few decades nanoparticles have attracted and emerged as a field in biomedical research due to their incredible applications. The current research was focused on extracellular synthesis of silver nanoparticles (AgNPs) using cell free culture supernatant of strain GP-23. It was found that the strain GP-23 belonged to Bacillus species by 16S rRNA sequence analysis. Biosynthesis of AgNPs was achieved by addition of culture supernatant with aqueous silver nitrate solution, after 24 h it turned to brown color solution with a peak at 420 nm corresponding to the Plasmon absorbance of AgNPs by UV-Vis Spectroscopy. The nanoparticles were characterized by FTIR, XRD, HRTEM, EDX and AFM. The synthesized nanoparticles were found to be spherical in shape with size in the range of 7-21 nm. It was stable in aqueous solution for five months period of storage at room temperature under dark condition. The biosynthesized AgNPs exhibited strong antifungal activity against plant pathogenic fungus, Fusarium oxysporum at the concentration of 8 μg ml-1. The results suggest that the synthesized AgNPs act as an effective antifungal agent/fungicide.

  15. Comparative study of the bioconversion process using R-(+)- and S-(-)-limonene as substrates for Fusarium oxysporum 152B.

    PubMed

    Molina, Gustavo; Bution, Murillo L; Bicas, Juliano L; Dolder, Mary Anne Heidi; Pastore, Gláucia M

    2015-05-01

    This study compared the bioconversion process of S-(-)-limonene into limonene-1,2-diol with the already established biotransformation of R-(+)-limonene into α-terpineol using the same biocatalyst in both processes, Fusarium oxysporum 152B. The bioconversion of the S-(-)-isomer was tested on cell permeabilisation under anaerobic conditions and using a biphasic system. When submitted to permeabilisation trials, this biocatalyst has shown a relatively high resistance; still, no production of limonene-1,2-diol and a loss of activity of the biocatalyst were observed after intense cell treatment, indicating a complete loss of cell viability. Furthermore, the results showed that this process can be characterised as an aerobic system that was catalysed by limonene-1,2-epoxide hydrolase, had an intracellular nature and was cofactor-dependent because the final product was not detected by an anaerobic process. Finally, this is the first report to characterise the bioconversion of R-(+)- and S-(-)-limonene by cellular detoxification using ultra-structural analysis.

  16. Biosynthesis of Gold Nanoparticles Using Fusarium oxysporum f. sp. cubense JT1, a Plant Pathogenic Fungus

    PubMed Central

    Thakker, Janki N.; Dalwadi, Pranay; Dhandhukia, Pinakin C.

    2013-01-01

    The development of reliable processes for the synthesis of gold nanoparticles is an important aspect of current nanotechnology research. Recently, reports are published on the extracellular as well as intracellular biosynthesis of gold nanoparticles using microorganisms. However, these methods of synthesis are rather slow. In present study, rapid and extracellular synthesis of gold nanoparticles using a plant pathogenic fungus F. oxysporum f. sp. cubense JT1 (FocJT1) is reported. Incubation of FocJT1 mycelium with auric chloride solution produces gold nanoparticles in 60 min. Gold nanoparticles were characterized by UV-Vis spectroscopy, FTIR, and particle size analysis. The particles synthesized were of 22 nm sized, capped by proteins, and posed antimicrobial activity against Pseudomonas sp. PMID:25969773

  17. Vibrational, 1H-NMR spectroscopic, and thermal characterization of gladiolus root exudates in relation to Fusarium oxysporum f. sp. gladioli resistance.

    PubMed

    Taddei, P; Tugnoli, V; Bottura, G; Dallavalle, E; Zechini D'Aulerio, A

    2002-01-01

    Fourier transform Raman (FT Raman) and IR (FTIR) and (1)H-NMR spectroscopies coupled with differential scanning calorimetry (DSC) were applied to the characterization of root exudates from two cultivars of gladiolus (Spic Span and White Prosperity) with different degrees of resistance and susceptibility to Fusarium oxysporum gladioli, the main pathogen of gladiolus. This work was aimed at correlating the composition of root exudates with the varietal resistance to the pathogen. Spectroscopic analysis showed that White Prosperity root exudate differs from Spic Span root exudate by a higher relative amount of the aromatic-phenolic and sugarlike components and a lower relative amount of carbonylic and aliphatic compounds. DSC analysis confirmed the spectroscopic results and showed that White Prosperity root exudate is characterized by an aromatic component that is present in a higher amount than in the Spic Span root exudate. The results are discussed in relation to the spore germination tests showing that White Prosperity, which is characterized by a remarkable resistance toward F. oxysporum gladioli, exudes substances having a negative influence on microconidial germination of the pathogen; root exudates from Spic Span, one of the most susceptible cultivars to F. oxysporum gladioli, proved to have no effect. White Prosperity's ability to inhibit conidial germination of F. oxysporum gladioli can be mainly related to the presence of a higher relative amount of aromatic-phenolic compounds.

  18. Detection of cross-reactive antigens shared by Fusarium oxysporum and Glycine max by indirect ELISA and their cellular location in root tissues.

    PubMed

    Chakraborty, B N; Sarkar, B; Chakraborty, U

    1997-01-01

    Pathogenicity test of Fusarium oxysporum on ten cultivars of soybean revealed Soymax and Punjab-1 to be most resistant while JS-2 and UPSM-19 were most susceptible. Antigens were prepared from the roots of all the ten varieties of soybean and the mycelium of F. oxysporum. Polyclonal antisera were raised against the mycelial suspension of F. oxysporum and the root antigen of the susceptible cultivar UPSM-19. Cross reactive antigens shared by the host and the pathogen were detected first by immunodiffusion. The immunoglobulin fraction of the antiserum was purified by ammonium sulfate precipitation and DEAE-Sephadex column chromatography. The immunoglobulin fractions were used for detection of cross-reactive antigens by enzyme-linked immunosorbent assay. In enzyme-linked immunosorbent assay, antigens of susceptible cultivars showed higher absorbance values when tested against the purified anti-F. oxysporum antiserum. Antiserum produced against UPSM-19 showed cross-reactivity with the antigens of other cultivars. Indirect staining of antibodies using fluorescein isothiocyanate indicated that in cross-sections of roots of susceptible cultivar (UPSM-19) cross-reactive antigens were concentrated around xylem elements, endodermis and epidermal cells, while in the resistant variety, fluorescence was concentrated mainly around epidermal cells and distributed in the cortical tissues. CRAs were also present in microconidia, macroconidia and chlamydospores of the fungus.

  19. Heterotrophic Bioleaching of Sulfur, Iron, and Silicon Impurities from Coal by Fusarium oxysporum FE and Exophiala spinifera FM with Growing and Resting Cells.

    PubMed

    Etemadzadeh, Shekoofeh Sadat; Emtiazi, Giti; Etemadifar, Zahra

    2016-06-01

    Coal is the most abundant fossil fuel containing sulfur and other elements which promote environmental pollution after burning. Also the silicon impurities make the transportation of coal expensive. In this research, two isolated fungi from oil contaminated soil with accessory number KF554100 (Fusarium oxysporum FE) and KC925672 (Exophiala spinifera FM) were used for heterotrophic biological leaching of coal. The leaching were detected by FTIR, CHNS, XRF analyzer and compared with iron and sulfate released in the supernatant. The results showed that E. spinifera FM produced more acidic metabolites in growing cells, promoting the iron and sulfate ions removal while resting cells of F. oxysporum FE enhanced the removal of aromatic sulfur. XRF analysis showed that the resting cells of E. spinifera FM proceeded maximum leaching for iron and silicon (48.8, 43.2 %, respectively). CHNS analysis demonstrated that 34.21 % of sulfur leaching was due to the activities of resting cells of F. oxysporum FE. Also F. oxysporum FE removed organic sulfur more than E. spinifera FM in both growing and resting cells. FTIR data showed that both fungi had the ability to remove pyrite and quartz from coal. These data indicated that inoculations of these fungi to the coal are cheap and impurity removals were faster than autotrophic bacteria. Also due to the removal of dibenzothiophene, pyrite, and quartz, we speculated that they are excellent candidates for bioleaching of coal, oil, and gas.

  20. Cytochrome p450nor, a novel class of mitochondrial cytochrome P450 involved in nitrate respiration in the fungus Fusarium oxysporum.

    PubMed

    Takaya, N; Suzuki, S; Kuwazaki, S; Shoun, H; Maruo, F; Yamaguchi, M; Takeo, K

    1999-12-15

    Fusarium oxysporum, an imperfect filamentous fungus performs nitrate respiration under limited oxygen. In the respiratory system, Cytochrome P450nor (P450nor) is thought to catalyze the last step; reduction of nitric oxide to nitrous oxide. We examined its intracellular localization using enzymatic, spectroscopic, and immunological analyses to show that P450nor is found in both the mitochondria and the cytosol. Translational fusions between the putative mitochondrial targeting signal on the amino terminus of P450nor and Escherichia coli beta-galactosidase resulted in significant beta-galactosidase activity in the mitochondrial fraction of nitrate-respiring cells, suggesting that one of the isoforms of P450nor (P450norA) is in anaerobic mitochondrion of F. oxysporum and acts as nitric oxide reductase. Furthermore, these findings suggest the involvement of P450nor in nitrate respiration in mitochondria.

  1. A novel ionic liquid-tolerant Fusarium oxysporum BN secreting ionic liquid-stable cellulase: consolidated bioprocessing of pretreated lignocellulose containing residual ionic liquid.

    PubMed

    Xu, Jiaxing; Wang, Xinfeng; Hu, Lei; Xia, Jun; Wu, Zhen; Xu, Ning; Dai, Benlin; Wu, Bin

    2015-04-01

    In this study, microbial communities from chemicals polluted microhabitats were cultured with the addition of imidazolium-based ionic liquid (IL) to enrich for IL-tolerant microbes. A strain of Fusarium oxysporum BN producing cellulase from these enrichments was capable of growing in 10% (w/v) 1-ethyl-3-methylimidazolium phosphinate, much higher than the normal IL concentrations in the lignocellulose regenerated from ILs. Cellulase secreted by the strain showed high resistance to ILs based on phosphate and sulfate radicals, evidencing of a high conformational stability in relevant media. Gratifyingly, F. oxysporum BN can directly convert IL-pretreated rice straw to bioethanol via consolidated bioprocessing (I-CBP). At optimum fermentation condition, a maximum ethanol yield of 0.125 g ethanol g(-1) of rice straw was finally obtained, corresponding to 64.2% of the theoretical yield.

  2. The Effects of Fungicide, Soil Fumigant, Bio-Organic Fertilizer and Their Combined Application on Chrysanthemum Fusarium Wilt Controlling, Soil Enzyme Activities and Microbial Properties.

    PubMed

    Zhao, Shuang; Chen, Xi; Deng, Shiping; Dong, Xuena; Song, Aiping; Yao, Jianjun; Fang, Weimin; Chen, Fadi

    2016-04-21

    Sustained monoculture often leads to a decline in soil quality, in particular to the build-up of pathogen populations, a problem that is conventionally addressed by the use of either fungicide and/or soil fumigation. This practice is no longer considered to be either environmentally sustainable or safe. While the application of organic fertilizer is seen as a means of combating declining soil fertility, it has also been suggested as providing some control over certain soil-borne plant pathogens. Here, a greenhouse comparison was made of the Fusarium wilt control efficacy of various treatments given to a soil in which chrysanthemum had been produced continuously for many years. The treatments comprised the fungicide carbendazim (MBC), the soil fumigant dazomet (DAZ), the incorporation of a Paenibacillus polymyxa SQR21 (P. polymyxa SQR21, fungal antagonist) enhanced bio-organic fertilizer (BOF), and applications of BOF combined with either MBC or DAZ. Data suggest that all the treatments evaluated show good control over Fusarium wilt. The MBC and DAZ treatments were effective in suppressing the disease, but led to significant decrease in urease activity and no enhancement of catalase activity in the rhizosphere soils. BOF including treatments showed significant enhancement in soil enzyme activities and microbial communities compared to the MBC and DAZ, evidenced by differences in bacterial/fungi (B/F) ratios, Shannon-Wiener indexes and urease, catalase and sucrase activities in the rhizosphere soil of chrysanthemum. Of all the treatments evaluated, DAZ/BOF application not only greatly suppressed Fusarium wilt and enhanced soil enzyme activities and microbial communities but also promoted the quality of chrysanthemum obviously. Our findings suggest that combined BOF with DAZ could more effectively control Fusarium wilt disease of chrysanthemum.

  3. Occurrence of Root Rot and Vascular Wilt Diseases in Roselle (Hibiscus sabdariffa L.) in Upper Egypt.

    PubMed

    Hassan, Naglaa; Shimizu, Masafumi; Hyakumachi, Mitsuro

    2014-03-01

    Roselle (Hibiscus sabdariffa L.) family Malvaceae is an important crop used in food, cosmetics and pharmaceutics industries. Roselle is cultivated mainly in Upper Egypt (Qena and Aswan governorates) producing 94% of total production. Root rot disease of roselle is one of the most important diseases that attack both seedlings and adult plants causing serious losses in crop productivity and quality. The main objective of the present study is to identify and characterize pathogens associated with root rot and wilt symptoms of roselle in Qena, Upper Egypt and evaluate their pathogenicity under greenhouse and field condition. Fusarium oxysporum, Macrophomina phaseolina, Fusarium solani, Fusarium equiseti and Fusarium semitectum were isolated from the natural root rot diseases in roselle. All isolated fungi were morphologically characterized and varied in their pathogenic potentialities. They could attack roselle plants causing damping-off and root rot/wilt diseases in different pathogenicity tests. The highest pathogenicity was caused by F. oxysporum and M. phaseolina followed by F. solani. The least pathogenic fungi were F. equiseti followed by F. semitectum. It obviously noted that Baladi roselle cultivar was more susceptible to infection with all tested fungi than Sobhia 17 under greenhouse and field conditions. This is the first report of fungal pathogens causing root rot and vascular wilt in roselle in Upper Egypt.

  4. Occurrence of Root Rot and Vascular Wilt Diseases in Roselle (Hibiscus sabdariffa L.) in Upper Egypt

    PubMed Central

    Hassan, Naglaa; Shimizu, Masafumi

    2014-01-01

    Roselle (Hibiscus sabdariffa L.) family Malvaceae is an important crop used in food, cosmetics and pharmaceutics industries. Roselle is cultivated mainly in Upper Egypt (Qena and Aswan governorates) producing 94% of total production. Root rot disease of roselle is one of the most important diseases that attack both seedlings and adult plants causing serious losses in crop productivity and quality. The main objective of the present study is to identify and characterize pathogens associated with root rot and wilt symptoms of roselle in Qena, Upper Egypt and evaluate their pathogenicity under greenhouse and field condition. Fusarium oxysporum, Macrophomina phaseolina, Fusarium solani, Fusarium equiseti and Fusarium semitectum were isolated from the natural root rot diseases in roselle. All isolated fungi were morphologically characterized and varied in their pathogenic potentialities. They could attack roselle plants causing damping-off and root rot/wilt diseases in different pathogenicity tests. The highest pathogenicity was caused by F. oxysporum and M. phaseolina followed by F. solani. The least pathogenic fungi were F. equiseti followed by F. semitectum. It obviously noted that Baladi roselle cultivar was more susceptible to infection with all tested fungi than Sobhia 17 under greenhouse and field conditions. This is the first report of fungal pathogens causing root rot and vascular wilt in roselle in Upper Egypt. PMID:24808737

  5. The tomato I gene for Fusarium wilt resistance encodes an atypical leucine-rich repeat receptor-like protein whose function is nevertheless dependent on SOBIR1 and SERK3/BAK1.

    PubMed

    Catanzariti, Ann-Maree; Do, Huong T T; Bru, Pierrick; de Sain, Mara; Thatcher, Louise F; Rep, Martijn; Jones, David A

    2017-03-01

    We have identified the tomato I gene for resistance to the Fusarium wilt fungus Fusarium oxysporum f. sp. lycopersici (Fol) and show that it encodes a membrane-anchored leucine-rich repeat receptor-like protein (LRR-RLP). Unlike most other LRR-RLP genes involved in plant defence, the I gene is not a member of a gene cluster and contains introns in its coding sequence. The I gene encodes a loopout domain larger than those in most other LRR-RLPs, with a distinct composition rich in serine and threonine residues. The I protein also lacks a basic cytosolic domain. Instead, this domain is rich in aromatic residues that could form a second transmembrane domain. The I protein recognises the Fol Avr1 effector protein, but, unlike many other LRR-RLPs, recognition specificity is determined in the C-terminal half of the protein by polymorphic amino acid residues in the LRRs just preceding the loopout domain and in the loopout domain itself. Despite these differences, we show that I/Avr1-dependent necrosis in Nicotiana benthamiana depends on the LRR receptor-like kinases (RLKs) SERK3/BAK1 and SOBIR1. Sequence comparisons revealed that the I protein and other LRR-RLPs involved in plant defence all carry residues in their last LRR and C-terminal LRR capping domain that are conserved with SERK3/BAK1-interacting residues in the same relative positions in the LRR-RLKs BRI1 and PSKR1. Tyrosine mutations of two of these conserved residues, Q922 and T925, abolished I/Avr1-dependent necrosis in N. benthamiana, consistent with similar mutations in BRI1 and PSKR1 preventing their interaction with SERK3/BAK1.

  6. Plant tissue colonization by the fungus race 1.2 of Fusarium oxysporum f.sp. melonis in resistant melon genotypes.

    PubMed

    Chikh-Rouhou, H; González-Torres, R; Alvarez, M

    2009-01-01

    Four melon accessions; 'Shiroubi Okayoma', 'C-211', 'K.N.M' and 'BG-5384', resistant to race 1.2 of Fusarium oxysporum f.sp. melonis and a susceptible one 'Piel de Sapo' were tested to see which hypocotyl regions were invaded by the fungus, and to examine the relationship between resistance and presence of the pathogen in the plant tissue. While the fungus was shown to colonize all stem segments (either the upper, middle, or lower hypocotyl) of the susceptible and resistant plant accession, colonization was markedly lower in the resistant plants.

  7. Effects of endophytic Fusarium oxysporum towards Radopholus similis activity in absence of banana.

    PubMed

    Vu, T T; Sikora, R A; Hauschild, R

    2004-01-01

    Four endophytic fungi (Fusarium spp.) isolated from the cortical tissue of surface-sterilised banana as well as from tomato roots were tested for their capacity of biological control towards the burrowing nematode Radopholus similis on banana. The pathogenic and parasitic capacities of endophytic fungi towards R. similis were tested in in vitro experiments. No parasitism of fungi on R. similis was observed. However, nematode activity decreased significantly in the presence of all endophytic fungi in vitro when compared to nematodes in the absence of fungi. The effects of fungi on R. similis activities in the soil were tested in the absence of plants. Nematode activities were reduced significantly by 16-30% by endophytic fungi when compared to untreated soil.

  8. The Plasma Membrane-Localized Sucrose Transporter IbSWEET10 Contributes to the Resistance of Sweet Potato to Fusarium oxysporum

    PubMed Central

    Li, Yan; Wang, Yannan; Zhang, Huan; Zhang, Qian; Zhai, Hong; Liu, Qingchang; He, Shaozhen

    2017-01-01

    SWEET (Sugars Will Eventually be Exported Transporter) proteins, a novel family of sugar transporters, mediate the diffusion of sugars across cell membranes and acts as key players in sucrose phloem loading. Manipulation of SWEET genes in plants leads to various effects on resistance to biotic and abiotic stresses due to disruption of sugar efflux and changes in sugar distribution. In this study, a member of the SWEET gene family, IbSWEET10, was cloned from the sweet potato line ND98. mRNA expression analysis in sweet potato and promoter β-Glucuronidase analysis in Arabidopsis showed that IbSWEET10 is highly expressed in leaves, especially in vascular tissue. Transient expression in tobacco epidermal cells revealed plasma membrane localization of IbSWEET10, and heterologous expression assays in yeast indicated that IbSWEET10 encodes a sucrose transporter. The expression level of IbSWEET10 was significantly up-regulated in sweet potato infected with Fusarium oxysporum Schlecht. f. sp. batatas. Further characterization revealed IbSWEET10-overexpressing sweet potato lines to be more resistant to F. oxysporum, exhibiting better growth after infection compared with the control; conversely, RNA interference (RNAi) lines showed the opposite results. Additionally, the sugar content of IbSWEET10-overexpression sweet potato was significantly reduced, whereas that in RNAi plants was significantly increased compared with the control. Therefore, we suggest that the reduction in sugar content caused by IbSWEET10 overexpression is the major reason for the enhanced F. oxysporum resistance of the transgenic plants. This is the first report that the IbSWEET10 transporter contributes to the resistance of sweet potato to F. oxysporum. The IbSWEET10 gene has the great potential to be used for improving the resistance to F. oxysporum in sweet potato and other plants. PMID:28261250

  9. Production and Characterization of Highly Thermostable β-Glucosidase during the Biodegradation of Methyl Cellulose by Fusarium oxysporum

    PubMed Central

    Olajuyigbe, Folasade M.; Nlekerem, Chidinma M.; Ogunyewo, Olusola A.

    2016-01-01

    Production of β-glucosidase from Fusarium oxysporum was investigated during degradation of some cellulosic substrates (Avicel, α-cellulose, carboxymethyl cellulose (CMC), and methylcellulose). Optimized production of β-glucosidase using the cellulosic substrate that supported highest yield of enzyme was examined over 192 h fermentation period and varied pH of 3.0–11.0. The β-glucosidase produced was characterized for its suitability for industrial application. Methyl cellulose supported the highest yield of β-glucosidase (177.5 U/mg) at pH 6.0 and 30°C at 96 h of fermentation with liberation of 2.121 μmol/mL glucose. The crude enzyme had optimum activity at pH 5.0 and 70°C. The enzyme was stable over broad pH range of 4.0–7.0 with relative residual activity above 60% after 180 min of incubation. β-glucosidase demonstrated high thermostability with 83% of its original activity retained at 70°C after 180 min of incubation. The activity of β-glucosidase was enhanced by Mn2+ and Fe2+ with relative activities of 167.67% and 205.56%, respectively, at 5 mM and 360% and 315%, respectively, at 10 mM. The properties shown by β-glucosidase suggest suitability of the enzyme for industrial applications in the improvement of hydrolysis of cellulosic compounds into fermentable sugars that can be used in energy generation and biofuel production. PMID:26977320

  10. Salicylic acid is a modulator of catalase isozymes in chickpea plants infected with Fusarium oxysporum f. sp. ciceri.

    PubMed

    Gayatridevi, S; Jayalakshmi, S K; Sreeramulu, K

    2012-03-01

    The relationship between salicylic acid level catalases isoforms chickpea cv. ICCV-10 infected with Fusarium oxysporum f. sp. ciceri was investigated. Pathogen-treated chickpea plants showed high levels of SA compared with the control. Two isoforms of catalases in shoot extract (CAT-IS and CAT-IIS) and single isoform in root extract (CAT-R) were detected in chickpea. CAT-IS and CAT-R activities were inhibited in respective extracts treated with pathogen whereas, CAT-IIS activity was not inhibited. These isoforms were purified and their kinetic properties studied in the presence or absence of SA. The molecular mass determined by SDS-PAGE of CAT-IS, CAT-IIS and CAT-R was found to be 97, 40 and 66 kDa respectively. Kinetic studies indicated that Km and V(max) of CAT-IS were 0.2 mM and 300 U/mg, 0.53 mM and 180 U/mg for CAT-IIS and 0.25 mM and 280 U/mg for CAT-R, respectively. CAT-IS and CAT-R were found to be more sensitive to SA and 50% of their activities were inhibited at 6 and 4 μM respectively, whereas CAT-IIS was insensitive to SA up to 100 μM. Quenching of the intrinsic tryptophan fluorescence of purified catalases were used to quantitate SA binding; the estimated K(d) value for CAT-IS, CAT-IIS and CAT-R found to be 2.3 μM, 3.1 mM and 2.8 μM respectively. SA is a modulator of catalase isozymes activity, supports its role in establishment of SAR in chickpea plants infected with the pathogen.

  11. Assessment of DAPG-producing Pseudomonas fluorescens for Management of Meloidogyne incognita and Fusarium oxysporum on Watermelon

    PubMed Central

    Meyer, Susan L. F.; Everts, Kathryne L.; Gardener, Brian McSpadden; Masler, Edward P.; Abdelnabby, Hazem M. E.; Skantar, Andrea M.

    2016-01-01

    Pseudomonas fluorescens isolates Clinto 1R, Wayne 1R, and Wood 1R, which produce the antibiotic 2,4-diacetylphloroglucinol (DAPG), can suppress soilborne diseases and promote plant growth. Consequently, these beneficial bacterial isolates were tested on watermelon plants for suppression of Meloidogyne incognita (root-knot nematode: RKN) and Fusarium oxysporum f. sp. niveum (Fon). In a greenhouse trial, Wayne 1R root dip suppressed numbers of RKN eggs per gram root on ‘Charleston Gray’ watermelon by 28.9%. However, in studies focused on ‘Sugar Baby’ watermelon, which is commercially grown in Maryland, a Wayne 1R root dip did not inhibit RKN reproduction or plant death caused by Fon. When all three isolates were applied as seed coats, plant stand in the greenhouse was reduced up to 60% in treatments that included Fon ± P. fluorescens, and eggs per gram root did not differ among treatments. In a microplot trial with Clinto 1R and Wayne 1R root dips, inoculation with P. fluorescens and/or Fon resulted in shorter vine lengths than treatment with either P. fluorescens isolate plus RKN. Root weights, galling indices, eggs per gram root, and second-stage juvenile (J2) numbers in soil were similar among all RKN-inoculated treatments, and fruit production was not affected by treatment. Plant death was high in all treatments. These studies demonstrated that the tested P. fluorescens isolates resulted in some inhibition of vine growth in the field, and were not effective for enhancing plant vigor or suppressing RKN or Fon on watermelon. PMID:27168652

  12. Targeting Iron Acquisition Blocks Infection with the Fungal Pathogens Aspergillus fumigatus and Fusarium oxysporum

    PubMed Central

    Leal, Sixto M.; Roy, Sanhita; Vareechon, Chairut; Carrion, Steven deJesus; Clark, Heather; Lopez-Berges, Manuel S.; diPietro, Antonio; Schrettl, Marcus; Beckmann, Nicola; Redl, Bernhard; Haas, Hubertus; Pearlman, Eric

    2013-01-01

    Filamentous fungi are an important cause of pulmonary and systemic morbidity and mortality, and also cause corneal blindness and visual impairment worldwide. Utilizing in vitro neutrophil killing assays and a model of fungal infection of the cornea, we demonstrated that Dectin-1 dependent IL-6 production regulates expression of iron chelators, heme and siderophore binding proteins and hepcidin in infected mice. In addition, we show that human neutrophils synthesize lipocalin-1, which sequesters fungal siderophores, and that topical lipocalin-1 or lactoferrin restricts fungal growth in vivo. Conversely, we show that exogenous iron or the xenosiderophore deferroxamine enhances fungal growth in infected mice. By examining mutant Aspergillus and Fusarium strains, we found that fungal transcriptional responses to low iron levels and extracellular siderophores are essential for fungal growth during infection. Further, we showed that targeting fungal iron acquisition or siderophore biosynthesis by topical application of iron chelators or statins reduces fungal growth in the cornea by 60% and that dual therapy with the iron chelator deferiprone and statins further restricts fungal growth by 75%. Together, these studies identify specific host iron-chelating and fungal iron-acquisition mediators that regulate fungal growth, and demonstrate that therapeutic inhibition of fungal iron acquisition can be utilized to treat topical fungal infections. PMID:23853581

  13. Comparative proteomic analyses reveal that Gnt2-mediated N-glycosylation affects cell wall glycans and protein content in Fusarium oxysporum.

    PubMed

    Lopez-Fernandez, Loida; Roncero, M Isabel G; Prieto, Alicia; Ruiz-Roldan, Carmen

    2015-10-14

    Protein N-glycosylation is a ubiquitous post-translational modification that contributes to appropriate protein folding, stability, functionality and localization. N-glycosylation has been identified as an important process for morphogenesis and virulence in several fungal pathogens including Fusarium oxysporum. Here we conducted comparative chemical and proteome-based analyses to better understand the physiological changes associated with protein hypo-N-glycosylation in F. oxysporum N-glycosyltransferase Gnt2-deficient mutant. The results suggest that lack of functional Gnt2 alters the size of galactofuranose chains in cell wall glycans, resulting in polysaccharides with a broad range of polymerization degrees and differential protein glycosylation patterns. Functional Gnt2 is necessary for normal conidium size and morphology and wild-type hyphal fusion rates. Hypo-N-glycosylation in ∆gnt2 mutant results in enhanced oxidative stress resistance and reduced levels of proteins involved in cell wall organization, biogenesis and remodelling. Deletion of gnt2 gene led to accumulation of trafficking vesicles at hyphal tips, reduced secretion of extracellular proteins related to detoxification of antifungal compounds and degradation of plant cell walls, and lowered extracellular polygalacturonase activity. Altogether, the results confirm that Gnt2-mediated N-glycosylation plays a crucial role in morphogenesis and virulence, and demonstrate that Gnt2 is essential for protein function, transport and relative abundance in F. oxysporum.

  14. Characterization of a novel plantain Asr gene, MpAsr, that is regulated in response to infection of Fusarium oxysporum f. sp. cubense and abiotic stresses.

    PubMed

    Liu, Hai-Yan; Dai, Jin-Ran; Feng, Dong-Ru; Liu, Bing; Wang, Hong-Bin; Wang, Jin-Fa

    2010-03-01

    Asr (abscisic acid, stress, ripening induced) genes are typically upregulated by a wide range of factors, including drought, cold, salt, abscisic acid (ABA) and injury; in addition to plant responses to developmental and environmental signals. We isolated an Asr gene, MpAsr, from a suppression subtractive hybridization (SSH) cDNA library of cold induced plantain (Musa paradisiaca) leaves. MpAsr expression was upregulated in Fusarium oxysporum f. sp. cubense infected plantain leaves, peels and roots, suggesting that MpAsr plays a role in plantain pathogen response. In addition, a 581-bp putative promoter region of MpAsr was isolated via genome walking and cis-elements involved in abiotic stress and pathogen-related responses were detected in this same region. Furthermore, the MpAsr promoter demonstrated positive activity and inducibility in tobacco under F. oxysporum f. sp. cubense infection and ABA, cold, dehydration and high salt concentration treatments. Interestingly, transgenic Arabidopsis plants overexpressing MpAsr exhibited higher drought tolerance, but showed no significant decreased sensitivity to F. oxysporum f. sp. cubense. These results suggest that MpAsr might be involved in plant responses to both abiotic stress and pathogen attack.

  15. Streptomyces rochei ACTA1551, an Indigenous Greek Isolate Studied as a Potential Biocontrol Agent against Fusarium oxysporum f.sp. lycopersici

    PubMed Central

    Kanini, Grammatiki S.; Katsifas, Efstathios A.; Savvides, Alexandros L.; Karagouni, Amalia D.

    2013-01-01

    Many studies have shown that several Greek ecosystems inhabit very interesting bacteria with biotechnological properties. Therefore Streptomyces isolates from diverse Greek habitats were selected for their antifungal activity against the common phytopathogenic fungus Fusarium oxysporum. The isolate encoded ACTA1551, member of Streptomyces genus, could strongly suppress the fungal growth when examined in antagonistic bioassays in vitro. The isolate was found phylogenetically relative to Streptomyces rochei after analyzing its 16S rDNA sequence. The influence of different environmental conditions, such as medium composition, temperature, and pH on the expression of the antifungal activity was thoroughly examined. Streptomyces rochei ACTA1551 was able to protect tomato seeds from F. oxysporum infection in vivo while it was shown to promote the growth of tomato plants when the pathogen was absent. In an initial effort towards the elucidation of the biochemical and physiological nature of ACTA1551 antifungal activity, extracts from solid streptomycete cultures under antagonistic or/and not antagonistic conditions were concentrated and fractionated. The metabolites involved in the antagonistic action of the isolate showed to be more than one and produced independently of the presence of the pathogen. The above observations could support the application of Streptomyces rochei ACTA1551 as biocontrol agent against F. oxysporum. PMID:23762841

  16. Phenyl derivative of pyranocoumarin precludes Fusarium oxysporum f.sp. Lycopersici infection in Lycopersicon esculentum via induction of enzymes of the phenylpropanoid pathway.

    PubMed

    Sangeetha, S; Sarada, D V L

    2015-01-01

    Binding of phenyl derivative of pyranocoumarin (PDP) modulated activity of fungal endopolygalacturonase in silico. Induced fit docking study of PDP with endopolygalacturonase (1HG8) showed a bifurcated hydrogen bond interaction with the protein at Lys 244 with a docking score of -3.6 and glide energy of -37.30 kcal/mol. Docking with endopolygalacturonase II (1CZF) resulted hydrogen bond formation with Lys 258 with a docking score of -2.3 and glide energy of -30.42 kcal/mol. It was hypothesized that this modulation favors accumulation of cell wall fragments (oligogalacturonides) which act as elicitors of plant defense responses. In order to prove the same, in vivo studies were carried out using a formulation developed from PDP (PDP 5EC) on greenhouse grown Lycopersicon esculentum L. The formulation was effective at different concentrations in reduction of seed infection, improvement of vigor and control of Fusarium oxysporum f.sp. lycopersici infection in L. esculentum. At a concentration of 2 %, PDP 5EC significant reduction in seed infection (95.83 %), improvement in seed vigor (64.31 %) and control of F. oxysporum f.sp. lycopersici infection (96.15 %) were observed. Further application of PDP 5EC to L. esculentum challenged with F. oxysporum f.sp. lycopersici significantly increased the activity of enzymes of the phenylpropanoid pathway, namely, peroxidase (PO), polyphenol oxidase (PPO), phenylalanine ammonia lyase (PAL), and enhanced the total phenolic content when compared to the control.

  17. Potential of Burkholderia seminalis TC3.4.2R3 as Biocontrol Agent Against Fusarium oxysporum Evaluated by Mass Spectrometry Imaging

    NASA Astrophysics Data System (ADS)

    Araújo, Francisca Diana da Silva; Araújo, Welington Luiz; Eberlin, Marcos Nogueira

    2017-02-01

    Species of genus Burkholderia display different interaction profiles in the environment, causing either several diseases in plants and animals or being beneficial to some plants, promoting their growth, and suppressing phytopathogens. Burkholderia spp. also produce many types of biomolecules with antimicrobial activity, which may be commercially used to protect crops of economic interest, mainly against fungal diseases. Herein we have applied matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI-MSI) to investigate secondary metabolites produced by B. seminalis TC3.4.2R3 in monoculture and coculture with plant pathogen Fusarium oxysporum. The siderophore pyochelin and the rhamnolipid Rha-Rha-C15-C14 were detected in wild-type B. seminalis strain, and their productions were found to vary in mutant strains carrying disruptions in gene clusters associated with antimicrobial compounds. Two mycotoxins were detected in F. oxysporum. During coculture with B. seminalis, metabolites probably related to defense mechanisms of these microorganisms were observed in the interspecies interaction zone. Our findings demonstrate the effective application of MALDI-MSI in the detection of bioactive molecules involved in the defense mechanism of B. seminalis, and these findings suggest the potential use of this bacterium in the biocontrol of plant diseases caused by F. oxysporum.

  18. Deep 16S rRNA Pyrosequencing Reveals a Bacterial Community Associated with Banana Fusarium Wilt Disease Suppression Induced by Bio-Organic Fertilizer Application

    PubMed Central

    Ruan, Yunze; Xue, Chao; Zhang, Jian; Li, Rong; Shen, Qirong

    2014-01-01

    Our previous work demonstrated that application of a bio-organic fertilizer (BIO) to a banana mono-culture orchard with serious Fusarium wilt disease effectively decreased the number of soil Fusarium sp. and controlled the soil-borne disease. Because bacteria are an abundant and diverse group of soil organisms that responds to soil health, deep 16 S rRNA pyrosequencing was employed to characterize the composition of the bacterial community to investigate how it responded to BIO or the application of other common composts and to explore the potential correlation between bacterial community, BIO application and Fusarium wilt disease suppression. After basal quality control, 137,646 sequences and 9,388 operational taxonomic units (OTUs) were obtained from the 15 soil samples. Proteobacteria, Acidobacteria, Bacteroidetes, Gemmatimonadetes and Actinobacteria were the most frequent phyla and comprised up to 75.3% of the total sequences. Compared to the other soil samples, BIO-treated soil revealed higher abundances of Gemmatimonadetes and Acidobacteria, while Bacteroidetes were found in lower abundance. Meanwhile, on genus level, higher abundances compared to other treatments were observed for Gemmatimonas and Gp4. Correlation and redundancy analysis showed that the abundance of Gemmatimonas and Sphingomonas and the soil total nitrogen and ammonium nitrogen content were higher after BIO application, and they were all positively correlated with disease suppression. Cumulatively, the reduced Fusarium wilt disease incidence that was seen after BIO was applied for 1-year might be attributed to the general suppression based on a shift within the bacteria soil community, including specific enrichment of Gemmatimonas and Sphingomonas. PMID:24871319

  19. Deep 16S rRNA pyrosequencing reveals a bacterial community associated with Banana Fusarium Wilt disease suppression induced by bio-organic fertilizer application.

    PubMed

    Shen, Zongzhuan; Wang, Dongsheng; Ruan, Yunze; Xue, Chao; Zhang, Jian; Li, Rong; Shen, Qirong

    2014-01-01

    Our previous work demonstrated that application of a bio-organic fertilizer (BIO) to a banana mono-culture orchard with serious Fusarium wilt disease effectively decreased the number of soil Fusarium sp. and controlled the soil-borne disease. Because bacteria are an abundant and diverse group of soil organisms that responds to soil health, deep 16 S rRNA pyrosequencing was employed to characterize the composition of the bacterial community to investigate how it responded to BIO or the application of other common composts and to explore the potential correlation between bacterial community, BIO application and Fusarium wilt disease suppression. After basal quality control, 137,646 sequences and 9,388 operational taxonomic units (OTUs) were obtained from the 15 soil samples. Proteobacteria, Acidobacteria, Bacteroidetes, Gemmatimonadetes and Actinobacteria were the most frequent phyla and comprised up to 75.3% of the total sequences. Compared to the other soil samples, BIO-treated soil revealed higher abundances of Gemmatimonadetes and Acidobacteria, while Bacteroidetes were found in lower abundance. Meanwhile, on genus level, higher abundances compared to other treatments were observed for Gemmatimonas and Gp4. Correlation and redundancy analysis showed that the abundance of Gemmatimonas and Sphingomonas and the soil total nitrogen and ammonium nitrogen content were higher after BIO application, and they were all positively correlated with disease suppression. Cumulatively, the reduced Fusarium wilt disease incidence that was seen after BIO was applied for 1-year might be attributed to the general suppression based on a shift within the bacteria soil community, including specific enrichment of Gemmatimonas and Sphingomonas.

  20. Isolation screening and characterisation of local beneficial rhizobacteria based upon their ability to suppress the growth of Fusarium oxysporum f. sp. radicis-lycopersici and tomato foot and root rot

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Tomato crown and root rot or tomato foot and root rot (TFRR) is caused by the phytopathogenic fungus Fusarium oxysporum f. sp. radicis-lycopersici (Forl). The disease occurs in both greenhouse and outdoor tomato cultivations and cannot be treated efficiently with the existing fungicides. We conducte...

  1. Plant growth-promoting endophytic bacteria versus pathogenic infections: an example of Bacillus amyloliquefaciens RWL-1 and Fusarium oxysporum f. sp. lycopersici in tomato

    PubMed Central

    Shahzad, Raheem; Khan, Abdul Latif; Bilal, Saqib

    2017-01-01

    Fungal pathogenic attacks are one of the major threats to the growth and productivity of crop plants. Currently, instead of synthetic fungicides, the use of plant growth-promoting bacterial endophytes has been considered intriguingly eco-friendly in nature. Here, we aimed to investigate the in vitro and in vivo antagonistic approach by using seed-borne endophytic Bacillus amyloliquefaciens RWL-1 against pathogenic Fusarium oxysporum f. sp. lycopersici. The results revealed significant suppression of pathogenic fungal growth by Bacillus amyloliquefaciens in vitro. Further to this, we inoculated tomato plants with RWL-1 and F. oxysporum f. sp. lycopersici in the root zone. The results showed that the growth attributes and biomass were significantly enhanced by endophytic-inoculation during disease incidence as compared to F. oxysporum f. sp. lycopersici infected plants. Under pathogenic infection, the RWL-1-applied plants showed increased amino acid metabolism of cell wall related (e.g., aspartic acid, glutamic acid, serine (Ser), and proline (Pro)) as compared to diseased plants. In case of endogenous phytohormones, significantly lower amount of jasmonic acid (JA) and higher amount of salicylic acid (SA) contents was recorded in RWL-1-treated diseased plants. The phytohormones regulation in disease incidences might be correlated with the ability of RWL-1 to produce organic acids (e.g., succinic acid, acetic acid, propionic acid, and citric acid) during the inoculation and infection of tomato plants. The current findings suggest that RWL-1 inoculation promoted and rescued plant growth by modulating defense hormones and regulating amino acids. This suggests that bacterial endophytes could be used for possible control of F. oxysporum f. sp. lycopersici in an eco-friendly way. PMID:28321368

  2. Development of quantitative proteomics using iTRAQ based on the immunological response of Galleria mellonella larvae challenged with Fusarium oxysporum microconidia.

    PubMed

    Muñoz-Gómez, Amalia; Corredor, Mauricio; Benítez-Páez, Alfonso; Peláez, Carlos

    2014-01-01

    Galleria mellonella has emerged as a potential invertebrate model for scrutinizing innate immunity. Larvae are easy to handle in host-pathogen assays. We undertook proteomics research in order to understand immune response in a heterologous host when challenged with microconidia of Fusarium oxysporum. The aim of this study was to investigate hemolymph proteins that were differentially expressed between control and immunized larvae sets, tested with F. oxysporum at two temperatures. The iTRAQ approach allowed us to observe the effects of immune challenges in a lucid and robust manner, identifying more than 50 proteins, 17 of them probably involved in the immune response. Changes in protein expression were statistically significant, especially when temperature was increased because this was notoriously affected by F. oxysporum 104 or 106 microconidia/mL. Some proteins were up-regulated upon immune fungal microconidia challenge when temperature changed from 25 to 37°C. After analysis of identified proteins by bioinformatics and meta-analysis, results revealed that they were involved in transport, immune response, storage, oxide-reduction and catabolism: 20 from G. mellonella, 20 from the Lepidoptera species and 19 spread across bacteria, protista, fungi and animal species. Among these, 13 proteins and 2 peptides were examined for their immune expression, and the hypothetical 3D structures of 2 well-known proteins, unannotated for G. mellonella, i.e., actin and CREBP, were resolved using peptides matched with Bombyx mori and Danaus plexippus, respectively. The main conclusion in this study was that iTRAQ tool constitutes a consistent method to detect proteins associated with the innate immune system of G. mellonella in response to infection caused by F. oxysporum. In addition, iTRAQ was a reliable quantitative proteomic approach to detect and quantify the expression levels of immune system proteins and peptides, in particular, it was found that 104 microconidia/mL at

  3. Differential Responses of Vanilla Accessions to Root Rot and Colonization by Fusarium oxysporum f. sp. radicis-vanillae

    PubMed Central

    Koyyappurath, Sayuj; Conéjéro, Geneviève; Dijoux, Jean Bernard; Lapeyre-Montès, Fabienne; Jade, Katia; Chiroleu, Frédéric; Gatineau, Frédéric; Verdeil, Jean Luc; Besse, Pascale; Grisoni, Michel

    2015-01-01

    Root and stem rot (RSR) disease caused by Fusarium oxysporum f. sp. radicis-vanillae (Forv) is the most damaging disease of vanilla (Vanilla planifolia and V. × tahitensis, Orchidaceae). Breeding programs aimed at developing resistant vanilla varieties are hampered by the scarcity of sources of resistance to RSR and insufficient knowledge about the histopathology of Forv. In this work we have (i) identified new genetic resources resistant to RSR including V. planifolia inbreds and vanilla relatives, (ii) thoroughly described the colonization pattern of Forv into selected vanilla accessions, confirming its necrotic non-vascular behavior in roots, and (iii) evidenced the key role played by hypodermis, and particularly lignin deposition onto hypodermal cell walls, for resistance to Forv in two highly resistant vanilla accessions. Two hundred and fifty-four vanilla accessions were evaluated in the field under natural conditions of infection and in controlled conditions using in vitro plants root-dip inoculated by the highly pathogenic isolate Fo072. For the 26 accessions evaluated in both conditions, a high correlation was observed between field evaluation and in vitro assay. The root infection process and plant response of one susceptible and two resistant accessions challenged with Fo072 were studied using wide field and multiphoton microscopy. In susceptible V. planifolia, hyphae penetrated directly into the rhizodermis in the hairy root region then invaded the cortex through the passage cells where it induced plasmolysis, but never reached the vascular region. In the case of the resistant accessions, the penetration was stopped at the hypodermal layer. Anatomical and histochemical observations coupled with spectral analysis of the hypodermis suggested the role of lignin deposition in the resistance to Forv. The thickness of lignin constitutively deposited onto outer cell walls of hypodermis was highly correlated with the level of resistance for 21 accessions

  4. Modification of competence for in vitro response to Fusarium oxysporum in tomato cells. II. Effect of the integration of Agrobacterium tumefaciens genes for auxin and cytokinin synthesis.

    PubMed

    Storti, E; Bogani, P; Bettini, P; Bittini, P; Guardiola, M L; Pellegrini, M G; Inzé, D; Buiatti, M

    1994-04-01

    We have studied the effect of a change in the endogenous hormone equilibria on the competence of tomato (Lycopersicon esculentum) cells to defend themselves against the fungal pathogen Fusarium oxysporum f. sp. lycopersici. Calluses from cvs 'Davis' and 'Red River', respectively resistant and susceptible to Fusarium and transgenic for an auxin- or cytokinin-synthesizing gene from Agrobacterium tumefaciens, were used. The integration of Agrobacterium hormone-related genes into susceptible cv 'Red River' can bring the activation of defense processes to a stable competence as assessed by the inhibition of mycelial growth in dual culture and gem-tube elongation of Fusarium conidia, the determination of callose contents, peroxidase induction and ion leakage in the presence of fusaric acid. This is particularly true when the transformation results in a change of phytohormone equilibria towards an higher cytokin in concentration. On the contrary, in resistant cv 'Davis' the inhibition of both fungal growth in dual culture and conidia germination is higher when the hormone balance is modified in favour of the auxins. No significant effect was observed for ion leakage and peroxidase induction, probably because of a constitutive overproduction of cytokinins in 'Davis' cells.

  5. Isolation and Identification of the Antimicrobial Agent Beauvericin from the Endophytic Fusarium oxysporum 5-19 with NMR and ESI-MS/MS

    PubMed Central

    Ruan, Chuanfen; Bai, Xuelian; Zhang, Miao; Zhu, Shuangshuang; Jiang, Yingying

    2016-01-01

    Endophytic microbe has been proved to be one of rich sources of bioactive natural products with potential application for new drug and pesticide discovery. One cyclodepsipeptide, beauvericin, was firstly isolated from the fermentation broth of Fusarium oxysporum 5-19 endophytic on Edgeworthia chrysantha Linn. Its chemical structure was unambiguously identified by a combination of spectroscopic methods, such as HRESI-MS and 1H and 13C NMR. ESI-MS/MS was successfully used to elucidate the splitting decomposition route of the positive molecule ion of beauvericin. Antimicrobial results showed that this cyclodepsipeptide had inhibitory effect on three human pathogenic microbes, Candida albicans, Escherichia coli, and Staphylococcus aureus. In particular, beauvericin exhibited the strongest antimicrobial activity against S. aureus with MIC values of 3.91 μM, which had similar effect with that of the positive control amoxicillin. PMID:27413733

  6. Root exudates of mycorrhizal tomato plants exhibit a different effect on microconidia germination of Fusarium oxysporum f. sp. lycopersici than root exudates from non-mycorrhizal tomato plants.

    PubMed

    Scheffknecht, S; Mammerler, R; Steinkellner, S; Vierheilig, H

    2006-07-01

    The effect of root exudates from mycorrhizal and non-mycorrhizal tomato plants on microconidia germination of the tomato pathogen Fusarium oxysporum f. sp. lycopersici was tested. Microconidia germination was enhanced in the presence of root exudates from mycorrhizal tomato plants. The more tomato plants were colonized by the arbuscular mycorrhizal fungus Glomus mosseae, the more microconidia germination was increased, indicating that alterations of the exudation pattern depended on the degree of root AM colonization. Moreover, alterations of the exudation pattern of mycorrhizal plants are not only local, but also systemic. Testing the exudates from plants with a high and a low P level revealed that the alterations of the root exudates from mycorrhizal plants, resulting in a changed effect on microconidia germination, are not due to an improved P status of mycorrhizal plants.

  7. Effect of Nanoencapsulated Vitamin B1 Derivative on Inhibition of Both Mycelial Growth and Spore Germination of Fusarium oxysporum f. sp. raphani

    PubMed Central

    Cho, Jeong Sub; Seo, Yong Chang; Yim, Tae Bin; Lee, Hyeon Yong

    2013-01-01

    Nanoencapsulation of thiamine dilauryl sulfate (TDS), a vitamin B1 derivative, was proved to effectively inhibit the spore germination of Fusarium oxysporum f. sp. raphani (F. oxysporum), as well as mycelial growth. The average diameter of nanoparticles was measured as 136 nm by being encapsulated with an edible encapsulant, lecithin, whose encapsulation efficiency was about 55% in containing 200 ppm of TDS concentration: the 100 ppm TDS nanoparticle solution showed a mycelial growth inhibition rate of 59%. These results were about similar or even better than the cases of treating 100 ppm of dazomet, a positive antifungal control (64%). Moreover, kinetic analysis of inhibiting spore germination were estimated as 6.6% reduction of spore germination rates after 24 h treatment, which were 3.3% similar to the case of treating 100 ppm of a positive control (dazomet) for the same treatment time. It was also found that TDS itself could work as an antifungal agent by inhibiting both mycelial growth and spore germination, even though its efficacy was lower than those of nanoparticles. Nanoparticles especially played a more efficient role in limiting the spore germination, due to their easy penetration into hard cell membranes and long resident time on the surface of the spore shell walls. In this work, it was first demonstrated that the nanoparticle of TDS not a harmful chemical can control the growth of F. oxysporum by using a lower dosage than commercial herbicides, as well as the inhibiting mechanism of the TDS. However, field trials of the TDS nanoparticles encapsulated with lecithin should be further studied to be effectively used for field applications. PMID:23429270

  8. The F-box protein Fbp1 functions in the invasive growth and cell wall integrity mitogen-activated protein kinase (MAPK) pathways in Fusarium oxysporum.

    PubMed

    Miguel-Rojas, Cristina; Hera, Concepcion

    2016-01-01

    F-box proteins determine substrate specificity of the ubiquitin-proteasome system. Previous work has demonstrated that the F-box protein Fbp1, a component of the SCF(Fbp1) E3 ligase complex, is essential for invasive growth and virulence of the fungal plant pathogen Fusarium oxysporum. Here, we show that, in addition to invasive growth, Fbp1 also contributes to vegetative hyphal fusion and fungal adhesion to tomato roots. All of these functions have been shown previously to require the mitogen-activated protein kinase (MAPK) Fmk1. We found that Fbp1 is required for full phosphorylation of Fmk1, indicating that Fbp1 regulates virulence and invasive growth via the Fmk1 pathway. Moreover, the Δfbp1 mutant is hypersensitive to sodium dodecylsulfate (SDS) and calcofluor white (CFW) and shows reduced phosphorylation levels of the cell wall integrity MAPK Mpk1 after SDS treatment. Collectively, these results suggest that Fbp1 contributes to both the invasive growth and cell wall integrity MAPK pathways of F. oxysporum.

  9. Tomato I2 Immune Receptor Can Be Engineered to Confer Partial Resistance to the Oomycete Phytophthora infestans in Addition to the Fungus Fusarium oxysporum.

    PubMed

    Giannakopoulou, Artemis; Steele, John F C; Segretin, Maria Eugenia; Bozkurt, Tolga O; Zhou, Ji; Robatzek, Silke; Banfield, Mark J; Pais, Marina; Kamoun, Sophien

    2015-12-01

    Plants and animals rely on immune receptors, known as nucleotide-binding domain and leucine-rich repeat (NLR)-containing proteins, to defend against invading pathogens and activate immune responses. How NLR receptors respond to pathogens is inadequately understood. We previously reported single-residue mutations that expand the response of the potato immune receptor R3a to AVR3a(EM), a stealthy effector from the late blight oomycete pathogen Phytophthora infestans. I2, another NLR that mediates resistance to the will-causing fungus Fusarium oxysporum f. sp. lycopersici, is the tomato ortholog of R3a. We transferred previously identified R3a mutations to I2 to assess the degree to which the resulting I2 mutants have an altered response. We discovered that wild-type I2 protein responds weakly to AVR3a. One mutant in the N-terminal coiled-coil domain, I2(I141N), appeared sensitized and displayed markedly increased response to AVR3a. Remarkably, I2(I141N) conferred partial resistance to P. infestans. Further, I2(I141N) has an expanded response spectrum to F. oxysporum f. sp. lycopersici effectors compared with the wild-type I2 protein. Our results suggest that synthetic immune receptors can be engineered to confer resistance to phylogenetically divergent pathogens and indicate that knowledge gathered for one NLR could be exploited to improve NLR from other plant species.

  10. The Role of Pathogen-Secreted Proteins in Fungal Vascular Wilt Diseases

    PubMed Central

    de Sain, Mara; Rep, Martijn

    2015-01-01

    A limited number of fungi can cause wilting disease in plants through colonization of the vascular system, the most well-known being Verticillium dahliae and Fusarium oxysporum. Like all pathogenic microorganisms, vascular wilt fungi secrete proteins during host colonization. Whole-genome sequencing and proteomics screens have identified many of these proteins, including small, usually cysteine-rich proteins, necrosis-inducing proteins and enzymes. Gene deletion experiments have provided evidence that some of these proteins are required for pathogenicity, while the role of other secreted proteins remains enigmatic. On the other hand, the plant immune system can recognize some secreted proteins or their actions, resulting in disease resistance. We give an overview of proteins currently known to be secreted by vascular wilt fungi and discuss their role in pathogenicity and plant immunity. PMID:26473835

  11. The Role of Pathogen-Secreted Proteins in Fungal Vascular Wilt Diseases.

    PubMed

    de Sain, Mara; Rep, Martijn

    2015-10-09

    A limited number of fungi can cause wilting disease in plants through colonization of the vascular system, the most well-known being Verticillium dahliae and Fusarium oxysporum. Like all pathogenic microorganisms, vascular wilt fungi secrete proteins during host colonization. Whole-genome sequencing and proteomics screens have identified many of these proteins, including small, usually cysteine-rich proteins, necrosis-inducing proteins and enzymes. Gene deletion experiments have provided evidence that some of these proteins are required for pathogenicity, while the role of other secreted proteins remains enigmatic. On the other hand, the plant immune system can recognize some secreted proteins or their actions, resulting in disease resistance. We give an overview of proteins currently known to be secreted by vascular wilt fungi and discuss their role in pathogenicity and plant immunity.

  12. Plant growth-promoting rhizobacteria strain Bacillus amyloliquefaciens NJN-6-enriched bio-organic fertilizer suppressed Fusarium wilt and promoted the growth of banana plants.

    PubMed

    Yuan, Jun; Ruan, Yunze; Wang, Beibei; Zhang, Jian; Waseem, Raza; Huang, Qiwei; Shen, Qirong

    2013-04-24

    Bacillus amyloliquefaciens strain NJN-6 is an important plant growth-promoting rhizobacteria (PGPR) which can produce secondary metabolites antagonistic to several soil-borne pathogens. In this study, the ability of a bio-organic fertilizer (BIO) containing NJN-6 strain to promote the growth and suppress Fusarium wilt of banana plants was evaluated in a pot experiment. The results showed that the application of BIO significantly decreased the incidence of Fusarium wilt and promoted the growth of banana plants compared to that for the organic fertilizer (OF). To determine the beneficial mechanism of the strain, the colonization of NJN-6 strain on banana roots was evaluated using scanning electron microscopy (SEM). The plant growth-promoting hormones indole-3-acetic acid (IAA) and gibberellin A3 (GA3), along with antifungal lipopeptides iturin A, were detected when the NJN-6 strain was incubated in both Landy medium with additional l-tryptophan and in root exudates of banana plants. In addition, some antifungal volatile organic compounds and iturin A were also detected in BIO. In summary, strain NJN-6 could colonize the roots of banana plants after the application of BIO and produced active compounds which were beneficial for the growth of banana plants.

  13. Phenylacetic Acid Is ISR Determinant Produced by Bacillus fortis IAGS162, Which Involves Extensive Re-modulation in Metabolomics of Tomato to Protect against Fusarium Wilt.

    PubMed

    Akram, Waheed; Anjum, Tehmina; Ali, Basharat

    2016-01-01

    Bacillus fortis IAGS162 has been previously shown to induce systemic resistance in tomato plants against Fusarium wilt disease. In the first phase of current study, the ISR determinant was isolated from extracellular metabolites of this bacterium. ISR bioassays combined with solvent extraction, column chromatography and GC/MS analysis proved that phenylacetic acid (PAA) was the potential ISR determinant that significantly ameliorated Fusarium wilt disease of tomato at concentrations of 0.1 and 1 mM. In the second phase, the biochemical basis of the induced systemic resistance (ISR) under influence of PAA was elucidated by performing non-targeted whole metabolomics through GC/MS analysis. Tomato plants were treated with PAA and fungal pathogen in various combinations. Exposure to PAA and subsequent pathogen challenge extensively re-modulated tomato metabolic networks along with defense related pathways. In addition, various phenylpropanoid precursors were significantly up-regulated in treatments receiving PAA. This work suggests that ISR elicitor released from B. fortis IAGS162 contributes to resistance against fungal pathogens through dynamic reprogramming of plant pathways that are functionally correlated with defense responses.

  14. Phenylacetic Acid Is ISR Determinant Produced by Bacillus fortis IAGS162, Which Involves Extensive Re-modulation in Metabolomics of Tomato to Protect against Fusarium Wilt

    PubMed Central

    Akram, Waheed; Anjum, Tehmina; Ali, Basharat

    2016-01-01

    Bacillus fortis IAGS162 has been previously shown to induce systemic resistance in tomato plants against Fusarium wilt disease. In the first phase of current study, the ISR determinant was isolated from extracellular metabolites of this bacterium. ISR bioassays combined with solvent extraction, column chromatography and GC/MS analysis proved that phenylacetic acid (PAA) was the potential ISR determinant that significantly ameliorated Fusarium wilt disease of tomato at concentrations of 0.1 and 1 mM. In the second phase, the biochemical basis of the induced systemic resistance (ISR) under influence of PAA was elucidated by performing non-targeted whole metabolomics through GC/MS analysis. Tomato plants were treated with PAA and fungal pathogen in various combinations. Exposure to PAA and subsequent pathogen challenge extensively re-modulated tomato metabolic networks along with defense related pathways. In addition, various phenylpropanoid precursors were significantly up-regulated in treatments receiving PAA. This work suggests that ISR elicitor released from B. fortis IAGS162 contributes to resistance against fungal pathogens through dynamic reprogramming of plant pathways that are functionally correlated with defense responses. PMID:27148321

  15. A novel tissue-specific plantain beta-1,3-glucanase gene that is regulated in response to infection by Fusarium oxysporum fsp. cubense.

    PubMed

    Jin, Xiaoli; Feng, Dongru; Wang, Hongbin; Wang, Jinfa

    2007-09-01

    A new full-length beta-1,3-glucanase cDNA, MpGlu, was isolated from a plantain (Musa paradisica) by the rapid amplification of cDNA ends (RACE) technique. Recombinant GST-MpGlu protein, expressed in E. coli, hydrolyzed (1-->3),(1-->6)-beta-glucan of Laminaria digitata and inhibited the growth of Fusarium oxysporum fsp. cubense (race 4) suggesting that it is a beta-1,3-glucanase. Southern blot analysis indicated that there is one copy of MpGlu in the plantain genome. MpGlu gene expression was detected in plantain leaves, peel, and pulp by RT-PCR. Northern blot analysis revealed that the expression of MpGlu was up-regulated by Fusarium infection. Subcellular localization analysis indicated that 28 residues at the N-terminal end are necessary for extracellular secretion, while 32 residues at the C-terminal end are necessary to target the protein into vacuoles.

  16. The role of a dark septate endophytic fungus, Veronaeopsis simplex Y34, in Fusarium disease suppression in Chinese cabbage.

    PubMed

    Khastini, Rida O; Ohta, Hiroyuki; Narisawa, Kazuhiko

    2012-08-01

    The soil-inhabiting fungal pathogen Fusarium oxysporum has been an increasing threat to Chinese cabbage (Brassica campestris L.). A dark septate endophytic fungus, Veronaeopsis simplex Y34, isolated from Yaku Island, Japan, was evaluated in vitro for the ability to suppress Fusarium disease. Seedlings grown in the presence of the endophyte showed a 71% reduction in Fusarium wilt disease and still had good growth. The disease control was achieved through a synergetic effect involving a mechanical resistance created by a dense network of V. simplex Y34 hyphae, which colonized the host root, and siderophore production acting indirectly to induce a resistance mechanism in the plant. Changes in the relative abundance of the fungal communities in the soil as determined by fluorescently labelled T-RFs (terminal restriction fragments), appeared 3 weeks after application of the fungus. Results showed the dominance of V. simplex Y34, which became established in the rhizosphere and out-competed F. oxysporum.

  17. Genetic structure of soil population of fungus Fusarium oxysporum Schlechtend.: Fr.: Molecular reidentification of the species and genetic differentiation of isolates using polymerase chain reaction technique with universal primers (UP-PCR)

    SciTech Connect

    Bulat, S.A.; Mironenko, N.V.; Zholkevich, Yu.G.

    1995-07-01

    The genetic structure of three soil populations of fungus Fusarium oxysporum was analyzed using polymerase chain reaction with universal primers (UP-PCR). Distinct UP-PCR variants revealed by means of cross-dot hybridization of amplified DNA and restriction analysis of nuclear ribosomal DNA represent subspecies or sibling species of F. oxysporum. The remaining isolates of F. oxysporum showed moderate UP-PCR polymorphism characterized by numerous types, whose relatedness was analyzed by computer treatment of the UP-PCR patterns. The genetic distance trees based on the UP-PCR patterns, which were obtained with different universal primers, demonstrated similar topology. This suggests that evolutionarily important genome rearrangements correlatively occur within the entire genome. Isolates representing different UP-PCR polymorphisms were encountered in all populations, being distributed asymmetrically in two of these. In general, soil populations of F. oxysporum were represented by numerous genetically isolated groups with a similar genome structure. The genetic heterogeneity of the isolates within these groups is likely to be caused by the parasexual process. The usefulness of the UP-PCR technique for population studies of F. oxysporum was demonstrated. 39 refs., 7 figs., 2 tabs.

  18. Development of a hydrolysis probe-based real-time assay for the detection of tropical strains of Fusarium oxysporum f. sp. cubense race 4.

    PubMed

    Aguayo, Jaime; Mostert, Diane; Fourrier-Jeandel, Céline; Cerf-Wendling, Isabelle; Hostachy, Bruno; Viljoen, Altus; Ioos, Renaud

    2017-01-01

    Fusarium oxysporum f. sp. cubense (Foc) is one of the most important threats to global banana production. Strategies to control the pathogen are lacking, with plant resistance offering the only long-term solution, if sources of resistance are available. Prevention of introduction of Foc into disease-free areas thus remains a key strategy to continue sustainable banana production. In recent years, strains of Foc affecting Cavendish bananas have destroyed plantations in a number of countries in Asia and in the Middle East, and one African country. One vegetative compatibility group (VCG), 01213/16, is considered the major threat to bananas in tropical and subtropical climatic conditions. However, other genetically related VCGs, such as 0121, may potentially jeopardize banana cultures if they were introduced into disease-free areas. To prevent the introduction of these VCGs into disease-free Cavendish banana-growing countries, a real-time PCR test was developed to accurately detect both VCGs. A previously described putative virulence gene was used to develop a specific combination of hydrolysis probe/primers for the detection of tropical Foc race 4 strains. The real-time PCR parameters were optimized by following a statistical approach relying on orthogonal arrays and the Taguchi method in an attempt to enhance sensitivity and ensure high specificity of the assay. This study also assessed critical performance criteria, such as repeatability, reproducibility, robustness, and specificity, with a large including set of 136 F. oxysporum isolates, including 73 Foc pathogenic strains representing 24 VCGs. The validation data demonstrated that the new assay could be used for regulatory testing applications on banana plant material and can contribute to preventing the introduction and spread of Foc strains affecting Cavendish bananas in the tropics.

  19. Development of a hydrolysis probe-based real-time assay for the detection of tropical strains of Fusarium oxysporum f. sp. cubense race 4

    PubMed Central

    Cerf-Wendling, Isabelle; Hostachy, Bruno; Viljoen, Altus; Ioos, Renaud

    2017-01-01

    Fusarium oxysporum f. sp. cubense (Foc) is one of the most important threats to global banana production. Strategies to control the pathogen are lacking, with plant resistance offering the only long-term solution, if sources of resistance are available. Prevention of introduction of Foc into disease-free areas thus remains a key strategy to continue sustainable banana production. In recent years, strains of Foc affecting Cavendish bananas have destroyed plantations in a number of countries in Asia and in the Middle East, and one African country. One vegetative compatibility group (VCG), 01213/16, is considered the major threat to bananas in tropical and subtropical climatic conditions. However, other genetically related VCGs, such as 0121, may potentially jeopardize banana cultures if they were introduced into disease-free areas. To prevent the introduction of these VCGs into disease-free Cavendish banana-growing countries, a real-time PCR test was developed to accurately detect both VCGs. A previously described putative virulence gene was used to develop a specific combination of hydrolysis probe/primers for the detection of tropical Foc race 4 strains. The real-time PCR parameters were optimized by following a statistical approach relying on orthogonal arrays and the Taguchi method in an attempt to enhance sensitivity and ensure high specificity of the assay. This study also assessed critical performance criteria, such as repeatability, reproducibility, robustness, and specificity, with a large including set of 136 F. oxysporum isolates, including 73 Foc pathogenic strains representing 24 VCGs. The validation data demonstrated that the new assay could be used for regulatory testing applications on banana plant material and can contribute to preventing the introduction and spread of Foc strains affecting Cavendish bananas in the tropics. PMID:28178348

  20. Multiple garlic (Allium sativum L.) microRNAs regulate the immunity against the basal rot fungus Fusarium oxysporum f. sp. Cepae.

    PubMed

    Chand, Subodh Kumar; Nanda, Satyabrata; Mishra, Rukmini; Joshi, Raj Kumar

    2017-04-01

    The basal plate rot fungus, Fusarium oxysporum f. sp. cepae (FOC), is the most devastating pathogen posing a serious threat to garlic (Allium sativum L.) production worldwide. MicroRNAs (miRNAs) are key modulators of gene expression related to development and defense responses in eukaryotes. However, the miRNA species associated with garlic immunity against FOC are yet to be explored. In the present study, a small RNA library developed from FOC infected resistant garlic line was sequenced to identify immune responsive miRNAs. Forty-five miRNAs representing 39 conserved and six novel sequences responsive to FOC were detected. qRT-PCR analyses further classified them into three classes based on their expression patterns in susceptible line CBT-As11 and in the resistant line CBT-As153. North-blot analyses of six selective miRNAs confirmed the qRT-PCR results. Expression studies on a selective set of target genes revealed a negative correlation with the complementary miRNAs. Furthermore, transgenic garlic plant overexpresing miR164a, miR168a and miR393 showed enhanced resistance to FOC, as revealed by decreased fungal growth and up-regulated expression of defense-responsive genes. These results indicate that multiple miRNAs are involved in garlic immunity against FOC and that the overexpression of miR164a, miR168a and miR393 can augment garlic resistance to Fusarium basal rot infection.

  1. Antagonistic effects of several bacteria on Fusarium oxysporum, the causal agent of root and crown rot of onion under field conditions.

    PubMed

    Sharifi-Tehrani, A; Saberi-Riseh, R; Heidarian, R

    2004-01-01

    Onion (Allium cepa) is one of the most important vegetable crop which is commonly used as a food supplement. This plant is found to be vulnerable to various pathogenic infections during its growth development. Among different onion diseases, root and crown rot,caused by Fusarium oxysporum f.sp. cepa, s considered an importantfungal disease. In this study, the inhibitory effect of Bacillus cereus (isolates 22 and 52), B. subtilis (isolate 126), Pseudomonas fluorescens (isolates 48 and CHAO), benomyl fungicide and a combination of isolates CHAO and 22 and isolate 52 and benomyl were investigated on disease development under the field condition. This experiment was carried out in a randomize complete blocks with 10 treatments and three repetitions. Grouping of treatments was done at 5% level using Duncan multiple comparison test. It was also demonstrated that isolate 126 was the most effective antagonist with regard to crop yield but other treatments despite showing significant on plant growth factors were less effective in increasing crop yield.

  2. Effects of Polysaccharide Elicitors from Endophytic Fusarium oxysporum Fat9 on the Growth, Flavonoid Accumulation and Antioxidant Property of Fagopyrum tataricum Sprout Cultures.

    PubMed

    Zhong, Lingyun; Niu, Bei; Tang, Lin; Chen, Fang; Zhao, Gang; Zhao, Jianglin

    2016-11-25

    The purpose of this study was to evaluate the effects of four different fungal polysaccharides, named water-extracted mycelia polysaccharide (WPS), sodium hydroxide-extracted mycelia polysaccharide (SPS), hydrochloric-extracted mycelia polysaccharide (APS), and exo-polysaccharide (EPS) obtained from the endophytic Fusarium oxysporum Fat9 on the sprout growth, flavonoid accumulation, and antioxidant capacity of tartary buckwheat. Without visible changes in the appearance of the sprouts, the exogenous polysaccharide elicitors strongly stimulated sprout growth and flavonoid production, and the stimulation effect was closely related with the polysaccharide (PS) species and its treatment dosage. With application of 200 mg/L of EPS, 200 mg/L of APS, 150 mg/L of WPS, or 100 mg/L of SPS, the total rutin and quercetin yields of buckwheat sprouts were significantly increased to 41.70 mg/(100 sprouts), 41.52 mg/(100 sprouts), 35.88 mg/(100 sprouts), and 32.95 mg/(100 sprouts), respectively. This was about 1.11 to 1.40-fold compared to the control culture of 31.40 mg/(100 sprouts). Moreover, the antioxidant capacity of tartary buckwheat sprouts was also enhanced after treatment with the four PS elicitors. Furthermore, the present study revealed the polysaccharide elicitation that caused the accumulation of functional flavonoid by stimulating the phenylpropanoid pathway. The application of beneficial fungal polysaccharide elicitors may be an effective approach to improve the nutritional and functional characteristics of tartary buckwheat sprouts.

  3. Dissection of Trichoderma longibrachiatum-induced defense in onion (Allium cepa L.) against Fusarium oxysporum f. sp. cepa by target metabolite profiling.

    PubMed

    Abdelrahman, Mostafa; Abdel-Motaal, Fatma; El-Sayed, Magdi; Jogaiah, Sudisha; Shigyo, Masayoshi; Ito, Shin-ichi; Tran, Lam-Son Phan

    2016-05-01

    Trichoderma spp. are versatile opportunistic plant symbionts that can cause substantial changes in the metabolism of host plants, thereby increasing plant growth and activating plant defense to various diseases. Target metabolite profiling approach was selected to demonstrate that Trichoderma longibrachiatum isolated from desert soil can confer beneficial agronomic traits to onion and induce defense mechanism against Fusarium oxysporum f. sp. cepa (FOC), through triggering a number of primary and secondary metabolite pathways. Onion seeds primed with Trichoderma T1 strain displayed early seedling emergence and enhanced growth compared with Trichoderma T2-treatment and untreated control. Therefore, T1 was selected for further investigations under greenhouse conditions, which revealed remarkable improvement in the onion bulb growth parameters and resistance against FOC. The metabolite platform of T1-primed onion (T1) and T1-primed onion challenged with FOC (T1+FOC) displayed significant accumulation of 25 abiotic and biotic stress-responsive metabolites, representing carbohydrate, phenylpropanoid and sulfur assimilation metabolic pathways. In addition, T1- and T1+FOC-treated onion plants showed discrete antioxidant capacity against 1,1-diphenyl-2-picrylhydrazyl (DPPH) compared with control. Our findings demonstrated the contribution of T. longibrachiatum to the accumulation of key metabolites, which subsequently leads to the improvement of onion growth, as well as its resistance to oxidative stress and FOC.

  4. Induction of Defense-Related Enzymes in Banana Plants: Effect of Live and Dead Pathogenic Strain of Fusarium oxysporum f. sp. cubense.

    PubMed

    Thakker, Janki N; Patel, Samiksha; Dhandhukia, Pinakin C

    2013-01-01

    The aim of the present study was to scrutinize the response of banana (Grand Naine variety) plants when interacting with dead or live pathogen, Fusarium oxysporum f.sp. cubense, a causative agent of Panama disease. Response of plants was evaluated in terms of induction of defense-related marker enzyme activity, namely, peroxidase (POX), polyphenol oxidase (PPO), β-1,3 glucanase, chitinase, and phenolics. Plant's interaction with live pathogen resulted in early induction of defense to restrain penetration as well as antimicrobial productions. However, pathogen overcame the defense of plant and caused disease. Interaction with dead pathogen resulted in escalating defense response in plants. Later on plants inoculated with dead pathogen showed resistance to even forced inoculation of live pathogen. Results obtained in the present study suggest that dead pathogen was able to mount defense response in plants and provide resistance to Panama disease upon subsequent exposure. Therefore, preparation from dead pathogen could be a potential candidate as a biocontrol agent or plant vaccine to combat Panama disease.

  5. Gene expression patterns and dynamics of the colonization of common bean (Phaseolus vulgaris L.) by highly virulent and weakly virulent strains of Fusarium oxysporum

    PubMed Central

    Niño-Sánchez, Jonathan; Tello, Vega; Casado-del Castillo, Virginia; Thon, Michael R.; Benito, Ernesto P.; Díaz-Mínguez, José María

    2015-01-01

    The dynamics of root and hypocotyl colonization, and the gene expression patterns of several fungal virulence factors and plant defense factors have been analyzed and compared in the interaction of two Fusarium oxysporum f. sp. phaseoli strains displaying clear differences in virulence, with a susceptible common bean cultivar. The growth of the two strains on the root surface and the colonization of the root was quantitatively similar although the highly virulent (HV) strain was more efficient reaching the central root cylinder. The main differences between both strains were found in the temporal and spatial dynamics of crown root and hypocotyl colonization. The increase of fungal biomass in the crown root was considerably larger for the HV strain, which, after an initial stage of global colonization of both the vascular cylinder and the parenchymal cells, restricted its growth to the newly differentiated xylem vessels. The weakly virulent (WV) strain was a much slower and less efficient colonizer of the xylem vessels, showing also growth in the intercellular spaces of the parenchyma. Most of the virulence genes analyzed showed similar expression patterns in both strains, except SIX1, SIX6 and the gene encoding the transcription factor FTF1, which were highly upregulated in root crown and hypocotyl. The response induced in the infected plant showed interesting differences for both strains. The WV strain induced an early and strong transcription of the PR1 gene, involved in SAR response, while the HV strain preferentially induced the early expression of the ethylene responsive factor ERF2. PMID:25883592

  6. Development of a TaqMan Probe-Based Insulated Isothermal Polymerase Chain Reaction (iiPCR) Assay for Detection of Fusarium oxysporum f. sp. cubense Race 4

    PubMed Central

    Lin, Yi-Jia; Chang, Tsai-De; Hong, Li-Ling; Chen, Tzu-Yu; Chang, Pi-Fang Linda

    2016-01-01

    This study developed a novel and inexpensive detection method based on a TaqMan probe-based insulated isothermal polymerase chain reaction (iiPCR) method for the rapid detection of Panama disease caused by Fusarium oxysporum f. sp. cubense (Foc) race 4, which is currently among the most serious fungal vascular diseases worldwide. By using the portable POCKIT™ device with the novel primer set iiFoc-1/iiFoc-2, the Foc race 4 iiPCR assay (including DNA amplification and signal monitoring) could be completed within one hour. The developed Foc race 4 iiPCR assay is thus a user-friendly and efficient platform designed specifically for the detection of Foc race 4. The detection limit of this optimized Foc iiPCR system was estimated to be 1 copy of the target standard DNA as well as 1 fg of the Foc genomic DNA. This approach can serve as a rapid detection method for in planta detection of Foc race 4 in field-infected banana. It was concluded that this molecular detection procedure based on iiPCR has good potential for use as an efficient detection method. PMID:27448242

  7. Molecular characterization of cell death induced by a compatible interaction between Fusarium oxysporum f. sp. linii and flax (Linum usitatissimum) cells.

    PubMed

    Hano, Christophe; Addi, Mohamed; Fliniaux, Ophélie; Bensaddek, Lamine; Duverger, Eric; Mesnard, François; Lamblin, Frédéric; Lainé, Eric

    2008-01-01

    The cellular and molecular events associated with cell death during compatible interaction between Fusarium oxysporum sp. linii and a susceptible flax (Linum usitatissimum) cell suspension are reported here. In order to determine the physiological and molecular sequence of cell death of inoculated cells, reactive oxygen species (ROS) production, mitochondrial potential, lipoxygenase, DNase, protease and caspase-3-like activities, lipid peroxidation and secondary metabolite production were monitored. We also used microscopy, in situ terminal deoxynucleotidyl transferase-mediated dUTP nick end labelling (TUNEL) and DNA fragmentation assay. Cell death was associated with specific morphological and biochemical changes that are generally noticed in hypersensitive (incompatible) reaction. An oxidative burst as well as a loss of mitochondrial potential of inoculated cells, an activation of lipoxygenase and lipid peroxidation were noted. Enzyme-mediated nuclear DNA degradation was detectable but oligonucleosomal fragmentation was not observed. Caspase-3-like activity was dramatically increased in inoculated cells. Phenylpropanoid metabolism was also affected as demonstrated by activation of PAL and PCBER gene expressions and reduced soluble lignan and neolignan contents. These results obtained in flax suggest that compatible interaction triggers a cell death sequence sharing a number of common features with the hypersensitive response observed in incompatible interaction and in animal apoptosis.

  8. Wound-induced pectin methylesterases enhance banana (Musa spp. AAA) susceptibility to Fusarium oxysporum f. sp. cubense.

    PubMed

    Ma, Li; Jiang, Shuang; Lin, Guimei; Cai, Jianghua; Ye, Xiaoxi; Chen, Houbin; Li, Minhui; Li, Huaping; Takác, Tomás; Samaj, Jozef; Xu, Chunxiang

    2013-05-01

    Recent studies suggest that plant pectin methylesterases (PMEs) are directly involved in plant defence besides their roles in plant development. However, the molecular mechanisms of PME action on pectins are not well understood. In order to understand how PMEs modify pectins during banana (Musa spp.)-Fusarium interaction, the expression and enzyme activities of PMEs in two banana cultivars, highly resistant or susceptible to Fusarium, were compared with each other. Furthermore, the spatial distribution of PMEs and their effect on pectin methylesterification of 10 individual homogalacturonan (HG) epitopes with different degrees of methylesterification (DMs) were also examined. The results showed that, before pathogen treatment, the resistant cultivar displayed higher PME activity than the susceptible cultivar, corresponding well to the lower level of pectin DM. A significant increase in PME expression and activity and a decrease in pectin DM were observed in the susceptible cultivar but not in the resistant cultivar when plants were wounded, which was necessary for successful infection. With the increase of PME in the wounded susceptible cultivar, the JIM5 antigen (low methyestrified HGs) increased. Forty-eight hours after pathogen infection, the PME activity and expression in the susceptible cultivar were higher than those in the resistant cultivar, while the DM was lower. In conclusion, the resistant and the susceptible cultivars differ significantly in their response to wounding. Increased PMEs and thereafter decreased DMs acompanied by increased low methylesterified HGs in the root vascular cylinder appear to play a key role in determination of banana susceptibility to Fusarium.

  9. Regulation of miR394 in Response to Fusarium oxysporum f. sp. cepae (FOC) Infection in Garlic (Allium sativum L)

    PubMed Central

    Chand, Subodh K.; Nanda, Satyabrata; Joshi, Raj K.

    2016-01-01

    MicroRNAs (miRNAs) are a class of post-transcriptional regulators that negatively regulate gene expression through target mRNA cleavage or translational inhibition and play important roles in plant development and stress response. In the present study, six conserved miRNAs from garlic (Allium sativum L.) were analyzed to identify differentially expressed miRNAs in response to Fusarium oxysporum f. sp. cepae (FOC) infection. Stem-loop RT-PCR revealed that miR394 is significantly induced in garlic seedlings post-treatment with FOC for 72 h. The induction of miR394 expression during FOC infection was restricted to the basal stem plate tissue, the primary site of infection. Garlic miR394 was also upregulated by exogenous application of jasmonic acid. Two putative targets of miR394 encoding F-box domain and cytochrome P450 (CYP450) family proteins were predicted and verified using 5′ RLM-RACE (RNA ligase mediated rapid amplification of cDNA ends) assay. Quantitative RT-PCR showed that the transcript levels of the predicted targets were significantly reduced in garlic plants exposed to FOC. When garlic cultivars with variable sensitivity to FOC were exposed to the pathogen, an upregulation of miR394 and down regulation of the targets were observed in both varieties. However, the expression pattern was delayed in the resistant genotypes. These results suggest that miR394 functions in negative modulation of FOC resistance and the difference in timing and levels of expression in variable genotypes could be examined as markers for selection of FOC resistant garlic cultivars. PMID:26973694

  10. Proteomic Analysis Reveals the Positive Roles of the Plant-Growth-Promoting Rhizobacterium NSY50 in the Response of Cucumber Roots to Fusarium oxysporum f. sp. cucumerinum Inoculation

    PubMed Central

    Du, Nanshan; Shi, Lu; Yuan, Yinghui; Li, Bin; Shu, Sheng; Sun, Jin; Guo, Shirong

    2016-01-01

    Plant-growth-promoting rhizobacteria (PGPR) can both improve plant growth and enhance plant resistance against a variety of environmental stresses. To investigate the mechanisms that PGPR use to protect plants under pathogenic attack, transmission electron microscopy analysis and a proteomic approach were designed to test the effects of the new potential PGPR strain Paenibacillus polymyxa NSY50 on cucumber seedling roots after they were inoculated with the destructive phytopathogen Fusarium oxysporum f. sp. cucumerinum (FOC). NSY50 could apparently mitigate the injury caused by the FOC infection and maintain the stability of cell structures. The two-dimensional electrophoresis (2-DE) approach in conjunction with MALDI-TOF/TOF analysis revealed a total of 56 proteins that were differentially expressed in response to NSY50 and/or FOC. The application of NSY50 up-regulated most of the identified proteins that were involved in carbohydrate metabolism and amino acid metabolism under normal conditions, which implied that both energy generation and the production of amino acids were enhanced, thereby ensuring an adequate supply of amino acids for the synthesis of new proteins in cucumber seedlings to promote plant growth. Inoculation with FOC inhibited most of the proteins related to carbohydrate and energy metabolism and to protein metabolism. The combined inoculation treatment (NSY50+FOC) accumulated abundant proteins involved in defense mechanisms against oxidation and detoxification as well as carbohydrate metabolism, which might play important roles in preventing pathogens from attacking. Meanwhile, western blotting was used to analyze the accumulation of enolase (ENO) and S-adenosylmethionine synthase (SAMs). NSY50 further increased the expression of ENO and SAMs under FOC stress. In addition, NSY50 adjusted the transcription levels of genes related to those proteins. Taken together, these results suggest that P. polymyxa NSY50 may promote plant growth and alleviate

  11. Regulation of miR394 in Response to Fusarium oxysporum f. sp. cepae (FOC) Infection in Garlic (Allium sativum L).

    PubMed

    Chand, Subodh K; Nanda, Satyabrata; Joshi, Raj K

    2016-01-01

    MicroRNAs (miRNAs) are a class of post-transcriptional regulators that negatively regulate gene expression through target mRNA cleavage or translational inhibition and play important roles in plant development and stress response. In the present study, six conserved miRNAs from garlic (Allium sativum L.) were analyzed to identify differentially expressed miRNAs in response to Fusarium oxysporum f. sp. cepae (FOC) infection. Stem-loop RT-PCR revealed that miR394 is significantly induced in garlic seedlings post-treatment with FOC for 72 h. The induction of miR394 expression during FOC infection was restricted to the basal stem plate tissue, the primary site of infection. Garlic miR394 was also upregulated by exogenous application of jasmonic acid. Two putative targets of miR394 encoding F-box domain and cytochrome P450 (CYP450) family proteins were predicted and verified using 5' RLM-RACE (RNA ligase mediated rapid amplification of cDNA ends) assay. Quantitative RT-PCR showed that the transcript levels of the predicted targets were significantly reduced in garlic plants exposed to FOC. When garlic cultivars with variable sensitivity to FOC were exposed to the pathogen, an upregulation of miR394 and down regulation of the targets were observed in both varieties. However, the expression pattern was delayed in the resistant genotypes. These results suggest that miR394 functions in negative modulation of FOC resistance and the difference in timing and levels of expression in variable genotypes could be examined as markers for selection of FOC resistant garlic cultivars.

  12. Development of Mesorhizobium ciceri-Based Biofilms and Analyses of Their Antifungal and Plant Growth Promoting Activity in Chickpea Challenged by Fusarium Wilt.

    PubMed

    Das, Krishnashis; Rajawat, Mahendra Vikram Singh; Saxena, Anil Kumar; Prasanna, Radha

    2017-03-01

    Biofilmed biofertilizers have emerged as a new improved inoculant technology to provide efficient nutrient and pest management and sustain soil fertility. In this investigation, development of a Trichoderma viride-Mesorhizobium ciceri biofilmed inoculant was undertaken, which we hypothesized, would possess more effective biological nitrogen fixing ability and plant growth promoting properties. As a novel attempt, we selected Mesorhizobium ciceri spp. with good antifungal attributes with the assumption that such inoculants could also serve as biocontrol agents. These biofilms exhibited significant enhancement in several plant growth promoting attributes, including 13-21 % increase in seed germination, production of ammonia, IAA and more than onefold to twofold enhancement in phosphate solubilisation, when compared to their individual partners. Enhancement of 10-11 % in antifungal activity against Fusarium oxysporum f. sp. ciceri was also recorded, over the respective M. ciceri counterparts. The effect of biofilms and the M. ciceri cultures individual on growth parameters of chickpea under pathogen challenged soil illustrated that the biofilms performed at par with the M. ciceri strains for most plant biometrical and disease related attributes. Elicitation of defense related enzymes like l-phenylalanine ammonia lyase, peroxidase and polyphenol oxidase was higher in M. ciceri/biofilm treated plants as compared to uninoculated plants under pathogen challenged soil. Further work on the signalling mechanisms among the partners and their tripartite interactions with host plant is envisaged in future studies.

  13. Solid-state fermentation of agro-industrial wastes to produce bioorganic fertilizer for the biocontrol of Fusarium wilt of cucumber in continuously cropped soil.

    PubMed

    Chen, Lihua; Yang, Xingming; Raza, Waseem; Luo, Jia; Zhang, Fengge; Shen, Qirong

    2011-02-01

    Agro-industrial wastes of cattle dung, vinegar-production residue and rice straw were solid-state fermented by inoculation with Trichoderma harzianum SQR-T037 (SQR-T037) for production of bioorganic fertilizers containing SQR-T037 and 6-pentyl-α-pyrone (6PAP) to control Fusarium wilt of cucumber in a continuously cropped soil. Fermentation days, temperature, inoculum and vinegar-production residue demonstrated significant effects on the SQR-T037 biomass and the yield of 6PAP, based on fractional factorial design. Three optimum conditions for producing the maximum SQR-T037 biomass and 6PAP yield were predicted by central composite design and validated. Bioorganic fertilizer containing 8.46 log(10) ITS copies g(-1) dry weight of SQR-T037 and 1291.73 mg kg(-1) dry weight of 6PAP, and having the highest (p<0.05) biocontrol efficacy, was achieved at 36.7 fermentation days, 25.9°C temperature, 7.6% inoculum content, 41.0% vinegar-production residue, 20.0% rice straw and 39.0% cattle dung. This is a way to offer a high value-added use for agro-industrial wastes.

  14. Comparative genomics yields insights into niche adaptation of plant vascular wilt pathogens.

    PubMed

    Klosterman, Steven J; Subbarao, Krishna V; Kang, Seogchan; Veronese, Paola; Gold, Scott E; Thomma, Bart P H J; Chen, Zehua; Henrissat, Bernard; Lee, Yong-Hwan; Park, Jongsun; Garcia-Pedrajas, Maria D; Barbara, Dez J; Anchieta, Amy; de Jonge, Ronnie; Santhanam, Parthasarathy; Maruthachalam, Karunakaran; Atallah, Zahi; Amyotte, Stefan G; Paz, Zahi; Inderbitzin, Patrik; Hayes, Ryan J; Heiman, David I; Young, Sarah; Zeng, Qiandong; Engels, Reinhard; Galagan, James; Cuomo, Christina A; Dobinson, Katherine F; Ma, Li-Jun

    2011-07-01

    The vascular wilt fungi Verticillium dahliae and V. albo-atrum infect over 200 plant species, causing billions of dollars in annual crop losses. The characteristic wilt symptoms are a result of colonization and proliferation of the pathogens in the xylem vessels, which undergo fluctuations in osmolarity. To gain insights into the mechanisms that confer the organisms' pathogenicity and enable them to proliferate in the unique ecological niche of the plant vascular system, we sequenced the genomes of V. dahliae and V. albo-atrum and compared them to each other, and to the genome of Fusarium oxysporum, another fungal wilt pathogen. Our analyses identified a set of proteins that are shared among all three wilt pathogens, and present in few other fungal species. One of these is a homolog of a bacterial glucosyltransferase that synthesizes virulence-related osmoregulated periplasmic glucans in bacteria. Pathogenicity tests of the corresponding V. dahliae glucosyltransferase gene deletion mutants indicate that the gene is required for full virulence in the Australian tobacco species Nicotiana benthamiana. Compared to other fungi, the two sequenced Verticillium genomes encode more pectin-degrading enzymes and other carbohydrate-active enzymes, suggesting an extraordinary capacity to degrade plant pectin barricades. The high level of synteny between the two Verticillium assemblies highlighted four flexible genomic islands in V. dahliae that are enriched for transposable elements, and contain duplicated genes and genes that are important in signaling/transcriptional regulation and iron/lipid metabolism. Coupled with an enhanced capacity to degrade plant materials, these genomic islands may contribute to the expanded genetic diversity and virulence of V. dahliae, the primary causal agent of Verticillium wilts. Significantly, our study reveals insights into the genetic mechanisms of niche adaptation of fungal wilt pathogens, advances our understanding of the evolution and

  15. Transcriptome Analysis of the Melon-Fusarium oxysporum f. sp. melonis Race 1.2 Pathosystem in Susceptible and Resistant Plants

    PubMed Central

    Silvia Sebastiani, M.; Bagnaresi, Paolo; Sestili, Sara; Biselli, Chiara; Zechini, Antonella; Orrù, Luigi; Cattivelli, Luigi; Ficcadenti, Nadia

    2017-01-01

    Fusarium oxysporum f. sp. melonis Snyd. & Hans race 1.2 (FOM1.2) is the most virulent and yield-limiting pathogen of melon (Cucumis melo L.) worldwide. Current information suggest that the resistance to race 1.2 is controlled by multiple recessive genes and strongly affected by the environment. RNA-Seq analysis was used to identify candidate resistance genes and to dissect the early molecular processes deployed during melon-FOM1.2 interaction in the resistant doubled haploid line NAD and in the susceptible genotype Charentais-T (CHT) at 24 and 48 h post-inoculation (hpi). The transcriptome analysis of the NAD-FOM1.2 interaction identified 2,461 and 821 differentially expressed genes (DEGs) at 24 hpi and at 48 hpi, respectively, while in susceptible combination CHT-FOM1.2, 882 and 2,237 DEGs were recovered at 24 hpi and at 48 hpi, respectively. The overall expression profile suggests a prompt activation of the defense responses in NAD due to its basal defense-related machinery that allows an early pathogen recognition. Gene Ontology (GO) enrichment analyses revealed a total of 57 GO terms shared by both genotypes and consistent with response to fungal infection. GO classes named “chitinase activity,” “cellulase activity,” “defense response, incompatible interaction,” “auxin polar transport” emerged as major factors of resistance to FOM1.2. The data indicated that NAD reacts to FOM1.2 with a fine regulation of Ca2+-mediated signaling pathways, cell wall reorganization, and hormone crosstalk (jasmonate and ethylene, auxin and abscissic acid). Several unannotated transcripts were recovered providing a basis for a further exploration of the melon resistance genes. DEGs belonging to the FOM1.2 genome were also detected in planta as a resource for the identification of potential pathogenicity factors. This work provides a broader view of the dynamic changes of the melon transcriptome triggered by FOM1.2 and highlights that the resistance response of NAD is

  16. Effect of Fusarium oxysporum f. sp. lycopersici on the degradation of humic acid associated with Cu, Pb, and Ni: an in vitro study.

    PubMed

    Corrales Escobosa, Alma Rosa; Landero Figueroa, Julio Alberto; Gutiérrez Corona, J Félix; Wrobel, Katarzyna; Wrobel, Kazimierz

    2009-08-01

    The intent of this work was to gain further insight on the fungus-assisted degradation/solubilization of humic acid and the related changes in metal-binding profiles. In the experimental design, Aldrich reagent humic acid (HA) or HA enriched with Cu, Pb, and Ni (HA(Me)) was added to Fusarium oxysporum f. sp. lycopersici cultures in vitro. The cultures were supplied by different carbon- and nitrogen-containing nutrients (glucose, Glc, or glutamate, Glu and ammonium, NH4+, or nitrate, NO3-, ions, respectively) in order to examine their possible effect on HA and HA(Me) decomposition. During the first 48 h of fungus growth, gradual acidification to pH 2 was observed in medium containing Glc + NH4+, while for other cultures, alkalinization to pH 9 occurred and then, the above conditions were stable up to at least 200 h. Size exclusion chromatography (SEC) with UV/Vis detection showed progressive degradation and solubilization of both HA and HA(Me) with the increasing time of fungus growth. However, the molecular mass distributions of HA-related soluble species were different in the presence of metals (HA(Me)) as referred to HA and were also influenced by the composition of growth medium. The solubilization of Pb, Cu, and Ni and their association with HA molecular mass fractions were studied using inductively coupled plasma mass spectrometry (ICP-MS) detection. Under acidic conditions, relatively high concentrations of low-molecular-mass metallic species were found in culture supernatants, while in alkaline media, metal solubilization was generally poorer. In contrast to low pH culture, SEC-ICP-MS results obtained in alkaline supernatants indicated metal binding to degradation products of humic substances of MM > 5 kDa. In summary, the results of this study suggest that fungus-assisted degradation of HA and HA(Me) might be controlled using appropriate N- and C- sources required for fungus growth, which in turn would affect molecular mass distribution of soluble metallic

  17. Stimulative effect of the fungal biocontrol agent Fusarium oxysporum f.sp. Striga on abundance of nitrifying prokaryotes in a maize rhizosphere

    NASA Astrophysics Data System (ADS)

    Musyoki, Mary; Enowashu, Esther; Zimmermann, Judith; Muema, Esther; Wainright, Henry; Vanlauwe, Bernard; Cadisch, Georg; Rasche, Frank

    2014-05-01

    The integration of resistant crop varieties and Fusarium oxysporum f.sp. strigae (Foxy-2) strains as biological control agent (BCA) has shown to be an effective control of the weed Striga hermonthica which is parasitic to several cereals (e.g., maize) cultivated in Sub-Saharan Africa. Most studies have examined the efficacy of the BCA and its interactions with host crops, while overlooking the interplay among key microorganisms in the soil nitrogen (N) cycle. Hence, we postulated that both Foxy-2 and Striga pose threats to the indigenous plant root-associated microbial communities involved in N cycling through direct or indirect competition for nutrients and that the application of high quality organic residues would compensate these effects. The primary objective of this study was thus to assess the potential impact of Foxy-2 on indigenous nitrifying prokaryotes in maize rhizosphere cultivated on two distinct soils (sandy Ferric Alisol versus clayey Humic Nitisol) obtained from Machanga and Embu, respectively, in central Kenya. These soils were treated with or without Foxy-2 and Striga; and in combination with high quality (i.e. CN ratio; 13, lignins, 8.9 % and polyphenols, 1.7 %) organic residues (i.e., Tithonia diversifolia) as N source. Using quantitative polymerase chain reaction (qPCR), we followed at three pre-defined sampling dates (14, 28 and 42 days after planting) the responses of ammonia-oxidizing archaea (AOA) and bacteria (AOB), total bacteria and archaea in four treatments of a rhizobox experiment: (i) Foxy-2 plus Striga (F+S), (ii) Striga only (C+S), (iii) Foxy-2 plus Striga plus Tithonia diversifolia residues (F+S+T), and (iv) a non-treated control (C). Overall, the treatment effects on soil microbial populations were, in comparison to the clayey Embu soil, more pronounced in the sandy Machanga soil. Contrary to our expectations, we observed a distinct stimulative, but no resource competition effect of Foxy-2 on the abundance of AOA, as well as

  18. Identification of I-7 expands the repertoire of genes for resistance to Fusarium wilt in tomato to three resistance gene classes.

    PubMed

    Gonzalez-Cendales, Yvonne; Catanzariti, Ann-Maree; Baker, Barbara; Mcgrath, Des J; Jones, David A

    2016-04-01

    The tomato I-3 and I-7 genes confer resistance to Fusarium oxysporum f. sp. lycopersici (Fol) race 3 and were introgressed into the cultivated tomato, Solanum lycopersicum, from the wild relative Solanum pennellii. I-3 has been identified previously on chromosome 7 and encodes an S-receptor-like kinase, but little is known about I-7. Molecular markers have been developed for the marker-assisted breeding of I-3, but none are available for I-7. We used an RNA-seq and single nucleotide polymorphism (SNP) analysis approach to map I-7 to a small introgression of S. pennellii DNA (c. 210 kb) on chromosome 8, and identified I-7 as a gene encoding a leucine-rich repeat receptor-like protein (LRR-RLP), thereby expanding the repertoire of resistance protein classes conferring resistance to Fol. Using an eds1 mutant of tomato, we showed that I-7, like many other LRR-RLPs conferring pathogen resistance in tomato, is EDS1 (Enhanced Disease Susceptibility 1) dependent. Using transgenic tomato plants carrying only the I-7 gene for Fol resistance, we found that I-7 also confers resistance to Fol races 1 and 2. Given that Fol race 1 carries Avr1, resistance to Fol race 1 indicates that I-7-mediated resistance, unlike I-2- or I-3-mediated resistance, is not suppressed by Avr1. This suggests that Avr1 is not a general suppressor of Fol resistance in tomato, leading us to hypothesize that Avr1 may be acting against an EDS1-independent pathway for resistance activation. The identification of I-7 has allowed us to develop molecular markers for marker-assisted breeding of both genes currently known to confer Fol race 3 resistance (I-3 and I-7). Given that I-7-mediated resistance is not suppressed by Avr1, I-7 may be a useful addition to I-3 in the tomato breeder's toolbox.

  19. Control of Root Rot and Wilt Diseases of Roselle under Field Conditions.

    PubMed

    Hassan, Naglaa; Elsharkawy, Mohsen Mohamed; Shimizu, Masafumi; Hyakumachi, Mitsuro

    2014-12-01

    Roselle (Hibiscus sabdariffa L.) is one of the most important medicinal crops in many parts of the world. In this study, the effects of microelements, antioxidants, and bioagents on Fusarium oxysporum, F. solani, and Macrophomina phaseolina, the causal pathogens of root rot and wilt diseases in roselle, were examined under field conditions. Preliminary studies were carried out in vitro in order to select the most effective members to be used in field control trials. Our results showed that microelements (copper and manganese), antioxidants (salicylic acid, ascorbic acid, and EDTA), a fungicide (Dithane M45) and biological control agents (Trichoderma harzianum and Bacillus subtilis) were significantly reduced the linear growth of the causal pathogens. Additionally, application of the previous microelements, antioxidants, a fungicide and biological control agents significantly reduced disease incidence of root rot and wilt diseases under field conditions. Copper, salicylic acid, and T. harzianum showed the best results in this respect. In conclusion, microelements, antioxidants, and biocontrol agents could be used as alternative strategies to fungicides for controlling root rot and wilt diseases in roselle.

  20. The Arabidopsis thaliana DNA-binding protein AHL19 mediates verticillium wilt resistance.

    PubMed

    Yadeta, Koste A; Hanemian, Mathieu; Smit, Patrick; Hiemstra, Jelle A; Pereira, Andy; Marco, Yves; Thomma, Bart P H J

    2011-12-01

    Verticillium spp. are destructive soilborne fungal pathogens that cause vascular wilt diseases in a wide range of plant species. Verticillium wilts are particularly notorious, and genetic resistance in crop plants is the most favorable means of disease control. In a gain-of-function screen using an activation-tagged Arabidopsis mutant collection, we identified four mutants, A1 to A4, which displayed enhanced resistance toward the vascular wilt species Verticillium dahliae, V. albo-atrum and V. longisporum but not to Fusarium oxysporum f. sp. raphani. Further testing revealed that mutant A2 displayed enhanced Ralstonia solanacearum resistance, while mutants A1 and A3 were more susceptible toward Pseudomonas syringae pv. tomato. Identification of the activation tag insertion site in the A1 mutant revealed an insertion in close proximity to the gene encoding AHL19, which was constitutively expressed in the mutant. AHL19 knock-out alleles were found to display enhanced Verticillium susceptibility whereas overexpression of AHL19 resulted in enhanced Verticillium resistance, showing that AHL19 acts as a positive regulator of plant defense.

  1. Challenges in Fusarium, a Trans-Kingdom Pathogen.

    PubMed

    van Diepeningen, Anne D; de Hoog, G Sybren

    2016-04-01

    Fusarium species are emerging human pathogens, next to being plant pathogens. Problems with Fusarium are in their diagnostics and in their difficult treatment, but also in what are actual Fusarium species or rather Fusarium-like species. In this issue Guevara-Suarez et al. (Mycopathologia. doi: 10.1007/s11046-016-9983-9 , 2016) characterized 89 isolates of Fusarium from Colombia showing especially lineages within the Fusarium solani and oxysporum species complexes to be responsible for onychomycosis.

  2. Enhanced control of cucumber wilt disease by Bacillus amyloliquefaciens SQR9 by altering the regulation of Its DegU phosphorylation.

    PubMed

    Xu, Zhihui; Zhang, Ruifu; Wang, Dandan; Qiu, Meihua; Feng, Haichao; Zhang, Nan; Shen, Qirong

    2014-05-01

    Bacillus amyloliquefaciens strain SQR9, isolated from the cucumber rhizosphere, suppresses the growth of Fusarium oxysporum in the cucumber rhizosphere and protects the host plant from pathogen invasion through efficient root colonization. In the Gram-positive bacterium Bacillus, the response regulator DegU regulates genetic competence, swarming motility, biofilm formation, complex colony architecture, and protease production. In this study, we report that stepwise phosphorylation of DegU in B. amyloliquefaciens SQR9 can influence biocontrol activity by coordinating multicellular behavior and regulating the synthesis of antibiotics. Results from in vitro and in situ experiments and quantitative PCR (qPCR) studies demonstrate the following: (i) that the lowest level of phosphorylated DegU (DegU∼P) (the degQ mutation) impairs complex colony architecture, biofilm formation, colonization activities, and biocontrol efficiency of Fusarium wilt disease but increases the production of macrolactin and bacillaene, and (ii) that increasing the level of DegU∼P by degQ and degSU overexpression significantly improves complex colony architecture, biofilm formation, colonization activities, production of the antibiotics bacillomycin D and difficidin, and efficiency of biocontrol of Fusarium wilt disease. The results offer a new strategy to enhance the biocontrol efficacy of Bacillus amyloliquefaciens SQR9.

  3. Heterologous expression of Fusarium oxysporum tomatinase in Saccharomyces cerevisiae increases its resistance to saponins and improves ethanol production during the fermentation of Agave tequilana Weber var. azul and Agave salmiana must.

    PubMed

    Cira, Luis Alberto; González, Gloria Angélica; Torres, Juan Carlos; Pelayo, Carlos; Gutiérrez, Melesio; Ramírez, Jesús

    2008-03-01

    This paper describes the effect of the heterologous expression of tomatinase from Fusarium oxysporum f. sp lycopersici in Saccharomyces cerevisiae. The gene FoTom1 under the control of the S. cerevisiae phosphoglycerate kinase (PGK1) promoter was cloned into pYES2. S. cerevisiae strain Y45 was transformed with this vector and URA3 transformant strains were selected for resistance to alpha-tomatine. Two transformants were randomly selected for further study (designated Y45-1 and Y45-2). Control strain Y45 was inhibited at 50 muM alpha-tomatine, in contrast, transformants Y45-1 and Y45-2 did not show inhibition at 200 muM. Tomatinase activity was detected by HPLC monitoring tomatine disappearance and tomatidine appearance in the supernatants of culture medium. Maximum tomatinase activity was observed in the transformants after 6 h, remaining constant during the following 24 h. No tomatinase activity was detected in the parental strain. Moreover, the transformants were able to grow and produce ethanol in a mix of Agave tequilana Weber var. azul and Agave salmiana must, contrary to the Y45 strain which was unable to grow and ferment under these conditions.

  4. Liquid chromatography coupled to different atmospheric pressure ionization sources-quadrupole-time-of-flight mass spectrometry and post-column addition of metal salt solutions as a powerful tool for the metabolic profiling of Fusarium oxysporum.

    PubMed

    Cirigliano, Adriana M; Rodriguez, M Alejandra; Gagliano, M Laura; Bertinetti, Brenda V; Godeas, Alicia M; Cabrera, Gabriela M

    2016-03-25

    Fusarium oxysporum L11 is a non-pathogenic soil-borne fungal strain that yielded an extract that showed antifungal activity against phytopathogens. In this study, reversed-phase high-performance liquid chromatography (RP-HPLC) coupled to different atmospheric pressure ionization sources-quadrupole-time-of-flight mass spectrometry (API-QTOF-MS) was applied for the comprehensive profiling of the metabolites from the extract. The employed sources were electrospray (ESI), atmospheric pressure chemical ionization (APCI) and atmospheric pressure photoionization (APPI). Post-column addition of metal solutions of Ca, Cu and Zn(II) was also tested using ESI. A total of 137 compounds were identified or tentatively identified by matching their accurate mass signals, suggested molecular formulae and MS/MS analysis with previously reported data. Some compounds were isolated and identified by NMR. The extract was rich in cyclic peptides like cyclosporins, diketopiperazines and sansalvamides, most of which were new, and are reported here for the first time. The use of post-column addition of metals resulted in a useful strategy for the discrimination of compound classes since specific adducts were observed for the different compound families. This technique also allowed the screening for compounds with metal binding properties. Thus, the applied methodology is a useful choice for the metabolic profiling of extracts and also for the selection of metabolites with potential biological activities related to interactions with metal ions.

  5. First report of Fusarium decemcellulare causing inflorescence wilt, vascular and flower necrosis of rambutan (Nephelium lappaceum), longan (Dimocarpus longan) and mango (Mangifera indica)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Longan, mango and rambutan are very important fruit crops in Puerto Rico. During a disease survey in Puerto Rico conducted from 2008 to 2010, 50% of the inflorescences were affected with inflorescence wilt, flower and vascular necrosis at 70% of the fields of rambutan and longan at the USDA-ARS Rese...

  6. Fusarium subglutinans: A new eumycetoma agent.

    PubMed

    Campos-Macías, Pablo; Arenas-Guzmán, Roberto; Hernández-Hernández, Francisca

    2013-07-09

    Eumycetoma is a chronic subcutaneous mycosis mainly caused by Madurella spp. Fusarium opportunistic infections in humans are often caused by Fusarium solani and Fusarium oxysporum. We report a case of eumycetoma by F. subglutinans, diagnosed by clinical aspect and culture, and confirmed by PCR sequencing. The patient was successfully treated with oral itraconazole. To our knowledge, this is the second report of human infection and the first case of mycetoma by Fusarium subglutinans.

  7. Fusarium subglutinans: A new eumycetoma agent☆

    PubMed Central

    Campos-Macías, Pablo; Arenas-Guzmán, Roberto; Hernández-Hernández, Francisca

    2013-01-01

    Eumycetoma is a chronic subcutaneous mycosis mainly caused by Madurella spp. Fusarium opportunistic infections in humans are often caused by Fusarium solani and Fusarium oxysporum. We report a case of eumycetoma by F. subglutinans, diagnosed by clinical aspect and culture, and confirmed by PCR sequencing. The patient was successfully treated with oral itraconazole. To our knowledge, this is the second report of human infection and the first case of mycetoma by Fusarium subglutinans. PMID:24432236

  8. Fusaric acid accelerates the senescence of leaf in banana when infected by Fusarium.

    PubMed

    Dong, Xian; Xiong, Yinfeng; Ling, Ning; Shen, Qirong; Guo, Shiwei

    2014-04-01

    Fusarium oxysporum f.sp. cubense (FOC) is a causal agent of vascular wilt and leaf chlorosis of banana plants. Chloroses resulting from FOC occur first in the lowest leaves of banana seedlings and gradually progress upward. To investigate the responses of different leaf positions to FOC infection, hydroponic experiments with FOC inoculation were conducted in a greenhouse. Fusarium-infected seedlings exhibited a decrease in net photosynthesis rate, stomatal conductance, and transpiration rate of all leaves. The wilting process in Fusarium-infected seedlings varied with leaf position. Measurements of the maximum photochemical efficiency of photosystem II (F(V)/F(max) and visualization with transmission electron microscopy showed a positive correlation between chloroplast impairment and severity of disease symptoms. Furthermore, results of malondialdehyde content and relative membrane conductivity measurements demonstrated that the membrane system was damaged in infected leaves. Additionally, the activities of phenylalanine ammonia-lyase, peroxidase and polyphenol oxidase were increased and total soluble phenolic compounds were significantly accumulated in the leaves of infected plants. The structural and biochemical changes of infected plants was consistent with plant senescence. As the FOC was not detected in infected leaves, we proposed that the chloroplast and membrane could be damaged by fusaric acid produced by Fusarium. During the infection, fusaric acid was first accumulated in the lower leaves and water-soluble substances in the lower leaves could dramatically enhance fusaric acid production. Taken together, the senescence of infected banana plants was induced by Fusarium infection with fusaric acid production and the composition of different leaf positions largely contribute to the particular senescence process.

  9. Fusaric acid is a crucial factor in the disturbance of leaf water imbalance in Fusarium-infected banana plants.

    PubMed

    Dong, Xian; Ling, Ning; Wang, Min; Shen, Qirong; Guo, Shiwei

    2012-11-01

    Fusarium wilt of banana is caused by Fusarium oxysporum f. sp. cubense infection. The initial chlorosis symptoms occur progressively from lower to upper leaves, with wilt symptoms subsequently occurring in the whole plant. To determine the effect of the pathogen infection on the gas exchange characteristics and water content in banana leaves, hydroponic experiments with pathogen inoculation were conducted in a greenhouse. Compared with control plants, infected banana seedlings showed a higher leaf temperature as determined by thermal imaging. Reduced stomatal conductance (g(s)) and transpiration rate (E) in infected plants resulted in lower levels of water loss than in control plants. Water potential in heavily diseased plants (II) was significantly reduced and the E/g(s) ratio was higher than in noninfected plants, indicating the occurrence of uncontrolled water loss not regulated by stomata in diseased plants. As no pathogen colonies were detected from the infected plant leaves, the crude toxin was extracted from the pathogen culture and evaluated about the effect on banana plant to further investigate the probable reason of these physiological changes in Fusarium-infected banana leaf. The phytotoxin fusaric acid (FA) was found in the crude toxin, and both crude toxin and pure FA had similar effects as the pathogen infection on the physiological changes in banana leaf. Additionally, FA was present at all positions in diseased plants and its concentration was positively correlated with the incidence of disease symptoms. Taken together, these observations indicated that FA secreted by the pathogen is an important factor involved in the disturbance of leaf temperature, resulting in uncontrolled leaf water loss and electrolyte leakage due to damaging the cell membrane. In conclusion, FA plays a critical role in accelerating the development of Fusarium wilt in banana plants by acting as a phytotoxin.

  10. Fusarium stalk blight and rot in sugar beet

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fusarium stalk blight of sugar beet can cause reductions or complete loss of seed production. The causal agent is Fusarium oxysporum. In addition, Fusarium solani has been demonstrated to cause a rot of sugar beet seed stalk, and other species have been reported associated with sugar beet fruit, but...

  11. Effect of Elevated Atmospheric CO2 and Temperature on the Disease Severity of Rocket Plants Caused by Fusarium Wilt under Phytotron Conditions.

    PubMed

    Chitarra, Walter; Siciliano, Ilenia; Ferrocino, Ilario; Gullino, Maria Lodovica; Garibaldi, Angelo

    2015-01-01

    The severity of F. oxysporum f.sp. conglutinans on rocket plants grown under simulated climate change conditions has been studied. The rocket plants were cultivated on an infested substrate (4 log CFU g-1) and a non-infested substrate over three cycles. Pots were placed in six phytotrons in order to simulate different environmental conditions: 1) 400-450 ppm CO2, 18-22°C; 2) 800-850 ppm CO2, 18-22°C; 3) 400-450 ppm CO2, 22-26°C, 4) 800-850 ppm CO2, 22-26°C, 5) 400-450 ppm CO2, 26-30°C; 6) 800-850 ppm CO2, 26-30°C. Substrates from the infested and control samples were collected from each phytotron at 0, 60 and 120 days after transplanting. The disease index, microbial abundance, leaf physiological performances, root exudates and variability in the fungal profiles were monitored. The disease index was found to be significantly influenced by higher levels of temperature and CO2. Plate counts showed that fungal and bacterial development was not affected by the different CO2 and temperature levels, but a significant decreasing trend was observed from 0 up to 120 days. Conversely, the F. oxysporum f.sp. conglutinans plate counts did not show any significantly decrease from 0 up to 120 days. The fungal profiles, evaluated by means of polymerase chain reaction denaturing gradient gel electrophoresis (PCR-DGGE), showed a relationship to temperature and CO2 on fungal diversity profiles. Different exudation patterns were observed when the controls and infested plants were compared, and it was found that both CO2 and temperature can influence the release of compounds from the roots of rocket plants. In short, the results show that global climate changes could influence disease incidence, probably through plant-mediated effects, caused by soilborne pathogens.

  12. Effect of Elevated Atmospheric CO2 and Temperature on the Disease Severity of Rocket Plants Caused by Fusarium Wilt under Phytotron Conditions

    PubMed Central

    Chitarra, Walter; Siciliano, Ilenia; Ferrocino, Ilario; Gullino, Maria Lodovica; Garibaldi, Angelo

    2015-01-01

    The severity of F. oxysporum f.sp. conglutinans on rocket plants grown under simulated climate change conditions has been studied. The rocket plants were cultivated on an infested substrate (4 log CFU g-1) and a non-infested substrate over three cycles. Pots were placed in six phytotrons in order to simulate different environmental conditions: 1) 400–450 ppm CO2, 18–22°C; 2) 800–850 ppm CO2, 18–22°C; 3) 400–450 ppm CO2, 22–26°C, 4) 800–850 ppm CO2, 22–26°C, 5) 400–450 ppm CO2, 26–30°C; 6) 800–850 ppm CO2, 26–30°C. Substrates from the infested and control samples were collected from each phytotron at 0, 60 and 120 days after transplanting. The disease index, microbial abundance, leaf physiological performances, root exudates and variability in the fungal profiles were monitored. The disease index was found to be significantly influenced by higher levels of temperature and CO2. Plate counts showed that fungal and bacterial development was not affected by the different CO2 and temperature levels, but a significant decreasing trend was observed from 0 up to 120 days. Conversely, the F. oxysporum f.sp. conglutinans plate counts did not show any significantly decrease from 0 up to 120 days. The fungal profiles, evaluated by means of polymerase chain reaction denaturing gradient gel electrophoresis (PCR-DGGE), showed a relationship to temperature and CO2 on fungal diversity profiles. Different exudation patterns were observed when the controls and infested plants were compared, and it was found that both CO2 and temperature can influence the release of compounds from the roots of rocket plants. In short, the results show that global climate changes could influence disease incidence, probably through plant-mediated effects, caused by soilborne pathogens. PMID:26469870

  13. Isolation of Bacillus amyloliquefaciens S20 and its application in control of eggplant bacterial wilt.

    PubMed

    Chen, Da; Liu, Xin; Li, Chunyu; Tian, Wei; Shen, Qirong; Shen, Biao

    2014-05-01

    Bacterial strain S20 was isolated and identified as Bacillus amyloliquefaciens based on physiological and biochemical characteristics and a 16S rRNA gene sequence analysis. Strain S20 inhibits the growth of Fusarium oxysporum and Ralstonia solanacearum. Some genes associated with the synthesis of some lipopeptides were detected in strain S20 by PCR. Iturins A were identified as the main antagonistic substrates by analysis with electrospray ionization mass spectrometry/collision-induced dissociation (ESI-MS/CID). Four homologues of iturin A (C13-C16) were identified. Pot experiments showed that the application of strain S20 alone could control eggplant wilt with an efficacy of 25.3% during a 40 day experiment. If strain S20 was used with organic fertilizer, the control efficacy against eggplant wilt reached as high as 70.7%. The application of organic fertilizer alone promotes the growth of R. solanacearum, resulting in a higher wilt incidence than that observed in control plants. The application of strain S20 effectively inhibits R. solanacearum in the rhizosphere soil of eggplant. The combined use of strain S20 and organic fertilizer more effectively controlled R. solanacearum in soil than the use of strain S20 alone. The soil count of strain S20 decreased gradually during the course of the experiment after inoculation. Organic fertilizer was beneficial for the survival of the antagonistic bacterial strain S20; a higher level of these bacteria could be maintained. The application of organic fertilizer with strain S20 increased bacterial diversity in rhizosphere soil.

  14. Endophytic Fusarium spp. from Roots of Lawn Grass (Axonopus compressus)

    PubMed Central

    Zakaria, Latiffah; Ning, Chua Harn

    2013-01-01

    Fungal endophytes are found inside host plants but do not produce any noticeable disease symptoms in their host. In the present study, endophytic Fusarium species were isolated from roots of lawn grass (Axonopus compressus). A total of 51 isolates were recovered from 100 root segments. Two Fusarium species, F. oxysporum (53%) and F. solani (47%), were identified based on macroconidia and conidiogenous cell morphology. The detection of endophytic F. oxysporum and F. solani in the roots of lawn grass contributes to the knowledge of both the distribution of the two Fusarium species and the importance of roots as endophytic niches for Fusarium species. PMID:24575251

  15. Identification and characterization of a highly variable region in mitochondrial genomes of fusarium species and analysis of power generation from microbial fuel cells

    NASA Astrophysics Data System (ADS)

    Hamzah, Haider Mousa

    In the microbial fuel cell (MFC) project, power generation from Shewanella oneidensis MR-1 was analyzed looking for a novel system for both energy generation and sustainability. The results suggest the possibility of generating electricity from different organic substances, which include agricultural and industrial by-products. Shewanella oneidensis MR-1 generates usable electrons at 30°C using both submerged and solid state cultures. In the MFC biocathode experiment, most of the CO2 generated at the anodic chamber was converted into bicarbonate due the activity of carbonic anhydrase (CA) of the Gluconobacter sp.33 strain. These findings demonstrate the possibility of generation of electricity while at the same time allowing the biomimetic sequestration of CO2 using bacterial CA. In the mitochondrial genomes project, the filamentous fungal species Fusarium oxysporum was used as a model. This species causes wilt of several important agricultural crops. A previous study revealed that a highly variable region (HVR) in the mitochondrial DNA (mtDNA) of three species of Fusarium contained a large, variable unidentified open reading frame (LV-uORF). Using specific primers for two regions of the LV-uORF, six strains were found to contain the ORF by PCR and database searches identified 18 other strains outside of the Fusarium oxysporum species complex. The LV-uORF was also identified in three isolates of the F. oxysporum species complex. Interestingly, several F. oxysporum isolates lack the LV-uORF and instead contain 13 ORFs in the HVR, nine of which are unidentified. The high GC content and codon usage of the LV-uORF indicate that it did not co-evolve with other mt genes and was horizontally acquired and was introduced to the Fusarium lineage prior to speciation. The nonsynonymous/synonymous (dN/dS) ratio of the LV-uORFs (0.43) suggests it is under purifying selection and the putative polypeptide is predicted to be located in the mitochondrial membrane. Growth assays

  16. Improvement of Biocontrol of Damping-off and Root Rot/Wilt of Faba Bean by Salicylic Acid and Hydrogen Peroxide.

    PubMed

    Abdel-Monaim, Montaser Fawzy

    2013-03-01

    Rhizoctonia solani, Fusarium solani, F. oxysporum, and Macrophomina phaseolina were found to be associated with root rott and wilt symptoms of faba bean plants collected from different fieldes in New Valley governorate, Egypt. All the obtained isolates were able to attack faba bean plants (cv. Giza 40) causing damping-off and root rot/wilt diseases. R. solani isolates 2 and 5, F. solani isolate 8, F. oxysporum isolate 12 and M. phaseolina isolate 14 were the more virulent ones in the pathogenicity tests. Biocontrol agents (Trichoderma viride and Bacillus megaterium) and chemical inducers (salicylic acid [SA] and hydrogen peroxide) individually or in combination were examined for biological control of damping-off and root rot/wilt and growth promoting of faba bean plants in vitro and in vivo. Both antagonistic biocontrol agents and chemical inducers either individually or in combination inhibited growth of the tested pathogenic fungi. Biocontrol agents combined with chemical inducers recorded the highest inhibited growth especially in case SA + T. viride and SA + B. megaterium. Under green house and field conditions, all treatments significantly reduced damping-off and root rot/wilt severity and increased of survival plants. Also, these treatments increased fresh and weights of the survival plants in pots compared with control. The combination between biocontrol agents and chemical inducers were more effective than used of them individually and SA + T. viride was the best treatment in this respect. Also, under field conditions, all these treatments significantly increased growth parameters (plant height and number of branches per plant) and yield components (number of pods per plant and number of seeds per plant, weight of 100 seeds and total yield per feddan) and protein content in both seasons (2010~2011 and 2011~2012). Faba bean seeds soaked in SA + T. viride and SA + B. megaterium were recorded the highest growth parameters and yield components. Generally, the

  17. Improvement of Biocontrol of Damping-off and Root Rot/Wilt of Faba Bean by Salicylic Acid and Hydrogen Peroxide

    PubMed Central

    2013-01-01

    Rhizoctonia solani, Fusarium solani, F. oxysporum, and Macrophomina phaseolina were found to be associated with root rott and wilt symptoms of faba bean plants collected from different fieldes in New Valley governorate, Egypt. All the obtained isolates were able to attack faba bean plants (cv. Giza 40) causing damping-off and root rot/wilt diseases. R. solani isolates 2 and 5, F. solani isolate 8, F. oxysporum isolate 12 and M. phaseolina isolate 14 were the more virulent ones in the pathogenicity tests. Biocontrol agents (Trichoderma viride and Bacillus megaterium) and chemical inducers (salicylic acid [SA] and hydrogen peroxide) individually or in combination were examined for biological control of damping-off and root rot/wilt and growth promoting of faba bean plants in vitro and in vivo. Both antagonistic biocontrol agents and chemical inducers either individually or in combination inhibited growth of the tested pathogenic fungi. Biocontrol agents combined with chemical inducers recorded the highest inhibited growth especially in case SA + T. viride and SA + B. megaterium. Under green house and field conditions, all treatments significantly reduced damping-off and root rot/wilt severity and increased of survival plants. Also, these treatments increased fresh and weights of the survival plants in pots compared with control. The combination between biocontrol agents and chemical inducers were more effective than used of them individually and SA + T. viride was the best treatment in this respect. Also, under field conditions, all these treatments significantly increased growth parameters (plant height and number of branches per plant) and yield components (number of pods per plant and number of seeds per plant, weight of 100 seeds and total yield per feddan) and protein content in both seasons (2010~2011 and 2011~2012). Faba bean seeds soaked in SA + T. viride and SA + B. megaterium were recorded the highest growth parameters and yield components. Generally, the

  18. IDENTIFICATION OF DIFFERENT FUSARIUM SPP. IN ALLIUM SPP. IN GERMANY.

    PubMed

    Boehnke, B; Karlovsky, P; Pfohl, K; Gamliel, A; Isack, Y; Dehne, H W

    2015-01-01

    In 2013 Allium cepa bulbs from different fields in Northern and Southern Germany, seeds and sets from onion breeders were analysed for infestation with Fusarium species. The same investigation was done in 2014 with different edible Allium spp. from local markets. Different Fusarium spp. were isolated and identified by morphological characterisation. 24 different Fusarium spp. were identified. The diversity of Fusarium spp. and the intensity of infestation was higher on edible bulbs compared to the younger sets and seeds. The analysed onions and other edible Allium spp. from local markets showed also high contents of different Fusarium species. The most prevalent identified Fusarium sp. in the analysed Allium spp. in Germany was Fusarium oxysporum which can cause the Fusarium Basal Rot, followed by Fusarium solani. Fusarium proliferatum, which can cause the Fusarium Salmon Blotch in onions, could be detected in about half of the sampled onion fields and in approximately 10% of all analysed onions from fields. Also in the onion sets, on the surface of the seeds and in other edible Allium spp. F. proliferatum could be identified. Besides F. proliferatum, further mycotoxin producing Fusarium spp. like Fusarium equiseti or Fusarium tricinctum were identified. Other Fusarium spp. like Fusarium sporotrichioides and Fusarium poae were first described in Allium sp. in this study. The two most prevalent Fusarium spp. F. oxysporum and F. solani are able to produce mycotoxins like enniatins, fumonisins, moniliformin and T-2 toxins. Fusarium sp. like F. proliferatum, F. equiseti and F. tricinctum are able to produce additional toxins like beauvericins, zearalenone and diacetoscirpenol. This high number of Fusarium spp., which are able to produce a broad spectrum of different mycotoxins, could be a potential health risk for human beings and livestock.

  19. Physiology of host-pathogen interaction in wilt diseases of cotton in relation to pathogen management

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Verticillium and Fusarium wilts are important vascular wilt diseases of cotton that significantly reduce cotton yields and negatively impact fiber quality. In spite of intense efforts to control these diseases, yield losses persist and in the US alone were estimated to be about 133 and 28 thousand b...

  20. Rapid Introgression of the Fusarium Wilt Resistance Gene into an Elite Cabbage Line through the Combined Application of a Microspore Culture, Genome Background Analysis, and Disease Resistance-Specific Marker Assisted Foreground Selection

    PubMed Central

    Liu, Xing; Han, Fengqing; Kong, Congcong; Fang, Zhiyuan; Yang, Limei; Zhang, Yangyong; Zhuang, Mu; Liu, Yumei; Li, Zhansheng; Lv, Honghao

    2017-01-01

    Cabbage is an economically important vegetable worldwide. Cabbage Fusarium Wilt (CFW) is a destructive disease that results in considerable yield and quality losses in cole crops. The use of CFW-resistant varieties is the most effective strategy to mitigate the effects of CFW. 01-20 is an elite cabbage line with desirable traits and a high combining ability, but it is highly susceptible to CFW. To rapidly transfer a CFW resistance gene into 01-20 plants, we used microspore cultures to develop 230 doubled haploid (DH) lines from a cross between 01-20 (highly susceptible) and 96-100 (highly resistant). One of the generated DH lines (i.e., D134) was highly resistant to CFW and exhibited a phenotypic performance that was similar to that of line 01-20. Therefore, D134 was applied as the resistance donor parent. We generated 24 insertion–deletion markers using whole genome resequencing data for lines 01-20 and 96-100 to analyze the genomic backgrounds of backcross (BC) progenies. Based on the CFW resistance gene FOC1, a simple sequence repeat (SSR) marker (i.e., Frg13) was developed for foreground selections. We screened 240 BC1 individuals and 280 BC2 individuals with these markers and assessed their phenotypic performance. The proportion of recurrent parent genome (PRPG) of the best individuals in BC1 and BC2 were 95.8 and 99.1%. Finally, a best individual designated as YR01-20 was identified from 80 BC2F1 individuals, with homozygous FOC1 allele and genomic background and phenotype almost the same as those of 01-20. Our results may provide a rapid and efficient way of improving elite lines through the combined application of microspore culture, whole-genome background analysis, and disease resistance-specific marker selection. Additionally, the cabbage lines developed in this study represent elite materials useful for the breeding of new CFW-resistant cabbage varieties. PMID:28392793

  1. Secondary Metabolites and Toxins of Fusarium - What is Causing Disease Symptoms

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fusarium species produce a plethora of phytotoxic secondary metabolites. In the case of various races of Fusarium oxysporum f. sp. vasinfectum (F.o.v.) that attacks cotton, alfalfa, okra and other crops, many of these metabolites are derived from the polyketide biosynthetic pathway. The recent dis...

  2. [Fusarium species associated with basal rot of garlic in North Central Mexico and its pathogenicity].

    PubMed

    Delgado-Ortiz, Juan C; Ochoa-Fuentes, Yisa M; Cerna-Chávez, Ernesto; Beltrán-Beache, Mariana; Rodríguez-Guerra, Raúl; Aguirre-Uribe, Luis A; Vázquez-Martínez, Otilio

    Garlic in Mexico is one of the most profitable vegetable crops, grown in almost 5,451ha; out of which more than 83% are located in Zacatecas, Guanajuato, Sonora, Puebla, Baja California and Aguascalientes. Blossom-end rot caused by Fusarium spp is widely distributed worldwide and has been a limiting factor in onion and garlic production regions, not only in Mexico but also in other countries. The presence of Fusarium oxysporum has been reported in Guanajuato and Aguascalientes. Fusarium culmorum has been reported in onion cultivars of Morelos; and Fusarium proliferatum, Fusarium verticillioides, Fusarium solani and Fusarium acuminatum have been previously reported in Aguascalientes. The goal of this work was identifying the Fusarium species found in Zacatecas, Guanajuato and Aguascalientes, to assess their pathogenicity. Plants with disease symptoms were collected from hereinabove mentioned States. The samples resulted in the identification of: F. oxysporum, F. proliferatum, F. verticillioides, F. solani and F. acuminatum species; out of which Aguascalientes AGS1A (F. oxysporum), AGS1B (F. oxysporum) and AGSY-10 (F. acuminatum) strains showed higher severity under greenhouse conditions.

  3. Stalk rot of sugar beet caused by Fusarium solani on the Pacific coast.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fusarium stalk blight can cause loss of seed production in sugar beet. The only known causal agent is Fusarium oxysporum f.sp. betae. In 2006, plants that had been grown as stecklings in Oregon and planted in the greenhouse in California for seed production showed symptoms of stalk blight. In add...

  4. Comparative Genomics Reveals Mobile Pathogenicity Chromosomes in Fusarium

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fusarium species are among the most important phytopathogenic and toxigenic fungi, having significant impact on crop production and animal health. Distinctively, strains of F. oxysporum exhibit wide host range and are pathogenic to both plant and animal species, reflecting remarkable genetic adapta...

  5. The I2C family from the wilt disease resistance locus I2 belongs to the nucleotide binding, leucine-rich repeat superfamily of plant resistance genes.

    PubMed Central

    Ori, N; Eshed, Y; Paran, I; Presting, G; Aviv, D; Tanksley, S; Zamir, D; Fluhr, R

    1997-01-01

    Characterization of plant resistance genes is an important step in understanding plant defense mechanisms. Fusarium oxysporum f sp lycopersici is the causal agent of a vascular wilt disease in tomato. Genes conferring resistance to plant vascular diseases have yet to be described molecularly. Members of a new multigene family, complex I2C, were isolated by map-based cloning from the I2 F. o. lycopersici race 2 resistance locus. The genes show structural similarity to the group of recently isolated resistance genes that contain a nucleotide binding motif and leucine-rich repeats. Importantly, the presence of I2C antisense transgenes abrogated race 2 but not race 1 resistance in otherwise normal plants. Expression of the complete sense I2C-1 transgene conferred significant but partial resistance to F. o. lycopersici race 2. All members of the I2C gene family have been mapped genetically and are dispersed on three different chromosomes. Some of the I2C members cosegregate with other tomato resistance loci. Comparison within the leucine-rich repeat region of I2C gene family members shows that they differ from each other mainly by insertions or deletions. PMID:9144960

  6. Antagonistic activity of Bacillus subtilis SB1 and its biocontrol effect on tomato bacterial wilt

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A potential biocontrol agent of bacterial wilt, Bacillus subtilis SB1, isolated from tomato roots, showed a broad-spectrum of antimicrobial activity in in vitro experiments. It inhibited the growth of many plant pathogens, including Ralstonia solanacearum, Xanthomonas oryzae pv. oryzae, Fusarium ox...

  7. Cytotoxicity and Phytotoxicity of Trichothecene Mycotoxins Produced by Fusarium spp.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Trichothecenes, a major class of mycotoxins produced by Fusarium, Myrothecium, and Stachybotrys species, are toxic to plants, causing blights, wilts and other economically-important plant diseases, and to mammals, for example feed-refusal caused by deoxynivalenol (vomitoxin). Macrocyclic trichothec...

  8. Comparative genomics reveals mobile pathogenicity chromosomes in Fusarium

    SciTech Connect

    Ma, Li Jun; van der Does, H. C.; Borkovich, Katherine A.; Coleman, Jeffrey J.; Daboussi, Marie-Jose; Di Pietro, Antonio; Dufresne, Marie; Freitag, Michael; Grabherr, Manfred; Henrissat, Bernard; Houterman, Petra M.; Kang, Seogchan; Shim, Won-Bo; Wolochuk, Charles; Xie, Xiaohui; Xu, Jin Rong; Antoniw, John; Baker, Scott E.; Bluhm, Burton H.; Breakspear, Andrew; Brown, Daren W.; Butchko, Robert A.; Chapman, Sinead; Coulson, Richard; Coutinho, Pedro M.; Danchin, Etienne G.; Diener, Andrew; Gale, Liane R.; Gardiner, Donald; Goff, Steven; Hammond-Kossack, Kim; Hilburn, Karen; Hua-Van, Aurelie; Jonkers, Wilfried; Kazan, Kemal; Kodira, Chinnappa D.; Koehrsen, Michael; Kumar, Lokesh; Lee, Yong Hwan; Li, Liande; Manners, John M.; Miranda-Saavedra, Diego; Mukherjee, Mala; Park, Gyungsoon; Park, Jongsun; Park, Sook Young; Proctor, Robert H.; Regev, Aviv; Ruiz-Roldan, M. C.; Sain, Divya; Sakthikumar, Sharadha; Sykes, Sean; Schwartz, David C.; Turgeon, Barbara G.; Wapinski, Ilan; Yoder, Olen; Young, Sarah; Zeng, Qiandong; Zhou, Shiguo; Galagan, James; Cuomo, Christina A.; Kistler, H. Corby; Rep, Martijn

    2010-03-18

    Fusarium species are among the most important phytopathogenic and toxigenic fungi, having significant impact on crop production and animal health. Distinctively, members of the F. oxysporum species complex exhibit wide host range but discontinuously distributed host specificity, reflecting remarkable genetic adaptability. To understand the molecular underpinnings of diverse phenotypic traits and their evolution in Fusarium, we compared the genomes of three economically important and phylogenetically related, yet phenotypically diverse plant-pathogenic species, F. graminearum, F. verticillioides and F. oxysporum f. sp. lycopersici. Our analysis revealed greatly expanded lineage-specific (LS) genomic regions in F. oxysporum that include four entire chromosomes, accounting for more than one-quarter of the genome. LS regions are rich in transposons and genes with distinct evolutionary profiles but related to pathogenicity. Experimentally, we demonstrate for the first time the transfer of two LS chromosomes between strains of F. oxysporum, resulting in the conversion of a non-pathogenic strain into a pathogen. Transfer of LS chromosomes between otherwise genetically isolated strains explains the polyphyletic origin of host specificity and the emergence of new pathogenic lineages in the F. oxysporum species complex, putting the evolution of fungal pathogenicity into a new perspective.

  9. Molecular characterization of pathogenic Fusarium species in cucurbit plants from Kermanshah province, Iran

    PubMed Central

    Chehri, K.; Salleh, B.; Yli-Mattila, T.; Reddy, K.R.N.; Abbasi, S.

    2011-01-01

    Fusarium is one of the important phytopathogenic genera of microfungi causing serious losses on cucurbit plants in Kermanshah province, the largest area of cucurbits plantation in Iran. Therefore, the objectives in this study were to isolate and identify disease-causing Fusarium spp. from infected cucurbit plants, to ascertain their pathogenicity, and to determine their phylogenetic relationships. A total of 100 Fusarium isolates were obtained from diseased cucurbit plants collected from fields in different geographic regions in Kermanshah province, Iran. According to morphological characters, all isolates were identified as Fusarium oxysporum, Fusarium proliferatum, Fusarium equiseti, Fusarium semitectum and Fusarium solani. All isolates of the five Fusarium spp. were evaluated for their pathogenicity on healthy cucumber (Cucumis sativus) and honeydew melon (Cucumis melo) seedlings in the glasshouse. F. oxysporum caused damping-off in 20–35 days on both cucurbit seedlings tested. Typical stem rot symptoms were observed within 15 days after inoculation with F. solani on both seedlings. Based on the internal transcribed spacer (ITS) regions of ribosomal DNA (rDNA) restriction fragment length polymorphism (RFLP) analysis, the five Fusarium species were divided into two major groups. In particular, isolates belonging to the F. solani species complex (FSSC) were separated into two RFLP types. Grouping among Fusarium strains derived from restriction analysis was in agreement with criteria used in morphological classification. Therefore, the PCR-ITS-RFLP method provides a simple and rapid procedure for the differentiation of Fusarium strains at species level. This is the first report on identification and pathogenicity of major plant pathogenic Fusarium spp. causing root and stem rot on cucurbits in Iran. PMID:23961146

  10. Wildly Growing Asparagus (Asparagus officinalis L.) Hosts Pathogenic Fusarium Species and Accumulates Their Mycotoxins.

    PubMed

    Stępień, Łukasz; Waśkiewicz, Agnieszka; Urbaniak, Monika

    2016-05-01

    Asparagus officinalis L. is an important crop in many European countries, likely infected by a number of Fusarium species. Most of them produce mycotoxins in plant tissues, thus affecting the physiology of the host plant. However, there is lack of information on Fusarium communities in wild asparagus, where they would definitely have considerable environmental significance. Therefore, the main scientific aim of this study was to identify the Fusarium species and quantify their typical mycotoxins present in wild asparagus plants collected at four time points of the season. Forty-four Fusarium strains of eight species--Fusarium acuminatum, Fusarium avenaceum, Fusarium culmorum, Fusarium equiseti, Fusarium oxysporum, Fusarium proliferatum, Fusarium sporotrichioides, and Fusarium tricinctum--were isolated from nine wild asparagus plants in 2013 season. It is the first report of F. sporotrichioides isolated from this particular host. Fumonisin B1 was the most abundant mycotoxin, and the highest concentrations of fumonisins B1-B3 and beauvericin were found in the spears collected in May. Moniliformin and enniatins were quantified at lower concentrations. Mycotoxins synthesized by individual strains obtained from infected asparagus tissues were assessed using in vitro cultures on sterile rice grain. Most of the F. sporotrichioides strains synthesized HT-2 toxin and F. equiseti strains were found to be effective zearalenone producers.

  11. Diversity of Fusarium Species from Highland Areas in Malaysia

    PubMed Central

    Manshor, Nurhazrati; Rosli, Hafizi; Ismail, Nor Azliza; Salleh, Baharuddin; Zakaria, Latiffah

    2012-01-01

    Fusarium is a cosmopolitan and highly diversified genus of saprophytic, phytopathogenic and toxigenic fungi. However, the existence and diversity of a few species of Fusarium are restricted to a certain area or climatic condition. The present study was conducted to determine the occurrence and diversity of Fusarium species in tropical highland areas in Malaysia and to compare with those in temperate and subtropical regions. A series of sampling was carried out in 2005 to 2009 at several tropical highland areas in Malaysia that is: Cameron Highlands, Fraser Hills and Genting Highlands in Pahang; Penang Hill in Penang; Gunung Jerai in Kedah; Kundasang and Kinabalu Park in Sabah; Kubah National Park and Begunan Hill in Sarawak. Sampling was done randomly from various hosts and substrates. Isolation of Fusarium isolates was done by using pentachloronitrobenzene (PCNB) agar and 1449 isolates of Fusarium were successfully recovered. Based on morphological characteristics, 20 species of Fusarium were identified. The most prevalent species occurring on the highlands areas was F. solani (66.1%) followed by F. graminearum (8.5%), F. oxysporum (7.8%), F. semitectum (5.7%), F. subglutinans (3.5%) and F. proliferatum (3.4%). Other Fusarium species, namely F. avenaceum, F. camptoceras, F. chlamydosporum, F. compactum, F. crookwellense, F. culmorum, F. decemcellulare, F. equiseti, F. nygamai, F. poae, F. proliferatum, F. sacchari, F. sporotrichioides, F. sterilihyphosum and F. verticillioides accounted for 1% recoveries. The present study was the first report on the occurrences of Fusarium species on highland areas in Malaysia. PMID:24575229

  12. Antifungal Activity of Eugenol against Penicillium, Aspergillus, and Fusarium Species.

    PubMed

    Campaniello, Daniela; Corbo, Maria Rosaria; Sinigaglia, Milena

    2010-06-01

    The antifungal activity of eugenol in a model system against aspergilli (Aspergillus niger, Aspergillus terreus, and Emericella nidulans), penicilli (Penicillium expansum, Penicillium glabrum, and Penicillium italicum), and fusaria (Fusarium oxysporum and Fusarium avenaceum) was investigated. Minimum detection time (time to attain a colony diameter of 1 cm) and the kinetic parameters were evaluated. The effectiveness of the active compound seemed to be strain or genus dependent; 100 mg/liter represented a critical value for P. expansum, P. glabrum, P. italicum, A. niger, and E. nidulans because a further increase of eugenol resulted in fungistatic activity. The radial growth of A. terreus and F. avenaceum was inhibited at 140 mg/liter, and growth of F. oxysporum was completely inhibited at 150 mg/liter.

  13. EBR1 genomic expansion and its role in virulence of Fusarium species

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Genome sequencing of Fusarium oxysporum revealed that pathogenic forms of this fungus harbor supernumerary chromosomes with a wide variety of genes, many of which likely encode traits required for pathogenicity or niche specialization. Specific transcription factor (TF) gene families are expanded on...

  14. Characterization of Two ABC Transporters from Biocontrol and Phytopathogenic Fusarium oxysporus

    Technology Transfer Automated Retrieval System (TEKTRAN)

    ABC transporter genes from four strains of Fusarium oxysporum [two biocontrol and two phytopathogenic (f. sp. lycopersici Race 1) isolates] indicated that this gene is well conserved. However, sequences of promoter regions of FoABC1 differed between 8 phytopathogenic and 11 biocontrol strains of F....

  15. A PCR-denaturing gradient gel electrophoresis approach to assess Fusarium diversity in asparagus.

    PubMed

    Yergeau, E; Filion, M; Vujanovic, V; St-Arnaud, M

    2005-02-01

    In North America, asparagus (Asparagus officinalis) production suffers from a crown and root rot disease mainly caused by Fusarium oxysporum f. sp. asparagi and F. proliferatum. Many other Fusarium species are also found in asparagus fields, whereas accurate detection and identification of these organisms, especially when processing numerous samples, is usually difficult and time consuming. In this study, a PCR-denaturing gradient gel electrophoresis (DGGE) method was developed to assess Fusarium species diversity in asparagus plant samples. Fusarium-specific PCR primers targeting a partial region of the translation elongation factor-1 alpha (EF-1 alpha) gene were designed, and their specificity was tested against genomic DNA extracted from a large collection of closely and distantly related organisms isolated from multiple environments. Amplicons of 450 bp were obtained from all Fusarium isolates, while no PCR product was obtained from non-Fusarium organisms. The ability of DGGE to discriminate between Fusarium taxa was tested over 19 different Fusarium species represented by 39 isolates, including most species previously reported from asparagus fields worldwide. The technique was effective to visually discriminate between the majority of Fusarium species and/or isolates tested in pure culture, while a further sequencing step permitted to distinguish between the few species showing similar migration patterns. Total genomic DNA was extracted from field-grown asparagus plants naturally infested with different Fusarium species, submitted to PCR amplification, DGGE analysis and sequencing. The two to four bands observed for each plant sample were all affiliated with F. oxysporum, F. proliferatum or F. solani, clearly supporting the reliability, sensitivity and specificity of this approach for the study of Fusarium diversity from asparagus plants samples.

  16. Production of fusaric acid by Fusarium species.

    PubMed Central

    Bacon, C W; Porter, J K; Norred, W P; Leslie, J F

    1996-01-01

    Fusaric acid is a mycotoxin with low to moderate toxicity, which is of concern since it might be synergistic with other cooccurring mycotoxins. Fusaric acid is widespread on corn and corn-based food and feeds and is frequently found in grain, where Fusarium spp. are also isolated. We surveyed 78 strains of Fusarium moniliforme, F. crookwellense, F. subglutinans, F. sambucinum, F. napiforme, F. heterosporum, F. oxysporum, F. solani, and F. proliferatum for their ability to produce fusaric acid. Strains in Fusarium section Liseola also were assigned to mating population of the Gibberella fujikuroi species complex. The fungi could be divided into three classes, low (< 100 micrograms/g), moderate (100 to 500 micrograms/g), and high (> 500 micrograms/g), based on the amounts of this mycotoxin produced in culture on autoclaved corn. Strains of mating populations C from rice consistently produced moderate to high concentrations of fusaric acid. Two isolates, one each from mating populations C and D, produced fusaric acid in excess of 1,000 micrograms/g of corn. No isolates of any of the Fusarium species examined were negative for the production of fusaric acid on autoclaved corn. PMID:8899996

  17. Fusarium Wilt and Yellows of Sugar Beet and Dry Bean

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Central High Plains (Colorado, Nebraska and Wyoming) is among the largest producer of dry edible beans and sugar beets in the United States. Sugar beet is an important cash crop in northeastern Colorado with approximately 30,000 acres planted and 944,000 tons harvested in 2012. Approximately 250...

  18. Evaluation of two methods for direct detection of Fusarium spp. in water.

    PubMed

    Graça, Mariana G; van der Heijden, Inneke M; Perdigão, Lauro; Taira, Cleison; Costa, Silvia F; Levin, Anna S

    2016-04-01

    Fusarium is a waterborne fungus that causes severe infections especially in patients with prolonged neutropenia. Traditionally, the detection of Fusarium in water is done by culturing which is difficult and time consuming. A faster method is necessary to prevent exposure of susceptible patients to contaminated water. The objective of this study was to develop a molecular technique for direct detection of Fusarium in water. A direct DNA extraction method from water was developed and coupled to a genus-specific PCR, to detect 3 species of Fusarium (verticillioides, oxysporum and solani). The detection limits were 10 cells/L and 1 cell/L for the molecular and culture methods, respectively. To our knowledge, this is the first method developed to detect Fusarium directly from water.

  19. The Wor1-like protein Fgp1 regulates pathogenicity, toxin synthesis and reproduction in the phytopathogenic fungus Fusarium graminearum

    Technology Transfer Automated Retrieval System (TEKTRAN)

    WOR1 is a gene for a conserved fungal regulatory protein controlling the dimorphic switch and pathogenicity in Candida albicans and its ortholog in the plant pathogen Fusarium oxysporum, called SGE1, is also required for pathogenicity and expression of plant effector proteins. F. graminearum, an imp...

  20. Verticillium wilt in the Pacific Northwest

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Verticillium wilt is a serious disease of many economically important agricultural and horticultural crops in the Pacific Northwest (PNW). The disease affects herbaceous annuals and perennials as well as woody trees and shrubs. Plants affected by Verticillium wilt exhibit chlorosis, wilting, defolia...

  1. Spectrum of Fusarium infections in tropical dermatology evidenced by multilocus sequencing typing diagnostics.

    PubMed

    van Diepeningen, Anne D; Feng, Peiying; Ahmed, Sarah; Sudhadham, Montarop; Bunyaratavej, Sumanas; de Hoog, G Sybren

    2015-01-01

    Fusarium species are emerging causative agents of superficial, cutaneous and systemic human infections. In a study of the prevalence and genetic diversity of 464 fungal isolates from a dermatological ward in Thailand, 44 strains (9.5%) proved to belong to the genus Fusarium. Species identification was based on sequencing a portion of translation elongation factor 1-alpha (tef1-α), rDNA internal transcribed spacer and RNA-dependent polymerase subunit II (rpb2). Our results revealed that 37 isolates (84%) belonged to the Fusarium solani species complex (FSSC), one strain matched with Fusarium oxysporum (FOSC) complex 33, while six others belonged to the Fusarium incarnatum-equiseti species complex. Within the FSSC two predominant clusters represented Fusarium falciforme and recently described F. keratoplasticum. No gender differences in susceptibility to Fusarium were noted, but infections on the right side of the body prevailed. Eighty-nine per cent of the Fusarium isolates were involved in onychomycosis, while the remaining ones caused paronychia or severe tinea pedis. Comparing literature data, superficial infections by FSSC appear to be prevalent in Asia and Latin America, whereas FOSC is more common in Europe. The available data suggest that Fusarium is a common opportunistic human pathogens in tropical areas and has significant genetic variation worldwide.

  2. Fusarium diversity in soil using a specific molecular approach and a cultural approach.

    PubMed

    Edel-Hermann, Véronique; Gautheron, Nadine; Mounier, Arnaud; Steinberg, Christian

    2015-04-01

    Fusarium species are ubiquitous in soil. They cause plant and human diseases and can produce mycotoxins. Surveys of Fusarium species diversity in environmental samples usually rely on laborious culture-based methods. In the present study, we have developed a molecular method to analyze Fusarium diversity directly from soil DNA. We designed primers targeting the translation elongation factor 1-alpha (EF-1α) gene and demonstrated their specificity toward Fusarium using a large collection of fungi. We used the specific primers to construct a clone library from three contrasting soils. Sequence analysis confirmed the specificity of the assay, with 750 clones identified as Fusarium and distributed among eight species or species complexes. The Fusarium oxysporum species complex (FOSC) was the most abundant one in the three soils, followed by the Fusarium solani species complex (FSSC). We then compared our molecular approach results with those obtained by isolating Fusarium colonies on two culture media and identifying species by sequencing part of the EF-1α gene. The 750 isolates were distributed into eight species or species complexes, with the same dominant species as with the cloning method. Sequence diversity was much higher in the clone library than in the isolate collection. The molecular approach proved to be a valuable tool to assess Fusarium diversity in environmental samples. Combined with high throughput sequencing, it will allow for in-depth analysis of large numbers of samples.

  3. Morphological and molecular characterization of Fusarium spp pathogenic to pecan tree in Brazil.

    PubMed

    Lazarotto, M; Milanesi, P M; Muniz, M F B; Reiniger, L R S; Beltrame, R; Harakava, R; Blume, E

    2014-11-11

    The occurrence of Fusarium spp associated with pecan tree (Carya illinoinensis) diseases in Brazil has been observed in recent laboratory analyses in Rio Grande do Sul State. Thus, in this study, we i) obtained Fusarium isolates from plants with disease symptoms; ii) tested the pathogenicity of these Fusarium isolates to pecan; iii) characterized and grouped Fusarium isolates that were pathogenic to the pecan tree based on morphological characteristics; iv) identified Fusarium spp to the species complex level through TEF-1α sequencing; and v) compared the identification methods used in the study. Fifteen isolates collected from the inflorescences, roots, and seeds of symptomatic plants (leaf necrosis or root rot) were used for pathogenicity tests. Morphological characterization was conducted using only pathogenic isolates, for a total of 11 isolates, based on the mycelial growth rate, sporulation, colony pigmentation, and conidial length and width variables. Pathogenic isolates were grouped based on morphological characteristics, and molecular characterization was performed by sequencing TEF-1α genes. Pathogenic isolates belonging to the Fusarium chlamydosporum species complex, Fusarium graminearum species complex, Fusarium proliferatum, and Fusarium oxysporum were identified based on the TEF-1α region. Morphological characteristics were used to effectively differentiate isolates and group the isolates according to genetic similarity, particularly conidial width, which emerged as a key morphological descriptor in this study.

  4. Saprophytic and Potentially Pathogenic Fusarium Species from Peat Soil in Perak and Pahang

    PubMed Central

    Karim, Nurul Farah Abdul; Mohd, Masratulhawa; Nor, Nik Mohd Izham Mohd; Zakaria, Latiffah

    2016-01-01

    Isolates of Fusarium were discovered in peat soil samples collected from peat swamp forest, waterlogged peat soil, and peat soil from oil palm plantations. Morphological characteristics were used to tentatively identify the isolates, and species confirmation was based on the sequence of translation elongation factor-1α (TEF-1α) and phylogenetic analysis. Based on the closest match of Basic Local Alignment Search Tool (BLAST) searches against the GenBank and Fusarium-ID databases, five Fusarium species were identified, namely F. oxysporum (60%), F. solani (23%), F. proliferatum (14%), F. semitectum (1%), and F. verticillioides (1%). From a neighbour-joining tree of combined TEF-1α and β-tubulin sequences, isolates from the same species were clustered in the same clade, though intraspecies variations were observed from the phylogenetic analysis. The Fusarium species isolated in the present study are soil inhabitants and are widely distributed worldwide. These species can act as saprophytes and decomposers as well as plant pathogens. The presence of Fusarium species in peat soils suggested that peat soils could be a reservoir of plant pathogens, as well-known plant pathogenic species such F. oxysporum, F. solani, F. proliferatum, and F. verticillioides were identified. The results of the present study provide knowledge on the survival and distribution of Fusarium species. PMID:27019679

  5. Saprophytic and Potentially Pathogenic Fusarium Species from Peat Soil in Perak and Pahang.

    PubMed

    Karim, Nurul Farah Abdul; Mohd, Masratulhawa; Nor, Nik Mohd Izham Mohd; Zakaria, Latiffah

    2016-02-01

    Isolates of Fusarium were discovered in peat soil samples collected from peat swamp forest, waterlogged peat soil, and peat soil from oil palm plantations. Morphological characteristics were used to tentatively identify the isolates, and species confirmation was based on the sequence of translation elongation factor-1α (TEF-1α) and phylogenetic analysis. Based on the closest match of Basic Local Alignment Search Tool (BLAST) searches against the GenBank and Fusarium-ID databases, five Fusarium species were identified, namely F. oxysporum (60%), F. solani (23%), F. proliferatum (14%), F. semitectum (1%), and F. verticillioides (1%). From a neighbour-joining tree of combined TEF-1α and β-tubulin sequences, isolates from the same species were clustered in the same clade, though intraspecies variations were observed from the phylogenetic analysis. The Fusarium species isolated in the present study are soil inhabitants and are widely distributed worldwide. These species can act as saprophytes and decomposers as well as plant pathogens. The presence of Fusarium species in peat soils suggested that peat soils could be a reservoir of plant pathogens, as well-known plant pathogenic species such F. oxysporum, F. solani, F. proliferatum, and F. verticillioides were identified. The results of the present study provide knowledge on the survival and distribution of Fusarium species.

  6. Laurel wilt: Understanding an unusual and exotic vascular wilt disease

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Laurel wilt kills American members of the Lauraceae plant family (Laurales, Magnoliid complex). These include significant components of Coastal Plain forest communities in the southeastern USA, most importantly redbay, as well as the commercial crop avocado. The disease has decimated redbay, swamp ...

  7. Characterization of Fusarium isolates from asparagus fields in southwestern Ontario and influence of soil organic amendments on Fusarium crown and root rot.

    PubMed

    Borrego-Benjumea, Ana; Basallote-Ureba, María J; Melero-Vara, José M; Abbasi, Pervaiz A

    2014-04-01

    Fusarium crown and root rot (FCRR) of asparagus has a complex etiology with several soilborne Fusarium spp. as causal agents. Ninety-three Fusarium isolates, obtained from plant and soil samples collected from commercial asparagus fields in southwestern Ontario with a history of FCRR, were identified as Fusarium oxysporum (65.5%), F. proliferatum (18.3%), F. solani (6.4%), F. acuminatum (6.4%), and F. redolens (3.2%) based on morphological or cultural characteristics and polymerase chain reaction (PCR) analysis with species-specific primers. The intersimple-sequence repeat PCR analysis of the field isolates revealed considerable variability among the isolates belonging to different Fusarium spp. In the in vitro pathogenicity screening tests, 50% of the field isolates were pathogenic to asparagus, and 22% of the isolates caused the most severe symptoms on asparagus. The management of FCRR with soil organic amendments of pelleted poultry manure (PPM), olive residue compost, and fish emulsion was evaluated in a greenhouse using three asparagus cultivars of different susceptibility in soils infested with two of the pathogenic isolates (F. oxysporum Fo-1.5 and F. solani Fs-1.12). Lower FCRR symptom severity and higher plant weights were observed for most treatments on 'Jersey Giant' and 'Grande' but not on 'Mary Washington'. On all three cultivars, 1% PPM consistently reduced FCRR severity by 42 to 96% and increased plant weights by 77 to 152% compared with the Fusarium control treatment. Populations of Fusarium and total bacteria were enumerated after 1, 3, 7, and 14 days of soil amendment. In amended soils, the population of Fusarium spp. gradually decreased while the population of total culturable bacteria increased. These results indicate that soil organic amendments, especially PPM, can decrease disease severity and promote plant growth, possibly by decreasing pathogen population and enhancing bacterial activity in the soil.

  8. Fusarium MLST database

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The CBS-KNAW Fungal Biodiversity Centre’s Fusarium MLST website (http://www.cbs.knaw.nl/Fusarium), and the corresponding Fusarium-ID site hosted at the Pennsylvania State University (http://isolate.fusariumdb.org; Geiser et al. 2004, Park et al. 2010) were constructed to facilitate identification of...

  9. Effect of biofumigation with manure amendments and repeated biosolarization on Fusarium densities in pepper crops.

    PubMed

    Martínez, M A; Martínez, M C; Bielza, P; Tello, J; Lacasa, A

    2011-01-01

    In the region of Murcia (southeast Spain), sweet pepper has been grown as a monoculture in greenhouses for many years. Until 2005, when it was banned, soils were disinfested with methyl bromide (MB) to control pathogens and to prevent soil fatigue effects. The genus Fusarium plays an important role in the microbiological component associated with yield decline in pepper monocultures. In the present study, soils were treated with manure amendments, alone (biofumigation, B) or in combination with solarization (biosolarization, BS), with or without the addition of pepper plant residues. The B and BS treatments were compared with a treatment using MB. The extent of disinfestation was measured from the density of Fusarium spp. isolated from the soil before and after the respective treatments. Three different species were systematically isolated: Fusarium oxysporum, Fusarium solani and Fusarium equiseti. The repeated use of manure amendments with pepper crop residues, without solarization, was unable to decrease the Fusarium spp. density (which increased from 2,047.17 CFU g(-1) to 3,157.24 CFU g(-1) before and after soil disinfestation, respectively), unlike MB-treated soil (in which the fungi decreased from 481.39 CFU g(-1) to 23.98 CFU g(-1)). However, the effectiveness of the repeated application of BS in diminishing doses (with or without adding plant residues) on Fusarium populations (reductions greater than 72%) was similar to or even greater than the effect of MB.

  10. Phylogenomic and functional domain analysis of polyketide synthases in Fusarium

    SciTech Connect

    Brown, Daren W.; Butchko, Robert A.; Baker, Scott E.; Proctor, Robert H.

    2012-02-01

    Fusarium species are ubiquitous in nature, cause a range of plant diseases, and produce a variety of chemicals often referred to as secondary metabolites. Although some fungal secondary metabolites affect plant growth or protect plants from other fungi and bacteria, their presence in grain based food and feed is more often associated with a variety of diseases in plants and in animals. Many of these structurally diverse metabolites are derived from a family of related enzymes called polyketide synthases (PKSs). A search of genomic sequence of Fusarium verticillioides, F. graminearum, F. oxysporum and Nectria haematococca (anamorph F. solani) identified a total of 58 PKS genes. To gain insight into how this gene family evolved and to guide future studies, we conducted a phylogenomic and functional domain analysis. The resulting genealogy suggested that Fusarium PKSs represent 34 different groups responsible for synthesis of different core metabolites. The analyses indicate that variation in the Fusarium PKS gene family is due to gene duplication and loss events as well as enzyme gain-of-function due to the acquisition of new domains or of loss-of-function due to nucleotide mutations. Transcriptional analysis indicate that the 16 F. verticillioides PKS genes are expressed under a range of conditions, further evidence that they are functional genes that confer the ability to produce secondary metabolites.

  11. A comparative analysis of distribution and conservation of microsatellites in the transcripts of sequenced Fusarium species and development of genic-SSR markers for polymorphism analysis.

    PubMed

    Mahfooz, Sahil; Srivastava, Arpita; Srivastava, Alok K; Arora, Dilip K

    2015-09-01

    We used an in silico approach to survey and compare microsatellites in transcript sequences of four sequenced members of genus Fusarium. G + C content of transcripts was found to be positively correlated with the frequency of SSRs. Our analysis revealed that, in all the four transcript sequences studied, the occurrence, relative abundance and density of microsatellites varied and was not influenced by transcript sizes. No correlation between relative abundance and transcript sizes was observed. The relative abundance and density of microsatellites were highest in the transcripts of Fusarium solani when compared with F. graminearum, F. verticillioides and F. oxysporum. The maximum frequency of SSRs among all four sequence sets was of trinucleotide repeats (67.8%), whereas the dinucleotide repeat represents <1%. Among all classes of repeats, 36.5% motifs were found conserved within Fusarium species. In order to study polymorphism within Fusarium isolates, 11 polymorphic genic-SSR markers were developed. Of the 11 markers, 5 were from F. oxysporum and remaining 6 belongs to F. solani. SSR markers from F. oxysporum were found to be more polymorphic (38%) as compared to F. solani (26%). Eleven polymorphic markers obtained in this study clearly demonstrate the utility of newly developed SSR markers in establishing genetic relationships among different isolates of Fusarium.

  12. An Asian ambrosia beetle Euwallacea fornicatus and its novel symbiotic fungus Fusarium sp. pose a serious threat to the Israeli avocado industry

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The ambrosia beetle Euwallacea fornicatus Einchoff was first recorded in Israel in 2009. A novel unnamed symbiotic species within Clade 3 of the Fusarium solani species complex, carried in the mandibular mycangia of the beetle, is responsible for the typical wilt symptoms inflicted on avocado (Perse...

  13. The fibrinolytic activity of a novel protease derived from a tempeh producing fungus, Fusarium sp. BLB.

    PubMed

    Sugimoto, Satoshi; Fujii, Tadashi; Morimiya, Tatsuo; Johdo, Osamu; Nakamura, Takumi

    2007-09-01

    Tempeh is a traditional Indonesian soybean-fermented food produced by filamentous fungi, Rhizopus sp. and Fusarium sp. We isolated and sequenced the genomic gene and a cDNA clone encoding a novel protease (FP) from Fusarium sp. BLB. The genomic gene was 856 bp in length and contained two introns. An isolated cDNA clone encoded a protein of 250 amino acids. The predicted amino acid sequence of FP showed highest homology, of 76%, with that of trypsin from Fusarium oxysporum. The hydrolysis activity of FP toward synthetic peptide was higher than that of any other protease tested, including Nattokinases. Furthermore, the thrombolytic activity of FP was about 2.1-fold higher than that of Nattokinase when the concentration of plasminogen was 24 units/ml. These results suggest that FP is superior to Nattokinases in dissolving fibrin when absorbed into the blood.

  14. Global molecular epidemiology and genetic diversity of Fusarium, a significant emerging group of human opportunists from 1958 to 2015.

    PubMed

    Al-Hatmi, Abdullah Ms; Hagen, Ferry; Menken, Steph Bj; Meis, Jacques F; de Hoog, G Sybren

    2016-12-07

    Fusarium is a rapidly emerging, multidrug-resistant genus of fungal opportunists that was first identified in 1958 and is presently recognized in numerous cases of fusariosis each year. The authors examined trends in global Fusarium distribution, clinical presentation and prevalence since 1958 with the assumption that their distributions in each region had remained unaltered. The phylogeny and epidemiology of 127 geographically diverse isolates, representing 26 Fusarium species, were evaluated using partial sequences of the RPB2 and TEF1 genes, and compared with AFLP fingerprinting data. The molecular data of the Fusarium species were compared with archived data, which enabled the interpretation of hundreds of cases published in the literature. Our findings indicate that fusariosis is globally distributed with a focus in (sub)tropical areas. Considerable species diversity has been observed; genotypic features did not reveal any clustering with either the clinical data or environmental origins. This study suggests that infections with Fusarium species might be truly opportunistic. The three most common species are F. falciforme and F. keratoplasticum (members of F. solani species complex), followed by F. oxysporum (F. oxysporum species complex).

  15. Global molecular epidemiology and genetic diversity of Fusarium, a significant emerging group of human opportunists from 1958 to 2015

    PubMed Central

    Al-Hatmi, Abdullah MS; Hagen, Ferry; Menken, Steph BJ; Meis, Jacques F; de Hoog, G Sybren

    2016-01-01

    Fusarium is a rapidly emerging, multidrug-resistant genus of fungal opportunists that was first identified in 1958 and is presently recognized in numerous cases of fusariosis each year. The authors examined trends in global Fusarium distribution, clinical presentation and prevalence since 1958 with the assumption that their distributions in each region had remained unaltered. The phylogeny and epidemiology of 127 geographically diverse isolates, representing 26 Fusarium species, were evaluated using partial sequences of the RPB2 and TEF1 genes, and compared with AFLP fingerprinting data. The molecular data of the Fusarium species were compared with archived data, which enabled the interpretation of hundreds of cases published in the literature. Our findings indicate that fusariosis is globally distributed with a focus in (sub)tropical areas. Considerable species diversity has been observed; genotypic features did not reveal any clustering with either the clinical data or environmental origins. This study suggests that infections with Fusarium species might be truly opportunistic. The three most common species are F. falciforme and F. keratoplasticum (members of F. solani species complex), followed by F. oxysporum (F. oxysporum species complex). PMID:27924809

  16. Toxigenic profiles and trinucleotide repeat diversity of Fusarium species isolated from banana fruits

    PubMed Central

    Alghuthaymi, Mousa Abdullah; Bahkali, Ali Hassan

    2015-01-01

    Infesting Fusarium species isolated from banana fruit samples were identified and quantified by morphological, mycotoxicological and molecular tools. A total of 19 Fusarium isolates were obtained: F. semitectum was most predominant (26%), followed by F. proliferatum (16%), F. circinatum (16%), F. chlamydosporum (10.5%), F. solani (10.5%), F. oxysporum (10.5%) and F. thapsinum (5%). Fumonisin B1, deoxynivalenol and zearalenone contents were assayed by high-performance liquid chromatography (HPLC). Seventeen isolates, belonging to F. chlamydosporum, F. circinatum, F. semitectum, F. solani, F. thapsinum, F. proliferatum and Fusarium spp., produced mycotoxins when cultured on rice medium. Fumonisin was produced by all of the studied Fusarium isolates, except F. oxysporum, at a concentration of over 1 μg/mL. F. citrinium isolates 4 and 5 and F. solani isolate 3 were the most potent producers of deoxynivalenol. We compared the 19 Fusarium isolates based on the bands amplified by 10 microsatellite primers. Of these, seven primers, (TCC)5, (TGG)5, (GTA)5, (ATG)5, (TAC)5, (TGC)5 and (TGT)5, yielded a high number of bands and different mean number of alleles. The similarity level between isolates was calculated using a simple matching coefficient. Dendrograms were constructed by the unweighted pair-group method with arithmetical averages (UPGMA). Two main clusters were observed. The interspecific genetic similarity between Fusarium spp. isolates was between 40% and 58% and the intraspecific similarity from 58% to 100%, indicating a high degree of genetic diversity in the tested isolates. Some unexpected genetic similarities were observed among the isolates, indicating non-agreement between morphological and molecular identification of the isolates. PMID:26019647

  17. Toxigenic profiles and trinucleotide repeat diversity of Fusarium species isolated from banana fruits.

    PubMed

    Alghuthaymi, Mousa Abdullah; Bahkali, Ali Hassan

    2015-03-04

    Infesting Fusarium species isolated from banana fruit samples were identified and quantified by morphological, mycotoxicological and molecular tools. A total of 19 Fusarium isolates were obtained: F. semitectum was most predominant (26%), followed by F. proliferatum (16%), F. circinatum (16%), F. chlamydosporum (10.5%), F. solani (10.5%), F. oxysporum (10.5%) and F. thapsinum (5%). Fumonisin B1, deoxynivalenol and zearalenone contents were assayed by high-performance liquid chromatography (HPLC). Seventeen isolates, belonging to F. chlamydosporum, F. circinatum, F. semitectum, F. solani, F. thapsinum, F. proliferatum and Fusarium spp., produced mycotoxins when cultured on rice medium. Fumonisin was produced by all of the studied Fusarium isolates, except F. oxysporum, at a concentration of over 1 μg/mL. F. citrinium isolates 4 and 5 and F. solani isolate 3 were the most potent producers of deoxynivalenol. We compared the 19 Fusarium isolates based on the bands amplified by 10 microsatellite primers. Of these, seven primers, (TCC)5, (TGG)5, (GTA)5, (ATG)5, (TAC)5, (TGC)5 and (TGT)5, yielded a high number of bands and different mean number of alleles. The similarity level between isolates was calculated using a simple matching coefficient. Dendrograms were constructed by the unweighted pair-group method with arithmetical averages (UPGMA). Two main clusters were observed. The interspecific genetic similarity between Fusarium spp. isolates was between 40% and 58% and the intraspecific similarity from 58% to 100%, indicating a high degree of genetic diversity in the tested isolates. Some unexpected genetic similarities were observed among the isolates, indicating non-agreement between morphological and molecular identification of the isolates.

  18. Assessment of Parasitic Activity of Fusarium Strains Obtained from a Heterodera schachtii-Suppressive Soil

    PubMed Central

    Gao, Xuebiao; Yin, Bei; Borneman, James; Becker, J. Ole

    2008-01-01

    This study assessed the potential impact of various Fusarium strains on the population development of sugarbeet cyst nematodes. Fungi were isolated from cysts or eggs of Heterodera schachtii Schmidt that were obtained from a field suppressive to that nematode. Twenty-six strains of Fusarium spp. were subjected to a phylogenic analysis of their rRNA-ITS nucleotide sequences. Seven genetically distinct Fusarium strains were evaluated for their ability to influence population development of H. schachtii and crop performance in greenhouse trials. Swiss chard (Beta vulgaris) seedlings were transplanted into fumigated field soil amended with a single fungal strain at 1,000 propagules/g soil. One week later, the soil was infested with 250 H. schachtii J2/100 cm3 soil. Parasitized eggs were present in all seven Fusarium treatments at 1,180 degree-days after fungal infestation. The percentage of parasitism ranged from 17 to 34%. Although the most efficacious F. oxysporum strain 471 produced as many parasitized eggs as occurred in the original suppressive soil, none of the Fusarium strains reduced the population density of H. schachtii compared to the conducive check. This supports prior results that Fusarium spp. were not the primary cause of the population suppression of sugarbeet cyst nematodes at this location. PMID:19259511

  19. Influence of agro-environmental factors on fusarium infestation and population structure in wheat kernels.

    PubMed

    Rohácik, Tibor; Hudec, Kamil

    2005-01-01

    The influence of location, year and cultivar on occurrence, level of infestation and Fusarium species spectrum in winter wheat seeds were evaluated. The wheat seeds from different cultivars and localities of the Slovak Republic were used for Fusarium species evaluation during years 1999, 2000, 2002 and 2003. The significant influence of the locality on total Fusarium kernel infestation was confirmed. The total sample infestation was significantly higher in the colder and moister localities, lower infestation was in warmer and dryer ones. Cultivar "Astella" was significantly the most susceptible. The widest Fusarium species spectrum was recorded in the locations with a high level of total kernel infestation. In localities with lower infestation, the species spectrum was less numerous. F. poae was the dominant species in all locations. The species F. culmorum, F. avenaceum and Microdochium nivale were subdominant and relatively frequent in the locations with higher altitude. The frequency and density of other isolated species (F. graminearum, F. sporotrichioides, F. tricinctum, F. semitectum, F. acuminatum, F. heterosporum, F. sambucinum, F. solani, F. compactum and F. oxysporum) was trivial in all localities. The kernel infestation and Fusarium population structure in wheat grains mostly depends on microclimatic condition of the locality. Rising of rainfall rate and altitude led to an increase in the species spectrum. The wide Fusarium species spectrum is connected with the high frequency of coincident species. The species with low and medium frequency achieved low or trivial density in population structure.

  20. An update to polyketide synthase and non-ribosomal synthetase genes and nomenclature in Fusarium.

    PubMed

    Hansen, Frederik T; Gardiner, Donald M; Lysøe, Erik; Fuertes, Patricia Romans; Tudzynski, Bettina; Wiemann, Philipp; Sondergaard, Teis Esben; Giese, Henriette; Brodersen, Ditlev E; Sørensen, Jens Laurids

    2015-02-01

    Members of the genus Fusarium produce a plethora of bioactive secondary metabolites, which can be harmful to humans and animals or have potential in drug development. In this study we have performed comparative analyses of polyketide synthases (PKSs) and non-ribosomal peptide synthetases (NRPSs) from ten different Fusarium species including F. graminearum (two strains), F. verticillioides, F. solani, F. culmorum, F. pseudograminearum, F. fujikuroi, F. acuminatum, F. avenaceum, F. equiseti, and F. oxysporum (12 strains). This led to identification of 52 NRPS and 52 PKSs orthology groups, respectively, and although not all PKSs and NRPSs are assumed to be intact or functional, the analyses illustrate the huge secondary metabolite potential in Fusarium. In our analyses we identified a core collection of eight NRPSs (NRPS2-4, 6, 10-13) and two PKSs (PKS3 and PKS7) that are conserved in all strains analyzed in this study. The identified PKSs and NRPSs were named based on a previously developed classification system (www.FusariumNRPSPKS.dk). We suggest this system be used when PKSs and NRPSs have to be classified in future sequenced Fusarium strains. This system will facilitate identification of orthologous and non-orthologous NRPSs and PKSs from newly sequenced Fusarium genomes and will aid the scientific community by providing a common nomenclature for these two groups of genes/enzymes.

  1. Negative correlation between phospholipase and esterase activity produced by Fusarium isolates

    PubMed Central

    Ishida, K.; Alviano, D.S.; Silva, B.G.; Guerra, C.R.; Costa, A.S.; Nucci, M.; Alviano, C.S.; Rozental, S.

    2012-01-01

    Fusarium species have emerged as one of the more outstanding groups of clinically important filamentous fungi, causing localized and life-threatening invasive infections with high morbidity and mortality. The ability to produce different types of hydrolytic enzymes is thought to be an important virulence mechanism of fungal pathogens and could be associated with the environment of the microorganism. Here, we have measured the production of two distinct lipolytic enzymes, phospholipase and esterase, by sixteen Fusarium isolates recovered from the hospital environment, immunocompromised patients' blood cultures, foot interdigital space scrapings from immunocompromised patients, and foot interdigital space scrapings from immunocompetent patients (4 isolates each). Fourteen of these 16 isolates were identified as Fusarium solani species complex (FSSC) and two were identified as F. oxysporum species complex (FOSC). Some relevant genus characteristics were visualized by light and electron microscopy such as curved and multicelled macroconidia with 3 or 4 septa, microconidia, phialides, and abundant chlamydospores. All Fusarium isolates were able to produce esterase and phospholipase under the experimental conditions. However, a negative correlation was observed between these two enzymes, indicating that a Fusarium isolate with high phospholipase activity has low esterase activity and vice versa. In addition, Fusarium isolated from clinical material produced more phospholipases, while environmental strains produced more esterases. These observations may be correlated with the different types of substrates that these fungi need to degrade during their nutrition processes. PMID:22415116

  2. Fusarium spp. is able to grow and invade healthy human nails as a single source of nutrients.

    PubMed

    Galletti, J; Negri, M; Grassi, F L; Kioshima-Cotica, É S; Svidzinski, T I E

    2015-09-01

    Onychomycosis caused by Fusarium spp. is emerging, but some factors associated with its development remain unclear, such as whether this genus is keratinolytic. The main aim of the present study was to evaluate the ability of Fusarium to use the human nail as a single source of nutrients. We also performed an epidemiological study and antifungal susceptibility testing of Fusarium spp. that were isolated from patients with onychomycosis. The epidemiological study showed that Fusarium species accounted for 12.4 % of onychomycosis cases, and it was the most common among nondermatophyte molds. The most frequent species identified were F. oxysporum (36.5 %), F. solani (31.8 %), and F. subglutinans (8.3 %). Fluconazole was not active against Fusarium spp., and the response to terbinafine varied according to species. Fusarium was able to grow in vitro without the addition of nutrients and invade healthy nails. Thus, we found that Fusarium uses keratin as a single source of nutrients, and the model proposed herein may be useful for future studies on the pathogenesis of onychomycosis.

  3. Diversity of Fusarium species and mycotoxins contaminating pineapple.

    PubMed

    Stępień, Łukasz; Koczyk, Grzegorz; Waśkiewicz, Agnieszka

    2013-08-01

    Pineapple (Ananas comosus var. comosus) is an important perennial crop in tropical and subtropical areas. It may be infected by various Fusarium species, contaminating the plant material with mycotoxins. The aim of this study was to evaluate Fusarium species variability among the genotypes isolated from pineapple fruits displaying fungal infection symptoms and to evaluate their mycotoxigenic abilities. Forty-four isolates of ten Fusarium species were obtained from pineapple fruit samples: F. ananatum, F. concentricum, F. fujikuroi, F. guttiforme, F. incarnatum, F. oxysporum, F. polyphialidicum, F. proliferatum, F. temperatum and F. verticillioides. Fumonisins B1-B3, beauvericin (BEA) and moniliformin (MON) contents were quantified by high-performance liquid chromatography (HPLC) in pineapple fruit tissue. Fumonisins are likely the most dangerous metabolites present in fruit samples (the maximum FB1 content was 250 μg g(-1) in pineapple skin and 20 μg ml(-1) in juice fraction). In both fractions, BEA and MON were of minor significance. FUM1 and FUM8 genes were identified in F. fujikuroi, F. proliferatum, F. temperatum and F. verticillioides. Cyclic peptide synthase gene (esyn1 homologue) from the BEA biosynthetic pathway was identified in 40 isolates of eight species. Based on the gene-specific polymerase chain reaction (PCR) assays, none of the isolates tested were found to be able to produce trichothecenes or zearalenone.

  4. Comparison of DNA Microarray, Loop-Mediated Isothermal Amplification (LAMP) and Real-Time PCR with DNA Sequencing for Identification of Fusarium spp. Obtained from Patients with Hematologic Malignancies.

    PubMed

    de Souza, Marcela; Matsuzawa, Tetsuhiro; Sakai, Kanae; Muraosa, Yasunori; Lyra, Luzia; Busso-Lopes, Ariane Fidelis; Levin, Anna Sara Shafferman; Schreiber, Angélica Zaninelli; Mikami, Yuzuru; Gonoi, Tohoru; Kamei, Katsuhiko; Moretti, Maria Luiza; Trabasso, Plínio

    2017-03-21

    The performance of three molecular biology techniques, i.e., DNA microarray, loop-mediated isothermal amplification (LAMP), and real-time PCR were compared with DNA sequencing for properly identification of 20 isolates of Fusarium spp. obtained from blood stream as etiologic agent of invasive infections in patients with hematologic malignancies. DNA microarray, LAMP and real-time PCR identified 16 (80%) out of 20 samples as Fusarium solani species complex (FSSC) and four (20%) as Fusarium spp. The agreement among the techniques was 100%. LAMP exhibited 100% specificity, while DNA microarray, LAMP and real-time PCR showed 100% sensitivity. The three techniques had 100% agreement with DNA sequencing. Sixteen isolates were identified as FSSC by sequencing, being five Fusarium keratoplasticum, nine Fusarium petroliphilum and two Fusarium solani. On the other hand, sequencing identified four isolates as Fusarium non-solani species complex (FNSSC), being three isolates as Fusarium napiforme and one isolate as Fusarium oxysporum. Finally, LAMP proved to be faster and more accessible than DNA microarray and real-time PCR, since it does not require a thermocycler. Therefore, LAMP signalizes as emerging and promising methodology to be used in routine identification of Fusarium spp. among cases of invasive fungal infections.

  5. Primer Sets Developed To Amplify Conserved Genes from Filamentous Ascomycetes Are Useful in Differentiating Fusarium Species Associated with Conifers

    PubMed Central

    Donaldson, G. C.; Ball, L. A.; Axelrood, P. E.; Glass, N. L.

    1995-01-01

    We examined the usefulness of primer sets designed to amplify introns within conserved genes in filamentous ascomycetes to differentiate 35 isolates representing six different species of Fusarium commonly found in association with conifer seedlings. We analyzed restriction fragment length polymorphisms (RFLP) in five amplified PCR products from each Fusarium isolate. The primers used in this study were constructed on the basis of sequence information from the H3, H4, and (beta)-tubulin genes in Neurospora crassa. Primers previously developed for the intergenic transcribed spacer region of the ribosomal DNA were also used. The degree of interspecific polymorphism observed in the PCR products from the six Fusarium species allowed differentiation by a limited number of amplifications and restriction endonuclease digestions. The level of intraspecific RFLP variation in the five PCR products was low in both Fusarium proliferatum and F. avenaceum but was high in a population sample of F. oxysporum isolates. Clustering of the 35 isolates by statistical analyses gave similar dendrograms for H3, H4, and (beta)-tubulin RFLP analysis, but a dendrogram produced by intergenic transcribed spacer analysis varied in the placement of some F. oxysporum isolates. PMID:16534991

  6. Detection of invasive infection caused by Fusarium solani and non-Fusarium solani species using a duplex quantitative PCR-based assay in a murine model of fusariosis.

    PubMed

    Bernal-Martínez, Leticia; Buitrago, Maria J; Castelli, Maria V; Rodríguez-Tudela, Juan L; Cuenca-Estrella, Manuel

    2012-04-01

    A duplex Real Time PCR (RT-PCR) assay for detecting DNA of members of the genus Fusarium has been developed and validated by using two mouse models of invasive infection. The duplex RT-PCR technique employed two specific molecular beacon probes targeting a highly conserved region of the fungal rDNA gene. This technique showed a detection limit of 10 fg DNA per μl of sample and a specificity of 100%. The sensitivity in a total of 48 samples from a murine model of Fusarium solani infection was 93.9% for lung tissues and 86.7% for serum samples. In comparison, the sensitivity in a total of 45 samples of a F. oxysporum murine model infection was 87% for lung tissues and 42.8% for serum samples. This molecular technique could be a reliable method for the quantification and the evaluation of the disease in animal models and for the clinical diagnosis of fusariosis.

  7. Verticillium alfalfae and V. dahliae, agents of Verticillium wilt diseases

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Verticillium wilts are vascular wilt diseases caused by species of Verticillium, and are among the most devastating fungal diseases worldwide. Over 400 different plant hosts, including major agricultural crops and ornamentals, are susceptible to Verticillium wilt mainly in temperate, less frequently...

  8. An antibody that confers plant disease resistance targets a membrane-bound glyoxal oxidase in Fusarium.

    PubMed

    Song, Xiu-Shi; Xing, Shu; Li, He-Ping; Zhang, Jing-Bo; Qu, Bo; Jiang, Jin-He; Fan, Chao; Yang, Peng; Liu, Jin-Long; Hu, Zu-Quan; Xue, Sheng; Liao, Yu-Cai

    2016-05-01

    Plant germplasm resources with natural resistance against globally important toxigenic Fusarium are inadequate. CWP2, a Fusarium genus-specific antibody, confers durable resistance to different Fusarium pathogens that infect cereals and other crops, producing mycotoxins. However, the nature of the CWP2 target is not known. Thus, investigation of the gene coding for the CWP2 antibody target will likely provide critical insights into the mechanism underlying the resistance mediated by this disease-resistance antibody. Immunoblots and mass spectrometry analysis of two-dimensional electrophoresis gels containing cell wall proteins from Fusarium graminearum (Fg) revealed that a glyoxal oxidase (GLX) is the CWP2 antigen. Cellular localization studies showed that GLX is localized to the plasma membrane. This GLX efficiently catalyzes hydrogen peroxide production; this enzymatic activity was specifically inhibited by the CWP2 antibody. GLX-deletion strains of Fg, F. verticillioides (Fv) and F. oxysporum had significantly reduced virulence on plants. The GLX-deletion Fg and Fv strains had markedly reduced mycotoxin accumulation, and the expression of key genes in mycotoxin metabolism was downregulated. This study reveals a single gene-encoded and highly conserved cellular surface antigen that is specifically recognized by the disease-resistance antibody CWP2 and regulates both virulence and mycotoxin biosynthesis in Fusarium species.

  9. Toxicity of abiotic stressors to Fusarium species: differences in hydrogen peroxide and fungicide tolerance.

    PubMed

    Nagygyörgy, Emese D; Kovács, Barbara; Leiter, Eva; Miskei, Márton; Pócsi, István; Hornok, László; Adám, Attila L

    2014-06-01

    Stress sensitivity of three related phytopathogenic Fusarium species (Fusarium graminearum, Fusarium oxysporum and Fusarium verticillioides) to different oxidative, osmotic, cell wall, membrane, fungicide stressors and an antifungal protein (PAF) were studied in vitro. The most prominent and significant differences were found in oxidative stress tolerance: all the three F. graminearum strains showed much higher sensitivity to hydrogen peroxide and, to a lesser extent, to menadione than the other two species. High sensitivity of F. verticillioides strains was also detectable to an azole drug, Ketoconazole. Surprisingly, no or limited differences were observed in response to other oxidative, osmotic and cell wall stressors. These results indicate that fungal oxidative stress response and especially the response to hydrogen peroxide (this compound is involved in a wide range of plant-fungus interactions) might be modified on niche-specific manner in these phylogenetically related Fusarium species depending on their pathogenic strategy. Supporting the increased hydrogen peroxide sensitivity of F. graminearum, genome-wide analysis of stress signal transduction pathways revealed the absence one CatC-type catalase gene in F. graminearum in comparison to the other two species.

  10. Dermatitis in captive Wyoming toads (Bufo baxteri) associated with Fusarium spp.

    PubMed

    Perpiñán, David; Trupkiewicz, John G; Armbrust, Amy L; Geiser, David M; Armstrong, Sarah; Garner, Michael M; Armstrong, Douglas L

    2010-10-01

    From May 2007 to June 2008, 30 of 49 Wyoming toads (Bufo baxteri) kept at Omaha's Henry Doorly Zoo (Nebraska, USA) died showing clinical signs of ventral erythema, inappetance, lethargy, and delayed righting reflex. Treatment with antifungals and antibiotics was unsuccessful in all cases. Histopathologic analyses revealed dermatitis as the primary problem in 20 of 21 toads in which skin was examined. Fungal dermatitis was present in 17 toads, with hyphae approximately 1-3 μm in diameter, and parallel cell walls and frequent septations. In 14 animals, the fungal dermatitis was the main pathologic lesion. Several species of bacteria were associated with all cases. A few animals tested positive for Ranavirus using polymerase chain reaction. Fusarium sp. was consistently cultured from skin, feces, kidneys, and from powdered food provided to crickets. Four isolates were identified as Fusarium proliferatum, Fusarium oxysporum, Fusarium solani, and Fusarium verticillioides, which suggested a secondary role of fungi. A specific underlying cause of disease could not be found, although the roles of humidity and Ranavirus infection are discussed, along with the well-known susceptibility of bufonids to fungal dermatitis.

  11. Fusion proteins comprising a Fusarium-specific antibody linked to antifungal peptides protect plants against a fungal pathogen.

    PubMed

    Peschen, Dieter; Li, He-Ping; Fischer, Rainer; Kreuzaler, Fritz; Liao, Yu-Cai

    2004-06-01

    In planta expression of recombinant antibodies recognizing pathogen-specific antigens has been proposed as a strategy for crop protection. We report the expression of fusion proteins comprising a Fusarium-specific recombinant antibody linked to one of three antifungal peptides (AFPs) as a method for protecting plants against fungal diseases. A chicken-derived single-chain antibody specific to antigens displayed on the Fusarium cell surface was isolated from a pooled immunocompetent phage display library. This recombinant antibody inhibited fungal growth in vitro when fused to any of the three AFPs. Expression of the fusion proteins in transgenic Arabidopsis thaliana plants conferred high levels of protection against Fusarium oxysporum f.sp. matthiolae, whereas plants expressing either the fungus-specific antibody or AFPs alone exhibited only moderate resistance. Our results demonstrate that antibody fusion proteins may be used as effective and versatile tools for the protection of crop plants against fungal infection.

  12. Soil suppressiveness to fusarium disease: shifts in root microbiome associated with reduction of pathogen root colonization.

    PubMed

    Klein, Eyal; Ofek, Maya; Katan, Jaacov; Minz, Dror; Gamliel, Abraham

    2013-01-01

    Soil suppressiveness to Fusarium disease was induced by incubating sandy soil with debris of wild rocket (WR; Diplotaxis tenuifolia) under field conditions. We studied microbial dynamics in the roots of cucumber seedlings following transplantation into WR-amended or nonamended soil, as influenced by inoculation with Fusarium oxysporum f. sp. radicis-cucumerinum. Disease symptoms initiated in nonamended soil 6 days after inoculation, compared with 14 days in WR-amended soil. Root infection by F. oxysporum f. sp. radicis-cucumerinum was quantified using real-time polymerase chain reaction (PCR). Target numbers were similar 3 days after inoculation for both WR-amended and nonamended soils, and were significantly lower (66%) 6 days after inoculation and transplanting into the suppressive (WR-amended) soil. This decrease in root colonization was correlated with a reduction in disease (60%) 21 days after inoculation and transplanting into the suppressive soil. Fungal community composition on cucumber roots was assessed using mass sequencing of fungal internal transcribed spacer gene fragments. Sequences related to F. oxysporum, Fusarium sp. 14005, Chaetomium sp. 15003, and an unclassified Ascomycota composed 96% of the total fungal sequences in all samples. The relative abundances of these major groups were highly affected by root inoculation with F. oxysporum f. sp. radicis-cucumerinum, with a 10-fold increase in F. oxysporum sequences, but were not affected by the WR amendment. Quantitative analysis and mass-sequencing methods indicated a qualitative shift in the root's bacterial community composition in suppressive soil, rather than a change in bacterial numbers. A sharp reduction in the size and root dominance of the Massilia population in suppressive soil was accompanied by a significant increase in the relative abundance of specific populations; namely, Rhizobium, Bacillus, Paenibacillus, and Streptomyces spp. Composition of the Streptomyces community shifted

  13. Mycotoxin Production by Fusarium Species Isolated from Bananas

    PubMed Central

    Jimenez, M.; Huerta, T.; Mateo, R.

    1997-01-01

    The ability of Fusarium species isolated from bananas to produce mycotoxins was studied with 66 isolates of the following species: F. semitectum var. majus (8 isolates), F. camptoceras (3 isolates), a Fusarium sp. (3 isolates), F. moniliforme (16 isolates), F. proliferatum (9 isolates), F. subglutinans (3 isolates), F. solani (3 isolates), F. oxysporum (5 isolates), F. graminearum (7 isolates), F. dimerum (3 isolates), F. acuminatum (3 isolates), and F. equiseti (3 isolates). All isolates were cultured on autoclaved corn grains. Their toxicity to Artemia salina L. larvae was examined. Some of the toxic effects observed arose from the production of known mycotoxins that were determined by thin-layer chromatography, gas chromatography, or high-performance liquid chromatography. All F. camptoceras and Fusarium sp. isolates proved toxic to A. salina larvae; however, no specific toxic metabolites could be identified. This was also the case with eight isolates of F. moniliforme and three of F. proliferatum. The following mycotoxins were encountered in the corn culture extracts: fumonisin B(inf1) (40 to 2,900 (mu)g/g), fumonisin B(inf2) (150 to 320 (mu)g/g), moniliformin (10 to 1,670 (mu)g/g), zearalenone (5 to 470 (mu)g/g), (alpha)-zearalenol (5 to 10 (mu)g/g), deoxynivalenol (8 to 35 (mu)g/g), 3-acetyldeoxynivalenol (5 to 10 (mu)g/g), neosolaniol (50 to 180 (mu)g/g), and T-2 tetraol (5 to 15 (mu)g/g). Based on the results, additional compounds produced by the fungal isolates may play prominent roles in the toxic effects on larvae observed. This is the first reported study on the mycotoxin-producing abilities of Fusarium species that contaminate bananas. PMID:16535503

  14. Biodiversity of the genus Fusarium in saline soil habitats.

    PubMed

    Mandeel, Qaher A

    2006-01-01

    Fusarium species assemblage and diversity were investigated in eight different contrasting extreme saline soil habitats of the hot arid desert environment of Bahrain. Saline habitats are located towards the central-southern part of Bahrain and featured by high electrical conductivity, slightly alkaline sandy soil, poor in nutrient sources and water holding capacity and mainly dominated by a salt-tolerant flora. Quantification of data for the recovery of Fusarium species was based on morphological characters and counts by a series of ten fold dilutions plate method and direct soil plating, using two selective media supplemented with different NaCl concentrations. A total of 68 isolates, fluctuated between 1 and 23 per soil sample, were recovered among all habitats mostly at 0 and 5% NaCl concentrations, while no recovery was achieved at 20 and 25%. Grouping of these isolates has resulted in only five species (F. solani, F. oxysporum, F. chlamydosporum, F. equiseti and F. compactum), all of which were previously reported from the arid terrestrial habitats of Bahrain. F. solani was the most predominant species, based on relative density, frequency of occurrence and dominance values, followed by F. oxysporum, a finding consistent with other similar arid Sahara ecosystems. Evaluation of data, supported by analysis of diversity indices and community coefficients, revealed that desert mountain habitat followed by burial mounds habitat were highly homogeneous coupled with maximum species richness, diversity indices and evenness, whereas soil habitats like cliffs, coastal and Al-Lowzy pit were the poorest. Moreover, in vitro tests showed that among other fusaria, F. solani exhibited the highest tolerance to increase NaCl concentrations (25%) and temperature (28.3 mm linear growth at 35 degrees C). At 10% NaCl concentrations, significant reduction in linear growth extensions suppressed all species accompanied by massive thick-walled, drought-resistant chlamydospores

  15. International Evaluation of MIC Distributions and Epidemiological Cutoff Value (ECV) Definitions for Fusarium Species Identified by Molecular Methods for the CLSI Broth Microdilution Method

    PubMed Central

    Colombo, A. L.; Cordoba, S.; Dufresne, P. J.; Fuller, J.; Ghannoum, M.; Gonzalez, G. M.; Guarro, J.; Kidd, S. E.; Melhem, T. M. S. C.; Pelaez, T.; Pfaller, M. A.; Szeszs, M. W.; Takahaschi, J. P.; Wiederhold, N. P.; Turnidge, J.

    2015-01-01

    The CLSI epidemiological cutoff values (ECVs) of antifungal agents are available for various Candida spp., Aspergillus spp., and the Mucorales. However, those categorical endpoints have not been established for Fusarium spp., mostly due to the difficulties associated with collecting sufficient CLSI MICs for clinical isolates identified according to the currently recommended molecular DNA-PCR-based identification methodologies. CLSI MIC distributions were established for 53 Fusarium dimerum species complex (SC), 10 F. fujikuroi, 82 F. proliferatum, 20 F. incarnatum-F. equiseti SC, 226 F. oxysporum SC, 608 F. solani SC, and 151 F. verticillioides isolates originating in 17 laboratories (in Argentina, Australia, Brazil, Canada, Europe, Mexico, and the United States). According to the CLSI guidelines for ECV setting, ECVs encompassing ≥97.5% of pooled statistically modeled MIC distributions were as follows: for amphotericin B, 4 μg/ml (F. verticillioides) and 8 μg/ml (F. oxysporum SC and F. solani SC); for posaconazole, 2 μg/ml (F. verticillioides), 8 μg/ml (F. oxysporum SC), and 32 μg/ml (F. solani SC); for voriconazole, 4 μg/ml (F. verticillioides), 16 μg/ml (F. oxysporum SC), and 32 μg/ml (F. solani SC); and for itraconazole, 32 μg/ml (F. oxysporum SC and F. solani SC). Insufficient data precluded ECV definition for the other species. Although these ECVs could aid in detecting non-wild-type isolates with reduced susceptibility to the agents evaluated, the relationship between molecular mechanisms of resistance (gene mutations) and MICs still needs to be investigated for Fusarium spp. PMID:26643334

  16. Fusarium fungi and associated metabolites presence on grapes from Slovakia.

    PubMed

    Mikušová, Petra; Šrobárová, Antónia; Sulyok, Michael; Santini, Antonello

    2013-05-01

    Toxinogenic Fusarium species were identified on grape berries from Slovak vineyards, and their toxic metabolites were analysed by HPLC-MS/MS. F. subglutinans, F. oxysporum, F. proliferatum, F. semitectum, F. solani, F. subglutinans, and F. verticillioides were found with varying frequency. F. oxysporum and F. proliferatum, cultured in vitro on Czapek yeast autolysate agar and yeast extract sucrose agar, produced beauvericin, in the range from 3,265 to 13,400 μg/kg, and fusaproliferin in high concentration, ranging from 49,850 to 259,500 μg/kg. A maximum value of 2.24 μg/kg has been observed for beauvericin in dried grape berries. Fumonisin B1, and fumonisin B2 were also identified, and the observed levels ranged from 500 to 2,040 μg/kg. Over 2 years (namely 2008 and 2009) many other metabolites have been identified and analysed in grape berries, in particular: avenacein Y, apicidin, aurofusarin, chlamydosporol, 2-amino-14,16-dimethyloctadecan-3-ol, enniatin A, enniatin A1, enniatin B2, enniatin B3, and equisetin.

  17. Effects of rain damage on wilting forages

    Technology Transfer Automated Retrieval System (TEKTRAN)

    One of the most common problems faced by hay or silage producers is how to manage production schedules around unfavorable weather. Inevitably, some wilting forage crops are damaged by unexpected rainfall events each year, and producers often inquire about the effects of unexpected rain damage, and w...

  18. Recovery Plan for Laurel Wilt of Avocado

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Laurel wilt kills American members of the Lauraceae plant family, including avocado (Persea americana). The disease threatens commercial avocado production in Florida, as well as the National Germplasm Repository for avocado in Miami (USDA-ARS). Elsewhere in the US, major (California) and minor comm...

  19. Molecular identification of Fusarium species isolated from transgenic insect-resistant cotton plants in Mexicali valley, Baja California.

    PubMed

    Gonzalez-Soto, T; González-Mendoza, D; Troncoso-Rojas, R; Morales-Trejo, A; Ceceña-Duran, C; Garcia-Lopez, A; Grimaldo-Juarez, O

    2015-10-02

    Cotton production in the Mexicali valley is adversely affected by wilt and root rot disease associated with Fusarium species. In the present study, we sought to isolate and identify the Fusarium species in the rhizosphere of transgenic insect-resistant cotton plants grown in the Mexicali valley. Our analyses isolated four native fungi from the rhizosphere of cotton plants, namely, T-ICA01, T-ICA03, T-ICA04, and T-ICA08. These fungal isolates were categorized as belonging to Fusarium solani using their phenotypic characteristics and ITS region sequence data. Examination of the infection index showed that T-ICA03 and T-ICA04 caused systemic colonization (90%) of seeds followed by the occurrence of radicle and coleoptile decay. In contrast, T-ICA08 strain was less pathogenic against seed tissues (40%) in comparison to the other strains isolated. Our study showed that in transgenic insect-resistant cotton the disease "Fusarium wilt" is caused by the fungus, F. solani. Future studies are necessary to characterize the F. solani populations to determine whether phenological stages might influence the genetic diversity of the fungal populations present.

  20. Two rhizobacterial strains, individually and in interactions with Rhizobium sp., enhance fusarial wilt control, growth, and yield in pigeon pea.

    PubMed

    Dutta, Swarnalee; Morang, Pranjal; Kumar S, Nishanth; Dileep Kumar, B S

    2014-09-01

    A Pseudomonas aeruginosa strain, RRLJ 04, and a Bacillus cereus strain, BS 03, were tested both individually and in combination with a Rhizobium strain, RH 2, for their ability to enhance plant growth and nodulation in pigeon pea (Cajanus cajan L.) under gnotobiotic, greenhouse and field conditions. Both of the rhizobacterial strains exhibited a positive effect on growth in terms of shoot height, root length, fresh and dry weight, nodulation and yield over the non-treated control. Co-inoculation of seeds with these strains and Rhizobium RH 2 also reduced the number of wilted plants, when grown in soil infested with Fusarium udum. Gnotobiotic studies confirmed that the suppression of wilt disease was due to the presence of the respective PGPR strains. Seed bacterization with drug-marked mutants of RRLJ 04 and BS 03 confirmed their ability to colonize and multiply along the roots. The results suggest that co-inoculation of these strains with Rhizobium strain RH 2 can be further exploited for enhanced growth, nodulation and yield in addition to control of fusarial wilt in pigeon pea.

  1. Analysis of the rDNA internal transcribed spacer region of the Fusarium species by polymerase chain reaction-restriction fragment length polymorphism

    PubMed Central

    ZARRIN, MAJID; GANJ, FARZANEH; FARAMARZI, SAMA

    2016-01-01

    The Fusarium species are a widely spread phytopathogen identified in an extensive variety of hosts. The Fusarium genus is one of the most heterogeneous fungi and is difficult to classify. Polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) analysis is a useful method in detection of DNA polymorphism in objective sequences. The aim of the present study was to identify the phylogenetic associations and usefulness of the internal transcribed spacer (ITS) region as a genetic marker within the most clinically important strain of the Fusarium species. A total of 50 strains of Fusarium spp. were used in the study, including environmental, clinical and reference isolates. The primers ITS1 and ITS4 were used in the study. Two restriction enzymes, HaeIII and SmaI, were assessed for the digestion of PCR products. A PCR product of ~550-base pairs was generated for each Fusarium species. The digested products with HaeIII and SmaI demonstrated that the bands generated for the medically significant Fusarium species, including F. solani, F. oxysporum, F. verticillidea, F. proliferatum and F. fujikuri, have different restriction enzyme patterns. In conclusion, it appears that the PCR-RFLP method used in the present study produces a sufficient restriction profile for differentiation of the most medically significant Fusarium species. PMID:27073635

  2. Molecular phylogeny and diversity of Fusarium endophytes isolated from tomato stems.

    PubMed

    Imazaki, Iori; Kadota, Ikuo

    2015-09-01

    Plant tissues are a known habitat for two types of Fusarium species: plant pathogens and endophytes. Here, we investigated the molecular phylogeny and diversity of endophytic fusaria, because endophytes are not as well studied as pathogens. A total of 543 Fusarium isolates were obtained from the inside of tomato stems cultivated in soils mainly obtained from agricultural fields. We then determined partial nucleotide sequences of the translation elongation factor-1 alpha (EF-1α) genes of the isolates. Among the isolates from tomato, 24 EF-1α gene sequence types (EFST) were found: nine were classified as being from the Fusarium oxysporum species complex and its sister taxa (FOSC, 332 isolates), seven from the F. fujikuroi species complex (FFSC, 75 isolates) and eight from the F. solani species complex (FSSC, 136 isolates). To determine more characteristic details of the tomato isolates, we isolated 180 fusaria directly from soils and found 95% of them were nested within the FOSC (82 isolates; five EFSTs), FFSC (21 isolates; six FESTs) and FSSC (68 isolates; 11 EFSTs). These results suggested that the dominant Fusarium endophytes within tomato stems were members of the same three species complexes, which were also the dominant fusaria in the soils.

  3. Aggressiveness of Fusarium species and impact of root infection on growth and yield of soybeans.

    PubMed

    Arias, María M Díaz; Leandro, Leonor F; Munkvold, Gary P

    2013-08-01

    Fusarium spp. are commonly isolated from soybean roots but the pathogenic activity of most species is poorly documented. Aggressiveness and yield impact of nine species of Fusarium were determined on soybean in greenhouse (50 isolates) and field microplot (19 isolates) experiments. Root rot severity and shoot and root dry weights were compared at growth stages V3 or R1. Root systems were scanned and digital image analysis was conducted; yield was measured in microplots. Disease severity and root morphology impacts varied among and within species. Fusarium graminearum was highly aggressive (root rot severity >90%), followed by F. proliferatum and F. virguliforme. Significant variation in damping-off (20 to 75%) and root rot severity (<20 to >60%) was observed among F. oxysporum isolates. In artificially-infested microplots, root rot severity was low (<25%) and mean yield was not significantly reduced. However, there were significant linear relationships between yield and root symptoms for some isolates. Root morphological characteristics were more consistent indicators of yield loss than root rot severity. This study provides the first characterization of aggressiveness and yield impact of Fusarium root rot species on soybean at different plant stages and introduces root image analysis to assess the impact of root pathogens on soybean.

  4. Phylogeny and VCG analysis of vascular competent and incompetent Fusarium oxysporum f. sp. vasinfectum pathotypes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fov isolates belonging to all known races, biotypes, and most of known genotypes were characterized by phylogenetic and VCG analysis. VCGs with multiple members were sequenced for at least two members, and the resulting sequences were always identical except for VCG01111 members. Vegetative compatib...

  5. Novel taxa in the Fusarium fujikuroi species complex from Pinus spp.

    PubMed Central

    Herron, D.A.; Wingfield, M.J.; Wingfield, B.D.; Rodas, C.A.; Marincowitz, S.; Steenkamp, E.T.

    2015-01-01

    The pitch canker pathogen Fusarium circinatum has caused devastation to Pinus spp. in natural forests and non-natives in commercially managed plantations. This has drawn attention to the potential importance of Fusarium species as pathogens of forest trees. In this study, we explored the diversity of Fusarium species associated with diseased Pinus patula, P. tecunumanii, P. kesiya and P. maximinoi in Colombian plantations and nurseries. Plants displaying symptoms associated with a F. circinatum-like infection (i.e., stem cankers and branch die-back on trees in plantations and root or collar rot of seedlings) were sampled. A total of 57 isolates were collected and characterised based on DNA sequence data for the translation elongation factor 1-α and β-tubulin gene regions. Phylogenetic analyses of these data allowed for the identification of more than 10 Fusarium species. These included F. circinatum, F. oxysporum, species within the Fusarium solani species complex and seven novel species in the Fusarium fujikuroi species complex (formerly the Gibberella fujikuroi species complex), five of which are described here as new. Selected isolates of the new species were tested for their pathogenicity on Pinus patula and compared with that of F. circinatum. Of these, F. marasasianum, F. parvisorum and F. sororula displayed levels of pathogenicity to P. patula that were comparable with that of F. circinatum. These apparently emerging pathogens thus pose a significant risk to forestry in Colombia and other parts of the world. PMID:26955193

  6. History of pine wilt disease in Japan.

    PubMed

    Mamiya, Y

    1988-04-01

    Pine wilt disease induced by the pinewood nematode, Bursaphelenchus xylophilus, is a great threat to pine forests in Japan. The first occurrence of the disease was reported in Nagasaki, Kyushu. During the 1930s the disease occurrence was extended in 12 prefectures, and in the 1940s the disease was found in 34 prefectures. The annual loss of pine trees increased from 30,000 m(3) to 1.2 million m(3) during these two decades. The enormous increase in timber loss in the 1970s resulted in 2.4 million m(3) of annual loss in 1979. The affected area expanded into 45 prefectures of 47 prefectures in Japan. In cool areas the disease differs in epidemiology from that in heavily infested areas in the warm regions. A national project for controlling pine wilt disease lays special emphasis on the healthy pine forests predominating throughout cool areas in northern Japan.

  7. Genome-Wide Analysis in Three Fusarium Pathogens Identifies Rapidly Evolving Chromosomes and Genes Associated with Pathogenicity.

    PubMed

    Sperschneider, Jana; Gardiner, Donald M; Thatcher, Louise F; Lyons, Rebecca; Singh, Karam B; Manners, John M; Taylor, Jennifer M

    2015-05-19

    Pathogens and hosts are in an ongoing arms race and genes involved in host-pathogen interactions are likely to undergo diversifying selection. Fusarium plant pathogens have evolved diverse infection strategies, but how they interact with their hosts in the biotrophic infection stage remains puzzling. To address this, we analyzed the genomes of three Fusarium plant pathogens for genes that are under diversifying selection. We found a two-speed genome structure both on the chromosome and gene group level. Diversifying selection acts strongly on the dispensable chromosomes in Fusarium oxysporum f. sp. lycopersici and on distinct core chromosome regions in Fusarium graminearum, all of which have associations with virulence. Members of two gene groups evolve rapidly, namely those that encode proteins with an N-terminal [SG]-P-C-[KR]-P sequence motif and proteins that are conserved predominantly in pathogens. Specifically, 29 F. graminearum genes are rapidly evolving, in planta induced and encode secreted proteins, strongly pointing toward effector function. In summary, diversifying selection in Fusarium is strongly reflected as genomic footprints and can be used to predict a small gene set likely to be involved in host-pathogen interactions for experimental verification.