Sample records for wind direction distribution

  1. Statistical distribution of wind speeds and directions globally observed by NSCAT

    NASA Astrophysics Data System (ADS)

    Ebuchi, Naoto

    1999-05-01

    In order to validate wind vectors derived from the NASA scatterometer (NSCAT), statistical distributions of wind speeds and directions over the global oceans are investigated by comparing with European Centre for Medium-Range Weather Forecasts (ECMWF) wind data. Histograms of wind speeds and directions are calculated from the preliminary and reprocessed NSCAT data products for a period of 8 weeks. For wind speed of the preliminary data products, excessive low wind distribution is pointed out through comparison with ECMWF winds. A hump at the lower wind speed side of the peak in the wind speed histogram is discernible. The shape of the hump varies with incidence angle. Incompleteness of the prelaunch geophysical model function, SASS 2, tentatively used to retrieve wind vectors of the preliminary data products, is considered to cause the skew of the wind speed distribution. On the contrary, histograms of wind speeds of the reprocessed data products show consistent features over the whole range of incidence angles. Frequency distribution of wind directions relative to spacecraft flight direction is calculated to assess self-consistency of the wind directions. It is found that wind vectors of the preliminary data products exhibit systematic directional preference relative to antenna beams. This artificial directivity is also considered to be caused by imperfections in the geophysical model function. The directional distributions of the reprocessed wind vectors show less directivity and consistent features, except for very low wind cases.

  2. Observations of the directional distribution of the wind energy input function over swell waves

    NASA Astrophysics Data System (ADS)

    Shabani, Behnam; Babanin, Alex V.; Baldock, Tom E.

    2016-02-01

    Field measurements of wind stress over shallow water swell traveling in different directions relative to the wind are presented. The directional distribution of the measured stresses is used to confirm the previously proposed but unverified directional distribution of the wind energy input function. The observed wind energy input function is found to follow a much narrower distribution (β∝cos⁡3.6θ) than the Plant (1982) cosine distribution. The observation of negative stress angles at large wind-wave angles, however, indicates that the onset of negative wind shearing occurs at about θ≈ 50°, and supports the use of the Snyder et al. (1981) directional distribution. Taking into account the reverse momentum transfer from swell to the wind, Snyder's proposed parameterization is found to perform exceptionally well in explaining the observed narrow directional distribution of the wind energy input function, and predicting the wind drag coefficients. The empirical coefficient (ɛ) in Snyder's parameterization is hypothesised to be a function of the wave shape parameter, with ɛ value increasing as the wave shape changes between sinusoidal, sawtooth, and sharp-crested shoaling waves.

  3. Vector wind and vector wind shear models 0 to 27 km altitude for Cape Kennedy, Florida, and Vandenberg AFB, California

    NASA Technical Reports Server (NTRS)

    Smith, O. E.

    1976-01-01

    The techniques are presented to derive several statistical wind models. The techniques are from the properties of the multivariate normal probability function. Assuming that the winds can be considered as bivariate normally distributed, then (1) the wind components and conditional wind components are univariate normally distributed, (2) the wind speed is Rayleigh distributed, (3) the conditional distribution of wind speed given a wind direction is Rayleigh distributed, and (4) the frequency of wind direction can be derived. All of these distributions are derived from the 5-sample parameter of wind for the bivariate normal distribution. By further assuming that the winds at two altitudes are quadravariate normally distributed, then the vector wind shear is bivariate normally distributed and the modulus of the vector wind shear is Rayleigh distributed. The conditional probability of wind component shears given a wind component is normally distributed. Examples of these and other properties of the multivariate normal probability distribution function as applied to Cape Kennedy, Florida, and Vandenberg AFB, California, wind data samples are given. A technique to develop a synthetic vector wind profile model of interest to aerospace vehicle applications is presented.

  4. Fitting a circular distribution based on nonnegative trigonometric sums for wind direction in Malaysia

    NASA Astrophysics Data System (ADS)

    Masseran, Nurulkamal; Razali, Ahmad Mahir; Ibrahim, Kamarulzaman; Zaharim, Azami; Sopian, Kamaruzzaman

    2015-02-01

    Wind direction has a substantial effect on the environment and human lives. As examples, the wind direction influences the dispersion of particulate matter in the air and affects the construction of engineering structures, such as towers, bridges, and tall buildings. Therefore, a statistical analysis of the wind direction provides important information about the wind regime at a particular location. In addition, knowledge of the wind direction and wind speed can be used to derive information about the energy potential. This study investigated the characteristics of the wind regime of Mersing, Malaysia. A circular distribution based on Nonnegative Trigonometric Sums (NNTS) was fitted to a histogram of the average hourly wind direction data. The Newton-like manifold algorithm was used to estimate the parameter of each component of the NNTS model. Next, the suitability of each NNTS model was judged based on a graphical representation and Akaike's Information Criteria. The study found that the NNTS model with six or more components was able to fit the wind directional data for the Mersing station.

  5. Characterization of traffic-related PM concentration distribution and fluctuation patterns in near-highway urban residential street canyons.

    PubMed

    Hahn, Intaek; Brixey, Laurie A; Wiener, Russell W; Henkle, Stacy W; Baldauf, Richard

    2009-12-01

    Analyses of outdoor traffic-related particulate matter (PM) concentration distribution and fluctuation patterns in urban street canyons within a microscale distance of less than 500 m from a highway source are presented as part of the results from the Brooklyn Traffic Real-Time Ambient Pollutant Penetration and Environmental Dispersion (B-TRAPPED) study. Various patterns of spatial and temporal changes in the street canyon PM concentrations were investigated using time-series data of real-time PM concentrations measured during multiple monitoring periods. Concurrent time-series data of local street canyon wind conditions and wind data from the John F. Kennedy (JFK) International Airport National Weather Service (NWS) were used to characterize the effects of various wind conditions on the behavior of street canyon PM concentrations.Our results suggest that wind direction may strongly influence time-averaged mean PM concentration distribution patterns in near-highway urban street canyons. The rooftop-level wind speeds were found to be strongly correlated with the PM concentration fluctuation intensities in the middle sections of the street blocks. The ambient turbulence generated by shifting local wind directions (angles) showed a good correlation with the PM concentration fluctuation intensities along the entire distance of the first and second street blocks only when the wind angle standard deviations were larger than 30 degrees. Within-canyon turbulent shearing, caused by fluctuating local street canyon wind speeds, showed no correlation with PM concentration fluctuation intensities. The time-averaged mean PM concentration distribution along the longitudinal distances of the street blocks when wind direction was mostly constantly parallel to the street was found to be similar to the distribution pattern for the entire monitoring period when wind direction fluctuated wildly. Finally, we showed that two different PM concentration metrics-time-averaged mean concentration and number of concentration peaks above a certain threshold level-can possibly lead to different assessments of spatial concentration distribution patterns.

  6. Analysis of environmental dispersion in a wetland flow under the effect of wind: Extended solution

    NASA Astrophysics Data System (ADS)

    Wang, Huilin; Huai, Wenxin

    2018-02-01

    The accurate analysis of the contaminant transport process in wetland flows is essential for environmental assessment. However, dispersivity assessment becomes complicated when the wind strength and direction are taken into consideration. Prior studies illustrating the wind effect on environmental dispersion in wetland flows simply focused on the mean longitudinal concentration distribution. Moreover, the results obtained by these analyses are not accurate when done on a smaller scale, namely, the initial stage of the contaminant transport process. By combining the concentration moments method (the Aris' method) and Gill's expansion theory, the previous researches on environmental dispersion in wetland flows with effect of wind have been extended. By adopting up to 4th-order moments, the wind effect-as illustrated by dimensionless parameters Er (wind force) and ω (wind direction)-on kurtosis and skewness is discussed, the up to 4th-order vertical concentration distribution is obtained, and the two-dimensional concentration distribution is illustrated. This work demonstrates that wind intensity and direction can significantly affect the contaminant dispersion. Moreover, the study presents a more accurate analytical solution of environmental dispersion in wetland flows under various wind conditions.

  7. Performance Prediction and Validation: Data, Frameworks, and Considerations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tinnesand, Heidi

    2017-05-19

    Improving the predictability and reliability of wind power generation and operations will reduce costs and potentially establish a framework to attract new capital into the distributed wind sector, a key cost reduction requirement highlighted in results from the distributed wind future market assessment conducted with dWind. Quantifying and refining the accuracy of project performance estimates will also directly address several of the key challenges identified by industry stakeholders in 2015 as part of the distributed wind resource assessment workshop and be cross-cutting for several other facets of the distributed wind portfolio. This presentation covers the efforts undertaken in 2016 tomore » address these topics.« less

  8. Temporal and spatial variation of maximum wind speed days during the past 20 years in major cities of Xinjiang

    NASA Astrophysics Data System (ADS)

    Baidourela, Aliya; Jing, Zhen; Zhayimu, Kahaer; Abulaiti, Adili; Ubuli, Hakezi

    2018-04-01

    Wind erosion and sandstorms occur in the neighborhood of exposed dust sources. Wind erosion and desertification increase the frequency of dust storms, deteriorate air quality, and damage the ecological environment and agricultural production. The Xinjiang region has a relatively fragile ecological environment. Therefore, the study of the characteristics of maximum wind speed and wind direction in this region is of great significance to disaster prevention and mitigation, the management of activated dunes, and the sustainable development of the region. Based on the latest data of 71 sites in Xinjiang, this study explores the temporal evolution and spatial distribution of maximum wind speed in Xinjiang from 1993 to 2013, and highlights the distribution of annual and monthly maximum wind speed and the characteristics of wind direction in Xinjiang. Between 1993 and 2013, Ulugchat County exhibited the highest number of days with the maximum wind speed (> 17 m/s), while Wutian exhibited the lowest number. In Xinjiang, 1999 showed the highest number of maximum wind speed days (257 days), while 2013 showed the lowest number (69 days). Spring and summer wind speeds were greater than those in autumn and winter. There were obvious differences in the direction of maximum wind speed in major cities and counties of Xinjiang. East of the Tianshan Mountains, maximum wind speeds are mainly directed southeast and northeast. North and south of the Tianshan Mountains, they are mainly directed northwest and northeast, while west of the Tianshan Mountains, they are mainly directed southeast and northwest.

  9. SeaWinds Global Coverage with Detail of Hurricane Floyd

    NASA Image and Video Library

    2000-05-07

    The distribution of ocean surface winds over the Atlantic Ocean, based on September 1999 data from NASA SeaWinds instrument on the QuikScat satellite, shows wind direction, superimposed on the color image indicating wind speed.

  10. A Numerical Model Study of Nocturnal Drainage Flows with Strong Wind and Temperature Gradients.

    NASA Astrophysics Data System (ADS)

    Yamada, T.; Bunker, S.

    1989-07-01

    A second-moment turbulence-closure model described in Yamada and Bunker is used to simulate nocturnal drainage flows observed during the 1984 ASCOT field expedition in Brush Creek, Colorado. In order to simulate the observed strong wind directional shear and temperature gradients, two modifications are added to the model. The strong wind directional shear was maintained by introducing a `nudging' term in the equation of motion to guide the modeled winds in the layers above the ridge top toward the observed wind direction. The second modification was accomplished by reformulating the conservation equation for the potential temperature in such a way that only the deviation from the horizontally averaged value was prognostically computed.The vegetation distribution used in this study is undoubtedly crude. Nevertheless, the present simulation suggests that tall tree canopy can play an important role in producing inhomogeneous wind distribution, particularly in the levels below the canopy top.

  11. Study on typhoon characteristic based on bridge health monitoring system.

    PubMed

    Wang, Xu; Chen, Bin; Sun, Dezhang; Wu, Yinqiang

    2014-01-01

    Through the wind velocity and direction monitoring system installed on Jiubao Bridge of Qiantang River, Hangzhou city, Zhejiang province, China, a full range of wind velocity and direction data was collected during typhoon HAIKUI in 2012. Based on these data, it was found that, at higher observed elevation, turbulence intensity is lower, and the variation tendency of longitudinal and lateral turbulence intensities with mean wind speeds is basically the same. Gust factor goes higher with increasing mean wind speed, and the change rate obviously decreases as wind speed goes down and an inconspicuous increase occurs when wind speed is high. The change of peak factor is inconspicuous with increasing time and mean wind speed. The probability density function (PDF) of fluctuating wind speed follows Gaussian distribution. Turbulence integral scale increases with mean wind speed, and its PDF does not follow Gaussian distribution. The power spectrum of observation fluctuating velocity is in accordance with Von Karman spectrum.

  12. Beam tracking strategies for studies of kinetic scales in the solar wind with THOR-CSW

    NASA Astrophysics Data System (ADS)

    De Keyser, Johan; Lavraud, Benoit; Neefs, Eddy; Berkenbosch, Sophie; Anciaux, Michel; Maggiolo, Romain

    2016-04-01

    Modern plasma spectrometers for monitoring the solar wind attempt to intelligently track the energy and direction of the solar wind beam in order to obtain solar wind velocity distributions more efficiently. Such beam tracking strategies offer some benefits, but also have their limitations and drawbacks. Benefits include an improved resolution and/or a faster velocity distribution function acquisition time. Limitations are due to instrument characteristics that tend to be optimized for a particular range of particle energies and arrival directions. A drawback is the risk to miss an important part of the velocity distribution or to lose track of the beam altogether. A comparison is presented of different beam tracking strategies under consideration for the THOR-CSW instrument in order to highlight a number of design decisions and their impact on the acquired velocity distributions. The gain offered by beam tracking in terms of increased time resolution turns out to be essential for studies of solar wind physics at kinetic scales.

  13. A shoreline fumigation model with wind shear

    NASA Astrophysics Data System (ADS)

    Zhibian, Li; Zengquan, Yao

    A fumigation model has been developed for a plume discharged from an elevated stack in a shoreline environment by introducing different wind directions above and within thermal internal boundary laye:r (TIBL) into a dispersion model. When a continuous point source release occurs above the TIBL pollutants will disperse in the marine stable flow, until the plume intersects the TIBL surface. The fumigation in ithe TIBL is interpreted as occurring from an area source on the imaginary surface of the TIBL. It is assumed that the wind direction varies with height above and below L( x) = Ax2, the height of the TIBL at the distance x. The change of wind direction above and within the TIBL causes the pollutants to change their direction of transport and leads to development of a curved ground level concentration (glc) axis; a decreasing glc along the centreline of the fumigation and a widening pollutant distribution in the transverse direction. Predicted concentration distributions using the wind shear model are compared with observations from an SF 6 tracer experiment near Hangzhou Bay in May-June of 1987. The comparison and an evaluation of the model performance show that the new model is not only more theoretically acceptable than those based on empirical coefficients but also provides concentration distributions which agree well with. SF 6 tracer experiments.

  14. The influence of winding direction of two-layer HTS DC cable on the critical current

    NASA Astrophysics Data System (ADS)

    Vyatkin, V. S.; Kashiwagi, K.; Ivanov, Y. V.; Otabe, E. S.; Yamaguchi, S.

    2017-09-01

    The design of twist pitch and direction of winding in multilayer HTS coaxial cable is important. For HTS AC transmitting cables, the main condition of twist pitch is the balance of inductances of each layer for providing the current balance between layers. In this work, the finite element method analysis for the coaxial cables with both same and opposite directions winding is used to calculate magnetic field distribution, and critical current of the cable is estimated. It was found that the critical current of the cable with same direction winding is about 10 percent higher than that in the case of the cable with the opposite direction winding.

  15. Determination of statistics for any rotation of axes of a bivariate normal elliptical distribution. [of wind vector components

    NASA Technical Reports Server (NTRS)

    Falls, L. W.; Crutcher, H. L.

    1976-01-01

    Transformation of statistics from a dimensional set to another dimensional set involves linear functions of the original set of statistics. Similarly, linear functions will transform statistics within a dimensional set such that the new statistics are relevant to a new set of coordinate axes. A restricted case of the latter is the rotation of axes in a coordinate system involving any two correlated random variables. A special case is the transformation for horizontal wind distributions. Wind statistics are usually provided in terms of wind speed and direction (measured clockwise from north) or in east-west and north-south components. A direct application of this technique allows the determination of appropriate wind statistics parallel and normal to any preselected flight path of a space vehicle. Among the constraints for launching space vehicles are critical values selected from the distribution of the expected winds parallel to and normal to the flight path. These procedures are applied to space vehicle launches at Cape Kennedy, Florida.

  16. An atlas of monthly mean distributions of SSMI surface wind speed, AVHRR/2 sea surface temperature, AMI surface wind velocity, TOPEX/POSEIDON sea surface height, and ECMWF surface wind velocity during 1993

    NASA Technical Reports Server (NTRS)

    Halpern, D.; Fu, L.; Knauss, W.; Pihos, G.; Brown, O.; Freilich, M.; Wentz, F.

    1995-01-01

    The following monthly mean global distributions for 1993 are presented with a common color scale and geographical map: 10-m height wind speed estimated from the Special Sensor Microwave Imager (SSMI) on a United States (U.S.) Air Force Defense Meteorological Satellite Program (DMSP) spacecraft; sea surface temperature estimated from the Advanced Very High Resolution Radiometer (AVHRR/2) on a U.S. National Oceanic and Atmospheric Administration (NOAA) satellite; 10-m height wind speed and direction estimated from the Active Microwave Instrument (AMI) on the European Space Agency (ESA) European Remote Sensing (ERS-1) satellite; sea surface height estimated from the joint U.S.-France Topography Experiment (TOPEX)/POSEIDON spacecraft; and 10-m height wind speed and direction produced by the European Center for Medium-Range Weather Forecasting (ECMWF). Charts of annual mean, monthly mean, and sampling distributions are displayed.

  17. Normal and Extreme Wind Conditions for Power at Coastal Locations in China

    PubMed Central

    Gao, Meng; Ning, Jicai; Wu, Xiaoqing

    2015-01-01

    In this paper, the normal and extreme wind conditions for power at 12 coastal locations along China’s coastline were investigated. For this purpose, the daily meteorological data measured at the standard 10-m height above ground for periods of 40–62 years are statistically analyzed. The East Asian Monsoon that affects almost China’s entire coastal region is considered as the leading factor determining wind energy resources. For most stations, the mean wind speed is higher in winter and lower in summer. Meanwhile, the wind direction analysis indicates that the prevalent winds in summer are southerly, while those in winter are northerly. The air densities at different coastal locations differ significantly, resulting in the difference in wind power density. The Weibull and lognormal distributions are applied to fit the yearly wind speeds. The lognormal distribution performs better than the Weibull distribution at 8 coastal stations according to two judgement criteria, the Kolmogorov–Smirnov test and absolute error (AE). Regarding the annual maximum extreme wind speed, the generalized extreme value (GEV) distribution performs better than the commonly-used Gumbel distribution. At these southeastern coastal locations, strong winds usually occur in typhoon season. These 4 coastal provinces, that is, Guangdong, Fujian, Hainan, and Zhejiang, which have abundant wind resources, are also prone to typhoon disasters. PMID:26313256

  18. Normal and Extreme Wind Conditions for Power at Coastal Locations in China.

    PubMed

    Gao, Meng; Ning, Jicai; Wu, Xiaoqing

    2015-01-01

    In this paper, the normal and extreme wind conditions for power at 12 coastal locations along China's coastline were investigated. For this purpose, the daily meteorological data measured at the standard 10-m height above ground for periods of 40-62 years are statistically analyzed. The East Asian Monsoon that affects almost China's entire coastal region is considered as the leading factor determining wind energy resources. For most stations, the mean wind speed is higher in winter and lower in summer. Meanwhile, the wind direction analysis indicates that the prevalent winds in summer are southerly, while those in winter are northerly. The air densities at different coastal locations differ significantly, resulting in the difference in wind power density. The Weibull and lognormal distributions are applied to fit the yearly wind speeds. The lognormal distribution performs better than the Weibull distribution at 8 coastal stations according to two judgement criteria, the Kolmogorov-Smirnov test and absolute error (AE). Regarding the annual maximum extreme wind speed, the generalized extreme value (GEV) distribution performs better than the commonly-used Gumbel distribution. At these southeastern coastal locations, strong winds usually occur in typhoon season. These 4 coastal provinces, that is, Guangdong, Fujian, Hainan, and Zhejiang, which have abundant wind resources, are also prone to typhoon disasters.

  19. Optimizing wind farm layout via LES-calibrated geometric models inclusive of wind direction and atmospheric stability effects

    NASA Astrophysics Data System (ADS)

    Archer, Cristina; Ghaisas, Niranjan

    2015-04-01

    The energy generation at a wind farm is controlled primarily by the average wind speed at hub height. However, two other factors impact wind farm performance: 1) the layout of the wind turbines, in terms of spacing between turbines along and across the prevailing wind direction; staggering or aligning consecutive rows; angles between rows, columns, and prevailing wind direction); and 2) atmospheric stability, which is a measure of whether vertical motion is enhanced (unstable), suppressed (stable), or neither (neutral). Studying both factors and their complex interplay with Large-Eddy Simulation (LES) is a valid approach because it produces high-resolution, 3D, turbulent fields, such as wind velocity, temperature, and momentum and heat fluxes, and it properly accounts for the interactions between wind turbine blades and the surrounding atmospheric and near-surface properties. However, LES are computationally expensive and simulating all the possible combinations of wind directions, atmospheric stabilities, and turbine layouts to identify the optimal wind farm configuration is practically unfeasible today. A new, geometry-based method is proposed that is computationally inexpensive and that combines simple geometric quantities with a minimal number of LES simulations to identify the optimal wind turbine layout, taking into account not only the actual frequency distribution of wind directions (i.e., wind rose) at the site of interest, but also atmospheric stability. The geometry-based method is calibrated with LES of the Lillgrund wind farm conducted with the Software for Offshore/onshore Wind Farm Applications (SOWFA), based on the open-access OpenFOAM libraries. The geometric quantities that offer the best correlations (>0.93) with the LES results are the blockage ratio, defined as the fraction of the swept area of a wind turbine that is blocked by an upstream turbine, and the blockage distance, the weighted distance from a given turbine to all upstream turbines that can potentially block it. Based on blockage ratio and distance, an optimization procedure is proposed that explores many different layout variables and identifies, given actual wind direction and stability distributions, the optimal wind farm layout, i.e., the one with the highest wind energy production. The optimization procedure is applied to both the calibration wind farm (Lillgrund) and a test wind farm (Horns Rev) and a number of layouts more efficient than the existing ones are identified. The optimization procedure based on geometric models proposed here can be applied very quickly (within a few hours) to any proposed wind farm, once enough information on wind direction frequency and, if available, atmospheric stability frequency has been gathered and once the number of turbines and/or the areal extent of the wind farm have been identified.

  20. Wind and Temperature Spectrometry of the Upper Atmosphere in Low-Earth Orbit

    NASA Technical Reports Server (NTRS)

    Herrero, Federico

    2011-01-01

    Wind and Temperature Spectrometry (WATS) is a new approach to measure the full wind vector, temperature, and relative densities of major neutral species in the Earth's thermosphere. The method uses an energy-angle spectrometer moving through the tenuous upper atmosphere to measure directly the angular and energy distributions of the air stream that enters the spectrometer. The angular distribution gives the direction of the total velocity of the air entering the spectrometer, and the energy distribution gives the magnitude of the total velocity. The wind velocity vector is uniquely determined since the measured total velocity depends on the wind vector and the orbiting velocity vector. The orbiting spectrometer moves supersonically, Mach 8 or greater, through the air and must point within a few degrees of its orbital velocity vector (the ram direction). Pointing knowledge is critical; for example, pointing errors 0.1 lead to errors of about 10 m/s in the wind. The WATS method may also be applied without modification to measure the ion-drift vector, ion temperature, and relative ion densities of major ionic species in the ionosphere. In such an application it may be called IDTS: Ion-Drift Temperature Spectrometry. A spectrometer-based coordinate system with one axis instantaneously pointing along the ram direction makes it possible to transform the Maxwellian velocity distribution of the air molecules to a Maxwellian energy-angle distribution for the molecular flux entering the spectrometer. This implementation of WATS is called the gas kinetic method (GKM) because it is applied to the case of the Maxwellian distribution. The WATS method follows from the recognition that in a supersonic platform moving at 8,000 m/s, the measurement of small wind velocities in the air on the order of a few 100 m/s and less requires precise knowledge of the angle of incidence of the neutral atoms and molecules. The same is true for the case of ion-drift measurements. WATS also provides a general approach that can obtain non-equilibrium distributions as may exist in the upper regions of the thermosphere, above 500 km and into the exosphere. Finally, WATS serves as a mass spectrometer, with very low mass resolution of roughly 1 part in 3, but easily separating atomic oxygen from molecular nitrogen.

  1. ERS-1 and Seasat scatterometer measurements of ocean winds: Model functions and the directional distribution of short waves

    NASA Technical Reports Server (NTRS)

    Freilich, Michael H.; Dunbar, R. Scott

    1993-01-01

    Calculation of accurate vector winds from scatterometers requires knowledge of the relationship between backscatter cross-section and the geophysical variable of interest. As the detailed dynamics of wind generation of centimetric waves and radar-sea surface scattering at moderate incidence angles are not well known, empirical scatterometer model functions relating backscatter to winds must be developed. Less well appreciated is the fact that, given an accurate model function and some knowledge of the dominant scattering mechanisms, significant information on the amplitudes and directional distributions of centimetric roughness elements on the sea surface can be inferred. accurate scatterometer model functions can thus be used to investigate wind generation of short waves under realistic conditions. The present investigation involves developing an empirical model function for the C-band (5.3 GHz) ERS-1 scatterometer and comparing Ku-band model functions with the C-band model to infer information on the two-dimensional spectrum of centimetric roughness elements in the ocean. The C-band model function development is based on collocations of global backscatter measurements with operational surface analyses produced by meteorological agencies. Strengths and limitations of the method are discussed, and the resulting model function is validated in part through comparison with the actual distributions of backscatter cross-section triplets. Details of the directional modulation as well as the wind speed sensitivity at C-band are investigated. Analysis of persistent outliers in the data is used to infer the magnitudes of non-wind effects (such as atmospheric stratification, swell, etc.). The ERS-1 C-band instrument and the Seasat Ku-band (14.6 GHz) scatterometer both imaged waves of approximately 3.4 cm wavelength assuming that Bragg scattering is the dominant mechanism. Comparisons of the C-band and Ku-band model functions are used both to test the validity of the postulated Bragg mechanism and to investigate the directional distribution of the imaged waves under a variety of conditions where Bragg scatter is dominant.

  2. Some properties of a 5-parameter bivariate probability distribution

    NASA Technical Reports Server (NTRS)

    Tubbs, J. D.; Brewer, D. W.; Smith, O. E.

    1983-01-01

    A five-parameter bivariate gamma distribution having two shape parameters, two location parameters and a correlation parameter was developed. This more general bivariate gamma distribution reduces to the known four-parameter distribution. The five-parameter distribution gives a better fit to the gust data. The statistical properties of this general bivariate gamma distribution and a hypothesis test were investigated. Although these developments have come too late in the Shuttle program to be used directly as design criteria for ascent wind gust loads, the new wind gust model has helped to explain the wind profile conditions which cause large dynamic loads. Other potential applications of the newly developed five-parameter bivariate gamma distribution are in the areas of reliability theory, signal noise, and vibration mechanics.

  3. Multi-port valve

    DOEpatents

    Lewin, Keith F.

    1997-04-15

    A multi-port valve for regulating, as a function of ambient air having varying wind velocity and wind direction in an open-field control area, the distribution of a fluid, particularly carbon dioxide (CO.sub.2) gas, in a fluid distribution system so that the control area remains generally at an elevated fluid concentration or level of said fluid. The multi-port valve generally includes a multi-port housing having a plurality of outlets therethrough disposed in a first pattern of outlets and at least one second pattern of outlets, and a movable plate having a plurality of apertures extending therethrough disposed in a first pattern of apertures and at least one second pattern of apertures. The first pattern of apertures being alignable with the first pattern of outlets and the at least one second pattern of apertures being alignable with the second pattern of outlets. The first pattern of apertures has a predetermined orientation with the at least one second pattern of apertures. For an open-field control area subject to ambient wind having a low velocity from any direction, the movable plate is positioned to equally distribute the supply of fluid in a fluid distribution system to the open-field control area. For an open-field control area subject to ambient wind having a high velocity from a given direction, the movable plate is positioned to generally distribute a supply of fluid in a fluid distribution system to that portion of the open-field control area located upwind.

  4. Multi-port valve

    DOEpatents

    Lewin, K.F.

    1997-04-15

    A multi-port valve is described for regulating, as a function of ambient air having varying wind velocity and wind direction in an open-field control area, the distribution of a fluid, particularly carbon dioxide (CO{sub 2}) gas, in a fluid distribution system so that the control area remains generally at an elevated fluid concentration or level of said fluid. The multi-port valve generally includes a multi-port housing having a plurality of outlets there through disposed in a first pattern of outlets and at least one second pattern of outlets, and a movable plate having a plurality of apertures extending there through disposed in a first pattern of apertures and at least one second pattern of apertures. The first pattern of apertures being alignable with the first pattern of outlets and the at least one second pattern of apertures being alignable with the second pattern of outlets. The first pattern of apertures has a predetermined orientation with the at least one second pattern of apertures. For an open-field control area subject to ambient wind having a low velocity from any direction, the movable plate is positioned to equally distribute the supply of fluid in a fluid distribution system to the open-field control area. For an open-field control area subject to ambient wind having a high velocity from a given direction, the movable plate is positioned to generally distribute a supply of fluid in a fluid distribution system to that portion of the open-field control area located upwind. 7 figs.

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fields, Jason; Tinnesand, Heidi; Baring-Gould, Ian

    In support of the U.S. Department of Energy (DOE) Wind and Water Power Technologies Office (WWPTO) goals, researchers from DOE's National Renewable Energy Laboratory (NREL), National Wind Technology Center (NWTC) are investigating the Distributed Wind Resource Assessment (DWRA) process, which includes pre-construction energy estimation as well as turbine site suitability assessment. DWRA can have a direct impact on the Wind Program goals of maximizing stakeholder confidence in turbine performance and safety as well as reducing the levelized cost of energy (LCOE). One of the major components of the LCOE equation is annual energy production. DWRA improvements can maximize the annualmore » energy production, thereby lowering the overall LCOE and improving stakeholder confidence in the distributed wind technology sector by providing more accurate predictions of power production. Over the long term, one of the most significant benefits of a more defined DWRA process could be new turbine designs, tuned to site-specific characteristics that will help the distributed wind industry follow a similar trajectory to the low-wind-speed designs in the utility-scale industry sector. By understanding the wind resource better, the industry could install larger rotors, capture more energy, and as a result, increase deployment while lowering the LCOE. a direct impact on the Wind Program goals of maximizing stakeholder confidence in turbine performance and safety as well as reducing the levelized cost of energy (LCOE). One of the major components of the LCOE equation is annual energy production. DWRA improvements can maximize the annual energy production, thereby lowering the overall LCOE and improving stakeholder confidence in the distributed wind technology sector by providing more accurate predictions of power production. Over the long term, one of the most significant benefits of a more defined DWRA process could be new turbine designs, tuned to site-specific characteristics that will help the distributed wind industry follow a similar trajectory to the low-wind-speed designs in the utility-scale industry sector. By understanding the wind resource better, the industry could install larger rotors, capture more energy, and as a result, increase deployment while lowering the LCOE.« less

  6. Generation of multivariate near shore extreme wave conditions based on an extreme value copula for offshore boundary conditions.

    NASA Astrophysics Data System (ADS)

    Leyssen, Gert; Mercelis, Peter; De Schoesitter, Philippe; Blanckaert, Joris

    2013-04-01

    Near shore extreme wave conditions, used as input for numerical wave agitation simulations and for the dimensioning of coastal defense structures, need to be determined at a harbour entrance situated at the French North Sea coast. To obtain significant wave heights, the numerical wave model SWAN has been used. A multivariate approach was used to account for the joint probabilities. Considered variables are: wind velocity and direction, water level and significant offshore wave height and wave period. In a first step a univariate extreme value distribution has been determined for the main variables. By means of a technique based on the mean excess function, an appropriate member of the GPD is selected. An optimal threshold for peak over threshold selection is determined by maximum likelihood optimization. Next, the joint dependency structure for the primary random variables is modeled by an extreme value copula. Eventually the multivariate domain of variables was stratified in different classes, each of which representing a combination of variable quantiles with a joint probability, which are used for model simulation. The main variable is the wind velocity, as in the area of concern extreme wave conditions are wind driven. The analysis is repeated for 9 different wind directions. The secondary variable is water level. In shallow waters extreme waves will be directly affected by water depth. Hence the joint probability of occurrence for water level and wave height is of major importance for design of coastal defense structures. Wind velocity and water levels are only dependent for some wind directions (wind induced setup). Dependent directions are detected using a Kendall and Spearman test and appeared to be those with the longest fetch. For these directions, wind velocity and water level extreme value distributions are multivariately linked through a Gumbel Copula. These distributions are stratified into classes of which the frequency of occurrence can be calculated. For the remaining directions the univariate extreme wind velocity distribution is stratified, each class combined with 5 high water levels. The wave height at the model boundaries was taken into account by a regression with the extreme wind velocity at the offshore location. The regression line and the 95% confidence limits where combined with each class. Eventually the wave period is computed by a new regression with the significant wave height. This way 1103 synthetic events were selected and simulated with the SWAN wave model, each of which a frequency of occurrence is calculated for. Hence near shore significant wave heights are obtained with corresponding frequencies. The statistical distribution of the near shore wave heights is determined by sorting the model results in a descending order and accumulating the corresponding frequencies. This approach allows determination of conditional return periods. For example, for the imposed univariate design return periods of 100 years for significant wave height and 30 years for water level, the joint return period for a simultaneous exceedance of both conditions can be computed as 4000 years. Hence, this methodology allows for a probabilistic design of coastal defense structures.

  7. Wind direction and its linkage with Vibrio cholerae dissemination.

    PubMed

    Paz, Shlomit; Broza, Meir

    2007-02-01

    The relevance of climatic events as causative factors for cholera epidemics is well known. However, examinations of the involvement of climatic factors in intracontinental disease distribution are still absent. The spreading of cholera epidemics may be related to the dominant wind direction over land. We examined the geographic diffusion of three cholera outbreaks through their linkage with the wind direction: a) the progress of Vibrio cholerae O1 biotype El Tor in Africa during 1970-1971 and b) again in 2005-2006; and c) the rapid spread of Vibrio cholerae O139 over India during 1992-1993. We also discuss the possible influence of the wind direction on windborn dissemination by flying insects, which may serve as vectors. Analysis of air pressure data at sea level and at several altitudes over Africa, India, and Bangladesh show a correspondence between the dominant wind direction and the intracontinental spread of cholera. We explored the hypothesis that winds have assisted the progress of cholera Vibrios throughout continents. The current analysis supports the hypothesis that aeroplankton (the tiny life forms that float in the air and that may be caught and carried upward by the wind, landing far from their origin) carry the cholera bacteria from one body of water to an adjacent one. This finding may improve our understanding of how climatic factors are involved in the rapid distribution of new strains throughout a vast continental area. Awareness of the aerial transfer of Vibrio cholerae may assist health authorities by improving the prediction of the disease's geographic dissemination.

  8. Airborne Doppler Wind Lidar Post Data Processing Software DAPS-LV

    NASA Technical Reports Server (NTRS)

    Kavaya, Michael J. (Inventor); Beyon, Jeffrey Y. (Inventor); Koch, Grady J. (Inventor)

    2015-01-01

    Systems, methods, and devices of the present invention enable post processing of airborne Doppler wind LIDAR data. In an embodiment, airborne Doppler wind LIDAR data software written in LabVIEW may be provided and may run two versions of different airborne wind profiling algorithms. A first algorithm may be the Airborne Wind Profiling Algorithm for Doppler Wind LIDAR ("APOLO") using airborne wind LIDAR data from two orthogonal directions to estimate wind parameters, and a second algorithm may be a five direction based method using pseudo inverse functions to estimate wind parameters. The various embodiments may enable wind profiles to be compared using different algorithms, may enable wind profile data for long haul color displays to be generated, may display long haul color displays, and/or may enable archiving of data at user-selectable altitudes over a long observation period for data distribution and population.

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Belu, Radian; Koracin, Darko

    The main objective of the study was to investigate spatial and temporal characteristics of the wind speed and direction in complex terrain that are relevant to wind energy assessment and development, as well as to wind energy system operation, management, and grid integration. Wind data from five tall meteorological towers located in Western Nevada, USA, operated from August 2003 to March 2008, used in the analysis. The multiannual average wind speeds did not show significant increased trend with increasing elevation, while the turbulence intensity slowly decreased with an increase were the average wind speed. The wind speed and direction weremore » modeled using the Weibull and the von Mises distribution functions. The correlations show a strong coherence between the wind speed and direction with slowly decreasing amplitude of the multiday periodicity with increasing lag periods. The spectral analysis shows significant annual periodicity with similar characteristics at all locations. The relatively high correlations between the towers and small range of the computed turbulence intensity indicate that wind variability is dominated by the regional synoptic processes. Knowledge and information about daily, seasonal, and annual wind periodicities are very important for wind energy resource assessment, wind power plant operation, management, and grid integration.« less

  10. Seed distribution of four co-occurring grasses around Artemisia halodendron shrubs in a sandy habitat

    NASA Astrophysics Data System (ADS)

    Li, Feng-Rui; Zhao, Wen-Zhi; Kang, Ling-Fen; Liu, Ji-Liang; Huang, Zhi-Gang; Wang, Qi

    2009-05-01

    In a natural population of the perennial semi-shrub Artemisia halodendron in a shifting sandy habitat in the Horqin Desert of eastern Inner Mongolia, six isolated adult A. halodendron individuals of similar canopy size were chosen as target plants. The density of seeds in the top 5 cm soil depth around shrubs was measured using transects aligned to the four main wind directions and at different distances from the shrub base on both the windward and leeward sides. The effects of shrub presence on seed distribution of four co-occurring grasses were examined by linking seed distribution to seed traits. Of the four species, Setaris viridis and Eragrostis pilosa had small but similar seed mass, while Chloris virgata and Aristida adscensionis had large but similar seed mass. The species were grouped into two cohorts: small-seeded vs. large-seeded cohorts, and shrub presence effects on seed distribution of both cohorts were examined. We found marked difference in the seed distribution pattern among species, especially between the small-seeded and large-seeded cohorts. The small-seeded cohort had significantly higher seed accumulation on the windward than the leeward sides in the most and least prevailing wind directions and much higher seed accumulation on the leeward than the windward sides in the second and third most prevailing wind directions, while opposite patterns occurred in the large-seeded cohort. Four species also showed marked variation in the seed distribution pattern among transects and between windward and leeward sides of each transect. This study provided further evidence that shrubs embedded in a matrix of herbaceous plants is a key cause of spatial heterogeneity in seed availability of herbaceous species. However, seed distribution responses to the presence of shrubs will vary with species as well as with wind direction, sampling position (windward vs. leeward sides of the shrub) and distance from the shrub.

  11. Design and laboratory testing of a new flow-through directional passive air sampler for ambient particulate matter.

    PubMed

    Lin, Chun; Solera Garcia, Maria Angeles; Timmis, Roger; Jones, Kevin C

    2011-03-01

    A new type of directional passive air sampler (DPAS) is described for collecting particulate matter (PM) in ambient air. The prototype sampler has a non-rotating circular sampling tray that is divided into covered angular channels, whose ends are open to winds from sectors covering the surrounding 360°. Wind-blown PM from different directions enters relevant wind-facing channels, and is retained there in collecting pools containing various sampling media. Information on source direction and type can be obtained by examining the distribution of PM between channels. Wind tunnel tests show that external wind velocities are at least halved over an extended area of the collecting pools, encouraging PM to settle from the air stream. Internal and external wind velocities are well-correlated over an external velocity range of 2.0-10.0 m s⁻¹, which suggests it may be possible to relate collected amounts of PM simply to ambient concentrations and wind velocities. Measurements of internal wind velocities in different channels show that velocities decrease from the upwind channel round to the downwind channel, so that the sampler effectively resolves wind directions. Computational fluid dynamics (CFD) analyses were performed on a computer-generated model of the sampler for a range of external wind velocities; the results of these analyses were consistent with those from the wind tunnel. Further wind tunnel tests were undertaken using different artificial particulates in order to assess the collection performance of the sampler in practice. These tests confirmed that the sampler can resolve the directions of sources, by collecting particulates preferentially in source-facing channels.

  12. Statistical and Spectral Analysis of Wind Characteristics Relevant to Wind Energy Assessment Using Tower Measurements in Complex Terrain

    DOE PAGES

    Belu, Radian; Koracin, Darko

    2013-01-01

    The main objective of the study was to investigate spatial and temporal characteristics of the wind speed and direction in complex terrain that are relevant to wind energy assessment and development, as well as to wind energy system operation, management, and grid integration. Wind data from five tall meteorological towers located in Western Nevada, USA, operated from August 2003 to March 2008, used in the analysis. The multiannual average wind speeds did not show significant increased trend with increasing elevation, while the turbulence intensity slowly decreased with an increase were the average wind speed. The wind speed and direction weremore » modeled using the Weibull and the von Mises distribution functions. The correlations show a strong coherence between the wind speed and direction with slowly decreasing amplitude of the multiday periodicity with increasing lag periods. The spectral analysis shows significant annual periodicity with similar characteristics at all locations. The relatively high correlations between the towers and small range of the computed turbulence intensity indicate that wind variability is dominated by the regional synoptic processes. Knowledge and information about daily, seasonal, and annual wind periodicities are very important for wind energy resource assessment, wind power plant operation, management, and grid integration.« less

  13. Interplanetary ions during an energetic storm particle event - The distribution function from solar wind thermal energies to 1.6 MeV

    NASA Technical Reports Server (NTRS)

    Gosling, J. T.; Asbridge, J. R.; Bame, S. J.; Feldman, W. C.; Zwickl, R. D.; Paschmann, G.; Sckopke, N.; Hynds, R. J.

    1981-01-01

    An ion velocity distribution function of the postshock phase of an energetic storm particle (ESP) event is obtained from data from the ISEE 2 and ISEE 3 experiments. The distribution function is roughly isotropic in the solar wind frame from solar wind thermal energies to 1.6 MeV. The ESP event studied (8/27/78) is superposed upon a more energetic particle event which was predominantly field-aligned and which was probably of solar origin. The observations suggest that the ESP population is accelerated directly out of the solar wind thermal population or its quiescent suprathermal tail by a stochastic process associated with shock wave disturbance. The acceleration mechanism is sufficiently efficient so that approximately 1% of the solar wind population is accelerated to suprathermal energies. These suprathermal particles have an energy density of approximately 290 eV cubic centimeters.

  14. [PM₂.₅ Background Concentration at Different Directions in Beijing in 2013].

    PubMed

    Li, Yun-ting; Cheng, Niam-liang; Zhang, Da-wei; Sun, Rui-wen; Dong, Xin; Sun, Nai-di; Chen, Chen

    2015-12-01

    PM₂.₅, background concentration at different directions in 2013 in Beijing was analyzed combining the techniques of mathematical statistics, physical identification and numerical simulation (CMAQ4.7.1) as well as using monitoring data of six PM₂.₅ auto-monitoring sites and five meteorological sites in 2013. Results showed that background concentrations of PM₂.₅ at northwest, northeast, eastern, southeast, southern and southwest boundary sites were between 40.3 and 85.3 µg · m⁻³ in Beijing. From the lowest to the highest, PMPM₂.₅ background concentrations at different sites were: Miyun reservoir, Badaling, Donggaocun, Yufa, Yongledian and Liulihe. Background concentration of PM₂.₅ was the lowest under north wind, then under west wind, and significantly higher under south and east wind. Calculated PM₂.₅ background average concentrations were 6.5-27.9, 22.4-73.4, 67.2-91.7, 40.7-116.1 µg · m⁻³ respectively in different wind directions. Simulated PM₂.₅ background concentration showed a clear north-south gradient distribution and the surrounding area had a notable effect on the spatial distribution of PM₂.₅ background concentration in 2013 in Beijing.

  15. Modeling solar wind with boundary conditions from interplanetary scintillations

    DOE PAGES

    Manoharan, P.; Kim, T.; Pogorelov, N. V.; ...

    2015-09-30

    Interplanetary scintillations make it possible to create three-dimensional, time- dependent distributions of the solar wind velocity. Combined with the magnetic field observations in the solar photosphere, they help perform solar wind simulations in a genuinely time-dependent way. Interplanetary scintillation measurements from the Ooty Radio Astronomical Observatory in India provide directions to multiple stars and may assure better resolution of transient processes in the solar wind. In this paper, we present velocity distributions derived from Ooty observations and compare them with those obtained with the Wang-Sheeley-Arge (WSA) model. We also present our simulations of the solar wind flow from 0.1 AUmore » to 1 AU with the boundary conditions based on both Ooty and WSA data.« less

  16. Observational Appearance and Spectrum of Black-Hole Winds

    NASA Astrophysics Data System (ADS)

    Fukue, Jun; Iino, Eriko

    2010-12-01

    We examine the observational appearance of an optically thick, spherically symmetric, relativistic wind (a black-hole wind), focusing our attention on the emerging spectrum. In a relativistic flow, the apparent optical depth becomes small (large) in the downstream (upstream) direction due to the Lorentz-Fitzgerald contraction. As a result, the location of the apparent photosphere of the wind is remarkably modified, and there appears a relativistic limb-darkening (center-brightening) effect, where the comoving temperature distribution of the apparent photosphere is enhanced (reduced) at the center (in the limb). In addition, due to the usual Doppler boost, the observed temperature distribution is greatly changed. These relativistic effects modify the expected spectrum. When the wind speed is subrelativistic, the observed temperature distribution is almost uniform, and the spectra of the black-hole wind are blackbody-like. When the wind speed becomes relativistic, on the other hand, the observed temperature distribution, Tobs, exhibits a power-law nature of Tobs ∝ r-1, where r is the distance from the disk center, and the observed spectra Sν become a modified blackbody, which has a power-law part of Sν ∝ ν, where ν is the frequency. We briefly examine the effects of the spatial variation of the wind speed and the mass-loss rate.

  17. 2012 Market Report on U.S. Wind Technologies in Distributed Applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Orrell, Alice C.; Flowers, L. T.; Gagne, M. N.

    2013-08-06

    At the end of 2012, U.S. wind turbines in distributed applications reached a 10-year cumulative installed capacity of more than 812 MW from more than 69,000 units across all 50 states. In 2012 alone, nearly 3,800 wind turbines totaling 175 MW of distributed wind capacity were documented in 40 states and in the U.S. Virgin Islands, with 138 MW using utility-scale turbines (i.e., greater than 1 MW in size), 19 MW using mid-size turbines (i.e., 101 kW to 1 MW in size), and 18.4 MW using small turbines (i.e., up to 100 kW in size). Distributed wind is defined inmore » terms of technology application based on a wind project’s location relative to end-use and power-distribution infrastructure, rather than on technology size or project size. Distributed wind systems are either connected on the customer side of the meter (to meet the onsite load) or directly to distribution or micro grids (to support grid operations or offset large loads nearby). Estimated capacity-weighted average costs for 2012 U.S. distributed wind installations was $2,540/kW for utility-scale wind turbines, $2,810/kW for mid-sized wind turbines, and $6,960/kW for newly manufactured (domestic and imported) small wind turbines. An emerging trend observed in 2012 was an increased use of refurbished turbines. The estimated capacity-weighted average cost of refurbished small wind turbines installed in 2012 was $4,080/kW. As a result of multiple projects using utility-scale turbines, Iowa deployed the most new overall distributed wind capacity, 37 MW, in 2012. Nevada deployed the most small wind capacity in 2012, with nearly 8 MW of small wind turbines installed in distributed applications. In the case of mid-size turbines, Ohio led all states in 2012 with 4.9 MW installed in distributed applications. State and federal policies and incentives continued to play a substantial role in the development of distributed wind projects. In 2012, U.S. Treasury Section 1603 payments and grants and loans from the U.S. Department of Agriculture’s Rural Energy for America Program were the main sources of federal funding for distributed wind projects. State and local funding varied across the country, from rebates to loans, tax credits, and other incentives. Reducing utility bills and hedging against potentially rising electricity rates remain drivers of distributed wind installations. In 2012, other drivers included taking advantage of the expiring U.S. Treasury Section 1603 program and a prosperous year for farmers. While 2012 saw a large addition of distributed wind capacity, considerable barriers and challenges remain, such as a weak domestic economy, inconsistent state incentives, and very competitive solar photovoltaic and natural gas prices. The industry remains committed to improving the distributed wind marketplace by advancing the third-party certification process and introducing alternative financing models, such as third-party power purchase agreements and lease-to-own agreements more typical in the solar photovoltaic market. Continued growth is expected in 2013.« less

  18. Planetary boundary-layer wind model evaluation at a mid-Atlantic coastal site

    NASA Technical Reports Server (NTRS)

    Tieleman, H. W.

    1980-01-01

    Detailed measurements of the mean flow and turbulence were made with the use of a micrometeorological facility consisting of an instrumented 76-m tall tower located within a 100-m distance from the Atlantic Ocean at Wallops Island, Virginia. Under moderately strong wind conditions, the popular neutral boundary layer flow model fails to provide an adequate description of the actual flow. In addition to detailed flow information for all wind directions, averages of the important flow parameters used for design such as vertical distribution of mean velocity, turbulence intensities and turbulence integral scales were presented for wind direction sectors with near uniform upstream terrain. Power spectra of the three velocity components for the prevailing northwesterly and southerly winds are discussed.

  19. Surface and airborne evidence for plumes and winds on triton

    USGS Publications Warehouse

    Hansen, C.J.; McEwen, A.S.; Ingersoll, A.P.; Terrile, R.J.

    1990-01-01

    Aeolian features on Triton that were imaged during the Voyager Mission have been grouped. The term "aeolian feature" is broadly defined as features produced by or blown by the wind, including surface and airborne materials. Observations of the latitudinal distributions of the features probably associated with current activity (known plumes, crescent streaks, fixed terminator clouds, and limb haze with overshoot) all occur from latitude -37?? to latitude -62??. Likely indicators of previous activity (dark surface streaks) occur from latitude -5?? to -70??, but are most abundant from -15?? to -45??, generally north of currently active features. Those indicators which give information on wind direction and speed have been measured. Wind direction is a function of altitude. The predominant direction of the surface wind streaks is found to be between 40?? and 80?? measured clockwise from north. The average orientation of streaks in the northeast quadrant is 59??. Winds at 1- to 3-kilometer altitude are eastward, while those at >8 kilometers blow west.

  20. Wind speed and power characteristics of Kalasin province, Thailand

    NASA Astrophysics Data System (ADS)

    Polnumtiang, Supachai; Tangchaichit, Kiatfa

    2018-05-01

    This paper presents a wind energy assessment of Kalasin province in the Upper North-Eastern region of Thailand. Four year wind data were recorded continuously from January 2012 to December 2015 at different heights of 60, 90 and 120 m above ground level (AGL). The mean wind speeds were found to be 3.14, 3.63 and 3.94 m/s at 60, 90 and 120 m AGL, respectively. The majority of wind directions for this region are distributed from the East to South directions. The highest wind power density was observed in the summer season, followed by winter and rainy seasons, in order. Four commercial wind turbines were selected to estimate energy yield output using the WAsP 10.0 software application; the results show that VESTAS with rated power of 2.0 MW was estimated to give 2,747 MWh/year with the highest capacity factor of 15.68%.

  1. Wind cannot be Directed but Sails can be Adjusted for Malaysian Renewable Energy Progress

    NASA Astrophysics Data System (ADS)

    Palanichamy, C.; Nasir, Meseret; Veeramani, S.

    2015-04-01

    Wind energy has been the promising energy technology since 1980s in terms of percentage of yearly growth of installed capacity. However the progress of wind energy has not been evenly distributed around the world. Particularly, in South East Asian countries like Malaysia and Singapore, though the Governments are keen on promoting wind energy technology, it is not well practiced due to the low wind speeds. Owing to the recent advancements in wind turbine designs, even Malaysia is well suited for wind energy by proper choice of wind turbines. As evidence, this paper presents successful wind turbines with simulated study outcomes to encourage wind power developments in Malaysia.

  2. Solar Wind Halo Formation by the Scattering of the Strahl via Direct Cluster/PEACE Observations of the 3D Velocity Distribution Function

    NASA Technical Reports Server (NTRS)

    Figueroa-Vinas, Adolfo; Gurgiolo, Chris A.; Nieves-Chinchilla, Teresa; Goldstein, Melvyn L.

    2010-01-01

    It has been suggested by a number of authors that the solar wind electron halo can be formed by the scattering of the strahl. On frequent occasions we have observed in electron angular skymaps (Phi/Theta-plots) of the electron 3D velocity distribution functions) a bursty-filament of particles connecting the strahl to the solar wind core-halo. These are seen over a very limited energy range. When the magnetic field is well off the nominal solar wind flow direction such filaments are inconsistent with any local forces and are probably the result of strong scattering. Furthermore, observations indicates that the strahl component is frequently and significantly anisotropic (Tper/Tpal approx.2). This provides a possible free energy source for the excitation of whistler waves as a possible scattering mechanism. The empirical observational evidence between the halo and the strahl suggests that the strahl population may be, at least in part, the source of the halo component.

  3. Note on the directional properties of meter-scale gravity waves

    NASA Astrophysics Data System (ADS)

    Peureux, Charles; Benetazzo, Alvise; Ardhuin, Fabrice

    2018-01-01

    The directional distribution of the energy of young waves is bimodal for frequencies above twice the peak frequency; i.e., their directional distribution exhibits two peaks in different directions and a minimum between. Here we analyze in detail a typical case measured with a peak frequency fp = 0.18 Hz and a wind speed of 10.7 m s-1 using a stereo-video system. This technique allows for the separation of free waves from the spectrum of the sea-surface elevation. The latter indeed tend to reduce the contrast between the two peaks and the background. The directional distribution for a given wavenumber is nearly symmetric, with the angle distance between the two peaks growing with frequency, reaching 150° at 35 times the peak wavenumber kp and increasing up to 45 kp. When considering only free waves, the lobe ratio, the ratio of oblique peak energy density over energy in the wind direction, increases linearly with the non-dimensional wavenumber k/kp, up to a value of 6 at k/kp 22, and possibly more for shorter components. These observations extend to shorter components' previous measurements, and have important consequences for wave properties sensitive to the directional distribution, such as surface slopes, Stokes drift or microseism sources.

  4. Correlating seabird movements with ocean winds: linking satellite telemetry with ocean scatterometry.

    USGS Publications Warehouse

    Adams, Josh; Flora, Stephanie

    2010-01-01

    Satellite telemetry studies of the movements of seabirds are now common and have revealed impressive flight capabilities and extensive distributions among individuals and species at sea. Linking seabird movements with environmental conditions over vast expanses of the world's open ocean, however, remains difficult. Seabirds of the order Procellariiformes (e.g., petrels, albatrosses, and shearwaters) depend largely on wind and wave energy for efficient flight. We present a new method for quantifying the movements of far-ranging seabirds in relation to ocean winds measured by the SeaWinds scatterometer onboard the QuikSCAT satellite. We apply vector correlation (as defined by Crosby et al. in J Atm Ocean Tech 10:355-367, 1993) to evaluate how the trajectories (ground speed and direction) for five procellariiform seabirds outfitted with satellite transmitters are related to ocean winds. Individual seabirds (Sooty Shearwater, Pink-footed Shearwater, Hawaiian Petrel, Grey-faced Petrel, and Black-footed Albatross) all traveled predominantly with oblique, isotropic crossing to quartering tail-winds (i.e., 105-165 degrees in relation to birds' trajectory). For all five seabirds, entire track line trajectories were significantly correlated with co-located winds. Greatest correlations along 8-day path segments were related to wind patterns during birds' directed, long-range migration (Sooty Shearwater) as well as movements associated with mega-scale meteorological phenomena, including Pacific Basin anticyclones (Hawaiian Petrel, Grey-faced Petrel) and eastward-propagating north Pacific cyclones (Black-footed Albatross). Wind strength and direction are important factors related to the overall movements that delineate the distribution of petrels at sea. We suggest that vector correlation can be used to quantify movements for any marine vertebrate when tracking and environmental data (winds or currents) are of sufficient quality and sample size. Vector correlation coefficients can then be used to assess population--or species-specific variability and used to test specific hypotheses related to how animal movements are associated with fluid environments.

  5. PROTON HEATING IN SOLAR WIND COMPRESSIBLE TURBULENCE WITH COLLISIONS BETWEEN COUNTER-PROPAGATING WAVES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    He, Jiansen; Tu, Chuanyi; Wang, Linghua

    Magnetohydronamic turbulence is believed to play a crucial role in heating laboratory, space, and astrophysical plasmas. However, the precise connection between the turbulent fluctuations and the particle kinetics has not yet been established. Here we present clear evidence of plasma turbulence heating based on diagnosed wave features and proton velocity distributions from solar wind measurements by the Wind spacecraft. For the first time, we can report the simultaneous observation of counter-propagating magnetohydrodynamic waves in the solar wind turbulence. As opposed to the traditional paradigm with counter-propagating Alfvén waves (AWs), anti-sunward AWs are encountered by sunward slow magnetosonic waves (SMWs) inmore » this new type of solar wind compressible turbulence. The counter-propagating AWs and SWs correspond, respectively, to the dominant and sub-dominant populations of the imbalanced Elsässer variables. Nonlinear interactions between the AWs and SMWs are inferred from the non-orthogonality between the possible oscillation direction of one wave and the possible propagation direction of the other. The associated protons are revealed to exhibit bi-directional asymmetric beams in their velocity distributions: sunward beams appear in short, narrow patterns and anti-sunward in broad extended tails. It is suggested that multiple types of wave–particle interactions, i.e., cyclotron and Landau resonances with AWs and SMWs at kinetic scales, are taking place to jointly heat the protons perpendicular and in parallel.« less

  6. Analysis of Dynamic Characteristics of the 21st Century Maritime Silk Road

    NASA Astrophysics Data System (ADS)

    Zhang, Xudong; Zhang, Jie; Fan, Chenqing; Meng, Junmin; Wang, Jing; Wan, Yong

    2018-06-01

    The 21st century Maritime Silk Road (MSR) proposed by China strongly promotes the maritime industry. In this paper, we use wind and ocean wave datasets from 1979 to 2014 to analyze the spatial and temporal distributions of the wind speed, significant wave height (SWH), mean wave direction (MWD), and mean wave period (MWP) in the MSR. The analysis results indicate that the Luzon Strait and Gulf of Aden have the most obvious seasonal variations and that the central Indian Ocean is relatively stable. We analyzed the distributions of the maximum wind speed and SWH in the MSR over this 36-year period. The results show that the distribution of the monthly average frequency for SWH exceeds 4 m (huge waves) and that of the corresponding wind speed exceeds 13.9 m s-1 (high wind speed). The occurrence frequencies of huge waves and high winds in regions east of the Gulf of Aden are as high as 56% and 80%, respectively. We also assessed the wave and wind energies in different seasons. Based on our analyses, we propose a risk factor (RF) for determining navigation safety levels, based on the wind speed and SWH. We determine the spatial and temporal RF distributions for different seasons and analyze the corresponding impact on four major sea routes. Finally, we determine the spatial distribution of tropical cyclones from 2000 to 2015 and analyze the corresponding impact on the four sea routes. The analysis of the dynamic characteristics of the MSR provides references for ship navigation as well as ocean engineering.

  7. The Wind Energy Potential of Kurdistan, Iran

    PubMed Central

    Arefi, Farzad; Moshtagh, Jamal; Moradi, Mohammad

    2014-01-01

    In the current work by using statistical methods and available software, the wind energy assessment of prone regions for installation of wind turbines in, Qorveh, has been investigated. Information was obtained from weather stations of Baneh, Bijar, Zarina, Saqez, Sanandaj, Qorveh, and Marivan. The monthly average and maximum of wind speed were investigated between the years 2000–2010 and the related curves were drawn. The Golobad curve (direction and percentage of dominant wind and calm wind as monthly rate) between the years 1997–2000 was analyzed and drawn with plot software. The ten-minute speed (at 10, 30, and 60 m height) and direction (at 37.5 and 10 m height) wind data were collected from weather stations of Iranian new energy organization. The wind speed distribution during one year was evaluated by using Weibull probability density function (two-parametrical), and the Weibull curve histograms were drawn by MATLAB software. According to the average wind speed of stations and technical specifications of the types of turbines, the suitable wind turbine for the station was selected. Finally, the Divandareh and Qorveh sites with favorable potential were considered for installation of wind turbines and construction of wind farms. PMID:27355042

  8. Influence of local meteorology and NO2 conditions on ground-level ozone concentrations in the eastern part of Texas, USA.

    PubMed

    Gorai, A K; Tuluri, F; Tchounwou, P B; Ambinakudige, S

    2015-02-01

    The influence of local climatic factors on ground-level ozone concentrations is an area of increasing interest to air quality management in regards to future climate change. This study presents an analysis on the role of temperature, wind speed, wind direction, and NO 2 level on ground-level ozone concentrations over the region of Eastern Texas, USA. Ozone concentrations at the ground level depend on the formation and dispersion processes. Formation process mainly depends on the precursor sources, whereas, the dispersion of ozone depends on meteorological factors. Study results showed that the spatial mean of ground-level ozone concentrations was highly dependent on the spatial mean of NO 2 concentrations. However, spatial distributions of NO 2 and ozone concentrations were not uniformed throughout the study period due to uneven wind speeds and wind directions. Wind speed and wind direction also played a significant role in the dispersion of ozone. Temperature profile in the area rarely had any effects on the ozone concentrations due to low spatial variations.

  9. Influence of local meteorology and NO2 conditions on ground-level ozone concentrations in the eastern part of Texas, USA

    PubMed Central

    Gorai, A. K.; Tuluri, F.; Tchounwou, P. B.; Ambinakudige, S.

    2014-01-01

    The influence of local climatic factors on ground-level ozone concentrations is an area of increasing interest to air quality management in regards to future climate change. This study presents an analysis on the role of temperature, wind speed, wind direction, and NO2 level on ground-level ozone concentrations over the region of Eastern Texas, USA. Ozone concentrations at the ground level depend on the formation and dispersion processes. Formation process mainly depends on the precursor sources, whereas, the dispersion of ozone depends on meteorological factors. Study results showed that the spatial mean of ground-level ozone concentrations was highly dependent on the spatial mean of NO2 concentrations. However, spatial distributions of NO2 and ozone concentrations were not uniformed throughout the study period due to uneven wind speeds and wind directions. Wind speed and wind direction also played a significant role in the dispersion of ozone. Temperature profile in the area rarely had any effects on the ozone concentrations due to low spatial variations. PMID:25755687

  10. Pressure Measurement Studies on a 1:1.5:7 Rectangular High Rise Building Model under Uniform Flow

    NASA Astrophysics Data System (ADS)

    Sarath Kumar, H.; Vijaya Bhaskar Reddy, P.

    2017-08-01

    This paper presents the experimental results of evaluate wind pressure distributions on all four faces of a rectangular tall building with 1:1.5:7 ratio. The model is made up of acrylic sheet with a geometric scale of 1:300 with plan dimension of 10 cm x 15 cm and height of 70 cm. The model is tested using a Boundary Layer Wind Tunnel (BLWT) twelve angles (0°, 5°, 10°, 15°, 25°, 33.5°, 45°, 56.5°, 60°, 75°, 87.5° & 90°) of wind incidence under uniform flow condition. Mean and standard deviation of pressure coefficients, drag & lift coefficients along wind direction and perpendicular to wind direction, mean moment coefficient are calculated from pressure measurement on the model.

  11. Spatio-temporal analysis of gyres in oriented lakes on the Arctic Coastal Plain of northern Alaska based on remotely sensed images

    USGS Publications Warehouse

    Zhan, Shengan; Beck, Richard A.; Hinkel, Kenneth M.; Liu, Hongxing; Jones, Benjamin M.

    2014-01-01

    The formation of oriented thermokarst lakes on the Arctic Coastal Plain of northern Alaska has been the subject of debate for more than half a century. The striking elongation of the lakes perpendicular to the prevailing wind direction has led to the development of a preferred wind-generated gyre hypothesis, while other hypotheses include a combination of sun angle, topographic aspect, and/or antecedent conditions. A spatio-temporal analysis of oriented thermokarst lake gyres with recent (Landsat 8) and historical (Landsat 4, 5, 7 and ASTER) satellite imagery of the Arctic Coastal Plain of northern Alaska indicates that wind-generated gyres are both frequent and regionally extensive. Gyres are most common in lakes located near the Arctic coast after several days of sustained winds from a single direction, typically the northeast, and decrease in number landward with decreasing wind energy. This analysis indicates that the conditions necessary for the Carson and Hussey (1962) wind-generated gyre for oriented thermokarst lake formation are common temporally and regionally and correspond spatially with the geographic distribution of oriented lakes on the Arctic Coastal Plain. Given an increase in the ice-free season for lakes as well as strengthening of the wind regime, the frequency and distribution of lake gyres may increase. This increase has implications for changes in northern high latitude aquatic ecosystems, particularly if wind-generated gyres promote permafrost degradation and thermokarst lake expansion.

  12. Global composites of surface wind speeds in tropical cyclones based on a 12 year scatterometer database

    NASA Astrophysics Data System (ADS)

    Klotz, Bradley W.; Jiang, Haiyan

    2016-10-01

    A 12 year global database of rain-corrected satellite scatterometer surface winds for tropical cyclones (TCs) is used to produce composites of TC surface wind speed distributions relative to vertical wind shear and storm motion directions in each TC-prone basin and various TC intensity stages. These composites corroborate ideas presented in earlier studies, where maxima are located right of motion in the Earth-relative framework. The entire TC surface wind asymmetry is down motion left for all basins and for lower strength TCs after removing the motion vector. Relative to the shear direction, the motion-removed composites indicate that the surface wind asymmetry is located down shear left for the outer region of all TCs, but for the inner-core region it varies from left of shear to down shear right for different basin and TC intensity groups. Quantification of the surface wind asymmetric structure in further stratifications is a necessary next step for this scatterometer data set.

  13. Spatial Vertical Directionality and Correlation of Low-Frequency Ambient Noise in Deep Ocean Direct-Arrival Zones.

    PubMed

    Yang, Qiulong; Yang, Kunde; Cao, Ran; Duan, Shunli

    2018-01-23

    Wind-driven and distant shipping noise sources contribute to the total noise field in the deep ocean direct-arrival zones. Wind-driven and distant shipping noise sources may significantly and simultaneously affect the spatial characteristics of the total noise field to some extent. In this work, a ray approach and parabolic equation solution method were jointly utilized to model the low-frequency ambient noise field in a range-dependent deep ocean environment by considering their calculation accuracy and efficiency in near-field wind-driven and far-field distant shipping noise fields. The reanalysis databases of National Center of Environment Prediction (NCEP) and Volunteer Observation System (VOS) were used to model the ambient noise source intensity and distribution. Spatial vertical directionality and correlation were analyzed in three scenarios that correspond to three wind speed conditions. The noise field was dominated by distant shipping noise sources when the wind speed was less than 3 m/s, and then the spatial vertical directionality and vertical correlation of the total noise field were nearly consistent with those of distant shipping noise field. The total noise field was completely dominated by near field wind generated noise sources when the wind speed was greater than 12 m/s at 150 Hz, and then the spatial vertical correlation coefficient and directionality pattern of the total noise field was approximately consistent with that of the wind-driven noise field. The spatial characteristics of the total noise field for wind speeds between 3 m/s and 12 m/s were the weighted results of wind-driven and distant shipping noise fields. Furthermore, the spatial characteristics of low-frequency ambient noise field were compared with the classical Cron/Sherman deep water noise field coherence function. Simulation results with the described modeling method showed good agreement with the experimental measurement results based on the vertical line array deployed near the bottom in deep ocean direct-arrival zones.

  14. Spatial Vertical Directionality and Correlation of Low-Frequency Ambient Noise in Deep Ocean Direct-Arrival Zones

    PubMed Central

    Yang, Qiulong; Yang, Kunde; Cao, Ran; Duan, Shunli

    2018-01-01

    Wind-driven and distant shipping noise sources contribute to the total noise field in the deep ocean direct-arrival zones. Wind-driven and distant shipping noise sources may significantly and simultaneously affect the spatial characteristics of the total noise field to some extent. In this work, a ray approach and parabolic equation solution method were jointly utilized to model the low-frequency ambient noise field in a range-dependent deep ocean environment by considering their calculation accuracy and efficiency in near-field wind-driven and far-field distant shipping noise fields. The reanalysis databases of National Center of Environment Prediction (NCEP) and Volunteer Observation System (VOS) were used to model the ambient noise source intensity and distribution. Spatial vertical directionality and correlation were analyzed in three scenarios that correspond to three wind speed conditions. The noise field was dominated by distant shipping noise sources when the wind speed was less than 3 m/s, and then the spatial vertical directionality and vertical correlation of the total noise field were nearly consistent with those of distant shipping noise field. The total noise field was completely dominated by near field wind generated noise sources when the wind speed was greater than 12 m/s at 150 Hz, and then the spatial vertical correlation coefficient and directionality pattern of the total noise field was approximately consistent with that of the wind-driven noise field. The spatial characteristics of the total noise field for wind speeds between 3 m/s and 12 m/s were the weighted results of wind-driven and distant shipping noise fields. Furthermore, the spatial characteristics of low-frequency ambient noise field were compared with the classical Cron/Sherman deep water noise field coherence function. Simulation results with the described modeling method showed good agreement with the experimental measurement results based on the vertical line array deployed near the bottom in deep ocean direct-arrival zones. PMID:29360793

  15. Aeolian dunes as ground truth for atmospheric modeling on Mars

    USGS Publications Warehouse

    Hayward, R.K.; Titus, T.N.; Michaels, T.I.; Fenton, L.K.; Colaprete, A.; Christensen, P.R.

    2009-01-01

    Martian aeolian dunes preserve a record of atmosphere/surface interaction on a variety of scales, serving as ground truth for both Global Climate Models (GCMs) and mesoscale climate models, such as the Mars Regional Atmospheric Modeling System (MRAMS). We hypothesize that the location of dune fields, expressed globally by geographic distribution and locally by dune centroid azimuth (DCA), may record the long-term integration of atmospheric activity across a broad area, preserving GCM-scale atmospheric trends. In contrast, individual dune morphology, as expressed in slipface orientation (SF), may be more sensitive to localized variations in circulation, preserving topographically controlled mesoscale trends. We test this hypothesis by comparing the geographic distribution, DCA, and SF of dunes with output from the Ames Mars GCM and, at a local study site, with output from MRAMS. When compared to the GCM: 1) dunes generally lie adjacent to areas with strongest winds, 2) DCA agrees fairly well with GCM modeled wind directions in smooth-floored craters, and 3) SF does not agree well with GCM modeled wind directions. When compared to MRAMS modeled winds at our study site: 1) DCA generally coincides with the part of the crater where modeled mean winds are weak, and 2) SFs are consistent with some weak, topographically influenced modeled winds. We conclude that: 1) geographic distribution may be valuable as ground truth for GCMs, 2) DCA may be useful as ground truth for both GCM and mesoscale models, and 3) SF may be useful as ground truth for mesoscale models. Copyright 2009 by the American Geophysical Union.

  16. Wind tunnel tests of an 0.019-scale space shuttle integrated vehicle -2A configuration (model 14-OTS) in the NASA Ames 8 X 7 foot unitary wind tunnel, volume 2. [cold jet gas plumes and pressure distribution

    NASA Technical Reports Server (NTRS)

    Hardin, R. B.; Burrows, R. R.

    1975-01-01

    The purpose of the test was to determine the effects of cold jet gas plumes on (1) the integrated vehicle longitudinal and lateral-directional force data, (2) exposed wing hinge moment, (3) wing pressure distributions, (4) orbiter MPS external pressure distributions, and (5) model base pressures. An investigation was undertaken to determine the similarity between solid and gaseous plumes; fluorescent oil flow visualization studies were also conducted. Plotted wing pressure data is tabulated.

  17. Control Strategies for Distributed Energy Resources to Maximize the Use of Wind Power in Rural Microgrids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lu, Shuai; Elizondo, Marcelo A.; Samaan, Nader A.

    2011-10-10

    The focus of this paper is to design control strategies for distributed energy resources (DERs) to maximize the use of wind power in a rural microgrid. In such a system, it may be economical to harness wind power to reduce the consumption of fossil fuels for electricity production. In this work, we develop control strategies for DERs, including diesel generators, energy storage and demand response, to achieve high penetration of wind energy in a rural microgrid. Combinations of centralized (direct control) and decentralized (autonomous response) control strategies are investigated. Detailed dynamic models for a rural microgrid are built to conductmore » simulations. The system response to large disturbances and frequency regulation are tested. It is shown that optimal control coordination of DERs can be achieved to maintain system frequency while maximizing wind power usage and reducing the wear and tear on fossil fueled generators.« less

  18. Atmospheric Dispersion Modeling of 137Cs generated from Nuclear Spent Fuel under Hypothetic Accidental Condition in the BNPP Area

    NASA Astrophysics Data System (ADS)

    Lee, Jongkuk; Lee, Kwan-Hee; Yook, Daesik; Kim, Sung Il; Lee, Byung Soo

    2016-04-01

    This study presents the results of atmosphere dispersion modeling using CALPUFF code that are based on computational simulation to evaluate the environmental characteristics of the Barakah nuclear power plant (BNPP) in west area of UAE. According to meteorological data analysis (2012~2013), the winds from the north(7.68%) and west(9.05%) including NNW(41.63%), NW(28.55%), and WNW(6.31%) winds accounted for more than 90% of the wind directions. East(0.2%) and south(0.6%) direction wind, including ESE(0.31%), SE(0.38%), and SSE(0.38%) were rarely distributed during the simulation period. Seasonal effects were not showed. However, a discrepancy in the tendency between daytime and night-time was observed. Approximately 87% of the wind speed was distributed below 5.4m/s (17%, 47% and 23% between the speeds of 0.5-1.8m/s 1.8-3.3m/s and 3.3-5.4m/s, respectively) during the annual period. Seasonal wind speed distribution results presented very similar pattern of annual distribution. Wind speed distribution of day and night, on the other hand, had a discrepancy with annual modeling results than seasonal distribution in some sections. The results for high wind speed (more than 10.8m/s) showed that this wind blew from the west. This high wind speed is known locally as the 'Shamal', which occurs rarely, lasting one or two days with the strongest winds experienced in association with gust fronts and thunderstorms. Six variations of cesium-137 (137Cs) dispersion test were simulated under hypothetic severe accidental condition. The 137Cs dispersion was strongly influenced by the direction and speed of the main wind. From the test cases, east-south area of the BNPP site was mainly influenced by 137Cs dispersion. A virtual receptor was set and calculated for observation of the 137Cs movement and accumulation. Surface roughness tests were performed for the analysis of topographic conditions. According to the surface condition, there are various surface roughness length. Four types of surface conditions were selected, including city area, hedge area, cut grass, and desert area. Four cases of simulations were performed under the same conditions except for surface the roughness factor. The results indicated that relatively high concentrations were found at the high surface roughness near the origin of the source point. The city area contained approximately four times 137Cs concentration than that of desert area. The atmospheric dispersion of 137Cs was affected by the surface condition in the proximal area. Moreover, movement of the radioactive material had a tendency to be dispersed in a relatively wide range in the desert areas compared to in the higher surface roughness areas. The results of these study offer useful information for developing environmental radiation monitoring systems (ERMSs) and evacuation plan under unexpected emergency condition for the BNPP and can be used to assess the environmental effects of new nuclear power plant. This work was supported by the Nuclear Safety Research Program through the Korea Nuclear Safety Foundation(KORSAFe), granted financial resource from the Nuclear Safety and Security Commission(NSSC), Republic of Korea (No. 1503003).

  19. Wind reduction by aerosol particles

    NASA Astrophysics Data System (ADS)

    Jacobson, Mark Z.; Kaufman, Yoram J.

    2006-12-01

    Aerosol particles are known to affect radiation, temperatures, stability, clouds, and precipitation, but their effects on spatially-distributed wind speed have not been examined to date. Here, it is found that aerosol particles, directly and through their enhancement of clouds, may reduce near-surface wind speeds below them by up to 8% locally. This reduction may explain a portion of observed ``disappearing winds'' in China, and it decreases the energy available for wind-turbine electricity. In California, slower winds reduce emissions of wind-driven soil dust and sea spray. Slower winds and cooler surface temperatures also reduce moisture advection and evaporation. These factors, along with the second indirect aerosol effect, may reduce California precipitation by 2-5%, contributing to a strain on water supply.

  20. Self-Powered Wind Sensor System for Detecting Wind Speed and Direction Based on a Triboelectric Nanogenerator.

    PubMed

    Wang, Jiyu; Ding, Wenbo; Pan, Lun; Wu, Changsheng; Yu, Hua; Yang, Lijun; Liao, Ruijin; Wang, Zhong Lin

    2018-04-24

    The development of the Internet of Things has brought new challenges to the corresponding distributed sensor systems. Self-powered sensors that can perceive and respond to environmental stimuli without an external power supply are highly desirable. In this paper, a self-powered wind sensor system based on an anemometer triboelectric nanogenerator (a-TENG, free-standing mode) and a wind vane triboelectric nanogenerator (v-TENG, single-electrode mode) is proposed for simultaneously detecting wind speed and direction. A soft friction mode is adopted instead of a typical rigid friction for largely enhancing the output performance of the TENG. The design parameters including size, unit central angle, and applied materials are optimized to enhance sensitivity, resolution, and wide measurement scale. The optimized a-TENG could deliver an open-circuit voltage of 88 V and short-circuit current of 6.3 μA, corresponding to a maximum power output of 0.47 mW (wind speed of 6.0 m/s), which is capable of driving electronics for data transmission and storage. The current peak value of the a-TENG signal is used for analyzing wind speed for less energy consumption. Moreover, the output characteristics of a v-TENG are further explored, with six actual operation situations, and the v-TENG delivers fast response to the incoming wind and accurately outputs the wind direction data. As a wind sensor system, wind speed ranging from 2.7 to 8.0 m/s can be well detected (consistent with a commercial sensor) and eight regular directions can be monitored. Therefore, the fabricated wind sensor system has great potential in wireless environmental monitoring applications.

  1. Initializing a Mesoscale Boundary-Layer Model with Radiosonde Observations

    NASA Astrophysics Data System (ADS)

    Berri, Guillermo J.; Bertossa, Germán

    2018-01-01

    A mesoscale boundary-layer model is used to simulate low-level regional wind fields over the La Plata River of South America, a region characterized by a strong daily cycle of land-river surface-temperature contrast and low-level circulations of sea-land breeze type. The initial and boundary conditions are defined from a limited number of local observations and the upper boundary condition is taken from the only radiosonde observations available in the region. The study considers 14 different upper boundary conditions defined from the radiosonde data at standard levels, significant levels, level of the inversion base and interpolated levels at fixed heights, all of them within the first 1500 m. The period of analysis is 1994-2008 during which eight daily observations from 13 weather stations of the region are used to validate the 24-h surface-wind forecast. The model errors are defined as the root-mean-square of relative error in wind-direction frequency distribution and mean wind speed per wind sector. Wind-direction errors are greater than wind-speed errors and show significant dispersion among the different upper boundary conditions, not present in wind speed, revealing a sensitivity to the initialization method. The wind-direction errors show a well-defined daily cycle, not evident in wind speed, with the minimum at noon and the maximum at dusk, but no systematic deterioration with time. The errors grow with the height of the upper boundary condition level, in particular wind direction, and double the errors obtained when the upper boundary condition is defined from the lower levels. The conclusion is that defining the model upper boundary condition from radiosonde data closer to the ground minimizes the low-level wind-field errors throughout the region.

  2. Measurement of Unsteady Aerodynamics Load on the Blade of Field Horizontal Axis Wind Turbine

    NASA Astrophysics Data System (ADS)

    Kamada, Yasunari; Maeda, Takao; Naito, Keita; Ouchi, Yuu; Kozawa, Masayoshi

    This paper describes an experimental field study of the rotor aerodynamics of wind turbines. The test wind turbine is a horizontal axis wind turbine, or: HAWT with a diameter of 10m. The pressure distributions on the rotating blade are measured with multi point pressure transducers. Sectional aerodynamic forces are analyzed from pressure distribution. Blade root moments are measured simultaneously by a pair of strain gauges. The inflow wind is measured by a three component sonic anemometer, the local inflow of the blade section are measured by a pair of 7 hole Pitot tubes. The relation between the aerodynamic moments on the blade root from pressure distribution and the mechanical moment from strain gauges is discussed. The aerodynamic moments are estimated from the sectional aerodynamic forces and show oscillation caused by local wind speed and direction change. The mechanical moment shows similar oscillation to the aerodynamic excepting the short period oscillation of the blade first mode frequency. The fluctuation of the sectional aerodynamic force triggers resonant blade oscillations. Where stall is present along the blade section, the blade's first mode frequency is dominant. Without stall, the rotating frequency is dominant in the blade root moment.

  3. Effects of non-Maxwellian electron velocity distribution functions and nonspherical geometry on minor ions in the solar wind

    NASA Technical Reports Server (NTRS)

    Burgi, A.

    1987-01-01

    A previous model has shown that in order to account for the charge state distribution in the low-speed solar wind, a high coronal temperature is necessary and that this temperature peak goes together with a peak of nx/np in the corona. In the present paper, one of the assumptions made previously, i.e., that coronal electrons are Maxwellian, is relaxed, and a much cooler model is presented, which could account for the same oxygen charge states in the solar wind due to the inclusion of non-Maxwellian electrons. Also, due to a different choice of the coronal magnetic field geometry, this model would show no enhancement of the coronal nx/np. Results of the two models are then compared, and observational tests to distinguish between the two scenarios are proposed: comparison of directly measured coronal Te to charge state measurements in the solar wind, determination of the coronal nx/np measurement of ion speeds in the acceleration region of the solar wind, and measurement of the frozen-in silicon charge state distribution.

  4. Magnetic Pumping as a Source of Particle Heating and Power-law Distributions in the Solar Wind

    NASA Astrophysics Data System (ADS)

    Lichko, E.; Egedal, J.; Daughton, W.; Kasper, J.

    2017-12-01

    Based on the rate of expansion of the solar wind, the plasma should cool rapidly as a function of distance to the Sun. Observations show this is not the case. In this work, a magnetic pumping model is developed as a possible explanation for the heating and the generation of power-law distribution functions observed in the solar wind plasma. Most previous studies in this area focus on the role that the dissipation of turbulent energy on microscopic kinetic scales plays in the overall heating of the plasma. However, with magnetic pumping, particles are energized by the largest-scale turbulent fluctuations, thus bypassing the energy cascade. In contrast to other models, we include the pressure anisotropy term, providing a channel for the large-scale fluctuations to heat the plasma directly. A complete set of coupled differential equations describing the evolution, and energization, of the distribution function are derived, as well as an approximate closed-form solution. Numerical simulations using the VPIC kinetic code are applied to verify the model’s analytical predictions. The results of the model for realistic solar wind scenario are computed, where thermal streaming of particles are important for generating a phase shift between the magnetic perturbations and the pressure anisotropy. In turn, averaged over a pump cycle, the phase shift permits mechanical work to be converted directly to heat in the plasma. The results of this scenario show that magnetic pumping may account for a significant portion of the solar wind energization.

  5. Directional spectra of hurricane-generated waves in the Gulf of Mexico

    NASA Astrophysics Data System (ADS)

    Hu, Kelin; Chen, Qin

    2011-10-01

    Hurricane-induced directional wave spectra in the Gulf of Mexico are investigated based on the measurements collected at 12 buoys during 7 hurricane events in recent years. Focusing on hurricane-generated wave spectra, we only consider the wave measurements at the buoys within eight times the radius of the hurricane maximum wind speed (Rmax) from the hurricane center. A series of numerical experiments using a third-generation spectral wave prediction model were carried out to gain insight into the mechanism controlling the directional and frequency distributions of hurricane wave energy. It is found that hurricane wave spectra are almost swell-dominated except for the right-rear quadrant of a hurricane with respect to the forward direction, where the local strong winds control the spectra. Despite the complexity of a hurricane wind field, most of the spectra are mono-modal, similar to those under fetch-limited, unidirectional winds. However, bi-modal spectra were also found in both measurements and model results. Four types of bi-modal spectra have been observed. Type I happens far away (>6 × Rmax) from a hurricane. Type II is bi-modal in frequency with significant differences in direction. It happens in the two left quadrants when the direction of hurricane winds deviates considerably from the swell direction. Type III is bi-modal in frequency in almost the same wave direction with two close peaks. It occurs when the energy of locally-generated wind-sea is only partially transferred to the swell energy by non-linear wave-wave interactions. Type IV was observed in shallow waters owing to coastal effects.

  6. Statistical wind analysis for near-space applications

    NASA Astrophysics Data System (ADS)

    Roney, Jason A.

    2007-09-01

    Statistical wind models were developed based on the existing observational wind data for near-space altitudes between 60 000 and 100 000 ft (18 30 km) above ground level (AGL) at two locations, Akon, OH, USA, and White Sands, NM, USA. These two sites are envisioned as playing a crucial role in the first flights of high-altitude airships. The analysis shown in this paper has not been previously applied to this region of the stratosphere for such an application. Standard statistics were compiled for these data such as mean, median, maximum wind speed, and standard deviation, and the data were modeled with Weibull distributions. These statistics indicated, on a yearly average, there is a lull or a “knee” in the wind between 65 000 and 72 000 ft AGL (20 22 km). From the standard statistics, trends at both locations indicated substantial seasonal variation in the mean wind speed at these heights. The yearly and monthly statistical modeling indicated that Weibull distributions were a reasonable model for the data. Forecasts and hindcasts were done by using a Weibull model based on 2004 data and comparing the model with the 2003 and 2005 data. The 2004 distribution was also a reasonable model for these years. Lastly, the Weibull distribution and cumulative function were used to predict the 50%, 95%, and 99% winds, which are directly related to the expected power requirements of a near-space station-keeping airship. These values indicated that using only the standard deviation of the mean may underestimate the operational conditions.

  7. A numerical study of the plume in Cape Fear River Estuary and adjacent coastal ocean

    NASA Astrophysics Data System (ADS)

    Xia, M.; Xia, L.; Pietrafesa, L. J.

    2006-12-01

    Cape Fear River Estuary (CFRE), located in southeast North Carolina, is the only river estuary system in the state which is directly connected to the Atlantic Ocean. It is also an important nursery for economically and ecologically important juvenile fish, crabs, shrimp, and other species because of the tidal influence and saline waters. In this study, Environmental Fluid Dynamic Code (EFDC) is used to simulate the salinity plume and trajectory distribution at the mouth of the CFRE and adjacent coastal ocean. Prescribed with the climatological freshwater discharge rates in the rivers, the modeling system was used to simulate the salinity plume and trajectory distribution distribution in the mouth of the CFRE under the influence of climatological wind conditions and tidal effect. We analyzed the plume formation processes and the strong relationship between the various plume distributions with respect to the wind and river discharge in the region. The simulations also indicate that strong winds tend to reduce the surface CFRE plume size and distorting the bulge region near the estuary mouth due to enhanced wind induced surface mixing. Even moderate wind speeds could fully reverse the buoyancy-driven plume structure in CFRE under normal river discharge conditions. Tide and the river discharge also are important factors to influence the plume structure. The comparions between the distribution of salinity plume and trajectory also are discussed in the study.

  8. Imaging doppler lidar for wind turbine wake profiling

    DOEpatents

    Bossert, David J.

    2015-11-19

    An imaging Doppler lidar (IDL) enables the measurement of the velocity distribution of a large volume, in parallel, and at high spatial resolution in the wake of a wind turbine. Because the IDL is non-scanning, it can be orders of magnitude faster than conventional coherent lidar approaches. Scattering can be obtained from naturally occurring aerosol particles. Furthermore, the wind velocity can be measured directly from Doppler shifts of the laser light, so the measurement can be accomplished at large standoff and at wide fields-of-view.

  9. PROTON HEATING BY PICK-UP ION DRIVEN CYCLOTRON WAVES IN THE OUTER HELIOSPHERE: HYBRID EXPANDING BOX SIMULATIONS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hellinger, Petr; Trávníček, Pavel M., E-mail: petr.hellinger@asu.cas.cz

    Using a one-dimensional hybrid expanding box model, we investigate properties of the solar wind in the outer heliosphere. We assume a proton–electron plasma with a strictly transverse ambient magnetic field and, aside from the expansion, we take into account the influence of a continuous injection of cold pick-up protons through the charge-exchange process between the solar wind protons and hydrogen of interstellar origin. The injected cold pick-up protons form a ring distribution function, which rapidly becomes unstable, and generate Alfvén cyclotron waves. The Alfvén cyclotron waves scatter pick-up protons to a spherical shell distribution function that thickens over that timemore » owing to the expansion-driven cooling. The Alfvén cyclotron waves heat solar wind protons in the perpendicular direction (with respect to the ambient magnetic field) through cyclotron resonance. At later times, the Alfvén cyclotron waves become parametrically unstable and the generated ion-acoustic waves heat protons in the parallel direction through Landau resonance. The resulting heating of the solar wind protons is efficient on the expansion timescale.« less

  10. Distribution and mass of tephra-fall deposits from volcanic eruptions of Sakurajima Volcano based on posteruption surveys

    NASA Astrophysics Data System (ADS)

    Oishi, Masayuki; Nishiki, Kuniaki; Geshi, Nobuo; Furukawa, Ryuta; Ishizuka, Yoshihiro; Oikawa, Teruki; Yamamoto, Takahiro; Nanayama, Futoshi; Tanaka, Akiko; Hirota, Akinari; Miwa, Takahiro; Miyabuchi, Yasuo

    2018-04-01

    We estimate the total mass of ash fall deposits for individual eruptions of Sakurajima Volcano, southwest Japan based on distribution maps of the tephra fallout. Five ash-sampling campaigns were performed between 2011 and 2015, during which time Sakurajima continued to emit ash from frequent Vulcanian explosions. During each survey, between 29 and 53 ash samplers were installed in a zone 2.2-43 km downwind of the source crater. Total masses of erupted tephra were estimated using several empirical methods based on the relationship between the area surrounded by a given isopleth and the thickness of ash fall within each isopleth. We obtained 70-40,520 t (4.7 × 10-8-2.7 × 10-5-km3 DRE) as the minimum estimated mass of erupted materials for each eruption period. The minimum erupted mass of tephra produced during the recorded events was calculated as being 890-5140 t (5.9 × 10-7-3.6 × 10-6-km3 DRE). This calculation was based on the total mass of tephra collected during any one eruptive period and the number of eruptions during that period. These values may thus also include the contribution of continuous weak ash emissions before and after prominent eruptions. We analyzed the meteorological effects on ash fall distribution patterns and concluded that the width of distribution area of an ash fall is strongly controlled by the near-ground wind speed. The direction of the isopleth axis for larger masses is affected by the local wind direction at ground level. Furthermore, the wind direction influences the direction of the isopleth axes more at higher altitude. While a second maximum of ash fall can appear, the influence of rain might only affect the finer particles in distal areas.

  11. Integrated analysis of numerical weather prediction and computational fluid dynamics for estimating cross-ventilation effects on inhaled air quality inside a factory

    NASA Astrophysics Data System (ADS)

    Murga, Alicia; Sano, Yusuke; Kawamoto, Yoichi; Ito, Kazuhide

    2017-10-01

    Mechanical and passive ventilation strategies directly impact indoor air quality. Passive ventilation has recently become widespread owing to its ability to reduce energy demand in buildings, such as the case of natural or cross ventilation. To understand the effect of natural ventilation on indoor environmental quality, outdoor-indoor flow paths need to be analyzed as functions of urban atmospheric conditions, topology of the built environment, and indoor conditions. Wind-driven natural ventilation (e.g., cross ventilation) can be calculated through the wind pressure coefficient distributions of outdoor wall surfaces and openings of a building, allowing the study of indoor air parameters and airborne contaminant concentrations. Variations in outside parameters will directly impact indoor air quality and residents' health. Numerical modeling can contribute to comprehend these various parameters because it allows full control of boundary conditions and sampling points. In this study, numerical weather prediction modeling was used to calculate wind profiles/distributions at the atmospheric scale, and computational fluid dynamics was used to model detailed urban and indoor flows, which were then integrated into a dynamic downscaling analysis to predict specific urban wind parameters from the atmospheric to built-environment scale. Wind velocity and contaminant concentration distributions inside a factory building were analyzed to assess the quality of the human working environment by using a computer simulated person. The impact of cross ventilation flows and its variations on local average contaminant concentration around a factory worker, and inhaled contaminant dose, were then discussed.

  12. Magnetic Pumping as a Source of Particle Heating and Power-Law Distributions in the Solar Wind

    DOE PAGES

    Lichko, Emily Rose; Egedal, Jan; Daughton, William Scott; ...

    2017-11-27

    Based on the rate of expansion of the solar wind, the plasma should cool rapidly as a function of distance to the Sun. Observations show this is not the case. In this work, a magnetic pumping model is developed as a possible explanation for the heating and the generation of power-law distribution functions observed in the solar wind plasma. Most previous studies in this area focus on the role that the dissipation of turbulent energy on microscopic kinetic scales plays in the overall heating of the plasma. However, with magnetic pumping, particles are energized by the largest-scale turbulent fluctuations, thusmore » bypassing the energy cascade. In contrast to other models, we include the pressure anisotropy term, providing a channel for the large-scale fluctuations to heat the plasma directly. A complete set of coupled differential equations describing the evolution, and energization, of the distribution function are derived, as well as an approximate closed-form solution. Numerical simulations using the VPIC kinetic code are applied to verify the model's analytical predictions. The results of the model for realistic solar wind scenario are computed, where thermal streaming of particles are important for generating a phase shift between the magnetic perturbations and the pressure anisotropy. In turn, averaged over a pump cycle, the phase shift permits mechanical work to be converted directly to heat in the plasma. Here, the results of this scenario show that magnetic pumping may account for a significant portion of the solar wind energization.« less

  13. Magnetic Pumping as a Source of Particle Heating and Power-Law Distributions in the Solar Wind

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lichko, Emily Rose; Egedal, Jan; Daughton, William Scott

    Based on the rate of expansion of the solar wind, the plasma should cool rapidly as a function of distance to the Sun. Observations show this is not the case. In this work, a magnetic pumping model is developed as a possible explanation for the heating and the generation of power-law distribution functions observed in the solar wind plasma. Most previous studies in this area focus on the role that the dissipation of turbulent energy on microscopic kinetic scales plays in the overall heating of the plasma. However, with magnetic pumping, particles are energized by the largest-scale turbulent fluctuations, thusmore » bypassing the energy cascade. In contrast to other models, we include the pressure anisotropy term, providing a channel for the large-scale fluctuations to heat the plasma directly. A complete set of coupled differential equations describing the evolution, and energization, of the distribution function are derived, as well as an approximate closed-form solution. Numerical simulations using the VPIC kinetic code are applied to verify the model's analytical predictions. The results of the model for realistic solar wind scenario are computed, where thermal streaming of particles are important for generating a phase shift between the magnetic perturbations and the pressure anisotropy. In turn, averaged over a pump cycle, the phase shift permits mechanical work to be converted directly to heat in the plasma. Here, the results of this scenario show that magnetic pumping may account for a significant portion of the solar wind energization.« less

  14. BOREAS AFM-06 Mean Wind Profile Data

    NASA Technical Reports Server (NTRS)

    Wilczak, James; Hall, Forrest G. (Editor); Newcomer, Jeffrey A. (Editor); Smith, David E. (Technical Monitor)

    2000-01-01

    The Boreal Ecosystem-Atmosphere Study (BOREAS) Airborne Fluxes and Meteorology (AFM)-6 team from the National Oceanic and Atmospheric Administration/Environment Technology Laboratory (NOAA/ETL) operated a 915-MHz wind/Radio Acoustic Sounding System (RASS) profiler system in the Southern Study Area (SSA) near the Old Jack Pine (OJP) tower from 21 May 1994 to 20 Sep 1994. The data set provides wind profiles at 38 heights, containing the variables of wind speed; wind direction; and the u-, v-, and w-components of the total wind. The data are stored in tabular ASCII files. The mean wind profile data are available from the Earth Observing System Data and Information System (EOSDIS) Oak Ridge National Laboratory (ORNL) Distributed Active Archive Center (DAAC). The data files are available on a CD-ROM (see document number 20010000884).

  15. Aeroacoustics of large wind turbines

    NASA Technical Reports Server (NTRS)

    Hubbard, Harvey H.; Shepherd, Kevin P.

    1991-01-01

    This paper reviews published information on aerodynamically generated noise from large horizontal axis wind turbines operated for electric power generation. Methods are presented for predicting both the discrete frequency rotational noise components and the broadband noise components, and results are compared with measurements. Refraction effects that result in the formation of high-frequency shadow zones in the upwind direction and channeling effects for the low frequencies in the downwind direction are illustrated. Special topics such as distributed source effects in prediction and the role of building dynamics in perception are also included.

  16. Marli: Mars Lidar for Global Wind Profiles and Aerosol Profiles from Orbit

    NASA Technical Reports Server (NTRS)

    Abshire, J. B.; Guzewich, S. D.; Smith, M. D.; Riris, H.; Sun, X.; Gentry, B. M.; Yu, A.; Allan, G. R.

    2016-01-01

    The Mars Exploration Analysis Group's Next Orbiter Science Analysis Group (NEXSAG) has recently identified atmospheric wind measurements as one of 5 top compelling science objectives for a future Mars orbiter. To date, only isolated lander observations of martian winds exist. Winds are the key variable to understand atmospheric transport and answer fundamental questions about the three primary cycles of the martian climate: CO2, H2O, and dust. However, the direct lack of observations and imprecise and indirect inferences from temperature observations leave many basic questions about the atmospheric circulation unanswered. In addition to addressing high priority science questions, direct wind observations from orbit would help validate 3D general circulation models (GCMs) while also providing key input to atmospheric reanalyses. The dust and CO2 cycles on Mars are partially coupled and their influences on the atmospheric circulation modify the global wind field. Dust absorbs solar infrared radiation and its variable spatial distribution forces changes in the atmospheric temperature and wind fields. Thus it is important to simultaneously measure the height-resolved wind and dust profiles. MARLI provides a unique capability to observe these variables continuously, day and night, from orbit.

  17. VLTI-AMBER Velocity-Resolved Aperture-Synthesis Imaging of Eta Carinae with a Spectral Resolution of 12 000: Studies of the Primary Star Wind and Innermost Wind-Wind Collision Zone

    NASA Technical Reports Server (NTRS)

    Weigelt, G.; Hofmann, K.-H.; Schertl, D.; Clementel, N.; Corcoran, M. F.; Damineli, A.; de Wit, W.-J.; Grellmann, R.; Groh, J.; Guieu, S.; hide

    2016-01-01

    The mass loss from massive stars is not understood well. Eta Carinae is a unique object for studying the massive stellar wind during the luminous blue variable phase. It is also an eccentric binary with a period of 5.54 yr. The nature of both stars is uncertain, although we know from X-ray studies that there is a wind-wind collision whose properties change with orbital phase. Aims. We want to investigate the structure and kinematics of Car's primary star wind and wind-wind collision zone with a high spatial resolution of approx.6 mas (approx.14 au) and high spectral resolution of R = 12 000. Methods. Observations of Car were carried out with the ESO Very Large Telescope Interferometer (VLTI) and the AMBER instrument between approximately five and seven months before the August 2014 periastron passage. Velocity-resolved aperture-synthesis images were reconstructed from the spectrally dispersed interferograms. Interferometric studies can provide information on the binary orbit, the primary wind, and the wind collision. Results. We present velocity-resolved aperture-synthesis images reconstructed in more than 100 di erent spectral channels distributed across the Br(gamma) 2.166 micron emission line. The intensity distribution of the images strongly depends on wavelength. At wavelengths corresponding to radial velocities of approximately -140 to -376 km/s measured relative to line center, the intensity distribution has a fan-shaped structure. At the velocity of -277 km/s, the position angle of the symmetry axis of the fan is 126. The fan-shaped structure extends approximately 8.0 mas (approx.18:8 au) to the southeast and 5.8 mas (approx.13:6 au) to the northwest, measured along the symmetry axis at the 16% intensity contour. The shape of the intensity distributions suggests that the obtained images are the first direct images of the innermost wind-wind collision zone. Therefore, the observations provide velocity-dependent image structures that can be used to test three-dimensional hydrodynamical, radiative transfer models of the massive interacting winds of Eta Car.

  18. WIND SPEED Monitoring in Northern Eurasia

    NASA Astrophysics Data System (ADS)

    Bulygina, O.; Korshunova, N. N.; Razuvaev, V. N.; Groisman, P. Y.

    2016-12-01

    The wind regime of Russia varies a great deal due to the large size of the country's territory and variety of climate and terrain conditions. Changes in the regime of surface wind are of great practical importance. They can affect heat and water balance. Strong wind is one of the most hazardous meteorological event for various sectors of economy and for infrastructure. The main objective of this research is to monitoring wind speed change in Northern Eurasia At meteorological stations wind speed and wind direction are measured at the height of 10-12 meters over the land surface with the help of wind meters or wind wanes. Calculations were made on the basis of data for the period of 1980-2015. It allowed the massive scale disruption of homogeneity to be eliminated and sufficient period needed to obtain sustainable statistic characteristics to be retained. Data on average and maximum wind speed measured at 1457 stations of Russia were used. The analysis of changes in wind characteristics was made on the basis of point data and series of average characteristics obtained for 18 quasi-homogeneous climatic regions. Statistical characteristics (average and maximum values of wind speed, prevailing wind direction, values of the boundary of the 90%, 95% and 99%-confidence interval in the distribution of maximum wind speed) were obtained for all seasons and for the year as a whole. Values of boundaries of the 95% and 99%-confidence interval in the distribution of maximum wind speed were considered as indicators of extremeness of the wind regime. The trend of changes in average and maximum wind speed was assessed with a linear trend coefficient. A special attention was paid to wind changes in the Arctic where dramatic changes in surface air temperature and sea ice extent and density have been observed during the past decade. The analysis of the results allowed seasonal and regional features of changes in the wind regime on the territory of the northern part of Eurasia to be determined. The outcomes could help to provide specific recommendations to users of hydrometeorological information for making reasonable decisions to minimize losses caused by adverse wind-related weather conditions. The work was supported by the Ministry of Education and Science of the Russian Federation (grant 14.B25.31.0026).

  19. Suprathermal electron loss cone distributions in the solar wind: Ulysses observations

    NASA Technical Reports Server (NTRS)

    Phillips, J. L.; Feldman, W. C.; Gosling, J. T.; Hammond, C. M.; Forsyth, R. J.

    1995-01-01

    Solar wind suprathermal electron distributions in the solar wind generally carry a field-aligned antisunward heat flux. Within coronal mass ejections and upstream of strong shocks driven by corotating interaction regions (CIRs), counterstreaming electron beams are observed. We present observations by the Ulysses solar wind plasma experiment of a new class of suprathermal electron signatures. At low solar latitudes and heliocentric distances beyond 3.5 AU Ulysses encountered several intervals, ranging in duration from 1 hour to 22 hours, in which the suprathermal distributions included an antisunward field-aligned beam and a return population with a flux dropout typically spanning +/- 60 deg from the sunward field-aligned direction. All events occurred within CIRs, downstream of the forward and reverse shocks or waves bounding the interaction regions. We evaluate the hypothesis that the sunward-moving electrons result from reflection of the antisunward beams at magnetic field compressions downstream from the observations, with wide loss cones caused by the relatively weak compression ratio. This hypothesis requires that field magnitude within the CIRs actually increase with increasing field-aligned distance from the Sun. Details of the electron distributions and ramifications for CIR and shock geometry will be presented.

  20. Mars Global Digital Dune Database (MGD3): Global dune distribution and wind pattern observations

    USGS Publications Warehouse

    Hayward, Rosalyn K.; Fenton, Lori; Titus, Timothy N.

    2014-01-01

    The Mars Global Digital Dune Database (MGD3) is complete and now extends from 90°N to 90°S latitude. The recently released south pole (SP) portion (MC-30) of MGD3 adds ∼60,000 km2 of medium to large-size dark dune fields and ∼15,000 km2 of sand deposits and smaller dune fields to the previously released equatorial (EQ, ∼70,000 km2), and north pole (NP, ∼845,000 km2) portions of the database, bringing the global total to ∼975,000 km2. Nearly all NP dunes are part of large sand seas, while the majority of EQ and SP dune fields are individual dune fields located in craters. Despite the differences between Mars and Earth, their dune and dune field morphologies are strikingly similar. Bullseye dune fields, named for their concentric ring pattern, are the exception, possibly owing their distinctive appearance to winds that are unique to the crater environment. Ground-based wind directions are derived from slipface (SF) orientation and dune centroid azimuth (DCA), a measure of the relative location of a dune field inside a crater. SF and DCA often preserve evidence of different wind directions, suggesting the importance of local, topographically influenced winds. In general however, ground-based wind directions are broadly consistent with expected global patterns, such as polar easterlies. Intriguingly, between 40°S and 80°S latitude both SF and DCA preserve their strongest, though different, dominant wind direction, with transport toward the west and east for SF-derived winds and toward the north and west for DCA-derived winds.

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stewart, Gordon M.; Robertson, Amy; Jonkman, Jason

    A database of meteorological and ocean conditions is presented for use in offshore wind energy research and design. The original data are from 23 ocean sites around the USA and were obtained from the National Data Buoy Center run by the National Oceanic and Atmospheric Administration. The data are presented in a processed form that includes the variables of interest for offshore wind energy design: wind speed, significant wave height, wave peak-spectral period, wind direction and wave direction. For each site, a binning process is conducted to create conditional probability functions for each of these variables. The sites are thenmore » grouped according to geographic location and combined to create three representative sites, including a West Coast site, an East Coast site and a Gulf of Mexico site. Both the processed data and the probability distribution parameters for the individual and representative sites are being hosted on a publicly available domain by the National Renewable Energy Laboratory, with the intent of providing a standard basis of comparison for meteorological and ocean conditions for offshore wind energy research worldwide.« less

  2. Mixture distributions of wind speed in the UAE

    NASA Astrophysics Data System (ADS)

    Shin, J.; Ouarda, T.; Lee, T. S.

    2013-12-01

    Wind speed probability distribution is commonly used to estimate potential wind energy. The 2-parameter Weibull distribution has been most widely used to characterize the distribution of wind speed. However, it is unable to properly model wind speed regimes when wind speed distribution presents bimodal and kurtotic shapes. Several studies have concluded that the Weibull distribution should not be used for frequency analysis of wind speed without investigation of wind speed distribution. Due to these mixture distributional characteristics of wind speed data, the application of mixture distributions should be further investigated in the frequency analysis of wind speed. A number of studies have investigated the potential wind energy in different parts of the Arabian Peninsula. Mixture distributional characteristics of wind speed were detected from some of these studies. Nevertheless, mixture distributions have not been employed for wind speed modeling in the Arabian Peninsula. In order to improve our understanding of wind energy potential in Arabian Peninsula, mixture distributions should be tested for the frequency analysis of wind speed. The aim of the current study is to assess the suitability of mixture distributions for the frequency analysis of wind speed in the UAE. Hourly mean wind speed data at 10-m height from 7 stations were used in the current study. The Weibull and Kappa distributions were employed as representatives of the conventional non-mixture distributions. 10 mixture distributions are used and constructed by mixing four probability distributions such as Normal, Gamma, Weibull and Extreme value type-one (EV-1) distributions. Three parameter estimation methods such as Expectation Maximization algorithm, Least Squares method and Meta-Heuristic Maximum Likelihood (MHML) method were employed to estimate the parameters of the mixture distributions. In order to compare the goodness-of-fit of tested distributions and parameter estimation methods for sample wind data, the adjusted coefficient of determination, Bayesian Information Criterion (BIC) and Chi-squared statistics were computed. Results indicate that MHML presents the best performance of parameter estimation for the used mixture distributions. In most of the employed 7 stations, mixture distributions give the best fit. When the wind speed regime shows mixture distributional characteristics, most of these regimes present the kurtotic statistical characteristic. Particularly, applications of mixture distributions for these stations show a significant improvement in explaining the whole wind speed regime. In addition, the Weibull-Weibull mixture distribution presents the best fit for the wind speed data in the UAE.

  3. Development of a site analysis tool for distributed wind projects

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shaw, Shawn

    The Cadmus Group, Inc., in collaboration with the National Renewable Energy Laboratory (NREL) and Encraft, was awarded a grant from the Department of Energy (DOE) to develop a site analysis tool for distributed wind technologies. As the principal investigator for this project, Mr. Shawn Shaw was responsible for overall project management, direction, and technical approach. The product resulting from this project is the Distributed Wind Site Analysis Tool (DSAT), a software tool for analyzing proposed sites for distributed wind technology (DWT) systems. This user-friendly tool supports the long-term growth and stability of the DWT market by providing reliable, realistic estimatesmore » of site and system energy output and feasibility. DSAT-which is accessible online and requires no purchase or download of software-is available in two account types; Standard: This free account allows the user to analyze a limited number of sites and to produce a system performance report for each; and Professional: For a small annual fee users can analyze an unlimited number of sites, produce system performance reports, and generate other customizable reports containing key information such as visual influence and wind resources. The tool’s interactive maps allow users to create site models that incorporate the obstructions and terrain types present. Users can generate site reports immediately after entering the requisite site information. Ideally, this tool also educates users regarding good site selection and effective evaluation practices.« less

  4. Flapping wing applied to wind generators

    NASA Astrophysics Data System (ADS)

    Colidiuc, Alexandra; Galetuse, Stelian; Suatean, Bogdan

    2012-11-01

    The new conditions at the international level for energy source distributions and the continuous increasing of energy consumption must lead to a new alternative resource with the condition of keeping the environment clean. This paper offers a new approach for a wind generator and is based on the theoretical aerodynamic model. This new model of wind generator helped me to test what influences would be if there will be a bird airfoil instead of a normal wind generator airfoil. The aim is to calculate the efficiency for the new model of wind generator. A representative direction for using the renewable energy is referred to the transformation of wind energy into electrical energy, with the help of wind turbines; the development of such systems lead to new solutions based on high efficiency, reduced costs and suitable to the implementation conditions.

  5. ECC (Electrochemical Concentration Cell) ozonesonde observations at Mirny, Antarctica, during 1988

    NASA Technical Reports Server (NTRS)

    Komhyr, W. D.; Lathrop, J. A.; Arbuzova, V. N.; Khattatov, V. U.; Nureyev, P. G.; Rudakov, V. V.; Zamyshlayev, I. V.

    1989-01-01

    Atmospheric ozone vertical distributions, air temperatures, and wind speed and direction data are presented for 40 balloon electrochemical concentration cell ozone soundings made at Mirny, Antarctica, in 1988.

  6. 46 CFR 169.678 - Main distribution panels and switchboards.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... vessel directly or indirectly receive their electric power is a switchboard. (b) Each switchboard must... switchboard. (e) Metal cases of instruments and secondary windings of instrument transformers must be grounded...

  7. 46 CFR 169.678 - Main distribution panels and switchboards.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... vessel directly or indirectly receive their electric power is a switchboard. (b) Each switchboard must... switchboard. (e) Metal cases of instruments and secondary windings of instrument transformers must be grounded...

  8. Wind-dispersed seed deposition patterns and seedling recruitment of Artemisia halodendron in a moving sandy land.

    PubMed

    Li, Feng-Rui; Wang, Tao; Zhang, Ai-Sheng; Zhao, Li-Ya; Kang, Ling-Fen; Chen, Wen

    2005-07-01

    Artemisia halodendron is a native sub-shrub that occurs mainly in moving and semi-fixed sandy lands in Inner Mongolia, China. Information on the spatial patterns of wind-dispersed seed deposition and seedling recruitment of A. halodendron inhabiting moving sandy lands is very limited. The aim of this study was to examine wind-dispersed seed deposition patterns and post-dispersal recruitment of A. halodendron seedlings. * The spatial patterns of wind-dispersed seed deposition and seedling recruitment of A. halodendron were examined by investigating the numbers of deposited seeds, emerged and surviving seedlings using sampling points at a range of distances from the parent plant in eight compass directions for two consecutive growing seasons. * Wind-dispersed seed deposition showed considerable variation between directions and years. Wind transported A. halodendron seeds only a few meters away from the parent plant in all eight directions. Seedling emergence and establishment also showed between-direction and between-year variability, but the spatial pattern of seedling distribution differed from that of seed deposition. Only a very small fraction (<1 %) of the deposited seeds emerged in the field and survived for long enough to be included in our seedling censuses at the end of the growing season. * The spatial variation in wind speed and frequency strongly affects the pattern of seed deposition, although the variation in seed deposition does not determine the spatial pattern of seedling recruitment. Seeds of A. halodendron are not dispersed very well by wind. The low probability of recruitment success for A. halodendron seedlings suggests that this species does not rely on seedling recruitment for its persistence and maintenance of population.

  9. Assessing simulated summer 10-m wind speed over China: influencing processes and sensitivities to land surface schemes

    NASA Astrophysics Data System (ADS)

    Zeng, Xin-Min; Wang, Ming; Wang, Ning; Yi, Xiang; Chen, Chaohui; Zhou, Zugang; Wang, Guiling; Zheng, Yiqun

    2018-06-01

    We assessed the sensitivity of 10-m wind speed to land surface schemes (LSSs) and the processes affecting wind speed in China during the summer of 2003 using the ARWv3 mesoscale model. The derived hydrodynamic equation, which directly reflects the effects of the processes that drive changes in the full wind speed, shows that the convection term CON (the advection effect) plays the smallest role; thus, the summer 10-m wind speed is largely dominated by the pressure gradient (PRE) and the diffusion (DFN) terms, and the equation shows that both terms are highly sensitive to the choice of LSS within the studied subareas (i.e., Northwest China, East China, and the Tibetan Plateau). For example, Northwest China had the largest DFN, with a PRE four times that of CON and the highest sensitivity of PRE to the choice of LSS, as indicated by a difference index value of 63%. Moreover, we suggest that two types of mechanisms, direct and indirect effects, affect the 10-m wind speed. Through their simulated surface fluxes (mainly the sensible heat flux), the different LSSs directly provide different amounts of heat to the surface air at local scales, which influences atmospheric stratification and the characteristics of downward momentum transport. Meanwhile, through the indirect effect, the LSS-induced changes in surface fluxes can significantly modify the distributions of the temperature and pressure fields in the lower atmosphere over larger scales. These changes alter the thermal and geostrophic winds, respectively, as well as the 10-m wind speed. Due to the differences in land properties and climates, the indirect effect (e.g., PRE) can be greater than the direct effect (e.g., DFN).

  10. Timing and Spatial Distribution of Loess in Xinjiang, NW China.

    PubMed

    Li, Yun; Song, Yougui; Yan, Libin; Chen, Tao; An, Zhisheng

    2015-01-01

    Central Asia is one of the most significant loess regions on Earth, with an important role in understanding Quaternary climate and environmental change. However, in contrast to the widely investigated loess deposits in the Chinese Loess Plateau, the Central Asian loess-paleosol sequences are still insufficiently known and poorly understood. Through field investigation and review of the previous literature, the authors have investigated the distribution, thickness and age of the Xinjiang loess, and analyzed factors that control these parameters in the Xinjiang in northwest China, Central Asia. The loess sediments cover river terraces, low uplands, the margins of deserts and the slopes of the Tianshan Mountains and Kunlun Mountains and are also present in the Ili Basin. The thickness of the Xinjiang loess deposits varies from several meters to 670 m. The variation trend of the sand fraction (>63 μm) grain-size contour can indicate the local major wind directions, so we conclude that the NW and NE winds are the main wind directions in the North and South Xinjiang, and the westerly wind mainly transport dust into the Ili basin. We consider persistent drying, adequate regional wind energy and well-developed river terraces to be the main factors controlling the distribution, thickness and formation age of the Xinjiang loess. The well-outcropped loess sections have mainly developed since the middle Pleistocene in Xinjiang, reflecting the appearance of the persistent drying and the present air circulation system. However, the oldest loess deposits are as old as the beginning of the Pliocene in the Tarim Basin, which suggests that earlier aridification occurred in the Tarim Basin rather than in the Ili Basin and the Junggar Basin.

  11. Gamma-ray bursts from internal shocks in a relativistic wind: a hydrodynamical study

    NASA Astrophysics Data System (ADS)

    Daigne, F.; Mochkovitch, R.

    2000-06-01

    The internal shock model for gamma-ray bursts involves shocks taking place in a relativistic wind with a very inhomogeneous initial distribution of the Lorentz factor. We have developed a 1D lagrangian hydrocode to follow the evolution of such a wind and the results we have obtained are compared to those of a simpler model presented in a recent paper (Daigne & Mochkovitch \\cite{Daigne2}) where all pressure waves are suppressed in the wind so that shells with different velocities only interact by direct collisions. The detailed hydrodynamical calculation essentially confirms the conclusion of the simple model: the main temporal and spectral properties of gamma-ray bursts can be reproduced by internal shocks in a relativistic wind.

  12. Asymmetry hidden in birds’ tracks reveals wind, heading, and orientation ability over the ocean

    PubMed Central

    Goto, Yusuke; Yoda, Ken; Sato, Katsufumi

    2017-01-01

    Numerous flying and swimming animals constantly need to control their heading (that is, their direction of orientation) in a flow to reach their distant destination. However, animal orientation in a flow has yet to be satisfactorily explained because it is difficult to directly measure animal heading and flow. We constructed a new animal movement model based on the asymmetric distribution of the GPS (Global Positioning System) track vector along its mean vector, which might be caused by wind flow. This statistical model enabled us to simultaneously estimate animal heading (navigational decision-making) and ocean wind information over the range traversed by free-ranging birds. We applied this method to the tracking data of homing seabirds. The wind flow estimated by the model was consistent with the spatiotemporally coarse wind information provided by an atmospheric simulation model. The estimated heading information revealed that homing seabirds could head in a direction different from that leading to the colony to offset wind effects and to enable them to eventually move in the direction they intended to take, even though they are over the open sea where visual cues are unavailable. Our results highlight the utility of combining large data sets of animal movements with the “inverse problem approach,” enabling unobservable causal factors to be estimated from the observed output data. This approach potentially initiates a new era of analyzing animal decision-making in the field. PMID:28959724

  13. Geomorphology and drift potential of major aeolian sand deposits in Egypt

    NASA Astrophysics Data System (ADS)

    Hereher, Mohamed E.

    2018-03-01

    Aeolian sand deposits cover a significant area of the Egyptian deserts. They are mostly found in the Western Desert and Northern Sinai. In order to understand the distribution, pattern and forms of sand dunes in these dune fields it is crucial to analyze the wind regimes throughout the sandy deserts of the country. Therefore, a set of wind data acquired from twelve meteorological stations were processed in order to determine the drift potential (DP), the resultant drift potential (RDP) and the resultant drift direction (RDD) of sand in each dune field. The study showed that the significant aeolian sand deposits occur in low-energy wind environments with the dominance of linear and transverse dunes. Regions of high-energy wind environments occur in the south of the country and exhibit evidence of deflation rather than accumulation with the occurrence of migratory crescentic dunes. Analysis of the sand drift potentials and their directions help us to interpret the formation of major sand seas in Egypt. The pattern of sand drift potential/direction suggests that the sands in these seas might be inherited from exogenous sources.

  14. IMPRINTS OF EXPANSION ON THE LOCAL ANISOTROPY OF SOLAR WIND TURBULENCE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Verdini, Andrea; Grappin, Roland

    2015-08-01

    We study the anisotropy of II-order structure functions (SFs) defined in a frame attached to the local mean field in three-dimensional (3D) direct numerical simulations of magnetohydrodynamic turbulence, with the solar wind expansion both included and not included. We simulate spacecraft flybys through the numerical domain by taking increments along the radial (wind) direction that form an angle of 45° with the ambient magnetic field. We find that only when expansion is taken into account do the synthetic observations match the 3D anisotropy observed in the solar wind, including the change of anisotropy with scale. Our simulations also show thatmore » the anisotropy changes dramatically when considering increments oblique to the radial directions. Both results can be understood by noting that expansion reduces the radial component of the magnetic field at all scales, thus confining fluctuations in the plane perpendicular to the radial. Expansion is thus shown to affect not only the (global) spectral anisotropy, but also the local anisotropy of second-order SF by influencing the distribution of the local mean field, which enters this higher-order statistics.« less

  15. Wind power in Jamaica

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, A.A.; Daniel, A.R.; Daniel, S.T.

    1990-01-01

    Parameters to evaluate the potential for using wind energy to generate electricity in Jamaica were obtained. These include the average wind power scaled to a height of 20 m at existing weather stations and temporary anemometer sites, the variation in annual and monthly wind power, and the frequency distribution of wind speed and wind energy available. Four small commercial turbines were assumed to be operating at some of the sites, and the estimated energy captured by them, the time they operated above their cut-in speed and their capacity factors were also determined. Diurnal variations of wind speed and prevailing windmore » directions are discussed and a map showing wind power at various sites was produced. Two stations with long-term averages, Manley and Morant Point, gave results which warranted further investigation. Results from some temporary stations are also encouraging. Mean wind speeds at two other sites in the Caribbean are given for comparison. A method for estimating the power exponent for scaling the wind speed from climatic data is described in Appendix 2.« less

  16. Modeling mobile source emissions during traffic jams in a micro urban environment.

    PubMed

    Kondrashov, Valery V; Reshetin, Vladimir P; Regens, James L; Gunter, James T

    2002-01-01

    Urbanization typically involves a continuous increase in motor vehicle use, resulting in congestion known as traffic jams. Idling emissions due to traffic jams combine with the complex terrain created by buildings to concentrate atmospheric pollutants in localized areas. This research simulates emissions concentrations and distributions for a congested street in Minsk, Belarus. Ground-level (up to 50-meters above the street's surface) pollutant concentrations were calculated using STAR (version 3.10) with emission factors obtained from the U.S. Environmental Protection Agency, wind speed and direction, and building location and size. Relative emissions concentrations and distributions were simulated at 1-meter and 10-meters above street level. The findings demonstrate the importance of wind speed and direction, and building size and location on emissions concentrations and distributions, with the leeward sides of buildings retaining up to 99 percent of the emitted pollutants within 1-meter of street level, and up to 77 percent 10-meters above the street.

  17. Mapping Wind Farm Loads and Power Production - A Case Study on Horns Rev 1

    NASA Astrophysics Data System (ADS)

    Galinos, Christos; Dimitrov, Nikolay; Larsen, Torben J.; Natarajan, Anand; Hansen, Kurt S.

    2016-09-01

    This paper describes the development of a wind turbine (WT) component lifetime fatigue load variation map within an offshore wind farm. A case study on the offshore wind farm Horns Rev I is conducted with this purpose, by quantifying wake effects using the Dynamic Wake Meandering (DWM) method, which has previously been validated based on CFD, Lidar and full scale load measurements. Fully coupled aeroelastic load simulations using turbulent wind conditions are conducted for all wind directions and mean wind speeds between cut-in and cut-out using site specific turbulence level measurements. Based on the mean wind speed and direction distribution, the representative 20-year lifetime fatigue loads are calculated. It is found that the heaviest loaded WT is not the same when looking at blade root, tower top or tower base components. The blade loads are mainly dominated by the wake situations above rated wind speed and the highest loaded blades are in the easternmost row as the dominating wind direction is from West. Regarding the tower components, the highest loaded WTs are also located towards the eastern central location. The turbines with highest power production are, not surprisingly, the ones facing a free sector towards west and south. The power production results of few turbines are compared with SCADA data. The results of this paper are expected to have significance for operation and maintenance planning, where the schedules for inspection and service activities can be adjusted to the requirements arising from the varying fatigue levels. Furthermore, the results can be used in the context of remaining fatigue lifetime assessment and planning of decommissioning.

  18. The polarization patterns of skylight reflected off wave water surface.

    PubMed

    Zhou, Guanhua; Xu, Wujian; Niu, Chunyue; Zhao, Huijie

    2013-12-30

    In this paper we propose a model to understand the polarization patterns of skylight when reflected off the surface of waves. The semi-empirical Rayleigh model is used to analyze the polarization of scattered skylight; the Harrison and Coombes model is used to analyze light radiance distribution; and the Cox-Munk model and Mueller matrix are used to analyze reflections from wave surface. First, we calculate the polarization patterns and intensity distribution of light reflected off wave surface. Then we investigate their relationship with incident radiation, solar zenith angle, wind speed and wind direction. Our results show that the polarization patterns of reflected skylight from waves and flat water are different, while skylight reflected on both kinds of water is generally highly polarized at the Brewster angle and the polarization direction is approximately parallel to the water's surface. The backward-reflecting Brewster zone has a relatively low reflectance and a high DOP in all observing directions. This can be used to optimally diminish the reflected skylight and avoid sunglint in ocean optics measurements.

  19. Contributions of solar wind and micrometeoroids to molecular hydrogen in the lunar exosphere

    NASA Astrophysics Data System (ADS)

    Hurley, Dana M.; Cook, Jason C.; Retherford, Kurt D.; Greathouse, Thomas; Gladstone, G. Randall; Mandt, Kathleen; Grava, Cesare; Kaufmann, David; Hendrix, Amanda; Feldman, Paul D.; Pryor, Wayne; Stickle, Angela; Killen, Rosemary M.; Stern, S. Alan

    2017-02-01

    We investigate the density and spatial distribution of the H2 exosphere of the Moon assuming various source mechanisms. Owing to its low mass, escape is non-negligible for H2. For high-energy source mechanisms, a high percentage of the released molecules escape lunar gravity. Thus, the H2 spatial distribution for high-energy release processes reflects the spatial distribution of the source. For low energy release mechanisms, the escape rate decreases and the H2 redistributes itself predominantly to reflect a thermally accommodated exosphere. However, a small dependence on the spatial distribution of the source is superimposed on the thermally accommodated distribution in model simulations, where density is locally enhanced near regions of higher source rate. For an exosphere accommodated to the local surface temperature, a source rate of 2.2 g s-1 is required to produce a steady state density at high latitude of 1200 cm-3. Greater source rates are required to produce the same density for more energetic release mechanisms. Physical sputtering by solar wind and direct delivery of H2 through micrometeoroid bombardment can be ruled out as mechanisms for producing and liberating H2 into the lunar exosphere. Chemical sputtering by the solar wind is the most plausible as a source mechanism and would require 10-50% of the solar wind H+ inventory to be converted to H2 to account for the observations.

  20. Contributions of Solar Wind and Micrometeoroids to Molecular Hydrogen in the Lunar Exosphere

    NASA Technical Reports Server (NTRS)

    Hurley, Dana M.; Cook, Jason C.; Retherford, Kurt D.; Greathouse, Thomas; Gladstone, G. Randall; Mandt, Kathleen; Grava, Cesare; Kaufmann, David; Hendrix, Amanda; Feldman, Paul D.; hide

    2016-01-01

    We investigate the density and spatial distribution of the H2 exosphere of the Moon assuming various source mechanisms. Owing to its low mass, escape is non-negligible for H2. For high-energy source mechanisms, a high percentage of the released molecules escape lunar gravity. Thus, the H2 spatial distribution for high-energy release processes reflects the spatial distribution of the source. For low energy release mechanisms, the escape rate decreases and the H2 redistributes itself predominantly to reflect a thermally accommodated exosphere. However, a small dependence on the spatial distribution of the source is superimposed on the thermally accommodated distribution in model simulations, where density is locally enhanced near regions of higher source rate. For an exosphere accommodated to the local surface temperature, a source rate of 2.2 g s-1 is required to produce a steady state density at high latitude of 1200 cm-3. Greater source rates are required to produce the same density for more energetic release mechanisms. Physical sputtering by solar wind and direct delivery of H2 through micrometeoroid bombardment can be ruled out as mechanisms for producing and liberating H2 into the lunar exosphere. Chemical sputtering by the solar wind is the most plausible as a source mechanism and would require 10-50 of the solar wind H+ inventory to be converted to H2 to account for the observations.

  1. Three-dimensional analytical model for the spatial variation of the foreshock electron distribution function - Systematics and comparisons with ISEE observations

    NASA Technical Reports Server (NTRS)

    Fitzenreiter, R. J.; Scudder, J. D.; Klimas, A. J.

    1990-01-01

    A model which is consistent with the solar wind and shock surface boundary conditions for the foreshock electron distribution in the absence of wave-particle effects is formulated for an arbitrary location behind the magnetic tangent to the earth's bow shock. Variations of the gyrophase-averaged velocity distribution are compared and contrasted with in situ ISEE observations. It is found that magnetic mirroring of solar wind electrons is the most important process by which nonmonotonic reduced electron distributions in the foreshock are produced. Leakage of particles from the magnetosheath is shown to be relatively unimportant in determining reduced distributions that are nonmonotonic. The two-dimensional distribution function off the magnetic field direction is the crucial contribution in producing reduced distributions which have beams. The time scale for modification of the electron velocity distribution in velocity space can be significantly influenced by steady state spatial gradients in the background imposed by the curved shock geometry.

  2. IMF orientation, solar wind velocity, and Pc 3-4 signals - A joint distribution

    NASA Technical Reports Server (NTRS)

    Greenstadt, E. W.; Singer, H. J.; Russell, C. T.; Olson, J. V.

    1979-01-01

    Separate studies using the same micropulsation data base in the period range 10-150 s have shown earlier that signal levels recorded during September, October, and November 1969 at Calgary correlated positively with both solar-wind alignment of the IMF and solar-wind speed, but each correlation contained enough scatter to allow for the influence of the other factor. In this report, joint correlations of velocity and field direction with parameters representing hourly distributions rather than minima of IMF orientation angle display the relative effect of the two agents on magnetic pulsation signal levels. The joint correlations reduce the overall scatter and show that solar-wind speeds above 200-300 km/s and angles between the IMF and the sun-earth line of less than 50-60 deg are associated with enlarged magnetic pulsation amplitudes. These threshold effects tend to support both the bow-shock origin and the Kelvin-Helmholtz amplification of daytime signal transients in the Pc 3, 4 period ranges.

  3. Office of Naval Research (ONR), Arctic and Global Prediction Program Department Research Initiative (DRI), Sea State and Boundary Layer Physics of the Emerging Arctic Ocean Quantifying the Role of Atmospheric Forcing in Ice Edge Retreat and Advance Including Wind-Wave Coupling

    DTIC Science & Technology

    2014-09-30

    direction Sea snake CIRES/NOAA sea-surface temperature 35-channel Radiometrics radiometer CIRES/NOAA PWV , LWP, profiles of T, q Ceilometer CIRES...size distribution Stabilized, scanning Doppler Lidar Leeds winds, cloud phase, turbulence HATPRO, scanning,12 ch radiometer Leeds PWV , LWP

  4. A probabilistic tornado wind hazard model for the continental United States

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hossain, Q; Kimball, J; Mensing, R

    A probabilistic tornado wind hazard model for the continental United States (CONUS) is described. The model incorporates both aleatory (random) and epistemic uncertainties associated with quantifying the tornado wind hazard parameters. The temporal occurrences of tornadoes within the continental United States (CONUS) is assumed to be a Poisson process. A spatial distribution of tornado touchdown locations is developed empirically based on the observed historical events within the CONUS. The hazard model is an aerial probability model that takes into consideration the size and orientation of the facility, the length and width of the tornado damage area (idealized as a rectanglemore » and dependent on the tornado intensity scale), wind speed variation within the damage area, tornado intensity classification errors (i.e.,errors in assigning a Fujita intensity scale based on surveyed damage), and the tornado path direction. Epistemic uncertainties in describing the distributions of the aleatory variables are accounted for by using more than one distribution model to describe aleatory variations. The epistemic uncertainties are based on inputs from a panel of experts. A computer program, TORNADO, has been developed incorporating this model; features of this program are also presented.« less

  5. Simulation model of erosion and deposition on a barchan dune

    NASA Technical Reports Server (NTRS)

    Howard, A. D.; Morton, J. B.; Gal-El-hak, M.; Pierce, D. B.

    1977-01-01

    Erosion and deposition over a barchan dune near the Salton Sea, California, are modeled by bookkeeping the quantity of sand in saltation following streamlines of transport. Field observations of near surface wind velocity and direction plus supplemental measurements of the velocity distribution over a scale model of the dune are combined as input to Bagnold type sand transport formulas corrected for slope effects. A unidirectional wind is assumed. The resulting patterns of erosion and deposition compare closely with those observed in the field and those predicted by the assumption of equilibrium (downwind translation of the dune without change in size or geometry). Discrepancies between the simulated results and the observed or predicted erosional patterns appear to be largely due to natural fluctuations in the wind direction. The shape of barchan dunes is a function of grain size, velocity, degree of saturation of the oncoming flow, and the variability in the direction of the oncoming wind. The size of the barchans may be controlled by natural atmospheric scales, by the age of the dunes, or by the upwind roughness. The upwind roughness can be controlled by fixed elements or by sand in the saltation. In the latter case, dune scale is determined by grain size and wind velocity.

  6. Hurricane Wind Field Measurements with Scanning Airborne Doppler Lidar During CAMEX-3

    NASA Technical Reports Server (NTRS)

    Rothermel, Jeffry; Cutten, D. R.; Howell, J. N.; Darby, L. S.; Hardesty, R. M.; Traff, D. M.; Menzies, R. T.

    2000-01-01

    During the 1998 Convection and Moisture Experiment (CAMEX-3), the first hurricane wind field measurements with Doppler lidar were achieved. Wind fields were mapped within the eye, along the eyewall, in the central dense overcast, and in the marine boundary layer encompassing the inflow region. Spatial coverage was determined primarily by cloud distribution and opacity. Within optically-thin cirrus slant range of 20- 25 km was achieved, whereas no propagation was obtained during penetration of dense cloud. Measurements were obtained with the Multi-center Airborne Coherent Atmospheric Wind Sensor (MACAWS) on the NASA DC-8 research aircraft. MACAWS was developed and operated cooperatively by the atmospheric lidar remote sensing groups of NOAA Environmental Technology Laboratory, NASA Marshall Space Flight Center, and Jet Propulsion Laboratory. A pseudo-dual Doppler technique ("co-planar scanning") is used to map the horizontal component of the wind at several vertical levels. Pulses from the laser are directed out the left side of the aircraft in the desired directions using computer-controlled rotating prisms. Upon exiting the aircraft, the beam is completely eyesafe. Aircraft attitude and speed are taken into account during real-time signal processing, resulting in determination of the ground-relative wind to an accuracy of about 1 m/s magnitude and about 10 deg direction. Beam pointing angle errors are about 0.1 deg, equivalent to about 17 m at 10 km. Horizontal resolution is about 1 km (along-track) for typical signal processor and scanner settings; vertical resolution varies with range. Results from CAMEX-3 suggest that scanning Doppler wind lidar can complement airborne Doppler radar by providing wind field measurements in regions that are devoid of hydrometeors. At present MACAWS observations are being assimilated into experimental forecast models and satellite Doppler wind lidar simulations to evaluate the relative impact.

  7. Effects of natural factors on the spatial distribution of heavy metals in soils surrounding mining regions.

    PubMed

    Ding, Qian; Cheng, Gong; Wang, Yong; Zhuang, Dafang

    2017-02-01

    Various studies have shown that soils surrounding mining areas are seriously polluted with heavy metals. Determining the effects of natural factors on spatial distribution of heavy metals is important for determining the distribution characteristics of heavy metals in soils. In this study, an 8km buffer zone surrounding a typical non-ferrous metal mine in Suxian District of Hunan Province, China, was selected as the study area, and statistical, spatial autocorrelation and spatial interpolation analyses were used to obtain descriptive statistics and spatial autocorrelation characteristics of As, Pb, Cu, and Zn in soil. Additionally, the distributions of soil heavy metals under the influences of natural factors, including terrain (elevation and slope), wind direction and distance from a river, were determined. Layout of sampling sites, spatial changes of heavy metal contents at high elevations and concentration differences between upwind and downwind directions were then evaluated. The following results were obtained: (1) At low elevations, heavy metal concentrations decreased slightly, then increased considerably with increasing elevation. At high elevations, heavy metal concentrations first decreased, then increased, then decreased with increasing elevation. As the slope increased, heavy metal contents increased then decreased. (2) Heavy metal contents changed consistently in the upwind and downwind directions. Heavy metal contents were highest in 1km buffer zone and decreased with increasing distance from the mining area. The largest decrease in heavy metal concentrations was in 2km buffer zone. Perennial wind promotes the transport of heavy metals in downwind direction. (3) The spatial extent of the influence of the river on Pb, Zn and Cu in the soil was 800m. (4) The influence of the terrain on the heavy metal concentrations was greater than that of the wind. These results provide a scientific basis for preventing and mitigating heavy metal soil pollution in areas surrounding mines. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Evidence for ion heat flux in the light ion polar wind

    NASA Technical Reports Server (NTRS)

    Biddle, A. P.; Moore, T. E.; Chappell, C. R.

    1985-01-01

    Cold flowing hydrogen and helium ions have been observed using the retarding ion mass spectrometer on board the Dynamics Explorer 1 spacecraft in the dayside magnetosphere at subauroral latitudes. The ions show a marked flux asymmetry with respect to the relative wind direction. The observed data are fitted by a model of drifting Maxwellian distributions perturbed by a first order-Spritzer-Haerm heat flux distribution function. It is shown that both ion species are supersonic just equatorward of the auroral zone at L = 14, and the shape of asymmetry and direction of the asymmetry are consistent with the presence of an upward heat flux. At L = 6, both species evolve smoothly into warmer subsonic upward flows with downward heat fluxes. In the case of subsonic flows the downward heat flux implies a significant heat source at higher altitudes. Spin curves of the spectrometer count rate versus the spin phase angle are provided.

  9. Short-term Influences on Suspended Particulate Matter Distribution in the Northern Gulf of Mexico: Satellite and Model Observations.

    PubMed

    D'Sa, Eurico J; Ko, Dong S

    2008-07-15

    Energetic meteorological events such as frontal passages and hurricanes often impact coastal regions in the northern Gulf of Mexico that influence geochemical processes in the region. Satellite remote sensing data such as winds from QuikSCAT, suspended particulate matter (SPM) concentrations derived from SeaWiFS and the outputs (sea level and surface ocean currents) of a nested navy coastal ocean model (NCOM) were combined to assess the effects of frontal passages between 23-28 March 2005 on the physical properties and the SPM characteristics in the northern Gulf of Mexico. Typical changes in wind speed and direction associated with frontal passages were observed in the latest 12.5 km wind product from QuikSCAT with easterly winds before the frontal passage undergoing systematic shifts in direction and speed and turning northerly, northwesterly during a weak and a strong front on 23 and 27 March, respectively. A quantitative comparison of model sea level results with tide gauge observations suggest better correlations near the delta than in the western part of the Gulf with elevated sea levels along the coast before the frontal passage and a large drop in sea level following the frontal passage on 27 March. Model results of surface currents suggested strong response to wind forcing with westward and onshore currents before the frontal passage reversing into eastward, southeastward direction over a six day period from 23 to 28 March 2005. Surface SPM distribution derived from SeaWiFS ocean color data for two clear days on 23 and 28 March 2005 indicated SPM plumes to be oriented with the current field with increasing concentrations in nearshore waters due to resuspension and discharge from the rivers and bays and its seaward transport following the frontal passage. The backscattering spectral slope γ, a parameter sensitive to particle size distribution also indicated lower γ values (larger particles) in nearshore waters that decreased offshore (smaller particles). The use of both satellite and model results revealed the strong interactions between physical processes and the surface particulate field in response to the frontal passage in a large riverdominated coastal margin.

  10. Yardang geometries in the Qaidam Basin and their controlling factors

    NASA Astrophysics Data System (ADS)

    Hu, Chengqing; Chen, Ninghua; Kapp, Paul; Chen, Jianyu; Xiao, Ancheng; Zhao, Yanhui

    2017-12-01

    The hyperarid Qaidam Basin features extensive fields of yardangs (covering an area of 40,000km2) sculpted in tectonically folded sedimentary rocks. We extracted the geometries of 16,749 yardangs, such as length-to-width ratio (L/W), spatial density, and spacing, from multi-source remote sensing data provided by Google Earth™. We classified the yardangs into four types based on their L/W: short-axis (1-2), whale-back (2-6), hogsback (6-10) and long-ridge (10 - 210). We interpreted the yardang geometries in the context of their geologic setting (bedding orientation, location along anticline crests or syncline troughs, and lithologic heterogeneity). Our results show that the yardang geometries in the Qaidam Basin are mainly controlled by the structural geology and rheology of the sedimentary rocks (e.g., strike and dip of bedding, the presence or absence of interbedded soft and hard beds, and structural position with folds), the angle between geomorphically-effective wind directions and the strike of bedding, and the relative cumulative wind shear force where two geomorphically-effective wind directions are present. Our analysis revealed the following: 1) nearly 69% of the yardangs with long-ridge and hogsback geometries are distributed in syncline areas whereas 73% of the yardangs with short-axis geometries are distributed in anticline areas; 2) the L/W ratio of yardangs exposed along the windward limbs of anticlines is lower than that of yardangs exposed along the leeward limbs; and 3) in the westernmost parts of the basin, yardangs are locally sculpted into mounds by two geomorphically-effective wind directions.

  11. Magnetic intermittency of solar wind turbulence in the dissipation range

    NASA Astrophysics Data System (ADS)

    Pei, Zhongtian; He, Jiansen; Tu, Chuanyi; Marsch, Eckart; Wang, Linghua

    2016-04-01

    The feature, nature, and fate of intermittency in the dissipation range are an interesting topic in the solar wind turbulence. We calculate the distribution of flatness for the magnetic field fluctuations as a functionof angle and scale. The flatness distribution shows a "butterfly" pattern, with two wings located at angles parallel/anti-parallel to local mean magnetic field direction and main body located at angles perpendicular to local B0. This "butterfly" pattern illustrates that the flatness profile in (anti-) parallel direction approaches to the maximum value at larger scale and drops faster than that in perpendicular direction. The contours for probability distribution functions at different scales illustrate a "vase" pattern, more clear in parallel direction, which confirms the scale-variation of flatness and indicates the intermittency generation and dissipation. The angular distribution of structure function in the dissipation range shows an anisotropic pattern. The quasi-mono-fractal scaling of structure function in the dissipation range is also illustrated and investigated with the mathematical model for inhomogeneous cascading (extended p-model). Different from the inertial range, the extended p-model for the dissipation range results in approximate uniform fragmentation measure. However, more complete mathematicaland physical model involving both non-uniform cascading and dissipation is needed. The nature of intermittency may be strong structures or large amplitude fluctuations, which may be tested with magnetic helicity. In one case study, we find the heating effect in terms of entropy for large amplitude fluctuations seems to be more obvious than strong structures.

  12. Directional measurement of short ocean waves with stereophotography

    NASA Technical Reports Server (NTRS)

    Shemdin, Omar H.; Tran, H. Minh; Wu, S. C.

    1988-01-01

    Stereophotographs of the sea surface, acquired during the Tower Ocean Wave and Radar Dependence experiment are analyzed to yield directional wave height spectra of short surface waves in the 6-80-cm range. The omnidirectional wave height spectra are found to deviate from the k exp -4 distribution, where k is the wave number. The stereo data processing errors are found to be within + or - 5 percent. The omnidirectional spectra yield 514 deg of freedom for 30-cm-long waves. The directional distribution of short waves is processed with a directional resolution of 30 deg, so as to yield 72 deg of freedom for 30-cm-long waves. The directional distributions show peaks that are aligned with the wind and swell directions. It is found that dynamically relevant measurements can be obtained with stereophotography, after removal of the mean surface associated with long waves.

  13. Effects of internal loading on phosphorus distribution in the Taihu Lake driven by wind waves and lake currents.

    PubMed

    Huang, Lei; Fang, Hongwei; He, Guojian; Jiang, Helong; Wang, Changhui

    2016-12-01

    Wind-driven sediment resuspension exerts significant effects on the P behavior in shallow lake ecosystems. In this study, a comprehensive dynamic phosphorus (P) model that integrates hydrodynamic, wind wave and sediment transport is proposed to assess the importance of internal P cycling due to sediment resuspension on water column P levels. The primary contribution of the model is detailed modeling and rigorous coupling of sediment and P dynamics. The proposed model is applied to predict the P behavior in the shallow Taihu Lake, which is the third largest lake in China, and quantitatively estimate the effects of wind waves and lake currents on P release and distribution. Both the prevailing southeast winds in summer and northwest winds in winter are applied for the simulation, and different wind speeds of 5 m/s and 10 m/s are also considered. Results show that sediment resuspension and the resulting P release have a dominant effect on P levels in Taihu Lake, and likely similar shallow lakes. Wind-driven waves at higher wind speeds significantly enhance sediment resuspension and suspended sediment concentration (SSC). Total P concentration in the water column is also increased but not in proportion to the SSC. The different lake circulations resulting from the different prevailing wind directions also affect the distribution of suspended sediment and P around the lake ultimately influencing where eutrophication is likely to occur. The proposed model demonstrates that internal cycling in the lake is a dominant factor in the lake P and must be considered when trying to manage water quality in this and similar lakes. The model is used to demonstrate the potential effectiveness of remediation of an area where historical releases have led to P accumulation on overall lake quality. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Developing a Peak Wind Probability Forecast Tool for Kennedy Space Center and Cape Canaveral Air Force Station

    NASA Technical Reports Server (NTRS)

    Lambert, WInifred; Roeder, William

    2007-01-01

    This conference presentation describes the development of a peak wind forecast tool to assist forecasters in determining the probability of violating launch commit criteria (LCC) at Kennedy Space Center (KSC) and Cape Canaveral Air Force Station (CCAFS) in east-central Florida. The peak winds are an important forecast element for both the Space Shuttle and Expendable Launch Vehicle (ELV) programs. The LCC define specific peak wind thresholds for each launch operation that cannot be exceeded in order to ensure the safety of the vehicle. The 45th Weather Squadron (45 WS) has found that peak winds are a challenging parameter to forecast, particularly in the cool season months of October through April. Based on the importance of forecasting peak winds, the 45 WS tasked the Applied Meteorology Unit (AMU) to develop a short-range peak-wind forecast tool to assist in forecasting LCC violations. The tool will include climatologies of the 5-minute mean and peak winds by month, hour, and direction, and probability distributions of the peak winds as a function of the 5-minute mean wind speeds.

  15. Statistical Short-Range Guidance for Peak Wind Forecasts on Kennedy Space Center/Cape Canaveral Air Force Station, Phase III

    NASA Technical Reports Server (NTRS)

    Crawford, Winifred

    2010-01-01

    This final report describes the development of a peak wind forecast tool to assist forecasters in determining the probability of violating launch commit criteria (LCC) at Kennedy Space Center (KSC) and Cape Canaveral Air Force Station (CCAFS). The peak winds are an important forecast element for both the Space Shuttle and Expendable Launch Vehicle (ELV) programs. The LCC define specific peak wind thresholds for each launch operation that cannot be exceeded in order to ensure the safety of the vehicle. The 45th Weather Squadron (45 WS) has found that peak winds are a challenging parameter to forecast, particularly in the cool season months of October through April. Based on the importance of forecasting peak winds, the 45 WS tasked the Applied Meteorology Unit (AMU) to develop a short-range peak-wind forecast tool to assist in forecasting LCC violations.The tool includes climatologies of the 5-minute mean and peak winds by month, hour, and direction, and probability distributions of the peak winds as a function of the 5-minute mean wind speeds.

  16. A Peak Wind Probability Forecast Tool for Kennedy Space Center and Cape Canaveral Air Force Station

    NASA Technical Reports Server (NTRS)

    Crawford, Winifred; Roeder, William

    2008-01-01

    This conference abstract describes the development of a peak wind forecast tool to assist forecasters in determining the probability of violating launch commit criteria (LCC) at Kennedy Space Center (KSC) and Cape Canaveral Air Force Station (CCAFS) in east-central Florida. The peak winds are an important forecast element for both the Space Shuttle and Expendable Launch Vehicle (ELV) programs. The LCC define specific peak wind thresholds for each launch operation that cannot be exceeded in order to ensure the safety of the vehicle. The 45th Weather Squadron (45 WS) has found that peak winds are a challenging parameter to forecast, particularly in the cool season months of October through April. Based on the importance of forecasting peak winds, the 45 WS tasked the Applied Meteorology Unit (AMU) to develop a short-range peak-wind forecast tool to assist in forecasting LCC violatioas.The tool will include climatologies of the 5-minute mean end peak winds by month, hour, and direction, and probability distributions of the peak winds as a function of the 5-minute mean wind speeds.

  17. 2014 Distributed Wind Market Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Orell, A.; Foster, N.

    2015-08-01

    The cover of the 2014 Distributed Wind Market Report.According to the 2014 Distributed Wind Market Report, distributed wind reached a cumulative capacity of almost 1 GW (906 MW) in the United States in 2014, reflecting nearly 74,000 wind turbines deployed across all 50 states, Puerto Rico, and the U.S. Virgin Islands. In total, 63.6 MW of new distributed wind capacity was added in 2014, representing nearly 1,700 units and $170 million in investment across 24 states. In 2014, America's distributed wind energy industry supported a growing domestic industrial base as exports from United States-based small wind turbine manufacturers accounted formore » nearly 80% of United States-based manufacturers' sales.« less

  18. Wind loads on flat plate photovoltaic array fields

    NASA Technical Reports Server (NTRS)

    Miller, R. D.; Zimmerman, D. K.

    1981-01-01

    The results of an experimental analysis (boundary layer wind tunnel test) of the aerodynamic forces resulting from winds acting on flat plate photovoltaic arrays are presented. Local pressure coefficient distributions and normal force coefficients on the arrays are shown and compared to theoretical results. Parameters that were varied when determining the aerodynamic forces included tilt angle, array separation, ground clearance, protective wind barriers, and the effect of the wind velocity profile. Recommended design wind forces and pressures are presented, which envelop the test results for winds perpendicular to the array's longitudinal axis. This wind direction produces the maximum wind loads on the arrays except at the array edge where oblique winds produce larger edge pressure loads. The arrays located at the outer boundary of an array field have a protective influence on the interior arrays of the field. A significant decrease of the array wind loads were recorded in the wind tunnel test on array panels located behind a fence and/or interior to the array field compared to the arrays on the boundary and unprotected from the wind. The magnitude of this decrease was the same whether caused by a fence or upwind arrays.

  19. A directional cylindrical anemometer with four sets of differential pressure sensors

    NASA Astrophysics Data System (ADS)

    Liu, C.; Du, L.; Zhao, Z.

    2016-03-01

    This paper presents a solid-state directional anemometer for simultaneously measuring the speed and direction of a wind in a plane in a speed range 1-40 m/s. This instrument has a cylindrical shape and works by detecting the pressure differences across diameters of the cylinder when exposed to wind. By analyzing our experimental data in a Reynolds number regime 1.7 × 103-7 × 104, we figure out the relationship between the pressure difference distribution and the wind velocity. We propose a novel and simple solution based on the relationship and design an anemometer which composes of a circular cylinder with four sets of differential pressure sensors, tubes connecting these sensors with the cylinder's surface, and corresponding circuits. In absence of moving parts, this instrument is small and immune of friction. It has simple internal structures, and the fragile sensing elements are well protected. Prototypes have been fabricated to estimate performance of proposed approach. The power consumption of the prototype is less than 0.5 W, and the sample rate is up to 31 Hz. The test results in a wind tunnel indicate that the maximum relative speed measuring error is 5% and the direction error is no more than 5° in a speed range 2-40 m/s. In theory, it is capable of measuring wind up to 60 m/s. When the air stream goes slower than 2 m/s, the measuring errors of directions are slightly greater, and the performance of speed measuring degrades but remains in an acceptable range of ±0.2 m/s.

  20. Completion of the Edward Air Force Base Statistical Guidance Wind Tool

    NASA Technical Reports Server (NTRS)

    Dreher, Joseph G.

    2008-01-01

    The goal of this task was to develop a GUI using EAFB wind tower data similar to the KSC SLF peak wind tool that is already in operations at SMG. In 2004, MSFC personnel began work to replicate the KSC SLF tool using several wind towers at EAFB. They completed the analysis and QC of the data, but due to higher priority work did not start development of the GUI. MSFC personnel calculated wind climatologies and probabilities of 10-minute peak wind occurrence based on the 2-minute average wind speed for several EAFB wind towers. Once the data were QC'ed and analyzed the climatologies were calculated following the methodology outlined in Lambert (2003). The climatologies were calculated for each tower and month, and then were stratified by hour, direction (10" sectors), and direction (45" sectors)/hour. For all climatologies, MSFC calculated the mean, standard deviation and observation counts of the Zminute average and 10-minute peak wind speeds. MSFC personnel also calculated empirical and modeled probabilities of meeting or exceeding specific 10- minute peak wind speeds using PDFs. The empirical PDFs were asymmetrical and bounded on the left by the 2- minute average wind speed. They calculated the parametric PDFs by fitting the GEV distribution to the empirical distributions. Parametric PDFs were calculated in order to smooth and interpolate over variations in the observed values due to possible under-sampling of certain peak winds and to estimate probabilities associated with average winds outside the observed range. MSFC calculated the individual probabilities of meeting or exceeding specific 10- minute peak wind speeds by integrating the area under each curve. The probabilities assist SMG forecasters in assessing the shuttle FR for various Zminute average wind speeds. The A M ' obtained the processed EAFB data from Dr. Lee Bums of MSFC and reformatted them for input to Excel PivotTables, which allow users to display different values with point-click-drag techniques. The GUI was created from the PivotTables using VBA code. It is run through a macro within Excel and allows forecasters to quickly display and interpret peak wind climatology and probabilities in a fast-paced operational environment. The GUI was designed to look and operate exactly the same as the KSC SLF tool since SMG forecasters were already familiar with that product. SMG feedback was continually incorporated into the GUI ensuring the end product met their needs. The final version of the GUI along with all climatologies, PDFs, and probabilities has been delivered to SMG and will be put into operational use.

  1. Cluster/Peace Electrons Velocity Distribution Function: Modeling the Strahl in the Solar Wind

    NASA Technical Reports Server (NTRS)

    Figueroa-Vinas, Adolfo; Gurgiolo, Chris; Goldstein, Melvyn L.

    2008-01-01

    We present a study of kinetic properties of the strahl electron velocity distribution functions (VDF's) in the solar wind. These are used to investigate the pitch-angle scattering and stability of the population to interactions with electromagnetic (whistler) fluctuations. The study is based on high time resolution data from the Cluster/PEACE electron spectrometer. Our study focuses on the mechanisms that control and regulate the pitch-angle and stability of strahl electrons in the solar wind; mechanisms that are not yet well understood. Various parameters are investigated such as the electron heat-flux and temperature anisotropy. The goal is to check whether the strahl electrons are constrained by some instability (e.g., the whistler instability), or are maintained by other types of processes. The electron heat-flux and temperature anisotropy are determined by fitting the VDF's to a spectral spherical harmonic model from which the moments are derived directly from the model coefficients.

  2. Thermospheric winds and exospheric temperatures from incoherent scatter radar measurements in four seasons

    NASA Technical Reports Server (NTRS)

    Antoniadis, D. A.

    1976-01-01

    The time-dependent equations of neutral air motion are solved subject to three constraints: two of them are the usual upper and lower boundary conditions and the third is the value of the wind-induced ion drift at any given height. Using incoherent radar data, this procedure leads to a fast, direct numerical integration of the two coupled differential equations describing the horizontal wind components and yields time dependent wind profiles and meridional exospheric neutral temperature gradients. The diurnal behavior of the neutral wind system and of the exospheric temperature is presented for two solstice and two equinox days. The data used were obtained by the St. Santin and the Millstone Hill incoherent scatter radars. The derived geographic distributions of the exospheric temperatures are compared with those predicted by the OGO-6 empirical thermospheric model.

  3. The neutral wind 'flywheel' as a source of quiet-time, polar-cap currents

    NASA Technical Reports Server (NTRS)

    Lyons, L. R.; Walterscheid, R. L.; Killeen, T. L.

    1985-01-01

    The neutral wind pattern over the summer polar cap can be driven by plasma convection to resemble the convection pattern. For a north-south component of the interplanetary magnetic field Bz directed southward, the wind speeds in the conducting E-region can become approximately 25 percent of the electric field drift speeds. If convection ceases, this neutral wind distribution can drive a significant polar cap current system for approximately 6 hours. The currents are reversed from those driven by the electric fields for southward Bz, and the Hall and field-aligned components of the current system resemble those observed during periods of northward Bz. The current magnitudes are similar to those observed during periods of small, northward Bz; however, observations indicate that electric fields often contribute to the currents as much as, or more than, the neutral winds.

  4. Generation of temperature anisotropy for alpha particle velocity distributions in solar wind at 0.3 AU: Vlasov simulations and Helios observations

    NASA Astrophysics Data System (ADS)

    Perrone, D.; Bourouaine, S.; Valentini, F.; Marsch, E.; Veltri, P.

    2014-04-01

    Solar wind "in situ" measurements from the Helios spacecraft in regions of the Heliosphere close to the Sun (˜0.3 AU), at which typical values of the proton plasma beta are observed to be lower than unity, show that the alpha particle distribution functions depart from the equilibrium Maxwellian configuration, displaying significant elongations in the direction perpendicular to the background magnetic field. In the present work, we made use of multi-ion hybrid Vlasov-Maxwell simulations to provide theoretical support and interpretation to the empirical evidences above. Our numerical results show that, at variance with the case of βp≃1 discussed in Perrone et al. (2011), for βp=0.1 the turbulent cascade in the direction parallel to the ambient magnetic field is not efficient in transferring energy toward scales shorter than the proton inertial length. Moreover, our numerical analysis provides new insights for the theoretical interpretation of the empirical evidences obtained from the Helios spacecraft, concerning the generation of temperature anisotropy in the particle velocity distributions.

  5. On the asymmetric distribution of shear-relative typhoon rainfall

    NASA Astrophysics Data System (ADS)

    Gao, Si; Zhai, Shunan; Li, Tim; Chen, Zhifan

    2018-02-01

    The Tropical Rainfall Measuring Mission (TRMM) 3B42 precipitation, the National Centers for Environmental Prediction (NCEP) Final analysis and the Regional Specialized Meteorological Center (RSMC) Tokyo best-track data during 2000-2015 are used to compare spatial rainfall distribution associated with Northwest Pacific tropical cyclones (TCs) with different vertical wind shear directions and investigate possible mechanisms. Results show that the maximum TC rainfall are all located in the downshear left quadrant regardless of shear direction, and TCs with easterly shear have greater magnitudes of rainfall than those with westerly shear, consistent with previous studies. Rainfall amount of a TC is related to its relative position and proximity from the western Pacific subtropical high (WPSH) and the intensity of water vapor transport, and low-level jet is favorable for water vapor transport. The maximum of vertically integrated moisture flux convergence (MFC) are located on the downshear side regardless of shear direction, and the contribution of wind convergence to the total MFC is far larger than that of moisture advection. The cyclonic displacement of the maximum rainfall relative to the maximum MFC is possibly due to advection of hydrometeors by low- and middle-level cyclonic circulation of TCs. The relationship between TC rainfall and the WPSH through water vapor transport and vertical wind shear implies that TC rainfall may be highly predictable given the high predictability of the WPSH.

  6. Effects of Strand Lay Direction and Crossing Angle on Tribological Behavior of Winding Hoist Rope.

    PubMed

    Chang, Xiang-Dong; Peng, Yu-Xing; Zhu, Zhen-Cai; Gong, Xian-Sheng; Yu, Zhang-Fa; Mi, Zhen-Tao; Xu, Chun-Ming

    2017-06-09

    Friction and wear behavior exists between hoisting ropes that are wound around the drums of a multi-layer winding hoist. It decreases the service life of ropes and threatens mine safety. In this research, a series of experiments were conducted using a self-made test rig to study the effects of the strand lay direction and crossing angle on the winding rope's tribological behavior. Results show that the friction coefficient in the steady-state period shows a decreasing tendency with an increase of the crossing angle in both cross directions, but the variation range is different under different cross directions. Using thermal imaging, the high temperature regions always distribute along the strand lay direction in the gap between adjacent strands, as the cross direction is the same with the strand lay direction (right cross contact). Additionally, the temperature rise in the steady-state increases with the increase of the crossing angle in both cross directions. The differences of the wear scar morphology are obvious under different cross directions, especially for the large crossing angle tests. In the case of right cross, the variation range of wear mass loss is larger than that in left cross. The damage that forms on the wear surface is mainly ploughing, pits, plastic deformation, and fatigue fracture. The major wear mechanisms are adhesive wear, and abrasive and fatigue wear.

  7. Effects of Strand Lay Direction and Crossing Angle on Tribological Behavior of Winding Hoist Rope

    PubMed Central

    Chang, Xiang-dong; Peng, Yu-xing; Zhu, Zhen-cai; Gong, Xian-sheng; Yu, Zhang-fa; Mi, Zhen-tao; Xu, Chun-ming

    2017-01-01

    Friction and wear behavior exists between hoisting ropes that are wound around the drums of a multi-layer winding hoist. It decreases the service life of ropes and threatens mine safety. In this research, a series of experiments were conducted using a self-made test rig to study the effects of the strand lay direction and crossing angle on the winding rope’s tribological behavior. Results show that the friction coefficient in the steady-state period shows a decreasing tendency with an increase of the crossing angle in both cross directions, but the variation range is different under different cross directions. Using thermal imaging, the high temperature regions always distribute along the strand lay direction in the gap between adjacent strands, as the cross direction is the same with the strand lay direction (right cross contact). Additionally, the temperature rise in the steady-state increases with the increase of the crossing angle in both cross directions. The differences of the wear scar morphology are obvious under different cross directions, especially for the large crossing angle tests. In the case of right cross, the variation range of wear mass loss is larger than that in left cross. The damage that forms on the wear surface is mainly ploughing, pits, plastic deformation, and fatigue fracture. The major wear mechanisms are adhesive wear, and abrasive and fatigue wear. PMID:28772992

  8. Extended Statistical Short-Range Guidance for Peak Wind Speed Analyses at the Shuttle Landing Facility: Phase II Results

    NASA Technical Reports Server (NTRS)

    Lambert, Winifred C.

    2003-01-01

    This report describes the results from Phase II of the AMU's Short-Range Statistical Forecasting task for peak winds at the Shuttle Landing Facility (SLF). The peak wind speeds are an important forecast element for the Space Shuttle and Expendable Launch Vehicle programs. The 45th Weather Squadron and the Spaceflight Meteorology Group indicate that peak winds are challenging to forecast. The Applied Meteorology Unit was tasked to develop tools that aid in short-range forecasts of peak winds at tower sites of operational interest. A seven year record of wind tower data was used in the analysis. Hourly and directional climatologies by tower and month were developed to determine the seasonal behavior of the average and peak winds. Probability density functions (PDF) of peak wind speed were calculated to determine the distribution of peak speed with average speed. These provide forecasters with a means of determining the probability of meeting or exceeding a certain peak wind given an observed or forecast average speed. A PC-based Graphical User Interface (GUI) tool was created to display the data quickly.

  9. The Gaussian atmospheric transport model and its sensitivity to the joint frequency distribution and parametric variability.

    PubMed

    Hamby, D M

    2002-01-01

    Reconstructed meteorological data are often used in some form of long-term wind trajectory models for estimating the historical impacts of atmospheric emissions. Meteorological data for the straight-line Gaussian plume model are put into a joint frequency distribution, a three-dimensional array describing atmospheric wind direction, speed, and stability. Methods using the Gaussian model and joint frequency distribution inputs provide reasonable estimates of downwind concentration and have been shown to be accurate to within a factor of four. We have used multiple joint frequency distributions and probabilistic techniques to assess the Gaussian plume model and determine concentration-estimate uncertainty and model sensitivity. We examine the straight-line Gaussian model while calculating both sector-averaged and annual-averaged relative concentrations at various downwind distances. The sector-average concentration model was found to be most sensitive to wind speed, followed by horizontal dispersion (sigmaZ), the importance of which increases as stability increases. The Gaussian model is not sensitive to stack height uncertainty. Precision of the frequency data appears to be most important to meteorological inputs when calculations are made for near-field receptors, increasing as stack height increases.

  10. Characterization of the Boundary Layer Wind and Turbulence in the Gulf of Mexico

    NASA Astrophysics Data System (ADS)

    Pichugina, Y. L.; Banta, R. M.; Choukulkar, A.; Brewer, A.; Hardesty, R. M.; McCarty, B.; Marchbanks, R.

    2014-12-01

    A dataset of ship-borne Doppler lidar measurements taken in the Gulf of Mexico was analyzed to provide insight into marine boundary-layer (BL) features and wind-flow characteristics, as needed for offshore wind energy development. This dataset was obtained as part of the intensive Texas Air Quality Study in summer of 2006 (TexAQS06). During the project, the ship, the R/V Ronald H. Brown, cruised in tracks in the Gulf of Mexico along the Texas coast, in Galveston Bay, and in the Houston Ship Channel obtaining air chemistry and meteorological data, including vertical profile measurements of wind and temperature. The primary observing system used in this paper is NOAA/ESRL's High Resolution Doppler Lidar (HRDL), which features high-precision and high-resolution wind measurements and a motion compensation system to provide accurate wind data despite ship and wave motions. The boundary layer in this warm-water region was found to be weakly unstable typically to a depth of 300 m above the sea surface. HRDL data were analyzed to provide 15-min averaged profiles of wind flow properties (wind speed, direction, and turbulence) from the water surface up to 2.5 km at a vertical resolution of 15 m. The paper will present statistics and distributions of these parameters over a wide range of heights and under various atmospheric conditions. Detailed analysis of the BL features including LLJs, wind and directional ramps, and wind shear through the rotor level heights, along with examples of hub-height and equivalent wind will be presented. The paper will discuss the diurnal fluctuations of all quantities critical to wind energy and their variability along the Texas coast.

  11. Modelling Wind Effects on Subtidal Salinity in Apalachicola Bay, Florida

    NASA Astrophysics Data System (ADS)

    Huang, W.; Jones, W. K.; Wu, T. S.

    2002-07-01

    Salinity is an important factor for oyster and estuarine productivity in Apalachicola Bay. Observations of salinity at oyster reefs have indicated a high correlation between subtidal salinity variations and the surface winds along the bay axis in an approximately east-west direction. In this paper, we applied a calibrated hydrodynamic model to examine the surface wind effects on the volume fluxes in the tidal inlets and the subtidal salinity variations in the bay. Model simulations show that, due to the large size of inlets located at the east and west ends of this long estuary, surface winds have significant effects on the volume fluxes in the estuary inlets for the water exchanges between the estuary and ocean. In general, eastward winds cause the inflow from the inlets at the western end and the outflow from inlets at the eastern end of the bay. Winds at 15 mph speed in the east-west direction can induce a 2000 m3 s-1 inflow of saline seawater into the bay from the inlets, a rate which is about 2·6 times that of the annual average freshwater inflow from the river. Due to the varied wind-induced volume fluxes in the inlets and the circulation in the bay, the time series of subtidal salinity at oyster reefs considerably increases during strong east-west wind conditions in comparison to salinity during windless conditions. In order to have a better understanding of the characteristics of the wind-induced subtidal circulation and salinity variations, the researchers also connected model simulations under constant east-west wind conditions. Results show that the volume fluxes are linearly proportional to the east-west wind stresses. Spatial distributions of daily average salinity and currents clearly show the significant effects of winds on the bay.

  12. Assessing the Future of Distributed Wind: Opportunities for Behind-the-Meter Projects

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lantz, Eric; Sigrin, Benjamin; Gleason, Michael

    2016-11-01

    Wind power is one of the fastest growing sources of new electricity generation in the United States. Cumulative installed capacity was more than 74,000 megawatts (MW) at year-end 2015 and wind power supplied 4.7% of total 2015 U.S. electricity generation. Despite the growth of the wind power industry, the distributed wind market has remained limited. Cumulative installations of distributed wind through 2015 totaled 934 MW. This first-of-a-kind exploratory analysis characterizes the future opportunity for behind-the-meter distributed wind, serving primarily rural or suburban homes, farms, and manufacturing facilities. This work focuses only on the grid-connected, behind-the-meter subset of the broader distributedmore » wind market. We estimate this segment to be approximately half of the 934 MW of total installed distributed wind capacity at year-end 2015. Potential from other distributed wind market segments including systems installed in front of the meter (e.g., community wind) and in remote, off-grid locations is not assessed in this analysis and therefore, would be additive to results presented here. These other distributed wind market segments are not considered in this initial effort because of their relatively unique economic and market attributes.« less

  13. Shelter Index and a simple wind speed parameter to characterize vegetation control of sand transport threshold and Flu

    NASA Astrophysics Data System (ADS)

    Gillies, J. A.; Nield, J. M.; Nickling, W. G.; Furtak-Cole, E.

    2014-12-01

    Wind erosion and dust emissions occur in many dryland environments from a range of surfaces with different types and amounts of vegetation. Understanding how vegetation modulates these processes remains a research challenge. Here we present results from a study that examines the relationship between an index of shelter (SI=distance from a point to the nearest upwind vegetation/vegetation height) and particle threshold expressed as the ratio of wind speed measured at 0.45 times the mean plant height divided by the wind speed at 17 m when saltation commences, and saltation flux. The results are used to evaluate SI as a parameter to characterize the influence of vegetation on local winds and sediment transport conditions. Wind speed, wind direction, saltation activity and point saltation flux were measured at 35 locations in defined test areas (~13,000 m2) in two vegetation communities: mature streets of mesquite covered nebkhas and incipient nebkhas dominated by low mesquite plants. Measurement positions represent the most open areas, and hence those places most susceptible to wind erosion among the vegetation elements. Shelter index was calculated for each measurement position for each 10° wind direction bin using digital elevation models for each site acquired using terrestrial laser scanning. SI can show the susceptibility to wind erosion at different time scales, i.e., event, seasonal, or annual, but in a supply-limited system it can fail to define actual flux amounts due to a lack of knowledge of the distribution of sediment across the surface of interest with respect to the patterns of SI.

  14. Superconducting Coil Winding Machine Control System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nogiec, J. M.; Kotelnikov, S.; Makulski, A.

    The Spirex coil winding machine is used at Fermilab to build coils for superconducting magnets. Recently this ma-chine was equipped with a new control system, which al-lows operation from both a computer and a portable remote control unit. This control system is distributed between three layers, implemented on a PC, real-time target, and FPGA, providing respectively HMI, operational logic and direct controls. The system controls motion of all mechan-ical components and regulates the cable tension. Safety is ensured by a failsafe, redundant system.

  15. Controls on gas transfer velocities in a large river

    NASA Astrophysics Data System (ADS)

    Beaulieu, Jake J.; Shuster, William D.; Rebholz, Jacob A.

    2012-06-01

    The emission of biogenic gases from large rivers can be an important component of regional greenhouse gas budgets. However, emission rate estimates are often poorly constrained due to uncertainties in the air-water gas exchange rate. We used the floating chamber method to estimate the gas transfer velocity (k) of carbon dioxide (CO2), methane (CH4), and nitrous oxide (N2O) in the Markland Pool of the Ohio River, a large tributary of the Mississippi River (U.S.A). We measured k every two weeks for a year at one site and at 15 additional sites distributed across the length of the pool during two summer surveys. We found that k was positively related to both water currents and wind speeds, with 46% of the gas transfer attributable to water currents at low wind speeds (e.g., 0.5 m s-1) and 11% at higher wind speeds (e.g., >2.0 m s-1). Gas transfer velocity was highly sensitive to wind, possibly because the direction of river flow was often directly opposed to the wind direction. Gas transfer velocity values derived for CH4 were consistently greater than those derived for CO2 when standardized to a Schmidt number of 600 (k600), possibly because the transfer of CH4, a poorly soluble gas, was enhanced by surfacing microbubbles. Additional research to determine the conditions that support microbubble enhanced gas transfer is merited.

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tegen, Suzanne

    Suzanne Tegen made this presentation at the 2017 Small Wind Conference in Bloomington, Minnesota. It provides an overview of DOE-sponsored small wind products, testing, and support; an example of a Regional Resource Center defending distributed wind; the recently published Distributed Wind Taxonomy; the dWind model and recent results; and other recent DOE and NREL publications related to small and distributed wind.

  17. Influence of meteorological conditions on correlation between aerosol and cloud in summer

    NASA Astrophysics Data System (ADS)

    Shi, Lamei; Zhang, Jiahua; Yao, Fengmei; Han, Xinlei; Igbawua, Tertsea; Liu, Yuqin; Zhang, Da

    2017-04-01

    Aerosols can affect the atmospheric radiation balance through direct and indirect effects. The formation and development of cloud and precipitation influenced by aerosols differ significantly from each other in different meteorological conditions. In this work, we used the MODIS's daily Aerosol Optical Depth (AOD), Cloud Effective Radius (CER), Cloud Top Temperature (CTT), Cloud Water Path (CWP) and ECMWF's Relative Humidity (RH), Vertical Velocity (VV) and Horizontal Wind (HW) (from 2005 to 2008) to reveal the influence of meteorological factors on the distribution of aerosols, and also the correlation between aerosols and clouds. The study was designed in such a way that, the RH, VV, Upwind (UW), Downwind (DW) and CWP were divided into several intervals, to quantify the relationship between AOD and CER by controlling one single variable or two comprehensive variables over the mountains and plains. At the same time, the effect of wind speed and direction on polluted conditions was analyzed through the superposed spatial distribution map of wind and AOD. The conclusions are as follows: (1) The wind coming from mountains dispelled aerosols while the sea breeze invigorated aerosols, and the upwind showed a markedly negative relevance with AOD. (2) The strong upwind contributed to the positive relationship between AOD and CER, and the correlation rose by 38% after excluding the condition where CWP < 34 g/m2. (3) For the horizontal wind, only the zonal wind over the plains had obvious effects on the correlation, while the meridonal wind did not show evident influence. (4) For the plains, when CWP values were within the interval of 0-34 g/m2 and 74-150 g/m2, the correlation was positive, while in 34-74 g/m2, it was negative. However, it is generally positive either over the mountains or in clean conditions. Moreover, the influence of RH on the correlation was consistent with that of CWP.

  18. Modern pollen distribution in the northeastern Indian Ocean and its significance.

    PubMed

    Luo, Chuanxiu; Jiang, Weiming; Chen, Chixin; Peng, Huanhuan; Xiang, Rong; Liu, Jianguo; Lu, Jun; Su, Xiang; Zhang, Qiang; Yang, Mingxi

    2018-06-26

    In order to provide a reference for reconstructing the paleoclimate of the northeastern Indian Ocean, 36 airborne pollen samples were analyzed using methods for airborne pollen, and 26 surface water samples were analyzed using a lab method for surface water. We found that little pollen is airborne over the Indian Ocean in spring, but airborne pollen types and concentrations can help to deduce paleomonsoon strength and direction. The conclusions included the following: (1) Pollen in the sediment was transported mainly via ocean currents instead of the early summer or spring wind. (2) Airborne pollen types and concentrations are proportional to the wind speed and inversely proportional to the pollen distance transported and depend on whether the wind is from the land or from the sea. If the wind is from the land, the pollen concentration is proportional to the angle between the wind direction and the coastline. (3) The pollen concentration in the sample collected from a water depth of 30-45 m is higher than in the samples collected from a depth of 5 m. The pollen concentration and salinity are higher in the equatorial area than in the Northern Hemisphere.

  19. Experimental investigation of flow over two-dimensional multiple hill models.

    PubMed

    Li, Qing'an; Maeda, Takao; Kamada, Yasunari; Yamada, Keisuke

    2017-12-31

    The aim of this study is to investigate the flow field characteristics in ABL (Atmospheric Boundary Layer) flow over multiple hills and valleys in two-dimensional models under neutral conditions. Active turbulence grids and boundary layer generation frame were used to simulate the natural winds in wind tunnel experiments. As a result, the mean wind velocity, the velocity vector diagram and turbulence intensity around the hills were investigated by using a PIV (Particle Image Velocimetry) system. From the measurement results, it was known that the average velocity was increased along the upstream slope of upside hill, and then separated at the top of the hills, the acceleration region of U/U ref >1 was generated at the downstream of the hill. Meanwhile, a large clockwise circulation flow was generated between the two hill models. Moreover, the turbulence intensity showed small value in the circulation flow regions. Compared to 1H model, the turbulence intensity in the mainstream direction showed larger value than that in the vertical direction. This paper provided a better understanding of the wind energy distribution on the terrain for proper selection of suitable sites for installing wind farms in the ABL. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Variation in wind and piscivorous predator fields affecting the survival of Atlantic salmon, Salmo salar, in the Gulf of Maine

    USGS Publications Warehouse

    Friedland, K.D.; Manning, J.P.; Link, Jason S.; Gilbert, J.R.; Gilbert, A.T.; O'Connell, A.F.

    2012-01-01

    Observations relevant to the North American stock complex of Atlantic salmon, Salmo salar L., suggest that marine mortality is influenced by variation in predation pressure affecting post-smolts during the first months at sea. This hypothesis was tested for Gulf of Maine (GOM) stocks by examining wind pseudostress and the distribution of piscivorous predator fields potentially affecting post-smolts. Marine survival has declined over recent decades with a change in the direction of spring winds, which is likely extending the migration of post-smolts by favouring routes using the western GOM. In addition to changes in spring wind patterns, higher spring sea surface temperatures have been associated with shifting distributions of a range of fish species. The abundance of several pelagic piscivores, which based on their feeding habits may predate on salmon post-smolts, has increased in the areas that serve as migration corridors for post-smolts. In particular, populations of silver hake, Merluccius bilinearis (Mitchell), red hake, Urophycis chuss (Walbaum), and spiny dogfish, Squalus acanthias L., increased in size in the portion of the GOM used by post-smolts. Climate variation and shifting predator distributions in the GOM are consistent with the predator hypothesis of recruitment control suggested for the stock complex.

  1. Kinetic Theory and Fast Wind Observations of the Electron Strahl

    NASA Astrophysics Data System (ADS)

    Horaites, Konstantinos; Boldyrev, Stanislav; Wilson, Lynn B., III; Viñas, Adolfo F.; Merka, Jan

    2018-02-01

    We develop a model for the strahl population in the solar wind - a narrow, low-density and high-energy electron beam centred on the magnetic field direction. Our model is based on the solution of the electron drift-kinetic equation at heliospheric distances where the plasma density, temperature and the magnetic field strength decline as power laws of the distance along a magnetic flux tube. Our solution for the strahl depends on a number of parameters that, in the absence of the analytic solution for the full electron velocity distribution function (eVDF), cannot be derived from the theory. We however demonstrate that these parameters can be efficiently found from matching our solution with observations of the eVDF made by the Wind satellite's SWE strahl detector. The model is successful at predicting the angular width (FWHM) of the strahl for the Wind data at 1 au, in particular by predicting how this width scales with particle energy and background density. We find that the strahl distribution is largely determined by the local temperature Knudsen number γ ∼ |T dT/dx|/n, which parametrizes solar wind collisionality. We compute averaged strahl distributions for typical Knudsen numbers observed in the solar wind, and fit our model to these data. The model can be matched quite closely to the eVDFs at 1 au; however, it then overestimates the strahl amplitude at larger heliocentric distances. This indicates that our model may be improved through the inclusion of additional physics, possibly through the introduction of 'anomalous diffusion' of the strahl electrons.

  2. The solar wind as a possible source of fast temporal variations of the heliospheric ribbon

    DOE PAGES

    Kucharek, H.; Fuselier, S. A.; Wurz, P.; ...

    2013-10-04

    Here we present a possible source of pickup ions (PUIs) the ribbon observed by the Interstellar Boundary EXplorer (IBEX). We suggest that a gyrating solar wind and PUIs in the ramp and in the near downstream region of the termination shock (TS) could provide a significant source of energetic neutral atoms (ENAs) in the ribbon. A fraction of the solar wind and PUIs are reflected and energized during the first contact with the TS. Some of the solar wind may be reflected propagating toward the Sun but most of the solar wind ions form a gyrating beam-like distribution that persistsmore » until it is fully thermalized further downstream. Depending on the strength of the shock, these gyrating distributions can exist for many gyration periods until they are scattered/thermalized due to wave-particle interactions at the TS and downstream in the heliosheath. During this time, ENAs can be produced by charge exchange of interstellar neutral atoms with the gyrating ions. In order to determine the flux of energetic ions, we estimate the solar wind flux at the TS using pressure estimates inferred from in situ measurements. Assuming an average path length in the radial direction of the order of a few AU before the distribution of gyrating ions is thermalized, one can explain a significant fraction of the intensity of ENAs in the ribbon observed by IBEX. In conclusion, with a localized source and such a short integration path, this model would also allow fast time variations of the ENA flux.« less

  3. U.S. Geographic Analysis of the Cost of Hydrogen from Electrolysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Saur, G.; Ainscough, C.

    2011-12-01

    This report summarizes U.S. geographic analysis of the cost of hydrogen from electrolysis. Wind-based water electrolysis represents a viable path to renewably-produced hydrogen production. It might be used for hydrogen-based transportation fuels, energy storage to augment electricity grid services, or as a supplement for other industrial hydrogen uses. This analysis focuses on the levelized production, costs of producing green hydrogen, rather than market prices which would require more extensive knowledge of an hourly or daily hydrogen market. However, the costs of hydrogen presented here do include a small profit from an internal rate of return on the system. The costmore » of renewable wind-based hydrogen production is very sensitive to the cost of the wind electricity. Using differently priced grid electricity to supplement the system had only a small effect on the cost of hydrogen; because wind electricity was always used either directly or indirectly to fully generate the hydrogen. Wind classes 3-6 across the U.S. were examined and the costs of hydrogen ranged from $3.74kg to $5.86/kg. These costs do not quite meet the 2015 DOE targets for central or distributed hydrogen production ($3.10/kg and $3.70/kg, respectively), so more work is needed on reducing the cost of wind electricity and the electrolyzers. If the PTC and ITC are claimed, however, many of the sites will meet both targets. For a subset of distributed refueling stations where there is also inexpensive, open space nearby this could be an alternative to central hydrogen production and distribution.« less

  4. Measurements of H(+), He(2+), and He(+), in Corotating Interaction Regions at 1 AU

    NASA Astrophysics Data System (ADS)

    Chotoo, Kancham

    Using the Supra-Thermal Ion Composition Spectrometer (STICS) from the SMS experiment on the WIND spacecraft, measurements of H+, He2+, and He+ were made during two corotating interacting regions (CIRs) at 1 AU. The unique energy range of STICS (6-198 keV/e) allowed simultaneous observation of the pre- and post-accelerated ions. These observations gave important clues about the source population, injection, acceleration mechanism, and ion transport in CIRs. The abundance of He2+ relative to H+ in the velocity range 2.5-6.0 times the solar wind velocity, VSW, (5-90 keV/amu) was between 0.11-0.18, which is more than double the solar wind values. However, the same ratio was observed in the suprathermal tail above 1.4 VSW in the spacecraft frame or above ~0.4 VSW in the solar wind frame. This suggests that the H+ and He2+ ions are injected equally into the CIR acceleration process from the suprathermal tail of the solar wind. At 1 AU the H+ and He2+ ions are primarily from the solar wind, but the He+ ions are interstellar pickup ions. The He+/He2+ ratio at 1 AU was ~0.15 for the same velocity range as above. However, this ratio was greater than 1.0 at 4.5 AU as measured previously (Gloeckler et al., 1994). This shows that the relative contribution of the pickup He+ ions to the seed population increases with radial distance away from the Sun. By combining data from three separate sensors on WIND (SMS-MASS, SMS-STICS, and EPACT-STEP), the extended helium distribution was presented for solar wind ions (~1 keV/amu) through energetic particles up to ~1 MeV/amu. The distribution covered 14 orders of magnitude in phase space density. This is the first time such an extended helium distribution is being reported at any radial distance. Using the Fisk and Lee (1980) model to fit the data between ~10-1000 keV/amu, the energetic particles were found to originate from 1.0-1.2 AU and not from beyond 2 AU, as is conventional believed. Anisotropy measurements were made using STICS for both the H+ and He2+ ions in the solar wind frame, and the results were compared to those made by EPACT-STEP. For both time intervals, the anisotropy directions showed significant deviations away from the average magnetic field direction in agreement with the STEP observations of Dwyer et al. (1997).

  5. Benchmarking U.S. Small Wind Costs with the Distributed Wind Taxonomy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Orrell, Alice C.; Poehlman, Eric A.

    The objective of this report is to benchmark costs for small wind projects installed in the United States using a distributed wind taxonomy. Consequently, this report is a starting point to help expand the U.S. distributed wind market by informing potential areas for small wind cost-reduction opportunities and providing a benchmark to track future small wind cost-reduction progress.

  6. Spectral sea surface reflectance of skylight.

    PubMed

    Zhang, Xiaodong; He, Shuangyan; Shabani, Afshin; Zhai, Peng-Wang; Du, Keping

    2017-02-20

    In examining the dependence of the sea surface reflectance of skylight ρs on sky conditions, wind speed, solar zenith angle, and viewing geometry, Mobley [Appl. Opt.38, 7442 (1999).10.1364/AO.38.007442] assumed ρs is independent of wavelength. Lee et al. [Opt. Express18, 26313 (2010).10.1364/OE.18.026313] showed experimentally that ρs does vary spectrally due to the spectral difference of sky radiance coming from different directions, which was ignored in Mobley's study. We simulated ρs from 350 nm to 1000 nm by explicitly accounting for spectral variations of skylight distribution and Fresnel reflectance. Furthermore, we separated sun glint from sky glint because of significant differences in magnitude, spectrum and polarization state between direct sun light and skylight light. The results confirm that spectral variation of ρs(λ) mainly arises from the spectral distribution of skylight and would vary from slightly blueish due to normal dispersion of the refractive index of water, to neutral and then to reddish with increasing wind speeds and decreasing solar zenith angles. Polarization moderately increases sky glint by 8 - 20% at 400 nm but only by 0 - 10% at 1000 nm. Sun glint is inherently reddish and becomes significant (>10% of sky glint) when the sun is at the zenith with moderate winds or when the sea is roughened (wind speeds > 10 m s-1) with solar zenith angles < 20°. We recommend a two-step procedure by first correcting the glint due to direct sun light, which is unpolarized, followed by removing the glint due to diffused and polarized skylight. The simulated ρs(λ) as a function of wind speeds, sun angles and aerosol concentrations for currently recommended sensor-sun geometry, i.e., zenith angle = 40° and azimuthal angle relative to the sun = 45°, is available upon request.

  7. Establishing and applying of a coupled individual based model of edible jellyfish(Rhopilema esculentum Kishinouye) releasing in the Liaodong Bay

    NASA Astrophysics Data System (ADS)

    Yin, Liping; Qiao, Fangli

    2017-04-01

    A three-dimensional circulation-surface wave coupled hydrodynamic model coupled with an individual-based jellyfish model was established to investigate the influence of physical process on edible jellyfish releasing stock enhancement in Liaodong Bay. Sensitivity experiments show that the wind intensity and direction have both direct and indirect impacts on the distribution of the jellyfish. When the wind is strong, the surface current in Liaodong Bay has the same direction of the wind. Under the co-effect of the ocean current transport and the surface wind transport, the jellyfish inhabits in the northeast of Liaodong bay, which is consistent with the observation. In the circumstance of weak wind, the circulation is clockwise and the jellyfish will spread around the 5m isobaths following the circulation. Research of the jellyfish distribution shows that the releasing jellyfish will stay in Liaodong bay in its whole life history, hence Liaodong Bay is a quite suitable area for enhancement releasing. The influence of the temperature on releasing region and date is also investigated. The threshold date during 2008 to 2016 is calculated, which is the date when the temperature of water within 10m isobaths in Liaodong Bay rises up to 15oC. In 2010, the threshold date came about one week later while the medusa releasing date remains the same in 2009. As a result, higher fatality rate of medusa caused by the cold water resulted in lower recapture rate in 2010. Therefore, the releasing date and location should be varied according to environmental conditions. The threshold date tends to appear earlier during 2008 to 2016, which suggests an earlier releasing date. In summer, due to the cold water mass intrusion from the south, the releasing date in the north area should be earlier than in the south.

  8. Systematic Variability of the He+ Pickup Ion Velocity Distribution Function Observed with SOHO/CELIAS/CTOF

    NASA Astrophysics Data System (ADS)

    Taut, A.; Drews, C.; Berger, L.; Wimmer-Schweingruber, R. F.

    2015-12-01

    The 1D Velocity Distribution Function (VDF) of He+ pickup ions shows two distinct populations that reflect the sources of these ions. The highly suprathermal population is the result of the ionization and pickup of almost resting interstellar neutrals that are injected into the solar wind as a highly anisotropic torus distribution. The nearly thermalized population is centered around the solar wind bulk speed and is mainly attributed to inner-source pickup ions that originate in the inner heliosphere. It is generally believed that the initial torus distribution of interstellar pickup ions is rapidly isotropized by resonant wave-particle interactions, but recent observations by Drews et al. (2015) of a torus-like VDF strongly limit this isotropization. This in turn means that more observational data is needed to further characterize the kinetic behavior of pickup ions. In this study we use data from the Charge-Time-Of-Flight sensor on-board SOHO. As this sensor offers unrivaled counting statistics for He+ together with a sufficient mass-per-charge resolution it is well-suited for investigating the He+ VDF on comparatively short timescales. We combine this data with the high resolution magnetic field data from WIND via an extrapolation to the location of SOHO. With this combination of instruments we investigate the He+ VDF for time periods of different solar wind speeds, magnetic field directions, and wave power. We find a systematic trend of the short-term He+ VDF with these parameters. Especially by varying the considered magnetic field directions we observe a 1D projection of the anisotropic torus-like VDF. In addition, we investigate stream interaction regions and coronal mass ejections. In the latter we observe an excess of inner-source He+ that is accompanied by a significant increase of heavy pickup ion count rates. This may be linked to the as yet ill understood production mechanism of inner-source pickup ions.

  9. Solar-wind predictions for the Parker Solar Probe orbit. Near-Sun extrapolations derived from an empirical solar-wind model based on Helios and OMNI observations

    NASA Astrophysics Data System (ADS)

    Venzmer, M. S.; Bothmer, V.

    2018-03-01

    Context. The Parker Solar Probe (PSP; formerly Solar Probe Plus) mission will be humanitys first in situ exploration of the solar corona with closest perihelia at 9.86 solar radii (R⊙) distance to the Sun. It will help answer hitherto unresolved questions on the heating of the solar corona and the source and acceleration of the solar wind and solar energetic particles. The scope of this study is to model the solar-wind environment for PSPs unprecedented distances in its prime mission phase during the years 2018 to 2025. The study is performed within the Coronagraphic German And US SolarProbePlus Survey (CGAUSS) which is the German contribution to the PSP mission as part of the Wide-field Imager for Solar PRobe. Aim. We present an empirical solar-wind model for the inner heliosphere which is derived from OMNI and Helios data. The German-US space probes Helios 1 and Helios 2 flew in the 1970s and observed solar wind in the ecliptic within heliocentric distances of 0.29 au to 0.98 au. The OMNI database consists of multi-spacecraft intercalibrated in situ data obtained near 1 au over more than five solar cycles. The international sunspot number (SSN) and its predictions are used to derive dependencies of the major solar-wind parameters on solar activity and to forecast their properties for the PSP mission. Methods: The frequency distributions for the solar-wind key parameters, magnetic field strength, proton velocity, density, and temperature, are represented by lognormal functions. In addition, we consider the velocity distributions bi-componental shape, consisting of a slower and a faster part. Functional relations to solar activity are compiled with use of the OMNI data by correlating and fitting the frequency distributions with the SSN. Further, based on the combined data set from both Helios probes, the parameters frequency distributions are fitted with respect to solar distance to obtain power law dependencies. Thus an empirical solar-wind model for the inner heliosphere confined to the ecliptic region is derived, accounting for solar activity and for solar distance through adequate shifts of the lognormal distributions. Finally, the inclusion of SSN predictions and the extrapolation down to PSPs perihelion region enables us to estimate the solar-wind environment for PSPs planned trajectory during its mission duration. Results: The CGAUSS empirical solar-wind model for PSP yields dependencies on solar activity and solar distance for the solar-wind parameters' frequency distributions. The estimated solar-wind median values for PSPs first perihelion in 2018 at a solar distance of 0.16 au are 87 nT, 340 km s-1, 214 cm-3, and 503 000 K. The estimates for PSPs first closest perihelion, occurring in 2024 at 0.046 au (9.86 R⊙), are 943 nT, 290 km s-1, 2951 cm-3, and 1 930 000 K. Since the modeled velocity and temperature values below approximately 20 R⊙appear overestimated in comparison with existing observations, this suggests that PSP will directly measure solar-wind acceleration and heating processes below 20 R⊙ as planned.

  10. Generalized extreme gust wind speeds distributions

    USGS Publications Warehouse

    Cheng, E.; Yeung, C.

    2002-01-01

    Since summer 1996, the US wind engineers are using the extreme gust (or 3-s gust) as the basic wind speed to quantify the destruction of extreme winds. In order to better understand these destructive wind forces, it is important to know the appropriate representations of these extreme gust wind speeds. Therefore, the purpose of this study is to determine the most suitable extreme value distributions for the annual extreme gust wind speeds recorded in large selected areas. To achieve this objective, we are using the generalized Pareto distribution as the diagnostic tool for determining the types of extreme gust wind speed distributions. The three-parameter generalized extreme value distribution function is, thus, reduced to either Type I Gumbel, Type II Frechet or Type III reverse Weibull distribution function for the annual extreme gust wind speeds recorded at a specific site.With the considerations of the quality and homogeneity of gust wind data collected at more than 750 weather stations throughout the United States, annual extreme gust wind speeds at selected 143 stations in the contiguous United States were used in the study. ?? 2002 Elsevier Science Ltd. All rights reserved.

  11. REMS Wind Sensor Preliminary Results

    NASA Astrophysics Data System (ADS)

    De La Torre Juarez, M.; Gomez-Elvira, J.; Navarro, S.; Marin, M.; Torres, J.; Rafkin, S. C.; Newman, C. E.; Pla-García, J.

    2015-12-01

    The REMS instrument is part of the Mars Science Laboratory payload. It is a sensor suite distributed over several parts of the rover. The wind sensor, which is composed of two booms equipped with a set of hot plate anemometers, is installed on the Rover Sensing Mast (RSM). During landing most of the hot plates of one boom were damaged, most likely by the pebbles lifted by the Sky Crane thruster. The loss of one wind boom necessitated a full review of the data processing strategy. Different algorithms have been tested on the readings of the first Mars year, and these results are now archived in the Planetary Data System (PDS), The presentation will include a description of the data processing methods and of the resulting products, including the typical evolution of wind speed and direction session-by-session, hour-by-hour and other kinds of statistics . A review of the wind readings over the first Mars year will also be presented.

  12. The footprint of atmospheric turbulence in power grid frequency measurements

    NASA Astrophysics Data System (ADS)

    Haehne, H.; Schottler, J.; Waechter, M.; Peinke, J.; Kamps, O.

    2018-02-01

    Fluctuating wind energy makes a stable grid operation challenging. Due to the direct contact with atmospheric turbulence, intermittent short-term variations in the wind speed are converted to power fluctuations that cause transient imbalances in the grid. We investigate the impact of wind energy feed-in on short-term fluctuations in the frequency of the public power grid, which we have measured in our local distribution grid. By conditioning on wind power production data, provided by the ENTSO-E transparency platform, we demonstrate that wind energy feed-in has a measurable effect on frequency increment statistics for short time scales (< 1 \\text{s}) that are below the activation time of frequency control. Our results are in accordance with previous numerical studies of self-organized synchronization in power grids under intermittent perturbation and give rise to new challenges for a stable operation of future power grids fed by a high share of renewable generation.

  13. Quantifying uncertainties in wind energy assessment

    NASA Astrophysics Data System (ADS)

    Patlakas, Platon; Galanis, George; Kallos, George

    2015-04-01

    The constant rise of wind energy production and the subsequent penetration in global energy markets during the last decades resulted in new sites selection with various types of problems. Such problems arise due to the variability and the uncertainty of wind speed. The study of the wind speed distribution lower and upper tail may support the quantification of these uncertainties. Such approaches focused on extreme wind conditions or periods below the energy production threshold are necessary for a better management of operations. Towards this direction, different methodologies are presented for the credible evaluation of potential non-frequent/extreme values for these environmental conditions. The approaches used, take into consideration the structural design of the wind turbines according to their lifespan, the turbine failures, the time needed for repairing as well as the energy production distribution. In this work, a multi-parametric approach for studying extreme wind speed values will be discussed based on tools of Extreme Value Theory. In particular, the study is focused on extreme wind speed return periods and the persistence of no energy production based on a weather modeling system/hind cast/10-year dataset. More specifically, two methods (Annual Maxima and Peaks Over Threshold) were used for the estimation of extreme wind speeds and their recurrence intervals. Additionally, two different methodologies (intensity given duration and duration given intensity, both based on Annual Maxima method) were implied to calculate the extreme events duration, combined with their intensity as well as the event frequency. The obtained results prove that the proposed approaches converge, at least on the main findings, for each case. It is also remarkable that, despite the moderate wind speed climate of the area, several consequent days of no energy production are observed.

  14. CFD study of some factors affecting performance of HAWT with swept blades

    NASA Astrophysics Data System (ADS)

    Khalafallah, M. G.; Ahmed, A. M.; Emam, M. K.

    2017-05-01

    Most modern high-power wind turbines are horizontal axis type with straight twisted blades. Upgrading power and performance of these turbines is considered a challenge. A recent trend towards improving the horizontal axis wind turbine (HAWT) performance is to use swept blades or sweep twist adaptive blades. In the present work, the effect of blade curvature, sweep starting point and sweep direction on the wind turbine performance was investigated. The CFD simulation method was validated against available experimental data of a 0.9 m diameter HAWT. The wind turbine power and thrust coefficients at different tip speed ratios were calculated. Flow field, pressure distribution and local tangential and streamwise forces were also analysed. The results show that the downstream swept blade has the highest Cp value at design point as compared with the straight blade profile. However, the improvement in power coefficient is accompanied by a thrust increase. Results also show that the best performance is obtained when the starting blade sweeps at 25% of blade radius for different directions of sweep.

  15. A correlative study of simultaneously measured He(++) fluxes in the solar wind and in the magnetosphere utilizing Imp-1 and 1971-089A satellite data

    NASA Technical Reports Server (NTRS)

    Shelley, E. G.

    1975-01-01

    Simultaneously measured He(++) fluxes in the solar wind and in the magnetosphere were studied using data from the plasma spectrometer on the Imp I satellite and the energetic ion mass spectrometer on the low altitude polar orbiting satellite 1971-89A. A detailed comparison of the He(++) energy spectra measured simultaneously in the solar wind and in the low altitude dayside polar cusp on March 7, 1972 was made. The energy-per-unit-charge range of the energetic ion mass spectrometer on board the polar orbiting satellite was 700 eV to 12 keV. Within this range there was a clear maximum in the He(++) energy spectrum at approximately 1.5 keV/nucleon. There was not a clearly defined maximum in the H(+) spectrum, but the data were consistent with a peak between 0.7 and 1.0 keV/nucleon. Both spectra could be reasonably well fit with a convecting Maxwellian plus a high energy tail; however, the mean velocity for He(++) distribution was significantly greater than that for the H(+) distribution. The simultaneous solar wind measurements showed the mean velocities for both ion species to be approximately 600 km/sec. The discrepancies between the relative velocity distributions in the low altitude cusp and those in the solar wind are consistent with a potential difference of approximately 1.4 kV along their flow direction between the two points of observation.

  16. Direct calculation of wall interferences and wall adaptation for two-dimensional flow in wind tunnels with closed walls

    NASA Technical Reports Server (NTRS)

    Amecke, Juergen

    1986-01-01

    A method for the direct calculation of the wall induced interference velocity in two dimensional flow based on Cauchy's integral formula was derived. This one-step method allows the calculation of the residual corrections and the required wall adaptation for interference-free flow starting from the wall pressure distribution without any model representation. Demonstrated applications are given.

  17. An advocacy coalition framework analysis of the development of offshore wind energy in South Carolina

    NASA Astrophysics Data System (ADS)

    Bishop, Marines

    Offshore winds blow considerably harder and more uniformly than on land, and can thus produce higher amounts of electricity. Design, installation, and distribution of an offshore wind farm is more difficult and expensive, but is nevertheless a compelling energy source. With its relatively shallow offshore waters South Carolina has the potential to offer one of the first offshore wind farms in the United States, arguably ideal for wind-farm construction and presenting outstanding potential for the state's growth and innovation. This study analyzes the policy process involved in the establishment of an offshore wind industry in South Carolina through the use of Advocacy Coalition Framework (ACF) concepts. The ACF studies policy process by analyzing policy subsystems, understanding that stakeholders motivated by belief systems influence policy subsystem affairs, and recognizing the assembly of these stakeholders into coalitions as the best way to simplify the analysis. The study interviewed and analyzed responses from stakeholders involved to different but significant degrees with South Carolina offshore wind industry development, allowing for their categorization into coalitions. Responses and discussion analysis through the implementation of ACF concepts revealed, among other observations, direct relationships of opinions to stakeholder's belief systems. Most stakeholders agreed that a potential for positive outputs is real and substantial, but differed in opinion when discussing challenges for offshore wind development in South Carolina. The study importantly considers policy subsystem implications at national and regional levels, underlining the importance of learning from other offshore wind markets and policy arenas worldwide. In this sense, this study's discussions and conclusions are a step towards the right direction.

  18. One year of vertical wind profiles measurements at a Mediterranean coastal site of South Italy

    NASA Astrophysics Data System (ADS)

    Calidonna, Claudia Roberta; Avolio, Elenio; Federico, Stefano; Gullì, Daniel; Lo Feudo, Teresa; Sempreviva, Anna Maria

    2015-04-01

    In order to develop wind farms projects is challenging to site them on coastal areas both onshore and offshore as suitable sites. Developing projects need high quality databases under a wide range of atmospheric conditions or high resolution models that could resolve the effect of the coastal discontinuity in the surface properties. New parametrizations are important and high quality databases are also needed for formulating them. Ground-based remote sensing devices such as lidars have been shown to be functional for studying the evolution of the vertical wind structure coastal atmospheric boundary layer both on- and offshore. Here, we present results from a year of vertical wind profiles, wind speed and direction, monitoring programme at a site located in the Italian Calabria Region, Central Mediterranean, 600m from the Thyrrenian coastline, where a Lidar Doppler, ZephIr (ZephIr ltd) has been operative since July 2013. The lidar monitors wind speed and direction from 10m up to 300m at 10 vertical levels with an average of 10 minutes and it is supported by a metmast providing: Atmospheric Pressure, Solar Radiation, Precipitation, Relative Humidity, Temperature,Wind Speed and Direction at 10m. We present the characterization of wind profiles during one year period according to the time of the day to transition periods night/day/night classified relating the local scale, breeze scale, to the large scale conditions. The dataset is also functional for techniques for short-term prediction of wind for the renewable energy integration in the distribution grids. The site infrastructure is funded within the Project "Infrastructure of High Technology for Environmental and Climate Monitoring" (I-AMICA) (PONa3_00363) by the Italian National Operative Program (PON 2007-2013) and European Regional Development Fund. Real-time data are show on http://www.i-amica.it/i-amica/?page_id=1122.

  19. Aerosol Sampling with Low Wind Sensitivity.

    NASA Astrophysics Data System (ADS)

    Kalatoor, Suresh

    Occupational exposure to airborne particles is generally evaluated by wearing a personal sampler that collects aerosol particles from the worker's breathing zone during the work cycle. The overall sampling efficiency of most currently available samplers is sensitive to wind velocity and direction. In addition, most samplers have internal losses due to gravitational settling, electrostatic interactions, and internal turbulence. A new sampling technique has been developed, theoretically and experimentally evaluated, and compared to existing techniques. The overall sampling efficiency of the protoype sampler was compared to that of a commonly used sampler, 25 mm closed-face cassette. Uranine was used as the challange aerosol with particle physical diameters 13.5, 20 and 30 mum. The wind velocity ranged from 100 to 300 cm s^ {-1}. It was found to have less internal losses and less dependence on wind velocity and direction. It also yielded better uniformity in the distribution of large particles on the filter surface, an advantage for several types of analysis. A new general equation for sharp-edged inlets was developed that predicts the sampling efficiency of sharp-edged (or thin-walled) inlets in most occupational environments that are weakly disturbed with air motions that cannot be strictly classified as calm-air or fast -moving air. Computational analysis was carried out using the new general equation and was applied to situations when the wind velocity vector is not steady, but fluctuates around predominant average values of its magnitude and orientation. Two sampling environments, horizontal aerosol flow (ambient atmosphere) and vertical aerosol flow (industrial stacks) have been considered. It was found, that even for small fluctuations in wind direction the sampling efficiency may be significantly less than that obtained for the mean wind direction. Time variations in wind magnitude at a fixed wind direction were found to affect the sampling efficiency to a lesser degree. This led to the development of a new sampling technique that significantly improved the sampling characteristics of the inlet. The newly-developed inlet has a curved surface with evenly spaced sampling orifices. Visualization of the streamlines over the sampler and limiting-streamline quantitative analysis showed negligible turbulence effects due to the sampler inlet's geometry. The overall sampling efficiency was found to be superior over the commonly used 25-mm closed-face cassette.

  20. Effect of Propeller Slipstream on Wing and Tail

    NASA Technical Reports Server (NTRS)

    Stuper, J

    1938-01-01

    The results of wind tunnel tests for the determination of the effect of a jet on the lift and downwash of a wing are presented in this report. In the first part, a jet without rotation and with constant velocity distribution is considered - the jet being produced by a specially designed fan. Three-component, pressure distribution, and downwash measurements were made and the results compared with existing theory. The effect of a propeller slipstream was investigated in the second part. In the two cases the jet axis coincided with the undisturbed wind direction. In the third part the effect of the inclination of the propeller axis to the wing chord was considered, the results being obtained for a model wing with running propeller.

  1. Assessment of the Economic Potential of Distributed Wind in Colorado, Minnesota, and New York

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McCabe, Kevin; Sigrin, Benjamin O.; Lantz, Eric J.

    This work seeks to identify current and future spatial distributions of economic potential for behind-the-meter distributed wind, serving primarily rural or suburban homes, farms, and manufacturing facilities in Colorado, Minnesota, and New York. These states were identified by technical experts based on their current favorability for distributed wind deployment. We use NREL's Distributed Wind Market Demand Model (dWind) (Lantz et al. 2017; Sigrin et al. 2016) to identify and rank counties in each of the states by their overall and per capita potential. From this baseline assessment, we also explore how and where improvements in cost, performance, and other marketmore » sensitivities affect distributed wind potential.« less

  2. Non-hoop winding effect on bonding temperature of laser assisted tape winding process

    NASA Astrophysics Data System (ADS)

    Zaami, Amin; Baran, Ismet; Akkerman, Remko

    2018-05-01

    One of the advanced methods for production of thermoplastic composite methods is laser assisted tape winding (LATW). Predicting the temperature in LATW process is very important since the temperature at nip-point (bonding line through width) plays a pivotal role in a proper bonding and hence the mechanical performance. Despite the hoop-winding where the nip-point is the straight line, non-hoop winding includes a curved nip-point line. Hence, the non-hoop winding causes somewhat a different power input through laser-rays and-reflections and consequently generates unknown complex temperature profile on the curved nip-point line. Investigating the temperature at the nip-point line is the point of interest in this study. In order to understand this effect, a numerical model is proposed to capture the effect of laser-rays and their reflections on the nip-point temperature. To this end, a 3D optical model considering the objects in LATW process is considered. Then, the power distribution (absorption and reflection) from the optical analysis is used as an input (heat flux distribution) for the thermal analysis. The thermal analysis employs a fully-implicit advection-diffusion model to calculate the temperature on the surfaces. The results are examined to demonstrate the effect of winding direction on the curved nip-point line (tape width) which has not been considered in literature up to now. Furthermore, the results can be used for designing a better and more efficient setup in the LATW process.

  3. Energy optimization for a wind DFIG with flywheel energy storage

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hamzaoui, Ihssen, E-mail: hamzaoui-ihssen2000@yahoo.fr; Laboratory of Instrumentation, Faculty of Electronics and Computer, University of Khemis Miliana, Ain Defla; Bouchafaa, Farid, E-mail: fbouchafa@gmail.com

    2016-07-25

    The type of distributed generation unit that is the subject of this paper relates to renewable energy sources, especially wind power. The wind generator used is based on a double fed induction Generator (DFIG). The stator of the DFIG is connected directly to the network and the rotor is connected to the network through the power converter with three levels. The objective of this work is to study the association a Flywheel Energy Storage System (FESS) in wind generator. This system is used to improve the quality of electricity provided by wind generator. It is composed of a flywheel; anmore » induction machine (IM) and a power electronic converter. A maximum power tracking technique « Maximum Power Point Tracking » (MPPT) and a strategy for controlling the pitch angle is presented. The model of the complete system is developed in Matlab/Simulink environment / to analyze the results from simulation the integration of wind chain to networks.« less

  4. Statistical Short-Range Guidance for Peak Wind Speed Forecasts on Kennedy Space Center/Cape Canaveral Air Force Station: Phase I Results

    NASA Technical Reports Server (NTRS)

    Lambert, Winifred C.; Merceret, Francis J. (Technical Monitor)

    2002-01-01

    This report describes the results of the ANU's (Applied Meteorology Unit) Short-Range Statistical Forecasting task for peak winds. The peak wind speeds are an important forecast element for the Space Shuttle and Expendable Launch Vehicle programs. The Keith Weather Squadron and the Spaceflight Meteorology Group indicate that peak winds are challenging to forecast. The Applied Meteorology Unit was tasked to develop tools that aid in short-range forecasts of peak winds at tower sites of operational interest. A 7 year record of wind tower data was used in the analysis. Hourly and directional climatologies by tower and month were developed to determine the seasonal behavior of the average and peak winds. In all climatologies, the average and peak wind speeds were highly variable in time. This indicated that the development of a peak wind forecasting tool would be difficult. Probability density functions (PDF) of peak wind speed were calculated to determine the distribution of peak speed with average speed. These provide forecasters with a means of determining the probability of meeting or exceeding a certain peak wind given an observed or forecast average speed. The climatologies and PDFs provide tools with which to make peak wind forecasts that are critical to safe operations.

  5. Pulsar-Wind Nebulae and Magnetar Outflows: Observations at Radio, X-Ray, and Gamma-Ray Wavelengths

    NASA Astrophysics Data System (ADS)

    Reynolds, Stephen P.; Pavlov, George G.; Kargaltsev, Oleg; Klingler, Noel; Renaud, Matthieu; Mereghetti, Sandro

    2017-07-01

    We review observations of several classes of neutron-star-powered outflows: pulsar-wind nebulae (PWNe) inside shell supernova remnants (SNRs), PWNe interacting directly with interstellar medium (ISM), and magnetar-powered outflows. We describe radio, X-ray, and gamma-ray observations of PWNe, focusing first on integrated spectral-energy distributions (SEDs) and global spectral properties. High-resolution X-ray imaging of PWNe shows a bewildering array of morphologies, with jets, trails, and other structures. Several of the 23 so far identified magnetars show evidence for continuous or sporadic emission of material, sometimes associated with giant flares, and a few "magnetar-wind nebula" have been recently identified.

  6. Physics-based Tests to Identify the Accuracy of Solar Wind Ion Measurements: A Case Study with the Wind Faraday Cups

    NASA Technical Reports Server (NTRS)

    Kasper, J. C.; Lazarus, A. J.; Steinberg, J. T.; Ogilvie, K. W.; Szabo, A.

    2006-01-01

    We present techniques for comparing measurements of velocity, temperature, and density with constraints imposed by the plasma physics of magnetized bi-Maxwellian ions. Deviations from these physics-based constraints are interpreted as arising from measurement errors. Two million ion spectra from the Solar Wind Experiment Faraday Cup instruments on the Wind spacecraft are used as a case study. The accuracy of velocity measurements is determined by the fact that differential flow between hydrogen and helium should be aligned with the ambient magnetic field. Modeling the breakdown of field alignment suggests velocity uncertainties are less than 0.16% in magnitude and 3deg in direction. Temperature uncertainty is found by examining the distribution of observed temperature anisotropies in high-beta solar wind intervals where the firehose, mirror, and cyclotron microinstabilities should drive the distribution to isotropy. The presence of a finite anisotropy at high beta suggests overall temperature uncertainties of 8%. Hydrogen and helium number densities are compared with the electron density inferred from observations of the local electron plasma frequency as a function of solar wind speed and year. We find that after accounting for the contribution of minor ions, the results are consistent with a systematic offset between the two instruments of 34%. The temperature and density methods are sensitive to non-Maxwellian features such as heat flux and proton beams and as a result are more suited to slow solar wind where these features are rare. These procedures are of general use in identifying the accuracy of observations from any solar wind ion instrument.

  7. Mathematical Model to estimate the wind power using four-parameter Burr distribution

    NASA Astrophysics Data System (ADS)

    Liu, Sanming; Wang, Zhijie; Pan, Zhaoxu

    2018-03-01

    When the real probability of wind speed in the same position needs to be described, the four-parameter Burr distribution is more suitable than other distributions. This paper introduces its important properties and characteristics. Also, the application of the four-parameter Burr distribution in wind speed prediction is discussed, and the expression of probability distribution of output power of wind turbine is deduced.

  8. Analysis of vector wind change with respect to time for Cape Kennedy, Florida

    NASA Technical Reports Server (NTRS)

    Adelfang, S. I.

    1978-01-01

    Multivariate analysis was used to determine the joint distribution of the four variables represented by the components of the wind vector at an initial time and after a specified elapsed time is hypothesized to be quadravariate normal; the fourteen statistics of this distribution, calculated from 15 years of twice-daily rawinsonde data are presented by monthly reference periods for each month from 0 to 27 km. The hypotheses that the wind component changes with respect to time is univariate normal, that the joint distribution of wind component change with respect to time is univariate normal, that the joint distribution of wind component changes is bivariate normal, and that the modulus of vector wind change is Rayleigh are tested by comparison with observed distributions. Statistics of the conditional bivariate normal distributions of vector wind at a future time given the vector wind at an initial time are derived. Wind changes over time periods from 1 to 5 hours, calculated from Jimsphere data, are presented. Extension of the theoretical prediction (based on rawinsonde data) of wind component change standard deviation to time periods of 1 to 5 hours falls (with a few exceptions) within the 95 percentile confidence band of the population estimate obtained from the Jimsphere sample data. The joint distributions of wind change components, conditional wind components, and 1 km vector wind shear change components are illustrated by probability ellipses at the 95 percentile level.

  9. Analysis of vector wind change with respect to time for Cape Kennedy, Florida: Wind aloft profile change vs. time, phase 1

    NASA Technical Reports Server (NTRS)

    Adelfang, S. I.

    1977-01-01

    Wind vector change with respect to time at Cape Kennedy, Florida, is examined according to the theory of multivariate normality. The joint distribution of the four variables represented by the components of the wind vector at an initial time and after a specified elapsed time is hypothesized to be quadravariate normal; the fourteen statistics of this distribution, calculated from fifteen years of twice daily Rawinsonde data are presented by monthly reference periods for each month from 0 to 27 km. The hypotheses that the wind component changes with respect to time is univariate normal, the joint distribution of wind component changes is bivariate normal, and the modulus of vector wind change is Rayleigh, has been tested by comparison with observed distributions. Statistics of the conditional bivariate normal distributions of vector wind at a future time given the vector wind at an initial time are derived. Wind changes over time periods from one to five hours, calculated from Jimsphere data, are presented.

  10. Termination of the solar wind in the hot, partially ionized interstellar medium. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Lombard, C. K.

    1974-01-01

    Theoretical foundations for understanding the problem of the termination of the solar wind are reexamined in the light of most recent findings concerning the states of the solar wind and the local interstellar medium. The investigation suggests that a simple extention of Parker's (1961) analytical model provides a useful approximate description of the combined solar wind, interstellar wind plasma flowfield under conditions presently thought to occur. A linear perturbation solution exhibiting both the effects of photoionization and charge exchange is obtained for the supersonic solar wind. A numerical algorithm is described for computing moments of the non-equilibrium hydrogen distribution function and associated source terms for the MHD equations. Computed using the algorithm in conjunction with the extended Parker solution to approximate the plasma flowfield, profiles of hydrogen number density are given in the solar wind along the upstream and downstream axes of flow with respect to the direction of the interstellar wind. Predictions of solar Lyman-alpha backscatter intensities to be observed at 1 a.u. have been computed, in turn, from a set of such hydrogen number density profiles varied over assumed conditions of the interstellar wind.

  11. Kinetic Theory and Fast Wind Observations of the Electron Strahl

    NASA Astrophysics Data System (ADS)

    Horaites, K.; Boldyrev, S.; Wilson, L. B., III; Figueroa-Vinas, A.; Merka, J.

    2017-12-01

    We develop a model for the strahl population in the solar wind - a narrow, low-density and high-energy electron beam centered on the magnetic field direction. Our model is based on the solution of the electron drift-kinetic equation at heliospheric distances where the plasma density, temperature, and the strength of the magnetic field decline as power-laws of the distance along a magnetic flux tube. Our solution for the strahl depends on a number of parameters that, in the absence of the analytic solution for the full electron velocity distribution function (eVDF), cannot be derived from the theory. We however demonstrate that these parameters can be efficiently found from matching our solution with the observations. To this end, we compare our model with the eVDF measured by the Wind satellite's SWE strahl detector. The model is successful at predicting the angular width (FWHM) of the strahl for the Wind data at 1 AU, in particular by predicting how this width scales with particle energy and background density. We find the shape of the strahl distribution is largely determined by the local temperature Knudsen number γ |T dT/dx|/n, which parametrizes solar wind collisionality. We compute averaged strahl distributions for typical Knudsen numbers observed in the solar wind, and fit our model to these data. The model can be matched quite closely to the eVDFs at 1 AU; however, it then overestimates the strahl amplitude compared to the amplitude of the electron core at larger heliocentric distances. This indicates that our model may need to be improved through the inclusion of additional physics, possibly through the introduction of "anomalous diffusion" of the strahl electrons.

  12. Estimates of the low-level wind shear and turbulence in the vicinity of Kennedy International Airport on 24 June 1975

    NASA Technical Reports Server (NTRS)

    Lewellen, W. S.; Williamson, G. G.

    1976-01-01

    A study was conducted to estimate the type of wind and turbulence distributions which may have existed at the time of the crash of Eastern Airlines Flight 66 while attempting to land. A number of different wind and turbulence profiles are predicted for the site and date of the crash. The morning and mid-afternoon predictions are in reasonably good agreement with magnitude and direction as reported by the weather observer. Although precise predictions cannot be made during the passage of the thunderstorm which coincides with the time of the accident, a number of different profiles which might exist under or in the vicinity of a thunderstorm are presented. The profile that is most probable predicts the mean headwind shear over 100 m (300 feet) altitude change and the average fluctuations about the mean headwind distribution. This combination of means and fluctuations leads to a reasonable probability that the instantaneous headwind shear would equal the maximum value reported in the flight recorder data.

  13. Radial distributions of magnetic field strength in the solar corona as derived from data on fast halo CMEs

    NASA Astrophysics Data System (ADS)

    Fainshtein, Victor; Egorov, Yaroslav

    2018-03-01

    In recent years, information about the distance between the body of rapid coronal mass ejection (CME) and the associated shock wave has been used to measure the magnetic field in the solar corona. In all cases, this technique allows us to find coronal magnetic field radial profiles B(R) applied to the directions almost perpendicular to the line of sight. We have determined radial distributions of magnetic field strength along the directions close to the Sun-Earth axis. For this purpose, using the "ice-cream cone" model and SOHO/LASCO data, we found 3D characteristics for fast halo coronal mass ejections (HCMEs) and for HCME-related shocks. With these data, we managed to obtain the B(R) distributions as far as ≈43 solar radii from the Sun's center, which is approximately twice as far as those in other studies based on LASCO data. We have concluded that to improve the accuracy of this method for finding the coronal magnetic field we should develop a technique for detecting CME sites moving in the slow and fast solar wind. We propose a technique for selecting CMEs whose central (paraxial) part actually moves in the slow wind.

  14. Imprint of the Sun’s Evolving Polar Winds on IBEX Energetic Neutral Atom All-sky Observations of the Heliosphere

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zirnstein, E. J.; McComas, D. J.; Dayeh, M. A.

    2017-09-01

    With 7 years of Interstellar Boundary Explorer ( IBEX ) measurements of energetic neutral atoms (ENAs), IBEX has shown a clear correlation between dynamic changes in the solar wind and the heliosphere’s response in the formation of ENAs. In this paper, we investigate temporal variations in the latitudinal-dependent ENA spectrum from IBEX and their relationship to the solar wind speed observed at 1 au. We find that the variation in latitude of the transition in ENA spectral indices between low (≲1.8) and high (≳1.8) values, as well as the distribution of ENA spectral indices at high and low latitudes, correlatesmore » well with the evolution of the fast and slow solar wind latitudinal structure observed near 1 au. This correlation includes a delay due to the time it takes the solar wind to propagate to the termination shock and into the inner heliosheath, and for ENAs to be generated via charge-exchange and travel back toward 1 au. Moreover, we observe a temporal asymmetry in the steepening of the ENA spectrum in the northern and southern hemispheres, consistent with asymmetries observed in the solar wind and polar coronal holes. While this asymmetry is observed near the upwind direction of the heliosphere, it is not yet observed in the tail direction, suggesting a longer line-of-sight integration distance or different processing of the solar wind plasma downstream of the termination shock.« less

  15. Field-wind Distribution and Eruption Columns: Colima Volcano, México.

    NASA Astrophysics Data System (ADS)

    Fonseca, R.; Martin, A. L.; Perez, I.

    2006-12-01

    Colima Volcano (19º51'N 103º62'W) is characterized by explosive behaviour. Recently this volcano has shown an increase in explosive activity suggesting the possibility of a subplinian event in the next future like the ones occurred in 1818 and 1913. They were characterized by eruptive columns higher than 20 Km. Considering the possibility of a new explosive event we carried out a wind study based on the radiosonde balloon data set (1980-1995) with 15 atmospheric levels. This data set was collected by Global Gridded Upper Air Statistics (GGUAS) of the European Centre for Médium Range Weather Forecast (ECMRWF). The data was processed with a cinematic model for the study of global atmospheric wind circulation. In this model the current function (vorticity) and a potential function (convergency and/or divergency) was calculated with the Poison equation, utilizing a spectral numeric model. Dominant wind direction in January-May and October-December is toward the East with variations to the East/South East. On the contrary during July-September the dominant wind direction is toward the West, South-West, North-East; East and North-East. The fluctuations related to anticyclonic circulation occur in May, July, September and November at the altitude between 5 and 18 Km. The wind model allows identification of the wind horizontal circulation during the whole year at different atmospheric levels. Moreover, the perturbations of the normal circulation have also been identified. These results are applied to an a ash fall map for ash-fall hazard zonification.

  16. Expertise effects in cutaneous wind perception.

    PubMed

    Pluijms, Joost P; Cañal-Bruland, Rouwen; Bergmann Tiest, Wouter M; Mulder, Fabian A; Savelsbergh, Geert J P

    2015-08-01

    We examined whether expertise effects are present in cutaneous wind perception. To this end, we presented wind stimuli consisting of different wind directions and speeds in a wind simulator. The wind simulator generated wind stimuli from 16 directions and with three speeds by means of eight automotive wind fans. Participants were asked to judge cutaneously perceived wind directions and speeds without having access to any visual or auditory information. Expert sailors (n = 6), trained to make the most effective use of wind characteristics, were compared to less-skilled sailors (n = 6) and to a group of nonsailors (n = 6). The results indicated that expert sailors outperformed nonsailors in perceiving wind direction (i.e., smaller mean signed errors) when presented with low wind speeds. This suggests that expert sailors are more sensitive in picking up differences in wind direction, particularly when confronted with low wind speeds that demand higher sensitivity.

  17. Rapid Debris Analysis Project Task 3 Final Report - Sensitivity of Fallout to Source Parameters, Near-Detonation Environment Material Properties, Topography, and Meteorology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goldstein, Peter

    2014-01-24

    This report describes the sensitivity of predicted nuclear fallout to a variety of model input parameters, including yield, height of burst, particle and activity size distribution parameters, wind speed, wind direction, topography, and precipitation. We investigate sensitivity over a wide but plausible range of model input parameters. In addition, we investigate a specific example with a relatively narrow range to illustrate the potential for evaluating uncertainties in predictions when there are more precise constraints on model parameters.

  18. Investigation of boundary-layer wind predictions during nocturnal low-level jet events using the Weather Research and Forecasting model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mirocha, Jeff D.; Simpson, Matthew D.; Fast, Jerome D.

    Simulations of two periods featuring three consecutive low level jet (LLJ) events in the US Upper Great Plains during the autumn of 2011 were conducted to explore the impacts of various setup configurations and physical process models on simulated flow parameters within the lowest 200 m above the surface, using the Weather Research and Forecasting (WRF) model. Sensitivities of simulated flow parameters to the horizontal and vertical grid spacing, planetary boundary layer (PBL) and land surface model (LSM) physics options, were assessed. Data from a Light Detection and Ranging (lidar) system, deployed to the Weather Forecast Improvement Project (WFIP; Finleymore » et al. 2013) were used to evaluate the accuracy of simulated wind speed and direction at 80 m above the surface, as well as their vertical distributions between 120 and 40 m, covering the typical span of contemporary tall wind turbines. All of the simulations qualitatively captured the overall diurnal cycle of wind speed and stratification, producing LLJs during each overnight period, however large discrepancies occurred at certain times for each simulation in relation to the observations. 54-member ensembles encompassing changes of the above discussed configuration parameters displayed a wide range of simulated vertical distributions of wind speed and direction, and potential temperature, reflecting highly variable representations of stratification during the weakly stable overnight conditions. Root mean square error (RMSE) statistics show that different ensemble members performed better and worse in various simulated parameters at different times, with no clearly superior configuration . Simulations using a PBL parameterization designed specifically for the stable conditions investigated herein provided superior overall simulations of wind speed at 80 m, demonstrating the efficacy of targeting improvements of physical process models in areas of known deficiencies. However, the considerable magnitudes of the RMSE values of even the best performing simulations indicate ample opportunities for further improvements.« less

  19. The Distributed Wind Cost Taxonomy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Forsyth, Trudy; Jimenez, Tony; Preus, Robert

    To date, there has been no standard method or tool to analyze the installed and operational costs for distributed wind turbine systems. This report describes the development of a classification system, or taxonomy, for distributed wind turbine project costs. The taxonomy establishes a framework to help collect, sort, and compare distributed wind cost data that mirrors how the industry categorizes information. The taxonomy organizes costs so they can be aggregated from installers, developers, vendors, and other sources without losing cost details. Developing a peer-reviewed taxonomy is valuable to industry stakeholders because a common understanding the details of distributed wind turbinemore » costs and balance of station costs is a first step to identifying potential high-value cost reduction opportunities. Addressing cost reduction potential can help increase distributed wind's competitiveness and propel the U.S. distributed wind industry forward. The taxonomy can also be used to perform cost comparisons between technologies and track trends for distributed wind industry costs in the future. As an initial application and piloting of the taxonomy, preliminary cost data were collected for projects of different sizes and from different regions across the contiguous United States. Following the methods described in this report, these data are placed into the established cost categories.« less

  20. Wind tunnel tests for wind pressure distribution on gable roof buildings.

    PubMed

    Jing, Xiao-kun; Li, Yuan-qi

    2013-01-01

    Gable roof buildings are widely used in industrial buildings. Based on wind tunnel tests with rigid models, wind pressure distributions on gable roof buildings with different aspect ratios were measured simultaneously. Some characteristics of the measured wind pressure field on the surfaces of the models were analyzed, including mean wind pressure, fluctuating wind pressure, peak negative wind pressure, and characteristics of proper orthogonal decomposition results of the measured wind pressure field. The results show that extremely high local suctions often occur in the leading edges of longitudinal wall and windward roof, roof corner, and roof ridge which are the severe damaged locations under strong wind. The aspect ratio of building has a certain effect on the mean wind pressure coefficients, and the effect relates to wind attack angle. Compared with experimental results, the region division of roof corner and roof ridge from AIJ2004 is more reasonable than those from CECS102:2002 and MBMA2006.The contributions of the first several eigenvectors to the overall wind pressure distributions become much bigger. The investigation can offer some basic understanding for estimating wind load distribution on gable roof buildings and facilitate wind-resistant design of cladding components and their connections considering wind load path.

  1. Comparison of low-altitude wind-shear statistics derived from measured and proposed standard wind profiles

    NASA Technical Reports Server (NTRS)

    Usry, J. W.

    1983-01-01

    Wind shear statistics were calculated for a simulated set of wind profiles based on a proposed standard wind field data base. Wind shears were grouped in altitude in altitude bands of 100 ft between 100 and 1400 ft and in wind shear increments of 0.025 knot/ft. Frequency distributions, means, and standard deviations for each altitude band were derived for the total sample were derived for both sets. It was found that frequency distributions in each altitude band for the simulated data set were more dispersed below 800 ft and less dispersed above 900 ft than those for the measured data set. Total sample frequency of occurrence for the two data sets was about equal for wind shear values between +0.075 knot/ft, but the simulated data set had significantly larger values for all wind shears outside these boundaries. It is shown that normal distribution in both data sets neither data set was normally distributed; similar results are observed from the cumulative frequency distributions.

  2. 2016 Distributed Wind Market Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Orrell, Alice C.; Foster, Nikolas F.; Morris, Scott L.

    The U.S. Department of Energy's (DOE's) annual Distributed Wind Market Report provides stakeholders with statistics and analysis of the distributed wind market, along with insight into its trends and characteristics.

  3. Walker Circulation, El Niño and La Niña

    NASA Astrophysics Data System (ADS)

    Halpern, D.

    2014-12-01

    Ocean surface wind vector is likely the critical variable to predict onset, maintenance and dissipation of El Niño and La Niña. Analyses of SeaWinds and ASCAT 10-m height (called "surface") vector winds in the Atlantic, Indian and Pacific Oceans from 1°S-1°N during March 2000 - June 2011 revealed the longitudinal distribution of the surface zonal wind component associated with the Walker Circulation. In the Pacific Ocean east of 140°E and west of 85°W, the mean wind direction was westward towards the maritime continent with maximum mean zonal wind speed (- 6.5 m s-1) at 150°W; east of 85°W the mean direction was toward the convection zone over South America. Four El Niños and five La Niñas occurred from March 2000 - June 2011. In the Pacific from 150°E to 160°W, the average El Niño (La Niña) westward wind speed was 2 m s-1 (1 m s-1) smaller (larger) than normal. In the west Pacific, the variation in westward wind speeds in El Niño and La Niña conditions relative to normal conditions would be expected to substantially uplift the thermocline during El Niño compared to La Niña, which is consistent with conventional wisdom. In the east Pacific from 130°W - 100°W, average El Niño westward wind speeds were less than normal and La Niña conditions by 0.5 m s-1 and 1 m s-1, respectively. The "central" Pacific nature of the El Niños may have influenced the smaller difference between El Niño and La Niña westward wind speeds in the east Pacific compared to the west Pacific. Analyses of longitudinal distributions of thermocline depths will be discussed. Surface zonal wind speeds in the Atlantic and Indian Oceans showed no evidence of El Niño and La Niña; surface meridional winds showed an apparent response in the Indian and Pacific Oceans but not in the Atlantic Ocean. At 700-m height, the MISR zonal wind component in the Atlantic, Indian and Pacific Oceans had similar features as those at the surface, except in the east Pacific where the westward wind speeds were identical during El Niño, La Niña and normal conditions. In the east Pacific, the shear between 10- and 700-m heights increased (decreased) during La Niña (El Niño).

  4. The impact of Doppler lidar wind observations on a single-level meteorological analysis

    NASA Technical Reports Server (NTRS)

    Riishojgaard, L. P.; Atlas, R.; Emmitt, G. D.

    2001-01-01

    Through the use of observation operators, modern data assimilation systems have the capability to ingest observations of quantities that are not themselves model variables, but are mathematically related to those variables. An example of this are the so-called LOS (line of sight) winds that a Doppler wind Lidar can provide. The model - or data assimilation system - needs information about both components of the horizontal wind vectors, whereas the observations in this case only provide the projection of the wind vector onto a given direction. The analyzed value is then calculated essentially based on a comparison between the observation itself and the model-simulated value of the observed quantity. However, in order to assess the expected impact of such an observing system, it is important to examine the extent to which a meteorological analysis can be constrained by the LOS winds. The answer to this question depends on the fundamental character of the atmospheric flow fields that are analyzed, but more importantly it also depends on the real and assumed error covariance characteristics of these fields. A single-level wind analysis system designed to explore these issues has been built at the NASA Data Assimilation Office. In this system, simulated wind observations can be evaluated in terms of their impact on the analysis quality under various assumptions about their spatial distribution and error characteristics and about the error covariance of the background fields. The basic design of the system will be presented along with experimental results obtained with it. In particular, the value of simultaneously measuring LOS winds along two different directions for a given location will be discussed.

  5. Scanning elastic lidar observations of aerosol transport in New York City

    NASA Astrophysics Data System (ADS)

    Diaz, Adrian; Dominguez, Victor; Dobryansky, Selma; Wu, Yonghua; Arend, Mark; Vladutescu, Daniela Viviana; Gross, Barry; Moshary, Fred

    2018-04-01

    In this study, spatial distribution of aerosols in New York City is observed using a scanning eyesafe 532 nm elastic-backscatter micro-pulse lidar system. Observations show dynamics of the boundary layer and inhomogeneous distribution and transport of aerosols. The data acquired are complemented with simultaneous measurements of particulate matter and wind speed and direction. Furthermore, the system observations are validated by comparing them with a colocated multi-wavelength lidar.

  6. An improved AVC strategy applied in distributed wind power system

    NASA Astrophysics Data System (ADS)

    Zhao, Y. N.; Liu, Q. H.; Song, S. Y.; Mao, W.

    2016-08-01

    Traditional AVC strategy is mainly used in wind farm and only concerns about grid connection point, which is not suitable for distributed wind power system. Therefore, this paper comes up with an improved AVC strategy applied in distributed wind power system. The strategy takes all nodes of distribution network into consideration and chooses the node having the most serious voltage deviation as control point to calculate the reactive power reference. In addition, distribution principles can be divided into two conditions: when wind generators access to network on single node, the reactive power reference is distributed according to reactive power capacity; when wind generators access to network on multi-node, the reference is distributed according to sensitivity. Simulation results show the correctness and reliability of the strategy. Compared with traditional control strategy, the strategy described in this paper can make full use of generators reactive power output ability according to the distribution network voltage condition and improve the distribution network voltage level effectively.

  7. Wind potential assessment in urban area of Surakarta city

    NASA Astrophysics Data System (ADS)

    Tjahjana, Dominicus Danardono Dwi Prija; Halomoan, Arnold Thamrin; Wibowo, Andreas; Himawanto, Dwi Aries; Wicaksono, Yoga Arob

    2018-02-01

    Wind energy is one of the promising energy resource in urban area that has not been deeply explored in Indonesia. Generally the wind velocity in Indonesia is relatively low, however on the roof top of the high rise building in urban area the wind velocity is high enough to be converted for supporting the energy needs of the building. In this research a feasibility study of wind energy in urban area of Surakarta was done. The analysis of the wind energy potential on the height of 50 m was done by using Weibull distribution. The wind data based on the daily wind speed taken from 2011-2015. From the result of the wind speed analysis, a wind map in Surakarta was developed for helping to determine the places that have good potential in wind energy. The result showed that in five years the city of Surakarta had mean energy density (ED) of 139.43 W/m2, yearly energy available (EI) of 1221.4 kWh/m2/year, the most frequent wind velocity (VFmax) of 4.79 m/s, and the velocity contributing the maximum energy (VEmax) of 6.97 m/s. The direction of the wind was mostly from south, with frequency of 38%. The south and west area of the city had higher wind velocity than the other parts of the city. Also in those areas there are many high rise buildings, which are appropriate for installation of small wind turbine on the roof top (building mounted wind turbine/ BMWT).

  8. 14 CFR 139.323 - Traffic and wind direction indicators.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 3 2014-01-01 2014-01-01 false Traffic and wind direction indicators. 139... CERTIFICATION OF AIRPORTS Operations § 139.323 Traffic and wind direction indicators. In a manner authorized by...) A wind cone that visually provides surface wind direction information to pilots. For each runway...

  9. 14 CFR 139.323 - Traffic and wind direction indicators.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 3 2013-01-01 2013-01-01 false Traffic and wind direction indicators. 139... CERTIFICATION OF AIRPORTS Operations § 139.323 Traffic and wind direction indicators. In a manner authorized by...) A wind cone that visually provides surface wind direction information to pilots. For each runway...

  10. 14 CFR 139.323 - Traffic and wind direction indicators.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 3 2012-01-01 2012-01-01 false Traffic and wind direction indicators. 139... CERTIFICATION OF AIRPORTS Operations § 139.323 Traffic and wind direction indicators. In a manner authorized by...) A wind cone that visually provides surface wind direction information to pilots. For each runway...

  11. 14 CFR 139.323 - Traffic and wind direction indicators.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 3 2011-01-01 2011-01-01 false Traffic and wind direction indicators. 139... CERTIFICATION OF AIRPORTS Operations § 139.323 Traffic and wind direction indicators. In a manner authorized by...) A wind cone that visually provides surface wind direction information to pilots. For each runway...

  12. 14 CFR 139.323 - Traffic and wind direction indicators.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Traffic and wind direction indicators. 139... CERTIFICATION OF AIRPORTS Operations § 139.323 Traffic and wind direction indicators. In a manner authorized by...) A wind cone that visually provides surface wind direction information to pilots. For each runway...

  13. Application of Snowfall and Wind Statistics to Snow Transport Modeling for Snowdrift Control in Minnesota.

    NASA Astrophysics Data System (ADS)

    Shulski, Martha D.; Seeley, Mark W.

    2004-11-01

    Models were utilized to determine the snow accumulation season (SAS) and to quantify windblown snow for the purpose of snowdrift control for locations in Minnesota. The models require mean monthly temperature, snowfall, density of snow, and wind frequency distribution statistics. Temperature and precipitation data were obtained from local cooperative observing sites, and wind data came from Automated Surface Observing System (ASOS)/Automated Weather Observing System (AWOS) sites in the region. The temperature-based algorithm used to define the SAS reveals a geographic variability in the starting and ending dates of the season, which is determined by latitude and elevation. Mean seasonal snowfall shows a geographic distribution that is affected by topography and proximity to Lake Superior. Mean snowfall density also exhibits variability, with lower-density snow events displaced to higher-latitude positions. Seasonal wind frequencies show a strong bimodal distribution with peaks from the northwest and southeast vector direction, with an exception for locations in close proximity to the Lake Superior shoreline. In addition, for western and south-central Minnesota there is a considerably higher frequency of wind speeds above the mean snow transport threshold of 7 m s-1. As such, this area is more conducive to higher potential snow transport totals. Snow relocation coefficients in this area are in the range of 0.4 0.9, and, according to the empirical models used in this analysis, this range implies that actual snow transport is 40% 90% of the total potential in south-central and western areas of the state.


  14. Kansas Wind Energy Consortium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gruenbacher, Don

    2015-12-31

    This project addresses both fundamental and applied research problems that will help with problems defined by the DOE “20% Wind by 2030 Report”. In particular, this work focuses on increasing the capacity of small or community wind generation capabilities that would be operated in a distributed generation approach. A consortium (KWEC – Kansas Wind Energy Consortium) of researchers from Kansas State University and Wichita State University aims to dramatically increase the penetration of wind energy via distributed wind power generation. We believe distributed generation through wind power will play a critical role in the ability to reach and extend themore » renewable energy production targets set by the Department of Energy. KWEC aims to find technical and economic solutions to enable widespread implementation of distributed renewable energy resources that would apply to wind.« less

  15. Idealized models of the joint probability distribution of wind speeds

    NASA Astrophysics Data System (ADS)

    Monahan, Adam H.

    2018-05-01

    The joint probability distribution of wind speeds at two separate locations in space or points in time completely characterizes the statistical dependence of these two quantities, providing more information than linear measures such as correlation. In this study, we consider two models of the joint distribution of wind speeds obtained from idealized models of the dependence structure of the horizontal wind velocity components. The bivariate Rice distribution follows from assuming that the wind components have Gaussian and isotropic fluctuations. The bivariate Weibull distribution arises from power law transformations of wind speeds corresponding to vector components with Gaussian, isotropic, mean-zero variability. Maximum likelihood estimates of these distributions are compared using wind speed data from the mid-troposphere, from different altitudes at the Cabauw tower in the Netherlands, and from scatterometer observations over the sea surface. While the bivariate Rice distribution is more flexible and can represent a broader class of dependence structures, the bivariate Weibull distribution is mathematically simpler and may be more convenient in many applications. The complexity of the mathematical expressions obtained for the joint distributions suggests that the development of explicit functional forms for multivariate speed distributions from distributions of the components will not be practical for more complicated dependence structure or more than two speed variables.

  16. Dynamical downscaling of wind fields for wind power applications

    NASA Astrophysics Data System (ADS)

    Mengelkamp, H.-T.; Huneke, S.; Geyer, J.

    2010-09-01

    Dynamical downscaling of wind fields for wind power applications H.-T. Mengelkamp*,**, S. Huneke**, J, Geyer** *GKSS Research Center Geesthacht GmbH **anemos Gesellschaft für Umweltmeteorologie mbH Investments in wind power require information on the long-term mean wind potential and its temporal variations on daily to annual and decadal time scales. This information is rarely available at specific wind farm sites. Short-term on-site measurements usually are only performed over a 12 months period. These data have to be set into the long-term perspective through correlation to long-term consistent wind data sets. Preliminary wind information is often asked for to select favourable wind sites over regional and country wide scales. Lack of high-quality wind measurements at weather stations was the motivation to start high resolution wind field simulations The simulations are basically a refinement of global scale reanalysis data by means of high resolution simulations with an atmospheric mesoscale model using high-resolution terrain and land-use data. The 3-dimensional representation of the atmospheric state available every six hours at 2.5 degree resolution over the globe, known as NCAR/NCEP reanalysis data, forms the boundary conditions for continuous simulations with the non-hydrostatic atmospheric mesoscale model MM5. MM5 is nested in itself down to a horizontal resolution of 5 x 5 km². The simulation is performed for different European countries and covers the period 2000 to present and is continuously updated. Model variables are stored every 10 minutes for various heights. We have analysed the wind field primarily. The wind data set is consistent in space and time and provides information on the regional distribution of the long-term mean wind potential, the temporal variability of the wind potential, the vertical variation of the wind potential, and the temperature, and pressure distribution (air density). In the context of wind power these data are used • as an initial estimate of wind and energy potential • for the long-term correlation of wind measurements and turbine production data • to provide wind potential maps on a regional to country wide scale • to provide input data sets for simulation models • to determine the spatial correlation of the wind field in portfolio calculations • to calculate the wind turbine energy loss during prescribed downtimes • to provide information on the temporal variations of the wind and wind turbine energy production The time series of wind speed and wind direction are compared to measurements at offshore and onshore locations.

  17. [Analysis of acid rain characteristics of Lin'an Regional Background Station using long-term observation data].

    PubMed

    Li, Zheng-Quan; Ma, Hao; Mao, Yu-Ding; Feng, Tao

    2014-02-01

    Using long-term observation data of acid rain at Lin'an Regional Background Station (Lin'an RBS), this paper studied the interannual and monthly variations of acid rain, the reasons for the variations, and the relationships between acid rain and meteorological factors. The results showed that interannual variation of acid rain at Lin'an RBS had a general increasing trend in which there were two obvious intensifying processes and two distinct weakening processes, during the period ranging from 1985 to 2012. In last two decades, the monthly variation of acid rain at Lin'an RBS indicated that rain acidity and frequency of severe acid rain were increasing but the frequency of weak acid rain was decreasing when moving towards bilateral side months of July. Acid rain occurrence was affected by rainfall intensity, wind speed and wind direction. High frequency of severe acid rain and low frequency of weak acid rain were on days with drizzle, but high frequency of weak acid rain and low frequency of severe acid rain occurred on rainstorm days. With wind speed upgrading, the frequency of acid rain and the proportion of severe acid rain were declining, the pH value of precipitation was reducing too. Another character is that daily dominant wind direction of weak acid rain majorly converged in S-W section ,however that of severe acid rain was more likely distributed in N-E section. The monthly variation of acid rain at Lin'an RBS was mainly attributed to precipitation variation, the increasing and decreasing of monthly incoming wind from SSE-WSW and NWN-ENE sections of wind direction. The interannual variation of acid rain could be due to the effects of energy consumption raising and significant green policies conducted in Zhejiang, Jiangsu and Shanghai.

  18. An improved numerical model suggests potential differences of wind-blown sand between on Earth and Mars

    NASA Astrophysics Data System (ADS)

    Bo, T. L.; Fu, L. T.; Liu, L.; Zheng, X. J.

    2017-06-01

    The studies on wind-blown sand are crucial for understanding the change of climate and landscape on Mars. However, the disadvantages of the saltation models may result in unreliable predictions. In this paper, the saltation model has been improved from two main aspects, the aerodynamic surface roughness and the lift-off parameters. The aerodynamic surface roughness is expressed as function of particle size, wind strength, air density, and air dynamic viscosity. The lift-off parameters are improved through including the dependence of restitution coefficient on incident parameters and the correlation between saltating speed and angle. The improved model proved to be capable of reproducing the observed data well in both stable stage and evolution process. The modeling of wind-blown sand is promoted by all improved aspects, and the dependence of restitution coefficient on incident parameters could not be ignored. The constant restitution coefficient and uncorrelated lift-off parameter distributions would lead to both the overestimation of the sand transport rate and apparent surface roughness and the delay of evolution process. The distribution of lift-off speed and the evolution of lift-off parameters on Mars are found to be different from those on Earth. This may thus suggest that it is inappropriate to predict the evolution of wind-blown sand by using the lift-off velocity obtained in steady state saltation. And it also may be problematic to predict the wind-blown sand on Mars through applying the lift-off velocity obtained upon terrestrial conditions directly.

  19. The relative contribution of processes driving variability in flow, shear, and turbidity over a fringing coral reef: West Maui, Hawaii

    USGS Publications Warehouse

    Storlazzi, C.D.; Jaffe, B.E.

    2008-01-01

    High-frequency measurements of waves, currents and water column properties were made on a fringing coral reef off northwest Maui, Hawaii, for 15 months between 2001 and 2003 to aid in understanding the processes governing flow and turbidity over a range of time scales and their contributions to annual budgets. The summer months were characterized by consistent trade winds and small waves, and under these conditions high-frequency internal bores were commonly observed, there was little net flow or turbidity over the fore reef, and over the reef flat net flow was downwind and turbidity was high. When the trade winds waned or the wind direction deviated from the dominant trade wind orientation, strong alongshore flows occurred into the typically dominant wind direction and lower turbidity was observed across the reef. During the winter, when large storm waves impacted the study area, strong offshore flows and high turbidity occurred on the reef flat and over the fore reef. Over the course of a year, trade wind conditions resulted in the greatest net transport of turbid water due to relatively strong currents, moderate overall turbidity, and their frequent occurrence. Throughout the period of study, near-surface current directions over the fore reef varied on average by more than 41?? from those near the seafloor, and the orientation of the currents over the reef flat differed on average by more than 65?? from those observed over the fore reef. This shear occurred over relatively short vertical (order of meters) and horizontal (order of hundreds of meters) scales, causing material distributed throughout the water column, including the particles in suspension causing the turbidity (e.g. sediment or larvae) and/or dissolved nutrients and contaminants, to be transported in different directions under constant oceanographic and meteorologic forcing.

  20. Experimental heat transfer distribution on the SNAP 10A reactor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hopenfeld, J.; Toews, R.E.

    1965-01-29

    Heating distributions have been obtained for the SNAP 10A reactor by means of a thermal paint technique in the Rhodes and Bloxsom 60 in. hypersonic wind tunnel. Data and correlations are presented only for those reactor components where the ratio of the local heat transfer to that on the stagnation point of the calibration sphere was found to be independent of tunnel conditions. It is shown that these heating distributions can be applied directly to reentry conditions provided the thermally painted and the bare reactor surfaces are both catalytic to atom recombination.

  1. Voltage Impacts of Utility-Scale Distributed Wind

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Allen, A.

    2014-09-01

    Although most utility-scale wind turbines in the United States are added at the transmission level in large wind power plants, distributed wind power offers an alternative that could increase the overall wind power penetration without the need for additional transmission. This report examines the distribution feeder-level voltage issues that can arise when adding utility-scale wind turbines to the distribution system. Four of the Pacific Northwest National Laboratory taxonomy feeders were examined in detail to study the voltage issues associated with adding wind turbines at different distances from the sub-station. General rules relating feeder resistance up to the point of turbinemore » interconnection to the expected maximum voltage change levels were developed. Additional analysis examined line and transformer overvoltage conditions.« less

  2. Measurements of Wind Velocity and Direction Using Acoustic Reflection against Wall

    NASA Astrophysics Data System (ADS)

    Saito, Ikumi; Wakatsuki, Naoto; Mizutani, Koichi; Ishii, Masahisa; Okushima, Limi; Sase, Sadanori

    2008-05-01

    The measurements of wind velocity and direction using an acoustic reflection against a wall are described. We aim to measure the spatial mean wind velocity and direction to be used for an air-conditioning system. The proposed anemometer consists of a single wall and two pairs of loudspeakers (SP) and microphones (MIC) that form a triangular shape. Two sound paths of direct and reflected waves are available. One is that of the direct wave and the other is that of the wave reflected on the wall. The times of flights (TOFs) of the direct and reflected waves can be measured using a single MIC because there is a difference in the TOF between direct and reflected waves. By using these TOFs, wind velocity and direction can be calculated. In the experiments, the wind velocities and directions were measured in a wind tunnel by changing the wind velocity. The wind direction was examined by changing the setup of the transducers. The measured values using the proposed and conventional anemometers agreed with each other. By using the wave reflected against a wall, wind velocities and directions can be measured using only two pairs of transducers, while four pairs are required in the case of conventional anemometers.

  3. Magnetic discontinuities in magnetohydrodynamic turbulence and in the solar wind.

    PubMed

    Zhdankin, Vladimir; Boldyrev, Stanislav; Mason, Joanne; Perez, Jean Carlos

    2012-04-27

    Recent measurements of solar wind turbulence report the presence of intermittent, exponentially distributed angular discontinuities in the magnetic field. In this Letter, we study whether such discontinuities can be produced by magnetohydrodynamic (MHD) turbulence. We detect the discontinuities by measuring the fluctuations of the magnetic field direction, Δθ, across fixed spatial increments Δx in direct numerical simulations of MHD turbulence with an imposed uniform guide field B(0). A large region of the probability density function (pdf) for Δθ is found to follow an exponential decay, proportional to exp(-Δθ/θ(*)), with characteristic angle θ(*)≈(14°)(b(rms)/B(0))(0.65) for a broad range of guide-field strengths. We find that discontinuities observed in the solar wind can be reproduced by MHD turbulence with reasonable ratios of b(rms)/B(0). We also observe an excess of small angular discontinuities when Δx becomes small, possibly indicating an increasing statistical significance of dissipation-scale structures. The structure of the pdf in this case closely resembles the two-population pdf seen in the solar wind. We thus propose that strong discontinuities are associated with inertial-range MHD turbulence, while weak discontinuities emerge from dissipation-range turbulence. In addition, we find that the structure functions of the magnetic field direction exhibit anomalous scaling exponents, which indicates the existence of intermittent structures.

  4. Wind Tunnel Tests for Wind Pressure Distribution on Gable Roof Buildings

    PubMed Central

    2013-01-01

    Gable roof buildings are widely used in industrial buildings. Based on wind tunnel tests with rigid models, wind pressure distributions on gable roof buildings with different aspect ratios were measured simultaneously. Some characteristics of the measured wind pressure field on the surfaces of the models were analyzed, including mean wind pressure, fluctuating wind pressure, peak negative wind pressure, and characteristics of proper orthogonal decomposition results of the measured wind pressure field. The results show that extremely high local suctions often occur in the leading edges of longitudinal wall and windward roof, roof corner, and roof ridge which are the severe damaged locations under strong wind. The aspect ratio of building has a certain effect on the mean wind pressure coefficients, and the effect relates to wind attack angle. Compared with experimental results, the region division of roof corner and roof ridge from AIJ2004 is more reasonable than those from CECS102:2002 and MBMA2006.The contributions of the first several eigenvectors to the overall wind pressure distributions become much bigger. The investigation can offer some basic understanding for estimating wind load distribution on gable roof buildings and facilitate wind-resistant design of cladding components and their connections considering wind load path. PMID:24082851

  5. Solar wind iron abundance variations at solar wind speeds up to 600 km s sup -1, 1972 to 1976

    NASA Technical Reports Server (NTRS)

    Mitchell, D. G.; Roelof, E. C.; Bame, S. J.

    1982-01-01

    The Fe/H ratios in the peaks of high speed streams (HSS) were analyzed during the decline of Solar Cycle 20 and the following minimum (October 1972 to December 1976). The response of the 50 to 200 keV ion channel of the APL/JHU energetic particle experiment (EPE) on IMP-7 and 8 was utilized to solar wind iron ions at high solar wind speeds (V or = 600 km/sec). Fe measurements with solar wind H and He parameters were compared from the Los Alamos National Laboratory (LANL) instruments on the same spacecraft. In general, the Fe distribution parameters (bulk velocity, flow direction, temperature) are found to be similar to the LANL He parameters. Although the average Fe/H ration in many steady HSS peaks agrees within observational uncertainties with the nominal coronal ratio of 4.7 x 0.00001, abundance variations of a factor of up to 6 are obtained across a given coronal-hole associated HSS.

  6. Polar rain: Solar coronal electrons in the Earth's magnetosphere

    NASA Technical Reports Server (NTRS)

    Fairfield, D. H.; Scudder, J. D.

    1984-01-01

    Low energy electron measurements collected by ISEE 1 reveal the frequent presence of field-aligned fluxes of few hundred eV electrons in he geomagnetic tail lobes. In the northern tail lobe these electrons are most prominent when the interplanetary magnetic field is directed away from the Sun. This characteristic helps identify the electrons as polar rain electrons. By mapping the tail lobe velocity distribution function into the solar wind, previous suggestions that the polar rain is indeed of solar wind origin and is due to the access of electrons to the magnetotail lobe were confirmed. It was demonstrated that the moe energetic component of the polar rain is composed of electrons from the solar wind strahl - a field-aligned component of the solar wind which is difficult to measure but which is thought to be caused by the collisionless transit of hundred eV electrons from the inner solar corona to 1 AU.

  7. A multiple-fan active control wind tunnel for outdoor wind speed and direction simulation

    NASA Astrophysics Data System (ADS)

    Wang, Jia-Ying; Meng, Qing-Hao; Luo, Bing; Zeng, Ming

    2018-03-01

    This article presents a new type of active controlled multiple-fan wind tunnel. The wind tunnel consists of swivel plates and arrays of direct current fans, and the rotation speed of each fan and the shaft angle of each swivel plate can be controlled independently for simulating different kinds of outdoor wind fields. To measure the similarity between the simulated wind field and the outdoor wind field, wind speed and direction time series of two kinds of wind fields are recorded by nine two-dimensional ultrasonic anemometers, and then statistical properties of the wind signals in different time scales are analyzed based on the empirical mode decomposition. In addition, the complexity of wind speed and direction time series is also investigated using multiscale entropy and multivariate multiscale entropy. Results suggest that the simulated wind field in the multiple-fan wind tunnel has a high degree of similarity with the outdoor wind field.

  8. Wind turbine wake characterization from temporally disjunct 3-D measurements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Doubrawa, Paula; Barthelmie, Rebecca J.; Wang, Hui

    Scanning LiDARs can be used to obtain three-dimensional wind measurements in and beyond the atmospheric surface layer. In this work, metrics characterizing wind turbine wakes are derived from LiDAR observations and from large-eddy simulation (LES) data, which are used to recreate the LiDAR scanning geometry. The metrics are calculated for two-dimensional planes in the vertical and cross-stream directions at discrete distances downstream of a turbine under single-wake conditions. The simulation data are used to estimate the uncertainty when mean wake characteristics are quantified from scanning LiDAR measurements, which are temporally disjunct due to the time that the instrument takes tomore » probe a large volume of air. Based on LES output, we determine that wind speeds sampled with the synthetic LiDAR are within 10% of the actual mean values and that the disjunct nature of the scan does not compromise the spatial variation of wind speeds within the planes. We propose scanning geometry density and coverage indices, which quantify the spatial distribution of the sampled points in the area of interest and are valuable to design LiDAR measurement campaigns for wake characterization. Lastly, we find that scanning geometry coverage is important for estimates of the wake center, orientation and length scales, while density is more important when seeking to characterize the velocity deficit distribution.« less

  9. Wind turbine wake characterization from temporally disjunct 3-D measurements

    DOE PAGES

    Doubrawa, Paula; Barthelmie, Rebecca J.; Wang, Hui; ...

    2016-11-10

    Scanning LiDARs can be used to obtain three-dimensional wind measurements in and beyond the atmospheric surface layer. In this work, metrics characterizing wind turbine wakes are derived from LiDAR observations and from large-eddy simulation (LES) data, which are used to recreate the LiDAR scanning geometry. The metrics are calculated for two-dimensional planes in the vertical and cross-stream directions at discrete distances downstream of a turbine under single-wake conditions. The simulation data are used to estimate the uncertainty when mean wake characteristics are quantified from scanning LiDAR measurements, which are temporally disjunct due to the time that the instrument takes tomore » probe a large volume of air. Based on LES output, we determine that wind speeds sampled with the synthetic LiDAR are within 10% of the actual mean values and that the disjunct nature of the scan does not compromise the spatial variation of wind speeds within the planes. We propose scanning geometry density and coverage indices, which quantify the spatial distribution of the sampled points in the area of interest and are valuable to design LiDAR measurement campaigns for wake characterization. Lastly, we find that scanning geometry coverage is important for estimates of the wake center, orientation and length scales, while density is more important when seeking to characterize the velocity deficit distribution.« less

  10. Explicit Two-Phase Modeling of the Initiation of Saltation over Heterogeneous Sand Beds

    NASA Astrophysics Data System (ADS)

    Turney, F. A.; Kok, J. F.; Martin, R. L.; Burr, D. M.; Bridges, N.; Ortiz, C. P.; Smith, J. K.; Emery, J. P.; Van Lew, J. T.

    2016-12-01

    The initiation of aeolian sediment transport is key in understanding the geomorphology of arid landscapes and emission of mineral dust into the atmosphere. Despite its importance, the process of saltation initiation remains poorly understood, and current models are highly simplified. Previous models of the initiation of aeolian saltation have assumed the particle bed to be monodisperse and homogeneous in arrangement, ignoring the distribution of particle thresholds created by different bed geometries and particle sizes. In addition, mean wind speeds are often used in place of a turbulent wind field, ignoring the distribution of wind velocities at the particle level. Furthermore, the transition from static bed to steady state saltation is often modeled as resulting directly from fluid lifting, while in reality particles need to hop and roll along the surface before attaining enough height and momentum to initiate the cascade of particle splashes that characterizes saltation. We simulate the initiation of saltation with a coupled two-phase CFD-DEM model that overcomes the shortcomings of previous models by explicitly modeling particle-particle and particle-fluid interactions at the particle scale. We constrain our model against particle trajectories taken from high speed video of initiation at the Titan Wind Tunnel at NASA Ames. Results give us insight into the probability that saltation will be initiated, given stochastic variations in bed properties and wind velocity.

  11. Observations of particle extinction, PM2.5 mass concentration profile and flux in north China based on mobile lidar technique

    NASA Astrophysics Data System (ADS)

    Lv, Lihui; Liu, Wenqing; Zhang, Tianshu; Chen, Zhenyi; Dong, Yunsheng; Fan, Guangqiang; Xiang, Yan; Yao, Yawei; Yang, Nan; Chu, Baolin; Teng, Man; Shu, Xiaowen

    2017-09-01

    Fine particle with diameter <2.5 μm (PM2.5) have important direct and indirect effects on human life and activities. However, the studies of fine particle were limited by the lack of monitoring data obtained with multiple fixed site sampling strategies. Mobile monitoring has provided a means for broad measurement of fine particles. In this research, the potential use of mobile lidar to map the distribution and transport of fine particles was discussed. The spatial and temporal distributions of particle extinction, PM2.5 mass concentration and regional transport flux of fine particle in the planetary boundary layer were investigated with the use of vehicle-based mobile lidar and wind field data from north China. Case studies under different pollution levels in Beijing were presented to evaluate the contribution of regional transport. A vehicle-based mobile lidar system was used to obtain the spatial and temporal distributions of particle extinction in the measurement route. Fixed point lidar and a particulate matter sampler were operated next to each other at the University of Chinese Academy of Science (UCAS) in Beijing to determine the relationship between the particle extinction coefficient and PM2.5 mass concentration. The correlation coefficient (R2) between the particle extinction coefficient and PM2.5 mass concentration was found to be over 0.8 when relative humidity (RH) was less than 90%. A mesoscale meteorological model, the Weather Research and Forecasting (WRF) model, was used to obtain profiles of the horizontal wind speed, wind direction and relative humidity. A vehicle-based mobile lidar technique was applied to estimate transport flux based on the PM2.5 profile and vertical profile of wind data. This method was applicable when hygroscopic growth can be neglected (relatively humidity<90%). Southwest was found to be the main pathway of Beijing during the experiments.

  12. Minimum Altitude-Loss Soaring in a Specified Vertical Wind Distribution

    NASA Technical Reports Server (NTRS)

    Pierson, B. L.; Chen, I.

    1979-01-01

    Minimum altitude-loss flight of a sailplane through a given vertical wind distribution is discussed. The problem is posed as an optimal control problem, and several numerical solutions are obtained for a sinusoidal wind distribution.

  13. An Anomalous Composition in Slow Solar Wind as a Signature of Magnetic Reconnection in its Source Region

    NASA Astrophysics Data System (ADS)

    Zhao, L.; Landi, E.; Lepri, S. T.; Kocher, M.; Zurbuchen, T. H.; Fisk, L. A.; Raines, J. M.

    2017-01-01

    In this paper, we study a subset of slow solar winds characterized by an anomalous charge state composition and ion temperatures compared to average solar wind distributions, and thus referred to as an “Outlier” wind. We find that although this wind is slower and denser than normal slow wind, it is accelerated from the same source regions (active regions and quiet-Sun regions) as the latter and its occurrence rate depends on the solar cycle. The defining property of the Outlier wind is that its charge state composition is the same as that of normal slow wind, with the only exception being a very large decrease in the abundance of fully charged species (He2+, C6+, N7+, O8+, Mg12+), resulting in a significant depletion of the He and C element abundances. Based on these observations, we suggest three possible scenarios for the origin of this wind: (1) local magnetic waves preferentially accelerating non-fully stripped ions over fully stripped ions from a loop opened by reconnection; (2) depleted fully stripped ions already contained in the corona magnetic loops before they are opened up by reconnection; or (3) fully stripped ions depleted by Coulomb collision after magnetic reconnection in the solar corona. If any one of these three scenarios is confirmed, the Outlier wind represents a direct signature of slow wind release through magnetic reconnection.

  14. Turbulence Impact on Wind Turbines: Experimental Investigations on a Wind Turbine Model

    NASA Astrophysics Data System (ADS)

    Al-Abadi, A.; Kim, Y. J.; Ertunç, Ö.; Delgado, A.

    2016-09-01

    Experimental investigations have been conducted by exposing an efficient wind turbine model to different turbulence levels in a wind tunnel. Nearly isotropic turbulence is generated by using two static squared grids: fine and coarse one. In addition, the distance between the wind-turbine and the grid is adjusted. Hence, as the turbulence decays in the flow direction, the wind-turbine is exposed to turbulence with various energy and length scale content. The developments of turbulence scales in the flow direction at various Reynolds numbers and the grid mesh size are measured. Those measurements are conducted with hot-wire anemometry in the absence of the wind-turbine. Detailed measurements and analysis of the upstream and downstream velocities, turbulence intensity and spectrum distributions are done. Performance measurements are conducted with and without turbulence grids and the results are compared. Performance measurements are conducted with an experimental setup that allow measuring of torque, rotational speed from the electrical parameters. The study shows the higher the turbulence level, the higher the power coefficient. This is due to many reasons. First, is the interaction of turbulence scales with the blade surface boundary layer, which in turn delay the stall. Thus, suppressing the boundary layer and preventing it from separation and hence enhancing the aerodynamics characteristics of the blade. In addition, higher turbulence helps in damping the tip vortices. Thus, reduces the tip losses. Adding winglets to the blade tip will reduce the tip vortex. Further investigations of the near and far wake-surrounding intersection are performed to understand the energy exchange and the free stream entrainment that help in retrieving the velocity.

  15. Effects of Combined Stellar Feedback on Star Formation in Stellar Clusters

    NASA Astrophysics Data System (ADS)

    Wall, Joshua Edward; McMillan, Stephen; Pellegrino, Andrew; Mac Low, Mordecai; Klessen, Ralf; Portegies Zwart, Simon

    2018-01-01

    We present results of hybrid MHD+N-body simulations of star cluster formation and evolution including self consistent feedback from the stars in the form of radiation, winds, and supernovae from all stars more massive than 7 solar masses. The MHD is modeled with the adaptive mesh refinement code FLASH, while the N-body computations are done with a direct algorithm. Radiation is modeled using ray tracing along long characteristics in directions distributed using the HEALPIX algorithm, and causes ionization and momentum deposition, while winds and supernova conserve momentum and energy during injection. Stellar evolution is followed using power-law fits to evolution models in SeBa. We use a gravity bridge within the AMUSE framework to couple the N-body dynamics of the stars to the gas dynamics in FLASH. Feedback from the massive stars alters the structure of young clusters as gas ejection occurs. We diagnose this behavior by distinguishing between fractal distribution and central clustering using a Q parameter computed from the minimum spanning tree of each model cluster. Global effects of feedback in our simulations will also be discussed.

  16. [Distribution of Regional Pollution and the Characteristics of Vertical Wind Field in the Pearl River Delta].

    PubMed

    Liu, Jian; Wu, Dui; Fan, Shao-jia

    2015-11-01

    Based on the data of hourly PM2.5 concentration of 56 environmental monitoring stations and 9 cities over the Pearl River Delta (PRD) region, the distributions of PM2.5 pollution in PRD region were analyzed by systematic cluster analysis and correlational analysis. It was found that the regional pollution could be divided into 3 types. The first type was the pollution occurred in Dongguan, Guangzhou, Foshan and Jiangmen (I type), and the second type was the pollution occurred in Zhongshan, Zhuhai, Shenzhen and Huizhou (II type), while the last type was the pollution only occurred in Zhaoqing (III type). During the study period, they occurred 47, 7 and 128 days, respectively. During events of pollution type I, except Zhuhai, Shenzhen and Huizhou, the PM2.5 concentrations of other cities were generally high, while the PM2.5 concentration in whole PRD region was over 50.0 μg x m(-3) during events of pollution type II. The regions with higher PM2.5 concentration was mainly concentrated in Zhaoqing, Guangzhou and Foshan during events of pollution type III. The wind data from 4 wind profile radars located in PRD region was used to study the characteristics of vertical wind field of these 3 pollution types. It was found that the wind profiles of type I and III were similar that low layer and high layer were controlled by the southeast wind and the southwest wind, respectively. For type II, the low layer and high layer were influenced by northerly wind and westerly wind, respectively. Compared with other types, the wind speed and ventilation index of type II. were much higher, and the variation of wind direction at lower-middle-layer was much smaller. When PRD region was influenced by northerly winds, the PM2.5 concentration in the entire PRD region was higher. When PRD region was controlled by southeast wind, the PM2.5 concentrations of I and II areas were relatively lower, while the pollution in III area was relatively heavier.

  17. Supersonic aerodynamic characteristics of an advanced F-16 derivative aircraft configuration

    NASA Technical Reports Server (NTRS)

    Fox, Mike C.; Forrest, Dana K.

    1993-01-01

    A supersonic wind tunnel investigation was conducted in the NASA Langley Unitary Plan Wind Tunnel on an advanced derivative configuration of the United States Air Force F-16 fighter. Longitudinal and lateral directional force and moment data were obtained at Mach numbers of 1.60 to 2.16 to evaluate basic performance parameters and control effectiveness. The aerodynamic characteristics for the F-16 derivative model were compared with the data obtained for the F-16C model and also with a previously tested generic wing model that features an identical plan form shape and similar twist distribution.

  18. Frequency-wavenumber processing for infrasound distributed arrays.

    PubMed

    Costley, R Daniel; Frazier, W Garth; Dillion, Kevin; Picucci, Jennifer R; Williams, Jay E; McKenna, Mihan H

    2013-10-01

    The work described herein discusses the application of a frequency-wavenumber signal processing technique to signals from rectangular infrasound arrays for detection and estimation of the direction of travel of infrasound. Arrays of 100 sensors were arranged in square configurations with sensor spacing of 2 m. Wind noise data were collected at one site. Synthetic infrasound signals were superposed on top of the wind noise to determine the accuracy and sensitivity of the technique with respect to signal-to-noise ratio. The technique was then applied to an impulsive event recorded at a different site. Preliminary results demonstrated the feasibility of this approach.

  19. Martian aeolian features and deposits - Comparisons with general circulation model results

    NASA Astrophysics Data System (ADS)

    Greeley, R.; Skypeck, A.; Pollack, J. B.

    1993-02-01

    The relationships between near-surface winds and the distribution of wind-related features are investigated by means of a general circulation model of Mars' atmosphere. Predictions of wind surface stress as a function of season and dust optical depth are used to investigate the distribution and orientation of wind streaks, yardangs, and rock abundance on the surface. The global distribution of rocks on the surface correlates well with predicted wind stress, particularly during the dust storm season. The rocky areas are sites of strong winds, suggesting that fine material is swept away by the wind, leaving rocks and coarser material behind.

  20. Volumetric LiDAR scanning of a wind turbine wake and comparison with a 3D analytical wake model

    NASA Astrophysics Data System (ADS)

    Carbajo Fuertes, Fernando; Porté-Agel, Fernando

    2016-04-01

    A correct estimation of the future power production is of capital importance whenever the feasibility of a future wind farm is being studied. This power estimation relies mostly on three aspects: (1) a reliable measurement of the wind resource in the area, (2) a well-established power curve of the future wind turbines and, (3) an accurate characterization of the wake effects; the latter being arguably the most challenging one due to the complexity of the phenomenon and the lack of extensive full-scale data sets that could be used to validate analytical or numerical models. The current project addresses the problem of obtaining a volumetric description of a full-scale wake of a 2MW wind turbine in terms of velocity deficit and turbulence intensity using three scanning wind LiDARs and two sonic anemometers. The characterization of the upstream flow conditions is done by one scanning LiDAR and two sonic anemometers, which have been used to calculate incoming vertical profiles of horizontal wind speed, wind direction and an approximation to turbulence intensity, as well as the thermal stability of the atmospheric boundary layer. The characterization of the wake is done by two scanning LiDARs working simultaneously and pointing downstream from the base of the wind turbine. The direct LiDAR measurements in terms of radial wind speed can be corrected using the upstream conditions in order to provide good estimations of the horizontal wind speed at any point downstream of the wind turbine. All this data combined allow for the volumetric reconstruction of the wake in terms of velocity deficit as well as turbulence intensity. Finally, the predictions of a 3D analytical model [1] are compared to the 3D LiDAR measurements of the wind turbine. The model is derived by applying the laws of conservation of mass and momentum and assuming a Gaussian distribution for the velocity deficit in the wake. This model has already been validated using high resolution wind-tunnel measurements and large-eddy simulation (LES) data of miniature wind turbine wakes, as well as LES data of real-scale wind-turbine wakes, but not yet with full-scale wind turbine wake measurements. [1] M. Bastankhah and F. Porté-Agel. A New Analytical Model For Wind-Turbine Wakes, in Renewable Energy, vol. 70, p. 116-123, 2014.

  1. Distribution and sources of air pollutants in the North China Plain based on on-road mobile measurements

    NASA Astrophysics Data System (ADS)

    Zhu, Yi; Zhang, Jiping; Wang, Junxia; Chen, Wenyuan; Han, Yiqun; Ye, Chunxiang; Li, Yingruo; Liu, Jun; Zeng, Limin; Wu, Yusheng; Wang, Xinfeng; Wang, Wenxing; Chen, Jianmin; Zhu, Tong

    2016-10-01

    The North China Plain (NCP) has been experiencing severe air pollution problems with rapid economic growth and urbanisation. Many field and model studies have examined the distribution of air pollutants in the NCP, but convincing results have not been achieved, mainly due to a lack of direct measurements of pollutants over large areas. Here, we employed a mobile laboratory to observe the main air pollutants in a large part of the NCP from 11 June to 15 July 2013. High median concentrations of sulfur dioxide (SO2) (12 ppb), nitrogen oxides (NOx) (NO + NO2; 452 ppb), carbon monoxide (CO) (956 ppb), black carbon (BC; 5.5 µg m-3) and ultrafine particles (28 350 cm-3) were measured. Most of the high values, i.e. 95 percentile concentrations, were distributed near large cities, suggesting the influence of local emissions. In addition, we analysed the regional transport of SO2 and CO, relatively long-lived pollutants, based on our mobile observations together with wind field and satellite data analyses. Our results suggested that, for border areas of the NCP, wind from outside this area would have a diluting effect on pollutants, while south winds would bring in pollutants that have accumulated during transport through other parts of the NCP. For the central NCP, the concentrations of pollutants were likely to remain at high levels, partly due to the influence of regional transport by prevalent south-north winds over the NCP and partly by local emissions.

  2. Comparisons of some scattering theories with recent scatterometer measurements. [sea roughness radar model

    NASA Technical Reports Server (NTRS)

    Fung, A. K.; Dome, G.; Moore, R. K.

    1977-01-01

    The paper compares the predictions of two different types of sea scatter theories with recent scatterometer measurements which indicate the variations of the backscattering coefficient with polarization, incident angle, wind speed, and azimuth angle. Wright's theory (1968) differs from that of Chan and Fung (1977) in two major aspects: (1) Wright uses Phillips' sea spectrum (1966) while Chan and Fung use that of Mitsuyasu and Honda, and (2) Wright uses a modified slick sea slope distribution by Cox and Munk (1954) while Chan and Fung use the slick sea slope distribution of Cox and Munk defined with respect to the plane perpendicular to the look direction. Satisfactory agreements between theory and experimental data are obtained when Chan and Fung's model is used to explain the wind and azimuthal dependence of the scattering coefficient.

  3. Near-surface wind speed statistical distribution: comparison between ECMWF System 4 and ERA-Interim

    NASA Astrophysics Data System (ADS)

    Marcos, Raül; Gonzalez-Reviriego, Nube; Torralba, Verónica; Cortesi, Nicola; Young, Doo; Doblas-Reyes, Francisco J.

    2017-04-01

    In the framework of seasonal forecast verification, knowing whether the characteristics of the climatological wind speed distribution, simulated by the forecasting systems, are similar to the observed ones is essential to guide the subsequent process of bias adjustment. To bring some light about this topic, this work assesses the properties of the statistical distributions of 10m wind speed from both ERA-Interim reanalysis and seasonal forecasts of ECMWF system 4. The 10m wind speed distribution has been characterized in terms of the four main moments of the probability distribution (mean, standard deviation, skewness and kurtosis) together with the coefficient of variation and goodness of fit Shapiro-Wilks test, allowing the identification of regions with higher wind variability and non-Gaussian behaviour at monthly time-scales. Also, the comparison of the predicted and observed 10m wind speed distributions has been measured considering both inter-annual and intra-seasonal variability. Such a comparison is important in both climate research and climate services communities because it provides useful climate information for decision-making processes and wind industry applications.

  4. Rapid Temporal Changes of Boundary Layer Winds

    NASA Technical Reports Server (NTRS)

    Merceret, Francis J.

    2005-01-01

    The statistical distribution of the magnitude of the vector wind change over 0.25, 0.5, 1 and 2-h periods based on data from November 1999 through August 2001 is presented. The distributions of the 2-h u and v component wind changes are also presented for comparison. The wind changes at altitudes from 500 to 3000 m were measured using the Eastern Range network of five 915 MHz Doppler radar wind profilers. Quality controlled profiles were produced every 15 minutes for up to sixty gates, each representing 101 m in altitude over the range from 130 m to 6089 m. Five levels, each constituting three consecutive gates, were selected for analysis because of their significance to aerodynamic loads during the Space Shuttle ascent roll maneuver. The distribution of the magnitude of the vector wind change is found to be lognormal consistent with earlier work in the mid-troposphere. The parameters of the distribution vary with time lag, season and altitude. The component wind changes are symmetrically distributed with near-zero means, but the kurtosis coefficient is larger than that of a Gaussian distribution.

  5. Effect of Nock-Ten Tropical Cyclone on Atmospheric Condition and Distribution of Rainfall in Gorontalo, Ternate, and Sorong Regions

    NASA Astrophysics Data System (ADS)

    Lumbangaol, A.; Serhalawan, Y. R.; Endarwin

    2017-12-01

    Nock-Ten Tropical Cyclone is an atmospheric phenomenon that has claimed many lives in the Philippines. This super-typhoon cyclone grows in the Western Pacific Ocean, North of Papua. With the area directly contiguous to the trajectory of Nock-Ten Tropical Cyclone growth, it is necessary to study about the growth activity of this tropical cyclones in Indonesia, especially in 3 different areas, namely Gorontalo, Ternate, and Sorong. This study was able to determine the impact of Nock-Ten Tropical Cyclone on atmospheric dynamics and rainfall growth distribution based on the stages of tropical cyclone development. The data used in this study include Himawari-8 IR channel satellite data to see the development stage and movement track of Tropical Cyclone Nock-Ten, rainfall data from TRMM 3B42RT satellite product to know the rain distribution in Gorontalo, Ternate, and Sorong, and reanalysis data from ECMWF such as wind direction and speed, vertical velocity, and relative vorticity to determine atmospheric conditions at the time of development of the Nock-Ten Tropical Cyclone. The results of data analysis processed using GrADS application showed the development stage of Nock-Ten Tropical Cyclone has effect of changes in atmospheric dynamics condition and wind direction pattern. In addition, tropical cyclones also contribute to very light to moderate scale intensity during the cycle period of tropical cyclone development in all three regions.

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhao, L.; Landi, E.; Lepri, S. T.

    In this paper, we study a subset of slow solar winds characterized by an anomalous charge state composition and ion temperatures compared to average solar wind distributions, and thus referred to as an “Outlier” wind. We find that although this wind is slower and denser than normal slow wind, it is accelerated from the same source regions (active regions and quiet-Sun regions) as the latter and its occurrence rate depends on the solar cycle. The defining property of the Outlier wind is that its charge state composition is the same as that of normal slow wind, with the only exceptionmore » being a very large decrease in the abundance of fully charged species (He{sup 2+}, C{sup 6+}, N{sup 7+}, O{sup 8+}, Mg{sup 12+}), resulting in a significant depletion of the He and C element abundances. Based on these observations, we suggest three possible scenarios for the origin of this wind: (1) local magnetic waves preferentially accelerating non-fully stripped ions over fully stripped ions from a loop opened by reconnection; (2) depleted fully stripped ions already contained in the corona magnetic loops before they are opened up by reconnection; or (3) fully stripped ions depleted by Coulomb collision after magnetic reconnection in the solar corona. If any one of these three scenarios is confirmed, the Outlier wind represents a direct signature of slow wind release through magnetic reconnection.« less

  7. Reversible solid oxide fuel cell for natural gas/renewable hybrid power generation systems

    NASA Astrophysics Data System (ADS)

    Luo, Yu; Shi, Yixiang; Zheng, Yi; Cai, Ningsheng

    2017-02-01

    Renewable energy (RE) is expected to be the major part of the future energy. Presently, the intermittence and fluctuation of RE lead to the limitation of its penetration. Reversible solid oxide fuel cell (RSOFC) as the energy storage device can effectively store the renewable energy and build a bidirectional connection with natural gas (NG). In this paper, the energy storage strategy was designed to improve the RE penetration and dynamic operation stability in a distributed system coupling wind generators, internal combustion engine, RSOFC and lithium-ion batteries. By compromising the relative deviation of power supply and demand, RE penetration, system efficiency and capacity requirement, the strategy that no more than 36% of the maximum wind power output is directly supplied to users and the other is stored by the combination of battery and reversible solid oxide fuel cell is optimal for the distributed system. In the case, the RE penetration reached 56.9% and the system efficiency reached 55.2%. The maximum relative deviation of power supply and demand is also lower than 4%, which is significantly superior to that in the wind curtailment case.

  8. DUST DYNAMICS IN PROTOPLANETARY DISK WINDS DRIVEN BY MAGNETOROTATIONAL TURBULENCE: A MECHANISM FOR FLOATING DUST GRAINS WITH CHARACTERISTIC SIZES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miyake, Tomoya; Suzuki, Takeru K.; Inutsuka, Shu-ichiro, E-mail: miyake.tomoya@e.mbox.nagoya-u.ac.jp, E-mail: stakeru@nagoya-u.jp

    We investigate the dynamics of dust grains of various sizes in protoplanetary disk winds driven by magnetorotational turbulence, by simulating the time evolution of the dust grain distribution in the vertical direction. Small dust grains, which are well-coupled to the gas, are dragged upward with the upflowing gas, while large grains remain near the midplane of a disk. Intermediate-size grains float near the sonic point of the disk wind located at several scale heights from the midplane, where the grains are loosely coupled to the background gas. For the minimum mass solar nebula at 1 au, dust grains with sizemore » of 25–45 μm float around 4 scale heights from the midplane. Considering the dependence on the distance from the central star, smaller-size grains remain only in an outer region of the disk, while larger-size grains are distributed in a broader region. We also discuss the implications of our result for observations of dusty material around young stellar objects.« less

  9. Bulk properties and velocity distributions of water group ions at Comet Halley - Giotto measurements

    NASA Astrophysics Data System (ADS)

    Coates, A. J.; Wilken, B.; Johnstone, A. D.; Jockers, K.; Glassmeier, K.-H.; Huddleston, D. E.

    1990-07-01

    In the region upstream of Comet Halley, pickup heavy ions of cometary origin were directly observed by the implanted ion spectrometer on Giotto. Diffusion of this population in pitch angle and in energy, during the approach to the comet and on the outbound leg is discussed. The two data sets are compared and qualitative ideas on scattering timescales are inferred. In addition the bulk parameters of these distributions have been computed and a comparison of the observed speed in the solar wind frame and the observed density with expectations is presented. Pitch angle scattering occurs more slowly than expected with filled shells appearing at 2,500,000 km, and significant energy diffusion does not occur until the bow shock region. Also the shell distributions downstream of the shock flow at the bispherical bulk speed (related to the Alfven speed) along the magnetic field with respect to the solar wind in accordance with conservation of energy between the pickup ions and the wave turbulence.

  10. Applications of synergistic combination of remote sensing and in-situ measurements on urban monitoring of air quality

    NASA Astrophysics Data System (ADS)

    Diaz, Adrian; Dominguez, Victor; Campmier, Mark; Wu, Yonghua; Arend, Mark; Vladutescu, Daniela Viviana; Gross, Barry; Moshary, Fred

    2017-08-01

    In this study, multiple remote sensing and in-situ measurements are combined in order to obtain a comprehensive understanding of the aerosol distribution in New York City. Measurement of the horizontal distribution of aerosols is performed using a scanning eye-safe elastic-backscatter micro-pulse lidar. Vertical distribution of aerosols is measured with a co-located ceilometer. Furthermore, our analysis also includes in-situ measurements of particulate matter and wind speed and direction. These observations combined show boundary layer dynamics as well as transport and inhomogeneous spatial distribution of aerosols, which are of importance for air quality monitoring.

  11. Elemental composition and size distribution of particulates in Cleveland, Ohio

    NASA Technical Reports Server (NTRS)

    King, R. B.; Fordyce, J. S.; Neustadter, H. E.; Leibecki, H. F.

    1975-01-01

    Measurements were made of the elemental particle size distribution at five contrasting urban environments with different source-type distributions in Cleveland, Ohio. Air quality conditions ranged from normal to air pollution alert levels. A parallel network of high-volume cascade impactors (5-state) were used for simultaneous sampling on glass fiber surfaces for mass determinations and on Whatman-41 surfaces for elemental analysis by neutron activation for 25 elements. The elemental data are assessed in terms of distribution functions and interrelationships and are compared between locations as a function of resultant wind direction in an attempt to relate the findings to sources.

  12. Elemental composition and size distribution of particulates in Cleveland, Ohio

    NASA Technical Reports Server (NTRS)

    Leibecki, H. F.; King, R. B.; Fordyce, J. S.; Neustadter, H. E.

    1975-01-01

    Measurements have been made of the elemental particle size distribution at five contrasting urban environments with different source-type distributions in Cleveland, Ohio. Air quality conditions ranged from normal to air pollution alert levels. A parallel network of high-volume cascade impactors (5-stage) were used for simultaneous sampling on glass fiber surfaces for mass determinations and on Whatman-41 surfaces for elemental analysis by neutron activation for 25 elements. The elemental data are assessed in terms of distribution functions and interrelationships and are compared between locations as a function of resultant wind direction in an attempt to relate the findings to sources.

  13. Vlasov Simulations of Multi-ion Plasma Turbulence in the Solar Wind

    NASA Astrophysics Data System (ADS)

    Perrone, D.; Valentini, F.; Servidio, S.; Dalena, S.; Veltri, P.

    2013-01-01

    Hybrid Vlasov-Maxwell simulations are employed to investigate the role of kinetic effects in a two-dimensional turbulent multi-ion plasma, composed of protons, alpha particles, and fluid electrons. In the typical conditions of the solar-wind environment, and in situations of decaying turbulence, the numerical results show that the velocity distribution functions of both ion species depart from the typical configuration of thermal equilibrium. These non-Maxwellian features are quantified through the statistical analysis of the temperature anisotropy, for both protons and alpha particles, in the reference frame given by the local magnetic field. Anisotropy is found to be higher in regions of high magnetic stress. Both ion species manifest a preferentially perpendicular heating, although the anisotropy is more pronounced for the alpha particles, according to solar wind observations. The anisotropy of the alpha particle, moreover, is correlated to the proton anisotropy and also depends on the local differential flow between the two species. Evident distortions of the particle distribution functions are present, with the production of bumps along the direction of the local magnetic field. The physical phenomenology recovered in these numerical simulations reproduces very common measurements in the turbulent solar wind, suggesting that the multi-ion Vlasov model constitutes a valid approach to understanding the nature of complex kinetic effects in astrophysical plasmas.

  14. Statistics of bow shock nonuniformity.

    NASA Technical Reports Server (NTRS)

    Greenstadt, E. W.

    1973-01-01

    The statistical occurrence of pulsation or oblique structure about the earth's generally nonuniform bow shock is estimated at selected points by combining a three-dimensional distribution of interplanetary field directions obtained for a six-day solar wind sector with an index of local pulsation geometry. The result, obtained with a pulsation index of 1.6, is a set of distribution patterns showing the dependence of the pulsation index on the field orientation at the selected shock loci for this value of the index.

  15. Application of laser velocimetry to aircraft wake-vortex measurements

    NASA Technical Reports Server (NTRS)

    Ciffone, D. L.; Orloff, K. L.

    1977-01-01

    The theory and use of a laser velocimeter that makes simultaneous measurements of vertical and longitudinal velocities while rapidly scanning a flow field laterally are described, and its direct application to trailing wake-vortex research is discussed. Pertinent measurements of aircraft wake-vortex velocity distributions obtained in a wind tunnel and water towing tank are presented. The utility of the velocimeter to quantitatively assess differences in wake velocity distributions due to wake dissipating devices and span loading changes on the wake-generating model is also demonstrated.

  16. The Acceleration of Thermal Protons and Minor Ions at a Quasi-Parallel Interplanetary Shock

    NASA Astrophysics Data System (ADS)

    Giacalone, J.; Lario, D.; Lepri, S. T.

    2017-12-01

    We compare the results from self-consistent hybrid simulations (kinetic ions, massless fluid electrons) and spacecraft observations of a strong, quasi-parallel interplanetary shock that crossed the Advanced Composition Explorer (ACE) on DOY 94, 2001. In our simulations, the un-shocked plasma-frame ion distributions are Maxwellian. Our simulations include protons and minor ions (alphas, 3He++, and C5+). The interplanetary shock crossed both the ACE and the Wind spacecraft, and was associated with significant increases in the flux of > 50 keV/nuc ions. Our simulation uses parameters (ion densities, magnetic field strength, Mach number, etc.) consistent with those observed. Acceleration of the ions by the shock, in a manner similar to that expected from diffusive shock acceleration theory, leads to a high-energy tail in the distribution of the post-shock plasma for all ions we considered. The simulated distributions are directly compared to those observed by ACE/SWICS, EPAM, and ULEIS, and Wind/STICS and 3DP, covering the energy range from below the thermal peak to the suprathermal tail. We conclude from our study that the solar wind is the most significant source of the high-energy ions for this event. Our results have important implications for the physics of the so-called `injection problem', which will be discussed.

  17. [Measurement of Speed and Direction of Ocean Surface Winds Using Quik Scat Scatterometer

    NASA Technical Reports Server (NTRS)

    Stiles, Bryan; Pollard, Brian

    2000-01-01

    The SeaWinds on QuikSCAT scatterometer was developed by NASA JPL to measure the speed and direction of ocean surface winds. Simulations performed to estimate the performance of the instrument prior to its launch have indicated that the mid-swath accuracy is worse than that of the rest of the swath. This behavior is a general characteristic of scanning pencil beam scatterometers. For SeaWinds, the accuracy of the rest of the swath, and the size of the swath are such that the instrument meets its science requirements despite mid-swath shortcomings. However, by understanding the problem at mid-swath, we can improve the performance there as well. We discuss the underlying causes of the problem in detail and propose a new wind retrieval algorithm which improves mid-swath performance. The directional discrimination ability of the instrument varies with cross track distance wind speed, and direction. By estimating the range of likely wind directions for each measurement cell, one can optimally apply information from neighboring cells where necessary in order to reduce random wind direction errors without significantly degrading the resolution of the resultant wind field. In this manner we are able to achieve mid-swath RMS wind direction errors as low as 15 degrees for low winds and 10 degrees for moderate to high winds, while at the same time preserving high resolution structures such as cyclones and fronts.

  18. Estimating the extreme low-temperature event using nonparametric methods

    NASA Astrophysics Data System (ADS)

    D'Silva, Anisha

    This thesis presents a new method of estimating the one-in-N low temperature threshold using a non-parametric statistical method called kernel density estimation applied to daily average wind-adjusted temperatures. We apply our One-in-N Algorithm to local gas distribution companies (LDCs), as they have to forecast the daily natural gas needs of their consumers. In winter, demand for natural gas is high. Extreme low temperature events are not directly related to an LDCs gas demand forecasting, but knowledge of extreme low temperatures is important to ensure that an LDC has enough capacity to meet customer demands when extreme low temperatures are experienced. We present a detailed explanation of our One-in-N Algorithm and compare it to the methods using the generalized extreme value distribution, the normal distribution, and the variance-weighted composite distribution. We show that our One-in-N Algorithm estimates the one-in- N low temperature threshold more accurately than the methods using the generalized extreme value distribution, the normal distribution, and the variance-weighted composite distribution according to root mean square error (RMSE) measure at a 5% level of significance. The One-in- N Algorithm is tested by counting the number of times the daily average wind-adjusted temperature is less than or equal to the one-in- N low temperature threshold.

  19. Tail Shape Design of Boat Wind Turbines

    NASA Astrophysics Data System (ADS)

    Singamsitty, Venkatesh

    Wind energy is a standout among the most generally utilized sustainable power source assets. A great deal of research and improvements have been happening in the wind energy field. Wind turbines are mechanical devices that convert kinetic energy into electrical power. Boat wind turbines are for the small-scale generation of electric power. In order to catch wind energy effectively, boat wind turbines need to face wind direction. Tails are used in boat wind turbines to alter the wind turbine direction and receive the variation of the incoming direction of wind. Tails are used to change the performance of boat wind turbines in an effective way. They are required to generate a quick and steady response as per change in wind direction. Tails can have various shapes, and their effects on boat wind turbines are different. However, the effects of tail shapes on the performance of boat wind turbines are not thoroughly studied yet. In this thesis, five tail shapes were studied. Their effects on boat wind turbines were investigated. The power extracted by the turbines from the air and the force acting on the boat wind turbine tail were analyzed. The results of this thesis provide a guideline of tail shape design for boat wind turbines.

  20. Large Amplitude Whistlers in the Magnetosphere Observed with Wind-Waves

    NASA Technical Reports Server (NTRS)

    Kellogg, P. J.; Cattell, C. A.; Goetz, K.; Monson, S. J.; Wilson, L. B., III

    2011-01-01

    We describe the results of a statistical survey of Wind-Waves data motivated by the recent STEREO/Waves discovery of large-amplitude whistlers in the inner magnetosphere. Although Wind was primarily intended to monitor the solar wind, the spacecraft spent 47 h inside 5 R(sub E) and 431 h inside 10 R(sub E) during the 8 years (1994-2002) that it orbited the Earth. Five episodes were found when whistlers had amplitudes comparable to those of Cattell et al. (2008), i.e., electric fields of 100 m V/m or greater. The whistlers usually occurred near the plasmapause. The observations are generally consistent with the whistlers observed by STEREO. In contrast with STEREO, Wind-Waves had a search coil, so magnetic measurements are available, enabling determination of the wave vector without a model. Eleven whistler events with useable magnetic measurements were found. The wave vectors of these are distributed around the magnetic field direction with angles from 4 to 48deg. Approximations to observed electron distribution functions show a Kennel-Petschek instability which, however, does not seem to produce the observed whistlers. One Wind episode was sampled at 120,000 samples/s, and these events showed a signature that is interpreted as trapping of electrons in the electrostatic potential of an oblique whistler. Similar waveforms are found in the STEREO data. In addition to the whistler waves, large amplitude, short duration solitary waves (up to 100 mV/m), presumed to be electron holes, occur in these passes, primarily on plasma sheet field lines mapping to the auroral zone.

  1. Generation of Kappa Distributions in Solar Wind at 1 au

    NASA Astrophysics Data System (ADS)

    Livadiotis, G.; Desai, M. I.; Wilson, L. B., III

    2018-02-01

    We examine the generation of kappa distributions in the solar wind plasma near 1 au. Several mechanisms are mentioned in the literature, each characterized by a specific relationship between the solar wind plasma features, the interplanetary magnetic field (IMF), and the kappa index—the parameter that governs the kappa distributions. This relationship serves as a signature condition that helps the identification of the mechanism in the plasma. In general, a mechanism that generates kappa distributions involves a single or a series of stochastic or physical processes that induces local correlations among particles. We identify three fundamental solar wind plasma conditions that can generate kappa distributions, noted as (i) Debye shielding, (ii) frozen IMF, and (iii) temperature fluctuations, each one prevailing in different scales of solar wind plasma and magnetic field properties. Moreover, our findings show that the kappa distributions, and thus, their generating mechanisms, vary significantly with solar wind features: (i) the kappa index has different dependence on the solar wind speed for slow and fast modes, i.e., slow wind is characterized by a quasi-constant kappa index, κ ≈ 4.3 ± 0.7, while fast wind exhibits kappa indices that increase with bulk speed; (ii) the dispersion of magnetosonic waves is more effective for lower kappa indices (i.e., further from thermal equilibrium); and (iii) the kappa and polytropic indices are positively correlated, as it was anticipated by the theory.

  2. Calculation of temperatures in condensed phase of burning PMMA by equation of Michelson, Mullar and Le Chatelier

    NASA Astrophysics Data System (ADS)

    Turgumbayeva, R. Kh; Abdikarimov, M. N.; Sagintayeva, S. S.

    2018-05-01

    Results of studying an aerosol of the dioxide of sulfur and pentoxide of phosphorus released into the atmosphere by the chemical company for processing of phosphorit are presented. Influence of the direction and speed of wind on sulfur dioxide distribution and pentoxide of phosphorus in a ground layer of the atmosphere is studied, and the points of the direction of wind leading to pollution of the atmosphere of the nearby city are allocated. The statistical analysis of environmental pollution is carried out by the method of the correlation and regression analysis. The equations of dependence of the amount of the sulfur dioxide and pentoxide of phosphorus, released into the atmosphere, on the volume, released by the enterprise of production, are defined. The obtained results are recommended for control, regulation and management of the environment.

  3. Flying with the wind: Scale dependency of speed and direction measurements in modelling wind support in avian flight

    USGS Publications Warehouse

    Safi, Kamran; Kranstauber, Bart; Weinzierl, Rolf P.; Griffin, Larry; Reese, Eileen C.; Cabot, David; Cruz, Sebastian; Proaño, Carolina; Takekawa, John Y.; Newman, Scott H.; Waldenström, Jonas; Bengtsson, Daniel; Kays, Roland; Wikelski, Martin; Bohrer, Gil

    2013-01-01

    Background: Understanding how environmental conditions, especially wind, influence birds' flight speeds is a prerequisite for understanding many important aspects of bird flight, including optimal migration strategies, navigation, and compensation for wind drift. Recent developments in tracking technology and the increased availability of data on large-scale weather patterns have made it possible to use path annotation to link the location of animals to environmental conditions such as wind speed and direction. However, there are various measures available for describing not only wind conditions but also the bird's flight direction and ground speed, and it is unclear which is best for determining the amount of wind support (the length of the wind vector in a bird’s flight direction) and the influence of cross-winds (the length of the wind vector perpendicular to a bird’s direction) throughout a bird's journey.Results: We compared relationships between cross-wind, wind support and bird movements, using path annotation derived from two different global weather reanalysis datasets and three different measures of direction and speed calculation for 288 individuals of nine bird species. Wind was a strong predictor of bird ground speed, explaining 10-66% of the variance, depending on species. Models using data from different weather sources gave qualitatively similar results; however, determining flight direction and speed from successive locations, even at short (15 min intervals), was inferior to using instantaneous GPS-based measures of speed and direction. Use of successive location data significantly underestimated the birds' ground and airspeed, and also resulted in mistaken associations between cross-winds, wind support, and their interactive effects, in relation to the birds' onward flight.Conclusions: Wind has strong effects on bird flight, and combining GPS technology with path annotation of weather variables allows us to quantify these effects for understanding flight behaviour. The potentially strong influence of scaling effects must be considered and implemented in developing sampling regimes and data analysis.

  4. Flying with the wind: scale dependency of speed and direction measurements in modelling wind support in avian flight.

    PubMed

    Safi, Kamran; Kranstauber, Bart; Weinzierl, Rolf; Griffin, Larry; Rees, Eileen C; Cabot, David; Cruz, Sebastian; Proaño, Carolina; Takekawa, John Y; Newman, Scott H; Waldenström, Jonas; Bengtsson, Daniel; Kays, Roland; Wikelski, Martin; Bohrer, Gil

    2013-01-01

    Understanding how environmental conditions, especially wind, influence birds' flight speeds is a prerequisite for understanding many important aspects of bird flight, including optimal migration strategies, navigation, and compensation for wind drift. Recent developments in tracking technology and the increased availability of data on large-scale weather patterns have made it possible to use path annotation to link the location of animals to environmental conditions such as wind speed and direction. However, there are various measures available for describing not only wind conditions but also the bird's flight direction and ground speed, and it is unclear which is best for determining the amount of wind support (the length of the wind vector in a bird's flight direction) and the influence of cross-winds (the length of the wind vector perpendicular to a bird's direction) throughout a bird's journey. We compared relationships between cross-wind, wind support and bird movements, using path annotation derived from two different global weather reanalysis datasets and three different measures of direction and speed calculation for 288 individuals of nine bird species. Wind was a strong predictor of bird ground speed, explaining 10-66% of the variance, depending on species. Models using data from different weather sources gave qualitatively similar results; however, determining flight direction and speed from successive locations, even at short (15 min intervals), was inferior to using instantaneous GPS-based measures of speed and direction. Use of successive location data significantly underestimated the birds' ground and airspeed, and also resulted in mistaken associations between cross-winds, wind support, and their interactive effects, in relation to the birds' onward flight. Wind has strong effects on bird flight, and combining GPS technology with path annotation of weather variables allows us to quantify these effects for understanding flight behaviour. The potentially strong influence of scaling effects must be considered and implemented in developing sampling regimes and data analysis.

  5. Progress in Validation of Wind-US for Ramjet/Scramjet Combustion

    NASA Technical Reports Server (NTRS)

    Engblom, William A.; Frate, Franco C.; Nelson, Chris C.

    2005-01-01

    Validation of the Wind-US flow solver against two sets of experimental data involving high-speed combustion is attempted. First, the well-known Burrows- Kurkov supersonic hydrogen-air combustion test case is simulated, and the sensitively of ignition location and combustion performance to key parameters is explored. Second, a numerical model is developed for simulation of an X-43B candidate, full-scale, JP-7-fueled, internal flowpath operating in ramjet mode. Numerical results using an ethylene-air chemical kinetics model are directly compared against previously existing pressure-distribution data along the entire flowpath, obtained in direct-connect testing conducted at NASA Langley Research Center. Comparison to derived quantities such as burn efficiency and thermal throat location are also made. Reasonable to excellent agreement with experimental data is demonstrated for key parameters in both simulation efforts. Additional Wind-US feature needed to improve simulation efforts are described herein, including maintaining stagnation conditions at inflow boundaries for multi-species flow. An open issue regarding the sensitivity of isolator unstart to key model parameters is briefly discussed.

  6. Plants and ventifacts delineate late Holocene wind vectors in the Coachella Valley, USA

    USGS Publications Warehouse

    Griffiths, P.G.; Webb, R.H.; Fisher, M.; Muth, Allan

    2009-01-01

    Strong westerly winds that emanate from San Gorgonio Pass, the lowest point between Palm Springs and Los Angeles, California, dominate aeolian transport in the Coachella Valley of the western Sonoran Desert. These winds deposit sand in coppice dunes that are critical habitat for several species, including the state and federally listed threatened species Uma inornata, a lizard. Although wind directions are generally defined in this valley, the wind field has complex interactions with local topography and becomes more variable with distance from the pass. Local, dominant wind directions are preserved by growth patterns of Larrea tridentata (creosote bush), a shrub characteristic of the hot North American deserts, and ventifacts. Exceptionally long-lived, Larrea has the potential to preserve wind direction over centuries to millennia, shaped by the abrasive pruning of windward branches and the persistent training of leeward branches. Wind direction preserved in Larrea individuals and clones was mapped at 192 locations. Compared with wind data from three weather stations, Larrea vectors effectively reflect annual prevailing winds. Ventifacts measured at 24 locations record winds 10° more westerly than Larrea and appear to reflect the direction of the most erosive winds. Based on detailed mapping of local wind directions as preserved in Larrea, only the northern half of the Mission-Morongo Creek floodplain is likely to supply sand to protected U. inornata habitat in the Willow Hole ecological reserve.

  7. Characterization of Florida red tide aerosol and the temporal profile of aerosol concentration.

    PubMed

    Cheng, Yung Sung; Zhou, Yue; Pierce, Richard H; Henry, Mike; Baden, Daniel G

    2010-05-01

    Red tide aerosols containing aerosolized brevetoxins are produced during the red tide bloom and transported by wind to coastal areas of Florida. This study reports the characterization of Florida red tide aerosols in human volunteer studies, in which an asthma cohort spent 1h on Siesta Beach (Sarasota, Florida) during aerosolized red tide events and non-exposure periods. Aerosol concentrations, brevetoxin levels, and particle size distribution were measured. Hourly filter samples were taken and analyzed for brevetoxin and NaCl concentrations. In addition, the aerosol mass concentration was monitored in real time. The results indicated that during a non-exposure period in October 2004, no brevetoxin was detected in the water, resulting in non-detectable levels of brevetoxin in the aerosol. In March 2005, the time-averaged concentrations of brevetoxins in water samples were moderate, in the range of 5-10 microg/L, and the corresponding brevetoxin level of Florida red tide aerosol ranged between 21 and 39 ng/m(3). The temporal profiles of red tide aerosol concentration in terms of mass, NaCl, and brevetoxin were in good agreement, indicating that NaCl and brevetoxins are components of the red tide aerosol. By continuously monitoring the marine aerosol and wind direction at Siesta Beach, we observed that the marine aerosol concentration varied as the wind direction changed. The temporal profile of the Florida red tide aerosol during a sampling period could be explained generally with the variation of wind direction. Copyright 2009 Elsevier Ltd. All rights reserved.

  8. Spatial Variability of Surface Irradiance Measurements at the Manus ARM Site

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Riihimaki, Laura D.; Long, Charles N.

    2014-05-16

    The location of the Atmospheric Radiation Measurement (ARM) site on Manus island in Papua New Guinea was chosen because it is very close the coast, in a geographically at, near-sea level area of the island, minimizing the impact of local island effects on the meteorology of the measurements [Ackerman et al., 1999]. In this study, we confirm that the Manus site is in deed less impacted by the island meteorology than slightly inland by comparing over a year of broadband surface irradiance and ceilometer measurements and derived quantities at the standard Manus site and a second location 7 km awaymore » as part of the AMIE-Manus campaign. The two sites show statistically similar distributions of irradiance and other derived quantities for all wind directions except easterly winds, when the inland site is down wind from the standard Manus site. Under easterly wind conditions, which occur 17% of the time, there is a higher occurrence of cloudiness at the down wind site likely do to land heating and orographic effects. This increased cloudiness is caused by shallow, broken clouds often with bases around 700 m in altitude. While the central Manus site consistently measures a frequency of occurrence of low clouds (cloud base height less than 1200 m) about 25+4% regardless of wind direction, the AMIE site has higher frequencies of low clouds (38%) when winds are from the east. This increase in low, locally produced clouds causes an additional -20 W/m2 shortwave surface cloud radiative effect at the AMIE site in easterly conditions than in other meteorological conditions that exhibit better agreement between the two sites.« less

  9. Characteristics of satellite accelerometer measurements of thermospheric neutral winds at high latitudes

    NASA Astrophysics Data System (ADS)

    Doornbos, E.; Ridley, A. J.; Cnossen, I.; Aruliah, A. L.; Foerster, M.

    2015-12-01

    Thermospheric neutral winds play an important part in the coupled thermosphere-ionosphere system at high latitudes. Neutral wind speeds have been derived from the CHAMP and GOCE satellites, which carried precise accelerometers in low Earth orbits. Due to the need to simultaneously determine thermosphere neutral density from the accelerometer in-track measurements, only information on the wind component in the cross-track direction, perpendicular to the flight direction can be derived. However, contrary to ground-based Fabry-Perot interferometer and scanning Doppler imager observations of the thermosphere wind, these satellite-based measurements provide equally distributed coverage over both hemispheres. The sampling of seasonal and local time variations depend on the precession rate of the satellite's orbital plane, with CHAMP covering about 28 cycles of 24-hour local solar time coverage, during its 10 year mission (2000-2010), while the near sun-synchronous orbit of GOCE resulted in a much more limited local time coverage ranging from 6:20 to 8:00 (am and pm), during a science mission duration of 4 years (2009-2013). For this study, the wind data from both CHAMP and GOCE have been analysed in terms of seasonal variations and geographic and geomagnetic local solar time and latitude coordinates, in order to make statistical comparisons for both the Northern and Southern polar areas. The wind data from both satellites were studied independently and in combination, in order to investigate how the strengths and weaknesses of the instruments and orbit parameters of these missions affect investigations of interhemispheric differences. Finally, the data have been compared with results from coupled ionosphere-thermosphere models and from ground-based FPI and SDI measurements.

  10. Counting Jobs and Economic Impacts from Distributed Wind in the United States (Poster)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tegen, S.

    This conference poster describes the distributed wind Jobs and Economic Development Imapcts (JEDI) model. The goal of this work is to provide a model that estimates jobs and other economic effects associated with the domestic distributed wind industry. The distributed wind JEDI model is a free input-output model that estimates employment and other impacts resulting from an investment in distributed wind installations. Default inputs are from installers and industry experts and are based on existing projects. User input can be minimal (use defaults) or very detailed for more precise results. JEDI can help evaluate potential scenarios, current or future; informmore » stakeholders and decision-makers; assist businesses in evaluating economic development impacts and estimating jobs; assist government organizations with planning and evaluating and developing communities.« less

  11. Hub vortex instability within wind turbine wakes: Effects of wind turbulence, loading conditions, and blade aerodynamics

    NASA Astrophysics Data System (ADS)

    Ashton, Ryan; Viola, Francesco; Camarri, Simone; Gallaire, Francois; Iungo, Giacomo Valerio

    2016-11-01

    The near wake of wind turbines is characterized by the presence of the hub vortex, which is a coherent vorticity structure generated from the interaction between the root vortices and the boundary layer evolving over the turbine nacelle. By moving downstream, the hub vortex undergoes an instability with growth rate, azimuthal and axial wavenumbers determined by the characteristics of the incoming wind and turbine aerodynamics. Thus, a large variability of the hub vortex instability is expected for wind energy applications with consequent effects on wake downstream evolution, wake interactions within a wind farm, power production, and fatigue loads on turbines invested by wakes generated upstream. In order to predict characteristics of the hub vortex instability for different operating conditions, linear stability analysis is carried out by considering different statistics of the incoming wind turbulence, thrust coefficient, tip speed ratio, and blade lift distribution of a wind turbine. Axial and azimuthal wake velocity fields are modeled through Carton-McWilliams velocity profiles by mimicking the presence of the hub vortex, helicoidal tip vortices, and matching the wind turbine thrust coefficient predicted through the actuator disk model. The linear stability analysis shows that hub vortex instability is strongly affected by the wind turbine loading conditions, and specifically it is promoted by a larger thrust coefficient. A higher load of the wind turbines produces an enhanced axial velocity deficit and, in turn, higher shear in the radial direction of the streamwise velocity. The axial velocity shear within the turbine wake is also the main physical mechanism promoting the hub vortex instability when varying the lift distribution over the blade span for a specific loading condition. Cases with a larger velocity deficit in proximity of the wake center and less aerodynamic load towards the blade tip result to be more unstable. Moreover, wake swirl promotes hub vortex instability, and it can also affect the azimuthal wave number of the most unstable mode. Finally, higher Reynolds stresses and turbulent eddy viscosity decrease both growth rate and azimuthal wave number of the most unstable mode.

  12. THE SEARCH DYNAMICS OF RECRUITED HONEY BEES, APIS MELLIFERA LIGUSTICA SPINOLA.

    PubMed

    Friesen, Larry Jon

    1973-02-01

    Some variables in the recruitment process of honey bees were studied as they affected the distribution and success of the searching population in the field. The dance language and odor dependence hypotheses were contrasted and their predictions compared with the following observations. 1. Recruits were attracted to the odors from the food which were carried by foragers and were dependent on these odors for success. 2. A monitoring of recruit densities in the field demonstrated an association of searchers with the forager flight path. 3. The degree of correspondence between the distribution of recruits and the direction of the flight path to the feeding site was correlated with wind direction, not search efficiency. 4. Feeding stations upwind of the hive provided the highest recruit success rates, shortest search times, and the least dependence on wind speed. Downwind stations provided the lowest recruit success rates, the longest search times, and the greatest dependence on wind speed. 5. A disproportionate increase in recruit success with an increase in the number of foragers visiting a feeding site was correlated with the density of the foragers in the field. 6. Increased bee densities at the feeding site, even with bees from different hives, increased recruit success and shortened search times. 7. The progression of and the extremely long intervals between the onset of recruit arrivals at areas along the forager flight path suggested communication among bees in the field and a dependence of recruit success on the density and growth of the searching population. These observations are compatible with an odor dependent search behavior and together fail to support the predictions of the dance language hypothesis. Dance attendants appeared to have been conditioned to the odors associated with returning foragers and, after leaving the hive, entered a searching population dependent on these odors for success. The dependence of recruit success on food odor at the feeding station, the density of foragers between this station and the hive, and the direction of the wind indicates that the integrity of the forager flight path was extremely important to this success. The distributions and extended search times of recruits indicated a search behavior based on positive anemotaxis during the perception of the proper combination of odors and negative anemotaxis after the loss of this stimulation.

  13. Winds at the Phoenix Landing Site

    NASA Astrophysics Data System (ADS)

    Holstein-Rathlou, C.; Gunnlaugsson, H. P.; Taylor, P.; Lange, C.; Moores, J.; Lemmon, M.

    2008-12-01

    Local wind speeds and directions have been measured at the Phoenix landing site using the Telltale wind indicator. The Telltale is mounted on top of the meteorological mast at roughly 2 meters height above the surface. The Telltale is a mechanical anemometer consisting of a lightweight cylinder suspended by Kevlar fibers that are deflected under the action of wind. Images taken with the Surface Stereo Imager (SSI) of the Telltale deflection allows the wind speed and direction to be quantified. Winds aloft have been estimated using image series (10 images ~ 50 s apart) taken of the Zenith (Zenith Movies). In contrast enhanced images cloud like features are seen to move through the image field and give indication of directions and angular speed. Wind speeds depend on the height of where these features originate while directions are unambiguously determined. The wind data shows dominant wind directions and diurnal variations, likely caused by slope winds. Recent night time measurements show frost formation on the Telltale mirror. The results will be discussed in terms of global and slope wind modeling and the current calibration of the data is discussed. It will also be illustrated how wind data can aid in interpreting temperature fluctuations seen on the lander.

  14. Effects of Sea-Surface Waves and Ocean Spray on Air-Sea Momentum Fluxes

    NASA Astrophysics Data System (ADS)

    Zhang, Ting; Song, Jinbao

    2018-04-01

    The effects of sea-surface waves and ocean spray on the marine atmospheric boundary layer (MABL) at different wind speeds and wave ages were investigated. An MABL model was developed that introduces a wave-induced component and spray force to the total surface stress. The theoretical model solution was determined assuming the eddy viscosity coefficient varied linearly with height above the sea surface. The wave-induced component was evaluated using a directional wave spectrum and growth rate. Spray force was described using interactions between ocean-spray droplets and wind-velocity shear. Wind profiles and sea-surface drag coefficients were calculated for low to high wind speeds for wind-generated sea at different wave ages to examine surface-wave and ocean-spray effects on MABL momentum distribution. The theoretical solutions were compared with model solutions neglecting wave-induced stress and/or spray stress. Surface waves strongly affected near-surface wind profiles and sea-surface drag coefficients at low to moderate wind speeds. Drag coefficients and near-surface wind speeds were lower for young than for old waves. At high wind speeds, ocean-spray droplets produced by wind-tearing breaking-wave crests affected the MABL strongly in comparison with surface waves, implying that wave age affects the MABL only negligibly. Low drag coefficients at high wind caused by ocean-spray production increased turbulent stress in the sea-spray generation layer, accelerating near-sea-surface wind. Comparing the analytical drag coefficient values with laboratory measurements and field observations indicated that surface waves and ocean spray significantly affect the MABL at different wind speeds and wave ages.

  15. Spatial-temporal analysis of coherent offshore wind field structures measured by scanning Doppler-lidar

    NASA Astrophysics Data System (ADS)

    Valldecabres, L.; Friedrichs, W.; von Bremen, L.; Kühn, M.

    2016-09-01

    An analysis of the spatial and temporal power fluctuations of a simplified wind farm model is conducted on four offshore wind fields data sets, two from lidar measurements and two from LES under unstable and neutral atmospheric conditions. The integral length scales of the horizontal wind speed computed in the streamwise and the cross-stream direction revealed the elongation of the structures in the direction of the mean flow. To analyse the effect of the structures on the power output of a wind turbine, the aggregated equivalent power of two wind turbines with different turbine spacing in the streamwise and cross-stream direction is analysed at different time scales under 10 minutes. The fact of considering the summation of the power of two wind turbines smooths out the fluctuations of the power output of a single wind turbine. This effect, which is stronger with increasing spacing between turbines, can be seen in the aggregation of the power of two wind turbines in the streamwise direction. Due to the anti-correlation of the coherent structures in the cross-stream direction, this smoothing effect is stronger when the aggregated power is computed with two wind turbines aligned orthogonally to the mean flow direction.

  16. Locust displacing winds in eastern Australia reassessed with observations from an insect monitoring radar

    NASA Astrophysics Data System (ADS)

    Hao, Zhenhua; Drake, V. Alistair; Sidhu, Leesa; Taylor, John R.

    2017-12-01

    Based on previous investigations, adult Australian plague locusts are believed to migrate on warm nights (with evening temperatures >25 °C), provided daytime flight is suppressed by surface winds greater than the locusts' flight speed, which has been shown to be 3.1 m s-1. Moreover, adult locusts are believed to undertake briefer `dispersal' flights on nights with evening temperature >20 °C. To reassess the utility of these conditions for forecasting locust flight, contingency tests were conducted comparing the nights selected on these bases (predicted nights) for the months of November, January, and March and the nights when locust migration were detected with an insect monitoring radar (actual nights) over a 7-year period. In addition, the wind direction distributions and mean wind directions on all predicted nights and actual nights were compared. Observations at around 395 m above ground level (AGL), the height at which radar observations have shown that the greatest number of locusts fly, were used to determine the actual nights. Tests and comparisons were also made for a second height, 990 m AGL, as this was used in the previous investigation. Our analysis shows that the proposed criteria are successful from predicting migratory flight only in March, when the surface temperature is effective as a predicting factor. Surface wind speed has no predicting power. It is suggested that a strong daytime surface wind speed requirement should not be considered and other meteorological variables need to be added to the requirement of a warm surface temperature around dusk for the predictions to have much utility.

  17. Novel insights into the dynamics of cold-air drainage and pooling on a gentle slope from fiber-optic distributed temperature sensing

    NASA Astrophysics Data System (ADS)

    Pfister, Lena; Sigmund, Armin; Olesch, Johannes; Thomas, Christoph

    2016-04-01

    Urban climate can benefit from cold-air drainage as it may help alleviate the urban heat island. In contrast, stable cold-air pools can damage plants especially in rural areas. In this study, we examined the dynamics of cold-air drainage and pooling in a peri-urban setting over a period of 47 days along a 170 m long slope with an inclination of 1.3° located in the Ecological Botany Gardens of the University of Bayreuth. Air and soil temperatures were measured using distributed temperature sensing of an 2-dimensional fiber-optic array at six heights (-2 cm to 100 cm) along the slope sampling every 1 min and every 1 m. Ancillary measurements of winds, turbulence intensity and momentum exchange were collected using two ultrasonic anemometers installed at 0.1 m and 17 m height at the center of the transect. We hypothesized that cold-air drainage, here defined as a gravity-driven density flow near the bottom originating from local radiative cooling of the surface, is decoupled from non-local flows and can thus be predicted from the local topography. The nocturnal data were stratified by classes of longwave radiation balance, wind speed, and wind direction at 0.1 m agl. The four most abundant classes were tested further for decoupling of wind velocities and directions between 17 and 0.1 m. We further computed the vertical and horizontal temperature perturbations of the fiber-optic array as evaluated for these cases, as well as subject the temperature data to a multiresolution decomposition to investigate the spatial two-point correlation coefficient along the transect. Finally, the cold pool intensity was calculated. The results revealed none of the four most abundant classes followed classical textbook knowledge of locally produced cold-air drainage. Instead, we found that the near-surface flow was strongly forced by two possibly competing non-local flow modes. The first mode caused weak (< 0.4 ms-1) near-surface winds directed perpendicular to the local slope and showed strong vertical decoupling of wind velocities and directions. The vertical and horizontal perturbation of the temperature as well as the cold-pool intensity was high and the two-point correlation coefficient decorrelated fast with increasing distance. In contrast, for the second mode the wind was aligned with the local slope and the wind velocities and directions agreed vertically. However, momentum exchange was much enhanced leading to intense shear-generated mixing and almost vanishing temperature perturbations, higher spatial coherence indicated by slower spatial decorrelations, and a cold-pool intensity of close to zero. In conclusion, the first mode was interpreted as a relatively weak non-local valley-scale cold-air drainage modulating the close to stationary cold-air pool filling the shallow depression the Botanical Gardens are located in. Here, the deeper cold-air drainage causes only weak local movements at the surface as both layers are largely decoupled. The second mode is possibly caused by a recirculation of a stronger valley-scale flow with sufficient synoptic forcing. Our findings challenge the common practice to predict cold-air dynamics solely based on micro-topographic analysis.

  18. Near-surface temperature lapse rates in a mountainous catchment in the Chilean Andes

    NASA Astrophysics Data System (ADS)

    Ayala; Schauwecker, S.; Pellicciotti, F.; McPhee, J. P.

    2011-12-01

    In mountainous areas, and in the Chilean Andes in particular, the irregular and sparse distribution of recording stations resolves insufficiently the variability of climatic factors such as precipitation, temperature and relative humidity. Assumptions about air temperature variability in space and time have a strong effect on the performance of hydrologic models that represent snow processes such as accumulation and ablation. These processes have large diurnal variations, and assumptions that average over longer time periods (days, weeks or months) may reduce the predictive capacity of these models under different climatic conditions from those for which they were calibrated. They also introduce large uncertainties when such models are used to predict processes with strong subdiurnal variability such as snowmelt dynamics. In many applications and modeling exercises, temperature is assumed to decrease linearly with elevation, using the free-air moist adiabatic lapse rate (MALR: 0.0065°C/m). Little evidence is provided for this assumption, however, and recent studies have shown that use of lapse rates that are uniform in space and constant in time is not appropriate. To explore the validity of this approach, near-surface (2 m) lapse rates were calculated and analyzed at different temporal resolution, based on a new data set of spatially distributed temperature sensors setup in a high elevation catchment of the dry Andes of Central Chile (approx. 33°S). Five minutes temperature data were collected between January 2011 and April 2011 in the Ojos de Agua catchment, using two Automatic Weather Stations (AWSs) and 13 T-loggers (Hobo H8 Pro Temp with external data logger), ranging in altitude from 2230 to 3590 m.s.l.. The entire catchment was snow free during our experiment. We use this unique data set to understand the main controls over temperature variability in time and space, and test whether lapse rates can be used to describe the spatial variations of air temperature in a high elevation catchment. Our main result is that the assumption of a MALR is appropriate to describe the average variability of temperature over the entire measurement period (and possibly for daily scales), but that hourly near-surface lapse rates vary considerably and can deviate strongly from the MALR. This diurnal variability in lapse rates is associated with changes in wind direction and variations in wind velocity. Shallow lapse rates, in particular, occur during the morning, in correspondence to low wind speeds and change in wind direction from katabatic wind to valley wind and are associated with a weaker correlation between air temperature and elevation, while steeper lapse rates (meaning by this that temperature decreases more with elevation) closer to the MALR are typical of the afternoon hours from 13.00 on (and correspond to high wind speed), and are representative of a more linear dependency between air temperature and elevation. The steepest LRs, however, occur in the evening at 20.00-21.00, when wind velocity drops again and wind direction changes from valley wind to katabatic wind. It is clear that the wind regime is the main controls on LRs variability, and it is important to validate these findings with data sets from a second season.

  19. Online Bayesian Learning with Natural Sequential Prior Distribution Used for Wind Speed Prediction

    NASA Astrophysics Data System (ADS)

    Cheggaga, Nawal

    2017-11-01

    Predicting wind speed is one of the most important and critic tasks in a wind farm. All approaches, which directly describe the stochastic dynamics of the meteorological data are facing problems related to the nature of its non-Gaussian statistics and the presence of seasonal effects .In this paper, Online Bayesian learning has been successfully applied to online learning for three-layer perceptron's used for wind speed prediction. First a conventional transition model based on the squared norm of the difference between the current parameter vector and the previous parameter vector has been used. We noticed that the transition model does not adequately consider the difference between the current and the previous wind speed measurement. To adequately consider this difference, we use a natural sequential prior. The proposed transition model uses a Fisher information matrix to consider the difference between the observation models more naturally. The obtained results showed a good agreement between both series, measured and predicted. The mean relative error over the whole data set is not exceeding 5 %.

  20. Wind energy and wildlife research at the Forest and Rangeland Ecosystem Science Center

    USGS Publications Warehouse

    Phillips, Susan L.

    2011-01-01

    The United States has embarked on a goal to increase electricity generation from clean, renewable sources by 2012. Towards this end, wind energy is emerging as a widely distributed form of renewable energy throughout the country. The national goal is for energy from wind to supply 20 percent of the country's electricity by 2030. As with many land uses, trade-offs exist between costs and benefits. New wind developments are occurring rapidly in parts of the United States, often leaving little time for evaluation of potential site-specific effects. These developments are known to affect wildlife, directly from fatality due to collision with the infrastructure and indirectly from loss of habitat and migration routes. The Department of the Interior, in particular, is challenged to balance energy development on public lands and also to conserve fish and wildlife. The Secretary of the Interior has proposed a number of initiatives to encourage responsible development of renewable energy. These initiatives are especially important in the western United States where large amounts of land are being developed or evaluated for wind farms.

  1. NASA's Newest SeaWinds Instrument Breezes Into Operation

    NASA Technical Reports Server (NTRS)

    2003-01-01

    One of NASA's newest Earth-observing instruments, the SeaWinds scatterometer aboard Japan's Advanced Earth Observing Satellite (Adeos) 2--now renamed Midori 2--has successfully transmitted its first radar data to our home planet, generating its first high-quality images.

    From its orbiting perch high above Earth, SeaWinds on Midori 2 ('midori' is Japanese for the color green, symbolizing the environment) will provide the world's most accurate, highest resolution and broadest geographic coverage of ocean wind speed and direction, sea ice extent and properties of Earth's land surfaces. It will complement and eventually replace an identical instrument orbiting since June 1999 on NASA's Quick Scatterometer (QuikScat) satellite. Its three- to five-year mission will augment a long-term ocean surface wind data series that began in 1996 with launch of the NASA Scatterometer on Japan's first Adeos spacecraft.

    Climatologists, meteorologists and oceanographers will soon routinely use data from SeaWinds on Midori 2 to understand and predict severe weather patterns, climate change and global weather abnormalities like El Nino. The data are expected to improve global and regional weather forecasts, ship routing and marine hazard avoidance, measurements of sea ice extent and the tracking of icebergs, among other uses.

    'Midori 2, its SeaWinds instrument and associated ground processing systems are functioning very smoothly,' said Moshe Pniel, scatterometer projects manager at NASA's Jet Propulsion Laboratory, Pasadena, Calif. 'Following initial checkout and calibration, we look forward to continuous operations, providing vital data to scientists and weather forecasters around the world.'

    'These first images show remarkable detail over land, ice and oceans,' said Dr. Michael Freilich, Ocean Vector Winds Science Team Leader, Oregon State University, Corvallis, Ore. 'The combination of SeaWinds data and measurements from other instruments on Midori 2 with data from other international satellites will enable detailed studies of ocean circulation, air-sea interaction and climate variation simply not possible until now.'

    The released image, obtained from data collected January 28-29, depicts Earth's continents in green, polar glacial ice-covered regions in blue-red and sea ice in gray. Color and intensity changes over ice and land are related to ice melting, variations in land surface roughness and vegetation cover. Ocean surface wind speeds, measured during a 12-hour period on January 28, are shown by colors, with blues corresponding to low wind speeds and reds to wind speeds up to 15 meters per second (30 knots). Black arrows denote wind direction. White gaps over the oceans represent unmeasured areas between SeaWinds swaths (the instrument measures winds over about 90 percent of the oceans each day).

    SeaWinds transmits high-frequency microwave pulses to Earth's land masses, ice cover and ocean surface and measures the strength of the radar pulses that bounce back to the instrument. It takes millions of radar measurements covering about 93 percent of Earth's surface every day, operating under all weather conditions, day and night. Over the oceans, SeaWinds senses ripples caused by the winds, from which scientists can compute wind speed and direction. These ocean surface winds drive Earth's oceans and control the exchange of heat, moisture and gases between the atmosphere and the sea.

    Launched December 14, 2002, from Japan, the instrument was first activated on January 10 and transitioned to its normal science mode on January 28. A four-day dedicated checkout period was completed on January 31. A six-month calibration/validation phase will begin in April, with regular science operations scheduled to begin this October.

    SeaWinds on Midori 2 is managed for NASA's Office of Earth Science, Washington, D.C., by JPL, which developed the instrument and performs instrument operations and science data processing, archiving and distribution. NASA also provides U.S. ground system support. The National Space Development Agency of Japan, or NASDA, provided the Midori 2 spacecraft, H-IIA launch vehicle, mission operations and the Japanese ground network. The National Oceanic and Atmospheric Administration provides near-real-time data processing and distribution for SeaWinds operational data users. The California Institute of Technology in Pasadena manages JPL for NASA.

  2. Ion acoustic waves in the solar wind

    NASA Technical Reports Server (NTRS)

    Gurnett, D. A.; Frank, L. A.

    1978-01-01

    Plasma wave measurements on the Helios 1 and 2 spacecraft have revealed the occurrence of electric field turbulence in the solar wind at frequencies between the electron and ion plasma frequencies. Wavelength measurements with the Imp 6 spacecraft now provide strong evidence that these waves are shortwavelength ion acoustic waves which are Doppler-shifted upward in frequency by the motion of the solar wind. Comparison of the Helios results with measurements from the earth-orbiting Imp 6 and 8 spacecraft shows that the ion acoustic wave turbulence detected in interplanetary space has characteristics essentially identical to those of bursts of electrostatic turbulence generated by protons streaming into the solar wind from the earth's bow shock. In a few cases, enhanced ion acoustic wave intensities have been observed in direct association with abrupt increases in the anisotropy of the solar wind electron distribution. This relationship strongly suggests that the ion acoustic waves detected by Helios far from the earth are produced by an electron heat flux instability, as was suggested by Forslund. Possible related mechanisms which could explain the generation of ion acoustic waves by protons streaming into the solar wind from the earth's bow shock are also considered.

  3. Stochastic Analysis of Wind Energy for Wind Pump Irrigation in Coastal Andhra Pradesh, India

    NASA Astrophysics Data System (ADS)

    Raju, M. M.; Kumar, A.; Bisht, D.; Rao, D. B.

    2014-09-01

    The rapid escalation in the prices of oil and gas as well as increasing demand for energy has attracted the attention of scientists and researchers to explore the possibility of generating and utilizing the alternative and renewable sources of wind energy in the long coastal belt of India with considerable wind energy resources. A detailed analysis of wind potential is a prerequisite to harvest the wind energy resources efficiently. Keeping this in view, the present study was undertaken to analyze the wind energy potential to assess feasibility of the wind-pump operated irrigation system in the coastal region of Andhra Pradesh, India, where high ground water table conditions are available. The stochastic analysis of wind speed data were tested to fit a probability distribution, which describes the wind energy potential in the region. The normal and Weibull probability distributions were tested; and on the basis of Chi square test, the Weibull distribution gave better results. Hence, it was concluded that the Weibull probability distribution may be used to stochastically describe the annual wind speed data of coastal Andhra Pradesh with better accuracy. The size as well as the complete irrigation system with mass curve analysis was determined to satisfy various daily irrigation demands at different risk levels.

  4. Transport of airborne pollen into the city of Thessaloniki: the effects of wind direction, speed and persistence

    NASA Astrophysics Data System (ADS)

    Damialis, Athanasios; Gioulekas, Dimitrios; Lazopoulou, Chariklia; Balafoutis, Christos; Vokou, Despina

    2005-01-01

    We examined the effect of the wind vector analyzed into its three components (direction, speed and persistence), on the circulation of pollen from differe nt plant taxa prominent in the Thessaloniki area for a 4-year period (1996- 1999). These plant taxa were Ambrosia spp., Artemisia spp., Chenopodiaceae, spp., Cupressaceae, Olea europaea, Pinaceae, Platanus spp., Poaceae, Populus spp., Quercus spp., and Urticaceae. Airborne pollen of Cupressaceae, Urticaceae, Quercus spp. and O. europaea make up approximately 70% of the total average annual pollen counts. The set of data that we worked with represented days without precipitation and time intervals during which winds blew from the same direction for at least 4 consecutive hours. We did this in order to study the effect of the different wind components independently of precipitation, and to avoid secondary effects produced by pollen resuspension phenomena. Factorial regression analysis among the summed bi-hourly pollen counts for each taxon and the values of wind speed and persistence per wind direction gave significant results in 22 cases (combinations of plant taxa and wind directions). The pollen concentrations of all taxa correlated significantly with at least one of the three wind components. In seven out of the 22 taxon-wind direction combinations, the pollen counts correlated positively with wind persistence, whereas this was the case for only two of the taxon-wind speed combinations. In seven cases, pollen counts correlated with the interaction effect of wind speed and persistence. This shows the importance of wind persistence in pollen transport, particularly when weak winds prevail for a considerable part of the year, as is the case for Thessaloniki. Medium/long-distance pollen transport was evidenced for Olea (NW, SW directions), Corylus (NW, SW), Poaceae (SW) and Populus (NW).

  5. Yardangs in the Qaidam Basin, northwestern China: Distribution and morphology

    NASA Astrophysics Data System (ADS)

    Li, Jiyan; Dong, Zhibao; Qian, Guangqiang; Zhang, Zhengcai; Luo, Wanyin; Lu, Junfeng; Wang, Meng

    2016-03-01

    The northwestern Qaidam Basin exposes one of the largest and highest elevation yardang fields on Earth. The aim of the present study was to describe the distribution and morphology of these yardangs, and analyze the factors responsible for the distribution pattern of these aeolian landforms. The yardang fields are bounded by piedmont alluvial-diluvial fans from the mountain ranges surrounding the basin, except in the south, where they are bounded by dune fields, dry salt flats, lakes, and rivers. This distribution pattern can be attributed to regional tectogenesis and its corresponding environmental impacts. The morphology of the yardangs varies considerably in response to the diverse factors that control their formation and evolution. Long-ridge yardangs are mainly located in the northernmost part of the yardang field, and the long ridges are gradually dissected into smaller ridges in the downwind direction. Further downwind, the convergence of northerly and northwesterly winds and the effects of temporary runoff cause the ridges to gradually transition into mesa yardangs. Saw-toothed crests, and conical and pyramidal yardangs, occur in groups on folded brachyanticlinal structures. Typical whaleback yardangs are found in the southeast, at the northern margin of Dabuxun Lake. Morphological parameters vary among the yardang types. The orientation of the yardangs in the northernmost area is nearly N-S, with a transition towards NW-SE in the southernmost area in response to a change in the dominant wind direction that results from the orientations and positions of the mountain ranges that surround the basin.

  6. Optical skin friction measurement technique in hypersonic wind tunnel

    NASA Astrophysics Data System (ADS)

    Chen, Xing; Yao, Dapeng; Wen, Shuai; Pan, Junjie

    2016-10-01

    Shear-sensitive liquid-crystal coatings (SSLCCs) have an optical characteristic that they are sensitive to the applied shear stress. Based on this, a novel technique is developed to measure the applied shear stress of the model surface regarding both its magnitude and direction in hypersonic flow. The system of optical skin friction measurement are built in China Academy of Aerospace Aerodynamics (CAAA). A series of experiments of hypersonic vehicle is performed in wind tunnel of CAAA. Global skin friction distribution of the model which shows complicated flow structures is discussed, and a brief mechanism analysis and an evaluation on optical measurement technique have been made.

  7. Saskatchewan Forest Fire Control Centre Surface Meteorological Data

    NASA Technical Reports Server (NTRS)

    Hall, Forrest G. (Editor); Newcomer, Jeffrey A. (Editor); Funk, Barry; Strub, Richard

    2000-01-01

    The Saskatchewan Forest Fire Control Centre (SFFCC) provided surface meteorological data to BOREAS from its archive. This data set contains hourly surface meteorological data from 18 of the Meteorological stations located across Saskatchewan. Included in these data are parameters of date, time, temperature, relative humidity, wind direction, wind speed, and precipitation. Temporally, the data cover the period of May through September of 1994 and 1995. The data are provided in comma-delimited ASCII files, and are classified as AFM-Staff data. The data files are available on a CD-ROM (see document number 20010000884), or from the Oak Ridge National Laboratory (ORNL) Distributed Active Archive Center (DAAC).

  8. Possibility of star (pyramid) dune development in the area of bimodal wind regime

    NASA Astrophysics Data System (ADS)

    Biejat, K.

    2012-04-01

    Star (pyramid) dunes are the largest aeolian landforms. They can occur in three types - simple, complex and compound. Development of this type of dunes is usually connected with multidirectional or complex wind regimes. The aim of this study was to verify a hypothesis that the star dunes can also develop by a bimodal wind regime and by local modifications of nearsurface wind flow directions. Field study was performed on Erg Chebbi, in southern Morocco. Several star and transverse dunes were selected for the study of their shape. The star dunes were analysed concerning their type and position in the dune field. This erg contains all of three types of star dunes together with transverse dunes. The regional wind data show that there are two dominant wind directions - NE (Chergui) and SW (Saheli). To determine the difference in shape of star dunes, we performed topographic surveying by GPS RTK. The results allowed to create 3D models of star dunes. The models were used to determine metric characteristics of star dunes, including area of dune basis, volume, and slope angles. On the basis of 3D models, primary, secondary and, on the compound dunes, tertiary arms were determined. Primary arms on each type of star dunes, as well as crestlines of transverse dunes, have dominant orientation NW-SE, perpendicular to two dominant wind directions. This clearly confirms that star dunes of Erg Chebbi develop by a bimodal wind regime In contrast to primary arms, subsidiary (secondary and tertiary) arms are not connected to general wind regime. The secondary arms of star dunes occur to be differentially developer. There are more subsidiary arms on SW sides in comparison to the E sides of the dunes where inclination of slopes is constant. It can be therefore inferred that sand has been supplied predominantly from SW direction. This is supported by distribution of the dunes on the erg. Most compound star dunes compose a chain along the E margin of the erg. Comparison of compound star dunes located in E and W parts of the erg allow inferring that there must have been differences in supply of the aeolian sand. Eastern slopes of compound star dunes developed in the W part of the erg are inclined 10-15°. This shows that significant delivery of the sand must have occurred also from NE. Eastern slopes of compound star dunes located in the E part of the erg are inclined 20-30°. It can be therefore inferred that they have functioned mainly as lee slopes and the sand was delivery from SW. This proves that location of the dunes within the erg plays a significant role in shaping wind directions responsible for delivery of the sand. Orientation of subsidiary arms does not show any relationship with general wind regime, which leads to conclusion that the subsidiary arms develop due to local diversified regime of nearsurface wind flow. This is governed by barriers such as the star dunes themselves and not by other topographic obstacles.

  9. A methodology for optimization of wind farm allocation under land restrictions: the case of the Canary Islands

    NASA Astrophysics Data System (ADS)

    Castaño Moraga, C. A.; Suárez Santana, E.; Sabbagh Rodríguez, I.; Nebot Medina, R.; Suárez García, S.; Rodríguez Alvarado, J.; Piernavieja Izquierdo, G.; Ruiz Alzola, J.

    2010-09-01

    Wind farms authorization and power allocations to private investors promoting wind energy projects requires some planification strategies. This issue is even more important under land restrictions, as it is the case of Canary Islands, where numerous specially protected areas are present for environmental reasons and land is a scarce resource. Aware of this limitation, the Regional Government of Canary Islands designed the requirements of a public tender to grant licences to install new wind farms trying to maximize the energy produced in terms of occupied land. In this paper, we detail the methodology developed by the Canary Islands Institute of Technology (ITC, S.A.) to support the work of the technical staff of the Regional Ministry of Industry, responsible for the evaluation of a competitive tender process for awarding power lincenses to private investors. The maximization of wind energy production per unit of area requires an exhaustive wind profile characterization. To that end, wind speed was statistically characterized by means of a Weibull probability density function, which mainly depends on two parameters: the shape parameter K, which determines the slope of the curve, and the average wind speed v , which is a scale parameter. These two parameters have been evaluated at three different heights (40,60,80 m) over the whole canarian archipelago, as well as the main wind speed direction. These parameters are available from the public data source Wind Energy Map of the Canary Islands [1]. The proposed methodology is based on the calculation of an initially defined Energy Efficiency Basic Index (EEBI), which is a performance criteria that weighs the annual energy production of a wind farm per unit of area. The calculation of this parameter considers wind conditions, windturbine characteristics, geometry of windturbine distribution in the wind farm (position within the row and column of machines), and involves four steps: Estimation of the energy produced by every windturbine as if it were isolated from all the other machines of the wind farm, using its power curve and the statistical characterization of the wind profile at the site. Estimation of energy losses due to affections caused by other windturbine in the same row and missalignment with respect to the main wind speed direction. Estimation of energy losses due to affections induced by windturbines located upstream. EEBI calculation as the ratio between the annual energy production and the area occupied by the wind farm, as a function of wind speed profile and wind turbine characteristics. Computations involved above are modeled under a System Theory characterization

  10. Wind direction change criteria for wind turbine design

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cliff, W.C.

    1979-01-01

    A method is presented for estimating the root mean square (rms) value of the wind direction change, ..delta..theta(tau) = theta(tau + tau) - theta(tau), that occurs over the swept area of wind turbine rotor systems. An equation is also given for the rms value of the wind direction change that occurs at a single point in space, i.e., a direcion change that a wind vane would measure. Assuming a normal probability density function for the lateral wind velocity change and relating this to angular changes, equations are given for calculating the expected number of wind direction changes, larger than anmore » arbitrary value, that will occur in 1 hr as well as the expected number that will occur during the design life of a wind turbine. The equations presented are developed using a small angle approximation and are, therefore, considered appropriate for wind direction changes of less than 30/sup 0/. The equations presented are based upon neutral atmospheric boundary-layer conditions and do not include information regarding events such as tornados, hurricanes, etc.« less

  11. Magnetic braking in young late-type stars. The effect of polar spots

    NASA Astrophysics Data System (ADS)

    Aibéo, A.; Ferreira, J. M.; Lima, J. J. G.

    2007-10-01

    Context: The existence of rapidly rotating cool stars in young clusters implies a reduction of angular momentum loss rate for a certain period of the star's early life. Recently, the concentration of magnetic flux near the poles of these stars has been proposed as an alternative mechanism to dynamo saturation in order to explain the saturation of angular momentum loss. Aims: In this work we study the effect of magnetic surface flux distribution on the coronal field topology and angular momentum loss rate. We investigate if magnetic flux concentration towards the pole is a reasonable alternative to dynamo saturation. Methods: We construct a 1D wind model and also apply a 2-D self-similar analytical model, to evaluate how the surface field distribution affects the angular momentum loss of the rotating star. Results: From the 1D model we find that, in a magnetically dominated low corona, the concentrated polar surface field rapidly expands to regions of low magnetic pressure resulting in a coronal field with small latitudinal variation. We also find that the angular momentum loss rate due to a uniform field or a concentrated field with equal total magnetic flux is very similar. From the 2D wind model we show that there are several relevant factors to take into account when studying the angular momentum loss from a star. In particular, we show that the inclusion of force balance across the field in a wind model is fundamental if realistic conclusions are to be drawn from the effect of non-uniform surface field distribution on magnetic braking. This model predicts that a magnetic field concentrated at high latitudes leads to larger Alfvén radii and larger braking rates than a smoother field distribution. Conclusions: From the results obtained, we argue that the magnetic surface field distribution towards the pole does not directly limit the braking efficiency of the wind.

  12. [Effects of submarine topography and water depth on distribution of pelagic fish community in minnan-taiwan bank fishing ground].

    PubMed

    Fang, Shuimei; Yang, Shengyun; Zhang, Chengmao; Zhu, Jinfu

    2002-11-01

    According to the fishing record of the light-seine information vessel in Minnan-Taiwan bank ground during 1989 to 1999, the effects of submarine topography and water depth on distribution of pelagic fish community in Minnan-Taiwan bank fishing ground was studied. The results showed that the pelagic fish distributed concentratively, while the submarine topography and water depth varied widely, but in different fishing regions, the distribution of pelagic fishes was uneven. The distribution of fishing yield increased from north to south, and closed up from sides of the bank to south or north in the regions. Pelagic fish distributed mainly in mixed water in the southern Taiwan Strait, and in warm water in the Taiwan Strait. The central fishing grounds were at high salt regions. Close gathering regions of pelagic fish or central fishing ground would be varied with the seasonal variation of mixed water in the southern Taiwan Strait and warm water in the Taiwan Strait. Central fishing ground was not only related to submarine topography and water depth, but also related to wind direction, wind-power and various water systems. In the fishing ground, the gathering depth of pelagic fish was 30-60 m in spring and summer, and 40-80 m in autumn and winter.

  13. Description and evaluation of an interference assessment for a slotted-wall wind tunnel

    NASA Technical Reports Server (NTRS)

    Kemp, William B., Jr.

    1991-01-01

    A wind-tunnel interference assessment method applicable to test sections with discrete finite-length wall slots is described. The method is based on high order panel method technology and uses mixed boundary conditions to satisfy both the tunnel geometry and wall pressure distributions measured in the slotted-wall region. Both the test model and its sting support system are represented by distributed singularities. The method yields interference corrections to the model test data as well as surveys through the interference field at arbitrary locations. These results include the equivalent of tunnel Mach calibration, longitudinal pressure gradient, tunnel flow angularity, wall interference, and an inviscid form of sting interference. Alternative results which omit the direct contribution of the sting are also produced. The method was applied to the National Transonic Facility at NASA Langley Research Center for both tunnel calibration tests and tests of two models of subsonic transport configurations.

  14. Crossed, Small-Deflection Energy Analyzer for Wind/Temperature Spectrometer

    NASA Technical Reports Server (NTRS)

    Herrero, Federico A.; Finne, Theodore T.

    2010-01-01

    Determination of neutral winds and ion drifts in low-Earth-orbit missions requires measurements of the angular and energy distributions of the flux of neutrals and ions entering the satellite from the ram direction. The magnitude and direction of the neutral-wind (or ion-drift) determine the location of the maximum in the angular distribution of the flux. Knowledge of the angle of maximum flux with respect to satellite coordinates (pointing) is essential to determine the wind (or ion-drift) vector. The crossed Small-Deflection Energy Analyzer (SDEA) spectrometer (see Figure 1) occupies minimal volume and consumes minimal power. Designed for upper atmosphere/ionosphere investigations at Earth altitudes above 100 km, the spectrometer operates by detecting the angular and energy distributions of neutral atoms/molecules and ions in two mutually perpendicular planes. In this configuration, the two detection planes actually cross at the spectrometer center. It is possible to merge two SDEAs so they share a common optical axis and alternate measurements between two perpendicular planes, and reduce the number of ion sources from two to one. This minimizes the volume and footprint significantly and reduces the ion source power by a factor of two. The area of the entrance aperture affects the number of ions detected/second and also determines the energy resolution. Thermionic emitters require heater power of about 100 mW to produce 1 mA of electron beam current. Typically, electron energy is about 100 eV and requires a 100-V supply for electron acceleration to supply an additional 100 mW of power. Thus, ion source power is at most 200 mW. If two ion sources were to be used, the ion source power would be, at most, 400 mW. Detector power, deflection voltage power, and microcontroller and other functions require less than 150 mW. A WTS (wind/ temperature spectrometer) with two separate optical axes would consume about 650 mW, while the crossed SDEA described here consumes about 350 mW. The entrance aperture has a diameter of 0.004 in. (0.10 mm) to provide the required energy resolution between 0.05 and 0.15. This design (see Figure 2) provides a WTS occupying a volume less than 40 cm(sup 3), on a footprint of diameter about 1.5 in. (38 mm). The Crossed SDEA offers many advantages in the measurements of neutral wind and ion drifts in the Earth's thermosphere. As such, it will be useful in future commercial satellites dedicated to monitoring the ionosphere with a view to improving the integrity and predictability of GPS operations.

  15. Solar Wind Implantation into Lunar Regolith: Hydrogen Retention in a Surface with Defects

    NASA Technical Reports Server (NTRS)

    Farrell, W. M.; Hurley, D. M.; Zimmerman, M. I.

    2014-01-01

    Solar wind protons are implanted directly into the top 100 nm of the lunar near-surface region, but can either quickly diffuse out of the surface or be retained, depending upon surface temperature and the activation energy, U, associated with the implantation site. In this work, we explore the distribution of activation energies upon implantation and the associated hydrogen-retention times; this for comparison with recent observation of OH on the lunar surface. We apply a Monte Carlo approach: for simulated solar wind protons at a given local time, we assume a distribution of U values with a central peak, U(sub c) and width, U(sub w), and derive the fraction retained for long periods in the near-surface. We find that surfaces characterized by a distribution with predominantly large values of U (greater than 1 eV) like that expected at defect sites will retain implanted H (to likely form OH). Surfaces with the distribution predominantly at small values of U (less than 0.2 eV) will quickly diffuse away implanted H. However, surfaces with a large portion of activation energies between 0.3 eV less than U less than 0.9 eV will tend to be H-retentive in cool conditions but transform into H-emissive surfaces when warmed (as when the surface rotates into local noon). These mid-range activation energies give rise to a diurnal effect with diffusive loss of H at noontime.

  16. Kinetic Features Observed in the Solar Wind Electron Distributions

    NASA Astrophysics Data System (ADS)

    Pierrard, V.; Lazar, M.; Poedts, S.

    2016-12-01

    More than 120 000 of velocity distributions measured by Helios, Cluster and Ulysses in the ecliptic have been analyzed within an extended range of heliocentric distances from 0.3 to over 4 AU. The velocity distribution of electrons reveal a dual structure with a thermal (Maxwellian) core and a suprathermal (Kappa) halo. A detailed observational analysis of these two components provides estimations of their temperatures and temperature anisotropies, and we decode any potential interdependence that their properties may indicate. The core temperature is found to decrease with the radial distance, while the halo temperature slightly increases, clarifying an apparent contradiction in previous observational analysis and providing valuable clues about the temperature of the Kappa-distributed populations. For low values of the power-index kappa, these two components manifest a clear tendency to deviate from isotropy in the same direction, that seems to confirm the existence of mechanisms with similar effects on both components, e.g., the solar wind expansion, or the particle heating by the fluctuations. However, the existence of plasma states with anti-correlated anisotropies of the core and halo populations and the increase of their number for high values of the power-index kappa suggest a dynamic interplay of these components, mediated most probably by the anisotropy-driven instabilities. Estimating the temperature of the solar wind particles and their anisotropies is particularly important for understanding the origin of these deviations from thermal equilibrium as well as their effects.

  17. Study of dispersed small wind systems interconnected with a utility distribution system

    NASA Astrophysics Data System (ADS)

    Curtice, D.; Patton, J.; Bohn, J.; Sechan, N.

    1980-03-01

    Operating problems for various penetrations of small wind systems connected to the distribution system on a utility are defined. Protection equipment, safety hazards, feeder voltage regulation, line losses, and voltage flicker problems are studied, assuming different small wind systems connected to an existing distribution system. To identify hardware deficiencies, possible solutions provided by off-the-shelf hardware and equipment are assessed. Results of the study indicate that existing techniques are inadequate for detecting isolated operation of a small wind system. Potential safety hazards posed by small wind systems are adequately handled by present work procedures although these procedures require a disconnect device at synchronous generator and self commutated inverter small wind systems.

  18. The effects of wind and altitude in the 400-m sprint.

    PubMed

    Quinn, Mike D

    2004-01-01

    In this paper I use a mathematical model to simulate the effect of wind and altitude on men's and women's 4400-m race performances. Both wind speed and direction were altered to calculate the effect on the velocity profile and the final time of the sprinter. The simulation shows that for a constant wind velocity, changing the wind direction can produce a large variation in the race time and velocity profile. A wind of velocity 2 m x s(-1) is generally a disadvantage to the 400-m runner but this is not so for all wind directions. Constant winds blowing from some directions can provide favourable conditions for the one-lap runner. Differences between the running lanes can be reduced or exaggerated depending on the wind direction. For example, a wind blowing behind the runner in the back straight increases the advantage of lane 8 over lane 1. Wind conditions can change the velocity profile and in some circumstances produce a maximum velocity much later than is evident in windless conditions. Lower air density at altitude produces a time advantage of around 0.06 s for men (0.07 s for women) for each 500-m increase in elevation.

  19. The interaction of heavy ions from Comet P/Giacobini-Zinner with the solar wind

    NASA Astrophysics Data System (ADS)

    Sanderson, T. R.; Wenzel, K.-P.; Daly, P.; Cowley, S. W. H.; Hynds, R. J.; Smith, E. J.; Bame, S. J.; Zwickl, R. D.

    1986-04-01

    The encounter between the ICE spacecraft and Comet P/Giacobini-Zinner was characterized in the solar wind by intense fluxes of heavy ions, measurable over a region 6 x 10 to the 6th km in extent. The ions are observed with highly anisotropic angular distributions, steep energy spectra, and a change in the energy spectrum at around 80 keV, consistent with a composition predominantly of the water group. Flux versus time profiles follow a general fall off with increasing distance from the comet, but with a marked inbound/outbound asymmetry. This asymmetry is due to the higher solar wind velocity on the outbound pass, giving rise to an increased energy gain of the pick-up ions. The flux versus time profiles are strongly modulated by the rapid changes in the direction of interplanetary magnetic field. Correlated observations of energetic ions, the interplanetary magnetic field and the solar wind are presented, and these observations are compared with theoretical predictions of the ion pick-up process.

  20. Protection of surface assets on Mars from wind blown jettisoned spacecraft components

    NASA Astrophysics Data System (ADS)

    Paton, Mark

    2017-07-01

    Jettisoned Entry, Descent and Landing System (EDLS) hardware from landing spacecraft have been observed by orbiting spacecraft, strewn over the Martian surface. Future Mars missions that land spacecraft close to prelanded assets will have to use a landing architecture that somehow minimises the possibility of impacts from these jettisoned EDLS components. Computer modelling is used here to investigate the influence of wind speed and direction on the distribution of EDLS components on the surface. Typical wind speeds encountered in the Martian Planetary Boundary Layer (PBL) were found to be of sufficient strength to blow items having a low ballistic coefficient, i.e. Hypersonic Inflatable Aerodynamic Decelerators (HIADs) or parachutes, onto prelanded assets even when the lander itself touches down several kilometres away. Employing meteorological measurements and careful characterisation of the Martian PBL, e.g. appropriate wind speed probability density functions, may then benefit future spacecraft landings, increase safety and possibly help reduce the delta v budget for Mars landers that rely on aerodynamic decelerators.

  1. Lunar and Planetary Science XXXV: Mars: Wind, Dust Sand, and Debris

    NASA Technical Reports Server (NTRS)

    2004-01-01

    The session "Mars: Wind, Dust Sand, and Debris" included: Mars Exploration Rovers: Laboratory Simulations of Aeolian Interactions; Thermal and Spectral Analysis of an Intracrater Dune Field in Amazonis Planitia; How High is that Dune? A Comparison of Methods Used to Constrain the Morphometry of Aeolian Bedforms on Mars; Dust Devils on Mars: Scaling of Dust Flux Based on Laboratory Simulations; A Close Encounter with a Terrestrial Dust Devil; Interpretation of Wind Direction from Eolian Features: Herschel Crater, Mars Erosion Rates at the Viking 2 Landing Site; Mars Dust: Characterization of Particle Size and Electrostatic Charge Distributions; Simple Non-fluvial Models of Planetary Surface Modification, with Application to Mars; Comparison of Geomorphically Determined Winds with a General Circulation Model: Herschel Crater, Mars; Analysis of Martian Debris Aprons in Eastern Hellas Using THEMIS; Origin of Martian Northern Hemisphere Mid-Latitude Lobate Debris Aprons; Debris Aprons in the Tempe/Mareotis Region of Mars;and Constraining Flow Dynamics of Mass Movements on Earth and Mars.

  2. The Influence of Soil Moisture and Wind on Rainfall Distribution and Intensity in Florida

    NASA Technical Reports Server (NTRS)

    Baker, R. David; Lynn, Barry H.; Boone, Aaron; Tao, Wei-Kuo

    1998-01-01

    Land surface processes play a key role in water and energy budgets of the hydrological cycle. For example, the distribution of soil moisture will affect sensible and latent heat fluxes, which in turn may dramatically influence the location and intensity of precipitation. However, mean wind conditions also strongly influence the distribution of precipitation. The relative importance of soil moisture and wind on rainfall location and intensity remains uncertain. Here, we examine the influence of soil moisture distribution and wind distribution on precipitation in the Florida peninsula using the 3-D Goddard Cumulus Ensemble (GCE) cloud model Coupled with the Parameterization for Land-Atmosphere-Cloud Exchange (PLACE) land surface model. This study utilizes data collected on 27 July 1991 in central Florida during the Convection and Precipitation Electrification Experiment (CaPE). The idealized numerical experiments consider a block of land (the Florida peninsula) bordered on the east and on the west by ocean. The initial soil moisture distribution is derived from an offline PLACE simulation, and the initial environmental wind profile is determined from the CaPE sounding network. Using the factor separation technique, the precise contribution of soil moisture and wind to rainfall distribution and intensity is determined.

  3. Impacts of Wind Farms on Local Land Surface Temperature

    NASA Astrophysics Data System (ADS)

    Zhou, L.; Tian, Y.; Baidya Roy, S.; Thorncroft, C.; Bosart, L. F.; Hu, Y.

    2012-12-01

    The U.S. wind industry has experienced a remarkably rapid expansion of capacity in recent years and this rapid growth is expected to continue in the future. While converting wind's kinetic energy into electricity, wind turbines modify surface-atmosphere exchanges and transfer of energy, momentum, mass and moisture within the atmosphere. These changes, if spatially large enough, may have noticeable impacts on local to regional weather and climate. Here we present observational evidence for such impacts based on analyses of satellite derived land surface temperature (LST) data at ~1.1 km for the period of 2003-2011 over a region in West-Central Texas, where four of the world's largest wind farms are located. Our results show a warming effect of up to 0.7 degrees C at nighttime for the 9-year period during which data was collected, over wind farms relative to nearby non wind farm regions and this warming is gradually enhanced with time, while the effect at daytime is small. The spatial pattern and magnitude of this warming effect couple very well with the geographic distribution of wind turbines and such coupling is stronger at nighttime than daytime and in summer than winter. These results suggest that the warming effect is very likely attributable to the development of wind farms. This inference is consistent with the increasing number of operational wind turbines with time during the study period, the diurnal and seasonal variations in the frequency of wind speed and direction distribution, and the changes in near-surface atmospheric boundary layer conditions due to wind farm operations. Figure 1: Nighttime land surface temperature (LST, C) differences between 2010 and 2003 (2010 minus 2003) in summer (June-July-August). Pixels with plus symbol have at least one wind turbine. A regional mean value (0.592 C) was removed to emphasize the relative LST changes at pixel level and so the resulting warming or cooling rate represents a change relative to the regional mean value. The LST data were derived from MODIS (Moderate Imaging Spectroradiometer) instruments on NASA's Aqua and Terra satellites. Note that LST measures the radiometric temperature of the Earth's surface itself - It has a larger diurnal variation than surface air temperature used in daily weather reports.

  4. Aerodynamic size distribution of suspended particulate matter in the ambient air in the city of Cleveland, Ohio

    NASA Technical Reports Server (NTRS)

    Leibecki, H. F.; King, R. B.; Fordyce, J. S.

    1974-01-01

    The City of Cleveland Division of Air Pollution Control and NASA jointly investigated the chemical and physical characteristics of the suspended particulate matter in Cleveland, and as part of the program, measurements of the particle size distribution of ambient air samples at five urban locations during August and September 1972 were made using high-volume cascade impactions. The distributions were evaluated for lognormality, and the mass median diameters were compared between locations and as a function of resultant wind direction. Junge-type distributions were consistent with dirty continental aerosols. About two-thirds of the suspended particulate matter observed in Cleveland is less than 7 microns in diameter.

  5. Spatial distribution of marine airborne bacterial communities

    PubMed Central

    Seifried, Jasmin S; Wichels, Antje; Gerdts, Gunnar

    2015-01-01

    The spatial distribution of bacterial populations in marine bioaerosol samples was investigated during a cruise from the North Sea to the Baltic Sea via Skagerrak and Kattegat. The analysis of the sampled bacterial communities with a pyrosequencing approach revealed that the most abundant phyla were represented by the Proteobacteria (49.3%), Bacteroidetes (22.9%), Actinobacteria (16.3%), and Firmicutes (8.3%). Cyanobacteria were assigned to 1.5% of all bacterial reads. A core of 37 bacterial OTUs made up more than 75% of all bacterial sequences. The most abundant OTU was Sphingomonas sp. which comprised 17% of all bacterial sequences. The most abundant bacterial genera were attributed to distinctly different areas of origin, suggesting highly heterogeneous sources for bioaerosols of marine and coastal environments. Furthermore, the bacterial community was clearly affected by two environmental parameters – temperature as a function of wind direction and the sampling location itself. However, a comparison of the wind directions during the sampling and calculated backward trajectories underlined the need for more detailed information on environmental parameters for bioaerosol investigations. The current findings support the assumption of a bacterial core community in the atmosphere. They may be emitted from strong aerosolizing sources, probably being mixed and dispersed over long distances. PMID:25800495

  6. Wavelet analysis for wind fields estimation.

    PubMed

    Leite, Gladeston C; Ushizima, Daniela M; Medeiros, Fátima N S; de Lima, Gilson G

    2010-01-01

    Wind field analysis from synthetic aperture radar images allows the estimation of wind direction and speed based on image descriptors. In this paper, we propose a framework to automate wind direction retrieval based on wavelet decomposition associated with spectral processing. We extend existing undecimated wavelet transform approaches, by including à trous with B(3) spline scaling function, in addition to other wavelet bases as Gabor and Mexican-hat. The purpose is to extract more reliable directional information, when wind speed values range from 5 to 10 ms(-1). Using C-band empirical models, associated with the estimated directional information, we calculate local wind speed values and compare our results with QuikSCAT scatterometer data. The proposed approach has potential application in the evaluation of oil spills and wind farms.

  7. An atlas of monthly mean distributions of GEOSAT sea surface height, SSMI surface wind speed, AVHRR/2 sea surface temperature, and ECMWF surface wind components during 1988

    NASA Technical Reports Server (NTRS)

    Halpern, D.; Zlotnicki, V.; Newman, J.; Brown, O.; Wentz, F.

    1991-01-01

    Monthly mean global distributions for 1988 are presented with a common color scale and geographical map. Distributions are included for sea surface height variation estimated from GEOSAT; surface wind speed estimated from the Special Sensor Microwave Imager on the Defense Meteorological Satellite Program spacecraft; sea surface temperature estimated from the Advanced Very High Resolution Radiometer on NOAA spacecrafts; and the Cartesian components of the 10m height wind vector computed by the European Center for Medium Range Weather Forecasting. Charts of monthly mean value, sampling distribution, and standard deviation value are displayed. Annual mean distributions are displayed.

  8. Global distribution of neutral wind shear associated with sporadic E layers derived from GAIA

    NASA Astrophysics Data System (ADS)

    Shinagawa, H.; Miyoshi, Y.; Jin, H.; Fujiwara, H.

    2017-04-01

    There have been a number of papers reporting that the statistical occurrence rate of the sporadic E (Es) layer depends not only on the local time and season but also on the geographical location, implying that geographical and seasonal dependence in vertical neutral wind shear is one of the factors responsible for the geographical and seasonal dependence in Es layer occurrences rate. To study the role of neutral wind shear in the global distribution of the Es layer occurrence rate, we employ a self-consistent atmosphere-ionosphere coupled model called GAIA (Ground-to-topside model of Atmosphere and Ionosphere for Aeronomy), which incorporates meteorological reanalysis data in the lower atmosphere. The average distribution of neutral wind shear in the lower thermosphere is derived for the June-August and December-February periods, and the global distribution of vertical ion convergence is obtained to estimate the Es layer occurrence rate. It is found that the local and seasonal dependence of neutral wind shear is an important factor in determining the dependence of the Es layer occurrence rate on geographical distribution and seasonal variation. However, there are uncertainties in the simulated vertical neutral wind shears, which have larger scales than the observed wind shear scales. Furthermore, other processes such as localization of magnetic field distribution, background metallic ion distribution, ionospheric electric fields, and chemical processes of metallic ions are also likely to make an important contribution to geographical distribution and seasonal variation of the Es occurrence rate.

  9. An empirical model for ocean radar backscatter and its application in inversion routine to eliminate wind speed and direction effects

    NASA Technical Reports Server (NTRS)

    Dome, G. J.; Fung, A. K.; Moore, R. K.

    1977-01-01

    Several regression models were tested to explain the wind direction dependence of the 1975 JONSWAP (Joint North Sea Wave Project) scatterometer data. The models consider the radar backscatter as a harmonic function of wind direction. The constant term accounts for the major effect of wind speed and the sinusoidal terms for the effects of direction. The fundamental accounts for the difference in upwind and downwind returns, while the second harmonic explains the upwind-crosswind difference. It is shown that a second harmonic model appears to adequately explain the angular variation. A simple inversion technique, which uses two orthogonal scattering measurements, is also described which eliminates the effect of wind speed and direction. Vertical polarization was shown to be more effective in determining both wind speed and direction than horizontal polarization.

  10. Assessment of Global Wind Energy Resource Utilization Potential

    NASA Astrophysics Data System (ADS)

    Ma, M.; He, B.; Guan, Y.; Zhang, H.; Song, S.

    2017-09-01

    Development of wind energy resource (WER) is a key to deal with climate change and energy structure adjustment. A crucial issue is to obtain the distribution and variability of WER, and mine the suitable location to exploit it. In this paper, a multicriteria evaluation (MCE) model is constructed by integrating resource richness and stability, utilization value and trend of resource, natural environment with weights. The global resource richness is assessed through wind power density (WPD) and multi-level wind speed. The utilizable value of resource is assessed by the frequency of effective wind. The resource stability is assessed by the coefficient of variation of WPD and the frequency of prevailing wind direction. Regression slope of long time series WPD is used to assess the trend of WER. All of the resource evaluation indicators are derived from the atmospheric reanalysis data ERA-Interim with spatial resolution 0.125°. The natural environment factors mainly refer to slope and land-use suitability, which are derived from multi-resolution terrain elevation data 2010 (GMTED 2010) and GlobalCover2009. Besides, the global WER utilization potential map is produced, which shows most high potential regions are located in north of Africa. Additionally, by verifying that 22.22 % and 48.8 9% operational wind farms fall on medium-high and high potential regions respectively, the result can provide a basis for the macroscopic siting of wind farm.

  11. Explaining the features of the Bipolar Nebulae of η-Carinae through gas dynamical simulations

    NASA Astrophysics Data System (ADS)

    de Gouveia dal Pino, E. M.; Gonzalez, R. F.; Raga, A. C.; Velezquez, P. F.

    2005-09-01

    Employing an alternative scenario to previous interacting stellar wind models that is supported both by theoretical and observational evidence, we let a nonspherical outburst wind (with a latitudinal velocity dependence that matches the observations of the large Homunculus) interact with a preeruptive slow wind also with a toroidal density distribution but with a much smaller equator-to-polar density contrast than that assumed in previous models. A second eruptive wind with spherical shape is ejected about 50 years after the first outburst and causes the development of the little internal nebula. We find that as a result of an appropriate combination of the parameters that control the degree of asymmetry of the interacting winds, the model is able to produce not only the structure and kinematics of both Homunculi but also the high-velocity components of the equatorial ejecta. These latter arise from the impact between the nonspherical outburst and the preoutburst winds in the equatorial plane (see Figs. 1 and 2 in Gonzalez, de Gouveia Dal Pino, Raga & Velazquez 2004a). Our model predicts that most of the features of the bipolar winds of eta-Carinae and the source ejection mechanism are directly linked to the central star only, therefore without requiring to invoke the secondary wind of the companion star to explain, e.g., the equatorial ejecta (Gonzalez, de Gouveia Dal Pino, Raga & Velazquez 2004b).

  12. Agent-Based Modeling of Physical Factors That May Control the Growth of Coccidioides immitis (Valley Fever Fungus) in Soils

    NASA Astrophysics Data System (ADS)

    Gettings, M. E.; Fisher, F. S.

    2003-12-01

    A model of the spread and survival of the fungus Coccidioides immitis in soil via wind-borne spore transport has been completed using public domain agent-based modeling software. The hypothetical model posits that for a successful new site to become established, four factors must be simultaneously satisfied. 1) There must be transport of spores from a source site to sites with favorable soil geology, texture, topographic aspect, and lack of biomass competition. 2) There must be sufficient moisture for fungal growth. 3) Temperature of the surface and soil must be favorable for growth. Finally, 4) the temperature and moisture must remain in favorable ranges for a long enough time interval for the fungus to grow down to depths at which spores will survive subsequent heat, aridity, and ultraviolet radiation of the hot, dry season typical of the Southwest U.S. climate. Using agent-based modeling software, a model was built so that the effects of combinations of these controlling factors could be evaluated using realistic temperature, rain and wind models. The rain probability and amount, temperature annual and diurnal variation, and wind direction and intensity were based on the weather records at Tucson, Arizona for the 107-year period from 1894 to 2001. Favorable ground was defined using a fractal tree algorithm that emulates a drainage network in accordance with observations that favorable sites are often adjacent to drainage channels. Numerous model runs produced the following five conclusions. 1) If any property is not isotropic, for example wind direction or narrow paths of rainstorms, parts of the favorable areas will never become colonized no matter how long the model runs. 2)The spread of sites is extremely sensitive to moisture duration. The amount of wind and temperature after a rain control the length of time before a site becomes too dry. 3) The distribution of wind and rainstorm direction relative to that of the favorable sites is a strong control on the spread of colonization. East-west winds across an area that has mostly north-south favorable sites restricts spread strongly. 4) Soil temperature was the least sensitive control in the model, although it does control the ultimate dormancy of a site. Fifth, the model results cover the spectrum of complete colonization of all favorable sites from a few source sites to none, one, or two new sites in three years of model simulation. This implies the probability of new sites depends on the four factors in a Bayesian way. These results indicate that the complexity introduced in the model from site favorableness, temperature, moisture, and duration of favorable temperature and moisture conditions is adequate to explain observed distributions of real sites.

  13. X-RAY EMISSION LINE PROFILES FROM WIND CLUMP BOW SHOCKS IN MASSIVE STARS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ignace, R.; Waldron, W. L.; Cassinelli, J. P.

    2012-05-01

    The consequences of structured flows continue to be a pressing topic in relating spectral data to physical processes occurring in massive star winds. In a preceding paper, our group reported on hydrodynamic simulations of hypersonic flow past a rigid spherical clump to explore the structure of bow shocks that can form around wind clumps. Here we report on profiles of emission lines that arise from such bow shock morphologies. To compute emission line profiles, we adopt a two-component flow structure of wind and clumps using two 'beta' velocity laws. While individual bow shocks tend to generate double-horned emission line profiles,more » a group of bow shocks can lead to line profiles with a range of shapes with blueshifted peak emission that depends on the degree of X-ray photoabsorption by the interclump wind medium, the number of clump structures in the flow, and the radial distribution of the clumps. Using the two beta law prescription, the theoretical emission measure and temperature distribution throughout the wind can be derived. The emission measure tends to be power law, and the temperature distribution is broad in terms of wind velocity. Although restricted to the case of adiabatic cooling, our models highlight the influence of bow shock effects for hot plasma temperature and emission measure distributions in stellar winds and their impact on X-ray line profile shapes. Previous models have focused on geometrical considerations of the clumps and their distribution in the wind. Our results represent the first time that the temperature distribution of wind clump structures are explicitly and self-consistently accounted for in modeling X-ray line profile shapes for massive stars.« less

  14. Winds Measured by the Rover Environmental Monitoring Station (REMS) During the Mars Science Laboratory (MSL) Rover's Bagnold Dunes Campaign and Comparison with Numerical Modeling Using MarsWRF

    NASA Technical Reports Server (NTRS)

    Newman, Claire E.; Gomez-Elvira, Javier; Marin, Mercedes; Navarro, Sara; Torres, Josefina; Richardson, Mark I.; Battalio, J. Michael; Guzewich, Scott D.; Sullivan, Robert; de la Torre, Manuel; hide

    2016-01-01

    A high density of REMS wind measurements were collected in three science investigations during MSL's Bagnold Dunes Campaign, which took place over approx. 80 sols around southern winter solstice (Ls approx. 90deg) and constituted the first in situ analysis of the environmental conditions, morphology, structure, and composition of an active dune field on Mars. The Wind Characterization Investigation was designed to fully characterize the near-surface wind field just outside the dunes and confirmed the primarily upslope/downslope flow expected from theory and modeling of the circulation on the slopes of Aeolis Mons in this season. The basic pattern of winds is 'upslope' (from the northwest, heading up Aeolis Mons) during the daytime (approx. 09:00-17:00 or 18:00) and 'downslope' (from the southeast, heading down Aeolis Mons) at night (approx. 20:00 to some time before 08:00). Between these times the wind rotates largely clockwise, giving generally westerly winds mid-morning and easterly winds in the early evening. The timings of these direction changes are relatively consistent from sol to sol; however, the wind direction and speed at any given time shows considerable intersol variability. This pattern and timing is similar to predictions from the MarsWRF numerical model, run at a resolution of approx. 490 m in this region, although the model predicts the upslope winds to have a stronger component from the E than the W, misses a wind speed peak at approx. 09:00, and under-predicts the strength of daytime wind speeds by approx. 2-4 m/s. The Namib Dune Lee Investigation reveals 'blocking' of northerly winds by the dune, leaving primarily a westerly component to the daytime winds, and also shows a broadening of the 1 Hz wind speed distribution likely associated with lee turbulence. The Namib Dune Side Investigation measured primarily daytime winds at the side of the same dune, in support of aeolian change detection experiments designed to put limits on the saltation threshold, and also appears to show the influence of the dune body on the local flow, though less clearly than in the lee. Using a vertical grid with lower resolution near the surface reduces the relative strength of nighttime winds predicted by MarsWRF and produces a peak in wind speed at approx. 09:00, improving the match to the observed diurnal variation of wind speed, albeit with an offset in magnitude. The annual wind field predicted using this grid also provides a far better match to observations of aeolian dune morphology and motion in the Bagnold Dunes. However, the lower overall wind speeds than observed and disagreement with the observed wind direction at approx. 09:00 suggest that the problem has not been solved and that alternative boundary layer mixing schemes should be explored which may result in more mixing of momentum down to the near-surface from higher layers. These results demonstrate a strong need for in situ wind data to constrain the setup and assumptions used in numerical models, so that they may be used with more confidence to predict the circulation at other times and locations on Mars.

  15. Impact of Utility-Scale Distributed Wind on Transmission-Level System Operations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brancucci Martinez-Anido, C.; Hodge, B. M.

    2014-09-01

    This report presents a new renewable integration study that aims to assess the potential for adding distributed wind to the current power system with minimal or no upgrades to the distribution or transmission electricity systems. It investigates the impacts of integrating large amounts of utility-scale distributed wind power on bulk system operations by performing a case study on the power system of the Independent System Operator-New England (ISO-NE).

  16. Framework for assessing impacts of pile-driving noise from offshore wind farm construction on a harbour seal population

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thompson, Paul M., E-mail: lighthouse@abdn.ac.uk; Hastie, Gordon D., E-mail: gdh10@st-andrews.ac.uk; Nedwell, Jeremy, E-mail: Jeremy.Nedwell@subacoustech.com

    2013-11-15

    Offshore wind farm developments may impact protected marine mammal populations, requiring appropriate assessment under the EU Habitats Directive. We describe a framework developed to assess population level impacts of disturbance from piling noise on a protected harbour seal population in the vicinity of proposed wind farm developments in NE Scotland. Spatial patterns of seal distribution and received noise levels are integrated with available data on the potential impacts of noise to predict how many individuals are displaced or experience auditory injury. Expert judgement is used to link these impacts to changes in vital rates and applied to population models thatmore » compare population changes under baseline and construction scenarios over a 25 year period. We use published data and hypothetical piling scenarios to illustrate how the assessment framework has been used to support environmental assessments, explore the sensitivity of the framework to key assumptions, and discuss its potential application to other populations of marine mammals. -- Highlights: • We develop a framework to support Appropriate Assessment for harbour seal populations. • We assessed potential impacts of wind farm construction noise. • Data on distribution of seals and noise were used to predict effects on individuals. • Expert judgement linked these impacts to vital rates to model population change. • We explore the sensitivity of the framework to key assumptions and uncertainties.« less

  17. United States Supports Distributed Wind Technology Improvements; NREL (National Renewable Energy Laboratory)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sinclair, Karin

    2015-06-15

    This presentation provides information on the activities conducted through the Competitiveness Improvement Project (CIP), initiated in 2012 by the U.S. Department of Energy (DOE) and executed through the National Renewable Energy Laboratory (NREL) to support the distributed wind industry. The CIP provides research and development funding and technical support to improve distributed wind turbine technology and increase the competitiveness of U.S. small and midsize wind turbine manufacturers. Through this project, DOE/NREL assists U.S. manufacturers to lower the levelized cost of energy of wind turbines through component improvements, manufacturing process upgrades, and turbine testing. Ultimately, this support is expected to leadmore » to turbine certification through testing to industry-recognized wind turbine performance and safety standards.« less

  18. Analysis the Transient Process of Wind Power Resources when there are Voltage Sags in Distribution Grid

    NASA Astrophysics Data System (ADS)

    Nhu Y, Do

    2018-03-01

    Vietnam has many advantages of wind power resources. Time by time there are more and more capacity as well as number of wind power project in Vietnam. Corresponding to the increase of wind power emitted into national grid, It is necessary to research and analyze in order to ensure the safety and reliability of win power connection. In national distribution grid, voltage sag occurs regularly, it can strongly influence on the operation of wind power. The most serious consequence is the disconnection. The paper presents the analysis of distribution grid's transient process when voltage is sagged. Base on the analysis, the solutions will be recommended to improve the reliability and effective operation of wind power resources.

  19. Local and regional effects of large scale atmospheric circulation patterns on winter wind power output in Western Europe

    NASA Astrophysics Data System (ADS)

    Zubiate, Laura; McDermott, Frank; Sweeney, Conor; O'Malley, Mark

    2014-05-01

    Recent studies (Brayshaw, 2009, Garcia-Bustamante, 2010, Garcia-Bustamante, 2013) have drawn attention to the sensitivity of wind speed distributions and likely wind energy power output in Western Europe to changes in low-frequency, large scale atmospheric circulation patterns such as the North Atlantic Oscillation (NAO). Wind speed variations and directional shifts as a function of the NAO state can be larger or smaller depending on the North Atlantic region that is considered. Wind speeds in Ireland and the UK for example are approximately 20 % higher during NAO + phases, and up to 30 % lower during NAO - phases relative to the long-term (30 year) climatological means. By contrast, in southern Europe, wind speeds are 15 % lower than average during NAO + phases and 15 % higher than average during NAO - phases. Crucially however, some regions such as Brittany in N.W. France have been identified in which there is negligible variability in wind speeds as a function of the NAO phase, as observed in the ERA-Interim 0.5 degree gridded reanalysis database. However, the magnitude of these effects on wind conditions is temporally and spatially non-stationary. As described by Comas-Bru and McDermott (2013) for temperature and precipitation, such non-stationarity is caused by the influence of two other patterns, the East Atlantic pattern, (EA), and the Scandinavian pattern, (SCA), which modulate the position of the NAO dipole. This phenomenon has also implications for wind speeds and directions, which has been assessed using the ERA-Interim reanalysis dataset and the indices obtained from the PC analysis of sea level pressure over the Atlantic region. In order to study the implications for power production, the interaction of the NAO and the other teleconnection patterns with local topography was also analysed, as well as how these interactions ultimately translate into wind power output. The objective is to have a better defined relationship between wind speed and power output at a local level and a tool that wind farm developers could use to inform site selection. A particular priority was to assess how the potential wind power outputs over a 25-30 year windfarm lifetime in less windy, but resource-stable regions, compare with those from windier but more variable sites.

  20. Analysis of low altitude atmospheric turbulence data measured in flight

    NASA Technical Reports Server (NTRS)

    Ganzer, V. M.; Joppa, R. G.; Vanderwees, G.

    1977-01-01

    All three components of turbulence were measured simultaneously in flight at each wing tip of a Beech D-18 aircraft. The flights were conducted at low altitude, 30.5 - 61.0 meters (100-200 ft.), over water in the presence of wind driven turbulence. Statistical properties of flight measured turbulence were compared with Gaussian and non-Gaussian turbulence models. Spatial characteristics of the turbulence were analyzed using the data from flight perpendicular and parallel to the wind. The probability density distributions of the vertical gusts show distinctly non-Gaussian characteristics. The distributions of the longitudinal and lateral gusts are generally Gaussian. The power spectra compare in the inertial subrange at some points better with the Dryden spectrum, while at other points the von Karman spectrum is a better approximation. In the low frequency range the data show peaks or dips in the power spectral density. The cross between vertical gusts in the direction of the mean wind were compared with a matched non-Gaussian model. The real component of the cross spectrum is in general close to the non-Gaussian model. The imaginary component, however, indicated a larger phase shift between these two gust components than was found in previous research.

  1. Electromagnetic Electron Cyclotron Instability in the Solar Wind

    NASA Astrophysics Data System (ADS)

    Lazar, M.; Yoon, P. H.; López, R. A.; Moya, P. S.

    2018-01-01

    The abundant reports on the existence of electromagnetic high-frequency fluctuations in space plasmas have increased the expectations that theoretical modeling may help understand their origins and implications (e.g., kinetic instabilities and dissipation). This paper presents an extended quasi-linear approach of the electromagnetic electron cyclotron instability in conditions typical for the solar wind, where the anisotropic electrons (T⊥>T∥) exhibit a dual distribution combining a bi-Maxwellian core and bi-Kappa halo. Involving both the core and halo populations, the instability is triggered by the cumulative effects of these components, mainly depending of their anisotropies. The instability is not very sensitive to the shape of halo distribution function conditioned in this case by the power index κ. This result seems to be a direct consequence of the low density of electron halo, which is assumed more dilute than the core component in conformity with the observations in the ecliptic. Quasi-linear time evolutions predicted by the theory are confirmed by the particle-in-cell simulations, which also suggest possible explanations for the inherent differences determined by theoretical constraints. These results provide premises for an advanced methodology to characterize, realistically, the electromagnetic electron cyclotron instability and its implication in the solar wind.

  2. Methods and apparatus for reducing peak wind turbine loads

    DOEpatents

    Moroz, Emilian Mieczyslaw

    2007-02-13

    A method for reducing peak loads of wind turbines in a changing wind environment includes measuring or estimating an instantaneous wind speed and direction at the wind turbine and determining a yaw error of the wind turbine relative to the measured instantaneous wind direction. The method further includes comparing the yaw error to a yaw error trigger that has different values at different wind speeds and shutting down the wind turbine when the yaw error exceeds the yaw error trigger corresponding to the measured or estimated instantaneous wind speed.

  3. Final Technical Report Power through Policy: "Best Practices" for Cost-Effective Distributed Wind

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rhoads-Weaver, Heather; Gagne, Matthew; Sahl, Kurt

    2012-02-28

    Power through Policy: 'Best Practices' for Cost-Effective Distributed Wind is a U.S. Department of Energy (DOE)-funded project to identify distributed wind technology policy best practices and to help policymakers, utilities, advocates, and consumers examine their effectiveness using a pro forma model. Incorporating a customized feed from the Database of State Incentives for Renewables and Efficiency (DSIRE), the Web-based Distributed Wind Policy Comparison Tool (Policy Tool) is designed to assist state, local, and utility officials in understanding the financial impacts of different policy options to help reduce the cost of distributed wind technologies. The project's final products include the Distributed Windmore » Policy Comparison Tool, found at www.windpolicytool.org, and its accompanying documentation: Distributed Wind Policy Comparison Tool Guidebook: User Instructions, Assumptions, and Case Studies. With only two initial user inputs required, the Policy Tool allows users to adjust and test a wide range of policy-related variables through a user-friendly dashboard interface with slider bars. The Policy Tool is populated with a variety of financial variables, including turbine costs, electricity rates, policies, and financial incentives; economic variables including discount and escalation rates; as well as technical variables that impact electricity production, such as turbine power curves and wind speed. The Policy Tool allows users to change many of the variables, including the policies, to gauge the expected impacts that various policy combinations could have on the cost of energy (COE), net present value (NPV), internal rate of return (IRR), and the simple payback of distributed wind projects ranging in size from 2.4 kilowatts (kW) to 100 kW. The project conducted case studies to demonstrate how the Policy Tool can provide insights into 'what if' scenarios and also allow the current status of incentives to be examined or defended when necessary. The ranking of distributed wind state policy and economic environments summarized in the attached report, based on the Policy Tool's default COE results, highlights favorable market opportunities for distributed wind growth as well as market conditions ripe for improvement. Best practices for distributed wind state policies are identified through an evaluation of their effect on improving the bottom line of project investments. The case studies and state rankings were based on incentives, power curves, and turbine pricing as of 2010, and may not match the current results from the Policy Tool. The Policy Tool can be used to evaluate the ways that a variety of federal and state policies and incentives impact the economics of distributed wind (and subsequently its expected market growth). It also allows policymakers to determine the impact of policy options, addressing market challenges identified in the U.S. DOE's '20% Wind Energy by 2030' report and helping to meet COE targets. In providing a simple and easy-to-use policy comparison tool that estimates financial performance, the Policy Tool and guidebook are expected to enhance market expansion by the small wind industry by increasing and refining the understanding of distributed wind costs, policy best practices, and key market opportunities in all 50 states. This comprehensive overview and customized software to quickly calculate and compare policy scenarios represent a fundamental step in allowing policymakers to see how their decisions impact the bottom line for distributed wind consumers, while estimating the relative advantages of different options available in their policy toolboxes. Interested stakeholders have suggested numerous ways to enhance and expand the initial effort to develop an even more user-friendly Policy Tool and guidebook, including the enhancement and expansion of the current tool, and conducting further analysis. The report and the project's Guidebook include further details on possible next steps. NREL Report No. BK-5500-53127; DOE/GO-102011-3453.« less

  4. Wavelet Analysis for Wind Fields Estimation

    PubMed Central

    Leite, Gladeston C.; Ushizima, Daniela M.; Medeiros, Fátima N. S.; de Lima, Gilson G.

    2010-01-01

    Wind field analysis from synthetic aperture radar images allows the estimation of wind direction and speed based on image descriptors. In this paper, we propose a framework to automate wind direction retrieval based on wavelet decomposition associated with spectral processing. We extend existing undecimated wavelet transform approaches, by including à trous with B3 spline scaling function, in addition to other wavelet bases as Gabor and Mexican-hat. The purpose is to extract more reliable directional information, when wind speed values range from 5 to 10 ms−1. Using C-band empirical models, associated with the estimated directional information, we calculate local wind speed values and compare our results with QuikSCAT scatterometer data. The proposed approach has potential application in the evaluation of oil spills and wind farms. PMID:22219699

  5. Light-Flash Wind-Direction Indicator

    NASA Technical Reports Server (NTRS)

    Zysko, Jan A.

    1993-01-01

    Proposed wind-direction indicator read easily by distant observers. Indicator emits bright flashes of light separated by interval of time proportional to angle between true north and direction from which wind blowing. Timing of flashes indicates direction of wind. Flashes, from high-intensity stroboscopic lights seen by viewers at distances up to 5 miles or more. Also seen more easily through rain and fog. Indicator self-contained, requiring no connections to other equipment. Power demand satisfied by battery or solar power or both. Set up quickly to provide local surface-wind data for aircraft pilots during landing or hovering, for safety officers establishing hazard zones and safety corridors during handling of toxic materials, for foresters and firefighters conducting controlled burns, and for real-time wind observations during any of variety of wind-sensitive operations.

  6. Scaling forecast models for wind turbulence and wind turbine power intermittency

    NASA Astrophysics Data System (ADS)

    Duran Medina, Olmo; Schmitt, Francois G.; Calif, Rudy

    2017-04-01

    The intermittency of the wind turbine power remains an important issue for the massive development of this renewable energy. The energy peaks injected in the electric grid produce difficulties in the energy distribution management. Hence, a correct forecast of the wind power in the short and middle term is needed due to the high unpredictability of the intermittency phenomenon. We consider a statistical approach through the analysis and characterization of stochastic fluctuations. The theoretical framework is the multifractal modelisation of wind velocity fluctuations. Here, we consider three wind turbine data where two possess a direct drive technology. Those turbines are producing energy in real exploitation conditions and allow to test our forecast models of power production at a different time horizons. Two forecast models were developed based on two physical principles observed in the wind and the power time series: the scaling properties on the one hand and the intermittency in the wind power increments on the other. The first tool is related to the intermittency through a multifractal lognormal fit of the power fluctuations. The second tool is based on an analogy of the power scaling properties with a fractional brownian motion. Indeed, an inner long-term memory is found in both time series. Both models show encouraging results since a correct tendency of the signal is respected over different time scales. Those tools are first steps to a search of efficient forecasting approaches for grid adaptation facing the wind energy fluctuations.

  7. 2015 Distributed Wind Market Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Orrell, Alice C.; Foster, Nikolas A.F.; Homer, Juliet S.

    The U.S. Department of Energy’s (DOE’s) annual Distributed Wind Market Report provides stakeholders with statistics and analysis of the market along with insights into its trends and characteristics. By providing a comprehensive overview of the distributed wind market, this report can help plan and guide future investments and decisions by industry, utilities, federal and state agencies, and other interested parties.

  8. Projected future wave climate in the NW Mediterranean Sea

    NASA Astrophysics Data System (ADS)

    Casas-Prat, M.; Sierra, J. P.

    2013-07-01

    Projected future regional wave climate scenarios at a high temporal-spatial scale were obtained for the NW Mediterranean Sea, using five combinations of regional-global circulation models. Changes in wave variables were analyzed and related to the variations of the forcing wind projections, while also evaluating the evolution of the presence of the different types of sea states. To assess the significance of the changes produced, a bootstrap-based method was proposed, which accounts for the autocorrelation of data and correctly reproduces the extremes. For the mean climate, relative changes of Hs up to ±10% were obtained, whereas they were around ±20% for the extreme climate. In mean terms, variations of Hs are similar to those associated with wind speed but are enhanced/attenuated, respectively, when fetch conditions are favorable/unfavorable. In general, most notable alterations are not in the Hs magnitude but rather in its direction. In this regard, during the winter season, it is interesting to note that the significant deviations between the results derived from the two global circulation models are larger than those between regional models. ECHAM5 simulated an enhanced west wind flow that is translated into more frequent W-NW waves, whereas the HadCM3Q3 global model gives rise to the east component, which contributes to a higher intensity and number of storms coming from such a direction and directly affects the wind-sea/swell distribution of coastal stretches that face east, like the Catalan coast. Different patterns of change were obtained during the summer when a common rise of NE-E waves was found.

  9. Using Solar Business Models to Expand the Distributed Wind Market (Presentation)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Savage, S.

    2013-05-01

    This presentation to attendees at Wind Powering America's All-States Summit in Chicago describes business models that were responsible for rapid growth in the solar industry and that may be applicable to the distributed wind industry as well.

  10. The Green Ocean: Precipitation Insights from the GoAmazon2014/5 Experiment

    DOE PAGES

    Wang, Die; Giangrande, Scott E.; Bartholomew, Mary Jane; ...

    2018-02-07

    This study summarizes the precipitation properties collected during the GoAmazon2014/5 campaign near Manaus in central Amazonia, Brazil. Precipitation breakdowns, summary radar rainfall relationships and self-consistency concepts from a coupled disdrometer and radar wind profiler measurements are presented. The properties of Amazon cumulus and associated stratiform precipitation are discussed, including segregations according to seasonal (Wet/Dry regime) variability, cloud echo-top height and possible aerosol influences on the apparent oceanic characteristics of the precipitation drop size distributions. Overall, we observe that the Amazon precipitation straddles behaviors found during previous U.S. Department of Energy Atmospheric Radiation Measurements program (ARM) tropical deployments, with distributions favoringmore » higher concentrations of smaller drops than ARM continental examples. Oceanic type precipitation characteristics are predominantly observed during the Amazon Wet seasons. Finally, an exploration of the controls on Wet season precipitation properties reveals that wind direction, as compared with other standard radiosonde thermodynamic parameters or aerosol count/regime classifications performed at the ARM site, provides a good indicator for those Wet season Amazon events having an oceanic character for their precipitation drop size distributions.« less

  11. Parametric decay of current-driven Langmuir oscillations and wave packet formation in plateau plasmas: Relevance to type III bursts

    NASA Astrophysics Data System (ADS)

    Sauer, K.; Malaspina, D.; Pulupa, M.

    2016-12-01

    Instead of starting with an unstable electron beam, our focus is directed on the nonlinear response of Langmuir oscillations which are driven after beam stabilization by the still persisting current of the (stable) two-electron plasma. The velocity distribution function of the second population forms a plateau with weak damping over a more or less extended wave number range k. As shown by PIC simulations, this so-called plateau plasma drives primarily Langmuir oscillations at the plasma frequency ωe with k=0 over long times without remarkable change of the distribution function. The Langmuir oscillations, however, act as pump wave for parametric decay by which an electron-acoustic wave slightly below ωe and a counter-streaming ion-acoustic wave are generated. Both high-frequency waves have nearly the same amplitude which is simply given by the product of plateau density and velocity. Beating of these two wave types leads to pronounced Langmuir amplitude modulation, in good agreement with solar wind and foreshock WIND observations where waveforms and electron distribution functions have simultaneously been analyzed.

  12. The Green Ocean: Precipitation Insights from the GoAmazon2014/5 Experiment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Die; Giangrande, Scott E.; Bartholomew, Mary Jane

    This study summarizes the precipitation properties collected during the GoAmazon2014/5 campaign near Manaus in central Amazonia, Brazil. Precipitation breakdowns, summary radar rainfall relationships and self-consistency concepts from a coupled disdrometer and radar wind profiler measurements are presented. The properties of Amazon cumulus and associated stratiform precipitation are discussed, including segregations according to seasonal (Wet/Dry regime) variability, cloud echo-top height and possible aerosol influences on the apparent oceanic characteristics of the precipitation drop size distributions. Overall, we observe that the Amazon precipitation straddles behaviors found during previous U.S. Department of Energy Atmospheric Radiation Measurements program (ARM) tropical deployments, with distributions favoringmore » higher concentrations of smaller drops than ARM continental examples. Oceanic type precipitation characteristics are predominantly observed during the Amazon Wet seasons. Finally, an exploration of the controls on Wet season precipitation properties reveals that wind direction, as compared with other standard radiosonde thermodynamic parameters or aerosol count/regime classifications performed at the ARM site, provides a good indicator for those Wet season Amazon events having an oceanic character for their precipitation drop size distributions.« less

  13. Project Fog Drops. Part 1: Investigations of warm fog properties

    NASA Technical Reports Server (NTRS)

    Pilie, R. J.; Eadie, W.; Mack, E. J.; Rogers, C.; Kocmond, W. C.

    1972-01-01

    A detailed study was made of the micrometeorological and microphysical characteristics of eleven valley fogs occurring near Elmira, New York. Observations were made of temperature, dew point, wind speed and direction, dew deposition, vertical wind velocity, and net radiative flux. In fog, visibility was continuously recorded and periodic measurements were made of liquid water content and drop-size distribution. The observations were initiated in late evening and continued until the time of fog dissipation. The vertical distribution of temperature in the lowest 300 meters and cloud nucleus concentration at several heights were measured from an aircraft before fog nucleus concentrations at several heights were measured from an aircraft before fog formation. A numerical model was developed to investigate the life cycle of radiation fogs. The model predicts the temporal evolution of the vertical distributions of temperature, water vapor, and liquid water as determined by the turbulent transfer of heat and moisture. The model includes the nocturnal cooling of the earth's surface, dew formation, fog drop sedimentation, and the absorption of infrared radiation by fog.

  14. An Analysis of Wintertime Winds in Washington, D.C.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Berg, Larry K.; Allwine, K Jerry

    This report consists of a description of the wintertime climatology of wind speed and wind direction around the National Mall in Washington, D.C. Meteorological data for this study were collected at Ronald Reagan Washington National Airport (Reagan National), Dulles International Airport (Dulles), and a set of surface meteorological stations that are located on a number of building tops around the National Mall. A five-year wintertime climatology of wind speed and wind direction measured at Reagan National and Dulles are presented. A more detailed analysis was completed for the period December 2003 through February 2004 using data gathered from stations locatedmore » around the National Mall, Reagan National, and Dulles. Key findings of our study include the following: * There are systematic differences between the wind speed and wind direction observed at Reagan National and the wind speed and wind direction measured by building top weather stations located in the National Mall. Although Dulles is located much further from the National Mall than Reagan National, there is better agreement between the wind speed and wind direction measured at Dulles and the weather stations in the National Mall. * When the winds are light (less than 3 ms-1 or 7 mph), there are significant differences in the wind directions reported at the various weather stations within the Mall. * Although the mean characteristics of the wind are similar at the various locations, significant, short-term differences are found when the time series are compared. These differences have important implications for the dispersion of airborne contaminants. In support of wintertime special events in the area of the National Mall, we recommend placing four additional meteorological instruments: three additional surface stations, one on the east bank of the Potomac River, one south of the Reflecting Pool (to better define the flow within the Mall), and a surface station near the Herbert C. Hoover Building; and wind-profiling instrument located along the southern edge of the National Mall to give measurements of the wind speed and direction as a function of height.« less

  15. Determination of the effect of wind velocity and direction changes on turbidity removal in rectangular sedimentation tanks.

    PubMed

    Khezri, Seyed Mostafa; Biati, Aida; Erfani, Zeynab

    2012-01-01

    In the present study, a pilot-scale sedimentation tank was used to determine the effect of wind velocity and direction on the removal efficiency of particles. For this purpose, a 1:20 scale pilot simulated according to Frude law. First, the actual efficiency of total suspended solids (TSS) removal was calculated in no wind condition. Then, the wind was blown in the same and the opposite directions of water flow. At each direction TSS removal was calculated at three different velocities from 2.5 to 7 m/s. Results showed that when the wind was in the opposite direction of water flow, TSS removal efficiency initially increased with the increase of wind velocity from 0 to 2.5 m/s, then it decreased with the increase of velocity to 5 m/s. This mainly might happen because the opposite direction of wind can increase particles' retention time in the sedimentation tank. However, higher wind velocities (i.e. 3.5 and 5.5 m/s) could not increase TSS removal efficiency. Thus, if sedimentation tanks are appropriately exposed to the wind, TSS removal efficiency increases by approximately 6%. Therefore, energy consumption will be reduced by a proper site selection for sedimentation tank unit in water and waste water treatment plants.

  16. Wind Power Forecasting Error Distributions over Multiple Timescales: Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hodge, B. M.; Milligan, M.

    2011-03-01

    In this paper, we examine the shape of the persistence model error distribution for ten different wind plants in the ERCOT system over multiple timescales. Comparisons are made between the experimental distribution shape and that of the normal distribution.

  17. Karin Sinclair | NREL

    Science.gov Websites

    effort under the Distributed Wind research portfolio focused on supporting the distributed wind sector to reduce the levelized cost of energy and increase the number of certified turbines for distributed

  18. A new method for wind speed forecasting based on copula theory.

    PubMed

    Wang, Yuankun; Ma, Huiqun; Wang, Dong; Wang, Guizuo; Wu, Jichun; Bian, Jinyu; Liu, Jiufu

    2018-01-01

    How to determine representative wind speed is crucial in wind resource assessment. Accurate wind resource assessments are important to wind farms development. Linear regressions are usually used to obtain the representative wind speed. However, terrain flexibility of wind farm and long distance between wind speed sites often lead to low correlation. In this study, copula method is used to determine the representative year's wind speed in wind farm by interpreting the interaction of the local wind farm and the meteorological station. The result shows that the method proposed here can not only determine the relationship between the local anemometric tower and nearby meteorological station through Kendall's tau, but also determine the joint distribution without assuming the variables to be independent. Moreover, the representative wind data can be obtained by the conditional distribution much more reasonably. We hope this study could provide scientific reference for accurate wind resource assessments. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. Research on the spatial-temporal distribution and development mode for renewable energy in Germany and Denmark

    NASA Astrophysics Data System (ADS)

    Li, Nana; Xie, Guohui

    2018-06-01

    Abstract—Global renewable energy have maintained a steady growth in recent years under the support of national policies and energy demand. Resource distribution, land supply, economy, voltage class and other relevant conditions affect the renewable energy distribution and development mode. Therefore, is necessary to analyze the spatial-temporal distribution and development modes for renewable energy, so as to provide reference and guidance for the renewable energy development around world. Firstly, the definitions and influence factors the renewable energy development mode are compared and summarized. Secondly, the renewable energy spatial-temporal distribution in Germany and Denmark are provided. Wind and solar power installations account for the largest proportion of all renewable energy in Germany and Denmark. Finally, renewable energy development modes are studied. The distributed photovoltaic generation accounts for more than 95%, and distributed wind power generation installations account for over 85% in Germany. Solar and wind resources are developed with distributed development mode, in which distributed wind power installation accounts for over 75%.

  20. Transverse Aeolian Ridges (TARs) on Mars II: Distributions, orientations, and ages

    NASA Astrophysics Data System (ADS)

    Berman, Daniel C.; Balme, Matthew R.; Rafkin, Scot C. R.; Zimbelman, James R.

    2011-05-01

    Transverse Aeolian Ridges (TARs), 10 m scale, ripple-like aeolian bedforms with simple morphology, are widespread on Mars but it is unknown what role they play in Mars' wider sediment cycle. We present the results of a survey of all Mars Global Surveyor Narrow angle images in a pole-to-pole study area, 45° longitude wide. Following on from the classification scheme and preliminary surveys of Balme et al. (Balme, M.R., Berman, D.C., Bourke, M.C., Zimbelman, J.R. [2008a]. Geomorphology 101, 703-720) and Wilson and Zimbelman (Wilson, S.A., Zimbelman, J.R. [2004]. J. Geophys. Res. 109 (E10). doi: 10.1029/2004JE002247) we searched more than 10,000 images, and found that over 2000 reveal at least 5% areal cover by TARs. The mean TAR areal cover in the study area is about 7% (3% in the northern hemisphere and 11% in the southern hemisphere) but TARs are not homogenously distributed - they are concentrated in the mid-low latitudes and almost absent poleward of 35°N and 55°S. We found no clear correlation between TAR distribution and any of thermal inertia, kilometer-scale roughness, or elevation. We did find that TARs are less common at extremes of elevation. We found that TARs are most common near the equator (especially in the vicinity of Meridiani Planum, in which area they have a distinctive "barchan-like" morphology) and in large southern-hemisphere impact craters. TARs in the equatorial band are usually associated with outcrops of layered terrain or steep slopes, hence their relative absence in the northern hemisphere. TARs in the southern hemisphere are most commonly associated with low albedo, intercrater dune fields. We speculate that the mid-latitude mantling terrain (e.g., Mustard, J.F., Cooper, C.D., Rifkin, M.K. [2001]. Nature 412, 411-414; Kreslavsky, M.A., Head, J.W. [2002]. J. Geophys. Res. 29 (15). doi: 10.1029/2002GL015392) could also play a role in covering TARs or inhibiting saltation. We compared TAR distribution with general circulation model (GCM) climate data for both surface wind shear stress and wind direction. We performed GCM runs at various obliquity values to simulate the effects of changing obliquity on recent Mars climate. We found good general agreement between TAR orientation and GCM wind directions from present day obliquity conditions in many cases, but found no good correlation between wind shear stress and TAR distribution. We performed preliminary high resolution crater count studies of TARs in both equatorial and southern intracrater dunefield settings and compared these to superposition relationships between TARs and large dark dunes. Our results show that TARs near dunefield appear to be younger than TARs in the equatorial regions. We infer that active saltation from the large dunes keeps TARs active, but that TARs are not active under present day condition when distal to large dunes - perhaps supporting the interpretation that TARs are granule ripples. We conclude that local geology, rather than wind strength, controls TAR distribution, but that their orientation matches present-day regional wind patterns in most cases. We suggest that TARs are likely most (perhaps only) active today when they are proximal to large dark dune fields.

  1. Effect of Wind Angle Direction on Carbon Monoxide (CO) Concentration Dispersion on Traffic Flow in Padang City

    NASA Astrophysics Data System (ADS)

    Bachtiar, V. S.; Purnawan, P.; Afrianita, R.; Dahlia, N.

    2018-01-01

    This study aims to analyze the relationship between CO concentration and wind direction. Wind direction in this context is the wind angle to the road on the traffic flow in Padang City. Sampling of CO concentration was conducted for 9 days at 3 monitoring points (each 3-day point) representing the wind angle to the road (a) i.e. at Jend. A. Yani road (0 degrees), Andalas road (30 degrees) and Prof. Dr. Hamka road (60 degrees), using impinger and analyzed by spectrophotometer. The results of the research in the three monitoring sites showed that the concentration of CO ranged between 137.217 and 600.525 μg/Nm3. The highest and lowest concentrations respectively on Prof. Dr. Hamka road and Jend. A. Yani road. The sampling showed that CO concentrations will be decreased if wind direction is changed from perpendicular wind direction (a 90°) to a 60°, 30°, and 0° respectively by 64.62%, 37.77% and 27.09%. It can be concluded that the wind angle direction to the road affects the CO concentrations in the roadside.

  2. Solar wind pickup of ionized Venus exosphere atoms

    NASA Technical Reports Server (NTRS)

    Curtis, S. A.

    1981-01-01

    Previous calculations of electrostatic and electromagnetic growth rates for plasma instabilities have neglected the thermal spread of the distribution function of the planetary ions. We consider the effects of finite temperatures for exospheric ions borne in the solar wind. Specifically, growth rates are calculated for electromagnetic instabilities in the low-frequency case for Alfven waves and the intermediate frequency case for whistlers. Also, electrostatic growth rates are calculated for the intermediate frequency regime. From these growth rates, estimates are derived for the pickup times of the planetary ions. The electromagnetic instabilities are shown to produce the most rapid pickup. In the situation where the angle between the local Venus magnetic field and the plasma flow direction is small, the pickup times for both electromagnetic and electrostatic instabilities become very long. A possible consequence of this effect is to produce regions of enhanced planetary ion density in favorable Venus magnetic field-solar wind flow geometries.

  3. Intermediate photovoltaic system application experiment operational performance report. Volume 6: Beverly High School, Beverly, Mass.

    NASA Astrophysics Data System (ADS)

    1982-03-01

    Performance data are given for the month of February, 1982 for a photovoltaic power supply at a Massachusetts high school. Data given include: monthly and daily electrical energy yield; monthly and daily insolation; monthly and daily array efficiency; energy production as a function of power level, voltage, cell temperature, and hour of day; insolation as a function of hour of the day; input, output and efficiency for each of two power conditioning units and for the total power conditioning system; energy supplied to the load by the photovoltaic system and by the grid; photovoltaic system efficiency; dollar value of the energy supplied by the photovoltaic system; capacity factor; daily photovoltaic energy to load; daily system availability and hours of daylight; heating and cooling degree days; hourly cell temperature, ambient temperature, wind speed, and insolation; average monthly wind speed; wind direction distribution; and daily data acquisition mode and recording interval plot.

  4. NASA Planetary Visualization Tool

    NASA Astrophysics Data System (ADS)

    Hogan, P.; Kim, R.

    2004-12-01

    NASA World Wind allows one to zoom from satellite altitude into any place on Earth, leveraging the combination of high resolution LandSat imagery and SRTM elevation data to experience Earth in visually rich 3D, just as if they were really there. NASA World Wind combines LandSat 7 imagery with Shuttle Radar Topography Mission (SRTM) elevation data, for a dramatic view of the Earth at eye level. Users can literally fly across the world's terrain from any location in any direction. Particular focus was put into the ease of usability so people of all ages can enjoy World Wind. All one needs to control World Wind is a two button mouse. Additional guides and features can be accessed though a simplified menu. Navigation is automated with single clicks of a mouse as well as the ability to type in any location and automatically zoom to it. NASA World Wind was designed to run on recent PC hardware with the same technology used by today's 3D video games. NASA World Wind delivers the NASA Blue Marble, spectacular true-color imagery of the entire Earth at 1-kilometer-per-pixel. Using NASA World Wind, you can continue to zoom past Blue Marble resolution to seamlessly experience the extremely detailed mosaic of LandSat 7 data at an impressive 15-meters-per-pixel resolution. NASA World Wind also delivers other color bands such as the infrared spectrum. The NASA Scientific Visualization Studio at Goddard Space Flight Center (GSFC) has produced a set of visually intense animations that demonstrate a variety of subjects such as hurricane dynamics and seasonal changes across the globe. NASA World Wind takes these animations and plays them directly on the world. The NASA Moderate Resolution Imaging Spectroradiometer (MODIS) produces a set of time relevant planetary imagery that's updated every day. MODIS catalogs fires, floods, dust, smoke, storms and volcanic activity. NASA World Wind produces an easily customized view of this information and marks them directly on the globe. When one of these color coded markers are clicked, it downloads the full image and displays it in the full context of its location on Earth. MODIS images are publication quality material at resolutions up to 250-meters-per-pixel. NASA World Wind provides a full catalog of countries, capitals, counties, cities, towns, and even historical references. The names appear dynamically, increasing in number as the user zooms in. World Wind is capable of browsing through and displaying GLOBE data based on any date one wishes planetary data for. That means one can download today's (or any previous day's) temperature across the world, or rainfall, barometric pressure, cloud cover, or even the GLOBE students' global distribution of collected data. This program is free and available for further development via the NASA Open Source Agreement guidelines.

  5. Distributed Wind Soft Costs: A Beginning

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jimenez, Tony; Forsyth,Trudy; Preus, Robert

    2016-06-14

    Tony Jimenez presented this overview of distributed wind soft costs at the 2016 Small Wind Conference in Stevens Point, Wisconsin, on June 14, 2016. Soft costs are any non-hardware project costs, such as costs related to permitting fees, installer/developer profit, taxes, transaction costs, permitting, installation, indirect corporate costs, installation labor, and supply chain costs. This presentation provides an overview of soft costs, a distributed wind project taxonomy (of which soft costs are a subset), an alpha data set project demographics, data summary, and future work in this area.

  6. Post-processing method for wind speed ensemble forecast using wind speed and direction

    NASA Astrophysics Data System (ADS)

    Sofie Eide, Siri; Bjørnar Bremnes, John; Steinsland, Ingelin

    2017-04-01

    Statistical methods are widely applied to enhance the quality of both deterministic and ensemble NWP forecasts. In many situations, like wind speed forecasting, most of the predictive information is contained in one variable in the NWP models. However, in statistical calibration of deterministic forecasts it is often seen that including more variables can further improve forecast skill. For ensembles this is rarely taken advantage of, mainly due to that it is generally not straightforward how to include multiple variables. In this study, it is demonstrated how multiple variables can be included in Bayesian model averaging (BMA) by using a flexible regression method for estimating the conditional means. The method is applied to wind speed forecasting at 204 Norwegian stations based on wind speed and direction forecasts from the ECMWF ensemble system. At about 85 % of the sites the ensemble forecasts were improved in terms of CRPS by adding wind direction as predictor compared to only using wind speed. On average the improvements were about 5 %, but mainly for moderate to strong wind situations. For weak wind speeds adding wind direction had more or less neutral impact.

  7. Wind Tunnel Test of Mach 5 Class Hypersonic Airplane

    NASA Astrophysics Data System (ADS)

    Nakatani, Hiroki; Taguchi, Hideyuki; Fujita, Kazuhisa; Shindo, Shigemi; Honami, Shinji

    JAXA is currently performing studies on a Hypersonic Turbojet Experimental Vehicle, which involve a hypersonic flight test of a Small Pre-cooled Turbojet Engine. The aerodynamic performance of this airplane was examined at the JAXA hypersonic, supersonic, and transonic wind tunnel facilities. The 6-degrees-of-freedom forces and pressure distribution around the model were measured and evaluated. This airplane satisfies the lift-to-drag ratio requirement for a flight test at Mach 5. In addition, the results indicate that this airplane has longitudinal and directional static stability if the moment reference point is x/l smaller than 0.35. A separation occurs at the external expanding nozzle. Therefore, a redesign is necessary to solve these problems.

  8. Simulation of the Impact of New Ocean Surface Wind Measurements on H*Wind Analyses

    NASA Technical Reports Server (NTRS)

    Miller, Timothy; Atlas, Robert; Black, Peter; Chen, Shuyi; Hood, Robbie; Johnson, James; Jones, Linwood; Ruf, Chris; Uhlhorn, Eric

    2008-01-01

    The H*Wind analysis, a product of the Hurricane Research Division of NOAA's Atlantic Oceanographic and Meteorological Laboratory, brings together wind measurements from a variety of observation platforms into an objective analysis of the distribution of surface wind speeds in a tropical cyclone. This product is designed to improve understanding of the extent and strength of the wind field, and to improve the assessment of hurricane intensity. See http://www.aoml.noaa.gov/hrd/data sub/wind.html. The Hurricane Imaging Radiometer (HIRAD) is a new passive microwave remote sensor for hurricane observations that is currently under development by NASA Marshall Space Flight Center, NOAA Hurricane Research Division, the University of Central Florida and the University of Michigan. HIRAD is being designed to enhance the current real-time airborne ocean surface winds observation capabilities of NOAA and USAF Weather Squadron hurricane hunter aircraft using the operational airbome Stepped Frequency Microwave Radiometer (SFMR). Unlike SFMR, which measures wind speed and rain rate along the ground track directly beneath the aircraft, HIRAD will provide images of the surface wind and rain field over a wide swath (approximately 3 x the aircraft altitude, or approximately 2 km from space). The instrument is described in a separate paper presented at this conference. The present paper describes a set of Observing System Simulation Experiments (OSSEs) in which measurements from the new instrument as well as those from existing instruments (air, surface, and space-based) are simulated from the output of a numerical model from the University of Miami, and those results are used to construct H*Wind analyses. Evaluations will be presented on the relative impact of HIRAD and other instruments on H*Wind analyses, including the use of HIRAD from 2 aircraft altitudes and from a space-based platform.

  9. An Update to the Warm-Season Convective Wind Climatology of KSC/CCAFS

    NASA Technical Reports Server (NTRS)

    Lupo, Kevin

    2012-01-01

    Total of 1100 convective events in the 17-year warm-season climatology at KSC/CCAFS. July and August typically are the peak of convective events, May being the minimum. Warning and non-warning level convective winds are more likely to occur in the late afternoon (1900-2000Z). Southwesterly flow regimes and wind directions produce the strongest winds. Storms moving from southwesterly direction tend to produce more warning level winds than those moving from the northerly and easterly directions.

  10. Scientific Impacts of Wind Direction Errors

    NASA Technical Reports Server (NTRS)

    Liu, W. Timothy; Kim, Seung-Bum; Lee, Tong; Song, Y. Tony; Tang, Wen-Qing; Atlas, Robert

    2004-01-01

    An assessment on the scientific impact of random errors in wind direction (less than 45 deg) retrieved from space-based observations under weak wind (less than 7 m/s ) conditions was made. averages, and these weak winds cover most of the tropical, sub-tropical, and coastal oceans. Introduction of these errors in the semi-daily winds causes, on average, 5% changes of the yearly mean Ekman and Sverdrup volume transports computed directly from the winds, respectively. These poleward movements of water are the main mechanisms to redistribute heat from the warmer tropical region to the colder high- latitude regions, and they are the major manifestations of the ocean's function in modifying Earth's climate. Simulation by an ocean general circulation model shows that the wind errors introduce a 5% error in the meridional heat transport at tropical latitudes. The simulation also shows that the erroneous winds cause a pile-up of warm surface water in the eastern tropical Pacific, similar to the conditions during El Nino episode. Similar wind directional errors cause significant change in sea-surface temperature and sea-level patterns in coastal oceans in a coastal model simulation. Previous studies have shown that assimilation of scatterometer winds improves 3-5 day weather forecasts in the Southern Hemisphere. When directional information below 7 m/s was withheld, approximately 40% of the improvement was lost

  11. A Systematic Search for Solar Wind Charge Exchange Emission from the Earth's Exosphere with Suzaku

    NASA Astrophysics Data System (ADS)

    Ishi, D.; Ishikawa, K.; Ezoe, Y.; Ohashi, T.; Miyoshi, Y.; Terada, N.

    2017-10-01

    We report on a systematic search of all the Suzaku archival data covering from 2005 August to 2015 May for geocoronal Solar Wind Charge eXchange (SWCX). In the vicinity of Earth, solar wind ions strip an electron from Earth's exospheric neutrals, emitting X-ray photons (e.g., Snowden et al. 1997). The X-ray flux of this geocoronal SWCX can change depending on solar wind condition and line of sight direction. Although it is an immediate background for all the X-ray astronomy observations, the X-ray flux prediction and the dependence on the observational conditions are not clear. Using the X-ray Imaging Spectrometer onboard Suzaku which has one of the highest sensitivities to the geocoronal SWCX, we searched the data for time variation of soft X-ray background. We then checked the solar wind proton flux taken with the WIND satellite and compared it with X-ray light curve. We also analyzed X-ray spectra and fitted them with a charge exchange emission line model constructed by Bodewits et al. (2007). Among 3055 data sets, 90 data showed SWCX features. The event rate seems to correlate with solar activity, while the distribution of SWCX events plotted in the solar magnetic coordinate system was relatively uniform.

  12. Investigations on 3-dimensional temperature distribution in a FLATCON-type CPV module

    NASA Astrophysics Data System (ADS)

    Wiesenfarth, Maike; Gamisch, Sebastian; Kraus, Harald; Bett, Andreas W.

    2013-09-01

    The thermal flow in a FLATCON®-type CPV module is investigated theoretically and experimentally. For the simulation a model in the computational fluid dynamics (CFD) software SolidWorks Flow Simulation was established. In order to verify the simulation results the calculated and measured temperatures were compared assuming the same operating conditions (wind speed and direction, direct normal irradiance (DNI) and ambient temperature). Therefore, an experimental module was manufactured and equipped with temperature sensors at defined positions. In addition, the temperature distribution on the back plate of the module was displayed by infrared images. The simulated absolute temperature and the distribution compare well with an average deviation of only 3.3 K to the sensor measurements. Finally, the validated model was used to investigate the influence of the back plate material on the temperature distribution by replacing the glass material by aluminum. The simulation showed that it is important to consider heat dissipation by radiation when designing a CPV module.

  13. Climatological characteristics of raindrop size distributions within a topographically complex area

    NASA Astrophysics Data System (ADS)

    Suh, S.-H.; You, C.-H.; Lee, D.-I.

    2015-04-01

    Raindrop size distribution (DSD) characteristics within the complex area of Busan, Korea (35.12° N, 129.10° E) were studied using a Precipitation Occurrence Sensor System (POSS) disdrometer over a four-year period from 24 February 2001 to 24 December 2004. Average DSD parameters in Busan, a mid-latitude site, were compared with corresponding parameters recorded in the high-latitude site of Järvenpää, Finland. Mean values of median drop diameter (D0) and the shape parameter (μ) in Busan are smaller than those in Järvenpää, whereas the mean normalized intercept parameter (Nw) and rainfall rate (R) are higher in Busan. To analyze the climatological DSD characteristics in more detail, the entire period of recorded rainfall was divided into 10 categories with different temporal and spatial scales. When only convective rainfall was considered, mean Dm and Nw values for all these categories converged around a maritime cluster, except for rainfall associated with typhoons. The convective rainfall of a typhoon showed much smaller Dm and larger Nw compared with the other rainfall categories. In terms of diurnal DSD variability, we observe maritime (continental) precipitation during the daytime (DT) (nighttime, NT), which likely results from sea (land) breeze identified through wind direction analysis. These features also appeared in the seasonal diurnal distribution. The DT and NT Probability Density Function (PDF) during the summer was similar to the PDF of the entire study period. However, the DT and NT PDF during the winter season displayed an inverse distribution due to seasonal differences in wind direction.

  14. Indexed semi-Markov process for wind speed modeling.

    NASA Astrophysics Data System (ADS)

    Petroni, F.; D'Amico, G.; Prattico, F.

    2012-04-01

    The increasing interest in renewable energy leads scientific research to find a better way to recover most of the available energy. Particularly, the maximum energy recoverable from wind is equal to 59.3% of that available (Betz law) at a specific pitch angle and when the ratio between the wind speed in output and in input is equal to 1/3. The pitch angle is the angle formed between the airfoil of the blade of the wind turbine and the wind direction. Old turbine and a lot of that actually marketed, in fact, have always the same invariant geometry of the airfoil. This causes that wind turbines will work with an efficiency that is lower than 59.3%. New generation wind turbines, instead, have a system to variate the pitch angle by rotating the blades. This system able the wind turbines to recover, at different wind speed, always the maximum energy, working in Betz limit at different speed ratios. A powerful system control of the pitch angle allows the wind turbine to recover better the energy in transient regime. A good stochastic model for wind speed is then needed to help both the optimization of turbine design and to assist the system control to predict the value of the wind speed to positioning the blades quickly and correctly. The possibility to have synthetic data of wind speed is a powerful instrument to assist designer to verify the structures of the wind turbines or to estimate the energy recoverable from a specific site. To generate synthetic data, Markov chains of first or higher order are often used [1,2,3]. In particular in [1] is presented a comparison between a first-order Markov chain and a second-order Markov chain. A similar work, but only for the first-order Markov chain, is conduced by [2], presenting the probability transition matrix and comparing the energy spectral density and autocorrelation of real and synthetic wind speed data. A tentative to modeling and to join speed and direction of wind is presented in [3], by using two models, first-order Markov chain with different number of states, and Weibull distribution. All this model use Markov chains to generate synthetic wind speed time series but the search for a better model is still open. Approaching this issue, we applied new models which are generalization of Markov models. More precisely we applied semi-Markov models to generate synthetic wind speed time series. In a previous work we proposed different semi-Markov models, showing their ability to reproduce the autocorrelation structures of wind speed data. In that paper we showed also that the autocorrelation is higher with respect to the Markov model. Unfortunately this autocorrelation was still too small compared to the empirical one. In order to overcome the problem of low autocorrelation, in this paper we propose an indexed semi-Markov model. More precisely we assume that wind speed is described by a discrete time homogeneous semi-Markov process. We introduce a memory index which takes into account the periods of different wind activities. With this model the statistical characteristics of wind speed are faithfully reproduced. The wind is a very unstable phenomenon characterized by a sequence of lulls and sustained speeds, and a good wind generator must be able to reproduce such sequences. To check the validity of the predictive semi-Markovian model, the persistence of synthetic winds were calculated, then averaged and computed. The model is used to generate synthetic time series for wind speed by means of Monte Carlo simulations and the time lagged autocorrelation is used to compare statistical properties of the proposed models with those of real data and also with a time series generated though a simple Markov chain. [1] A. Shamshad, M.A. Bawadi, W.M.W. Wan Hussin, T.A. Majid, S.A.M. Sanusi, First and second order Markov chain models for synthetic generation of wind speed time series, Energy 30 (2005) 693-708. [2] H. Nfaoui, H. Essiarab, A.A.M. Sayigh, A stochastic Markov chain model for simulating wind speed time series at Tangiers, Morocco, Renewable Energy 29 (2004) 1407-1418. [3] F. Youcef Ettoumi, H. Sauvageot, A.-E.-H. Adane, Statistical bivariate modeling of wind using first-order Markov chain and Weibull distribution, Renewable Energy 28 (2003) 1787-1802.

  15. Directional Wave Spectra Observed During Intense Tropical Cyclones

    NASA Astrophysics Data System (ADS)

    Collins, C. O.; Potter, H.; Lund, B.; Tamura, H.; Graber, H. C.

    2018-02-01

    Two deep-sea moorings were deployed 780 km off the coast of southern Taiwan for 4-5 months during the 2010 typhoon season. Directional wave spectra, wind speed and direction, and momentum fluxes were recorded on two Extreme Air-Sea Interaction buoys during the close passage of Severe Tropical Storm Dianmu and three tropical cyclones (TCs): Typhoon Fanapi, Super Typhoon Megi, and Typhoon Chaba. Conditions sampled include significant wave heights up to 11 m and wind speeds up to 26 m s-1. Details varied for large-scale spectral structure in frequency and direction but were mostly bimodal. The modes were generally composed of a swell system emanating from the most intense storm region and local wind-seas. The peak systems were consistently young, meaning actively forced by winds, when the storms were close. During the peaks of the most intense passages—Chaba at the northern mooring and Megi at the southern—the bimodal seas coalesced. During Chaba, the swell and wind-sea coupling directed the high frequency waves and the wind stress away from the wind direction. A spectral wave model was able reproduce many of the macrofeatures of the directional spectra.

  16. High-Resolution Simulation of Hurricane Bonnie (1998). Part 1; The Organization of Vertical Motion

    NASA Technical Reports Server (NTRS)

    Braun, Scott A.; Montgomery, Michael T.; Pu, Zhaoxia

    2003-01-01

    Hurricanes are well known for their strong winds and heavy rainfall, particularly in the intense rainband (eyewall) surrounding the calmer eye of the storm. In some hurricanes, the rainfall is distributed evenly around the eye so that it has a donut shape on radar images. In other cases, the rainfall is concentrated on one side of the eyewall and nearly absent on the other side and is said to be asymmetric. This study examines how the vertical air motions that produce the rainfall are distributed within the eyewall of an asymmetric hurricane and the factors that cause this pattern of rainfall. We use a sophisticated numerical forecast model to simulate Hurricane Bonnie, which occurred in late August of 1998 during a special NASA field experiment designed to study hurricanes. The simulation results suggest that vertical wind shear (a rapid change in wind speed or direction with height) caused the asymmetric rainfall and vertical air motion patterns by tilting the hurricane vortex and favoring upward air motions in the direction of tilt. Although the rainfall in the hurricane eyewall may surround more than half of the eye, the updrafts that produce the rainfall are concentrated in very small-scale, intense updraft cores that occupy only about 10% of the eyewall area. The model simulation suggests that the timing and location of individual updraft cores are controlled by intense, small-scale vortices (regions of rapidly swirling flow) in the eyewall and that the updrafts form when the vortices encounter low-level air moving into the eyewall.

  17. Fuselage ventilation due to wind flow about a postcrash aircraft

    NASA Technical Reports Server (NTRS)

    Stuart, J. W.

    1980-01-01

    Postcrash aircraft fuselage fire development, dependent on the internal and external fluid dynamics is discussed. The natural ventilation rate, a major factor in the internal flow patterns and fire development is reviewed. The flow about the fuselage as affected by the wind and external fire is studied. An analysis was performend which estimated the rates of ventilation produced by the wind for a limited idealized environmental configuration. The simulation utilizes the empirical pressure coefficient distribution of an infinite circular cylinder near a wall with its boundary later flow to represent the atmospheric boundary layer. The resulting maximum ventilation rate for two door size openings, with varying circumferential location in a common 10 mph wind was an order of magnitude greater than the forced ventilation specified in full scale fire testing. The parameter discussed are: (1) fuselage size and shape, (2) fuselage orientation and proximity to the ground, (3) fuselage-openings size and location, (4) wind speed and direction, and (5) induced flow of the external fire plume is recommended. The fire testing should be conducted to a maximum ventilation rate at least an order of magnitude greater than the inflight air conditioning rates.

  18. Probabilities and statistics for backscatter estimates obtained by a scatterometer

    NASA Technical Reports Server (NTRS)

    Pierson, Willard J., Jr.

    1989-01-01

    Methods for the recovery of winds near the surface of the ocean from measurements of the normalized radar backscattering cross section must recognize and make use of the statistics (i.e., the sampling variability) of the backscatter measurements. Radar backscatter values from a scatterometer are random variables with expected values given by a model. A model relates backscatter to properties of the waves on the ocean, which are in turn generated by the winds in the atmospheric marine boundary layer. The effective wind speed and direction at a known height for a neutrally stratified atmosphere are the values to be recovered from the model. The probability density function for the backscatter values is a normal probability distribution with the notable feature that the variance is a known function of the expected value. The sources of signal variability, the effects of this variability on the wind speed estimation, and criteria for the acceptance or rejection of models are discussed. A modified maximum likelihood method for estimating wind vectors is described. Ways to make corrections for the kinds of errors found for the Seasat SASS model function are described, and applications to a new scatterometer are given.

  19. Ion-driven instabilities in the solar wind: Wind observations of 19 March 2005

    DOE PAGES

    Gary, S. Peter; Jian, Lan K.; Broiles, Thomas W.; ...

    2016-01-16

    Intervals of enhanced magnetic fluctuations have been frequently observed in the solar wind. However, it remains an open question as to whether these waves are generated at the Sun and then transported outward by the solar wind or generated locally in the interplanetary medium. Magnetic field and plasma measurements from the Wind spacecraft under slow solar wind conditions on 19 March 2005 demonstrate seven events of enhanced magnetic fluctuations at spacecraft-frame frequencies somewhat above the proton cyclotron frequency and propagation approximately parallel or antiparallel to the background magnetic field B o. The proton velocity distributions during these events are characterizedmore » by two components: a more dense, slower core and a less dense, faster beam. In conclusion, observed plasma parameters are used in a kinetic linear dispersion equation analysis for electromagnetic fluctuations at k x B o = 0; for two events the most unstable mode is the Alfvén-cyclotron instability driven by a proton component temperature anisotropy T ⊥/T || > 1 (where the subscripts denote directions relative to B o), and for three events the most unstable mode is the right-hand polarized magnetosonic instability driven primarily by ion component relative flows. Thus, both types of ion anisotropies and both types of instabilities are likely to be local sources of these enhanced fluctuation events in the solar wind.« less

  20. Ion-driven instabilities in the solar wind: Wind observations of 19 March 2005

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gary, S. Peter; Jian, Lan K.; Broiles, Thomas W.

    Intervals of enhanced magnetic fluctuations have been frequently observed in the solar wind. However, it remains an open question as to whether these waves are generated at the Sun and then transported outward by the solar wind or generated locally in the interplanetary medium. Magnetic field and plasma measurements from the Wind spacecraft under slow solar wind conditions on 19 March 2005 demonstrate seven events of enhanced magnetic fluctuations at spacecraft-frame frequencies somewhat above the proton cyclotron frequency and propagation approximately parallel or antiparallel to the background magnetic field B o. The proton velocity distributions during these events are characterizedmore » by two components: a more dense, slower core and a less dense, faster beam. In conclusion, observed plasma parameters are used in a kinetic linear dispersion equation analysis for electromagnetic fluctuations at k x B o = 0; for two events the most unstable mode is the Alfvén-cyclotron instability driven by a proton component temperature anisotropy T ⊥/T || > 1 (where the subscripts denote directions relative to B o), and for three events the most unstable mode is the right-hand polarized magnetosonic instability driven primarily by ion component relative flows. Thus, both types of ion anisotropies and both types of instabilities are likely to be local sources of these enhanced fluctuation events in the solar wind.« less

  1. Ion-driven instabilities in the solar wind: Wind observations of 19 March 2005.

    PubMed

    Gary, S Peter; Jian, Lan K; Broiles, Thomas W; Stevens, Michael L; Podesta, John J; Kasper, Justin C

    2016-01-01

    Intervals of enhanced magnetic fluctuations have been frequently observed in the solar wind. But it remains an open question as to whether these waves are generated at the Sun and then transported outward by the solar wind or generated locally in the interplanetary medium. Magnetic field and plasma measurements from the Wind spacecraft under slow solar wind conditions on 19 March 2005 demonstrate seven events of enhanced magnetic fluctuations at spacecraft-frame frequencies somewhat above the proton cyclotron frequency and propagation approximately parallel or antiparallel to the background magnetic field B o . The proton velocity distributions during these events are characterized by two components: a more dense, slower core and a less dense, faster beam. Observed plasma parameters are used in a kinetic linear dispersion equation analysis for electromagnetic fluctuations at k x B o  = 0; for two events the most unstable mode is the Alfvén-cyclotron instability driven by a proton component temperature anisotropy T ⊥ /T ||  > 1 (where the subscripts denote directions relative to B o ), and for three events the most unstable mode is the right-hand polarized magnetosonic instability driven primarily by ion component relative flows. Thus, both types of ion anisotropies and both types of instabilities are likely to be local sources of these enhanced fluctuation events in the solar wind.

  2. Ion‐driven instabilities in the solar wind: Wind observations of 19 March 2005

    PubMed Central

    Jian, Lan K.; Broiles, Thomas W.; Stevens, Michael L.; Podesta, John J.; Kasper, Justin C.

    2016-01-01

    Abstract Intervals of enhanced magnetic fluctuations have been frequently observed in the solar wind. But it remains an open question as to whether these waves are generated at the Sun and then transported outward by the solar wind or generated locally in the interplanetary medium. Magnetic field and plasma measurements from the Wind spacecraft under slow solar wind conditions on 19 March 2005 demonstrate seven events of enhanced magnetic fluctuations at spacecraft‐frame frequencies somewhat above the proton cyclotron frequency and propagation approximately parallel or antiparallel to the background magnetic field B o. The proton velocity distributions during these events are characterized by two components: a more dense, slower core and a less dense, faster beam. Observed plasma parameters are used in a kinetic linear dispersion equation analysis for electromagnetic fluctuations at k x B o = 0; for two events the most unstable mode is the Alfvén‐cyclotron instability driven by a proton component temperature anisotropy T⊥/T|| > 1 (where the subscripts denote directions relative to B o), and for three events the most unstable mode is the right‐hand polarized magnetosonic instability driven primarily by ion component relative flows. Thus, both types of ion anisotropies and both types of instabilities are likely to be local sources of these enhanced fluctuation events in the solar wind. PMID:27818854

  3. Emission of hydrogen energetic neutral atoms from the Martian subsolar magnetosheath

    NASA Astrophysics Data System (ADS)

    Wang, X.-D.; Alho, M.; Jarvinen, R.; Kallio, E.; Barabash, S.; Futaana, Y.

    2016-01-01

    We have simulated the hydrogen energetic neutral atom (ENA) emissions from the subsolar magnetosheath of Mars using a hybrid model of the proton plasma charge exchanging with the Martian exosphere to study statistical features revealed from the observations of the Neutral Particle Detectors on Mars Express. The simulations reproduce well the observed enhancement of the hydrogen ENA emissions from the dayside magnetosheath in directions perpendicular to the Sun-Mars line. Our results show that the neutralized protons from the shocked solar wind are the dominant ENA population rather than those originating from the pickup planetary ions. The simulation also suggests that the observed stronger ENA emissions in the direction opposite to the solar wind convective electric field result from a stronger proton flux in the same direction at the lower magnetosheath; i.e., the proton fluxes in the magnetosheath are not cylindrically symmetric. We also confirm the observed increasing of the ENA fluxes with the solar wind dynamical pressure in the simulations. This feature is associated with a low altitude of the induced magnetic boundary when the dynamic pressure is high and the magnetosheath protons can reach to a denser exosphere, and thus, the charge exchange rate becomes higher. Overall, the analysis suggests that kinetic effects play an important and pronounced role in the morphology of the hydrogen ENA distribution and the plasma environment at Mars, in general.

  4. Effects of wind direction on coarse and fine particulate matter concentrations in southeast Kansas.

    PubMed

    Guerra, Sergio A; Lane, Dennis D; Marotz, Glen A; Carter, Ray E; Hohl, Carrie M; Baldauf, Richard W

    2006-11-01

    Field data for coarse particulate matter ([PM] PM10) and fine particulate matter (PM2.5) were collected at selected sites in Southeast Kansas from March 1999 to October 2000, using portable MiniVol particulate samplers. The purpose was to assess the influence on air quality of four industrial facilities that burn hazardous waste in the area located in the communities of Chanute, Independence, Fredonia, and Coffeyville. Both spatial and temporal variation were observed in the data. Variation because of sampling site was found to be statistically significant for PM10 but not for PM2.5. PM10 concentrations were typically slightly higher at sites located within the four study communities than at background sites. Sampling sites were located north and south of the four targeted sources to provide upwind and downwind monitoring pairs. No statistically significant differences were found between upwind and downwind samples for either PM10 or PM2.5, indicating that the targeted sources did not contribute significantly to PM concentrations. Wind direction can frequently contribute to temporal variation in air pollutant concentrations and was investigated in this study. Sampling days were divided into four classifications: predominantly south winds, predominantly north winds, calm/variable winds, and winds from other directions. The effect of wind direction was found to be statistically significant for both PM10 and PM2.5. For both size ranges, PM concentrations were typically highest on days with predominantly south winds; days with calm/variable winds generally produced higher concentrations than did those with predominantly north winds or those with winds from "other" directions. The significant effect of wind direction suggests that regional sources may exert a large influence on PM concentrations in the area.

  5. Forecasting surface-layer atmospheric parameters at the Large Binocular Telescope site

    NASA Astrophysics Data System (ADS)

    Turchi, Alessio; Masciadri, Elena; Fini, Luca

    2017-04-01

    In this paper, we quantify the performance of an automated weather forecast system implemented on the Large Binocular Telescope (LBT) site at Mt Graham (Arizona) in forecasting the main atmospheric parameters close to the ground. The system employs a mesoscale non-hydrostatic numerical model (Meso-Nh). To validate the model, we compare the forecasts of wind speed, wind direction, temperature and relative humidity close to the ground with the respective values measured by instrumentation installed on the telescope dome. The study is performed over a large sample of nights uniformly distributed over 2 yr. The quantitative analysis is done using classical statistical operators [bias, root-mean-square error (RMSE) and σ] and contingency tables, which allows us to extract complementary key information, such as the percentage of correct detections (PC) and the probability of obtaining a correct detection within a defined interval of values (POD). The results of our study indicate that the model performance in forecasting the atmospheric parameters we have just cited are very good, in some cases excellent: RMSE for temperature is below 1°C, for relative humidity it is 14 per cent and for the wind speed it is around 2.5 m s-1. The relative error of the RMSE for wind direction varies from 9 to 17 per cent depending on the wind speed conditions. This work is performed in the context of the ALTA (Advanced LBT Turbulence and Atmosphere) Center project, whose final goal is to provide forecasts of all the atmospheric parameters and the optical turbulence to support LBT observations, adaptive optics facilities and interferometric facilities.

  6. A PV view of the zonal mean distribution of temperature and wind in the extratropical troposphere

    NASA Technical Reports Server (NTRS)

    Sun, De-Zheng; Lindzen, Richard S.

    1994-01-01

    The dependence of the temperature and wind distribution of the zonal mean flow in the extratropical troposphere on the gradient of pontential vorticity along isentropes is examined. The extratropics here refer to the region outside the Hadley circulation. Of particular interest is whether the distribution of temperature and wind corresponding to a constant potential vorticity (PV) along isentropes resembles the observed, and the implications of PV homogenization along isentropes for the role of the tropics. With the assumption that PV is homogenized along isentropes, it is found that the temperature distribution in the extratropical troposphere may be determined by a linear, first-order partial differential equation. When the observed surface temperature distribution and tropical lapse rate are used as the boundary conditions, the solution of the equation is close to the observed temperature distribution except in the upper troposphere adjacent to the Hadley circulation, where the troposphere with no PV gradient is considerably colder. Consequently, the jet is also stronger. It is also found that the meridional distribution of the balanced zonal wind is very sensitive to the meridional distribution of the tropopause temperature. The result may suggest that the requirement of the global momentum balance has no practical role in determining the extratropical temperature distribution. The authors further investigated the sensitivity of the extratropical troposphere with constant PV along isentropes to changes in conditions at the tropical boundary (the edge of the Hadley circulation). It is found that the temperature and wind distributions in the extratropical troposphere are sensitive to the vertical distribution of PV at the tropical boundary. With a surface distribution of temperature that decreases linearly with latitude, the jet maximum occurs at the tropical boundary and moves with it. The overall pattern of wind distribution is not sensitive to the change of the position of the tropical boundary. Finally, the temperature and wind distributions of an extratropical troposphere with a finite PV gradient are calculated. It is found that the larger the isentropic PV gradient, the warmer the troposphere and the weaker the jet.

  7. Numerical modeling on air quality in an urban environment with changes of the aspect ratio and wind direction.

    PubMed

    Yassin, Mohamed F

    2013-06-01

    Due to heavy traffic emissions within an urban environment, air quality during the last decade becomes worse year by year and hazard to public health. In the present work, numerical modeling of flow and dispersion of gaseous emissions from vehicle exhaust in a street canyon were investigated under changes of the aspect ratio and wind direction. The three-dimensional flow and dispersion of gaseous pollutants were modeled using a computational fluid dynamics (CFD) model which was numerically solved using Reynolds-averaged Navier-Stokes (RANS) equations. The diffusion flow field in the atmospheric boundary layer within the street canyon was studied for different aspect ratios (W/H=1/2, 3/4, and 1) and wind directions (θ=90°, 112.5°, 135°, and 157.5°). The numerical models were validated against wind tunnel results to optimize the turbulence model. The numerical results agreed well with the wind tunnel results. The simulation demonstrated that the minimum concentration at the human respiration height within the street canyon was on the windward side for aspect ratios W/H=1/2 and 1 and wind directions θ=112.5°, 135°, and 157.5°. The pollutant concentration level decreases as the wind direction and aspect ratio increase. The wind velocity and turbulence intensity increase as the aspect ratio and wind direction increase.

  8. Comparing wind directions inferred from Martian dust devil tracks analysis with those predicted by the Mars Climate Database

    NASA Astrophysics Data System (ADS)

    Statella, T.; Pina, P.; Silva, E. A.; Nervis Frigeri, Ary Vinicius; Neto, Frederico Gallon

    2016-10-01

    We have calculated the prevailing dust devil tracks direction as a means of verifying the Mars Climate Database (MCD) predicted wind directions accuracy. For that purpose we have applied an automatic method based on morphological openings for inferring the prevailing tracks direction in a dataset comprising 200 Mars Orbiter Camera (MOC) Narrow Angle (NA) and High Resolution Imaging Science Experiment (HiRISE) images of the Martian surface, depicting regions in the Aeolis, Eridania, Noachis, Argyre and Hellas quadrangles. The prevailing local wind directions were calculated from the MCD predicted speeds for the WE and SN wind components. The results showed that the MCD may not be able to predict accurately the locally dominant wind direction near the surface. In adittion, we confirm that the surface wind stress alone cannot produce dust lifting in the studied sites, since it never exceeds the threshold value of 0.0225 Nm-2 in the MCD.

  9. Deployment of Wind Turbines in the Built Environment: Risks, Lessons, and Recommended Practices

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baring-Gould, Ian; Fields, Jason; Oteri, Frank

    Built-environment wind turbine (BEWT) projects are wind energy projects that are constructed on, in, or near buildings, as shown below. These projects present an opportunity for distributed, low-carbon generation combined with highly visible statements on sustainability, but the BEWT niche of the wind industry is still developing and is relatively less mature than the utility-scale wind or conventional ground-based distributed wind sectors. This poster investigates the current state of the BEWT industry by reviewing available literature on BEWT projects as well as interviewing project owners on their experiences deploying and operating the technology.

  10. Validating precision estimates in horizontal wind measurements from a Doppler lidar

    DOE PAGES

    Newsom, Rob K.; Brewer, W. Alan; Wilczak, James M.; ...

    2017-03-30

    Results from a recent field campaign are used to assess the accuracy of wind speed and direction precision estimates produced by a Doppler lidar wind retrieval algorithm. The algorithm, which is based on the traditional velocity-azimuth-display (VAD) technique, estimates the wind speed and direction measurement precision using standard error propagation techniques, assuming the input data (i.e., radial velocities) to be contaminated by random, zero-mean, errors. For this study, the lidar was configured to execute an 8-beam plan-position-indicator (PPI) scan once every 12 min during the 6-week deployment period. Several wind retrieval trials were conducted using different schemes for estimating themore » precision in the radial velocity measurements. Here, the resulting wind speed and direction precision estimates were compared to differences in wind speed and direction between the VAD algorithm and sonic anemometer measurements taken on a nearby 300 m tower.« less

  11. Wind waves generated by Typhoon Vamei in the southern South China Sea

    NASA Astrophysics Data System (ADS)

    Mohammed, Aboobacker; Tkalich, Pavel; Krishnakumar, Vinod Kumar; Ponnumony, Vethamony

    2013-04-01

    Typhoon-generated waves are of interest scientifically for understanding wind-wave interaction physics, as well as operationally for predicting potential hazards. The Typhoon Vamei formed in the southern South China Sea (SCS) was one of the rare typhoon events that occurred near the equator. The typhoon developed on 26 Dec 2001 at 1.4°N in the southern SCS, strengthened quickly, made a landfall along the southeast coast of Malaysia and dissipated over Sumatra on 28 Dec 2001. With the wind speeds were as high as 36 m/s in the southern SCS, this event has significantly affected the atmospheric and oceanic conditions over the region. In the present study, we aim at understanding the wind wave characteristics induced by Vamei along the Sunda Shelf and the southeast coast of Malaysia. Wind velocity vectors over the southern SCS have been simulated for 22-30 Dec 2001 using Weather Research and Forecasting (WRF) model. These winds have been forced in a third generation wave model to compute the wind waves in the affected domain. Simulated significant wave heights reach as high as 7.5m off the southeast coast of Malaysia and 5.8m in the Singapore Strait (SS). Wave propagation from the SCS to the SS is highly noticeable during the typhoon event. Directional distribution and propagation of the Vamei generated waves towards the southeast coast of Malaysia and part of Singapore region have been discussed. Keywords: South China Sea; wind waves; typhoon; numerical modelling; significant wave height.

  12. Distributed Wind Market Applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Forsyth, T.; Baring-Gould, I.

    2007-11-01

    Distributed wind energy systems provide clean, renewable power for on-site use and help relieve pressure on the power grid while providing jobs and contributing to energy security for homes, farms, schools, factories, private and public facilities, distribution utilities, and remote locations. America pioneered small wind technology in the 1920s, and it is the only renewable energy industry segment that the United States still dominates in technology, manufacturing, and world market share. The series of analyses covered by this report were conducted to assess some of the most likely ways that advanced wind turbines could be utilized apart from large, centralmore » station power systems. Each chapter represents a final report on specific market segments written by leading experts in this field. As such, this document does not speak with one voice but rather a compendium of different perspectives, which are documented from a variety of people in the U.S. distributed wind field.« less

  13. Simulation of Turbulent Flow Inside and Above Wind Farms: Model Validation and Layout Effects

    NASA Astrophysics Data System (ADS)

    Wu, Yu-Ting; Porté-Agel, Fernando

    2013-02-01

    A recently-developed large-eddy simulation framework is validated and used to investigate turbulent flow within and above wind farms under neutral conditions. Two different layouts are considered, consisting of thirty wind turbines occupying the same total area and arranged in aligned and staggered configurations, respectively. The subgrid-scale (SGS) turbulent stress is parametrized using a tuning-free Lagrangian scale-dependent dynamic SGS model. The turbine-induced forces are modelled using two types of actuator-disk models: (a) the `standard' actuator-disk model (ADM-NR), which calculates only the thrust force based on one-dimensional momentum theory and distributes it uniformly over the rotor area; and (b) the actuator-disk model with rotation (ADM-R), which uses blade-element momentum theory to calculate the lift and drag forces (that produce both thrust and rotation), and distributes them over the rotor disk based on the local blade and flow characteristics. Validation is performed by comparing simulation results with turbulence measurements collected with hot-wire anemometry inside and above an aligned model wind farm placed in a boundary-layer wind tunnel. In general, the ADM-R model yields improved predictions compared with the ADM-NR in the wakes of all the wind turbines, where including turbine-induced flow rotation and accounting for the non-uniformity of the turbine-induced forces in the ADM-R appear to be important. Another advantage of the ADM-R model is that, unlike the ADM-NR, it does not require a priori specification of the thrust coefficient (which varies within a wind farm). Finally, comparison of simulations of flow through both aligned and staggered wind farms shows important effects of farm layout on the flow structure and wind-turbine performance. For the limited-size wind farms considered in this study, the lateral interaction between cumulated wakes is stronger in the staggered case, which results in a farm wake that is more homogeneous in the spanwise direction, thus resembling more an internal boundary layer. Inside the staggered farm, the relatively longer separation between consecutive downwind turbines allows the wakes to recover more, exposing the turbines to higher local wind speeds (leading to higher turbine efficiency) and lower turbulence intensity levels (leading to lower fatigue loads), compared with the aligned farm. Above the wind farms, the area-averaged velocity profile is found to be logarithmic, with an effective wind-farm aerodynamic roughness that is larger for the staggered case.

  14. Flight directions of passerine migrants in daylight and darkness: A radar and direct visual study

    NASA Technical Reports Server (NTRS)

    Gauthreaux, S. A., Jr.

    1972-01-01

    The application of radar and visual techniques to determine the migratory habits of passerine birds during daylight and darkness is discussed. The effects of wind on the direction of migration are examined. Scatter diagrams of daytime and nocturnal migration track directions correlated with wind direction are presented. It is concluded that migratory birds will fly at altitudes where wind direction and migratory direction are nearly the same. The effects of cloud cover and solar obscuration are considered negligible.

  15. Analysis of the Viking Lander 1 surface wind vector for sols 45 to 375

    NASA Technical Reports Server (NTRS)

    Leovy, C. B.

    1984-01-01

    The Viking Lander 1 wind sensor data during the period between sols 45 and 375 were corrected. During this period, the heating element of the quadrant sensor which provided the primary signal used for determining wind direction had failed, but both hot film wind sensors were functioning normally. The wind speed and direction corrections are explained.

  16. Wind-waves interactions in the Gulf of Eilat

    NASA Astrophysics Data System (ADS)

    Shani-Zerbib, Almog; Liberzon, Dan; T-SAIL Team

    2017-11-01

    The Gulf of Eilat, at the southern tip of Israel, with its elongated rectangular shape and unique diurnal wind pattern is an appealing location for wind-waves interactions research. Results of experimental work will be reported analyzing a continuous, 50 hour long, data. Using a combined array of wind and waves sensing instruments, the wave field statistics and its response to variations of wind forcing were investigated. Correlations between diurnal fluctuations in wind magnitude and direction and the wave field response will be discussed. The directional spread of waves' energy, as estimated by the Wavelet Directional Method, showed a strong response to small variations in wind flow direction attributed to the unique topography of the gulf surroundings and its bathymetry. Influenced by relatively strong winds during the light hours, the wave field was dominated by a significant amount of breakings that are well pronounced in the saturation range of waves spectra. Temporal growth and decay behavior of the waves during the morning and evening wind transition periods was examined. Sea state induced roughness, as experienced by the wind flow turbulent boundary layer, is examined in view of the critical layer theory. Israel Science Foundation Grant # 1521/15.

  17. Prescribed burning weather in Minnesota.

    Treesearch

    Rodney W. Sando

    1969-01-01

    Describes the weather patterns in northern Minnesota as related to prescribed burning. The prevailing wind direction, average wind speed, most persistent wind direction, and average Buildup Index are considered in making recommendations.

  18. Preliminary plan for a Shuttle Coherent Atmospheric Lidar Experiment (SCALE)

    NASA Technical Reports Server (NTRS)

    Fitzjarrald, D.; Beranek, R.; Bilbro, J.; Mabry, J.

    1985-01-01

    A study has been completed to define a Shuttle experiment that solves the most crucial scientific and engineering problems involved in building a satellite Doppler wind profiler for making global wind measurements. The study includes: (1) a laser study to determine the feasibility of using the existing NOAA Windvan laser in the Space Shuttle spacecraft; (2) a preliminary optics and telescope design; (3) an accommodations study including power, weight, thermal, and control system requirements; and (4) a flight trajectory and operations plan designed to accomplish the required scientific and engineering goals. The experiment will provide much-needed data on the global distribution of atmospheric aerosols and demonstrate the technique of making wind measurements from space, including scanning the laser beam and interpreting the data. Engineering accomplishments will include space qualification of the laser, development of signal processing and lag angle compensation hardware and software, and telescope and optics design. All of the results of this limited Spacelab experiment will be directly applicable to a complete satellite wind profiler for the Earth Observation System/Space Station or other free-flying satellite.

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Neuscamman, Stephanie J.

    This section describes ways in which an urban environment can affect the distribution of airborne radiological material. In an urban area, winds at street level are significantly more variable and complex than the prevailing winds above the buildings. Elevated winds may be uniform and representative of the general flow over the surrounding area, but buildings influence the local flow such that the winds below the building heights vary significantly in location and time (Hanna et al 2006). For a release of material near an individual building, the complex effect of the building on the airflow may locally enhance the airmore » concentration of released material in some regions near the building and reduce it in others compared to a release in open terrain. However, the overall effect of an individual building is to induce a rapid enlargement and dilution of an incident plume from an isolated source upwind of the building (Hosker 1984). A plume spreading through an urban environment of multiple buildings will experience enhanced mixing and greater spreading of the contaminant plume in both the vertical and horizontal directions, compared to the same release in open terrain.« less

  20. Complex behaviour in complex terrain - Modelling bird migration in a high resolution wind field across mountainous terrain to simulate observed patterns.

    PubMed

    Aurbach, Annika; Schmid, Baptiste; Liechti, Felix; Chokani, Ndaona; Abhari, Reza

    2018-06-03

    Crossing of large ecological barriers, such as mountains, is in terms of energy considered to be a demanding and critical step during bird migration. Besides forming a geographical barrier, mountains have a profound impact on the resulting wind flow. We use a novel framework of mathematical models to investigate the influences of wind and topography on nocturnal passerine bird behaviour, and to assess the energy costs for different flight strategies for crossing the Jura Mountains. The mathematical models include three biological models of bird behaviour: i) wind drift compensation; ii) adaptation of flight height for favourable winds; and, iii) avoidance of obstacles (cross over and/or circumvention of an obstacle following a minimum energy expenditure strategy), which are assessed separately and in combination. Further, we use a mesoscale weather model for high-resolution predictions of the wind fields. We simulate the broad front nocturnal passerine migration for autumn nights with peak migration intensities. The bird densities retrieved from a weather radar are used as the initial intensities and to specify the vertical distributions of the simulated birds. It is shown that migration over complex terrain represents the most expensive flight option in terms of energy expenditure, and wind is seen to be the main factor that influences the energy expenditure in the bird's preferred flight direction. Further, the combined effects of wind and orography lead to a high concentration of migratory birds within the favourable wind conditions of the Swiss lowlands and north of the Jura Mountains. Copyright © 2018 Elsevier Ltd. All rights reserved.

  1. Development and Validation of a New Fallout Transport Method Using Variable Spectral Winds

    NASA Astrophysics Data System (ADS)

    Hopkins, Arthur Thomas

    A new method has been developed to incorporate variable winds into fallout transport calculations. The method uses spectral coefficients derived by the National Meteorological Center. Wind vector components are computed with the coefficients along the trajectories of falling particles. Spectral winds are used in the two-step method to compute dose rate on the ground, downwind of a nuclear cloud. First, the hotline is located by computing trajectories of particles from an initial, stabilized cloud, through spectral winds, to the ground. The connection of particle landing points is the hotline. Second, dose rate on and around the hotline is computed by analytically smearing the falling cloud's activity along the ground. The feasibility of using specgtral winds for fallout particle transport was validated by computing Mount St. Helens ashfall locations and comparing calculations to fallout data. In addition, an ashfall equation was derived for computing volcanic ash mass/area on the ground. Ashfall data and the ashfall equation were used to back-calculate an aggregated particle size distribution for the Mount St. Helens eruption cloud. Further validation was performed by comparing computed and actual trajectories of a high explosive dust cloud (DIRECT COURSE). Using an error propagation formula, it was determined that uncertainties in spectral wind components produce less than four percent of the total dose rate variance. In summary, this research demonstrated the feasibility of using spectral coefficients for fallout transport calculations, developed a two-step smearing model to treat variable winds, and showed that uncertainties in spectral winds do not contribute significantly to the error in computed dose rate.

  2. Short wind waves on the ocean: Wavenumber-frequency spectra

    NASA Astrophysics Data System (ADS)

    Plant, William J.

    2015-03-01

    Dominant surface waves on the ocean exhibit a dispersion relation that confines their energy to a curve in a wavenumber-frequency spectrum. Short wind waves on the ocean, on the other hand, are advected by these dominant waves so that they do not exhibit a well-defined dispersion relation over many realizations of the surface. Here we show that the short-wave analog to the dispersion relation is a distributed spectrum in the wavenumber-frequency plane that collapses to the standard dispersion relation in the absence of long waves. We compute probability distributions of short-wave wavenumber given a (frequency, direction) pair and of short-wave frequency given a (wavenumber, direction) pair. These two probability distributions must yield a single spectrum of surface displacements as a function of wavenumber and frequency, F(k,f). We show that the folded, azimuthally averaged version of this spectrum has a "butterfly" pattern in the wavenumber-frequency plane if significant long waves are present. Integration of this spectrum over frequency yields the well-known k-3 wavenumber spectrum. When integrated over wavenumber, the spectrum yields an f-4 form that agrees with measurement. We also show that a cut through the unfolded F(k,f) at constant k produces the well-known form of moderate-incidence-angle Doppler spectra for electromagnetic scattering from the sea. This development points out the dependence of the short-wave spectrum on the amplitude of the long waves.

  3. Solar wind parameters and magnetospheric coupling studies

    NASA Technical Reports Server (NTRS)

    King, Joseph H.

    1986-01-01

    This paper presents distributions, means, and standard deviations of the fluxes of solar wind protons, momentum, and energy as observed near earth during the solar quiet and active years 1976 and 1979. Distributions of ratios of energies (Alfven Mach number, plasma beta) and distributions of interplanetary magnetic field orientations are also given. Finally, the uncertainties associated with the use of the libration point orbiting ISEE-3 spacecraft as a solar wind monitor are discussed.

  4. Effect of vertical canopy architecture on transpiration, thermoregulation and carbon assimilation

    DOE PAGES

    Banerjee, Tirtha; Linn, Rodman Ray

    2018-04-11

    Quantifying the impact of natural and anthropogenic disturbances such as deforestation, forest fires and vegetation thinning among others on net ecosystem—atmosphere exchanges of carbon dioxide, water vapor and heat—is an important aspect in the context of modeling global carbon, water and energy cycles. The absence of canopy architectural variation in horizontal and vertical directions is a major source of uncertainty in current climate models attempting to address these issues. This work demonstrates the importance of considering the vertical distribution of foliage density by coupling a leaf level plant biophysics model with analytical solutions of wind flow and light attenuation inmore » a horizontally homogeneous canopy. It is demonstrated that plant physiological response in terms of carbon assimilation, transpiration and canopy surface temperature can be widely different for two canopies with the same leaf area index (LAI) but different leaf area density distributions, under several conditions of wind speed, light availability, soil moisture availability and atmospheric evaporative demand.« less

  5. Effect of vertical canopy architecture on transpiration, thermoregulation and carbon assimilation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Banerjee, Tirtha; Linn, Rodman Ray

    Quantifying the impact of natural and anthropogenic disturbances such as deforestation, forest fires and vegetation thinning among others on net ecosystem—atmosphere exchanges of carbon dioxide, water vapor and heat—is an important aspect in the context of modeling global carbon, water and energy cycles. The absence of canopy architectural variation in horizontal and vertical directions is a major source of uncertainty in current climate models attempting to address these issues. This work demonstrates the importance of considering the vertical distribution of foliage density by coupling a leaf level plant biophysics model with analytical solutions of wind flow and light attenuation inmore » a horizontally homogeneous canopy. It is demonstrated that plant physiological response in terms of carbon assimilation, transpiration and canopy surface temperature can be widely different for two canopies with the same leaf area index (LAI) but different leaf area density distributions, under several conditions of wind speed, light availability, soil moisture availability and atmospheric evaporative demand.« less

  6. Dust in AGB Stars: Transparent or Opaque?

    NASA Astrophysics Data System (ADS)

    Bladh, S.; Höfner, S.; Aringer, B.

    2011-09-01

    The optical properties of the dust particles that drive the winds of cool giant stars affect the stellar spectra in two ways: (1) indirectly, through their influence on the dynamical structure of the atmosphere/envelope and the resulting molecular features, and (2) directly, by changes of the spectral energy distribution due to absorption and scattering on dust grains. The qualitative differences in the energy distributions of C-type and M-type AGB stars in the visual and near-infrared regions suggest that the dust particles in oxygen rich atmospheres are relatively transparent to radiation. By using detailed dynamical models of gas and radiation combined with a simple description for the dust opacity (which can be adjusted to mimic different wavelength dependences and condensation temperatures) and also by adjusting the fraction of the opacity that is treated as true absorption, we investigate which dust properties produce synthetic photometry consistent with observations. The goal of this study is to narrow down the possible dust species that may be driving the winds in M-type AGB stars.

  7. Properties of nearby interstellar hydrogen deduced from Lyman-alpha sky background measurements

    NASA Technical Reports Server (NTRS)

    Thomas, G. E.

    1972-01-01

    For a sufficiently rapid relative motion of the solar system and the nearby interstellar gas, neutral atoms may be expected to penetrate the heliosphere before becoming ionized. Recent satellite measurements of the Lyman alpha emission above the geocorona indicate such an interstellar wind of neutral hydrogen emerging from the direction of Sagittarius and reaching to within a few astronomical units of the sun. A detailed model of the scattering of solar Lyman alpha from the spatial distribution of neutral hydrogen in interplanetary space is presented. This asymmetric distribution is established by solar wind and solar ultraviolet ionization processes along the trajectories of the incoming hydrogen atoms. The values of the interstellar density, the relative velocity, and the gas temperature are adjusted to agree with the Lyman alpha measurements. The results may be interpreted in terms of two models, the cold model and the hot model of the interstellar gas, depending on whether galactic Lyman alpha emission is present at its maximum allowable value or negligibly small.

  8. Process Modeling of Composite Materials for Wind-Turbine Rotor Blades: Experiments and Numerical Modeling

    PubMed Central

    Wieland, Birgit; Ropte, Sven

    2017-01-01

    The production of rotor blades for wind turbines is still a predominantly manual process. Process simulation is an adequate way of improving blade quality without a significant increase in production costs. This paper introduces a module for tolerance simulation for rotor-blade production processes. The investigation focuses on the simulation of temperature distribution for one-sided, self-heated tooling and thick laminates. Experimental data from rotor-blade production and down-scaled laboratory tests are presented. Based on influencing factors that are identified, a physical model is created and implemented as a simulation. This provides an opportunity to simulate temperature and cure-degree distribution for two-dimensional cross sections. The aim of this simulation is to support production processes. Hence, it is modelled as an in situ simulation with direct input of temperature data and real-time capability. A monolithic part of the rotor blade, the main girder, is used as an example for presenting the results. PMID:28981458

  9. Process Modeling of Composite Materials for Wind-Turbine Rotor Blades: Experiments and Numerical Modeling.

    PubMed

    Wieland, Birgit; Ropte, Sven

    2017-10-05

    The production of rotor blades for wind turbines is still a predominantly manual process. Process simulation is an adequate way of improving blade quality without a significant increase in production costs. This paper introduces a module for tolerance simulation for rotor-blade production processes. The investigation focuses on the simulation of temperature distribution for one-sided, self-heated tooling and thick laminates. Experimental data from rotor-blade production and down-scaled laboratory tests are presented. Based on influencing factors that are identified, a physical model is created and implemented as a simulation. This provides an opportunity to simulate temperature and cure-degree distribution for two-dimensional cross sections. The aim of this simulation is to support production processes. Hence, it is modelled as an in situ simulation with direct input of temperature data and real-time capability. A monolithic part of the rotor blade, the main girder, is used as an example for presenting the results.

  10. Exploratory Calibration of Adjustable-Protrusion Surface-Obstacle (APSO) Skin Friction Vector Gage

    NASA Technical Reports Server (NTRS)

    Hakkinen, Raimo J.; Neubauer, Jeremy S.; Hamory, Philip J.; Bui, Trong T.; Noffz, Gregory K.; Young, Ron (Technical Monitor)

    2003-01-01

    The design of an adjustable-protrusion surface-obstacle (APSO) skin friction vector gage is presented. Results from exploratory calibrations conducted in laminar and turbulent boundary layers at the Washington University Low-Speed Wind Tunnel and for turbulent boundary layers at speeds up to Mach 2 on the ceiling of the NASA Glenn Research Center 8- X 6-ft Supersonic Wind Tunnel are also discussed. The adjustable-height gage was designed to yield both the magnitude and direction of the surface shear stress vector and to measure the local static pressure distribution. Results from the NASA test show good correlation for subsonic and low supersonic conditions covering several orders of magnitude in terms of the adopted similarity variables. Recommendations for future work in this area consist of identifying the physical parameters responsible for the disagreement between the university and NASA data sets, developing a compressibility correction specific to the APSO geometry, and examining the effect that static pressure distribution and skewed boundary layers have on the results from the APSO.

  11. Aerodynamics of yacht sails: viscous flow features and surface pressure distributions

    NASA Astrophysics Data System (ADS)

    Viola, Ignazio Maria

    2014-11-01

    The present paper presents the first Detached Eddy Simulation (DES) on a yacht sails. Wind tunnel experiments on a 1:15th model-scale sailing yacht with an asymmetric spinnaker (fore sail) and a mainsails (aft sail) were modelled using several time and grid resolutions. Also the Reynolds-average Navier-Stokes (RANS) equations were solved for comparison with DES. The computed forces and surface pressure distributions were compared with those measured with both flexible and rigid sails in the wind tunnel and good agreement was found. For the first time it was possible to recognise the coherent and steady nature of the leading edge vortex that develops on the leeward side of the asymmetric spinnaker and which significantly contributes to the overall drive force. The leading edge vortex increases in diameter from the foot to the head of the sail, where it becomes the tip vortex and convects downstream in the direction of the far field velocity. The tip vortex from the head of the mainsail rolls around the one of the spinnaker. The spanwise twist of the spinnaker leads to a mid-span helicoidal vortex, which has never been reported by previous authors, with an horizontal axis and rotating in the same direction of the tip vortex.

  12. Study on the relationship between meteorological conditions and acid rain in mid-eastern Fujian.

    PubMed

    Lin, C C; Liu, J X; Cai, Y Y; Li, B L; Wang, Z L; Chen, B B

    2009-08-01

    Based on the acid rain observation data and the contemporaneous historical synoptic charts of Mid-Eastern Fujian during the period of 1991 to 2003, we analyzed the distribution characteristics of acid rain in different seasons, weather types, precipitation grades and wind directions. The results showed that the acid pollution in Mid-Eastern Fujian was still serious. In winter, the precipitation pH value was 4.79, and the acid rain frequency was 60.62% which was twice higher than that in summer. The pH value of warm shear-type precipitation at 850 hPa was 4.79. Nearly half of these precipitations had the problems of acid rain pollution. The acid rain frequency of the inverted trough type was only 26.11% which was the lowest one in all types. There was no marked difference of the acid rain distribution characteristics between ahead-of-trough and behind-the-trough. The precipitation pH values of the five grades were lower than 5.30 and the acid rain frequency changed as an inverted U shape with the increasing of the rainfall. The pH values of precipitations in the eight wind directions were generally below 5.20, and the acid rain frequencies were about 40%.

  13. Wind Power Forecasting Error Distributions: An International Comparison; Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hodge, B. M.; Lew, D.; Milligan, M.

    2012-09-01

    Wind power forecasting is expected to be an important enabler for greater penetration of wind power into electricity systems. Because no wind forecasting system is perfect, a thorough understanding of the errors that do occur can be critical to system operation functions, such as the setting of operating reserve levels. This paper provides an international comparison of the distribution of wind power forecasting errors from operational systems, based on real forecast data. The paper concludes with an assessment of similarities and differences between the errors observed in different locations.

  14. Influence of omni-directional guide vane on the performance of cross-flow rotor for urban wind energy

    NASA Astrophysics Data System (ADS)

    Wicaksono, Yoga Arob; Tjahjana, Dominicus Danardono Dwi Prija; Hadi, Syamsul

    2018-02-01

    Vertical axis wind turbine like cross-flow rotor have some advantage there are, high self-starting torque, low noise, and high stability; so, it can be installed in the urban area to produce electricity. But, the urban area has poor wind condition, so the cross-flow rotor needs a guide vane to increase its performance. The aim of this study is to determine experimentally the effect of Omni-Directional Guide Vane (ODGV) on the performance of a cross-flow wind turbine. Wind tunnel experiment has been carried out for various configurations. The ODGV was placed around the cross-flow rotor in order to increase ambient wind environment of the wind turbine. The maximum power coefficient is obtained as Cpmax = 0.125 at 60° wind direction. It was 21.46% higher compared to cross-flow wind turbine without ODGV. This result showed that the ODGV able to increase the performance of the cross-flow wind turbine.

  15. Low altitude wind shear statistics derived from measured and FAA proposed standard wind profiles

    NASA Technical Reports Server (NTRS)

    Dunham, R. E., Jr.; Usry, J. W.

    1984-01-01

    Wind shear statistics were calculated for a simulated data set using wind profiles proposed as a standard and compared to statistics derived from measured wind profile data. Wind shear values were grouped in altitude bands of 100 ft between 100 and 1400 ft, and in wind shear increments of 0.025 kt/ft between + or - 0.600 kt/ft for the simulated data set and between + or - 0.200 kt/ft for the measured set. No values existed outside the + or - 0.200 kt/ft boundaries for the measured data. Frequency distributions, means, and standard deviations were derived for each altitude band for both data sets, and compared. Also, frequency distributions were derived for the total sample for both data sets and compared. Frequency of occurrence of a given wind shear was about the same for both data sets for wind shears, but less than + or 0.10 kt/ft, but the simulated data set had larger values outside these boundaries. Neglecting the vertical wind component did not significantly affect the statistics for these data sets. The frequency of occurrence of wind shears for the flight measured data was essentially the same for each altitude band and the total sample, but the simulated data distributions were different for each altitude band. The larger wind shears for the flight measured data were found to have short durations.

  16. Analysis of the Flicker Level Produced by a Fixed-Speed Wind Turbine

    NASA Astrophysics Data System (ADS)

    Suppioni, Vinicius; P. Grilo, Ahda

    2013-10-01

    In this article, the analysis of the flicker emission during continuous operation of a mid-scale fixed-speed wind turbine connected to a distribution system is presented. Flicker emission is investigated based on simulation results, and the dependence of flicker emission on short-circuit capacity, grid impedance angle, mean wind speed, and wind turbulence is analyzed. The simulations were conducted in different programs in order to provide a more realistic wind emulation and detailed model of mechanical and electrical components of the wind turbine. Such aim is accomplished by using FAST (Fatigue, Aerodynamics, Structures, and Turbulence) to simulate the mechanical parts of the wind turbine, Simulink/MatLab to simulate the electrical system, and TurbSim to obtain the wind model. The results show that, even for a small wind generator, the flicker level can limit the wind power capacity installed in a distribution system.

  17. Sands at Gusev Crater, Mars

    NASA Astrophysics Data System (ADS)

    Cabrol, Nathalie A.; Herkenhoff, Kenneth; Knoll, Andrew H.; Farmer, Jack; Arvidson, Raymond; Grin, Edmond; Li, Ronxing; Fenton, Lori; Cohen, Barbara; Bell, James F.; Aileen Yingst, R.

    2014-05-01

    Processes, environments, and the energy associated with the transport and deposition of sand at Gusev Crater are characterized at the microscopic scale through the comparison of statistical moments for particle size and shape distributions. Bivariate and factor analyses define distinct textural groups at 51 sites along the traverse completed by the Spirit rover as it crossed the plains and went into the Columbia Hills. Fine-to-medium sand is ubiquitous in ripples and wind drifts. Most distributions show excess fine material, consistent with a predominance of wind erosion over the last 3.8 billion years. Negative skewness at West Valley is explained by the removal of fine sand during active erosion, or alternatively, by excess accumulation of coarse sand from a local source. The coarse to very coarse sand particles of ripple armors in the basaltic plains have a unique combination of size and shape. Their distribution display significant changes in their statistical moments within the ~400 m that separate the Columbia Memorial Station from Bonneville Crater. Results are consistent with aeolian and/or impact deposition, while the elongated and rounded shape of the grains forming the ripples, as well as their direction of origin, could point to Ma'adim Vallis as a possible source. For smaller particles on the traverse, our findings confirm that aeolian processes have dominated over impact and other processes to produce sands with the observed size and shape patterns across a spectrum of geologic (e.g., ripples and plains soils) and aerographic settings (e.g., wind shadows).

  18. An experimental study of the dynamics of saltation within a three-dimensional framework

    NASA Astrophysics Data System (ADS)

    O'Brien, Patrick; McKenna Neuman, Cheryl

    2018-04-01

    Our understanding of aeolian sand transport via saltation lacks an experimental determination of the particle borne kinetic energy partitioned into 3 dimensions relative to the mean flow direction. This in turn creates a disconnect between global wind erosion estimates and particle scale processes. The present study seeks to address this deficiency through an extended analysis of data obtained from a series of particle tracking velocimetry experiments conducted in a boundary layer wind tunnel under transport limited conditions. Particle image diameter, as it appeared within each camera frame, was extensively calibrated against that obtained by sieving, and the ballistic trajectories detected were disassembled into discrete particle image pairs whose distribution and dynamics were then examined in vertical profile with sub-millimeter resolution. The vertical profile of the wind aligned particle transport rate was found to follow a power relation within 10 mm of the bed surface. The exponent of this power function changes with increasing spanwise angle (θ) to produce a family of curves representing particle diffusion in 3 dimensions. Particle mass was found to increase with θ, and the distribution of the total particle kinetic energy was found to be very similar to that for the particle concentration. The spanwise component of the kinetic energy of a saltating particle peaks at θ = 45°, with the stream-aligned component an order of magnitude higher in value. Low energy, splashed particles near the bed account for a majority of the kinetic energy distributed throughout the particle cloud, regardless of their orientation.

  19. Effects of spatial transport and ambient wave intensity on the generation of MHD waves by interstellar pickup protons

    NASA Technical Reports Server (NTRS)

    Isenberg, P. A.

    1995-01-01

    Intense MHD waves generated by the isotropization of interstellar pickup protons were predicted by Lee and Ip (1987) to appear in the solar wind whenever pickup proton fluxes were high enough. However, in reality these waves have proved surprisingly difficult to identify, even in the presence of observed pickup protons. We investigate the wave excitation by isotropization from an initially broad pitch-angle distribution instead of the narrow ring-beam assumed by Lee and Ip. The pitch angle of a newly-ionized proton is given by theta(sub o), the angle between the magnetic field (averaged over a pickup proton gyroradius) and the solar wind flow at the time of ionization. Then, a broadened distribution results from spatial transport of pickup protons prior to isotropization from regions upstream along the field containing different values of theta(sub o). The value of theta(sub o) will vary as a result of the ambient long-wavelength fluctuations in the solar wind. Thus, the range of initial pitch-angles is directly related to the amplitude of these fluctuations within a length-scale determined by the isotropization time. We show that a broad initial pitch-angle distribution can significantly modify the intensity and shape of the pickup-proton-generated wave spectrum, and we derive a criterion for the presence of observable pickup-proton generated waves given the intensity of the ambient long wavelength fluctuations.

  20. Variability of CO2 concentrations and fluxes in and above an urban street canyon

    NASA Astrophysics Data System (ADS)

    Lietzke, Björn; Vogt, Roland

    2013-08-01

    The variability of CO2 concentrations and fluxes in dense urban environments is high due to the inherent heterogeneity of these complex areas and their spatio-temporally variable anthropogenic sources. With a focus on micro- to local-scale CO2-exchange processes, measurements were conducted in a street canyon in the city of Basel, Switzerland in 2010. CO2 fluxes were sampled at the top of the canyon (19 m) and at 39 m while vertical CO2 concentration profiles were measured in the center and at a wall of the canyon. CO2 concentration distributions in the street canyon and exchange processes with the layers above show, apart from expected general diurnal patterns due mixing layer heights, a strong dependence on wind direction relative to the canyon. As a consequence of the resulting corkscrew-like canyon vortex, accumulation of CO2 inside the canyon is modulated with distinct distribution patterns. The evaluation of diurnal traffic data provides good explanations for the vertical and horizontal differences in CO2-distribution inside the canyon. Diurnal flux characteristics at the top of the canyon can almost solely be explained with traffic density expressed by the strong linear dependence. Even the diurnal course of the flux at 39 m shows a remarkable relationship to traffic density for east wind conditions while, for west wind situations, a change toward source areas with lower emissions leads to a reduced flux.

  1. Jamaica Bay studies III: Abiotic determinants of distribution and abundance of gulls ( Larus)

    NASA Astrophysics Data System (ADS)

    Burger, Joanna

    1983-02-01

    The distribution and abundance of gulls were examined at Jamaica Bay Wildlife Refuge (New York) from 31 May 1978 to 31 May 1979. Gulls were found to be affected by tidal, temporal and weather-related factors. The distribution of gulls was affected primarily by tidal factors on the bay, and by temporal (seasonal, circadian) and weather-related factors on the freshwater ponds. The most important weather-related factors were temperature, wind velocity and wind direction. Herring ( L. argentatus), great black-backed ( L. fuscus) and ring-billed gulls ( L. delawarensis) fed on the bay at low tides, and used the ponds at high tide. Laughing gulls ( L. atricilla) fed on the bay at low tide and on rising tides. Herring and great black-backed gulls were present all year, but were most abundant in the winter, ring-billed gulls were abundant in spring and early fall, and laughing gulls were present in the summer following the breeding season but were absent in winter. Gulls used the ponds during high velocity, north winds, when they usually rested or preened. Multiple regression models were used to determine the factors explaining the variability in the numbers of gulls. Temporal variables were important contributors to accounting for the variability in the numbers of great black-backed and herring gulls only; tidal variables were significant for great black-backed and herring gulls on the bay, and for ring-billed and laughing gulls on all areas; and weather variables were significant for all species.

  2. Sands at Gusev Crater, Mars

    USGS Publications Warehouse

    Cabrol, Nathalie A.; Herkenhoff, Kenneth E.; Knoll, Andrew H.; Farmer, Jack D.; Arvidson, Raymond E.; Grin, E.A.; Li, Ron; Fenton, Lori; Cohen, B.; Bell, J.F.; Yingst, R. Aileen

    2014-01-01

    Processes, environments, and the energy associated with the transport and deposition of sand at Gusev Crater are characterized at the microscopic scale through the comparison of statistical moments for particle size and shape distributions. Bivariate and factor analyses define distinct textural groups at 51 sites along the traverse completed by the Spirit rover as it crossed the plains and went into the Columbia Hills. Fine-to-medium sand is ubiquitous in ripples and wind drifts. Most distributions show excess fine material, consistent with a predominance of wind erosion over the last 3.8 billion years. Negative skewness at West Valley is explained by the removal of fine sand during active erosion, or alternatively, by excess accumulation of coarse sand from a local source. The coarse to very coarse sand particles of ripple armors in the basaltic plains have a unique combination of size and shape. Their distribution display significant changes in their statistical moments within the ~400 m that separate the Columbia Memorial Station from Bonneville Crater. Results are consistent with aeolian and/or impact deposition, while the elongated and rounded shape of the grains forming the ripples, as well as their direction of origin, could point to Ma'adim Vallis as a possible source. For smaller particles on the traverse, our findings confirm that aeolian processes have dominated over impact and other processes to produce sands with the observed size and shape patterns across a spectrum of geologic (e.g., ripples and plains soils) and aerographic settings (e.g., wind shadows).

  3. High Resolution Wind Direction and Speed Information for Support of Fire Operations

    Treesearch

    B.W. Butler; J.M. Forthofer; M.A. Finney; L.S. Bradshaw; R. Stratton

    2006-01-01

    Computational Fluid Dynamics (CFD) technology has been used to model wind speed and direction in mountainous terrain at a relatively high resolution compared to other readily available technologies. The process termed “gridded wind” is not a forecast, but rather represents a method for calculating the influence of terrain on general wind flows. Gridded wind simulations...

  4. Phytoplankton pigment patterns and wind forcing off central California

    NASA Technical Reports Server (NTRS)

    Abbott, Mark R.; Barksdale, Brett

    1991-01-01

    Mesoscale variability in phytoplankton pigment distributions of central California during the spring-summer upwelling season are studied via a 4-yr time series of high-resolution coastal zone color scanner imagery. Empirical orthogonal functions are used to decompose the time series of spatial images into its dominant modes of variability. The coupling between wind forcing of the upper ocean and phytoplankton distribution on mesoscales is investigated. Wind forcing, in particular the curl of the wind stress, was found to play an important role in the distribution of phytoplankton pigment in the California Current. The spring transition varies in timing and intensity from year to year but appears to be a recurrent feature associated with the rapid onset of the upwelling-favorable winds. Although the underlying dynamics may be dominated by processes other than forcing by wind stress curl, it appears that curl may force the variability of the filaments and hence the pigment patterns.

  5. LOKI WIND CORRECTION COMPUTER AND WIND STUDIES FOR LOKI

    DTIC Science & Technology

    which relates burnout deviation of flight path with the distributed wind along the boost trajectory. The wind influence function was applied to...electrical outputs. A complete wind correction computer system based on the influence function and the results of wind studies was designed.

  6. Small UAS-Based Wind Feature Identification System Part 1: Integration and Validation

    PubMed Central

    Rodriguez Salazar, Leopoldo; Cobano, Jose A.; Ollero, Anibal

    2016-01-01

    This paper presents a system for identification of wind features, such as gusts and wind shear. These are of particular interest in the context of energy-efficient navigation of Small Unmanned Aerial Systems (UAS). The proposed system generates real-time wind vector estimates and a novel algorithm to generate wind field predictions. Estimations are based on the integration of an off-the-shelf navigation system and airspeed readings in a so-called direct approach. Wind predictions use atmospheric models to characterize the wind field with different statistical analyses. During the prediction stage, the system is able to incorporate, in a big-data approach, wind measurements from previous flights in order to enhance the approximations. Wind estimates are classified and fitted into a Weibull probability density function. A Genetic Algorithm (GA) is utilized to determine the shaping and scale parameters of the distribution, which are employed to determine the most probable wind speed at a certain position. The system uses this information to characterize a wind shear or a discrete gust and also utilizes a Gaussian Process regression to characterize continuous gusts. The knowledge of the wind features is crucial for computing energy-efficient trajectories with low cost and payload. Therefore, the system provides a solution that does not require any additional sensors. The system architecture presents a modular decentralized approach, in which the main parts of the system are separated in modules and the exchange of information is managed by a communication handler to enhance upgradeability and maintainability. Validation is done providing preliminary results of both simulations and Software-In-The-Loop testing. Telemetry data collected from real flights, performed in the Seville Metropolitan Area in Andalusia (Spain), was used for testing. Results show that wind estimation and predictions can be calculated at 1 Hz and a wind map can be updated at 0.4 Hz. Predictions show a convergence time with a 95% confidence interval of approximately 30 s. PMID:28025531

  7. Small UAS-Based Wind Feature Identification System Part 1: Integration and Validation.

    PubMed

    Rodriguez Salazar, Leopoldo; Cobano, Jose A; Ollero, Anibal

    2016-12-23

    This paper presents a system for identification of wind features, such as gusts and wind shear. These are of particular interest in the context of energy-efficient navigation of Small Unmanned Aerial Systems (UAS). The proposed system generates real-time wind vector estimates and a novel algorithm to generate wind field predictions. Estimations are based on the integration of an off-the-shelf navigation system and airspeed readings in a so-called direct approach. Wind predictions use atmospheric models to characterize the wind field with different statistical analyses. During the prediction stage, the system is able to incorporate, in a big-data approach, wind measurements from previous flights in order to enhance the approximations. Wind estimates are classified and fitted into a Weibull probability density function. A Genetic Algorithm (GA) is utilized to determine the shaping and scale parameters of the distribution, which are employed to determine the most probable wind speed at a certain position. The system uses this information to characterize a wind shear or a discrete gust and also utilizes a Gaussian Process regression to characterize continuous gusts. The knowledge of the wind features is crucial for computing energy-efficient trajectories with low cost and payload. Therefore, the system provides a solution that does not require any additional sensors. The system architecture presents a modular decentralized approach, in which the main parts of the system are separated in modules and the exchange of information is managed by a communication handler to enhance upgradeability and maintainability. Validation is done providing preliminary results of both simulations and Software-In-The-Loop testing. Telemetry data collected from real flights, performed in the Seville Metropolitan Area in Andalusia (Spain), was used for testing. Results show that wind estimation and predictions can be calculated at 1 Hz and a wind map can be updated at 0.4 Hz . Predictions show a convergence time with a 95% confidence interval of approximately 30 s .

  8. Forest impact estimated with NOAA AVHRR and landsat TM data related to an empirical hurricane wind-field distribution

    USGS Publications Warehouse

    Ramsey, Elijah W.; Hodgson, M.E.; Sapkota, S.K.; Nelson, G.A.

    2001-01-01

    An empirical model was used to relate forest type and hurricane-impact distribution with wind speed and duration to explain the variation of hurricane damage among forest types along the Atchafalaya River basin of coastal Louisiana. Forest-type distribution was derived from Landsat Thematic Mapper image data, hurricane-impact distribution from a suite of transformed advanced very high resolution radiometer images, and wind speed and duration from a wind-field model. The empirical model explained 73%, 84%, and 87% of the impact variances for open, hardwood, and cypress-tupelo forests, respectively. These results showed that the estimated impact for each forest type was highly related to the duration and speed of extreme winds associated with Hurricane Andrew in 1992. The wind-field model projected that the highest wind speeds were in the southern basin, dominated by cypress-tupelo and open forests, while lower wind speeds were in the northern basin, dominated by hardwood forests. This evidence could explain why, on average, the impact to cypress-tupelos was more severe than to hardwoods, even though cypress-tupelos are less susceptible to wind damage. Further, examination of the relative importance of wind speed in explaining the impact severity to each forest type showed that the impact to hardwood forests was mainly related to tropical-depression to tropical-storm force wind speeds. Impacts to cypress-tupelo and open forests (a mixture of willows and cypress-tupelo) were broadly related to tropical-storm force wind speeds and by wind speeds near and somewhat in excess of hurricane force. Decoupling the importance of duration from speed in explaining the impact severity to the forests could not be fully realized. Most evidence, however, hinted that impact severity was positively related to higher durations at critical wind speeds. Wind-speed intervals, which were important in explaining the impact severity on hardwoods, showed that higher durations, but not the highest wind speeds, were concentrated in the northern basin, dominated by hardwoods. The extreme impacts associated with the cypress-tupelo forests in the southeast corner of the basin intersected the highest durations as well as the highest wind speeds. ?? 2001 Published by Elsevier Science Inc.

  9. Static voltage distribution between turns of secondary winding of air-core spiral strip transformer and its application

    NASA Astrophysics Data System (ADS)

    Zhang, Hong-bo; Liu, Jin-liang; Cheng, Xin-bing; Zhang, Yu

    2011-09-01

    The static voltage distribution between winding turns has great impact on output characteristics and lifetime of the air-core spiral strip pulse transformer (ACSSPT). In this paper, winding inductance was calculated by electromagnetic theory, so that the static voltage distribution between turns of secondary winding of ACSSPT was analyzed conveniently. According to theoretical analysis, a voltage gradient because of the turn-to-turn capacitance was clearly noticeable across the ground turns. Simulation results of Pspice and CST EM Studio codes showed that the voltage distribution between turns of secondary winding had linear increments from the output turn to the ground turn. In experiment, the difference in increased voltage between the ground turns and the output turns of a 20-turns secondary winding is almost 50%, which is believed to be responsible for premature breakdown of the insulation, particularly between the ground turns. The experimental results demonstrated the theoretical analysis and simulation results, which had important value for stable and long lifetime ACSSPT design. A new ACSSPT with improved structure has been used successfully in intense electron beam accelerators steadily.

  10. Fatigue analysis and testing of wind turbine blades

    NASA Astrophysics Data System (ADS)

    Greaves, Peter Robert

    This thesis focuses on fatigue analysis and testing of large, multi MW wind turbine blades. The blades are one of the most expensive components of a wind turbine, and their mass has cost implications for the hub, nacelle, tower and foundations of the turbine so it is important that they are not unnecessarily strong. Fatigue is often an important design driver, but fatigue of composites is poorly understood and so large safety factors are often applied to the loads. This has implications for the weight of the blade. Full scale fatigue testing of blades is required by the design standards, and provides manufacturers with confidence that the blade will be able to survive its service life. This testing is usually performed by resonating the blade in the flapwise and edgewise directions separately, but in service these two loads occur at the same time.. A fatigue testing method developed at Narec (the National Renewable Energy Centre) in the UK in which the flapwise and edgewise directions are excited simultaneously has been evaluated by comparing the Palmgren-Miner damage sum around the blade cross section after testing with the damage distribution caused by the service life. A method to obtain the resonant test configuration that will result in the optimum mode shapes for the flapwise and edgewise directions was then developed, and simulation software was designed to allow the blade test to be simulated so that realistic comparisons between the damage distributions after different test types could be obtained. During the course of this work the shortcomings with conventional fatigue analysis methods became apparent, and a novel method of fatigue analysis based on multi-continuum theory and the kinetic theory of fracture was developed. This method was benchmarked using physical test data from the OPTIDAT database and was applied to the analysis of a complete blade. A full scale fatigue test method based on this new analysis approach is also discussed..

  11. Application of nonparametric regression methods to study the relationship between NO2 concentrations and local wind direction and speed at background sites.

    PubMed

    Donnelly, Aoife; Misstear, Bruce; Broderick, Brian

    2011-02-15

    Background concentrations of nitrogen dioxide (NO(2)) are not constant but vary temporally and spatially. The current paper presents a powerful tool for the quantification of the effects of wind direction and wind speed on background NO(2) concentrations, particularly in cases where monitoring data are limited. In contrast to previous studies which applied similar methods to sites directly affected by local pollution sources, the current study focuses on background sites with the aim of improving methods for predicting background concentrations adopted in air quality modelling studies. The relationship between measured NO(2) concentration in air at three such sites in Ireland and locally measured wind direction has been quantified using nonparametric regression methods. The major aim was to analyse a method for quantifying the effects of local wind direction on background levels of NO(2) in Ireland. The method was expanded to include wind speed as an added predictor variable. A Gaussian kernel function is used in the analysis and circular statistics employed for the wind direction variable. Wind direction and wind speed were both found to have a statistically significant effect on background levels of NO(2) at all three sites. Frequently environmental impact assessments are based on short term baseline monitoring producing a limited dataset. The presented non-parametric regression methods, in contrast to the frequently used methods such as binning of the data, allow concentrations for missing data pairs to be estimated and distinction between spurious and true peaks in concentrations to be made. The methods were found to provide a realistic estimation of long term concentration variation with wind direction and speed, even for cases where the data set is limited. Accurate identification of the actual variation at each location and causative factors could be made, thus supporting the improved definition of background concentrations for use in air quality modelling studies. Copyright © 2010 Elsevier B.V. All rights reserved.

  12. Radio emission in Mercury magnetosphere

    NASA Astrophysics Data System (ADS)

    Varela, J.; Reville, V.; Brun, A. S.; Pantellini, F.; Zarka, P.

    2016-10-01

    Context. Active stars possess magnetized wind that has a direct impact on planets that can lead to radio emission. Mercury is a good test case to study the effect of the solar wind and interplanetary magnetic field (IMF) on radio emission driven in the planet magnetosphere. Such studies could be used as proxies to characterize the magnetic field topology and intensity of exoplanets. Aims: The aim of this study is to quantify the radio emission in the Hermean magnetosphere. Methods: We use the magnetohydrodynamic code PLUTO in spherical coordinates with an axisymmetric multipolar expansion for the Hermean magnetic field, to analyze the effect of the IMF orientation and intensity, as well as the hydrodynamic parameters of the solar wind (velocity, density and temperature), on the net power dissipated on the Hermean day and night side. We apply the formalism derived by Zarka et al. (2001, Astrophys. Space Sci., 277, 293), Zarka (2007, Planet. Space Sci., 55, 598) to infer the radio emission level from the net dissipated power. We perform a set of simulations with different hydrodynamic parameters of the solar wind, IMF orientations and intensities, that allow us to calculate the dissipated power distribution and infer the existence of radio emission hot spots on the planet day side, and to calculate the integrated radio emission of the Hermean magnetosphere. Results: The obtained radio emission distribution of dissipated power is determined by the IMF orientation (associated with the reconnection regions in the magnetosphere), although the radio emission strength is dependent on the IMF intensity and solar wind hydro parameters. The calculated total radio emission level is in agreement with the one estimated in Zarka et al. (2001, Astrophys. Space Sci., 277, 293) , between 5 × 105 and 2 × 106 W.

  13. Small-scale Pressure-balanced Structures Driven by Oblique Slow Mode Waves Measured in the Solar Wind

    NASA Astrophysics Data System (ADS)

    Yao, Shuo; He, J.-S.; Tu, C.-Y.; Wang, L.-H.; Marsch, E.

    2013-09-01

    Recently, small-scale pressure-balanced structures (PBSs) were identified in the solar wind, but their formation mechanism remains unclear. This work aims to reveal the dependence of the properties of small-scale PBSs on the background magnetic field (B 0) direction and thus to corroborate the in situ mechanism that forms them. We analyze the plasma and magnetic field data obtained by WIND in the quiet solar wind at 1 AU. First, we use a developed moving-average method to obtain B 0(s, t) for every temporal scale (s) at each time moment (t). By wavelet cross-coherence analysis, we obtain the correlation coefficients between the thermal pressure P th and the magnetic pressure P B, distributing against the temporal scale and the angle θxB between B 0(s, t) and Geocentric Solar Ecliptic coordinates (GSE)-x. We note that the angle coverage of a PBS decreases with shorter temporal scale, but the occurrence of the PBSs is independent of θxB. Suspecting that the isolated small PBSs are formed by compressive waves in situ, we continue this study by testing the wave modes forming a small-scale PBS with B 0(s, t) quasi-parallel to GSE-x. As a result, we identify that the cross-helicity and the compressibility attain values for a slow mode from theoretical calculations. The wave vector is derived from minimum variance analysis. Besides, the proton temperatures obey T < T ∥ derived from the velocity distribution functions, excluding a mirror mode, which is the other candidate for the formation of PBSs in situ. Thus, a small-scale PBS is shown to be driven by oblique, slow-mode waves in the solar wind.

  14. Flight paths of seabirds soaring over the ocean surface enable measurement of fine-scale wind speed and direction.

    PubMed

    Yonehara, Yoshinari; Goto, Yusuke; Yoda, Ken; Watanuki, Yutaka; Young, Lindsay C; Weimerskirch, Henri; Bost, Charles-André; Sato, Katsufumi

    2016-08-09

    Ocean surface winds are an essential factor in understanding the physical interactions between the atmosphere and the ocean. Surface winds measured by satellite scatterometers and buoys cover most of the global ocean; however, there are still spatial and temporal gaps and finer-scale variations of wind that may be overlooked, particularly in coastal areas. Here, we show that flight paths of soaring seabirds can be used to estimate fine-scale (every 5 min, ∼5 km) ocean surface winds. Fine-scale global positioning system (GPS) positional data revealed that soaring seabirds flew tortuously and ground speed fluctuated presumably due to tail winds and head winds. Taking advantage of the ground speed difference in relation to flight direction, we reliably estimated wind speed and direction experienced by the birds. These bird-based wind velocities were significantly correlated with wind velocities estimated by satellite-borne scatterometers. Furthermore, extensive travel distances and flight duration of the seabirds enabled a wide range of high-resolution wind observations, especially in coastal areas. Our study suggests that seabirds provide a platform from which to measure ocean surface winds, potentially complementing conventional wind measurements by covering spatial and temporal measurement gaps.

  15. Flight paths of seabirds soaring over the ocean surface enable measurement of fine-scale wind speed and direction

    PubMed Central

    Yonehara, Yoshinari; Goto, Yusuke; Yoda, Ken; Watanuki, Yutaka; Young, Lindsay C.; Weimerskirch, Henri; Bost, Charles-André; Sato, Katsufumi

    2016-01-01

    Ocean surface winds are an essential factor in understanding the physical interactions between the atmosphere and the ocean. Surface winds measured by satellite scatterometers and buoys cover most of the global ocean; however, there are still spatial and temporal gaps and finer-scale variations of wind that may be overlooked, particularly in coastal areas. Here, we show that flight paths of soaring seabirds can be used to estimate fine-scale (every 5 min, ∼5 km) ocean surface winds. Fine-scale global positioning system (GPS) positional data revealed that soaring seabirds flew tortuously and ground speed fluctuated presumably due to tail winds and head winds. Taking advantage of the ground speed difference in relation to flight direction, we reliably estimated wind speed and direction experienced by the birds. These bird-based wind velocities were significantly correlated with wind velocities estimated by satellite-borne scatterometers. Furthermore, extensive travel distances and flight duration of the seabirds enabled a wide range of high-resolution wind observations, especially in coastal areas. Our study suggests that seabirds provide a platform from which to measure ocean surface winds, potentially complementing conventional wind measurements by covering spatial and temporal measurement gaps. PMID:27457932

  16. Good Days, Bad Days: Wind as a Driver of Foraging Success in a Flightless Seabird, the Southern Rockhopper Penguin

    PubMed Central

    Dehnhard, Nina; Ludynia, Katrin; Poisbleau, Maud; Demongin, Laurent; Quillfeldt, Petra

    2013-01-01

    Due to their restricted foraging range, flightless seabirds are ideal models to study the short-term variability in foraging success in response to environmentally driven food availability. Wind can be a driver of upwelling and food abundance in marine ecosystems such as the Southern Ocean, where wind regime changes due to global warming may have important ecological consequences. Southern rockhopper penguins (Eudyptes chrysocome) have undergone a dramatic population decline in the past decades, potentially due to changing environmental conditions. We used a weighbridge system to record daily foraging mass gain (the difference in mean mass of adults leaving the colony in the morning and returning to the colony in the evening) of adult penguins during the chick rearing in two breeding seasons. We related the day-to-day variability in foraging mass gain to ocean wind conditions (wind direction and wind speed) and tested for a relationship between wind speed and sea surface temperature anomaly (SSTA). Foraging mass gain was highly variable among days, but did not differ between breeding seasons, chick rearing stages (guard and crèche) and sexes. It was strongly correlated between males and females, indicating synchronous changes among days. There was a significant interaction of wind direction and wind speed on daily foraging mass gain. Foraging mass gain was highest under moderate to strong winds from westerly directions and under weak winds from easterly directions, while decreasing under stronger easterly winds and storm conditions. Ocean wind speed showed a negative correlation with daily SSTA, suggesting that winds particularly from westerly directions might enhance upwelling and consequently the prey availability in the penguins' foraging areas. Our data emphasize the importance of small-scale, wind-induced patterns in prey availability on foraging success, a widely neglected aspect in seabird foraging studies, which might become more important with increasing changes in climatic variability. PMID:24236139

  17. Generation of EMIC Waves and Effects on Particle Precipitation During a Solar Wind Pressure Intensification with Bz > 0

    NASA Astrophysics Data System (ADS)

    Lessard, M.; Engebretson, M. J.; Spence, H. E.; Paulson, K. W.; Halford, A. J.; Millan, R. M.; Rodger, C. J.; Hendry, A.

    2017-12-01

    During geomagnetic storms, solar wind energy couples to the magnetosphere and drives the generation of electromagnetic ion cyclotron (EMIC) waves, which can then scatter energetic electrons and ions from the radiation belts. In the event described in this paper, the interplanetary magnetic field remained northward throughout the duration, a condition unfavorable for solar wind energy coupling through low latitude reconnection. While this resulted in SYM/H remaining positive, pressure fluctuations were directly transferred into and then propagated throughout the magnetosphere, generating EMIC waves on global scales. The generation mechanism presumably involved the development of temperature anisotropies via perpendicular pressure perturbations, as evidenced by strong correlations between the pressure variations and the intensifications of the waves globally. Electron precipitation was recorded by the BARREL balloons, although it did not have the same widespread signatures as the waves and, in fact, appears to have been quite patchy in character. Observations from Van Allen Probe-A (RBSP-A) satellite (at post midnight local time), showed clear butterfly distributions and it may be possible that the EMIC waves contributed to the development of these distribution functions. Ion precipitation was also recorded by the Polar-orbiting Operational Environmental Satellite (POES) satellites, though tended to be confined to the dawn-dusk meridians.

  18. Are They Telltale Ripples?

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This false-color image from the Mars Exploration Rover Spirit's panoramic camera shows peak-like formations on the martian terrain at Gusev Crater. Scientists have been analyzing these formations, which have coarse particles accumulating on their tops, or crests. This characteristic classifies them as ripples instead of dunes, which have a more uniform distribution of particle sizes. Scientists are looking further into such formations, which can give insight to the wind direction and velocity on Mars, as well as the material that is being moved by the wind. This image was taken on the 40th martian day, or sol, of Spirit's mission.

    [figure removed for brevity, see original site] Click on image for larger view [Image credit: NASA/JPL/ASU]

    This diagram illustrates how windblown sediments travel. There are three basic types of particles that undergo different motions depending on their size. These particles are dust, sand and coarse sand, and their sizes approximate flour, sugar, and ball bearings, respectively. Sand particles move along the 'saltation' path, hitting the surface downwind. When the sand hits the surface, it sends dust into the atmosphere and gives coarse sand a little shove. Mars Exploration Rover scientists are studying the distribution of material on the surface of Mars to better understand how winds shaped the landscape.

  19. Lightning location relative to storm structure in a supercell storm and a multicell storm

    NASA Technical Reports Server (NTRS)

    Ray, Peter S.; Macgorman, Donald R.; Rust, W. David; Taylor, William L.; Rasmussen, Lisa Walters

    1987-01-01

    Relationships between lightning location and storm structure are examined for one radar volume scan in each of two mature, severe storms. One of these storms had characteristics of a supercell storm, and the other was a multicell storm. Data were analyzed from dual-Doppler radar and dual-VHF lightning-mapping systems. The distributions of VHF impulse sources were compared with radar reflectivity, vertical air velocity, and their respective gradients. In the supercell storm, lightning tended to occur along streamlines above and down-shear of the updraft and reflectivity cores; VHF impulse sources were most concentrated in reflectivities between 30 and 40 dBZ and were distributed uniformly with respect to updraft speed. In the multicell storm, on the other hand, lightning tended to coincide with the vertical reflectivity and updraft core and with the diverging streamlines near the top of the storm. The results suggest that the location of lightning in these severe storms were most directly associated with the wind field structure relative to updraft and reflectivity cores. Since the magnitude and vertical shear of the environmental wind are fundamental in determining the reflectivity and wind field structure of a storm, it is suggested that these environmental parameters are also fundamental in determining lightning location.

  20. Vortex Flap Technology: a Stability and Control Assessment

    NASA Technical Reports Server (NTRS)

    Carey, K. M.; Erickson, G. E.

    1984-01-01

    A comprehensive low-speed wind tunnel investigation was performed of leading edge vortex flaps applied to representative aircraft configurations. A determination was made of the effects of analytically- and empirically-designed vortex flaps on the static longitudinal and lateral-directional aerodynamics, stability, and control characteristics of fighter wings having leading-edge sweep angles of 45 to 76.5 degrees. The sensitivity to several configuration modifications was assessed, which included the effects of flap planform, leading- and trailing-edge flap deflection angles, wing location on the fuselage, forebody strakes, canards, and centerline and outboard vertical tails. Six-component forces and moments, wing surface static pressure distributions, and surface flow patterns were obtained using the Northrop 21- by 30-inch low-speed wind tunnel.

  1. Standardization Tests of NACA No. 1 Wind Tunnel

    NASA Technical Reports Server (NTRS)

    Reid, Elliott G

    1925-01-01

    The tests described in this report were made in the 5-foot atmospheric wind tunnel of the National Advisory Committee for Aeronautics, at Langley Field. The primary objective of collecting data on the characteristics of this tunnel for comparison with those of others throughout the world, in order that, in the future, the results of tests made in all the principle laboratories may be interpreted, compared, and coordinated on a basis of scientifically established relationships, a process hitherto impossible due to the lack of comparable data. The work includes tests of a disk, spheres, cylinders, and airfoils, explorations of the test section for static pressure and velocity distribution, and determination of the variations of air flow direction throughout the operating range of the tunnel. (author)

  2. The Seasat commercial demonstration program

    NASA Technical Reports Server (NTRS)

    Mccandless, S. W.; Miller, B. P.; Montgomery, D. R.

    1981-01-01

    The background and development of the Seasat commercial demonstration program are reviewed and the Seasat spacecraft and its sensors (altimeter, wind field scatterometer, synthetic aperture radar, and scanning multichannel microwave radiometer) are described. The satellite data distribution system allows for selected sets of data, reformatted or tailored to specific needs and geographical regions, to be available to commercial users. Products include sea level and upper atmospheric pressure, sea surface temperature, marine winds, significant wave heights, primary wave direction and period, and spectral wave data. The results of a set of retrospective case studies performed for the commercial demonstration program are described. These are in areas of application such as marine weather and ocean condition forecasting, offshore resource exploration and development, commercial fishing, and marine transportation.

  3. Wind Power Forecasting Error Frequency Analyses for Operational Power System Studies: Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Florita, A.; Hodge, B. M.; Milligan, M.

    2012-08-01

    The examination of wind power forecasting errors is crucial for optimal unit commitment and economic dispatch of power systems with significant wind power penetrations. This scheduling process includes both renewable and nonrenewable generators, and the incorporation of wind power forecasts will become increasingly important as wind fleets constitute a larger portion of generation portfolios. This research considers the Western Wind and Solar Integration Study database of wind power forecasts and numerical actualizations. This database comprises more than 30,000 locations spread over the western United States, with a total wind power capacity of 960 GW. Error analyses for individual sites andmore » for specific balancing areas are performed using the database, quantifying the fit to theoretical distributions through goodness-of-fit metrics. Insights into wind-power forecasting error distributions are established for various levels of temporal and spatial resolution, contrasts made among the frequency distribution alternatives, and recommendations put forth for harnessing the results. Empirical data are used to produce more realistic site-level forecasts than previously employed, such that higher resolution operational studies are possible. This research feeds into a larger work of renewable integration through the links wind power forecasting has with various operational issues, such as stochastic unit commitment and flexible reserve level determination.« less

  4. LOCATING NEARBY SOURCES OF AIR POLLUTION BY NONPARAMETRIC REGRESSION OF ATMOSPHERIC CONCENTRATIONS ON WIND DIRECTION. (R826238)

    EPA Science Inventory

    The relationship of the concentration of air pollutants to wind direction has been determined by nonparametric regression using a Gaussian kernel. The results are smooth curves with error bars that allow for the accurate determination of the wind direction where the concentrat...

  5. Using Rare Earth Elements (REE) to determine wind-driven soil dispersal from a point source

    USDA-ARS?s Scientific Manuscript database

    Although erosion of soil by water is a predictably directional process, the erosion of soil by wind is determined by wind direction on an event-wise basis. The wind-driven dispersal patterns of chemical constituents including natural soil components and anthropogenic contaminants are not well under...

  6. A survey of solar wind conditions at 5 AU: A tool for interpreting solar wind-magnetosphere interactions at Jupiter

    NASA Astrophysics Data System (ADS)

    Ebert, Robert; Bagenal, Fran; McComas, David; Fowler, Christopher

    2014-09-01

    We examine Ulysses solar wind and interplanetary magnetic field (IMF) observations at 5 AU for two ~13 month intervals during the rising and declining phases of solar cycle 23 and the predicted response of the Jovian magnetosphere during these times. The declining phase solar wind, composed primarily of corotating interaction regions and high-speed streams, was, on average, faster, hotter, less dense, and more Alfvénic relative to the rising phase solar wind, composed mainly of slow wind and interplanetary coronal mass ejections. Interestingly, none of solar wind and IMF distributions reported here were bimodal, a feature used to explain the bimodal distribution of bow shock and magnetopause standoff distances observed at Jupiter. Instead, many of these distributions had extended, non-Gaussian tails that resulted in large standard deviations and much larger mean over median values. The distribution of predicted Jupiter bow shock and magnetopause standoff distances during these intervals were also not bimodal, the mean/median values being larger during the declining phase by ~1 - 4%. These results provide data-derived solar wind and IMF boundary conditions at 5 AU for models aimed at studying solar wind-magnetosphere interactions at Jupiter and can support the science investigations of upcoming Jupiter system missions. Here, we provide expectations for Juno, which is scheduled to arrive at Jupiter in July 2016. Accounting for the long-term decline in solar wind dynamic pressure reported by McComas et al. (2013), Jupiter’s bow shock and magnetopause is expected to be at least 8 - 12% further from Jupiter, if these trends continue.

  7. On wind-wave-current interactions during the Shoaling Waves Experiment

    NASA Astrophysics Data System (ADS)

    Zhang, Fei W.; Drennan, William M.; Haus, Brian K.; Graber, Hans C.

    2009-01-01

    This paper presents a case study of wind-wave-current interaction during the Shoaling Waves Experiment (SHOWEX). Surface current fields off Duck, North Carolina, were measured by a high-frequency Ocean Surface Current Radar (OSCR). Wind, wind stress, and directional wave data were obtained from several Air Sea Interaction Spar (ASIS) buoys moored in the OSCR scanning domain. At several times during the experiment, significant coastal currents entered the experimental area. High horizontal shears at the current edge resulted in the waves at the peak of wind-sea spectra (but not those in the higher-frequency equilibrium range) being shifted away from the mean wind direction. This led to a significant turning of the wind stress vector away from the mean wind direction. The interactions presented here have important applications in radar remote sensing and are discussed in the context of recent radar imaging models of the ocean surface.

  8. Radiotelemetric analysis of the effects of prevailing wind direction on Mormon cricket migratory band movement.

    PubMed

    Sword, G A; Lorch, P D; Gwynne, D T

    2008-08-01

    During outbreaks, flightless Mormon crickets [Anabrus simplex Haldeman (Orthoptera: Tettigoniidae)] form large mobile groups known as migratory bands. These bands can contain millions of individuals that march en masse across the landscape. The role of environmental cues in influencing the movement direction of migratory bands is poorly understood and has been the subject of little empirical study. We examined the effect of wind direction on Mormon cricket migratory band movement direction by monitoring the local weather conditions and daily movement patterns of individual insects traveling in bands over the same time course at three close, but spatially distinct sites. Although weather conditions were relatively homogeneous across sites, wind directions tended to be more variable across sites during the morning hours, the period during which directional movement begins. Migratory bands at different sites traveled in distinctly different directions. However, we failed to find any evidence to suggest that the observed variation in migratory band movement direction was correlated with local wind direction at any time during the day. These results support the notion that the cues mediating migratory band directionality are likely to be group specific and that a role for landscape-scale environmental cues such as wind direction is unlikely.

  9. Maximizing the spatial representativeness of NO2 monitoring data using a combination of local wind-based sectoral division and seasonal and diurnal correction factors.

    PubMed

    Donnelly, Aoife; Naughton, Owen; Misstear, Bruce; Broderick, Brian

    2016-10-14

    This article describes a new methodology for increasing the spatial representativeness of individual monitoring sites. Air pollution levels at a given point are influenced by emission sources in the immediate vicinity. Since emission sources are rarely uniformly distributed around a site, concentration levels will inevitably be most affected by the sources in the prevailing upwind direction. The methodology provides a means of capturing this effect and providing additional information regarding source/pollution relationships. The methodology allows for the division of the air quality data from a given monitoring site into a number of sectors or wedges based on wind direction and estimation of annual mean values for each sector, thus optimising the information that can be obtained from a single monitoring station. The method corrects for short-term data, diurnal and seasonal variations in concentrations (which can produce uneven weighting of data within each sector) and uneven frequency of wind directions. Significant improvements in correlations between the air quality data and the spatial air quality indicators were obtained after application of the correction factors. This suggests the application of these techniques would be of significant benefit in land-use regression modelling studies. Furthermore, the method was found to be very useful for estimating long-term mean values and wind direction sector values using only short-term monitoring data. The methods presented in this article can result in cost savings through minimising the number of monitoring sites required for air quality studies while also capturing a greater degree of variability in spatial characteristics. In this way, more reliable, but also more expensive monitoring techniques can be used in preference to a higher number of low-cost but less reliable techniques. The methods described in this article have applications in local air quality management, source receptor analysis, land-use regression mapping and modelling and population exposure studies.

  10. Wind energy resource modelling in Portugal and its future large-scale alteration due to anthropogenic induced climate changes =

    NASA Astrophysics Data System (ADS)

    Carvalho, David Joao da Silva

    The high dependence of Portugal from foreign energy sources (mainly fossil fuels), together with the international commitments assumed by Portugal and the national strategy in terms of energy policy, as well as resources sustainability and climate change issues, inevitably force Portugal to invest in its energetic self-sufficiency. The 20/20/20 Strategy defined by the European Union defines that in 2020 60% of the total electricity consumption must come from renewable energy sources. Wind energy is currently a major source of electricity generation in Portugal, producing about 23% of the national total electricity consumption in 2013. The National Energy Strategy 2020 (ENE2020), which aims to ensure the national compliance of the European Strategy 20/20/20, states that about half of this 60% target will be provided by wind energy. This work aims to implement and optimise a numerical weather prediction model in the simulation and modelling of the wind energy resource in Portugal, both in offshore and onshore areas. The numerical model optimisation consisted in the determination of which initial and boundary conditions and planetary boundary layer physical parameterizations options provide wind power flux (or energy density), wind speed and direction simulations closest to in situ measured wind data. Specifically for offshore areas, it is also intended to evaluate if the numerical model, once optimised, is able to produce power flux, wind speed and direction simulations more consistent with in situ measured data than wind measurements collected by satellites. This work also aims to study and analyse possible impacts that anthropogenic climate changes may have on the future wind energetic resource in Europe. The results show that the ECMWF reanalysis ERA-Interim are those that, among all the forcing databases currently available to drive numerical weather prediction models, allow wind power flux, wind speed and direction simulations more consistent with in situ wind measurements. It was also found that the Pleim-Xiu and ACM2 planetary boundary layer parameterizations are the ones that showed the best performance in terms of wind power flux, wind speed and direction simulations. This model optimisation allowed a significant reduction of the wind power flux, wind speed and direction simulations errors and, specifically for offshore areas, wind power flux, wind speed and direction simulations more consistent with in situ wind measurements than data obtained from satellites, which is a very valuable and interesting achievement. This work also revealed that future anthropogenic climate changes can negatively impact future European wind energy resource, due to tendencies towards a reduction in future wind speeds especially by the end of the current century and under stronger radiative forcing conditions.

  11. Wind direction variability in Afternoon and Sunset Turbulence

    NASA Astrophysics Data System (ADS)

    Nilsson, Erik; Lothon, Marie; Lohou, Fabienne; Mahrt, Larry

    2014-05-01

    Understanding wind direction (WD) variability better is important for several reasons. Air pollution models need information about how variable wind direction is in different conditions (Davies and Thomson 1999). Accurate predictions of dispersion are important for human health and safety and allow for adaptation planning (Nagle et al. 2011). Other applications include horizontal diffusion, efficiency and fatigue of wind machines and air-sea interaction (Mahrt 2011). Most studies of wind direction variability have focused on nocturnal conditions because of greater variability in light winds. Modelling WD variability in transition periods when both mean wind speed and variance of the wind components are in a state of change can, however, also be very challenging and has not been the focus of earlier studies. The evening transitioning to the nocturnal boundary layer can play an important role in the diffusion process of pollutants and scalars emitted at surface and transported within the atmosphere. The Boundary Layer Late Afternoon and Sunset Turbulence (BLLAST) field campaign that took place in southern France in June and July 2011 focused on the decaying turbulence of the late afternoon boundary layer and related issues (Lothon et al. 2012). We analyse field measurements from BLLAST to investigate WD variability in the evening transition period. Standard deviations of horizontal wind direction fluctuations in the lowest 60 m of the boundary layer have been examined for dependence on mean wind speed, higher order moments and averaging time. Measurement results are interpreted using measured and idealized probability density functions of horizontal wind vectors. These are also used to develop analytical functions describing how WD variability depends on wind speed, variance and other controlling factors in the atmospheric boundary layer. References: Davies B.M., Thomson D.J., 1999. Comparison of some parameterizations of wind direction variability with observations, Atmospheric Enviroment 33, 4909-4917. Lothon M. et al., 2012. The Boundary-Layer Late Afternoon and Sunset Turbulence field experiment, Proc. of the 20th Symposium on Boundary-Layers and Turbulence, 7-13 July, Boston, MA, USA. Mahrt L., 2011. Surface Wind Direction Variability, Journal of Applied Meteorology and Climatology 50. 144-152. Nagle J.C., 2011. Adapting to Pollution, Research Roundtable on Climate Change, Adaptation, and Enviromental Law, Northwestern Law Searle Center, Legal and Regulatory Studies 7-18 April, IL, USA.

  12. First and second order semi-Markov chains for wind speed modeling

    NASA Astrophysics Data System (ADS)

    Prattico, F.; Petroni, F.; D'Amico, G.

    2012-04-01

    The increasing interest in renewable energy leads scientific research to find a better way to recover most of the available energy. Particularly, the maximum energy recoverable from wind is equal to 59.3% of that available (Betz law) at a specific pitch angle and when the ratio between the wind speed in output and in input is equal to 1/3. The pitch angle is the angle formed between the airfoil of the blade of the wind turbine and the wind direction. Old turbine and a lot of that actually marketed, in fact, have always the same invariant geometry of the airfoil. This causes that wind turbines will work with an efficiency that is lower than 59.3%. New generation wind turbines, instead, have a system to variate the pitch angle by rotating the blades. This system able the wind turbines to recover, at different wind speed, always the maximum energy, working in Betz limit at different speed ratios. A powerful system control of the pitch angle allows the wind turbine to recover better the energy in transient regime. A good stochastic model for wind speed is then needed to help both the optimization of turbine design and to assist the system control to predict the value of the wind speed to positioning the blades quickly and correctly. The possibility to have synthetic data of wind speed is a powerful instrument to assist designer to verify the structures of the wind turbines or to estimate the energy recoverable from a specific site. To generate synthetic data, Markov chains of first or higher order are often used [1,2,3]. In particular in [3] is presented a comparison between a first-order Markov chain and a second-order Markov chain. A similar work, but only for the first-order Markov chain, is conduced by [2], presenting the probability transition matrix and comparing the energy spectral density and autocorrelation of real and synthetic wind speed data. A tentative to modeling and to join speed and direction of wind is presented in [1], by using two models, first-order Markov chain with different number of states, and Weibull distribution. All this model use Markov chains to generate synthetic wind speed time series but the search for a better model is still open. Approaching this issue, we applied new models which are generalization of Markov models. More precisely we applied semi-Markov models to generate synthetic wind speed time series. Semi-Markov processes (SMP) are a wide class of stochastic processes which generalize at the same time both Markov chains and renewal processes. Their main advantage is that of using whatever type of waiting time distribution for modeling the time to have a transition from one state to another one. This major flexibility has a price to pay: availability of data to estimate the parameters of the model which are more numerous. Data availability is not an issue in wind speed studies, therefore, semi-Markov models can be used in a statistical efficient way. In this work we present three different semi-Markov chain models: the first one is a first-order SMP where the transition probabilities from two speed states (at time Tn and Tn-1) depend on the initial state (the state at Tn-1), final state (the state at Tn) and on the waiting time (given by t=Tn-Tn-1), the second model is a second order SMP where we consider the transition probabilities as depending also on the state the wind speed was before the initial state (which is the state at Tn-2) and the last one is still a second order SMP where the transition probabilities depends on the three states at Tn-2,Tn-1 and Tn and on the waiting times t_1=Tn-1-Tn-2 and t_2=Tn-Tn-1. The three models are used to generate synthetic time series for wind speed by means of Monte Carlo simulations and the time lagged autocorrelation is used to compare statistical properties of the proposed models with those of real data and also with a time series generated though a simple Markov chain. [1] F. Youcef Ettoumi, H. Sauvageot, A.-E.-H. Adane, Statistical bivariate modeling of wind using first-order Markov chain and Weibull distribution, Renewable Energy, 28/2003 1787-1802. [2] A. Shamshad, M.A. Bawadi, W.M.W. Wan Hussin, T.A. Majid, S.A.M. Sanusi, First and second order Markov chain models for synthetic generation of wind speed time series, Energy 30/2005 693-708. [3] H. Nfaoui, H. Essiarab, A.A.M. Sayigh, A stochastic Markov chain model for simulating wind speed time series at Tangiers, Morocco, Renewable Energy 29/2004, 1407-1418.

  13. Representativeness of wind measurements in moderately complex terrain

    NASA Astrophysics Data System (ADS)

    van den Bossche, Michael; De Wekker, Stephan F. J.

    2018-02-01

    We investigated the representativeness of 10-m wind measurements in a 4 km × 2 km area of modest relief by comparing observations at a central site with those at four satellite sites located in the same area. Using a combination of established and new methods to quantify and visualize representativeness, we found significant differences in wind speed and direction between the four satellite sites and the central site. The representativeness of the central site wind measurements depended strongly on surface wind speed and direction, and atmospheric stability. Through closer inspection of the observations at one of the satellite sites, we concluded that terrain-forced flows combined with thermally driven downslope winds caused large biases in wind direction and speed. We used these biases to generate a basic model, showing that terrain-related differences in wind observations can to a large extent be predicted. Such a model is a cost-effective way to enhance an area's wind field determination and to improve the outcome of pollutant dispersion and weather forecasting models.

  14. Data Acquisition and Processing System for Airborne Wind Profiling with a Pulsed, 2-Micron, Coherent-Detection, Doppler Lidar System

    NASA Technical Reports Server (NTRS)

    Beyon, J. Y.; Koch, G. J.; Kavaya, M. J.

    2010-01-01

    A data acquisition and signal processing system is being developed for a 2-micron airborne wind profiling coherent Doppler lidar system. This lidar, called the Doppler Aerosol Wind Lidar (DAWN), is based on a Ho:Tm:LuLiF laser transmitter and 15-cm diameter telescope. It is being packaged for flights onboard the NASA DC-8, with the first flights in the summer of 2010 in support of the NASA Genesis and Rapid Intensification Processes (GRIP) campaign for the study of hurricanes. The data acquisition and processing system is housed in a compact PCI chassis and consists of four components such as a digitizer, a digital signal processing (DSP) module, a video controller, and a serial port controller. The data acquisition and processing software (DAPS) is also being developed to control the system including real-time data analysis and display. The system detects an external 10 Hz trigger pulse and initiates the data acquisition and processing process, and displays selected wind profile parameters such as Doppler shift, power distribution, wind directions and velocities. Doppler shift created by aircraft motion is measured by an inertial navigation/GPS sensor and fed to the signal processing system for real-time removal of aircraft effects from wind measurements. A general overview of the system and the DAPS as well as the coherent Doppler lidar system is presented in this paper.

  15. The Solar Wind Ion Analyzer for MAVEN

    NASA Astrophysics Data System (ADS)

    Halekas, J. S.; Taylor, E. R.; Dalton, G.; Johnson, G.; Curtis, D. W.; McFadden, J. P.; Mitchell, D. L.; Lin, R. P.; Jakosky, B. M.

    2015-12-01

    The Solar Wind Ion Analyzer (SWIA) on the MAVEN mission will measure the solar wind ion flows around Mars, both in the upstream solar wind and in the magneto-sheath and tail regions inside the bow shock. The solar wind flux provides one of the key energy inputs that can drive atmospheric escape from the Martian system, as well as in part controlling the structure of the magnetosphere through which non-thermal ion escape must take place. SWIA measurements contribute to the top level MAVEN goals of characterizing the upper atmosphere and the processes that operate there, and parameterizing the escape of atmospheric gases to extrapolate the total loss to space throughout Mars' history. To accomplish these goals, SWIA utilizes a toroidal energy analyzer with electrostatic deflectors to provide a broad 360∘×90∘ field of view on a 3-axis spacecraft, with a mechanical attenuator to enable a very high dynamic range. SWIA provides high cadence measurements of ion velocity distributions with high energy resolution (14.5 %) and angular resolution (3.75∘×4.5∘ in the sunward direction, 22.5∘×22.5∘ elsewhere), and a broad energy range of 5 eV to 25 keV. Onboard computation of bulk moments and energy spectra enable measurements of the basic properties of the solar wind at 0.25 Hz.

  16. Climate projection of synoptic patterns forming extremely high wind speed over the Barents Sea

    NASA Astrophysics Data System (ADS)

    Surkova, Galina; Krylov, Aleksey

    2017-04-01

    Frequency of extreme weather events is not very high, but their consequences for the human well-being may be hazardous. These seldom events are not always well simulated by climate models directly. Sometimes it is more effective to analyze numerical projection of large-scale synoptic event generating extreme weather. For example, in mid-latitude surface wind speed depends mainly on the sea level pressure (SLP) field - its configuration and horizontal pressure gradient. This idea was implemented for analysis of extreme wind speed events over the Barents Sea. The calendar of high surface wind speed V (10 m above the surface) was prepared for events with V exceeding 99th percentile value in the central part of the Barents Sea. Analysis of probability distribution function of V was carried out on the base of ERA-Interim reanalysis data (6-hours, 0.75x0.75 degrees of latitude and longitude) for the period 1981-2010. Storm wind events number was found to be 240 days. Sea level pressure field over the sea and surrounding area was selected for each storm wind event. For the climate of the future (scenario RCP8.5), projections of SLP from CMIP5 numerical experiments were used. More than 20 climate models results of projected SLP (2006-2100) over the Barents Sea were correlated with modern storm wind SLP fields. Our calculations showed the positive tendency of annual frequency of storm SLP patterns over the Barents Sea by the end of 21st century.

  17. Very-high-energy gamma radiation associated with the unshocked wind of the Crab pulsar

    NASA Astrophysics Data System (ADS)

    Bogovalov, S. V.; Aharonian, F. A.

    2000-04-01

    We show that the relativistic wind of the Crab pulsar, which is commonly thought to be invisible in the region upstream of the termination shock at r<=rS~0.1pc, in fact could be directly observed through its inverse Compton (IC) γ-ray emission. This radiation is caused by illumination of the wind by low-frequency photons emitted by the pulsar, and consists of two, pulsed and unpulsed, components associated with the non-thermal (pulsed) and thermal (unpulsed) low-energy radiation of the pulsar, respectively. These two components of γ-radiation have distinct spectral characteristics, which depend essentially on the site of formation of the kinetic-energy-dominated wind, as well as on the Lorentz factor and the geometry of propagation of the wind. Thus, the search for such specific radiation components in the spectrum of the Crab Nebula can provide unique information about the unshocked pulsar wind that is not accessible at other wavelengths. In particular, we show that the comparison of the calculated flux of the unpulsed IC emission with the measured γ-ray flux of the Crab Nebula excludes the possibility of formation of a kinetic-energy-dominated wind within 5 light-cylinder radii of the pulsar, Rw>=5RL. The analysis of the pulsed IC emission, calculated under reasonable assumptions concerning the production site and angular distribution of the optical pulsed radiation, yields even tighter restrictions, namely Rw>=30RL.

  18. Pollutant Concentrations in Street Canyons of Different Aspect Ratio with Avenues of Trees for Various Wind Directions

    NASA Astrophysics Data System (ADS)

    Gromke, Christof; Ruck, Bodo

    2012-07-01

    This study summarizes the effects of avenues of trees in urban street canyons on traffic pollutant dispersion. We describe various wind-tunnel experiments with different tree-avenue models in combination with variations in street-canyon aspect ratio W/ H (with W the street-canyon width and H the building height) and approaching wind direction. Compared to tree-free street canyons, in general, higher pollutant concentrations are found. Avenues of trees do not suppress canyon vortices, although the air ventilation in canyons is hindered significantly. For a perpendicular wind direction, increases in wall-average and wall-maximum concentrations at the leeward canyon wall and decreases in wall-average concentrations at the windward wall are found. For oblique and perpendicular wind directions, increases at both canyon walls are obtained. The strongest effects of avenues of trees on traffic pollutant dispersion are observed for oblique wind directions for which also the largest concentrations at the canyon walls are found. Thus, the prevailing assumption that attributes the most harmful dispersion conditions to a perpendicular wind direction does not hold for street canyons with avenues of trees. Furthermore, following dimensional analysis, an estimate of the normalized wall-maximum traffic pollutant concentration in street canyons with avenues of trees is derived.

  19. Combined effect of boundary layer recirculation factor and stable energy on local air quality in the Pearl River Delta over southern China.

    PubMed

    Li, Haowen; Wang, Baomin; Fang, Xingqin; Zhu, Wei; Fan, Qi; Liao, Zhiheng; Liu, Jian; Zhang, Asi; Fan, Shaojia

    2018-03-01

    Atmospheric boundary layer (ABL) has a significant impact on the spatial and temporal distribution of air pollutants. In order to gain a better understanding of how ABL affects the variation of air pollutants, atmospheric boundary layer observations were performed at Sanshui in the Pearl River Delta (PRD) region over southern China during the winter of 2013. Two types of typical ABL status that could lead to air pollution were analyzed comparatively: weak vertical diffusion ability type (WVDAT) and weak horizontal transportation ability type (WHTAT). Results show that (1) WVDAT was featured by moderate wind speed, consistent wind direction, and thick inversion layer at 600~1000 m above ground level (AGL), and air pollutants were restricted in the low altitudes due to the stable atmospheric structure; (2) WHTAT was characterized by calm wind, varied wind direction, and shallow intense ground inversion layer, and air pollutants accumulated in locally because of strong recirculation in the low ABL; (3) recirculation factor (RF) and stable energy (SE) were proved to be good indicators for horizontal transportation ability and vertical diffusion ability of the atmosphere, respectively. Combined utilization of RF and SE can be very helpful in the evaluation of air pollution potential of the ABL. Air quality data from ground and meteorological data collected from radio sounding in Sanshui in the Pearl River Delta showed that local air quality was poor when wind reversal was pronounced or temperature stratification state was stable. The combination of horizontal and vertical transportation ability of the local atmosphere should be taken into consideration when evaluating local environmental bearing capacity for air pollution.

  20. SUNWARD PROPAGATING ALFVÉN WAVES IN ASSOCIATION WITH SUNWARD DRIFTING PROTON BEAMS IN THE SOLAR WIND

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    He, Jiansen; Pei, Zhongtian; Wang, Linghua

    Using measurements from the WIND spacecraft, here we report the observation of sunward propagating Alfvén waves (AWs) in solar wind that is magnetically disconnected from the Earth's bow shock. In the sunward magnetic field sector, we find a period lasting for more than three days in which there existed (during most time intervals) a negative correlation between the flow velocity and magnetic field fluctuations, thus indicating that the related AWs are mainly propagating sunward. Simultaneous observations of counter-streaming suprathermal electrons suggest that these sunward AWs may not simply be due to the deflection of an open magnetic field line. Moreover,more » no interplanetary coronal mass ejection appears to be associated with the counter-streaming suprathermal electrons. As the scale goes from the magnetohydrodynamic down to the ion kinetic regime, the wave vector of magnetic fluctuations usually becomes more orthogonal to the mean magnetic field direction, and the fluctuations become increasingly compressible, which are both features consistent with quasi-perpendicular kinetic AWs. However, in the case studied here, we find clear signatures of quasi-parallel sunward propagating ion-cyclotron waves. Concurrently, the solar wind proton velocity distribution reveals a sunward field-aligned beam that drifts at about the local Alfvén speed. This beam is found to run in the opposite direction of the normally observed (anti-sunward) proton beam, and is apparently associated with sunward propagating Alfvén/ion-cyclotron waves. The results and conclusions of this study enrich our knowledge of solar wind turbulence and foster our understanding of proton heating and acceleration within a complex magnetic field geometry.« less

  1. Comparison of Recent Oil and Gas, Wind Energy, and Other Anthropogenic Landscape Alteration Factors in Texas Through 2014.

    PubMed

    Pierre, Jon Paul; Wolaver, Brad D; Labay, Benjamin J; LaDuc, Travis J; Duran, Charles M; Ryberg, Wade A; Hibbitts, Toby J; Andrews, John R

    2018-05-01

    Recent research assessed how hydrocarbon and wind energy expansion has altered the North American landscape. Less understood, however, is how this energy development compares to other anthropogenic land use changes. Texas leads U.S. hydrocarbon production and wind power generation and has a rapidly expanding population. Thus, for ~47% of Texas (~324,000 km 2 ), we mapped the 2014 footprint of energy activities (~665,000 oil and gas wells, ~5700 wind turbines, ~237,000 km oil and gas pipelines, and ~2000 km electrical transmission lines). We compared the footprint of energy development to non-energy-related activities (agriculture, roads, urbanization) and found direct landscape alteration from all factors affects ~23% of the study area (~76,000 km 2 ), led by agriculture (~16%; ~52,882 km 2 ). Oil and gas activities altered <1% of the study area (2081 km 2 ), with 838 km 2 from pipelines and 1242 km 2 from well pad construction-and that the median Eagle Ford well pad is 7.7 times larger than that in the Permian Basin (16,200 vs. 2100 m 2 ). Wind energy occupied <0.01% (~24 km 2 ), with ~14 km 2 from turbine pads and ~10 km 2 from power transmission lines. We found that edge effects of widely-distributed energy infrastructure caused more indirect landscape alteration than larger, more concentrated urbanization and agriculture. This study presents a novel technique to quantify and compare anthropogenic activities causing both direct and indirect landscape alteration. We illustrate this landscape-mapping framework in Texas for the Spot-tailed Earless Lizard (Holbrookia lacerata); however, the approach can be applied to a range of species in developing regions globally.

  2. A Conspectus on US Energy

    NASA Astrophysics Data System (ADS)

    Hayden, Howard

    2009-05-01

    Until about 1850, the energy used in the US came almost exclusively from firewood. Now we use petroleum, coal, natural gas, nuclear fission, indirect solar energy (biomass, hydro, and wind), geothermal energy, and direct solar energy (solar/thermal, solar/thermal/electric, and photovoltaics). Compared to our ancestors in 1850, we use over 40 times as much energy, of which only about 6 percent is from solar sources, versus 100% in 1850. On a per-capita basis we use about 3.1 times as much energy, in spite of the modern conveniences that to Abraham Lincoln would seem unthinkably lavish. The US uses about 107 EJ of primary energy annually, equivalent to 3.4 TW around-the-clock average power. About 40 percent of that energy goes toward production of electricity. Approximately 2 EJ of heat is obtained from combined heat-and-power plants that produce about 10^9 kWh (3.6 PJ) of electricity. (N.B.: hydro and wind do not involve heat-to-work conversion. By custom, the electrical energy produced by wind and hydro is multiplied by about 3 to generate an as-if quantity of primary energy.) When account is taken of how the electricity is distributed, industry uses 33 percent of the primary energy, followed by transportation (28%), residences (21%), and commercial establishments (18%). ``Fossil fuels'' (coal, oil, and natural gas) account for about 85 percent of our primary energy. Nuclear energy accounts for about 8%. Biomass and hydro, the venerable solar-derived sources, account for about 7%. Geothermal, wind, and direct solar energy account for about 0.4%. This talk will discuss prospects for various alternative sources, including nuclear fission and T. Boone Pickens' plan to displace imported petroleum indirectly by substituting wind for natural gas.

  3. An Improved Ocean Observing System for Coastal Louisiana: WAVCIS (WAVE-CURRENT-SURGE Information System )

    NASA Astrophysics Data System (ADS)

    Zhang, X.; Stone, G. W.; Gibson, W. J.; Braud, D.

    2005-05-01

    WAVCIS is a regional ocean observing and forecasting system. It was designed to measure, process, forecast, and distribute oceanographic and meteorological information. WAVCIS was developed and is maintained by the Coastal Studies Institute at Louisiana State University. The in-situ observing stations are distributed along the central Louisiana and Mississippi coast. The forecast region covers the entire Gulf of Mexico with emphasis on offshore Louisiana. By using state-of-the-art instrumentation, WAVCIS measures directional waves, currents, temperature, water level, conductivity, turbidity, salinity, dissolved oxygen, chlorophyll, Meteorological parameters include wind speed and direction, air pressure and temperature visibility and humidity. Through satellite communication links, the measured data are transmitted to the WAVCIS laboratory. After processing, they are available to the public via the internet on a near real-time basis. WAVCIS also includes a forecasting capability. Waves, tides, currents, and winds are forecast daily for up to 80 hours in advance. There are a number of numerical wave and surge models that can be used for forecasts. WAM and SWAN are used for operational purposes to forecast sea state. Tides at each station are predicted based on the harmonic constants calculated from past in-situ observations at respective sites. Interpolated winds from the ETA model are used as input forcing for waves. Both in-situ and forecast information are available online to the users through WWW. Interactive GIS web mapping is implemented on the WAVCIS webpage to visualize the model output and in-situ observational data. WAVCIS data can be queried, retrieved, downloaded, and analyzed through the web page. Near real-time numerical model skill assessment can also be performed by using the data from in-situ observing stations.

  4. Intermittency and Alignment in Strong RMHD Turbulence

    NASA Astrophysics Data System (ADS)

    Chandran, B. D. G.; Schekochihin, A. A.; Mallet, A.

    2015-12-01

    Intermittency is one of the critical unsolved problems in solar-wind turbulence. Intermittency is important not just because it affects the observable properties of turbulence in the inertial range, but also because it modifies the nature of turbulent dissipation at small scales. In this talk, I will present recent work by colleagues A. Schekochihin, A. Mallet, and myself that focuses on the development of intermittency within the inertial range of solar-wind turbulence. We restrict our analysis to the transverse, non-compressive component of the turbulence. Previous work has shown that this component of the turbulence is anisotropic, varying most rapidly in directions perpendicular to the magnetic field. We argue that, deep within the inertial range, this component of the turbulence is well modeled by the equations of reduced magnetohydrodynamics (RMHD). We then develop an analytic model of intermittent, three-dimensional, strong, reduced magnetohydrodynamic turbulence with zero cross helicity. We take the fluctuation amplitudes to have a log-Poisson distribution and incorporate into the model a new phenomenology of scale-dependent dynamic alignment. The log-Poisson distribution in our model is characterized by two parameters. To calculate these parameters, we make use of two assumptions: that the energy cascade rate is independent of scale within the inertial range and that the most intense coherent structures at scale lambda are sheet-like with a volume filling factor proportional to lambda. We then compute the scalings of the power spectrum, the kurtosis, higher-order structure functions, and three different average alignment angles. We also carry out a direct numerical simulation of RMHD turbulence. The scalings in our model are similar to the scalings in this simulation as well as the structure-function scalings observed in the slow solar wind.

  5. Remote Sensing of Wind Fields and Aerosol Distribution with Airborne Scanning Doppler Lidar

    NASA Technical Reports Server (NTRS)

    Rothermel, Jeffry; Cutten, Dean R.; Johnson, Steven C.; Jazembski, Maurice; Arnold, James E. (Technical Monitor)

    2001-01-01

    The coherent Doppler laser radar (lidar), when operated from an airborne platform, is a unique tool for the study of atmospheric and surface processes and features. This is especially true for scientific objectives requiring measurements in optically-clear air, where other remote sensing technologies such as Doppler radar are typically at a disadvantage. The atmospheric lidar remote sensing groups of several US institutions, led by Marshall Space Flight Center, have developed an airborne coherent Doppler lidar capable of mapping the wind field and aerosol structure in three dimensions. The instrument consists of an eye-safe approx. 1 Joule/pulse lidar transceiver, telescope, scanner, inertial measurement unit, and flight computer system to orchestrate all subsystem functions and tasks. The scanner is capable of directing the expanded lidar beam in a variety of ways, in order to extract vertically-resolved wind fields. Horizontal resolution is approx. 1 km; vertical resolution is even finer. Winds are obtained by measuring backscattered, Doppler-shifted laser radiation from naturally-occurring aerosol particles (of order 1 micron diameter). Measurement coverage depends on aerosol spatial distribution and composition. Velocity accuracy has been verified to be approx. 1 meter per second. A variety of applications have been demonstrated during the three flight campaigns conducted during 1995-1998. Examples will be shown during the presentation. In 1995, boundary layer winds over the ocean were mapped with unprecedented resolution. In 1996, unique measurements were made of. flow over the complex terrain of the Aleutian Islands; interaction of the marine boundary layer jet with the California coastal mountain range; a weak dry line in Texas - New Mexico; the angular dependence of sea surface scattering; and in-flight radiometric calibration using the surface of White Sands National Monument. In 1998, the first measurements of eyewall and boundary layer winds within a hurricane were made with the airborne Doppler lidar. Potential applications and plans for improvement will also be described.

  6. Feasibility study of wind-generated electricity for rural applications in southwestern Ohio

    NASA Astrophysics Data System (ADS)

    Kohring, G. W.

    The parameters associated with domestic production of wind generated electricity for direct use by small farms and rural homes in the southwestern Ohio region are discussed. The project involves direct utility interfaced electricity generation from a horizontal axis, down-wind, fixed pitch, wind powered induction generator system. Goals of the project are to determine: the ability to produce useful amounts of domestic wind generated electricity in the southwestern Ohio region; economic justification for domestic wind generated electrical production; and the potential of domestic wind generated electricity for reducing dependence on non-renewable energy resources in the southwestern Ohio region.

  7. Engineering handbook on the atmospheric environmental guidelines for use in wind turbine generator development

    NASA Technical Reports Server (NTRS)

    Frost, W.; Long, B. H.; Turner, R. E.

    1978-01-01

    The guidelines are given in the form of design criteria relative to wind speed, wind shear, turbulence, wind direction, ice and snow loading, and other climatological parameters which include rain, hail, thermal effects, abrasive and corrosive effects, and humidity. This report is a presentation of design criteria in an engineering format which can be directly input to wind turbine generator design computations. Guidelines are also provided for developing specialized wind turbine generators or for designing wind turbine generators which are to be used in a special region of the United States.

  8. Pattern recognition methods and air pollution source identification. [based on wind direction

    NASA Technical Reports Server (NTRS)

    Leibecki, H. F.; King, R. B.

    1978-01-01

    Directional air samplers, used for resolving suspended particulate matter on the basis of time and wind direction were used to assess the feasibility of characterizing and identifying emission source types in urban multisource environments. Filters were evaluated for 16 elements and X-ray fluorescence methods yielded elemental concentrations for direction, day, and the interaction of direction and day. Large numbers of samples are necessary to compensate for large day-to-day variations caused by wind perturbations and/or source changes.

  9. Quantum quench in a p+ip superfluid: Winding numbers and topological states far from equilibrium

    NASA Astrophysics Data System (ADS)

    Foster, Matthew S.; Dzero, Maxim; Gurarie, Victor; Yuzbashyan, Emil A.

    2013-09-01

    We study the nonadiabatic dynamics of a two-dimensional p+ip superfluid following an instantaneous quantum quench of the BCS coupling constant. The model describes a topological superconductor with a nontrivial BCS (trivial BEC) phase appearing at weak- (strong-) coupling strengths. We extract the exact long-time asymptotics of the order parameter Δ(t) by exploiting the integrability of the classical p-wave Hamiltonian, which we establish via a Lax construction. Three different types of asymptotic behavior can occur depending upon the strength and direction of the interaction quench. We refer to these as the nonequilibrium phases {I, II, III}, characterized as follows. In phase I, the order parameter asymptotes to zero due to dephasing. In phase II, Δ→Δ∞, a nonzero constant. Phase III is characterized by persistent oscillations of Δ(t). For quenches within phases I and II, we determine the topological character of the asymptotic states. We show that two different formulations of the bulk topological winding number, although equivalent in the BCS or BEC ground states, must be regarded as independent out of equilibrium. The first winding number Q characterizes the Anderson pseudospin texture of the initial state; we show that Q is generically conserved. For Q≠0, this leads to the prediction of a “gapless topological” state when Δ asymptotes to zero. The presence or absence of Majorana edge modes in a sample with a boundary is encoded in the second winding number W, which is formulated in terms of the retarded Green's function. We establish that W can change following a quench across the quantum critical point. When the order parameter asymptotes to a nonzero constant, the final value of W is well defined and quantized. We discuss the implications for the (dis)appearance of Majorana edge modes. Finally, we show that the parity of zeros in the bulk out-of-equilibrium Cooper-pair distribution function constitutes a Z2-valued quantum number, which is nonzero whenever W≠Q. The pair distribution can in principle be measured using rf spectroscopy in an ultracold-atom realization, allowing direct experimental detection of the Z2 number. This has the following interesting implication: topological information that is experimentally inaccessible in the bulk ground state can be transferred to an observable distribution function when the system is driven far from equilibrium.

  10. The Distributed Geothermal Market Demand Model (dGeo): Documentation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McCabe, Kevin; Mooney, Meghan E; Sigrin, Benjamin O

    The National Renewable Energy Laboratory (NREL) developed the Distributed Geothermal Market Demand Model (dGeo) as a tool to explore the potential role of geothermal distributed energy resources (DERs) in meeting thermal energy demands in the United States. The dGeo model simulates the potential for deployment of geothermal DERs in the residential and commercial sectors of the continental United States for two specific technologies: ground-source heat pumps (GHP) and geothermal direct use (DU) for district heating. To quantify the opportunity space for these technologies, dGeo leverages a highly resolved geospatial database and robust bottom-up, agent-based modeling framework. This design is consistentmore » with others in the family of Distributed Generation Market Demand models (dGen; Sigrin et al. 2016), including the Distributed Solar Market Demand (dSolar) and Distributed Wind Market Demand (dWind) models. dGeo is intended to serve as a long-term scenario-modeling tool. It has the capability to simulate the technical potential, economic potential, market potential, and technology deployment of GHP and DU through the year 2050 under a variety of user-defined input scenarios. Through these capabilities, dGeo can provide substantial analytical value to various stakeholders interested in exploring the effects of various techno-economic, macroeconomic, financial, and policy factors related to the opportunity for GHP and DU in the United States. This report documents the dGeo modeling design, methodology, assumptions, and capabilities.« less

  11. Modeling Potential Tephra Dispersal at Yucca Mountain, Nevada

    NASA Astrophysics Data System (ADS)

    Hooper, D.; Franklin, N.; Adams, N.; Basu, D.

    2006-12-01

    Quaternary basaltic volcanoes exist within 20 km [12 mi] of the potential radioactive waste repository at Yucca Mountain, Nevada, and future basaltic volcanism at the repository is considered a low-probability, potentially high-consequence event. If radioactive waste was entrained in the conduit of a future volcanic event, tephra and waste could be transported in the resulting eruption plume. During an eruption, basaltic tephra would be dispersed primarily according to the height of the eruption column, particle-size distribution, and structure of the winds aloft. Following an eruption, contaminated tephra-fall deposits would be affected by surface redistribution processes. The Center for Nuclear Waste Regulatory Analyses developed the computer code TEPHRA to calculate atmospheric dispersion and subsequent deposition of tephra and spent nuclear fuel from a potential eruption at Yucca Mountain and to help prepare the U.S. Nuclear Regulatory Commission to review a potential U.S. Department of Energy license application. The TEPHRA transport code uses the Suzuki model to simulate the thermo-fluid dynamics of atmospheric tephra dispersion. TEPHRA models the transport of airborne pyroclasts based on particle diffusion from an eruption column, horizontal diffusion of particles by atmospheric and plume turbulence, horizontal advection by atmospheric circulation, and particle settling by gravity. More recently, TEPHRA was modified to calculate potential tephra deposit distributions using stratified wind fields based on upper atmosphere data from the Nevada Test Site. Wind data are binned into 1-km [0.62-mi]-high intervals with coupled distributions of wind speed and direction produced for each interval. Using this stratified wind field and discretization with respect to height, TEPHRA calculates particle fall and lateral displacement for each interval. This implementation permits modeling of split wind fields. We use a parallel version of the code to calculate expected tephra and high-level waste accumulation at specified points on a two-dimensional spatial grid, thereby simulating a three- dimensional initial deposit. To assess subsequent tephra and high-level waste redistribution and resuspension, modeling grids were devised to measure deposition in eolian and fluvial source regions. The eolian grid covers an area of 2,600 km2 [1,000 mi2] and the fluvial grid encompasses 318 km2 [123 mi2] of the southernmost portion of the Fortymile Wash catchment basin. Because each realization is independent, distributions of tephra and high-level waste reflect anticipated variations in source-term and transport characteristics. This abstract is an independent product of the Center for Nuclear Waste Regulatory Analyses and does not necessarily reflect the view or regulatory position of the U.S. Nuclear Regulatory Commission.

  12. Cyber-Physical Systems to Understand the Dynamics of Nonlinear Aeroelastic Systems for Flexible MAVs and Energy Harvesting Applications

    DTIC Science & Technology

    2015-09-28

    release. Rotary encoder Brushless servo motor Wind tunnel bottom wall Stainless steel shaft Shaft coupling Wind tunnel top wall Titanium flat plate...illustrating the flat plate mounted to a virtual spring-damper system in the wind tunnel test section. 2 DISTRIBUTION A: Distribution approved for...non-dimensional ratios. For example the non-dimensional stiffness, k∗ = 2k/(ρU2∞c 2h), can be kept constant even if the wind speed, U∞, chord, c, and

  13. Distributed Wind Competitiveness Improvement Project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    The Competitiveness Improvement Project (CIP) is a periodic solicitation through the U.S. Department of Energy and its National Renewable Energy Laboratory. The Competitiveness Improvement Project (CIP) is a periodic solicitation through the U.S. Department of Energy and its National Renewable Energy Laboratory. Manufacturers of small and medium wind turbines are awarded cost-shared grants via a competitive process to optimize their designs, develop advanced manufacturing processes, and perform turbine testing. The goals of the CIP are to make wind energy cost competitive with other distributed generation technology and increase the number of wind turbine designs certified to national testing standards. Thismore » fact sheet describes the CIP and funding awarded as part of the project.ufacturers of small and medium wind turbines are awarded cost-shared grants via a competitive process to optimize their designs, develop advanced manufacturing processes, and perform turbine testing. The goals of the CIP are to make wind energy cost competitive with other distributed generation technology and increase the number of wind turbine designs certified to national testing standards. This fact sheet describes the CIP and funding awarded as part of the project.« less

  14. Depth profiling analysis of solar wind helium collected in diamond-like carbon film from Genesis

    DOE PAGES

    Bajo, Ken-ichi; Olinger, Chad T.; Jurewicz, Amy J.G.; ...

    2015-01-01

    The distribution of solar-wind ions in Genesis mission collectors, as determined by depth profiling analysis, constrains the physics of ion solid interactions involving the solar wind. Thus, they provide an experimental basis for revealing ancient solar activities represented by solar-wind implants in natural samples. We measured the first depth profile of ⁴He in a collector; the shallow implantation (peaking at <20 nm) required us to use sputtered neutral mass spectrometry with post-photoionization by a strong field. The solar wind He fluence calculated using depth profiling is ~8.5 x 10¹⁴ cm⁻². The shape of the solar wind ⁴He depth profile ismore » consistent with TRIM simulations using the observed ⁴He velocity distribution during the Genesis mission. It is therefore likely that all solar-wind elements heavier than H are completely intact in this Genesis collector and, consequently, the solar particle energy distributions for each element can be calculated from their depth profiles. Ancient solar activities and space weathering of solar system objects could be quantitatively reproduced by solar particle implantation profiles.« less

  15. CAN THE SUBSONIC ACCRETION MODEL EXPLAIN THE SPIN PERIOD DISTRIBUTION OF WIND-FED X-RAY PULSARS?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Tao; Shao, Yong; Li, Xiang-Dong, E-mail: lixd@nju.edu.cn

    Neutron stars in high-mass X-ray binaries (HMXBs) generally accrete from the wind matter of their massive companion stars. Recently, Shakura et al. suggested a subsonic accretion model for low-luminosity (<4 × 10{sup 36} erg s{sup −1}), wind-fed X-ray pulsars. To test the feasibility of this model, we investigate the spin period distribution of wind-fed X-ray pulsars with a supergiant companion star, using a population synthesis method. We find that the modeled distribution of supergiant HMXBs in the spin period–orbital period diagram is consistent with observations, provided that the winds from the donor stars have relatively low terminal velocities (≲1000 kmmore » s{sup −1}). The measured wind velocities in several supergiant HMXBs seem to favor this viewpoint. The predicted number ratio of wind-fed X-ray pulsars with persistent X-ray luminosities that are higher and lower than 4 × 10{sup 36} erg s{sup −1} is about 1:10.« less

  16. Assessment of the Economic Potential of Distributed Wind in Colorado, Minnesota, and New York

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baring-Gould, Edward I; McCabe, Kevin; Sigrin, Benjamin O

    Stakeholders in the small and distributed wind space require access to better tools and data for more informed decisions on high-impact topics, including project planning, policymaking, and funding allocation. A major challenge in obtaining improved information is in the identification of favorable sites - namely, the intersection of sufficient wind resource with economic parameters such as retail rates, incentives, and other policies. This presentation made at the AWEA WINDPOWER Conference and Exhibition in Chicago in 2018 explores the researchers' objective: To understand the spatial variance of key distributed wind parameters and identify where they intersect to form pockets of favorablemore » areas in Colorado, Minnesota, and New York.« less

  17. Reliability Estimation of Parameters of Helical Wind Turbine with Vertical Axis

    PubMed Central

    Dumitrascu, Adela-Eliza; Lepadatescu, Badea; Dumitrascu, Dorin-Ion; Nedelcu, Anisor; Ciobanu, Doina Valentina

    2015-01-01

    Due to the prolonged use of wind turbines they must be characterized by high reliability. This can be achieved through a rigorous design, appropriate simulation and testing, and proper construction. The reliability prediction and analysis of these systems will lead to identifying the critical components, increasing the operating time, minimizing failure rate, and minimizing maintenance costs. To estimate the produced energy by the wind turbine, an evaluation approach based on the Monte Carlo simulation model is developed which enables us to estimate the probability of minimum and maximum parameters. In our simulation process we used triangular distributions. The analysis of simulation results has been focused on the interpretation of the relative frequency histograms and cumulative distribution curve (ogive diagram), which indicates the probability of obtaining the daily or annual energy output depending on wind speed. The experimental researches consist in estimation of the reliability and unreliability functions and hazard rate of the helical vertical axis wind turbine designed and patented to climatic conditions for Romanian regions. Also, the variation of power produced for different wind speeds, the Weibull distribution of wind probability, and the power generated were determined. The analysis of experimental results indicates that this type of wind turbine is efficient at low wind speed. PMID:26167524

  18. Reliability Estimation of Parameters of Helical Wind Turbine with Vertical Axis.

    PubMed

    Dumitrascu, Adela-Eliza; Lepadatescu, Badea; Dumitrascu, Dorin-Ion; Nedelcu, Anisor; Ciobanu, Doina Valentina

    2015-01-01

    Due to the prolonged use of wind turbines they must be characterized by high reliability. This can be achieved through a rigorous design, appropriate simulation and testing, and proper construction. The reliability prediction and analysis of these systems will lead to identifying the critical components, increasing the operating time, minimizing failure rate, and minimizing maintenance costs. To estimate the produced energy by the wind turbine, an evaluation approach based on the Monte Carlo simulation model is developed which enables us to estimate the probability of minimum and maximum parameters. In our simulation process we used triangular distributions. The analysis of simulation results has been focused on the interpretation of the relative frequency histograms and cumulative distribution curve (ogive diagram), which indicates the probability of obtaining the daily or annual energy output depending on wind speed. The experimental researches consist in estimation of the reliability and unreliability functions and hazard rate of the helical vertical axis wind turbine designed and patented to climatic conditions for Romanian regions. Also, the variation of power produced for different wind speeds, the Weibull distribution of wind probability, and the power generated were determined. The analysis of experimental results indicates that this type of wind turbine is efficient at low wind speed.

  19. Numerical Prediction of Chevron Nozzle Noise Reduction using Wind-MGBK Methodology

    NASA Technical Reports Server (NTRS)

    Engblom, W.A.; Bridges, J.; Khavarant, A.

    2005-01-01

    Numerical predictions for single-stream chevron nozzle flow performance and farfield noise production are presented. Reynolds Averaged Navier Stokes (RANS) solutions, produced via the WIND flow solver, are provided as input to the MGBK code for prediction of farfield noise distributions. This methodology is applied to a set of sensitivity cases involving varying degrees of chevron inward bend angle relative to the core flow, for both cold and hot exhaust conditions. The sensitivity study results illustrate the effect of increased chevron bend angle and exhaust temperature on enhancement of fine-scale mixing, initiation of core breakdown, nozzle performance, and noise reduction. Direct comparisons with experimental data, including stagnation pressure and temperature rake data, PIV turbulent kinetic energy fields, and 90 degree observer farfield microphone data are provided. Although some deficiencies in the numerical predictions are evident, the correct farfield noise spectra trends are captured by the WIND-MGBK method, including the noise reduction benefit of chevrons. Implications of these results to future chevron design efforts are addressed.

  20. Large-scale kinetic energy spectra from Eulerian analysis of EOLE wind data

    NASA Technical Reports Server (NTRS)

    Desbois, M.

    1975-01-01

    A data set of 56,000 winds determined from the horizontal displacements of EOLE balloons at the 200 mb level in the Southern Hemisphere during the period October 1971-February 1972 is utilized for the computation of planetary- and synoptic-scale kinetic energy space spectra. However, the random distribution of measurements in space and time presents some problems for the spectral analysis. Two different approaches are used, i.e., a harmonic analysis of daily wind values at equi-distant points obtained by space-time interpolation of the data, and a correlation method using the direct measurements. Both methods give similar results for small wavenumbers, but the second is more accurate for higher wavenumbers (k above or equal to 10). The spectra show a maximum at wavenumbers 5 and 6 due to baroclinic instability and then decrease for high wavenumbers up to wavenumber 35 (which is the limit of the analysis), according to the inverse power law k to the negative p, with p close to 3.

  1. Observed Thermal Impacts of Wind Farms Over Northern Illinois.

    PubMed

    Slawsky, Lauren M; Zhou, Liming; Baidya Roy, Somnath; Xia, Geng; Vuille, Mathias; Harris, Ronald A

    2015-06-25

    This paper assesses impacts of three wind farms in northern Illinois using land surface temperature (LST) data from the Moderate Resolution Imaging Spectroradiometer (MODIS) instruments onboard the Terra and Aqua satellites for the period 2003-2013. Changes in LST between two periods (before and after construction of the wind turbines) and between wind farm pixels and nearby non-wind-farm pixels are quantified. An areal mean increase in LST by 0.18-0.39 °C is observed at nighttime over the wind farms, with the geographic distribution of this warming effect generally spatially coupled with the layout of the wind turbines (referred to as the spatial coupling), while there is no apparent impact on daytime LST. The nighttime LST warming effect varies with seasons, with the strongest warming in winter months of December-February, and the tightest spatial coupling in summer months of June-August. Analysis of seasonal variations in wind speed and direction from weather balloon sounding data and Automated Surface Observing System hourly observations from nearby stations suggest stronger winds correspond to seasons with greater warming and larger downwind impacts. The early morning soundings in Illinois are representative of the nighttime boundary layer and exhibit strong temperature inversions across all seasons. The strong and relatively shallow inversion in summer leaves warm air readily available to be mixed down and spatially well coupled with the turbine. Although the warming effect is strongest in winter, the spatial coupling is more erratic and spread out than in summer. These results suggest that the observed warming signal at nighttime is likely due to the net downward transport of heat from warmer air aloft to the surface, caused by the turbulent mixing in the wakes of the spinning turbine rotor blades.

  2. Observed Thermal Impacts of Wind Farms Over Northern Illinois

    PubMed Central

    Slawsky, Lauren M.; Zhou, Liming; Baidya Roy, Somnath; Xia, Geng; Vuille, Mathias; Harris, Ronald A.

    2015-01-01

    This paper assesses impacts of three wind farms in northern Illinois using land surface temperature (LST) data from the Moderate Resolution Imaging Spectroradiometer (MODIS) instruments onboard the Terra and Aqua satellites for the period 2003–2013. Changes in LST between two periods (before and after construction of the wind turbines) and between wind farm pixels and nearby non-wind-farm pixels are quantified. An areal mean increase in LST by 0.18–0.39 °C is observed at nighttime over the wind farms, with the geographic distribution of this warming effect generally spatially coupled with the layout of the wind turbines (referred to as the spatial coupling), while there is no apparent impact on daytime LST. The nighttime LST warming effect varies with seasons, with the strongest warming in winter months of December-February, and the tightest spatial coupling in summer months of June-August. Analysis of seasonal variations in wind speed and direction from weather balloon sounding data and Automated Surface Observing System hourly observations from nearby stations suggest stronger winds correspond to seasons with greater warming and larger downwind impacts. The early morning soundings in Illinois are representative of the nighttime boundary layer and exhibit strong temperature inversions across all seasons. The strong and relatively shallow inversion in summer leaves warm air readily available to be mixed down and spatially well coupled with the turbine. Although the warming effect is strongest in winter, the spatial coupling is more erratic and spread out than in summer. These results suggest that the observed warming signal at nighttime is likely due to the net downward transport of heat from warmer air aloft to the surface, caused by the turbulent mixing in the wakes of the spinning turbine rotor blades. PMID:26121613

  3. Wind Curtailment and the Value of Transmission under a 2050 Wind Vision

    Science.gov Websites

    dispatches each generating unit in the geographical footprint in the least- cost method based on many inputs just as the Wind Vision study did, in a somewhat different geographical distribution due to data distributed fairly well throughout the western U.S. The map shows kind of a different story. The map shows

  4. LIDAR wind speed measurements at a Taiwan onshore wind park

    NASA Astrophysics Data System (ADS)

    Wu, Yu-Ting; Lin, Ta-Hui; Hsuan, Chung-Yao; Li, Yu-Cheng; Yang, Ya-Fei; Tai, Tzy-Hwan; Huang, Chien-Cheng

    2016-04-01

    Measurements of wind speed and wind direction were carried out using a Leosphere Windcube LIDAR system at a Taiwan onshore wind park. The Lidar shot a total of five laser beams to the atmosphere to collect the light-of-sight (LOS) velocity. Four beams were sent successively in four cardinal directions along a 28° scanning cone angle, followed by a fifth, vertical beam. An unchangeable sampling rate of approximately 1.2 Hz was set in the LIDAR system to collect the LOS velocity. The supervisory control and data acquisition (SCADA) data from two GE 1.5 MW wind turbines near the LIDAR deployment site were acquired for the whole measuring period from February 4 to February 16 of 2015. The SCADA data include the blade angular velocity, the wind velocity measured at hub height from an anemometer mounted on the nacelle, the wind turbine yaw angle, and power production; each parameter was recorded as averages over 1-min periods. The data analysis involving the LIDAR measurements and the SCADA data were performed to obtain the turbulent flow statistics. The results show that the turbine power production has significant dependence to the wind speed, wind direction, turbulence intensity and wind shear.

  5. Simulation of the Impact of New Aircraft- and Satellite-Based Ocean Surface Wind Measurements on H*Wind Analyses and Numerical Forecasts

    NASA Technical Reports Server (NTRS)

    Miller, Timothy; Atlas, Robert; Black, Peter; Buckley, Courtney; Chen, Shuyi; Hood, robbie; Johnson, James; Jones, Linwood; Ruf, Chris; Uhlhorn, Eric; hide

    2008-01-01

    The Hurricane Imaging Radiometer (HIRAD) is a new airborne microwave remote sensor for hurricane observations that is currently under development by NASA Marshall Space Flight Center, NOAA Hurricane Research Division, the University of Central Florida and the University of Michigan. HIRAD is being designed to enhance the realtime airborne ocean surface winds observation capabilities of NOAA and USAF Weather Squadron hurricane hunter aircraft using the operational airborne Stepped Frequency Microwave Radiometer (SFMR). Unlike SFMR, which measures wind speed and rain rate along the ground track directly beneath the aircraft, HIRAD will provide images of the surface wind and rain field over a wide swath ( 3 x the aircraft altitude). The present paper describes a set of Observing System Simulation Experiments (OSSEs) in which measurements from the new instrument as well as those from existing instruments (air, surface, and space-based) are simulated from the output of a detailed numerical model, and those results are used to construct H*Wind analyses. The H*Wind analysis, a product of the Hurricane Research Division of NOAA s Atlantic Oceanographic and Meteorological Laboratory, brings together wind measurements from a variety of observation platforms into an objective analysis of the distribution of wind speeds in a tropical cyclone. This product is designed to improve understanding of the extent and strength of the wind field, and to improve the assessment of hurricane intensity. See http://www.aoml.noaa.gov/hrd/data_sub/wind.html. Evaluations will be presented on the impact of the HIRAD instrument on H*Wind analyses, both in terms of adding it to the full suite of current measurements, as well as using it to replace instrument(s) that may not be functioning at the future time the HIRAD instrument is deployed. Plans to demonstrate the potential for HIRAD to improve numerical weather prediction of hurricanes will also be presented.

  6. Simulation of the Impact of New Air-Based Ocean Surface Wind Measurements on H*Wind Analyses

    NASA Technical Reports Server (NTRS)

    Miller, Timothy; Atlas, Robert; Black, Peter; Case, Jonathan; Chen, Shuyi; Hood, Robbie; Jones, Linwood; Ruff, Chris; Uhlhorn, Eric

    2008-01-01

    The H'Wind analysis, a product of the Hurricane Research Division of NOAA's Atlantic Oceanographic and Meteorological Laboratory, brings together wind measurements from a variety of observation platforms into an objective analysis of the distribution of wind speeds in a tropical cyclone. This product is designed to improve understanding of the extent and strength of the wind field, and to improve the assessment of hurricane intensity. See http://www.aoml.noaa.gov/hrd/data sub/wind.html. The Hurricane Imaging Radiometer (HIRad) is a new airborne microwave remote sensor for hurricane observations that is currently under development by NASA Marshall Space Flight Center, NOAA Hurricane Research Division, the University of Central Florida and the University of Michigan. HIRad is being designed to enhance the real-time airborne ocean surface winds observation capabilities of NOAA and USAF Weather Squadron hurricane hunter aircraft using the operational airborne Stepped Frequency Microwave Radiometer (SFMR). Unlike SFMR, which measures wind speed and rain rate along the ground track directly beneath the aircraft, HIRad will provide images of the surface wind and rain field over a wide swath (approx. 3 x the aircraft altitude). The instrument is described in a paper presented to the Hurricanes and Tropical Meteorology Symposium. The present paper describes a set of Observing System Simulation Experiments (OSSEs) in which measurements from the new instrument as well as those from existing instruments (air, surface, and space-based) are simulated from the output of a numerical model from the University of Miami and those results are used to construct H*Wind analyses. Evaluations will be presented on the impact of the HIRad instrument on H'Wind analyses, both in terms of adding it to the full suite of current measurements, as well as using it to replace instrument(s) that may not be functioning at the future tame the HIRad instrument is implemented.

  7. An atlas of monthly mean distributions of SSMI surface wind speed, ARGOS buoy drift, AVHRR/2 sea surface temperature, and ECMWF surface wind components during 1990

    NASA Technical Reports Server (NTRS)

    Halpern, D.; Knauss, W.; Brown, O.; Wentz, F.

    1993-01-01

    The following monthly mean global distributions for 1990 are proposed with a common color scale and geographical map: 10-m height wind speed estimated from the Special Sensor Microwave Imager (SSMI) on a United States (US) Air Force Defense Meteorological Satellite Program (DMSP) spacecraft; sea surface temperature estimated from the advanced very high resolution radiometer (AVHRR/2) on a U.S. National Oceanic and Atmospheric Administration (NOAA) spacecraft; Cartesian components of free drifting buoys which are tracked by the ARGOS navigation system on NOAA satellites; and Cartesian components on the 10-m height wind vector computed by the European Center for Medium-Range Weather Forecasting (ECMWF). Charts of monthly mean value, sampling distribution, and standard deviation values are displayed. Annual mean distributions are displayed.

  8. An atlas of monthly mean distributions of SSMI surface wind speed, ARGOS buoy drift, AVHRR/2 sea surface temperature, and ECMWF surface wind components during 1991

    NASA Technical Reports Server (NTRS)

    Halpern, D.; Knauss, W.; Brown, O.; Wentz, F.

    1993-01-01

    The following monthly mean global distributions for 1991 are presented with a common color scale and geographical map: 10-m height wind speed estimated from the Special Sensor Microwave Imager (SSMI) on a United States Air Force Defense Meteorological Satellite Program (DMSP) spacecraft; sea surface temperature estimated from the advanced very high resolution radiometer (AVHRR/2) on a U.S. National Oceanic and Atmospheric Administration (NOAA) spacecraft; Cartesian components of free-drifting buoys which are tracked by the ARGOS navigation system on NOAA satellites; and Cartesian components of the 10-m height wind vector computed by the European Center for Medium-Range Weather Forecasting (ECMWF). Charts of monthly mean value, sampling distribution, and standard deviation value are displayed. Annual mean distributions are displayed.

  9. Taylor dispersion in wind-driven current

    NASA Astrophysics Data System (ADS)

    Li, Gang; Wang, Ping; Jiang, Wei-Quan; Zeng, Li; Li, Zhi; Chen, G. Q.

    2017-12-01

    Taylor dispersion associated with wind-driven currents in channels, shallow lakes and estuaries is essential to hydrological environmental management. For solute dispersion in a wind-driven current, presented in this paper is an analytical study of the evolution of concentration distribution. The concentration moments are intensively derived for an accurate presentation of the mean concentration distribution, up to the effect of kurtosis. The vertical divergence of concentration is then deduced by Gill's method of series expansion up to the fourth order. Based on the temporal evolution of the vertical concentration distribution, the dispersion process in the wind-driven current is concretely characterized. The uniform shear leads to a special symmetrical distribution of mean concentration free of skewness. The non-uniformity of vertical concentration is caused by convection and smeared out gradually by the effect of diffusion, but fails to disappear even at large times.

  10. A Distributed Lag Autoregressive Model of Geostationary Relativistic Electron Fluxes: Comparing the Influences of Waves, Seed and Source Electrons, and Solar Wind Inputs

    NASA Astrophysics Data System (ADS)

    Simms, Laura; Engebretson, Mark; Clilverd, Mark; Rodger, Craig; Lessard, Marc; Gjerloev, Jesper; Reeves, Geoffrey

    2018-05-01

    Relativistic electron flux at geosynchronous orbit depends on enhancement and loss processes driven by ultralow frequency (ULF) Pc5, chorus, and electromagnetic ion cyclotron (EMIC) waves, seed electron flux, magnetosphere compression, the "Dst effect," and substorms, while solar wind inputs such as velocity, number density, and interplanetary magnetic field Bz drive these factors and thus correlate with flux. Distributed lag regression models show the time delay of highest influence of these factors on log10 high-energy electron flux (0.7-7.8 MeV, Los Alamos National Laboratory satellites). Multiple regression with an autoregressive term (flux persistence) allows direct comparison of the magnitude of each effect while controlling other correlated parameters. Flux enhancements due to ULF Pc5 and chorus waves are of equal importance. The direct effect of substorms on high-energy electron flux is strong, possibly due to injection of high-energy electrons by the substorms themselves. Loss due to electromagnetic ion cyclotron waves is less influential. Southward Bz shows only moderate influence when correlated processes are accounted for. Adding covariate compression effects (pressure and interplanetary magnetic field magnitude) allows wave-driven enhancements to be more clearly seen. Seed electrons (270 keV) are most influential at lower relativistic energies, showing that such a population must be available for acceleration. However, they are not accelerated directly to the highest energies. Source electrons (31.7 keV) show no direct influence when other factors are controlled. Their action appears to be indirect via the chorus waves they generate. Determination of specific effects of each parameter when studied in combination will be more helpful in furthering modeling work than studying them individually.

  11. Quantifying array losses due to spacing and staggering in offshore wind farms (Invited)

    NASA Astrophysics Data System (ADS)

    Archer, C. L.; Mirzaeisefat, S.; Lee, S.; Xie, S.

    2013-12-01

    The layout of wind turbines can have an impact on the power production of a wind farm. Design variables that define the layout of wind turbines within a wind farm include: orientation of the rows with respect to the prevailing wind direction, size and shape of the wind farm, spacing between turbines, and alignment of the turbines (i.e., whether in-line or staggered with one another). There are no universal layout recommendations for offshore wind farms, partly because isolating the contribution of each individual design variable is impossible at existing offshore wind farms, where multiple effects overlap non-linearly on one another, and partly because analyzing the sensitivity to design variables requires sophisticated and computer-intensive numerical codes, such as large-eddy simulations (LES), that can simulate the small-scale turbulent features of turbine wakes. The National Renewable Energy Laboratory (NREL) developed the only publicly available and open-source LES code that is capable of resolving wind turbine blades as rotating actuator lines (not fixed disks), includes both neutral and unstable atmospheric conditions (stable case is currently under development), and does not rely on periodic boundary conditions. This code, named Simulator for Offshore/Onshore Wind Farm Applications (SOWFA), is based on OpenFOAM and has been used successfully in the past for turbulent wake simulations. Here we address the issue of quantifying two design variables: turbine spacing (both along and across the prevailing wind direction) and alignment (in-line or staggered for consecutive rows). SOWFA is used to simulate an existing offshore wind farm in Lillgrund (Sweden), consisting of 48 Siemens 2.3 MW turbines with spacing of 3.2D across and 4.3D along the prevailing wind direction and without staggering, where D is the turbine diameter (93 m). This spacing is exceptionally tight, to our knowledge the tightest of all modern wind farms. While keeping the area and the shape of the farm constant, we design several new Lillgrund farm layouts with and without staggering, with increased spacing in each direction individually and in both directions together, and with various wind directions and atmospheric stabilities. We found that the average wind power generated per turbine is increased by ~32% (from 696 kW to 922 kW) if both staggering and doubling of the across-spacing are implemented simultaneously in a neutral stability case. Wake losses are quantified in terms of average power in the first (upwind) row of wind turbines in the control case, representative of the power that could be generated if there were no wakes, over the average power of all the wind turbines in the farm. Wake losses at Lillgrund are relatively high due to the tight packing, of the order of 35%, but smart combinations of staggering and doubling of turbine spacing can reduce them to 15%-26%. In summary, we provide estimates of the losses/gains associated with individual and combined changes in two design variables, spacing and staggering, under various atmospheric stabilities, wind directions, and wind speeds. These estimates will be useful to the wind industry to optimize a wind project because the effects of alternative layouts can be quantified quickly with respect to total power, capacity factor, and number of wind turbines, all of which can ultimately be converted to actual costs or savings.

  12. Quantifying array losses due to spacing and staggering in offshore wind farms (Invited)

    NASA Astrophysics Data System (ADS)

    Archer, C. L.; Mirzaeisefat, S.; Lee, S.; Xie, S.

    2011-12-01

    The layout of wind turbines can have an impact on the power production of a wind farm. Design variables that define the layout of wind turbines within a wind farm include: orientation of the rows with respect to the prevailing wind direction, size and shape of the wind farm, spacing between turbines, and alignment of the turbines (i.e., whether in-line or staggered with one another). There are no universal layout recommendations for offshore wind farms, partly because isolating the contribution of each individual design variable is impossible at existing offshore wind farms, where multiple effects overlap non-linearly on one another, and partly because analyzing the sensitivity to design variables requires sophisticated and computer-intensive numerical codes, such as large-eddy simulations (LES), that can simulate the small-scale turbulent features of turbine wakes. The National Renewable Energy Laboratory (NREL) developed the only publicly available and open-source LES code that is capable of resolving wind turbine blades as rotating actuator lines (not fixed disks), includes both neutral and unstable atmospheric conditions (stable case is currently under development), and does not rely on periodic boundary conditions. This code, named Simulator for Offshore/Onshore Wind Farm Applications (SOWFA), is based on OpenFOAM and has been used successfully in the past for turbulent wake simulations. Here we address the issue of quantifying two design variables: turbine spacing (both along and across the prevailing wind direction) and alignment (in-line or staggered for consecutive rows). SOWFA is used to simulate an existing offshore wind farm in Lillgrund (Sweden), consisting of 48 Siemens 2.3 MW turbines with spacing of 3.2D across and 4.3D along the prevailing wind direction and without staggering, where D is the turbine diameter (93 m). This spacing is exceptionally tight, to our knowledge the tightest of all modern wind farms. While keeping the area and the shape of the farm constant, we design several new Lillgrund farm layouts with and without staggering, with increased spacing in each direction individually and in both directions together, and with various wind directions and atmospheric stabilities. We found that the average wind power generated per turbine is increased by ~32% (from 696 kW to 922 kW) if both staggering and doubling of the across-spacing are implemented simultaneously in a neutral stability case. Wake losses are quantified in terms of average power in the first (upwind) row of wind turbines in the control case, representative of the power that could be generated if there were no wakes, over the average power of all the wind turbines in the farm. Wake losses at Lillgrund are relatively high due to the tight packing, of the order of 35%, but smart combinations of staggering and doubling of turbine spacing can reduce them to 15%-26%. In summary, we provide estimates of the losses/gains associated with individual and combined changes in two design variables, spacing and staggering, under various atmospheric stabilities, wind directions, and wind speeds. These estimates will be useful to the wind industry to optimize a wind project because the effects of alternative layouts can be quantified quickly with respect to total power, capacity factor, and number of wind turbines, all of which can ultimately be converted to actual costs or savings.

  13. Synchrophasor Sensing and Processing based Smart Grid Security Assessment for Renewable Energy Integration

    NASA Astrophysics Data System (ADS)

    Jiang, Huaiguang

    With the evolution of energy and power systems, the emerging Smart Grid (SG) is mainly featured by distributed renewable energy generations, demand-response control and huge amount of heterogeneous data sources. Widely distributed synchrophasor sensors, such as phasor measurement units (PMUs) and fault disturbance recorders (FDRs), can record multi-modal signals, for power system situational awareness and renewable energy integration. An effective and economical approach is proposed for wide-area security assessment. This approach is based on wavelet analysis for detecting and locating the short-term and long-term faults in SG, using voltage signals collected by distributed synchrophasor sensors. A data-driven approach for fault detection, identification and location is proposed and studied. This approach is based on matching pursuit decomposition (MPD) using Gaussian atom dictionary, hidden Markov model (HMM) of real-time frequency and voltage variation features, and fault contour maps generated by machine learning algorithms in SG systems. In addition, considering the economic issues, the placement optimization of distributed synchrophasor sensors is studied to reduce the number of the sensors without affecting the accuracy and effectiveness of the proposed approach. Furthermore, because the natural hazards is a critical issue for power system security, this approach is studied under different types of faults caused by natural hazards. A fast steady-state approach is proposed for voltage security of power systems with a wind power plant connected. The impedance matrix can be calculated by the voltage and current information collected by the PMUs. Based on the impedance matrix, locations in SG can be identified, where cause the greatest impact on the voltage at the wind power plants point of interconnection. Furthermore, because this dynamic voltage security assessment method relies on time-domain simulations of faults at different locations, the proposed approach is feasible, convenient and effective. Conventionally, wind energy is highly location-dependent. Many desirable wind resources are located in rural areas without direct access to the transmission grid. By connecting MW-scale wind turbines or wind farms to the distributions system of SG, the cost of building long transmission facilities can be avoid and wind power supplied to consumers can be greatly increased. After the effective wide area monitoring (WAM) approach is built, an event-driven control strategy is proposed for renewable energy integration. This approach is based on support vector machine (SVM) predictor and multiple-input and multiple-output (MIMO) model predictive control (MPC) on linear time-invariant (LTI) and linear time-variant (LTV) systems. The voltage condition of the distribution system is predicted by the SVM classifier using synchrophasor measurement data. The controllers equipped with wind turbine generators are triggered by the prediction results. Both transmission level and distribution level are designed based on this proposed approach. Considering economic issues in the power system, a statistical scheduling approach to economic dispatch and energy reserves is proposed. The proposed approach focuses on minimizing the overall power operating cost with considerations of renewable energy uncertainty and power system security. The hybrid power system scheduling is formulated as a convex programming problem to minimize power operating cost, taking considerations of renewable energy generation, power generation-consumption balance and power system security. A genetic algorithm based approach is used for solving the minimization of the power operating cost. In addition, with technology development, it can be predicted that the renewable energy such as wind turbine generators and PV panels will be pervasively located in distribution systems. The distribution system is an unbalanced system, which contains single-phase, two-phase and three-phase loads, and distribution lines. The complex configuration brings a challenge to power flow calculation. A topology analysis based iterative approach is used to solve this problem. In this approach, a self-adaptive topology recognition method is used to analyze the distribution system, and the backward/forward sweep algorithm is used to generate the power flow results. Finally, for the numerical simulations, the IEEE 14-bus, 30-bus, 39-bus and 118-bus systems are studied for fault detection, identification and location. Both transmission level and distribution level models are employed with the proposed control strategy for voltage stability of renewable energy integration. The simulation results demonstrate the effectiveness of the proposed methods. The IEEE 24-bus reliability test system (IEEE-RTS), which is commonly used for evaluating the price stability and reliability of power system, is used as the test bench for verifying and evaluating system performance of the proposed scheduling approach.

  14. Analysis of stress-strain state of RVS-20000 tank under non-axisymmetric wind load action

    NASA Astrophysics Data System (ADS)

    Tarasenko, A. A.; Chepur, P. V.; Gruchenkova, A. A.

    2018-03-01

    In modern reference documentation, it is customary to set the wind load as uniformly distributed pressure over the area and wall of the tank. Experimental studies in the wind tunnel for various designs of the VST carried out under the guidance of professors V.E. Shutov and V.L. Berezin showed that when wind acts on the shell, there occur rarefaction zones, which must be taken into account during strain analysis of tanks. A finite-element model of the RVS-20000 tank was developed to calculate the wind load in a non-axisymmetric setting, taking into account the array of differentiated values of the aerodynamic coefficient. The distribution of stresses and strains of RVS-20000 metal structures under the effect of unevenly distributed wind pressure with a normal value of Qn = 600 Pa is obtained. It is established that the greatest strains and stresses occur at the interface of the wall and the fixed floor.

  15. Osan AB, Korea. Revised Uniform Summary of Surface Weather Observations (RUSSWO). Parts A-F.

    DTIC Science & Technology

    1982-06-14

    USAFETAC SURFACE WINDS2 AIR WATHER SERVICE/MAC PERCENTAGE FREQUENCY OF WIND DIRECTION AND SPEED (FROM HOURLY OBSERVATIONS) 1471220 OSAN AS KO 73-S1 FED...BRANCHusAF’TAC SURFACE WINDS AIR WATHER SERVICE/MAC PERCENTAGE FREQUENCY OF WIND DIRECTION AND SPEED (FROM HOURLY OBSERVATIONS) 47122’ OSAN AS KO 73-81 NOV _RLL

  16. Field Calibration of Wind Direction Sensor to the True North and Its Application to the Daegwanryung Wind Turbine Test Sites

    PubMed Central

    Lee, Jeong Wan

    2008-01-01

    This paper proposes a field calibration technique for aligning a wind direction sensor to the true north. The proposed technique uses the synchronized measurements of captured images by a camera, and the output voltage of a wind direction sensor. The true wind direction was evaluated through image processing techniques using the captured picture of the sensor with the least square sense. Then, the evaluated true value was compared with the measured output voltage of the sensor. This technique solves the discordance problem of the wind direction sensor in the process of installing meteorological mast. For this proposed technique, some uncertainty analyses are presented and the calibration accuracy is discussed. Finally, the proposed technique was applied to the real meteorological mast at the Daegwanryung test site, and the statistical analysis of the experimental testing estimated the values of stable misalignment and uncertainty level. In a strict sense, it is confirmed that the error range of the misalignment from the exact north could be expected to decrease within the credibility level. PMID:27873957

  17. Development and testing of a portable wind sensitive directional air sampler

    NASA Technical Reports Server (NTRS)

    Deyo, J.; Toma, J.; King, R. B.

    1975-01-01

    A portable wind sensitive directional air sampler was developed as part of an air pollution source identification system. The system is designed to identify sources of air pollution based on the directional collection of field air samples and their analysis for TSP and trace element characteristics. Sources can be identified by analyzing the data on the basis of pattern recognition concepts. The unit, designated Air Scout, receives wind direction signals from an associated wind vane. Air samples are collected on filter slides using a standard high volume air sampler drawing air through a porting arrangement which tracks the wind direction and permits collection of discrete samples. A preset timer controls the length of time each filter is in the sampling position. At the conclusion of the sampling period a new filter is automatically moved into sampling position displacing the previous filter to a storage compartment. Thus the Air Scout may be set up at a field location, loaded with up to 12 filter slides, and left to acquire air samples automatically, according to the wind, at any timer interval desired from 1 to 30 hours.

  18. Gusts and shear within hurricane eyewalls can exceed offshore wind turbine design standards

    NASA Astrophysics Data System (ADS)

    Worsnop, Rochelle P.; Lundquist, Julie K.; Bryan, George H.; Damiani, Rick; Musial, Walt

    2017-06-01

    Offshore wind energy development is underway in the U.S., with proposed sites located in hurricane-prone regions. Turbine design criteria outlined by the International Electrotechnical Commission do not encompass the extreme wind speeds and directional shifts of hurricanes stronger than category 2. We examine a hurricane's turbulent eyewall using large-eddy simulations with Cloud Model 1. Gusts and mean wind speeds near the eyewall of a category 5 hurricane exceed the current Class I turbine design threshold of 50 m s-1 mean wind and 70 m s-1 gusts. Largest gust factors occur at the eye-eyewall interface. Further, shifts in wind direction suggest that turbines must rotate or yaw faster than current practice. Although current design standards omit mention of wind direction change across the rotor layer, large values (15-50°) suggest that veer should be considered.

  19. Gusts and shear within hurricane eyewalls can exceed offshore wind turbine design standards

    DOE PAGES

    Worsnop, Rochelle P.; Lundquist, Julie K.; Bryan, George H.; ...

    2017-05-30

    Here, offshore wind energy development is underway in the U.S., with proposed sites located in hurricane-prone regions. Turbine design criteria outlined by the International Electrotechnical Commission do not encompass the extreme wind speeds and directional shifts of hurricanes stronger than category 2. We examine a hurricane's turbulent eyewall using large-eddy simulations with Cloud Model 1. Gusts and mean wind speeds near the eyewall of a category 5 hurricane exceed the current Class I turbine design threshold of 50 m s –1 mean wind and 70 m s –1 gusts. Largest gust factors occur at the eye-eyewall interface. Further, shifts inmore » wind direction suggest that turbines must rotate or yaw faster than current practice. Although current design standards omit mention of wind direction change across the rotor layer, large values (15–50°) suggest that veer should be considered.« less

  20. Gusts and shear within hurricane eyewalls can exceed offshore wind turbine design standards

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Worsnop, Rochelle P.; Lundquist, Julie K.; Bryan, George H.

    Here, offshore wind energy development is underway in the U.S., with proposed sites located in hurricane-prone regions. Turbine design criteria outlined by the International Electrotechnical Commission do not encompass the extreme wind speeds and directional shifts of hurricanes stronger than category 2. We examine a hurricane's turbulent eyewall using large-eddy simulations with Cloud Model 1. Gusts and mean wind speeds near the eyewall of a category 5 hurricane exceed the current Class I turbine design threshold of 50 m s –1 mean wind and 70 m s –1 gusts. Largest gust factors occur at the eye-eyewall interface. Further, shifts inmore » wind direction suggest that turbines must rotate or yaw faster than current practice. Although current design standards omit mention of wind direction change across the rotor layer, large values (15–50°) suggest that veer should be considered.« less

  1. The effect of wind direction and building surroundings on a marina bay in the Black Sea

    NASA Astrophysics Data System (ADS)

    Katona, Cosmin; Safta, Carmen Anca

    2017-01-01

    The wind effect has usually a major importance in the marina bay. These environmental sites are an interplay between tourist and commercial activities, requiring a high-detailed and definition studies of the dynamic fluid in the harbor. Computational Fluid Dynamics (CFD) has been used elaborately in urban surroundings research. However, most CFD studies were performed for harbors for only a confined number of wind directions and/or without considering the building surroundings effects. This paper presents the results of different simulations based on various wind flows and the CFD simulation of coupled urban wind flow and general wind directions upon a semi-closed area. Thus the importance of wind effects on the evaluation of the marina bay will be pointed out to achieve a safe and secure mooring at the berth and eventually a good potential of renewable energy for an impending green harbor.

  2. Model Deformation Measurements of Sonic Boom Models in the NASA Ames 9- by 7-Ft Supersonic Wind Tunnel

    NASA Technical Reports Server (NTRS)

    Schairer, Edward T.; Kushner, Laura K.; Garbeff, Theodore J.; Heineck, James T.

    2015-01-01

    The deformations of two sonic-boom models were measured by stereo photogrammetry during tests in the 9- by 7-Ft Supersonic Wind Tunnel at NASA Ames Research Center. The models were geometrically similar but one was 2.75 times as large as the other. Deformation measurements were made by simultaneously imaging the upper surfaces of the models from two directions by calibrated cameras that were mounted behind windows of the test section. Bending and twist were measured at discrete points using conventional circular targets that had been marked along the leading and trailing edges of the wings and tails. In addition, continuous distributions of bending and twist were measured from ink speckles that had been applied to the upper surfaces of the model. Measurements were made at wind-on (M = 1.6) and wind-off conditions over a range of angles of attack between 2.5 deg. and 5.0 deg. At each condition, model deformation was determined by comparing the wind-off and wind-on coordinates of each measurement point after transforming the coordinates to reference coordinates tied to the model. The necessary transformations were determined by measuring the positions of a set of targets on the rigid center-body of the models whose model-axes coordinates were known. Smoothly varying bending and twist measurements were obtained at all conditions. Bending displacements increased in proportion to the square of the distance to the centerline. Maximum deflection of the wingtip of the larger model was about 5 mm (2% of the semispan) and that of the smaller model was 0.9 mm (1% of the semispan). The change in wing twist due to bending increased in direct proportion to distance from the centerline and reached a (absolute) maximum of about -1? at the highest angle of attack for both models. The measurements easily resolved bending displacements as small as 0.05 mm and bending-induced changes in twist as small as 0.05 deg.

  3. Empirical wind retrieval model based on SAR spectrum measurements

    NASA Astrophysics Data System (ADS)

    Panfilova, Maria; Karaev, Vladimir; Balandina, Galina; Kanevsky, Mikhail; Portabella, Marcos; Stoffelen, Ad

    The present paper considers polarimetric SAR wind vector applications. Remote-sensing measurements of the near-surface wind over the ocean are of great importance for the understanding of atmosphere-ocean interaction. In recent years investigations for wind vector retrieval using Synthetic Aperture Radar (SAR) data have been performed. In contrast with scatterometers, a SAR has a finer spatial resolution that makes it a more suitable microwave instrument to explore wind conditions in the marginal ice zones, coastal regions and lakes. The wind speed retrieval procedure from scatterometer data matches the measured radar backscattering signal with the geophysical model function (GMF). The GMF determines the radar cross section dependence on the wind speed and direction with respect to the azimuthal angle of the radar beam. Scatterometers provide information on wind speed and direction simultaneously due to the fact that each wind vector cell (WVC) is observed at several azimuth angles. However, SAR is not designed to be used as a high resolution scatterometer. In this case, each WVC is observed at only one single azimuth angle. That is why for wind vector determination additional information such as wind streak orientation over the sea surface is required. It is shown that the wind vector can be obtained using polarimetric SAR without additional information. The main idea is to analyze the spectrum of a homogeneous SAR image area instead of the backscattering normalized radar cross section. Preliminary numerical simulations revealed that SAR image spectral maxima positions depend on the wind vector. Thus the following method for wind speed retrieval is proposed. In the first stage of the algorithm, the SAR spectrum maxima are determined. This procedure is carried out to estimate the wind speed and direction with ambiguities separated by 180 degrees due to the SAR spectrum symmetry. The second stage of the algorithm allows us to select the correct wind direction ambiguity from polarimetric SAR. A criterion based on the complex correlation coefficient between the VV and VH signals sign is applied to select the wind direction. An additional quality control on the wind speed value retrieved with the spectral method is applied. Here, we use the direction obtained with the spectral method and the backscattered signal for CMOD wind speed estimate. The algorithm described above may be refined by the use of numerous SAR data and wind measurements. In the present preliminary work the first results of SAR images combined with in situ data processing are presented. Our results are compared to the results obtained using previously developed models CMOD, C-2PO for VH polarization and statistical wind retrieval approaches [1]. Acknowledgments. This work is supported by the Russian Foundation of Basic Research (grants 13-05-00852-a). [1] M. Portabella, A. Stoffelen, J. A. Johannessen, Toward an optimal inversion method for synthetic aperture radar wind retrieval, Journal of geophysical research, V. 107, N C8, 2002

  4. Enhancement of Directional Ambiguity Removal Skill in Scatterometer Data Processing Using Planetary Boundary Layer Models

    NASA Technical Reports Server (NTRS)

    Kim, Young-Joon; Pak, Kyung S.; Dunbar, R. Scott; Hsiao, S. Vincent; Callahan, Philip S.

    2000-01-01

    Planetary boundary layer (PBL) models are utilized to enhance directional ambiguity removal skill in scatterometer data processing. The ambiguity in wind direction retrieved from scatterometer measurements is removed with the aid of physical directional information obtained from PBL models. This technique is based on the observation that sea level pressure is scalar and its field is more coherent than the corresponding wind. An initial wind field obtained from the scatterometer measurements is used to derive a pressure field with a PBL model. After filtering small-scale noise in the derived pressure field, a wind field is generated with an inverted PBL model. This derived wind information is then used to remove wind vector ambiguities in the scatterometer data. It is found that the ambiguity removal skill can be improved when the new technique is used properly in conjunction with the median filter being used for scatterometer wind dealiasing at JPL. The new technique is applied to regions of cyclone systems which are important for accurate weather prediction but where the errors of ambiguity removal are often large.

  5. A Full Body Steerable Wind Display for a Locomotion Interface.

    PubMed

    Kulkarni, Sandip D; Fisher, Charles J; Lefler, Price; Desai, Aditya; Chakravarthy, Shanthanu; Pardyjak, Eric R; Minor, Mark A; Hollerbach, John M

    2015-10-01

    This paper presents the Treadport Active Wind Tunnel (TPAWT)-a full-body immersive virtual environment for the Treadport locomotion interface designed for generating wind on a user from any frontal direction at speeds up to 20 kph. The goal is to simulate the experience of realistic wind while walking in an outdoor virtual environment. A recirculating-type wind tunnel was created around the pre-existing Treadport installation by adding a large fan, ducting, and enclosure walls. Two sheets of air in a non-intrusive design flow along the side screens of the back-projection CAVE-like visual display, where they impinge and mix at the front screen to redirect towards the user in a full-body cross-section. By varying the flow conditions of the air sheets, the direction and speed of wind at the user are controlled. Design challenges to fit the wind tunnel in the pre-existing facility, and to manage turbulence to achieve stable and steerable flow, were overcome. The controller performance for wind speed and direction is demonstrated experimentally.

  6. Are estimates of wind characteristics based on measurements with Pitot tubes and GNSS receivers mounted on consumer-grade unmanned aerial vehicles applicable in meteorological studies?

    PubMed

    Niedzielski, Tomasz; Skjøth, Carsten; Werner, Małgorzata; Spallek, Waldemar; Witek, Matylda; Sawiński, Tymoteusz; Drzeniecka-Osiadacz, Anetta; Korzystka-Muskała, Magdalena; Muskała, Piotr; Modzel, Piotr; Guzikowski, Jakub; Kryza, Maciej

    2017-09-01

    The objective of this paper is to empirically show that estimates of wind speed and wind direction based on measurements carried out using the Pitot tubes and GNSS receivers, mounted on consumer-grade unmanned aerial vehicles (UAVs), may accurately approximate true wind parameters. The motivation for the study is that a growing number of commercial and scientific UAV operations may soon become a new source of data on wind speed and wind direction, with unprecedented spatial and temporal resolution. The feasibility study was carried out within an isolated mountain meadow of Polana Izerska located in the Izera Mountains (SW Poland) during an experiment which aimed to compare wind characteristics measured by several instruments: three UAVs (swinglet CAM, eBee, Maja) equipped with the Pitot tubes and GNSS receivers, wind speed and direction meters mounted at 2.5 and 10 m (mast), conventional weather station and vertical sodar. The three UAVs performed seven missions along spiral-like trajectories, most reaching 130 m above take-off location. The estimates of wind speed and wind direction were found to agree between UAVs. The time series of wind speed measured at 10 m were extrapolated to flight altitudes recorded at a given time so that a comparison was made feasible. It was found that the wind speed estimates provided by the UAVs on a basis of the Pitot tube/GNSS data are in agreement with measurements carried out using dedicated meteorological instruments. The discrepancies were recorded in the first and last phases of UAV flights.

  7. 2013 Distributed Wind Market Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Orrell, Alice C.; Rhoads-Weaver, H. E.; Flowers, Larry T.

    2014-08-20

    The purpose of this report is to quantify and summarize the 2013 U.S. distributed wind market to help plan and guide future investments and decisions by industry stakeholders, utilities, state and federal agencies, and other interested parties.

  8. A wind-tunnel investigation of parameters affecting helicopter directional control at low speeds in ground effect

    NASA Technical Reports Server (NTRS)

    Yeager, W. T., Jr.; Young, W. H., Jr.; Mantay, W. R.

    1974-01-01

    An investigation was conducted in the Langley full-scale tunnel to measure the performance of several helicopter tail-rotor/fin configurations with regard to directional control problems encountered at low speeds in ground effect. Tests were conducted at wind azimuths of 0 deg to 360 deg in increments of 30 deg and 60 deg and at wind speeds from 0 to 35 knots. The results indicate that at certain combinations of wind speed and wind azimuth, large increases in adverse fin force require correspondingly large increases in the tail-rotor thrust, collective pitch, and power required to maintain yaw trim. Changing the tail-rotor direction of rotation to top blade aft for either a pusher tail rotor (tail-rotor wake blowing away from fin) or a tractor tail rotor (tail-rotor wake blowing against fin) will alleviate this problem. For a pusher tail rotor at 180 deg wind azimuth, increases in the fin/tail-rotor gap were not found to have any significant influence on the overall vehicle directional control capability. Changing the tail rotor to a higher position was found to improve tail-rotor performance for a fin-off configuration at a wind azimuth of 180 deg. A V-tail configuration with a pusher tail rotor with top blade aft direction of rotation was found to be the best configuration with regard to overall directional control capability.

  9. Impact of wind direction on near-road pollutant concentrations

    NASA Astrophysics Data System (ADS)

    Venkatram, Akula; Snyder, Michelle; Isakov, Vlad; Kimbrough, Sue

    2013-12-01

    Exposure to roadway emissions is an emerging area of research because of recent epidemiological studies reporting association between living within a few hundred meters of high-traffic roadways and adverse health effects. The air quality impact of roadway emissions has been studied in a number of field experiments, most of which have not fully considered the impact of wind direction on near-road concentrations. This paper examines the role of wind direction by using a dispersion model to analyze data from three field studies that include measurements under varying wind directions: 1) a tracer study conducted adjacent to highway 99 in Sacramento, CA in 1981-82, 2) a field study next to a highway in Raleigh, North Carolina in 2006, and 3) a field study conducted next to a depressed highway in Las Vegas, Nevada in 2010. We find that wind direction is an important variable in characterizing exposure to roadway emissions. Under stable conditions, the near-surface concentrations at receptors up to 100 m from the road increase with wind angle before dropping off at angles close to parallel to the road. It is only for pollutants with short life times does the maximum concentration occur when the wind direction is normal to the road. We also show that current dispersion models are reliable tools for interpreting observations and for formulating plans for field studies.

  10. Program to determine space vehicle response to wind turbulence

    NASA Technical Reports Server (NTRS)

    Wilkening, H. D.

    1972-01-01

    Computer program was developed as prelaunch wind monitoring tool for Saturn 5 vehicle. Program accounts for characteristic wind changes including turbulence power spectral density, wind shear, peak wind velocity, altitude, and wind direction using stored variational statistics.

  11. A Review of Microgrid Architectures and Control Strategy

    NASA Astrophysics Data System (ADS)

    Jadav, Krishnarajsinh A.; Karkar, Hitesh M.; Trivedi, I. N.

    2017-12-01

    In this paper microgrid architecture and various converters control strategies are reviewed. Microgrid is defined as interconnected network of distributed energy resources, loads and energy storage systems. This emerging concept realizes the potential of distributed generators. AC microgrid interconnects various AC distributed generators like wind turbine and DC distributed generators like PV, fuel cell using inverter. While in DC microgrid output of an AC distributed generator must be converted to DC using rectifiers and DC distributed generator can be directly interconnected. Hybrid microgrid is the solution to avoid this multiple reverse conversions AC-DC-AC and DC-AC-DC that occur in the individual AC-DC microgrid. In hybrid microgrid all AC distributed generators will be connected in AC microgrid and DC distributed generators will be connected in DC microgrid. Interlinking converter is used for power balance in both microgrids, which transfer power from one microgrid to other if any microgrid is overloaded. At the end, review of interlinking converter control strategies is presented.

  12. Distributed Kalman filtering compared to Fourier domain preconditioned conjugate gradient for laser guide star tomography on extremely large telescopes.

    PubMed

    Gilles, Luc; Massioni, Paolo; Kulcsár, Caroline; Raynaud, Henri-François; Ellerbroek, Brent

    2013-05-01

    This paper discusses the performance and cost of two computationally efficient Fourier-based tomographic wavefront reconstruction algorithms for wide-field laser guide star (LGS) adaptive optics (AO). The first algorithm is the iterative Fourier domain preconditioned conjugate gradient (FDPCG) algorithm developed by Yang et al. [Appl. Opt.45, 5281 (2006)], combined with pseudo-open-loop control (POLC). FDPCG's computational cost is proportional to N log(N), where N denotes the dimensionality of the tomography problem. The second algorithm is the distributed Kalman filter (DKF) developed by Massioni et al. [J. Opt. Soc. Am. A28, 2298 (2011)], which is a noniterative spatially invariant controller. When implemented in the Fourier domain, DKF's cost is also proportional to N log(N). Both algorithms are capable of estimating spatial frequency components of the residual phase beyond the wavefront sensor (WFS) cutoff frequency thanks to regularization, thereby reducing WFS spatial aliasing at the expense of more computations. We present performance and cost analyses for the LGS multiconjugate AO system under design for the Thirty Meter Telescope, as well as DKF's sensitivity to uncertainties in wind profile prior information. We found that, provided the wind profile is known to better than 10% wind speed accuracy and 20 deg wind direction accuracy, DKF, despite its spatial invariance assumptions, delivers a significantly reduced wavefront error compared to the static FDPCG minimum variance estimator combined with POLC. Due to its nonsequential nature and high degree of parallelism, DKF is particularly well suited for real-time implementation on inexpensive off-the-shelf graphics processing units.

  13. A study of ambient fine particles at Tianjin International Airport, China.

    PubMed

    Ren, Jianlin; Liu, Junjie; Li, Fei; Cao, Xiaodong; Ren, Shengxiong; Xu, Bin; Zhu, Yifang

    2016-06-15

    The total count number concentration of particles from 10 to 1000nm, particle size distribution, and PM2.5 (aerodynamic diameter≤2.5μm) mass concentration were measured on a parking apron next to the runway at Tianjin International Airport in China. The data were collected 250, 270, 300, 350, and 400m from the runway. Wind direction and wind speed played important roles in determining the characteristics of the atmospheric particles. An inverted U-shaped relationship was observed between the measured particle number concentration and wind speed, with an average peak concentration of 2.2×10(5)particles/cm(3) at wind speeds of approximately 4-5m/s. The atmospheric particle number concentration was affected mainly by aircraft takeoffs and landings, and the PM2.5 mass concentration was affected mainly by the relative humidity (RH) of the atmosphere. Ultrafine particles (UFPs, diameter<100nm), with the highest number concentration at a particle size of approximately 16nm, dominated the measured particle size distributions. The calculated particle emission index values for aircraft takeoff and landing were nearly the same, with mean values of 7.5×10(15)particles/(kg fuel) and 7.6×10(15)particles/(kg fuel), respectively. The particle emission rate for one aircraft during takeoff is two orders of magnitude higher than for all gasoline-powered passenger vehicles in Tianjin combined. The particle number concentrations remained much higher than the background concentrations even beyond 400m from the runway. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. PBSM3D: A finite volume, scalar-transport blowing snow model for use with variable resolution meshes

    NASA Astrophysics Data System (ADS)

    Marsh, C.; Wayand, N. E.; Pomeroy, J. W.; Wheater, H. S.; Spiteri, R. J.

    2017-12-01

    Blowing snow redistribution results in heterogeneous snowcovers that are ubiquitous in cold, windswept environments. Capturing this spatial and temporal variability is important for melt and runoff simulations. Point scale blowing snow transport models are difficult to apply in fully distributed hydrological models due to landscape heterogeneity and complex wind fields. Many existing distributed snow transport models have empirical wind flow and/or simplified wind direction algorithms that perform poorly in calculating snow redistribution where there are divergent wind flows, sharp topography, and over large spatial extents. Herein, a steady-state scalar transport model is discretized using the finite volume method (FVM), using parameterizations from the Prairie Blowing Snow Model (PBSM). PBSM has been applied in hydrological response units and grids to prairie, arctic, glacier, and alpine terrain and shows a good capability to represent snow redistribution over complex terrain. The FVM discretization takes advantage of the variable resolution mesh in the Canadian Hydrological Model (CHM) to ensure efficient calculations over small and large spatial extents. Variable resolution unstructured meshes preserve surface heterogeneity but result in fewer computational elements versus high-resolution structured (raster) grids. Snowpack, soil moisture, and streamflow observations were used to evaluate CHM-modelled outputs in a sub-arctic and an alpine basin. Newly developed remotely sensed snowcover indices allowed for validation over large basins. CHM simulations of snow hydrology were improved by inclusion of the blowing snow model. The results demonstrate the key role of snow transport processes in creating pre-melt snowcover heterogeneity and therefore governing post-melt soil moisture and runoff generation dynamics.

  15. Distributed Wind Research | Wind | NREL

    Science.gov Websites

    evaluation, and improve wind turbine and wind power plant performance. A photo of a snowy road leading to a single wind turbine surrounded by snow-covered pine trees against blue sky. Capabilities NREL's power plant and small wind turbine development. Algorithms and programs exist for simulating, designing

  16. Observing Equatorial Thermospheric Winds and Temperatures with a New Mapping Technique

    NASA Astrophysics Data System (ADS)

    Faivre, M. W.; Meriwether, J. W.; Sherwood, P.; Veliz, O.

    2005-12-01

    Application of the Fabry-Perot interferometer (FPI) at Arequipa, Peru (16.4S, 71.4 W) to measure the Doppler shifts and Doppler broadenings in the equatorial O(1D) 630-nm nightglow has resulted in numerous detections of a large-scale thermospheric phenomenon called the Midnight Temperature Maximum (MTM). A recent detector upgrade with a CCD camera has improved the accuracy of these measurements by a factor of 5. Temperature increases of 50 to 150K have been measured during nights in April and July, 2005, with error bars less than 10K after averaging in all directions. Moreover, the meridional wind measurements show evidence for a flow reversal from equatorward to poleward near local midnight for such events. A new observing strategy based upon the pioneering work of Burnside et al.[1981] maps the equatorial wind and temperature fields by observing in eight equally-spaced azimuth directions, each with a zenith angle of 60 degrees. Analysis of the data obtained with this technique gives the mean wind velocities in the meridional and zonal directions as well as the horizontal gradients of the wind field for these directions. Significant horizontal wind gradients are found for the meridional direction but not for the zonal direction. The zonal wind blows eastward throughout the night with a maximum speed of ~150 m/s near the middle of the night and then decreases towards zero just before dawn. In general, the fastest poleward meridional wind is observed near mid-evening. By the end of the night, the meridional flow tends to be more equatorward at speeds of about 50 m/s. Using the assumption that local time and longitude are equivalent over a period of 30 minutes, a map of the horizontal wind field vector field is constructed over a range of 12 degrees latitude centered at 16.5 S. Comparison between MTM nights and quiet nights (no MTM) revealed significant differences in the horizontal wind fields. Using the method of Fourier decomposition of the line-of-sight winds, the vertical wind can be retrieved from the horizontal flow divergence with a much-improved sensitivity than that represented by direct zenith measurements. The value of the vertical wind speed ranges from -5 to 5 m/s. Some nights seem to present gravity wave activity with periodic fluctuations of 1-2 hours visible in the vertical winds as well as in the temperature series.

  17. Late Paleozoic paleolatitude and paleogeography of the Midland basin, Texas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Walker, D.A.; Golonka, J.; Reid, A.M.

    1992-04-01

    During the Late Pennsylvanian through Early Permian, the Midland basin was located in the low latitudes. In the Desmoinesian (Strawn), the basin was astride the equator; during the Missourian (Canyon), the center of the basin had migrated northward so it was located at 1-2N latitude. In the Virgilian (Cisco), the basin center was located around 2-4N latitude, and by the Wolfcampian, it was positioned at around 4-6N latitude. From the Desmoinesian (312 Ma) through the Missourian (306 Ma), the relative motion of the basin was 63NE. Later during the Virgilian (298 Ma) to Wolfcampian (280 Ma), the direction of motionmore » was 24NE. This change in motion reflects a major tectonic event, occurring between the Missourian and Virgilian, that greatly modifed the movement of the Laurentian (North American) plate. At that time, Laurentia had collided with Gondwana and become part of the supercontinent Pangea. Throughout the late Paleozoic, Laurentia was rotated so the Midland basin was oriented 43{degree} northeast from its current setting. Late Paleozoic paleogeography and paleolatitude controlled the direction of prevailing winds and ocean currents, thereby influencing the distribution of carbonate facies in the Midland basin. Present prevailing winds and ocean currents have been shown to have a major impact on modern carbonate sedimentation and facies distribution in Belize, the Bahamas and Turks, and Caicos. A clearer understanding of how late Paleozoic latitude and geography affected sedimentation helps explain and predict the distribution of carbonates throughout the Midland basin.« less

  18. Atmospheric stability effects on wind farm performance using large-eddy simulation

    NASA Astrophysics Data System (ADS)

    Archer, C. L.; Ghaisas, N.; Xie, S.

    2014-12-01

    Atmospheric stability has been recently found to have significant impacts on wind farm performance, especially since offshore and onshore wind farms are known to operate often under non-neutral conditions. Recent field observations have revealed that changes in stability are accompanied by changes in wind speed, direction, and turbulent kinetic energy (TKE). In order to isolate the effects of stability, large-eddy simulations (LES) are performed under neutral, stable, and unstable conditions, keeping the wind speed and direction unchanged at a fixed height. The Lillgrund wind farm, comprising of 48 turbines, is studied in this research with the Simulator for Offshore/Onshore Wind Farm Applications (SOWFA) developed by the National Renewable Energy Laboratory. Unlike most previous numerical simulations, this study does not impose periodic boundary conditions and therefore is ideal for evaluating the effects of stability in large, but finite, wind farms. Changes in power generation, velocity deficit, rate of wake recovery, TKE, and surface temperature are quantified as a function of atmospheric stability. The sensitivity of these results to wind direction is also discussed.

  19. Probability density function characterization for aggregated large-scale wind power based on Weibull mixtures

    DOE PAGES

    Gomez-Lazaro, Emilio; Bueso, Maria C.; Kessler, Mathieu; ...

    2016-02-02

    Here, the Weibull probability distribution has been widely applied to characterize wind speeds for wind energy resources. Wind power generation modeling is different, however, due in particular to power curve limitations, wind turbine control methods, and transmission system operation requirements. These differences are even greater for aggregated wind power generation in power systems with high wind penetration. Consequently, models based on one-Weibull component can provide poor characterizations for aggregated wind power generation. With this aim, the present paper focuses on discussing Weibull mixtures to characterize the probability density function (PDF) for aggregated wind power generation. PDFs of wind power datamore » are firstly classified attending to hourly and seasonal patterns. The selection of the number of components in the mixture is analyzed through two well-known different criteria: the Akaike information criterion (AIC) and the Bayesian information criterion (BIC). Finally, the optimal number of Weibull components for maximum likelihood is explored for the defined patterns, including the estimated weight, scale, and shape parameters. Results show that multi-Weibull models are more suitable to characterize aggregated wind power data due to the impact of distributed generation, variety of wind speed values and wind power curtailment.« less

  20. Radionuclide counting technique for measuring wind velocity and direction

    NASA Technical Reports Server (NTRS)

    Singh, J. J. (Inventor)

    1984-01-01

    An anemometer utilizing a radionuclide counting technique for measuring both the velocity and the direction of wind is described. A pendulum consisting of a wire and a ball with a source of radiation on the lower surface of the ball is positioned by the wind. Detectors and are located in a plane perpendicular to pendulum (no wind). The detectors are located on the circumferene of a circle and are equidistant from each other as well as the undisturbed (no wind) source ball position.

  1. Anomalous polymer collapse winding angle distributions

    NASA Astrophysics Data System (ADS)

    Narros, A.; Owczarek, A. L.; Prellberg, T.

    2018-03-01

    In two dimensions polymer collapse has been shown to be complex with multiple low temperature states and multi-critical points. Recently, strong numerical evidence has been provided for a long-standing prediction of universal scaling of winding angle distributions, where simulations of interacting self-avoiding walks show that the winding angle distribution for N-step walks is compatible with the theoretical prediction of a Gaussian with a variance growing asymptotically as Clog N . Here we extend this work by considering interacting self-avoiding trails which are believed to be a model representative of some of the more complex behaviour. We provide robust evidence that, while the high temperature swollen state of this model has a winding angle distribution that is also Gaussian, this breaks down at the polymer collapse point and at low temperatures. Moreover, we provide some evidence that the distributions are well modelled by stretched/compressed exponentials, in contradistinction to the behaviour found in interacting self-avoiding walks. Dedicated to Professor Stu Whittington on the occasion of his 75th birthday.

  2. Simulations of snow distribution and hydrology in a mountain basin

    USGS Publications Warehouse

    Hartman, Melannie D.; Baron, Jill S.; Lammers, Richard B.; Cline, Donald W.; Band, Larry E.; Liston, Glen E.; Tague, Christina L.

    1999-01-01

    We applied a version of the Regional Hydro-Ecologic Simulation System (RHESSys) that implements snow redistribution, elevation partitioning, and wind-driven sublimation to Loch Vale Watershed (LVWS), an alpine-subalpine Rocky Mountain catchment where snow accumulation and ablation dominate the hydrologic cycle. We compared simulated discharge to measured discharge and the simulated snow distribution to photogrammetrically rectified aerial (remotely sensed) images. Snow redistribution was governed by a topographic similarity index. We subdivided each hillslope into elevation bands that had homogeneous climate extrapolated from observed climate. We created a distributed wind speed field that was used in conjunction with daily measured wind speeds to estimate sublimation. Modeling snow redistribution was critical to estimating the timing and magnitude of discharge. Incorporating elevation partitioning improved estimated timing of discharge but did not improve patterns of snow cover since wind was the dominant controller of areal snow patterns. Simulating wind-driven sublimation was necessary to predict moisture losses.

  3. Electric wind in a Differential Mobility Analyzer

    DOE PAGES

    Palo, Marus; Meelis Eller; Uin, Janek; ...

    2015-10-25

    Electric wind -- the movement of gas, induced by ions moving in an electric field -- can be a distorting factor in size distribution measurements using Differential Mobility Analyzers (DMAs). The aim of this study was to determine the conditions under which electric wind occurs in the locally-built VLDMA (Very Long Differential Mobility Analyzer) and TSI Long-DMA (3081) and to describe the associated distortion of the measured spectra. Electric wind proved to be promoted by the increase of electric field strength, aerosol layer thickness, particle number concentration and particle size. The measured size spectra revealed three types of distortion: wideningmore » of the size distribution, shift of the mode of the distribution to smaller diameters and smoothing out the peaks of the multiply charged particles. Electric wind may therefore be a source of severe distortion of the spectrum when measuring large particles at high concentrations.« less

  4. First quantification of relationship between dune orientation and sediment availability, Olympia Undae, Mars

    NASA Astrophysics Data System (ADS)

    Fernandez-Cascales, Laura; Lucas, Antoine; Rodriguez, Sébastien; Gao, Xin; Spiga, Aymeric; Narteau, Clément

    2018-05-01

    Dunes provide unique information about wind regimes on planetary bodies where there is no direct meteorological data. At the eastern margin of Olympia Undae on Mars, dune orientation is measured from satellite imagery and sediment cover is estimated using the high contrast between the dune material and substrate. The analysis of these data provide the first quantification of relationship between sediment availability and dune orientation. Abrupt and smooth dune reorientations are associated with inward and outward dynamics of dunes approaching and ejecting from major sedimentary bodies, respectively. These reorientation patterns along sediment transport pathways are interpreted using a new generation dune model based on the coexistence of two dune growth mechanisms. This model also permits solving of the inverse problem of predicting the wind regime from dune orientation. For bidirectional wind regimes, solutions of this inverse problem show substantial differences in the distributions of sediment flux orientation, which can be attributed to atmospheric flow variations induced by changes in albedo at the boundaries of major dune fields. Then, we conclude that relationships between sediment cover and dune orientation can be used to constrain wind regime and dune field development on Mars and other planetary surfaces.

  5. BOREAS AFM-2 Wyoming King Air 1994 Aircraft Sounding Data

    NASA Technical Reports Server (NTRS)

    Kelly, Robert D.; Hall, Forrest G. (Editor); Knapp, David E. (Editor); Smith, David E. (Technical Monitor)

    2000-01-01

    The BOREAS AFM-2 team used the University of Wyoming King Air aircraft during IFCs 1, 2, and 3 in 1994 to collected pass-by-pass fluxes (and many other statistics) for the large number of level (constant altitude), straight-line passes used in a variety of flight patterns over the SSA and NSA and areas along the transect between these study areas. The data described here form a second set, namely soundings that were incorporated into nearly every research flight by the King Air in 1994. These soundings generally went from near the surface to above the inversion layer. Most were flown immediately after takeoff or immediately after finishing the last flux pattern of that particular day's flights. The parameters that were measured include wind direction, wind speed, west wind component (u), south wind component (v), static pressure, air dry bulb temperature, potential temperature, dewpoint, temperature, water vapor mixing ratio, and CO2 concentration. Data on the aircraft's location, attitude, and altitude during data collection are also provided. These data are stored in tabular ASCH files. The data files are available on a CD-ROM (see document number 20010000884) or from the Oak Ridge National Laboratory (ORNL) Distributed Active Archive Center (DAAC).

  6. On the Issue of Excess Lower Stratospheric Subtropical Transport in GEOS-DAS

    NASA Technical Reports Server (NTRS)

    Tan, Wei-Wu; Geller, Marvin; Pawson, Steven

    2002-01-01

    In recent years, data assimilation has become an indispensable tool for our understanding of the global features of meteorological variables. However, assessments of transport characteristics using trajectory related methods as well as chemical transport models (CTMs) show that results derived from assimilated (or analyzed) winds exhibit significantly larger mixing and entrainment rates compared to results derived from GCM winds, which are closer to results derived from observations (e.g., Douglass et al., 2002; Schoeberl et al., 2002). This discrepancy presents a serious challenge to our ability to understand and model global trace gas transport and distribution. We use the GEOS-DAS to explore this issue by examining how the process of data assimilation alters the dynamics of the underlying GCM and how this leads to the excess of lower stratospheric mixing and transport in the subtropics. In particular, we show that significant model biases in tropical winds necessitate large analysis increments. These increments directly force large subtropical regions of instability with negative PV gradient on the one hand, and generate excessive noise in the tropical wind fields on the other. The result is an excess of transport in the lower stratospheric subtropics.

  7. The electron distribution function downstream of the solar-wind termination shock: Where are the hot electrons?

    NASA Astrophysics Data System (ADS)

    Fahr, Hans J.; Richardson, John D.; Verscharen, Daniel

    2015-07-01

    In the majority of the literature on plasma shock waves, electrons play the role of "ghost particles", since their contribution to mass and momentum flows is negligible, and they have been treated as only taking care of the electric plasma neutrality. In some more recent papers, however, electrons play a new important role in the shock dynamics and thermodynamics, especially at the solar-wind termination shock. They react on the shock electric field in a very specific way, leading to suprathermal nonequilibrium distributions of the downstream electrons, which can be represented by a kappa distribution function. In this paper, we discuss why this anticipated hot electron population has not been seen by the plasma detectors of the Voyager spacecraft downstream of the solar-wind termination shock. We show that hot nonequilibrium electrons induce a strong negative electric charge-up of any spacecraft cruising through this downstream plasma environment. This charge reduces electron fluxes at the spacecraft detectors to nondetectable intensities. Furthermore, we show that the Debye length λDκ grows to values of about λDκ/λD ≃ 106 compared to the classical value λD in this hot-electron environment. This unusual condition allows for the propagation of a certain type of electrostatic plasma waves that, at very large wavelengths, allow us to determine the effective temperature of the suprathermal electrons directly by means of the phase velocity of these waves. At moderate wavelengths, the electron-acoustic dispersion relation leads to nonpropagating oscillations with the ion-plasma frequency ωp, instead of the traditional electron plasma frequency.

  8. The Electron Temperature and Anisotropy in the Solar Wind. Comparison of the Core and Halo Populations

    NASA Astrophysics Data System (ADS)

    Pierrard, V.; Lazar, M.; Poedts, S.; Štverák, Š.; Maksimovic, M.; Trávníček, P. M.

    2016-08-01

    Estimating the temperature of solar wind particles and their anisotropies is particularly important for understanding the origin of their deviations from thermal equilibrium and the effects this has. In the absence of energetic events, the velocity distribution of electrons reveals a dual structure with a thermal (Maxwellian) core and a suprathermal (kappa) halo. This article presents a detailed observational analysis of these two components, providing estimations of their temperatures and temperature anisotropies, and decoding any potential interdependence that their properties may indicate. The dataset used in this study includes more than 120 000 of the distributions measured by three missions in the ecliptic within an extended range of heliocentric distances from 0.3 to over 4 AU. The core temperature is found to decrease with the radial distance, while the halo temperature slightly increases, clarifying an apparent contradiction in previous observational analyses and providing valuable clues about the temperature of the kappa-distributed populations. For low values of the power-index kappa, these two components manifest a clear tendency to deviate from isotropy in the same direction, which seems to confirm the existence of mechanisms with similar effects on both components, e.g., the solar wind expansion, or the particle heating by the fluctuations. However, the existence of plasma states with anticorrelated anisotropies of the core and halo populations and the increase in their number for high values of the power-index kappa suggest a dynamic interplay of these components, mediated, most probably, by the anisotropy-driven instabilities.

  9. Wind Erosion

    NASA Image and Video Library

    2015-07-02

    Long term winds have etched the surface in Memnonia Sulci. Partial cemented surface materials are easily eroded by the wind, forming linear ridges called yardangs. The multiple direction of yardangs in this VIS image indicate that there were at least two different wind directions in this area. Orbit Number: 59217 Latitude: -8.33112 Longitude: 186.506 Instrument: VIS Captured: 2015-04-20 15:12 http://photojournal.jpl.nasa.gov/catalog/PIA19502

  10. Optimal reactive power planning for distribution systems considering intermittent wind power using Markov model and genetic algorithm

    NASA Astrophysics Data System (ADS)

    Li, Cheng

    Wind farms, photovoltaic arrays, fuel cells, and micro-turbines are all considered to be Distributed Generation (DG). DG is defined as the generation of power which is dispersed throughout a utility's service territory and either connected to the utility's distribution system or isolated in a small grid. This thesis addresses modeling and economic issues pertaining to the optimal reactive power planning for distribution system with wind power generation (WPG) units. Wind farms are inclined to cause reverse power flows and voltage variations due to the random-like outputs of wind turbines. To deal with this kind of problem caused by wide spread usage of wind power generation, this thesis investigates voltage and reactive power controls in such a distribution system. Consequently static capacitors (SC) and transformer taps are introduced into the system and treated as controllers. For the purpose of getting optimum voltage and realizing reactive power control, the research proposes a proper coordination among the controllers like on-load tap changer (OLTC), feeder-switched capacitors. What's more, in order to simulate its uncertainty, the wind power generation is modeled by the Markov model. In that way, calculating the probabilities for all the scenarios is possible. Some outputs with consecutive and discrete values have been used for transition between successive time states and within state wind speeds. The thesis will describe the method to generate the wind speed time series from the transition probability matrix. After that, utilizing genetic algorithm, the optimal locations of SCs, the sizes of SCs and transformer taps are determined so as to minimize the cost or minimize the power loss, and more importantly improve voltage profiles. The applicability of the proposed method is verified through simulation on a 9-bus system and a 30-bus system respectively. At last, the simulation results indicate that as long as the available capacitors are able to sufficiently compensate the reactive power demand, the DG operation no longer imposes a significant effect on the voltage fluctuations in the distribution system. And the proposed approach is efficient, simple and straightforward.

  11. Estimates of oceanic surface wind speed and direction using orthogonal beam scatterometer measurements and comparison of recent sea scattering theories

    NASA Technical Reports Server (NTRS)

    Moore, R. K.; Fung, A. K.; Dome, G. J.; Birrer, I. J.

    1978-01-01

    The wind direction properties of radar backscatter from the sea were empirically modelled using a cosine Fourier series through the 4th harmonic in wind direction (referenced to upwind). A comparison with 1975 JONSWAP (Joint North Sea Wave Project) scatterometer data, at incidence angles of 40 and 65, indicates that effects to third and fourth harmonics are negligible. Another important result is that the Fourier coefficients through the second harmonic are related to wind speed by a power law expression. A technique is also proposed to estimate the wind speed and direction over the ocean from two orthogonal scattering measurements. A comparison between two different types of sea scatter theories, one type presented by the work of Wright and the other by that of Chan and Fung, was made with recent scatterometer measurements. It demonstrates that a complete scattering model must include some provisions for the anisotropic characteristics of the sea scatter, and use a sea spectrum which depends upon wind speed.

  12. Leptokurtic pollen-flow, non-leptokurtic gene-flow in a wind-pollinated herb, Plantago lanceolata L.

    PubMed

    Tonsor, Stephen J

    1985-10-01

    The purpose of this study was to simultaneously measure pollen dispersal distance and actual pollen-mediated gene-flow distance in a wind-pollinated herb, Plantago lanceolata. The pollen dispersal distribution, measured as pollen deposition in a wind tunnel, is leptokurtic, as expected from previous studies of wind-pollinated plants. Gene-flow, measured as seeds produced on rows of male-sterile inflorescences in the wind tunnel, is non-leptokurtic, peaking at an intermediate distance. The difference between the two distributions results from the tendency of the pollen grains to cluster. These pollen clusters are the units of gene dispersal, with clusters of intermediate and large size contributing disproportionately to gene-flow. Since many wind-pollinated species show pollen clustering (see text), the common assumption for wind-pollinated plants that gene-flow is leptokurtic requires re-examination. Gene-flow was also measured in an artifical outdoor population of male-steriles, containing a single pollen source plant in the center of the array. The gene flow distribution is significantly platykurtic, and has the same general properties outdoors, where wind speed and turbulence are uncontrolled, as it does in the wind tunnel. I estimated genetic neighborhood size based on my measure of gene-flow in the outdoor population. The estimate shows that populations of Plantago lanceolata will vary in effective number from a few tens of plants to more than five hundred plants, depending on the density of the population in question. Thus, the measured pollen-mediated gene-flow distribution and population density will interact to produce effective population sizes ranging from those in which there is no random genetic drift to those in which random genetic drift plays an important role in determining gene frequencies within and among populations. Despite the platykurtosis in the distribution, pollen-mediated gene dispersal distances are still quite limited, and considerable within and among-population genetic differentiation is to be expected in this species.

  13. Research and analysis on response characteristics of bracket-line coupling system under wind load

    NASA Astrophysics Data System (ADS)

    Jiayu, Zhao; Qing, Sun

    2018-01-01

    In this paper, a three-dimensional finite element model of bracket-line coupling system is established based on ANSYS software. Using the wind velocity time series which is generated by MATLAB as a power input, by comparing and analyzing the influence of different wind speeds and different wind attack angles, it is found that when 0 degree wind acts on the structure, wires have a certain damping effect in the bracket-line coupling system and at the same wind speed, the 90 degree direction is the most unfavorable wind direction for the whole structure according to the three kinds of angle wind calculated at present. In the bracket-line coupling system, the bracket structure is more sensitive to the increase of wind speed while the conductors are more sensitive to the change of wind attack angle.

  14. Observations of a cycle of intense coastal upwelling and downwelling at the research site of the Shirshov Institute of Oceanology in the Black Sea

    NASA Astrophysics Data System (ADS)

    Zatsepin, A. G.; Silvestrova, K. P.; Kuklev, S. B.; Piotoukh, V. B.; Podymov, O. I.

    2016-03-01

    The paper presents the results of joint analysis of the response of vertical temperature and current velocity profile distributions in the coastal zone of the Gelendzhik region of the Black Sea to strong wind forcing in the third ten-day period of September 2013. This forcing was caused by the propagation of an atmospheric cyclone, which first initiated coastal upwelling that was later replaced by downwelling. We formulate a criterion for the development of full coastal upwelling and demonstrate its efficiency. We assume that frequent events of incomplete coastal upwelling and downwelling are associated with changes in the water dynamics (variations in the intensity and direction of the alongshore current) generally not related to local wind forcing.

  15. The Chandra/MOST Campaign on Delta Ori A

    NASA Astrophysics Data System (ADS)

    Corcoran, Michael

    2014-11-01

    X-ray emission from massive stars is produced by shocked gas distributed throughout their unstable stellar winds. These shocks play a significant role in determining accurate stellar mass loss rates. Our current understanding of these shocks is derived from indirect indicators like line profile shapes and the f/i ratio of the He-like triplets. Here we discuss a campaign of phase-resolved Chandra grating observations and simultaneous high-precision photometry using the MOST satellite of the massive binary Delta Ori A, in an attempt to directly constrain the radial extent of the hot gas in the wind of the primary star (Delta Ori Aa) via occultation by the X-ray faint secondary (Delta Ori Ab). We present an overview of this campaign and a summary of our results.

  16. An IRAS/ISSA Survey of Bow Shocks Around Runaway Stars

    NASA Technical Reports Server (NTRS)

    Buren, David Van

    1995-01-01

    We searched for bow shock-like objects like those known around Oph and a Cam near the positions of 183 runaway stars. Based primarily on the presence and morphology of excess 60 micron emission we identify 56 new candidate bow shocks, for which we determine photometric and morphological parameters. Previously only a dozen or so were known. Well resolved structures are present around 25 stars. A comparison of the distribution of symmetry axes of the infrared nebulae with that of their proper motion vectors indicates that these two directions are very significantly aligned. The observed alignment strongly suggests that the structures we see arise from the interaction of stellar winds with the interstellar medium, justifying the identification of these far-infrared objects as stellar wind bow shocks.

  17. Hybrid Vlasov simulations for alpha particles heating in the solar wind

    NASA Astrophysics Data System (ADS)

    Perrone, Denise; Valentini, Francesco; Veltri, Pierluigi

    2011-06-01

    Heating and acceleration of heavy ions in the solar wind and corona represent a long-standing theoretical problem in space physics and are distinct experimental signatures of kinetic processes occurring in collisionless plasmas. To address this problem, we propose the use of a low-noise hybrid-Vlasov code in four dimensional phase space (1D in physical space and 3D in velocity space) configuration. We trigger a turbulent cascade injecting the energy at large wavelengths and analyze the role of kinetic effects along the development of the energy spectra. Following the evolution of both proton and α distribution functions shows that both the ion species significantly depart from the maxwellian equilibrium, with the appearance of beams of accelerated particles in the direction parallel to the background magnetic field.

  18. Downstream energetic proton and alpha particles during quasi-parallel interplanetary shock events

    NASA Technical Reports Server (NTRS)

    Tan, L. C.; Mason, G. M.; Gloeckler, G.; Ipavich, F. M.

    1988-01-01

    This paper considers the energetic particle populations in the downstream region of three quasi-parallel interplanetary shock events, which was explored using the ISEE 3 Ultra Low Energy Charge Analyzer sensor, which unambiguously identifies protons and alpha particles using the electrostatic deflection versus residual energy technique. The downstream particles were found to exhibit anisotropies due largely to convection in the solar wind. The spectral indices of the proton and the alpha-particle distribution functions were found to be remarkably constant during the downstream period, being generally insensitive to changes in particle flux levels, magnetic field direction, and solar wind densities. In two of the three events, the proton and the alpha spectra were the same throughout the entire downstream period, supporting the prediction of diffusive shock acceleration theory.

  19. Imaging the Top of the Solar Corona and the Young Solar Wind

    NASA Astrophysics Data System (ADS)

    DeForest, C. E.; Matthaeus, W. H.; Viall, N. M.; Cranmer, S. R.

    2016-12-01

    We present the first direct visual evidence of the quasi-stationary breakup of solar coronal structure and the rise of turbulence in the young solar wind, directly in the future flight path of Solar Probe. Although the corona and, more recently, the solar wind have both been observed directly with Thomson scattered light, the transition from the corona to the solar wind has remained a mystery. The corona itself is highly structured by the magnetic field and the outflowing solar wind, giving rise to radial "striae" - which comprise the familiar streamers, pseudostreamers, and rays. These striae are not visible in wide-field heliospheric images, nor are they clearly delineated with in-situ measurements of the solar wind. Using careful photometric analysis of the images from STEREO/HI-1, we have, for the first time, directly observed the breakup of radial coronal structure and the rise of nearly-isotropic turbulent structure in the outflowing slow solar wind plasma between 10° (40 Rs) and 20° (80 Rs) from the Sun. These observations are important not only for their direct science value, but for predicting and understanding the conditions expected near SPP as it flies through - and beyond - this final frontier of the heliosphere, the outer limits of the solar corona.

  20. Seasonal and interannual variability of the Arctic sea ice: A comparison between AO-FVCOM and observations

    NASA Astrophysics Data System (ADS)

    Zhang, Yu; Chen, Changsheng; Beardsley, Robert C.; Gao, Guoping; Qi, Jianhua; Lin, Huichan

    2016-11-01

    A high-resolution (up to 2 km), unstructured-grid, fully ice-sea coupled Arctic Ocean Finite-Volume Community Ocean Model (AO-FVCOM) was used to simulate the sea ice in the Arctic over the period 1978-2014. The spatial-varying horizontal model resolution was designed to better resolve both topographic and baroclinic dynamics scales over the Arctic slope and narrow straits. The model-simulated sea ice was in good agreement with available observed sea ice extent, concentration, drift velocity and thickness, not only in seasonal and interannual variability but also in spatial distribution. Compared with six other Arctic Ocean models (ECCO2, GSFC, INMOM, ORCA, NAME, and UW), the AO-FVCOM-simulated ice thickness showed a higher mean correlation coefficient of ˜0.63 and a smaller residual with observations. Model-produced ice drift speed and direction errors varied with wind speed: the speed and direction errors increased and decreased as the wind speed increased, respectively. Efforts were made to examine the influences of parameterizations of air-ice external and ice-water interfacial stresses on the model-produced bias. The ice drift direction was more sensitive to air-ice drag coefficients and turning angles than the ice drift speed. Increasing or decreasing either 10% in water-ice drag coefficient or 10° in water-ice turning angle did not show a significant influence on the ice drift velocity simulation results although the sea ice drift speed was more sensitive to these two parameters than the sea ice drift direction. Using the COARE 4.0-derived parameterization of air-water drag coefficient for wind stress did not significantly influence the ice drift velocity simulation.

Top