Sample records for wind accretion assembling

  1. The cosmic baryon cycle and galaxy mass assembly in the FIRE simulations

    NASA Astrophysics Data System (ADS)

    Anglés-Alcázar, Daniel; Faucher-Giguère, Claude-André; Kereš, Dušan; Hopkins, Philip F.; Quataert, Eliot; Murray, Norman

    2017-10-01

    We use cosmological simulations from the FIRE (Feedback In Realistic Environments) project to study the baryon cycle and galaxy mass assembly for central galaxies in the halo mass range Mhalo ˜ 1010-1013 M⊙. By tracing cosmic inflows, galactic outflows, gas recycling and merger histories, we quantify the contribution of physically distinct sources of material to galaxy growth. We show that in situ star formation fuelled by fresh accretion dominates the early growth of galaxies of all masses, while the re-accretion of gas previously ejected in galactic winds often dominates the gas supply for a large portion of every galaxy's evolution. Externally processed material contributes increasingly to the growth of central galaxies at lower redshifts. This includes stars formed ex situ and gas delivered by mergers, as well as smooth intergalactic transfer of gas from other galaxies, an important but previously underappreciated growth mode. By z = 0, wind transfer, I.e. the exchange of gas between galaxies via winds, can dominate gas accretion on to ˜L* galaxies over fresh accretion and standard wind recycling. Galaxies of all masses re-accrete ≳50 per cent of the gas ejected in winds and recurrent recycling is common. The total mass deposited in the intergalactic medium per unit stellar mass formed increases in lower mass galaxies. Re-accretion of wind ejecta occurs over a broad range of time-scales, with median recycling times (˜100-350 Myr) shorter than previously found. Wind recycling typically occurs at the scale radius of the halo, independent of halo mass and redshift, suggesting a characteristic recycling zone around galaxies that scales with the size of the inner halo and the galaxy's stellar component.

  2. Wind accretion and formation of disk structures in symbiotic binary systems

    NASA Astrophysics Data System (ADS)

    de Val-Borro, M.; Karovska, M.; Sasselov, D. D.; Stone, J. M.

    2015-05-01

    We investigate gravitationally focused wind accretion in binary systems consisting of an evolved star with a gaseous envelope and a compact accreting companion. We study the mass accretion and formation of an accretion disk around the secondary caused by the strong wind from the primary late-type component using global 2D and 3D hydrodynamic numerical simulations. In particular, the dependence of the mass accretion rate on the mass loss rate, wind temperature and orbital parameters of the system is considered. For a typical slow and massive wind from an evolved star the mass transfer through a focused wind results in rapid infall onto the secondary. A stream flow is created between the stars with accretion rates of a 2--10% percent of the mass loss from the primary. This mechanism could be an important method for explaining periodic modulations in the accretion rates for a broad range of interacting binary systems and fueling of a large population of X-ray binary systems. We test the plausibility of these accretion flows indicated by the simulations by comparing with observations of the symbiotic variable system CH Cyg.

  3. Three-dimensional hydrodynamical models of wind and outburst-related accretion in symbiotic systems

    NASA Astrophysics Data System (ADS)

    de Val-Borro, M.; Karovska, M.; Sasselov, D. D.; Stone, J. M.

    2017-07-01

    Gravitationally focused wind accretion in binary systems consisting of an evolved star with a gaseous envelope and a compact accreting companion is a possible mechanism to explain mass transfer in symbiotic binaries. We study the mass accretion around the secondary caused by the strong wind from the primary late-type component using global three-dimensional hydrodynamic numerical simulations during quiescence and outburst stages. In particular, the dependence of the mass accretion rate on the mass-loss rate, wind parameters and phases of wind outburst development is considered. For a typical wind from an asymptotic giant branch star with a mass-loss rate of 10-6 M⊙ yr-1 and wind speeds of 20-50 km s-1, the mass transfer through a focused wind results in efficient infall on to the secondary. Accretion rates on to the secondary of 5-20 per cent of the mass-loss from the primary are obtained during quiescence and outburst periods where the wind velocity and mass-loss rates are varied, about 20-50 per cent larger than in the standard Bondi-Hoyle-Lyttleton approximation. This mechanism could be an important method for explaining observed accretion luminosities and periodic modulations in the accretion rates for a broad range of interacting binary systems.

  4. Resolving components of wind accreting systems: a case study of Mira AB

    NASA Astrophysics Data System (ADS)

    Karovska, M.

    2004-12-01

    Mass transfer in many systems occurs by wind interaction rather then by tidal interaction, because the primary does not fill its Roche surface. The nearby detached binary Mira AB provides a unique laboratory for studying wind accretion processes because this system can be resolved and the interacting components can be studied individually, which is not possible in most accreting systems. The study of Mira AB wind accretion and mass transfer may therefore help understand the accretion processes in many other astronomical systems.

  5. Numerical Simulations of Wind Accretion in Symbiotic Binaries

    NASA Astrophysics Data System (ADS)

    de Val-Borro, M.; Karovska, M.; Sasselov, D.

    2009-08-01

    About half of the binary systems are close enough to each other for mass to be exchanged between them at some point in their evolution, yet the accretion mechanism in wind accreting binaries is not well understood. We study the dynamical effects of gravitational focusing by a binary companion on winds from late-type stars. In particular, we investigate the mass transfer and formation of accretion disks around the secondary in detached systems consisting of an asymptotic giant branch (AGB) mass-losing star and an accreting companion. The presence of mass outflows is studied as a function of mass-loss rate, wind temperature, and binary orbital parameters. A two-dimensional hydrodynamical model is used to study the stability of mass transfer in wind accreting symbiotic binary systems. In our simulations we use an adiabatic equation of state and a modified version of the isothermal approximation, where the temperature depends on the distance from the mass losing star and its companion. The code uses a block-structured adaptive mesh refinement method that allows us to have high resolution at the position of the secondary and resolve the formation of bow shocks and accretion disks. We explore the accretion flow between the components and formation of accretion disks for a range of orbital separations and wind parameters. Our results show the formation of stream flow between the stars and accretion disks of various sizes for certain orbital configurations. For a typical slow and massive wind from an AGB star the flow pattern is similar to a Roche lobe overflow with accretion rates of 10% of the mass loss from the primary. Stable disks with exponentially decreasing density profiles and masses of the order 10-4 solar masses are formed when wind acceleration occurs at several stellar radii. The disks are geometrically thin with eccentric streamlines and close to Keplerian velocity profiles. The formation of tidal streams and accretion disks is found to be weakly dependent on the mass loss from the AGB star. Our simulations of gravitationally focused wind accretion in symbiotic binaries show the formation of stream flows and enhanced accretion rates onto the compact component. We conclude that mass transfer through a focused wind is an important mechanism in wind accreting interacting binaries and can have a significant impact on the evolution of the binary itself and the individual components.

  6. On the wind production from hot accretion flows with different accretion rates

    NASA Astrophysics Data System (ADS)

    Bu, De-Fu; Gan, Zhao-Ming

    2018-02-01

    We perform two-dimensional simulations to study how the wind strength changes with accretion rate. We take into account bremsstrahlung, synchrotron radiation and the Comptonization. We find that when the accretion rate is low, radiative cooling is not important, and the accretion flow is hot. For the hot accretion flow, wind is very strong. The mass flux of wind can be ˜ 50 per cent of the mass inflow rate. When the accretion rate increases to a value at which radiative cooling rate is roughly equal to or slightly larger than viscous heating rate, cold clumps can form around the equatorial plane. In this case, the gas pressure gradient force is small and wind is very weak. Our results may be useful for the sub-grid model of active galactic nuclear feedback study.

  7. Accretion disc wind variability in the states of the microquasar GRS 1915+105

    NASA Astrophysics Data System (ADS)

    Neilsen, Joseph; Petschek, Andrew J.; Lee, Julia C.

    2012-03-01

    Continuing our study of the role and evolution of accretion disc winds in the microquasar GRS 1915+105, we present high-resolution spectral variability analysis of the β and γ states with the Chandra High-Energy Transmission Grating Spectrometer. By tracking changes in the absorption lines from the accretion disc wind, we find new evidence that radiation links the inner and outer accretion discs on a range of time-scales. As the central X-ray flux rises during the high-luminosity γ state, we observe the progressive overionization of the wind. In the β state, we argue that changes in the inner disc leading to the ejection of a transient 'baby jet' also quench the highly ionized wind from the outer disc. Our analysis reveals how the state, structure and X-ray luminosity of the inner accretion disc all conspire to drive the formation and variability of highly ionized accretion disc winds.

  8. Development of 3D Ice Accretion Measurement Method

    NASA Technical Reports Server (NTRS)

    Lee, Sam; Broeren, Andy P.; Addy, Harold E., Jr.; Sills, Robert; Pifer, Ellen M.

    2012-01-01

    Icing wind tunnels are designed to simulate in-flight icing environments. The chief product of such facilities is the ice accretion that forms on various test articles. Documentation of the resulting ice accretion key piece of data in icing-wind-tunnel tests. Number of currently used options for documenting ice accretion in icing-wind-tunnel testing.

  9. Investigating mass transfer in symbiotic systems with hydrodynamic simulations

    NASA Astrophysics Data System (ADS)

    de Val-Borro, Miguel; Karovska, Margarita; Sasselov, Dimitar D.

    2014-06-01

    We investigate gravitationally focused wind accretion in binary systems consisting of an evolved star with a gaseous envelope and a compact accreting companion. We study the mass accretion and formation of an accretion disk around the secondary caused by the strong wind from the primary late-type component using global 2D and 3D hydrodynamic numerical simulations. In particular, the dependence on the mass accretion rate on the mass loss rate, wind temperature and orbital parameters of the system is considered. For a typical slow and massive wind from an evolved star the mass transfer through a focused wind results in rapid infall onto the secondary. A stream flow is created between the stars with accretion rates of a 2-10% percent of the mass loss from the primary. This mechanism could be an important method for explaining periodic modulations in the accretion rates for a broad range of interacting binary systems and fueling of a large population of X-ray binary systems. We test the plausibility of these accretion flows indicated by the simulations by comparing with observations of the symbiotic CH Cyg variable system.

  10. On Stellar Winds as a Source of Mass: Applying Bondi-Hoyle-Lyttleton Accretion

    NASA Astrophysics Data System (ADS)

    Detweiler, L. G.; Yates, K.; Siem, E.

    2017-12-01

    The interaction between planets orbiting stars and the stellar wind that stars emit is investigated and explored. The main goal of this research is to devise a method of calculating the amount of mass accumulated by an arbitrary planet from the stellar wind of its parent star via accretion processes. To achieve this goal, the Bondi-Hoyle-Lyttleton (BHL) mass accretion rate equation and model is employed. In order to use the BHL equation, various parameters of the stellar wind is required to be known, including the velocity, density, and speed of sound of the wind. In order to create a method that is applicable to arbitrary planets orbiting arbitrary stars, Eugene Parker's isothermal stellar wind model is used to calculate these stellar wind parameters. In an isothermal wind, the speed of sound is simple to compute, however the velocity and density equations are transcendental and so the solutions must be approximated using a numerical approximation method. By combining Eugene Parker's isothermal stellar wind model with the BHL accretion equation, a method for computing planetary accretion rates inside a star's stellar wind is realized. This method is then applied to a variety of scenarios. First, this method is used to calculate the amount of mass that our solar system's planets will accrete from the solar wind throughout our Sun's lifetime. Then, some theoretical situations are considered. We consider the amount of mass various brown dwarfs would accrete from the solar wind of our Sun throughout its lifetime if they were orbiting the Sun at Jupiter's distance. For very high mass brown dwarfs, a significant amount of mass is accreted. In the case of the brown dwarf 15 Sagittae B, it actually accretes enough mass to surpass the mass limit for hydrogen fusion. Since 15 Sagittae B is orbiting a star that is very similar to our Sun, this encouraged making calculations for 15 Sagittae B orbiting our Sun at its true distance from its star, 15 Sagittae. It was found that at this distance, it does not accrete enough mass to surpass the mass limit for hydrogen fusion. Finally, we apply this method to brown dwarfs orbiting a 15 solar mass star at Jupiter's distance. It is found that a significantly smaller amount of mass is accreted when compared to the same brown dwarfs orbiting our Sun at the same distance.

  11. Thermal wind from hot accretion flows at large radii

    NASA Astrophysics Data System (ADS)

    Bu, De-Fu; Yang, Xiao-Hong

    2018-06-01

    We study slowly rotating accretion flow at parsec and subparsec scales irradiated by low-luminosity active galactic nuclei. We take into account the Compton heating, photoionization heating by the central X-rays. The bremsstrahlung cooling, recombination, and line cooling are also included. We find that due to the Compton heating, wind can be thermally driven. The power of wind is in the range (10-6-10-3) LEdd, with LEdd being the Eddington luminosity. The mass flux of wind is in the range (0.01-1) \\dot{M}_Edd (\\dot{M}_Edd= L_Edd/0.1c^2 is the Eddington accretion rate, c is speed of light). We define the wind generation efficiency as ɛ = P_W/\\dot{M}_BHc^2, with PW being wind power, \\dot{M}_BH being the mass accretion rate on to the black hole. ɛ lies in the range 10-4-1.18. Wind production efficiency decreases with increasing mass accretion rate. The possible role of the thermally driven wind in the active galactic feedback is briefly discussed.

  12. Regulation of black-hole accretion by a disk wind during a violent outburst of V404 Cygni

    NASA Astrophysics Data System (ADS)

    Muñoz-Darias, T.; Casares, J.; Mata Sánchez, D.; Fender, R. P.; Armas Padilla, M.; Linares, M.; Ponti, G.; Charles, P. A.; Mooley, K. P.; Rodriguez, J.

    2016-06-01

    Accretion of matter onto black holes is universally associated with strong radiative feedback and powerful outflows. In particular, black-hole transients have outflows whose properties are strongly coupled to those of the accretion flow. This includes X-ray winds of ionized material, expelled from the accretion disk encircling the black hole, and collimated radio jets. Very recently, a distinct optical variability pattern has been reported in the transient stellar-mass black hole V404 Cygni, and interpreted as disrupted mass flow into the inner regions of its large accretion disk. Here we report observations of a sustained outer accretion disk wind in V404 Cyg, which is unlike any seen hitherto. We find that the outflowing wind is neutral, has a large covering factor, expands at one per cent of the speed of light and triggers a nebular phase once accretion drops sharply and the ejecta become optically thin. The large expelled mass (>10-8 solar masses) indicates that the outburst was prematurely ended when a sizeable fraction of the outer disk was depleted by the wind, detaching the inner regions from the rest of the disk. The luminous, but brief, accretion phases shown by transients with large accretion disks imply that this outflow is probably a fundamental ingredient in regulating mass accretion onto black holes.

  13. Regulation of black-hole accretion by a disk wind during a violent outburst of V404 Cygni.

    PubMed

    Muñoz-Darias, T; Casares, J; Mata Sánchez, D; Fender, R P; Armas Padilla, M; Linares, M; Ponti, G; Charles, P A; Mooley, K P; Rodriguez, J

    2016-06-02

    Accretion of matter onto black holes is universally associated with strong radiative feedback and powerful outflows. In particular, black-hole transients have outflows whose properties are strongly coupled to those of the accretion flow. This includes X-ray winds of ionized material, expelled from the accretion disk encircling the black hole, and collimated radio jets. Very recently, a distinct optical variability pattern has been reported in the transient stellar-mass black hole V404 Cygni, and interpreted as disrupted mass flow into the inner regions of its large accretion disk. Here we report observations of a sustained outer accretion disk wind in V404 Cyg, which is unlike any seen hitherto. We find that the outflowing wind is neutral, has a large covering factor, expands at one per cent of the speed of light and triggers a nebular phase once accretion drops sharply and the ejecta become optically thin. The large expelled mass (>10(-8) solar masses) indicates that the outburst was prematurely ended when a sizeable fraction of the outer disk was depleted by the wind, detaching the inner regions from the rest of the disk. The luminous, but brief, accretion phases shown by transients with large accretion disks imply that this outflow is probably a fundamental ingredient in regulating mass accretion onto black holes.

  14. Spectroscopy of the Stellar Wind in the Cygnus X-1 System

    NASA Technical Reports Server (NTRS)

    Miskovicova, Ivica; Hanke, Manfred; Wilms, Joern; Nowak, Michael A.; Pottschmidt, Katja; Schultz, Norbert

    2010-01-01

    The X-ray luminosity of black holes is produced through the accretion of material from their companion stars. Depending on the mass of the donor star, accretion of the material falling onto the black hole through the inner Lagrange point of the system or accretion by the strong stellar wind can occur. Cygnus X-1 is a high mass X-ray binary system, where the black hole is powered by accretion of the stellar wind of its supergiant companion star HDE226868. As the companion is close to filling its Roche lobe, the wind is not symmetric, but strongly focused towards the black hole. Chandra-HETGS observations allow for an investigation of this focused stellar wind, which is essential to understand the physics of the accretion flow. We compare observations at the distinct orbital phases of 0.0, 0.2, 0.5 and 0.75. These correspond to different lines of sights towards the source, allowing us to probe the structure and the dynamics of the wind.

  15. Ubiquitous equatorial accretion disc winds in black hole soft states

    NASA Astrophysics Data System (ADS)

    Ponti, G.; Fender, R. P.; Begelman, M. C.; Dunn, R. J. H.; Neilsen, J.; Coriat, M.

    2012-05-01

    High-resolution spectra of Galactic black holes (GBHs) reveal the presence of highly ionized absorbers. In one GBH, accreting close to the Eddington limit for more than a decade, a powerful accretion disc wind is observed to be present in softer X-ray states and it has been suggested that it can carry away enough mass and energy to quench the radio jet. Here we report that these winds, which may have mass outflow rates of the order of the inner accretion rate or higher, are a ubiquitous component of the jet-free soft states of all GBHs. We furthermore demonstrate that these winds have an equatorial geometry with opening angles of few tens of degrees, and so are only observed in sources in which the disc is inclined at a large angle to the line of sight. The decrease in Fe XXV/Fe XXVI line ratio with Compton temperature, observed in the soft state, suggests a link between higher wind ionization and harder spectral shapes. Although the physical interaction between the wind, accretion flow and jet is still not fully understood, the mass flux and power of these winds and their presence ubiquitously during the soft X-ray states suggest they are fundamental components of the accretion phenomenon.

  16. X-ray Winds from Black Holes

    NASA Astrophysics Data System (ADS)

    Miller, Jon M.

    2017-08-01

    Across the mass scale, high-resolution X-ray spectroscopy has transformed our view of accretion onto black holes. The ionized disk winds observed from stellar-mass black holes may sometimes eject more mass than is able to accrete onto the black hole. It is possible that these winds can probe the fundamental physics that drive disk accretion. The most powerful winds from accretion onto massive black holes may play a role in feedback, seeding host bulges with hot gas and halting star formation. The lessons and techniques emerging from these efforts can also reveal the accretion flow geometry in tidal disruption events (TDEs), an especially rich discovery space. This talk will review some recent progress enabled by high-resolution X-ray spectroscopy, and look at the potential of gratings spectrometers and microcalorimeters in the years ahead.

  17. TIME-DOMAIN SPECTROSCOPY OF A T TAURI STAR

    NASA Astrophysics Data System (ADS)

    Dupree, Andrea K.; Brickhouse, Nancy S.; Cranmer, Steven R.; Berlind, Perry L.; Strader, Jay; Smith, Graeme H.

    2014-06-01

    High resolution optical and near-infrared spectra of TW Hya, the nearest accreting T Tauri star, cover a decade and reveal the substantial changes in accretion and wind properties. Our spectra suggest that the broad near-IR, optical, and far-uv emission lines, centered on the star, originate in a turbulent post-shock region and can undergo scattering by the overlying stellar wind as well as absorption from infalling material. Stable absorption features appear in H-alpha, apparently caused by an accreting column silhouetted in the stellar wind. The free-fall velocity of material correlates inversely with the strength of the post-shock emission, consistent with a dipole accretion model. Terminal outflow velocities appear to be directly related to the amount of post-shock emission, giving evidence for an accretion-driven stellar wind.

  18. Focused Wind Mass Accretion in Mira AB

    NASA Astrophysics Data System (ADS)

    Karovska, Margarita; de Val-Borro, M.; Hack, W.; Raymond, J.; Sasselov, D.; Lee, N. P.

    2011-05-01

    At a distance of about only 100pc, Mira AB is the nearest symbiotic system containing an Asymptotic Giant Branch (AGB) star (Mira A), and a compact accreting companion (Mira B) at about 0.5" from Mira A. Symbiotic systems are interacting binaries with a key evolutionary importance as potential progenitors of a fraction of asymmetric Planetary Nebulae, and SN type Ia, cosmological distance indicators. The region of interaction has been studied using high-angular resolution, multiwavelength observations ranging from radio to X-ray wavelengths. Our results, including high-angular resolution Chandra imaging, show a "bridge" between Mira A and Mira B, indicating gravitational focusing of the Mira A wind, whereby components exchange matter directly in addition to the wind accretion. We carried out a study using 2-D hydrodynamical models of focused wind mass accretion to determine the region of wind acceleration and the characteristics of the accretion in Mira AB. We highlight some of our results and discuss the impact on our understanding of accretion processes in symbiotic systems and other detached and semidetached interacting systems.

  19. Centrifugally driven winds from protostellar accretion discs - I. Formulation and initial results

    NASA Astrophysics Data System (ADS)

    Nolan, C. A.; Salmeron, R.; Federrath, C.; Bicknell, G. V.; Sutherland, R. S.

    2017-10-01

    Protostellar discs play an important role in star formation, acting as the primary mass reservoir for accretion on to young stars and regulating the extent to which angular momentum and gas is released back into stellar nurseries through the launching of powerful disc winds. In this study, we explore how disc structure relates to the properties of the wind-launching region, mapping out the regions of protostellar discs where wind launching could be viable. We combine a series of 1.5D semi-analytic, steady-state, vertical disc-wind solutions into a radially extended 1+1.5D model, incorporating all three diffusion mechanisms (Ohm, Hall and ambipolar). We observe that the majority of mass outflow via disc winds occurs over a radial width of a fraction of an astronomical unit, with outflow rates attenuating rapidly on either side. We also find that the mass accretion rate, magnetic field strength and surface density profile each have significant effects on both the location of the wind-launching region and the ejection/accretion ratio \\dot{M}_out/\\dot{M}_in. Increasing either the accretion rate or the magnetic field strength corresponds to a shift of the wind-launching region to smaller radii and a decrease in \\dot{M}_out/\\dot{M}_in, while increasing the surface density corresponds to launching regions at larger radii with increased \\dot{M}_out/\\dot{M}_in. Finally, we discover a class of disc winds containing an ineffective launching configuration at intermediate radii, leading to two radially separated regions of wind launching and diminished \\dot{M}_out/\\dot{M}_in. We find that the wind locations and ejection/accretion ratio are consistent with current observational and theoretical estimates.

  20. Testing our scenario of a failed wind in TW Hya

    NASA Astrophysics Data System (ADS)

    Canizares, Claude

    2017-09-01

    We recently discovered variability in X-ray indicators of accretion in the CTTS TW Hya. We seek to use this to understand the physics of accretion in our upcoming HST observations. We have been granted 7 HST orbits to monitor the C IV 155 nm doublet in TW Hya, the closest CTTS, to correlate i) the hot wind ii) the cool wind iii) the photometric period iv) the accretion. In existing HETGS data of TW Hya we see variability in emission lines from the accretion shock on the star. However, the densities in Ne IX and O VII indicate that today's shock models are incomplete. A hot wind is the most promising candidate for this missing component.

  1. Effects of anisotropic thermal conduction on wind properties in hot accretion flow

    NASA Astrophysics Data System (ADS)

    Bu, De-Fu; Wu, Mao-Chun; Yuan, Ye-Fei

    2016-06-01

    Previous works have clearly shown the existence of winds from black hole hot accretion flow and investigated their detailed properties. In extremely low accretion rate systems, the collisional mean-free path of electrons is large compared with the length-scale of the system, thus thermal conduction is dynamically important. When the magnetic field is present, the thermal conduction is anisotropic and energy transport is along magnetic field lines. In this paper, we study the effects of anisotropic thermal conduction on the wind production in hot accretion flows by performing two-dimensional magnetohydrodynamic simulations. We find that thermal conduction has only moderate effects on the mass flux of wind. But the energy flux of wind can be increased by a factor of ˜10 due to the increase of wind velocity when thermal conduction is included. The increase of wind velocity is because of the increase of driving forces (e.g. gas pressure gradient force and centrifugal force) when thermal conduction is included. This result demonstrates that thermal conduction plays an important role in determining the properties of wind.

  2. Three-dimensional Hydrodynamical Simulations of Mass Transfer in Binary Systems by a Free Wind

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Zheng-Wei; Stancliffe, Richard J.; Abate, Carlo

    A large fraction of stars in binary systems are expected to undergo mass and angular momentum exchange at some point in their evolution, which can drastically alter the chemical and dynamical properties and fates of the systems. Interaction by stellar wind is an important process in wide binaries. However, the details of wind mass transfer are still not well understood. We perform three-dimensional hydrodynamical simulations of wind mass transfer in binary systems to explore mass-accretion efficiencies and geometries of mass outflows, for a range of mass ratios from 0.05 to 1.0. In particular, we focus on the case of amore » free wind, in which some physical mechanism accelerates the expelled wind material balancing the gravity of the mass-losing star with the wind velocity comparable to the orbital velocity of the system. We find that the mass-accretion efficiency and accreted specific angular momentum increase with the mass ratio of the system. For an adiabatic wind, we obtain that the accretion efficiency onto the secondary star varies from about 0.1% to 8% for mass ratios between 0.05 and 1.0.« less

  3. General-relativistic Simulations of Four States of Accretion onto Millisecond Pulsars

    NASA Astrophysics Data System (ADS)

    Parfrey, Kyle; Tchekhovskoy, Alexander

    2017-12-01

    Accreting neutron stars can power a wide range of astrophysical phenomena including short- and long-duration gamma-ray bursts, ultra-luminous X-ray sources, and X-ray binaries. Numerical simulations are a valuable tool for studying the accretion-disk–magnetosphere interaction that is central to these problems, most clearly for the recently discovered transitional millisecond pulsars. However, magnetohydrodynamic (MHD) methods, widely used for simulating accretion, have difficulty in highly magnetized stellar magnetospheres, while force-free methods, suitable for such regions, cannot include the accreting gas. We present an MHD method that can stably evolve essentially force-free, highly magnetized regions, and describe the first time-dependent relativistic simulations of magnetized accretion onto millisecond pulsars. Our axisymmetric general-relativistic MHD simulations for the first time demonstrate how the interaction of a turbulent accretion flow with a pulsar’s electromagnetic wind can lead to the transition of an isolated pulsar to the accreting state. This transition naturally leads to the formation of relativistic jets, whose power can greatly exceed the power of the isolated pulsar’s wind. If the accretion rate is below a critical value, the pulsar instead expels the accretion stream. More generally, our simulations produce for the first time the four possible accretion regimes, in order of decreasing mass accretion rate: (a) crushed magnetosphere and direct accretion; (b) magnetically channeled accretion onto the stellar poles; (c) the propeller state, where material enters through the light cylinder but is prevented from accreting by the centrifugal barrier; (d) almost perfect exclusion of the accretion flow from the light cylinder by the pulsar wind.

  4. Understanding Recent Magnetar Observations from the Magnetospheric Point of View

    NASA Astrophysics Data System (ADS)

    Tong, H.

    The wind braking model and its applications to magnetars are discussed. The decreasing torque of magnetars during outbursts, anti-glitch, and anti-correlations between radiation and timing are understandable in the wind braking model. Recent timing observations of magnetars are also consistent with the previous modeling. A magnetism-powered wind nebula and a braking index smaller than three are the two predictions. Besides isolated magnetars, there may also be accreting magnetars in binary systems and magnetars accreting from fallback disks. Observationally, ultra-luminous X-ray pulsars may be accreting magnetars, while super-slow magnetars may be magnetars with fallback disks in the past. Many works are needed for both isolated magnetars and accreting magnetars.

  5. Global Evolution of an Accretion Disk with a Net Vertical Field: Coronal Accretion, Flux Transport, and Disk Winds

    NASA Astrophysics Data System (ADS)

    Zhu, Zhaohuan; Stone, James M.

    2018-04-01

    We report results from global ideal MHD simulations that study thin accretion disks (with thermal scale height H/R = 0.1 and 0.05) threaded by net vertical magnetic fields. Our computations span three orders of magnitude in radius, extend all the way to the pole, and are evolved for more than 1000 innermost orbits. We find that (1) inward accretion occurs mostly in the upper magnetically dominated regions of the disk at z ∼ R, similar to predictions from some previous analytical work and the “coronal accretion” flows found in GRMHD simulations. (2) A quasi-static global field geometry is established in which flux transport by inflows at the surface is balanced by turbulent diffusion. The resulting field is strongly pinched inwards at the surface. A steady-state advection–diffusion model, with a turbulent magnetic Prandtl number of order unity, reproduces this geometry well. (3) Weak unsteady disk winds are launched beyond the disk corona with the Alfvén radius R A /R 0 ∼ 3. Although the surface inflow is filamentary and the wind is episodic, we show that the time-averaged properties are well-described by steady-wind theory. Even with strong fields, β 0 = 103 at the midplane initially, only 5% of the angular momentum transport is driven by the wind, and the wind mass flux from the inner decade of the radius is only ∼0.4% of the mass accretion rate. (4) Within the disk, most of the accretion is driven by the Rϕ stress from the MRI and global magnetic fields. Our simulations have many applications to astrophysical accretion systems.

  6. Clumpy wind accretion in supergiant neutron star high mass X-ray binaries

    NASA Astrophysics Data System (ADS)

    Bozzo, E.; Oskinova, L.; Feldmeier, A.; Falanga, M.

    2016-05-01

    The accretion of the stellar wind material by a compact object represents the main mechanism powering the X-ray emission in classical supergiant high mass X-ray binaries and supergiant fast X-ray transients. In this work we present the first attempt to simulate the accretion process of a fast and dense massive star wind onto a neutron star, taking into account the effects of the centrifugal and magnetic inhibition of accretion ("gating") due to the spin and magnetic field of the compact object. We made use of a radiative hydrodynamical code to model the nonstationary radiatively driven wind of an O-B supergiant star and then place a neutron star characterized by a fixed magnetic field and spin period at a certain distance from the massive companion. Our calculations follow, as a function of time (on a total timescale of several hours), the transitions of the system through all different accretion regimes that are triggered by the intrinsic variations in the density and velocity of the nonstationary wind. The X-ray luminosity released by the system is computed at each time step by taking into account the relevant physical processes occurring in the different accretion regimes. Synthetic lightcurves are derived and qualitatively compared with those observed from classical supergiant high mass X-ray binaries and supergiant fast X-ray transients. Although a number of simplifications are assumed in these calculations, we show that taking into account the effects of the centrifugal and magnetic inhibition of accretion significantly reduces the average X-ray luminosity expected for any neutron star wind-fed binary. The present model calculations suggest that long spin periods and stronger magnetic fields are favored in order to reproduce the peculiar behavior of supergiant fast X-ray transients in the X-ray domain.

  7. Incompressible Wind Accretion

    NASA Astrophysics Data System (ADS)

    Tejeda, E.

    2018-04-01

    We present a simple, analytic model of an incompressible fluid accreting onto a moving gravitating object. This solution allows us to probe the highly subsonic regime of wind accretion. Moreover, it corresponds to the Newtonian limit of a previously known relativistic model of a stiff fluid accreting onto a black hole. Besides filling this blank in the literature, the new solution should be useful as a benchmark test for numerical hydrodynamics codes. Given its simplicity, it can also be used as an illustrative example in a gas dynamics course.

  8. Structure of protoplanetary discs with magnetically driven winds

    NASA Astrophysics Data System (ADS)

    Khajenabi, Fazeleh; Shadmehri, Mohsen; Pessah, Martin E.; Martin, Rebecca G.

    2018-04-01

    We present a new set of analytical solutions to model the steady-state structure of a protoplanetary disc with a magnetically driven wind. Our model implements a parametrization of the stresses involved and the wind launching mechanism in terms of the plasma parameter at the disc midplane, as suggested by the results of recent, local magnetohydrodynamical simulations. When wind mass-loss is accounted for, we find that its rate significantly reduces the disc surface density, particularly in the inner disc region. We also find that models that include wind mass-loss lead to thinner dust layers. As an astrophysical application of our models, we address the case of HL Tau, whose disc exhibits a high accretion rate and efficient dust settling at its midplane. These two observational features are not easy to reconcile with conventional accretion disc theory, where the level of turbulence needed to explain the high accretion rate would prevent a thin dust layer. Our disc model that incorporates both mass-loss and angular momentum removal by a wind is able to account for HL Tau observational constraints concerning its high accretion rate and dust layer thinness.

  9. Ultraviolet line diagnostics of accretion disk winds in cataclysmic variables

    NASA Technical Reports Server (NTRS)

    Vitello, Peter; Shlosman, Isaac

    1993-01-01

    The IUE data base is used to analyze the UV line shapes of the cataclysmic variables RW Sex, RW Tri, and V Sge. Observed lines are compared to synthetic line profiles computed using a model of rotating biconical winds from accretion disks. The wind model calculates the wind ionization structure self-consistently including photoionization from the disk and boundary layer and treats 3D line radiation transfer in the Sobolev approximation. It is found that winds from accretion disks provide a good fit for reasonable parameters to the observed UV lines which include the P Cygni profiles for low-inclination systems and pure emission at large inclination. Disk winds are preferable to spherical winds which originate on the white dwarf because they: (1) require a much lower ratio of mass-loss rate to accretion rate and are therefore more plausible energetically; (2) provide a natural source for a biconical distribution of mass outflow which produces strong scattering far above the disk leading to P Cygni profiles for low-inclination systems and pure line emission profiles at high inclination with the absence of eclipses in UV lines; and (3) produce rotation-broadened pure emission lines at high inclination.

  10. UV line diagnostics of accretion disk winds in cataclysmic variables

    NASA Technical Reports Server (NTRS)

    Vitello, Peter; Shlosman, Isaac

    1992-01-01

    The IUE data base is used to analyze the UV line shapes of cataclysmic variables RW Sex, RW Tri, and V Sge. Observed lines are compared to synthetic line profiles computed using a model of rotating bi-conical winds from accretion disks. The wind model calculates the wind ionization structure self-consistently including photoionization from the disk and boundary layer and treats 3-D line radiation transfer in the Sobolev approximation. It is found that winds from accretion disks provide a good fit for reasonable parameters to the observed UV lines which include the P Cygni profiles for low inclination systems and pure emission at large inclination. Disk winds are preferable to spherical winds which originate on the white dwarf because they (1) require a much lower ratio of mass loss rate to accretion rate and are therefore more plausible energetically, (2) provide a natural source for a bi-conical distribution of mass outflow which produces strong scattering far above the disk leading to P Cygni profiles for low inclination systems, and pure line emission profiles at high inclination with the absence of eclipses in UV lines, and (3) produce rotation broadened pure emission lines at high inclination.

  11. The rotating wind of the quasar PG 1700+518.

    PubMed

    Young, S; Axon, D J; Robinson, A; Hough, J H; Smith, J E

    2007-11-01

    It is now widely accepted that most galaxies undergo an active phase, during which a central super-massive black hole generates vast radiant luminosities through the gravitational accretion of gas. Winds launched from a rotating accretion disk surrounding the black hole are thought to play a critical role, allowing the disk to shed angular momentum that would otherwise inhibit accretion. Such winds are capable of depositing large amounts of mechanical energy in the host galaxy and its environs, profoundly affecting its formation and evolution, and perhaps regulating the formation of large-scale cosmological structures in the early Universe. Although there are good theoretical grounds for believing that outflows from active galactic nuclei originate as disk winds, observational verification has proven elusive. Here we show that structures observed in polarized light across the broad Halpha emission line in the quasar PG 1700+518 originate close to the accretion disk in an electron scattering wind. The wind has large rotational motions (approximately 4,000 km s(-1)), providing direct observational evidence that outflows from active galactic nuclei are launched from the disks. Moreover, the wind rises nearly vertically from the disk, favouring launch mechanisms that impart an initial acceleration perpendicular to the disk plane.

  12. A numerical investigation of wind accretion in persistent supergiant X-ray binaries - I. Structure of the flow at the orbital scale

    NASA Astrophysics Data System (ADS)

    El Mellah, I.; Casse, F.

    2017-05-01

    Classical supergiant X-ray binaries host a neutron star orbiting a supergiant OB star and display persistent X-ray luminosities of 1035-1037 erg s-1. The stellar wind from the massive companion is believed to be the main source of matter accreted by the compact object. With this first paper, we introduce a ballistic model to evaluate the influence of the orbital effects on the structure of the accelerating winds that participate to the accretion process. Thanks to the parametrization we retained the numerical pipeline we designed, we can investigate the supersonic flow and the subsequent observables as a function of a reduced set of characteristic numbers and scales. We show that the shape of the permanent flow is entirely determined by the mass ratio, the filling factor, the Eddington factor and the α-force multiplier that drives the stellar wind acceleration. Provided scales such as the orbital period are known, we can trace back the observables to evaluate the mass accretion rates, the accretion mechanism, the shearing of the inflow and the stellar parameters. We discuss the likelihood of wind-formed accretion discs around the accretors in each case and confront our model to three persistent supergiant X-ray binaries (Vela X-1, IGR J18027-2016, XTE J1855-026).

  13. The magnetic nature of disk accretion onto black holes.

    PubMed

    Miller, Jon M; Raymond, John; Fabian, Andy; Steeghs, Danny; Homan, Jeroen; Reynolds, Chris; van der Klis, Michiel; Wijnands, Rudy

    2006-06-22

    Although disk accretion onto compact objects-white dwarfs, neutron stars and black holes-is central to much of high-energy astrophysics, the mechanisms that enable this process have remained observationally difficult to determine. Accretion disks must transfer angular momentum in order for matter to travel radially inward onto the compact object. Internal viscosity from magnetic processes and disk winds can both in principle transfer angular momentum, but hitherto we lacked evidence that either occurs. Here we report that an X-ray-absorbing wind discovered in an observation of the stellar-mass black hole binary GRO J1655 - 40 (ref. 6) must be powered by a magnetic process that can also drive accretion through the disk. Detailed spectral analysis and modelling of the wind shows that it can only be powered by pressure generated by magnetic viscosity internal to the disk or magnetocentrifugal forces. This result demonstrates that disk accretion onto black holes is a fundamentally magnetic process.

  14. Wind from the black-hole accretion disk driving a molecular outflow in an active galaxy.

    PubMed

    Tombesi, F; Meléndez, M; Veilleux, S; Reeves, J N; González-Alfonso, E; Reynolds, C S

    2015-03-26

    Powerful winds driven by active galactic nuclei are often thought to affect the evolution of both supermassive black holes and their host galaxies, quenching star formation and explaining the close relationship between black holes and galaxies. Recent observations of large-scale molecular outflows in ultraluminous infrared galaxies support this quasar-feedback idea, because they directly trace the gas from which stars form. Theoretical models suggest that these outflows originate as energy-conserving flows driven by fast accretion-disk winds. Proposed connections between large-scale molecular outflows and accretion-disk activity in ultraluminous galaxies were incomplete because no accretion-disk wind had been detected. Conversely, studies of powerful accretion-disk winds have until now focused only on X-ray observations of local Seyfert galaxies and a few higher-redshift quasars. Here we report observations of a powerful accretion-disk wind with a mildly relativistic velocity (a quarter that of light) in the X-ray spectrum of IRAS F11119+3257, a nearby (redshift 0.189) optically classified type 1 ultraluminous infrared galaxy hosting a powerful molecular outflow. The active galactic nucleus is responsible for about 80 per cent of the emission, with a quasar-like luminosity of 1.5 × 10(46) ergs per second. The energetics of these two types of wide-angle outflows is consistent with the energy-conserving mechanism that is the basis of the quasar feedback in active galactic nuclei that lack powerful radio jets (such jets are an alternative way to drive molecular outflows).

  15. New Insights on the Accretion Disk-Winds Connection in Radio-Loud AGNs from Suzaku

    NASA Technical Reports Server (NTRS)

    Tombesi, F.; Sambruna, R. M.; Reeves, J. N.; Braito, V.; Cappi, M.; Reynolds, S.; Mushotzky, R. F.

    2011-01-01

    From the spectral analysis of long Suzaku observations of five radio-loud AGNs we have been able to discover the presence of ultra-fast outflows with velocities ,,approx.0.1 c in three of them, namely 3C III, 3C 120 and 3C 390.3. They are consistent with being accretion disk winds/outflows. We also performed a follow-up on 3C III to monitor its outflow on approx.7 days time-scales and detected an anti-correlated variability of a possible relativistic emission line with respect to blue-shifted Fe K features, following a flux increase. This provides the first direct evidence for an accretion disc-wind connection in an AGN. The mass outflow rate of these outflows can be comparable to the accretion rate and their mechanical power can correspond to a significant fraction of the bolometric luminosity and is comparable to their typical jet power. Therefore, they can possibly play a significant role in the expected feedback from AGNs and can give us further clues on the relation between the accretion disk and the formation of winds/jets.

  16. SPIN EVOLUTION OF ACCRETING YOUNG STARS. II. EFFECT OF ACCRETION-POWERED STELLAR WINDS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Matt, Sean P.; Pinzon, Giovanni; Greene, Thomas P.

    2012-01-20

    We present a model for the rotational evolution of a young, solar-mass star interacting magnetically with an accretion disk. As in a previous paper (Paper I), the model includes changes in the star's mass and radius as it descends the Hayashi track, a decreasing accretion rate, and a prescription for the angular momentum transfer between the star and disk. Paper I concluded that, for the relatively strong magnetic coupling expected in real systems, additional processes are necessary to explain the existence of slowly rotating pre-main-sequence stars. In the present paper, we extend the stellar spin model to include the effectmore » of a spin-down torque that arises from an accretion-powered stellar wind (APSW). For a range of magnetic field strengths, accretion rates, initial spin rates, and mass outflow rates, the modeled stars exhibit rotation periods within the range of 1-10 days in the age range of 1-3 Myr. This range coincides with the bulk of the observed rotation periods, with the slow rotators corresponding to stars with the lowest accretion rates, strongest magnetic fields, and/or highest stellar wind mass outflow rates. We also make a direct, quantitative comparison between the APSW scenario and the two types of disk-locking models (namely, the X-wind and Ghosh and Lamb type models) and identify some remaining theoretical issues for understanding young star spins.« less

  17. Spin Evolution of Accreting Young Stars. II. Effect of Accretion-powered Stellar Winds

    NASA Astrophysics Data System (ADS)

    Matt, Sean P.; Pinzón, Giovanni; Greene, Thomas P.; Pudritz, Ralph E.

    2012-01-01

    We present a model for the rotational evolution of a young, solar-mass star interacting magnetically with an accretion disk. As in a previous paper (Paper I), the model includes changes in the star's mass and radius as it descends the Hayashi track, a decreasing accretion rate, and a prescription for the angular momentum transfer between the star and disk. Paper I concluded that, for the relatively strong magnetic coupling expected in real systems, additional processes are necessary to explain the existence of slowly rotating pre-main-sequence stars. In the present paper, we extend the stellar spin model to include the effect of a spin-down torque that arises from an accretion-powered stellar wind (APSW). For a range of magnetic field strengths, accretion rates, initial spin rates, and mass outflow rates, the modeled stars exhibit rotation periods within the range of 1-10 days in the age range of 1-3 Myr. This range coincides with the bulk of the observed rotation periods, with the slow rotators corresponding to stars with the lowest accretion rates, strongest magnetic fields, and/or highest stellar wind mass outflow rates. We also make a direct, quantitative comparison between the APSW scenario and the two types of disk-locking models (namely, the X-wind and Ghosh & Lamb type models) and identify some remaining theoretical issues for understanding young star spins.

  18. Numerical Simulation of Hot Accretion Flows. III. Revisiting Wind Properties Using the Trajectory Approach

    NASA Astrophysics Data System (ADS)

    Yuan, Feng; Gan, Zhaoming; Narayan, Ramesh; Sadowski, Aleksander; Bu, Defu; Bai, Xue-Ning

    2015-05-01

    Previous MHD simulations have shown that wind must exist in black hole hot accretion flows. In this paper, we continue our study by investigating the detailed properties of wind and the mechanism of wind production. For this aim, we make use of a 3D general relativistic MHD simulation of hot accretion flows around a Schwarzschild black hole. To distinguish real wind from turbulent outflows, we track the trajectories of the virtual Lagrangian particles from simulation data. We find two types of real outflows, i.e., a jet and a wind. The mass flux of wind is very significant, and its radial profile can be described by {{\\dot{M}}wind}≈ {{\\dot{M}}BH}≤ft( r/20 {{r}s} \\right), with {{\\dot{M}}BH} being the mass accretion rate at the black hole horizon and rs being the Schwarzschild radius. The poloidal wind speed almost remains constant once they are produced, but the flux-weighted wind speed roughly follows {{v}p,wind}(r)≈ 0.25{{v}k}(r), with vk(r) being the Keplerian speed at radius r. The mass flux of the jet is much lower, but the speed is much higher, {{v}p,jet} ˜ (0.3-0.4)c. Consequently, both the energy and momentum fluxes of the wind are much larger than those of the jet. The wind is produced and accelerated primarily by the combination of centrifugal force and magnetic pressure gradient, while the jet is mainly accelerated by the magnetic pressure gradient. Finally, we find that the wind production efficiency {{ɛ }wind}\\equiv {{\\dot{E}}wind}/{{\\dot{M}}BH}{{c}2}˜ 1/1000 is in good agreement with the value required from large-scale galaxy simulations with active galactic nucleus feedback.

  19. Simulation numerique de l'accretion de glace sur une pale d'eolienne

    NASA Astrophysics Data System (ADS)

    Fernando, Villalpando

    The wind energy industry is growing steadily, and an excellent place for the construction of wind farms is northern Quebec. This region has huge wind energy production potential, as the cold temperatures increase air density and with it the available wind energy. However, some issues associated with arctic climates cause production losses on wind farms. Icing conditions occur frequently, as high air humidity and freezing temperatures cause ice to build up on the blades, resulting in wind turbines operating suboptimally. One of the negative consequences of ice accretion is degradation of the blade's aerodynamics, in the form of a decrease in lift and an increase in drag. Also, the ice grows unevenly, which unbalances the blades and induces vibration. This reduces the expected life of some of the turbine components. If the ice accretion continues, the ice can reach a mass that endangers the wind turbine structure, and operation must be suspended in order to prevent mechanical failure. To evaluate the impact of ice on the profits of wind farms, it is important to understand how ice builds up and how much it can affect blade aerodynamics. In response, researchers in the wind energy field have attempted to simulate ice accretion on airfoils in refrigerated wind tunnels. Unfortunately, this is an expensive endeavor, and researchers' budgets are limited. However, ice accretion can be simulated more cost-effectively and with fewer limitations on airfoil size and air speed using numerical methods. Numerical simulation is an approach that can help researchers acquire knowledge in the field of wind energy more quickly. For years, the aviation industry has invested time and money developing computer codes to simulate ice accretion on aircraft wings. Nearly all these codes are restricted to use by aircraft developers, and so they are not accessible to researchers in the wind engineering field. Moreover, these codes have been developed to meet aeronautical industry specifications, which are different from those that must be met in the wind energy industry. Among these differences are the following: wind turbines operate at subsonic speeds; the cords and angles of attack of wind turbine blades are smaller than those of aircraft wings; and a wind turbine can operate with a larger ice mass on its blades than an aircraft can. So, it is important to provide wind energy researchers with tools specifically validated with the operations parameters of a wind turbine. The main goal of this work is to develop a methodology to simulate ice accretion in 2D using Fluent and Matlab, commercial software programs that are available at nearly all research institutions. In this study, we used Gambit, previously the companion tool of Fluent, for mesh generation, and which has now been replaced by ICEM. We decided to stay with Gambit, because we were already deeply involved with the meshing procedure for our simulation of ice accretion at the time Gambit was removed from the market. We validate the methodology with experimental data consisting of iced airfoil contours obtained in a refrigerated wind tunnel using the parameters of actual ice conditions recorded in northern Quebec. This methodology consists of four steps: airfoil meshing, droplet trajectory calculation, thermodynamic model application, and airfoil contour updating. The total simulation time is divided into several time steps, for each of which the four steps are performed until the total time has elapsed. The time step length depends on the icing conditions. (Abstract shortened by UMI.).

  20. Hydrodynamic Models of Line-Driven Accretion Disk Winds III: Local Ionization Equilibrium

    NASA Technical Reports Server (NTRS)

    Pereyra, Nicolas Antonio; Kallman, Timothy R.; White, Nicholas E. (Technical Monitor)

    2002-01-01

    We present time-dependent numerical hydrodynamic models of line-driven accretion disk winds in cataclysmic variable systems and calculate wind mass-loss rates and terminal velocities. The models are 2.5-dimensional, include an energy balance condition with radiative heating and cooling processes, and includes local ionization equilibrium introducing time dependence and spatial dependence on the line radiation force parameters. The radiation field is assumed to originate in an optically thick accretion disk. Wind ion populations are calculated under the assumption that local ionization equilibrium is determined by photoionization and radiative recombination, similar to a photoionized nebula. We find a steady wind flowing from the accretion disk. Radiative heating tends to maintain the temperature in the higher density wind regions near the disk surface, rather than cooling adiabatically. For a disk luminosity L (sub disk) = solar luminosity, white dwarf mass M(sub wd) = 0.6 solar mass, and white dwarf radii R(sub wd) = 0.01 solar radius, we obtain a wind mass-loss rate of M(sub wind) = 4 x 10(exp -12) solar mass yr(exp -1) and a terminal velocity of approximately 3000 km per second. These results confirm the general velocity and density structures found in our earlier constant ionization equilibrium adiabatic CV wind models. Further we establish here 2.5D numerical models that can be extended to QSO/AGN winds where the local ionization equilibrium will play a crucial role in the overall dynamics.

  1. BAL QSOs AND EXTREME UFOs: THE EDDINGTON CONNECTION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zubovas, Kastytis; King, Andrew, E-mail: kastytis.zubovas@ftmc.lt

    We suggest a common physical origin connecting the fast, highly ionized winds (UFOs) seen in nearby active galactic nuclei (AGNs), and the slower and less ionized winds of broad absorption line (BAL) QSOs. The primary difference is the mass-loss rate in the wind, which is ultimately determined by the rate at which mass is fed toward the central supermassive black hole (SMBH) on large scales. This is below the Eddington accretion rate in most UFOs, and slightly super-Eddington in extreme UFOs such as PG1211+143, but ranges up to {approx}10-50 times this in BAL QSOs. For UFOs this implies black holemore » accretion rates and wind mass-loss rates which are at most comparable to Eddington, giving fast, highly ionized winds. In contrast, BAL QSO black holes have mildly super-Eddington accretion rates, and drive winds whose mass-loss rates are significantly super-Eddington, and so are slower and less ionized. This picture correctly predicts the velocities and ionization states of the observed winds, including the recently discovered one in SDSS J1106+1939. We suggest that luminous AGNs may evolve through a sequence from BAL QSO through LoBAL to UFO-producing Seyfert or quasar as their Eddington factors drop during the decay of a bright accretion event. LoBALs correspond to a short-lived stage in which the AGN radiation pressure largely evacuates the ionization cone, but before the large-scale accretion rate has dropped to the Eddington value. We show that sub-Eddington wind rates would produce an M-{sigma} relation lying above that observed. We conclude that significant SMBH mass growth must occur in super-Eddington phases, either as BAL QSOs, extreme UFOs, or obscured from direct observation.« less

  2. BAL QSOs and Extreme UFOs: The Eddington Connection

    NASA Astrophysics Data System (ADS)

    Zubovas, Kastytis; King, Andrew

    2013-05-01

    We suggest a common physical origin connecting the fast, highly ionized winds (UFOs) seen in nearby active galactic nuclei (AGNs), and the slower and less ionized winds of broad absorption line (BAL) QSOs. The primary difference is the mass-loss rate in the wind, which is ultimately determined by the rate at which mass is fed toward the central supermassive black hole (SMBH) on large scales. This is below the Eddington accretion rate in most UFOs, and slightly super-Eddington in extreme UFOs such as PG1211+143, but ranges up to ~10-50 times this in BAL QSOs. For UFOs this implies black hole accretion rates and wind mass-loss rates which are at most comparable to Eddington, giving fast, highly ionized winds. In contrast, BAL QSO black holes have mildly super-Eddington accretion rates, and drive winds whose mass-loss rates are significantly super-Eddington, and so are slower and less ionized. This picture correctly predicts the velocities and ionization states of the observed winds, including the recently discovered one in SDSS J1106+1939. We suggest that luminous AGNs may evolve through a sequence from BAL QSO through LoBAL to UFO-producing Seyfert or quasar as their Eddington factors drop during the decay of a bright accretion event. LoBALs correspond to a short-lived stage in which the AGN radiation pressure largely evacuates the ionization cone, but before the large-scale accretion rate has dropped to the Eddington value. We show that sub-Eddington wind rates would produce an M-σ relation lying above that observed. We conclude that significant SMBH mass growth must occur in super-Eddington phases, either as BAL QSOs, extreme UFOs, or obscured from direct observation.

  3. Global simulations of protoplanetary disks with net magnetic flux. I. Non-ideal MHD case

    NASA Astrophysics Data System (ADS)

    Béthune, William; Lesur, Geoffroy; Ferreira, Jonathan

    2017-04-01

    Context. The planet-forming region of protoplanetary disks is cold, dense, and therefore weakly ionized. For this reason, magnetohydrodynamic (MHD) turbulence is thought to be mostly absent, and another mechanism has to be found to explain gas accretion. It has been proposed that magnetized winds, launched from the ionized disk surface, could drive accretion in the presence of a large-scale magnetic field. Aims: The efficiency and the impact of these surface winds on the disk structure is still highly uncertain. We present the first global simulations of a weakly ionized disk that exhibits large-scale magnetized winds. We also study the impact of self-organization, which was previously demonstrated only in non-stratified models. Methods: We perform numerical simulations of stratified disks with the PLUTO code. We compute the ionization fraction dynamically, and account for all three non-ideal MHD effects: ohmic and ambipolar diffusions, and the Hall drift. Simplified heating and cooling due to non-thermal radiation is also taken into account in the disk atmosphere. Results: We find that disks can be accreting or not, depending on the configuration of the large-scale magnetic field. Magnetothermal winds, driven both by magnetic acceleration and heating of the atmosphere, are obtained in the accreting case. In some cases, these winds are asymmetric, ejecting predominantly on one side of the disk. The wind mass loss rate depends primarily on the average ratio of magnetic to thermal pressure in the disk midplane. The non-accreting case is characterized by a meridional circulation, with accretion layers at the disk surface and decretion in the midplane. Finally, we observe self-organization, resulting in axisymmetric rings of density and associated pressure "bumps". The underlying mechanism and its impact on observable structures are discussed.

  4. Wind-Driven Global Evolution of Protoplanetary Disks

    NASA Astrophysics Data System (ADS)

    Bai, Xue-Ning

    It has been realized in the recent years that magnetized disk winds disk- likely play a decisive role in the global evolution of protoplanetary disks protoplanetary evolution (PPDs). Motivated by recent local simulations local , we first describe a global magnetized disk wind model, from which wind-driven accretion rate -rate wind-driven and wind mass loss rate can be reliably estimated. Both rates are shown to strongly depend on the amount of magnetic flux magnetic threading the disk. Wind kinematics is also affected by thermodynamics in the wind zone (particularly far UV heating/ionization), and the mass loss process loss- can be better termed as "magneto-photoevaporation." We then construct a framework of PPD global evolution global that incorporates wind-driven and viscously driven accretion viscously-driven as well as wind mass loss. For typical PPD accretion rates, the required field strength would lead to wind mass loss rate at least comparable to disk accretion rate, and mass loss is most significant in the outer disk (beyond ˜ 10 AU). Finally, we discuss the transport of magnetic flux in PPDs, which largely governs the long-term evolution long-term of PPDs.

  5. WIND-DRIVEN ACCRETION IN TRANSITIONAL PROTOSTELLAR DISKS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Lile; Goodman, Jeremy J.

    Transitional protostellar disks have inner cavities that are heavily depleted in dust and gas, yet most of them show signs of ongoing accretion, often at rates comparable to full disks. We show that recent constraints on the gas surface density in a few well-studied disk cavities suggest that the accretion speed is at least transsonic. We propose that this is the natural result of accretion driven by magnetized winds. Typical physical conditions of the gas inside these cavities are estimated for plausible X-ray and FUV radiation fields. The gas near the midplane is molecular and predominantly neutral, with a dimensionlessmore » ambipolar parameter in the right general range for wind solutions of the type developed by Königl, Wardle, and others. That is to say, the density of ions and electrons is sufficient for moderately good coupling to the magnetic field, but it is not so good that the magnetic flux needs to be dragged inward by the accreting neutrals.« less

  6. Jet Launching in Resistive GR-MHD Black Hole–Accretion Disk Systems

    NASA Astrophysics Data System (ADS)

    Qian, Qian; Fendt, Christian; Vourellis, Christos

    2018-05-01

    We investigate the launching mechanism of relativistic jets from black hole sources, in particular the strong winds from the surrounding accretion disk. Numerical investigations of the disk wind launching—the simulation of the accretion–ejection transition—have so far almost only been done for nonrelativistic systems. From these simulations we know that resistivity, or magnetic diffusivity, plays an important role for the launching process. Here we extend this treatment to general relativistic magnetohydrodynamics (GR-MHD), applying the resistive GR-MHD code rHARM. Our model setup considers a thin accretion disk threaded by a large-scale open magnetic field. We run a series of simulations with different Kerr parameter, field strength, and diffusivity level. Indeed, we find strong disk winds with, however, mildly relativistic speed, the latter most probably due to our limited computational domain. Further, we find that magnetic diffusivity lowers the efficiency of accretion and ejection, as it weakens the efficiency of the magnetic lever arm of the disk wind. As a major driving force of the disk wind we disentangle the toroidal magnetic field pressure gradient; however, magnetocentrifugal driving may also contribute. Black hole rotation in our simulations suppresses the accretion rate owing to an enhanced toroidal magnetic field pressure that seems to be induced by frame dragging. Comparing the energy fluxes from the Blandford–Znajek-driven central spine and the surrounding disk wind, we find that the total electromagnetic energy flux is dominated by the total matter energy flux of the disk wind (by a factor of 20). The kinetic energy flux of the matter outflow is comparatively small and comparable to the Blandford–Znajek electromagnetic energy flux.

  7. CAN THE SUBSONIC ACCRETION MODEL EXPLAIN THE SPIN PERIOD DISTRIBUTION OF WIND-FED X-RAY PULSARS?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Tao; Shao, Yong; Li, Xiang-Dong, E-mail: lixd@nju.edu.cn

    Neutron stars in high-mass X-ray binaries (HMXBs) generally accrete from the wind matter of their massive companion stars. Recently, Shakura et al. suggested a subsonic accretion model for low-luminosity (<4 × 10{sup 36} erg s{sup −1}), wind-fed X-ray pulsars. To test the feasibility of this model, we investigate the spin period distribution of wind-fed X-ray pulsars with a supergiant companion star, using a population synthesis method. We find that the modeled distribution of supergiant HMXBs in the spin period–orbital period diagram is consistent with observations, provided that the winds from the donor stars have relatively low terminal velocities (≲1000 kmmore » s{sup −1}). The measured wind velocities in several supergiant HMXBs seem to favor this viewpoint. The predicted number ratio of wind-fed X-ray pulsars with persistent X-ray luminosities that are higher and lower than 4 × 10{sup 36} erg s{sup −1} is about 1:10.« less

  8. The clumpy absorber in the high-mass X-ray binary Vela X-1

    DOE PAGES

    Grinberg, V.; Hell, N.; El Mellah, I.; ...

    2017-12-15

    Bright and eclipsing, the high-mass X-ray binary Vela X-1 offers a unique opportunity to study accretion onto a neutron star from clumpy winds of O/B stars and to disentangle the complex accretion geometry of these systems. In Chandra-HETGS spectroscopy at orbital phase ~0.25, when our line of sight towards the source does not pass through the large-scale accretion structure such as the accretion wake, we observe changes in overall spectral shape on timescales of a few kiloseconds. This spectral variability is, at least in part, caused by changes in overall absorption and we show that such strongly variable absorption cannotmore » be caused by unperturbed clumpy winds of O/B stars. We detect line features from high and low ionization species of silicon, magnesium, and neon whose strengths and presence depend on the overall level of absorption. Finally, these features imply a co-existence of cool and hot gas phases in the system, which we interpret as a highly variable, structured accretion flow close to the compact object such as has been recently seen in simulations of wind accretion in high-mass X-ray binaries.« less

  9. The clumpy absorber in the high-mass X-ray binary Vela X-1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grinberg, V.; Hell, N.; El Mellah, I.

    Bright and eclipsing, the high-mass X-ray binary Vela X-1 offers a unique opportunity to study accretion onto a neutron star from clumpy winds of O/B stars and to disentangle the complex accretion geometry of these systems. In Chandra-HETGS spectroscopy at orbital phase ~0.25, when our line of sight towards the source does not pass through the large-scale accretion structure such as the accretion wake, we observe changes in overall spectral shape on timescales of a few kiloseconds. This spectral variability is, at least in part, caused by changes in overall absorption and we show that such strongly variable absorption cannotmore » be caused by unperturbed clumpy winds of O/B stars. We detect line features from high and low ionization species of silicon, magnesium, and neon whose strengths and presence depend on the overall level of absorption. Finally, these features imply a co-existence of cool and hot gas phases in the system, which we interpret as a highly variable, structured accretion flow close to the compact object such as has been recently seen in simulations of wind accretion in high-mass X-ray binaries.« less

  10. Outflows in X-ray binaries

    NASA Astrophysics Data System (ADS)

    Diaz Trigo, M.

    2017-10-01

    Accretion onto neutron stars and black holes powers the most luminous phenomena in the Universe. Associated to it is the existence of outflows, in the form of uncollimated winds or highly collimated relativistic jets. The origin of outflows and their feedback to the environment is one of the most debated topics in astrophysics today. In this talk I will review the current understanding of accretion disc winds in X-ray binaries, their launching mechanism and their relation to specific accretion states. I will also discuss the potential interplay between the appearance/disappearance of such winds and relativistic jets and the insight gained with ongoing multi-wavelength observational programmes focused on the variability of such phenomena.

  11. The Impact of Galactic Winds on the Angular Momentum of Disk Galaxies in the Illustris Simulation

    NASA Astrophysics Data System (ADS)

    DeFelippis, Daniel; Genel, Shy; Bryan, Greg L.; Fall, S. Michael

    2017-05-01

    Observed galactic disks have specific angular momenta similar to expectations for typical dark matter halos in ΛCDM. Cosmological hydrodynamical simulations have recently reproduced this similarity in large galaxy samples by including strong galactic winds, but the exact mechanism that achieves this is not yet clear. Here we present an analysis of key aspects contributing to this relation: angular momentum selection and evolution of Lagrangian mass elements as they accrete onto dark matter halos, condense into Milky-Way-scale galaxies, and join the z = 0 stellar phase. We contrast this evolution in the Illustris simulation with that in a simulation without galactic winds, where the z = 0 angular momentum is ≈ 0.6 {dex} lower. We find that winds induce differences between these simulations in several ways: increasing angular momentum, preventing angular momentum loss, and causing z = 0 stars to sample the accretion-time angular momentum distribution of baryons in a biased way. In both simulations, gas loses on average ≈ 0.4 {dex} between accreting onto halos and first accreting onto central galaxies. In Illustris, this is followed by ≈ 0.2 {dex} gains in the “galactic wind fountain” and no further net evolution past the final accretion onto the galaxy. Without feedback, further losses of ≈ 0.2 {dex} occur in the gas phase inside the galaxies. An additional ≈ 0.15 {dex} difference arises from feedback preferentially selecting higher angular momentum gas at accretion by expelling gas that is poorly aligned. These and additional effects of similar magnitude are discussed, suggesting a complex origin of the similarity between the specific angular momenta of galactic disks and typical halos.

  12. An Extreme X-ray Disk Wind in the Black Hole Candidate IGR J17091-3624

    NASA Technical Reports Server (NTRS)

    King, A. L.; Miller, J. M.; Raymond, J.; Fabian, A. C.; Reynolds, C. S.; Kallman, T. R.; Maitra, D.; Cackett, E. M.; Rupen, M. P.

    2012-01-01

    Chandra spectroscopy of transient stellar-mass black holes in outburst has clearly revealed accretion disk winds in soft, disk-dominated states, in apparent anti-correlation with relativistic jets in low/hard states. These disk winds are observed to be highly ionized. dense. and to have typical velocities of approx 1000 km/s or less projected along our line of sight. Here. we present an analysis of two Chandra High Energy Transmission Grating spectra of the Galactic black hole candidate IGR J17091-3624 and contemporaneous EVLA radio observations. obtained in 2011. The second Chandra observation reveals an absorption line at 6.91+/-0.01 keV; associating this line with He-like Fe XXV requires a blue-shift of 9300(+500/-400) km/ s (0.03c. or the escape velocity at 1000 R(sub schw)). This projected outflow velocity is an order of magnitude higher than has previously been observed in stellar-mass black holes, and is broadly consistent with some of the fastest winds detected in active galactic nuclei. A potential feature at 7.32 keV, if due to Fe XXVI, would imply a velocity of approx 14600 km/s (0.05c), but this putative feature is marginal. Photoionization modeling suggests that the accretion disk wind in IGR J17091-3624 may originate within 43,300 Schwarzschild radii of the black hole, and may be expelling more gas than accretes. The contemporaneous EVLA observations strongly indicate that jet activity was indeed quenched at the time of our Chandra observations. We discuss the results in the context of disk winds, jets, and basic accretion disk physics in accreting black hole systems

  13. Evolution of protoplanetary discs with magnetically driven disc winds

    NASA Astrophysics Data System (ADS)

    Suzuki, Takeru K.; Ogihara, Masahiro; Morbidelli, Alessandro; Crida, Aurélien; Guillot, Tristan

    2016-12-01

    Aims: We investigate the evolution of protoplanetary discs (PPDs) with magnetically driven disc winds and viscous heating. Methods: We considered an initially massive disc with 0.1 M⊙ to track the evolution from the early stage of PPDs. We solved the time evolution of surface density and temperature by taking into account viscous heating and the loss of mass and angular momentum by the disc winds within the framework of a standard α model for accretion discs. Our model parameters, turbulent viscosity, disc wind mass-loss, and disc wind torque, which were adopted from local magnetohydrodynamical simulations and constrained by the global energetics of the gravitational accretion, largely depends on the physical condition of PPDs, particularly on the evolution of the vertical magnetic flux in weakly ionized PPDs. Results: Although there are still uncertainties concerning the evolution of the vertical magnetic flux that remains, the surface densities show a large variety, depending on the combination of these three parameters, some of which are very different from the surface density expected from the standard accretion. When a PPD is in a wind-driven accretion state with the preserved vertical magnetic field, the radial dependence of the surface density can be positive in the inner region <1-10 au. The mass accretion rates are consistent with observations, even in the very low level of magnetohydrodynamical turbulence. Such a positive radial slope of the surface density strongly affects planet formation because it inhibits the inward drift or even causes the outward drift of pebble- to boulder-sized solid bodies, and it also slows down or even reversed the inward type-I migration of protoplanets. Conclusions: The variety of our calculated PPDs should yield a wide variety of exoplanet systems.

  14. Clumpy wind accretion in Supergiant X-ray Binaries

    NASA Astrophysics Data System (ADS)

    El Mellah, I.; Sundqvist, J. O.; Keppens, R.

    2017-12-01

    Supergiant X-ray binaries (\\sgx) contain a neutron star (NS) orbiting a Supergiant O/B star. The fraction of the dense and fast line-driven wind from the stellar companion which is accreted by the NS is responsible for most of the X-ray emission from those system. Classic \\sgx display photometric variability of their hard X-ray emission, typically from a few 10^{35} to a few 10^{37}erg\\cdots^{-1}. Inhomogeneities (\\aka clumps) in the wind from the star are expected to play a role in this time variability. We run 3D hydrodynamical (HD) finite volume simulations to follow the accretion of the inhomogeneous stellar wind by the NS over almost 3 orders of magnitude. To model the unperturbed wind far upstream the NS, we use recent simulations which managed to resolve its micro-structure. We observe the formation of a Bondi-Hoyle-Lyttleton (BHL) like bow shock around the accretor and follow the clumps as they cross it, down to the NS magnetosphere. Compared to previous estimations discarding the HD effects, we measure lower time variability due to both the damping effect of the shock and the necessity to evacuate angular momentum to enable accretion. We also compute the associated time-variable column density and compare it to recent observations in Vela X-1.

  15. Dynamics of Mass Transfer in Wide Symbiotic Systems

    NASA Astrophysics Data System (ADS)

    de Val-Borro, Miguel; Karovska, M.; Sasselov, D.

    2010-01-01

    We investigate the formation of accretion disks around the secondary in detached systems consisting of an Asymptotic Giant Branch (AGB) star and a compact accreting companion as a function of mass loss rate and orbital parameters. In particular, we study winds from late-type stars that are gravitationally focused by a companion in a wide binary system using hydrodynamical simulations. For a typical slow and massive wind from an evolved star there is a stream flow between the stars with accretion rates of a few percent of the mass loss from the primary. Mass transfer through a focused wind is an important mechanism for a broad range of interacting binary systems and can explain the formation of Barium stars and other chemically peculiar stars.

  16. The formation of rings and gaps in magnetically coupled disc-wind systems: ambipolar diffusion and reconnection

    NASA Astrophysics Data System (ADS)

    Suriano, Scott S.; Li, Zhi-Yun; Krasnopolsky, Ruben; Shang, Hsien

    2018-06-01

    Radial substructures in circumstellar discs are now routinely observed by Atacama Large Millimeter/submillimeter Array. There is also growing evidence that disc winds drive accretion in such discs. We show through 2D (axisymmetric) simulations that rings and gaps develop naturally in magnetically coupled disc-wind systems on the scale of tens of au, where ambipolar diffusion (AD) is the dominant non-ideal magnetohydrodynamic effect. In simulations where the magnetic field and matter are moderately coupled, the disc remains relatively laminar with the radial electric current steepened by AD into a thin layer near the mid-plane. The toroidal magnetic field sharply reverses polarity in this layer, generating a large magnetic torque that drives fast accretion, which drags the poloidal field into a highly pinched radial configuration. The reconnection of this pinched field creates magnetic loops where the net poloidal magnetic flux (and thus the accretion rate) is reduced, yielding dense rings. Neighbouring regions with stronger poloidal magnetic fields accrete faster, forming gaps. In better magnetically coupled simulations, the so-called avalanche accretion streams develop continuously near the disc surface, rendering the disc-wind system more chaotic. Nevertheless, prominent rings and gaps are still produced, at least in part, by reconnection, which again enables the segregation of the poloidal field and the disc material similar to the more diffusive discs. However, the reconnection is now driven by the non-linear growth of magnetorotational instability channel flows. The formation of rings and gaps in rapidly accreting yet laminar discs has interesting implications for dust settling and trapping, grain growth, and planet formation.

  17. On the origin of jets from disc-accreting magnetized stars

    NASA Astrophysics Data System (ADS)

    Lovelace, Richard V. E.; Romanova, Marina M.; Lii, Patrick; Dyda, Sergei

    2014-09-01

    A brief review of the origin of jets from disc-accreting rotating magnetized stars is given. In most models, the interior of the disc is characterized by a turbulent viscosity and magnetic diffusivity ("alpha" discs) whereas the coronal region outside the disc is treated using ideal magnetohydrodynamics (MHD). Extensive MHD simulations have established the occurrence of long-lasting outflows in the case of both slowly and rapidly rotating stars. (1) Slowly rotating stars exhibit a new type of outflow, conical winds. Conical winds are generated when stellar magnetic flux is bunched up by the inward motion of the accretion disc. Near their region of origin, the winds have a thin conical shell shape with half opening angle of ˜30°. At large distances, their toroidal magnetic field collimates the outflow forming current carrying, matter dominated jets. These winds are predominantly magnetically and not centrifugally driven. About 10-30% of the disc matter from the inner disc is launched in the conical wind. Conical winds may be responsible for episodic as well as long lasting outflows in different types of stars. (2) Rapidly rotating stars in the "propeller regime" exhibit two-component outflows. One component is similar to the matter dominated conical wind, where a large fraction of the disc matter may be ejected in this regime. The second component is a high-velocity, low-density magnetically dominated axial jet where matter flows along the open polar field lines of the star. The axial jet has a mass flux of about 10% that of the conical wind, but its energy flux, due to the Poynting flux, can be as large as for the conical wind. The jet's magnetically dominated angular momentum flux causes the star to spin down rapidly. Propeller-driven outflows may be responsible for protostellar jets and their rapid spin-down. When the artificial requirement of symmetry about the equatorial plane is dropped, the conical winds are found to come alternately from one side of the disc and then the other, even for the case where the stellar magnetic field is a centered axisymmetric dipole. Recent MHD simulations of disc accretion to rotating stars in the propeller regime have been done with no turbulent viscosity and no diffusivity. The strong turbulence observed is due to the magneto-rotational instability. This turbulence drives accretion in the disc and leads to episodic conical winds and jets.

  18. Detection of Accretion X-Rays from QS Vir: Cataclysmic or a Lot of Hot Air?

    NASA Astrophysics Data System (ADS)

    Matranga, Marco; Drake, Jeremy J.; Kashyap, Vinay; Steeghs, Danny

    2012-03-01

    An XMM-Newton observation of the nearby "pre-cataclysmic" short-period (P orb = 3.62 hr) binary QS Vir (EC 13471-1258) revealed regular narrow X-ray eclipses when the white dwarf passed behind its M2-4 dwarf companion. The X-ray emission provides a clear signature of mass transfer and accretion onto the white dwarf. The low-resolution XMM-Newton EPIC spectra are consistent with a cooling flow model and indicate an accretion rate of \\dot{M} = 1.7 \\times 10^{-13} \\,M_\\odot yr-1. At 48 pc distant, QS Vir is then the second nearest accreting cataclysmic variable known, with one of the lowest accretion rates found to date for a non-magnetic system. To feed this accretion through a wind would require a wind mass-loss rate of \\dot{M}\\sim 2\\times 10^{-12}\\,M_\\odot yr-1 if the accretion efficiency is of the order of 10%. Consideration of likely mass-loss rates for M dwarfs suggests this is improbably high and pure wind accretion unlikely. A lack of accretion disk signatures also presents some difficulties for direct Roche lobe overflow. We speculate that QS Vir is on the verge of Roche lobe overflow, and that the observed mass transfer could be supplemented by upward chromospheric flows on the M dwarf, analogous to spicules and mottles on the Sun, that escape the Roche surface to be subsequently swept up into the white dwarf Roche lobe. If so, QS Vir would be in a rare evolutionary phase lasting only a million years. The X-ray luminosity of the M dwarf estimated during primary eclipse is LX = 3 × 1028 erg s-1, which is consistent with that of rapidly rotating "saturated" K and M dwarfs.

  19. X-rays from accretion of red giant winds

    NASA Technical Reports Server (NTRS)

    Jura, M.; Helfand, D. J.

    1984-01-01

    X-ray observations of the late-type red giants Mira and R Aqr obtained with the Einstein Observatory are presented, and the general problems of white dwarf accretion from late-type giant winds is considered. The extremely low measured luminosities obtained for the two systems leads to the conclusion that the companions of Mira and R Aqr are most likely low-mass main sequence objects rather than white dwarfs as is usually assumed. The expected X-ray luminosities of true red giant/white dwarf systems are considered, and it is concluded that far too few have been detected if the canonical accretion scenario is adopted. A possible explanation of this situation in terms of grain-dominated Eddington-limited accretion is proposed.

  20. Gas-rich dwarfs and accretion phenomena in early-type galaxies

    NASA Technical Reports Server (NTRS)

    Silk, J.; Norman, C.

    1979-01-01

    An analysis is presented of the combined effects of cloud accretion and galactic winds and coronae. An accretion model is developed wherein gas-rich dwarf galaxies are accreted into galactic halos, which provides an adequate source of H I to account for observations of neutral gas in early-type galaxies. Accretion is found to fuel the wind, thereby regulating the accretion flow and yielding a time-dependent model for star formation, enrichment, and nuclear activity. The permissible parameter range for intergalactic gas clouds and galaxy groups is discussed, along with the frequency of gas-rich dwarfs and their large ratios of gas mass to luminosity. Also considered is the occurrence of gas stripping and the consequent formation of dwarf spheroidal systems that remain in the halo, and gas clouds that dissipate and suffer further infall. A cosmological implication of the model is that, because the characteristic time scale of a gas-rich dwarf galaxy to be accreted and lose its gas is comparable to a Hubble time, there may have been a far more extensive primordial distribution of such systems at earlier epochs.

  1. Single Degenerate Models for Type Ia Supernovae: Progenitor's Evolution and Nucleosynthesis Yields

    NASA Astrophysics Data System (ADS)

    Nomoto, Ken'ichi; Leung, Shing-Chi

    2018-06-01

    We review how the single degenerate models for Type Ia supernovae (SNe Ia) works. In the binary star system of a white dwarf (WD) and its non-degenerate companion star, the WD accretes either hydrogen-rich matter or helium and undergoes hydrogen and helium shell-burning. We summarize how the stability and non-linear behavior of such shell-burning depend on the accretion rate and the WD mass and how the WD blows strong wind. We identify the following evolutionary routes for the accreting WD to trigger a thermonuclear explosion. Typically, the accretion rate is quite high in the early stage and gradually decreases as a result of mass transfer. With decreasing rate, the WD evolves as follows: (1) At a rapid accretion phase, the WD increase its mass by stable H burning and blows a strong wind to keep its moderate radius. The wind is strong enough to strip a part of the companion star's envelope to control the accretion rate and forms circumstellar matter (CSM). If the WD explodes within CSM, it is observed as an "SN Ia-CSM". (X-rays emitted by the WD are absorbed by CSM.) (2) If the WD continues to accrete at a lower rate, the wind stops and an SN Ia is triggered under steady-stable H shell-burning, which is observed as a super-soft X-ray source: "SN Ia-SSXS". (3) If the accretion continues at a still lower rate, H shell-burning becomes unstable and many flashes recur. The WD undergoes recurrent nova (RN) whose mass ejection is smaller than the accreted matter. Then the WD evolves to an "SN Ia-RN". (4) If the companion is a He star (or a He WD), the accretion of He can trigger He and C double detonations at the sub-Chandrasekhar mass or the WD grows to the Chandrasekhar mass while producing a He-wind: "SN Ia-He CSM". (5) If the accreting WD rotates quite rapidly, the WD mass can exceed the Chandrasekhar mass of the spherical WD, which delays the trigger of an SN Ia. After angular momentum is lost from the WD, the (super-Chandra) WD contracts to become a delayed SN Ia. The companion star has become a He WD and CSM has disappeared: "SN Ia-He WD". We update nucleosynthesis yields of the carbon deflagration model W7, delayed detonation model WDD2, and the sub-Chandrasekhar mass model to provide some constraints on the yields (such as Mn) from the comparison with the observations. We note the important metallicity effects on 58Ni and 55Mn.

  2. The sustainable growth of the first black holes

    NASA Astrophysics Data System (ADS)

    Pezzulli, Edwige; Volonteri, Marta; Schneider, Raffaella; Valiante, Rosa

    2017-10-01

    Super-Eddington accretion has been suggested as a possible formation pathway of 109 M⊙ supermassive black holes (SMBHs) 800 Myr after the big bang. However, stellar feedback from BH seed progenitors and winds from BH accretion discs may decrease BH accretion rates. In this work, we study the impact of these physical processes on the formation of z ˜ 6 quasar, including new physical prescriptions in the cosmological, data-constrained semi-analytic model GAMETE/QSOdust. We find that the feedback produced by the first stellar progenitors on the surrounding does not play a relevant role in preventing SMBHs formation. In order to grow the z ≳ 6 SMBHs, the accreted gas must efficiently lose angular momentum. Moreover, disc winds, easily originated in super-Eddington accretion regime, can strongly reduce duty cycles. This produces a decrease in the active fraction among the progenitors of z ˜ 6 bright quasars, reducing the probability to observe them.

  3. ZOMG - III. The effect of halo assembly on the satellite population

    NASA Astrophysics Data System (ADS)

    Garaldi, Enrico; Romano-Díaz, Emilio; Borzyszkowski, Mikolaj; Porciani, Cristiano

    2018-01-01

    We use zoom hydrodynamical simulations to investigate the properties of satellites within galaxy-sized dark-matter haloes with different assembly histories. We consider two classes of haloes at redshift z = 0: 'stalled' haloes that assembled at z > 1 and 'accreting' ones that are still forming nowadays. Previously, we showed that the stalled haloes are embedded within thick filaments of the cosmic web, while the accreting ones lie where multiple thin filaments converge. We find that satellites in the two classes have both similar and different properties. Their mass spectra, radial count profiles, baryonic and stellar content, and the amount of material they shed are indistinguishable. However, the mass fraction locked in satellites is substantially larger for the accreting haloes as they experience more mergers at late times. The largest difference is found in the satellite kinematics. Substructures fall towards the accreting haloes along quasi-radial trajectories whereas an important tangential velocity component is developed, before accretion, while orbiting the filament that surrounds the stalled haloes. Thus, the velocity anisotropy parameter of the satellites (β) is positive for the accreting haloes and negative for the stalled ones. This signature enables us to tentatively categorize the Milky Way halo as stalled based on a recent measurement of β. Half of our haloes contain clusters of satellites with aligned orbital angular momenta corresponding to flattened structures in space. These features are not driven by baryonic physics and are only found in haloes hosting grand-design spiral galaxies, independently of their assembly history.

  4. A simple physical model for X-ray burst sources

    NASA Technical Reports Server (NTRS)

    Joss, P. C.; Rappaport, S.

    1977-01-01

    In connection with information considered by Illarianov and Sunyaev (1975) and van den Heuvel (1975), a simple physical model for an X-ray burst source in the galactic disk is proposed. The model includes an unevolved OB star with a relatively weak stellar wind and a compact object in a close binary system. For some reason, the stellar wind from the OB star is unable to accrete steadily on to the compact object. When the stellar wind is sufficiently weak, the compact object accretes irregularly, leading to X-ray bursts.

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Murguia-Berthier, Ariadna; Ramirez-Ruiz, Enrico; Antoni, Andrea

    During a common envelope (CE) episode in a binary system, the engulfed companion spirals to tighter orbital separations under the influence of drag from the surrounding envelope material. As this object sweeps through material with a steep radial gradient of density, net angular momentum is introduced into the flow, potentially leading to the formation of an accretion disk. The presence of a disk would have dramatic consequences for the outcome of the interaction because accretion might be accompanied by strong, polar outflows with enough energy to unbind the entire envelope. Without a detailed understanding of the necessary conditions for diskmore » formation during CE, therefore, it is difficult to accurately predict the population of merging compact binaries. This paper examines the conditions for disk formation around objects embedded within CEs using the “wind tunnel” formalism developed by MacLeod et al. We find that the formation of disks is highly dependent on the compressibility of the envelope material. Disks form only in the most compressible of stellar envelope gas, found in envelopes’ outer layers in zones of partial ionization. These zones are largest in low-mass stellar envelopes, but comprise small portions of the envelope mass and radius in all cases. We conclude that disk formation and associated accretion feedback in CE is rare, and if it occurs, transitory. The implication for LIGO black hole binary assembly is that by avoiding strong accretion feedback, CE interactions should still result in the substantial orbital tightening needed to produce merging binaries.« less

  6. Propeller-driven outflows from an MRI disc

    NASA Astrophysics Data System (ADS)

    Lii, Patrick S.; Romanova, Marina M.; Ustyugova, Galina V.; Koldoba, Alexander V.; Lovelace, Richard V. E.

    2014-06-01

    Accreting magnetized stars may be in the propeller regime of disc accretion in which the angular velocity of the stellar magnetosphere exceeds that of the inner disc. In these systems, the stellar magnetosphere acts as a centrifugal barrier and plays a dominant role in the inner disc dynamics by inhibiting matter accretion on to the star. In this work, we investigate the dynamics of the propeller regime using axisymmetric MHD simulations of MRI-driven accretion on to a rapidly rotating magnetized star. The disc matter is inhibited from accreting on to the star and instead accumulates at the disc-magnetosphere boundary, slowly building up a reservoir of matter. Some of this matter diffuses into the outer magnetosphere where it picks up angular momentum and is ejected as an outflow which gradually collimates at larger distances from the star. If the ejection rate is smaller than the disc's accretion rate, then the matter accumulates at the disc-magnetosphere boundary faster than it can be ejected. In this situation, accretion on to the propelling star proceeds through the episodic accretion cycle in which episodes of matter accumulation are followed by a brief episode of simultaneous ejection and accretion on to the star. In addition to the matter-dominated wind component, the propeller also drives a well-collimated, magnetically dominated Poynting jet which transports energy and angular momentum away from the star. The propelling stars undergo strong spin-down due to the outflow of angular momentum in the wind and jet. We measure spin-down time-scales of ˜1.2 Myr for a cTTs in the strong propeller regime of accretion. The propeller mechanism may explain some of the jets and winds observed around some T Tauri stars as well as the nature of their ejections. It may also explain some of the quasi-periodic variability observed in cataclysmic variables, millisecond pulsars and other magnetized stars.

  7. Mass loss from pre-main-sequence accretion disks. I - The accelerating wind of FU Orionis

    NASA Technical Reports Server (NTRS)

    Calvet, Nuria; Hartmann, Lee; Kenyon, Scott J.

    1993-01-01

    We present evidence that the wind of the pre-main-sequence object FU Orionis arises from the surface of the luminous accretion disk. A disk wind model calculated assuming radiative equilibrium explains the differential behavior of the observed asymmetric absorption-line profiles. The model predicts that strong lines should be asymmetric and blueshifted, while weak lines should be symmetric and double-peaked due to disk rotation, in agreement with observations. We propose that many blueshifted 'shell' absorption features are not produced in a true shell of material, but rather form in a differentially expanding wind that is rapidly rotating. The inference of rapid rotation supports the proposal that pre-main-sequence disk winds are rotationally driven.

  8. Accretion from a clumpy massive-star wind in supergiant X-ray binaries

    NASA Astrophysics Data System (ADS)

    El Mellah, I.; Sundqvist, J. O.; Keppens, R.

    2018-04-01

    Supergiant X-ray binaries (SgXB) host a compact object, often a neutron star (NS), orbiting an evolved O/B star. Mass transfer proceeds through the intense line-driven wind of the stellar donor, a fraction of which is captured by the gravitational field of the NS. The subsequent accretion process on to the NS is responsible for the abundant X-ray emission from SgXB. They also display peak-to-peak variability of the X-ray flux by a factor of a few 10-100, along with changes in the hardness ratios possibly due to varying absorption along the line of sight. We use recent radiation-hydrodynamic simulations of inhomogeneities (a.k.a. clumps) in the non-stationary wind of massive hot stars to evaluate their impact on the time-variable accretion process. For this, we run 3D hydrodynamic simulations of the wind in the vicinity of the accretor to investigate the formation of the bow shock and follow the inhomogeneous flow over several spatial orders of magnitude, down to the NS magnetosphere. In particular, we show that the impact of the wind clumps on the time variability of the intrinsic mass accretion rate is severely tempered by the crossing of the shock, compared to the purely ballistic Bondi-Hoyle-Lyttleton estimation. We also account for the variable absorption due to clumps passing by the line of sight and estimate the final effective variability of the column density and mass accretion rate for different orbital separations. Finally, we compare our results to the most recent analysis of the X-ray flux and the hardness ratio in Vela X-1.

  9. Modelling accretion disc and stellar wind interactions: the case of Sgr A.

    PubMed

    Christie, I M; Petropoulou, M; Mimica, P; Giannios, D

    2016-07-01

    Sgr A* is an ideal target to study low-luminosity accreting systems. It has been recently proposed that properties of the accretion flow around Sgr A* can be probed through its interactions with the stellar wind of nearby massive stars belonging to the S-cluster. When a star intercepts the accretion disc, the ram and thermal pressures of the disc terminate the stellar wind leading to the formation of a bow shock structure. Here, a semi-analytical model is constructed which describes the geometry of the termination shock formed in the wind. With the employment of numerical hydrodynamic simulations, this model is both verified and extended to a region prone to Kelvin-Helmholtz instabilities. Because the characteristic wind and stellar velocities are in ∼10 8  cm s -1 range, the shocked wind may produce detectable X-rays via thermal bremsstrahlung emission. The application of this model to the pericentre passage of S2, the brightest member of the S-cluster, shows that the shocked wind produces roughly a month long X-ray flare with a peak luminosity of L ≈ 4 × 10 33  erg s -1 for a stellar mass-loss rate, disc number density, and thermal pressure strength of [Formula: see text], n d  = 10 5  cm -3 , and α = 0.1, respectively. This peak luminosity is comparable to the quiescent X-ray emission detected from Sgr A* and is within the detection capabilities of current X-ray observatories. Its detection could constrain the density and thickness of the disc at a distance of ∼3000 gravitational radii from the supermassive black hole.

  10. Spectral Analysis and Experimental Modeling of Ice Accretion Roughness

    NASA Technical Reports Server (NTRS)

    Orr, D. J.; Breuer, K. S.; Torres, B. E.; Hansman, R. J., Jr.

    1996-01-01

    A self-consistent scheme for relating wind tunnel ice accretion roughness to the resulting enhancement of heat transfer is described. First, a spectral technique of quantitative analysis of early ice roughness images is reviewed. The image processing scheme uses a spectral estimation technique (SET) which extracts physically descriptive parameters by comparing scan lines from the experimentally-obtained accretion images to a prescribed test function. Analysis using this technique for both streamwise and spanwise directions of data from the NASA Lewis Icing Research Tunnel (IRT) are presented. An experimental technique is then presented for constructing physical roughness models suitable for wind tunnel testing that match the SET parameters extracted from the IRT images. The icing castings and modeled roughness are tested for enhancement of boundary layer heat transfer using infrared techniques in a "dry" wind tunnel.

  11. Winds and accretion in delta Sagittae

    NASA Technical Reports Server (NTRS)

    Eaton, Joel A.; Hartkopf, William I.; Mcalister, Harold A.; Mason, Brian D.

    1995-01-01

    The ten-year binary delta Sge (M2 Ib-II+B9.5 V) is a zeta Aur binary containing an abnormally cool component. Combining our analysis of the system as a visual binary with Batten's radial-velocity solution leads to the following properties: i = 40 deg, a = 51 mas = 8.83 A.U. = 1893 solar radius, hence d = 173 pc; M(sub B) = 2.9 solar mass and M(sub M) = 3.8 solar mass; and R(sub B) = 2.6 solar radius and R(sub M) = 152 solar radius. This interpretation of the orbit places the M supergiant on the asymptotic giant branch. We have collected ultraviolet spectra throughout the star's 1980-90 orbit, concentrated around the conjuction of 1990. The wind of the M giant appears in these as narrow shell lines of singly ionized metals, chiefly Fe II, with P-Cyg profiles at many phases, which show the slow variation in strength expected for the orbit but no pronounced atmospheric eclipse. The terminal velocity of the wind is 16-18 km/s, and its excitation temperature is approximately 10,000 K. Most of the broadening of the wind lines is caused by differential expansion of the atmosphere, with (unmeasurably) low turbulent velocities. Nontheless, the mass loss rate (1.1 +/- 0.4 X 10 (exp -8) solar mas/yr) is almost the same as found previously by Reimers and Schroder for very different assumptions about the velocity structure. Also seen in the spectrum throughout the orbit are the effects of a variable, high-speed wind as well as evidence for accretion onto the B9.5 star. This high-speed wind absorbs in species of all ionization stages observed, e. g., C II, Mg II, Al III, SI IV, C IV, and has a terminaal velocity in the range 200-450 km/s. We presume this wind originates at the B dwarf, not the M supergiant, and speculate that it comes from an accretion disk, as suggested by recent models of magnetically moderated accretion. Evidence for accretion is redshifted absorption in the same transitions formed in the high-speed wind, as well as broad emission lines of singly ionized metals. This emission seems to be scattered out of the continuum of the B star. Finally, we discuss Auger ionization by accretion luminosity as the cause of the high ionization in these high-speed flows as well as the source of the extended circumstellar clouds of Si(3+) and C(3+) ions in zeta Aur binaries.

  12. Towards a Global Evolutionary Model of Protoplanetary Disks

    NASA Astrophysics Data System (ADS)

    Bai, Xue-Ning

    2016-04-01

    A global picture of the evolution of protoplanetary disks (PPDs) is key to understanding almost every aspect of planet formation, where standard α-disk models have been continually employed for their simplicity. In the meantime, disk mass loss has been conventionally attributed to photoevaporation, which controls disk dispersal. However, a paradigm shift toward accretion driven by magnetized disk winds has taken place in recent years, thanks to studies of non-ideal magnetohydrodynamic effects in PPDs. I present a framework of global PPD evolution aiming to incorporate these advances, highlighting the role of wind-driven accretion and wind mass loss. Disk evolution is found to be largely dominated by wind-driven processes, and viscous spreading is suppressed. The timescale of disk evolution is controlled primarily by the amount of external magnetic flux threading the disks, and how rapidly the disk loses the flux. Rapid disk dispersal can be achieved if the disk is able to hold most of its magnetic flux during the evolution. In addition, because wind launching requires a sufficient level of ionization at the disk surface (mainly via external far-UV (FUV) radiation), wind kinematics is also affected by the FUV penetration depth and disk geometry. For a typical disk lifetime of a few million years, the disk loses approximately the same amount of mass through the wind as through accretion onto the protostar, and most of the wind mass loss proceeds from the outer disk via a slow wind. Fractional wind mass loss increases with increasing disk lifetime. Significant wind mass loss likely substantially enhances the dust-to-gas mass ratio and promotes planet formation.

  13. Accretion disk winds as the jet suppression mechanism in the microquasar GRS 1915+105.

    PubMed

    Neilsen, Joseph; Lee, Julia C

    2009-03-26

    Stellar-mass black holes with relativistic jets, also known as microquasars, mimic the behaviour of quasars and active galactic nuclei. Because timescales around stellar-mass black holes are orders of magnitude smaller than those around more distant supermassive black holes, microquasars are ideal nearby 'laboratories' for studying the evolution of accretion disks and jet formation in black-hole systems. Whereas studies of black holes have revealed a complex array of accretion activity, the mechanisms that trigger and suppress jet formation remain a mystery. Here we report the presence of a broad emission line in the faint, hard states and narrow absorption lines in the bright, soft states of the microquasar GRS 1915+105. ('Hard' and 'soft' denote the character of the emitted X-rays.) Because the hard states exhibit prominent radio jets, we argue that the broad emission line arises when the jet illuminates the inner accretion disk. The jet is weak or absent during the soft states, and we show that the absorption lines originate when the powerful radiation field around the black hole drives a hot wind off the accretion disk. Our analysis shows that this wind carries enough mass away from the disk to halt the flow of matter into the radio jet.

  14. Collimated Outflow Formation via Binary Stars: Three-Dimensional Simulations of Asymptotic Giant Branch Wind and Disk Wind Interactions

    NASA Astrophysics Data System (ADS)

    García-Arredondo, F.; Frank, Adam

    2004-01-01

    We present three-dimensional hydrodynamic simulations of the interaction of a slow wind from an asymptotic giant branch (AGB) star and a jet blown by an orbiting companion. The jet or ``collimated fast wind'' is assumed to originate from an accretion disk that forms via Bondi accretion of the AGB wind or Roche lobe overflow. We present two distinct regimes in the wind-jet interaction determined by the ratio of the AGB wind to jet momentum flux. Our results show that when the wind momentum flux overwhelms the flux in the jet, a more disordered outflow results with the jet assuming a corkscrew pattern and multiple shock structures driven into the AGB wind. In the opposite regime, the jet dominates and will drive a highly collimated, narrow-waisted outflow. We compare our results with scenarios described by Soker & Rappaport and extrapolate to the structures observed in planetary nebulae (PNs) and symbiotic stars.

  15. MHD Simulations of Magnetized Stars in the Propeller Regime of Accretion

    NASA Astrophysics Data System (ADS)

    Lii, Patrick; Romanova, Marina; Lovelace, Richard

    2014-01-01

    Accreting magnetized stars may be in the propeller regime of disc accretion in which the angular velocity of the stellar magnetosphere exceeds that of the inner disc. In these systems, the stellar magnetosphere acts as a centrifugal barrier and inhibits matter accretion onto the rapidly rotating star. Instead, the matter accreting through the disc accumulates at the disc-magnetosphere interface where it picks up angular momentum and is ejected from the system as a wide-angled outflow which gradually collimates at larger distances from the star. If the ejection rate is lower than the accretion rate, the matter will accumulate at the boundary faster than it can be ejected; in this case, accretion onto the star proceeds through an episodic accretion instability in which the episodes of matter accumulation are followed by a brief episode of simultaneous ejection and accretion of matter onto the star. In addition to the matter dominated wind component, the propeller outflow also exhibits a well-collimated, magnetically-dominated Poynting jet which transports energy and angular momentum away from the star. The propeller mechanism may explain some of the weakly-collimated jets and winds observed around some T Tauri stars as well as the episodic variability present in their light curves. It may also explain some of the quasi-periodic variability observed in cataclysmic variables, millisecond pulsars and other magnetized stars.

  16. Active Galactic Nucleus Feedback in an Elliptical Galaxy with the Most Updated AGN Physics. I. Low Angular Momentum Case

    NASA Astrophysics Data System (ADS)

    Yuan, Feng; Yoon, DooSoo; Li, Ya-Ping; Gan, Zhao-Ming; Ho, Luis C.; Guo, Fulai

    2018-04-01

    We investigate the effects of AGN feedback on the cosmological evolution of an isolated elliptical galaxy by performing two-dimensional high-resolution hydrodynamical numerical simulations. The inner boundary of the simulation is chosen so that the Bondi radius is resolved. Compared to previous works, the two accretion modes—namely, hot and cold, which correspond to different accretion rates and have different radiation and wind outputs—are carefully discriminated, and the feedback effects by radiation and wind in each mode are taken into account. The most updated AGN physics, including the descriptions of radiation and wind from the hot accretion flows and wind from cold accretion disks, are adopted. Physical processes like star formation and SNe Ia and II are taken into account. We study the AGN light curve, typical AGN lifetime, growth of the black hole mass, AGN duty cycle, star formation, and X-ray surface brightness of the galaxy. We compare our simulation results with observations and find general consistency. Comparisons with previous simulation works find significant differences, indicating the importance of AGN physics. The respective roles of radiation and wind feedback are examined, and it is found that they are different for different problems of interest, such as AGN luminosity and star formation. We find that it is hard to neglect any of them, so we suggest using the names “cold feedback mode” and “hot feedback mode” to replace the currently used ones.

  17. The Physics Of The 'Heartbeat' State Of The Microquasar GRS 1915+105

    NASA Astrophysics Data System (ADS)

    Neilsen, Joseph; Lee, J. C.; Remillard, R.

    2010-03-01

    Approaching the 14th anniversary of the first observations of GRS 1915+105 with RXTE, we present new results from a joint RXTE/Chandra study of the remarkable X-ray spectral variability of this enigmatic microquasar. For the first time, we are able to show that changes in the broadband X-ray spectrum (RXTE) on timescales of seconds are associated with changes in absorption lines (Chandra HETGS) from the accretion disk wind, leading to new insights about accretion and ejection around the black hole. We will play a real-time movie of our X-ray data showing the black hole attempting and failing to launch a jet, driving a wind from the accretion disk, and finally ejecting the entire inner accretion flow into the corona, all in a bizarre cycle that repeats for days but lasts fewer than 60 seconds. We use these phenomena to probe the ionizing influence of the inner accretion flow on the environment of the black hole.

  18. Three-Dimensional Numerical Hydrodynamical Simulation of Low/hard and High/soft States in Accretion Discs of Microquasars and Quasars on Base of Undefined Precession

    NASA Astrophysics Data System (ADS)

    Nazarenko, V. V.; Nazarenko, S. V.

    In this study, the models of slaved precession of accretion disc and donors radiation-driven wind were performed using three-dimensional numerical astrophysical methods by the example of microquasar Cyg X-1. As is shown, in the course of precession of the accretion disc blown by the donor's wind the states with high and low temperature (low and high mass accretion rate, respectively) start being generated in the centre of disc. Our computations of disc precession performed on base of undefined precession that means each point of rotation axis of accretion disc makes unclosed difficult curve instead of a circle as it is in case of definite precession. In this case, the transition between states of high and low temperature takes place irregularly and not depend on precession period. The duration of transition between these both states is less than intervals of states on several orders of magnitudes.

  19. TESTING WIND AS AN EXPLANATION FOR THE SPIN PROBLEM IN THE CONTINUUM-FITTING METHOD

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    You, Bei; Czerny, Bożena; Sobolewska, Małgosia

    2016-04-20

    The continuum-fitting method is one of the two most advanced methods of determining the black hole spin in accreting X-ray binary systems. There are, however, still some unresolved issues with the underlying disk models. One of these issues manifests as an apparent decrease in spin for increasing source luminosity. Here, we perform a few simple tests to establish whether outflows from the disk close to the inner radius can address this problem. We employ four different parametric models to describe the wind and compare these to the apparent decrease in spin with luminosity measured in the sources LMC X-3 andmore » GRS 1915+105. Wind models in which parameters do not explicitly depend on the accretion rate cannot reproduce the spin measurements. Models with mass accretion rate dependent outflows, however, have spectra that emulate the observed ones. The assumption of a wind thus effectively removes the artifact of spin decrease. This solution is not unique; the same conclusion can be obtained using a truncated inner disk model. To distinguish among the valid models, we will need high-resolution X-ray data and a realistic description of the Comptonization in the wind.« less

  20. Torque Enhancement, Spin Equilibrium, and Jet Power from Disk-Induced Opening of Pulsar Magnetic Fields

    NASA Astrophysics Data System (ADS)

    Parfrey, Kyle; Spitkovsky, Anatoly; Beloborodov, Andrei M.

    2016-05-01

    The interaction of a rotating star’s magnetic field with a surrounding plasma disk lies at the heart of many questions posed by neutron stars in X-ray binaries. We consider the opening of stellar magnetic flux due to differential rotation along field lines coupling the star and disk, using a simple model for the disk-opened flux, the torques exerted on the star by the magnetosphere, and the power extracted by the electromagnetic wind. We examine the conditions under which the system enters an equilibrium spin state, in which the accretion torque is instantaneously balanced by the pulsar wind torque alone. For magnetic moments, spin frequencies, and accretion rates relevant to accreting millisecond pulsars, the spin-down torque from this enhanced pulsar wind can be substantially larger than that predicted by existing models of the disk-magnetosphere interaction, and is in principle capable of maintaining spin equilibrium at frequencies less than 1 kHz. We speculate that this mechanism may account for the non-detection of frequency increases during outbursts of SAX J1808.4-3658 and XTE J1814-338, and may be generally responsible for preventing spin-up to sub-millisecond periods. If the pulsar wind is collimated by the surrounding environment, the resulting jet can satisfy the power requirements of the highly relativistic outflows from Cir X-1 and Sco X-1. In this framework, the jet power scales relatively weakly with accretion rate, {L}{{j}}\\propto {\\dot{M}}4/7, and would be suppressed at high accretion rates only if the stellar magnetic moment is sufficiently low.

  1. υ-driven winds from the remnant of binary neutron star mergers

    NASA Astrophysics Data System (ADS)

    Perego, A.

    2018-01-01

    We present a 3D hydrodynamic study of the neutrino-driven winds that emerge from the remnant of a neutron star merger, represented by a thick accretion disc orbiting around a massive neutron star. This strong baryonic wind is blown out by neutrino absorption on free baryons inside the disc. It expands within a few tens of ms along the original binary rotation axis. If the central object survives for at least 200ms, the mass ejected in the wind can reach 5% of the initial mass of the accretion disc. Due to the intense neutrino irradiation, matter ejected in the wind increases its electron fraction between 0.3 and 0.4, producing weak r-process nucleosynthesis yields. We predict a distinct UV/optical transient associated with the wind ejecta that peaks from a few hours to a few days after the merger.

  2. Parsec-Scale Accretion and Winds Irradiated by a Quasar

    NASA Technical Reports Server (NTRS)

    Dorodnitsyn, A.; Kallman, T.; Proga, D.

    2016-01-01

    We present numerical simulations of properties of a parsec-scale torus exposed to illumination by the central black hole in an active galactic nucleus (AGN). Our physical model allows to investigate the balance between the formation of winds and accretion simultaneously. Radiation-driven winds are allowed by taking into account radiation pressure due to UV and IR radiation along with X-ray heating and dust sublimation. Accretion is allowed through angular momentum transport and the solution of the equations of radiative, viscous radiation hydrodynamics. Our methods adopt flux-limited diffusion radiation hydrodynamics for the dusty, infrared pressure driven part of the flow, along with X-ray heating and cooling. Angular momentum transport in the accreting part of the flow is modeled using effective viscosity. Our results demonstrate that radiation pressure on dust can play an important role in shaping AGN obscuration. For example, when the luminosity illuminating the torus exceeds L greater than 0.01 L(sub Edd), where L(sub Edd) is the Eddington luminosity, we find no episodes of sustained disk accretion because radiation pressure does not allow a disk to form. Despite the absence of the disk accretion, the flow of gas to smaller radii still proceeds at a rate 10(exp -4)-10(exp -1)M dot yr(exp -1) through the capturing of the gas from the hot evaporative flow, thus providing a mechanism to deliver gas from a radiation-pressure dominated torus to the inner accretion disk. As L L(sub edd) increases, larger radiation input leads to larger torus aspect ratios and increased obscuration of the central black hole. We also find the important role of the X-ray heated gas in shaping the obscuring torus.

  3. Validation of 3-D Ice Accretion Measurement Methodology for Experimental Aerodynamic Simulation

    NASA Technical Reports Server (NTRS)

    Broeren, Andy P.; Addy, Harold E., Jr.; Lee, Sam; Monastero, Marianne C.

    2015-01-01

    Determining the adverse aerodynamic effects due to ice accretion often relies on dry-air wind-tunnel testing of artificial, or simulated, ice shapes. Recent developments in ice-accretion documentation methods have yielded a laser-scanning capability that can measure highly three-dimensional (3-D) features of ice accreted in icing wind tunnels. The objective of this paper was to evaluate the aerodynamic accuracy of ice-accretion simulations generated from laser-scan data. Ice-accretion tests were conducted in the NASA Icing Research Tunnel using an 18-in. chord, two-dimensional (2-D) straight wing with NACA 23012 airfoil section. For six ice-accretion cases, a 3-D laser scan was performed to document the ice geometry prior to the molding process. Aerodynamic performance testing was conducted at the University of Illinois low-speed wind tunnel at a Reynolds number of 1.8 × 10(exp 6) and a Mach number of 0.18 with an 18-in. chord NACA 23012 airfoil model that was designed to accommodate the artificial ice shapes. The ice-accretion molds were used to fabricate one set of artificial ice shapes from polyurethane castings. The laser-scan data were used to fabricate another set of artificial ice shapes using rapid prototype manufacturing such as stereolithography. The iced-airfoil results with both sets of artificial ice shapes were compared to evaluate the aerodynamic simulation accuracy of the laser-scan data. For five of the six ice-accretion cases, there was excellent agreement in the iced-airfoil aerodynamic performance between the casting and laser-scan based simulations. For example, typical differences in iced-airfoil maximum lift coefficient were less than 3 percent with corresponding differences in stall angle of approximately 1 deg or less. The aerodynamic simulation accuracy reported in this paper has demonstrated the combined accuracy of the laser-scan and rapid-prototype manufacturing approach to simulating ice accretion for a NACA 23012 airfoil. For several of the ice-accretion cases tested, the aerodynamics is known to depend upon the small, three-dimensional features of the ice. These data show that the laser-scan and rapid-prototype manufacturing approach is capable of replicating these ice features within the reported accuracies of the laser-scan measurement and rapid-prototyping method; thus providing a new capability for high-fidelity ice-accretion documentation and artificial ice-shape fabrication for icing research.

  4. Validation of 3-D Ice Accretion Measurement Methodology for Experimental Aerodynamic Simulation

    NASA Technical Reports Server (NTRS)

    Broeren, Andy P.; Addy, Harold E., Jr.; Lee, Sam; Monastero, Marianne C.

    2014-01-01

    Determining the adverse aerodynamic effects due to ice accretion often relies on dry-air wind-tunnel testing of artificial, or simulated, ice shapes. Recent developments in ice accretion documentation methods have yielded a laser-scanning capability that can measure highly three-dimensional features of ice accreted in icing wind tunnels. The objective of this paper was to evaluate the aerodynamic accuracy of ice-accretion simulations generated from laser-scan data. Ice-accretion tests were conducted in the NASA Icing Research Tunnel using an 18-inch chord, 2-D straight wing with NACA 23012 airfoil section. For six ice accretion cases, a 3-D laser scan was performed to document the ice geometry prior to the molding process. Aerodynamic performance testing was conducted at the University of Illinois low-speed wind tunnel at a Reynolds number of 1.8 x 10(exp 6) and a Mach number of 0.18 with an 18-inch chord NACA 23012 airfoil model that was designed to accommodate the artificial ice shapes. The ice-accretion molds were used to fabricate one set of artificial ice shapes from polyurethane castings. The laser-scan data were used to fabricate another set of artificial ice shapes using rapid prototype manufacturing such as stereolithography. The iced-airfoil results with both sets of artificial ice shapes were compared to evaluate the aerodynamic simulation accuracy of the laser-scan data. For four of the six ice-accretion cases, there was excellent agreement in the iced-airfoil aerodynamic performance between the casting and laser-scan based simulations. For example, typical differences in iced-airfoil maximum lift coefficient were less than 3% with corresponding differences in stall angle of approximately one degree or less. The aerodynamic simulation accuracy reported in this paper has demonstrated the combined accuracy of the laser-scan and rapid-prototype manufacturing approach to simulating ice accretion for a NACA 23012 airfoil. For several of the ice-accretion cases tested, the aerodynamics is known to depend upon the small, three dimensional features of the ice. These data show that the laser-scan and rapid-prototype manufacturing approach is capable of replicating these ice features within the reported accuracies of the laser-scan measurement and rapid-prototyping method; thus providing a new capability for high-fidelity ice-accretion documentation and artificial ice-shape fabrication for icing research.

  5. Implosive accretion and outbursts of active galactic nuclei

    NASA Technical Reports Server (NTRS)

    Lovelace, R. V. E.; Romanova, M. M.; Newman, W. I.

    1994-01-01

    A model and simulation code have been developed for time-dependent axisymmetric disk accretion onto a compact object including for the first time the influence of an ordered magnetic field. The accretion rate and radiative luminosity of the disk are naturally coupled to the rate of outflow of energy and angular momentum in magnetically driven (+/- z) winds. The magnetic field of the wind is treated in a phenomenological way suggested by self-consistent wind solutions. The radial accretion speed u(r, t) of the disk matter is shown to be the sum of the usual viscous contribution and a magnetic contribution proportional to r(exp 3/2)(B(sub p exp 2))/sigma, where B(sub p)(r,t) is the poloidal field threading the disk and sigma(r,t) is the disk's surface mass density. An enhancement or variation in B(sub p) at a large radial distance leads to the formation of a soliton-like structure in the disk density, temperature, and B-field which propagates implosively inward. The implosion gives a burst in the power output in winds or jets and a simultaneous burst in the disk radiation. The model is pertinent to the formation of discrete fast-moving components in jets observed by very long baseline interferometry. These components appear to originate at times of optical outbursts of the active galactic nucleus.

  6. Can a Wind Model Mimic a Convection-Dominated Accretion Flow Model?

    NASA Astrophysics Data System (ADS)

    Chang, Heon-Young

    2001-06-01

    In this paper we investigate the properties of advection-dominated accretion flows(ADAFs) in case that outflows carry away infalling matter with its angular momentum and energy. Positive Bernoulli numbers in ADAFs allow a fraction of the gas to be ex-pelled in a form of outflows. The ADAFs are also unstable to convection. We present self-similar solutions for advection-dominated accretion flows in the presence of out-flows from the accretion flows (ADIOS). The axisymmetric flow is treated in variables integrated over polar sections and the effects of outflows on the accretion rlow are parameterized for possible configurations compatible with the one dimensional self-similar ADAF solution. We explicitly derive self-similar solutions of ADAFs in the presence of outflows and show that the strong outflows in the accretion flows result in a flatter density profile, which is similar to that of the convection-dominated accretion flows (CDAFs) in which convection transports the a! ngular momentum inward and the energy outward. These two different versions of the ADAF model should show similar behaviors in X-ray spectrum to some extent. Even though the two models may show similar behaviors, they should be distinguishable due to different physical properties. We suggest that for a central object of which mass is known these two different accretion flows should have different X-ray flux value due to deficient matter in the wind model.

  7. An Integrated Approach to Winds, Jets, and State Transitions

    NASA Astrophysics Data System (ADS)

    Neilsen, Joseph

    2017-09-01

    We propose a large multiwavelength campaign (120 ks Chandra HETGS, NuSTAR, INTEGRAL, JVLA/ATCA, Swift, XMM, Gemini) on a black hole transient to study the influence of ionized winds on relativistic jets and state transitions. With a reimagined observing strategy based on new results on integrated RMS variability and a decade of radio/X-ray monitoring, we will search for winds during and after the state transition to test their influence on and track their coevolution with the disk and the jet over the next 2-3 months. Our spectral and timing constraints will provide precise probes of the accretion geometry and accretion/ejection physics.

  8. Radio emission from Sgr A*: pulsar transits through the accretion disc

    NASA Astrophysics Data System (ADS)

    Christie, I. M.; Petropoulou, M.; Mimica, P.; Giannios, D.

    2017-06-01

    Radiatively inefficient accretion flow models have been shown to accurately account for the spectrum and luminosity observed from Sgr A* in the X-ray regime down to mm wavelengths. However, observations at a few GHz cannot be explained by thermal electrons alone but require the presence of an additional non-thermal particle population. Here, we propose a model for the origin of such a population in the accretion flow via means of a pulsar orbiting the supermassive black hole in our Galaxy. Interactions between the relativistic pulsar wind with the disc lead to the formation of a bow shock in the wind. During the pulsar's transit through the accretion disc, relativistic pairs, accelerated at the shock front, are injected into the disc. The radio-emitting particles are long lived and remain within the disc long after the pulsar's transit. Periodic pulsar transits through the disc result in regular injection episodes of non-thermal particles. We show that for a pulsar with spin-down luminosity Lsd ˜ 3 × 1035 erg s-1 and a wind Lorentz factor of γw ˜ 104 a quasi-steady synchrotron emission is established with luminosities in the 1-10 GHz range comparable to the observed one.

  9. Stellar wind erosion of protoplanetary discs

    NASA Astrophysics Data System (ADS)

    Schnepf, N. R.; Lovelace, R. V. E.; Romanova, M. M.; Airapetian, V. S.

    2015-04-01

    An analytic model is developed for the erosion of protoplanetary gas discs by high-velocity magnetized stellar winds. The winds are centrifugally driven from the surface of rapidly rotating, strongly magnetized young stars. The presence of the magnetic field in the wind leads to Reynolds numbers sufficiently large to cause a strongly turbulent wind/disc boundary layer which entrains and carries away the disc gas. The model uses the conservation of mass and momentum in the turbulent boundary layer. The time-scale for significant erosion depends on the disc accretion speed, disc accretion rate, the wind mass-loss rate, and the wind velocity. The time-scale is estimated to be ˜2 × 106 yr. The analytic model assumes a steady stellar wind with mass- loss rate dot {M}}_w ˜ 10^{-10} M_{⊙} yr-1 and velocity vw ˜ 103 km s-1. A significant contribution to the disc erosion can come from frequent powerful coronal mass ejections (CMEs) where the average mass-loss rate in CMEs, dot{M}_CME, and velocities, vCME, have values comparable to those for the steady wind.

  10. Probing the clumpy winds of giant stars with high mass X-ray binaries

    NASA Astrophysics Data System (ADS)

    Grinberg, Victoria; Hell, Natalie; Hirsch, Maria; Garcia, Javier; Huenemoerder, David; Leutenegger, Maurice A.; Nowak, Michael; Pottschmidt, Katja; Schulz, Norbert S.; Sundqvists, Jon O.; Townsend, Richard D.; Wilms, Joern

    2016-04-01

    Line-driven winds from early type stars are structured, with small, overdense clumps embedded in tenuous hot gas. High mass X-ray binaries (HMXBs), systems where a neutron star or a black hole accretes from the line-driven stellar wind of an O/B-type companion, are ideal for studying such winds: the wind drives the accretion onto the compact object and thus the X-ray production. The radiation from close to the compact object is quasi-pointlike and effectively X-rays the wind.We used RXTE and Chandra-HETG observations of two of the brightest HMXBs, Cyg X-1 and Vela X-1, to decipher their wind structure. In Cyg X-1, we show that the orbital variability of absorption can be only explained by a clumpy wind model and constrain the porosity of the wind as well as the onion-like structure of the clumps. In Vela X-1 we show, using the newest reference energies for low ionization Si-lines obtained with LLNL’s EBIT-I, that the ionized phase of the circumstellar medium and the cold clumps have different velocities.

  11. A New Relativistic Component of the Accretion Disk Wind in PDS 456

    NASA Astrophysics Data System (ADS)

    Reeves, J. N.; Braito, V.; Nardini, E.; Lobban, A. P.; Matzeu, G. A.; Costa, M. T.

    2018-02-01

    Past X-ray observations of the nearby luminous quasar PDS 456 (at z = 0.184) have revealed a wide angle accretion disk wind, with an outflow velocity of ∼‑0.25c. Here, we unveil a new, relativistic component of the wind through hard X-ray observations with NuSTAR and XMM-Newton, obtained in 2017 March when the quasar was in a low-flux state. This very fast wind component, with an outflow velocity of ‑0.46 ± 0.02c, is detected in the iron K band, in addition to the ‑0.25c wind zone. The relativistic component may arise from the innermost disk wind, launched from close to the black hole at a radius of ∼10 gravitational radii. The opacity of the fast wind also increases during a possible obscuration event lasting for 50 ks. We suggest that the very fast wind may only be apparent during the lowest X-ray flux states of PDS 456, becoming overly ionized as the luminosity increases. Overall, the total wind power may even approach the Eddington value.

  12. Investigation of surface water behavior during glaze ice accretion

    NASA Technical Reports Server (NTRS)

    Hansman, R. John, Jr.; Turnock, Stephen R.

    1988-01-01

    Microvideo observations of glaze ice accretions on 1-in-diameter cylinders in a closed-loop refrigerated wind tunnel were obtained to study factors controlling the behavior of unfrozen surface water during glaze ice accretion. Three zones of surface water behavior were noted, each with a characteristic roughness. The effect of substrate thermal and roughness properties on ice accretions was also studied. The contact angle and hysteresis were found to increase sharply at temperatures just below 0 C, explaining the high resistance to motion of water beads observed on accreting glaze ice surfaces. Based on the results, a simple multizone modification to the current glaze ice accretion model is proposed.

  13. PROTOSTELLAR OUTFLOWS AND RADIATIVE FEEDBACK FROM MASSIVE STARS. II. FEEDBACK, STAR-FORMATION EFFICIENCY, AND OUTFLOW BROADENING

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kuiper, Rolf; Turner, Neal J.; Yorke, Harold W., E-mail: rolf.kuiper@uni-tuebingen.de, E-mail: Neal.J.Turner@jpl.nasa.gov, E-mail: Harold.W.Yorke@jpl.nasa.gov

    2016-11-20

    We perform two-dimensional axially symmetric radiation hydrodynamic simulations to assess the impact of outflows and radiative force feedback from massive protostars by varying when the protostellar outflow starts, and to determine the ratio of ejection to accretion rates and the strength of the wide-angle disk wind component. The star-formation efficiency, i.e., the ratio of final stellar mass to initial core mass, is dominated by radiative forces and the ratio of outflow to accretion rates. Increasing this ratio has three effects. First, the protostar grows slower with a lower luminosity at any given time, lowering radiative feedback. Second, bipolar cavities clearedmore » by the outflow become larger, further diminishing radiative feedback on disk and core scales. Third, the higher momentum outflow sweeps up more material from the collapsing envelope, decreasing the protostar's potential mass reservoir via entrainment. The star-formation efficiency varies with the ratio of ejection to accretion rates from 50% in the case of very weak outflows to as low as 20% for very strong outflows. At latitudes between the low-density bipolar cavity and the high-density accretion disk, wide-angle disk winds remove some of the gas, which otherwise would be part of the accretion flow onto the disk; varying the strength of these wide-angle disk winds, however, alters the final star-formation efficiency by only ±6%. For all cases, the opening angle of the bipolar outflow cavity remains below 20° during early protostellar accretion phases, increasing rapidly up to 65° at the onset of radiation pressure feedback.« less

  14. Wind turbine/generator set and method of making same

    DOEpatents

    Bevington, Christopher M.; Bywaters, Garrett L.; Coleman, Clint C.; Costin, Daniel P.; Danforth, William L.; Lynch, Jonathan A.; Rolland, Robert H.

    2013-06-04

    A wind turbine comprising an electrical generator that includes a rotor assembly. A wind rotor that includes a wind rotor hub is directly coupled to the rotor assembly via a simplified connection. The wind rotor and generator rotor assembly are rotatably mounted on a central spindle via a bearing assembly. The wind rotor hub includes an opening having a diameter larger than the outside diameter of the central spindle adjacent the bearing assembly so as to allow access to the bearing assembly from a cavity inside the wind rotor hub. The spindle is attached to a turret supported by a tower. Each of the spindle, turret and tower has an interior cavity that permits personnel to traverse therethrough to the cavity of the wind rotor hub. The wind turbine further includes a frictional braking system for slowing, stopping or keeping stopped the rotation of the wind rotor and rotor assembly.

  15. Wind turbine/generator set having a stator cooling system located between stator frame and active coils

    DOEpatents

    Bevington, Christopher M.; Bywaters, Garrett L.; Coleman, Clint C.; Costin, Daniel P.; Danforth, William L.; Lynch, Jonathan A.; Rolland, Robert H.

    2012-11-13

    A wind turbine comprising an electrical generator that includes a rotor assembly. A wind rotor that includes a wind rotor hub is directly coupled to the rotor assembly via a simplified connection. The wind rotor and generator rotor assembly are rotatably mounted on a central spindle via a bearing assembly. The wind rotor hub includes an opening having a diameter larger than the outside diameter of the central spindle adjacent the bearing assembly so as to allow access to the bearing assembly from a cavity inside the wind rotor hub. The spindle is attached to a turret supported by a tower. Each of the spindle, turret and tower has an interior cavity that permits personnel to traverse therethrough to the cavity of the wind rotor hub. The wind turbine further includes a frictional braking system for slowing, stopping or keeping stopped the rotation of the wind rotor and rotor assembly.

  16. Wind turbine having a direct-drive drivetrain

    DOEpatents

    Bevington, Christopher M.; Bywaters, Garrett L.; Coleman, Clint C.; Costin, Daniel P.; Danforth, William L.; Lynch, Jonathan A.; Rolland, Robert H.

    2011-02-22

    A wind turbine comprising an electrical generator that includes a rotor assembly. A wind rotor that includes a wind rotor hub is directly coupled to the rotor assembly via a simplified connection. The wind rotor and generator rotor assembly are rotatably mounted on a central spindle via a bearing assembly. The wind rotor hub includes an opening having a diameter larger than the outside diameter of the central spindle adjacent the bearing assembly so as to allow access to the bearing assembly from a cavity inside the wind rotor hub. The spindle is attached to a turret supported by a tower. Each of the spindle, turret and tower has an interior cavity that permits personnel to traverse therethrough to the cavity of the wind rotor hub. The wind turbine further includes a frictional braking system for slowing, stopping or keeping stopped the rotation of the wind rotor and rotor assembly.

  17. Cyclotron Line and Wind studies of Galactic High Mass X-ray Binaries

    NASA Astrophysics Data System (ADS)

    Suchy, Slawomir

    High mass X-ray binaries are rotating neutron stars with very strong magnetic fields that channel accreting matter from their companion star onto the magnetic poles with subsequent collimated X-ray emission. The stars are fed either by a strong stellar wind of the optical companion or by an accretion disk, where material follows the magnetic field lines, emitting X-rays throughout this process either in the accretion column or directly from the neutron star surface. The fast rotation and the narrow collimation of the X-ray emission creates an observed pulsation, forming the concept of a pulsar. Some of the key questions of these thesis are the emission processes above the magnetic pole, including the influence of the magnetic field, the formation of the X-ray beam, and the structure of the stellar wind. An important process is the effect of the teraGauss magnetic field. Cyclotron resonance scattering creates spectral features similar to broad absorption lines (CRSFs or cyclotron lines) that are directly related to the magnetic field. The discovery of cyclotron lines ˜ 35 years ago allows for the only direct method to measure the magnetic field strength in neutron star systems. Variations in the line parameters throughout the pulse phase, and a dependence in the observed luminosity can also aid in the understanding of these processes. In this thesis I present the results of phase averaged and phase resolved analysis of the three high mass X-ray binaries CenX-3, 1A 1118--61, and GX301--2. The data used for this work were obtained with NASA's Rossi X-ray Timing Explorer and the Japanese Suzaku mission. Both satellites are ideal to cover the broad energy band, where CRSFs occur and are necessary for understanding the continuum as a whole. In the process of investigating the 3 sources, I discovered a CRSF at ˜ 55 keV in the transient binary 1A 1118--61, which indicates one of the strongest magnetic fields known in these objects. I used the variations of the CRSF in GX 301--2 throughout its pulse phase to develop a simple dipole model of the relationship between the magnetic moment vector and the spin axis of the neutron star. In Cen X-3 I use a similar model to demonstrate that the magnetic field most likely includes higher orders than just the simple dipole. The use of a wind model in high mass X-ray binaries can give information about the type of accretion, disk or wind, and the structure of the wind by measuring the amount of the material in the line of sight versus orbital phase. In Cen X-3, I used a simple spherical wind model throughout the two binary orbits and found that the observed absorption column densities are not consistent with pure wind accretion, and that either an accretion wake or a disk are needed to be consistent with the data. Similar results were observed in GX 301--2, where the neutron star may have passed through an accretion stream, increasing the observed amount of absorbed material.

  18. The Accretion Disk Wind in the Black Hole GRS 1915 + 105

    NASA Technical Reports Server (NTRS)

    Miller, J.M.; Raymond, J.; Fabian, A. C.; Gallo, E.; Kaastra, J.; Kallman, T.; King, A. L.; Proga, D.; Reynolds, C. S.; Zoghbi, A.

    2016-01-01

    We report on a 120 kiloseconds Chandra/HETG spectrum of the black hole GRS 1915+105. The observation was made during an extended and bright soft state in 2015 June. An extremely rich disk wind absorption spectrum is detected, similar to that observed at lower sensitivity in 2007. The very high resolution of the third-order spectrum reveals four components to the disk wind in the Fe K band alone; the fastest has a blueshift of v = 0.03 c (velocity equals 0.03 the speed of light). Broadened reemission from the wind is also detected in the first-order spectrum, giving rise to clear accretion disk P Cygni profiles. Dynamical modeling of the re-emission spectrum gives wind launching radii of r approximately equal to 10 (sup 2-4) GM (Gravitational constant times Mass) divided by c (sup 2) (the speed of light squared). Wind density values of n approximately equal to 10 (sup 13-16) per cubic centimeter are then required by the ionization parameter formalism. The small launching radii, high density values, and inferred high mass outflow rates signal a role for magnetic driving. With simple, reasonable assumptions, the wind properties constrain the magnitude of the emergent magnetic field to be B approximately equal to 10 (sup 3-4) G (Gravitational constant) if the wind is driven via magnetohydrodynamic (MHD) pressure from within the disk and B approximately equal to 10 (sup 4-5) G (Gravitational constant) if the wind is driven by magnetocentrifugal acceleration. The MHD estimates are below upper limits predicted by the canonical alpha-disk model. We discuss these results in terms of fundamental disk physics and black hole accretion modes.

  19. The long-term intensity behavior of Centaurus X-3

    NASA Technical Reports Server (NTRS)

    Schreier, E. J.; Swartz, K.; Giacconi, R.; Fabbiano, G.; Morin, J.

    1976-01-01

    In three years of observation, the X-ray source Cen X-3 appears to alternate between 'high states', with an intensity of 150 counts/s (2-6 keV) or greater, and 'low states', where the source is barely detectable. The time scale of this behavior is of the order of months, and no apparent periodicity has been observed. Analysis of two transitions between these states is reported. During two weeks in July 1972, the source increased from about 20 counts/s to 150 counts/s. The detailed nature of this turn-on is interpreted in terms of a model in which the supergiant's stellar wind decreases in density. A second transition, a turnoff in February 1973, is similarly analyzed and found to be consistent with a simple decrease in accretion rate. The presence of absorption dips during transitions at orbital phases 0.4-0.5 as well as at phase 0.75 is discussed. The data are consistent with a stellar-wind accretion model and with different kinds of extended lows caused by increased wind density masking the X-ray emission or by decreased wind density lowering the accretion rate.

  20. Constraining Engine Paradigms of Pre-Planetary Nebulae Using Kinematic Properties of their Outflows

    NASA Astrophysics Data System (ADS)

    Blackman, E.

    2014-04-01

    Binary interactions and accretion plausibly conspire to produce the ubiquitous collimated outflows from planetary nebulae (PN) and their presumed pre-planetary nebulae (PPN) progenitors. But which accretion engines are viable? The difficulty in observationally resolving the engines warrants indirect constraints. I discuss how momentum outflow data for PPN can be used to determine the minimum required accretion rate for presumed main sequence (MS) or white dwarf (WD) accretors by comparing to several example accretion rates inferred from published models. While the main goal is to show the method in anticipation of more data and better theoretical constraints, taking the present results at face value already rule out modes of accretion: Bondi-Hoyle Lyttleton (BHL) wind accretion and wind Roche lobe overflow (M-WRLOF, based on Mira parameters) are too feeble for all 19/19 objects for a MS accretor. For a WD accretor, BHL is ruled out for 18/19 objects and M-WRLOF for 15/19 objects. Roche lobe overflow from the primary can accommodate 7/19 objects but only common envelope evolution accretion modes seem to be able to accommodate all 19 objects. Sub-Eddington rates for a MS accretor are acceptable but 8/19 would require super-Eddington rates for a WD. I also briefly discuss a possible anti-correlation between age and maximum observed outflow speed, and the role of magnetic fields.

  1. Large scale dynamics of protoplanetary discs

    NASA Astrophysics Data System (ADS)

    Béthune, William

    2017-08-01

    Planets form in the gaseous and dusty disks orbiting young stars. These protoplanetary disks are dispersed in a few million years, being accreted onto the central star or evaporated into the interstellar medium. To explain the observed accretion rates, it is commonly assumed that matter is transported through the disk by turbulence, although the mechanism sustaining turbulence is uncertain. On the other side, irradiation by the central star could heat up the disk surface and trigger a photoevaporative wind, but thermal effects cannot account for the observed acceleration and collimation of the wind into a narrow jet perpendicular to the disk plane. Both issues can be solved if the disk is sensitive to magnetic fields. Weak fields lead to the magnetorotational instability, whose outcome is a state of sustained turbulence. Strong fields can slow down the disk, causing it to accrete while launching a collimated wind. However, the coupling between the disk and the neutral gas is done via electric charges, each of which is outnumbered by several billion neutral molecules. The imperfect coupling between the magnetic field and the neutral gas is described in terms of "non-ideal" effects, introducing new dynamical behaviors. This thesis is devoted to the transport processes happening inside weakly ionized and weakly magnetized accretion disks; the role of microphysical effects on the large-scale dynamics of the disk is of primary importance. As a first step, I exclude the wind and examine the impact of non-ideal effects on the turbulent properties near the disk midplane. I show that the flow can spontaneously organize itself if the ionization fraction is low enough; in this case, accretion is halted and the disk exhibits axisymmetric structures, with possible consequences on planetary formation. As a second step, I study the launching of disk winds via a global model of stratified disk embedded in a warm atmosphere. This model is the first to compute non-ideal effects from a simplified chemical network in a global geometry. It reveals that the flow is essentially laminar, and that the magnetic field can adopt different global configurations, drastically affecting mass and magnetic flux transport through the disk. A new self-organization process is identified, also leading to the formation of axisymmetric structures, whereas the previous mechanism is discarded by the action of the wind. The properties of magnetothermal winds are examined for various disk magnetizations, allowing discrimination between magnetized and photoevaporative winds based upon their ejection efficiency.

  2. Global Simulations of the Inner Regions of Protoplanetary Disks with Comprehensive Disk Microphysics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bai, Xue-Ning, E-mail: xbai@cfa.harvard.edu

    2017-08-10

    The gas dynamics of weakly ionized protoplanetary disks (PPDs) are largely governed by the coupling between gas and magnetic fields, described by three non-ideal magnetohydrodynamical (MHD) effects (Ohmic, Hall, ambipolar). Previous local simulations incorporating these processes have revealed that the inner regions of PPDs are largely laminar and accompanied by wind-driven accretion. We conduct 2D axisymmetric, fully global MHD simulations of these regions (∼1–20 au), taking into account all non-ideal MHD effects, with tabulated diffusion coefficients and approximate treatment of external ionization and heating. With the net vertical field aligned with disk rotation, the Hall-shear instability strongly amplifies horizontal magneticmore » field, making the overall dynamics dependent on initial field configuration. Following disk formation, the disk likely relaxes into an inner zone characterized by asymmetric field configuration across the midplane, which smoothly transitions to a more symmetric outer zone. Angular momentum transport is driven by both MHD winds and laminar Maxwell stress, with both accretion and decretion flows present at different heights, and modestly asymmetric winds from the two disk sides. With anti-aligned field polarity, weakly magnetized disks settle into an asymmetric field configuration with supersonic accretion flow concentrated at one side of the disk surface, and highly asymmetric winds between the two disk sides. In all cases, the wind is magneto-thermal in nature, characterized by a mass loss rate exceeding the accretion rate. More strongly magnetized disks give more symmetric field configuration and flow structures. Deeper far-UV penetration leads to stronger and less stable outflows. Implications for observations and planet formation are also discussed.« less

  3. Hydrodynamic Simulations of the Inner Accretion Flow of Sagittarius A* Fueled By Stellar Winds

    NASA Astrophysics Data System (ADS)

    Ressler, S. M.; Quataert, E.; Stone, J. M.

    2018-05-01

    We present Athena++ grid-based, hydrodynamic simulations of accretion onto Sagittarius A* via the stellar winds of the ˜30 Wolf-Rayet stars within the central parsec of the galactic center. These simulations span ˜ 4 orders of magnitude in radius, reaching all the way down to 300 gravitational radii of the black hole, ˜32 times further in than in previous work. We reproduce reasonably well the diffuse thermal X-ray emission observed by Chandra in the central parsec. The resulting accretion flow at small radii is a superposition of two components: 1) a moderately unbound, sub-Keplerian, thick, pressure-supported disc that is at most (but not all) times aligned with the clockwise stellar disc, and 2) a bound, low-angular momentum inflow that proceeds primarily along the southern pole of the disc. We interpret this structure as a natural consequence of a few of the innermost stellar winds dominating accretion, which produces a flow with a broad distribution of angular momentum. Including the star S2 in the simulation has a negligible effect on the flow structure. Extrapolating our results from simulations with different inner radii, we find an accretion rate of ˜ a few × 10-8M⊙/yr at the horizon scale, consistent with constraints based on modeling the observed emission of Sgr A*. The flow structure found here can be used as more realistic initial conditions for horizon scale simulations of Sgr A*.

  4. Wind turbine having a direct-drive drivetrain

    DOEpatents

    Bevington, Christopher M.; Bywaters, Garrett L.; Coleman, Clint C.; Costin, Daniel P.; Danforth, William L.; Lynch, Jonathan A.; Rolland, Robert H.

    2008-10-07

    A wind turbine (100) comprising an electrical generator (108) that includes a rotor assembly (112). A wind rotor (104) that includes a wind rotor hub (124) is directly coupled to the rotor assembly via a simplified connection. The wind rotor and generator rotor assembly are rotatably mounted on a central spindle (160) via a bearing assembly (180). The wind rotor hub includes an opening (244) having a diameter larger than the outside diameter of the central spindle adjacent the bearing assembly so as to allow access to the bearing assembly from a cavity (380) inside the wind rotor hub. The spindle is attached to a turret (140) supported by a tower (136). Each of the spindle, turret and tower has an interior cavity (172, 176, 368) that permits personnel to traverse therethrough to the cavity of the wind rotor hub. The wind turbine further includes a frictional braking system (276) for slowing, stopping or keeping stopped the rotation of the wind rotor and rotor assembly.

  5. Asymmetric MHD outflows/jets from accreting T Tauri stars

    NASA Astrophysics Data System (ADS)

    Dyda, S.; Lovelace, R. V. E.; Ustyugova, G. V.; Lii, P. S.; Romanova, M. M.; Koldoba, A. V.

    2015-06-01

    Observations of jets from young stellar objects reveal the asymmetric outflows from some sources. A large set of 2.5D magnetohydrodynamic simulations was carried out for axisymmetric viscous/diffusive disc accretion to rotating magnetized stars for the purpose of assessing the conditions where the outflows are asymmetric relative to the equatorial plane. We consider initial magnetic fields that are symmetric about the equatorial plane and consist of a radially distributed field threading the disc (disc field) and a stellar dipole field. (1) For pure disc-fields the symmetry or asymmetry of the outflows is affected by the mid-plane plasma β of the disc. For discs with small plasma β, outflows are symmetric to within 10 per cent over time-scales of hundreds of inner disc orbits. For higher β discs, the coupling of the upper and lower coronal plasmas is broken, and quasi-periodic field motion leads to asymmetric episodic outflows. (2) Accreting stars with a stellar dipole field and no disc-field exhibit episodic, two component outflows - a magnetospheric wind and an inner disc wind. Both are characterized by similar velocity profiles but the magnetospheric wind has densities ≳ 10 times that of the disc wind. (3) Adding a disc field parallel to the stellar dipole field enhances the magnetospheric winds but suppresses the disc wind. (4) Adding a disc field which is antiparallel to the stellar dipole field in the disc suppresses the magnetospheric and disc winds. Our simulations reproduce some key features of observations of asymmetric outflows of T Tauri stars.

  6. The Cosmic Baryon Cycle in the FIRE Simulations

    NASA Astrophysics Data System (ADS)

    Anglés-Alcázar, Daniel

    2017-07-01

    The exchange of mass, energy, and metals between galaxies and their surrounding circumgalactic medium represents an integral part of the modern paradigm of galaxy formation. In this talk, I will present recent progress in understanding the cosmic baryon cycle using cosmological hydrodynamic simulations from the Feedback In Realistic Environments (FIRE) project. Local stellar feedback processes regulate star formation in galaxies and shape the multi-phase structure of the interstellar medium while driving large-scale outflows that connect galaxies with the circumgalactic medium. I will discuss the efficiency of winds evacuating gas from galaxies, the ubiquity and properties of wind recycling, and the importance of intergalactic transfer, i.e. the exchange of gas between galaxies via winds. I will show that intergalactic transfer can dominate late time gas accretion onto Milky Way-mass galaxies over fresh accretion and standard wind recycling.

  7. The Disk Wind Model of the Broad Line Regions in Active Galactic Nuclei and Cataclysmic Variables

    NASA Technical Reports Server (NTRS)

    Begelman, Mitchell

    2002-01-01

    This is the final progress report for our Astrophysics Theory Program (NRA 97-OSS12) grant NAG5-7723. We have made considerable progress on incorporating photoionization calculations with a 2.5D hydrodynamical code to model disk winds in AGNs. Following up on our simultaneous broad band monitoring campaign of the type I Seyfert galaxy NGC 5548, we have investigated the constraints imposed on models of accretion in Seyfert galaxies by their optical, UV, and X-ray spectral energy distributions (SEDs). Using results from thermal Comptonization models that relate the physical properties of the hot inner accretion flow to the thermal reprocessing that occurs in the surrounding colder thin disk, we find that we can constrain the central black hole mass, accretion rate and size scale of the hot central flow. We have applied our model to observations of Seyfert galaxies NGC 3516, NGC 7469 and NGC 5548. Our mass and accretion rate estimates for these objects roughly agree with those found using other methods.

  8. The critical binary star separation for a planetary system origin of white dwarf pollution

    NASA Astrophysics Data System (ADS)

    Veras, Dimitri; Xu, Siyi; Rebassa-Mansergas, Alberto

    2018-01-01

    The atmospheres of between one quarter and one half of observed single white dwarfs in the Milky Way contain heavy element pollution from planetary debris. The pollution observed in white dwarfs in binary star systems is, however, less clear, because companion star winds can generate a stream of matter which is accreted by the white dwarf. Here, we (i) discuss the necessity or lack thereof of a major planet in order to pollute a white dwarf with orbiting minor planets in both single and binary systems, and (ii) determine the critical binary separation beyond which the accretion source is from a planetary system. We hence obtain user-friendly functions relating this distance to the masses and radii of both stars, the companion wind, and the accretion rate on to the white dwarf, for a wide variety of published accretion prescriptions. We find that for the majority of white dwarfs in known binaries, if pollution is detected, then that pollution should originate from planetary material.

  9. A model for neutrino emission from nuclear accretion disks

    NASA Astrophysics Data System (ADS)

    Deaton, Michael

    2015-04-01

    Compact object mergers involving at least one neutron star can produce short-lived black hole accretion engines. Over tens to hundreds of milliseconds such an engine consumes a disk of hot, nuclear-density fluid, and drives changes to its surrounding environment through luminous emission of neutrinos. The neutrino emission may drive an ultrarelativistic jet, may peel off the disk's outer layers as a wind, may irradiate those winds or other forms of ejecta and thereby change their composition, may change the composition and thermodynamic state of the disk itself, and may oscillate in its flavor content. We present the full spatial-, angular-, and energy-dependence of the neutrino distribution function around a realistic model of a nuclear accretion disk, to inform future explorations of these types of behaviors. Spectral Einstein Code (SpEC).

  10. A PIONIER and Incisive Look at the Interacting Binary SS Lep

    NASA Astrophysics Data System (ADS)

    Blind, N.; Boffin, H. M. J.; Berger, J.-P.; Lebouquin, J.-B.; Mérand, A.

    2011-09-01

    Symbiotic stars are excellent laboratories to study a broad range of poorly understood physical processes, such as mass loss of red giants, accretion onto compact objects, and evolution of nova-like outbursts. As their evolution is strongly influenced by the mass transfer episodes, understanding the history of these systems requires foremost to determine which process is at play: Roche lobe overflow, stellar wind accretion, or some more complex mixture of both. We report here an interferometric study of the symbiotic system SS Leporis, performed with the unique PIONIER instrument. By determining the binary orbit and revisiting the parameters of the two stars, we show that the giant does not fill its Roche lobe, and that the mass transfer most likely occurs via the accretion of an important part of the giant's wind.

  11. Unveiling the Nature of Giant Ellipticals and their Stellar Halos with the VST

    NASA Astrophysics Data System (ADS)

    Spavone, M.; Capaccioli, M.; Napolitano, N. R.; Iodice, E.; Grado, A.; Limatola, L.; Cooper, A. P.; Cantiello, M.; Forbes, D. A.; Paolillo, M.; Schipani, P.

    2017-12-01

    Observations of diffuse starlight in the outskirts of galaxies provide fundamental constraints on the cosmological context of galaxy assembly in the Lambda Cold Dark Matter model, which predicts that galaxies grow through a combination of in-situ star formation and accretion of stars from other galaxies. Accreted stars are expected to dominate in the outer parts of galaxies. Since dynamical timescales are longer in these regions, substructures related to accretion, such as streams and shells, can persist over many Gyr. In this work we use extremely deep g- and i-band images of six massive early- type galaxies (ETGs) from the VEGAS survey to constrain the properties of their accreted stellar components. The wide field of view of OmegaCAM on the VLT Survey Telescope (VST) also allows us to investigate the properties of small stellar systems (such as globular clusters, ultra-compact dwarfs and satellite galaxies) in the halos of our galaxies. By fitting light profiles, and comparing the results to simulations of elliptical galaxy assembly, we have identified signatures of a transition between relaxed and unrelaxed accreted components and can constrain the balance between in-situ and accreted stars.

  12. Winds from accretion disks - Ultraviolet line formation in cataclysmic variables

    NASA Technical Reports Server (NTRS)

    Shlosman, Isaac; Vitello, Peter

    1993-01-01

    Winds from accretion disks in cataclysmic variable stars are ubiquitous. Observations by IUE reveal P Cygni-shaped profiles of high-ionization lines which are attributed to these winds. We have studied the formation of UV emission lines in cataclysmic variables by constructing kinematical models of biconical rotating outflows from disks around white dwarfs. The photoionization in the wind is calculated taking into account the radiation fields of the disk, the boundary layer, and the white dwarf. The 3D radiative transfer is solved in the Sobolev approximation. Effects on the line shapes of varying basic physical parameters of the wind are shown explicitly. We identify and map the resonant scattering regions in the wind which have strongly biconical character regardless of the assumed velocity and radiation fields. Rotation at the base of the wind introduces a radial shear which decreases the line optical depth and reduces the line core intensity. We find that it is possible to reproduce the observed P Cygni line shapes and make some predictions to be verified in high-resolution observations.

  13. Acceleration by pulsar winds in binary systems

    NASA Technical Reports Server (NTRS)

    Harding, Alice K.; Gaisser, T. K.

    1990-01-01

    In the absence of accretion torques, a pulsar in a binary system will spin down due to electromagnetic dipole radiation and the spin-down power will drive a wind of relativistic electron-positron pairs. Winds from pulsars with short periods will prevent any subsequent accretion but may be confined by the companion star atmosphere, wind, or magnetosphere to form a standing shock. The authors investigate the possibility of particle acceleration at such a pulsar wind shock and the production of very high energy (VHE) and ultra high energy (UHE) gamma rays from interactions of accelerated protons in the companion star's wind or atmosphere. They find that in close binaries containing active pulsars, protons will be shock accelerated to a maximum energy dependent on the pulsar spin-down luminosity. If a significant fraction of the spin-down power goes into particle acceleration, these systems should be sources of VHE and possibly UHE gamma rays. The authors discuss the application of the pulsar wind model to binary sources such as Cygnus X-3, as well as the possibility of observing VHE gamma-rays from known binary radio pulsar systems.

  14. Wind-accelerated orbital evolution in binary systems with giant stars

    NASA Astrophysics Data System (ADS)

    Chen, Zhuo; Blackman, Eric G.; Nordhaus, Jason; Frank, Adam; Carroll-Nellenback, Jonathan

    2018-01-01

    Using 3D radiation-hydrodynamic simulations and analytic theory, we study the orbital evolution of asymptotic giant branch (AGB) binary systems for various initial orbital separations and mass ratios, and thus different initial accretion modes. The time evolution of binary separations and orbital periods are calculated directly from the averaged mass-loss rate, accretion rate and angular momentum loss rate. We separately consider spin-orbit synchronized and zero-spin AGB cases. We find that the angular momentum carried away by the mass loss together with the mass transfer can effectively shrink the orbit when accretion occurs via wind-Roche lobe overflow. In contrast, the larger fraction of mass lost in Bondi-Hoyle-Lyttleton accreting systems acts to enlarge the orbit. Synchronized binaries tend to experience stronger orbital period decay in close binaries. We also find that orbital period decay is faster when we account for the non-linear evolution of the accretion mode as the binary starts to tighten. This can increase the fraction of binaries that result in common envelope, luminous red novae, Type Ia supernovae and planetary nebulae with tight central binaries. The results also imply that planets in the habitable zone around white dwarfs are unlikely to be found.

  15. Structure and Dynamics of the Accretion Process and Wind in TW Hya

    NASA Astrophysics Data System (ADS)

    Dupree, A. K.; Brickhouse, N. S.; Cranmer, S. R.; Berlind, P.; Strader, Jay; Smith, Graeme H.

    2014-07-01

    Time-domain spectroscopy of the classical accreting T Tauri star, TW Hya, covering a decade and spanning the far UV to the near-infrared spectral regions can identify the radiation sources, the atmospheric structure produced by accretion, and properties of the stellar wind. On timescales from days to years, substantial changes occur in emission line profiles and line strengths. Our extensive time-domain spectroscopy suggests that the broad near-IR, optical, and far-uv emission lines, centered on the star, originate in a turbulent post-shock region and can undergo scattering by the overlying stellar wind as well as some absorption from infalling material. Stable absorption features appear in Hα, apparently caused by an accreting column silhouetted in the stellar wind. Inflow of material onto the star is revealed by the near-IR He I 10830 Å line, and its free-fall velocity correlates inversely with the strength of the post-shock emission, consistent with a dipole accretion model. However, the predictions of hydrogen line profiles based on accretion stream models are not well-matched by these observations. Evidence of an accelerating warm to hot stellar wind is shown by the near-IR He I line, and emission profiles of C II, C III, C IV, N V, and O VI. The outflow of material changes substantially in both speed and opacity in the yearly sampling of the near-IR He I line over a decade. Terminal outflow velocities that range from 200 km s-1 to almost 400 km s-1 in He I appear to be directly related to the amount of post-shock emission, giving evidence for an accretion-driven stellar wind. Calculations of the emission from realistic post-shock regions are needed. Data presented herein were obtained at the W. M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California, and the National Aeronautics and Space Administration. The Observatory was made possible by the generous financial support of the W. M. Keck Foundation. Infrared spectra were taken at the Gemini Observatory, which is operated by the Association of Universities for Research in Astronomy, Inc., under a cooperative agreement with the NSF on behalf of the Gemini partnership: the National Science Foundation (United States), formerly the Science and Technology Facilities Council (United Kingdom), the National Research Council (Canada), CONICYT (Chile), the Australian Research Council (Australia), Ministério da Ciência e Tecnologia (Brazil) and Ministerio de Ciencia, Tecnología e Innovación Productiva (Argentina). This paper also includes spectra gathered with the 6.5 m Magellan Telescope/CLAY located at Las Campanas Observatory, Chile. Additional spectra were obtained at the 1.5 m Tillinghast Telescope at the Fred Lawrence Whipple Observatory of the Smithsonian Astrophysical Observatory.

  16. Black hole winds II: Hyper-Eddington winds and feedback

    NASA Astrophysics Data System (ADS)

    King, Andrew; Muldrew, Stuart I.

    2016-01-01

    We show that black holes supplied with mass at hyper-Eddington rates drive outflows with mildly sub-relativistic velocities. These are ˜0.1-0.2c for Eddington accretion factors {dot{m}_acc}˜ 10-100, and ˜1500 km s-1 for {dot{m}_acc}˜ 10^4. Winds like this are seen in the X-ray spectra of ultraluminous sources (ULXs), strongly supporting the view that ULXs are stellar-mass compact binaries in hyper-Eddington accretion states. SS433 appears to be an extreme ULX system ({dot{m}_acc}˜ 10^4) viewed from outside the main X-ray emission cone. For less-extreme Eddington factors {dot{m}_acc}˜ 10-100 the photospheric temperatures of the winds are ˜100 eV, consistent with the picture that the ultraluminous supersoft sources (ULSs) are ULXs seen outside the medium-energy X-ray beam, unifying the ULX/ULS populations and SS433 (actually a ULS but with photospheric emission too soft to detect). For supermassive black holes (SMBHs), feedback from hyper-Eddington accretion is significantly more powerful than the usual near-Eddington (`UFO') case, and if realized in nature would imply M - σ masses noticeably smaller than observed. We suggest that the likely warping of the accretion disc in such cases may lead to much of the disc mass being expelled, severely reducing the incidence of such strong feedback. We show that hyper-Eddington feedback from bright ULXs can have major effects on their host galaxies. This is likely to have important consequences for the formation and survival of small galaxies.

  17. Magneto-thermal Disk Winds from Protoplanetary Disks

    NASA Astrophysics Data System (ADS)

    Bai, Xue-Ning; Ye, Jiani; Goodman, Jeremy; Yuan, Feng

    2016-02-01

    The global evolution and dispersal of protoplanetary disks (PPDs) are governed by disk angular-momentum transport and mass-loss processes. Recent numerical studies suggest that angular-momentum transport in the inner region of PPDs is largely driven by magnetized disk wind, yet the wind mass-loss rate remains unconstrained. On the other hand, disk mass loss has conventionally been attributed to photoevaporation, where external heating on the disk surface drives a thermal wind. We unify the two scenarios by developing a one-dimensional model of magnetized disk winds with a simple treatment of thermodynamics as a proxy for external heating. The wind properties largely depend on (1) the magnetic field strength at the wind base, characterized by the poloidal Alfvén speed vAp, (2) the sound speed cs near the wind base, and (3) how rapidly poloidal field lines diverge (achieve {R}-2 scaling). When {v}{Ap}\\gg {c}{{s}}, corotation is enforced near the wind base, resulting in centrifugal acceleration. Otherwise, the wind is accelerated mainly by the pressure of the toroidal magnetic field. In both cases, the dominant role played by magnetic forces likely yields wind outflow rates that exceed purely hydrodynamical mechanisms. For typical PPD accretion-rate and wind-launching conditions, we expect vAp to be comparable to cs at the wind base. The resulting wind is heavily loaded, with a total wind mass-loss rate likely reaching a considerable fraction of the wind-driven accretion rate. Implications for modeling global disk evolution and planet formation are also discussed.

  18. Scaling Methods for Simulating Aircraft In-Flight Icing Encounters

    NASA Technical Reports Server (NTRS)

    Anderson, David N.; Ruff, Gary A.

    1997-01-01

    This paper discusses scaling methods which permit the use of subscale models in icing wind tunnels to simulate natural flight in icing. Natural icing conditions exist when air temperatures are below freezing but cloud water droplets are super-cooled liquid. Aircraft flying through such clouds are susceptible to the accretion of ice on the leading edges of unprotected components such as wings, tailplane and engine inlets. To establish the aerodynamic penalties of such ice accretion and to determine what parts need to be protected from ice accretion (by heating, for example), extensive flight and wind-tunnel testing is necessary for new aircraft and components. Testing in icing tunnels is less expensive than flight testing, is safer, and permits better control of the test conditions. However, because of limitations on both model size and operating conditions in wind tunnels, it is often necessary to perform tests with either size or test conditions scaled. This paper describes the theoretical background to the development of icing scaling methods, discusses four methods, and presents results of tests to validate them.

  19. Gas content of transitional disks: a VLT/X-Shooter study of accretion and winds

    NASA Astrophysics Data System (ADS)

    Manara, C. F.; Testi, L.; Natta, A.; Rosotti, G.; Benisty, M.; Ercolano, B.; Ricci, L.

    2014-08-01

    Context. Transitional disks are thought to be a late evolutionary stage of protoplanetary disks whose inner regions have been depleted of dust. The mechanism responsible for this depletion is still under debate. To constrain the various models it is mandatory to have a good understanding of the properties of the gas content in the inner part of the disk. Aims: Using X-Shooter broad band - UV to near-infrared - medium-resolution spectroscopy, we derive the stellar, accretion, and wind properties of a sample of 22 transitional disks. The analysis of these properties allows us to place strong constraints on the gas content in a region very close to the star (≲0.2 AU) that is not accessible with any other observational technique. Methods: We fitted the spectra with a self-consistent procedure to simultaneously derive spectral type, extinction, and accretion properties of the targets. From the continuum excess at near-infrared wavelength we distinguished whether our targets have dust free inner holes. By analyzing forbidden emission lines, we derived the wind properties of the targets. We then compared our findings with results for classical T Tauri stars. Results: The accretion rates and wind properties of 80% of the transitional disks in our sample, which is strongly biased toward stongly accreting objects, are comparable to those of classical T Tauri stars. Thus, there are (at least) some transitional disks with accretion properties compatible with those of classical T Tauri stars, irrespective of the size of the dust inner hole. Only in two cases are the mass accretion rates much lower, while the wind properties remain similar. We detected no strong trend of the mass accretion rates with the size of the dust-depleted cavity or with the presence of a dusty optically thick disk very close to the star. These results suggest that, close to the central star, there is a gas-rich inner disk with a density similar to that of classical T Tauri star disks. Conclusions: The sample analyzed here suggests that, at least for some objects, the process responsible of the inner disk clearing allows for a transfer of gas from the outer disk to the inner region. This should proceed at a rate that does not depend on the physical mechanisms that produces the gap seen in the dust emission and results in a gas density in the inner disk similar to that of unperturbed disks around stars of similar mass. This work is based on observations made with ESO Telescopes at the La Silla Paranal Observatory under programme ID 089.C-0840 and 090.C-0050, and on data obtained from the ESO Science Archive Facility observed under programme ID 084.C-1095, 085.C-0764, 085.C-0876, 288.C-5013, and 089.C-0143.

  20. Magnetic Origin of Black Hole Winds Across the Mass Scale

    NASA Technical Reports Server (NTRS)

    Fukumura, Keigo; Kazanas, Demosthenes; Shrader, Chris; Behar, Ehud; Tombesi, Francesco; Contopoulos, Ioannis

    2017-01-01

    Black hole accretion disks appear to produce invariably plasma outflows that result in blue-shifted absorption features in their spectra. The X-ray absorption-line properties of these outflows are quite diverse, ranging in velocity from non-relativistic (approx. 300 km/sec) to sub-relativistic (approx. 0.1c where c is the speed of light) and a similarly broad range in the ionization states of the wind plasma. We report here that semi-analytic, self-similar magnetohydrodynamic (MHD) wind models that have successfully accounted for the X-ray absorber properties of supermassive black holes, also fit well the high-resolution X-ray spectrum of the accreting stellar-mass black hole, GRO J1655-40. This provides an explicit theoretical argument of their MHD origin (aligned with earlier observational claims) and supports the notion of a universal magnetic structure of the observed winds across all known black hole sizes.

  1. The enigma of the magnetic pulsar SXP1062: a new look with XMM-Newton

    NASA Astrophysics Data System (ADS)

    Oskinova, Lidia

    2012-10-01

    SXP 1062 is an exceptional case of a young neutron star with known age in a wind-fed HMXB. A unique combination of measured spin period, its derivative, luminosity and young age makes this source a key probe for the physics of accretion and neutron star evolution. All current accretion scenarios encounter major difficulties explaining the spin-down rate of this accretion-powered pulsar. This study will allow us to construct a spin period-luminosity relation as a powerful tool for distinguishing between different accretion and evolution scenarios. The XMM-Newton observations of SXP 1062 will thus shed new light on the physics of accreting neutron stars.

  2. Ice Accretion Test Results for Three Large-Scale Swept-Wing Models in the NASA Icing Research Tunnel

    NASA Technical Reports Server (NTRS)

    Broeren, Andy; Potapczuk, Mark; Lee, Sam; Malone, Adam; Paul, Ben; Woodard, Brian

    2016-01-01

    The design and certification of modern transport airplanes for flight in icing conditions increasing relies on three-dimensional numerical simulation tools for ice accretion prediction. There is currently no publically available, high-quality, ice accretion database upon which to evaluate the performance of icing simulation tools for large-scale swept wings that are representative of modern commercial transport airplanes. The purpose of this presentation is to present the results of a series of icing wind tunnel test campaigns whose aim was to provide an ice accretion database for large-scale, swept wings.

  3. XMM-Newton spectroscopy of the accreting magnetar candidate 4U0114+65

    NASA Astrophysics Data System (ADS)

    Sanjurjo-Ferrrín, G.; Torrejón, J. M.; Postnov, K.; Oskinova, L.; Rodes-Roca, J. J.; Bernabeu, G.

    2017-10-01

    Aims: 4U0114+65 is one of the slowest known X-ray pulsars. We present an analysis of a pointed observation by the XMM-Newton X-ray telescope in order to study the nature of the X-ray pulsations and the accretion process, and to diagnose the physical properties of the donor's stellar wind. Methods: We analysed the energy-resolved light curve and the time-resolved X-ray spectra provided by the EPIC cameras on board XMM-Newton. We also analysed the first high-resolution spectrum of this source provided by the Reflection Grating Spectrometer. Results: An X-ray pulse of 9350 ± 160 s was measured. Comparison with previous measurements confirms the secular spin up of this source. We successfully fit the pulse-phase-resolved spectra with Comptonisation models. These models imply a very small (r 3 km) and hot (kT 2 - 3 keV) emitting region and therefore point to a hot spot over the neutron star (NS) surface as the most reliable explanation for the X-ray pulse. The long NS spin period, the spin-up rate, and persistent X-ray emission can be explained within the theory of quasi-spherical settling accretion, which may indicate that the magnetic field is in the magnetar range. Thus, 4U 0114+65 could be a wind-accreting magnetar. We also observed two episodes of low luminosity. The first was only observed in the low-energy light curve and can be explained as an absorption by a large over-dense structure in the wind of the B1 supergiant donor. The second episode, which was deeper and affected all energies, may be due to temporal cessation of accretion onto one magnetic pole caused by non-spherical matter capture from the structured stellar wind. The light curve displays two types of dips that are clearly seen during the high-flux intervals. The short dips, with durations of tens of seconds, are produced through absorption by wind clumps. The long dips, in turn, seem to be associated with the rarefied interclump medium. From the analysis of the X-ray spectra, we found evidence of emission lines in the X-ray photoionised wind of the B1Ia donor. The Fe Kα line was found to be highly variable and much weaker than in other X-ray binaries with supergiant donors. The degree of wind clumping, measured through the covering fraction, was found to be much lower than in supergiant donor stars with earlier spectral types. Conclusions: The XMM-Newton spectroscopy provided further support for the magnetar nature of the neutron star in 4U0114+65. The light curve presents dips that can be associated with clumps and the interclump medium in the stellar wind of the mass donor.

  4. Winds from the S-Star Cluster Reduce the Accretion Rate onto Sgr A*

    NASA Astrophysics Data System (ADS)

    Yusef-Zadeh, Farhad; Wardle, M.; Roberts, D. A; Haggard, Daryl; Lacy, John H.; Royster, Marc; Cotton, William D.

    2014-06-01

    High-resolution radio continuum images of the region within a few arcseconds of Sgr A* at wavelengths of 7 and 12 mm show three new radio structures. One is a 2-3'' hollow teardrop-shaped structure centered on Sgr A*. Highly blue-shifted [NeII] and [FeIII] line emission is detected along the boundary of this teardrop-shaped bubble, ~2.2'' south of Sgr A*. The second structure is a faint, incomplete ring surrounding Sgr A* with typical surface brightness at 7 mm of ~0.1 mJy per ~0.04'' x 0.08'' beam. This partial ring coincides with the outer boundary of the S-star cluster which consists of ~30 B dwarfs orbiting within 1'' of Sgr A*. Lastly, on a scale of ~20'' to the N of Sgr A*, a balloon-shaped structure is detected.We interpret that the new morphological and kinematic structures result from the dynamical effects of a combined cluster wind. This wind is created at a rate ~3 x 10^{-5} solar mass per year by the merging of individual stellar winds from the B stars in the S-star cluster. What is significant about this interpretation is that the expanding wind excludes the shocked winds from O and WR stars in the central parsec of the Galaxy. Meanwhile Sgr A* accretes material from within the S cluster at a rate less than or equal 3 x 10^{-7} solar mass per year, thus explaining the low luminosity of Sgr A* without the ejection of a large fraction of the accreted material.

  5. HST FUV monitoring of TW Hya

    NASA Astrophysics Data System (ADS)

    Guenther, Hans; Brickhouse, N. S.; Dupree, A. K.; Luna, G.; Schneider, P. C.; Wolk, S. J.

    2014-01-01

    Classical T Tauri stars (CTTS) show strong, broad and asymmetric FUV emission lines. Neither the width, nor the line profile is understood. Likely, different mechanisms influence the line profile; the best candidates are accretion, winds and stellar activity. We monitored the C IV 1548/1550 Å doublet in the nearby, bright CTTS TW Hya to correlate it with i) the cool wind, as seen in COS NUV Mg II line profiles, ii) the photometric period from joint ground-based monitoring, iii) the accretion rate as determined from the UV continuum and iv) the Ha line profile from independent ground-based observations. The observations span 10 orbits distributed over a few weeks to cover the typical time scales of stellar rotation, accretion and winds. On short time scales (seconds) the variability in the data is compatible with counting statistics when we take certain instrumental effects (the detector dead-time fraction increases when the wavelength calibration lamps are switched on). This rules out any type of coherent accretion shock fluctuation as predicted in some simulations. On longer time scales (days) variability of a factor of 3 in the continuum and similarly massive changes in the line shape are seen. The ratio of the two lines of the doublet indicates that the lines are optically thick, calling into question the idea that the blue-shifted components of the C IV lines are formed in the pre-shock region.

  6. Wind tunnel tests of rotor blade sections with replications of ice formations accreted in hover

    NASA Technical Reports Server (NTRS)

    Lee, J. D.; Berger, J. H.; Mcdonald, T. J.

    1986-01-01

    Full scale reproductions of ice accretions molded during the documentation of a hover test program were fabricated by means of epoxy castings and used for a wind tunnel test program. Surface static pressure distributions were recorded and used to evaluate lift and pitching moment increments while drag was determined by wake surveys. Through the range of the tests, corresponding to those conditions encountered in hover and in flat pitch, integration of the pressure distributions showed negligible changes in lift and in pitching moment, but the drag was significantly increased.

  7. Late evolution of very low mass X-ray binaries sustained by radiation from their primaries

    NASA Technical Reports Server (NTRS)

    Ruderman, M.; Shaham, J.; Tavani, M.; Eichler, D.

    1989-01-01

    The accretion-powered radiation from the X-ray pulsar system Her X-1 (McCray et al. 1982) is studied. The changes in the soft X-ray and gamma-ray flux and in the accompanying electron-positron wind are discussed. These are believed to be associated with the inward movement of the inner edge of the accretion disk corresponding to the boundary with the neutron star's corotating magnetosphere (Alfven radius). LMXB evolution which is self-sustained by secondary winds intercepting the radiation emitted near an LMXB neutron star is investigated as well.

  8. A disk wind in AB Aurigae traced with Hα interferometry

    NASA Astrophysics Data System (ADS)

    Perraut, K.; Dougados, C.; Lima, G. H. R. A.; Benisty, M.; Mourard, D.; Ligi, R.; Nardetto, N.; Tallon-Bosc, I.; ten Brummelaar, T.; Farrington, C.

    2016-11-01

    Context. A crucial issue in star formation is understanding the physical mechanism by which mass is accreted onto and ejected by a young star, then collimated into jets. Hydrogen lines are often used to trace mass accretion in young stars, but recent observations suggest that they could instead trace mass outflow in a disk wind. Aims: Obtaining direct constraints on the HI line formation regions is crucial in order to disentangle the different models. We present high angular and spectral resolution observations of the Hα line of the Herbig Ae star AB Aur to probe the origin of this line at sub-AU scales, and to place constraints on the geometry of the emitting region. Methods: We use the visible spectrograph VEGA at the CHARA long-baseline optical array to resolve the AB Aur circumstellar environment from spectrally resolved interferometric measurements across the Hα emission line. We developed a 2D radiative transfer model to fit the emission line profile and the spectro-interferometric observables. The model includes the combination of a Blandford & Payne magneto-centrifugal disk wind and a magnetospheric accretion flow. Results: We measure a visibility decrease within the Hα line, indicating that we clearly resolve the Hα formation region. We derive a Gaussian half width at half maximum between 0.05 and 0.15 AU in the core of the line, which indicates that the bulk of the Hα emission has a size scale intermediate between the disk inner truncation radius and the dusty disk inner rim. A clear asymmetric differential phase signal is found with a minimum of -30° ± 15° towards the core of the line. We show that these observations are in general agreement with predictions from a magneto-centrifugal disk wind arising from the innermost regions of the disk. Better agreement, in particular with the differential phases, is found when a compact magnetospheric accretion flow is included. Conclusions: We resolve the Hα formation region in a young accreting intermediate mass star and show that both the spectroscopic and interferometric measurements can be reproduced well by a model where the bulk of Hα forms in a MHD disk wind arising from the innermost regions of the accretion disk. These findings support similar results recently obtained in the Brγ line and confirm the importance of outflows in the HI line formation processes in young intermediate mass stars. Based on observations made with the VEGA/CHARA instrument.

  9. Stellar X-Ray Polarimetry

    NASA Technical Reports Server (NTRS)

    Swank, J.

    2011-01-01

    Most of the stellar end-state black holes, pulsars, and white dwarfs that are X-ray sources should have polarized X-ray fluxes. The degree will depend on the relative contributions of the unresolved structures. Fluxes from accretion disks and accretion disk corona may be polarized by scattering. Beams and jets may have contributions of polarized emission in strong magnetic fields. The Gravity and Extreme Magnetism Small Explorer (GEMS) will study the effects on polarization of strong gravity of black holes and strong magnetism of neutron stars. Some part of the flux from compact stars accreting from companion stars has been reflected from the companion, its wind, or accretion streams. Polarization of this component is a potential tool for studying the structure of the gas in these binary systems. Polarization due to scattering can also be present in X-ray emission from white dwarf binaries and binary normal stars such as RS CVn stars and colliding wind sources like Eta Car. Normal late type stars may have polarized flux from coronal flares. But X-ray polarization sensitivity is not at the level needed for single early type stars.

  10. Suppression of accretion on to low-mass Population III stars

    NASA Astrophysics Data System (ADS)

    Johnson, Jarrett L.; Khochfar, Sadegh

    2011-05-01

    Motivated by recent theoretical work suggesting that a substantial fraction of Population (Pop) III stars may have had masses low enough for them to survive to the present day, we consider the role that the accretion of metal-enriched gas may have had in altering their surface composition, thereby disguising them as Pop II stars. We demonstrate that if weak, solar-like winds are launched from low-mass Pop III stars formed in the progenitors of the dark matter halo of the Galaxy, then such stars are likely to avoid significant enrichment via accretion of material from the interstellar medium. We find that at early times accretion is easily prevented if the stars are ejected from the central regions of the haloes in which they form, either by dynamical interactions with more massive Pop III stars or by violent relaxation during halo mergers. While accretion may still take place during passage through sufficiently dense molecular clouds at later times, we find that the probability of such a passage is generally low (≲0.1), assuming that stars have velocities of the order of the maximum circular velocity of their host haloes and accounting for the orbital decay of merging haloes. In turn, due to the higher gas density required for accretion on to stars with higher velocities, we find an even lower probability of accretion (˜10-2) for the subset of Pop III stars formed at z > 10, which are more quickly incorporated into massive haloes than stars formed at lower redshift. While there is no a priori reason to assume that low-mass Pop III stars do not have solar-like winds, without them surface enrichment via accretion is likely to be inevitable. We briefly discuss the implications that our results hold for stellar archaeology.

  11. DIAGNOSING MASS FLOWS AROUND HERBIG Ae/Be STARS USING THE HE I λ10830 LINE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cauley, P. Wilson; Johns-Krull, Christopher M., E-mail: pcauley@wesleyan.edu, E-mail: cmj@rice.edu

    2014-12-20

    We examine He I λ10830 profile morphologies for a sample of 56 Herbig Ae/Be stars (HAEBES). We find significant differences between HAEBES and classical T-Tauri stars (CTTS) in the statistics of both blueshifted absorption (i.e., mass outflows) and redshifted absorption features (i.e., mass infall or accretion). Our results suggest that, in general, Herbig Be (HBe) stars do not accrete material from their inner disks in the same manner as CTTS, which are believed to accrete material via magnetospheric accretion, whereas Herbig Ae (HAe) stars generally show evidence for magnetospheric accretion. We find no evidence in our sample of narrow blueshiftedmore » absorption features, which are typical indicators of inner disk winds and are common in He I λ10830 profiles of CTTS. The lack of inner-disk-wind signatures in HAEBES, combined with the paucity of detected magnetic fields on these objects, suggests that accretion through large magnetospheres that truncate the disk several stellar radii above the surface is not as common for HAe and late-type HBe stars as it is for CTTS. Instead, evidence is found for smaller magnetospheres in the maximum redshifted absorption velocities in our HAEBE sample. These velocities are, on average, a smaller fraction of the system escape velocity than is found for CTTS, suggesting accretion is taking place closer to the star. Smaller magnetospheres, and evidence for boundary layer accretion in HBe stars, may explain the less common occurrence of redshifted absorption in HAEBES. Evidence is found that smaller magnetospheres may be less efficient at driving outflows compared to CTTS magnetospheres.« less

  12. Super-Eddington QSO RX J0439.6-5311 - II. Multiwavelength constraints on the global structure of the accretion flow

    NASA Astrophysics Data System (ADS)

    Jin, Chichuan; Done, Chris; Ward, Martin; Gardner, Emma

    2017-10-01

    We present a detailed multiwavelength study of an unobscured, highly super-Eddington Type-1 QSO RX J0439.6-5311. We combine the latest XMM-Newton observation with all archival data from infrared to hard X-rays. The optical spectrum is very similar to that of 1H 0707-495 in having extremely weak [O III] and strong Fe II emission lines, although the black hole mass is probably slightly higher at 5-10 × 106 M⊙. The broad-band spectral energy distribution is uniquely well defined due to the extremely low Galactic and intrinsic absorption, so the bolometric luminosity is tightly constrained. The optical/UV accretion disc continuum is seen down to 900 Å, showing that there is a standard thin disc structure down to R ≥ 190-380 Rg and determining the mass accretion rate through the outer disc. This predicts a much higher bolometric luminosity than observed, indicating that there must be strong wind and/or advective energy losses from the inner disc, as expected for a highly super-Eddington accretion flow. Significant outflows are detected in both the narrow-line region (NLR) and broad-line region (BLR) emission lines, confirming the presence of a wind. We propose a global picture for the structure of a super-Eddington accretion flow where the inner disc puffs up, shielding much of the potential NLR material, and show how inclination angle with respect to this and the wind can explain very different X-ray properties of RX J0439.6-5311 and 1H 0707-495. Therefore, this source provides strong supporting evidence that 'simple' and 'complex' super-Eddington NLS1s can be unified within the same accretion flow scenario but with different inclination angles. We also propose that these extreme NLS1s could be the low-redshift analogues of weak emission-line quasars.

  13. Stellar Astrophysics with Arcus

    NASA Astrophysics Data System (ADS)

    Brickhouse, Nancy S.; Huenemoerder, David P.; Wolk, Scott; Schulz, Norbert; Foster, Adam; Brenneman, Laura; Poppenhaeger, Katja; Arcus Team

    2018-01-01

    The Arcus mission is now in Phase A of the NASA Medium-Class Explorer competition. We present here the Arcus science case for stellar astrophysics. With spectral resolving power of at least 2500 and effective area greater than 400 cm^2, Arcus will measure new diagnostic lines, e.g. for H- and He-like ions of oxygen and other elements. Weak dielectronic recombination lines will provide sensitive measurements of temperature to test stellar coronal heating models. Arcus will also resolve the coronal and accretion line components in young accreting stars, allowing detailed studies of accretion shocks and their post-shock behavior. Arcus can resolve line shapes and variability in hot star winds to study inhomogeneities and dynamics of wind structure. Such profiles will provide an independent measure of mass loss rates, for which theoretical and observational discrepancies can reach an order of magnitude. Arcus will also study exoplanet atmospheres through X-ray absorption, determing their extent and composition.

  14. Theory of active galactic nuclei

    NASA Technical Reports Server (NTRS)

    Shields, G. A.

    1986-01-01

    The involvement of accretion disks around supermassive black holes in the theory of active galactic nuclei (AGN) is discussed. The physics of thin and thick accretion disks is discussed and the partition between thermal and nonthermal energy production in supermassive disks is seen as uncertain. The thermal limit cycle may operate in supermassive disks (Shields, 1985), with accumulation of gas in the disk for periods of 10 to the 4th to 10 to the 7th years, punctuated by briefer outbursts during which the mass is rapidly transferred to smaller radii. An extended X-ray source in AGN is consistent with observations (Tennant and Mushotsky, 1983), and a large wind mass loss rate exceeding the central accretion rate means that only a fraction of the mass entering the disk will reach the central object; the rest being lost to the wind. Controversy in the relationship between the broad lines and the disk is also discussed.

  15. Magnetocentrifugally driven flows from young stars and disks. 1: A generalized model

    NASA Technical Reports Server (NTRS)

    Shu, Frank; Najita, Joan; Ostriker, Eve; Wilkin, Frank; Ruden, Steven; Lizano, Susana

    1994-01-01

    We propose a generalized model for stellar spin-down, disk accretion, and truncation, and the origin of winds, jets, and bipolar outflows from young stellar objects. We consider the steady state dynamics of accretion of matter from a viscous and imperfectly conducting disk onto a young star with a strong magnetic field. For an aligned stellar magnetosphere, shielding currents in the surface layers of the disk prevent stellar field lines from penetrating the disk everywhere except for a range of radii about pi = R(sub x), where the Keplerian angular speed of rotation Omega(sub x) equals the angular speed of the star Omega(sub *). For the low disk accretion rates and high magnetic fields associated with typical T Tauri stars, R(sub x) exceeds the radius of the star R(sub *) by a factor of a few, and the inner disk is effectively truncated at a radius R(sub t) somewhat smaller than R(sub x). Where the closed field lines between R(sub t) and R(sub x) bow sufficiently inward, the accreting gas attaches itself to the field and is funneled dynamically down the effective potential (gravitational plus centrifugal) onto the star. Contrary to common belief, the accompanying magnetic torques associated with this accreting gas may transfer angular momentum mostly to the disk rather than to the star. Thus, the star can spin slowly as long as R(sub x) remains significantly greater than R(sub *). Exterior to R(sub x) field lines threading the disk bow outward, which makes the gas off the mid-plane rotate at super-Keplerian velocities. This combination drives a magnetocentrifugal wind with a mass-loss rate M(sub w) equal to a definite fraction f of the disk accretion rate M(sub D). For high disk accretion rates, R(sub x) is forced down to the stellar surface, the star is spun to breakup, and the wind is generated in a manner identical to that proposed by Shu, Lizano, Ruden, & Najita in a previous communication to this journal. In two companion papers (II and III), we develop a detailed but idealized theory of the magnetocentrifugal acceleration process.

  16. Momentum-driven Winds from Radiatively Efficient Black Hole Accretion and Their Impact on Galaxies

    NASA Astrophysics Data System (ADS)

    Brennan, Ryan; Choi, Ena; Somerville, Rachel S.; Hirschmann, Michaela; Naab, Thorsten; Ostriker, Jeremiah P.

    2018-06-01

    We explore the effect of momentum-driven winds representing radiation-pressure-driven outflows from accretion onto supermassive black holes in a set of numerical hydrodynamical simulations. We explore two matched sets of cosmological zoom-in runs of 24 halos with masses ∼1012.0–1013.4 M ⊙ run with two different feedback models. Our “NoAGN” model includes stellar feedback via UV heating, stellar winds and supernovae, photoelectric heating, and cosmic X-ray background heating from a metagalactic background. Our fiducial “MrAGN” model is identical except that it also includes a model for black hole seeding and accretion, as well as heating and momentum injection associated with the radiation from black hole accretion. Our MrAGN model launches galactic outflows, which result in both “ejective” feedback—the outflows themselves that drive gas out of galaxies—and “preventative” feedback, which suppresses the inflow of new and recycling gas. As much as 80% of outflowing galactic gas can be expelled, and accretion can be suppressed by as much as a factor of 30 in the MrAGN runs when compared with the NoAGN runs. The histories of NoAGN galaxies are recycling dominated, with ∼70% of material that leaves the galaxy eventually returning, and the majority of outflowing gas reaccretes on 1 Gyr timescales without AGN feedback. Outflowing gas in the MrAGN runs has a higher characteristic velocity (500–1000 km s‑1 versus 100–300 km s‑1 for outflowing NoAGN gas) and travels as far as a few megaparsecs. Only ∼10% of ejected material is reaccreted in the MrAGN galaxies.

  17. High-resolution TNG spectra of T Tauri stars. Near-IR GIANO observations of the young variables XZ Tauri and DR Tauri

    NASA Astrophysics Data System (ADS)

    Antoniucci, S.; Nisini, B.; Biazzo, K.; Giannini, T.; Lorenzetti, D.; Sanna, N.; Harutyunyan, A.; Origlia, L.; Oliva, E.

    2017-10-01

    Aims: We aim to characterise the star-disk interaction region in T Tauri stars that show photometric and spectroscopic variability. Methods: We used the GIANO instrument at the Telescopio Nazionale Galileo to obtain near-infrared high-resolution spectra (R 50 000) of XZ Tau and DR Tau, which are two actively accreting T Tauri stars classified as EXors. Equivalent widths and profiles of the observed features are used to derive information on the properties of the inner disk, the accretion columns, and the winds. Results: Both sources display composite H I line profiles, where contributions from both accreting gas and high-velocity winds can be recognised. These lines are progressively more symmetric and narrower with increasing upper energy which may be interpreted in terms of two components with different decrements or imputed to self-absorption effects. XZ Tau is observed in a relatively high state of activity with respect to literature observations. The variation of the He I 1.08 μm line blue-shifted absorption, in particular, suggests that the inner wind has undergone a dramatic change in its velocity structure, connected with a recent accretion event. DR Tau has a more stable wind as its He I 1.08 μm absorption does not show variations with time in spite of strong variability of the emission component. The IR veiling in the two sources can be interpreted as due to blackbody emission at temperatures of 1600 K and 2300 K for XZ Tau and DR Tau, respectively, with emitting areas 30 times larger than the central star. While for XZ Tau these conditions are consistent with emission from the inner rim of the dusty disk, the fairly high temperature inferred for DR Tau might suggest that its veiling originates from a thick gaseous disk located within the dust sublimation radius. Strong and broad metallic lines, mainly from C I and Fe I, are detected in XZ Tau, similar to those observed in other EXor sources during burst phases. At variance, DR Tau shows weaker and narrower metallic lines, despite its larger accretion luminosity. This suggests that accretion is not the only driver of metallic line excitation. Conclusions: The presented observations demonstrate the potential of wide-band, high-resolution near-IR spectroscopy to simultaneously probe the different phenomena that occur in the interaction region between the stellar magnetosphere and the accretion disk, thus providing hints on how these two structures are linked to each other.

  18. Recent Observational Progress on Accretion Disks Around Compact Objects

    NASA Astrophysics Data System (ADS)

    Miller, Jon M.

    2016-04-01

    Studies of accretion disks around black holes and neutron stars over the last ten years have made remarkable progress. Our understanding of disk evolution as a function of mass accretion rate is pushing toward a consensus on thin/thick disk transitions; an apparent switching between disk-driven outflow modes has emerged; and monitoring observations have revealed complex spectral energy distributions wherein disk reprocessing must be important. Detailed studies of disk winds, in particular, have the potential to reveal the basic physical processes that mediate disk accretion, and to connect with numerical simulations. This talk will review these developments and look ahead to the potential of Astro-H.

  19. A Semi-analytical Model for Wind-fed Black Hole High-mass X-Ray Binaries: State Transition Triggered by Magnetic Fields from the Companion Star

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yaji, Kentaro; Yamada, Shinya; Masai, Kuniaki

    We propose a mechanism of state transition in wind-fed black hole (BH) binaries (high-mass X-ray binaries) such as Cyg X-1 and LMC X-1. Modeling a line-driven stellar wind from the companion by two-dimensional hydrodynamical calculations, we investigate the processes of wind capture by, and accretion onto, the BH. We assume that the wind acceleration is terminated at the He ii ionization front because ions responsible for line-driven acceleration are ionized within the front, i.e., the He iii region. It is found that the mass accretion rate inferred from the luminosity is remarkably smaller than the capture rate. Considering the difference,more » we construct a model for the state transition based on the accretion flow being controlled by magnetorotational instability. The outer flow is torus-like, and plays an important role to trigger the transition. The model can explain why state transition does occur in Cyg X-1, while not in LMC X-1. Cyg X-1 exhibits a relatively low luminosity, and then the He ii ionization front is located and can move between the companion and BH, depending on its ionizing photon flux. On the other hand, LMC X-1 exhibits too high luminosity for the front to move considerably; the front is too close to the companion atmosphere. The model also predicts that each state of high-soft or low-hard would last fairly long because the luminosity depends weakly on the wind velocity. In the context of the model, the state transition is triggered by a fluctuation of the magnetic field when its amplitude becomes comparable to the field strength in the torus-like outer flow.« less

  20. Swept-Wing Ice Accretion Characterization and Aerodynamics

    NASA Technical Reports Server (NTRS)

    Broeren, Andy P.; Potapczuk, Mark G.; Riley, James T.; Villedieu, Philippe; Moens, Frederic; Bragg, Michael B.

    2013-01-01

    NASA, FAA, ONERA, the University of Illinois and Boeing have embarked on a significant, collaborative research effort to address the technical challenges associated with icing on large-scale, three-dimensional swept wings. The overall goal is to improve the fidelity of experimental and computational simulation methods for swept-wing ice accretion formation and resulting aerodynamic effect. A seven-phase research effort has been designed that incorporates ice-accretion and aerodynamic experiments and computational simulations. As the baseline, full-scale, swept-wing-reference geometry, this research will utilize the 65% scale Common Research Model configuration. Ice-accretion testing will be conducted in the NASA Icing Research Tunnel for three hybrid swept-wing models representing the 20%, 64% and 83% semispan stations of the baseline-reference wing. Three-dimensional measurement techniques are being developed and validated to document the experimental ice-accretion geometries. Artificial ice shapes of varying geometric fidelity will be developed for aerodynamic testing over a large Reynolds number range in the ONERA F1 pressurized wind tunnel and in a smaller-scale atmospheric wind tunnel. Concurrent research will be conducted to explore and further develop the use of computational simulation tools for ice accretion and aerodynamics on swept wings. The combined results of this research effort will result in an improved understanding of the ice formation and aerodynamic effects on swept wings. The purpose of this paper is to describe this research effort in more detail and report on the current results and status to date. 1

  1. Swept-Wing Ice Accretion Characterization and Aerodynamics

    NASA Technical Reports Server (NTRS)

    Broeren, Andy P.; Potapczuk, Mark G.; Riley, James T.; Villedieu, Philippe; Moens, Frederic; Bragg, Michael B.

    2013-01-01

    NASA, FAA, ONERA, the University of Illinois and Boeing have embarked on a significant, collaborative research effort to address the technical challenges associated with icing on large-scale, three-dimensional swept wings. The overall goal is to improve the fidelity of experimental and computational simulation methods for swept-wing ice accretion formation and resulting aerodynamic effect. A seven-phase research effort has been designed that incorporates ice-accretion and aerodynamic experiments and computational simulations. As the baseline, full-scale, swept-wing-reference geometry, this research will utilize the 65 percent scale Common Research Model configuration. Ice-accretion testing will be conducted in the NASA Icing Research Tunnel for three hybrid swept-wing models representing the 20, 64 and 83 percent semispan stations of the baseline-reference wing. Threedimensional measurement techniques are being developed and validated to document the experimental ice-accretion geometries. Artificial ice shapes of varying geometric fidelity will be developed for aerodynamic testing over a large Reynolds number range in the ONERA F1 pressurized wind tunnel and in a smaller-scale atmospheric wind tunnel. Concurrent research will be conducted to explore and further develop the use of computational simulation tools for ice accretion and aerodynamics on swept wings. The combined results of this research effort will result in an improved understanding of the ice formation and aerodynamic effects on swept wings. The purpose of this paper is to describe this research effort in more detail and report on the current results and status to date.

  2. MHD Wind Models in X-Ray Binaries and AGN

    NASA Astrophysics Data System (ADS)

    Behar, Ehud; Fukumura, Keigo; Kazanas, Demosthenes; Shrader, Chris R.; Tombesi, Francesco; Contopoulos, Ioannis

    2017-08-01

    Self-similar magnetohydrodynamic (MHD) wind models that can explain both the kinematics and the ionization structure of outflows from accretion sources will be presented.The X-ray absorption-line properties of these outflows are diverse, their velocity ranging from 0.001c to 0.1c, and their ionization ranging from neutral to fully ionized.We will show how the velocity structure and density profile of the wind can be tightly constrained, by finding the scaling of the magnetic flux with the distance from the center that best matches observations, and with no other priors.It will be demonstrated that the same basic MHD wind structure that successfully accounts for the X-ray absorber properties of outflows from supermassive black holes, also reproduces the high-resolution X-ray spectrum of the accreting stellar-mass black hole GRO J1655-40 for a series of ions between ~1A and ~12A.These results support both the magnetic nature of these winds, as well as the universal nature of magnetic outflows across all black hole sizes.

  3. Nature and evolution of the eclipsing millisecond binary pulsar PSR1957 + 20

    NASA Technical Reports Server (NTRS)

    Kluzniak, W.; Ruderman, M.; Shaham, J.; Tavani, M.

    1988-01-01

    A model in which a millisecond pulsar may be able to evaporate a very light companion by a particular component of its energetic radiation is applied to the recently discovered 1.6-ms pulsar PSR1957 + 20. Pulsar turn-on in the very low-mass X-ray binary follows a stage of mass transfer dominated by an evaporative wind from the surface of the companion. The wind is driven by a large MeV gamma-ray flux powered by an accretion dynamo. That source of radiation ceases when it is replaced by that from the millisecond pulsar, which has been spun up by accretion.

  4. A Wind Tunnel Study of Icing Effects on a Business Jet Airfoil

    NASA Technical Reports Server (NTRS)

    Addy, Harold E., Jr.; Broeren, Andy P.; Zoeckler, Joesph G.; Lee, Sam

    2003-01-01

    Aerodynamic wind tunnel tests were conducted to study the effects of various ice accretions on the aerodynamic performance of a 36-inch chord, two-dimensional business jet airfoil. Eight different ice shape configurations were tested. Four were castings made from molds of ice shapes accreted in an icing wind tunnel. Two were made using computationally smoothed tracings of two of the ice shapes accreted in the icing tunnel. These smoothed profiles were then extended in the spanwise direction to form a two-dimensional ice shape. The final two configurations were formed by applying grit to the smoothed ice shapes. The ice shapes resulted in as much as 48% reduction in maximum lift coefficient from that of the clean airfoil. Large increases in drag and changes in pitching moment were also observed. The castings and their corresponding smoothed counterparts yielded similar results. Little change in performance was observed with the addition of grit to the smoothed ice shapes. Changes in the Reynolds number (from 3 x 10(exp 6) to 10.5 x 10(exp 6) and Mach number (from 0.12 to 0.28) did not significantly affect the iced-airfoil performance coefficients.

  5. Generation of Fullspan Leading-Edge 3D Ice Shapes for Swept-Wing Aerodynamic Testing

    NASA Technical Reports Server (NTRS)

    Camello, Stephanie C.; Lee, Sam; Lum, Christopher; Bragg, Michael B.

    2016-01-01

    The deleterious effect of ice accretion on aircraft is often assessed through dry-air flight and wind tunnel testing with artificial ice shapes. This paper describes a method to create fullspan swept-wing artificial ice shapes from partial span ice segments acquired in the NASA Glenn Icing Reserch Tunnel for aerodynamic wind-tunnel testing. Full-scale ice accretion segments were laser scanned from the Inboard, Midspan, and Outboard wing station models of the 65% scale Common Research Model (CRM65) aircraft configuration. These were interpolated and extrapolated using a weighted averaging method to generate fullspan ice shapes from the root to the tip of the CRM65 wing. The results showed that this interpolation method was able to preserve many of the highly three dimensional features typically found on swept-wing ice accretions. The interpolated fullspan ice shapes were then scaled to fit the leading edge of a 8.9% scale version of the CRM65 wing for aerodynamic wind-tunnel testing. Reduced fidelity versions of the fullspan ice shapes were also created where most of the local three-dimensional features were removed. The fullspan artificial ice shapes and the reduced fidelity versions were manufactured using stereolithography.

  6. The response of relativistic outflowing gas to the inner accretion disk of a black hole.

    PubMed

    Parker, Michael L; Pinto, Ciro; Fabian, Andrew C; Lohfink, Anne; Buisson, Douglas J K; Alston, William N; Kara, Erin; Cackett, Edward M; Chiang, Chia-Ying; Dauser, Thomas; De Marco, Barbara; Gallo, Luigi C; Garcia, Javier; Harrison, Fiona A; King, Ashley L; Middleton, Matthew J; Miller, Jon M; Miniutti, Giovanni; Reynolds, Christopher S; Uttley, Phil; Vasudevan, Ranjan; Walton, Dominic J; Wilkins, Daniel R; Zoghbi, Abderahmen

    2017-03-01

    The brightness of an active galactic nucleus is set by the gas falling onto it from the galaxy, and the gas infall rate is regulated by the brightness of the active galactic nucleus; this feedback loop is the process by which supermassive black holes in the centres of galaxies may moderate the growth of their hosts. Gas outflows (in the form of disk winds) release huge quantities of energy into the interstellar medium, potentially clearing the surrounding gas. The most extreme (in terms of speed and energy) of these-the ultrafast outflows-are the subset of X-ray-detected outflows with velocities higher than 10,000 kilometres per second, believed to originate in relativistic (that is, near the speed of light) disk winds a few hundred gravitational radii from the black hole. The absorption features produced by these outflows are variable, but no clear link has been found between the behaviour of the X-ray continuum and the velocity or optical depth of the outflows, owing to the long timescales of quasar variability. Here we report the observation of multiple absorption lines from an extreme ultrafast gas flow in the X-ray spectrum of the active galactic nucleus IRAS 13224-3809, at 0.236 ± 0.006 times the speed of light (71,000 kilometres per second), where the absorption is strongly anti-correlated with the emission of X-rays from the inner regions of the accretion disk. If the gas flow is identified as a genuine outflow then it is in the fastest five per cent of such winds, and its variability is hundreds of times faster than in other variable winds, allowing us to observe in hours what would take months in a quasar. We find X-ray spectral signatures of the wind simultaneously in both low- and high-energy detectors, suggesting a single ionized outflow, linking the low- and high-energy absorption lines. That this disk wind is responding to the emission from the inner accretion disk demonstrates a connection between accretion processes occurring on very different scales: the X-ray emission from within a few gravitational radii of the black hole ionizing the disk wind hundreds of gravitational radii further away as the X-ray flux rises.

  7. Quasi-spherical accretion in High Mass X-ray Binaries

    NASA Astrophysics Data System (ADS)

    Postnov, Konstantin

    2016-07-01

    Quasi-spherical accreion onto magnetized neutron stars from stellar winds in high-mass X-ray binaries is discussed. Depending on the X-ray luminosity of the neutron star, the accretion can proceed in two regimes (modes): at L_x ≳ 4× 10^{36} erg/s, Compton cooling of accreting matter near magnetosphere leads to a supersonic (Bondi) accretion, while at smaller X-ray luminosity the Compton cooling is ineffective, and subsonic settling accretion regime sets in. In this regime, a hot convective shell is formed around the magnetosphere, and the plasma entry rate into magnetosphere is controlled by less effective radiative plasma cooling. The shell mediates the angular momentum transfer from/to the neutron star magnetosphere. Observational evidences for the different accretion regimes in slowly rotating X-ray pulsars with moderate and low X-ray luminosity, as well as possible manifestations of non-stationary quasi-spherical settling accretion due to the magnetospheric shell instability in Supergiant Fast X-ray Transients will be presented.

  8. X-ray and gamma-ray emission of Sagittarius A* as a wind-accreting black hole

    NASA Technical Reports Server (NTRS)

    Mastichiadis, A.; Ozernoy, L. M.

    1994-01-01

    If, as many believe, Sgr A* is a massive black hole at the Galactic center, one should expect it to be a source of X-ray and gamma-ray activity, behaving basically as a scaled-down active galactic nucleus. An unavoidable source of accretion is the wind from IRS 16, a nearby group of hot, massive stars. Since the density and velocity of the accreting matter are known from observations, the accretion rate is basically a function of the putative black hole mass, M(sub h), only; this value represents a reliable lower limit to a real rate, given the other possible sources of accreting matter. Based on this and on the theories about shock acceleration in active galactic nuclei, we have estimated the expected production of relativistic particles and their hard radiation. These values turn out to be a function of M(sub h) as well. Comparing our results with available X-ray and gamma-ray observations which show Sgr A* to have a relatively low activity level, we conclude tentatively that the putative black hole in the Galactic center cannot have a mass greater than approximately 6 x 10(exp 3) solar mass. This conclusion is consistent with the upper limits to the black hole mass found by different methods earlier, although much more work is needed to make calculations of shock acceleration around black holes more reliable.

  9. High-resolution simulations of the final assembly of Earth-like planets. 2. Water delivery and planetary habitability.

    PubMed

    Raymond, Sean N; Quinn, Thomas; Lunine, Jonathan I

    2007-02-01

    The water content and habitability of terrestrial planets are determined during their final assembly, from perhaps 100 1,000-km "planetary embryos " and a swarm of billions of 1-10-km "planetesimals. " During this process, we assume that water-rich material is accreted by terrestrial planets via impacts of water-rich bodies that originate in the outer asteroid region. We present analysis of water delivery and planetary habitability in five high-resolution simulations containing about 10 times more particles than in previous simulations. These simulations formed 15 terrestrial planets from 0.4 to 2.6 Earth masses, including five planets in the habitable zone. Every planet from each simulation accreted at least the Earth's current water budget; most accreted several times that amount (assuming no impact depletion). Each planet accreted at least five water-rich embryos and planetesimals from the past 2.5 astronomical units; most accreted 10-20 water-rich bodies. We present a new model for water delivery to terrestrial planets in dynamically calm systems, with low-eccentricity or low-mass giant planets-such systems may be very common in the Galaxy. We suggest that water is accreted in comparable amounts from a few planetary embryos in a " hit or miss " way and from millions of planetesimals in a statistically robust process. Variations in water content are likely to be caused by fluctuations in the number of water-rich embryos accreted, as well as from systematic effects, such as planetary mass and location, and giant planet properties.

  10. Optical and X-ray luminosities of expanding nebulae around ultraluminous X-ray sources

    NASA Astrophysics Data System (ADS)

    Siwek, Magdalena; Sądowski, Aleksander; Narayan, Ramesh; Roberts, Timothy P.; Soria, Roberto

    2017-09-01

    We have performed a set of simulations of expanding, spherically symmetric nebulae inflated by winds from accreting black holes in ultraluminous X-ray sources (ULXs). We implemented a realistic cooling function to account for free-free and bound-free cooling. For all model parameters we considered, the forward shock in the interstellar medium becomes radiative at a radius ˜100 pc. The emission is primarily in optical and UV, and the radiative luminosity is about 50 per cent of the total kinetic luminosity of the wind. In contrast, the reverse shock in the wind is adiabatic so long as the terminal outflow velocity of the wind vw ≳ 0.003c. The shocked wind in these models radiates in X-rays, but with a luminosity of only ˜1035 erg s-1. For wind velocities vw ≲ 0.001c, the shocked wind becomes radiative, but it is no longer hot enough to produce X-rays. Instead it emits in optical and UV, and the radiative luminosity is comparable to 100 per cent of the wind kinetic luminosity. We suggest that measuring the optical luminosities and putting limits on the X-ray and radio emission from shock-ionized ULX bubbles may help in estimating the mass outflow rate of the central accretion disc and the velocity of the outflow.

  11. Quasispherical subsonic accretion in X-ray pulsars

    NASA Astrophysics Data System (ADS)

    Shakura, Nikolai I.; Postnov, Konstantin A.; Kochetkova, A. Yu; Hjalmarsdotter, L.

    2013-04-01

    A theoretical model is considered for quasispherical subsonic accretion onto slowly rotating magnetized neutron stars. In this regime, the accreting matter settles down subsonically onto the rotating magnetosphere, forming an extended quasistatic shell. Angular momentum transfer in the shell occurs via large-scale convective motions resulting, for observed pulsars, in an almost iso-angular-momentum \\omega \\sim 1/R^2 rotation law inside the shell. The accretion rate through the shell is determined by the ability of the plasma to enter the magnetosphere due to Rayleigh-Taylor instabilities, with allowance for cooling. A settling accretion regime is possible for moderate accretion rates \\dot M \\lesssim \\dot M_* \\simeq 4\\times 10^{16} g s ^{-1}. At higher accretion rates, a free-fall gap above the neutron star magnetosphere appears due to rapid Compton cooling, and the accretion becomes highly nonstationary. Observations of spin-up/spin-down rates of quasispherically wind accreting equilibrium X-ray pulsars with known orbital periods (e.g., GX 301-2 and Vela X-1) enable us to determine the main dimensionless parameters of the model, as well as to estimate surface magnetic field of the neutron star. For equilibrium pulsars, the independent measurements of the neutron star magnetic field allow for an estimate of the stellar wind velocity of the optical companion without using complicated spectroscopic measurements. For nonequilibrium pulsars, a maximum value is shown to exist for the spin-down rate of the accreting neutron star. From observations of the spin-down rate and the X-ray luminosity in such pulsars (e.g., GX 1+4, SXP 1062, and 4U 2206+54), a lower limit can be put on the neutron star magnetic field, which in all cases turns out to be close to the standard value and which agrees with cyclotron line measurements. Furthermore, both explains the spin-up/spin-down of the pulsar frequency on large time-scales and also accounts for the irregular short-term frequency fluctuations, which may correlate or anticorrelate with the observed X-ray luminosity fluctuations.

  12. Study on the glaze ice accretion of wind turbine with various chord lengths

    NASA Astrophysics Data System (ADS)

    Liang, Jian; Liu, Maolian; Wang, Ruiqi; Wang, Yuhang

    2018-02-01

    Wind turbine icing often occurs in winter, which changes the aerodynamic characteristics of the blades and reduces the work efficiency of the wind turbine. In this paper, the glaze ice model is established for horizontal-axis wind turbine in 3-D. The model contains the grid generation, two-phase simulation, heat and mass transfer. Results show that smaller wind turbine suffers from more serious icing problem, which reflects on a larger ice thickness. Both the collision efficiency and heat transfer coefficient increase under smaller size condition.

  13. What shapes stellar metallicity gradients of massive galaxies at large radii?

    NASA Astrophysics Data System (ADS)

    Hirschmann, Michaela

    2017-03-01

    We investigate the differential impact of physical mechanisms, mergers and internal energetic phenomena, on the evolution of stellar metallicity gradients in massive, present-day galaxies employing sets of high-resolution, cosmological zoom simulations. We demonstrate that negative metallicity gradients at large radii (>2Reff) originate from the accretion of metal-poor stellar systems. At larger radii, galaxies become typically more dominated by stars accreted from satellite galaxies in major and minor mergers. However, only strong galactic, stellar-driven winds can sufficiently reduce the metallicity content of the accreted stars to realistically steepen the outer metallicity gradients in agreement with observations. In contrast, the gradients of the models without winds are inconsistent with observations. Moreover, we discuss the impact of additional AGN feedback. This analysis greatly highlights the importance of both energetic processes and merger events for stellar population properties of massive galaxies at large radii. Our results are expected to significantly contribute to the interpretation of current and up-coming IFU surveys (e.g. MaNGA, CALIFA).

  14. Probing disk wind and other properties of 4U 1630-47

    NASA Astrophysics Data System (ADS)

    Bhattacharyya, Sudip

    2015-09-01

    The accreting Galactic black hole transient 4U 1630-47, which is currently in outburst, is an ideal source to probe two types of accreted matter ejection: (1) via disk wind and (2) via jet, both using the observed narrow spectral lines (Diaz Trigo et al., 2013, Nature, 504, 206; Neilsen et al. 2014; Diaz Trigo et al. 2014). Chandra gratings are ideal to study such lines. The source also showed indications of high-frequency (HF) quasi-periodic oscillations (QPOs) in a rather high (150-450 Hz) frequency range, which can be extremely useful to probe the strong gravity regime. The AstroSat satellite, because of its large area and high timing resolution in a broad energy band, can potentially detect and measure HF QPOs and probe the source broadband spectrum and state. Hence, our proposed 30 ks Chandra exposure, nearly contemporaneous with complementary AstroSat observations, will provide an excellent way to probe the accretion and ejection mechanism in the strong gravity regime.

  15. ULXs from Accreting Neutron Stars: the Light Cylinder, the Stellar Surface, and Everything in Between

    NASA Astrophysics Data System (ADS)

    Parfrey, K.; Tchekhovskoy, A.

    2017-10-01

    I will present results from the first relativistic MHD simulations of accretion onto magnetized neutron stars, performed in general relativity in the Kerr spacetime. The accretion flow is geometrically thick with a relativistic-gas equation of state, appropriate for super-Eddington systems. Four regimes are recovered, in order of increasing stellar magnetic field strength (equivalently, decreasing mass accretion rate): (a) crushing of the stellar magnetosphere and direct accretion; (b) magnetically channeled accretion onto the stellar poles; (c) the propeller state, where material enters through the light cylinder but is prevented from accreting by the centrifugal barrier; (d) almost perfect exclusion of the accretion flow from the light cylinder by the pulsar's electromagnetic wind. A Poynting-flux-dominated relativistic jet, powered by stellar rotation, is produced when the intruding plasma succeeds in opening the pulsar's previously closed magnetic field lines. I will demonstrate the effect of changing the relative orientation of the stellar dipole and the large-scale magnetic field in the accreting plasma, and discuss our results in the context of the neutron-star-powered ULXs, as well as the transitional millisecond X-ray/radio pulsars and jet-launching neutron-star X-ray binaries.

  16. Magnetically Induced Disk Winds and Transport in the HL Tau Disk

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hasegawa, Yasuhiro; Flock, Mario; Turner, Neal J.

    2017-08-10

    The mechanism of angular momentum transport in protoplanetary disks is fundamental to understanding the distributions of gas and dust in the disks. The unprecedented ALMA observations taken toward HL Tau at high spatial resolution and subsequent radiative transfer modeling reveal that a high degree of dust settling is currently achieved in the outer part of the HL Tau disk. Previous observations, however, suggest a high disk accretion rate onto the central star. This configuration is not necessarily intuitive in the framework of the conventional viscous disk model, since efficient accretion generally requires a high level of turbulence, which can suppressmore » dust settling considerably. We develop a simplified, semi-analytical disk model to examine under what condition these two properties can be realized in a single model. Recent, non-ideal MHD simulations are utilized to realistically model the angular momentum transport both radially via MHD turbulence and vertically via magnetically induced disk winds. We find that the HL Tau disk configuration can be reproduced well when disk winds are properly taken into account. While the resulting disk properties are likely consistent with other observational results, such an ideal situation can be established only if the plasma β at the disk midplane is β {sub 0} ≃ 2 × 10{sup 4} under the assumption of steady accretion. Equivalently, the vertical magnetic flux at 100 au is about 0.2 mG. More detailed modeling is needed to fully identify the origin of the disk accretion and quantitatively examine plausible mechanisms behind the observed gap structures in the HL Tau disk.« less

  17. Magnetically Induced Disk Winds and Transport in the HL Tau Disk

    NASA Astrophysics Data System (ADS)

    Hasegawa, Yasuhiro; Okuzumi, Satoshi; Flock, Mario; Turner, Neal J.

    2017-08-01

    The mechanism of angular momentum transport in protoplanetary disks is fundamental to understanding the distributions of gas and dust in the disks. The unprecedented ALMA observations taken toward HL Tau at high spatial resolution and subsequent radiative transfer modeling reveal that a high degree of dust settling is currently achieved in the outer part of the HL Tau disk. Previous observations, however, suggest a high disk accretion rate onto the central star. This configuration is not necessarily intuitive in the framework of the conventional viscous disk model, since efficient accretion generally requires a high level of turbulence, which can suppress dust settling considerably. We develop a simplified, semi-analytical disk model to examine under what condition these two properties can be realized in a single model. Recent, non-ideal MHD simulations are utilized to realistically model the angular momentum transport both radially via MHD turbulence and vertically via magnetically induced disk winds. We find that the HL Tau disk configuration can be reproduced well when disk winds are properly taken into account. While the resulting disk properties are likely consistent with other observational results, such an ideal situation can be established only if the plasma β at the disk midplane is β 0 ≃ 2 × 104 under the assumption of steady accretion. Equivalently, the vertical magnetic flux at 100 au is about 0.2 mG. More detailed modeling is needed to fully identify the origin of the disk accretion and quantitatively examine plausible mechanisms behind the observed gap structures in the HL Tau disk.

  18. Superorbital Periodic Modulation in Wind-Accretion High-Mass X-Ray Binaries from Swift Burst Alert Telescope Observations

    NASA Technical Reports Server (NTRS)

    Corbet, Robin H. D.; Krimm, Hans A.

    2013-01-01

    We report the discovery using data from the Swift-Burst Alert Telescope (BAT) of superorbital modulation in the wind-accretion supergiant high-mass X-ray binaries 4U 1909+07 (= X 1908+075), IGR J16418-4532, and IGR J16479-4514. Together with already known superorbital periodicities in 2S 0114+650 and IGR J16493-4348, the systems exhibit a monotonic relationship between superorbital and orbital periods. These systems include both supergiant fast X-ray transients and classical supergiant systems, and have a range of inclination angles. This suggests an underlying physical mechanism which is connected to the orbital period. In addition to these sources with clear detections of superorbital periods, IGR J16393-4643 (= AX J16390.4-4642) is identified as a system that may have superorbital modulation due to the coincidence of low-amplitude peaks in power spectra derived from BAT, Rossi X-Ray Timing Explorer Proportional Counter Array, and International Gamma-Ray Astrophysics Laboratory light curves. 1E 1145.1-6141 may also be worthy of further attention due to the amount of low-frequency modulation of its light curve. However, we find that the presence of superorbital modulation is not a universal feature of wind-accretion supergiant X-ray binaries.

  19. Assisted stellar suicide: the wind-driven evolution of the recurrent nova T Pyxidis

    NASA Astrophysics Data System (ADS)

    Knigge, Ch.; King, A. R.; Patterson, J.

    2000-12-01

    We show that the extremely high luminosity of the short-period recurrent nova T Pyx in quiescence can be understood if this system is a wind-driven supersoft x-ray source (SSS). In this scenario, a strong, radiation-induced wind is excited from the secondary star and accelerates the binary evolution. The accretion rate is therefore much higher than in an ordinary cataclysmic binary at the same orbital period, as is the luminosity of the white dwarf primary. In the steady state, the enhanced luminosity is just sufficient to maintain the wind from the secondary. The accretion rate and luminosity predicted by the wind-driven model for T Pyx are in good agreement with the observational evidence. X-ray observations with Chandra or XMM may be able to confirm T Pyx's status as a SSS. T Pyx's lifetime in the wind-driven state is on the order of a million years. Its ultimate fate is not certain, but the system may very well end up destroying itself, either via the complete evaporation of the secondary star, or in a Type Ia supernova if the white dwarf reaches the Chandrasekhar limit. Thus either the primary, the secondary, or both may currently be committing assisted stellar suicide.

  20. Magnetically Driven Accretion Disk Winds and Ultra-fast Outflows in PG 1211+143

    NASA Astrophysics Data System (ADS)

    Fukumura, Keigo; Tombesi, Francesco; Kazanas, Demosthenes; Shrader, Chris; Behar, Ehud; Contopoulos, Ioannis

    2015-05-01

    We present a study of X-ray ionization of MHD accretion-disk winds in an effort to constrain the physics underlying the highly ionized ultra-fast outflows (UFOs) inferred by X-ray absorbers often detected in various sub classes of Seyfert active galactic nuclei (AGNs). Our primary focus is to show that magnetically driven outflows are indeed physically plausible candidates for the observed outflows accounting for the AGN absorption properties of the present X-ray spectroscopic observations. Employing a stratified MHD wind launched across the entire AGN accretion disk, we calculate its X-ray ionization and the ensuing X-ray absorption-line spectra. Assuming an appropriate ionizing AGN spectrum, we apply our MHD winds to model the absorption features in an XMM-Newton/EPIC spectrum of the narrow-line Seyfert, PG 1211+143. We find, through identifying the detected features with Fe Kα transitions, that the absorber has a characteristic ionization parameter of log (ξc[erg cm s-1]) ≃ 5-6 and a column density on the order of NH ≃ 1023 cm-2 outflowing at a characteristic velocity of vc/c ≃ 0.1-0.2 (where c is the speed of light). The best-fit model favors its radial location at rc ≃ 200 Ro (Ro is the black hole’s innermost stable circular orbit), with an inner wind truncation radius at Rt ≃ 30 Ro. The overall K-shell feature in the data is suggested to be dominated by Fe xxv with very little contribution from Fe xxvi and weakly ionized iron, which is in good agreement with a series of earlier analyses of the UFOs in various AGNs, including PG 1211+143.

  1. Modeling X-ray Absorbers in AGNs with MHD-Driven Accretion-Disk Winds

    NASA Astrophysics Data System (ADS)

    Fukumura, Keigo; Kazanas, D.; Shrader, C. R.; Tombesi, F.; Contopoulos, J.; Behar, E.

    2013-04-01

    We have proposed a systematic view of the observed X-ray absorbers, namely warm absorbers (WAs) in soft X-ray and highly-ionized ultra-fast outflows (UFOs), in the context of magnetically-driven accretion-disk wind models. While potentially complicated by variability and thermal instability in these energetic outflows, in this simplistic model we have calculated 2D kinematic field as well as density and ionization structure of the wind with density profile of 1/r corresponding to a constant column distribution per decade of ionization parameter. In particular we show semi-analytically that the inner layer of the disk-wind manifests itself as the strongly-ionized fast outflows while the outer layer is identified as the moderately-ionized absorbers. The computed characteristics of these two apparently distinct absorbers are consistent with X-ray data (i.e. a factor of ~100 difference in column and ionization parameters as well as low wind velocity vs. near-relativistic flow). With the predicted contour curves for these wind parameters one can constrain allowed regions for the presence of WAs and UFOs.The model further implies that the UFO's gas pressure is comparable to that of the observed radio jet in 3C111 suggesting that the magnetized disk-wind with density profile of 1/r is a viable agent to help sustain such a self-collimated jet at small radii.

  2. No Disk Winds in Failed Black Hole Outbursts? New Observations of H1743-322

    NASA Astrophysics Data System (ADS)

    Neilsen, Joseph; Coriat, Mickael; Motta, Sara; Fender, Rob P.; Ponti, Gabriele; Corbel, Stephane

    2016-04-01

    The rich and complex physics of stellar-mass black holes in outburst is often referred to as the "disk-jet connection," a term that encapsulates the evolution of accretion disks over several orders of magnitude in Eddington ratio; through Compton scattering, reflection, and thermal emission; as they produce steady compact jets, relativistic plasma ejections, and (from high spectral resolution revelations of the last 15 years) massive, ionized disk winds. It is well established that steady jets are associated with radiatively inefficient X-ray states, and that winds tend to appear during states with more luminous disks, but the underlying physical processes that govern these connections (and their changes during state transitions) are not fully understood. I will present a unique perspective on the disk-wind-jet connection based on new Chandra HETGS, NuSTAR, and JVLA observations of the black hole H1743-322. Rather than following the usual outburst track, the 2015 outburst of H1743 fizzled: the disk never appeared in X-rays, and the source remained spectrally hard for the entire ~100 days. Remarkably, we find no evidence for any accretion disk wind in our data, even though H1743-322 has produced winds at comparable hard X-ray luminosities. I will discuss the implications of this "failed outburst" for our picture of winds from black holes and the astrophysics that governs them.

  3. Filling a SMBH accretion disk atmosphere at small and intermediate radii

    NASA Astrophysics Data System (ADS)

    Karas, Vladimir; Czerny, Bozena; Kunneriath, Devaky

    2017-08-01

    The medium above an accretion disk is highly diluted and hot. An efficient mechanism to deliver particles and dust grains is an open question; apparently, different processes must be in operation. We discuss an interplay of two different scenarios, where the material is elevated from the plane of an equatorial accretion disk into a corona near a supermassive black hole: (i) an electromagnetically induced transport, which can be driven by magnetic field of stars passing across an accretion disk (Karas et al., 2017); and (ii) radiatively driven acceleration by radiation emerging from the disk (Czerny et al 2015), which can launch a dusty wind near above the dust sublimation radius. The former process can operate in the vicinity of a supermassive black hole (SMBH) surrounded by a dense nuclear star-cluster. The latter process involves the effect of radiation pressure from various sources - stars, accretion disc, and the central accreting SMBH; it can help filling the Broad-Line Region against the vertical component of the black hole gravitational attraction and the accretion disk self-gravity at radius about a few $\\times 10^3 R_g$.

  4. Quantification of Ice Accretions for Icing Scaling Evaluations

    NASA Technical Reports Server (NTRS)

    Ruff, Gary A.; Anderson, David N.

    2003-01-01

    The comparison of ice accretion characteristics is an integral part of aircraft icing research. It is often necessary to compare an ice accretion obtained from a flight test or numerical simulation to one produced in an icing wind tunnel or for validation of an icing scaling method. Traditionally, this has been accomplished by overlaying two-dimensional tracings of ice accretion shapes. This paper addresses the basic question of how to compare ice accretions using more quantitative methods. For simplicity, geometric characteristics of the ice accretions are used for the comparison. One method evaluated is a direct comparison of the percent differences of the geometric measurements. The second method inputs these measurements into a fuzzy inference system to obtain a single measure of the goodness of the comparison. The procedures are demonstrated by comparing ice shapes obtained in the Icing Research Tunnel at NASA Glenn Research Center during recent icing scaling tests. The results demonstrate that this type of analysis is useful in quantifying the similarity of ice accretion shapes and that the procedures should be further developed by expanding the analysis to additional icing data sets.

  5. Coherent variability of GX 1+4

    NASA Astrophysics Data System (ADS)

    Nielsen, Ann-Sofie Bak; Patruno, Alessandro

    2018-06-01

    The accreting pulsar GX 1+4 is a symbiotic X-ray binary system with a M-type giant star companion. The system has a spin period of about 150 s and a proposed strong magnetic field of 1012-1014G. In this paper we study the coherent variability of the source and attempt to find a phase-coherent solution for the pulsar. We also test for the presence of a pulse phase - flux correlation, similar to what is observed for the accreting millisecond X-ray pulsars, in order to test whether this feature is dependent on the magnetic field strength. We find that no phase coherent solution exists which suggests that the pulsar is accreting plasma from a wind rather than an accretion disc. We also find evidence that the pulse phase is not correlated with the X-ray flux, which strengthens the idea that such relation might be present only in weak magnetic field sources like accreting millisecond pulsars.

  6. Strong disk winds traced throughout outbursts in black-hole X-ray binaries

    NASA Astrophysics Data System (ADS)

    Tetarenko, B. E.; Lasota, J.-P.; Heinke, C. O.; Dubus, G.; Sivakoff, G. R.

    2018-02-01

    Recurring outbursts associated with matter flowing onto compact stellar remnants (such as black holes, neutron stars and white dwarfs) in close binary systems provide a way of constraining the poorly understood accretion process. The light curves of these outbursts are shaped by the efficiency of angular-momentum (and thus mass) transport in the accretion disks, which has traditionally been encoded in a viscosity parameter, α. Numerical simulations of the magneto-rotational instability that is believed to be the physical mechanism behind this transport yield values of α of roughly 0.1–0.2, consistent with values determined from observations of accreting white dwarfs. Equivalent viscosity parameters have hitherto not been estimated for disks around neutron stars or black holes. Here we report the results of an analysis of archival X-ray light curves of 21 outbursts in black-hole X-ray binaries. By applying a Bayesian approach to a model of accretion, we determine corresponding values of α of around 0.2–1.0. These high values may be interpreted as an indication either of a very high intrinsic rate of angular-momentum transport in the disk, which could be sustained by the magneto-rotational instability only if a large-scale magnetic field threads the disk, or that mass is being lost from the disk through substantial outflows, which strongly shape the outburst in the black-hole X-ray binary. The lack of correlation between our estimates of α and the accretion state of the binaries implies that such outflows can remove a substantial fraction of the disk mass in all accretion states and therefore suggests that the outflows correspond to magnetically driven disk winds rather than thermally driven ones, which require specific radiative conditions.

  7. The first mass and angular momentum loss measurements for a CV-like binary

    NASA Astrophysics Data System (ADS)

    Drake, Jeremy

    2015-10-01

    The period distribution of close binaries, cataclysmic variables, novae and single-degenerate SN1a progenitor candidates is largely controlled by magnetically-driven mass and angular momentum loss (AML) from the M dwarf secondary. The mass loss rates for these spun-up stars remain essentially unknown and impossible to observe directly, with likely values in the range 1e-12 to 1e-15 Msun/yr. AML presciptions for CVs differ by orders of magnitude. One way to measure the mass loss rate is to observe the dM wind accrete onto its WD companion in a pre-CV very close to Roche Lobe overflow but lacking the obscuring complications and emission from an accretion disk. The measurement can be combined with realistic MHD models to understand the accretion fraction, the mass that escapes, and the AML. The best-studied nearby pre-CV is QS Vir (48pc, P=3.6hr). However, its wind accretion rates measured from 1999 HST UV spectra of the WD metal absorption lines and 2006 XMM-Newton CCD spectroscopy differ by a factor of a thousand, pointing to either a dominant CME stochastic component, or a magnetic switch found in MHD simulations and driven by cyclic activity on the M dwarf. HST COS spectra combined with XMM-Newton monitoring on timescales from weeks to years will tease out CME vs cyclic accretion variations. UV and X-ray measurements will provide the first consistency check of both accretion rate measurement methods. MHD models tailored to the system will enable the first quasi-direct measurements of the mass loss and AML from a CV-like binary. Our project requires 6 HST/COS orbits in Cycles 22-24, and 60ksec on XMM in Cycle 22

  8. The first mass and angular momentum loss measurements for a CV-like binary

    NASA Astrophysics Data System (ADS)

    Drake, Jeremy

    2014-10-01

    The period distribution of close binaries, cataclysmic variables, novae and single-degenerate SN1a progenitor candidates is largely controlled by magnetically-driven mass and angular momentum loss (AML) from the M dwarf secondary. The mass loss rates for these spun-up stars remain essentially unknown and impossible to observe directly, with likely values in the range 1e-12 to 1e-15 Msun/yr. AML presciptions for CVs differ by orders of magnitude. One way to measure the mass loss rate is to observe the dM wind accrete onto its WD companion in a pre-CV very close to Roche Lobe overflow but lacking the obscuring complications and emission from an accretion disk. The measurement can be combined with realistic MHD models to understand the accretion fraction, the mass that escapes, and the AML. The best-studied nearby pre-CV is QS Vir (48pc, P=3.6hr). However, its wind accretion rates measured from 1999 HST UV spectra of the WD metal absorption lines and 2006 XMM-Newton CCD spectroscopy differ by a factor of a thousand, pointing to either a dominant CME stochastic component, or a "magnetic switch" found in MHD simulations and driven by cyclic activity on the M dwarf. HST COS spectra combined with XMM-Newton monitoring on timescales from weeks to years will tease out CME vs cyclic accretion variations. UV and X-ray measurements will provide the first consistency check of both accretion rate measurement methods. MHD models tailored to the system will enable the first quasi-direct measurements of the mass loss and AML from a CV-like binary. Our project requires 6 HST/COS orbits in Cycles 22-24, and 60ksec on XMM in Cycle 22

  9. The first mass and angular momentum loss measurements for a CV-like binary

    NASA Astrophysics Data System (ADS)

    Drake, Jeremy

    2016-10-01

    The period distribution of close binaries, cataclysmic variables, novae and single-degenerate SN1a progenitor candidates is largely controlled by magnetically-driven mass and angular momentum loss (AML) from the M dwarf secondary. The mass loss rates for these spun-up stars remain essentially unknown and impossible to observe directly, with likely values in the range 1e-12 to 1e-15 Msun/yr. AML presciptions for CVs differ by orders of magnitude. One way to measure the mass loss rate is to observe the dM wind accrete onto its WD companion in a pre-CV very close to Roche Lobe overflow but lacking the obscuring complications and emission from an accretion disk. The measurement can be combined with realistic MHD models to understand the accretion fraction, the mass that escapes, and the AML. The best-studied nearby pre-CV is QS Vir (48pc, P=3.6hr). However, its wind accretion rates measured from 1999 HST UV spectra of the WD metal absorption lines and 2006 XMM-Newton CCD spectroscopy differ by a factor of a thousand, pointing to either a dominant CME stochastic component, or a magnetic switch found in MHD simulations and driven by cyclic activity on the M dwarf. HST COS spectra combined with XMM-Newton monitoring on timescales from weeks to years will tease out CME vs cyclic accretion variations. UV and X-ray measurements will provide the first consistency check of both accretion rate measurement methods. MHD models tailored to the system will enable the first quasi-direct measurements of the mass loss and AML from a CV-like binary. Our project requires 6 HST/COS orbits in Cycles 22-24, and 60ksec on XMM in Cycle 22

  10. Super-Eddington Accretion in the Ultraluminous X-Ray Source NGC 1313 X-2: An Ephemeral Feast

    NASA Astrophysics Data System (ADS)

    Weng, Shan-Shan; Zhang, Shuang-Nan; Zhao, Hai-Hui

    2014-01-01

    We investigate the X-ray spectrum, variability, and the surrounding ionized bubble of NGC 1313 X-2 to explore the physics of super-Eddington accretion. Beyond the Eddington luminosity, the accretion disk of NGC 1313 X-2 is truncated at a large radius (~50 times the innermost stable circular orbit), and displays the similar evolution track with both luminous Galactic black-hole and neutron star X-ray binaries (XRBs). In super-critical accretion, the speed of radiatively driven outflows from the inner disk is mildly relativistic. Such ultra-fast outflows would be overionized and might produce weak Fe K absorption lines, which may be detected by the coming X-ray mission Astro-H. If NGC 1313 X-2 is a massive stellar XRB, the high luminosity indicates that an ephemeral feast is held in the source. That is, the source must be accreting at a hyper-Eddington mass rate to give the super-Eddington emission over ~104-105 yr. The expansion of the surrounding bubble nebula with a velocity of ~100 km s-1 might indicate that it has existed over ~106 yr and is inflated by the radiatively driven outflows from the transient with a duty cycle of activity of ~ a few percent. Alternatively, if the surrounding bubble nebula is produced by line-driven winds, less energy is required than the radiatively driven outflow scenario, and the radius of the Strömgren radius agrees with the nebula size. Our results are in favor of the line-driven winds scenario, which can avoid the conflict between the short accretion age and the apparently much longer bubble age inferred from the expansion velocity in the nebula.

  11. Strong disk winds traced throughout outbursts in black-hole X-ray binaries.

    PubMed

    Tetarenko, B E; Lasota, J-P; Heinke, C O; Dubus, G; Sivakoff, G R

    2018-02-01

    Recurring outbursts associated with matter flowing onto compact stellar remnants (such as black holes, neutron stars and white dwarfs) in close binary systems provide a way of constraining the poorly understood accretion process. The light curves of these outbursts are shaped by the efficiency of angular-momentum (and thus mass) transport in the accretion disks, which has traditionally been encoded in a viscosity parameter, α. Numerical simulations of the magneto-rotational instability that is believed to be the physical mechanism behind this transport yield values of α of roughly 0.1-0.2, consistent with values determined from observations of accreting white dwarfs. Equivalent viscosity parameters have hitherto not been estimated for disks around neutron stars or black holes. Here we report the results of an analysis of archival X-ray light curves of 21 outbursts in black-hole X-ray binaries. By applying a Bayesian approach to a model of accretion, we determine corresponding values of α of around 0.2-1.0. These high values may be interpreted as an indication either of a very high intrinsic rate of angular-momentum transport in the disk, which could be sustained by the magneto-rotational instability only if a large-scale magnetic field threads the disk, or that mass is being lost from the disk through substantial outflows, which strongly shape the outburst in the black-hole X-ray binary. The lack of correlation between our estimates of α and the accretion state of the binaries implies that such outflows can remove a substantial fraction of the disk mass in all accretion states and therefore suggests that the outflows correspond to magnetically driven disk winds rather than thermally driven ones, which require specific radiative conditions.

  12. Magnetocentrifugally Driven Flows from Young Stars and Disks. IV. The Accretion Funnel and Dead Zone

    NASA Astrophysics Data System (ADS)

    Ostriker, Eve C.; Shu, Frank H.

    1995-07-01

    We formulate the time-steady, axisymmetric problem of stellar magnetospheric inflow of gas from a surrounding accretion disk. The computational domain is bounded on the outside by a surface of given shape containing the open field lines associated with an induced disk wind. The mechanism for this wind has been investigated in previous publications in this journal. Our zeroth-order solution incorporates an acceptable accounting of the pressure balance between the magnetic field lines loaded with accreting gas (funnel flow) and those empty of matter (dead zone). In comparison with previous models, our funnel-flow/dead-zone solution has the following novel features: (1) Because of a natural tendency for the trapped stellar magnetic flux to pinch toward the corotation radius Rx (X-point of the effective potential), most of the interesting magnetohydrodynamics is initiated within a small neighborhood of Rx (X-region), where the Keplerian angular speed of rotation in the disk equals the spin rate of the star. (2) Unimpeded funnel flow from the inner portion of the X-region to the star can occur when the amount of trapped magnetic flux equals or exceeds 1.5 times the unperturbed dipole flux that would lie outside Rx in the absence of an accretion disk. (3). Near the equatorial plane, radial infall from the X-point is terminated at a "kink" point Rk = 0.74Rx that deflects the flow away from the midplane, mediating thereby between the field topology imposed by a magnetic fan of trapped flux at Rx and the geometry of a strong stellar dipole. (4) The excess angular momentum of accretion that would otherwise spin up the star rapidly is deposited by the magnetic torques of the funnel flow into the inner portion of the X-region of the disk. (5) An induced disk wind arises in the outer portion of the .X-region, where the stellar field lines have been blown open, and removes whatever excess angular momentum that viscous torques do not transport to the outer disk. (6) The interface between open field lines loaded with outflowing matter (connected to the disk) and those not loaded (connected to the star) forms a "helmet streamer," along which major mass-ejection and reconnection events may arise in response to changing boundary conditions (e.g., stellar magnetic cycles), much the way that such events occur in the active Sun. (7) Pressure balance across the dead-zone/wind interface will probably yield an asymptotically vertical (i.e., "jetlike") trajectory for the matter ejected along the helmet streamer, but mathematical demonstration of this fact is left for future studies. (8) In steady state the overall balance of angular momentum in the star/disk/ magnetosphere system fixes the fractions, f and 1 - f, of the disk mass accretion rate into the X-region carried away, respectively, by the wind and funnel flows.

  13. 13. VIEW NORTHEAST, BUILDING 12 INTERIOR, WIND TUNNEL FAN ASSEMBLY ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    13. VIEW NORTHEAST, BUILDING 12 INTERIOR, WIND TUNNEL FAN ASSEMBLY - Naval Surface Warfare Center, Transonic Wind Tunnel Building, Bounded by Clara Barton Parkway & McArthur Boulevard, Silver Spring, Montgomery County, MD

  14. Lifting system and apparatus for constructing wind turbine towers

    DOEpatents

    Livingston, Tracy; Schrader, Terry; Goldhardt, James; Lott, James

    2011-02-01

    The disclosed invention is utilized for mounting a wind turbine and blade assembly on the upper end of a wind turbine tower. The invention generally includes a frame or truss that is pivotally secured to the top bay assembly of the tower. A transverse beam is connected to the frame or truss and extends fore of the tower when the frame or truss is in a first position and generally above the tower when in a second position. When in the first position, a wind turbine or blade assembly can be hoisted to the top of the tower. The wind turbine or blade assembly is then moved into position for mounting to the tower as the frame or truss is pivoted to a second position. When the turbine and blade assembly are secured to the tower, the frame or truss is disconnected from the tower and lowered to the ground.

  15. Mixed ice accretion on aircraft wings

    NASA Astrophysics Data System (ADS)

    Janjua, Zaid A.; Turnbull, Barbara; Hibberd, Stephen; Choi, Kwing-So

    2018-02-01

    Ice accretion is a problematic natural phenomenon that affects a wide range of engineering applications including power cables, radio masts, and wind turbines. Accretion on aircraft wings occurs when supercooled water droplets freeze instantaneously on impact to form rime ice or runback as water along the wing to form glaze ice. Most models to date have ignored the accretion of mixed ice, which is a combination of rime and glaze. A parameter we term the "freezing fraction" is defined as the fraction of a supercooled droplet that freezes on impact with the top surface of the accretion ice to explore the concept of mixed ice accretion. Additionally we consider different "packing densities" of rime ice, mimicking the different bulk rime densities observed in nature. Ice accretion is considered in four stages: rime, primary mixed, secondary mixed, and glaze ice. Predictions match with existing models and experimental data in the limiting rime and glaze cases. The mixed ice formulation however provides additional insight into the composition of the overall ice structure, which ultimately influences adhesion and ice thickness, and shows that for similar atmospheric parameter ranges, this simple mixed ice description leads to very different accretion rates. A simple one-dimensional energy balance was solved to show how this freezing fraction parameter increases with decrease in atmospheric temperature, with lower freezing fraction promoting glaze ice accretion.

  16. Locating the Accretion Footprint on a Herbig Ae Star: MWC 480

    NASA Technical Reports Server (NTRS)

    Grady, C. A.; Hamaguchi, K.; Schneider, G.; Stecklum, B.; Woodgate, B. E.; McCleary, J. E.; Williger, G. M.; Sitko, M. L.; Menard, F.; Henning, Th.; hide

    2011-01-01

    Accretion is a fundamental process which establishes the dynamics of the protoplanetary disk and the final properties of the forming star. In solar-type stars, the star-disk coupling is determined by the magnetic field structure, which is responsible for funneling material from the disk midplane to higher latitudes on the star. Here, we use pan-chromatic data for the Herbig Ae star MWC 480 to address whether similar processes occur in intermediate-mass stars. MWC 480 has X-ray emission typical of actively accreting Herbig Ae stars, but with 5-9 x more photoelectric absorption than expected from optical and FUV data. We consider 3 sources for the absorption: the disk absorption in a wind or jet, and accretion. While we detect the disk in scattered light in are-analysis of archival HST data. the data are consistent with grazing illumination of the dust disk. We find that MWC 480's disk is stratified, geometrically thin, and is not responsible for the observed photoelectric absorption. MWC 480 drives a bipolar jet, but with a mass loss rate which is low compared to other Herbig Ae stars, where the outflow is more favorably oriented and enhanced photoelectric absorption is not seen. This excludes a jet or wind origin for the enhanced photoelectric absorption. We compare MWC 480's 0 VI emission with other Herbig Ae stars. The distribution of the emission in inclination, and lack of a correlation of profile shape and system inclination excludes equatorially-confined accretion for the FUSE Herbig Ae stars. The photoelectric absorption data further suggest that the accretion footprint on MWC 480 and other Herbig Ae stars is located at high temperate, rather than polar, latitudes. These findings support the presence of funneled accretion in MWC 480 and Herbig Ae stars, strengthening the parallel to T Tauri stars.

  17. Ice Accretions and Icing Effects for Modern Airfoils

    NASA Technical Reports Server (NTRS)

    Addy, Harold E., Jr.

    2000-01-01

    Icing tests were conducted to document ice shapes formed on three different two-dimensional airfoils and to study the effects of the accreted ice on aerodynamic performance. The models tested were representative of airfoil designs in current use for each of the commercial transport, business jet, and general aviation categories of aircraft. The models were subjected to a range of icing conditions in an icing wind tunnel. The conditions were selected primarily from the Federal Aviation Administration's Federal Aviation Regulations 25 Appendix C atmospheric icing conditions. A few large droplet icing conditions were included. To verify the aerodynamic performance measurements, molds were made of selected ice shapes formed in the icing tunnel. Castings of the ice were made from the molds and placed on a model in a dry, low-turbulence wind tunnel where precision aerodynamic performance measurements were made. Documentation of all the ice shapes and the aerodynamic performance measurements made during the icing tunnel tests is included in this report. Results from the dry, low-turbulence wind tunnel tests are also presented.

  18. ACCRETION OF SUPERSONIC WINDS ONTO BLACK HOLES IN 3D: STABILITY OF THE SHOCK CONE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gracia-Linares, M.; Guzmán, F. S.

    Using numerical simulations we present the accretion of supersonic winds onto a rotating black hole in three dimensions. We study five representative directions of the wind with respect to the axis of rotation of the black hole and focus on the evolution and stability of the high-density shock cone that is formed during the process. We explore both the regime in which the shock cone is expected to be stable in order to confirm previous results obtained with two-dimensional simulations, and the regime in which the shock cone is expected to show a flip–flop (FF) type of instability. The methodsmore » used to attempt a triggering of the instability were (i) the accumulation of numerical errors and (ii) the explicit application of a perturbation on the velocity field after the shock cone was formed. The result is negative, that is, we did not find the FF instability within the parameter space we explored, including cases that are expected to be unstable.« less

  19. A Collapsar Model with Disk Wind: Implications for Supernovae Associated with Gamma-Ray Bursts

    NASA Astrophysics Data System (ADS)

    Hayakawa, Tomoyasu; Maeda, Keiichi

    2018-02-01

    We construct a simple but self-consistent collapsar model for gamma-ray bursts (GRBs) and SNe associated with GRBs (GRB-SNe). Our model includes a black hole, an accretion disk, and the envelope surrounding the central system. The evolutions of the different components are connected by the transfer of the mass and angular momentum. To address properties of the jet and the wind-driven SNe, we consider competition of the ram pressure from the infalling envelope and those from the jet and wind. The expected properties of the GRB jet and the wind-driven SN are investigated as a function of the progenitor mass and angular momentum. We find two conditions that should be satisfied if the wind-driven explosion is to explain the properties of the observed GRB-SNe: (1) the wind should be collimated at its base, and (2) it should not prevent further accretion even after the launch of the SN explosion. Under these conditions, some relations seen in the properties of the GRB-SNe could be reproduced by a sequence of different angular momentum in the progenitors. Only the model with the largest angular momentum could explain the observed (energetic) GRB-SNe, and we expect that the collapsar model can result in a wide variety of observational counterparts, mainly depending on the angular momentum of the progenitor star.

  20. Discovery of radio emission from the symbiotic X-ray binary system GX 1+4

    NASA Astrophysics Data System (ADS)

    van den Eijnden, J.; Degenaar, N.; Russell, T. D.; Miller-Jones, J. C. A.; Wijnands, R.; Miller, J. M.; King, A. L.; Rupen, M. P.

    2018-02-01

    We report the discovery of radio emission from the accreting X-ray pulsar and symbiotic X-ray binary GX 1+4 with the Karl G. Jansky Very Large Array. This is the first radio detection of such a system, wherein a strongly magnetized neutron star accretes from the stellar wind of an M-type giant companion. We measure a 9 GHz radio flux density of 105.3 ± 7.3 μJy, but cannot place meaningful constraints on the spectral index due to a limited frequency range. We consider several emission mechanisms that could be responsible for the observed radio source. We conclude that the observed properties are consistent with shocks in the interaction of the accretion flow with the magnetosphere, a synchrotron-emitting jet, or a propeller-driven outflow. The stellar wind from the companion is unlikely to be the origin of the radio emission. If the detected radio emission originates from a jet, it would show that strong magnetic fields (≥1012 G) do not necessarily suppress jet formation.

  1. Connection between jets, winds and accretion in T Tauri stars. The X-shooter view

    NASA Astrophysics Data System (ADS)

    Nisini, B.; Antoniucci, S.; Alcalá, J. M.; Giannini, T.; Manara, C. F.; Natta, A.; Fedele, D.; Biazzo, K.

    2018-01-01

    Mass loss from jets and winds is a key ingredient in the evolution of accretion discs in young stars. While slow winds have been recently extensively studied in T Tauri stars, little investigation has been devoted on the occurrence of high velocity jets and on how the two mass-loss phenomena are connected with each other, and with the disc mass accretion rates. In this framework, we have analysed the [O I]6300 Å line in a sample of 131 young stars with discs in the Lupus, Chamaeleon and σ Orionis star forming regions. The stars were observed with the X-shooter spectrograph at the Very Large Telescope and have mass accretion rates spanning from 10-12 to 10-7M⊙ yr-1. The line profile was deconvolved into a low velocity component (LVC, | Vr | < 40 km s-1) and a high velocity component (HVC, | Vr | > 40 km s-1), originating from slow winds and high velocity jets, respectively. The LVC is by far the most frequent component, with a detection rate of 77%, while only 30% of sources have a HVC. The fraction of HVC detections slightly increases (i.e. 39%) in the sub-sample of stronger accretors (i.e. with log (Lacc/L⊙) >-3). The [O I]6300 Å luminosity of both the LVC and HVC, when detected, correlates with stellar and accretion parameters of the central sources (i.e. L∗, M∗, Lacc, Ṁacc), with similar slopes for the two components. The line luminosity correlates better (i.e. has a lower dispersion) with the accretion luminosity than with the stellar luminosity or stellar mass. We suggest that accretion is the main drivers for the line excitation and that MHD disc-winds are at the origin of both components. In the sub-sample of Lupus sources observed with ALMA a relationship is found between the HVC peak velocity and the outer disc inclination angle, as expected if the HVC traces jets ejected perpendicularly to the disc plane. Mass ejection rates (Ṁjet) measured from the detected HVC [O I]6300 Å line luminosity span from 10-13 to 10-7M⊙ yr-1. The corresponding Ṁjet/Ṁacc ratio ranges from 0.01 to 0.5, with an average value of 0.07. However, considering the upper limits on the HVC, we infer a Ṁjet/Ṁacc ratio < 0.03 in more than 40% of sources. We argue that most of these sources might lack the physical conditions needed for an efficient magneto-centrifugal acceleration in the star-disc interaction region. Systematic observations of populations of younger stars, that is, class 0/I, are needed to explore how the frequency and role of jets evolve during the pre-main sequence phase. This will be possible in the near future thanks to space facilities such as the James Webb space telescope (JWST). Based on Observations collected with X-shooter at the Very Large Telescope on Cerro Paranal (Chile), operated by the European Southern Observatory (ESO). Programme IDs: 084.C-0269, 084.C-1095, 085.C-0238, 085.C-0764, 086.C-0173, 087.C-0244, 089.C-0143, 090.C-0253, 093.C-0506, 094.C-0913, 095.C-0134 and 097.C-0349.

  2. A Three-dimensional Simulation of a Magnetized Accretion Disk: Fast Funnel Accretion onto a Weakly Magnetized Star

    NASA Astrophysics Data System (ADS)

    Takasao, Shinsuke; Tomida, Kengo; Iwasaki, Kazunari; Suzuki, Takeru K.

    2018-04-01

    We present the results of a global, three-dimensional magnetohydrodynamics simulation of an accretion disk with a rotating, weakly magnetized central star. The disk is threaded by a weak, large-scale poloidal magnetic field, and the central star has no strong stellar magnetosphere initially. Our simulation investigates the structure of the accretion flows from a turbulent accretion disk onto the star. The simulation reveals that fast accretion onto the star at high latitudes occurs even without a stellar magnetosphere. We find that the failed disk wind becomes the fast, high-latitude accretion as a result of angular momentum exchange mediated by magnetic fields well above the disk, where the Lorentz force that decelerates the rotational motion of gas can be comparable to the centrifugal force. Unlike the classical magnetospheric accretion scenario, fast accretion streams are not guided by magnetic fields of the stellar magnetosphere. Nevertheless, the accretion velocity reaches the free-fall velocity at the stellar surface due to the efficient angular momentum loss at a distant place from the star. This study provides a possible explanation why Herbig Ae/Be stars whose magnetic fields are generally not strong enough to form magnetospheres also show indications of fast accretion. A magnetically driven jet is not formed from the disk in our model. The differential rotation cannot generate sufficiently strong magnetic fields for the jet acceleration because the Parker instability interrupts the field amplification.

  3. Dynamic Wind-Tunnel Testing of a Sub-Scale Iced S-3B Viking

    NASA Technical Reports Server (NTRS)

    Lee, Sam; Barnhart, Billy; Ratvasky, Thomas P.

    2012-01-01

    The effect of ice accretion on a 1/12-scale complete aircraft model of S-3B Viking was studied in a rotary-balance wind tunnel. Two types of ice accretions were considered: ice protection system failure shape and runback shapes that form downstream of the thermal ice protection system. The results showed that the ice shapes altered the stall characteristics of the aircraft. The ice shapes also reduced the control surface effectiveness, but mostly near the stall angle of attack. There were some discrepancies with the data with the flaps deflected that were attributed to the low Reynolds number of the test. Rotational and forced-oscillation studies showed that the effects of ice were mostly in the longitudinal forces, and the effects on the lateral forces were relatively minor.

  4. Airfoil Ice-Accretion Aerodynamics Simulation

    NASA Technical Reports Server (NTRS)

    Bragg, Michael B.; Broeren, Andy P.; Addy, Harold E.; Potapczuk, Mark G.; Guffond, Didier; Montreuil, E.

    2007-01-01

    NASA Glenn Research Center, ONERA, and the University of Illinois are conducting a major research program whose goal is to improve our understanding of the aerodynamic scaling of ice accretions on airfoils. The program when it is completed will result in validated scaled simulation methods that produce the essential aerodynamic features of the full-scale iced-airfoil. This research will provide some of the first, high-fidelity, full-scale, iced-airfoil aerodynamic data. An initial study classified ice accretions based on their aerodynamics into four types: roughness, streamwise ice, horn ice, and spanwise-ridge ice. Subscale testing using a NACA 23012 airfoil was performed in the NASA IRT and University of Illinois wind tunnel to better understand the aerodynamics of these ice types and to test various levels of ice simulation fidelity. These studies are briefly reviewed here and have been presented in more detail in other papers. Based on these results, full-scale testing at the ONERA F1 tunnel using cast ice shapes obtained from molds taken in the IRT will provide full-scale iced airfoil data from full-scale ice accretions. Using these data as a baseline, the final step is to validate the simulation methods in scale in the Illinois wind tunnel. Computational ice accretion methods including LEWICE and ONICE have been used to guide the experiments and are briefly described and results shown. When full-scale and simulation aerodynamic results are available, these data will be used to further develop computational tools. Thus the purpose of the paper is to present an overview of the program and key results to date.

  5. Observational diagnostics of accretion on young stars and brown dwarfs

    NASA Astrophysics Data System (ADS)

    Stelzer, Beate; Argiroffi, Costanza

    I present a summary of recent observational constraints on the accretion properties of young stars and brown dwarfs with focus on the high-energy emission. In their T Tauri phase young stars assemble a few percent of their mass by accretion from a disk. Various observational signatures of disks around pre-main sequence stars and the ensuing accretion process are found in the IR and optical regime: e.g. excess emission above the stellar photosphere, strong and broad emission lines, optical veiling. At high energies evidence for accretion is less obvious, and the X-ray emission from stars has historically been ascribed to magnetically confined coronal plasmas. While being true for the bulk of the emission, new insight obtained from XMM-Newton and Chandra observations has unveiled contributions from accretion and outflow processes to the X-ray emission from young stars. Their smaller siblings, the brown dwarfs, have been shown to undergo a T Tauri phase on the basis of optical/IR observations of disks and measurements of accretion rates. Most re-cently, first evidence was found for X-rays produced by accretion in a young brown dwarf, complementing the suspected analogy between stars and substellar objects.

  6. Corona accretion in active galactic nuclei and the observational test

    NASA Astrophysics Data System (ADS)

    Qiao, E.; Liu, B.; Taam, R.; Yuan, W.

    2017-10-01

    In this talk, we propose a new accretion model, in which the matter is accreted initially in the form of a vertically extended, hot gas (corona) to the central supermassive black hole by capturing the interstellar medium or the stellar wind in active galactic nuclei (AGNs). In this scenario, when the initial mass accretion rate is greater than about 0.01 \\dot M_{Edd}, at a critical radius r_{d}, part of the hot gas begins to condense on to the equatorial disc plane of the black hole, forming an inner cold accretion disc. Then, the matter is accreted in the form of a disc-corona structure extending down to the ISCO of the black hole. We calculate the theoretical structure and the corresponding emergent spectra of the model. It is shown that the model can naturally explain the origin of the X-ray emission in AGNs. Meanwhile the model predicts a new geometry of the accretion flow, which can very well explain some observations, such as the correlation between the hard X-ray slope Γ and the reflection scaling factor R found in AGNs. Finally, we discuss the potential applications of the model to high mass X-ray binaries.

  7. INTEGRAL results on supergiant fast X-ray transients and accretion mechanism interpretation: ionization effect and formation of transient accretion discs

    NASA Astrophysics Data System (ADS)

    Ducci, L.; Sidoli, L.; Paizis, A.

    2010-11-01

    We performed a systematic analysis of all INTEGRAL observations from 2003 to 2009 of 14 supergiant fast X-ray transients (SFXTs), implying a net exposure time of about 30 Ms. For each source we obtained light curves and spectra (3-100 keV), discovering several new outbursts. We discuss the X-ray behaviour of SFXTs emerging from our analysis in the framework of the clumpy wind accretion mechanism we proposed. We discuss the effect of X-ray photoionization on accretion in close binary systems such as IGR J16479-4514 and IGR J17544-2619. We show that, because of X-ray photoionization, there is a high probability of an accretion disc forming from the capture of angular momentum in IGR J16479-4514, and we suggest that the formation of transient accretion discs could be partly responsible for the flaring activity in SFXTs with narrow orbits. We also propose an alternative way to explain the origin of flares with peculiar shapes observed in our analysis applying the model of Lamb et al., which is based on accretion via the Rayleigh-Taylor instability and was originally proposed to explain Type II bursts.

  8. Wind-driven angular momentum loss in binary systems. I - Ballistic case

    NASA Technical Reports Server (NTRS)

    Brookshaw, Leigh; Tavani, Marco

    1993-01-01

    We study numerically the average loss of specific angular momentum from binary systems due to mass outflow from one of the two stars for a variety of initial injection geometries and wind velocities. We present results of ballistic calculations in three dimensions for initial mass ratios q of the mass-losing star to primary star in the range q between 10 exp -5 and 10. We consider injection surfaces close to the Roche lobe equipotential surface of the mass-losing star, and also cases with the mass-losing star underfilling its Roche lobe. We obtain that the orbital period is expected to have a negative time derivative for wind-driven secular evolution of binaries with q greater than about 3 and with the mass-losing star near filling its Roche lobe. We also study the effect of the presence of an absorbing surface approximating an accretion disk on the average final value of the specific angular momentum loss. We find that the effect of an accretion disk is to increase the wind-driven angular momentum loss. Our results are relevant for evolutionary models of high-mass binaries and low-mass X-ray binaries.

  9. High-speed imaging of the transient ice accretion process on a NACA 0012 airfoil

    NASA Astrophysics Data System (ADS)

    Waldman, Rye; Hu, Hui

    2014-11-01

    Ice accretion on aircraft wings poses a performance and safety threat as aircraft encounter supercooled droplets suspended in the cloud layer. The details of the ice accretion depend on the atmospheric conditions and the fight parameters. We present the measurement results of the experiments conducted in the Iowa State icing wind tunnel on a NACA 0012 airfoil to study the transient ice accretion process under varying icing conditions. The icing process on the wing consists of a complex interaction of water deposition, surface water transport, and freezing. The aerodynamics affects the water deposition, the heat and mass transport, and ice accumulation; meanwhile, the accumulating ice also affects the aerodynamics. High-speed video of the unsteady icing accretion process was acquired under controlled environmental conditions to quantitatively measure the transient water run back, rivulet formation, and accumulated ice growth, and the experiments show how varying the environmental conditions modifies the ice accretion process. Funding support from the Iowa Energy Center with Grant No. 14-008-OG and National Science Foundation (NSF) with Grant No. CBET-1064196 and CBET-1438099 is gratefully acknowledged.

  10. Coupling hydrodynamics with comoving frame radiative transfer. II. Stellar wind stratification in the high-mass X-ray binary Vela X-1

    NASA Astrophysics Data System (ADS)

    Sander, A. A. C.; Fürst, F.; Kretschmar, P.; Oskinova, L. M.; Todt, H.; Hainich, R.; Shenar, T.; Hamann, W.-R.

    2018-02-01

    Context. Vela X-1, a prototypical high-mass X-ray binary (HMXB), hosts a neutron star (NS) in a close orbit around an early-B supergiant donor star. Accretion of the donor star's wind onto the NS powers its strong X-ray luminosity. To understand the physics of HMXBs, detailed knowledge about the donor star winds is required. Aims: To gain a realistic picture of the donor star in Vela X-1, we constructed a hydrodynamically consistent atmosphere model describing the wind stratification while properly reproducing the observed donor spectrum. To investigate how X-ray illumination affects the stellar wind, we calculated additional models for different X-ray luminosity regimes. Methods: We used the recently updated version of the Potsdam Wolf-Rayet code to consistently solve the hydrodynamic equation together with the statistical equations and the radiative transfer. Results: The wind flow in Vela X-1 is driven by ions from various elements, with Fe III and S III leading in the outer wind. The model-predicted mass-loss rate is in line with earlier empirical studies. The mass-loss rate is almost unaffected by the presence of the accreting NS in the wind. The terminal wind velocity is confirmed at v∞≈ 600 km s-1. On the other hand, the wind velocity in the inner region where the NS is located is only ≈100 km s-1, which is not expected on the basis of a standard β-velocity law. In models with an enhanced level of X-rays, the velocity field in the outer wind can be altered. If the X-ray flux is too high, the acceleration breaks down because the ionization increases. Conclusions: Accounting for radiation hydrodynamics, our Vela X-1 donor atmosphere model reveals a low wind speed at the NS location, and it provides quantitative information on wind driving in this important HMXB.

  11. Theoretical studies of chromospheres and winds in cool stars

    NASA Technical Reports Server (NTRS)

    Hartmann, L.

    1986-01-01

    Propagation of pulsational waves through the atmosphere of the M supergiant alpha Ori was explored using a time dependent hydrodynamic code. Wind properties for three FU Orionis objects were determined using radiative transfer models based on optical line profiles. The effects of varying wind temperature while keeping the velocity steady were considered. Using the premise that FU Orionis eruptions result from massive accretions from a disk into a T Tauri star explains a variety of observational peculiarities of FU Orionis objects.

  12. Microphysics in the Gamma-Ray Burst Central Engine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Janiuk, Agnieszka, E-mail: agnes@cft.edu.pl

    We calculate the structure and evolution of a gamma-ray burst central engine where an accreting torus has formed around the newly born black hole. We study the general relativistic, MHD models and we self-consistently incorporate the nuclear equation of state. The latter accounts for the degeneracy of relativistic electrons, protons, and neutrons, and is used in the dynamical simulation, instead of a standard polytropic γ -law. The EOS provides the conditions for the nuclear pressure in the function of density and temperature, which evolve with time according to the conservative MHD scheme. We analyze the structure of the torus andmore » outflowing winds, and compute the neutrino flux emitted through the nuclear reaction balance in the dense and hot matter. We also estimate the rate of transfer of the black-hole rotational energy to the bipolar jets. Finally, we elaborate on the nucleosynthesis of heavy elements in the accretion flow and the wind, through computations of the thermonuclear reaction network. We discuss the possible signatures of the radioactive element decay in the accretion flow. We suggest that further detailed modeling of the accretion flow in the GRB engine, together with its microphysics, may be a valuable tool to constrain the black-hole mass and spin. It can be complementary to the gravitational wave analysis if the waves are detected with an electromagnetic counterpart.« less

  13. Long-orbital-period Prepolars Containing Early K-type Donor Stars. Bottleneck Accretion Mechanism in Action

    NASA Astrophysics Data System (ADS)

    Tovmassian, G.; González–Buitrago, D.; Zharikov, S.; Reichart, D. E.; Haislip, J. B.; Ivarsen, K. M.; LaCluyze, A. P.; Moore, J. P.; Miroshnichenko, A. S.

    2016-03-01

    We studied two objects identified as cataclysmic variables (CVs) with periods exceeding the natural boundary for Roche-lobe-filling zero-age main sequence (ZAMS) secondary stars. We present observational results for V1082 Sgr with a 20.82 hr orbital period, an object that shows a low luminosity state when its flux is totally dominated by a chromospherically active K star with no signs of ongoing accretion. Frequent accretion shutoffs, together with characteristics of emission lines in a high state, indicate that this binary system is probably detached, and the accretion of matter on the magnetic white dwarf takes place through stellar wind from the active donor star via coupled magnetic fields. Its observational characteristics are surprisingly similar to V479 And, a 14.5 hr binary system. They both have early K-type stars as donor stars. We argue that, similar to the shorter-period prepolars containing M dwarfs, these are detached binaries with strong magnetic components. Their magnetic fields are coupled, allowing enhanced stellar wind from the K star to be captured and channeled through the bottleneck connecting the two stars onto the white dwarf’s magnetic pole, mimicking a magnetic CV. Hence, they become interactive binaries before they reach contact. This will help to explain an unexpected lack of systems possessing white dwarfs with strong magnetic fields among detached white+red dwarf systems.

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Takata, J.; Tam, P. H. T.; Ng, C. W.

    PSR J2032+4127 is a radio-loud gamma-ray-emitting pulsar; it is orbiting around a high-mass Be type star with a very long orbital period of 25–50 years, and is approaching periastron, which will occur in late 2017/early 2018. This system comprises a young pulsar and a Be type star, which is similar to the so-called gamma-ray binary PSR B1259–63/LS2883. It is expected therefore that PSR J2032+4127 shows an enhancement of high-energy emission caused by the interaction between the pulsar wind and Be wind/disk around periastron. Ho et al. recently reported a rapid increase in the X-ray flux from this system. In thismore » paper, we also confirm a rapid increase in the X-ray flux along the orbit, while the GeV flux shows no significant change. We discuss the high-energy emissions from the shock caused by the pulsar wind and stellar wind interaction and examine the properties of the pulsar wind in this binary system. We argue that the rate of increase of the X-ray flux observed by Swift indicates (1) a variation of the momentum ratio of the two-wind interaction region along the orbit, or (2) an evolution of the magnetization parameter of the pulsar wind with the radial distance from the pulsar. We also discuss the pulsar wind/Be disk interaction at the periastron passage, and propose the possibility of formation of an accretion disk around the pulsar. We model high-energy emissions through the inverse-Compton scattering process of the cold-relativistic pulsar wind off soft photons from the accretion disk.« less

  15. The SILCC project - III. Regulation of star formation and outflows by stellar winds and supernovae

    NASA Astrophysics Data System (ADS)

    Gatto, Andrea; Walch, Stefanie; Naab, Thorsten; Girichidis, Philipp; Wünsch, Richard; Glover, Simon C. O.; Klessen, Ralf S.; Clark, Paul C.; Peters, Thomas; Derigs, Dominik; Baczynski, Christian; Puls, Joachim

    2017-04-01

    We study the impact of stellar winds and supernovae on the multiphase interstellar medium using three-dimensional hydrodynamical simulations carried out with FLASH. The selected galactic disc region has a size of (500 pc)2 × ±5 kpc and a gas surface density of 10 M⊙ pc-2. The simulations include an external stellar potential and gas self-gravity, radiative cooling and diffuse heating, sink particles representing star clusters, stellar winds from these clusters that combine the winds from individual massive stars by following their evolution tracks, and subsequent supernova explosions. Dust and gas (self-) shielding is followed to compute the chemical state of the gas with a chemical network. We find that stellar winds can regulate star (cluster) formation. Since the winds suppress the accretion of fresh gas soon after the cluster has formed, they lead to clusters that have lower average masses (102-104.3 M⊙) and form on shorter time-scales (10-3-10 Myr). In particular, we find an anticorrelation of cluster mass and accretion time-scale. Without winds, the star clusters easily grow to larger masses for ˜5 Myr until the first supernova explodes. Overall, the most massive stars provide the most wind energy input, while objects beginning their evolution as B-type stars contribute most of the supernova energy input. A significant outflow from the disc (mass loading ≳1 at 1 kpc) can be launched by thermal gas pressure if more than 50 per cent of the volume near the disc mid-plane can be heated to T > 3 × 105 K. Stellar winds alone cannot create a hot volume-filling phase. The models that are in best agreement with observed star formation rates drive either no outflows or weak outflows.

  16. The Origin of the Milky Way's Halo Age Distribution

    NASA Astrophysics Data System (ADS)

    Carollo, Daniela; Tissera, Patricia B.; Beers, Timothy C.; Gudin, Dmitrii; Gibson, Brad K.; Freeman, Ken C.; Monachesi, Antonela

    2018-05-01

    We present an analysis of the radial age gradients for the stellar halos of five Milky Way (MW) mass-sized systems simulated as part of the Aquarius Project. The halos show a diversity of age trends, reflecting their different assembly histories. Four of the simulated halos possess clear negative age gradients, ranging from approximately ‑7 to ‑19 Myr kpc‑1, shallower than those determined by recent observational studies of the Milky Way’s stellar halo. However, when restricting the analysis to the accreted component alone, all of the stellar halos exhibit a steeper negative age gradient with values ranging from ‑8 to ‑32 Myr kpc‑1, closer to those observed in the Galaxy. Two of the accretion-dominated simulated halos show a large concentration of old stars in the center, in agreement with the Ancient Chronographic Sphere reported observationally. The stellar halo that best reproduces the current observed characteristics of the age distributions of the Galaxy is that formed principally by the accretion of small satellite galaxies. Our findings suggest that the hierarchical clustering scenario can reproduce the MW’s halo age distribution if the stellar halo was assembled from accretion and the disruption of satellite galaxies with dynamical masses less than ∼109.5 M ⊙, and a minimal in situ contribution.

  17. Ice Accretions and Full-Scale Iced Aerodynamic Performance Data for a Two-Dimensional NACA 23012 Airfoil

    NASA Technical Reports Server (NTRS)

    Addy, Harold E., Jr.; Broeren, Andy P.; Potapczuk, Mark G.; Lee, Sam; Guffond, Didier; Montreuil, Emmanuel; Moens, Frederic

    2016-01-01

    This report documents the data collected during the large wind tunnel campaigns conducted as part of the SUNSET project (StUdies oN Scaling EffecTs due to ice) also known as the Ice-Accretion Aerodynamics Simulation study: a joint effort by NASA, the Office National d'Etudes et Recherches Aérospatiales (ONERA), and the University of Illinois. These data form a benchmark database of full-scale ice accretions and corresponding ice-contaminated aerodynamic performance data for a two-dimensional (2D) NACA 23012 airfoil. The wider research effort also included an analysis of ice-contaminated aerodynamics that categorized ice accretions by aerodynamic effects and an investigation of subscale, low- Reynolds-number ice-contaminated aerodynamics for the NACA 23012 airfoil. The low-Reynolds-number investigation included an analysis of the geometric fidelity needed to reliably assess aerodynamic effects of airfoil icing using artificial ice shapes. Included herein are records of the ice accreted during campaigns in NASA Glenn Research Center's Icing Research Tunnel (IRT). Two different 2D NACA 23012 airfoil models were used during these campaigns; an 18-in. (45.7-cm) chord (subscale) model and a 72-in. (182.9-cm) chord (full-scale) model. The aircraft icing conditions used during these campaigns were selected from the Federal Aviation Administration's (FAA's) Code of Federal Regulations (CFR) Part 25 Appendix C icing envelopes. The records include the test conditions, photographs of the ice accreted, tracings of the ice, and ice depth measurements. Model coordinates and pressure tap locations are also presented. Also included herein are the data recorded during a wind tunnel campaign conducted in the F1 Subsonic Pressurized Wind Tunnel of ONERA. The F1 tunnel is a pressured, high- Reynolds-number facility that could accommodate the full-scale (72-in. (182.9-cm) chord) 2D NACA 23012 model. Molds were made of the ice accreted during selected test runs of the full-scale model in the IRT. From these molds, castings were made that closely replicated the features of the accreted ice. The castings were then mounted on the full-scale model in the F1 tunnel, and aerodynamic performance measurements were made using model surface pressure taps, the facility force balance system, and a large wake rake designed specifically for these tests. Tests were run over a range of Reynolds and Mach numbers. For each run, the model was rotated over a range of angles-of-attack that included airfoil stall. The benchmark data collected during these campaigns were, and continue to be, used for various purposes. The full-scale data form a unique, ice-accretion and associated aerodynamic performance dataset that can be used as a reference when addressing concerns regarding the use of subscale ice-accretion data to assess full-scale icing effects. Further, the data may be used in the development or enhancement of both ice-accretion prediction codes and computational fluid dynamic codes when applied to study the effects of icing. Finally, as was done in the wider study, the data may be used to help determine the level of geometric fidelity needed for artificial ice used to assess aerodynamic degradation due to aircraft icing. The structured, multifaceted approach used in this research effort provides a unique perspective on the aerodynamic effects of aircraft icing. The data presented in this report are available in electronic form upon formal approval by proper NASA and ONERA authorities.

  18. Numerical investigation on super-cooled large droplet icing of fan rotor blade in jet engine

    NASA Astrophysics Data System (ADS)

    Isobe, Keisuke; Suzuki, Masaya; Yamamoto, Makoto

    2014-10-01

    Icing (or ice accretion) is a phenomenon in which super-cooled water droplets impinge and accrete on a body. It is well known that ice accretion on blades and vanes leads to performance degradation and has caused severe accidents. Although various anti-icing and deicing systems have been developed, such accidents still occur. Therefore, it is important to clarify the phenomenon of ice accretion on an aircraft and in a jet engine. However, flight tests for ice accretion are very expensive, and in the wind tunnel it is difficult to reproduce all climate conditions where ice accretion can occur. Therefore, it is expected that computational fluid dynamics (CFD), which can estimate ice accretion in various climate conditions, will be a useful way to predict and understand the ice accretion phenomenon. On the other hand, although the icing caused by super-cooled large droplets (SLD) is very dangerous, the numerical method has not been established yet. This is why SLD icing is characterized by splash and bounce phenomena of droplets and they are very complex in nature. In the present study, we develop an ice accretion code considering the splash and bounce phenomena to predict SLD icing, and the code is applied to a fan rotor blade. The numerical results with and without the SLD icing model are compared. Through this study, the influence of the SLD icing model is numerically clarified.

  19. Lidar observations of wind- and wave-driven morphological evolution of coastal foredunes

    NASA Astrophysics Data System (ADS)

    Spore, N.; Brodie, K. L.; Kershner, C. M.

    2016-02-01

    Coastal foredunes are continually evolving geomorphic features that are slowly built up by wind-blown sand and rapidly eroded during storms by large waves and swash. Landward aeolian transport removes sediment from the active beach and surf-zone, trapping it in the dune, where as coastal erosion both removes sediment from the dune and can decrease the overall fetch and sediment supply available to the dune. Understanding how wave and wind-driven process interact with each other and the dune-beach system itself is a critical component of improving predictions of coastal evolution. To investigate these processes, two 50 m alongshore by 25 m cross-shore patches of dune along an open coast beach fronting the Atlantic Ocean in Duck, NC were scanned with a high resolution terrestrial lidar scanner ( 5000 points per m^2) every three weeks over the last year to observe detailed morphological evolution of the dune and upper beach. Sequential scans were co-registered to each other using fixed objects in the field of view, significantly increasing precision and accuracy of the observations. The north study site featured a 7.5 m tall scarped foredune system, where as the southern study site featured a 6 m tall, hummocky, prograding foredune. Initial analyses show large accretion events on the southern prograding site. For example, during one three week period in February, portions of the site accreted over 40 cm. In contrast, during the same three week period at the northern site (less than 1 km away), response was alongshore variable with erosion and accretion of roughly 10 cm on the foredune face. Further analysis will focus on separating wind vs. wave driven evolution of these sites. Funded by the USACE Coastal Inlets Research Program.

  20. Heat Transfer Measurements on Surfaces with Natural Ice Castings and Modeled Roughness

    NASA Technical Reports Server (NTRS)

    Breuer, Kenneth S.; Torres, Benjamin E.; Orr, D. J.; Hansman, R. John

    1997-01-01

    An experimental method is described to measure and compare the convective heat transfer coefficient of natural and simulated ice accretion roughness and to provide a rational means for determining accretion-related enhanced heat transfer coefficients. The natural ice accretion roughness was a sample casting made from accretions at the NASA Lewis Icing Research Tunnel (IRT). One of these castings was modeled using a Spectral Estimation Technique (SET) to produce three roughness elements patterns that simulate the actual accretion. All four samples were tested in a flat-plate boundary layer at angle of attack in a "dry" wind tunnel test. The convective heat transfer coefficient was measured using infrared thermography. It is shown that, dispite some problems in the current data set, the method does show considerable promise in determining roughness-induced heat transfer coefficients, and that, in addition to the roughness height and spacing in the flow direction, the concentration and spacing of elements in the spanwise direction are important parameters.

  1. Small Seed Black Hole Growth in Various Accretion Regimes

    NASA Astrophysics Data System (ADS)

    Gerling-Dunsmore, Hannalore J.; Hopkins, Philip F.

    2016-03-01

    Observational evidence indicates a population of super massive black holes (SMBHs) (~109 -1010M⊙) formed within 1 Gyr after the Big Bang. One proposed means of SMBH formation is accretion onto small seed black holes (BHs) (~ 100M⊙). However, the existence of SMBHs within 1 Gyr requires rapid growth, but conventional models of accretion fail to grow the seed BHs quickly enough. Super Eddington accretion (Ṁ >ṀEddington) may aid in improving growth efficiency. We study small seed BH growth via accretion in 3D, using the magneto-hydrodynamics+gravity code GIZMO. In particular, we consider a BH in a high density turbulent star-forming cloud, and ask whether or not the BH can capture sufficient gas to grow rapidly. We consider both Eddington-limited and super Eddington regimes, and resolve physics on scales from 0.1 pc to 1 kpc while including detailed models for stellar feedback physics, including stellar winds, supernovae, radiation pressure, and photo-ionization. We present results on the viability of different small seed BHs growing into SMBH candidates.

  2. Solar wind and extreme ultraviolet modulation of the lunar ionosphere/exosphere

    NASA Technical Reports Server (NTRS)

    Freeman, J. W.

    1976-01-01

    The ALSEP/SIDE detectors routinely monitor the dayside lunar ionosphere. Variations in the ionosphere are found to correlate with both the 2800 MHz radio index which can be related to solar EUV and with the solar wind proton flux. For the solar wind, the ionospheric variation is proportionately greater than that of the solar wind. This suggests an amplification effect on the lunar atmosphere due perhaps to sputtering of the surface or, less probably, an inordinate enhancement of noble gases in the solar wind. The surface neutral number density is calculated under the assumption of neon gas. During a quiet solar wind this number agrees with or is slightly above that expected for neon accreted from the solar wind. During an enhanced solar wind the neutral number density is much higher.

  3. DETECTING TRIAXIALITY IN THE GALACTIC DARK MATTER HALO THROUGH STELLAR KINEMATICS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rojas-Nino, Armando; Valenzuela, Octavio; Pichardo, Barbara

    Assuming the dark matter halo of the Milky Way to be a non-spherical potential (i.e., triaxial, prolate, oblate), we show how the assembling process of the Milky Way halo may have left long-lasting stellar halo kinematic fossils due to the shape of the dark matter halo. In contrast with tidal streams, which are associated with recent satellite accretion events, these stellar kinematic groups will typically show inhomogeneous chemical and stellar population properties. However, they may be dominated by a single accretion event for certain mass assembling histories. If the detection of these peculiar kinematic stellar groups were confirmed, they wouldmore » be the smoking gun for the predicted triaxiality of dark halos in cosmological galaxy formation scenarios.« less

  4. Hot Gas Lines in T Tauri Stars

    NASA Astrophysics Data System (ADS)

    Ardila, David R.; Herczeg, Gregory J.; Gregory, Scott G.; Ingleby, Laura; France, Kevin; Brown, Alexander; Edwards, Suzan; Johns-Krull, Christopher; Linsky, Jeffrey L.; Yang, Hao; Valenti, Jeff A.; Abgrall, Hervé; Alexander, Richard D.; Bergin, Edwin; Bethell, Thomas; Brown, Joanna M.; Calvet, Nuria; Espaillat, Catherine; Hillenbrand, Lynne A.; Hussain, Gaitee; Roueff, Evelyne; Schindhelm, Eric R.; Walter, Frederick M.

    2013-07-01

    For Classical T Tauri Stars (CTTSs), the resonance doublets of N V, Si IV, and C IV, as well as the He II 1640 Å line, trace hot gas flows and act as diagnostics of the accretion process. In this paper we assemble a large high-resolution, high-sensitivity data set of these lines in CTTSs and Weak T Tauri Stars (WTTSs). The sample comprises 35 stars: 1 Herbig Ae star, 28 CTTSs, and 6 WTTSs. We find that the C IV, Si IV, and N V lines in CTTSs all have similar shapes. We decompose the C IV and He II lines into broad and narrow Gaussian components (BC and NC). The most common (50%) C IV line morphology in CTTSs is that of a low-velocity NC together with a redshifted BC. For CTTSs, a strong BC is the result of the accretion process. The contribution fraction of the NC to the C IV line flux in CTTSs increases with accretion rate, from ~20% to up to ~80%. The velocity centroids of the BCs and NCs are such that V BC >~ 4 V NC, consistent with the predictions of the accretion shock model, in at most 12 out of 22 CTTSs. We do not find evidence of the post-shock becoming buried in the stellar photosphere due to the pressure of the accretion flow. The He II CTTSs lines are generally symmetric and narrow, with FWHM and redshifts comparable to those of WTTSs. They are less redshifted than the CTTSs C IV lines, by ~10 km s-1. The amount of flux in the BC of the He II line is small compared to that of the C IV line, and we show that this is consistent with models of the pre-shock column emission. Overall, the observations are consistent with the presence of multiple accretion columns with different densities or with accretion models that predict a slow-moving, low-density region in the periphery of the accretion column. For HN Tau A and RW Aur A, most of the C IV line is blueshifted suggesting that the C IV emission is produced by shocks within outflow jets. In our sample, the Herbig Ae star DX Cha is the only object for which we find a P-Cygni profile in the C IV line, which argues for the presence of a hot (105 K) wind. For the overall sample, the Si IV and N V line luminosities are correlated with the C IV line luminosities, although the relationship between Si IV and C IV shows large scatter about a linear relationship and suggests that TW Hya, V4046 Sgr, AA Tau, DF Tau, GM Aur, and V1190 Sco are silicon-poor, while CV Cha, DX Cha, RU Lup, and RW Aur may be silicon-rich.

  5. Post Common Envelope Binaries as probes of M dwarf stellar wind and habitable zone radiation environments

    NASA Astrophysics Data System (ADS)

    Wilson, David

    2017-08-01

    M dwarf stars are promising targets in the search for extrasolar habitable planets, as their small size and close-in habitable zones make the detection of Earth-analog planets easier than at Solar-type stars. However, the effects of the high stellar activity of M dwarf hosts has uncertain effects on such planets, and may render them uninhabitable. Studying stellar activity at M dwarfs is hindered by a lack of measurements of high-energy radiation, flare activity and, in particular, stellar wind rates. We propose to rectify this by observing a sample of Post Common Envelope Binaries (PCEBs) with HST and XMM-Newton. PCEBs consist of an M dwarf with a white dwarf companion, which experiences the same stellar wind and radiation environment as a close-in planet. The stellar wind of the M dwarf accretes onto the otherwise pure hydrogen atmosphere white dwarf, producing metal lines detectable with ultraviolet spectroscopy. The metal lines can be used to measure accretion rates onto the white dwarf, from with we can accurately infer the stellar wind mass loss rate of the M dwarf, along with abundances of key elements. Simultaneous observations with XMM-Newton will probe X-ray flare occurrence rate and strength, in addition to coronal temperatures. Performing these measurements over twelve PCEBs will provide a sample of M dwarf stellar wind strengths, flare occurrence and X-ray/UV activity that will finally shed light on the true habitability of planets around small stars.

  6. An Indication of the Enhanced Circumstellar Matter Near the Orbital Plane of the Symbiotic Star EG And

    NASA Astrophysics Data System (ADS)

    Shagatova, N.; Skopal, A.

    2015-07-01

    In this contribution we derive the velocity profile of the material produced by the giant in the symbiotic binary EG And, and the corresponding mass loss rate. Our analysis revealed a significant enhancement of the wind material along the binary plane, which allows a high efficiency of the wind transfer onto the accreting white dwarf.

  7. From ultraluminous X-ray sources to ultraluminous supersoft sources: NGC 55 ULX, the missing link

    NASA Astrophysics Data System (ADS)

    Pinto, C.; Alston, W.; Soria, R.; Middleton, M. J.; Walton, D. J.; Sutton, A. D.; Fabian, A. C.; Earnshaw, H.; Urquhart, R.; Kara, E.; Roberts, T. P.

    2017-07-01

    In recent work with high-resolution reflection grating spectrometers (RGS) aboard XMM-Newton, Pinto et al. have discovered that two bright and archetypal ultraluminous X-ray sources (ULXs) have strong relativistic winds in agreement with theoretical predictions of high accretion rates. It has been proposed that such winds can become optically thick enough to block and reprocess the disc X-ray photons almost entirely, making the source appear as a soft thermal emitter or ultraluminous supersoft X-ray source (ULS). To test this hypothesis, we have studied a ULX where the wind is strong enough to cause significant absorption of the hard X-ray continuum: NGC 55 ULX. The RGS spectrum of NGC 55 ULX shows a wealth of emission and absorption lines blueshifted by significant fractions of the light speed (0.01-0.20)c indicating the presence of a powerful wind. The wind has a complex dynamical structure with the ionization state increasing with the outflow velocity, which may indicate launching from different regions of the accretion disc. The comparison with other ULXs such as NGC 1313 X-1 and NGC 5408 X-1 suggests that NGC 55 ULX is being observed at higher inclination. The wind partly absorbs the source flux above 1 keV, generating a spectral drop similar to that observed in ULSs. The softening of the spectrum at lower (˜ Eddington) luminosities and the detection of a soft lag agree with the scenario of wind clumps crossing the line of sight, partly absorbing and reprocessing the hard X-rays from the innermost region.

  8. An accreting black hole model for Sagittarius A

    NASA Technical Reports Server (NTRS)

    Melia, Fulvio

    1992-01-01

    Several observations, notably of broad He I, Br-alpha, and Br-gamma emission lines from the vicinity of IRS 16, indicate the presence of a strong circumnuclear wind near the dynamical center of the Galaxy. Sgr A, a hypothesized supermassive object situated about 0.06 pc to the west of IRS 16, should be accreting from this wind if it is not itself a source of gaseous outflow, for which there is currently no observational evidence. Here, the spectrum and flux of radiation resulting from this process are calculated, and it is shown that they are consistent with the data over at least 12 decades of frequency. Together with the kinematic studies of the stellar and gas distributions in this region, the model argues strongly in favor of Sgr A being a black hole with mass over a million solar masses.

  9. The Imaging X-Ray Polarimetry Explorer (IXPE): Overview

    NASA Technical Reports Server (NTRS)

    O'Dell, Steve; Weisskopf, M.; Soffitta, P.; Baldini, L.; Bellazzini, R.; Costa, E.; Elsner, R.; Kaspi, V.; Kolodziejczak, J.; Latronico, L.; hide

    2017-01-01

    Mission background: Imaging x-ray polarimetry in 2–8 kiloelectronvolt band; NASA Astrophysics Small Explorer (SMEX) selected in 2017 January. Orbit: Pegasus-XL (airborne) launch in 2021, from Kwajalein; Equatorial circular orbit at greater than or approximately equal to 540 kilometers (620 kilometers, goal) altitude. Flight system: Spacecraft, payload structure, and integration by Ball Aerospace - Deployable payload boom from Orbital-ATK, under contract to Ball; X-ray Mirror Module Assemblies by NASA/MSFC; X-ray (polarization-sensitive) Instruments by IAPS/INAF (Istituto di Astrofisica e Planetologia Spaziali / Istituto Nazionale di Astrofisica) and INFN (Istituto Nazionale di Fisica Nucleare). Ground system: ASI (Agenzia Spaziale Italiana) Malindi ground station, with Singapore backup; Mission Operations Center at LASP (Laboratory for Atmospheric and Space Physics, University of Colorado); Science Operations Center at NASA/MSFC; Data archive at HEASARC (High Energy Astrophysics Science Archive Research Center), (NASA/GSFC), mirror at ASI Data Center. Science: Active galactic nuclei; Microquasars; Radio pulsars and pulsar wind nebulae; Supernova remnants; Magnetars; Accreting x-ray pulsars.

  10. Fast ionized X-ray absorbers in AGNs

    NASA Astrophysics Data System (ADS)

    Fukumura, K.; Tombesi, F.; Kazanas, D.; Shrader, C.; Behar, E.; Contopoulos, I.

    2016-05-01

    We investigate the physics of the X-ray ionized absorbers often identified as warm absorbers (WAs) and ultra-fast outflows (UFOs) in Seyfert AGNs from spectroscopic studies in the context of magnetically-driven accretion-disk wind scenario. Launched and accelerated by the action of a global magnetic field anchored to an underlying accretion disk around a black hole, outflowing plasma is irradiated and ionized by an AGN radiation field characterized by its spectral energy density (SED). By numerically solving the Grad-Shafranov equation in the magnetohydrodynamic (MHD) framework, the physical property of the magnetized disk-wind is determined by a wind parameter set, which is then incorporated into radiative transfer calculations with xstar photoionization code under heating-cooling equilibrium state to compute the absorber's properties such as column density N_H, line-of-sight (LoS) velocity v, ionization parameter ξ, among others. Assuming that the wind density scales as n ∝ r-1, we calculate theoretical absorption measure distribution (AMD) for various ions seen in AGNs as well as line spectra especially for the Fe Kα absorption feature by focusing on a bright quasar PG 1211+143 as a case study and show the model's plausibility. In this note we demonstrate that the proposed MHD-driven disk-wind scenario is not only consistent with the observed X-ray data, but also help better constrain the underlying nature of the AGN environment in a close proximity to a central engine.

  11. Angular Momentum in Disk Wind Revealed in the Young Star MWC 349A

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Qizhou; Claus, Brian; Watson, Linda

    Disk winds are thought to play a critical role in star birth. As winds extract excess angular momentum from accretion disks, matter in the disk can be transported inward to the star to fuel mass growth. However, observational evidence of wind carrying angular momentum has been very limited. We present Submillimeter Array (SMA) observations of the young star MWC 349A in the H26 α and H30 α recombination lines. The high signal-to-noise ratios made possible by the maser emission process allow us to constrain the relative astrometry of the maser spots to milli-arcsecond precision. Previous observations of the H30 αmore » line with the SMA and the Plateau de Bure interferometer (PdBI) showed that masers are distributed in the disk and wind. Our new high-resolution observations of the H26 α line reveal differences in spatial distribution from that of the H30 α line. H26 α line masers in the disk are excited in a thin annulus with a radius of about 25 au, while the H30 α line masers are formed in a slightly larger annulus with a radius of 30 au. This is consistent with expectations for maser excitation in the presence of an electron density variation of approximately R {sup −4}. In addition, the H30 α and H26 α line masers arise from different parts in the wind. This difference is also expected from maser theory. The wind component of both masers exhibits line-of-sight velocities that closely follow a Keplerian law. This result provides strong evidence that the disk wind extracts significant angular momentum, thereby facilitating mass accretion in the young star.« less

  12. Theory of Bipolar Outflows from Accreting Hot Stars

    NASA Astrophysics Data System (ADS)

    Konigl, A.

    1996-05-01

    There is a growing number of observational indicators for the presence of bipolar outflows in massive, young stellar objects that are still accreting mass as part of their formation process. In particular, there is evidence that the outflows from these objects can attain higher velocities and kinetic luminosities than their lower-mass counterparts. Furthermore, the higher-mass objects appear to smoothly continue the correlation found in T Tauri stars between outflow and accretion signatures, and in several cases there are direct clues to the existence of a disk from optical and infrared spectroscopy. These results suggest that the disk--outflow connection found in low-mass pre--main-sequence stars extends to more massive objects, and that a similar physical mechanism may drive the outflows in both cases. In this presentation, I first critically examine the observational basis for this hypothesis, considering, among other things, the possibility that several low-luminosity outflows might occasionally masquerade as a single flow from a luminous object, and the effects that the radiation field of a hot star could have on the spectroscopic diagnostics of an accretion-driven outflow. I then go on to consider how the commonly invoked centrifugally driven wind models of bipolar outflows in low-mass stars would be affected by the various physical processes (such as photoionization, photoevaporation, radiation pressure, and stellar wind ram pressure) that operate in higher-mass stars. I conclude by mentioning some of the tantalizing questions that one could hope to address as this young field of research continues to develop (for example: is there a high-mass analog of the FU Orionis outburst phenomenon? Could one use observations of progressively more massive, and hence less convective, stars to elucidate the role of stellar magnetic fields in the accretion and outflow processes? Would it be possible to observationally identify massive stars that have reached the main sequence while they were still accreting? Does the evolution of protostellar disks differ in low-mass and high-mass objects?).

  13. Physical Structure of Four Symbiotic Binaries

    NASA Technical Reports Server (NTRS)

    Kenyon, Scott J. (Principal Investigator)

    1997-01-01

    Disk accretion powers many astronomical objects, including pre-main sequence stars, interacting binary systems, and active galactic nuclei. Unfortunately, models developed to explain the behavior of disks and their surroundings - boundary layers, jets, and winds - lack much predictive power, because the physical mechanism driving disk evolution - the viscosity - is not understood. Observations of many types of accreting systems are needed to constrain the basic physics of disks and provide input for improved models. Symbiotic stars are an attractive laboratory for studying physical phenomena associated with disk accretion. These long period binaries (P(sub orb) approx. 2-3 yr) contain an evolved red giant star, a hot companion, and an ionized nebula. The secondary star usually is a white dwarf accreting material from the wind of its red giant companion. A good example of this type of symbiotic is BF Cygni: our analysis shows that disk accretion powers the nuclear burning shell of the hot white dwarf and also manages to eject material perpendicular to the orbital plane (Mikolajewska, Kenyon, and Mikolajewski 1989). The hot components in other symbiotic binaries appear powered by tidal overflow from a very evolved red giant companion. We recently completed a study of CI Cygni and demonstrated that the accreting secondary is a solar-type main sequence star, rather than a white dwarf (Kenyon et aL 1991). This project continued our study of symbiotic binary systems. Our general plan was to combine archival ultraviolet and optical spectrophotometry with high quality optical radial velocity observations to determine the variation of line and continuum sources as functions of orbital phase. We were very successful in generating orbital solutions and phasing UV+optical spectra for five systems: AG Dra, V443 Her, RW Hya, AG Peg, and AX Per. Summaries of our main results for these systems appear below. A second goal of our project was to consider general models for the outbursts of symbiotic stars, with an emphasis on understanding the differences between disk-driven and nuclear-powered eruptions.

  14. Liners and Low Luminosity AGN in the ROSAT Database

    NASA Technical Reports Server (NTRS)

    Elvis, Martin; West, Donald K. (Technical Monitor)

    2003-01-01

    This program has led to a series of papers being written and published in the Astrophysical Journal. Together these papers try to explain major parts of the LINER and low luminosity AGN puzzle. One paper ('Accretion Disk Instabilities, Cold Dark Matter Models, and Their Role in Quasar Evolution', Hatziminaoglou E., Siemiginowska A., & Elvis M., 2001, ApJ, 547, 90) describes an analytical model for the evolution of the quasar luminosity function. By combining the Press-Schechter formalism for the masses of initial structures with the luminosity distribution for a population of single mass black holes given by an unstable accretion disk an almost complete end-to-end physics-based model of quasar evolution is produced. In this model black holes spend 75% of their time in a low accretion state (at L(Edd)). This low state population of black holes is likely to be observed as the LINER and low luminosity AGNs in the local universe. Another paper ('Broad Emission Line Regions in AGN: the Link with the Accretion Power', Nicastro F., 2000, ApJ Letters, 530, L65) gives a physical basis for why low state black holes appear as LINERS. By linking the Lightman-Eardley instability in an accretion disk to the ori.gin of a wind that contains the broad emission line cloud material this model explains the large widths seen in these lines as being the Keplerian velocity of the disk at the instability radius. For LINERS the key is that below an accretion rate of 10(exp -3)M(sub Edd)the Lightman-Eardley instability falls within the innermost stable orbit of the disk, and so leaves the entire disk stable. No wind occurs, and so no broad emission lines are seen. Most LINERS are likely to be black holes in this low state. Tests of this model are being considered.

  15. Unveiling slim accretion disc in AGN through X-ray and Infrared observations

    NASA Astrophysics Data System (ADS)

    Castelló-Mor, Núria; Kaspi, Shai; Netzer, Hagai; Du, Pu; Hu, Chen; Ho, Luis C.; Bai, Jin-Ming; Bian, Wei-Hao; Yuan, Ye-Fei; Wang, Jian-Min

    2017-05-01

    In this work, which is a continuation of Castelló-Mor et al., we present new X-ray and infrared (IR) data for a sample of active galactic nuclei (AGN) covering a wide range in Eddington ratio over a small luminosity range. In particular, we rigorously explore the dependence of the optical-to-X-ray spectral index αOX and the IR-to-optical spectral index on the dimensionless accretion rate, \\dot{M} = \\dot{m}/η, where \\dot{m} = LAGN/LEdd and η is the mass-to-radiation conversion efficiency, in low- and high-accretion rate sources. We find that the spectral energy distribution (SED) of the faster accreting sources is surprisingly similar to those from the comparison sample of sources with lower accretion rate. In particular: (I) The optical-to-UV AGN SED of slow and fast accreting AGN can be fitted with thin accretion disc (AD) models. (II) The value of αOX is very similar in slow and fast accreting systems up to a dimensionless accretion rate \\dot{M}c ˜ 10. We only find a correlation between αOX and \\dot{M} for sources with \\dot{M} > \\dot{M}c. In such cases, the faster accreting sources appear to have systematically larger αOX values. (III) We also find that the torus in the faster accreting systems seems to be less efficient in reprocessing the primary AGN radiation having lower IR-to-optical spectral slopes. These findings, failing to recover the predicted differences between the SEDs of slim and thin ADs within the observed spectral window, suggest that additional physical processes or very special geometry act to reduce the extreme-UV radiation in fast accreting AGN. This may be related to photon trapping, strong winds and perhaps other yet unknown physical processes.

  16. Hot accretion flow with anisotropic viscosity

    NASA Astrophysics Data System (ADS)

    Wu, Mao-Chun; Bu, De-Fu; Gan, Zhao-Ming; Yuan, Ye-Fei

    2017-12-01

    In extremely low accretion rate systems, the ion mean-free path can be much larger than the gyroradius. Therefore, gas pressure is anisotropic with respect to magnetic field lines. The effects of pressure anisotropy can be modeled by an anisotropic viscosity with respect to magnetic field lines. Angular momentum can be transferred by anisotropic viscosity. In this paper, we investigate hot accretion flow with anisotropic viscosity. We consider the case that anisotropic viscous stress is much larger than Maxwell stress. We find that the flow is convectively unstable. We also find that the mass inflow rate decreases towards a black hole. Wind is very weak; its mass flux is 10-15% of the mass inflow rate. The inward decrease of inflow rate is mainly due to convective motions. This result may be useful to understand the accretion flow in the Galactic Center Sgr A* and M 87 galaxy.

  17. The structure and appearance of winds from supercritical accretion disks. II - Dynamical theory of supercritical winds

    NASA Technical Reports Server (NTRS)

    Meier, D. L.

    1982-01-01

    A general analytic theory is presented of winds driven by super-Eddington luminosities. The relevant parameters are the mass of the central object, the radius at which the luminosity and matter are injected, the ratio of the free-fall time to the heating time at this radius, and the total luminosity injected at the radius. Several different regimes of dynamical wind structure are identified, and the analytic expressions are shown to agree with the numerical results in Meier (1979) in the appropriate case. It is noted that, in its general form, the theory is the optically thick (to electron scattering) counterpart to optically thin radiation pressure-driven stellar winds.

  18. On the Dramatic Spin-up/Spin-Down Torque Reversals in Accreting Pulsars

    NASA Technical Reports Server (NTRS)

    Nelson, Robert W.; Bildsten, Lars; Chakrabarty, Deepto; Finger, Mark H.; Koh, Danny T.; Prince, Thomas A.; Rubin, Bradley C.; Scott, D. Mathew; Vaughan, Brian A.; Wilson, Robert B.

    1997-01-01

    Dramatic torque reversals between spin-up and spin-down have been observed in half of the persistent X-ray pulsars monitored by the Burst and Transient Space Experiment (BATSE) all-sky monitor on the Compton Gamma Ray Observatory. Theoretical models developed to explain early pulsar timing data can explain spin-down torques via a disk-magnetosphere interaction if the star nearly corotates with the inner accretion disk. To produce the observed BATSE torque reversals, however, these equilibrium models require the disk to alternate between two mass accretion rates, with M+/- producing accretion torques of similar magnitude but always of opposite sign. Moreover, in at least one pulsar (GX 1+4) undergoing secular spin-down, the neutron star spins down faster during brief (approximately 20 day) hard X-ray flares-this is opposite the correlation expected from standard theory, assuming that BATSE pulsed flux increases with mass accretion rate. The 10 day to 10 yr intervals between torque reversals in these systems are much longer than any characteristic magnetic or viscous timescale near the inner disk boundary and are more suggestive of a global disk phenomenon. We discuss possible explanations of the observed torque behavior. Despite the preferred sense of rotation defined by the binary orbit, the BATSE observations are surprisingly consistent with an earlier suggestion for GX 1+4: the disks in these systems somehow alternate between episodes of prograde and retrograde rotation. We are unaware of any mechanism that could produce a stable retrograde disk in a binary undergoing Roche lobe overflow, but such flip-flop behavior does occur in numerical simulations of wind-fed systems. One possibility is that the disks in some of these binaries are fed by an X-ray-excited wind.

  19. The growth of central and satellite galaxies in cosmological smoothed particle hydrodynamics simulations

    NASA Astrophysics Data System (ADS)

    Simha, Vimal; Weinberg, David H.; Davé, Romeel; Gnedin, Oleg Y.; Katz, Neal; Kereš, Dušan

    2009-10-01

    We examine the accretion and merger histories of central and satellite galaxies in a smoothed particle hydrodynamics (SPH) cosmological simulation that resolves galaxies down to 7 × 109Msolar. Most friends-of-friends haloes in the simulation have a distinct central galaxy, typically 2-5 times more massive than the most massive satellite. As expected, satellites have systematically higher assembly redshifts than central galaxies of the same baryonic mass, and satellites in more massive haloes form earlier. However, contrary to the simplest expectations, satellite galaxies continue to accrete gas and convert it to stars; the gas accretion declines steadily over a period of 0.5-1 Gyr after the satellite halo merges with a larger parent halo. Satellites in a cluster mass halo eventually begin to lose baryonic mass. Typically, satellites in our simulation are 0.1-0.2 mag bluer than in models that assume no gas accretion on to satellites after a halo merger. Since z = 1, 27 per cent of central galaxies (above 3 × 1010Msolar) and 22 per cent of present-day satellite galaxies have merged with a smaller system above a 1:4 mass ratio; about half of the satellite mergers occurred after the galaxy became a satellite and half before. In effect, satellite galaxies can remain `central' objects of halo substructures, with continuing accretion and mergers, making the transition in assembly histories and physical properties a gradual one. Implementing such a gradual transformation in semi-analytic models would improve their agreement with observed colour distributions of satellite galaxies in groups and with the observed colour dependence of galaxy clustering.

  20. A magnetic accretion switch in pre-cataclysmic binaries

    NASA Astrophysics Data System (ADS)

    Drake, Jeremy J.; Garraffo, Cecilia; Takei, Dai; Gaensicke, Boris

    2014-02-01

    We have investigated the mass accretion rate implied by published surface abundances of Si and C in the white dwarf component of the 3.62 h period pre-cataclysmic binary and planet host candidate QS Vir (DA+M2-4). Diffusion time-scales for gravitational settling imply dot{M} ˜ 10^{-16} M_{odot } yr-1 for the 1999 epoch of the observations, which is three orders of magnitude lower than measured from a 2006 XMM-Newton observation. This is the first time that large accretion rate variations have been seen in a detached pre-cataclysmic variable (pre-CV). A third body in a 14 yr eccentric orbit suggested in a recent eclipse timing study is too distant to perturb the central binary sufficiently to influence accretion. A hypothetical coronal mass ejection just prior to the XMM-Newton observation might explain the higher accretion rate, but the implied size and frequency of such events appear too great. We suggest accretion is most likely modulated by a magnetic cycle on the secondary acting as a wind `accretion switch', a mechanism that can be tested by X-ray and ultraviolet monitoring. If so, QS Vir and similar pre-CVs could provide powerful insights into hitherto inscrutable CV and M dwarf magnetospheres, and mass- and angular-momentum-loss rates.

  1. Wind accretion in the massive X-ray binary 4U 2206+54: abnormally slow wind and a moderately eccentric orbit

    NASA Astrophysics Data System (ADS)

    Ribó, M.; Negueruela, I.; Blay, P.; Torrejón, J. M.; Reig, P.

    2006-04-01

    Massive X-ray binaries are usually classified by the properties of the donor star in classical, supergiant and Be X-ray binaries, the main difference being the mass transfer mechanism between the two components. The massive X-ray binary 4U 2206+54 does not fit in any of these groups, and deserves a detailed study to understand how the transfer of matter and the accretion on to the compact object take place. To this end we study an IUE spectrum of the donor and obtain a wind terminal velocity (v_∞) of ~350 km s-1, which is abnormally slow for its spectral type. We also analyse here more than 9 years of available RXTE/ASM data. We study the long-term X-ray variability of the source and find it to be similar to that observed in the wind-fed supergiant system Vela X-1, reinforcing the idea that 4U 2206+54 is also a wind-fed system. We find a quasi-period decreasing from ~270 to ~130 d, noticed in previous works but never studied in detail. We discuss possible scenarios for its origin and conclude that long-term quasi-periodic variations in the mass-loss rate of the primary are probably driving such variability in the measured X-ray flux. We obtain an improved orbital period of P_orb=9.5591±0.0007 d with maximum X-ray flux at MJD 51856.6±0.1. Our study of the orbital X-ray variability in the context of wind accretion suggests a moderate eccentricity around 0.15 for this binary system. Moreover, the low value of v_∞ solves the long-standing problem of the relatively high X-ray luminosity for the unevolved nature of the donor, BD +53°2790, which is probably an O9.5 V star. We note that changes in v_∞ and/or the mass-loss rate of the primary alone cannot explain the different patterns displayed by the orbital X-ray variability. We finally emphasize that 4U 2206+54, together with LS 5039, could be part of a new population of wind-fed HMXBs with main sequence donors, the natural progenitors of supergiant X-ray binaries.

  2. Towards a Unified View of Inhomogeneous Stellar Winds in Isolated Supergiant Stars and Supergiant High Mass X-Ray Binaries

    NASA Astrophysics Data System (ADS)

    Martínez-Núñez, Silvia; Kretschmar, Peter; Bozzo, Enrico; Oskinova, Lidia M.; Puls, Joachim; Sidoli, Lara; Sundqvist, Jon Olof; Blay, Pere; Falanga, Maurizio; Fürst, Felix; Gímenez-García, Angel; Kreykenbohm, Ingo; Kühnel, Matthias; Sander, Andreas; Torrejón, José Miguel; Wilms, Jörn

    2017-10-01

    Massive stars, at least ˜10 times more massive than the Sun, have two key properties that make them the main drivers of evolution of star clusters, galaxies, and the Universe as a whole. On the one hand, the outer layers of massive stars are so hot that they produce most of the ionizing ultraviolet radiation of galaxies; in fact, the first massive stars helped to re-ionize the Universe after its Dark Ages. Another important property of massive stars are the strong stellar winds and outflows they produce. This mass loss, and finally the explosion of a massive star as a supernova or a gamma-ray burst, provide a significant input of mechanical and radiative energy into the interstellar space. These two properties together make massive stars one of the most important cosmic engines: they trigger the star formation and enrich the interstellar medium with heavy elements, that ultimately leads to formation of Earth-like rocky planets and the development of complex life. The study of massive star winds is thus a truly multidisciplinary field and has a wide impact on different areas of astronomy. In recent years observational and theoretical evidences have been growing that these winds are not smooth and homogeneous as previously assumed, but rather populated by dense "clumps". The presence of these structures dramatically affects the mass loss rates derived from the study of stellar winds. Clump properties in isolated stars are nowadays inferred mostly through indirect methods (i.e., spectroscopic observations of line profiles in various wavelength regimes, and their analysis based on tailored, inhomogeneous wind models). The limited characterization of the clump physical properties (mass, size) obtained so far have led to large uncertainties in the mass loss rates from massive stars. Such uncertainties limit our understanding of the role of massive star winds in galactic and cosmic evolution. Supergiant high mass X-ray binaries (SgXBs) are among the brightest X-ray sources in the sky. A large number of them consist of a neutron star accreting from the wind of a massive companion and producing a powerful X-ray source. The characteristics of the stellar wind together with the complex interactions between the compact object and the donor star determine the observed X-ray output from all these systems. Consequently, the use of SgXBs for studies of massive stars is only possible when the physics of the stellar winds, the compact objects, and accretion mechanisms are combined together and confronted with observations. This detailed review summarises the current knowledge on the theory and observations of winds from massive stars, as well as on observations and accretion processes in wind-fed high mass X-ray binaries. The aim is to combine in the near future all available theoretical diagnostics and observational measurements to achieve a unified picture of massive star winds in isolated objects and in binary systems.

  3. Investigation of surface water behavior during glaze ice accretion

    NASA Technical Reports Server (NTRS)

    Hansman, R. John, Jr.; Turnock, Stephen R.

    1990-01-01

    A series of experimental investigations that focused on isolating the primary factors that control the behavior of unfrozen surface water during glaze ice accretion were conducted. Detailed microvideo observations were made of glaze ice accretions on 2.54 cm diam cylinders in a closed-loop refrigerated wind tunnel. Distinct zones of surface water behavior were observed; a smooth wet zone in the stagnation region with a uniform water film, a rough zone where surface tension effects caused coalescence of surface water into stationary beads, and a zone where surface water ran back as rivulets. The location of the transition from the smooth to the rough zone was found to migrate towards the stagnation point with time. Comparative tests were conducted to study the effect of the substrate thermal and roughness properties on ice accretion. The importance of surface water behavior was evaluated by the addition of a surface tension reducing agent to the icing tunnel water supply, which significantly altered the accreted glaze ice shape. Measurements were made to determine the contact angle behavior of water droplets on ice. A simple multizone modification to current glaze ice accretion models was proposed to include the observed surface roughness behavior.

  4. Simulations of small solid accretion on to planetesimals in the presence of gas

    NASA Astrophysics Data System (ADS)

    Hughes, A. G.; Boley, A. C.

    2017-12-01

    The growth and migration of planetesimals in a young protoplanetary disc are fundamental to planet formation. In all models of early growth, there are several processes that can inhibit grains from reaching larger sizes. Nevertheless, observations suggest that growth of planetesimals must be rapid. If a small number of 100 km sized planetesimals do manage to form in the disc, then gas drag effects could enable them to efficiently accrete small solids from beyond their gravitationally focused cross-section. This gas-drag-enhanced accretion can allow planetesimals to grow at rapid rates, in principle. We present self-consistent hydrodynamics simulations with direct particle integration and gas-drag coupling to estimate the rate of planetesimal growth due to pebble accretion. Wind tunnel simulations are used to explore a range of particle sizes and disc conditions. We also explore analytic estimates of planetesimal growth and numerically integrate planetesimal drift due to the accretion of small solids. Our results show that, for almost every case that we consider, there is a clearly preferred particle size for accretion that depends on the properties of the accreting planetesimal and the local disc conditions. For solids much smaller than the preferred particle size, accretion rates are significantly reduced as the particles are entrained in the gas and flow around the planetesimal. Solids much larger than the preferred size accrete at rates consistent with gravitational focusing. Our analytic estimates for pebble accretion highlight the time-scales that are needed for the growth of large objects under different disc conditions and initial planetesimal sizes.

  5. Spectral Variability of the Herbig Ae/Be Star HD 37806

    NASA Astrophysics Data System (ADS)

    Pogodin, M. A.; Pavlovskiy, S. E.; Kozlova, O. V.; Beskrovnaya, N. G.; Alekseev, I. Yu.; Valyavin, G. G.

    2018-03-01

    Results are reported from a spectroscopic study of the Herbig Ae/Be star HD 37806 from 2009 through 2017 using high resolution spectrographs at the Crimean Astrophysical Observatory and the OAN SPM Observatory in Mexico. 72 spectra of this object near the Hα, Hβ, HeI 5876 and D NaI lines are analyzed. The following results were obtained: 1. The type of spectral profile of the Hα line can change from P Cyg III to double emission and vice versa over a time scale on the order of a month. 2. Narrow absorption components are observed in the profiles of the Hα and D NaI lines with radial velocities that vary over a characteristic time on the order of a day. 3. On some days, the profiles of the Hβ, HeI 5876, and D NaI lines show signs of accretion of matter to the star with a characteristic lifetime of a few days. A possible interpretation of these phenomena was considered. The transformation of the Hα profile may be related to a change in the outer latitudinal width of the boundary of the wind zone. The narrow variable absorption lines may be caused by the rotation of local azimuthal inhomogeneities in the wind zone owing to the interaction of the disk with the star's magnetosphere in a propeller regime. Several current theoretical papers that predict the formation of similar inhomogeneous wind structures were examined. It is suggested that the episodes with signs of accretion in the spectral line profiles cannot be a consequence of the modulation of these profiles by the star's rotation but are more likely caused by sudden, brief changes in the accretion rate. These spectral observations of HD 37806 should be continued in a search for cyclical variability in the spectral parameters in order to identify direct signs of magnetospheric accretion and detect possible binary behavior in this object.

  6. Balmer line profiles for infalling T Tauri envelopes

    NASA Technical Reports Server (NTRS)

    Calvet, Nuria; Hartmann, Lee

    1992-01-01

    The possibility that the Balmer emission lines of T Tauri stars arise in infalling envelopes rather than winds is considered. Line profiles for the upper Balmer lines are presented for models with cone geometry, intended to simulate the basic features of magnetospheric accretion from a circumstellar disk. An escape probability treatment is used to determine line source functions in nonspherically symmetric geometry. Thermalization effects are found to produce nearly symmetric H-alpha line profiles at the same time the higher Balmer series lines exhibit inverse P Cygni profiles. The infall models produce centrally peaked emission line wings, in good agreement with observations of many T Tauri stars. It is suggested that the Balmer emission of many T Tauri stars may be produced in an infalling envelope, with blue shifted absorption contributed by an overlying wind. Some of the observed narrow absorption components with small blueshifts may also arise in the accretion column.

  7. Radio-Loud AGN: The Suzaku View

    NASA Technical Reports Server (NTRS)

    Sambruna, Rita

    2009-01-01

    We review our Suzaku observations of Broad-Line Radio Galaxies (BLRGs). The continuum above 2 approx.keV in BLRGs is dominated by emission from an accretion flow, with little or no trace of a jet, which is instead expected to emerge at GeV energies and be detected by Fermi. Concerning the physical conditions of the accretion disk, BLRGs are a mixed bag. In some sources the data suggest relatively high disk ionization, in others obscuration of the innermost regions, perhaps by the jet base. While at hard X-rays the distinction between BLRGs and Seyferts appears blurry, one of the cleanest observational differences between the two classes is at soft X-rays, where Seyferts exhibit warm absorbers related to disk winds while BLRGs do not. We discuss the possibility that jet formation inhibits disk winds, and thus is related to the remarkable dearth of absorption features at soft X-rays in BLRGs and other radio-loud AGN.

  8. Dynamic Wind-Tunnel Testing of a Sub-Scale Iced Business Jet

    NASA Technical Reports Server (NTRS)

    Lee, Sam; Barnhart, Billy P.; Ratvasky, Thomas P.; Dickes, Edward; Thacker, Michael

    2006-01-01

    The effect of ice accretion on a 1/12-scale complete aircraft model of a business jet was studied in a rotary-balance wind tunnel. Three types of ice accretions were considered: ice protection system failure shape, pre-activation roughness, and runback shapes that form downstream of the thermal ice protection system. The results were compared with those from a 1/12-scale semi-span wing of the same aircraft at similar Reynolds number. The data showed that the full aircraft and the semi-span wing models showed similar characteristics, especially post stall behavior under iced configuration. However, there were also some discrepancies, such as the magnitude in the reductions in the maximum lift coefficient. Most of the ice-induced effects were limited to longitudinal forces. Rotational and forced oscillation studies showed that the effects of ice on lateral forces were relatively minor.

  9. Advection-dominated Inflow/Outflows from Evaporating Accretion Disks.

    PubMed

    Turolla; Dullemond

    2000-03-01

    In this Letter we investigate the properties of advection-dominated accretion flows (ADAFs) fed by the evaporation of a Shakura-Sunyaev accretion disk (SSD). In our picture, the ADAF fills the central cavity evacuated by the SSD and extends beyond the transition radius into a coronal region. We find that, because of global angular momentum conservation, a significant fraction of the hot gas flows away from the black hole, forming a transsonic wind, unless the injection rate depends only weakly on radius (if r2sigma&d2;~r-xi, xi<1&solm0;2). The Bernoulli number of the inflowing gas is negative if the transition radius is less, similar100 Schwarzschild radii, so matter falling into the hole is gravitationally bound. The ratio of inflowing to outflowing mass is approximately 1/2, so in these solutions the accretion rate is of the same order as in standard ADAFs and much larger than in advection-dominated inflow/outflow models. The possible relevance of evaporation-fed solutions to accretion flows in black hole X-ray binaries is briefly discussed.

  10. Chandra X-ray Spectroscopy of the Focused Wind In the Cygnus X-1 System I. The Non-Dip Spectrum in the Low/Hard State

    NASA Technical Reports Server (NTRS)

    Hanke, Manfred; Wilms, Jorn; Nowak, Michael A.; Pottschmidt, Katja; Schultz, Norbert S.; Lee, Julia C.

    2008-01-01

    We present analyses of a 50 ks observation of the supergiant X-ray binary system CygnusX-1/HDE226868 taken with the Chandra High Energy Transmission Grating Spectrometer (HETGS). CygX-1 was in its spectrally hard state and the observation was performed during superior conjunction of the black hole, allowing for the spectroscopic analysis of the accreted stellar wind along the line of sight. A significant part of the observation covers X-ray dips as commonly observed for CygX-1 at this orbital phase, however, here we only analyze the high count rate non-dip spectrum. The full 0.5-10 keV continuum can be described by a single model consisting of a disk, a narrow and a relativistically broadened Fe K line, and a power law component, which is consistent with simultaneous RXTE broad band data. We detect absorption edges from overabundant neutral O, Ne and Fe, and absorption line series from highly ionized ions and infer column densities and Doppler shifts. With emission lines of He-like Mg XI, we detect two plasma components with velocities and densities consistent with the base of the spherical wind and a focused wind. A simple simulation of the photoionization zone suggests that large parts of the spherical wind outside of the focused stream are completely ionized, which is consistent with the low velocities (<200 km/s) observed in the absorption lines, as the position of absorbers in a spherical wind at low projected velocity is well constrained. Our observations provide input for models that couple the wind activity of HDE 226868 to the properties of the accretion flow onto the black hole.

  11. Enriching the hot circumgalactic medium

    NASA Astrophysics Data System (ADS)

    Crain, Robert A.; McCarthy, Ian G.; Schaye, Joop; Theuns, Tom; Frenk, Carlos S.

    2013-07-01

    Simple models of galaxy formation in a cold dark matter universe predict that massive galaxies are surrounded by a hot, quasi-hydrostatic circumgalactic corona of slowly cooling gas, predominantly accreted from the intergalactic medium (IGM). This prediction is borne out by the recent cosmological hydrodynamical simulations of Crain et al., which reproduce observed scaling relations between the X-ray and optical properties of nearby disc galaxies. Such coronae are metal poor, but observations of the X-ray emitting circumgalactic medium (CGM) of local galaxies typically indicate enrichment to near-solar iron abundance, potentially signalling a shortcoming in current models of galaxy formation. We show here that, while the hot CGM of galaxies formed in the simulations is typically metal poor in a mass-weighted sense, its X-ray luminosity-weighted metallicity is often close to solar. This bias arises because the soft X-ray emissivity of a typical ˜0.1 keV corona is dominated by collisionally excited metal ions that are synthesized in stars and recycled into the hot CGM. We find that these metals are ejected primarily by stars that form in situ to the main progenitor of the galaxy, rather than in satellites or external galaxies. The enrichment of the hot CGM therefore proceeds in an `inside-out' fashion throughout the assembly of the galaxy: metals are transported from the central galaxy by supernova-driven winds and convection over several Gyr, establishing a strong negative radial metallicity gradient. Whilst metal ions synthesized by stars are necessary to produce the X-ray emissivity that enables the hot CGM of isolated galaxies to be detected with current instrumentation, the electrons that collisionally excite them are equally important. Since our simulations indicate that the electron density of hot coronae is dominated by the metal-poor gas accreted from the IGM, we infer that the hot CGM observed via X-ray emission is the outcome of both hierarchical accretion and stellar recycling.

  12. Magnetically advected winds

    NASA Astrophysics Data System (ADS)

    Contopoulos, I.; Kazanas, D.; Fukumura, K.

    2017-11-01

    Observations of X-ray absorption lines in magnetically driven disc winds around black hole binaries and active galactic nuclei yield a universal radial density profile ρ ∝ r-1.2 in the wind. This is in disagreement with the standard Blandford and Payne profile ρBP ∝ r-1.5 expected when the magnetic field is neither advected nor diffusing through the accretion disc. In order to account for this discrepancy, we establish a new paradigm for magnetically driven astrophysical winds according to which the large-scale ordered magnetic field that threads the disc is continuously generated by the Cosmic Battery around the inner edge of the disc and continuously diffuses outward. We obtain self-similar solutions of such magnetically advected winds (MAW) and discuss their observational ramifications.

  13. Suppressing star formation in quiescent galaxies with supermassive black hole winds.

    PubMed

    Cheung, Edmond; Bundy, Kevin; Cappellari, Michele; Peirani, Sébastien; Rujopakarn, Wiphu; Westfall, Kyle; Yan, Renbin; Bershady, Matthew; Greene, Jenny E; Heckman, Timothy M; Drory, Niv; Law, David R; Masters, Karen L; Thomas, Daniel; Wake, David A; Weijmans, Anne-Marie; Rubin, Kate; Belfiore, Francesco; Vulcani, Benedetta; Chen, Yan-mei; Zhang, Kai; Gelfand, Joseph D; Bizyaev, Dmitry; Roman-Lopes, A; Schneider, Donald P

    2016-05-26

    Quiescent galaxies with little or no ongoing star formation dominate the population of galaxies with masses above 2 × 10(10) times that of the Sun; the number of quiescent galaxies has increased by a factor of about 25 over the past ten billion years (refs 1-4). Once star formation has been shut down, perhaps during the quasar phase of rapid accretion onto a supermassive black hole, an unknown mechanism must remove or heat the gas that is subsequently accreted from either stellar mass loss or mergers and that would otherwise cool to form stars. Energy output from a black hole accreting at a low rate has been proposed, but observational evidence for this in the form of expanding hot gas shells is indirect and limited to radio galaxies at the centres of clusters, which are too rare to explain the vast majority of the quiescent population. Here we report bisymmetric emission features co-aligned with strong ionized-gas velocity gradients from which we infer the presence of centrally driven winds in typical quiescent galaxies that host low-luminosity active nuclei. These galaxies are surprisingly common, accounting for as much as ten per cent of the quiescent population with masses around 2 × 10(10) times that of the Sun. In a prototypical example, we calculate that the energy input from the galaxy's low-level active supermassive black hole is capable of driving the observed wind, which contains sufficient mechanical energy to heat ambient, cooler gas (also detected) and thereby suppress star formation.

  14. A colossal impact enriched Mars' mantle with noble metals

    NASA Astrophysics Data System (ADS)

    Brasser, R.; Mojzsis, S. J.

    2017-06-01

    Once the terrestrial planets had mostly completed their assembly, bombardment continued by planetesimals left over from accretion. Highly siderophile element (HSE) abundances in Mars' mantle imply that its late accretion supplement was 0.8 wt %; Earth and the Moon obtained an additional 0.7 wt % and 0.02 wt %, respectively. The disproportionately high Earth/Moon accretion ratio is explicable by stochastic addition of a few remaining Ceres-sized bodies that preferentially targeted Earth. Here we show that Mars' late accretion budget also requires a colossal impact, a plausible visible remnant of which is the emispheric dichotomy. The addition of sufficient HSEs to the Martian mantle entails an impactor of at least 1200 km in diameter to have struck Mars before 4430 Ma, by which time crust formation was well underway. Thus, the dichotomy could be one of the oldest geophysical features of the Martian crust. Ejected debris could be the source material for its satellites.

  15. Fabrication and assembly of the ERDA/NASA 100 kilowatt experimental wind turbine

    NASA Technical Reports Server (NTRS)

    Puthoff, R. L.

    1976-01-01

    As part of the Energy Research and Development Administration (ERDA) wind-energy program, NASA Lewis Research Center has designed and built an experimental 100-kW wind turbine. The two-bladed turbines drives a synchronous alternator that generates its maximum output of 100 kW of electrical power in a 29-km/hr (18-mph) wind. The design and assembly of the wind turbine were performed at Lewis from components that were procured from industry. The machine was installed atop the tower on September 3, 1975.

  16. RADIATIVE AND MOMENTUM-BASED MECHANICAL ACTIVE GALACTIC NUCLEUS FEEDBACK IN A THREE-DIMENSIONAL GALAXY EVOLUTION CODE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Choi, Ena; Ostriker, Jeremiah P.; Naab, Thorsten

    2012-08-01

    We study the growth of black holes (BHs) in galaxies using three-dimensional smoothed particle hydrodynamic simulations with new implementations of the momentum mechanical feedback, and restriction of accreted elements to those that are gravitationally bound to the BH. We also include the feedback from the X-ray radiation emitted by the BH, which heats the surrounding gas in the host galaxies, and adds radial momentum to the fluid. We perform simulations of isolated galaxies and merging galaxies and test various feedback models with the new treatment of the Bondi radius criterion. We find that overall the BH growth is similar tomore » what has been obtained by earlier works using the Springel, Di Matteo, and Hernquist algorithms. However, the outflowing wind velocities and mechanical energy emitted by winds are considerably higher (v{sub w} {approx} 1000-3000 km s{sup -1}) compared to the standard thermal feedback model (v{sub w} {approx} 50-100 km s{sup -1}). While the thermal feedback model emits only 0.1% of BH released energy in winds, the momentum feedback model emits more than 30% of the total energy released by the BH in winds. In the momentum feedback model, the degree of fluctuation in both radiant and wind output is considerably larger than in standard treatments. We check that the new model of BH mass accretion agrees with analytic results for the standard Bondi problem.« less

  17. Fast Ionized X-Ray Absorbers in AGNs

    NASA Technical Reports Server (NTRS)

    Fukumura, K.; Tombesi, F.; Kazanas, D.; Shrader, C.; Behar, E.; Contopoulos, I.

    2016-01-01

    We investigate the physics of the X-ray ionized absorbers often identified as warm absorbers (WAs) and ultra-fast outflows (UFOs) in Seyfert AGNs from spectroscopic studies in the context of magnetically-driven accretion-disk wind scenario. Launched and accelerated by the action of a global magnetic field anchored to an underlying accretion disk around a black hole, outflowing plasma is irradiated and ionized by an AGN radiation field characterized by its spectral energy density (SED). By numerically solving the Grad-Shafranov equation in the magnetohydrodynamic (MHD) framework, the physical property of the magnetized disk-wind is determined by a wind parameter set, which is then incorporated into radiative transfer calculations with xstar photoionization code under heating-cooling equilibrium state to compute the absorber's properties such as column density N(sub H), line-of-sight (LoS) velocity v, ionization parameter xi, among others. Assuming that the wind density scales as n varies as r(exp. -1), we calculate theoretical absorption measure distribution (AMD) for various ions seen in AGNs as well as line spectra especially for the Fe K alpha absorption feature by focusing on a bright quasar PG 1211+143 as a case study and show the model's plausibility. In this note we demonstrate that the proposed MHD-driven disk-wind scenario is not only consistent with the observed X-ray data, but also help better constrain the underlying nature of the AGN environment in a close proximity to a central engine.

  18. The Large-scale Magnetic Fields of Thin Accretion Disks

    NASA Astrophysics Data System (ADS)

    Cao, Xinwu; Spruit, Hendrik C.

    2013-03-01

    Large-scale magnetic field threading an accretion disk is a key ingredient in the jet formation model. The most attractive scenario for the origin of such a large-scale field is the advection of the field by the gas in the accretion disk from the interstellar medium or a companion star. However, it is realized that outward diffusion of the accreted field is fast compared with the inward accretion velocity in a geometrically thin accretion disk if the value of the Prandtl number P m is around unity. In this work, we revisit this problem considering the angular momentum of the disk to be removed predominantly by the magnetically driven outflows. The radial velocity of the disk is significantly increased due to the presence of the outflows. Using a simplified model for the vertical disk structure, we find that even moderately weak fields can cause sufficient angular momentum loss via a magnetic wind to balance outward diffusion. There are two equilibrium points, one at low field strengths corresponding to a plasma-beta at the midplane of order several hundred, and one for strong accreted fields, β ~ 1. We surmise that the first is relevant for the accretion of weak, possibly external, fields through the outer parts of the disk, while the latter one could explain the tendency, observed in full three-dimensional numerical simulations, of strong flux bundles at the centers of disk to stay confined in spite of strong magnetororational instability turbulence surrounding them.

  19. Quasar Feedback in the Ultraluminous Infrared Galaxy F11119+3257: Connecting the Accretion Disk Wind with the Large-scale Molecular Outflow

    NASA Astrophysics Data System (ADS)

    Veilleux, S.; Bolatto, A.; Tombesi, F.; Meléndez, M.; Sturm, E.; González-Alfonso, E.; Fischer, J.; Rupke, D. S. N.

    2017-07-01

    In Tombesi et al., we reported the first direct evidence for a quasar accretion disk wind driving a massive (>100 M ⊙ yr-1) molecular outflow. The target was F11119+3257, an ultraluminous infrared galaxy (ULIRG) with unambiguous type 1 quasar optical broad emission lines. The energetics of the accretion disk wind and molecular outflow were found to be consistent with the predictions of quasar feedback models where the molecular outflow is driven by a hot energy-conserving bubble inflated by the inner quasar accretion disk wind. However, this conclusion was uncertain because the mass outflow rate, momentum flux, and mechanical power of the outflowing molecular gas were estimated from the optically thick OH 119 μm transition profile observed with Herschel. Here, we independently confirm the presence of the molecular outflow in F11119+3257, based on the detection of ˜±1000 km s-1 blue- and redshifted wings in the CO(1-0) emission line profile derived from deep ALMA observations obtained in the compact array configuration (˜2.″8 resolution). The broad CO(1-0) line emission appears to be spatially extended on a scale of at least ˜7 kpc from the center. Mass outflow rate, momentum flux, and mechanical power of (80-200) {R}7-1 M ⊙ yr-1, (1.5-3.0) {R}7-1 L AGN/c, and (0.15-0.40)% {R}7-1 {L}{AGN}, respectively, are inferred from these data, assuming a CO-to-H2 conversion factor appropriate for a ULIRG (R 7 is the radius of the outflow normalized to 7 kpc, and L AGN is the AGN luminosity). These rates are time-averaged over a flow timescale of 7 × 106 yr. They are similar to the OH-based rates time-averaged over a flow timescale of 4 × 105 yr, but about a factor of 4 smaller than the local (“instantaneous” ≲105 yr) OH-based estimates cited in Tombesi et al. The implications of these new results are discussed in the context of time-variable quasar-mode feedback and galaxy evolution. The need for an energy-conserving bubble to explain the molecular outflow is also reexamined.

  20. Planetesimal Growth through the Accretion of Small Solids: Hydrodynamics Simulations with Gas-Particle Coupling

    NASA Astrophysics Data System (ADS)

    Hughes, Anna; Boley, Aaron C.

    2016-10-01

    The growth and migration of planetesimals in young protoplanetary disks are fundamental to the planet formation process. A number of mechanisms seemingly inhibit small grains from growing to sizes much larger than a centimeter, limiting planetesimal growth. In spite of this, the meteoritic record, abundance of exoplanets, and the lifetimes of disks considered altogether indicate that growth must be rapid and common. If a small number of 100-km sized planetesimals do form by some method such as the streaming instability, then gas drag effects could enable those objects to accrete small solids efficiently. In particular, accretion rates for such planetesimals could be higher or lower than rates based on the geometric cross-section and gravitational focusing alone. The local gas conditions and properties of accreting bodies select a locally optimal accretion size for the pebbles. As planetesimals accrete pebbles, they feel an additional angular momentum exchange - causing the planetesimal to slowly drift inward, which becomes significant at short orbital periods. We present self-consistent hydrodynamic simulations with direct particle integration and gas-drag coupling to evaluate the rate of planetesimal growth due to pebble accretion. We explore a range of particle sizes, planetesimal properties, and disk conditions using wind tunnel simulations. These results are followed by numerical analysis of planetesimal drift rates at a variety of stellar distances.

  1. Model 'zero-age' lunar thermal profiles resulting from electrical induction

    NASA Technical Reports Server (NTRS)

    Herbert, F.; Sonett, C. P.; Wiskerchen, M. J.

    1977-01-01

    Thermal profiles for the moon are calculated under the assumption that a pre-main-sequence T-Tauri-like solar wind excites both transverse magnetic and transverse electric induction while the moon is accreting. A substantial initial temperature rise occurs, possibly of sufficient magnitude to cause subsequent early extensive melting throughout the moon in conjunction with nominal long-lived radioactives. In these models, accretion is an unimportant direct source of thermal energy but is important because even small temperature rises from accretion cause significant changes in bulk electrical conductivity. Induction depends upon the radius of the moon, which we take to be accumulating while it is being heated electrically. The 'zero-age' profiles calculated in this paper are proposed as initial conditions for long-term thermal evolution of the moon.

  2. Magnetospheric accretion models for T Tauri stars. 1: Balmer line profiles without rotation

    NASA Technical Reports Server (NTRS)

    Hartmann, Lee; Hewett, Robert; Calvet, Nuria

    1994-01-01

    We argue that the strong emission lines of T Tauri stars are generally produced in infalling envelopes. Simple models of infall constrained to a dipolar magnetic field geometry explain many peculiarities of observed line profiles that are difficult, if not impossible, to reproduce with wind models. Radiative transfer effects explain why certain lines can appear quite symmetric while other lines simultaneously exhibit inverse P Cygni profiles, without recourse to complicated velocity fields. The success of the infall models in accounting for qualitative features of observed line profiles supports the proposal that stellar magnetospheres disrupt disk accretion in T Tauri stars, that true boundary layers are not usually present in T Tauri stars, and that the observed 'blue veiling' emission arises from the base of the magnetospheric accretion column.

  3. GW Orionis: Inner disk readjustments in a triple system

    NASA Astrophysics Data System (ADS)

    Fang, M.; Sicilia-Aguilar, A.; Roccatagliata, V.; Fedele, D.; Henning, Th.; Eiroa, C.; Müller, A.

    2014-10-01

    Context. Disks are expected to dissipate quickly in binary or multiple systems. Investigating such systems can improve our knowledge of the disk dispersal. The triple system GW Ori, still harboring a massive disk, is an excellent target. Aims: We study the young stellar system GW Ori, concentrating on its accretion, wind activity and disk properties. Methods: We use high-resolution optical spectra of GW Ori to do spectral classification and derive the radial velocities (RV). We analyze the wind and accretion activity using the emission lines in the spectra. We also use U-band photometry, which has been collected from the literature, to study the accretion variability of GW Ori. We characterize the disk properties of GW Ori by modeling its spectral energy distribution (SED). Results.By comparing our data to the synthetical spectra, we classify GW Ori as a G8 star. Based on the RVs derived from the optical spectra, we confirm the previous result as a close companion in GW Ori with a period of ~242 days and an orbital semi-major axis of ~1 AU. The RV residuals after the subtraction of the orbital solution with the equivalent widths (EW) of accretion-related emission lines vary with periods of 5-6.7 days during short-time intervals, which are caused by the rotational modulation. The Hα and Hβ line profiles of GW Ori can be decomposed in two central-peaked emission components and one blue-shifted absorption component. The blue-shifted absorption components are due to a disk wind modulated by the orbital motion of the close companion. Therefore, the systems like GW Ori can be used to study the extent of disk winds. We find that the accretion rates of GW Ori are rather constant but can occasionally be enhanced by a factor of 2-3. We reproduce the SED of GW Ori by using disk models with gaps ~25-55 AU in size. A small population of tiny dust particles within the gap produces the excess emission at near-infrared bands and the strong and sharp silicate feature at 10 μm. The SED of GW Ori exhibits dramatic changes on timescales of ~20 yr in the near-infrared bands, which can be explained as the change in the amount and distribution of small dust grains in the gap. We collect a sample of binary/multiple systems with disks in the literature and find a strong positive correlation between their gap sizes and separations from the primaries to companions, which is generally consistent with the prediction from the theory. Table 4 is available in electronic form at http://www.aanda.org

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tovmassian, G.; González–Buitrago, D.; Zharikov, S.

    We studied two objects identified as cataclysmic variables (CVs) with periods exceeding the natural boundary for Roche-lobe-filling zero-age main sequence (ZAMS) secondary stars. We present observational results for V1082 Sgr with a 20.82 hr orbital period, an object that shows a low luminosity state when its flux is totally dominated by a chromospherically active K star with no signs of ongoing accretion. Frequent accretion shutoffs, together with characteristics of emission lines in a high state, indicate that this binary system is probably detached, and the accretion of matter on the magnetic white dwarf takes place through stellar wind from themore » active donor star via coupled magnetic fields. Its observational characteristics are surprisingly similar to V479 And, a 14.5 hr binary system. They both have early K-type stars as donor stars. We argue that, similar to the shorter-period prepolars containing M dwarfs, these are detached binaries with strong magnetic components. Their magnetic fields are coupled, allowing enhanced stellar wind from the K star to be captured and channeled through the bottleneck connecting the two stars onto the white dwarf’s magnetic pole, mimicking a magnetic CV. Hence, they become interactive binaries before they reach contact. This will help to explain an unexpected lack of systems possessing white dwarfs with strong magnetic fields among detached white+red dwarf systems.« less

  5. Efficiency of super-Eddington magnetically-arrested accretion

    NASA Astrophysics Data System (ADS)

    McKinney, Jonathan C.; Dai, Lixin; Avara, Mark J.

    2015-11-01

    The radiative efficiency of super-Eddington accreting black holes (BHs) is explored for magnetically-arrested discs, where magnetic flux builds-up to saturation near the BH. Our three-dimensional general relativistic radiation magnetohydrodynamic (GRRMHD) simulation of a spinning BH (spin a/M = 0.8) accreting at ˜50 times Eddington shows a total efficiency ˜50 per cent when time-averaged and total efficiency ≳ 100 per cent in moments. Magnetic compression by the magnetic flux near the rotating BH leads to a thin disc, whose radiation escapes via advection by a magnetized wind and via transport through a low-density channel created by a Blandford-Znajek (BZ) jet. The BZ efficiency is sub-optimal due to inertial loading of field lines by optically thick radiation, leading to BZ efficiency ˜40 per cent on the horizon and BZ efficiency ˜5 per cent by r ˜ 400rg (gravitational radii) via absorption by the wind. Importantly, radiation escapes at r ˜ 400rg with efficiency η ≈ 15 per cent (luminosity L ˜ 50LEdd), similar to η ≈ 12 per cent for a Novikov-Thorne thin disc and beyond η ≲ 1 per cent seen in prior GRRMHD simulations or slim disc theory. Our simulations show how BH spin, magnetic field, and jet mass-loading affect these radiative and jet efficiencies.

  6. Black hole feeding and feedback: the physics inside the `sub-grid'

    NASA Astrophysics Data System (ADS)

    Negri, A.; Volonteri, M.

    2017-05-01

    Black holes (BHs) are believed to be a key ingredient of galaxy formation. However, the galaxy-BH interplay is challenging to study due to the large dynamical range and complex physics involved. As a consequence, hydrodynamical cosmological simulations normally adopt sub-grid models to track the unresolved physical processes, in particular BH accretion; usually the spatial scale where the BH dominates the hydrodynamical processes (the Bondi radius) is unresolved, and an approximate Bondi-Hoyle accretion rate is used to estimate the growth of the BH. By comparing hydrodynamical simulations at different resolutions (300, 30, 3 pc) using a Bondi-Hoyle approximation to sub-parsec runs with non-parametrized accretion, our aim is to probe how well an approximated Bondi accretion is able to capture the BH accretion physics and the subsequent feedback on the galaxy. We analyse an isolated galaxy simulation that includes cooling, star formation, Type Ia and Type II supernovae, BH accretion and active galactic nuclei feedback (radiation pressure, Compton heating/cooling) where mass, momentum and energy are deposited in the interstellar medium through conical winds. We find that on average the approximated Bondi formalism can lead to both over- and underestimations of the BH growth, depending on resolution and on how the variables entering into the Bondi-Hoyle formalism are calculated.

  7. Aerodynamic Simulation of Ice Accretion on Airfoils

    NASA Technical Reports Server (NTRS)

    Broeren, Andy P.; Addy, Harold E., Jr.; Bragg, Michael B.; Busch, Greg T.; Montreuil, Emmanuel

    2011-01-01

    This report describes recent improvements in aerodynamic scaling and simulation of ice accretion on airfoils. Ice accretions were classified into four types on the basis of aerodynamic effects: roughness, horn, streamwise, and spanwise ridge. The NASA Icing Research Tunnel (IRT) was used to generate ice accretions within these four types using both subscale and full-scale models. Large-scale, pressurized windtunnel testing was performed using a 72-in.- (1.83-m-) chord, NACA 23012 airfoil model with high-fidelity, three-dimensional castings of the IRT ice accretions. Performance data were recorded over Reynolds numbers from 4.5 x 10(exp 6) to 15.9 x 10(exp 6) and Mach numbers from 0.10 to 0.28. Lower fidelity ice-accretion simulation methods were developed and tested on an 18-in.- (0.46-m-) chord NACA 23012 airfoil model in a small-scale wind tunnel at a lower Reynolds number. The aerodynamic accuracy of the lower fidelity, subscale ice simulations was validated against the full-scale results for a factor of 4 reduction in model scale and a factor of 8 reduction in Reynolds number. This research has defined the level of geometric fidelity required for artificial ice shapes to yield aerodynamic performance results to within a known level of uncertainty and has culminated in a proposed methodology for subscale iced-airfoil aerodynamic simulation.

  8. Signs of magnetic accretion in the young Be/X-ray pulsar SXP 1062

    NASA Astrophysics Data System (ADS)

    Ikhsanov, N. R.

    2012-07-01

    The spin behaviour of the neutron star in the newly discovered young Be/X-ray long-period pulsar SXP 1062 is discussed. The star is observed to rotate with the period of 1062 s, and spin down at the rate ˜-2.6 × 10-12 Hz s-1. I show that all of the conventional accretion scenarios encounter major difficulties in explaining the rapid spin-down of the pulsar. These difficulties can be, however, avoided within the magnetic accretion scenario in which the neutron star is assumed to accrete from a magnetized wind. The spin-down rate of the pulsar can be explained within this scenario provided the surface magnetic field of the neutron star is B*˜ 4 × 1013 G. I show that the age of the pulsar in this case lies in the range (2-4) × 104 yr, which is consistent with observations. The spin evolution of the pulsar is briefly discussed.

  9. Identifying a Robust and Practical Quasar Accretion-Rate Indicator Using the Chandra Archive

    NASA Astrophysics Data System (ADS)

    Shemmer, Ohad

    2017-09-01

    Understanding the rapid growth of supermassive black holes and the assembly of their host galaxies is severely limited by the lack of reliable estimates of black-hole mass and accretion rate in distant quasars. We propose to utilize the Chandra archive to identify the most reliable and practical Eddington-ratio indicator by investigating diagnostics of quasar accretion power in the hard-X-ray, C IV, and Hbeta spectral bands of a carefully-selected sample of optically-selected sources. We will perform a ``stress test'' to each of these diagnostics, relying critically on the hard-X-ray observable properties, and deliver a prescription for the most robust Eddington-ratio estimate that can be utilized economically at the highest accessible redshifts.

  10. Winds from T Tauri stars. II - Balmer line profiles for inner disk winds

    NASA Technical Reports Server (NTRS)

    Calvet, Nuria; Hartmann, Lee; Hewett, Robert

    1992-01-01

    Results are presented of calculations of Balmer emission line profiles using escape probability methods for T Tauri wind models with nonspherically symmetric geometry. The wind is assumed to originate in the inner regions of an accretion disk surrounding the T Tauri star, and flows outward in a 'cone' geometry. Two types of wind models are considered, both with monotonically increasing expansion velocities as a function of radial distance. For flows with large turbulent velocities, such as the HF Alfven wave-driven wind models, the effect of cone geometry is to increase the blue wing emission, and to move the absorption reversal close to line center. Line profiles for a wind model rotating with the same angular velocity as the inner disk are also calculated. The Balmer lines of this model are significantly broader than observed in most objects, suggesting that the observed emission lines do not arise in a region rotating at Keplerian velocity.

  11. Galactic Winds and the Role Played by Massive Stars

    NASA Astrophysics Data System (ADS)

    Heckman, Timothy M.; Thompson, Todd A.

    Galactic winds from star-forming galaxies play at key role in the evolution of galaxies and the intergalactic medium. They transport metals out of galaxies, chemically enriching the intergalactic medium and modifying the chemical evolution of galaxies. They affect the surrounding interstellar and circumgalactic media, thereby influencing the growth of galaxies though gas accretion and star formation. In this contribution we first summarize the physical mechanisms by which the momentum and energy output from a population of massive stars and associated supernovae can drive galactic winds. We use the prototypical example of M 82 to illustrate the multiphase nature of galactic winds. We then describe how the basic properties of galactic winds are derived from the data, and summarize how the properties of galactic winds vary systematically with the properties of the galaxies that launch them. We conclude with a brief discussion of the broad implications of galactic winds.

  12. Protoplanetary Disks as (Possibly) Viscous Disks

    NASA Astrophysics Data System (ADS)

    Rafikov, Roman R.

    2017-03-01

    Protoplanetary disks are believed to evolve on megayear timescales in a diffusive (viscous) manner as a result of angular momentum transport driven by internal stresses. Here we use a sample of 26 protoplanetary disks resolved by ALMA with measured (dust-based) masses and stellar accretion rates to derive the dimensionless α-viscosity values for individual objects, with the goal of constraining the angular momentum transport mechanism. We find that the inferred values of α do not cluster around a single value, but instead have a broad distribution extending from 10-4 to 0.04. Moreover, they correlate with neither the global disk parameters (mass, size, surface density) nor the stellar characteristics (mass, luminosity, radius). However, we do find a strong linear correlation between α and the central mass accretion rate \\dot{M}. This correlation is unlikely to result from the direct physical effect of \\dot{M} on internal stress on global scales. Instead, we suggest that it is caused by the decoupling of stellar \\dot{M} from the global disk characteristics in one of the following ways: (1) The behavior (and range) of α is controlled by a yet-unidentified parameter (e.g., ionization fraction, magnetic field strength, or geometry), ultimately driving the variation of \\dot{M}. (2) The central \\dot{M} is decoupled from the global accretion rate as a result of an instability, or mass accumulation (or loss in a wind or planetary accretion) in the inner disk. (3) Perhaps the most intriguing possibility is that angular momentum in protoplanetary disks is transported nonviscously, e.g., via magnetohydrodynamic winds or spiral density waves.

  13. XMM-Newton, powerful AGN winds and galaxy feedback

    NASA Astrophysics Data System (ADS)

    Pounds, K.; King, A.

    2016-06-01

    The discovery that ultra-fast ionized winds - sufficiently powerful to disrupt growth of the host galaxy - are a common feature of luminous AGN is major scientific breakthrough led by XMM-Newton. An extended observation in 2014 of the prototype UFO, PG1211+143, has revealed an unusually complex outflow, with distinct and persisting velocities detected in both hard and soft X-ray spectra. While the general properties of UFOs are consistent with being launched - at the local escape velocity - from the inner disc where the accretion rate is modestly super-Eddington (King and Pounds, Ann Rev Astron Astro- phys 2015), these more complex flows have raised questions about the outflow geometry and the importance of shocks and enhanced cooling. XMM-Newton seems likely to remain the best Observatory to study UFOs prior to Athena, and further extended observations, of PG1211+143 and other bright AGN, have the exciting potential to establish the typical wind dynamics, while providing new insights on the accretion geometry and continuum source structure. An emphasis on such large, coordinated observing programmes with XMM-Newton over the next decade will continue the successful philosophy pioneered by EXOSAT, while helping to inform the optimum planning for Athena

  14. How does the cosmic web impact assembly bias?

    NASA Astrophysics Data System (ADS)

    Musso, M.; Cadiou, C.; Pichon, C.; Codis, S.; Kraljic, K.; Dubois, Y.

    2018-06-01

    The mass, accretion rate, and formation time of dark matter haloes near protofilaments (identified as saddle points of the potential) are analytically predicted using a conditional version of the excursion set approach in its so-called upcrossing approximation. The model predicts that at fixed mass, mass accretion rate and formation time vary with orientation and distance from the saddle, demonstrating that assembly bias is indeed influenced by the tides imposed by the cosmic web. Starved, early-forming haloes of smaller mass lie preferentially along the main axis of filaments, while more massive and younger haloes are found closer to the nodes. Distinct gradients for distinct tracers such as typical mass and accretion rate occur because the saddle condition is anisotropic, and because the statistics of these observables depend on both the conditional means and their covariances. The theory is extended to other critical points of the potential field. The response of the mass function to variations of the matter density field (the so-called large-scale bias) is computed, and its trend with accretion rate is shown to invert along the filament. The signature of this model should correspond at low redshift to an excess of reddened galactic hosts at fixed mass along preferred directions, as recently reported in spectroscopic and photometric surveys and in hydrodynamical simulations. The anisotropy of the cosmic web emerges therefore as a significant ingredient to describe jointly the dynamics and physics of galaxies, e.g. in the context of intrinsic alignments or morphological diversity.

  15. Ultra-fast outflows (aka UFOs) from AGNs and QSOs

    NASA Astrophysics Data System (ADS)

    Cappi, M.; Tombesi, F.; Giustini, M.

    During the last decade, strong observational evidence has been accumulated for the existence of massive, high velocity winds/outflows (aka Ultra Fast Outflows, UFOs) in nearby AGNs and in more distant quasars. Here we briefly review some of the most recent developments in this field and discuss the relevance of UFOs for both understanding the physics of accretion disk winds in AGNs, and for quantifying the global amount of AGN feedback on the surrounding medium.

  16. Symbiotic Stars in X-rays

    NASA Technical Reports Server (NTRS)

    Luna, G. J. M.; Sokoloski, J. L.; Mukai, K.; Nelson, T.

    2014-01-01

    Until recently, symbiotic binary systems in which a white dwarf accretes from a red giant were thought to be mainly a soft X-ray population. Here we describe the detection with the X-ray Telescope (XRT) on the Swift satellite of 9 white dwarf symbiotics that were not previously known to be X-ray sources and one that was previously detected as a supersoft X-ray source. The 9 new X-ray detections were the result of a survey of 41 symbiotic stars, and they increase the number of symbiotic stars known to be X-ray sources by approximately 30%. Swift/XRT detected all of the new X-ray sources at energies greater than 2 keV. Their X-ray spectra are consistent with thermal emission and fall naturally into three distinct groups. The first group contains those sources with a single, highly absorbed hard component, which we identify as probably coming from an accretion-disk boundary layer. The second group is composed of those sources with a single, soft X-ray spectral component, which likely arises in a region where low-velocity shocks produce X-ray emission, i.e. a colliding-wind region. The third group consists of those sources with both hard and soft X-ray spectral components. We also find that unlike in the optical, where rapid, stochastic brightness variations from the accretion disk typically are not seen, detectable UV flickering is a common property of symbiotic stars. Supporting our physical interpretation of the two X-ray spectral components, simultaneous Swift UV photometry shows that symbiotic stars with harder X-ray emission tend to have stronger UV flickering, which is usually associated with accretion through a disk. To place these new observations in the context of previous work on X-ray emission from symbiotic stars, we modified and extended the alpha/beta/gamma classification scheme for symbiotic-star X-ray spectra that was introduced by Muerset et al. based upon observations with the ROSAT satellite, to include a new sigma classification for sources with hard X-ray emission from the innermost accretion region. Since we have identified the elusive accretion component in the emission from a sample of symbiotic stars, our results have implications for the understanding of wind-fed mass transfer in wide binaries, and the accretion rate in one class of candidate progenitors of type Ia supernovae.

  17. Removable bearing arrangement for a wind turbine generator

    DOEpatents

    Bagepalli, Bharat Sampathkumaran; Jansen, Patrick Lee; Gadre, Aniruddha Dattatraya

    2010-06-15

    A wind generator having removable change-out bearings includes a rotor and a stator, locking bolts configured to lock the rotor and stator, a removable bearing sub-assembly having at least one shrunk-on bearing installed, and removable mounting bolts configured to engage the bearing sub-assembly and to allow the removable bearing sub-assembly to be removed when the removable mounting bolts are removed.

  18. Method for changing removable bearing for a wind turbine generator

    DOEpatents

    Bagepalli, Bharat Sampathkumaran [Niskayuna, NY; Jansen, Patrick Lee , Gadre; Dattatraya, Aniruddha [Rexford, NY

    2008-04-22

    A wind generator having removable change-out bearings includes a rotor and a stator, locking bolts configured to lock the rotor and stator, a removable bearing sub-assembly having at least one shrunk-on bearing installed, and removable mounting bolts configured to engage the bearing sub-assembly and to allow the removable bearing sub-assembly to be removed when the removable mounting bolts are removed.

  19. Lightweight, self-ballasting photovoltaic roofing assembly

    DOEpatents

    Dinwoodie, T.L.

    1998-05-05

    A photovoltaic roofing assembly comprises a roofing membrane (102), a plurality of photovoltaic modules (104, 106, 108) disposed as a layer on top of the roofing membrane (102), and a plurality of pre-formed spacers, pedestals or supports (112, 114, 116, 118, 120, 122) which are respectively disposed below the plurality of photovoltaic modules (104, 106, 108) and integral therewith, or fixed thereto. Spacers (112, 114, 116, 118, 120, 122) are disposed on top of roofing membrane (102). Membrane (102) is supported on conventional roof framing, and attached thereto by conventional methods. In an alternative embodiment, the roofing assembly may have insulation block (322) below the spacers (314, 314', 315, 315'). The geometry of the preformed spacers (112, 114, 116, 118, 120, 122, 314, 314', 315, 315') is such that wind tunnel testing has shown its maximum effectiveness in reducing net forces of wind uplift on the overall assembly. Such construction results in a simple, lightweight, self-ballasting, readily assembled roofing assembly which resists the forces of wind uplift using no roofing penetrations.

  20. Lightweight, self-ballasting photovoltaic roofing assembly

    DOEpatents

    Dinwoodie, Thomas L.

    1998-01-01

    A photovoltaic roofing assembly comprises a roofing membrane (102), a plurality of photovoltaic modules (104, 106, 108) disposed as a layer on top of the roofing membrane (102), and a plurality of pre-formed spacers, pedestals or supports (112, 114, 116, 118, 120, 122) which are respectively disposed below the plurality of photovoltaic modules (104, 106, 108) and integral therewith, or fixed thereto. Spacers (112, 114, 116, 118, 120, 122) are disposed on top of roofing membrane (102). Membrane (102) is supported on conventional roof framing, and attached thereto by conventional methods. In an alternative embodiment, the roofing assembly may have insulation block (322) below the spacers (314, 314', 315, 315'). The geometry of the preformed spacers (112, 114, 116, 118, 120, 122, 314, 314', 315, 315') is such that wind tunnel testing has shown its maximum effectiveness in reducing net forces of wind uplift on the overall assembly. Such construction results in a simple, lightweight, self-ballasting, readily assembled roofing assembly which resists the forces of wind uplift using no roofing penetrations.

  1. Lightweight, self-ballasting photovoltaic roofing assembly

    DOEpatents

    Dinwoodie, Thomas L.

    2006-02-28

    A photovoltaic roofing assembly comprises a roofing membrane (102), a plurality of photovoltaic modules (104, 106, 108) disposed as a layer on top of the roofing membrane (102), and a plurality of pre-formed spacers, pedestals or supports (112, 114, 116, 118, 120, 122) which are respectively disposed below the plurality of photovoltaic modules (104, 106, 108) and integral therewith, or fixed thereto. Spacers (112, 114, 116, 118, 120, 122) are disposed on top of roofing membrane (102). Membrane (102) is supported on conventional roof framing, and attached thereto by conventional methods. In an alternative embodiment, the roofing assembly may have insulation block (322) below the spacers (314, 314', 315, 315'). The geometry of the pre-formed spacers (112, 114, 116, 118, 120, 122, 314, 314', 315, 315') is such that wind tunnel testing has shown its maximum effectiveness in reducing net forces of wind uplift on the overall assembly. Such construction results in a simple, lightweight, self-ballasting, readily assembled roofing assembly which resists the forces of wind uplift using no roofing penetrations.

  2. Faint AGN in z ≳ 6 Lyman-break galaxies powered by cold accretion and rapid angular momentum transport

    NASA Astrophysics Data System (ADS)

    Muñoz, Joseph A.; Furlanetto, Steven

    2012-11-01

    We develop a radiation pressure-balanced model for the interstellar medium of high-redshift galaxies that describes many facets of galaxy formation at z ≳ 6, including star formation rates and distributions and gas accretion on to central black holes. We first show that the vertical gravitational force in the disc of such a model is dominated by the disc self-gravity supported by the radiation pressure of ionizing starlight on gas. Constraining our model to reproduce the UV luminosity function of Lyman-break galaxies (LBGs), we limit the available parameter space to wind mass-loading factors one to four times the canonical value for momentum-driven winds. We then focus our study by exploring the effects of different angular momentum transport mechanisms in the galactic disc and find that accretion driven by gravitational torques, such as from linear spiral waves or non-linear orbit crossings, can build up black hole masses by z = 6 consistent with the canonical M-σ relation with a duty cycle of unity, while accretion mediated by a local viscosity such as in an α-disc results in negligible black hole (BH) accretion. Both gravitational torque models produce X-ray emission from active galactic nuclei (AGN) in high-redshift LBGs in excess of the estimated contribution from high-mass X-ray binaries. Using a recent analysis of deep Chandra observations by Cowie et al., we can already begin to rule out the most extreme regions of our parameter space: the inflow velocity of gas through the disc must either be less than one per cent of the disc circular velocity or the X-ray luminosity of the AGN must be substantially obscured. Moderately deeper future observations or larger sample sizes will be able to probe the more reasonable range of angular momentum transport models and obscuring geometries.

  3. Observations of Accreting Pulsars

    NASA Technical Reports Server (NTRS)

    Bildsten, Lars; Chakrabarty, Deepto; Chiu, John; Finger, Mark H.; Koh, Danny T.; Nelson, Robert W.; Prince, Thomas A.; Rubin, Bradley C.; Scott, D. Matthew; Stollberg, Mark; hide

    1997-01-01

    We summarize 5 years of continuous monitoring of accretion-powered pulsars with the Burst and Transient Source Experiment (BATSE) on the Compton Gamma Ray Observatory. Our 20-70 keV observations have determined or refined the orbital parameters of 13 binaries, discovered five new transient accreting pulsars, measured the pulsed flux history during outbursts of 12 transients (GRO J1744-28, 4U 0115+634, GRO J1750-27, GS 0834-430, 2S 1417-624, GRO J1948+32, EXO 2030+375, GRO J1008-57, A0535+26, GRO J2058+42, 4U 1145-619, and A1118-616), and also measured the accretion torque history during outbursts of six of those transients whose orbital param- eters were also known. We have also continuously measured the pulsed flux and spin frequency for eiaht persistently accreting pulsars (Her X-1, Cen X-3, Vela X-1, OAO 1657-415, GX 301-2, 4U 1626-67, 4U 1538-52, and GX 1+4). Because of their continuity and uniformity over a long baseline, BATSE observations have provided new insights into the long-term behavior of accreting magnetic neutron stars. We have found that all accreting pulsars show stochastic variations in their spin frequencies and luminosities, including those displaying secular spin-up or spin-down on long timescales, which blurs the con- ventional distinction between disk-fed and wind-fed binaries. Pulsed flux and accretion torque are strongly correlated in outbursts of transient accreting pulsars but are uncorrelated, or even anti- correlated, in persistent sources. We describe daily folded pulse profiles, frequency, and flux measurements that are available through the Compton Observatory Science Support Center at NASA/Goddard Space Flight Center.

  4. Probing the Environment of Accreting Compact Objects

    NASA Astrophysics Data System (ADS)

    Hanke, Manfred

    2011-04-01

    X-ray binaries are the topic of this thesis. They consist of a compact object -- a black hole or a neutron star -- and an ordinary star, which loses matter to the compact object. The gravitational energy released through this process of mass accretion is largely converted into X-rays. The latter are used in the present work to screen the environment of the compact object. The main focus in the case of a massive star is on its wind, which is not homogeneous, but may display structures in form of temperature and density variations. Since great importance is, in multiple respects, attached to stellar winds in astrophysics, there is large interest in general to understand these structures more thoroughly. In particular for X-ray binaries, whose compact object obtains matter from the wind of its companion star, the state of the wind can decisively influence mass accretion and its related radiation processes. A detailed introduction to the fundamentals of stellar winds, compact objects, accretion and radiation processes in X-ray binaries, as well as to the employed instruments and analysis methods, is given in chapter 1. The focus of this investigation is on Cygnus X-1, a binary system with a black hole and a blue supergiant, which form a persistently very bright X-ray source because of accretion from the stellar wind. It had been known for a long time that this source -- when the black hole is seen through the dense stellar wind -- often displays abrupt absorption events whose origin is suspected to be in clumps in the wind. More detailed physical properties of these clumps and of the wind in general are explored in this work. Observations that were specifically acquired for this study, as well as archival data from different satellite observatories, are analyzed in view of signatures of the wind and its fine structures. These results are presented in chapter 2. In a first part of the analysis, the statistical distribution of the brightness of Cyg X-1, as measured since 1996 with the RXTE satellite's all-sky monitor, is investigated in the context of the binary system's orbital phase. The stellar wind is here noticed via absorption of the soft X-radiation. This analysis has not only shown that the mean column density in the wind is -- as already known -- larger along lines of sight passing close by the star, but also that the wind is more clumpy there. The evaluation of more than 2 000 spectra from RXTE's proportional counter, taken within 14.5 years and mostly in the framework of a monitoring campaign, has lead to the same result. Compared to previous studies, the accuracy of the measurements could be improved by a careful investigation of the quality of the low-energy spectrum, which was required to register the scatter due to the clumpiness. In the next part, several high-resolution X-ray sepectra were analyzed, which were recorded with the gratings spectrometer of the highly requested Chandra satellite. The modulation of the absorption could, for the first time, be ascribed to the highly ionized wind, which has consequences for its quantitative interpretation due to the reduced cross sections compared to neutral absorption. Moreover, the acceleration of the wind with increasing distance from the star could be demonstrated, which constitutes an important observational evidence in terms of the wind structure. A conjecture published in 2008, according to which no wind might develop in the ionized environment of the X-ray source, is therewith disproved. By means of spectroscopy of strong absorption events, it was for the first time unequivocally demonstrated that these can be ascribed to a shift of the ionization balance to less strongly ionized gas, due to the enhanced density of the clumps. The increase of the column density of lower ionization stages is also confirmed by the spectroscopic analysis of the contemporaneous observation with the XMM-Newton satellite. Since these simultaneous observations were, in the framework of the largest observational campaign to date, accompanied by all available X-ray satellites, the effect of the absorption events on hard X-rays could be investigated as well. A flux reduction was detected in light curves at high energies, not affected by absorption, which coincides with the time of the strongest absorption event. This effect could be confirmed by time resolved spectroscopy of the XMM data, and be interpreted as due to scattering on a fully ionized cloud. The evolution of the light curve constitutes therefore a tomography of this cloud, and reveals further structure in the stellar wind. The strong absorption event is caused by the cloud's core, which is sufficiently dense that its ionization balance is shifted. Results from the analysis of another source are briefly presented in chapter 3. For the X-ray binary system LMC X-1 in the Large Magellanic Cloud, six spectra have been analyzed in view of their absorption. A connection with the orbital phase was suggested, which indicates absorption by material within the system itself. Concluding this thesis, the detailed results are summarized and discussed in chapter 4, and an outlook on future research possibilities is given.

  5. Theory of quasi-spherical accretion in X-ray pulsars

    NASA Astrophysics Data System (ADS)

    Shakura, N.; Postnov, K.; Kochetkova, A.; Hjalmarsdotter, L.

    2012-02-01

    A theoretical model for quasi-spherical subsonic accretion on to slowly rotating magnetized neutron stars is constructed. In this model, the accreting matter subsonically settles down on to the rotating magnetosphere forming an extended quasi-static shell. This shell mediates the angular momentum removal from the rotating neutron star magnetosphere during spin-down episodes by large-scale convective motions. The accretion rate through the shell is determined by the ability of the plasma to enter the magnetosphere. The settling regime of accretion can be realized for moderate accretion rates ? g s-1. At higher accretion rates, a free-fall gap above the neutron star magnetosphere appears due to rapid Compton cooling, and accretion becomes highly non-stationary. From observations of the spin-up/spin-down rates (the angular rotation frequency derivative ?, and ? near the torque reversal) of X-ray pulsars with known orbital periods, it is possible to determine the main dimensionless parameters of the model, as well as to estimate the magnetic field of the neutron star. We illustrate the model by determining these parameters for three wind-fed X-ray pulsars GX 301-2, Vela X-1 and GX 1+4. The model explains both the spin-up/spin-down of the pulsar frequency on large time-scales and the irregular short-term frequency fluctuations, which can correlate or anticorrelate with the X-ray flux fluctuations in different systems. It is shown that in real pulsars an almost iso-angular-momentum rotation law with ω˜ 1/R2, due to strongly anisotropic radial turbulent motions sustained by large-scale convection, is preferred.

  6. Stream-Field Interactions in the Magnetic Accretor AO Piscium

    NASA Astrophysics Data System (ADS)

    Hellier, Coel; van Zyl, Liza

    2005-06-01

    UV spectra of the magnetic accretor AO Psc show absorption features for half the binary orbit. The absorption is unlike the wind-formed features often seen in similar stars. Instead, we attribute it to a fraction of the stream that overflows the impact with the accretion disk. Rapid velocity variations can be explained by changes in the trajectory of the stream depending on the orientation of the white dwarf's magnetic field. Hence, we are directly observing the interaction of an accretion stream with a rotating field. We compare this behavior to that seen in other intermediate polars and in SW Sex stars.

  7. Ring Around the Black Hole

    NASA Technical Reports Server (NTRS)

    Wanjek, Christopher

    2003-01-01

    Regardless of size, black holes easily acquire accretion disks. Supermassive black holes can feast on the bountiful interstellar gas in galactic nuclei. Small black holes formed from collapsing stars often belong to binary systems in which a bulging companion star can spill some of its gas into the black hole s reach. In the chaotic mess of the accretion disk, atoms collide with one another. Swirling plasma reaches speeds upward of 10% that of light and glows brightly in many wavebands, particularly in X-rays. Gas gets blown back by a wind of radiation from the inner disk. New material enters the disks from different directions.

  8. Neon isotopes show that Earth was accreted from irradiated material

    NASA Astrophysics Data System (ADS)

    Moreira, M. A.

    2015-12-01

    Since the 1980s, the notion that the Earth's mantle has a "solar" isotopic signature for neon has been favoured. Indeed, the 20Ne/22Ne ratio is above 12.5 in the mantle sources of OIB and MORB, close to the solar composition (13.4 for the Sun or 13.8 for the solar wind) and different from both atmospheric and chondritic compositions (Phase Q, Neon A). The most well accepted process invoked to explain this observed solar composition in the mantle is dissolution into a magma ocean of solar gases captured by gravity around the proto-Earth. However, Earth was accreted after gas from the proto-planetary disk had evaporated, suggesting that Earth itself could not have captured such a solar primordial atmosphere. Only planetary embryos were formed when the gas was still present in the disk. However, these planetary embryos with the mass of Mars are not massive enough to capture a solar dense atmosphere able to incorporate enough neon into the mantle. New estimates of the neon isotopic compositions of both the Earth's mantle and of the implanted solar wind into grains suggest that the origin of the neon on Earth is related to solar wind irradiation on μm grains before planetary accretion started and not dissolution. Although incorporation of solar ions by this process is only significant for very volatiles (depleted) elements, the irradiation by x-rays has important consequences for the bulk chemistry of irradiated grains as it has been demonstrated that it produces depletion in Mg and Si, relatively to O (e.g Bradley et al., 1994), a pattern also observed for the Bulk silicate Earth. References Bradley, J. (1994). "Chemically Anomalous, Preaccretionally irradiated Grains in Interplanetary fust from Comets." Science 265: 925-929.

  9. Evolution of a steam atmosphere during earth's accretion

    NASA Astrophysics Data System (ADS)

    Zahnle, K. J.; Kasting, J. F.; Pollack, J. B.

    1988-04-01

    The evolution of an impact-generated steam atmosphere around an accreting earth is presently modeled under the assumption of Safronov (1978) accretion, in a scheme that encompasses the degassing of planetesimals on impact, thermal blanketing by the steam atmosphere, surface-to-interior water exchange, the shock heating and convective cooling of the earth's interior, and hydrogen escape due both to solar EUV-powered planetary wind and impact erosion. The model yields four distinct classes of impact-generated atmospheres: the first, on which emphasis is placed, has as its salient feature a molten surface that is maintained by the opacity of a massive water vapor atmosphere; the second occurs when the EUV-limited escape exceeds the impact degassing rate, while the third is dominated by impact erosion and the fourth is characterized by an atmosphere more massive than any thus far encountered.

  10. Evolution of a steam atmosphere during earth's accretion

    NASA Technical Reports Server (NTRS)

    Zahnle, Kevin J.; Kasting, James F.; Pollack, James B.

    1988-01-01

    The evolution of an impact-generated steam atmosphere around an accreting earth is presently modeled under the assumption of Safronov (1978) accretion, in a scheme that encompasses the degassing of planetesimals on impact, thermal blanketing by the steam atmosphere, surface-to-interior water exchange, the shock heating and convective cooling of the earth's interior, and hydrogen escape due both to solar EUV-powered planetary wind and impact erosion. The model yields four distinct classes of impact-generated atmospheres: the first, on which emphasis is placed, has as its salient feature a molten surface that is maintained by the opacity of a massive water vapor atmosphere; the second occurs when the EUV-limited escape exceeds the impact degassing rate, while the third is dominated by impact erosion and the fourth is characterized by an atmosphere more massive than any thus far encountered.

  11. Examining the Roles of the Easterly Wave Critical Layer and Vorticity Accretion During the Tropical Cyclogenesis of Hurricane Sandy

    DTIC Science & Technology

    2014-01-01

    meridional wind, v = 0). This location 1As in Dunkerton et al. (2009), the term cyclogenesis incorporates all of the dynamic and thermodynamic process that...Lagrangian circulation , and air is repeatedly moistened by convection and protected to some degree from dry air intrusion, which favors a predominantly... meridional component of the wind vector, p is the total pressure, ω is the pressure vertical velocity defined as ω = Dp Dt , and F represents friction and

  12. Deep photometry of two accreted families of globular clusters in the remote M31 halo

    NASA Astrophysics Data System (ADS)

    Mackey, Dougal

    2013-10-01

    Globular clusters {GCs} are fossil relics from which we can obtain critical insights into the merger and accretion events that underlie hierarchical galaxy assembly. As part of the major Pan-Andromeda Archaeological Survey {PAndAS} we have discovered two groups of GCs that closely trace narrow stellar debris streams in the M31 halo. These clearly represent two distinct accreted families of GCs - the only known examples apart from the few Galactic GCs arriving with the Sagittarius dwarf. We propose to obtain deep ACS imaging of 14 GCs spanning these two accreted families, allowing us to measure the constituent stellar populations, line-of-sight distance, and structural parameters of each object. We will, for the first time, quantify the typical properties of accreted GCs in the M31 halo as well as the degree of variation amongst them, and how closely they correspond to the suspected accreted GC population in the Milky Way. Combined with new radial velocity measurements for the GCs, our proposed observations will allow us to trace the 3D orbits of the two streams within the M31 halo, and thus break the main degeneracies that plague numerical models designed to probe the gravitational potential and distribution of dark mass.

  13. RW Sextantis, a disk with a hot, high-velocity wind

    NASA Astrophysics Data System (ADS)

    Greenstein, J. L.; Oke, J. B.

    1982-07-01

    The continuum spectrum of the flickering blue variable RW Sex was observed from 10,000 to 1150 A. The star is a cataclysmic variable currently stabilized at maximum, and the spectrum is dominated by an accretion disk, with flat spectrum in the ultraviolet, except at more than 5000 A, where a blackbody near 7000 K is seen. A distance of 400 pc is derived, if the latter arises from an F type main sequence star. The accretion rate required is near 10 to the -8th solar masses per year. Only weak emission is seen, except for Lyman alpha; strong, broad UV absorption lines are seen with centers displaced up to -3000 km/s, with terminal velocities up to -4500 km/s, the velocity of escape from a white dwarf. The low X-ray flux may arise from absorption within an unusually dense, hot wind from the innermost portions of the disk. The estimated mass loss rate is nearly 10 to the -12th solar masses per year.

  14. RW Sextantis, a disk with a hot, high-velocity wind

    NASA Technical Reports Server (NTRS)

    Greenstein, J. L.; Oke, J. B.

    1982-01-01

    The continuum spectrum of the flickering blue variable RW Sex was observed from 10,000 to 1150 A. The star is a cataclysmic variable currently stabilized at maximum, and the spectrum is dominated by an accretion disk, with flat spectrum in the ultraviolet, except at more than 5000 A, where a blackbody near 7000 K is seen. A distance of 400 pc is derived, if the latter arises from an F type main sequence star. The accretion rate required is near 10 to the -8th solar masses per year. Only weak emission is seen, except for Lyman alpha; strong, broad UV absorption lines are seen with centers displaced up to -3000 km/s, with terminal velocities up to -4500 km/s, the velocity of escape from a white dwarf. The low X-ray flux may arise from absorption within an unusually dense, hot wind from the innermost portions of the disk. The estimated mass loss rate is nearly 10 to the -12th solar masses per year.

  15. A New Approach to the GeV Flare of PSR B1259-63/LS2883

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yi, Shu-Xu; Cheng, K. S., E-mail: yishuxu@hku.hk, E-mail: hrspksc@hku.hk

    2017-08-01

    PSR B1259-63/LS2883 is a binary system composed of a pulsar and a Be star. The Be star has an equatorial circumstellar disk (CD). The Fermi satellite discovered unexpected gamma-ray flares around 30 days after the last two periastron passages. The origin of the flares remains puzzling. In this work, we explore the possibility that the GeV flares are consequences of inverse Compton scattering of soft photons by the pulsar wind. The soft photons are from an accretion disk around the pulsar, which is composed of the matter from the CD captured by the pulsar’s gravity at disk-crossing before the periastron.more » At the other disk-crossing after the periastron, the density of the CD is not high enough, so accretion is prevented by the pulsar wind shock. This model can reproduce the observed spectrum energy distributions and light curves satisfactorily.« less

  16. Fossil group origins. VIII. RX J075243.6+455653 a transitionary fossil group

    NASA Astrophysics Data System (ADS)

    Aguerri, J. A. L.; Longobardi, A.; Zarattini, S.; Kundert, A.; D'Onghia, E.; Domínguez-Palmero, L.

    2018-01-01

    Context. It is thought that fossil systems are relics of structure formation in the primitive Universe. They are galaxy aggregations that have assembled their mass at high redshift with few or no subsequent accretion. Observationally these systems are selected by large magnitude gaps between their 1st and 2nd ranked galaxies (Δm12). Nevertheless, there is still debate over whether or not this observational criterium selects dynamically evolved ancient systems. Aims: We have studied the properties of the nearby fossil group RX J075243.6+455653 in order to understand the mass assembly of this system. Methods: Deep spectroscopic observations allow us to construct the galaxy luminosity function (LF) of RX J075243.6+455653 down to Mr*+6. The analysis of the faint-end of the LF in groups and clusters provides valuable information about the mass assembly of the system. In addition, we have analyzed the nearby large-scale structure around this group. Results: We identified 26 group members within r200 0.96 Mpc. These galaxies are located at Vc = 15551 ± 65 km s-1 and have a velocity dispersion of σc = 333 ± 46 km s-1. The X-ray luminosity of the group is LX = 2.2 × 1043 h70-2 erg s-1, resulting in a mass of M = 4.2 × 1013 h70-1 within 0.5r200. The group has Δm12 = 2.1 within 0.5r200, confirming the fossil nature of this system. RX J075243.6+455653 has a central brightest group galaxy (BGG) with Mr = -22.67, one of the faintest BGGs observed in fossil systems. The LF of the group shows a flat faint-end slope (α = -1.08 ± 0.33). This low density of dwarf galaxies is confirmed by the low value of the dwarf-to-giant ratio (DGR = 0.99 ± 0.49) for this system. Both the lack of dwarf galaxies and the low luminosity of the BGG suggests that RX J075243.6+455653 still has to accrete mass from its nearby environment. This mass accretion will be achieved because it is the dominant structure of a rich environment formed by several groups of galaxies (15) within 7 Mpc from the group center and with ± 1000 km s-1. Conclusions: RX J075243.6+455653 is a group of galaxies that has not yet completed the process of its mass assembly. This new mass accretion will change the fossil state of the group. This group is an example of a galaxy aggregation selected by a large magnitude gap but still in the process of the accretion of its mass.

  17. Circumnuclear media of quiescent supermassive black holes

    NASA Astrophysics Data System (ADS)

    Generozov, Aleksey; Stone, Nicholas C.; Metzger, Brian D.

    2015-10-01

    We calculate steady-state, one-dimensional hydrodynamic profiles of hot gas in slowly accreting (`quiescent') galactic nuclei for a range of central black hole masses M•, parametrized gas heating rates, and observationally motivated stellar density profiles. Mass is supplied to the circumnuclear medium by stellar winds, while energy is injected primarily by stellar winds, supernovae, and black hole feedback. Analytic estimates are derived for the stagnation radius (where the radial velocity of the gas passes through zero) and the large-scale gas inflow rate, dot{M}, as a function of M• and the gas heating efficiency, the latter being related to the star formation history. We assess the conditions under which radiative instabilities develop in the hydrostatic region near the stagnation radius, both in the case of a single burst of star formation and for the average star formation history predicted by cosmological simulations. By combining a sample of measured nuclear X-ray luminosities, LX, of nearby quiescent galactic nuclei with our results for dot{M}(M_{bullet }), we address whether the nuclei are consistent with accreting in a steady state, thermally stable manner for radiative efficiencies predicted for radiatively inefficiency accretion flows. We find thermally stable accretion cannot explain the short average growth times of low-mass black holes in the local Universe, which must instead result from gas being fed in from large radii, due either to gas inflows or thermal instabilities acting on larger, galactic scales. Our results have implications for attempts to constrain the occupation fraction of upermassive black holes in low-mass galaxies using the mean LX-M• correlation, as well as the predicted diversity of the circumnuclear densities encountered by relativistic outflows from tidal disruption events.

  18. Tracing Slow Winds from T Tauri Stars via Low Velocity Forbidden Line Emission

    NASA Astrophysics Data System (ADS)

    Simon, Molly; Pascucci, Ilaria; Edwards, Suzan; Feng, Wanda; Rigliaco, Elisabetta; Gorti, Uma; Hollenbach, David J.; Tuttle Keane, James

    2016-06-01

    Protoplanetary disks are a natural result of star formation, and they provide the material from which planets form. The evolutional and eventual dispersal of protoplanetary disks play critical roles in determining the final architecture of planetary systems. Models of protoplanetary disk evolution suggest that viscous accretion of disk gas onto the central star and photoevaporation driven by high-energy photons from the central star are the main mechanisms that drive disk dispersal. Understanding when photoevaporation begins to dominate over viscous accretion is critically important for models of planet formation and planetary migration. Using Keck/HIRES (resolution of ~ 7 km/s) we analyze three low excitation forbidden lines ([O I] 6300 Å, [O I] 5577 Å, and [S II] 6731 Å) previously determined to trace winds (including photoevaporative winds). These winds can be separated into two components, a high velocity component (HVC) with blueshifts between ~30 - 150 km/s, and a low velocity component (LVC) with blueshifts on the order of ~5 km/s (Hartigan et al. 1995). We selected a sample of 32 pre-main sequence T Tauri stars in the Taurus-Auriga star-forming region (plus TW Hya) with disks that span a range of evolutionary stages. We focus on the origin of the LVC specifically, which we are able to separate into a broad component (BC) and a narrow component (NC) due to the high resolution of our optical spectra. We focus our analysis on the [O I] 6300 Å emission feature, which is detected in 30/33 of our targets. Interestingly, we find wind diagnostics consistent with photoevaporation for only 21% of our sample. We can, however, conclude that a specific component of the LVC is tracing a magnetohydrodynamic (MHD) wind rather than a photoevaporative wind. We will present the details behind these findings and the implications they have for planet formation more generally.

  19. A Suzaku View of Cyclotron Line Sources and Candidates

    NASA Technical Reports Server (NTRS)

    Pottschmidt, K.; Suchy, S.; Rivers, E.; Rothschild, R. E.; Marcu, D. M.; Barragan, L.; Kuehnel, M.; Fuerst, F.; Schwarm, F.; Kreykenbohm, I.; hide

    2012-01-01

    Seventeen accreting neutron star pulsars, mostly high mass X-ray binaries with half of them Be-type transients, are known to exhibit Cyclotron Resonance Scattering Features (CRSFs) in their X-ray spectra, with characteristic line energies from 10 to 60 keY. To date about two thirds of them, plus a few similar systems without known CRSFs, have been observed with Suzaku. We present an overview of results from these observations, including the discovery of a CRSF in the transient IA1118-61 and pulse phase resolved spectroscopy of OX 301-2. These observations allow for the determination of cyclotron line parameters to an unprecedented degree of accuracy within a moderate amount of observing time. This is important since these parameters vary - e.g., with orbital phase, pulse phase, or luminosity - depending on the geometry of the magnetic field of the pulsar and the properties of the accretion column at the magnetic poles. We briefly introduce a spectral model for CRSFs that is currently being developed and that for the first time is based on these physical properties. In addition to cyclotron line measurements, selected highlights from the Suzaku analyses include dip and flare studies, e.g., of 4U 1907+09 and Vela X-I, which show clumpy wind effects (like partial absorption and/or a decrease in the mass accretion rate supplied by the wind) and may also display magnetospheric gating effects.

  20. Preferential Accretion in the Supermassive Black Holes of Milky Way-size Galaxies Due to Direct Feeding by Satellites

    NASA Astrophysics Data System (ADS)

    Sanchez, N. Nicole; Bellovary, Jillian M.; Holley-Bockelmann, Kelly; Tremmel, Michael; Brooks, Alyson; Governato, Fabio; Quinn, Tom; Volonteri, Marta; Wadsley, James

    2018-06-01

    Using a new, high-resolution cosmological hydrodynamic simulation of a Milky Way-type (MW-type) galaxy, we explore how a merger-rich assembly history affects the mass budget of the central supermassive black hole (SMBH). We examine a MW-mass halo at the present epoch whose evolution is characterized by several major mergers to isolate the importance of merger history on black hole (BH) accretion. This study is an extension of Bellovary et al. (2013), which analyzed the accretion of high mass, high-redshift galaxies and their central BHs, and found that the gas content of the central BH reflects what is accreted by the host galaxy halo. In this study, we find that a merger-rich galaxy will have a central SMBH preferentially fed by gas accreted through mergers. Moreover, we find that the gas composition of the inner ∼10 kpc of the galaxy can account for the increase of merger-accreted gas fueling the SMBH. Through an investigation of the angular momentum of the gas entering the host and its SMBH, we determine that gas accreted through mergers enters the galaxy halo with lower angular momentum compared to smooth accretion, partially accounting for the preferential fueling witnessed in the SMBH. In addition, the presence of mergers, particularly major mergers, also helps funnel low angular momentum gas more readily to the center of the galaxy. Our results imply that galaxy mergers play an important role in feeding the SMBH in MW-type galaxies with merger-rich histories.

  1. X-Ray Variation Statistics and Wind Clumping in Vela X-1

    NASA Technical Reports Server (NTRS)

    Furst, Felix; Kreykenbohm, Ingo; Pottschmidt, Katja; Wilms, Joern; Hanke, Manfred; Rothschild, Richard E.; Kretschmar, Peter; Schulz, Norbert S.; Huenemoerder, David P.; Klochkov, Dmitry; hide

    2010-01-01

    We investigate the structure of the wind in the neutron star X-ray binary system Vela X-1 by analyzing its flaring behavior. Vela X-1 shows constant flaring, with some flares reaching fluxes of more than 3.0 Crab between 20-60 keV for several 100 seconds, while the average flux is around 250 mCrab. We analyzed all archival INTEGRAL data, calculating the brightness distribution in the 20-60 keV band, which, as we show, closely follows a log-normal distribution. Orbital resolved analysis shows that the structure is strongly variable, explainable by shocks and a fluctuating accretion wake. Analysis of RXTE ASM data suggests a strong orbital change of N. Accreted clump masses derived from the INTEGRAL data are on the order of 5 x 10(exp 19)-10(exp 21) g. We show that the lightcurve can be described with a model of multiplicative random numbers. In the course of the simulation we calculate the power spectral density of the system in the 20-100 keV energy band and show that it follows a red-noise power law. We suggest that a mixture of a clumpy wind, shocks, and turbulence can explain the measured mass distribution. As the recently discovered class of supergiant fast X-ray transients (SFXT) seems to show the same parameters for the wind, the link between persistent HMXB like Vela X-1 and SFXT is further strengthened.

  2. Bright vigorous winds as signposts of supermassive black hole birth

    NASA Astrophysics Data System (ADS)

    Fiacconi, Davide; Rossi, Elena M.

    2016-01-01

    The formation of supermassive black holes is still an outstanding question. In the quasi-star scenario, black hole seeds experience an initial super-Eddington growth, that in less than a million years may leave a 104-105 M⊙ black hole at the centre of a protogalaxy at z ˜ 20-10. Super-Eddington accretion, however, may be accompanied by vigorous mass-loss that can limit the amount of mass that reaches the black hole. In this paper, we critically assess the impact of radiative driven winds, launched from the surface of the massive envelopes from which the black hole accretes. Solving the full wind equations coupled with the hydrostatic structure of the envelope, we find mass outflows with rates between a few tens and 104 M⊙ yr-1, mainly powered by advection luminosity within the outflow. We therefore confirm the claim by Dotan et al. that mass losses can severely affect the black hole seed early growth within a quasi-star. In particular, seeds with mass >104 M⊙ can only form within mass reservoirs ≳107 M⊙, unless they are refilled at huge rates (≳100 M⊙ yr-1). This may imply that only very massive haloes (>109 M⊙) at those redshifts can harbour massive seeds. Contrary to previous claims, these winds are expected to be relatively bright (1044-1047 erg s-1), blue (Teff ˜ 8000 K) objects, that while eluding the Hubble Space Telescope, could be observed by the James Webb Space Telescope.

  3. A Comprehensive Spectral Analysis of the X-Ray Pulsar 4U 1907+09 from Two Observations with the Suzaku X-Ray Observatory

    NASA Technical Reports Server (NTRS)

    Rivers, Elizabeth; Markowitz, Alex; Pottschmidt, Katja; Roth, Stefanie; Barragan, Laura; Furst, Felix; Suchy, Slawomir; Kreykenbohm, Ingo; Wilms, Jorn; Rothschild, Richard

    2009-01-01

    We present results from two observations of the wind-accreting X-ray pulsar 4U 1907+09 using the Suzaku observatory, The broadband time-averaged spectrum allows us to examine the continuum emission of the source and the cyclotron resonance scattering feature at approx. 19 keV. Additionally, using the narrow CCD response of Suzaku near 6 ke V allows us to study in detail the Fe K bandpass and to quantify the Fe Kp line for this source for the first time. The source is absorbed by fully-covering material along the line of sight with a column density of N(sub H) approx. 2 x 10(exp 22)/sq cm, consistent with a wind accreting geometry, and a high Fe abundance (approx. 3 - 4 x solar). Time and phase-resolved analyses allow us to study variations in the source spectrum. In particular, dips found in the 2006 observation which are consistent with earlier observations occur in the hard X-ray bandpass, implying a variation of the whole continuum rather than occultation by intervening material, while a dip near the end of the 2007 observation occurs mainly in the lower energies implying an increase in NH along the line of sight, perhaps indicating clumpiness in the stellar wind

  4. JUPITER WILL BECOME A HOT JUPITER: CONSEQUENCES OF POST-MAIN-SEQUENCE STELLAR EVOLUTION ON GAS GIANT PLANETS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Spiegel, David S.; Madhusudhan, Nikku, E-mail: dave@ias.edu, E-mail: Nikku.Madhusudhan@yale.edu

    When the Sun ascends the red giant branch (RGB), its luminosity will increase and all the planets will receive much greater irradiation than they do now. Jupiter, in particular, might end up more highly irradiated than the hot Neptune GJ 436b and, hence, could appropriately be termed a 'hot Jupiter'. When their stars go through the RGB or asymptotic giant branch stages, many of the currently known Jupiter-mass planets in several-AU orbits will receive levels of irradiation comparable to the hot Jupiters, which will transiently increase their atmospheric temperatures to {approx}1000 K or more. Furthermore, massive planets around post-main-sequence starsmore » could accrete a non-negligible amount of material from the enhanced stellar winds, thereby significantly altering their atmospheric chemistry as well as causing a significant accretion luminosity during the epochs of most intense stellar mass loss. Future generations of infrared observatories might be able to probe the thermal and chemical structure of such hot Jupiters' atmospheres. Finally, we argue that, unlike their main-sequence analogs (whose zonal winds are thought to be organized in only a few broad, planetary-scale jets), red-giant hot Jupiters should have multiple, narrow jets of zonal winds and efficient day-night redistribution.« less

  5. Formation of Bipolar Lobes by Jets

    NASA Astrophysics Data System (ADS)

    Soker, Noam

    2002-04-01

    I conduct an analytical study of the interaction of jets, or a collimated fast wind (CFW), with a previously blown asymptotic giant branch (AGB) slow wind. Such jets (or CFWs) are supposedly formed when a compact companion, a main-sequence star, or a white dwarf accretes mass from the AGB star, forms an accretion disk, and blows two jets. This type of flow, which I think shapes bipolar planetary nebulae (PNs), requires three-dimensional gasdynamical simulations, which are limited in the parameter space they can cover. By imposing several simplifying assumptions, I derive simple expressions which reproduce some basic properties of lobes in bipolar PNs and which can be used to guide future numerical simulations. I quantitatively apply the results to two proto-PNs. I show that the jet interaction with the slow wind can form lobes which are narrow close to, and far away from, the central binary system, and which are wider somewhere in between. Jets that are recollimated and have constant cross section can form cylindrical lobes with constant diameter, as observed in several bipolar PNs. Close to their source, jets blown by main-sequence companions are radiative; only further out they become adiabatic, i.e., they form high-temperature, low-density bubbles that inflate the lobes.

  6. Impact of erosion and accretion on the distribution of enterococci in beach sands.

    PubMed

    Gast, Rebecca J; Gorrell, Levi; Raubenheimer, Britt; Elgar, Steve

    2011-09-15

    Bacterial pathogens in coastal sediments may pose a health risk to users of beaches. Although recent work shows that beach sands harbor both indicator bacteria and potential pathogens, it is not known how deep within beach sands the organisms may persist nor if they may be exposed during natural physical processes. In this study, sand cores of approximately 1 m depth were collected at three sites across the beach face in Kitty Hawk, North Carolina before, during and after large waves from an offshore hurricane. The presence of DNA from the fecal indicator bacterium Enterococci was detected in subsamples at different depths within the cores by PCR amplification. Erosion and accretion of beach sand at the three sites also was determined for each sampling day. The results indicate that ocean beach sands with persisting enterococci signals could be exposed and redistributed when wind, waves, and currents cause beach erosion or accretion.

  7. An experimental study of the aerodynamics of a NACA 0012 airfoil with a simulated glaze ice accretion

    NASA Technical Reports Server (NTRS)

    Bragg, M. B.

    1986-01-01

    An experimental study was conducted in the Ohio State University subsonic wind tunnel to measure the detailed aerodynamic characteristics of an airfoil with a simulated glaze ice accretion. A NACA 0012 model with interchangeable leading edges and pressure taps every one percent chord was used. Surface pressure and wake data were taken on the airfoil clean, with forced transition and with a simulated glaze ice shape. Lift and drag penalties due to the ice shape were found and the surface pressure clearly showed that large separation bubbles were present. Both total pressure and split-film probes were used to measure velocity profiles, both for the clean model and for the model with a simulated ice accretion. A large region of flow separation was seen in the velocity profiles and was correlated to the pressure measurements. Clean airfoil data were found to compare well to existing airfoil analysis methods.

  8. SDSS-IV MaNGA: A SERENDIPITOUS OBSERVATION OF A POTENTIAL GAS ACCRETION EVENT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cheung, Edmond; Stark, David V.; Huang, Song

    The nature of warm, ionized gas outside of galaxies may illuminate several key galaxy evolutionary processes. A serendipitous observation by the MaNGA survey has revealed a large, asymmetric H α complex with no optical counterpart that extends ≈8″ (≈6.3 kpc) beyond the effective radius of a dusty, starbursting galaxy. This H α extension is approximately three times the effective radius of the host galaxy and displays a tail-like morphology. We analyze its gas-phase metallicities, gaseous kinematics, and emission-line ratios and discuss whether this H α extension could be diffuse ionized gas, a gas accretion event, or something else. We findmore » that this warm, ionized gas structure is most consistent with gas accretion through recycled wind material, which could be an important process that regulates the low-mass end of the galaxy stellar mass function.« less

  9. Origin of superluminal radio jets in microquasars

    NASA Astrophysics Data System (ADS)

    Yadav, J. S.; Bhandare, R. S.

    In Microquasars, superluminal radio jets are seen at large distances from few hundred AU to 5000 AU with very high radio luminosity. We suggest that these superluminal jets are due to internal shocks which form in the previously generated slowly moving wind (from the accretion disk or the companion star) with beta < 0.01 as the fast moving discrete jet with beta sim 1 catches up and interacts with it. The black hole X-ray binaries with transient radio emission (mostly LMXBs) produce superluminal jets with beta_app > 1 when the accretion rate is high and the bolometric luminosity, L_bol approaches the Eddington Luminosity, L_Edd. On the other hand, the black hole X-ray binaries with persistent radio emission (mostly HMXBs) produce superluminal jets with beta_app < 1 at relatively low accretion rate. Our work here brings Galactic microquasars closer to extragalactic AGNs and quasars as the environment plays an important role in the formation of superluminal jets.

  10. SDSS-IV MaNGA: A Serendipitous Observation of a Potential Gas Accretion Event

    NASA Astrophysics Data System (ADS)

    Cheung, Edmond; Stark, David V.; Huang, Song; Rubin, Kate H. R.; Lin, Lihwai; Tremonti, Christy; Zhang, Kai; Yan, Renbin; Bizyaev, Dmitry; Boquien, Médéric; Brownstein, Joel R.; Drory, Niv; Gelfand, Joseph D.; Knapen, Johan H.; Maiolino, Roberto; Malanushenko, Olena; Masters, Karen L.; Merrifield, Michael R.; Pace, Zach; Pan, Kaike; Riffel, Rogemar A.; Roman-Lopes, Alexandre; Rujopakarn, Wiphu; Schneider, Donald P.; Stott, John P.; Thomas, Daniel; Weijmans, Anne-Marie

    2016-12-01

    The nature of warm, ionized gas outside of galaxies may illuminate several key galaxy evolutionary processes. A serendipitous observation by the MaNGA survey has revealed a large, asymmetric Hα complex with no optical counterpart that extends ≈8″ (≈6.3 kpc) beyond the effective radius of a dusty, starbursting galaxy. This Hα extension is approximately three times the effective radius of the host galaxy and displays a tail-like morphology. We analyze its gas-phase metallicities, gaseous kinematics, and emission-line ratios and discuss whether this Hα extension could be diffuse ionized gas, a gas accretion event, or something else. We find that this warm, ionized gas structure is most consistent with gas accretion through recycled wind material, which could be an important process that regulates the low-mass end of the galaxy stellar mass function.

  11. Position Sensor with Integrated Signal-Conditioning Electronics on a Printed Wiring Board

    NASA Technical Reports Server (NTRS)

    Alhorn, Dean C. (Inventor); Howard, David E. (Inventor); Smith, Dennis A. (Inventor)

    2001-01-01

    A position sensor, such as a rotary position sensor, includes the signal-conditioning electronics in the housing. The signal-conditioning electronics are disposed on a printed wiring board, which is assembled with another printed wiring board including the sensor windings to provide a sub-assembly. A mu-metal shield is interposed between the printed wiring boards to prevent magnetic interference. The sub-assembly is disposed in the sensor housing adjacent to an inductor board which turns on a shaft. The inductor board emanates an internally or externally generated excitation signal that induces a signal in the sensor windings. The induced signal represents the rotary position of the inductor board relative to the sensor winding board.

  12. Doomed Matter Near Black Hole Gets Second Lease on Life

    NASA Astrophysics Data System (ADS)

    2003-03-01

    Supermassive black holes, notorious for ripping apart and swallowing stars, might also help seed interstellar space with the elements necessary for life, such as hydrogen, carbon, oxygen and iron, scientists say. Using NASA's Chandra X-ray Observatory and ESA's XMM-Newton satellite, scientists at Penn State University and the Massachusetts Institute of Technology found evidence of high-speed winds blowing away copious amounts of gas from the cores of two quasar galaxies, which are thought to be powered by black holes. "The winds we measured imply that as much as a billion suns' worth of material is blown away over the course of a quasar's lifetime," said George Chartas of the Penn State Astronomy and Astrophysics Department, who led the observations. The winds might also regulate black hole growth and spur the creation of new stars, according to the science team, which includes Niel Brandt and Gordon Garmire of Penn State and Sarah Gallagher of MIT. These results are presented today in a press conference at the meeting of the High Energy Astrophysics Division of the American Astronomical Society at Mt. Tremblant, Quebec. Different from high-speed jets shooting off subatomic particles, the newly identified gusts arise from the disk of matter orbiting the black hole, called the accretion disk, once thought to be a one-way ticket into the black hole. PG1115+080 Chandra Observation of PG1115+080 Black holes are objects so dense that nothing, not even light, can escape their gravitational attraction. But this only applies once matter crosses the theoretical border of a black hole, called the event horizon. Outside the event horizon, the tug of gravity is strong, but matter and light can escape. Theorists have suggested that a wind could blow away material from its accretion disk and pepper the interstellar region with heavier elements. The wind is created by radiation pressure, analogous to earthly winds created by varying high and low air pressure systems. Chartas and his colleagues observed two quasars, which are exceedingly distant star-like objects thought to be the bright cores of galaxies fueled by a supermassive black hole. With Chandra, the team observed a quasar called APM 08279+5255; and with the European Space Agency's XMM-Newton, they observed a quasar named PG1115+080. Both quasars are billions of light years away from Earth. However, APM 08279+5255 was naturally magnified by a factor of about 100 and PG1115+080 by a factor of about 25 through a process called gravitational lensing. Essentially, their light, while en route to us, was distorted and magnified by the gravity of intervening galaxies acting like telescope lenses. Wind from Accretion Disk around a Black Hole Wind from Accretion Disk around a Black Hole With the natural boost in magnification, coupled with the X-ray observatories' abilities, the scientists could ascertain several key properties in the quasar light, such as the speed of the gas that absorbed the light, as well as the material's proximity to the black hole. The team found the first observational evidence of a wind component transporting a substantial amount of carbon, oxygen and iron into the interstellar and intergalactic medium. The wind was moving at 40 percent light speed, considerably faster than predicted. Brandt said the observation may spur new theoretical work about black hole winds and their effect on their environs. For example, Brandt said, "the wind might provide insight to the relationship between black hole mass and the central bulge of its host galaxy." Chandra, launched in July 1999, is the third in NASA's Great Observatory series, a sister craft to the Hubble Space Telescope. ESA's XMM-Newton was launched from French Guiana in December 1999 and carries three advanced X-ray telescopes. NASA's Marshall Space Flight Center in Huntsville, Ala., manages the Chandra program, and TRW, Inc., Redondo Beach, Calif., is the prime contractor for the spacecraft. The Smithsonian's Chandra X-ray Center controls science and flight operations from Cambridge, Mass., for the Office of Space Science at NASA Headquarters, Washington.

  13. The 1979-1980 eclipse of Zeta Aurigae. I - The circumstellar envelope

    NASA Technical Reports Server (NTRS)

    Chapman, R. D.

    1981-01-01

    A model of the K-star wind far from the K star, and its interaction with the B star, has been derived from a study of Mg(+) and C(+++) resonance lines in the spectrum of Zeta Aurigae during 1979 and 1980. A mass loss rate from the K star of 2 x 10 to the -8th solar masses/year is suggested by the data; the rate of accretion of the K supergiant's material by the B star then being such that the matter accreted over a period of ten years is of the order of the total mass of the photosphere of the B star.

  14. Dynamic Evolution in the Symbiotic R Aquarii

    NASA Technical Reports Server (NTRS)

    DePasquale, J. M.; Nichols, J. S.; Kellogg, E. M.

    2007-01-01

    We report on multiple Chandra observations spanning a period of 5 years as well as a more recent XMM observation of the nearby symbiotic binary R Aqr. Spectral analysis of these four observations reveals considerable variability in hardness ratios and in the strength and ionization levels of emission lines which provides insight into white dwarf accretion processes as well as continuum and line formation mechanisms. Chandra imaging of the central source also shows the formation and evolution of a new south west jet. This growing body of high-resolution X-ray data of R Aqr provides a unique glimpse into white dwarf wind-accretion processes and jet formation.

  15. 210Pb and 137Cs as chronometers for salt marsh accretion in the Venice Lagoon - links to flooding frequency and climate change.

    PubMed

    Bellucci, L G; Frignani, M; Cochran, J K; Albertazzi, S; Zaggia, L; Cecconi, G; Hopkins, H

    2007-01-01

    Five salt marsh sediment cores from different parts of the Venice Lagoon were studied to determine their depositional history and its relationship with the environmental changes occurred during the past approximately 100 years. X-radiographs of the cores show no disturbance related to particle mixing. Accretion rates were calculated using a constant flux model applied to excess (210)Pb distributions in the cores. The record of (137)Cs fluxes to the sites, determined from (137)Cs profiles and the (210)Pb chronologies, shows inputs from the global fallout of (137)Cs in the late 1950s to early 1960s and the Chernobyl accident in 1986. Average accretion rates in the cores are comparable to the long-term average rate of mean sea level rise in the Venice Lagoon ( approximately 0.25 cm y(-1)) except for a core collected in a marsh presumably affected by inputs from the Dese River. Short-term variations in accretion rate are correlated with the cumulative frequency of flooding, as determined by records of Acqua Alta, in four of the five cores, suggesting that variations in the phenomena causing flooding (such as wind patterns, storm frequency and NAO) are short-term driving forces for variations in marsh accretion rate.

  16. A laboratory facility for research on wind-driven rain intrusion in building envelope assemblies

    Treesearch

    Samuel V. Glass

    2010-01-01

    Moisture management is critical for durable, energy-efficient buildings. To address the need for research on wind-driven rain intrusion in wall assemblies, the U.S. Forest Products Laboratory is developing a new facility. This paper describes the underlying principle of this facility and its capabilities.

  17. Interaction of the accretion flows in corona and disk near the black hole in active galactic nuclei

    NASA Astrophysics Data System (ADS)

    Meyer-Hofmeister, E.; Liu, B. F.; Qiao, E.

    2017-11-01

    Context. Accretion flows toward black holes can be of a quite different nature, described as an optically thick cool gas flow in a disk for high accretion rates or as a hot coronal optically thin gas flow for low accretion rates, possibly affected by outflowing gas. Aims: The detection of broad iron emission lines in active galactic nuclei (AGN) indicates the coexistence of corona and disk. The appearance and relative strength of such flows essentially depends on their interaction. Liu et al. suggested that condensation of gas from the corona to the disk allows to understand accretion flows of comparable strength of emission. Matter inflow due to gravitational capture of gas is important for the condensation process. We discuss observational features predicted by the model. Methods: Data from simultaneous observations of AGN with Swift's X-ray and UV-optical telescopes are compared with the theoretical predictions. Results: The frequent detection of broad iron Kα emission lines and the dependence of the emitted spectra on the Eddington ratio, described by the values of the photon index Γ and the two-point spectral index αox are in approximate agreement with the predictions of the condensation model; the latter, however, with a large scatter. The model further yields a coronal emission concentrated in a narrow inner region as is also deduced from the analysis of emissivity profiles. Conclusions: The accretion flows in bright AGN could be described by the accretion of stellar wind or interstellar medium and its condensation into a thin disk.

  18. CSI 2264: CHARACTERIZING YOUNG STARS IN NGC 2264 WITH STOCHASTICALLY VARYING LIGHT CURVES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stauffer, John; Rebull, Luisa; Carey, Sean

    2016-03-15

    We provide CoRoT and Spitzer light curves and other supporting data for 17 classical T Tauri stars in NGC 2264 whose CoRoT light curves exemplify the “stochastic” light curve class as defined in 2014 by Cody et al. The most probable physical mechanism to explain the optical variability within this light curve class is time-dependent mass accretion onto the stellar photosphere, producing transient hot spots. Where we have appropriate spectral data, we show that the veiling variability in these stars is consistent in both amplitude and timescale with the optical light curve morphology. The veiling variability is also well-correlated with the strengthmore » of the He i 6678 Å emission line, predicted by models to arise in accretion shocks on or near the stellar photosphere. Stars with accretion burst light curve morphology also have variable mass accretion. The stochastic and accretion burst light curves can both be explained by a simple model of randomly occurring flux bursts, with the stochastic light curve class having a higher frequency of lower amplitude events. Members of the stochastic light curve class have only moderate mass accretion rates. Their Hα profiles usually have blueshifted absorption features, probably originating in a disk wind. The lack of periodic signatures in the light curves suggests that little of the variability is due to long-lived hot spots rotating into or out of our line of sight; instead, the primary driver of the observed photometric variability is likely to be instabilities in the inner disk that lead to variable mass accretion.« less

  19. System and method for heating ferrite magnet motors for low temperatures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reddy, Patel Bhageerath; El-Refaie, Ayman Mohamed Fawzi; Huh, Kum-Kang

    A system and method for heating ferrite permanent magnets in an electrical machine is disclosed. The permanent magnet machine includes a stator assembly and a rotor assembly, with a plurality of ferrite permanent magnets disposed within the stator assembly or the rotor assembly to generate a magnetic field that interacts with a stator magnetic field to produce a torque. A controller of the electrical machine is programmed to cause a primary field current to be applied to the stator windings to generate the stator magnetic field, so as to cause the rotor assembly to rotate relative to the stator assembly.more » The controller is further programmed to cause a secondary current to be applied to the stator windings to selectively generate a secondary magnetic field, the secondary magnetic field inducing eddy currents in at least one of the stator assembly and the rotor assembly to heat the ferrite permanent magnets.« less

  20. System and method for heating ferrite magnet motors for low temperatures

    DOEpatents

    Reddy, Patel Bhageerath; El-Refaie, Ayman Mohamed Fawzi; Huh, Kum-Kang

    2017-07-04

    A system and method for heating ferrite permanent magnets in an electrical machine is disclosed. The permanent magnet machine includes a stator assembly and a rotor assembly, with a plurality of ferrite permanent magnets disposed within the stator assembly or the rotor assembly to generate a magnetic field that interacts with a stator magnetic field to produce a torque. A controller of the electrical machine is programmed to cause a primary field current to be applied to the stator windings to generate the stator magnetic field, so as to cause the rotor assembly to rotate relative to the stator assembly. The controller is further programmed to cause a secondary current to be applied to the stator windings to selectively generate a secondary magnetic field, the secondary magnetic field inducing eddy currents in at least one of the stator assembly and the rotor assembly to heat the ferrite permanent magnets.

  1. Exploring the Powerful Ionised Wind in the Seyfert Galaxy PG1211+143

    NASA Astrophysics Data System (ADS)

    Pounds, Ken

    2013-10-01

    Highly-ionised high-speed winds in AGN (UFOs) were first detected with XMM-Newton a decade ago, and are now established as a key factor in the study of SMBH accretion, and in the growth and metal enrichment of their host galaxies. However, information on the ionisation and dynamical structure, and the ultimate fate of UFOs remains very limited. We request a 600ks extended XMM-Newton study of the prototype UFO PG1211+143 in AO-13, to obtain high quality EPIC and RGS spectra, to map the flow structure and variability, while seeking evidence for the anticipated interaction with the ISM and possible conversion of the energetic wind to a momentum-driven flow.

  2. Using He I λ10830 to Diagnose Mass Flows Around Herbig Ae/Be Stars

    NASA Astrophysics Data System (ADS)

    Cauley, Paul W.; Johns-Krull, Christopher M.

    2015-01-01

    The pre-main sequence Herbig Ae/Be stars (HAEBES) are the intermediate mass cousins of the low mass T Tauri stars (TTSs). However, it is not clear that the same accretion and mass outflow mechanisms operate identically in both mass regimes. Classical TTSs (CTTSs) accrete material from their disks along stellar magnetic field lines in a scenario called magnetospheric accretion. Magnetospheric accretion requires a strong stellar dipole field in order to truncate the inner gas disk. These fields are either absent or very weak on a large majority of HAEBES, challenging the view that magnetospheric accretion is the dominant accretion mechanism. If magnetospheric accretion does not operate similarly around HAEBES as it does around CTTSs, then strong magnetocentrifugal outflows, which are directly linked to accretion and are ubiquitous around CTTSs, may be driven less efficiently from HAEBE systems. Here we present high resolution spectroscopic observations of the He I λ10830 line in a sample of 48 HAEBES. He I λ10830 is an excellent tracer of both mass infall and outflow which is directly manifested as red and blue-shifted absorption in the profile morphologies. These features, among others, are common in our sample. The occurrence of both red and blue-shifted absorption profiles is less frequent, however, than is found in CTTSs. Statistical contingency tests confirm this difference at a significant level. In addition, we find strong evidence for smaller disk truncation radii in the objects displaying red-shifted absorption profiles. This is expected for HAEBES experiencing magnetospheric accretion based on their large rotation rates and weak magnetic field strengths. Finally, the low incidence of blue-shifted absorption in our sample compared to CTTSs and the complete lack of simultaneous red and blue-shifted absorption features suggests that magnetospheric accretion in HAEBES is less efficient at driving strong outflows. The stellar wind-like outflows that are observed are likely driven, at least in part, by boundary layer accretion. The smaller (or absent) disk truncation radii in HAEBES may have consequences for the frequency of planets in close orbits around main sequence B and A stars.

  3. Metal Accretion onto White Dwarfs. III. A Still Better Approach Based on the Coupling of Diffusion with Evolution

    NASA Astrophysics Data System (ADS)

    Brassard, Pierre; Fontaine, Gilles

    2015-06-01

    The accretion-diffusion picture is the model par excellence for describing the presence of planetary debris polluting the atmospheres of relatively cool white dwarfs. In the time-dependent approach used in Paper II of this series (Fontaine et al. 2014), the basic assumption is that the accreted metals are trace elements and do not influence the background structure, which may be considered static in time. Furthermore, the usual assumption of instantaneous mixing in the convection zone is made. As part of the continuing development of our local evolutionary code, diffusion in presence of stellar winds or accretion is now fully coupled to evolution. Convection is treated as a diffusion process, i.e., the assumption of instantaneous mixing is relaxed, and, furthermore, overshooting is included. This allows feedback on the evolving structure from the accreting metals. For instance, depending of its abundance, a given metal may contribute enough to the overall opacity (especially in a He background) to change the size of the convection zone as a function of time. Our better approach also allows to include in a natural way the mechanism of thermohaline convection, which we discuss at some length. Also, it is easy to consider sophisticated time-dependent models of accretion from circumstellar disks, such as those developed by Roman Rafikov at Princeton for instance. The current limitations of our approach are 1) the calculations are extremely computer-intensive, and 2) we have not yet developed detailed EOS megatables for metals beyond oxygen.

  4. The Eating Habits of Milky Way Mass Halos: Destroyed Dwarf Satellites and the Metallicity Distribution of Accreted Stars

    DOE PAGES

    Deason, Alis J.; Mao, Yao-Yuan; Wechsler, Risa H.

    2016-04-01

    In this paper, we study the mass spectrum of destroyed dwarfs that contribute to the accreted stellar mass of Milky Way (MW)-mass (M vir ~ 10 12.1 M ⊙) halos using a suite of 45 zoom-in dissipationless simulations. Empirical models are employed to relate (peak) subhalo mass to dwarf stellar mass, and we use constraints from z = 0 observations and hydrodynamical simulations to estimate the metallicity distribution of the accreted stellar material. The dominant contributors to the accreted stellar mass are relatively massive dwarfs with M star ~ 10 8–10 10M ⊙. Halos with more quiescent accretion histories tendmore » to have lower mass progenitors (10 8–10 9 M ⊙), and lower overall accreted stellar masses. Ultra-faint mass (M star < 10 5 M ⊙) dwarfs contribute a negligible amount (<<1%) to the accreted stellar mass and, despite having low average metallicities, supply a small fraction (~2%–5%) of the very metal-poor stars with [Fe/H] < -2. Dwarfs with masses 10 5 < M star/M ⊙ < 10 8 provide a substantial amount of the very metal-poor stellar material (~40%–80%), and even relatively metal-rich dwarfs with M star > 10 8 M ⊙ can contribute a considerable fraction (~20%–60%) of metal-poor stars if their metallicity distributions have significant metal-poor tails. Finally, we find that the generic assumption of a quiescent assembly history for the MW halo seems to be in tension with the mass spectrum of its surviving dwarfs. In conclusion, we suggest that the MW could be a "transient fossil"; a quiescent halo with a recent accretion event(s) that disguises the preceding formation history of the halo.« less

  5. Induction machine

    DOEpatents

    Owen, Whitney H.

    1980-01-01

    A polyphase rotary induction machine for use as a motor or generator utilizing a single rotor assembly having two series connected sets of rotor windings, a first stator winding disposed around the first rotor winding and means for controlling the current induced in one set of the rotor windings compared to the current induced in the other set of the rotor windings. The rotor windings may be wound rotor windings or squirrel cage windings.

  6. ALMA Observations of the Water Fountain Pre-Planetary Nebula IRAS 16342-3814: High-Velocity Bipolar Jets and an Expanding Torus

    PubMed Central

    Sahai, R.; Vlemmings, W.H.T.; Gledhill, T.; Sánchez Contreras, C.; Lagadec, E.; Nyman, L-Å; Quintana-Lacaci, G.

    2017-01-01

    We have mapped 12CO J=3–2 and other molecular lines from the “water-fountain” bipolar pre-planetary nebula (PPN) IRAS 16342-3814 with ∼0⋅″35 resolution using ALMA. We find (i) two very high-speed knotty, jet-like molecular outflows, (ii) a central high-density (> few × 106 cm−3), expanding torus of diameter 1300 AU, and (iii) the circumstellar envelope of the progenitor AGB, generated by a sudden, very large increase in the mass-loss rate to > 3.5 × 10−4 M⊙ yr−1 in the past ~455 yr. Strong continuum emission at 0.89 mm from a central source (690 mJy), if due to thermally-emitting dust, implies a substantial mass (0.017 M⊙) of very large (~mm-sized) grains. The measured expansion ages of the above structural components imply that the torus (age~160 yr) and the younger high-velocity outflow (age~110 yr) were formed soon after the sharp increase in the AGB mass-loss rate. Assuming a binary model for the jets in IRAS 16342, the high momentum rate for the dominant jet-outflow in IRAS 16342 implies a high minimum accretion rate, ruling out standard Bondi-Hoyle-Lyttleton wind accretion and wind Roche lobe overflow (RLOF) models with white-dwarf or main-sequence companions. Most likely, enhanced RLOF from the primary or accretion modes operating within common envelope evolution are needed. PMID:28191303

  7. ALMA Observations of the Water Fountain Pre-Planetary Nebula IRAS 16342-3814: High-Velocity Bipolar Jets and an Expanding Torus.

    PubMed

    Sahai, R; Vlemmings, W H T; Gledhill, T; Sánchez Contreras, C; Lagadec, E; Nyman, L-Å; Quintana-Lacaci, G

    2017-01-20

    We have mapped 12 CO J=3-2 and other molecular lines from the "water-fountain" bipolar pre-planetary nebula (PPN) IRAS 16342-3814 with [Formula: see text] resolution using ALMA. We find (i) two very high-speed knotty, jet-like molecular outflows, (ii) a central high-density (> few × 10 6 cm -3 ), expanding torus of diameter 1300 AU, and (iii) the circumstellar envelope of the progenitor AGB, generated by a sudden, very large increase in the mass-loss rate to > 3.5 × 10 -4 M ⊙ yr -1 in the past ~455 yr. Strong continuum emission at 0.89 mm from a central source (690 mJy), if due to thermally-emitting dust, implies a substantial mass (0.017 M ⊙ ) of very large (~mm-sized) grains. The measured expansion ages of the above structural components imply that the torus (age~160 yr) and the younger high-velocity outflow (age~110 yr) were formed soon after the sharp increase in the AGB mass-loss rate. Assuming a binary model for the jets in IRAS 16342, the high momentum rate for the dominant jet-outflow in IRAS 16342 implies a high minimum accretion rate, ruling out standard Bondi-Hoyle-Lyttleton wind accretion and wind Roche lobe overflow (RLOF) models with white-dwarf or main-sequence companions. Most likely, enhanced RLOF from the primary or accretion modes operating within common envelope evolution are needed.

  8. ALMA Observations of the Water Fountain Pre-planetary Nebula IRAS 16342-3814: High-velocity Bipolar Jets and an Expanding Torus

    NASA Astrophysics Data System (ADS)

    Sahai, R.; Vlemmings, W. H. T.; Gledhill, T.; Sánchez Contreras, C.; Lagadec, E.; Nyman, L.-Å; Quintana-Lacaci, G.

    2017-01-01

    We have mapped 12CO J = 3-2 and other molecular lines from the “water fountain” bipolar pre-planetary nebula (PPN) IRAS 16342-3814 with ˜0.″35 resolution using Atacama Large Millimeter/submillimeter Array. We find (I) two very high-speed knotty, jet-like molecular outflows; (II) a central high-density (> {few}× {10}6 cm-3), expanding torus of diameter 1300 au; and (III) the circumstellar envelope of the progenitor AGB, generated by a sudden, very large increase in the mass-loss rate to > 3.5× {10}-4 M⊙ yr-1 in the past ˜455 years. Strong continuum emission at 0.89 mm from a central source (690 mJy), if due to thermally emitting dust, implies a substantial mass (0.017 M⊙) of very large (˜millimeter-sized) grains. The measured expansion ages of the above structural components imply that the torus (age ˜160 years) and the younger high-velocity outflow (age ˜110 years) were formed soon after the sharp increase in the AGB mass-loss rate. Assuming a binary model for the jets in IRAS 16342, the high momentum rate for the dominant jet-outflow in IRAS 16342 implies a high minimum accretion rate, ruling out standard Bondi-Hoyle-Lyttleton wind accretion and wind Roche-lobe overflow (RLOF) models with white-dwarf or main-sequence companions. Most likely, enhanced RLOF from the primary or accretion modes operating within common-envelope evolution are needed.

  9. Dynamics and Chemistry of Planet Construction

    NASA Astrophysics Data System (ADS)

    Taylor, G. J.

    2010-03-01

    Sophisticated calculations of how planetesimals assembled into the terrestrial planets can be tested by using models of the chemistry of the solar nebula. Jade Bond (previously at University of Arizona and now at the Planetary Science Institute, Tucson, AZ), Dante Lauretta (University of Arizona) and Dave O'Brien (Planetary Sciences Institute) combined planetary accretion simulations done by O'Brien, Alessandro Morbidelli (Observatoire de Nice, France), and Hal Levison (Southwest Research Institute, Boulder) with calculations of the solar nebula chemistry as a function of time and distance from the Sun to determine the overall chemical composition of the planets formed in the simulations. They then compared the simulated planets with the compositions of Earth and Mars. The simulated planets have chemical compositions similar to real planets, indicating that the accretion calculations are reasonable. Questions remain about the accretion of water and other highly volatile compounds, including C and N, which are essential for life.

  10. The AP-1 transcription factor component Fosl2 potentiates the rate of myocardial differentiation from the zebrafish second heart field.

    PubMed

    Jahangiri, Leila; Sharpe, Michka; Novikov, Natasha; González-Rosa, Juan Manuel; Borikova, Asya; Nevis, Kathleen; Paffett-Lugassy, Noelle; Zhao, Long; Adams, Meghan; Guner-Ataman, Burcu; Burns, Caroline E; Burns, C Geoffrey

    2016-01-01

    The vertebrate heart forms through successive phases of cardiomyocyte differentiation. Initially, cardiomyocytes derived from first heart field (FHF) progenitors assemble the linear heart tube. Thereafter, second heart field (SHF) progenitors differentiate into cardiomyocytes that are accreted to the poles of the heart tube over a well-defined developmental window. Although heart tube elongation deficiencies lead to life-threatening congenital heart defects, the variables controlling the initiation, rate and duration of myocardial accretion remain obscure. Here, we demonstrate that the AP-1 transcription factor, Fos-like antigen 2 (Fosl2), potentiates the rate of myocardial accretion from the zebrafish SHF. fosl2 mutants initiate accretion appropriately, but cardiomyocyte production is sluggish, resulting in a ventricular deficit coupled with an accumulation of SHF progenitors. Surprisingly, mutant embryos eventually correct the myocardial deficit by extending the accretion window. Overexpression of Fosl2 also compromises production of SHF-derived ventricular cardiomyocytes, a phenotype that is consistent with precocious depletion of the progenitor pool. Our data implicate Fosl2 in promoting the progenitor to cardiomyocyte transition and uncover the existence of regulatory mechanisms to ensure appropriate SHF-mediated cardiomyocyte contribution irrespective of embryonic stage. © 2016. Published by The Company of Biologists Ltd.

  11. Photon Bubbles and the Vertical Structure of Accretion Disks

    NASA Astrophysics Data System (ADS)

    Begelman, Mitchell C.

    2006-06-01

    We consider the effects of ``photon bubble'' shock trains on the vertical structure of radiation pressure-dominated accretion disks. These density inhomogeneities are expected to develop spontaneously in radiation-dominated accretion disks where magnetic pressure exceeds gas pressure, even in the presence of magnetorotational instability (MRI). They increase the rate at which radiation escapes from the disk and may allow disks to exceed the Eddington limit by a substantial factor without blowing themselves apart. To refine our earlier analysis of photon bubble transport in accretion disks, we generalize the theory of photon bubbles to include the effects of finite optical depths and radiation damping. Modifications to the diffusion law at low τ tend to ``fill in'' the low-density regions of photon bubbles, while radiation damping inhibits the formation of photon bubbles at large radii, small accretion rates, and small heights above the equatorial plane. Accretion disks dominated by photon bubble transport may reach luminosities from 10 to >100 times the Eddington limit (LEdd), depending on the mass of the central object, while remaining geometrically thin. However, photon bubble-dominated disks with α-viscosity are subject to the same thermal and viscous instabilities that plague standard radiation pressure-dominated disks, suggesting that they may be intrinsically unsteady. Photon bubbles can lead to a ``core-halo'' vertical disk structure. In super-Eddington disks the halo forms the base of a wind, which carries away substantial energy and mass, but not enough to prevent the luminosity from exceeding LEdd. Photon bubble-dominated disks may have smaller color corrections than standard accretion disks of the same luminosity. They remain viable contenders for some ultraluminous X-ray sources and may play a role in the rapid growth of supermassive black holes at high redshift.

  12. Installation and checkout of the DOE/NASA Mod-1 2000-kW wind turbine generator

    NASA Technical Reports Server (NTRS)

    Puthoff, R. L.; Collins, J. L.; Wolf, R. A.

    1980-01-01

    The paper describes the DOE/NASA Mod-1 wind turbine generator, its assembly and testing, and its installation at Boone, North Carolina. The paper concludes with performance data taken during the initial tests conducted on the machine. The successful installation and initial operation of the Mod-1 wind turbine generator has had the following results: (1) megawatt-size wind turbines can be operated satisfactorily on utility grids; (2) the structural loads can be predicted by existing codes; (3) assembly of the machine on top of the tower presents no major problem; (4) large blades 100 ft long can be transported long distances and over mountain roads; and (5) operating experience and performance data will contribute substantially to the design of future low-cost wind turbines.

  13. Searching for Variability of NV Intrinsic Narrow Absorption Line Systems

    NASA Astrophysics Data System (ADS)

    Rodruck, Michael; Charlton, Jane; Ganguly, Rajib

    2018-01-01

    The majority of quasar absorption line systems with NV detected are found within the associated region (within 5000 km/s of the quasar redshift) and many/most are believed to be related to the quasar accretion disk wind or outflows. The most definite evidence that these NV absorbers are "intrinsic" is partial covering of the quasar continuum source and/or broad line region. Over 75 quasars containing NV narrow absorption lines have observations obtained at different times with the Keck/HIRES and the VLT/UVES spectrographs at high resolution. The interval between these observations range from months to a decade in the quasar rest frame. While variability is common for intrinsic broad and mini-broad absorption lines, intrinsic narrow absorption lines have been found to be less likely to vary, though systematic studies with large, high quality datasets have been limited. The variability timescales are useful for deriving gas densities and thus the distances from the central engines. This is important in mapping the quasar surroundings, understanding the accretion disk wind mechanism, and assessing the effect the wind has on the galaxy surroundings. We report on the results of a systematic study of variability of NV NALs, exploiting the overlap of targets for observations in the archives of Keck and VLT, and discuss the consequences for interpretation of the origin of intrinsic narrow absorption lines.

  14. A COMPREHENSIVE SPECTRAL ANALYSIS OF THE X-RAY PULSAR 4U 1907+09 FROM TWO OBSERVATIONS WITH THE SUZAKU X-RAY OBSERVATORY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rivers, Elizabeth; Markowitz, Alex; Suchy, Slawomir

    2010-01-20

    We present results from two observations of the wind-accreting X-ray pulsar 4U 1907+09 using the Suzaku Observatory. The broadband time-averaged spectrum allows us to examine the continuum emission of the source and the cyclotron resonance scattering feature at approx19 keV. Additionally, using the narrow CCD response of Suzaku near 6 keV allows us to study in detail the Fe K bandpass and to quantify the Fe Kbeta line for this source for the first time. The source is absorbed by fully covering material along the line of sight with a column density of N{sub H} approx 2 x 10{sup 22}more » cm{sup -2}, consistent with a wind-accreting geometry, and a high Fe abundance (approx3-4 times solar). Time- and phase-resolved analyses allow us to study variations in the source spectrum. In particular, dips found in the 2006 observation which are consistent with earlier observations occur in the hard X-ray bandpass, implying a variation of the whole continuum rather than occultation by intervening material, while a dip near the end of the 2007 observation occurs mainly in the lower energies implying an increase in N{sub H} along the line of sight, perhaps indicating clumpiness in the stellar wind.« less

  15. Structural health monitoring approach for detecting ice accretion on bridge cable using the Haar Wavelet Transform

    NASA Astrophysics Data System (ADS)

    Andre, Julia; Kiremidjian, Anne; Liao, Yizheng; Georgakis, Christos; Rajagopal, Ram

    2016-04-01

    Ice accretion on cables of bridge structures poses serious risk to the structure as well as to vehicular traffic when the ice falls onto the road. Detection of ice formation, quantification of the amount of ice accumulated, and prediction of icefalls will increase the safety and serviceability of the structure. In this paper, an ice accretion detection algorithm is presented based on the Continuous Wavelet Transform (CWT). In the proposed algorithm, the acceleration signals obtained from bridge cables are transformed using wavelet method. The damage sensitive features (DSFs) are defined as a function of the wavelet energy at specific wavelet scales. It is found that as ice accretes on the cables, the mass of cable increases, thus changing the wavelet energies. Hence, the DSFs can be used to track the change of cables mass. To validate the proposed algorithm, we use the data collected from a laboratory experiment conducted at the Technical University of Denmark (DTU). In this experiment, a cable was placed in a wind tunnel as ice volume grew progressively. Several accelerometers were installed at various locations along the testing cable to collect vibration signals.

  16. The Effects of Accretion Disk Geometry on AGN Reflection Spectra

    NASA Astrophysics Data System (ADS)

    Taylor, Corbin James; Reynolds, Christopher S.

    2017-08-01

    Despite being the gravitational engines that power galactic-scale winds and mega parsec-scale jets in active galaxies, black holes are remarkably simple objects, typically being fully described by their angular momenta (spin) and masses. The modelling of AGN X-ray reflection spectra has proven fruitful in estimating the spin of AGN, as well as giving insight into their accretion histories and the properties of plasmas in the strong gravity regime. However, current models make simplifying assumptions about the geometry of the reflecting material in the accretion disk and the irradiating X-ray corona, approximating the disk as an optically thick, infinitely thin disk of material in the orbital plane. We present results from the new relativistic raytracing suite, Fenrir, that explore the effects that disk thickness may have on the reflection spectrum and the accompanying reverberation signatures. Approximating the accretion disk as an optically thick, geometrically thin, radiation pressure dominated disk (Shakura & Sunyaev 1973), one finds that the disk geometry is non-negligible in many cases, with significant changes in the broad Fe K line profile. Finally, we explore the systematic errors inherent in approximating the disk as being infinitely thin when modeling reflection spectrum, potentially biasing determinations of black hole and corona properties.

  17. The Effects of Accretion Disk Thickness on the Black Hole Reflection Spectrum

    NASA Astrophysics Data System (ADS)

    Taylor, Corbin; Reynolds, Christopher S.

    2018-01-01

    Despite being the gravitational engines that power galactic-scale winds and mega parsec-scale jets in active galaxies, black holes are remarkably simple objects, typically being fully described by their angular momenta (spin) and masses. The modelling of AGN X-ray reflection spectra has proven fruitful in estimating the spin of AGN, as well as giving insight into their accretion histories and into the properties of plasmas in the strong gravity regime. However, current models make simplifying assumptions about the geometry of the reflecting material in the accretion disk and the irradiating X-ray corona, approximating the disk as an optically thick, infinitely thin disk of material in the orbital plane. We present results from the new relativistic raytracing suite, Fenrir, that explore the effects that disk thickness may have on the reflection spectrum and the accompanying reverberation signatures. Approximating the accretion disk as an optically thick, geometrically thin, radiation pressure dominated disk (Shakura & Sunyaev 1973), one finds that the disk geometry is non-negligible in many cases, with significant changes in the broad Fe K line profile. Finally, we explore the systematic errors inherent in other contemporary models that approximate that disk as having negligible vertical extent.

  18. VEGAS: A VST Early-type GAlaxy Survey. II. Photometric study of giant ellipticals and their stellar halos

    NASA Astrophysics Data System (ADS)

    Spavone, Marilena; Capaccioli, Massimo; Napolitano, Nicola R.; Iodice, Enrichetta; Grado, Aniello; Limatola, Luca; Cooper, Andrew P.; Cantiello, Michele; Forbes, Duncan A.; Paolillo, Maurizio; Schipani, Pietro

    2017-07-01

    Observations of diffuse starlight in the outskirts of galaxies are thought to be a fundamental source of constraint on the cosmological context of galaxy assembly in the ΛCDM model. Such observations are not trivial because of the extreme faintness of such regions. In this work, we investigated the photometric properties of six massive early-type galaxies (ETGs) in the VEGAS sample (NGC 1399, NGC 3923, NGC 4365, NGC 4472, NGC 5044, and NGC 5846) out to extremely low surface brightness levels with the goal of characterizing the global structure of their light profiles for comparison to state-of-the-art galaxy formation models. We carried out deep and detailed photometric mapping of our ETG sample taking advantage of deep imaging with VST/OmegaCAM in the g and I bands. By fitting the light profiles, and comparing the results to simulations of elliptical galaxy assembly, we have identified signatures of a transition between relaxed and unrelaxed accreted components and can constrain the balance between in situ and accreted stars. The very good agreement of our results with predictions from theoretical simulations demonstrates that the full VEGAS sample of 100 ETGs will allow us to use the distribution of diffuse light as a robust statistical probe of the hierarchical assembly of massive galaxies.

  19. The formation and assembly of a typical star-forming galaxy at redshift z approximately 3.

    PubMed

    Stark, Daniel P; Swinbank, A Mark; Ellis, Richard S; Dye, Simon; Smail, Ian R; Richard, Johan

    2008-10-09

    Recent studies of galaxies approximately 2-3 Gyr after the Big Bang have revealed large, rotating disks, similar to those of galaxies today. The existence of well-ordered rotation in galaxies during this peak epoch of cosmic star formation indicates that gas accretion is likely to be the dominant mode by which galaxies grow, because major mergers of galaxies would completely disrupt the observed velocity fields. But poor spatial resolution and sensitivity have hampered this interpretation; such studies have been limited to the largest and most luminous galaxies, which may have fundamentally different modes of assembly from those of more typical galaxies (which are thought to grow into the spheroidal components at the centres of galaxies similar to the Milky Way). Here we report observations of a typical star-forming galaxy at z = 3.07, with a linear resolution of approximately 100 parsecs. We find a well-ordered compact source in which molecular gas is being converted efficiently into stars, likely to be assembling a spheroidal bulge similar to those seen in spiral galaxies at the present day. The presence of undisrupted rotation may indicate that galaxies such as the Milky Way gain much of their mass by accretion rather than major mergers.

  20. Puzzling accretion onto a black hole in the ultraluminous X-ray source M 101 ULX-1

    NASA Astrophysics Data System (ADS)

    Liu, Ji-Feng; Bregman, Joel N.; Bai, Yu; Justham, Stephen; Crowther, Paul

    2013-11-01

    There are two proposed explanations for ultraluminous X-ray sources (ULXs) with luminosities in excess of 1039 erg s-1. They could be intermediate-mass black holes (more than 100-1,000 solar masses, ) radiating at sub-maximal (sub-Eddington) rates, as in Galactic black-hole X-ray binaries but with larger, cooler accretion disks. Alternatively, they could be stellar-mass black holes radiating at Eddington or super-Eddington rates. On its discovery, M 101 ULX-1 had a luminosity of 3 × 1039 erg s-1 and a supersoft thermal disk spectrum with an exceptionally low temperature--uncomplicated by photons energized by a corona of hot electrons--more consistent with the expected appearance of an accreting intermediate-mass black hole. Here we report optical spectroscopic monitoring of M 101 ULX-1. We confirm the previous suggestion that the system contains a Wolf-Rayet star, and reveal that the orbital period is 8.2 days. The black hole has a minimum mass of 5, and more probably a mass of 20-30, but we argue that it is very unlikely to be an intermediate-mass black hole. Therefore, its exceptionally soft spectra at high Eddington ratios violate the expectations for accretion onto stellar-mass black holes. Accretion must occur from captured stellar wind, which has hitherto been thought to be so inefficient that it could not power an ultraluminous source.

  1. I-process Nucleosynthesis and Mass Retention Efficiency in He-shell Flash Evolution of Rapidly Accreting White Dwarfs

    NASA Astrophysics Data System (ADS)

    Denissenkov, Pavel A.; Herwig, Falk; Battino, Umberto; Ritter, Christian; Pignatari, Marco; Jones, Samuel; Paxton, Bill

    2017-01-01

    Based on stellar evolution simulations, we demonstrate that rapidly accreting white dwarfs (WDs) in close binary systems are an astrophysical site for the intermediate neutron-capture process. During recurrent and very strong He-shell flashes in the stable H-burning accretion regime H-rich material enters the He-shell flash convection zone. {}12{{C}}(p,γ ){}13{{N}} reactions release enough energy to potentially impact convection, and I process is activated through the {}13{{C}}{(α ,{{n}})}16{{O}} reaction. The H-ingestion flash may not cause a split of the convection zone as it was seen in simulations of He-shell flashes in post-AGB and low-Z asymptotic giant branch (AGB) stars. We estimate that for the production of first-peak heavy elements this site can be of similar importance for galactic chemical evolution as the s-process production by low-mass AGB stars. The He-shell flashes result in the expansion and, ultimately, ejection of the accreted and then I-process enriched material, via super-Eddington-luminosity winds or Roche-lobe overflow. The WD models do not retain any significant amount of the accreted mass, with a He retention efficiency of ≲ 10 % depending on mass and convective boundary mixing assumptions. This makes the evolutionary path of such systems to supernova Ia explosion highly unlikely.

  2. Wet snow hazard for power lines: a forecast and alert system applied in Italy

    NASA Astrophysics Data System (ADS)

    Bonelli, P.; Lacavalla, M.; Marcacci, P.; Mariani, G.; Stella, G.

    2011-09-01

    Wet snow icing accretion on power lines is a real problem in Italy, causing failures on high and medium voltage power supplies during the cold season. The phenomenon is a process in which many large and local scale variables contribute in a complex way and not completely understood. A numerical weather forecast can be used to select areas where wet snow accretion has an high probability of occurring, but a specific accretion model must also be used to estimate the load of an ice sleeve and its hazard. All the information must be carefully selected and shown to the electric grid operator in order to warn him promptly. The authors describe a prototype of forecast and alert system, WOLF (Wet snow Overload aLert and Forecast), developed and applied in Italy. The prototype elaborates the output of a numerical weather prediction model, as temperature, precipitation, wind intensity and direction, to determine the areas of potential risk for the power lines. Then an accretion model computes the ice sleeves' load for different conductor diameters. The highest values are selected and displayed on a WEB-GIS application principally devoted to the electric operator, but also to more expert users. Some experimental field campaigns have been conducted to better parameterize the accretion model. Comparisons between real accidents and forecasted icing conditions are presented and discussed.

  3. Modeling of surface roughness effects on glaze ice accretion

    NASA Technical Reports Server (NTRS)

    Hansman, R. John, Jr.; Yamaguchi, Keiko; Berkowitz, Brian M.; Potapczuk, Mark

    1990-01-01

    A series of experimental investigations focused on studying the cause and effect of roughness on accreting glaze ice surfaces were conducted. Detailed microvideo observations were made of glaze ice accretions on 1 to 4 inch diameter cylinders in three icing wind tunnels (the Data Products of New England six inch test facility, the NASA Lewis Icing Research Tunnel, and the B. F. Goodrich Ice Protection Research Facility). Infrared thermal video recordings were made of accreting ice surfaces in the Goodrich facility. Distinct zones of surface water behavior were observed; a smooth wet zone in the stagnation region with a uniform water film; a rough zone where surface tension effects caused coalescence of surface water into stationary beads; a horn zone where roughness elements grow into horn shapes; a runback zone where surface water ran back as rivulets; and a dry zone where rime feathers formed. The location of the transition from the smooth to the rough zone was found to migrate with time towards the stagnation point. The behavior of the transition appeared to be controlled by boundary layer transition and bead formation mechanisms at the interface between the smooth and rough zones. Regions of wet ice growth and enhanced heat transfer were clearly visible in the infrared video recordings of glaze ice surfaces. A simple multi-zone modification to the current glaze ice accretion model was proposed to include spatial variability in surface roughness.

  4. Hyperaccretion during Tidal Disruption Events: Weakly Bound Debris Envelopes and Jets

    NASA Astrophysics Data System (ADS)

    Coughlin, Eric R.; Begelman, Mitchell C.

    2014-02-01

    After the destruction of the star during a tidal disruption event (TDE), the cataclysmic encounter between a star and the supermassive black hole (SMBH) of a galaxy, approximately half of the original stellar debris falls back onto the hole at a rate that can initially exceed the Eddington limit by orders of magnitude. We argue that the angular momentum of this matter is too low to allow it to attain a disk-like configuration with accretion proceeding at a mildly super-Eddington rate, the excess energy being carried away by a combination of radiative losses and radially distributed winds. Instead, we propose that the infalling gas traps accretion energy until it inflates into a weakly bound, quasi-spherical structure with gas extending nearly to the poles. We study the structure and evolution of such "zero-Bernoulli accretion" flows as a model for the super-Eddington phase of TDEs. We argue that such flows cannot stop extremely super-Eddington accretion from occurring, and that once the envelope is maximally inflated, any excess accretion energy escapes through the poles in the form of powerful jets. We compare the predictions of our model to Swift J1644+57, the putative super-Eddington TDE, and show that it can qualitatively reproduce some of its observed features. Similar models, including self-gravity, could be applicable to gamma-ray bursts from collapsars and the growth of SMBH seeds inside quasi-stars.

  5. Protostellar accretion traced with chemistry. High-resolution C18O and continuum observations towards deeply embedded protostars in Perseus

    NASA Astrophysics Data System (ADS)

    Frimann, Søren; Jørgensen, Jes K.; Dunham, Michael M.; Bourke, Tyler L.; Kristensen, Lars E.; Offner, Stella S. R.; Stephens, Ian W.; Tobin, John J.; Vorobyov, Eduard I.

    2017-06-01

    Context. Understanding how accretion proceeds is a key question of star formation, with important implications for both the physical and chemical evolution of young stellar objects. In particular, very little is known about the accretion variability in the earliest stages of star formation. Aims: Our aim is to characterise protostellar accretion histories towards individual sources by utilising sublimation and freeze-out chemistry of CO. Methods: A sample of 24 embedded protostars are observed with the Submillimeter Array (SMA) in context of the large program "Mass Assembly of Stellar Systems and their Evolution with the SMA" (MASSES). The size of the C18O-emitting region, where CO has sublimated into the gas-phase, is measured towards each source and compared to the expected size of the region given the current luminosity. The SMA observations also include 1.3 mm continuum data, which are used to investigate whether or not a link can be established between accretion bursts and massive circumstellar disks. Results: Depending on the adopted sublimation temperature of the CO ice, between 20% and 50% of the sources in the sample show extended C18O emission indicating that the gas was warm enough in the past that CO sublimated and is currently in the process of refreezing; something which we attribute to a recent accretion burst. Given the fraction of sources with extended C18O emission, we estimate an average interval between bursts of 20 000-50 000 yr, which is consistent with previous estimates. No clear link can be established between the presence of circumstellar disks and accretion bursts, however the three closest known binaries in the sample (projected separations <20 AU) all show evidence of a past accretion burst, indicating that close binary interactions may also play a role in inducing accretion variability.

  6. Copper laser modulator driving assembly including a magnetic compression laser

    DOEpatents

    Cook, Edward G.; Birx, Daniel L.; Ball, Don G.

    1994-01-01

    A laser modulator (10) having a low voltage assembly (12) with a plurality of low voltage modules (14) with first stage magnetic compression circuits (20) and magnetic assist inductors (28) with a common core (91), such that timing of the first stage magnetic switches (30b) is thereby synchronized. A bipolar second stage of magnetic compression (42) is coupled to the low voltage modules (14) through a bipolar pulse transformer (36) and a third stage of magnetic compression (44) is directly coupled to the second stage of magnetic compression (42). The low voltage assembly (12) includes pressurized boxes (117) for improving voltage standoff between the primary winding assemblies (34) and secondary winding (40) contained therein.

  7. Wind Tunnel Measured Effects on a Twin-Engine Short-Haul Transport Caused by Simulated Ice Accretions: Data Report

    NASA Technical Reports Server (NTRS)

    Reehorst, Andrew; Potapczuk, Mark; Ratvasky, Thomas; Laflin, Brenda Gile

    1997-01-01

    The purpose of this report is to release the data from the NASA Langley/Lewis 14 by 22 foot wind tunnel test that examined icing effects on a 1/8 scale twin-engine short-haul jet transport model. Presented in this document are summary data from the major configurations tested. The entire test database in addition to ice shape and model measurements is available as a data supplement in CD-ROM form. Data measured and presented are: wing pressure distributions, model force and moment, and wing surface flow visualization.

  8. Hydrodynamics on Supercomputers: Interacting Binary Stars

    NASA Astrophysics Data System (ADS)

    Blondin, J. M.

    1997-05-01

    The interaction of close binary stars accounts for a wide variety of peculiar objects scattered throughout our Galaxy. The unique features of Algols, Symbiotics, X-ray binaries, cataclysmic variables and many others are linked to the dynamics of the circumstellar gas which can take forms from tidal streams and accretion disks to colliding stellar winds. As in many other areas of astrophysics, large scale computing has provided a powerful new tool in the study of interacting binaries. In the research to be described, hydrodynamic simulations are used to create a "laboratory", within which one can "experiment": change the system and observe (and predict) the effects of those changes. This type of numerical experimentation, when buttressed by analytic studies, provides a means of interpreting observations, identifying and understanding the relevant physics, and visualizing the physical system. The results of such experiments will be shown, including the structure of tidal streams in Roche lobe overflow systems, mass accretion in X-ray binaries, and the formation of accretion disks.

  9. p-Process Nucleosynthesis inside Supernova-driven Supercritical Accretion Disks

    NASA Astrophysics Data System (ADS)

    Fujimoto, Shin-ichirou; Hashimoto, Masa-aki; Koike, Osamu; Arai, Kenzo; Matsuba, Ryuichi

    2003-03-01

    We investigate p-process nucleosynthesis in a supercritical accretion disk around a compact object of 1.4 Msolar, using the self-similar solution of an optically thick advection-dominated flow. Supercritical accretion is expected to occur in a supernova with fallback material accreting onto a newborn compact object. It is found that an appreciable number of p-nuclei are synthesized via the p-process in supernova-driven supercritical accretion disks (SSADs) when the accretion rate m=Mc2/(16LEdd)>105, where LEdd is the Eddington luminosity. Abundance profiles of p-nuclei ejected from SSADs have features similar to those of the oxygen/neon layers in Type II supernovae when the abundance of the fallback gas far from the compact object is that of the oxygen/neon layers in the progenitor. The overall abundance profile is in agreement with that of the solar system. Some p-nuclei, such as Mo, Ru, Sn, and La, are underproduced in the SSADs as in Type II supernovae. If the fallback gas is mixed with a small fraction of protons through Rayleigh-Taylor instability during the explosion, significant amounts of 92Mo are produced inside the SSADs. Isotopes 96Ru and 138La are also produced when the fallback gas contains abundant protons, although the overall abundance profile of p-nuclei is rather different from that of the solar system. The p-process nucleosynthesis in SSADs contributes to the chemical evolution of p-nuclei, in particular 92Mo, if several percent of the fallback matter are ejected via jets and/or winds.

  10. Relativistic Outflows from Advection-dominated Accretion Disks around Black Holes

    NASA Astrophysics Data System (ADS)

    Becker, Peter A.; Subramanian, Prasad; Kazanas, Demosthenes

    2001-05-01

    Advection-dominated accretion flows (ADAFs) have a positive Bernoulli parameter and are therefore gravitationally unbound. The Newtonian ADAF model has been generalized recently to obtain the ADIOS model that includes outflows of energy and angular momentum, thereby allowing accretion to proceed self-consistently. However, the utilization of a Newtonian gravitational potential limits the ability of this model to describe the inner region of the disk, where any relativistic outflows are likely to originate. In this paper we modify the ADIOS scenario to incorporate a pseudo-Newtonian potential, which approximates the effects of general relativity. The analysis yields a unique, self-similar solution for the structure of the coupled disk/wind system. Interesting features of the new solution include the relativistic character of the outflow in the vicinity of the radius of marginal stability, which represents the inner edge of the quasi-Keplerian disk in our model. Hence, our self-similar solution may help to explain the origin of relativistic jets in active galaxies. At large distances the radial dependence of the accretion rate approaches the unique form M~r1/2, with an associated density variation given by ρ~r-1. This density variation agrees with that implied by the dependence of the hard X-ray time lags on the Fourier frequency for a number of accreting galactic black hole candidates. While intriguing, the predictions made using our self-similar solution need to be confirmed in the future using a detailed model that includes a physical description of the energization mechanism that drives the outflow, which is likely to be powered by the shear of the underlying accretion disk.

  11. ROTATING ACCRETION FLOWS: FROM INFINITY TO THE BLACK HOLE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Jason; Ostriker, Jeremiah; Sunyaev, Rashid, E-mail: jgli@astro.princeton.edu

    2013-04-20

    Accretion onto a supermassive black hole of a rotating inflow is a particularly difficult problem to study because of the wide range of length scales involved. There have been broadly utilized analytic and numerical treatments of the global properties of accretion flows, but detailed numerical simulations are required to address certain critical aspects. We use the ZEUS code to run hydrodynamical simulations of rotating, axisymmetric accretion flows with Bremsstrahlung cooling, considering solutions for which the centrifugal balance radius significantly exceeds the Schwarzschild radius, with and without viscous angular momentum transport. Infalling gas is followed from well beyond the Bondi radiusmore » down to the vicinity of the black hole. We produce a continuum of solutions with respect to the single parameter M-dot{sub B}/ M-dot{sub Edd}, and there is a sharp transition between two general classes of solutions at an Eddington ratio of M-dot{sub B}/M-dot{sub Edd}{approx}few Multiplication-Sign 10{sup -2}. Our high inflow solutions are very similar to the standard Shakura and Sunyaev results. But our low inflow results are to zeroth order the stationary Papaloizou and Pringle solution, which has no accretion. To next order in the small, assumed viscosity they show circulation, with disk and conical wind outflows almost balancing inflow. These solutions are characterized by hot, vertically extended disks, and net accretion proceeds at an extremely low rate, only of order {alpha} times the inflow rate. Our simulations have converged with respect to spatial resolution and temporal duration, and they do not depend strongly on our choice of boundary conditions.« less

  12. Continued Investigations of the Accretion History of Extraterrestrial Matter over Geologic Time

    NASA Technical Reports Server (NTRS)

    Farley, Kenneth

    2001-01-01

    This grant supported our ongoing project to characterize the accretion rate of interplanetary dust particles (IDPs) to Earth over geologic time using He-3 as a tracer. IDPs are derived from collisions in the asteroid belt and from disaggregation of active comets. Owing to their small size (few to few hundred micrometers diameter) these particles spiral into the sun under Poynting-Robertson drag typically in less than a few tens of kyrs. Thus IDPs must be continually resupplied to the zodiacal cloud, and because the processes of IDP production are likely to be sporadic, time variation in the IDP accretion rate to Earth is likely to be time-varying. For example, major asteroidal collisions and comet showers should greatly enhance the IDP accretion rate. Our ultimate objective (still ongoing) is to document this time variance so as to better understand the history of the solar system, the source of IDPs accreting to Earth, and the details of the mechanism by which particles are captured by Earth. To document variations in IDP accretion rate through time we use He-3 as a tracer. This isotope is in extremely low abundance in terrestrial matter, but IDPs have very high concentrations of He-3 from implantation of solar wind ions. By measuring He-3 in seafloor sediments, we can estimate the IDP accretion rate for at least the last few hundred Myrs. Under an earlier NASA grant we identified the existence of a large increase in He-3 flux in the Late Eocene (35 Myr ago), coincident with the two largest impact craters of the Cenozoic Era. The simplest interpretation of this observation is the occurrence of a shower of long period comets at that time, simultaneously increasing the impact cratering probability and accretion rate of IDPs to Earth (Farley et al., 1998). Comet showers produced by stellar perturbation of the Oort cloud should be fairly common in the geologic record, so this is not an unreasonable interpretation of our observations.

  13. Rapid Spin-Up Episodes in the Wind-Fed Accreting Pulsar GX 301-2

    NASA Technical Reports Server (NTRS)

    Koh, Danny T.; Bildsten, Lars; Chakrabarty, Deepto; Nelson, Robert W.; Prince, Thomas A.; Vaughn, Brian A.; Finger, Mark H.; Wilson, Robert B.; Rubin, Bradley C.

    1997-01-01

    The accreting pulsar GX 301-2 (P = 680 s) has been observed continuously by the large-area detectors of the Burst and Transient Source Experiment (BATSE) instrument on the Compton Gamma Ray Observatory since 1991 April 5. Orbital parameters determined from these data are consistent with previous measurements, with improved accuracy in the current orbital epoch. The most striking features in the pulsar frequency history are two steady and rapid spin-up episodes, with a dot-nu approximately equal to (3_5) x 10(exp -12) Hz/s, each lasting for about 30 days. They probably represent the formation of transient accretion disks in this wind-fed pulsar. Except for these spin-up episodes, there are virtually no net changes in the neutron star spin frequency on long timescales. We suggest that the long-term spin-up trend observed since 1984 (dot-nu is approximately equals 2x10(exp -13) Hz/s) may be due entirely to brief (approximately 20 days) spin-up episodes similar to those we have discovered. We assess different accretion models and their ability to explain the orbital phase dependence of the observed flux. In addition to the previously observed preperiastron peak at orbital phase 0.956 +/- 0.022, we also find a smaller peak close to - at orbital phase 0.498 +/- 0.057. We show that if the companion star's effective temperature is less than 22,000 K, then it must have a mass M(sub c) < 70 solar mass and a radius R(sub c) < 85 solar radius so as not to overfill the tidal lobe at periastron. In order not to overflow the Roche lobe at periastron, the corresponding values are M(sub c) < 55 solar mass and R(sub c) < 68 solar radius. These constraints are nearly at odds with the reclassification of the companion as a B1 Ia + hypergiant.

  14. X-ray Spectra and Pulse Frequency Changes in SAX J2103.5+4545

    NASA Technical Reports Server (NTRS)

    Baykal, A.; Stark, M. J.; Swank, J. H.; White, Nicholas E. (Technical Monitor)

    2002-01-01

    The November 1999 outburst of the transient pulsar SAX J2103.5+4545 was monitored with the large area detectors of the Rossi X-Ray Timing Explorer until the pulsar faded after a year. The 358 s pulsar was spun up for 150 days, at which point the flux dropped quickly by a factor of approximately 7, the frequency saturated and, as the flux continued to decline, a weak spin-down began. The pulses remained strong during the decay and the spin-up/flux correlation can be fit to the Ghosh and Lamb derivations for the spin-up caused by accretion from a thin, pressure-dominated disk, for a distance approximately 3.2 kpc and a surface magnetic field approximately 1.2 x 10(exp 13) Gauss. During the bright spin-up part of the outburst, the flux was subject to strong orbital modulation, peaking approximately 3 days after periastron of the eccentric 12.68 day orbit, while during the faint part, there was little orbital modulation. The X-ray spectra were typical of accreting pulsars, describable by a cut-off power-law, with an emission line near the 6.4 keV of Kappa(sub alpha) fluorescence from cool iron. The equivalent width of this emission did not share the orbital modulation, but nearly doubled during the faint phase, despite little change in the column density. The outburst could have been caused by an episode of increased wind from a Be star, such that a small accretion disk is formed during each periastron passage. A change in the wind and disk structure apparently occurred after 5 months such that the accretion rate was no longer modulated or the diffusion time was longer. The distance estimate implies the X-ray luminosity observed was between 1 X 10(exp 36) ergs s(exp -1) and 6 x 10(exp 34) ergs s(exp -1), with a small but definite correlation of the intrinsic power-law spectral index.

  15. Density, Velocity and Ionization Structure in Accretion-Disc Winds

    NASA Technical Reports Server (NTRS)

    Sonneborn, George (Technical Monitor); Long, Knox

    2004-01-01

    This was a project to exploit the unique capabilities of FUSE to monitor variations in the wind- formed spectral lines of the luminous, low-inclination, cataclysmic variables(CV) -- RW Sex. (The original proposal contained two additional objects but these were not approved.) These observations were intended to allow us to determine the relative roles of density and ionization state changes in the outflow and to search for spectroscopic signatures of stochastic small-scale structure and shocked gas. By monitoring the temporal behavior of blue-ward extended absorption lines with a wide range of ionization potentials and excitation energies, we proposed to track the changing physical conditions in the outflow. We planned to use a new Monte Carlo code to calculate the ionization structure of and radiative transfer through the CV wind. The analysis therefore was intended to establish the wind geometry, kinematics and ionization state, both in a time-averaged sense and as a function of time.

  16. Airfoil flutter model suspension system

    NASA Technical Reports Server (NTRS)

    Reed, Wilmer H. (Inventor)

    1987-01-01

    A wind tunnel suspension system for testing flutter models under various loads and at various angles of attack is described. The invention comprises a mounting bracket assembly affixing the suspension system to the wind tunnel, a drag-link assembly and a compound spring arrangement comprises a plunge spring working in opposition to a compressive spring so as to provide a high stiffness to trim out steady state loads and simultaneously a low stiffness to dynamic loads. By this arrangement an airfoil may be tested for oscillatory response in both plunge and pitch modes while being held under high lifting loads in a wind tunnel.

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Deason, Alis J.; Mao, Yao-Yuan; Wechsler, Risa H.

    In this paper, we study the mass spectrum of destroyed dwarfs that contribute to the accreted stellar mass of Milky Way (MW)-mass (M vir ~ 10 12.1 M ⊙) halos using a suite of 45 zoom-in dissipationless simulations. Empirical models are employed to relate (peak) subhalo mass to dwarf stellar mass, and we use constraints from z = 0 observations and hydrodynamical simulations to estimate the metallicity distribution of the accreted stellar material. The dominant contributors to the accreted stellar mass are relatively massive dwarfs with M star ~ 10 8–10 10M ⊙. Halos with more quiescent accretion histories tendmore » to have lower mass progenitors (10 8–10 9 M ⊙), and lower overall accreted stellar masses. Ultra-faint mass (M star < 10 5 M ⊙) dwarfs contribute a negligible amount (<<1%) to the accreted stellar mass and, despite having low average metallicities, supply a small fraction (~2%–5%) of the very metal-poor stars with [Fe/H] < -2. Dwarfs with masses 10 5 < M star/M ⊙ < 10 8 provide a substantial amount of the very metal-poor stellar material (~40%–80%), and even relatively metal-rich dwarfs with M star > 10 8 M ⊙ can contribute a considerable fraction (~20%–60%) of metal-poor stars if their metallicity distributions have significant metal-poor tails. Finally, we find that the generic assumption of a quiescent assembly history for the MW halo seems to be in tension with the mass spectrum of its surviving dwarfs. In conclusion, we suggest that the MW could be a "transient fossil"; a quiescent halo with a recent accretion event(s) that disguises the preceding formation history of the halo.« less

  18. A tectonic reconstruction of accreted terranes along the paleo-Pacific margin of Gondwana

    NASA Astrophysics Data System (ADS)

    Bammel, Brandon

    The southern oceanic margin of Gondwana was nearly 40,000 km long or 24,854.8 miles. The southern margin was the result of the Terra Australis orogen. Spanning 18,000 km or 11,184.7 miles and is proposed as one of the largest and longest lived orogens in Earth history. The paleo-Pacific margin of Gondwana consisted of segments of the Australian-Antarctic craton, southern South America (modern Argentina and Chile), southern South Africa, Marie Byrdland, New Zealand and its adjacent continental shelf, the Ellsworth Mountains, and the Transantarctic Mountains. The process of terrane accretion has played a substantial part in the assembly of the continents as they look today. The paleo-Pacific margin of Gondwana was an active region of terrane accretion from the Neoproterozoic to the Late Mesozoic. This research study examines the accretion of terranes across the paleo-Pacific Gondwana margin to provide a comprehensive reconstruction. A paleogeographic basemap was created using PALEOMAP Project maps and the geology data was provided by the School of Geoscience from the University of Witwatersrand of South Africa. Location and data analyzed for terranes were collected building a PDF library of journal articles across numerous geological publications.

  19. X-ray Pulsars Across the Parameter Space of Luminosity, Accretion Mode, and Spin

    NASA Astrophysics Data System (ADS)

    Laycock, Silas; Yang, Jun; Christodoulou, Dimitris; Coe, Malcolm; Cappallo, Rigel; Zezas, Andreas; Ho, Wynn C. G.; Hong, JaeSub; Fingerman, Samuel; Drake, Jeremy J.; Kretschmar, Peter; Antoniou, Vallia

    2017-08-01

    We present our multi-satellite library of X-ray Pulsar observations to the community, and highlight recent science results. Available at www.xraypulsars.space the library provides a range of high-level data products, including: activity histories, pulse-profiles, phased event files, and a unique pulse-profile modeling interface. The initial release (v1.0) contains some 15 years of RXTE-PCA, Chandra ACIS-I, and XMM-PN observations of the Small Magellanic Cloud, creating a valuable record of pulsar behavior. Our library is intended to enable new progress on fundamental NS parameters and accretion physics. The major motivations are (1) Assemble a large homogeneous sample to enable population statistics. This has so far been used to map the propeller transition, and explore the role of retrograde and pro-grade accretion disks. (2) Obtain pulse-profiles for the same pulsars on many different occasions, at different luminosities and states in order to break model degeneracies. This effort has led to preliminary measurements of the offsets between magnetic and spin axes. With the addition of other satellites, and Galactic pulsars, the library will cover the entire available range of luminosity, variability timescales and accretion regimes.

  20. ACTIVE GALACTIC NUCLEUS OBSCURATION FROM WINDS: FROM DUSTY INFRARED-DRIVEN TO WARM AND X-RAY PHOTOIONIZED

    PubMed Central

    Dorodnitsyn, A.; Kallman, T.

    2016-01-01

    We present calculations of AGN winds at ~parsec scales, along with the associated obscuration. We take into account the pressure of infrared radiation on dust grains and the interaction of X-rays from a central black hole with hot and cold plasma. Infrared radiation (IR) is incorporated in radiation-hydrodynamic simulations adopting the flux-limited diffusion approximation. We find that in the range of X-ray luminosities L=0.05 – 0.6Ledd, the Compton-thick part of the flow (aka torus) has an opening angle of approximately 72° – 75° regardless of the luminosity. At L ≳ 0.1 the outflowing dusty wind provides the obscuration with IR pressure playing a major role. The global flow consists of two phases: the cold flow at inclinations θ ≳ 70° and a hot, ionized wind of lower density at lower inclinations. The dynamical pressure of the hot wind is important in shaping the denser IR supported flow. At luminosities ≤0.1Ledd episodes of outflow are followed by extended periods when the wind switches to slow accretion. PMID:27642184

  1. A Search for X-Ray Evidence of a Compact Companion to the Unusual Wolf-Rayet Star HD 50896 (EZ CMa)

    NASA Technical Reports Server (NTRS)

    Skinner, Stephen L.; Itoh, Masayuki; Nagase, Fumiaki

    1998-01-01

    We analyze results of a approx.25 ksec ASCA X-ray observation of the unusual Wolf-Rayet star HD 50896 (= EZ CMa). This WN5 star shows optical and ultraviolet variability at a 3.766 day period, which has been interpreted as a possible signature of a compact companion. Our objective was to search for evidence of hard X-rays (greater than or equal to 5 keV) which could be present if the WN5 wind is accreting onto a compact object. The ASCA spectra are dominated by emission below 5 keV and show no significant emission in the harder 5-10 keV range. Weak emission lines are present, and the X-rays arise in an optically thin plasma which spans a range of temperatures from less than or equal to 0.4 keV up to at least approx. 2 keV. Excess X-ray absorption above the interstellar value is present, but the column density is no larger than N(sub H) approx. 10(exp 22)/sq cm. The absorption-corrected X-ray luminosity L(sub x)(0.5 - 10 keV) = 10(exp 32.85) erg/s gives L(sub x)/ L(sub bol) approx. 10(exp -6), a value that is typical of WN stars. No X-ray variability was detected. Our main conclusion is that the X-ray properties of HD 50896 are inconsistent with the behavior expected for wind accretion onto a neutron star or black hole companion. Alternative models based on wind shocks can explain most aspects of the X-ray behavior, and we argue that the hotter plasma near approx. 2 keV could be due to the WR wind shocking onto a normal (nondegenerate) companion.

  2. Variable X-Ray Absorption in the Mini-BAL QSO PG 1126-041

    NASA Technical Reports Server (NTRS)

    Giustini, M.; Cappi, M.; Chartas, G.; Dadina, M.; Eracleous, M.; Ponti, G.; Proga, D.; Tombesi, F.; Vignali, C.; Palumbo, G. G. C.

    2011-01-01

    Context. X-ray studies of AGN with powerful nuclear winds are important to constrain the physics of the inner accretion/ejection flow around SMBH, and to understand the impact of such winds on the AGN environment. Aims. Our main scientific goal is to constrain the properties of a variable outflowing absorber that is thought to be launched near the SMBH of the mini-BAL QSO PG 1126-041 using a multi-epoch observational campaign performed with XMM-Newton. Methods. We performed temporally resolved X-ray spectroscopy and simultaneous UV and X-ray photometry on the most complete set of observations and on the deepest X-ray exposure of a mini-BAL QSO to date. Results. We found complex X-ray spectral variability on time scales of both months and hours, best reproduced by means of variable massive ionized absorbers along the line of sight. As a consequence, the observed optical-to-X-ray spectral index is found to be variable with time. In the highest signal-to-noise observation we detected highly ionized X-ray absorbing material outflowing much faster (u(sub X) approx. 16 500 km/s) than the UV absorbing one (u(sub uv) approx. 5,000 km/s). This highly ionized absorber is found to be variable on very short (a few kiloseconds) time scales. Conclusions. Our findings are qualitatively consistent with line driven accretion disk winds scenarios. Our observations have opened the time-resolved X-ray spectral analysis field for mini-BAL QSOs; only with future deep studies will we be able to map the dynamics of the inner flow and understand the physics of AGN winds and their impact on the environment.

  3. The disappearing act: a dusty wind eclipsing RW Aur

    NASA Astrophysics Data System (ADS)

    Bozhinova, I.; Scholz, A.; Costigan, G.; Lux, O.; Davis, C. J.; Ray, T.; Boardman, N. F.; Hay, K. L.; Hewlett, T.; Hodosán, G.; Morton, B.

    2016-12-01

    RW Aur is a young binary star that experienced a deep dimming in 2010-2011 in component A and a second even deeper dimming from summer 2014 to summer 2016. We present new unresolved multiband photometry during the 2014-2016 eclipse, new emission line spectroscopy before and during the dimming, archive infrared photometry between 2014 and 2015, as well as an overview of literature data. Spectral observations were carried out with the Fibre-fed RObotic Dual-beam Optical Spectrograph on the Liverpool Telescope. Photometric monitoring was done with the Las Cumbres Observatory Global Telescope Network and James Gregory Telescope. Our photometry shows that RW Aur dropped in brightness to R = 12.5 in 2016 March. In addition to the long-term dimming trend, RW Aur is variable on time-scales as short as hours. The short-term variation is most likely due to an unstable accretion flow. This, combined with the presence of accretion-related emission lines in the spectra suggest that accretion flows in the binary system are at least partially visible during the eclipse. The equivalent width of [O I] increases by a factor of 10 in 2014, coinciding with the dimming event, confirming previous reports. The blueshifted part of the Hα profile is suppressed during the eclipse. In combination with the increase in mid-infrared brightness during the eclipse reported in the literature and seen in WISE archival data, and constraints on the geometry of the disc around RW Aur A we arrive at the conclusion that the obscuring screen is part of a wind emanating from the inner disc.

  4. The Supermassive Black Hole—Galaxy Connection

    NASA Astrophysics Data System (ADS)

    King, Andrew

    2014-09-01

    The observed scaling relations imply that supermassive black holes (SMBH) and their host galaxies evolve together. Near-Eddington winds from the SMBH accretion discs explain many aspects of this connection. The wind Eddington factor should be in the range ˜1-30. A factor give black hole winds with velocities v˜0.1 c, observable in X-rays, just as seen in the most extreme ultrafast outflows (UFOs). Higher Eddington factors predict slower and less ionized winds, observable in the UV, as in BAL QSOs. In all cases the wind must shock against the host interstellar gas and it is plausible that these shocks should cool efficiently. There is detailed observational evidence for this in some UFOs. The wind sweeps up the interstellar gas into a thin shell and propels it outwards. For SMBH masses below a certain critical ( M- σ) value, all these outflows eventually stall and fall back, as the Eddington thrust of the wind is too weak to drive the gas to large radii. But once the SMBH mass reaches the critical M- σ value the global character of the outflow changes completely. The wind shock is no longer efficiently cooled, and the resulting thermal expansion drives the interstellar gas far from the black hole, which is unlikely to grow significantly further. Simple estimates of the maximum stellar bulge mass M b allowed by self-limited star formation show that the SMBH mass is typically about 10-3 M b at this point, in line with observation. The expansion-driven outflow reaches speeds v out≃1200 km s-1 and drives rates in cool (molecular) gas, giving a typical outflow mechanical energy L mech≃0.05 L Edd, where L Edd is the Eddington luminosity of the central SMBH. This is again in line with observation. These massive outflows may be what makes galaxies become red and dead, and can have several other potentially observable effects. In particular they have the right properties to enrich the intergalactic gas with metals. Our current picture of SMBH-galaxy coevolution is still incomplete, as there is no predictive theory of how the hole accretes gas from its surroundings. Recent progress in understanding how large-scale discs of gas can partially cancel angular momentum and promote dynamical infall offers a possible way forward.

  5. The Stellar Mass Assembly of Galaxies at z=1 -- New Results from Subaru

    NASA Astrophysics Data System (ADS)

    Bundy, K.; Fukugita, M.; Ellis, R.; Conselice, C.; Kodama, T.; Brinchmann, J.

    2002-12-01

    We report on progress made analyzing deep CISCO K' imaging of well-studied HST redshift survey fields to determine the mass accretion and merger rates of field galaxies out to z ~1. Using an approach similar to that employed by Le Fevre et al. 2000, we find a field-corrected infrared pair fraction of 15% +/- 8% in the z ~ 0.5 to 1 redshift range. This is lower than the result of an equivalent analysis performed on WFPC2-814 images of the same fields, which delivers a pair fraction of 24% +/- 10% over the identical redshift range. Although currently marginal, this result supports the contention that optical pair fractions are inflated by associated star formation and that IR data will be more reliable in tracing the mass assembly history. Future observations will extend this sample beyond the 89 galaxies studied so far, allowing us to test this hypothesis more rigorously. We also report on a comparison between pair fraction and morphological type as wells as estimates of the stellar mass of companion galaxies, used to determine the time-dependent mass accretion rate.

  6. Probing the mass assembly of massive nearby galaxies with deep imaging

    NASA Astrophysics Data System (ADS)

    Duc, P.-A.; Cuillandre, J.-C.; Alatalo, K.; Blitz, L.; Bois, M.; Bournaud, F.; Bureau, M.; Cappellari, M.; Côté, P.; Davies, R. L.; Davis, T. A.; de Zeeuw, P. T.; Emsellem, E.; Ferrarese, L.; Ferriere, E.; Gwyn, S.; Khochfar, S.; Krajnovic, D.; Kuntschner, H.; Lablanche, P.-Y.; McDermid, R. M.; Michel-Dansac, L.; Morganti, R.; Naab, T.; Oosterloo, T.; Sarzi, M.; Scott, N.; Serra, P.; Weijmans, A.; Young, L. M.

    2013-07-01

    According to a popular scenario supported by numerical models, the mass assembly and growth of massive galaxies, in particular the Early-Type Galaxies (ETGs), is, below a redshift of 1, mainly due to the accretion of multiple gas-poor satellites. In order to get observational evidence of the role played by minor dry mergers, we are obtaining extremely deep optical images of a complete volume limited sample of nearby ETGs. These observations, done with the CFHT as part of the ATLAS3D, NGVS and MATLAS projects, reach a stunning 28.5 - 29 mag.arcsec-2 surface brightness limit in the g' band. They allow us to detect the relics of past collisions such as faint stellar tidal tails as well as the very extended stellar halos which keep the memory of the last episodes of galactic accretion. Images and preliminary results from this on-going survey are presented, in particular a possible correlation between the fine structure index (which parametrizes the amount of tidal perturbation) of the ETGs, their stellar mass, effective radius and gas content.

  7. Measurements of mass accretion rates in Herbig Ae/Be stars

    NASA Astrophysics Data System (ADS)

    Donehew, Brian

    Herbig Ae/Be stars(HAeBes) are young stellar objects of spectral class F2 through B0, with the central star often surrounded by a circumstellar disk of gas and dust. They are the higher mass analogs to T Tauri stars. The interaction between the star and the disk is not well understood, nor is the disk structure. The central star will often accrete mass from the disk, and the mass accretion rate is an important parameter for modeling the disk structure and evolution. The methods for measuring mass accretion rates of T Tauri stars are generally not applicable to HAeBe stars. As such, reliable measurements of mass accretion rates for HAeBes are rare. Garrison(1978) saw that the Balmer Discontinuity of HAeBes was veiled, and attributed this veiling to accretion luminosity. Building on Garrison(1978) and the work of Muzerolle et al. (2004), I determine the mass accretion rates and accretion luminosities of a large sample of HAeBe stars by measuring the veiling of the Balmer Discontinuity due to the accretion luminosity. Muzerolle et al. (1998) established a strong correlation between the accretion luminosity of T Tauri stars and the luminosity of Br gamma, and this correlation seems to extend to the evolutionary precursors to HAeBes, intermediate T Tauri stars, as well Calvet et al. (2004). I test this correlation for HAeBes and discover that it is valid for HAe stars but not for HBe stars. From examining the HAeBes of my sample from spectral range A3 to B7, there does not seem to be a particular spectral type at which the correlation fails. A few of the late HBe stars are consistent with the correlation, but most of the HBe stars have Br gamma luminosities much larger than what one would expect from the correlation. This suggests that there might be a significant stellar wind component to the Br gamma luminosity for many of the HBe stars. T Tauri stars accrete mass from their disks magnetospherically, in which the strong stellar field of the star truncates the disk at some distance from the star and the disk material than falls to the stellar surface along the magnetic field lines. HAeBe stars are not expected to have strong stellar magnetic fields, and observations have failed to find any such fields for most HAeBes (Alecian 2007). However, circumstantial evidence suggests that some HAeBe stars are accreting magnetospherically (Muzerolle et al. 2004, Brittain et al. 2009). Since the correlation between accretion luminosity and Br γ luminosity is valid for both T Tauri stars and HAe stars, this suggests that the same basic accretion process is occuring for both.

  8. Low-radiative efficiency accretion: Microphysics and applications to low-luminosity AGN

    NASA Astrophysics Data System (ADS)

    Quataert, Eliot James Leo

    There is growing dynamical evidence that most nearby galaxies contain central ``massive dark objects,'' most likely supermassive black holes. Accretion onto a supermassive black hole may therefore be commonplace, and not just restricted to quasars and active galactic nuclei (AGN). This hypothesis is supported by observational surveys which show that the majority of nearby galaxies have nuclear emission properties reminiscent of AGN. Their emission-line and bolometric luminosities are, however, ~102 - 105 times smaller than typical AGN. In this thesis I explore several issues related to the physics of these low luminosity active galactic nuclei (LLAGN). In particular, it has been proposed that LLAGN are supermassive black holes accreting mass via a radiatively inefficient advection-dominated accretion flow, in which most of the energy dissipated by turbulence is carried with the gas through the event horizon rather than being radiated. This requires that turbulence dissipate most of its energy into the protons, rather than the electrons. I calculate the heating of electrons and protons by the collisionless dissipation of magneto-hydrodynamic turbulence and argue that preferential proton heating can only be achieved for relatively subthermal magnetic fields (roughly β >~ 10, where β is the average ratio of the gas pressure to the magnetic pressure in the accretion flow). For stronger, near equipartition, magnetic fields (β ~ 1), the electrons receive most of the turbulent energy. I give an independent argument, based on a fluid model for the radial evolution of the magnetic energy density in the accretion flow, that magnetic fields in advection- dominated accretion flows may be somewhat subthermal. An alternative explanation for LLAGN is that they accrete mass at very low rates. This is, however, inconsistent with accretion rate estimates (based on Bondi's method) in nearby massive elliptical galaxies and the center of our Galaxy. I give a detailed discussion of such estimates for the Galactic Center. The Bondi accretion rate estimates reflect the gas properties far from the black hole, rather than near the event horizon where most of the radiation originates. Part of the explanation for LLAGN may therefore be that most of the mass supplied to the accretion flow does not reach the central object, but is lost to an outflow/wind. I explore the observational consequences of this proposal and argue that current observations of all low luminosity accreting systems are consistent with significant mass loss from the accretion flow, provided that the electrons receive a reasonable fraction (~30%) of the turbulent energy. I give a detailed discussion of future observations which can assess the importance of mass loss in LLAGN. I conclude this thesis by analyzing the constraints on the physics of accretion imposed by broad-band spectral observations of four well-known LLAGN (M81, M87, NGC 4579, and NGC 4594).

  9. ZOMG - II. Does the halo assembly history influence central galaxies and gas accretion?

    NASA Astrophysics Data System (ADS)

    Romano-Díaz, Emilio; Garaldi, Enrico; Borzyszkowski, Mikolaj; Porciani, Cristiano

    2017-08-01

    The growth rate and the internal dynamics of galaxy-sized dark-matter haloes depend on their location within the cosmic web. Haloes that sit at the nodes grow in mass till the present time and are dominated by radial orbits. Conversely, haloes embedded in prominent filaments do not change much in size and are dominated by tangential orbits. Using zoom hydrodynamical simulations including star formation and feedback, we study how gas accretes on to these different classes of objects, which, for simplicity, we dub 'accreting' and 'stalled' haloes. We find that all haloes get a fresh supply of newly accreted gas in their inner regions, although this slowly decreases with time, in particular for the stalled haloes. The inflow of new gas is always higher than (but comparable with) that of recycled material. Overall, the cold-gas fraction increases (decreases) with time for the accreting (stalled) haloes. In all cases, a stellar disc and a bulge form at the centre of the simulated haloes. The total stellar mass is in excellent agreement with expectations based on the abundance-matching technique. Many properties of the central galaxies do not seem to correlate with the large-scale environment in which the haloes reside. However, there are two notable exceptions that characterize stalled haloes with respect to their accreting counterparts: (I) The galaxy disc contains much older stellar populations. (II) Its vertical scaleheight is larger by a factor of 2 or more. This thickening is likely due to the heating of the long-lived discs by mergers and close flybys.

  10. Resolved atomic lines reveal outflows in two ultraluminous X-ray sources.

    PubMed

    Pinto, Ciro; Middleton, Matthew J; Fabian, Andrew C

    2016-05-05

    Ultraluminous X-ray sources are extragalactic, off-nucleus, point sources in galaxies, and have X-ray luminosities in excess of 3 × 10(39) ergs per second. They are thought to be powered by accretion onto a compact object. Possible explanations include accretion onto neutron stars with strong magnetic fields, onto stellar-mass black holes (of up to 20 solar masses) at or in excess of the classical Eddington limit, or onto intermediate-mass black holes (10(3)-10(5) solar masses). The lack of sufficient energy resolution in previous analyses has prevented an unambiguous identification of any emission or absorption lines in the X-ray band, thereby precluding a detailed analysis of the accretion flow. Here we report the presence of X-ray emission lines arising from highly ionized iron, oxygen and neon with a cumulative significance in excess of five standard deviations, together with blueshifted (about 0.2 times light velocity) absorption lines of similar significance, in the high-resolution X-ray spectra of the ultraluminous X-ray sources NGC 1313 X-1 and NGC 5408 X-1. The blueshifted absorption lines must occur in a fast-outflowing gas, whereas the emission lines originate in slow-moving gas around the source. We conclude that the compact object in each source is surrounded by powerful winds with an outflow velocity of about 0.2 times that of light, as predicted by models of accreting supermassive black holes and hyper-accreting stellar-mass black holes.

  11. Implementation of Combined Feather and Surface-Normal Ice Growth Models in LEWICE/X

    NASA Technical Reports Server (NTRS)

    Velazquez, M. T.; Hansman, R. J., Jr.

    1995-01-01

    Experimental observations have shown that discrete rime ice growths called feathers, which grow in approximately the direction of water droplet impingement, play an important role in the growth of ice on accreting surfaces for some thermodynamic conditions. An improved physical model of ice accretion has been implemented in the LEWICE 2D panel-based ice accretion code maintained by the NASA Lewis Research Center. The LEWICE/X model of ice accretion explicitly simulates regions of feather growth within the framework of the LEWICE model. Water droplets impinging on an accreting surface are withheld from the normal LEWICE mass/energy balance and handled in a separate routine; ice growth resulting from these droplets is performed with enhanced convective heat transfer approximately along droplet impingement directions. An independent underlying ice shape is grown along surface normals using the unmodified LEWICE method. The resulting dual-surface ice shape models roughness-induced feather growth observed in icing wind tunnel tests. Experiments indicate that the exact direction of feather growth is dependent on external conditions. Data is presented to support a linear variation of growth direction with temperature and cloud water content. Test runs of LEWICE/X indicate that the sizes of surface regions containing feathers are influenced by initial roughness element height. This suggests that a previous argument that feather region size is determined by boundary layer transition may be incorrect. Simulation results for two typical test cases give improved shape agreement over unmodified LEWICE.

  12. Combined passive bearing element/generator motor

    DOEpatents

    Post, Richard F.

    2000-01-01

    An electric machine includes a cylindrical rotor made up of an array of permanent magnets that provide a N-pole magnetic field of even order (where N=4, 6, 8, etc.). This array of permanent magnets has bars of identical permanent magnets made of dipole elements where the bars are assembled in a circle. A stator inserted down the axis of the dipole field is made of two sets of windings that are electrically orthogonal to each other, where one set of windings provides stabilization of the stator and the other set of windings couples to the array of permanent magnets and acts as the windings of a generator/motor. The rotor and the stator are horizontally disposed, and the rotor is on the outside of said stator. The electric machine may also include two rings of ferromagnetic material. One of these rings would be located at each end of the rotor. Two levitator pole assemblies are attached to a support member that is external to the electric machine. These levitator pole assemblies interact attractively with the rings of ferromagnetic material to produce a levitating force upon the rotor.

  13. Population of persistent high-mass X-ray binaries in the Milky Way

    NASA Astrophysics Data System (ADS)

    Lutovinov, A. A.; Revnivtsev, M. G.; Tsygankov, S. S.; Krivonos, R. A.

    2013-05-01

    We present results of the study of persistent high-mass X-ray binaries (HMXBs) in the Milky Way, obtained from the deep INTEGRAL Galactic plane survey. This survey provides us a new insight into the population of HMXBs because almost half of the whole sample consists of sources discovered with INTEGRAL. It is demonstrated for the first time that the majority of persistent HMXBs have supergiant companions and their luminosity function steepens somewhere around ˜2 × 1036 erg s-1. We show that the spatial density distribution of HMXBs correlates well with the star formation rate distribution in the Galaxy. The vertical distribution of HMXBs has a scale-height h ≃ 85 pc, that is somewhat larger than the distribution of young stars in the Galaxy. We propose a simple toy model, which adequately describes general properties of HMXBs in which neutron stars accrete a matter from the wind of its companion (wind-fed NS-HMXBs population). Using the elaborated model we argue that a flaring activity of the so-called supergiant fast X-ray transients, the recently recognized sub-sample of HMXBs, is likely related with the magnetic arrest of their accretion.

  14. X-ray Evidence for Ultra-Fast Outflows in Local AGNs

    NASA Astrophysics Data System (ADS)

    Tombesi, F.; Cappi, M.; Sambruna, R. M.; Reeves, J. N.; Reynolds, C. S.; Braito, V.; Dadina, M.

    2012-08-01

    X-ray evidence for ultra-fast outflows (UFOs) has been recently reported in a number of local AGNs through the detection of blue-shifted Fe XXV/XXVI absorption lines. We present the results of a comprehensive spectral analysis of a large sample of 42 local Seyferts and 5 Broad-Line Radio Galaxies (BLRGs) observed with XMM-Newton and Suzaku. We detect UFOs in ga 40% of the sources. Their outflow velocities are in the range ˜ 0.03-0.3c, with a mean value of ˜ 0.14c. The ionization is high, in the range logℰ ˜3-6rm erg s-1 cm, and also the associated column densities are large, in the interval ˜ 1022-1024rm cm-2. Overall, these results point to the presence of highly ionized and massive outflowing material in the innermost regions of AGNs. Their variability and location on sub-pc scales favor a direct association with accretion disk winds/outflows. This also suggests that UFOs may potentially play a significant role in the AGN cosmological feedback besides jets, and their study can provide important clues on the connection between accretion disks, winds, and jets.

  15. Outflow-driven Transients from the Birth of Binary Black Holes. II. Primary-induced Accretion Transients

    NASA Astrophysics Data System (ADS)

    Kimura, Shigeo S.; Murase, Kohta; Mészáros, Peter

    2017-12-01

    We discuss the electromagnetic radiation from newborn binary black holes (BBHs). As a consequence of the evolution of massive stellar binaries, a binary consisting of a primary black hole (BH) and a secondary Wolf–Rayet star is expected as a BBH progenitor system. We investigate optical transients from the birth of BBHs powered by the Bondi–Hoyle–Lyttleton accretion onto the primary BH, which occur ∼1–10 Gyr earlier than gravitational-wave signals at the BH–BH merger. When the secondary massive star collapses into a BH, it may eject a fraction of its outer material and may form a disk around the primary BH and induces a powerful disk wind. These primary-induced winds can lead to optical transients with a kinetic energy of ∼1047–3 × 1048 erg, an ejecta velocity of 108–109 cm s‑1, a duration of a few days, and an absolute magnitude ranging from about ‑11 to ‑14. The light curves and late-time spectra of these transients are distinctive from those of ordinary supernovae, and detection of this type of transient is possible by future optical transient surveys if the event rate of this transient is comparable to the merger rate of BBHs. This paper focuses on the emissions from disk-driven transients induced by the primary BH, different from Paper I, which focuses on wind-driven transients from the tidally locked secondary massive star.

  16. Assembly and Succession of Iron Oxide Microbial Mat Communities in Acidic Geothermal Springs

    DOE PAGES

    Beam, Jacob P.; Bernstein, Hans C.; Jay, Zackary J.; ...

    2016-02-15

    Biomineralized ferric oxide microbial mats are ubiquitous features on Earth, are common in hot springs of Yellowstone National Park (YNP, WY, USA), and form due to direct interaction between microbial and physicochemical processes. The overall goal of this study was to determine the contribution of different community members to the assembly and succession of acidic high-temperature Fe(III)-oxide mat ecosystems. Spatial and temporal changes in Fe(III)-oxide accretion and the abundance of relevant community members were monitored over 70 days using sterile glass microscope slides incubated in the outflow channels of two acidic geothermal springs (pH = 3-3.5; temperature = 68-75°C) inmore » YNP. Hydrogenobaculum spp. were the most abundant taxon identified during early successional stages (4-40 days), and have been shown to oxidize arsenite, sulfide, and hydrogen coupled to oxygen reduction. Iron-oxidizing populations of Metallosphaera yellowstonensis were detected within 4 days, and reached steady-state levels within 14-30 days, corresponding to visible Fe(III)-oxide accretion. Heterotrophic archaea colonized near 30 days, and emerged as the dominant functional guild after 70 days and in mature Fe(III)-oxide mats (1-2 cm thick). First-order rate constants of Fe(III)-oxide accretion ranged from 0.046 to 0.05 day -1 , and in situ microelectrode measurements showed that the oxidation of Fe(II) is limited by the diffusion of O2 into the Fe(III)-oxide mat. The formation of microterracettes also implicated O2 as a major variable controlling microbial growth and subsequent mat morphology. The assembly and succession of Fe(III)-oxide mat communities follows a repeatable pattern of colonization by lithoautotrophic organisms, and the subsequent growth of diverse organoheterotrophs. The unique geochemical signatures and micromorphology of extant biomineralized Fe(III)-oxide mats are also useful for understanding other Fe(II)-oxidizing systems.« less

  17. Assembly and Succession of Iron Oxide Microbial Mat Communities in Acidic Geothermal Springs

    PubMed Central

    Beam, Jacob P.; Bernstein, Hans C.; Jay, Zackary J.; Kozubal, Mark A.; Jennings, Ryan deM.; Tringe, Susannah G.; Inskeep, William P.

    2016-01-01

    Biomineralized ferric oxide microbial mats are ubiquitous features on Earth, are common in hot springs of Yellowstone National Park (YNP, WY, USA), and form due to direct interaction between microbial and physicochemical processes. The overall goal of this study was to determine the contribution of different community members to the assembly and succession of acidic high-temperature Fe(III)-oxide mat ecosystems. Spatial and temporal changes in Fe(III)-oxide accretion and the abundance of relevant community members were monitored over 70 days using sterile glass microscope slides incubated in the outflow channels of two acidic geothermal springs (pH = 3–3.5; temperature = 68–75°C) in YNP. Hydrogenobaculum spp. were the most abundant taxon identified during early successional stages (4–40 days), and have been shown to oxidize arsenite, sulfide, and hydrogen coupled to oxygen reduction. Iron-oxidizing populations of Metallosphaera yellowstonensis were detected within 4 days, and reached steady-state levels within 14–30 days, corresponding to visible Fe(III)-oxide accretion. Heterotrophic archaea colonized near 30 days, and emerged as the dominant functional guild after 70 days and in mature Fe(III)-oxide mats (1–2 cm thick). First-order rate constants of Fe(III)-oxide accretion ranged from 0.046 to 0.05 day−1, and in situ microelectrode measurements showed that the oxidation of Fe(II) is limited by the diffusion of O2 into the Fe(III)-oxide mat. The formation of microterracettes also implicated O2 as a major variable controlling microbial growth and subsequent mat morphology. The assembly and succession of Fe(III)-oxide mat communities follows a repeatable pattern of colonization by lithoautotrophic organisms, and the subsequent growth of diverse organoheterotrophs. The unique geochemical signatures and micromorphology of extant biomineralized Fe(III)-oxide mats are also useful for understanding other Fe(II)-oxidizing systems. PMID:26913020

  18. Assembly and Succession of Iron Oxide Microbial Mat Communities in Acidic Geothermal Springs.

    PubMed

    Beam, Jacob P; Bernstein, Hans C; Jay, Zackary J; Kozubal, Mark A; Jennings, Ryan deM; Tringe, Susannah G; Inskeep, William P

    2016-01-01

    Biomineralized ferric oxide microbial mats are ubiquitous features on Earth, are common in hot springs of Yellowstone National Park (YNP, WY, USA), and form due to direct interaction between microbial and physicochemical processes. The overall goal of this study was to determine the contribution of different community members to the assembly and succession of acidic high-temperature Fe(III)-oxide mat ecosystems. Spatial and temporal changes in Fe(III)-oxide accretion and the abundance of relevant community members were monitored over 70 days using sterile glass microscope slides incubated in the outflow channels of two acidic geothermal springs (pH = 3-3.5; temperature = 68-75°C) in YNP. Hydrogenobaculum spp. were the most abundant taxon identified during early successional stages (4-40 days), and have been shown to oxidize arsenite, sulfide, and hydrogen coupled to oxygen reduction. Iron-oxidizing populations of Metallosphaera yellowstonensis were detected within 4 days, and reached steady-state levels within 14-30 days, corresponding to visible Fe(III)-oxide accretion. Heterotrophic archaea colonized near 30 days, and emerged as the dominant functional guild after 70 days and in mature Fe(III)-oxide mats (1-2 cm thick). First-order rate constants of Fe(III)-oxide accretion ranged from 0.046 to 0.05 day(-1), and in situ microelectrode measurements showed that the oxidation of Fe(II) is limited by the diffusion of O2 into the Fe(III)-oxide mat. The formation of microterracettes also implicated O2 as a major variable controlling microbial growth and subsequent mat morphology. The assembly and succession of Fe(III)-oxide mat communities follows a repeatable pattern of colonization by lithoautotrophic organisms, and the subsequent growth of diverse organoheterotrophs. The unique geochemical signatures and micromorphology of extant biomineralized Fe(III)-oxide mats are also useful for understanding other Fe(II)-oxidizing systems.

  19. Wind turbine tower for storing hydrogen and energy

    DOEpatents

    Fingersh, Lee Jay [Westminster, CO

    2008-12-30

    A wind turbine tower assembly for storing compressed gas such as hydrogen. The tower assembly includes a wind turbine having a rotor, a generator driven by the rotor, and a nacelle housing the generator. The tower assembly includes a foundation and a tubular tower with one end mounted to the foundation and another end attached to the nacelle. The tower includes an in-tower storage configured for storing a pressurized gas and defined at least in part by inner surfaces of the tower wall. In one embodiment, the tower wall is steel and has a circular cross section. The in-tower storage may be defined by first and second end caps welded to the inner surface of the tower wall or by an end cap near the top of the tower and by a sealing element attached to the tower wall adjacent the foundation, with the sealing element abutting the foundation.

  20. Hyperaccretion during tidal disruption events: weakly bound debris envelopes and jets

    NASA Astrophysics Data System (ADS)

    Coughlin, Eric; Begelman, M. C.

    2014-01-01

    After the destruction of the star during a tidal disruption event (TDE), the cataclysmic encounter between a star and the supermassive black hole (SMBH) of a galaxy, approximately half of the original stellar debris falls back onto the hole at a rate that can initially exceed the Eddington limit by orders of magnitude. We argue that the angular momentum of this matter is too low to allow it to attain a disk-like configuration with accretion proceeding at a mildly super-Eddington rate, the excess energy being carried away by a combination of radiative losses and radially distributed winds. Instead, we propose that the in-falling gas traps accretion energy until it inflates into a weakly-bound, quasi-spherical structure with gas extending nearly to the poles. We study the structure and evolution of such “Zero-Bernoulli accretion” flows (ZEBRAs) as a model for the super- Eddington phase of TDEs. We argue that such flows cannot stop extremely super-Eddington accretion from occurring, and that once the envelope is maximally inflated, any excess accretion energy escapes through the poles in the form of powerful jets. Similar models, including self-gravity, could be applicable to gamma-ray bursts from collapsars and the growth of supermassive black hole seeds inside quasi-stars.

  1. How young the accretion-powered pulsars could be?

    NASA Astrophysics Data System (ADS)

    Kostina, M. V.; Ikhsanov, N. R.

    2017-12-01

    A question about the age of accretion-powered X-ray pulsars has recently been reopened by a discovery of the X-ray pulsar SXP 1062 in the SMC. This High Mass X-ray Binary (HMXB) contains a neutron star rotating with the period of 1062 s and is associated with a supernova remnant of the age ∼ 104 yr. An attempt to explain the origin of this young long-period X-ray pulsar within the traditional scenario of three basic states (ejector, propeller and accretor) encounters difficulties. Even if this pulsar were born as a magnetar the spin-down time during the propeller stage would exceed 104 yr. Here we explore a more circuitous way of the pulsar spin evolution in HMXBs, in which the propeller stage in the evolutionary track is avoided. We find this way to be possible if the stellar wind of the massive companion to the neutron star is magnetized. The geometry of plasma flow captured by the neutron star in this case differs from spherically symmetrical and the magnetospheric radius of the neutron star is smaller than that evaluated in the convention accretion scenarios. We show that the age of an accretion-powered pulsar in this case can be as small as ∼ 104 years without the need of invoking initial magnetic field in excess of 1013 G.

  2. Timing Studies of X Persei and the Discovery of Its Transient Quasi-periodic Oscillation Feature

    NASA Technical Reports Server (NTRS)

    Acuner, Z.; Inam,S. C.; Sahiner, S.; Serim, M. M.; Baykal, A.; Swank, J.

    2014-01-01

    We present a timing analysis of X Persei (X Per) using observations made between 1998 and 2010 with the Proportional Counter Array (PCA) onboard the Rossi X-ray Timing Explorer (RXTE) and with the INTEGRAL Soft Gamma-Ray Imager (ISGRI). All pulse arrival times obtained from the RXTE-PCA observations are phase-connected and a timing solution is obtained using these arrival times. We update the long-term pulse frequency history of the source by measuring its pulse frequencies using RXTE-PCA and ISGRI data. From the RXTEPCA data, the relation between the frequency derivative and X-ray flux suggests accretion via the companion's stellar wind. However, the detection of a transient quasi-periodic oscillation feature, peaking at approximately 0.2 Hz, suggests the existence of an accretion disc. We find that doublebreak models fit the average power spectra well, which suggests that the source has at least two different accretion flow components dominating the overall flow. From the power spectrum of frequency derivatives, we measure a power-law index of approximately - 1, which implies that, on short time-scales, disc accretion dominates over noise, while on time-scales longer than the viscous time-scales, the noise dominates. From pulse profiles, we find a correlation between the pulse fraction and the count rate of the source.

  3. Rime ice accretion and its effect on airfoil performance. Ph.D. Thesis. Final Report

    NASA Technical Reports Server (NTRS)

    Bragg, M. B.

    1982-01-01

    A methodology was developed to predict the growth of rime ice, and the resulting aerodynamic penalty on unprotected, subcritical, airfoil surfaces. The system of equations governing the trajectory of a water droplet in the airfoil flowfield is developed and a numerical solution is obtained to predict the mass flux of super cooled water droplets freezing on impact. A rime ice shape is predicted. The effect of time on the ice growth is modeled by a time-stepping procedure where the flowfield and droplet mass flux are updated periodically through the ice accretion process. Two similarity parameters, the trajectory similarity parameter and accumulation parameter, are found to govern the accretion of rime ice. In addition, an analytical solution is presented for Langmuir's classical modified inertia parameter. The aerodynamic evaluation of the effect of the ice accretion on airfoil performance is determined using an existing airfoil analysis code with empirical corrections. The change in maximum lift coefficient is found from an analysis of the new iced airfoil shape. The drag correction needed due to the severe surface roughness is formulated from existing iced airfoil and rough airfoil data. A small scale wind tunnel test was conducted to determine the change in airfoil performance due to a simulated rime ice shape.

  4. Specifiers Properties Information Exchange (SPie): Minimum Building Information Model (BIM) Object Definitions

    DTIC Science & Technology

    2013-03-01

    Weave Welding Method Wheel Assembly Wind Load Wind Loads Wind Uplift Resistance Wind Uplift Resistance Class Window Category Window Finish Window... wind - blast Elongation UFGS 2.1 percent Insert Value Visual Defects UFGS 2.1 n/a Insert Value ERDC/CERL CR-13-1 39 Attribute Source...Sustainability COBie Guide n/a insert reqts FRP Strengthening UFGS 1.2 n/a seismic - wind - blast Elongation UFGS 2.2 percent Insert Value Tensile

  5. Black Hole Disk Accretion in Supernovae

    NASA Astrophysics Data System (ADS)

    Mineshige, Shin; Nomura, Hideko; Hirose, Masahito; Nomoto, Ken'ichi; Suzuki, Tomoharu

    1997-11-01

    Massive stars in a certain mass range may form low-mass black holes after supernova explosions. In such massive stars, fallback of ~0.1 M⊙ materials onto a black hole is expected because of a deep gravitational potential or a reverse shock propagating back from the outer composition interface. We study hydrodynamical disk accretion onto a newborn low-mass black hole in a supernova using the smoothed particle hydrodynamics method. If the progenitor was rotating before the explosion, the fallback material should have a certain amount of angular momentum with respect to the black hole, thus forming an accretion disk. The disk material will eventually accrete toward the central object because of viscosity at a supercritical accretion rate, Ṁ/Ṁcrit>106, for the first several tens of days. (Here, Ṁcrit is the Eddington luminosity divided by c2.) We then expect that such an accretion disk is optically thick and advection dominated; that is, the disk is so hot that the produced energy and photons are advected inward rather than being radiated away. Thus, the disk luminosity is much less than the Eddington luminosity. The disk becomes hot and dense; for Ṁ/Ṁcrit~106, for example, T ~ 109(αvis/0.01)-1/4 K and ρ ~ 103(αvis/0.01)-1 g cm-3 (with αvis being the viscosity parameter) in the vicinity of the black hole. Depending on the material mixing, some interesting nucleosynthesis processes via rapid proton and alpha-particle captures are expected even for reasonable viscosity magnitudes (αvis ~ 0.01), and some of them could be ejected in a disk wind or a jet without being swallowed by the black hole.

  6. Spherical accretion in giant elliptical galaxies: multi-transonicity, shocks, and implications on AGN feedback

    NASA Astrophysics Data System (ADS)

    Raychaudhuri, Sananda; Ghosh, Shubhrangshu; Joarder, Partha S.

    2018-06-01

    Isolated massive elliptical galaxies, or that are present at the center of cool-core clusters, are believed to be powered by hot gas accretion directly from their surrounding hot X-ray emitting gaseous medium. This leads to a giant Bondi-type spherical/quasi-spherical accretion flow onto their host SMBHs, with the accretion flow region extending well beyond the Bondi radius. In this work, we present a detailed study of Bondi-type spherical flow in the context of these massive ellipticals by incorporating the effect of entire gravitational potential of the host galaxy in the presence of cosmological constant Λ, considering a five-component galactic system (SMBH + stellar + dark matter + hot gas + Λ). The current work is an extension of Ghosh & Banik (2015), who studied only the cosmological aspect of the problem. The galactic contribution to the potential renders the (adiabatic) spherical flow to become multi-transonic in nature, with the flow topology and flow structure significantly deviating from that of classical Bondi solution. More notably, corresponding to moderate to higher values of galactic mass-to-light ratios, we obtain Rankine-Hugoniot shocks in spherical wind flows. Galactic potential enhances the Bondi accretion rate. Our study reveals that there is a strict lower limit of ambient temperature below which no Bondi accretion can be triggered; which is as high as ˜9 × 106 K for flows from hot ISM-phase, indicating that the hot phase tightly regulates the fueling of host nucleus. Our findings may have wider implications, particularly in the context of outflow/jet dynamics, and radio-AGN feedback, associated with these massive galaxies in the contemporary Universe.

  7. Constraints from Dust Mass and Mass Accretion Rate Measurements on Angular Momentum Transport in Protoplanetary Disks

    NASA Astrophysics Data System (ADS)

    Mulders, Gijs D.; Pascucci, Ilaria; Manara, Carlo F.; Testi, Leonardo; Herczeg, Gregory J.; Henning, Thomas; Mohanty, Subhanjoy; Lodato, Giuseppe

    2017-09-01

    In this paper, we investigate the relation between disk mass and mass accretion rate to constrain the mechanism of angular momentum transport in protoplanetary disks. We find a correlation between dust disk mass and mass accretion rate in Chamaeleon I with a slope that is close to linear, similar to the one recently identified in Lupus. We investigate the effect of stellar mass and find that the intrinsic scatter around the best-fit {M}{dust}-{M}\\star and {\\dot{M}}{acc}-{M}\\star relations is uncorrelated. We simulate synthetic observations of an ensemble of evolving disks using a Monte Carlo approach and find that disks with a constant α viscosity can fit the observed relations between dust mass, mass accretion rate, and stellar mass but overpredict the strength of the correlation between disk mass and mass accretion rate when using standard initial conditions. We find two possible solutions. In the first one, the observed scatter in {M}{dust} and {\\dot{M}}{acc} is not primordial, but arises from additional physical processes or uncertainties in estimating the disk gas mass. Most likely grain growth and radial drift affect the observable dust mass, while variability on large timescales affects the mass accretion rates. In the second scenario, the observed scatter is primordial, but disks have not evolved substantially at the age of Lupus and Chamaeleon I owing to a low viscosity or a large initial disk radius. More accurate estimates of the disk mass and gas disk sizes in a large sample of protoplanetary disks, through either direct observations of the gas or spatially resolved multiwavelength observations of the dust with ALMA, are needed to discriminate between both scenarios or to constrain alternative angular momentum transport mechanisms such as MHD disk winds.

  8. Effects of Fallback Accretion on Protomagnetar Outflows in Gamma-Ray Bursts and Superluminous Supernovae

    NASA Astrophysics Data System (ADS)

    Metzger, Brian D.; Beniamini, Paz; Giannios, Dimitrios

    2018-04-01

    Rapidly spinning, strongly magnetized protoneutron stars (“millisecond protomagnetars”) are candidate central engines of long-duration gamma-ray bursts (GRBs), superluminous supernovae (SLSNe), and binary neutron star mergers. Magnetar birth may be accompanied by the fallback of stellar debris, lasting for seconds or longer following the explosion. Accretion alters the magnetar evolution by (1) providing an additional source of rotational energy (or a potential sink, if the propeller mechanism operates), (2) enhancing the spin-down luminosity above the dipole rate by compressing the magnetosphere and expanding the polar cap region of open magnetic field lines, and (3) supplying an additional accretion-powered neutrino luminosity that sustains the wind baryon loading, even after the magnetar’s internal neutrino luminosity has subsided. The more complex evolution of the jet power and magnetization of an accreting magnetar more readily accounts for the high 56Ni yields of GRB SNe and the irregular time evolution of some GRB light curves (e.g., bursts with precursors followed by a long quiescent interval before the main emission episode). Additional baryon loading from accretion-powered neutrino irradiation of the polar cap lengthens the time frame over which the jet magnetization is in the requisite range σ ≲ 103 for efficient gamma-ray emission, thereby accommodating GRBs with ultralong durations. Though accretion does not significantly raise the maximum energy budget from the limit of ≲ few × 1052 erg for an isolated magnetar, it greatly expands the range of magnetic field strengths and birth spin periods capable of powering GRB jets, reducing the differences between the magnetar properties normally invoked to explain GRBs versus SLSNe.

  9. Bimodal gas accretion in the Horizon-MareNostrum galaxy formation simulation

    NASA Astrophysics Data System (ADS)

    Ocvirk, P.; Pichon, C.; Teyssier, R.

    2008-11-01

    The physics of diffuse gas accretion and the properties of the cold and hot modes of accretion on to proto-galaxies between z = 2 and 5.4 is investigated using the large cosmological simulation performed with the RAMSES code on the MareNostrum supercomputing facility. Galactic winds, chemical enrichment, ultraviolet background heating and radiative cooling are taken into account in this very high resolution simulation. Using accretion-weighted temperature histograms, we have performed two different measurements of the thermal state of the gas accreted towards the central galaxy. The first measurement, performed using accretion-weighted histograms on a spherical surface of radius 0.2Rvir centred on the densest gas structure near the halo centre of mass, is a good indicator of the presence of an accretion shock in the vicinity of the galactic disc. We define the hot shock mass, Mshock, as the typical halo mass separating cold dominated from hot dominated accretion in the vicinity of the galaxy. The second measurement is performed by radially averaging histograms between 0.2Rvir and Rvir, in order to detect radially extended structures such as gas filaments: this is a good proxy for detecting cold streams feeding the central galaxy. We define Mstream as the transition mass separating cold dominated from hot dominated accretion in the outer halo, marking the disappearance of these cold streams. We find a hot shock transition mass of Mshock = 1011.6Msolar (dark matter), with no significant evolution with redshift. Conversely, we find that Mstream increases sharply with z. Our measurements are in agreement with the analytical predictions of Birnboim & Dekel and Dekel & Birnboim, if we correct their model by assuming low metallicity (<=10-3Zsolar) for the filaments, correspondingly to our measurements. Metal enrichment of the intergalactic medium is therefore a key ingredient in determining the transition mass from cold to hot dominated diffuse gas accretion. We find that the diffuse cold gas supply at the inner halo stops at z = 2 for objects with stellar masses of about 1011.1Msolar, which is close to the quenching mass determined observationally by Bundy et al. However, its evolution with z is not well constrained, making it difficult to rule out or confirm the need for an additional feedback process such as active galactic nuclei.

  10. The Story of a Boring Encounter with a Black Hole

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2017-07-01

    Remember the excitement three years ago before the gas cloud G2s encounter with the supermassive black hole at the center of our galaxy, Sgr A*? Did you notice that not much was said about it after the fact? Thats because not much happened and a new study suggests that this isnt surprising.An Anticipated ApproachG2,an object initially thought to be a gas cloud, was expected to make its closest approach to the 4.6-million-solar-mass Sgr A* in 2014. At the pericenter of its orbit, G2 was predicted to pass as close as 36 light-hours from the black hole.Log-scale column density plots from one of the authors simulations, showing the cloud at a time relative to periapsis (t=0) of 5, 1, 0, 1, 5, and 10 yr (left to right, top to bottom). [Morsony et al. 2017]This close brush with such a massive black hole was predicted to tear G2 apart, causing much of its material to accrete onto Sgr A*. It was thought that this process would temporarily increase the accretion rate onto the black hole relative to its normal background accretion rate, causing Sgr A*s luminosity to increase for a time.Instead, Sgr A* showed a distinct lack of fireworks, with very minimal change to its brightness after G2s closest approach. This cosmic fizzle has raised questions about the nature of G2: was it really a gas cloud? What else might it have been instead? Now, a team of scientists led by Brian Morsony (University of Maryland and University of Wisconsin-Madison) have run a series of simulations of the encounter to try to address these questions.No FireworksMorsony and collaborators ran three-dimensional hydrodynamics simulations using the FLASH code. They used a range of different simulation parameters, like cloud structure, background structure, background density, grid resolution, and accretion radius, in order to better understand how these factors might have affected the accretion rate and corresponding luminosity of Sgr A*.Accretion rate vs. time for two of the simulations, one with a wind background and one with no wind background. The accretion rate in both cases displays no significant increase when G2 reaches periapsis. [Morsony et al. 2017]Based on their simulations, the authors showed that we actually shouldnt expect G2s encounter to have caused a significant change in Sgr A*s accretion rate relative to its normal rate from background accretion: with the majority of the simulation parameters used, only 321% of the material Sgr A* accreted from 05 years after periapsis is from the cloud, and only 0.0310% of the total cloud mass is accreted.Not Just a Cloud?By comparing their simulations to observations of G2 after its closest approach, Morsony and collaborators find that to fit the observations, G2 cannot be solely a gas cloud. Instead, two components are likely needed: an extended, cold, low-mass gas cloud responsible for most of the emission before G2 approached pericenter, and a very compact component such as a dusty stellar object that dominates the emission observed since pericenter.The authors argue that any future emission detected should no longer be from the cloud, but only from the compact core or dusty stellar object. Future observations should help us to confirm this model but in the meantime these simulations give us a better sense of why G2s encounter with Sgr A* was such a fizzle.CitationBrian J. Morsony et al 2017 ApJ 843 29. doi:10.3847/1538-4357/aa773d

  11. Line-dependent veiling in very active classical T Tauri stars

    NASA Astrophysics Data System (ADS)

    Rei, A. C. S.; Petrov, P. P.; Gameiro, J. F.

    2018-02-01

    Context. The T Tauri stars with active accretion disks show veiled photospheric spectra. This is supposedly due to non-photospheric continuum radiated by hot spots beneath the accretion shocks at stellar surface and/or chromospheric emission lines radiated by the post-shocked gas. The amount of veiling is often considered as a measure of the mass-accretion rate. Aim. We analysed high-resolution photospheric spectra of accreting T Tauri stars LkHα 321, V1331 Cyg, and AS 353A with the aim of clarifying the nature of the line-dependent veiling. Each of these objects shows a strong emission line spectrum and powerful wind features indicating high rates of accretion and mass loss. Methods: Equivalent widths of hundreds of weak photospheric lines were measured in the observed spectra of high quality and compared with those in synthetic spectra of appropriate models of stellar atmospheres. Results: The photospheric spectra of the three T Tauri stars are highly veiled. We found that the veiling is strongly line-dependent: larger in stronger photospheric lines and weak or absent in the weakest ones. No dependence of veiling on excitation potential within 0 to 5 eV was found. Different physical processes responsible for these unusual veiling effects are discussed in the framework of the magnetospheric accretion model. Conclusions: The observed veiling has two origins: (1) an abnormal structure of stellar atmosphere heated up by the accreting matter, and (2) a non-photospheric continuum radiated by a hot spot with temperature lower than 10 000 K. The true level of the veiling continuum can be derived by measuring the weakest photospheric lines with equivalent widths down to ≈10 mÅ. A limited spectral resolution and/or low signal-to-noise ratio results in overestimation of the veiling continuum. In the three very active stars, the veiling continuum is a minor contributor to the observed veiling, while the major contribution comes from the line-dependent veiling.

  12. BOOK REVIEW: Rotation and Accretion Powered Pulsars

    NASA Astrophysics Data System (ADS)

    Kaspi, V. M.

    2008-03-01

    Pulsar astrophysics has come a long way in the 40 years since the discovery of the first pulsar by Bell and Hewish. From humble beginnings as bits of 'scruff' on the Cambridge University group's chart recorder paper, the field of pulsars has blossomed into a major area of mainstream astrophysics, with an unparalleled diversity of astrophysical applications. These range from Nobel-celebrated testing of general relativity in the strong-field regime to constraining the equation-of-state of ultradense matter; from probing the winds of massive stars to globular cluster evolution. Previous notable books on the subject of pulsars have tended to focus on some particular topic in the field. The classic text Pulsars by Manchester and Taylor (1977 San Francisco, CA: Freeman) targeted almost exclusively rotation-powered radio pulsars, while the Mészáros book High-Energy Radiation from Magnetized Neutron Stars (1992 Chicago, IL: University of Chicago Press) considered both rotation- and accretion-powered neutron stars, but focused on their radiation at x-ray energies and above. The recent book Neutron Stars 1 by Haensel et al (2007 Berlin: Springer) considers only the equation of state and neutron-star structure. Into this context appears Rotation and Accretion Powered Pulsars, by Pranab Ghosh. In contrast to other books, here the author takes an encyclopedic approach and attempts to synthesize practically all of the major aspects of the two main types of neutron star. This is ambitious. The only comparable undertaking is the useful but more elementary Lyne and Graham-Smith text Pulsar Astronomy (1998 Cambridge: Cambridge University Press), or Compact Stellar X-ray Sources (eds Lewin and van der Klis, 2006 Cambridge: Cambridge University Press), an anthology of technical review articles that also includes black hole topics. Rotation and Accretion Powered Pulsars thus fills a clear void in the field, providing a readable, graduate-level book that covers nearly everything you ever wanted to know about pulsars but were afraid to ask. Chapter 1 begins a brief and interesting account of the discovery of pulsars, followed by an overview of the rotation-powered and accretion-powered populations. The following four chapters are fairly detailed and reasonably quantitative descriptions of neutron star interiors. This is no easy feat, given that a description of the physics of neutron stars demands a deep understanding of all major physical forces, and must include general relativity as well as detailed particle physics. The historical notes at the beginning of Chapter 2 are particularly fascinating, recounting the path to today's understanding of neutron stars in very interesting detail. Chapter 7 presents rotation-powered pulsar radio properties, and a nice description of pulsar timing, including relativistic and non-relativistic binaries and GR tests. The remaining chapters tackle a variety of topics including binary evolution, superfluidity, accretion-powered pulsar properties, magnetospheres and emission mechanisms, magnetic fields, spin evolution and strange stars. The coverage is somewhat uneven, with the strange star chapter, for example, an obvious afterthought. The utility of an encyclopedia lies in its breadth and in how up-to-date it is. Although admirable in its intentions, the Ghosh book does omit some major pulsar topics. This book leaves the impression that rotation-powered pulsars produce only radio emission; hardly (if at all) mentioned is the vast literature on their infrared, optical, and even more importantly, x-ray and gamma-ray emission, the latter being far more relevant to the pulsar 'machine' than the energetically puny radio output. Also absent are pulsar winds; this is particularly puzzling given both the lovely wind nebula that graces the book's cover, and the central role the wind plays as primary sink of the rotation power. One of the most actively pursued topics in pulsar astrophysics in the past decade, magnetars, receives only a passing mention, though admittedly, they are neither rotation- nor accretion-powered. Also, some sections are slightly out of date: the fastest known pulsar has frequency 716 Hz, not 642 Hz; there are more braking indexes measured as well as a second braking index; nulling has been tied to spin-down. Still, this book stands alone in its bold attempt at a unifying, advanced picture of the two main areas of neutron-star science: rotation and accretion powered pulsars. It is thus a valuable and unique asset for anyone interested in the topic; I am delighted to own a copy. I personally very much hope author Ghosh will consider filling in some of the gaps in his book in a second edition, as his text is accessible and a pleasure to read, and his vision and ambition are admirable.

  13. A RADIO PULSAR SEARCH OF THE {gamma}-RAY BINARIES LS I +61 303 AND LS 5039

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Virginia McSwain, M.; Ray, Paul S.; Ransom, Scott M.

    2011-09-01

    LS I +61 303 and LS 5039 are exceptionally rare examples of high-mass X-ray binaries with MeV-TeV emission, making them two of only five known '{gamma}-ray binaries'. There has been disagreement within the literature over whether these systems are microquasars, with stellar winds accreting onto a compact object to produce high energy emission and relativistic jets, or whether their emission properties might be better explained by a relativistic pulsar wind colliding with the stellar wind. Here we present an attempt to detect radio pulsars in both systems with the Green Bank Telescope. The upper limits of flux density are betweenmore » 4.1 and 14.5 {mu}Jy, and we discuss the null results of the search. Our spherically symmetric model of the wind of LS 5039 demonstrates that any pulsar emission will be strongly absorbed by the dense wind unless there is an evacuated region formed by a relativistic colliding wind shock. LS I +61 303 contains a rapidly rotating Be star whose wind is concentrated near the stellar equator. As long as the pulsar is not eclipsed by the circumstellar disk or viewed through the densest wind regions, detecting pulsed emission may be possible during part of the orbit.« less

  14. Ultrafast outflows in Super-Eddington Tidal Disruption Events

    NASA Astrophysics Data System (ADS)

    Kara, Erin

    2017-08-01

    The disruption of a star from the strong tidal forces of a supermassive black hole can cause the stellar debris to fall back towards the black hole at super Eddington rates. Efficient circularization of the debris can lead to the formation of an accretion disc with luminosities close to or potentially exceeding Eddington limit. Most super-Eddington accretion flow models (including recent magnetohydrodynamic simulations) predict large scale height, optically thick equatorial winds at relativistic velocities. In this talk, we will present observational results from two of the most well-observed X-ray emitting Tidal Disruption Events, Swift J1644+57 and ASASSN-14li. Both of these objects show evidence for massive outflows at tens of percent of the speed of light. The outflow in Swift J1644+57 was detected via blue shifted emission and reverberation of the iron K alpha line, and ASASSN-14li shows a potential P Cygni profile of the OVIII line. We will discuss the constraints that these observations put on the geometry of the super-Eddington accretion flows in tidal disruption events.

  15. An Experimental Investigation on Bio-inspired Icephobic Coatings for Aircraft Icing Mitigation

    NASA Astrophysics Data System (ADS)

    Hu, Hui; Li, Haixing; Waldman, Rye

    2016-11-01

    By leveraging the Icing Research Tunnel available at Iowa State University (ISU-IRT), a series of experimental investigations were conducted to elucidate the underlying physics pertinent to aircraft icing phenomena. A suite of advanced flow diagnostic techniques, which include high-speed photographic imaging, digital image projection (DIP), and infrared (IR) imaging thermometry, were developed and applied to quantify the transient behavior of water droplet impingement, wind-driven surface water runback, unsteady heat transfer and dynamic ice accreting process over the surfaces of airfoil/wing models. The icephobic performance of various bio-inspired superhydrophobic coatings were evaluated quantitatively at different icing conditions. The findings derived from the icing physics studies can be used to improve current icing accretion models for more accurate prediction of ice formation and accretion on aircraft wings and to develop effective anti-/deicing strategies for safer and more efficient operation of aircraft in cold weather. The research work is partially supported by NASA with Grant Number NNX12AC21A and National Science Foundation under Award Numbers of CBET-1064196 and CBET-1435590.

  16. Bipolar outflows and Jets From Young Stars

    NASA Astrophysics Data System (ADS)

    Bally, J.

    2000-05-01

    Stars produce powerful jets and winds during their birth. These primary outflows power shock waves (Herbig-Haro objects) and entrain surrounding gas to produce molecular outflows. Many outflows reach parsec-scale dimensions whose dynamical ages can become comparable to the accretion age of the source star. Thus, these giant outflows provide fossil records of the mass loss histories of their parent stars. Jet symmetries provide tantalizing clues about the violent history of stellar accretion and dynamical interactions with nearby companions. These flows inject sufficient energy and momentum into the surrounding medium to alter the physical and chemical state of the gas, generate turbulence, disrupt the parent cloud, and self-regulate the rate of star formation. Recent observations have revealed a new class of externally irradiated jets which are rendered visible by the light of nearby massive stars. Some of these jets appear to be millions of years old, indicating that outflow activity can persist for much longer than previously thought. Stellar jets provide ideal laboratories for the investigation of accretion powered outflows and associated shocks since their time-dependent behavior can be observed with a rich variety of spectral line diagnostics.

  17. Accretion and outflow activity on the late phases of pre-main-sequence evolution. The case of RZ Piscium

    NASA Astrophysics Data System (ADS)

    Potravnov, I. S.; Mkrtichian, D. E.; Grinin, V. P.; Ilyin, I. V.; Shakhovskoy, D. N.

    2017-03-01

    RZ Psc is an isolated high-latitude post-T Tauri star that demonstrates a UX Ori-type photometric activity. The star shows very weak spectroscopic signatures of accretion, but at the same time possesses the unusual footprints of the wind in Na I D lines. In the present work we investigate new spectroscopic observations of RZ Psc obtained in 2014 during two observation runs. We found variable blueshifted absorption components (BACs) in lines of the other alcali metals, K I 7699 Å and Ca II IR triplet. We also confirmed the presence of a weak emission component in the Hα line, which allowed us to estimate the mass accretion rate on the star as Ṁ ≤ 7 × 10-12M⊙ yr-1. We could not reveal any clear periodicity in the appearance of BACs in sodium lines. Nevertheless, the exact coincidence of the structure and velocities of the Na I D absorptions observed with the interval of about one year suggests that such a periodicity should exist.

  18. Hydrodynamic simulations of stellar wind disruption by a compact X-ray source

    NASA Technical Reports Server (NTRS)

    Blondin, John M.; Kallman, Timothy R.; Fryxell, Bruce A.; Taam, Ronald E.

    1990-01-01

    This paper presents two-dimensional numerical simulations of the gas flow in the orbital plane of a massive X-ray binary system, in which the mass accretion is fueled by a radiation-driven wind from an early-type companion star. These simulations are used to examine the role of the compact object (either a neutron star or a black hole) in disturbing the radiatively accelerating wind of the OB companion, with an emphasis on understanding the origin of the observed soft X-ray photoelectric absorption seen at late orbital phases in these systems. On the basis of these simulations, it is suggested that the phase-dependent photoelectric absorption seen in several of these systems can be explained by dense filaments of compressend gas formed in the nonsteady accreation bow shock and wake of the compact object.

  19. News on the X-ray emission from hot subdwarf stars

    NASA Astrophysics Data System (ADS)

    Palombara, Nicola La; Mereghetti, Sandro

    2017-12-01

    In latest years, the high sensitivity of the instruments on-board the XMM-Newton and Chandra satellites allowed us to explore the properties of the X-ray emission from hot subdwarf stars. The small but growing sample of X-ray detected hot subdwarfs includes binary systems, in which the X-ray emission is due to wind accretion onto a compact companion (white dwarf or neutron star), as well as isolated sdO stars, in which X-rays are probably due to shock instabilities in the wind. X-ray observations of these low-mass stars provide information which can be useful for our understanding of the weak winds of this type of stars and can lead to the discovery of particularly interesting binary systems. Here we report the most recent results we have recently obtained in this research area.

  20. NuSTAR rules out a cyclotron line in the accreting magnetar candidate 4U2206+54.

    NASA Astrophysics Data System (ADS)

    Torrejón, J. M.; Reig, P.; Fürst, F.; Martinez-Chicharro, M.; Postnov, K.; Oskinova, L.

    2018-06-01

    Based on our new NuSTAR X-ray telescope data, we rule out any cyclotron line up to 60 keV in the spectra of the high mass X-ray binary 4U2206+54. In particular, we do not find any evidence of the previously claimed line around 30 keV, independently of the source flux, along the spin pulse. The spin period has increased significantly, since the last observation, up to 5750 ± 10 s, confirming the rapid spin down rate \\dot{ν }=-1.8× 10^{-14} Hz s-1. This behaviour might be explained by the presence of a strongly magnetized neutron star (Bs > several times 1013 G) accreting from the slow wind of its main sequence O9.5 companion.

  1. 'Damn that's bright!' - why ignoring the Eddington limit is so much fun

    NASA Astrophysics Data System (ADS)

    Middleton, M.

    2017-10-01

    Decades of studying compact objects has led to an explosion in our understanding, yet some puzzles remain unanswered. Whilst the vast majority of Galactic black hole binary systems accrete at a rate below their classical Eddington limit, several appear to exceed it and whilst doing so show the most dramatic of phenomenology including the most powerful ballistic jet events and equatorial outflows. Standing alone as the most extreme example is the Galactic microquasar SS433. Long considered by some to be a Galactic `ultraluminous X-ray source', it is literally shrouded in mystery thanks to an optically thick wind obscuring the central regions. I will discuss these systems and new work which sheds light on SS433 and how it might fit into the growing picture of super-critically accreting sources.

  2. Flaring activity of the SFXT IGR J16418-4532

    NASA Astrophysics Data System (ADS)

    Poliakov, D.; Aitov, V.; Ikhsanov, N.

    2017-12-01

    Supergiant fast X-ray transients (SFXTs) are a sub-class of wind-fed High Mass X-ray Binaries (HMXB) in which the normal companion is a supergiant. These systems were collected in a sub-class because of short flares (a few hours duration) in which the X-ray luminosity increases by a few orders of magnitude. One of the members of SFXTs is the X-ray 1212 s pulsar IGR J16418-4532, which is characterized by a high quiescent X-ray luminosity and flaring on a short timescale. We show that the degenerate component of the system is either a magnetar which accretes matter from a Keplerian disk of quasi-spherical flow, or a regularly magnetized neutron star which rotates near spin equilibrium and accretes matter from a non-Keplerian magnetic disk.

  3. Probing Radiatively Inefficient Accretion Flow in the Neutron Star X-ray Binary System Aquila X-1

    NASA Astrophysics Data System (ADS)

    Maitra, Dipankar

    2016-09-01

    The nature of radiatively inefficient accretion flows (RIAF) near neutron stars and black holes remains largely enshrouded in mystery, primarily due to their low luminosity. Long term monitoring of Aql X-1 has revealed that during certain outbursts, the system goes into a relatively bright RIAF state for periods lasting several weeks. These low-intensity states offer a unique opportunity to probe radiatively inefficient flows. We request a 75 ksec Chandra/HETG ToO observation of Aql X-1 during a low-intensity state. Emission line diagnostics of the observed spectrum will be used to test different RIAF models and constrain flow properties such as the radial temperature and density profile, existence of an outflowing wind, spatial extent of the RIAF, and gas dynamics within the flow.

  4. Probing Radiatively Inefficient Accretion Flow in the Neutron Star X-ray Binary System Aquila X-1

    NASA Astrophysics Data System (ADS)

    Maitra, Dipankar

    2017-09-01

    The nature of radiatively inefficient accretion flows (RIAF) near neutron stars and black holes remains largely enshrouded in mystery, primarily due to their low luminosity. Long term monitoring of Aql X-1 has revealed that during certain outbursts, the system goes into a relatively bright RIAF state for periods lasting several weeks. These low-intensity states offer a unique opportunity to probe radiatively inefficient flows. We request a 75 ksec Chandra/HETG ToO observation of Aql X-1 during a low-intensity state. Emission line diagnostics of the observed spectrum will be used to test different RIAF models and constrain flow properties such as the radial temperature and density profile, existence of an outflowing wind, spatial extent of the RIAF, and gas dynamics within the flow.

  5. Dune Morphodynamics on a Semi-Arid, Wave-Dominated Barrier Island: South Padre Island, Texas

    NASA Astrophysics Data System (ADS)

    Del Angel, D. C.; Gibeaut, J. C.

    2012-12-01

    Spatial and temporal dune accretion along the barrier island of South Padre Island (SPI),Texas was examined using a combination of field measurements and lidar elevation data. Volume change rates derived from the data were compared to potential sediment transport rates derived from Hsu's (1974 & 1977) model using local wind-gauge data. A statistical model was then used to investigate controls on foredune accretion. Dune volume change was estimated from cross-shore profile measurements acquired during the summer of 2009, spring of 2010, and fall of 2010. For summer 2009 to spring 2010, dune volume change ranged from -18 to 12.5 m^3/m. The onshore potential drift for the same time period was estimated to be 6.6 m^3/m. In comparison, volume change ranged from -5.5 to 5.3 m^3/m for spring to fall 2010 with most dunes experiencing erosion. The estimated onshore drift was much higher at 22.5 m^3/m. The high drift potential associated with the spring and summer months is attributed to the predominant wind direction and the occurrence of tropical storms. Dune volume change was also observed on a longer time scale using lidar DEMs for the years 2000, 2005, and 2009. From 2000 to 2005, most natural dunes experienced accretion with a mean of 17.67 m^3/m, whereas between 2005 and 2009, the majority of dunes experienced volume loss with a mean change of -4.16 m^3/m. Overall, the mean volume change from 2000 to 2009 was 13.51 m^3/m. Onshore drift for 2000 to 2005 was estimated to be 16.44 m^3/m, which is a good approximation to the observed volume change. In contrast, onshore drift for 2000 to 2009 was estimated to be 80.4 m^3/m, which is substantially higher than the mean volume change observed during the period. The discrepancy between the modeled and observe value is partly due to dune volume loss from storm surge erosion. In addition, there was a significant increase in onshore drift potential from 2006 to 2008. Stepwise backward regression was used to find significant correlations (p-values < 0.01) between observed values in dune volume change and beach and dune morphometric parameters. Examined parameters include beach width, beach height, beach slope, shoreline orientation, the long-term rate of shoreline displacement, and aeolian dune form (washover terrace, dune terrace, dune ridge and active dunes). Model results show that dune type, beach width, and shoreline orientation were significant contributors. A hierarchical partitioning method provided further insight by showing that dune type explains most of the variation (57%), followed by beach width (30%) and lastly, orientation (< 2%). Based on the volumetric change analysis, results observed from 2000 to 2005 provide a good estimate of the average dune accretion for SPI because of the low impact of storms. But, from the wind models, potential transport has yearly fluctuations which can affect accretion rates. Furthermore, accretion will continue to be interrupted by the periodic occurrence of storms. Spatial variability of dune volume change is related to the existing dune form and beach morphology as evidenced by the statistical analysis. It is expected that the relative occurrence of washovers, terraces, ridges, and active dunes will vary in time as storms, drought and anthropogenic stresses change.

  6. Interstellar Magnetic Fields and Polarimetry of Dust Emission

    NASA Technical Reports Server (NTRS)

    Dowell, Darren

    2010-01-01

    Magnetic fields are an important ingredient in the stormy cosmos. Magnetic fields: (1) are intimately involved with winds from Active Galactic Nuclei (AGN) and stars (2) create at least some of the structures observed in the ISM (3) modulate the formation of clouds, cores, and stars within a turbulent medium (4) may be dynamically important in protostellar accretion disks (5) smooth weak shocks (C-shocks).

  7. Growing massive black holes through supercritical accretion of stellar-mass seeds

    NASA Astrophysics Data System (ADS)

    Lupi, A.; Haardt, F.; Dotti, M.; Fiacconi, D.; Mayer, L.; Madau, P.

    2016-03-01

    The rapid assembly of the massive black holes that power the luminous quasars observed at z ˜ 6-7 remains a puzzle. Various direct collapse models have been proposed to head-start black hole growth from initial seeds with masses ˜105 M⊙, which can then reach a billion solar mass while accreting at the Eddington limit. Here, we propose an alternative scenario based on radiatively inefficient supercritical accretion of stellar-mass holes embedded in the gaseous circumnuclear discs (CNDs) expected to exist in the cores of high-redshift galaxies. Our sub-pc resolution hydrodynamical simulations show that stellar-mass holes orbiting within the central 100 pc of the CND bind to very high density gas clumps that arise from the fragmentation of the surrounding gas. Owing to the large reservoir of dense cold gas available, a stellar-mass black hole allowed to grow at super-Eddington rates according to the `slim-disc' solution can increase its mass by three orders of magnitudes within a few million years. These findings are supported by simulations run with two different hydro codes, RAMSES based on the Adaptive Mesh Refinement technique and GIZMO based on a new Lagrangian Godunov-type method, and with similar, but not identical, sub-grid recipes for star formation, supernova feedback, black hole accretion and feedback. The low radiative efficiency of supercritical accretion flows are instrumental to the rapid mass growth of our black holes, as they imply modest radiative heating of the surrounding nuclear environment.

  8. Terranes and the tectonic assembly of South America: The fifth Circum-Pacific terrane conference

    NASA Astrophysics Data System (ADS)

    Moore, G. W.

    1994-10-01

    A central theme of the 5th Circum-Pacific Terrane Conference held at Santiago, Chile, 11-14 November 1991, was the new theory that Australia and Antarctica separated from western North America during the Late Proterozoic, then crashed into Africa and South America to form Gondwana in the Late Cambrian. Particular interest centered on the Precordillera Terrane, which came from central North America and was accreted to Argentina during the Ordovician, and on the Avalon Terrane, derived from northern South American and accreted to Laurasia during the Taconic Orogeny. The mobility of plates and terranes has been so great that before the Mesozoic the Circum-Pacific and Circum-Atlantic regions were one and the same.

  9. Discovery of Ultra-fast Outflows in a Sample of Broad-line Radio Galaxies Observed with Suzaku

    NASA Astrophysics Data System (ADS)

    Tombesi, F.; Sambruna, R. M.; Reeves, J. N.; Braito, V.; Ballo, L.; Gofford, J.; Cappi, M.; Mushotzky, R. F.

    2010-08-01

    We present the results of a uniform and systematic search for blueshifted Fe K absorption lines in the X-ray spectra of five bright broad-line radio galaxies observed with Suzaku. We detect, for the first time in radio-loud active galactic nuclei (AGNs) at X-rays, several absorption lines at energies greater than 7 keV in three out of five sources, namely, 3C 111, 3C 120, and 3C 390.3. The lines are detected with high significance according to both the F-test and extensive Monte Carlo simulations. Their likely interpretation as blueshifted Fe XXV and Fe XXVI K-shell resonance lines implies an origin from highly ionized gas outflowing with mildly relativistic velocities, in the range v ~= 0.04-0.15c. A fit with specific photoionization models gives ionization parameters in the range log ξ ~= 4-5.6 erg s-1 cm and column densities of N H ~= 1022-1023 cm-2. These characteristics are very similar to those of the ultra-fast outflows (UFOs) previously observed in radio-quiet AGNs. Their estimated location within ~0.01-0.3 pc of the central super-massive black hole suggests a likely origin related with accretion disk winds/outflows. Depending on the absorber covering fraction, the mass outflow rate of these UFOs can be comparable to the accretion rate and their kinetic power can correspond to a significant fraction of the bolometric luminosity and is comparable to their typical jet power. Therefore, these UFOs can play a significant role in the expected feedback from the AGN to the surrounding environment and can give us further clues on the relation between the accretion disk and the formation of winds/jets in both radio-quiet and radio-loud AGNs.

  10. Grumblings from an Awakening Black Hole

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2015-11-01

    In June of this year, after nearly three decades of sleep, the black hole V404 Cygni woke up and began grumbling. Scientists across the globe scrambled to observe the sudden flaring activity coming from this previously peaceful black hole. And now were getting the first descriptions of what weve learned from V404 Cygs awakening!Sudden OutburstV404 Cyg is a black hole of roughly nine solar masses, and its in a binary system with a low-mass star. The black hole pulls a stream of gas from the star, which then spirals in around the black hole, forming an accretion disk. Sometimes the material simply accumulates in the disk but every two or three decades, the build-up of gas suddenly rushes toward the black hole as if a dam were bursting.The sudden accretion in these events causes outbursts of activity from the black hole, its flaring easily visible to us. The last time V404 Cyg exhibited such activity was in 1989, and its been rather quiet since then. Our telescopes are of course much more powerful and sensitive now, nearly three decades later so when the black hole woke up and began flaring in June, scientists were delighted at the chance to observe it.The high variability of V404 Cyg is evident in this example set of spectra, where time increases from the bottom panel to the top. [King et al. 2015]Led by Ashley King (Einstein Fellow at Stanford University), a team of scientists observed V404 Cyg with the Chandra X-ray Observatory, obtaining spectra of the black hole during its outbursts. The black hole flared so brightly during its activity that the team had to take precautions to protect the CCDs in their detector from radiation damage! Now the group has released the first results from their analysis.Windy DiskThe primary surprise from V404 Cyg is its winds. Many stellar-mass black holes have outflows of mass, either in the form of directed jets emitted from their centers, or in the form of high-energy winds isotropically emitted from their accretion disks. But V404 Cygs winds which the authors measure to be moving at a whopping ~4,000 km/s appear to originate from much further out in the disk than whats typical. Furthermore, the presence of disk winds and jets is normally anti-correlated, yet in V404 Cyg, both are active at the same time.King and collaborators believe that the winds are likely associated with the disruption of the outer accretion disk due to pressure from the radiation in the central region as it becomes very luminous. V404 Cygs behavior is actually more similar to that of some supermassive black holes than to most stellar-mass black holes, which is extremely intriguing.The authors are currently working to complete a more detailed analysis of the spectra and build a model of the processes occurring in this awakening black hole, but these initial results demonstrate that V404 Cyg has some interesting things to teach us.CitationAshley L. King et al 2015 ApJ 813 L37. doi:10.1088/2041-8205/813/2/L37

  11. The Evolution of Disks and Winds in Dwarf Nova Outbursts - FUSE

    NASA Technical Reports Server (NTRS)

    Long, Knox

    2002-01-01

    This project was a project to study the FUV spectra of two proto-typical dwarf novae, U Gem and SS Cygni, through an outburst cycle. The luminosity of the boundary layer in the two systems, as evidenced by earlier EUVE observations, is different in the two systems. Our intensive study of the two systems was intended to (1) probe the ionization and kinematic structure of the wind as a function of system brightness, (2) isolate the contributions of the disk to the FUV spectra, and (3) examine physical conditions and abundances of material just being accreted onto the disk from the secondary. The U Gem and SS Cyg observations took place in March and October 2000, respectively. The data obtained with FUSE was of excellent quality. Analysis of the both observations is now essentially complete, although some modeling of the SS Cyg spectra is ongoing, as we complete an ApJ manuscript on this object. Our main results for U Gem are as follows: The plateau spectra have continuum shapes and fluxes that are approximated by steady state accretion disk model spectra with an accretion rate 7x10(exp 9) Msolar/yr. The spectra also show numerous absorption lines of H I, He II, and 2-5 times ionized transitions of C, N, O, P, S, and Si. There are no emission features in the spectra, with the possible exception of a weak feature on the red wing of the 0 VI doublet. The absorption lines are narrow (FWHM approx. 50 km/s), too narrow to arise from the disk photosphere, and at low velocities (less than or equal to 700 km/s). The S VI and O VI doublets are optically thick. The absorption lines in the plateau spectra show orbital variability: in spectra obtained at orbital phases between 0.53 and 0.79, low-ionization absorption lines appear and the central depths of the preexisting lines increase. The increase in line absorption occurs at the same orbital phases as previously observed EUV and X-ray light-curve dips. If the absorbing material is in (near-) Keplerian rotation around the disk, it must be located at large disk radii. The final observation occurred when U Gem was about 2 mag from optical quiescence. The spectra are dominated by emission from an approx. 43,000 K, metal-enriched white dwarf (WD). The inferred radius of the WD is 4.95x10(exp 8) cm, close to that observed in quiescence. Allowing for a hot heated region on the surface of the WD improves the fit to the spectrum at short (less than 960 A) wavelengths. Our main results for SS Cyg are as follows: The first two of four observations of SS Cyg show disk dominated spectra with accretion rates of order 10(exp -8) Msolar/yr. Except for narrow interstellar features (atomic and molecular H), the lines are all broad consistent with a disk or wind origin. The O VI line in the spectra is mostly of wind origin as detailed modeling with our Monte Carlo code (developed in part using funds from this project) show. The continua from spectra in observations 3 and 4, observed during the decline phase, are not well fit with steady-state disks, and show considerable resemblance to quiescent spectra obtained with HUT. The most probable interpretation for the emission features seen in the spectrum in the last two observations is that they arise from a photo-illuminated choronosphere above the disk, rather than a wind.

  12. The CGM of Massive Galaxies: Where Cold Gas Goes to Die?

    NASA Astrophysics Data System (ADS)

    Howk, Jay

    2017-08-01

    We propose to survey the cold HI content and metallicity of the circumgalactic medium (CGM) around 50 (45 new, 5 archival) z 0.5 Luminous Red Galaxies (LRGs) to directly test a fundamental prediction of galaxy assembly models: that cold, metal-poor accretion does not survive to the inner halos of very massive galaxies. Accretion and feedback through the CGM play key roles in our models of the star formation dichotomy in galaxies. Low mass galaxies are thought to accrete gas in cold streams, while high mass galaxies host hot, dense halos that heat incoming gas and prevent its cooling, thereby quenching star formation. HST/COS has provided evidence for cold, metal-poor streams in the halos of star-forming galaxies (consistent with cold accretion). Observations have also demonstrated the presence of cool gas in the halos of passive galaxies, a potential challenge to the cold/hot accretion model. Our proposed observations will target the most massive galaxies and address the origin of the cool CGM gas by measuring the metallicity. This experiment is enabled by our novel approach to deriving metallicities, allowing the use of much fainter QSOs. It cannot be done with archival data, as these rare systems are not often probed along random sight lines. The H I column density (and metallicity) measurements require access to the UV. The large size of our survey is crucial to robustly assess whether the CGM in these galaxies is unique from that of star-forming systems, a comparison that provides the most stringent test of cold-mode accretion/quenching models to date. Conversely, widespread detections of metal-poor gas in these halos will seriously challenge the prevailing theory.

  13. 78 FR 66377 - Notice of Intent To Prepare a Draft Environmental Impact Statement on a Proposed Incidental Take...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-05

    ... the proposed Project may include access roads, wind turbine assembly lay down areas, overhead and... to an incidental take permit (ITP) application that Champlin Hawaii Wind Holdings, LLC (Champlin...) near Kahuku, Hawaii, for production of wind-generated electrical energy on the island of Oahu. In...

  14. Motion picture history of the erection and operation of the Smith-Putnam wind generator

    NASA Technical Reports Server (NTRS)

    Wilcox, C.

    1973-01-01

    A color movie presentation is discussed that presents the various stages in assemblying the major subsystems of a synchronous wind generator, such as installing the rotor blades and the rotating platform at the top of the tower. In addition scenes are shown of the wind generator in operation.

  15. The effect of single-horn glaze ice on the vortex structures in the wake of a horizontal axis wind turbine

    NASA Astrophysics Data System (ADS)

    Jin, Zhe-Yan; Dong, Qiao-Tian; Yang, Zhi-Gang

    2015-02-01

    The present study experimentally investigated the effect of a simulated single-horn glaze ice accreted on rotor blades on the vortex structures in the wake of a horizontal axis wind turbine by using the stereoscopic particle image velocimetry (Stereo-PIV) technique. During the experiments, four horizontal axis wind turbine models were tested, and both "free-run" and "phase-locked" Stereo-PIV measurements were carried out. Based on the "free-run" measurements, it was found that because of the simulated single-horn glaze ice, the shape, vorticity, and trajectory of tip vortices were changed significantly, and less kinetic energy of the airflow could be harvested by the wind turbine. In addition, the "phase-locked" results indicated that the presence of simulated single-horn glaze ice resulted in a dramatic reduction of the vorticity peak of the tip vortices. Moreover, as the length of the glaze ice increased, both root and tip vortex gaps were found to increase accordingly.

  16. An analytical investigation: Effect of solar wind on lunar photoelectron sheath

    NASA Astrophysics Data System (ADS)

    Mishra, S. K.; Misra, Shikha

    2018-02-01

    The formation of a photoelectron sheath over the lunar surface and subsequent dust levitation, under the influence of solar wind plasma and continuous solar radiation, has been analytically investigated. The photoelectron sheath characteristics have been evaluated using the Poisson equation configured with population density contributions from half Fermi-Dirac distribution of the photoemitted electrons and simplified Maxwellian statistics of solar wind plasma; as a consequence, altitude profiles for electric potential, electric field, and population density within the photoelectron sheath have been derived. The expression for the accretion rate of sheath electrons over the levitated spherical particles using anisotropic photoelectron flux has been derived, which has been further utilized to characterize the charging of levitating fine particles in the lunar sheath along with other constituent photoemission and solar wind fluxes. This estimate of particle charge has been further manifested with lunar sheath characteristics to evaluate the altitude profile of the particle size exhibiting levitation. The inclusion of solar wind flux into analysis is noticed to reduce the sheath span and altitude of the particle levitation; the dependence of the sheath structure and particle levitation on the solar wind plasma parameters has been discussed and graphically presented.

  17. Opening the CHOCBOX: clumpy stellar winds in Cyg X-1

    NASA Astrophysics Data System (ADS)

    Grinberg, V.; Uttley, P.; Wilms, J.; Miller-Jones, J.; Pottschmidt, K.; Niu, S.; Hirsch, M.; Chocbox Collaboration

    2017-10-01

    Winds of O/B-stars are key drivers of enrichment and star formation and evolution. Yet, our understanding of their clumpy structure is limited. Luckily, high mass X-ray binaries, where the compact object accretes from the stellar wind of the companion, are perfect laboratories to study such winds: the X-ray radiation from the vicinity of the compact object is quasi-pointlike and effectively X-rays the clumps crossing the line of sight. We observed the high mass X-ray binary Cyg X-1 with XMM for 7 consecutive days with simultaneous coverage with NuSTAR, INTEGRAL and VLBA. One of our main aims was to probe the wind of the O-type companion in an unprecedented uninterrupted campaign, spanning more than an orbital period and including two superior conjunctions where we expect the densest wind. Here, we present first results from the CHOCBOX (Cyg X-1 Hard state Observations of a Complete Binary Orbit in X-rays) campaign and compare them to previous work, in particular multi-year studies of absorption variability and high resolution snapshots with Chandra-HETG. We argue that the clumps have a complex structure with hotter outer and colder inner layers and are not symmetrical.

  18. Stellar winds in binary X-ray systems

    NASA Technical Reports Server (NTRS)

    Macgregor, K. B.; Vitello, P. A. J.

    1982-01-01

    It is thought that accretion from a strong stellar wind by a compact object may be responsible for the X-ray emission from binary systems containing a massive early-type primary. To investigate the effect of X-ray heating and ionization on the mass transfer process in systems of this type, an idealized model is constructed for the flow of a radiation-driven wind in the presence of an X-ray source of specified luminosity, L sub x. It is noted that for low values of L sub x, X-ray photoionization gives rise to additional ions having spectral lines with wavelengths situated near the peak of the primary continuum flux distribution. As a consequence, the radiation force acting on the gas increases in relation to its value in the absence of X-rays, and the wind is accelerated to higher velocities. As L sub x is increased, the degree of ionization of the wind increases, and the magnitude of the radiation force is diminished in comparison with the case in which L sub x = 0. This reduction leads at first to a decrease in the wind velocity and ultimately (for L sub x sufficiently large) to the termination of radiatively driven mass loss.

  19. AGN Obscuration from Winds: From Dusty Infrared-Driven to Warm and X-Ray Photoionized

    NASA Technical Reports Server (NTRS)

    Dorodnitsyn, A.; Kallman, T.

    2012-01-01

    We present calculations of AGN winds at approximate parsec scales, along with the associated obscuration. We take into account the pressure of infrared radiation on dust grains and the interaction of X-rays from a central black hole with hot and cold plasma. Infrared radiation (IR) is incorporated in radiation-hydrodynamic simulations adopting the flux-limited diffusion approximation. We find that in the range of X-ray luminosities L=0.05 - 0.6L(sub Edd) the Compton-thick part of the flow (aka torus) has an opening angle of approximately 72? -75? regardless of the luminosity. At L 0.1 the outflowing dusty wind provides the obscuration with IR pressure playing a major role. The global flow consists of two phases: the cold flow at inclinations (theta) greater than or approximately 70? and a hot, ionized wind of lower density at lower inclinations. The dynamical pressure of the hot wind is important in shaping the denser IR supported flow. At luminosities less than or equal to 0.1L(sub Edd) episodes of outflow are followed by extended periods when the wind switches to slow accretion.

  20. Supported PV module assembly

    DOEpatents

    Mascolo, Gianluigi; Taggart, David F.; Botkin, Jonathan D.; Edgett, Christopher S.

    2013-10-15

    A supported PV assembly may include a PV module comprising a PV panel and PV module supports including module supports having a support surface supporting the module, a module registration member engaging the PV module to properly position the PV module on the module support, and a mounting element. In some embodiments the PV module registration members engage only the external surfaces of the PV modules at the corners. In some embodiments the assembly includes a wind deflector with ballast secured to a least one of the PV module supports and the wind deflector. An array of the assemblies can be secured to one another at their corners to prevent horizontal separation of the adjacent corners while permitting the PV modules to flex relative to one another so to permit the array of PV modules to follow a contour of the support surface.

  1. Spectra of black hole accretion models of ultraluminous X-ray sources

    NASA Astrophysics Data System (ADS)

    Narayan, Ramesh; Sa̧dowski, Aleksander; Soria, Roberto

    2017-08-01

    We present general relativistic radiation magnetohydrodynamics simulations of super-Eddington accretion on a 10 M⊙ black hole. We consider a range of mass accretion rates, black hole spins and magnetic field configurations. We compute the spectra and images of the models as a function of viewing angle and compare them with the observed properties of ultraluminous X-ray sources (ULXs). The models easily produce apparent luminosities in excess of 1040 erg s-1 for pole-on observers. However, the angle-integrated radiative luminosities rarely exceed 2.5 × 1039 erg s-1 even for mass accretion rates of tens of Eddington. The systems are thus radiatively inefficient, though they are energetically efficient when the energy output in winds and jets is also counted. The simulated models reproduce the main empirical types of spectra - disc-like, supersoft, soft, hard - observed in ultraluminous X-ray sources (ULXs). The magnetic field configuration, whether 'standard and normal evolution' (SANE) or 'magnetically arrested disc' (MAD), has a strong effect on the results. In SANE models, the X-ray spectral hardness is almost independent of accretion rate, but decreases steeply with increasing inclination. MAD models with non-spinning black holes produce significantly softer spectra at higher values of \\dot{M}, even at low inclinations. MAD models with rapidly spinning black holes are unique. They are radiatively efficient (efficiency factor ˜10-20 per cent), superefficient when the mechanical energy output is also included (70 per cent) and produce hard blazar-like spectra. In all models, the emission shows strong geometrical beaming, which disagrees with the more isotropic illumination favoured by observations of ULX bubbles.

  2. Highly Ionized Fe-K Absorption Line from Cygnus X-1 in the High/Soft State Observed with Suzaku

    NASA Astrophysics Data System (ADS)

    Yamada, S.; Torii, S.; Mineshige, S.; Ueda, Y.; Kubota, A.; Gandhi, P.; Done, C.; Noda, H.; Yoshikawa, A.; Makishima, K.

    2013-04-01

    We present observations of a transient He-like Fe Kα absorption line in Suzaku observations of the black hole binary Cygnus X-1 on 2011 October 5 near superior conjunction during the high/soft state, which enable us to map the full evolution from the start to the end of the episodic accretion phenomena or dips for the first time. We model the X-ray spectra during the event and trace their evolution. The absorption line is rather weak in the first half of the observation, but instantly deepens for ~10 ks, and weakens thereafter. The overall change in equivalent width is a factor of ~3, peaking at an orbital phase of ~0.08. This is evidence that the companion stellar wind feeding the black hole is clumpy. By analyzing the line with a Voigt profile, it is found to be consistent with a slightly redshifted Fe XXV transition, or possibly a mixture of several species less ionized than Fe XXV. The data may be explained by a clump located at a distance of ~1010-12 cm with a density of ~10(- 13)-(- 11) g cm-3, which accretes onto and/or transits the line of sight to the black hole, causing an instant decrease in the observed degree of ionization and/or an increase in density of the accreting matter. Continued monitoring for individual events with future X-ray calorimeter missions such as ASTRO-H and AXSIO will allow us to map out the accretion environment in detail and how it changes between the various accretion states.

  3. Relativistic Outflows from ADAFs

    NASA Astrophysics Data System (ADS)

    Becker, Peter; Subramanian, Prasad; Kazanas, Demosthenes

    2001-04-01

    Advection-dominated accretion flows (ADAFs) have a positive Bernoulli parameter, and are therefore gravitationally bound. The Newtonian ADAF model has been generalized recently to obtain the ADIOS model that includes outflows of energy and angular momentum, thereby allowing accretion to proceed self-consistently. However, the utilization of a Newtonian gravitational potential limits the ability of this model to describe the inner region of the disk, where any relativistic outflows are likely to originate. In this paper we modify the ADIOS scenario to incorporate a seudo - Newtonian potential, which approximates the effects of general relativity. The analysis yields a unique, self - similar solution for the structure of the coupled disk/wind system. Interesting features of the new solution include the relativistic character of the outflow in the vicinity of the radius of marginal stability, which represents the inner edge of the quasi-Keplerian disk in our model. Our self - similar model may therefore help to explain the origin of relativistic jets in active galaxies. At large distances the radial dependence of the accretion rate approachs the unique form dot M ∝ r^1/2, with an associated density variation given by ρ ∝ r-1. This density variation agrees with that implied by the dependence of the X-ray hard time lags on the Fourier frequency for a number of accreting galactic black hole candidates. While intriguing, the results of our self-similar model need to be confirmed in the future by incorporating a detailed physical description of the energization mechanism that drives the outflow, which is likely to be powered by the shear of the underlying accretion disk.

  4. Puzzling accretion onto a black hole in the ultraluminous X-ray source M 101 ULX-1.

    PubMed

    Liu, Ji-Feng; Bregman, Joel N; Bai, Yu; Justham, Stephen; Crowther, Paul

    2013-11-28

    There are two proposed explanations for ultraluminous X-ray sources (ULXs) with luminosities in excess of 10(39) erg s(-1). They could be intermediate-mass black holes (more than 100-1,000 solar masses, M sun symbol) radiating at sub-maximal (sub-Eddington) rates, as in Galactic black-hole X-ray binaries but with larger, cooler accretion disks. Alternatively, they could be stellar-mass black holes radiating at Eddington or super-Eddington rates. On its discovery, M 101 ULX-1 had a luminosity of 3 × 10(39) erg s(-1) and a supersoft thermal disk spectrum with an exceptionally low temperature--uncomplicated by photons energized by a corona of hot electrons--more consistent with the expected appearance of an accreting intermediate-mass black hole. Here we report optical spectroscopic monitoring of M 101 ULX-1. We confirm the previous suggestion that the system contains a Wolf-Rayet star, and reveal that the orbital period is 8.2 days. The black hole has a minimum mass of 5 M sun symbol, and more probably a mass of 20 M sun symbol-30 M sun symbol, but we argue that it is very unlikely to be an intermediate-mass black hole. Therefore, its exceptionally soft spectra at high Eddington ratios violate the expectations for accretion onto stellar-mass black holes. Accretion must occur from captured stellar wind, which has hitherto been thought to be so inefficient that it could not power an ultraluminous source.

  5. Improved transformer-winding method

    NASA Technical Reports Server (NTRS)

    Mclyman, W. T.

    1978-01-01

    Proposed technique using special bobbin and fixture to wind copper wire directly on core eliminates need core cut prior to assembly. Application of technique could result in production of quieter core with increased permeability and no localized heating.

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Deason, Alis J.; Mao, Yao-Yuan; Wechsler, Risa H., E-mail: adeason@stanford.edu

    We study the mass spectrum of destroyed dwarfs that contribute to the accreted stellar mass of Milky Way (MW)-mass (M{sub vir} ∼ 10{sup 12.1} M{sub ⊙}) halos using a suite of 45 zoom-in dissipationless simulations. Empirical models are employed to relate (peak) subhalo mass to dwarf stellar mass, and we use constraints from z = 0 observations and hydrodynamical simulations to estimate the metallicity distribution of the accreted stellar material. The dominant contributors to the accreted stellar mass are relatively massive dwarfs with M{sub star} ∼ 10{sup 8}–10{sup 10}M{sub ⊙}. Halos with more quiescent accretion histories tend to have lower mass progenitors (10{sup 8}–10{sup 9} M{sub ⊙}), andmore » lower overall accreted stellar masses. Ultra-faint mass (M{sub star} < 10{sup 5} M{sub ⊙}) dwarfs contribute a negligible amount (≪1%) to the accreted stellar mass and, despite having low average metallicities, supply a small fraction (∼2%–5%) of the very metal-poor stars with [Fe/H] < −2. Dwarfs with masses 10{sup 5} < M{sub star}/M{sub ⊙} < 10{sup 8} provide a substantial amount of the very metal-poor stellar material (∼40%–80%), and even relatively metal-rich dwarfs with M{sub star} > 10{sup 8} M{sub ⊙} can contribute a considerable fraction (∼20%–60%) of metal-poor stars if their metallicity distributions have significant metal-poor tails. Finally, we find that the generic assumption of a quiescent assembly history for the MW halo seems to be in tension with the mass spectrum of its surviving dwarfs. We suggest that the MW could be a “transient fossil”; a quiescent halo with a recent accretion event(s) that disguises the preceding formation history of the halo.« less

  7. Late accretion to the terrestrial planets

    NASA Astrophysics Data System (ADS)

    Brasser, Ramon; Mojzsis, Stephen; Werner, Stephanie; Matsumura, Soko; Ida, Shigeru

    2017-10-01

    IntroductionIt is generally accepted that silicate-metal (`rocky') planet formation relies on coagulation from a mixture of sub-Mars sized planetary embryos and (smaller) planetesimals that dynamically emerge from the evolving circum-solar disc in the first few million years of our Solar System. Once the planets have, for the most part, assembled after a giant impact phase, they continue to be bombarded by a multitude of planetesimals left over from accretion. Here we place limits on the mass and evolution of these planetesimals based on constraints from the highly siderophile element (HSE) budget of the Moon. The terrestrial and lunar HSE budgets indicate that Earth’s and Moon’s additions through late accretion were 0.7 wt% and 0.02 wt% respectively. The disproportionate high accretion between the Earth and Moon could be explained by stochastic accretion of a few remaining Ceres-sized bodies that preferentially targeted the Earth.ResultsFrom a combination of N-body and Monte Carlo simulations of planet formation we conclude:1) matching the terrestrial to lunar HSE ratio requires that late accretion on Earth mostly consisted of a single lunar-size impactor striking the Earth before 4.45 Ga2) the flux of terrestrial impactors must have been low avoid wholesale melting of Earth's crust after 4.4 Ga[6], and to simultaneously match the number of observed lunar basins3) after the terrestrial planets have fully formed, the mass in remnant planetesimals was ~0.001 Earth mass, lower than most previous models suggest.4) Mars' HSE budget also requires a colossal impact with a Ceres-sized object before 4.43 Ga, whose visible remnant could be the hemispherical dichotomy.These conclusions lead to an Hadean eon which is more clement than assumed previously. In addition, our dynamically and geochemically self-consistent scenario requires that future N-body simulations of rocky planet formation either directly incorporate collisional grinding or rely on pebble accretion.

  8. Altitude Wind Tunnel Drive Fan being Assembled

    NASA Image and Video Library

    1943-07-21

    National Advisory Committee for Aeronautics (NACA) engineers assembled the Altitude Wind Tunnel’s (AWT) large wooden drive fan inside the hangar at the Aircraft Engine Research Laboratory. When it was built at the in the early 1940s the AWT was among the most complex test facilities ever designed. It was the first wind tunnel capable of operating full-scale engines under realistic flight conditions. This simulation included the reduction of air temperature, a decrease in air pressure, and the creation of an airstream velocity of up to 500 miles per hour. The AWT was constructed in 1942 and 1943. This photograph shows NACA engineers Lou Hermann and Jack Aust assembling the tunnel’s drive fan inside the hangar. The 12-bladed, 31-foot-diameter spruce wood fan would soon be installed inside the wind tunnel to create the high-speed airflow. This massive propeller was designed and constructed by the engine lab's design team at Langley Field. John Breisch, a Langley technician with several years of wind tunnel installation experience, arrived in Cleveland at the time of this photograph to supervise the fan assembly inside the hangar. He would return several weeks later to oversee the actual installation in the tunnel. The fan was driven at 410 revolutions per minute by an 18,000-horsepower General Electric induction motor that was located in the rear corner of the Exhauster Building. An extension shaft connected the motor to the fan. A bronze screen protected the fan against damage from failed engine parts sailing through the tunnel. Despite this screen the blades did become worn or cracked over time and had to be replaced. An entire new fan was installed in 1951.

  9. Contactless system of excitation current measurement in the windings with high inductance

    NASA Astrophysics Data System (ADS)

    Chubraeva, L.; Evseev, E.; Timofeev, S.

    2018-02-01

    The results of development, manufacturing and testing of a special contactless maintenance-free excitation current measurement system intended for the windings with high inductance, typical for superconductive alternators, are presented. The system was assembled on the brushless exciter is intended for 1 MVA wind-power generator with the winding, manufactured of high-temperature superconductors (HTSC). The alternator with brushless exciter were manufactured and successfully tested.

  10. The Spectral Variability of the T Tauri Star DF Tauri

    NASA Astrophysics Data System (ADS)

    Johns-Krull, Christopher M.; Basri, Gibor

    1997-01-01

    We analyze 117 echelle spectra of the T Tauri star DF Tau, concentrating on variations in the optical continuum veiling and the strong emission lines. Although this star was the inspiration for the original suggestion of magnetospheric accretion in T Tauri stars (TTSs), this hypothesis is only partially supported in our data. We find that variations in the Ca II infrared triplet lines correlate with the veiling variations; there is some evidence that the broad component of the He I line does, too. The narrow component of He I is shown to arise at the stellar surface, but it correlates with the broad component. There is a surprising lack of periodicity in the lines, and it does not occur where expected when seen. The correlation between continuum veiling and the line components expected to be most related to the veiling is poor. There is a great deal of variability in all the lines and line components; a snapshot spectrum is a poor way to characterize the star as a whole. The total Balmer line fluxes are poorly correlated with the veiling, unlike previous results on a large sample of TTSs. Redshifted absorption components are found in the weaker lines but are not common. The strength of the blueshifted absorption feature in Hα is correlated with the veiling, but changes in it perhaps occur before veiling changes by about one day. This time delay supports the idea that the wind originates at some distance from the stellar surface and is related to accretion. Spherically symmetric wind models are unable to reproduce well the relative absorption levels on the blue side of the Hα and Hβ lines simultaneously. Hα does not display the asymmetries expected of magnetospheric accretion, but it is sometimes suggestive of azimuthally asymmetric corotating structures. The line wings indicate that the formation region of the Hα line is dominated by high turbulence. Hβ does show more of the asymmetry expected of magnetospheric accretion. Based on observations obtained at the Lick Observatory operated by the University of California.

  11. Physical properties of a resin system for filling the inter-space in the ITER TF coil casing

    NASA Astrophysics Data System (ADS)

    Evans, D.; Baynahm, E.; Canfer, S.; Foussat, A.

    2014-01-01

    Each of the eighteen ITER Toroidal Field (TF) coils will consist of seven double pancakes. Each double pancake will have been individually vacuum impregnated and then the seven units assembled together, over-wrapped with glass fabric based insulation and finally vacuum impregnated again to form the TF coil winding pack [1]. The winding pack (WP) will be finally assembled into the coil casing (CC) and to allow for manufacturing tolerances and final geometric definition, a nominal 10 mm gap will exist between the winding pack and the coil case but in practice, this gap may vary between 3 and 15 mm. After assembly, the final step will be to fill the gap with a material that will maintain the final position of the WP and to uniformly transfer load from WP to CC. This paper deals with the selection of materials and techniques to fill the gap and details some of the properties of the chosen material.

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Simon, M. N.; Pascucci, I.; Keane, J. T.

    Using Keck/HIRES spectra (Δ v ∼ 7 km s{sup -1}) we analyze forbidden lines of [O i] 6300 Å, [O i] 5577 Å and [S ii] 6731 Å from 33 T Tauri stars covering a range of disk evolutionary stages. After removing a high-velocity component (HVC) associated with microjets, we study the properties of the low-velocity component (LVC). The LVC can be attributed to slow disk winds that could be magnetically (magnetohydrodynamic) or thermally (photoevaporative) driven. Both of these winds play an important role in the evolution and dispersal of protoplanetary material. LVC emission is seen in all 30 starsmore » with detected [O i] but only in two out of eight with detected [S ii], so our analysis is largely based on the properties of the [O i] LVC. The LVC itself is resolved into broad (BC) and narrow (NC) kinematic components. Both components are found over a wide range of accretion rates and their luminosity is correlated with the accretion luminosity, but the NC is proportionately stronger than the BC in transition disks. The full width at half maximum of both the BC and NC correlates with disk inclination, consistent with Keplerian broadening from radii of 0.05 to 0.5 au and 0.5 to 5 au, respectively. The velocity centroids of the BC suggest formation in an MHD disk wind, with the largest blueshifts found in sources with closer to face-on orientations. The velocity centroids of the NC, however, show no dependence on disk inclination. The origin of this component is less clear and the evidence for photoevaporation is not conclusive.« less

  13. External inverse-Compton emission from jetted tidal disruption events

    NASA Astrophysics Data System (ADS)

    Lu, Wenbin; Kumar, Pawan

    2016-05-01

    The recent discoveries of Sw J1644+57 and Sw J2058+05 show that tidal disruption events (TDEs) can launch relativistic jets. Super-Eddington accretion produces a strong radiation field of order Eddington luminosity. In a jetted TDE, electrons in the jet will inverse-Compton scatter the photons from the accretion disc and wind (external radiation field). Motivated by observations of thermal optical-UV spectra in Sw J2058+05 and several other TDEs, we assume the spectrum of the external radiation field intercepted by the relativistic jet to be blackbody. Hot electrons in the jet scatter this thermal radiation and produce luminosities 1045-1048 erg s- 1 in the X/γ-ray band. This model of thermal plus inverse-Compton radiation is applied to Sw J2058+05. First, we show that the blackbody component in the optical-UV spectrum most likely has its origin in the super-Eddington wind from the disc. Then, using the observed blackbody component as the external radiation field, we show that the X-ray luminosity and spectrum are consistent with the inverse-Compton emission, under the following conditions: (1) the jet Lorentz factor is Γ ≃ 5-10; (2) electrons in the jet have a power-law distribution dN_e/dγ _e ∝ γ _e^{-p} with γmin ˜ 1 and p = 2.4; (3) the wind is mildly relativistic (Lorentz factor ≳ 1.5) and has isotropic-equivalent mass-loss rate ˜ 5 M⊙ yr- 1. We describe the implications for jet composition and the radius where jet energy is converted to radiation.

  14. Wind diagnostics and correlations with the near-infrared excess in Herbig Ae/Be stars

    NASA Astrophysics Data System (ADS)

    Corcoran, M.; Ray, T. P.

    1998-03-01

    Intermediate dispersion spectroscopic observations of 37 Herbig Ae/Be stars reveal that the equivalent widths of their [OI]lambda 6300 and Hα emission lines, are related to their near-infrared colours in the same fashion as the T-Tauri stars. Such a correlation strongly supports the idea that the winds from Herbig Ae/Be stars arise in the same manner as those from T-Tauri stars, i.e. through accretion driven mass-loss. We also find that the [OI]lambda 6300 line luminosity correlates better with excess infrared luminosity than with stellar luminosities, again supporting the idea that Herbig Ae/Be winds are accretion driven. If one includes the lower mass analogues of the Herbig Ae/Be stars with forbidden line emission, i.e. the classical T-Tauri stars, the correlation between mass-loss rate and infrared excess spans 5 orders of magnitude in luminosity and a range of masses from 0.5Msun to approximately 10Msun. Our observations therefore extend the findings of Cohen et al. (1989) and Cabrit et al. (1990) for low mass young stars and, taken in conjunction with other evidence (Corcoran & Ray 1997), strongly support the presence of circumstellar disks around intermediate mass stars with forbidden line emission. An implication of our findings is that the same outflow model must be applicable to these Herbig Ae/Be stars and the classical T Tauri stars. Based on observations made at the La Palma Observatory, the Caltech Submillimeter Observatory, and the European Southern Observatory/Max Planck Institute 2.2m Telescope.

  15. Multiphase environment of compact galactic nuclei: the role of the nuclear star cluster

    NASA Astrophysics Data System (ADS)

    Różańska, A.; Kunneriath, D.; Czerny, B.; Adhikari, T. P.; Karas, V.

    2017-01-01

    We study the conditions for the onset of thermal instability in the innermost regions of compact galactic nuclei, where the properties of the interstellar environment are governed by the interplay of quasi-spherical accretion on to a supermassive black hole (SMBH) and the heating/cooling processes of gas in a dense nuclear star cluster (NSC). Stellar winds are the source of material for radiatively inefficient (quasi-spherical, non-magnetized) inflow/outflow on to the central SMBH, where a stagnation point develops within the Bondi-type accretion. We study the local thermal equilibrium to determine the parameter space that allows cold and hot phases in mutual contact to co-exist. We include the effects of mechanical heating by stellar winds and radiative cooling/heating by the ambient field of the dense star cluster. We consider two examples: the NSC in the Milky Way central region (including the gaseous mini-spiral of Sgr A*), and the ultracompact dwarf galaxy M60-UCD1. We find that the two systems behave in different ways because they are placed in different areas of parameter space in the instability diagram: gas temperature versus dynamical ionization parameter. In the case of Sgr A*, stellar heating prevents the spontaneous formation of cold clouds. The plasma from stellar winds joins the hot X-ray emitting phase and forms an outflow. In M60-UCD1, our model predicts spontaneous formation of cold clouds in the inner part of the galaxy. These cold clouds may survive since the cooling time-scale is shorter than the inflow/outflow time-scale.

  16. Magnetic field decay in black widow pulsars

    NASA Astrophysics Data System (ADS)

    Mendes, Camile; de Avellar, Marcio G. B.; Horvath, J. E.; Souza, Rodrigo A. de; Benvenuto, O. G.; De Vito, M. A.

    2018-04-01

    We study in this work the evolution of the magnetic field in `redback-black widow' pulsars. Evolutionary calculations of these `spider' systems suggest that first the accretion operates in the redback stage, and later the companion star ablates matter due to winds from the recycled pulsar. It is generally believed that mass accretion by the pulsar results in a rapid decay of the magnetic field when compared to the rate of an isolated neutron star. We study the evolution of the magnetic field in black widow pulsars by solving numerically the induction equation using the modified Crank-Nicolson method with intermittent episodes of mass accretion on to the neutron star. Our results show that the magnetic field does not fall below a minimum value (`bottom field') in spite of the long evolution time of the black widow systems, extending the previous conclusions for much younger low-mass X-ray binary systems. We find that in this scenario, the magnetic field decay is dominated by the accretion rate, and that the existence of a bottom field is likely related to the fact that the surface temperature of the pulsar does not decay as predicted by the current cooling models. We also observe that the impurity of the pulsar crust is not a dominant factor in the decay of magnetic field for the long evolution time of black widow systems.

  17. Lunar surface magnetometer experiment

    NASA Technical Reports Server (NTRS)

    Dyal, P.; Parkin, C. W.; Sonett, C. P.

    1972-01-01

    The Apollo 15 lunar-surface magnetometer (LSM) is one of a network of magnetometers that have been deployed on the moon to study intrinsic remanent magnetic fields and global magnetic response of the moon to large-scale solar and terrestrial magnetic fields. From these field measurements, properties of the lunar interior such as magnetic permeability, electrical conductivity, and temperature can be calculated. In addition, correlation with solar-wind-spectrometer data allows study of the the solar-wind plasma interaction with the moon and, in turn, investigation of the resulting absorption of gases and accretion of an ionosphere. These physical parameters and processes determined from magnetometer measurements must be accounted for by comprehensive theories of origin and evolution of the moon and solar system.

  18. A Suzaku X-ray Observation of One Orbit of the Supergiant Fast X-ray Transient IGR J16479-4514

    NASA Technical Reports Server (NTRS)

    Sidoli, L.; Esposito, P.; Sguera, V.; Bodaghee, A.; Tomsick, J. A.; Pottschmidt, K.; Rodriguez, J.; Ramano, P.; Wilms, J.

    2013-01-01

    We report on a 250 ks long X-ray observation of the supergiant fast X-ray transient (SFXT) IGR J16479-4514 performed with Suzaku in 2012 February. During this observation, about 80% of the short orbital period (P(sub orb) approximates 3.32 days) was covered as continuously as possible for the first time. The source light curve displays variability of more than two orders of magnitude, starting with a very low emission state (10(exp -13) erg / sq cm/s; 1-10 keV) lasting the first 46 ks, consistent with being due to the X-ray eclipse by the supergiant companion. The transition to the uneclipsed X-ray emission is energy dependent. Outside the eclipse, the source spends most of the time at a level of 6-7X10)(exp-12) erg/sq. cm/s) punctuated by two structured faint flares with a duration of about 10 and 15 ks, respectively, reaching a peak flux of 3-4X10(exp -11) erg/sq. cm./S, separated by about 0.2 in orbital phase. Remarkably, the first faint flare occurs at a similar orbital phase of the bright flares previously observed in the system. This indicates the presence of a phase-locked large scale structure in the supergiant wind, driving a higher accretion rate onto the compact object. The average X-ray spectrum is hard and highly absorbed, with a column density, NH, of 10*exp 23)/sq cm, clearly in excess of the interstellar absorption. There is no evidence for variability of the absorbing column density, except that during the eclipse, where a less absorbed X-ray spectrum is observed. A narrow Fe K-alpha emission line at 6.4 keV is viewed along the whole orbit, with an intensity which correlates with the continuum emission above 7 keV. The scattered component visible during the X-ray eclipse allowed us to directly probe the wind density at the orbital separation, resulting in rho(sub w)=7X10(exp -14) g/cubic cm. Assuming a spherical geometry for the supergiant wind, the derived wind density translates into a ratio M(sub w)/v(sub infinity) = 7X10(exp -17) Solar M/km which, assuming terminal velocities in a large range 500-3000 km/s, implies an accretion luminosity two orders of magnitude higher than that observed. As a consequence, a mechanism should be at work reducing the mass accretion rate. Different possibilities are discussed.

  19. Equilibrium configuration of a stratus floating above accretion disks: Full-disk calculation

    NASA Astrophysics Data System (ADS)

    Itanishi, Yusuke; Fukue, Jun

    2017-06-01

    We examine floating strati above a luminous accretion disk, supported by the radiative force from the entire disk, and calculate the equilibrium locus, which depends on the disk luminosity and the optical depth of the stratus. Due to the radiative transfer effect (albedo effect), the floating height of the stratus with a finite optical depth generally becomes high, compared with the particle case. In contrast to the case of the near-disk approximation, moreover, the floating height becomes yet higher in the present full-disk calculation, since the intense radiation from the inner disk is taken into account. As a result, when the disk luminosity normalized by the Eddington luminosity is ˜0.3 and the stratus optical depth is around unity, the stable configuration disappears at around r ˜ 50 rg, rg being the Schwarzschild radius, and the stratus would be blown off as a cloudy wind consisting of many strati with appropriate conditions. This luminosity is sufficiently smaller than the Eddington one, and the present results suggest that the radiation-driven cloudy wind can be easily blown off from the sub-Eddington disk, and this can explain various outflows observed in ultra-fast outflow objects as well as in broad-absorption-line quasars.

  20. 1FGL J1417.7-4407: A Likely Gamma-Ray Bright Binary with A Massive Neutron Star and A Giant Secondary

    NASA Technical Reports Server (NTRS)

    Strader, Jay; Chomiuk, Laura; Cheung, C. C.; Sand, David J.; Donato, Davide; Corbet, Robin H. D.; Koeppe, Dana; Edwards, Philip G.; Stevens, Jamie; Petrov, Leonid

    2015-01-01

    We present multiwavelength observations of the persistent Fermi-Large Area Telescope unidentified gamma-ray source 1FGL J1417.7-4407, showing it is likely to be associated with a newly discovered X-ray binary containing a massive neutron star (nearly 2 solar mass) and a approximately 0.35 solar mass giant secondary with a 5.4 day period. SOAR optical spectroscopy at a range of orbital phases reveals variable double-peaked H alpha emission, consistent with the presence of an accretion disk. The lack of radio emission and evidence for a disk suggests the gamma-ray emission is unlikely to originate in a pulsar magnetosphere, but could instead be associated with a pulsar wind, relativistic jet, or could be due to synchrotron self-Compton at the disk-magnetosphere boundary. Assuming a wind or jet, the high ratio of gamma- ray to X-ray luminosity (approximately 20) suggests efficient production of gamma-rays, perhaps due to the giant companion. The system appears to be a low-mass X-ray binary that has not yet completed the pulsar recycling process. This system is a good candidate to monitor for a future transition between accretion-powered and rotational-powered states, but in the context of a giant secondary.

  1. SPECTROSCOPY ALONG MULTIPLE, LENSED SIGHT LINES THROUGH OUTFLOWING WINDS IN THE QUASAR SDSS J1029+2623

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Misawa, Toru; Inada, Naohisa; Ohsuga, Ken

    2013-02-01

    We study the origin of absorption features on the blue side of the C IV broad emission line of the large-separation lensed quasar SDSS J1029+2623 at z{sub em} {approx} 2.197. The quasar images, produced by a foreground cluster of galaxies, have a maximum separation angle of {theta} {approx} 22.''5. The large angular separation suggests that the sight lines to the quasar central source can go through different regions of outflowing winds from the accretion disk of the quasar, providing a unique opportunity to study the structure of outflows from the accretion disk, a key ingredient for the evolution of quasarsmore » as well as for galaxy formation and evolution. Based on medium- and high-resolution spectroscopy of the two brightest images conducted at the Subaru telescope, we find that each image has different intrinsic levels of absorptions, which can be attributed either to variability of absorption features over the time delay between the lensed images, {Delta}t {approx} 744 days, or to the fine structure of quasar outflows probed by the multiple sight lines toward the quasar. While both these scenarios are consistent with the current data, we argue that they can be distinguished with additional spectroscopic monitoring observations.« less

  2. The Swift Supergiant Fast X-ray Transient Project

    NASA Astrophysics Data System (ADS)

    Romano, P.; Barthelmy, S.; Bozzo, E.; Burrows, D.; Ducci, L.; Esposito, P.; Evans, P.; Kennea, J.; Krimm, H.; Vercellone, S.

    2017-10-01

    We present the Swift Supergiant Fast X-ray Transients project, a systematic study of SFXTs and classical supergiant X-ray binaries (SGXBs) through efficient long-term monitoring of 17 sources including SFXTs and classical SGXBs across more than 4 orders of magnitude in X-ray luminosity on timescales from hundred seconds to years. We derived dynamic ranges, duty cycles, and luminosity distributions to highlight systematic differences that help discriminate between different theoretical models proposed to explain the differences between the wind accretion processes in SFXTs and classical SGXBs. Our follow-ups of the SFXT outbursts provide a steady advancement in the comprehension of the mechanisms triggering the high X-ray level emission of these sources. In particular, the observations of the outburst of the SFXT prototype IGR J17544-2619, when the source reached a peak X-ray luminosity of 3×10^{38} erg s^{-1}, challenged for the first time the maximum theoretical luminosity achievable by a wind-fed neutron star high mass X-ray binary. We propose that this giant outburst was due to the formation of a transient accretion disc around the compact object. We also created a catalogue of over 1000 BAT flares which we use to predict the observability and perspectives with future missions.

  3. Evidence for ultrafast outflows in radio-quiet AGNs - III. Location and energetics

    NASA Astrophysics Data System (ADS)

    Tombesi, F.; Cappi, M.; Reeves, J. N.; Braito, V.

    2012-05-01

    Using the results of a previous X-ray photoionization modelling of blueshifted Fe K absorption lines on a sample of 42 local radio-quiet AGNs observed with XMM-Newton, in this Letter we estimate the location and energetics of the associated ultrafast outflows (UFOs). Due to significant uncertainties, we are essentially able to place only lower/upper limits. On average, their location is in the interval ˜0.0003-0.03 pc (˜ 102-104rs) from the central black hole, consistent with what is expected for accretion disc winds/outflows. The mass outflow rates are constrained between ˜0.01 and 1 M⊙ yr-1, corresponding to >rsim5-10 per cent of the accretion rates. The average lower/upper limits on the mechanical power are log? 42.6-44.6 erg s-1. However, the minimum possible value of the ratio between the mechanical power and bolometric luminosity is constrained to be comparable or higher than the minimum required by simulations of feedback induced by winds/outflows. Therefore, this work demonstrates that UFOs are indeed capable to provide a significant contribution to the AGN cosmological feedback, in agreement with theoretical expectations and the recent observation of interactions between AGN outflows and the interstellar medium in several Seyfert galaxies.

  4. Evaluation of Alternative Altitude Scaling Methods for Thermal Ice Protection System in NASA Icing Research Tunnel

    NASA Technical Reports Server (NTRS)

    Lee, Sam; Addy, Harold; Broeren, Andy P.; Orchard, David M.

    2017-01-01

    A test was conducted at NASA Icing Research Tunnel to evaluate altitude scaling methods for thermal ice protection system. Two scaling methods based on Weber number were compared against a method based on the Reynolds number. The results generally agreed with the previous set of tests conducted in NRCC Altitude Icing Wind Tunnel. The Weber number based scaling methods resulted in smaller runback ice mass than the Reynolds number based scaling method. The ice accretions from the Weber number based scaling method also formed farther upstream. However there were large differences in the accreted ice mass between the two Weber number based scaling methods. The difference became greater when the speed was increased. This indicated that there may be some Reynolds number effects that isnt fully accounted for and warrants further study.

  5. HeI lambda 10830 line: a probe of the accretion/ejection activity in RU Lupi .

    NASA Astrophysics Data System (ADS)

    Podio, L.; Garcia, P. J. V.; Bacciotti, F.

    Most of the observed lines and continuum emission excesses from Classical T Tauri Stars (CTTSs) take place at the star-disk interface or in the inner disk region. These regions have a complex emission topology still largely unknown. The HeI lambda 10830 line showed to be a powerful instrument to trace both accreting matter, in emission, and outflowing gas via the frequently detected absorption features. To fully exploit the diagnostic potential of this line we performed a spectro-astrometric analysis of the spectra of the TTS RU Lupi, taken with ISAAC at the VLT. The analysis highlighted a displacement with respect to the source of the region where the absorption feature is generated. This indicates the presence of both an inner stellar wind and a collimated micro-jet in the circumstellar region of RU Lupi.

  6. A Persistent Disk Wind in GRS 1915+105 with NICER

    NASA Astrophysics Data System (ADS)

    Neilsen, J.; Cackett, E.; Remillard, R. A.; Homan, J.; Steiner, J. F.; Gendreau, K.; Arzoumanian, Z.; Prigozhin, G.; LaMarr, B.; Doty, J.; Eikenberry, S.; Tombesi, F.; Ludlam, R.; Kara, E.; Altamirano, D.; Fabian, A. C.

    2018-06-01

    The bright, erratic black hole X-ray binary GRS 1915+105 has long been a target for studies of disk instabilities, radio/infrared jets, and accretion disk winds, with implications that often apply to sources that do not exhibit its exotic X-ray variability. With the launch of the Neutron star Interior Composition Explorer (NICER), we have a new opportunity to study the disk wind in GRS 1915+105 and its variability on short and long timescales. Here we present our analysis of 39 NICER observations of GRS 1915+105 collected during five months of the mission data validation and verification phase, focusing on Fe XXV and Fe XXVI absorption. We report the detection of strong Fe XXVI in 32 (>80%) of these observations, with another four marginal detections; Fe XXV is less common, but both likely arise in the well-known disk wind. We explore how the properties of this wind depend on broad characteristics of the X-ray lightcurve: mean count rate, hardness ratio, and fractional rms variability. The trends with count rate and rms are consistent with an average wind column density that is fairly steady between observations but varies rapidly with the source on timescales of seconds. The line dependence on spectral hardness echoes the known behavior of disk winds in outbursts of Galactic black holes; these results clearly indicate that NICER is a powerful tool for studying black hole winds.

  7. KSC-05pd2349

    NASA Image and Video Library

    2005-10-25

    KENNEDY SPACE CENTER, FLA. - A piece of metal lies on the ground near the NASA Kennedy Space Center’s Vehicle Assembly Building following the wrath of hurricane Wilma as it crossed the state Oct. 24. Kennedy’s facilities sustained minor structural damage, primarily to roofs or from water intrusion. The Vehicle Assembly Building lost some panels on the east and west sides. Some facilities lost power. A total of 13.6 inches of rain was recorded at the Shuttle Landing Facility. The highest wind gust recorded was 94 mph from the north-northwest at Launch Pad 39B, while the maximum sustained wind was 76 mph from the north-northwest at the top of the 492-foot weather tower located north of the Vehicle Assembly Building.

  8. KSC-05pd2352

    NASA Image and Video Library

    2005-10-25

    KENNEDY SPACE CENTER, FLA. - Pieces of metal lie alongside a fence near NASA Kennedy Space Center’s Vehicle Assembly Building following the wrath of hurricane Wilma as it crossed the state Oct. 24. Kennedy’s facilities sustained minor structural damage, primarily to roofs or from water intrusion. The Vehicle Assembly Building lost some panels on the east and west sides. Some facilities lost power. A total of 13.6 inches of rain was recorded at the Shuttle Landing Facility. The highest wind gust recorded was 94 mph from the north-northwest at Launch Pad 39B, while the maximum sustained wind was 76 mph from the north-northwest at the top of the 492-foot weather tower located north of the Vehicle Assembly Building.

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Madau, Piero; Haardt, Francesco; Dotti, Massimo

    We consider super-critical accretion with angular momentum onto stellar-mass black holes as a possible mechanism for growing billion-solar-mass black holes from light seeds at early times. We use the radiatively inefficient ''slim disk'' solution—advective, optically thick flows that generalize the standard geometrically thin disk model—to show how mildly super-Eddington intermittent accretion may significantly ease the problem of assembling the first massive black holes when the universe was less than 0.8 Gyr old. Because of the low radiative efficiencies of slim disks around non-rotating as well as rapidly rotating black holes, the mass e-folding timescale in this regime is nearly independent ofmore » the spin parameter. The conditions that may lead to super-critical growth in the early universe are briefly discussed.« less

  10. Coronal Structures in Cool Stars

    NASA Technical Reports Server (NTRS)

    Oliversen, Ronald (Technical Monitor); Dupree, Andrea K.

    2005-01-01

    We have extended our study of the structure of coronas in cool stars to very young stars still accreting from their surrounding disks. In addition we are pursing the connection between coronal X-rays and a powerful diagnostic line in the infrared, the He I 10830Angstrom transition of helium. Highlights of these are summarized below including publications during this reporting period and presentations. Spectroscopy of the infrared He I (lambda10830) line with KECK/NIRSPEC and IRTF/CSHELL and of the ultraviolet C III (lambda977) and O VI (lambda1032) emission with FUSE reveals that the classical T Tauri star TW Hydrae exhibits P Cygni profiles, line asymmetries, and absorption indicative of a continuous, fast (approximately 400 kilometers per second), hot (approximately 300,000 K) accelerating outflow with a mass loss rate approximately 10(exp -11)-10(exp -12) solar mass yr(sup -1) or larger. Spectra of T Tauri N appear consistent with such a wind. The source of the emission and outflow seems restricted to the stars themselves. Although the mass accretion rate is an order of magnitude less for TW Hya than for T Tau, the outflow reaches higher velocities at chromospheric temperatures in TW Hya. Winds from young stellar objects may be substantially hotter and faster than previously thought. The ultraviolet emission lines, when corrected for absorption are broad. Emission associated with the accretion flow and shock is likely to show turbulent broadening. We note that the UV line widths are significantly larger than the X-ray line widths. If the X-rays from TW Hya are generated at the accretion shock, the UV lines may not be directly associated with the shock. On the other hand, studies of X-ray emission in young star clusters, suggest that the strength of the X-ray emission is correlated with stellar rotation, thus casting doubt on an accretion origin for the X-rays. We are beginning to access the infrared spectral region where the He I 108308Angstroms transition occurs. This line is particularly useful as a diagnostic of coronal radiation since it is formed by recombination following photoionization of neutral helium by coronal X-rays. Because the lower level of the transition is metastable, infrared radiation from the stellar photosphere is absorbed which provides a diagnostic of atmospheric dynamics. This transition is useful both in young stars in the T Tauri phase and in active cool star binaries. We will investigate the influence of coronal x-rays on the strength of this transition.

  11. Disk-driven hydromagnetic winds as a key ingredient of active galactic nuclei unification schemes

    NASA Technical Reports Server (NTRS)

    Konigl, Arieh; Kartje, John F.

    1994-01-01

    Centrifugally driven winds from the surfaces of magnetized accretion disks have been recognized as an attractive mechanism of removing the angular momentum of the accreted matter and of producing the bipolar outflows and jets that are often associated with compact astronomical objects. As previously suggested in the context of young stellar objects, such winds have unique observational manifestations stemming from their highly stratified density and velocity structure and from their exposure to the strong continuum radiation field of the compact object. We have applied this scenario to active galactic nuclei (AGNs) and investigated the properties of hydromagnetic outflows that originate within approximately 10(M(sub 8)) pc of the central 10(exp 8)(M(sub 8)) solar mass black hole. On the basis of our results, we propose that hydromagnetic disk-driven winds may underlie the classification of broad-line and narrow-line AGNs (e.g., the Seyfert 1/Seyfert 2 dichotomy) as well as the apparent dearth of luminous Seyfert 2 galaxies. More generally, we demonstrate that such winds could strongly influence the spectral characteristics of Seyfert galaxies, QSOs, and BL Lac objects (BLOs). In our picture, the torus is identified with the outer regions of the wind where dust uplifted from the disk surfaces by gas-grain collisions is embedded in the outflow. Using an efficient radiative transfer code, we show that the infrared emission of Seyfert galaxies and QSOs can be attributed to the reprocessing of the UV/soft X-ray AGN continuum by the dust in the wind and the disk. We demonstrate that the radiation pressure force flattens the dust distribution in objects with comparatively high (but possibly sub-Eddington) bolometric luminosities, and we propose this as one likely reason for the apparent paucity of narrow-line objects among certain high-luminosity AGNs. Using the XSTAR photoionization code, we show that the inner regions of the wind could naturally account for the warm (greater than or approximately equal to 10(exp 5) K) and hot (greater than or approximately equal to 10(exp 6) K) gas components that have been inferred to exist on scales less than or approximately equal to 10(exp 2) pc in several Seyfert galaxies. We suggest that the partially ionized gas in the inner regions of the wind, rather than the dusty, neutral outflow that originates further out in the disk, could account for the bulk of the X-ray absorption in Seyferts observed at relatively small angles to their symmetry axes. Finally, we discuss the application of this model to the interpretation of the approximately 0.6 keV X-ray absorption feature reported in several BLOs.

  12. Methods and apparatus for cooling wind turbine generators

    DOEpatents

    Salamah, Samir A [Niskayuna, NY; Gadre, Aniruddha Dattatraya [Rexford, NY; Garg, Jivtesh [Schenectady, NY; Bagepalli, Bharat Sampathkumaran [Niskayuna, NY; Jansen, Patrick Lee [Alplaus, NY; Carl, Jr., Ralph James

    2008-10-28

    A wind turbine generator includes a stator having a core and a plurality of stator windings circumferentially spaced about a generator longitudinal axis. A rotor is rotatable about the generator longitudinal axis, and the rotor includes a plurality of magnetic elements coupled to the rotor and cooperating with the stator windings. The magnetic elements are configured to generate a magnetic field and the stator windings are configured to interact with the magnetic field to generate a voltage in the stator windings. A heat pipe assembly thermally engaging one of the stator and the rotor to dissipate heat generated in the stator or rotor.

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bacciotti, F.; Randich, S.; Whelan, E. T.

    We present the first pilot study of jets from young stars conducted with X-shooter, on the ESO/Very Large Telescope. As it offers simultaneous, high-quality spectra in the range 300-2500 nm, X-shooter is uniquely important for spectral diagnostics in jet studies. We chose to probe the accretion/ejection mechanisms at low stellar masses examining two targets with well-resolved continuous jets lying on the plane of the sky: ESO-HA 574 in Chameleon I and Par-Lup3-4 in Lupus III. The mass of the latter is close to the sub-stellar boundary (M{sub *} = 0.13 M{sub sun}). A large number of emission lines probing regionsmore » of different excitation are identified, position-velocity diagrams are presented, and mass outflow/accretion rates are estimated. Comparison between the two objects is striking. ESO-HA 574 is a weakly accreting star for which we estimate a mass accretion rate of log ( M-dot{sub acc}) = -10.8{+-}0.5 (in M{sub sun} yr{sup -1}), yet it drives a powerful jet with M-dot{sub out} {approx} 1.5-2.7 x 10{sup -9} M{sub sun} yr{sup -1}. These values can be reconciled with a magneto-centrifugal jet acceleration mechanism assuming that the presence of the edge-on disk severely depresses the luminosity of the accretion tracers. In comparison, Par-Lup3-4, with stronger mass accretion ( log ( M-dot{sub acc}) = -9.1{+-}0.4 M{sub sun} yr{sup -1}), drives a low-excitation jet with about M-dot{sub out} {approx} 3.2 x 10{sup -10} M{sub sun} yr{sup -1} in both lobes. Despite the low stellar mass, M-dot{sub out}/ M-dot{sub acc} for Par-Lup3-4 is at the upper limit of the range usually measured for young objects, but still compatible with a steady magneto-centrifugal wind scenario if all uncertainties are considered.« less

  14. The First X-shooter Observations of Jets from Young Stars

    NASA Astrophysics Data System (ADS)

    Bacciotti, F.; Whelan, E. T.; Alcalá, J. M.; Nisini, B.; Podio, L.; Randich, S.; Stelzer, B.; Cupani, G.

    2011-08-01

    We present the first pilot study of jets from young stars conducted with X-shooter, on the ESO/Very Large Telescope. As it offers simultaneous, high-quality spectra in the range 300-2500 nm, X-shooter is uniquely important for spectral diagnostics in jet studies. We chose to probe the accretion/ejection mechanisms at low stellar masses examining two targets with well-resolved continuous jets lying on the plane of the sky: ESO-HA 574 in Chameleon I and Par-Lup3-4 in Lupus III. The mass of the latter is close to the sub-stellar boundary (M sstarf = 0.13 M sun). A large number of emission lines probing regions of different excitation are identified, position-velocity diagrams are presented, and mass outflow/accretion rates are estimated. Comparison between the two objects is striking. ESO-HA 574 is a weakly accreting star for which we estimate a mass accretion rate of log (\\dot{M}_{acc}) = -10.8 +/- 0.5 (in M sun yr-1), yet it drives a powerful jet with \\dot{M}_{out} ~ 1.5-2.7 × 10-9 M sun yr-1. These values can be reconciled with a magneto-centrifugal jet acceleration mechanism assuming that the presence of the edge-on disk severely depresses the luminosity of the accretion tracers. In comparison, Par-Lup3-4, with stronger mass accretion (log (\\dot{M}_{acc}) = -9.1 +/- 0.4 M sun yr-1), drives a low-excitation jet with about \\dot{M}_{out} ~ 3.2 × 10-10 M sun yr-1 in both lobes. Despite the low stellar mass, \\dot{M}_{out}/\\dot{M}_{acc} for Par-Lup3-4 is at the upper limit of the range usually measured for young objects, but still compatible with a steady magneto-centrifugal wind scenario if all uncertainties are considered. Based on Observations collected with X-shooter at the Very Large Telescope on Cerro Paranal (Chile), operated by the European Southern Observatory (ESO). Program ID: 085.C-0238(A).

  15. Accretion onto stellar mass black holes

    NASA Astrophysics Data System (ADS)

    Deegan, Patrick

    2009-12-01

    I present work on the accretion onto stellar mass black holes in several scenarios. Due to dynamical friction stellar mass black holes are expected to form high density cusps in the inner parsec of our Galaxy. These compact remnants may be accreting cold dense gas present there, and give rise to potentially observable X-ray emission. I build a simple but detailed time-dependent model of such emission. Future observations of the distribution and orbits of the gas in the inner parsec of Sgr A* will put tighter constraints on the cusp of compact remnants. GRS 1915+105 is an LMXB, whose large orbital period implies a very large accretion disc and explains the extraordinary duration of its current outburst. I present smoothed particle hydrodynamic simulations of the accretion disc. The models includes the thermo-viscous instability, irradiation from the central object and wind loss. I find that the outburst of GRS 1915+105 should last a minimum of 20 years and up to ˜ 100 years if the irradiation is playing a significant role in this system. The predicted recurrence times are of the order of 104 years, making the duty cycle of GRS 1915+105 to be a few 0.1%. I present a simple analytical method to describe the observable behaviour of long period black hole LMXBs, similar to GRS 1915+105. Constructing two simple models for the surface density in the disc, outburst and quiescence times are calculated as a function of orbital period. LMXBs are an important constituent of the X-ray light function (XLF) of giant elliptical galaxies. I find that the duty cycle can vary considerably with orbital period, with implications for modelling the XLF.

  16. Evolution of Spin, Orbital, and Superorbital Modulations of 4U 0114+650

    NASA Astrophysics Data System (ADS)

    Hu, Chin-Ping; Chou, Yi; Ng, C.-Y.; Lin, Lupin Chun-Che; Yen, David Chien-Chang

    2017-07-01

    We report a systematic analysis of the spin, orbital, and superorbital modulations of 4U 0114+650, a high-mass X-ray binary that consists of one of the slowest spinning neutron stars. Using the dynamic power spectrum, we found that the spin period varied dramatically and is anticorrelated with the long-term X-ray flux variation that can be observed using the Rossi X-ray Timing Explorer ASM, Swift BAT, and the Monitor of All-sky X-ray Image. The spin-up rate over the entire data set is consistent with previously reported values; however, the local spin-up rate is considerably higher. The corresponding local spin-up timescale is comparable to the local spin-up rate of OAO 1657-415, indicating that 4U 0114+650 could also have a transient disk. Moreover, the spin period evolution shows two ˜1000-day spin-down/random-walk epochs that appeared together with depressions of the superorbital modulation amplitude. This implies that the superorbital modulation was closely related to the presence of the accretion disk, which is not favored in the spin-down/random-walk epochs because the accretion is dominated by the direct wind accretion. The orbital period is stable during the entire time span; however, the orbital profile significantly changes with time. We found that the depth of the dip near the inferior conjunction of the companion is highly variable, which disfavors the eclipsing scenario. Moreover, the dip was less obvious during the spin-down/random-walk epochs, indicating its correlation with the accretion disk. Further monitoring in both X-ray and optical bands could reveal the establishment of the accretion disk in this system.

  17. Evolution of Spin, Orbital, and Superorbital Modulations of 4U 0114+650

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hu, Chin-Ping; Ng, C.-Y.; Chou, Yi

    2017-07-20

    We report a systematic analysis of the spin, orbital, and superorbital modulations of 4U 0114+650, a high-mass X-ray binary that consists of one of the slowest spinning neutron stars. Using the dynamic power spectrum, we found that the spin period varied dramatically and is anticorrelated with the long-term X-ray flux variation that can be observed using the Rossi X-ray Timing Explorer ASM, Swift BAT, and the Monitor of All-sky X-ray Image. The spin-up rate over the entire data set is consistent with previously reported values; however, the local spin-up rate is considerably higher. The corresponding local spin-up timescale is comparablemore » to the local spin-up rate of OAO 1657−415, indicating that 4U 0114+650 could also have a transient disk. Moreover, the spin period evolution shows two ∼1000-day spin-down/random-walk epochs that appeared together with depressions of the superorbital modulation amplitude. This implies that the superorbital modulation was closely related to the presence of the accretion disk, which is not favored in the spin-down/random-walk epochs because the accretion is dominated by the direct wind accretion. The orbital period is stable during the entire time span; however, the orbital profile significantly changes with time. We found that the depth of the dip near the inferior conjunction of the companion is highly variable, which disfavors the eclipsing scenario. Moreover, the dip was less obvious during the spin-down/random-walk epochs, indicating its correlation with the accretion disk. Further monitoring in both X-ray and optical bands could reveal the establishment of the accretion disk in this system.« less

  18. Dust inflated accretion disc as the origin of the broad line region in active galactic nuclei

    NASA Astrophysics Data System (ADS)

    Baskin, Alexei; Laor, Ari

    2018-02-01

    The broad line region (BLR) in active galactic nuclei (AGNs) is composed of dense gas (˜1011 cm-3) on sub-pc scale, which absorbs about 30 per cent of the ionizing continuum. The outer size of the BLR is likely set by dust sublimation, and its density by the incident radiation pressure compression (RPC). But, what is the origin of this gas, and what sets its covering factor (CF)? Czerny & Hryniewicz (2011) suggested that the BLR is a failed dusty wind from the outer accretion disc. We explore the expected dust properties, and the implied BLR structure. We find that graphite grains sublimate only at T ≃ 2000 K at the predicted density of ˜1011 cm-3, and therefore large graphite grains (≥0.3 μm) survive down to the observed size of the BLR, RBLR. The dust opacity in the accretion disc atmosphere is ˜50 times larger than previously assumed, and leads to an inflated torus-like structure, with a predicted peak height at RBLR. The illuminated surface of this torus-like structure is a natural place for the BLR. The BLR CF is mostly set by the gas metallicity, the radiative accretion efficiency, a dynamic configuration and ablation by the incident optical-UV continuum. This model predicts that the BLR should extend inwards of RBLR to the disc radius where the surface temperature is ≃2000 K, which occurs at Rin ≃ 0.18RBLR. The value of Rin can be tested by reverberation mapping of the higher ionization lines, predicted by RPC to peak well inside RBLR. The dust inflated disc scenario can also be tested based on the predicted response of RBLR and the CF to changes in the AGN luminosity and accretion rate.

  19. Timing Observations of PSR J1023+0038 During a Low-mass X-Ray Binary State

    NASA Astrophysics Data System (ADS)

    Jaodand, Amruta; Archibald, Anne M.; Hessels, Jason W. T.; Bogdanov, Slavko; D'Angelo, Caroline R.; Patruno, Alessandro; Bassa, Cees; Deller, Adam T.

    2016-10-01

    Transitional millisecond pulsars (tMSPs) switch, on roughly multi-year timescales, between rotation-powered radio millisecond pulsar (RMSP) and accretion-powered low-mass X-ray binary (LMXB) states. The tMSPs have raised several questions related to the nature of accretion flow in their LMXB state and the mechanism that causes the state switch. The discovery of coherent X-ray pulsations from PSR J1023+0038 (while in the LMXB state) provides us with the first opportunity to perform timing observations and to compare the neutron star’s spin variation during this state to the measured spin-down in the RMSP state. Whereas the X-ray pulsations in the LMXB state likely indicate that some material is accreting onto the neutron star’s magnetic polar caps, radio continuum observations indicate the presence of an outflow. The fraction of the inflowing material being ejected is not clear, but it may be much larger than that reaching the neutron star’s surface. Timing observations can measure the total torque on the neutron star. We have phase-connected nine XMM-Newton observations of PSR J1023+0038 over the last 2.5 years of the LMXB state to establish a precise measurement of spin evolution. We find that the average spin-down rate as an LMXB is 26.8 ± 0.4% faster than the rate (-2.39 × 10-15 Hz s-1) determined during the RMSP state. This shows that negative angular momentum contributions (dipolar magnetic braking, and outflow) exceed positive ones (accreted material), and suggests that the pulsar wind continues to operate at a largely unmodified level. We discuss implications of this tight observational constraint in the context of possible accretion models.

  20. The Microquasar Cyg X-1: A Short Review

    NASA Technical Reports Server (NTRS)

    Nowak, M. A.; Wilms, J.; Hanke, M.; Pottschmidt, K.; Markoff, S.

    2011-01-01

    We review the spectral properties of the black hole candidate Cygnus X-I. Specifically, we discuss two recent sets of multi-satellite observations. One comprises a 0.5-500 keY spectrum, obtained with eve!)' flying X-ray satellite at that time, that is among the hardest Cyg X-I spectra observed to date. The second set is comprised of 0.5-40 keV Chandra-HETG plus RXTE-PCA spectra from a radio-quiet, spectrally soft state. We first discuss the "messy astrophysics" often neglected in the study of Cyg X-I, i.e., ionized absorption from the wind of the secondary and the foreground dust scattering halo. We then discuss components common to both state extremes: a low temperature accretion disk, and a relativistically broadened Fe line and reflection. Hard state spectral models indicate that the disk inner edge does not extend beyond > or approx.= 40 GM/sq c , and may even approach as close as approx. = 6GM/sq c. The soft state exhibits a much more prominent disk component; however, its very low normalization plausibly indicates a spinning black hole in the Cyg X-I system. Key words. accretion, accretion disks - black hole physics - X-rays:binaries

  1. Magnetized, mass-loaded, rotating accretion flows

    NASA Astrophysics Data System (ADS)

    Toniazzo, T.; Hartquist, T. W.; Durisen, R. H.

    2001-03-01

    We present a semi-analytical investigation of a simple one-dimensional, steady-state model for a mass-loaded, rotating, magnetized, hydrodynamical flow. Our approach is analogous to one used in early studies of magnetized winds. The model represents the infall towards a central point mass of the gas generated in a cluster of stars surrounding it, as is likely to occur in some active nuclei and starburst galaxies. We describe the properties of the different classes of infall solutions. We find that the flow becomes faster than the fast-mode speed, and hence decoupled from the centre, only for a limited range of parameter values, and when magnetic stresses are ineffective. Such flow is slowed as it approaches a centrifugal barrier, implying the existence of an accretion disc. When the flow does not become super-fast and the magnetic torque is insufficient, no steady solution extending inward to the centre exists. Finally, with a larger magnetic torque, solutions representing steady sub-Alfvénic flows are found, which can resemble spherical hydrodynamical infall. Such solutions, if applicable, would imply that rotation is not important and that any accretion disc formed would be of very limited size.

  2. Star Clusters within FIRE

    NASA Astrophysics Data System (ADS)

    Perez, Adrianna; Moreno, Jorge; Naiman, Jill; Ramirez-Ruiz, Enrico; Hopkins, Philip F.

    2017-01-01

    In this work, we analyze the environments surrounding star clusters of simulated merging galaxies. Our framework employs Feedback In Realistic Environments (FIRE) model (Hopkins et al., 2014). The FIRE project is a high resolution cosmological simulation that resolves star forming regions and incorporates stellar feedback in a physically realistic way. The project focuses on analyzing the properties of the star clusters formed in merging galaxies. The locations of these star clusters are identified with astrodendro.py, a publicly available dendrogram algorithm. Once star cluster properties are extracted, they will be used to create a sub-grid (smaller than the resolution scale of FIRE) of gas confinement in these clusters. Then, we can examine how the star clusters interact with these available gas reservoirs (either by accreting this mass or blowing it out via feedback), which will determine many properties of the cluster (star formation history, compact object accretion, etc). These simulations will further our understanding of star formation within stellar clusters during galaxy evolution. In the future, we aim to enhance sub-grid prescriptions for feedback specific to processes within star clusters; such as, interaction with stellar winds and gas accretion onto black holes and neutron stars.

  3. Evolution of the accretion structure of the compact object in the symbiotic binary BF Cygni during outburst in 2009-2014

    NASA Astrophysics Data System (ADS)

    Tomov, N. A.; Tomova, M. T.; Bisikalo, D. V.

    2017-12-01

    The eclipsing symbiotic binary BF Cyg has had five orbital minima during its last optical outburst after 2006. The second minimum is much shallower than the first one and after that the minimum get deeper again. We determined the parameters of the accretion structure surrounding the compact object in two minima and traced its evolution until 2014. Moreover, we analysed the continuum of the system in the region of the UBVRCIC photometric bands to derive the parameters of its components at two times orbital maximum and calculated the mass-loss rate of the compact object. The results obtained allow us to conclude about the mechanism of fading of the optical light of the system until 2014. These results show that the optical flux of the outbursted compact object decreases because of "contraction" of its observed photosphere (pseudophotosphere) which, on its side, is due to increase of the velocity of its stellar wind, and the optical flux of the circumbinary nebula decreases mainly because of reduction of its mean density, which, on its side, is due to destruction of the accretion structure.

  4. Ultra-fast outflows (aka UFOs) in AGNs and their relevance for feedback

    NASA Astrophysics Data System (ADS)

    Cappi, Massimo; Tombesi, F.; Giustini, M.; Dadina, M.; Braito, V.; Kaastra, J.; Reeves, J.; Chartas, G.; Gaspari, M.; Vignali, C.; Gofford, J.; Lanzuisi, G.

    2012-09-01

    During the last decade, several observational evidences have been accumulated for the existence of massive, high velocity winds/outflows (aka UFOs) in nearby AGNs and, possibly, distant quasars. I will review here such evidences, present some of the latest results in this field, and discuss the relevance of UFOs for both understanding the physics of accretion/ejection flows on supermassive black holes, and for quantifying the amount of AGN feedback.

  5. Dynamical and Radiative Modeling of Sagittarius A*

    NASA Astrophysics Data System (ADS)

    Shcherbakov, Roman V.

    2011-09-01

    Sgr A* in our Galactic Center is the closest supermassive black hole (SMBH) with the largest event horizon angular size. Most other SMBHs are likely in the same dormant low-luminosity accretion state as Sgr A*. Thus, the important physical effects in lives of BHs can be best observed and studied in our Galactic Center. One of these effects is electron heat conduction. Conduction may be the main reason why Sgr A* is so dramatically underluminous: it transfers heat outwards from the inner flow and unbinds the outer flow, quenching the accretion. In Chapter 3 I build a realistic model of accretion with conduction, which incorporates feeding by stellar winds. In a model with accretion rate < 1% of the naive Bondi estimate I achieve agreement of the X-ray surface brightness profile and Faraday rotation measure to observations. An earlier model proposed in Chapter 2 with adiabatic accretion of turbulent magnetized medium cannot be tweaked to match the observations. Its accretion rate appears too large, so turbulent magnetic field cannot stop gas from falling in. Low accretion rate leads to a peculiar radiation pattern from near the BH: cyclo-synchrotron polarized radiation is observed in radio/sub-mm. Since it comes from several Schwarzschild radii, the BH spin can be determined, when we overcome all modeling challenges. I fit the average observed radiation spectrum with a theoretical spectrum, which is computed by radiative transfer over a simulation-based model. Relevant plasma effects responsible for the observed polarization state are accurately computed for thermal plasma in Chapter 4. The prescription of how to perform the correct general relativistic polarized radiative transfer is elaborated in Chapter 5. Application of this technique to three-dimensional general relativistic magneto hydrodynamic numerical simulations is reported in Chapter 6. The main results of analysis are that the spin inclination angle is estimated to lie within a narrow range theta est = 50° -- 59°, and most probable value of BH spin is a* = 0.9. I believe the researched topics will play a central role in future modeling of typical SMBH accretion and will lead to effective ways to determine the spins of these starving eaters. Computations of plasma effects reported here will also find applications when comparing models of jets to observations.

  6. Ice-Accretion Test Results for Three Large-Scale Swept-Wing Models in the NASA Icing Research Tunnel

    NASA Technical Reports Server (NTRS)

    Broeren, Andy P.; Potapczuk, Mark G.; Lee, Sam; Malone, Adam M.; Paul, Benard P., Jr.; Woodard, Brian S.

    2016-01-01

    Icing simulation tools and computational fluid dynamics codes are reaching levels of maturity such that they are being proposed by manufacturers for use in certification of aircraft for flight in icing conditions with increasingly less reliance on natural-icing flight testing and icing-wind-tunnel testing. Sufficient high-quality data to evaluate the performance of these tools is not currently available. The objective of this work was to generate a database of ice-accretion geometry that can be used for development and validation of icing simulation tools as well as for aerodynamic testing. Three large-scale swept wing models were built and tested at the NASA Glenn Icing Research Tunnel (IRT). The models represented the Inboard (20% semispan), Midspan (64% semispan) and Outboard stations (83% semispan) of a wing based upon a 65% scale version of the Common Research Model (CRM). The IRT models utilized a hybrid design that maintained the full-scale leading-edge geometry with a truncated afterbody and flap. The models were instrumented with surface pressure taps in order to acquire sufficient aerodynamic data to verify the hybrid model design capability to simulate the full-scale wing section. A series of ice-accretion tests were conducted over a range of total temperatures from -23.8 deg C to -1.4 deg C with all other conditions held constant. The results showed the changing ice-accretion morphology from rime ice at the colder temperatures to highly 3-D scallop ice in the range of -11.2 deg C to -6.3 deg C. Warmer temperatures generated highly 3-D ice accretion with glaze ice characteristics. The results indicated that the general scallop ice morphology was similar for all three models. Icing results were documented for limited parametric variations in angle of attack, drop size and cloud liquid-water content (LWC). The effect of velocity on ice accretion was documented for the Midspan and Outboard models for a limited number of test cases. The data suggest that there are morphological characteristics of glaze and scallop ice accretion on these swept-wing models that are dependent upon the velocity. This work has resulted in a large database of ice-accretion geometry on large-scale, swept-wing models.

  7. Ice-Accretion Test Results for Three Large-Scale Swept-Wing Models in the NASA Icing Research Tunnel

    NASA Technical Reports Server (NTRS)

    Broeren, Andy P.; Potapczuk, Mark G.; Lee, Sam; Malone, Adam M.; Paul, Bernard P., Jr.; Woodard, Brian S.

    2016-01-01

    Icing simulation tools and computational fluid dynamics codes are reaching levels of maturity such that they are being proposed by manufacturers for use in certification of aircraft for flight in icing conditions with increasingly less reliance on natural-icing flight testing and icing-wind-tunnel testing. Sufficient high-quality data to evaluate the performance of these tools is not currently available. The objective of this work was to generate a database of ice-accretion geometry that can be used for development and validation of icing simulation tools as well as for aerodynamic testing. Three large-scale swept wing models were built and tested at the NASA Glenn Icing Research Tunnel (IRT). The models represented the Inboard (20 percent semispan), Midspan (64 percent semispan) and Outboard stations (83 percent semispan) of a wing based upon a 65 percent scale version of the Common Research Model (CRM). The IRT models utilized a hybrid design that maintained the full-scale leading-edge geometry with a truncated afterbody and flap. The models were instrumented with surface pressure taps in order to acquire sufficient aerodynamic data to verify the hybrid model design capability to simulate the full-scale wing section. A series of ice-accretion tests were conducted over a range of total temperatures from -23.8 to -1.4 C with all other conditions held constant. The results showed the changing ice-accretion morphology from rime ice at the colder temperatures to highly 3-D scallop ice in the range of -11.2 to -6.3 C. Warmer temperatures generated highly 3-D ice accretion with glaze ice characteristics. The results indicated that the general scallop ice morphology was similar for all three models. Icing results were documented for limited parametric variations in angle of attack, drop size and cloud liquid-water content (LWC). The effect of velocity on ice accretion was documented for the Midspan and Outboard models for a limited number of test cases. The data suggest that there are morphological characteristics of glaze and scallop ice accretion on these swept-wing models that are dependent upon the velocity. This work has resulted in a large database of ice-accretion geometry on large-scale, swept-wing models.

  8. Constraining MHD Disk-Winds with X-ray Absorbers

    NASA Astrophysics Data System (ADS)

    Fukumura, Keigo; Tombesi, F.; Shrader, C. R.; Kazanas, D.; Contopoulos, J.; Behar, E.

    2014-01-01

    From the state-of-the-art spectroscopic observations of active galactic nuclei (AGNs) the robust features of absorption lines (e.g. most notably by H/He-like ions), called warm absorbers (WAs), have been often detected in soft X-rays (< 2 keV). While the identified WAs are often mildly blueshifted to yield line-of-sight velocities up to ~100-3,000 km/sec in typical X-ray-bright Seyfert 1 AGNs, a fraction of Seyfert galaxies such as PG 1211+143 exhibits even faster absorbers (v/ 0.1-0.2) called ultra-fast outflows (UFOs) whose physical condition is much more extreme compared with the WAs. Motivated by these recent X-ray data we show that the magnetically- driven accretion-disk wind model is a plausible scenario to explain the characteristic property of these X-ray absorbers. As a preliminary case study we demonstrate that the wind model parameters (e.g. viewing angle and wind density) can be constrained by data from PG 1211+143 at a statistically significant level with chi-squared spectral analysis. Our wind models can thus be implemented into the standard analysis package, XSPEC, as a table spectrum model for general analysis of X-ray absorbers.

  9. Active Galactic Nucleus Obscuration from Winds: From Dusty Infrared-Driven to Warm and X-Ray Photoionized

    NASA Technical Reports Server (NTRS)

    Dorodnitsyn, Anton V.; Kallman, Timothy R.

    2012-01-01

    We present calculations of active galactic nucleus winds at approx.parsec scales along with the associated obscuration. We take into account the pressure of infrared radiation on dust grains and the interaction of X-rays from a central black hole with hot and cold plasma. Infrared radiation (IR) is incorporated in radiation-hydrodynamic simulations adopting the flux-limited diffusion approximation. We find that in the range of X-ray luminosities L = 0.05-0.6 L(sub Edd), the Compton-thick part of the flow (aka torus) has an opening angle of approximately 72deg - 75deg regardless of the luminosity. At L > or approx. 0.1, the outflowing dusty wind provides the obscuration with IR pressure playing a major role. The global flow consists of two phases: the cold flow at inclinations (theta) > or approx.70deg and a hot, ionized wind of lower density at lower inclinations. The dynamical pressure of the hot wind is important in shaping the denser IR-supported flow. At luminosities < or = 0.1 L(sub Edd) episodes of outflow are followed by extended periods when the wind switches to slow accretion. Key words: acceleration of particles . galaxies: active . hydrodynamics . methods: numerical Online-only material: color figures

  10. Constraining the initial conditions and final outcomes of accretion processes around young stars and supermassive black holes

    NASA Astrophysics Data System (ADS)

    Stone, Jordan M.

    2015-04-01

    In this thesis I discuss probes of small spatial scales around young stars and protostars and around the supermassive black hole at the galactic center. I begin by describing adaptive optics-fed infrared spectroscopic studies of nascent and newborn binary systems. Binary star formation is a significant mode of star formation that could be responsible for the production of a majority of the galactic stellar population. Better characterization of the binary formation mechanism is important for better understanding many facets of astronomy, from proper estimates of the content of unresolved populations, to stellar evolution and feedback, to planet formation. My work revealed episodic accretion onto the more massive component of the pre-main sequence binary system UY Aur. I also showed changes in the accretion onto the less massive component, revealing contradictory indications of the change in accretion rate when considering disk-based and shock-based tracers. I suggested two scenarios to explain the inconsistency. First, increased accretion should alter the disk structure, puffing it up. This change could obscure the accretion shock onto the central star if the disk is highly inclined. Second, if accretion through the disk is impeded before it makes it all the way onto the central star, then increased disk tracers of accretion would not be accompanied by increased shock tracers. In this case mass must be piling up at some radius in the disk, possibly supplying the material for planet formation or a future burst of accretion. My next project focused on characterizing the atmospheres of very low-mass companions to nearby young stars. Whether these objects form in an extension of the binary-star formation mechanism to very low masses or they form via a different process is an open question. Different accretion histories should result in different atmospheric composition, which can be constrained with spectroscopy. I showed that 3--4mum spectra of a sample of these objects with effective temperatures greater than 1500 K are similar to the spectra of older more massive brown dwarfs at the same temperature, in contrast to objects at 1000 K that exhibit distinct L-band SEDs. The oldest object in my sample of young companions, 50 My old CD-35 2722 B, appears redder than field dwarfs with similar spectral type based on 1--2.5mum spectra. This could indicate reduced cloud opacity compared to field dwarfs at the same temperature. I also present work to better understand the supermassive blackhole at the center of our Galaxy. Astrometric monitoring of stellar orbits about the black hole have been used to sketch the gravitational potential, revealing 4 x 106 [solar masses] within a radius of 40 AU. Further constraints on the gravitational potential, and the detection of post-Newtonian effects on the stellar orbits, will require improved astrometric precision. Currently confusion noise in the crowded central cluster limits astrometric precision. Increased spatial resolution can alleviate confusion noise. Dual field phase referencing on large-aperture infrared interferometers provides the sensitivity needed to observe the Galactic center, providing the fastest route to increased spatial resolution. I present simulations of dual-field phase referencing performance with the Keck Interferometer and with the VLTI GRAVITY instrument, to describe the potential contributions each could make to Galactic center stellar astrometry. I demonstrate that the near-future GRAVITY instrument at the VLTI will have a large impact on the ability to precisely track the paths of stars orbiting there, as long as a star with K-band apparent magnitude less than 20 exists within 70 milliarcseconds of the blackhole. Many of the stars orbiting the blackhole are in a post-main sequence wind phase. The wind from these stars is feeding an accretion flow falling onto the blackhole. This flow is radiatively inefficient, producing only 10-8 times the Eddington limit. Thus our relative proximity to the center of our own Galaxy, provides the opportunity to study a low-luminosity accretion mode that would be difficult or impossible to observe in more remote galaxies. Variable emission from the accretion flow arises from very deep within the flow and could be used to reveal the physics of the accretion process. Characterizing the variability is challenging because all wavelength regimes from radio through X-ray are affected by the process(es) that gives rise to the variations. I report observations of variability at wavelengths that are difficult or challenging to observe from the ground using the SPIRE instrument onboard the Herschel Space Observatory. My work provides the first constraints on the flux of the accretion flow at 250mum. Variations at 500, 350, and 250mum observed with Herschel exhibit typical amplitudes similar to the variations observed at 1300mum from the ground, but the amplitude distribution of flux variations observe with Herschel does not exhibit a tail to large amplitudes that is seen at 1300mum. This could suggest a connection between large-amplitude mm/submillimeter variations and X-ray activity, since no increased X-ray activity was observed during our Herschel monitoring.

  11. A Dark Year for Tidal Disruption Events

    NASA Astrophysics Data System (ADS)

    Guillochon, James; Ramirez-Ruiz, Enrico

    2015-08-01

    Main-sequence disruptions of stars by supermassive black holes result in the production of an extended, geometrically thin debris stream winding repeatedly around the black hole. In the absence of black hole spin, in-plane relativistic precession causes this stream to intersect with itself after a single winding. In this paper we show that relativistic precessions arising from black hole spin can induce deflections out of the original orbital plane that prevent the stream from self-intersecting even after many windings. This naturally leads to a “dark period” in which the flare is not observable for some time, persisting for up to a dozen orbital periods of the most bound material, which translates to years for disruptions around black holes with masses ˜ {10}7{M}⊙ . When the stream eventually self-intersects, the distance from the black hole and the angle at which this collision occurs determine the rate of energy dissipation. We find that more-massive black holes ({M}{{h}}≳ {10}7{M}⊙ ) tend to have more violent stream self-intersections, resulting in prompt accretion. For these tidal disruption events (TDEs), the accretion rate onto the black hole should still closely follow the original fallback rate after a fixed delay time {t}{delay}, {\\dot{M}}{acc}(t+{t}{delay})={\\dot{M}}{fb}(t). For lower black hole masses ({M}{{h}}≲ {10}6), we find that flares are typically slowed down by about an order of magnitude, resulting in the majority of TDEs being sub-Eddington at peak. This also implies that current searches for TDEs are biased toward prompt flares, with slowed flares likely having been unidentified.

  12. Enhancement of orographic precipitation in Jeju Island during the passage of Typhoon Khanun (2012)

    NASA Astrophysics Data System (ADS)

    Lee, Jung-Tae; Ko, Kyeong-Yeon; Lee, Dong-In; You, Cheol-Hwan; Liou, Yu-Chieng

    2018-03-01

    Typhoon Khanun caused over 226 mm of accumulated rainfall for 6 h (0700 to 1300 UTC), localized around the summit of Mt. Halla (height 1950 m), with a slanted rainfall pattern to the northeast. In this study, we investigated the enhancement mechanism for precipitation near the mountains as the typhoon passed over Jeju Island via dual-Doppler radar analysis and simple trajectory of passive tracers using a retrieved wind field. The analysis of vertical profiles of the mountain region show marked features matching the geophysical conditions. In the central mountain region, a strong wind (≥ 7 m s- 1) helps to lift low-level air up the mountain. The time taken for lifting is longer than the theoretical time required for raindrop growth via condensation. The falling particles (seeder) from the upper cloud were also one of the reasons for an increase in rainfall via the accretion process from uplifted cloud water (feeder). The lifted air and falling particles both contributed to the heavy rainfall in the central region. In contrast, on the leeward side, the seeder-feeder mechanism was important in the formation of strong radar reflectivity. The snow particles (above 5 km) were accelerated by strong downward winds (≤-6 m s- 1). Meanwhile, the nonlinear jumping flow (hydraulic jump) raised feeders (shifted from the windward side) to the upper level where particles fall. To support these development processes, a numerical simulation using cloud-resolving model theoretically carried out. The accreting of hydrometeors may be one of the key reasons why the lee side has strong radar reflectivity, and a lee side weighted rainfall pattern even though lee side includes no strong upward air motion.

  13. Discovery of a Probable BH-HMXB and Cyg X-1 Progenitor System

    NASA Astrophysics Data System (ADS)

    Grindlay, Jonathan E.; Gomez, Sebastian; Hong, Jaesub; Zhang, Shuo; Hailey, Charles; Mori, Kaya; Tomsick, John

    2017-08-01

    We report the discovery of a probable black hole High Mass X-ray Binary (BH-HMXB), a 5.3d single line spectroscopic binary (SB1) HD96670 in the Carina OB association. We initiated a search for such systems for which the O star primary was still on the main sequence, in stark contrast to Cyg X-1 with its evolved supergiant O star companion, since such systems must be ~10-30 times more numerous given their longer lifetimes. HD96670 had been found to be a SB1 with binary period ~5.5d and mass function ~0.125Msun. With a ~150ksec NuSTAR observation of HD96670 over 3 segments, we found a significant detection of a variable source best fit with a PL spectrum with photon index between 2.4 and 2.6 for the brightest vs. faintest observations. Weak 6.4 - 6.7 keV emission was also detected. We conducted extensive optical photometry and spectroscopy to better measure the binary system parameters and have fit the the combined data with an ellipsoidal modulation code (Wilson and Devinney) to find that the binary companion is best fit by a ~4.5 Msun BH accreting from the weak wind primary O star with luminosity Lx ~3 x 10^32 erg/s, which cannot be due to a colliding wind or intrinsic Ostar emission. . A B4V or B5V main sequence star companion can be ruled out by the very low accretion luminosity and lack of colliding wind expected. Full details, including the direct measurement of a triple companion B1V star previously reported (Sanna et al 2014) for HD96670, will appear in two forthcoming papers to be summarized in this talk.

  14. NuSTAR Discovery of a Cyclotron Line in the Accreting X-Ray Pulsar IGR J16393-4643

    NASA Technical Reports Server (NTRS)

    Bodaghee, Arash; Tomsick, John A.; Fornasini, Francesca M.; Krivonos, Roman; Stern, Daniel; Mori, Kaya; Rahoui, Farid; Boggs, Steven E.; Christensen, Finn E.; Craig, William W.; hide

    2016-01-01

    The high-mass X-ray binary and accreting X-ray pulsar IGR J16393-4643 was observed by the Nuclear Spectroscope Telescope Array in the 3-79 keV energy band for a net exposure time of 50 ks. We present the results of this observation which enabled the discovery of a cyclotron resonant scattering feature with a centroid energy of -29.3(sup +1.1)(sub -1.3) keV. This allowed us to measure the magnetic field strength of the neutron star for the first time: B = (2.5 +/- 0.1) x 10(exp 12) G. The known pulsation period is now observed at 904.0+/- 0.1 s. Since 2006, the neutron star has undergone a long-term spin-up trend at a rate of P= -2 x 10(exp -8) s s(exp -1) (-0.6 s per year, or a frequency derivative of v = 3 x 10(exp -14) Hz s(exp -1)). In the power density spectrum, a break appears at the pulse frequency which separates the zero slope at low frequency from the steeper slope at high frequency. This addition of angular momentum to the neutron star could be due to the accretion of a quasi-spherical wind, or it could be caused by the transient appearance of a prograde accretion disk that is nearly in corotation with the neutron star whose magnetospheric radius is around 2 x 10(exp 8) cm.

  15. HST Spatially Resolved Spectra of the Accretion Disc and Gas Stream of the Nova-Like Variable UX Ursae Majoris

    NASA Technical Reports Server (NTRS)

    Baptista, Raymundo; Horne, Keith; Wade, Richard A.; Hubeny, Ivan; Long, Knox S.; Rutten, Rene G. M.

    1998-01-01

    Time-resolved eclipse spectroscopy of the nova-like variable UX UMa obtained with the Hubble Space Telescope/Faint Object Spectrograph (HST/FOS) on 1994 August and November is analysed with eclipse mapping techniques to produce spatially resolved spectra of its accretion disk and gas stream as a function of distance from the disk centre. The inner accretion disk is characterized by a blue continuum filled with absorption bands and lines, which cross over to emission with increasing disk radius, similar to that reported at optical wavelengths. The comparison of spatially resolved spectra at different azimuths reveals a significant asymmetry in the disk emission at ultraviolet (UV) wavelengths, with the disk side closest to the secondary star showing pronounced absorption by an 'iron curtain' and a Balmer jump in absorption. These results suggest the existence of an absorbing ring of cold gas whose density and/or vertical scale increase with disk radius. The spectrum of the infalling gas stream is noticeably different from the disc spectrum at the same radius suggesting that gas overflows through the impact point at the disk rim and continues along the stream trajectory, producing distinct emission down to 0.1 R(sub LI). The spectrum of the uneclipsed light shows prominent emission lines of Lyalpha, N v lambda1241, SiIV Lambda 1400, C IV Lambda 1550, HeII Lambda 1640, and MgII Lambda 2800, and a UV continuum rising towards longer wavelengths. The Balmer jump appears clearly in emission indicating that the uneclipsed light has an important contribution from optically thin gas. The lines and optically thin continuum emission are most probably emitted in a vertically extended disk chromosphere + wind. The radial temperature profiles of the continuum maps are well described by a steady-state disc model in the inner and intermediate disk regions (R greater than or equal to 0.3R(sub LI) ). There is evidence of an increase in the mass accretion rate from August to November (from V = 10 (exp -8.3 +/-0.1) to 10(exp -8.1 +/- 0.1 solar mass yr(exp -1)), in accordance with the observed increase in brightness. Since the UX UMA disc seems to be in a high mass accretion, high-viscosity regime in both epochs, this result suggests that the mass transfer rate of UX UMA varies substantially (approximately equal to 50 per cent) on time-scales of a few months. It is suggested that the reason for the discrepancies between the prediction of the standard disk model and observations is not an inadequate treatment of radiative transfer in the disc atmosphere, but rather the presence of addition important sources of light in the system besides the accretion disk (e.g., optically thin contiuum emission from the disk wind and possible absorption by circumstellar cool gas).

  16. He II lambda-4686 in Eta Carinae: Collapse of the Wind-Wind Collision Region During Periastron Passage

    NASA Technical Reports Server (NTRS)

    Teodoro, M.; Damineli, A.; Arias, J. I.; DeAraujo, F. X.; Barba, R. H.; Corcoran, M. F.; Fernandes, M. Borges; Fernandez-Lajus, E.; Fraga, L.; Gamen, R. C.; hide

    2012-01-01

    The periodic spectroscopic events in Eta Carinae are now well established and occur near the periastron passage of two massive stars in a very eccentric orbit. Several mechanisms have been proposed to explain the variations of different spectral features, such as an eclipse by the wind-wind collision boundary, a shell ejection from the primary star or accretion of its wind onto the secondary. All of them have problems explaining all the observed phenomena. To better understand the nature of the cyclic events we performed a dense monitoring of Eta Carinae with 5 Southern telescopes during the 2009 low excitation event, resulting in a set of data of unprecedented quality and sampling. The intrinsic luminosity of the He II lambda-4686 emission line (L approx 310 solar L) just before periastron reveals the presence of a very luminous transient source of extreme UV radiation emitted in the wind-wind collision (WWC) region. Clumps in the primary's wind probably explain the flare-like behavior of both the X-ray and He II lambda-4686 light-curves. After a short-lived minimum, He II lambda-4686 emission rises again to a new maximum, when X-rays are still absent or very weak. We interpret this as a collapse of the WWC onto the "surface" of the secondary star, switching off the hard X-ray source and diminishing the WWC shock cone. The recovery from this state is controlled by the momentum balance between the secondary's wind and the clumps in the primary's wind.

  17. Large-scale assembly bias of dark matter halos

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lazeyras, Titouan; Musso, Marcello; Schmidt, Fabian, E-mail: titouan@mpa-garching.mpg.de, E-mail: mmusso@sas.upenn.edu, E-mail: fabians@mpa-garching.mpg.de

    We present precise measurements of the assembly bias of dark matter halos, i.e. the dependence of halo bias on other properties than the mass, using curved 'separate universe' N-body simulations which effectively incorporate an infinite-wavelength matter overdensity into the background density. This method measures the LIMD (local-in-matter-density) bias parameters b {sub n} in the large-scale limit. We focus on the dependence of the first two Eulerian biases b {sup E} {sup {sub 1}} and b {sup E} {sup {sub 2}} on four halo properties: the concentration, spin, mass accretion rate, and ellipticity. We quantitatively compare our results with previous worksmore » in which assembly bias was measured on fairly small scales. Despite this difference, our findings are in good agreement with previous results. We also look at the joint dependence of bias on two halo properties in addition to the mass. Finally, using the excursion set peaks model, we attempt to shed new insights on how assembly bias arises in this analytical model.« less

  18. Where is the X-ray emission coming from in RT Cru Symbiotic System?

    NASA Astrophysics Data System (ADS)

    Karovska, Margarita

    2014-11-01

    RT Cru is a member of a new sub-class of symbiotic interacting binaries with copious hard X-ray emission. It consists of a high-mass WD (>1.3 Ms) accreting from the wind of an M giant, and it is an important system to study in order to constrain precursor conditions for asymmetric PN and SN Ia. The Chandra HRC-I observation (Dec 2012), and an overlapping Swift observation, detected intermittent soft X-ray flaring, and we find evidence for a significant soft component in the spectrum. The flaring could be a consequence of clumped absorption columns moving in and out of the line of sight, or the variations could be due to changes at the accretion boundary layer. Further observations are needed to determine the origin of the soft emission and its relation to the hard emission.

  19. Shaping planetary nebulae with jets in inclined triple stellar systems

    NASA Astrophysics Data System (ADS)

    Akashi, Muhammad; Soker, Noam

    2017-08-01

    We conduct three-dimensional hydrodynamical simulations of two opposite jets launched obliquely to the orbital plane around an asymptotic giant branch (AGB) star and within its dense wind, and demonstrate the formation of a 'messy' planetary nebula (PN), namely a PN lacking any type of symmetry (I.e. highly irregular). In building the initial conditions, we assume that a tight binary system orbits the AGB star and that the orbital plane of the tight binary system is inclined to the orbital plane of the binary system and the AGB star (the triple system plane). We further assume that the accreted mass on to the tight binary system forms an accretion disc around one of the stars and that the plane of the disc is tilted to the orbital plane of the triple system. The highly asymmetrical and filamentary structures that we obtain support the notion that messy PNe might be shaped by triple stellar systems.

  20. Shaping planetary nebulae with jets in inclined triple stellar systems

    NASA Astrophysics Data System (ADS)

    Akashi, Muhammad; Soker, Noam

    2017-10-01

    We conduct three-dimensional hydrodynamical simulations of two opposite jets launched obliquely to the orbital plane around an asymptotic giant branch (AGB) star and within its dense wind, and demonstrate the formation of a `messy' planetary nebula (PN), namely, a PN lacking any type of symmetry (highly irregular). In building the initial conditions we assume that a tight binary system orbits the AGB star, and that the orbital plane of the tight binary system is inclined to the orbital plane of binary system and the AGB star. We further assume that the accreted mass onto the tight binary system forms an accretion disk around one of the stars, and that the plane of the disk is in between the two orbital planes. The highly asymmetrical lobes that we obtain support the notion that messy PNe might be shaped by triple stellar systems.

  1. The Origin of Soft X-rays in DQ Herculis

    NASA Technical Reports Server (NTRS)

    White, Nicholas E. (Technical Monitor); Mukai, K.; Still, M.; Ringwald, F. A.

    2002-01-01

    DQ Herculis (Nova Herculis 1934) is a deeply eclipsing cataclysmic variable containing a magnetic white dwarf primary. The accretion disk is thought to block our line of sight to the white dwarf at all orbital phases due to its extreme inclination angle. Nevertheless, soft X-rays were detected from DQ Her with ROSAT PSPC. To probe the origin of these soft X-rays, we have performed Chandra ACIS observations. We confirm that DQ Her is an X-ray source. The bulk of the X-rays are from a point-like source and exhibit a shallow partial eclipse. We interpret this as due to scattering of the unseen central X-ray source, probably in an accretion disk wind. At the same time, we detect weak extended X-ray features around DQ Her, which we interpret as an X-ray emitting knot in the nova shell.

  2. Toward an Astrophysical Theory of Chondrites

    NASA Technical Reports Server (NTRS)

    Shang, Hsien; Shu, Frank H.; Lee, Typhoon

    1996-01-01

    Sunlike stars are born with disks. Based on our recently developed model to understand how a magnetized new star interacts with its surrounding accretion disk, we advanced an astrophysical theory for the early solar system. The aerodynamic drag of a magnetocentrifugally driven wind out of the inner edge of a shaded disk could expose solid bodies lifted into the heat of direct sunlight, when material is still accreting onto the protosun. Chondrules, calcium-aluminum-rich inclusions (CAI's), and rims could form along the flight for typical self-consistent parameters of the outflow in different stages of star formation. The process gives a natural sorting mechanism that explains the size distribution of CAI's and chondrules, as well as their associated rims. Chondritic bodies then subsequently form by compaction of the processed solids with the ambient nebular dust comprising the matrices after their reentry at great distances from the original launch radius.

  3. Discovery of very high velocity outflow in V Hydra - Wind from an accretion disk in a binary?

    NASA Technical Reports Server (NTRS)

    Sahai, R.; Wannier, P. G.

    1988-01-01

    High-resolution observations of lines from the CO v = 1-0 vibration-rotation band at 4.6 microns, taken with the FTS/KPNO 4-m telescope, are reported for the carbon-rich red giant V Hydra, which is surrounded by an extended expanding molecular envelope resulting from extensive mass loss. The spectrum shows, in addition to the expected absorption at the outflow velocity of the envelope, absorption extending up to 120 km/s bluewards of the stellar velocity. A comparison of the spectrum observed at two epochs shows that the high-velocity absorption features change with time. It is suggested that the observed high-velocity features in V Hydra arise in a high-velocity polar outflow from an accretion disk in a binary system, as proposed in the mass-loss model for bipolar envelopes by Morris (1988).

  4. High-velocity winds from a dwarf nova during outburst

    NASA Technical Reports Server (NTRS)

    Cordova, F. A.; Mason, K. O.

    1982-01-01

    An ultraviolet spectrum of the dwarf nova TW Vir during an optical outburst shows shortward-shifted absorption features with edge velocities as high as 4800 km/s, about the escape velocity of a white dwarf. A comparison of this spectrum with the UV spectra of other cataclysmic variables suggests that mass loss is evident only for systems with relatively high luminosities (more than about 10 solar luminosities) and low inclination angles with respect to the observer's line of sight. The mass loss rate for cataclysmic variables is of order 10 to the -11th solar mass per yr; this is from 0.01 to 0.001 of the mass accretion rate onto the compact star in the binary. The mass loss may occur by a mechanism similar to that invoked for early-type stars, i.e., radiation absorbed in the lines accelerates the accreting gas to the high velocities observed.

  5. Correction coil cable

    DOEpatents

    Wang, S.T.

    1994-11-01

    A wire cable assembly adapted for the winding of electrical coils is taught. A primary intended use is for use in particle tube assemblies for the Superconducting Super Collider. The correction coil cables have wires collected in wire array with a center rib sandwiched therebetween to form a core assembly. The core assembly is surrounded by an assembly housing having an inner spiral wrap and a counter wound outer spiral wrap. An alternate embodiment of the invention is rolled into a keystoned shape to improve radial alignment of the correction coil cable on a particle tube in a particle tube assembly. 7 figs.

  6. Mixer-Ejector Wind Turbine: Breakthrough High Efficiency Shrouded Wind Turbine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    2010-02-22

    Broad Funding Opportunity Announcement Project: FloDesign Wind Turbine’s innovative wind turbine, inspired by the design of jet engines, could deliver 300% more power than existing wind turbines of the same rotor diameter by extracting more energy over a larger area. FloDesign Wind Turbine’s unique shrouded design expands the wind capture area, and the mixing vortex downstream allows more energy to flow through the rotor without stalling the turbine. The unique rotor and shrouded design also provide significant opportunity for mass production and simplified assembly, enabling mid-scale turbines (approximately 100 kW) to produce power at a cost that is comparable tomore » larger-scale conventional turbines.« less

  7. ZOMG - I. How the cosmic web inhibits halo growth and generates assembly bias

    NASA Astrophysics Data System (ADS)

    Borzyszkowski, Mikolaj; Porciani, Cristiano; Romano-Díaz, Emilio; Garaldi, Enrico

    2017-07-01

    The clustering of dark matter haloes with fixed mass depends on their formation history, an effect known as assembly bias. We use zoom N-body simulations to investigate the origin of this phenomenon. For each halo at redshift z = 0, we determine the time in which the physical volume containing its final mass becomes stable. We consider five examples for which this happens at z ˜ 1.5 and two that do not stabilize by z = 0. The zoom simulations show that early-collapsing haloes do not grow in mass at z = 0 while late-forming ones show a net inflow. The reason is that 'accreting' haloes are located at the nodes of a network of thin filaments feeding them. Conversely, each 'stalled' halo lies within a prominent filament that is thicker than the halo size. Infalling material from the surroundings becomes part of the filament while matter within it recedes from the halo. We conclude that assembly bias originates from quenching halo growth due to tidal forces following the formation of non-linear structures in the cosmic web, as previously conjectured in the literature. Also the internal dynamics of the haloes change: the velocity anisotropy profile is biased towards radial (tangential) orbits in accreting (stalled) haloes. Our findings reveal the cause of the yet unexplained dependence of halo clustering on the anisotropy. Finally, we extend the excursion-set theory to account for these effects. A simple criterion based on the ellipticity of the linear tidal field combined with the spherical-collapse model provides excellent predictions for both classes of haloes.

  8. Powerful, Rotating Disk Winds from Stellar-mass Black Holes

    NASA Astrophysics Data System (ADS)

    Miller, J. M.; Fabian, A. C.; Kaastra, J.; Kallman, T.; King, A. L.; Proga, D.; Raymond, J.; Reynolds, C. S.

    2015-12-01

    We present an analysis of ionized X-ray disk winds found in the Fe K band of four stellar-mass black holes observed with Chandra, including 4U 1630-47, GRO J1655-40, H 1743-322, and GRS 1915+105. High-resolution photoionization grids were generated in order to model the data. Third-order gratings spectra were used to resolve complex absorption profiles into atomic effects and multiple velocity components. The Fe xxv line is found to be shaped by contributions from the intercombination line (in absorption), and the Fe xxvi line is detected as a spin-orbit doublet. The data require 2-3 absorption zones, depending on the source. The fastest components have velocities approaching or exceeding 0.01c, increasing mass outflow rates and wind kinetic power by orders of magnitude over prior single-zone models. The first-order spectra require re-emission from the wind, broadened by a degree that is loosely consistent with Keplerian orbital velocities at the photoionization radius. This suggests that disk winds are rotating with the orbital velocity of the underlying disk, and provides a new means of estimating launching radii—crucial to understanding wind driving mechanisms. Some aspects of the wind velocities and radii correspond well to the broad-line region in active galactic nuclei (AGNs), suggesting a physical connection. We discuss these results in terms of prevalent models for disk wind production and disk accretion itself, and implications for massive black holes in AGNs.

  9. Spool assembly support analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Norman, B.F.

    1994-10-07

    This document provides the wind/seismic analysis and evaluation for the pump pit spool assemblies. Hand calculations were used for the analysis. UBC, AISC, and load factors were used in this evaluation. The results show that the actual loads are under the allowable loads and all requirements are met.

  10. Calixarene-Mediated Synthesis of Cobalt Nanoparticles: An Accretion Model for Separate Control over Nucleation and Growth

    PubMed Central

    Chen, Zhenguo; Liu, Jie; Evans, Andrew J.; Alberch, Laura; Wei, Alexander

    2015-01-01

    The nucleation and growth of crystalline cobalt nanoparticles (Co NPs) under solvothermal conditions can be separated into distinct stages by using (i) polynuclear clusters with multivalent capping ligands to initiate nucleation, and (ii) thermolabile organometallic complexes with low autonucleation potential to promote crystalline growth. Both nucleation and growth take place within an amorphous accretion, formed in the presence of polyvalent surfactants. At the pre-nucleation stage, a calixarene complex with multiple Co2–alkyne ligands (Co16–calixarene 1) undergoes thermal decomposition above 130 °C to form “capped cluster” intermediates that coalesce into well-defined Co nanoclusters, but are resistant to further aggregation. At the post-nucleation stage, a monomer (pentyne–Co4(CO)10, or PTC) with a low thermal activation threshold but a high barrier to autonucleation is introduced, yielding ε-Co NPs with a linear relationship between particle volume and the Co mole ratio ([Cofinal]/[Coseed]). Co nanocrystals can be produced up to 40 nm with a 10–12% size dispersity within the accretion, but their growth rate depends on the activity of the supporting surfactant, with an octapropargyl calixarene derivative (OP-C11R) providing the most efficient transport of reactive Co species through the amorphous matrix. Post-growth digestion with oleic acid releases the Co NPs from the residual accretion, which can then self-assemble by magnetic dipolar interactions into flux-closure rings when stabilized by calixarene-based surfactants. These studies demonstrate that organometallic complexes can be designed to establish rational control over the nucleation and growth of crystalline NPs within an intermediate accretion phase. PMID:25960603

  11. X1908+075: A Late O-Type Supergiant with a Neutron Star Companion

    NASA Astrophysics Data System (ADS)

    Morel, Thierry; Grosdidier, Yves

    2006-08-01

    X1908 + 075 is a highly-absorbed Galactic X-ray source likely made up of a pulsar accreting wind material from a massive companion. We have used near-IR photometric data complemented by follow-up spectroscopy to identify the likely counterpart to this X-ray source and to assign a spectral type O7.5 9.5 If to the primary. Further details can be found in Morel and Grosdidier (2005).

  12. Mod-5A wind turbine generator program design report. Volume 4: Drawings and specifications, book 5

    NASA Technical Reports Server (NTRS)

    1984-01-01

    The design, development and analysis of the 7.3 MW MOD-5A wind turbine generator is documented. There are four volumes. This volume contains the drawings and specifications that were developed in preparation for building the MOD-5A wind turbine generator. Detail drawings of several assemblies and subassemblies are given. This is the fifth book of volume 4.

  13. Evidence for Ultra-Fast Outflows in Radio-Quiet AGNs: III - Location and Energetics

    NASA Technical Reports Server (NTRS)

    Tombesi, F.; Cappi, M.; Reeves, J. N.; Braito, V.

    2012-01-01

    Using the results of a previous X-ray photo-ionization modelling of blue-shifted Fe K absorption lines on a sample of 42 local radio-quiet AGNs observed with XMM-Newton, in this letter we estimate the location and energetics of the associated ultrafast outflows (UFOs). Due to significant uncertainties, we are essentially able to place only lower/upper limits. On average, their location is in the interval approx.0.0003-0.03pc (approx.10(exp 2)-10(exp 4)tau(sub s) from the central black hole, consistent with what is expected for accretion disk winds/outflows. The mass outflow rates are constrained between approx.0.01- 1 Stellar Mass/y, corresponding to approx. or >5-10% of the accretion rates. The average lower-upper limits on the mechanical power are logE(sub K) approx. or = 42.6-44.6 erg/s. However, the minimum possible value of the ratio between the mechanical power and bolometric luminosity is constrained to be comparable or higher than the minimum required by simulations of feedback induced by winds/outflows. Therefore, this work demonstrates that UFOs are indeed capable to provide a significant contribution to the AGN r.osmological feedback, in agreement with theoretical expectations and the recent observation of interactions between AGN outflows and the interstellar medium in several Seyferts galaxies .

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sarshar, Mohammad Amin; Swarctz, Christopher; Hunter, Scott Robert

    In this paper, the iceophobic properties of superhydrophobic surfaces are investigated under dynamic flow conditions by using a closed loop low-temperature wind tunnel. Superhydrophobic surfaces were prepared by coating the substrates of aluminum and steel plates with nano-structured hydrophobic particles. The superhydrophobic plates along with uncoated control ones were exposed to an air flow of 12 m/s and 20 F accompanying micron-sized water droplets in the icing wind tunnel and the ice formation and accretion were probed by high-resolution CCD cameras. Results show that the superhydrophobic coatings significantly delay the ice formation and accretion even under the dynamic flow conditionmore » of the highly energetic impingement of accelerated super-cooled water droplets. It is found that there is a time scale for this phenomenon (delay of the ice formation) which has a clear correlation with the contact angle hysteresis and the length scale of surface roughness of the superhydrophobic surface samples, being the highest for the plate with the lowest contact angle hysteresis and finer surface roughness. The results suggest that the key parameter for designing iceophobic surfaces is to retain a low contact angle hysteresis (dynamic property) and the non-wetting superhydrophobic state under the hydrodynamic pressure of impinging droplets, rather than to only have a high contact angle (static property), in order to result in efficient anti-icing properties under dynamic conditions such as forced flows.« less

  15. EVIDENCE FOR AN ACCRETION ORIGIN FOR THE OUTER HALO GLOBULAR CLUSTER SYSTEM OF M31

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mackey, A. D.; Huxor, A. P.; Ferguson, A. M. N.

    2010-07-01

    We use a sample of newly discovered globular clusters from the Pan-Andromeda Archaeological Survey (PAndAS) in combination with previously cataloged objects to map the spatial distribution of globular clusters in the M31 halo. At projected radii beyond {approx}30 kpc, where large coherent stellar streams are readily distinguished in the field, there is a striking correlation between these features and the positions of the globular clusters. Adopting a simple Monte Carlo approach, we test the significance of this association by computing the probability that it could be due to the chance alignment of globular clusters smoothly distributed in the M31 halo.more » We find that the likelihood of this possibility is low, below 1%, and conclude that the observed spatial coincidence between globular clusters and multiple tidal debris streams in the outer halo of M31 reflects a genuine physical association. Our results imply that the majority of the remote globular cluster system of M31 has been assembled as a consequence of the accretion of cluster-bearing satellite galaxies. This constitutes the most direct evidence to date that the outer halo globular cluster populations in some galaxies are largely accreted.« less

  16. Ngc7538 Irs1 - A Highly Collimated Ionized Wind Source Powered By Accretion

    NASA Astrophysics Data System (ADS)

    Sandell, Goran H. L.; Wright, M.; Goss, W.; Corder, S.

    2009-01-01

    Recent images show that NGC7538 IRS1 is not a conventional Ultracompact or Hypercompact HII region, but is completely wind-excited (other broad recombination line hypercompact HII regions may be similar to IRS1). NGC 7538 IRS1 is a well studied young high-mass star (L 2 10^5 L_Sun).VLA images at 6 and 2 cm (Cambell 1984; ApJ, 282, L27) showed a compact bipolar core (lobe separation 0.2") with more extended faint lobes. Recombination line observations (Gaume et al. 1995, ApJ, 438, 776) show extremely wide line profiles indicating substantial mass motion of the ionized gas. We re-analyzed high angular resolution VLA archive data from 6 cm to 7 mm, and measured the flux from the compact core and the extended (1.5 - 2") bipolar lobes. We find that the compact core has a spectral index, alpha 0.6, which could be explained by an optically thick hypercompact core with a density gradient. However, the size of the core shrinks with increasing frequency; from 0.24" at 6 cm to 0.1" at 7 mm, consistent with that expected for a collimated jet (Reynolds 1986, ApJ, 304, 713). If we do a crude size correction so that we compare emission from the optically thick inner part of the jet for a set of 2 cm and 7 mm observations we get alpha 1.6, i.e. close to the optically thick value. BIMA and CARMA continuum observations at 3 mm show some dust excess, while. HCO+ J=1-0 observations combined with FCRAO single dish data show a clear inverse P Cygni profile towards IRS1. These observations confirm that IRS1 is heavily accreting with an accretion rate 2 10^-4 M_Sun/year, sufficient to quench the formation of an HII region.

  17. The Impact of Starbursts on the Gaseous Halos of Galaxies

    NASA Astrophysics Data System (ADS)

    Heckman, Timothy

    2009-07-01

    Perhaps the most important {yet uncertain} aspects of galaxy evolution are the processes by which galaxies accrete gas and by which the resulting star formation and black hole growth affects this accreting gas. It is believed that both the form of the accretion and the nature of the feedback change as a function of the galaxy mass. At low mass the gas comes in cold and the feedback is provided by massive stars. At high mass, the gas comes in hot, and the feedback is from an AGN. The changeover occurs near the mass where the galaxy population transitions from star-forming galaxies to red and dead ones. The population of red and dead galaxies is building with cosmic time, and it is believed that feedback plays an imporant role in this process: shutting down star formation by heating and/or expelling the reservoir of cold halo gas. To investigate these ideas, we propose to use COS far-UV spectra of background QSOs to measure the properties of the halo gas in a sample of galaxies near the transition mass that have undergone starbursts within the past 100 Myr to 1 Gyr. The galactic wind associated with the starburst is predicted to have affected the properties of the gaseous halo. To test this, we will compare the properties of the halos of the post-starburst galaxies to those of a control sample of galaxies matched in mass and QSO impact parameter. Do the halos of the post-starburst galaxies show a higher incidence rate of Ly-Alpha and metal absorption-lines? Are the kinematics of the halo gas more disturbed in the post-starbursts? Has the wind affected the ionization state and/or the metallicity of the halo? These data will provide fresh new insights into the role of feedback from massive stars on the evolution of galaxies, and may also offer clues about the properties of the QSO metal absorption-line systems at high-redshift.

  18. 23. Photocopy of drawing (original in possession of Naval Surface ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    23. Photocopy of drawing (original in possession of Naval Surface Warfare Center Carderock Division, Bethesda, MD) 7 X 10 FOOT SONIC WIND TUNNEL, FAN HOUSING ASSEMBLY, 1952 - Naval Surface Warfare Center, Transonic Wind Tunnel Building, Bounded by Clara Barton Parkway & McArthur Boulevard, Silver Spring, Montgomery County, MD

  19. 11. Photocopy of photograph (original photograph In the collection of ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    11. Photocopy of photograph (original photograph In the collection of Naval Surface Warfare Center Carderock Division, Bethesda, MD) VIEW NORTHEAST, INTERIOR, SUBSONIC WIND TUNNEL FAN ASSEMBLY, 1943 - Naval Surface Warfare Center, Subsonic Wind Tunnel Building, Bounded by Clara Barton Parkway & McArthur Boulevard, Silver Spring, Montgomery County, MD

  20. The early evolution of the inner solar system: a meteoritic perspective.

    PubMed

    O'D Alexander, C M; Boss, A P; Carlson, R W

    2001-07-06

    Formation of the solar system may have been triggered by a stellar wind. From then on, the solar system would have followed a conventional evolutionary path, including the formation of a disk and bipolar jets. The now extinct short-lived radionuclides beryllium-10 and, possibly, manganese-53 that were present in meteorites probably resulted from energetic particle irradiation within the solar system. Calcium-aluminum-rich inclusions (the oldest known solar system solids) and chondrules could have been produced by the bipolar jets, but it is more likely that they formed during localized events in the asteroid belt. The chondritic meteorites formed within the temperature range (100 to 400 kelvin) inferred for the midplane of classical T Tauri disks at 2 to 3 astronomical units from their central stars. However, these meteorites may retain a chemical memory of earlier times when midplane temperatures were much higher. Dissipation of the solar nebula occurred within a few million years of solar system formation, whereas differentiation of asteroidal-sized bodies occurred within 5 to 15 million years. The terrestrial planets took approximately 100 million years to form. Consequently, they would have accreted already differentiated bodies, and their final assembly was not completed until after the solar nebula had dispersed. This implies that water-bearing asteroids and/or icy planetesimals that formed near Jupiter are the likely sources of Earth's water.

  1. Numerical Study on Outflows in Seyfert Galaxies I: Narrow Line Region Outflows in NGC 4151

    NASA Astrophysics Data System (ADS)

    Mou, Guobin; Wang, Tinggui; Yang, Chenwei

    2017-07-01

    The origin of narrow line region (NLR) outflows remains unknown. In this paper, we explore the scenario in which these outflows are circumnuclear clouds driven by energetic accretion disk winds. We choose the well-studied nearby Seyfert galaxy NGC 4151 as an example. By performing 3D hydrodynamical simulations, we are able to reproduce the radial distributions of velocity, mass outflow rate, and kinetic luminosity of NLR outflows in the inner 100 pc deduced from spatial resolved spectroscopic observations. The demanded kinetic luminosity of disk winds is about two orders of magnitude higher than that inferred from the NLR outflows, but is close to the ultrafast outflows (UFO) detected in the X-ray spectrum and a few times lower than the bolometric luminosity of the Seyfert. Our simulations imply that the scenario is viable for NGC 4151. The existence of the underlying disk winds can be confirmed by their impacts on higher density ISM, e.g., shock excitation signs, and the pressure in NLR.

  2. Wind Tunnel Measured Effects on a Twin-Engine Short-Haul Transport Caused by Simulated Ice Accretions

    NASA Technical Reports Server (NTRS)

    Reehorst, Andrew; Potapczuk, Mark; Ratvasky, Thomas; Laflin, Brenda Gile

    1996-01-01

    A series of wind tunnel tests were conducted to assess the effects of leading edge ice contamination upon the performance of a short-haul transport. The wind tunnel test was conducted in the NASA Langley 14 by 22 foot facility. The test article was a 1/8 scale twin-engine short-haul jet transport model. Two separate leading edge ice contamination configurations were tested in addition to the uncontaminated baseline configuration. Several aircraft configurations were examined including various flap and slat deflections, with and without landing gear. Data gathered included force measurements via an internal six-component force balance, pressure measurements through 700 electronically scanned wing pressure ports, and wing surface flow visualization measurements. The artificial ice contamination caused significant performance degradation and caused visible changes demonstrated by the flow visualization. The data presented here is just a portion of the data gathered. A more complete data report is planned for publication as a NASA Technical Memorandum and data supplement.

  3. The formation and assembly history of the Milky Way revealed by its globular cluster population

    NASA Astrophysics Data System (ADS)

    Kruijssen, J. M. Diederik; Pfeffer, Joel L.; Reina-Campos, Marta; Crain, Robert A.; Bastian, Nate

    2018-06-01

    We use the age-metallicity distribution of 96 Galactic globular clusters (GCs) to infer the formation and assembly history of the Milky Way (MW), culminating in the reconstruction of its merger tree. Based on a quantitative comparison of the Galactic GC population to the 25 cosmological zoom-in simulations of MW-mass galaxies in the E-MOSAICS project, which self-consistently model the formation and evolution of GC populations in a cosmological context, we find that the MW assembled quickly for its mass, reaching {25, 50}% of its present-day halo mass already at z = {3, 1.5} and half of its present-day stellar mass at z = 1.2. We reconstruct the MW's merger tree from its GC age-metallicity distribution, inferring the number of mergers as a function of mass ratio and redshift. These statistics place the MW's assembly rate among the 72th-94th percentile of the E-MOSAICS galaxies, whereas its integrated properties (e.g. number of mergers, halo concentration) match the median of the simulations. We conclude that the MW has experienced no major mergers (mass ratios >1:4) since z ˜ 4, sharpening previous limits of z ˜ 2. We identify three massive satellite progenitors and constrain their mass growth and enrichment histories. Two are proposed to correspond to Sagittarius (few 108M⊙) and Canis Major (˜109 M⊙). The third satellite has no known associated relic and was likely accreted between z = 0.6-1.3. We name this enigmatic galaxy Kraken and propose that it is the most massive satellite (M* ˜ 2 × 109 M⊙) ever accreted by the MW. We predict that ˜40% of the Galactic GCs formed ex-situ (in galaxies with masses M* = 2 × 107-2 × 109 M⊙), with 6 ± 1 being former nuclear clusters.

  4. Reconstructing the role of South China in Pangea and earlier supercontinents

    NASA Astrophysics Data System (ADS)

    Cawood, Peter; Zhao, Guochun; Yao, Jinlong; Wang, Wei; Xu, Yajun; Wang, Yuejun

    2017-04-01

    The history of the South China Craton and the constituent Yangtze and Cathaysia blocks is directly linked to Earth's Phanerozoic and Precambrian record of supercontinent assembly and dispersal. Exposed Archean rocks are limited to isolated fragments in the Yangtze Block and preserve a record of Meso- to Neo-Archean igneous activity, sedimentation and metamorphism associated with a period of global craton formation and stabilization that corresponds with assembly of the Kenor supercontinent/supercraton. However, there is insufficient data to link its history with other similar aged cratons. The tectonostratigraphic record in South China in the Paleoproterozoic, corresponding with assembly of Nuna, suggests that rock units in the Yangtze Block were spatially linked with northwestern Laurentia and possibly Siberia, whereas Cathaysia was joined to northern India. From the formation of Rodinia at the end of the Mesoproterozoic through to that of Pangea in the mid-Paleozoic, Cathaysia remained joined to northern India. Early Neoproterozoic supra-subduction zone magmatic arc-back arc assemblages ranging in age from 1000 Ma to 810 Ma occur within Cathaysia, along its northwestern margin, and along the southeastern margin of the Yangtze Block. These rocks provide a record of convergent plate interaction along the periphery of Rodinia, which continued along the western margin of the Yangtze Block until around 700 Ma and correlates with similar along strike subduction zone magmatism in northwest India, Seychelles and Madagascar. During final assembly of Gondwana in the early Paleozoic suturing of India-South China with the Western Australia-Mawson blocks along the Kuunga Orogen resulted in the accretion of the Sanya Block of Hainan Island with the rest of Cathaysia. The accretion of Laurussia to Gondwana in the mid-Paleozoic to form Pangea corresponds with the initiation of lithospheric extension along the northern margin of Gondwana and the separation of a number of continental blocks, including South China, which then drifted northward across the Paleo-Tethys to collide with the Asian segment of Pangea in the Permo-Triassic.

  5. Stabilized PV system

    DOEpatents

    Dinwoodie, Thomas L.

    2002-12-17

    A stabilized PV system comprises an array of photovoltaic (PV) assemblies mounted to a support surface. Each PV assembly comprises a PV module and a support assembly securing the PV module to a position overlying the support surface. The array of modules is circumscribed by a continuous, belt-like perimeter assembly. Cross strapping, extending above, below or through the array, or some combination of above, below and through the array, secures a first position along the perimeter assembly to at least a second position along the perimeter assembly thereby stabilizing the array against wind uplift forces. The first and second positions may be on opposite sides on the array.

  6. Advances in Statistical and Deterministic Modeling of Wind-Driven Seas

    DTIC Science & Technology

    2011-09-30

    Zakharov. Scales of nonlinear relaxation and balance of wind- driven seas. Geophysical Research Abstracts Vol. 13, EGU2011-2042, 2011. EGU General ...Dyachenko A. “On canonical equation for water waves” at General Assembly 2011 of the European Geosciences Union in Vienna, Austria, 03 – 08 April...scattering and equilibrium ranges in wind- generated waves with application to spectrometry, J. Geoph. Res., 92, 49715029, 1987. [3] Hsiao S.V. and

  7. Panel 1: A pulsating red giant star and a compact, hot white dwarf star orbit each other.

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Panel 1: A pulsating red giant star and a compact, hot white dwarf star orbit each other. Panel 2: The red giant sheds much of its outer layers in a stellar wind. The white dwarf helps concentrate the wind along a thin equatorial plane. The white dwarf accretes some of this escaping gas forming a disk around the itself. Panel 3: When enough gas accumulates on the white dwarf's surface it explodes as a nova outburst. Most of the hot gas forms a pair of expanding bubbles above and below the equatorial disk. Panel 4: A few thousand years after the bubbles expand into space, the white dwarf goes through another nova outburst and makes another pair of bubbles, which form a distinctive hourglass shape.

  8. On the nature of the symbiotic star BF Cygni

    NASA Technical Reports Server (NTRS)

    Mikolajewska, J.; Mikolajewski, M.; Kenyon, S. J.

    1989-01-01

    Optical and ultraviolet spectroscopy of the symbiotic binary BF Cyg obtained during 1979-1988 is discussed. This system consists of a low-mass M5 giant filling about 50 percent of its tidal volume and a hot, luminous compact object similar to the central star of a planetary nebula. The binary is embedded in an asymmetric nebula which includes a small, high-density region and an extended region of lower density. The larger nebula is formed by a slow wind ejected by the cool component and ionized by the hot star, while the more compact nebula is material expelled by the hot component in the form of a bipolar wind. The analysis indicates that disk accretion is essential to maintain the nuclear burning shell of the hot star.

  9. Discovery of optical flickering from the symbiotic star EF Aquilae

    NASA Astrophysics Data System (ADS)

    Zamanov, R. K.; Boeva, S.; Nikolov, Y. M.; Petrov, B.; Bachev, R.; Latev, G. Y.; Popov, V. A.; Stoyanov, K. A.; Bode, M. F.; Martí, J.; Tomov, T.; Antonova, A.

    2017-07-01

    We report optical CCD photometry of the recently identified symbiotic star EF Aql. Our observations in Johnson V and B bands clearly show the presence of stochastic light variations with an amplitude of about 0.2 mag on a time scale of minutes. The observations point toward a white dwarf (WD) as the hot component in the system. It is the 11-th object among more than 200 symbiotic stars known with detected optical flickering. Estimates of the mass accretion rate onto the WD and the mass loss rate in the wind of the Mira secondary star lead to the conclusion that less than 1 per cent of the wind is captured by the WD. Eight further candidates for the detection of flickering in similar systems are suggested.

  10. Collected Papers on Wind Turbine Technology

    NASA Technical Reports Server (NTRS)

    Spera, David A. (Editor)

    1995-01-01

    R and D projects on electricity generating wind turbines were conducted at the NASA Lewis Research Center from 1973 to 1988. Most projects were sponsored by the U.S. Department of Energy (DOE), a major element of its Federal Wind Energy Program. Another large wind turbine project was by the Bureau of Reclamation of the U.S. Department of Interior (DOI). From 1988 to 1995, NASA wind energy activities have been directed toward the transfer of technology to commercial and academic organizations. As part of these technology transfer activities, previously unpublished manuscripts have been assembled and presented here to share the wind turbine research results with the wind energy community. A variety of wind turbine technology topics are discussed: Wind and wake models; Airfoil properties; Structural analysis and testing; Control systems; Variable speed generators; and acoustic noise. Experimental and theoretical results are discussed.

  11. Holocene reef accretion: southwest Molokai, Hawaii, U.S.A.

    USGS Publications Warehouse

    Engels, Mary S.; Fletcher, Charles H.; Field, Michael E.; Storlazzi, Curt D.; Grossman, Eric E.; Rooney, John J.B.; Conger, Christopher L.; Glenn, Craig

    2004-01-01

    Two reef systems off south Molokai, Hale O Lono and Hikauhi (separated by only 10 km), show strong and fundamental differences in modern ecosystem structure and Holocene accretion history that reflect the influence of wave-induced near-bed shear stresses on reef development in Hawaii. Both sites are exposed to similar impacts from south, Kona, and trade-wind swell. However, the Hale O Lono site is exposed to north swell and the Hikuahi site is not. As a result, the reef at Hale O Lono records no late Holocene net accretion while the reef at Hikauhi records consistent and robust accretion over late Holocene time. Analysis and dating of 24 cores from Hale O Lono and Hikauhi reveal the presence of five major lithofacies that reflect paleo-environmental conditions. In order of decreasing depositional energy they are: (1) coral-algal bindstone; (2) mixed skeletal rudstone; (3) massive coral framestone; (4) unconsolidated floatstone; and (5) branching coral framestone-bafflestone. At Hale O Lono, 10 cores document a backstepping reef ranging from ∼ 8,100 cal yr BP (offshore) to ∼ 4,800 cal yr BP (nearshore). A depauperate community of modern coral diminishes shoreward and seaward of ∼ 15 m depth due to wave energy, disrupted recruitment activities, and physical abrasion. Evidence suggests a change from conditions conducive to accretion during the early Holocene to conditions detrimental to accretion in the late Holocene. Reef structure at Hikauhi, reconstructed from 14 cores, reveals a thick, rapidly accreting and young reef (maximum age ∼ 900 cal yr BP). Living coral cover on this reef increases seaward with distance from the reef crest but terminates at a depth of ∼ 20 m where the reef ends in a large sand field. The primary limitation on vertical reef growth is accommodation space under wave base, not recruitment activities or energy conditions. Interpretations of cored lithofacies suggest that modern reef growth on the southwest corner of Molokai, and by extension across Hawaii in general, is controlled by wave-induced near-bed shear stress related to refracted North Pacific swell. Holocene accretion patterns here also reflect the long-term influence of wave-induced near-bed shear stress from north swell during late Holocene time. This finding is consistent with other studies (e.g., Grigg 1998; Cabioch et al. 1999) that reflect the dominance of swell energy and sea level in controlling modern and late Holocene accretion elsewhere in Hawaii and across the Pacific and Indian oceans. Notably, however, this result is refined and clarified for Hawaii in the hypothesis of Rooney et al. (2003) stating that enhancement of the El Niño Southern Oscillation beginning approximately 5000 years ago led to increased north swell energy and signaled the end to net accretion along exposed coastlines in Hawaii. The exposure of Hale O Lono to north swell and the age of sea floor there (ca. 4,800 cal yr BP), coupled with the lack of north swell incidence at Hikauhi and the continuous accretion that has occurred there over the last millennium, strongly supports the ENSO reef hypothesis as outlined by Rooney et al. (2003). Other factors controlling Holocene reef accretion at the study site are relative sea-level position and rate of rise, and wave sheltering by Laau Point. Habitat suitable for reef accretion on the southwest shore of Molokai has shrunk throughout the Holocene.

  12. Highly Structured Wind in Vela X-1

    NASA Technical Reports Server (NTRS)

    Kreykenbohm, Ingo; Wilms, Joern; Kretschmar, Peter; Torrejon, Jose Miguel; Pottschmidt, Katja; Hanke, Manfred; Santangelo, Andrea; Ferrigno, Carlo; Staubert, Ruediger

    2008-01-01

    We present an in-depth analysis of the spectral and temporal behavior of a long almost uninterrupted INTEGRAL observation of Vela X-1 in Nov/Dec 2003. In addition to an already high activity level, Vela X-1 exhibited several very intense flares with a maximum intensity of more than 5 Crab in the 20 40 keV band. Furthermore Vela X-1 exhibited several off states where the source became undetectable with ISGRI. We interpret flares and off states as being due to the strongly structured wind of the optical companion: when Vela X-1 encounters a cavity in the wind with strongly reduced density, the flux will drop, thus potentially triggering the onset of the propeller effect which inhibits further accretion, thus giving rise to the off states. The required drop in density to trigger the propeller effect in Vela X-1 is of the same order as predicted by theoretical papers for the densities in the OB star winds. The same structured wind can give rise to the giant flares when Vela X-1 encounters a dense blob in the wind. Further temporal analysis revealed that a short lived QPO with a period of 6800 sec is present. The part of the light curve during which the QPO is present is very close to the off states and just following a high intensity state, thus showing that all these phenomena are related.

  13. Magnetized Disk Winds in NGC 3783

    NASA Technical Reports Server (NTRS)

    Fukumura, Keigo; Kazanas, Demosthenes; Shrader, Chris; Behar, Ehud; Tombesi, Francesco; Contopoulos, Ioannis

    2018-01-01

    We analyze a 900 kilosecond stacked Chandra/HETG (High-Energy Transmission Grating) spectrum of NGC 3783 in the context of magnetically driven accretion-disk wind models in an effort to provide tight constraints on the global conditions of the underlying absorbers. Motivated by the earlier measurements of its absorption measure distribution (AMD) indicating X-ray-absorbing ionic columns that decrease slowly with decreasing ionization parameter, we employ 2-dimension (2-D) magnetohydrodynamic (MHD) disk wind models to describe the global outflow. We compute its photoionization structure along with the wind kinematic properties, allowing us to further calculate in a self-consistent fashion the shapes of the major X-ray absorption lines. With the wind radial density profile determined by the AMD, the profiles of the ensemble of the observed absorption features are determined by the two global parameters of the MHD wind; i.e., disk inclination theta (sub obs) and wind density normalization n (sub o). Considering the most significant absorption features in the approximately 1.8-20 angstrom range, we show that the MHD wind is best described by n(r) approximately equal to 6.9 times 10 (sup 11) (r/r (sub o)) (sup - 1.15) cubic centimeters and theta (sub obs). We argue that winds launched by X-ray heating or radiation pressure, or even MHD winds but with steeper radial density profiles, are strongly disfavored by data. Considering the properties of Fe K-band absorption features (i.e., Fe XXV and Fe XXVI), while typically prominent in the active galactic nucleus X-ray spectra, they appear to be weak in NGC 3783. For the specific parameters of our model obtained by fitting the AMD and the rest of the absorption features, these features are found to be weak, in agreement with observations.

  14. Magnetized Disk Winds in NGC 3783

    NASA Astrophysics Data System (ADS)

    Fukumura, Keigo; Kazanas, Demosthenes; Shrader, Chris; Behar, Ehud; Tombesi, Francesco; Contopoulos, Ioannis

    2018-01-01

    We analyze a 900 ks stacked Chandra/HETG spectrum of NGC 3783 in the context of magnetically driven accretion-disk wind models in an effort to provide tight constraints on the global conditions of the underlying absorbers. Motivated by the earlier measurements of its absorption measure distribution (AMD) indicating X-ray-absorbing ionic columns that decrease slowly with decreasing ionization parameter, we employ 2D magnetohydrodynamic (MHD) disk wind models to describe the global outflow. We compute its photoionization structure along with the wind kinematic properties, allowing us to further calculate in a self-consistent fashion the shapes of the major X-ray absorption lines. With the wind radial density profile determined by the AMD, the profiles of the ensemble of the observed absorption features are determined by the two global parameters of the MHD wind; i.e., disk inclination {θ }{obs} and wind density normalization n o . Considering the most significant absorption features in the ∼1.8–20 Å range, we show that the MHD wind is best described by n{(r)∼ 6.9× {10}11(r/{r}o)}-1.15 cm‑3 and {θ }{obs}=44^\\circ . We argue that winds launched by X-ray heating or radiation pressure, or even MHD winds but with steeper radial density profiles, are strongly disfavored by data. Considering the properties of Fe K-band absorption features (i.e., Fe XXV and Fe XXVI), while typically prominent in the active galactic nucleus X-ray spectra, they appear to be weak in NGC 3783. For the specific parameters of our model obtained by fitting the AMD and the rest of the absorption features, these features are found to be weak, in agreement with observations.

  15. Pressure-equalizing PV assembly and method

    DOEpatents

    Dinwoodie, Thomas L.

    2004-10-26

    Each PV assembly of an array of PV assemblies comprises a base, a PV module and a support assembly securing the PV module to a position overlying the upper surface of the base. Vents are formed through the base. A pressure equalization path extends from the outer surface of the PV module, past the PV module, to and through at least one of the vents, and to the lower surface of the base to help reduce wind uplift forces on the PV assembly. The PV assemblies may be interengaged, such as by interengaging the bases of adjacent PV assemblies. The base may include a main portion and a cover and the bases of adjacent PV assemblies may be interengaged by securing the covers of adjacent bases together.

  16. A SUPER-EDDINGTON, COMPTON-THICK WIND IN GRO J1655–40?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Neilsen, J.; Homan, J.; Rahoui, F.

    2016-05-01

    During its 2005 outburst, GRO J1655–40 was observed at high spectral resolution with the Chandra High-Energy Transmission Grating Spectrometer, revealing a spectrum rich with blueshifted absorption lines indicative of an accretion disk wind—apparently too hot, too dense, and too close to the black hole to be driven by radiation pressure or thermal pressure (Miller et al.). However, this exotic wind represents just one piece of the puzzle in this outburst, as its presence coincides with an extremely soft and curved X-ray continuum spectrum, remarkable X-ray variability (Uttley and Klein-Wolt), and a bright, unexpected optical/infrared blackbody component that varies on themore » orbital period. Focusing on the X-ray continuum and the optical/infrared/UV spectral energy distribution, we argue that the unusual features of this “hypersoft state” are natural consequences of a super-Eddington Compton-thick wind from the disk: the optical/infrared blackbody represents the cool photosphere of a dense, extended outflow, while the X-ray emission is explained as Compton scattering by the relatively cool, optically thick wind. This wind obscures the intrinsic luminosity of the inner disk, which we suggest may have been at or above the Eddington limit.« less

  17. UV Spectroscopy of face-on accretion disks

    NASA Astrophysics Data System (ADS)

    Wade, Richard

    1996-07-01

    We will obtain GHRS spectra at 1 Angstrom resolution of three novalike variables that have low orbital inclinations, BD-7D3007 {= RW Sex}, HD174107 {= V603 Aql}, and MV-LYR. The blending and broadening of absorption lines from the accretion disk will not be as severe in these objects as in more edge-on systems, and we expect to see individual lines or blends that are distinctively characteristic of the varying projected velocities at different temperatures { i.e. radii} in the disk. These aspects of the UV disk spectrum have not previously been used as a tool to study accretion disk physics. Comparison of line strengths with our detailed models will indicate whether it is necessary to consider irradiated or NLTE disks, and test in a new way whether the disks are in steady state. The shapes of lines that would be formed in the inner disk will tell whether the inner disk is actually present, an important check on observational and theoretical suggestions that the inner disk is missing in some cataclysmic variables. The improved understanding and characterization of the photospheric spectrum will aid in the analysis of the wind-formed P Cygni lines that are seen in these objects. We will use grating G140L, covering much of the mid-UV spectrum with S/N up to 200.

  18. Dynamic Impacts of Water Droplets onto Icephobic Soft Surfaces at High Weber Numbers

    NASA Astrophysics Data System (ADS)

    Ma, Liqun; Liu, Yang; Hu, Hui; Wang, Wei; Kota, Arun

    2017-11-01

    An experimental investigation was performed to examine the effects of the stiffness of icephobic soft PDMS materials on the impact dynamics of water drops at high weber numbers pertinent to aircraft icing phenomena. The experimental study was performed in the Icing Research Tunnel available at Iowa State University (ISU-IRT). During the experiments, both the shear modulus of the soft PDMS surface and the Weber numbers of the impinging water droplets are controlled for the comparative study. While the shear modulus of the soft PDMS surface was changed by tuning the recipes to make the PDMS materials, the Weber number of the impinging water droplets was altered by adjusting the airflow speed in the wind tunnel. A suite of advanced flow diagnostic techniques, which include high-speed photographic imaging, digital image projection (DIP), and infrared (IR) imaging thermometry, were used to quantify the transient behavior of water droplet impingement, unsteady heat transfer and dynamic ice accreting process over the icephobic soft airfoil surfaces. The findings derived from the icing physics studies can be used to improve current icing accretion models for more accurate prediction of ice formation and accretion on aircraft wings and to develop effective anti-/deicing strategies for safer and more efficient operation of aircraft in cold weather.

  19. Staring at 4U 1909+07 with Suzaku (Research Note)

    NASA Technical Reports Server (NTRS)

    Fuerst, F.; Pottschmidt, K.; Kreykenbohm, I.; Mueller, S.; Kuehnel, M.; Wilms, J.; Rothschild, R. E.

    2012-01-01

    We present an analysis of the neutron star High Mass X-ray Binary (HMXB) 4U 1909+07 mainly based on Suzaku data. We extend the pulse period evolution, which behaves in a random-walk like manner, indicative of direct wind accretion. Studying the spectral properties of 4U 1909+07 between 0.5 to 90keV we find that a power-law with an exponential cutoff can describe the data well, when additionally allowing for a blackbody or a partially covering absorber at low energies. We find no evidence for a cyclotron resonant scattering feature (CRSF), a feature seen in many other neutron star HMXBs sources. By performing pulse phase resolved spectroscopy we investigate the origin of the strong energy dependence of the pulse profile, which evolves from a broad two-peak profile at low energies to a profile with a single, narrow peak at energies above 20keV. Our data show that it is very likely that a higher folding energy in the high energy peak is responsible for this behavior. This in turn leads to the assumption that we observe the two magnetic poles and their respective accretion columns at different phases, and that these accretions column have slightly different physical conditions.

  20. New methods to benchmark simulations of accreting black holes systems against observations

    NASA Astrophysics Data System (ADS)

    Markoff, Sera; Chatterjee, Koushik; Liska, Matthew; Tchekhovskoy, Alexander; Hesp, Casper; Ceccobello, Chiara; Russell, Thomas

    2017-08-01

    The field of black hole accretion has been significantly advanced by the use of complex ideal general relativistic magnetohydrodynamics (GRMHD) codes, now capable of simulating scales from the event horizon out to ~10^5 gravitational radii at high resolution. The challenge remains how to test these simulations against data, because the self-consistent treatment of radiation is still in its early days, and is complicated by dependence on non-ideal/microphysical processes not yet included in the codes. On the other extreme, a variety of phenomenological models (disk, corona, jet, wind) can well-describe spectra or variability signatures in a particular waveband, although often not both. To bring these two methodologies together, we need robust observational “benchmarks” that can be identified and studied in simulations. I will focus on one example of such a benchmark, from recent observational campaigns on black holes across the mass scale: the jet break. I will describe new work attempting to understand what drives this feature by searching for regions that share similar trends in terms of dependence on accretion power or magnetisation. Such methods can allow early tests of simulation assumptions and help pinpoint which regions will dominate the light production, well before full radiative processes are incorporated, and will help guide the interpretation of, e.g. Event Horizon Telescope data.

Top