Sample records for wind direction indicators

  1. 14 CFR 139.323 - Traffic and wind direction indicators.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 3 2014-01-01 2014-01-01 false Traffic and wind direction indicators. 139... CERTIFICATION OF AIRPORTS Operations § 139.323 Traffic and wind direction indicators. In a manner authorized by...) A wind cone that visually provides surface wind direction information to pilots. For each runway...

  2. 14 CFR 139.323 - Traffic and wind direction indicators.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 3 2013-01-01 2013-01-01 false Traffic and wind direction indicators. 139... CERTIFICATION OF AIRPORTS Operations § 139.323 Traffic and wind direction indicators. In a manner authorized by...) A wind cone that visually provides surface wind direction information to pilots. For each runway...

  3. 14 CFR 139.323 - Traffic and wind direction indicators.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 3 2012-01-01 2012-01-01 false Traffic and wind direction indicators. 139... CERTIFICATION OF AIRPORTS Operations § 139.323 Traffic and wind direction indicators. In a manner authorized by...) A wind cone that visually provides surface wind direction information to pilots. For each runway...

  4. 14 CFR 139.323 - Traffic and wind direction indicators.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 3 2011-01-01 2011-01-01 false Traffic and wind direction indicators. 139... CERTIFICATION OF AIRPORTS Operations § 139.323 Traffic and wind direction indicators. In a manner authorized by...) A wind cone that visually provides surface wind direction information to pilots. For each runway...

  5. 14 CFR 139.323 - Traffic and wind direction indicators.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Traffic and wind direction indicators. 139... CERTIFICATION OF AIRPORTS Operations § 139.323 Traffic and wind direction indicators. In a manner authorized by...) A wind cone that visually provides surface wind direction information to pilots. For each runway...

  6. Light-Flash Wind-Direction Indicator

    NASA Technical Reports Server (NTRS)

    Zysko, Jan A.

    1993-01-01

    Proposed wind-direction indicator read easily by distant observers. Indicator emits bright flashes of light separated by interval of time proportional to angle between true north and direction from which wind blowing. Timing of flashes indicates direction of wind. Flashes, from high-intensity stroboscopic lights seen by viewers at distances up to 5 miles or more. Also seen more easily through rain and fog. Indicator self-contained, requiring no connections to other equipment. Power demand satisfied by battery or solar power or both. Set up quickly to provide local surface-wind data for aircraft pilots during landing or hovering, for safety officers establishing hazard zones and safety corridors during handling of toxic materials, for foresters and firefighters conducting controlled burns, and for real-time wind observations during any of variety of wind-sensitive operations.

  7. Winds at the Phoenix Landing Site

    NASA Astrophysics Data System (ADS)

    Holstein-Rathlou, C.; Gunnlaugsson, H. P.; Taylor, P.; Lange, C.; Moores, J.; Lemmon, M.

    2008-12-01

    Local wind speeds and directions have been measured at the Phoenix landing site using the Telltale wind indicator. The Telltale is mounted on top of the meteorological mast at roughly 2 meters height above the surface. The Telltale is a mechanical anemometer consisting of a lightweight cylinder suspended by Kevlar fibers that are deflected under the action of wind. Images taken with the Surface Stereo Imager (SSI) of the Telltale deflection allows the wind speed and direction to be quantified. Winds aloft have been estimated using image series (10 images ~ 50 s apart) taken of the Zenith (Zenith Movies). In contrast enhanced images cloud like features are seen to move through the image field and give indication of directions and angular speed. Wind speeds depend on the height of where these features originate while directions are unambiguously determined. The wind data shows dominant wind directions and diurnal variations, likely caused by slope winds. Recent night time measurements show frost formation on the Telltale mirror. The results will be discussed in terms of global and slope wind modeling and the current calibration of the data is discussed. It will also be illustrated how wind data can aid in interpreting temperature fluctuations seen on the lander.

  8. Expertise effects in cutaneous wind perception.

    PubMed

    Pluijms, Joost P; Cañal-Bruland, Rouwen; Bergmann Tiest, Wouter M; Mulder, Fabian A; Savelsbergh, Geert J P

    2015-08-01

    We examined whether expertise effects are present in cutaneous wind perception. To this end, we presented wind stimuli consisting of different wind directions and speeds in a wind simulator. The wind simulator generated wind stimuli from 16 directions and with three speeds by means of eight automotive wind fans. Participants were asked to judge cutaneously perceived wind directions and speeds without having access to any visual or auditory information. Expert sailors (n = 6), trained to make the most effective use of wind characteristics, were compared to less-skilled sailors (n = 6) and to a group of nonsailors (n = 6). The results indicated that expert sailors outperformed nonsailors in perceiving wind direction (i.e., smaller mean signed errors) when presented with low wind speeds. This suggests that expert sailors are more sensitive in picking up differences in wind direction, particularly when confronted with low wind speeds that demand higher sensitivity.

  9. SeaWinds Global Coverage with Detail of Hurricane Floyd

    NASA Image and Video Library

    2000-05-07

    The distribution of ocean surface winds over the Atlantic Ocean, based on September 1999 data from NASA SeaWinds instrument on the QuikScat satellite, shows wind direction, superimposed on the color image indicating wind speed.

  10. Observations of the directional distribution of the wind energy input function over swell waves

    NASA Astrophysics Data System (ADS)

    Shabani, Behnam; Babanin, Alex V.; Baldock, Tom E.

    2016-02-01

    Field measurements of wind stress over shallow water swell traveling in different directions relative to the wind are presented. The directional distribution of the measured stresses is used to confirm the previously proposed but unverified directional distribution of the wind energy input function. The observed wind energy input function is found to follow a much narrower distribution (β∝cos⁡3.6θ) than the Plant (1982) cosine distribution. The observation of negative stress angles at large wind-wave angles, however, indicates that the onset of negative wind shearing occurs at about θ≈ 50°, and supports the use of the Snyder et al. (1981) directional distribution. Taking into account the reverse momentum transfer from swell to the wind, Snyder's proposed parameterization is found to perform exceptionally well in explaining the observed narrow directional distribution of the wind energy input function, and predicting the wind drag coefficients. The empirical coefficient (ɛ) in Snyder's parameterization is hypothesised to be a function of the wave shape parameter, with ɛ value increasing as the wave shape changes between sinusoidal, sawtooth, and sharp-crested shoaling waves.

  11. Wind Erosion

    NASA Image and Video Library

    2015-07-02

    Long term winds have etched the surface in Memnonia Sulci. Partial cemented surface materials are easily eroded by the wind, forming linear ridges called yardangs. The multiple direction of yardangs in this VIS image indicate that there were at least two different wind directions in this area. Orbit Number: 59217 Latitude: -8.33112 Longitude: 186.506 Instrument: VIS Captured: 2015-04-20 15:12 http://photojournal.jpl.nasa.gov/catalog/PIA19502

  12. OSCAT Eyes Hurricane Sandy

    NASA Image and Video Library

    2012-10-30

    This image shows ocean surface winds for Hurricane Sandy observed by the OSCAT radar scatterometer on the Indian Space Research Organization ISRO OceanSat-2 satellite. Colors indicate wind speed and arrows indicate direction.

  13. Surface and airborne evidence for plumes and winds on triton

    USGS Publications Warehouse

    Hansen, C.J.; McEwen, A.S.; Ingersoll, A.P.; Terrile, R.J.

    1990-01-01

    Aeolian features on Triton that were imaged during the Voyager Mission have been grouped. The term "aeolian feature" is broadly defined as features produced by or blown by the wind, including surface and airborne materials. Observations of the latitudinal distributions of the features probably associated with current activity (known plumes, crescent streaks, fixed terminator clouds, and limb haze with overshoot) all occur from latitude -37?? to latitude -62??. Likely indicators of previous activity (dark surface streaks) occur from latitude -5?? to -70??, but are most abundant from -15?? to -45??, generally north of currently active features. Those indicators which give information on wind direction and speed have been measured. Wind direction is a function of altitude. The predominant direction of the surface wind streaks is found to be between 40?? and 80?? measured clockwise from north. The average orientation of streaks in the northeast quadrant is 59??. Winds at 1- to 3-kilometer altitude are eastward, while those at >8 kilometers blow west.

  14. [Measurement of Speed and Direction of Ocean Surface Winds Using Quik Scat Scatterometer

    NASA Technical Reports Server (NTRS)

    Stiles, Bryan; Pollard, Brian

    2000-01-01

    The SeaWinds on QuikSCAT scatterometer was developed by NASA JPL to measure the speed and direction of ocean surface winds. Simulations performed to estimate the performance of the instrument prior to its launch have indicated that the mid-swath accuracy is worse than that of the rest of the swath. This behavior is a general characteristic of scanning pencil beam scatterometers. For SeaWinds, the accuracy of the rest of the swath, and the size of the swath are such that the instrument meets its science requirements despite mid-swath shortcomings. However, by understanding the problem at mid-swath, we can improve the performance there as well. We discuss the underlying causes of the problem in detail and propose a new wind retrieval algorithm which improves mid-swath performance. The directional discrimination ability of the instrument varies with cross track distance wind speed, and direction. By estimating the range of likely wind directions for each measurement cell, one can optimally apply information from neighboring cells where necessary in order to reduce random wind direction errors without significantly degrading the resolution of the resultant wind field. In this manner we are able to achieve mid-swath RMS wind direction errors as low as 15 degrees for low winds and 10 degrees for moderate to high winds, while at the same time preserving high resolution structures such as cyclones and fronts.

  15. Validating precision estimates in horizontal wind measurements from a Doppler lidar

    DOE PAGES

    Newsom, Rob K.; Brewer, W. Alan; Wilczak, James M.; ...

    2017-03-30

    Results from a recent field campaign are used to assess the accuracy of wind speed and direction precision estimates produced by a Doppler lidar wind retrieval algorithm. The algorithm, which is based on the traditional velocity-azimuth-display (VAD) technique, estimates the wind speed and direction measurement precision using standard error propagation techniques, assuming the input data (i.e., radial velocities) to be contaminated by random, zero-mean, errors. For this study, the lidar was configured to execute an 8-beam plan-position-indicator (PPI) scan once every 12 min during the 6-week deployment period. Several wind retrieval trials were conducted using different schemes for estimating themore » precision in the radial velocity measurements. Here, the resulting wind speed and direction precision estimates were compared to differences in wind speed and direction between the VAD algorithm and sonic anemometer measurements taken on a nearby 300 m tower.« less

  16. Revealing The Impact Of Climate Variability On The Wind Resource Using Data Mining Techniques

    NASA Astrophysics Data System (ADS)

    Clifton, A.; Lundquist, J. K.

    2011-12-01

    Wind turbines harvest energy from the wind. Winds at heights where industrial-scale turbines operate, up to 200 m above ground, experience a complex interaction between the atmosphere and the Earth's surface. Previous studies for a variety of locations have shown that the wind resource varies over time. In some locations, this variability can be related to large-scale climate oscillations as revealed in climate indices such as the El-Nino-Southern Oscillation (ENSO). These indices can be used to quantify climate change in the past, and can also be extracted from models of future climate. Understanding the correlation between climate indices and wind resources therefore allows us to understand how climate change may influence wind energy production. We present a new methodology for assessing relevant climate modes of oscillation at a given site in order to quantify future wind resource variability. We demonstrate the method on a 14-year record of 10-minute averaged wind speed and wind direction data from several levels of an 80m tower at the National Renewable Energy Laboratory (NREL) National Wind Technology Center near Boulder, Colorado. Data mining techniques (based on k-means clustering) identify 4 major groups of wind speed and direction. After removing annual means, each cluster was compared to a series of climate indices, including the Arctic Oscillation (AO) and Multivariate ENSO Index (MEI). Statistically significant relationships emerge between individual clusters and climate indices. At this location, this result is consistent with the MEI's relationship with other meteorological parameters, such as precipitation, in the Rocky Mountain Region. The presentation will illustrate these relationships between wind resource at this location and other relevant climate indices, and suggest how these relationships can provide a foundation for quantifying the potential future variability of wind energy production at this site and others.

  17. The impact of scatterometer wind data on global weather forecasting

    NASA Technical Reports Server (NTRS)

    Atlas, D.; Baker, W. E.; Kalnay, E.; Halem, M.; Woiceshyn, P. M.; Peteherych, S.

    1984-01-01

    The impact of SEASAT-A scatterometer (SASS) winds on coarse resolution atmospheric model forecasts was assessed. The scatterometer provides high resolution winds, but each wind can have up to four possible directions. One wind direction is correct; the remainder are ambiguous or "aliases'. In general, the effect of objectively dealiased-SASS data was found to be negligible in the Northern Hemisphere. In the Southern Hemisphere, the impact was larger and primarily beneficial when vertical temperature profile radiometer (VTPR) data was excluded. However, the inclusion of VTPR data eliminates the positive impact, indicating some redundancy between the two data sets.

  18. Comparative analysis of operational forecasts versus actual weather conditions in airline flight planning, volume 3

    NASA Technical Reports Server (NTRS)

    Keitz, J. F.

    1982-01-01

    The impact of more timely and accurate weather data on airline flight planning with the emphasis on fuel savings is studied. This volume of the report discusses the results of Task 3 of the four major tasks included in the study. Task 3 compares flight plans developed on the Suitland forecast with actual data observed by the aircraft (and averaged over 10 degree segments). The results show that the average difference between the forecast and observed wind speed is 9 kts. without considering direction, and the average difference in the component of the forecast wind parallel to the direction of the observed wind is 13 kts. - both indicating that the Suitland forecast underestimates the wind speeds. The Root Mean Square (RMS) vector error is 30.1 kts. The average absolute difference in direction between the forecast and observed wind is 26 degrees and the temperature difference is 3 degree Centigrade. These results indicate that the forecast model as well as the verifying analysis used to develop comparison flight plans in Tasks 1 and 2 is a limiting factor and that the average potential fuel savings or penalty are up to 3.6 percent depending on the direction of flight.

  19. Mars atmospheric circulation - Aspects from Viking Landers

    NASA Technical Reports Server (NTRS)

    Ryan, J. A.

    1985-01-01

    Winds measured by the two Viking Landers have been filtered and then compared with predictions from the general circulation model and to Orbiter observations of clouds and surface phenomena that indicate wind direction. This was done to determine the degree to which filtered winds may represent aspects of the general circulation. Excellent agreement was found between wind direction data from Lander 1 and the model predictions and Orbiter observations. For Lander 2, agreement was generally good, but there were periods of disagreement which indicate that the filtering did not remove other extraneous effects. It is concluded that Lander 1 gives a good representation of the general circulation at 22.5 deg N latitude but that Lander 2 is suspect. Most wind data from Lander 1 have yet to be analyzed. It appears that when analyzed these Lander 1 data (covering 3.5 Mars years) can provide information about interannual variations in the general circulation at the Lander latitude.

  20. Long-term forecasting of meteorological time series using Nonlinear Canonical Correlation Analysis (NLCCA)

    NASA Astrophysics Data System (ADS)

    Woldesellasse, H. T.; Marpu, P. R.; Ouarda, T.

    2016-12-01

    Wind is one of the crucial renewable energy sources which is expected to bring solutions to the challenges of clean energy and the global issue of climate change. A number of linear and nonlinear multivariate techniques has been used to predict the stochastic character of wind speed. A wind forecast with good accuracy has a positive impact on the reduction of electricity system cost and is essential for the effective grid management. Over the past years, few studies have been done on the assessment of teleconnections and its possible effects on the long-term wind speed variability in the UAE region. In this study Nonlinear Canonical Correlation Analysis (NLCCA) method is applied to study the relationship between global climate oscillation indices and meteorological variables, with a major emphasis on wind speed and wind direction, of Abu Dhabi, UAE. The wind dataset was obtained from six ground stations. The first mode of NLCCA is capable of capturing the nonlinear mode of the climate indices at different seasons, showing the symmetry between the warm states and the cool states. The strength of the nonlinear canonical correlation between the two sets of variables varies with the lead/lag time. The performance of the models is assessed by calculating error indices such as the root mean square error (RMSE) and Mean absolute error (MAE). The results indicated that NLCCA models provide more accurate information about the nonlinear intrinsic behaviour of the dataset of variables than linear CCA model in terms of the correlation and root mean square error. Key words: Nonlinear Canonical Correlation Analysis (NLCCA), Canonical Correlation Analysis, Neural Network, Climate Indices, wind speed, wind direction

  1. Estimates of oceanic surface wind speed and direction using orthogonal beam scatterometer measurements and comparison of recent sea scattering theories

    NASA Technical Reports Server (NTRS)

    Moore, R. K.; Fung, A. K.; Dome, G. J.; Birrer, I. J.

    1978-01-01

    The wind direction properties of radar backscatter from the sea were empirically modelled using a cosine Fourier series through the 4th harmonic in wind direction (referenced to upwind). A comparison with 1975 JONSWAP (Joint North Sea Wave Project) scatterometer data, at incidence angles of 40 and 65, indicates that effects to third and fourth harmonics are negligible. Another important result is that the Fourier coefficients through the second harmonic are related to wind speed by a power law expression. A technique is also proposed to estimate the wind speed and direction over the ocean from two orthogonal scattering measurements. A comparison between two different types of sea scatter theories, one type presented by the work of Wright and the other by that of Chan and Fung, was made with recent scatterometer measurements. It demonstrates that a complete scattering model must include some provisions for the anisotropic characteristics of the sea scatter, and use a sea spectrum which depends upon wind speed.

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Belu, Radian; Koracin, Darko

    The main objective of the study was to investigate spatial and temporal characteristics of the wind speed and direction in complex terrain that are relevant to wind energy assessment and development, as well as to wind energy system operation, management, and grid integration. Wind data from five tall meteorological towers located in Western Nevada, USA, operated from August 2003 to March 2008, used in the analysis. The multiannual average wind speeds did not show significant increased trend with increasing elevation, while the turbulence intensity slowly decreased with an increase were the average wind speed. The wind speed and direction weremore » modeled using the Weibull and the von Mises distribution functions. The correlations show a strong coherence between the wind speed and direction with slowly decreasing amplitude of the multiday periodicity with increasing lag periods. The spectral analysis shows significant annual periodicity with similar characteristics at all locations. The relatively high correlations between the towers and small range of the computed turbulence intensity indicate that wind variability is dominated by the regional synoptic processes. Knowledge and information about daily, seasonal, and annual wind periodicities are very important for wind energy resource assessment, wind power plant operation, management, and grid integration.« less

  3. Detection of oppositely directed reconnection jets in a solar wind current sheet

    NASA Astrophysics Data System (ADS)

    Davis, M. S.; Phan, T. D.; Gosling, J. T.; Skoug, R. M.

    2006-10-01

    We report the first two-spacecraft (Wind and ACE) detection of oppositely directed plasma jets within a bifurcated current sheet in the solar wind. The event occurred on January 3, 2003 and provides further direct evidence that such jets result from reconnection. The magnetic shear across the bifurcated current sheet at both Wind and ACE was ~150°, indicating that the magnetic shear must have been the same at the reconnection site located between the two spacecraft. These observations thus provide strong evidence for component merging with a guide field ~ 30% of the antiparallel field. The dimensionless reconnection rate based on the measured inflow was 0.03, implying fast reconnection.

  4. Detection of oppositely directed reconnection jets in a solar wind current sheet

    NASA Astrophysics Data System (ADS)

    Davis, M. S.; Phan, T. D.; Gosling, J. T.; Skoug, R. M.

    2006-12-01

    We report the first two-spacecraft (Wind and ACE) detection of oppositely directed plasma jets within a bifurcated current sheet in the solar wind. The event occurred on January 3, 2003 and provides further direct evidence that such jets result from reconnection. The magnetic shear across the bifurcated current sheet at both Wind and ACE was approximately 150 degrees, indicating that the magnetic shear must have been the same at the reconnection site located between the two spacecraft. These observations thus provide strong evidence for component merging with a guide field approximately 30% of the antiparallel field. The dimensionless reconnection rate based on the measured inflow was 0.03, implying fast reconnection.

  5. Momentum and particle transport in a nonhomogenous canopy

    NASA Astrophysics Data System (ADS)

    Gould, Andrew W.

    Turbulent particle transport through the air plays an important role in the life cycle of many plant pathogens. In this study, data from a field experiment was analyzed to explore momentum and particle transport within a grape vineyard. The overall goal of these experiments was to understand how the architecture of a sparse agricultural canopy interacts with turbulent flow and ultimately determines the dispersion of airborne fungal plant pathogens. Turbulence in the vineyard canopy was measured using an array of four sonic anemometers deployed at heights z/H 0.4, 0.9, 1.45, and 1.95 where z is the height of the each sonic and H is the canopy height. In addition to turbulence measurements from the sonic anemometers, particle dispersion was measured using inert particles with the approximate size and density of powdery mildew spores and a roto-rod impaction trap array. Measurements from the sonic anemometers demonstrate that first and second order statistics of the wind field are dependent on wind direction orientation with respect to vineyard row direction. This dependence is a result of wind channeling which transfers energy between the velocity components when the wind direction is not aligned with the rows. Although the winds have a strong directional dependence, spectra analysis indicates that the structure of the turbulent flow is not fundamentally altered by the interaction between wind direction and row direction. Examination of a limited number of particle release events indicates that the wind turning and channeling observed in the momentum field impacts particle dispersion. For row-aligned flow, particle dispersion in the direction normal to the flow is decreased relative to the plume spread predicted by a standard Gaussian plume model. For flow that is not aligned with the row direction, the plume is found to rotate in the same manner as the momentum field.

  6. Statistical and Spectral Analysis of Wind Characteristics Relevant to Wind Energy Assessment Using Tower Measurements in Complex Terrain

    DOE PAGES

    Belu, Radian; Koracin, Darko

    2013-01-01

    The main objective of the study was to investigate spatial and temporal characteristics of the wind speed and direction in complex terrain that are relevant to wind energy assessment and development, as well as to wind energy system operation, management, and grid integration. Wind data from five tall meteorological towers located in Western Nevada, USA, operated from August 2003 to March 2008, used in the analysis. The multiannual average wind speeds did not show significant increased trend with increasing elevation, while the turbulence intensity slowly decreased with an increase were the average wind speed. The wind speed and direction weremore » modeled using the Weibull and the von Mises distribution functions. The correlations show a strong coherence between the wind speed and direction with slowly decreasing amplitude of the multiday periodicity with increasing lag periods. The spectral analysis shows significant annual periodicity with similar characteristics at all locations. The relatively high correlations between the towers and small range of the computed turbulence intensity indicate that wind variability is dominated by the regional synoptic processes. Knowledge and information about daily, seasonal, and annual wind periodicities are very important for wind energy resource assessment, wind power plant operation, management, and grid integration.« less

  7. Effects of wind direction on coarse and fine particulate matter concentrations in southeast Kansas.

    PubMed

    Guerra, Sergio A; Lane, Dennis D; Marotz, Glen A; Carter, Ray E; Hohl, Carrie M; Baldauf, Richard W

    2006-11-01

    Field data for coarse particulate matter ([PM] PM10) and fine particulate matter (PM2.5) were collected at selected sites in Southeast Kansas from March 1999 to October 2000, using portable MiniVol particulate samplers. The purpose was to assess the influence on air quality of four industrial facilities that burn hazardous waste in the area located in the communities of Chanute, Independence, Fredonia, and Coffeyville. Both spatial and temporal variation were observed in the data. Variation because of sampling site was found to be statistically significant for PM10 but not for PM2.5. PM10 concentrations were typically slightly higher at sites located within the four study communities than at background sites. Sampling sites were located north and south of the four targeted sources to provide upwind and downwind monitoring pairs. No statistically significant differences were found between upwind and downwind samples for either PM10 or PM2.5, indicating that the targeted sources did not contribute significantly to PM concentrations. Wind direction can frequently contribute to temporal variation in air pollutant concentrations and was investigated in this study. Sampling days were divided into four classifications: predominantly south winds, predominantly north winds, calm/variable winds, and winds from other directions. The effect of wind direction was found to be statistically significant for both PM10 and PM2.5. For both size ranges, PM concentrations were typically highest on days with predominantly south winds; days with calm/variable winds generally produced higher concentrations than did those with predominantly north winds or those with winds from "other" directions. The significant effect of wind direction suggests that regional sources may exert a large influence on PM concentrations in the area.

  8. Flow direction measurement criteria and techniques planned for the 40- by 80-/80- x 120-foot wind tunnel integrated systems tests

    NASA Technical Reports Server (NTRS)

    Zell, P. T.; Hoffmann, J.; Sandlin, D. R.

    1985-01-01

    A study was performed in order to develop the criteria for the selection of flow direction indicators for use in the Integrated Systems Tests (ISTs) of the 40 by 80/80 by 120 Foot Wind Tunnel System. The problems, requirements, and limitations of flow direction measurement in the wind tunnel were investigated. The locations and types of flow direction measurements planned in the facility were discussed. A review of current methods of flow direction measurement was made and the most suitable technique for each location was chosen. A flow direction vane for each location was chosen. A flow direction vane that employs a Hall Effect Transducer was then developed and evaluated for application during the ISTs.

  9. Interplanetary and Interstellar Dust Observed by the Wind/WAVES Electric Field Instrument

    NASA Technical Reports Server (NTRS)

    Malaspina, David; Horanyi, M.; Zaslavsky, A.; Goetz, K.; Wilson, L. B., III; Kersten, K.

    2014-01-01

    Observations of hypervelocity dust particles impacting the Wind spacecraft are reported here for the first time using data from the WindWAVES electric field instrument. A unique combination of rotating spacecraft, amplitude-triggered high-cadence waveform collection, and electric field antenna configuration allow the first direct determination of dust impact direction by any spacecraft using electric field data. Dust flux and impact direction data indicate that the observed dust is approximately micron-sized with both interplanetary and interstellar populations. Nanometer radius dust is not detected by Wind during times when nanometer dust is observed on the STEREO spacecraft and both spacecraft are in close proximity. Determined impact directions suggest that interplanetary dust detected by electric field instruments at 1 AU is dominated by particles on bound trajectories crossing Earths orbit, rather than dust with hyperbolic orbits.

  10. A vertical perspective of Santa Ana winds in a canyon

    Treesearch

    Bill C. Ryan

    1969-01-01

    The cross-section analyses of the 3 days of weak Santa Ana conditions reveal how rapid changes in windspeed and direction may occur under these conditions. The analyses indicate the significant dip of the wind field down the lee side of the range even under relatively light wind conditions, and show how opposing wind systems interact on the lee side to allow rapidly...

  11. Marking airdromes

    NASA Technical Reports Server (NTRS)

    James, P

    1922-01-01

    Necessity of adopting for all aviation fields, civil or military, a single system of markers for giving the direction for starting and landing (with an automatic indicator of the direction of the wind) and of indicating the good part of the field.

  12. Dunes on Titan observed by Cassini Radar

    USGS Publications Warehouse

    Radebaugh, J.; Lorenz, R.D.; Lunine, J.I.; Wall, S.D.; Boubin, G.; Reffet, E.; Kirk, R.L.; Lopes, R.M.; Stofan, E.R.; Soderblom, L.; Allison, M.; Janssen, M.; Paillou, P.; Callahan, P.; Spencer, C.; ,

    2008-01-01

    Thousands of longitudinal dunes have recently been discovered by the Titan Radar Mapper on the surface of Titan. These are found mainly within ??30?? of the equator in optically-, near-infrared-, and radar-dark regions, indicating a strong proportion of organics, and cover well over 5% of Titan's surface. Their longitudinal duneform, interactions with topography, and correlation with other aeolian forms indicate a single, dominant wind direction aligned with the dune axis plus lesser, off-axis or seasonally alternating winds. Global compilations of dune orientations reveal the mean wind direction is dominantly eastwards, with regional and local variations where winds are diverted around topographically high features, such as mountain blocks or broad landforms. Global winds may carry sediments from high latitude regions to equatorial regions, where relatively drier conditions prevail, and the particles are reworked into dunes, perhaps on timescales of thousands to tens of thousands of years. On Titan, adequate sediment supply, sufficient wind, and the absence of sediment carriage and trapping by fluids are the dominant factors in the presence of dunes. ?? 2007 Elsevier Inc. All rights reserved.

  13. Wind Induced Sediment Resuspension in a Microtidal Estuary

    NASA Technical Reports Server (NTRS)

    Booth, J. G.; Miller, R. L.; McKee, B. A.; Leathers, R. A.

    1999-01-01

    Bottom sediment resuspension frequency, duration and extent (% of bottom sediments affected) were characterized for the fifteen month period from September 1995 to January 1997 for the Barataria Basin, LA. An empirical model of sediment resuspension as a function of wind speed, direction, fetch and water depth was derived from wave theory. Water column turbidity was examined by processing remotely sensed radiance information from visible and near-IR AVHRR imagery. Based on model predictions, wind induced resuspension occurred during all seasons of this study. Seasonal characteristics for resuspension reveal that late fall, winter and early spring are the periods of most frequent and intense resuspension. Model predictions of the critical wind speed required to induce resuspension indicate that winds of 4 m/s (averaged over all wind directions resuspend approximately 50% of bottom sediments in the water bodies examined. Winds of this magnitude (4 m/s) occurred for 80% of the time during the late fall, winter and early spring and for approximately 30% of the time during the summer. More than 50% of the bottom sedimets are resuspended throughout the year, indicating the importance of resuspension as a process affecting sediment and biogeochemical fluxes in the Barataria Basin.

  14. A wind-tunnel investigation of parameters affecting helicopter directional control at low speeds in ground effect

    NASA Technical Reports Server (NTRS)

    Yeager, W. T., Jr.; Young, W. H., Jr.; Mantay, W. R.

    1974-01-01

    An investigation was conducted in the Langley full-scale tunnel to measure the performance of several helicopter tail-rotor/fin configurations with regard to directional control problems encountered at low speeds in ground effect. Tests were conducted at wind azimuths of 0 deg to 360 deg in increments of 30 deg and 60 deg and at wind speeds from 0 to 35 knots. The results indicate that at certain combinations of wind speed and wind azimuth, large increases in adverse fin force require correspondingly large increases in the tail-rotor thrust, collective pitch, and power required to maintain yaw trim. Changing the tail-rotor direction of rotation to top blade aft for either a pusher tail rotor (tail-rotor wake blowing away from fin) or a tractor tail rotor (tail-rotor wake blowing against fin) will alleviate this problem. For a pusher tail rotor at 180 deg wind azimuth, increases in the fin/tail-rotor gap were not found to have any significant influence on the overall vehicle directional control capability. Changing the tail rotor to a higher position was found to improve tail-rotor performance for a fin-off configuration at a wind azimuth of 180 deg. A V-tail configuration with a pusher tail rotor with top blade aft direction of rotation was found to be the best configuration with regard to overall directional control capability.

  15. Relationship between rooftop and on-road concentrations of traffic-related pollutants in a busy street canyon: Ambient wind effects.

    PubMed

    Kwak, Kyung-Hwan; Lee, Sang-Hyun; Seo, Jaemyeong Mango; Park, Seung-Bu; Baik, Jong-Jin

    2016-01-01

    Rooftop and on-road measurements of O3, NO2, NOx, and CO concentrations were conducted to investigate the relationship between rooftop and on-road concentrations in a busy and shallow street canyon with an aspect ratio of ∼0.3 in Seoul, Republic of Korea, from 15 April to 1 May 2014. The median road-to-roof concentration ratios, correlation coefficients between rooftop and on-road concentrations, and temporal variations of rooftop and on-road concentrations are analyzed according to the rooftop wind directions which are two cross-canyon and two along-canyon directions. The analysis results indicate that the relationship is strong when the rooftop is situated on the downwind side rather than on the upwind side. Relative to the cross-canyon wind directions, one of the along-canyon wind directions can more enhance the relationship. A conceptual framework is proposed to explain the effect of ambient wind direction on the relationship between rooftop and on-road concentrations in a street canyon. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. An evaluation of ERTS data for oceanographic uses through Great Lakes studies

    NASA Technical Reports Server (NTRS)

    Strong, A. E. (Principal Investigator); Stumpf, H. G.

    1974-01-01

    The author has identified the following significant results. Prevailing wind direction on Lake Michigan is southwesterly, although during winter northwesterly stresses are common. Along the western shore the current favors a northward direction. ERTS-1 observations indicate that the southward-flowing current along the Michigan shoreline of the thumb is only reversed by southerly resultant wind stress. Along the Canadian shoreline, a northward current was observed north of Kettle Point. ERTS-1 data also reveal that a preferred southward-flowing current is found along the Detroit shoreline of Lake St. Clair. Eastward flow of surface water from the shallow western basin of Lake Erie into the middle basin is most obvious during northwesterly and northerly wind stresses. The reverse wind direction especially east and southeasterly, appear to hold the effluents from the Detroit and Maumee Rivers in the western basin. Across-lake winds from the north and south induce eddy-like circulation in surface waters of Lake Ontario. Counterclockwise alongshore flow persists in the western basin under most wind conditions.

  17. Wind Etching

    NASA Image and Video Library

    2016-08-09

    Today's VIS image is located in a region that has been heavily modified by wind action. The narrow ridge/valley system seen in this image are a feature called yardangs. Yardangs form when unidirectional winds blow across poorly cemented materials. Multiple yardang directions can indicate changes in regional wind regimes. Orbit Number: 64188 Latitude: -0.629314 Longitude: 206.572 Instrument: VIS Captured: 2016-06-03 01:20 http://photojournal.jpl.nasa.gov/catalog/PIA20799

  18. Ultrafine particle concentrations in and around idling school buses

    NASA Astrophysics Data System (ADS)

    Zhang, Qunfang; Fischer, Heidi J.; Weiss, Robert E.; Zhu, Yifang

    2013-04-01

    Unnecessary school bus idling increases children's exposure to diesel exhaust, but to what extent children are exposed to ultrafine particles (UFPs, diameter < 100 nm) in and around idling school buses remains unclear. This study employed nine school buses and simulated five scenarios by varying emissions source, wind direction, and window position. The purpose was to investigate the impact of idling on UFP number concentration and PM2.5 mass concentration inside and near school buses. Near the school buses, total particle number concentration increased sharply from engine off to engine on under all scenarios, by a factor of up to 26. The impact of idling on UFP number concentration inside the school buses depended on wind direction and window position: wind direction was important and statistically significant while the effect of window positions depended on wind direction. Under certain scenarios, idling increased in-cabin total particle number concentrations by a factor of up to 5.8, with the significant increase occurring in the size range of 10-30 nm. No significant change of in-cabin PM2.5 mass concentration was observed due to idling, regardless of wind direction and window position, indicating that PM2.5 is not a good indicator for primary diesel exhaust particle exposure. The deposition rates based on total particle number concentration inside school bus cabins varied between 1.5 and 5.0 h-1 across nine tested buses under natural convection conditions, lower than those of passenger cars but higher than those of indoor environments.

  19. Effects of prevailing winds on turbidity of a shallow estuary.

    PubMed

    Cho, Hyun Jung

    2007-06-01

    Estuarine waters are generally more turbid than lakes or marine waters due to greater algal mass and continual re-suspension of sediments. The varying effects of diurnal and seasonal prevailing winds on the turbidity condition of a wind-dominated estuary were investigated by spatial and statistical analyses of wind direction, water level, turbidity, chlorophyll a, and PAR (Photosynthetically Active Radiation) collected in Lake Pontchartrain, Louisiana, USA. The prolonged prevailing winds were responsible for the long-term, large-scale turbidity pattern of the estuary, whereas the short-term changes in wind direction had differential effects on turbidity and water level in varying locations. There were temporal and spatial changes in the relationship between vertical light attenuation coefficient (Kd) and turbidity, which indicate difference in phytoplankton and color also affect Kd. This study demonstrates that the effect of wind on turbidity and water level on different shores can be identified through system-specific analyses of turbidity patterns.

  20. Effects of Prevailing Winds on Turbidity of a Shallow Estuary

    PubMed Central

    Cho, Hyun Jung

    2007-01-01

    Estuarine waters are generally more turbid than lakes or marine waters due to greater algal mass and continual re-suspension of sediments. The varying effects of diurnal and seasonal prevailing winds on the turbidity condition of a wind-dominated estuary were investigated by spatial and statistical analyses of wind direction, water level, turbidity, chlorophyll a, and PAR (Photosynthetically Active Radiation) collected in Lake Pontchartrain, Louisiana, USA. The prolonged prevailing winds were responsible for the long-term, large-scale turbidity pattern of the estuary, whereas the short-term changes in wind direction had differential effects on turbidity and water level in varying locations. There were temporal and spatial changes in the relationship between vertical light attenuation coefficient (Kd) and turbidity, which indicate difference in phytoplankton and color also affect Kd. This study demonstrates that the effect of wind on turbidity and water level on different shores can be identified through system-specific analyses of turbidity patterns. PMID:17617683

  1. Aviation Emissions Impact Ambient Ultrafine Particle Concentrations in the Greater Boston Area.

    PubMed

    Hudda, N; Simon, M C; Zamore, W; Brugge, D; Durant, J L

    2016-08-16

    Ultrafine particles are emitted at high rates by jet aircraft. To determine the possible impacts of aviation activities on ambient ultrafine particle number concentrations (PNCs), we analyzed PNCs measured from 3 months to 3.67 years at three sites within 7.3 km of Logan International Airport (Boston, MA). At sites 4.0 and 7.3 km from the airport, average PNCs were 2- and 1.33-fold higher, respectively, when winds were from the direction of the airport compared to other directions, indicating that aviation impacts on PNC extend many kilometers downwind of Logan airport. Furthermore, PNCs were positively correlated with flight activity after taking meteorology, time of day and week, and traffic volume into account. Also, when winds were from the direction of the airport, PNCs increased with increasing wind speed, suggesting that buoyant aircraft exhaust plumes were the likely source. Concentrations of other pollutants [CO, black carbon (BC), NO, NO2, NOx, SO2, and fine particulate matter (PM2.5)] decreased with increasing wind speed when winds were from the direction of the airport, indicating a different dominant source (likely roadway traffic emissions). Except for oxides of nitrogen, other pollutants were not correlated with flight activity. Our findings point to the need for PNC exposure assessment studies to take aircraft emissions into consideration, particularly in populated areas near airports.

  2. Good Days, Bad Days: Wind as a Driver of Foraging Success in a Flightless Seabird, the Southern Rockhopper Penguin

    PubMed Central

    Dehnhard, Nina; Ludynia, Katrin; Poisbleau, Maud; Demongin, Laurent; Quillfeldt, Petra

    2013-01-01

    Due to their restricted foraging range, flightless seabirds are ideal models to study the short-term variability in foraging success in response to environmentally driven food availability. Wind can be a driver of upwelling and food abundance in marine ecosystems such as the Southern Ocean, where wind regime changes due to global warming may have important ecological consequences. Southern rockhopper penguins (Eudyptes chrysocome) have undergone a dramatic population decline in the past decades, potentially due to changing environmental conditions. We used a weighbridge system to record daily foraging mass gain (the difference in mean mass of adults leaving the colony in the morning and returning to the colony in the evening) of adult penguins during the chick rearing in two breeding seasons. We related the day-to-day variability in foraging mass gain to ocean wind conditions (wind direction and wind speed) and tested for a relationship between wind speed and sea surface temperature anomaly (SSTA). Foraging mass gain was highly variable among days, but did not differ between breeding seasons, chick rearing stages (guard and crèche) and sexes. It was strongly correlated between males and females, indicating synchronous changes among days. There was a significant interaction of wind direction and wind speed on daily foraging mass gain. Foraging mass gain was highest under moderate to strong winds from westerly directions and under weak winds from easterly directions, while decreasing under stronger easterly winds and storm conditions. Ocean wind speed showed a negative correlation with daily SSTA, suggesting that winds particularly from westerly directions might enhance upwelling and consequently the prey availability in the penguins' foraging areas. Our data emphasize the importance of small-scale, wind-induced patterns in prey availability on foraging success, a widely neglected aspect in seabird foraging studies, which might become more important with increasing changes in climatic variability. PMID:24236139

  3. On the Feasibility of Tracking the Monsoon History by Using Ancient Wind Direction Records

    NASA Astrophysics Data System (ADS)

    Gallego, D.; Ribera, P.; Peña-Ortiz, C.; Vega, I.; Gómez, F. D. P.; Ordoñez-Perez, P.; Garcia-Hererra, R.

    2015-12-01

    In this work, we use old wind direction records to reconstruct indices for the West African Monsoon (WAM) and the Indian Summer Monsoon (ISM). Since centuries ago, ships departing from the naval European powers circumnavigated Africa in their route to the Far East. Most of these ships took high-quality observations preserved in logbooks. We show that wind direction observations taken aboard ships can be used to track the seasonal wind reversal typical of monsoonal circulations. The persistence of the SW winds in the 20W-17W and 7N-13N region is highly correlated with the WAM strength and Sahel's precipitation. It has been possible to build a WAM index back to the 19th Century. Our results show that in the Sahel, the second half of the 19thCentury was significantly wetter than present day. The relation of the WAM with the ENSO cycle, and the Atlantic Multidecadal Oscillation was low and instable from the 1840s to the 1970s, when they abruptly suffered an unprecedented reinforcement which last up to the present day. The persistence of the SSW wind in the 60E-80E and 8N-12N area has been used to track the ISM onset since the 1880s. We found evidences of later than average onset dates during the 1900-1925 and 1970-1990 periods and earlier than average onset between 1940 and 1965. A significant relation between the ISM onset and the PDO restricted to shifts from negative to positive PDO phases has been found. The most significant contribution of our study is the fact that we have shown that it is possible to build consistent monsoon indices of instrumental character using solely direct observations of wind direction. Our indices have been generated by using data currently available in the ICOADS 2.5 database, but a large amount of wind observations for periods previous to the 20thcentury still remain not explored in thousands of logbooks preserved in British archives. The interest of unveil these data to track the monsoons for more than 200 -or even 300 years- it is difficult to exaggerate and will largely justify the time and economic costs of its digitation. This research was funded by the Spanish Ministerio de Economía y Competitividad through the project INCITE (CGL2013-44530-P).

  4. Computational study: The influence of omni-directional guide vane on the flow pattern characteristic around Savonius wind turbine

    NASA Astrophysics Data System (ADS)

    Wicaksono, Yoga Arob; Tjahjana, D. D. D. P.

    2017-01-01

    Standart Savonius wind turbine have a low performance such as low coefficient of power and low coefficient of torque compared with another type of wind turbine. This phenomenon occurs because the wind stream can cause the negative pressure at the returning rotor. To solve this problem, standard Savonius combined with Omni Directional Guide Vane (ODGV) proposed. The aim of this research is to study the influence of ODGV on the flow pattern characteristic around of Savonius wind turbine. The numerical model is based on the Navier-Stokes equations with the standard k-ɛ turbulent model. This equation solved by a finite volume discretization method. This case was analyzed by commercial computational fluid dynamics solver such as SolidWorks Flow Simulations. Simulations were performed at the different wind directions; there are 0°, 30°,60° at 4 m/s wind speed. The numerical method validated with the past experimental data. The result indicated that the ODGV able to augment air flow to advancing rotor and decrease the negative pressure in the upstream of returning rotor compared to the bare Savonius wind turbine.

  5. A note on the correlation between circular and linear variables with an application to wind direction and air temperature data in a Mediterranean climate

    NASA Astrophysics Data System (ADS)

    Lototzis, M.; Papadopoulos, G. K.; Droulia, F.; Tseliou, A.; Tsiros, I. X.

    2018-04-01

    There are several cases where a circular variable is associated with a linear one. A typical example is wind direction that is often associated with linear quantities such as air temperature and air humidity. The analysis of a statistical relationship of this kind can be tested by the use of parametric and non-parametric methods, each of which has its own advantages and drawbacks. This work deals with correlation analysis using both the parametric and the non-parametric procedure on a small set of meteorological data of air temperature and wind direction during a summer period in a Mediterranean climate. Correlations were examined between hourly, daily and maximum-prevailing values, under typical and non-typical meteorological conditions. Both tests indicated a strong correlation between mean hourly wind directions and mean hourly air temperature, whereas mean daily wind direction and mean daily air temperature do not seem to be correlated. In some cases, however, the two procedures were found to give quite dissimilar levels of significance on the rejection or not of the null hypothesis of no correlation. The simple statistical analysis presented in this study, appropriately extended in large sets of meteorological data, may be a useful tool for estimating effects of wind on local climate studies.

  6. Vertical profiles of the 3-D wind velocity retrieved from multiple wind lidars performing triple range-height-indicator scans

    DOE PAGES

    Debnath, Mithu; Iungo, G. Valerio; Ashton, Ryan; ...

    2017-02-06

    Vertical profiles of 3-D wind velocity are retrieved from triple range-height-indicator (RHI) scans performed with multiple simultaneous scanning Doppler wind lidars. This test is part of the eXperimental Planetary boundary layer Instrumentation Assessment (XPIA) campaign carried out at the Boulder Atmospheric Observatory. The three wind velocity components are retrieved and then compared with the data acquired through various profiling wind lidars and high-frequency wind data obtained from sonic anemometers installed on a 300 m meteorological tower. The results show that the magnitude of the horizontal wind velocity and the wind direction obtained from the triple RHI scans are generally retrieved withmore » good accuracy. Furthermore, poor accuracy is obtained for the evaluation of the vertical velocity, which is mainly due to its typically smaller magnitude and to the error propagation connected with the data retrieval procedure and accuracy in the experimental setup.« less

  7. Martian Dune Ripples as Indicators of Recent Surface Wind Patterns

    NASA Astrophysics Data System (ADS)

    Johnson, M.; Zimbelman, J. R.

    2015-12-01

    Sand dunes have been shown to preserve the most recent wind patterns in their ripple formations. This investigation continues the manual documentation of ripples on Martian dunes in order to assess surface wind flow. Study sites investigated must have clear HiRISE frames and be able to represent diverse locations across the surface, decided primarily by their spread of latitude and longitude values. Additionally, frames with stereo pairs are preferred because of their ability to create digital terrain models. This will assist in efforts to relate dune slopes and obstacles to ripple patterns. The search and analysis period resulted in 40 study sites with mapped ripples. Lines were drawn perpendicular to ripple crests across three adjacent ripples in order to document both ripple wavelength from line length and inferred wind direction from azimuth. It is not possible to infer a unique wind direction from ripple orientation alone and therefore these inferred directions have a 180 degree ambiguity. Initial results from all study sites support previous observations that the Martian surface has many dune types in areas with adequate sand supply. The complexity of ripple patterns varies greatly across sites as well as within individual sites. Some areas of uniform directionality for hundreds of kilometers suggest a unimodal wind regime while overlapping patterns suggest multiple dominant winds or seasonally varying winds. In most areas, form flow related to dune shape seems to have a large effect on orientation and must be considered along with the dune type. As long as the few steep slip faces on these small dunes are avoided, form flow can be considered the dominant cause of deviation from the regional wind direction. Regional results, wind roses, and comparisons to previous work will be presented for individual sites.

  8. NACA Transonic Wind-tunnel Test Sections

    NASA Technical Reports Server (NTRS)

    Wright, Ray H; Ward, Vernon G

    1955-01-01

    Report presents an approximate subsonic theory for the solid-blockage interference in circular wind tunnels with walls slotted in the direction of flow. This theory indicated the possibility of obtaining zero blockage interference. Tests in a circular slotted tunnel based on the theory confirmed the theoretical predictions.

  9. Hydrogen, helium, and other solar-wind components in lunar soil - Abundances and predictions

    NASA Technical Reports Server (NTRS)

    Taylor, Lawrence A.

    1990-01-01

    The lack of a shielding atmosphere on the moon permits solar-wind particles to impinge upon the lunar soil and become implanted into the various phases which comprise the soil. Relatively large quantities of solar-wind implanted hydrogen (50-100 ppm) and helium (10-50 ppm) are present. The measured parameter of I(s)FeO, a direct indicator of maturity and exposure age, can be used as a first approximation to predict the abundances of many solar-wind components in the soils. However, because ilmenite acts as a 'sponge' for the retention of certain elements, the TiO2 content of the soil is a better indicator for hydrogen and helium contents.

  10. Global composites of surface wind speeds in tropical cyclones based on a 12 year scatterometer database

    NASA Astrophysics Data System (ADS)

    Klotz, Bradley W.; Jiang, Haiyan

    2016-10-01

    A 12 year global database of rain-corrected satellite scatterometer surface winds for tropical cyclones (TCs) is used to produce composites of TC surface wind speed distributions relative to vertical wind shear and storm motion directions in each TC-prone basin and various TC intensity stages. These composites corroborate ideas presented in earlier studies, where maxima are located right of motion in the Earth-relative framework. The entire TC surface wind asymmetry is down motion left for all basins and for lower strength TCs after removing the motion vector. Relative to the shear direction, the motion-removed composites indicate that the surface wind asymmetry is located down shear left for the outer region of all TCs, but for the inner-core region it varies from left of shear to down shear right for different basin and TC intensity groups. Quantification of the surface wind asymmetric structure in further stratifications is a necessary next step for this scatterometer data set.

  11. Low-latitude Temperatures, Pressures, and Winds on Saturn from Cassini Radio Occultations

    NASA Astrophysics Data System (ADS)

    Flasar, F. M.; Schinder, P. J.; Kliore, A. J.; French, R. G.; Marouf, E. A.; Nagy, A.; Rappaport, N. J.; Anabtawi, A.; Asmar, S.; Barbinis, E.; Fleischman, D. U.; Goltz, G. L.; Johnston, D. V.; Rochblatt, D.; McGhee, C. A.

    2005-12-01

    We present results from 12 ingress and egress soundings done within 10 degrees of Saturn's equator. Above the 100-mbar level, near the tropopause, the vertical profiles of temperature are marked by undulatory structure that may be associated with vertically propagating waves. Below the 200-mbar level, in the upper troposphere, the vertical profiles are smoother, and the overall trend of temperatures is to increase away from the equator. This implies a decay of the zonal winds with altitude. The zonal winds can actually be inferred directly from the meridional gradient in pressure, without the need of a boundary condition on the winds. We summarize results of these calculations. This is of interest because recent cloud tracking studies have indicated lower equatorial winds than found earlier, but whether this indicates a real change in the winds at a given altitude or a change in the altitudes of the features tracked is controversial.

  12. SeaWinds - Oceans, Land, Polar Regions

    NASA Technical Reports Server (NTRS)

    1999-01-01

    The SeaWinds scatterometer on the QuikScat satellite makes global radar measurements -- day and night, in clear sky and through clouds. The radar data over the oceans provide scientists and weather forecasters with information on surface wind speed and direction. Scientists also use the radar measurements directly to learn about changes in vegetation and ice extent over land and polar regions.

    This false-color image is based entirely on SeaWinds measurements obtained over oceans, land, and polar regions. Over the ocean, colors indicate wind speed with orange as the fastest wind speeds and blue as the slowest. White streamlines indicate the wind direction. The ocean winds in this image were measured by SeaWinds on September 20, 1999. The large storm in the Atlantic off the coast of Florida is Hurricane Gert. Tropical storm Harvey is evident as a high wind region in the Gulf of Mexico, while farther west in the Pacific is tropical storm Hilary. An extensive storm is also present in the South Atlantic Ocean near Antarctica.

    The land image was made from four days of SeaWinds data with the aid of a resolution enhancement algorithm developed by Dr. David Long at Brigham Young University. The lightest green areas correspond to the highest radar backscatter. Note the bright Amazon and Congo rainforests compared to the dark Sahara desert. The Amazon River is visible as a dark line running horizontally though the bright South American rain forest. Cities appear as bright spots on the images, especially in the U.S. and Europe.

    The image of Greenland and the north polar ice cap was generated from data acquired by SeaWinds on a single day. In the polar region portion of the image, white corresponds to the largest radar return, while purple is the lowest. The variations in color in Greenland and the polar ice cap reveal information about the ice and snow conditions present.

    NASA's Earth Science Enterprise is a long-term research and technology program designed to examine Earth's land, oceans, atmosphere, ice and life as a total integrated system. JPL is a division of the California Institute of Technology, Pasadena, CA.

  13. Guidelines for Integrating Helicopter Assets into Emergency Planning

    DTIC Science & Technology

    1991-07-01

    maximum. 35 TABLE 2 HELIPORT INFORMATION SOURCES Professional-and/or industry associations Airborne Law Enforcement Association ( ALEA ) 8060 Balboa Boulevard...Department of Transportation/ Federal Aviation Adminisration ATTN: Hugh Lyon (ASW-611C) Fort Worth, TX 76193-0611 81-624-5600 FAA Northwest Mountain ...indication of wind speed and direction. in areas with swirling or varying winds, such as near buildings or in mountainous areas, two or more wind

  14. Spatio-temporal analysis of gyres in oriented lakes on the Arctic Coastal Plain of northern Alaska based on remotely sensed images

    USGS Publications Warehouse

    Zhan, Shengan; Beck, Richard A.; Hinkel, Kenneth M.; Liu, Hongxing; Jones, Benjamin M.

    2014-01-01

    The formation of oriented thermokarst lakes on the Arctic Coastal Plain of northern Alaska has been the subject of debate for more than half a century. The striking elongation of the lakes perpendicular to the prevailing wind direction has led to the development of a preferred wind-generated gyre hypothesis, while other hypotheses include a combination of sun angle, topographic aspect, and/or antecedent conditions. A spatio-temporal analysis of oriented thermokarst lake gyres with recent (Landsat 8) and historical (Landsat 4, 5, 7 and ASTER) satellite imagery of the Arctic Coastal Plain of northern Alaska indicates that wind-generated gyres are both frequent and regionally extensive. Gyres are most common in lakes located near the Arctic coast after several days of sustained winds from a single direction, typically the northeast, and decrease in number landward with decreasing wind energy. This analysis indicates that the conditions necessary for the Carson and Hussey (1962) wind-generated gyre for oriented thermokarst lake formation are common temporally and regionally and correspond spatially with the geographic distribution of oriented lakes on the Arctic Coastal Plain. Given an increase in the ice-free season for lakes as well as strengthening of the wind regime, the frequency and distribution of lake gyres may increase. This increase has implications for changes in northern high latitude aquatic ecosystems, particularly if wind-generated gyres promote permafrost degradation and thermokarst lake expansion.

  15. Memnonia Sulci

    NASA Image and Video Library

    2017-01-09

    Today's VIS image shows some of the extensive wind etched terrain in Memnonia Sulci, located south west of Olympus Mons. The linear ridges are called yardangs and form by wind removal of semi-cemented material. The ridges are parallel to wind direction, so the predominate winds that created the yardangs in this image blew NW/SE. At the bottom of the image several of the ridges have been eroded into smaller ridges aligned perpendicular to the large yardangs, indicating winds at a different angle. Orbit Number: 66197 Latitude: -5.91796 Longitude: 183.886 Instrument: VIS Captured: 2016-11-15 13:08 http://photojournal.jpl.nasa.gov/catalog/PIA21283

  16. Numerical modeling of wind turbine aerodynamic noise in the time domain.

    PubMed

    Lee, Seunghoon; Lee, Seungmin; Lee, Soogab

    2013-02-01

    Aerodynamic noise from a wind turbine is numerically modeled in the time domain. An analytic trailing edge noise model is used to determine the unsteady pressure on the blade surface. The far-field noise due to the unsteady pressure is calculated using the acoustic analogy theory. By using a strip theory approach, the two-dimensional noise model is applied to rotating wind turbine blades. The numerical results indicate that, although the operating and atmospheric conditions are identical, the acoustical characteristics of wind turbine noise can be quite different with respect to the distance and direction from the wind turbine.

  17. Airborne pollen assemblages and weather regime in the central-eastern Loess Plateau, China

    NASA Astrophysics Data System (ADS)

    Li, Yuecong; Ge, Yawen; Xu, Qinghai; Bunting, Jane M.; Lv, Suqing; Wang, Junting; Li, Zetao

    2015-04-01

    This paper presents the results of pollen trapping studies designed to quantify the pollen assemblages carried in the winds of the Loess Plateau in Luochuan and Hunyuan. The one-year-collection samples analysis results show that pollen assemblages can be more sensitive to the change of climate than the vegetation composition, because of the change of pollen production. The analysis results of pollen traps in different weather regimes indicate that the pollen influx coming from dust weather contribute more to the total pollen influx than that coming from non-dust weather. The wind speed is the most important influenced factor to pollen assemblages, then the mean temperature and the mean relative humidity, the wind direction also contributes some. Strong wind coming from dust direction can make the percent and influx of Artemisia and Chenopodiaceae increase obviously with averagely higher than over 2.7 times in dust weather than in non-dust samples. The influences of wind speed and wind direction are not serious to some arboreal pollen such as Rosaceae, Quercus, Betula, Pinus and Ostryopsis, which are mainly influenced by temperature or the relative humidity such as Salix, Hippophae, Carpinus, Brassicaceae, Cupressaceae, Fabaceae.

  18. Experimenting with sodar in support of emergency preparedness at Three Mile Island-1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Heck, W.J.

    1989-01-01

    In November 1988 at Three Mile Island Unit 1 (TMI-1), GPU Nuclear successfully completed the annual drill-for-grade that, from a modeling point of view, broke new ground for this plant. The meteorological and modeling aspects of the drill scenario were unprecedented for two reasons. First, the plume was buoyant and rose far above the height of the meteorological tower located at TMI. Second, the wind direction data from the meteorological tower were not representative of the wind direction at plume height. In the drill scenario, the buoyant plume resulted from a steam generator tube rupture where the steam ejects directlymore » into the atmosphere via safety relief valves. Plume modeling indicated that the plume would rise to 400 ft, given the scenario meteorology. Wind data from the on-site meteorological tower, however, was only available up to 150 ft. Comparisons of sodar and tower winds were made for various weather conditions. Sodar results were studied in detail during light, moderate, and high winds; various wind directions; occurrences of rain and snow; and by time of day to determine effects of diurnal meteorological conditions on sodar performance.« less

  19. Long range lidar data processing for validating LES of wind turbine wakes

    NASA Astrophysics Data System (ADS)

    Trabucchi, D.; van Dooren, M.; Vollmer, L.; Schneemann, J.; Trujillo, J. J.; Witha, B.; Kühn, M.

    2014-12-01

    Scanning wind lidars offer the possibility to compare full-scale measurements in the wake of a wind turbine with LES wind fields calculated for the same test case. Due to the novelty and the peculiarity of lidar measurements, a comparison between experimental data and simulation results is non-trivial and several methods can be applied. This study presents validation methods for single and dual-doppler lidar measurements respectively.Consecutive azimuthal scans - commonly indicated as Plan Position Indicator (PPI) - at a low fixed elevation and centered on the wind turbine wake provide the radial wind speed, i.e. the wind component along the laser beam, on an almost flat polar grid. This data can be directly compared with the radial wind speed evaluated at the measurement point from the simulated wind field. This approach provides a detailed spatial description of the wind field and can be applied to averaged data for steady analysis. For the comparison with LES results, time average and spatial interpolation of the computed wind field are needed. Moreover, a proper wind direction should be chosen to evaluate the radial wind speed.With two lidars performing consecutive PPI scans over the same region from different places it is possible to estimate the horizontal wind field where the scanned regions overlap. Due to the limits in the synchronization of the PPI scans by the lidars, only steady analysis based on time averaged data can be done. A horizontal grid based on the one used for the LES is overlapped to the region covered by the two non-co-planar scans. The horizontal wind field at a considered point can be evaluated solving the system given by at least two non-aligned radial directions about this point. For each node, the data sampled by the lidars in a well defined volume during the considered time interval is used to write this system. Moreover, a discrete approximation of the continuity equation is applied to link the solutions for all the grid nodes. Instead of an interpolation on the LES wind field, this approach requires a temporal and vertical average over the considered time and height intervals.The application of these two approaches to lidar measurements performed in the offshore wind farm »alpha ventus« is presented in this work. The results are going to be used to evaluate different wind turbine wake models applied to LES.

  20. Memnonia Sulci

    NASA Image and Video Library

    2016-10-24

    The elongated hills in this VIS image are a feature termed yardangs. Yardangs are formed by wind activity in regions where the surface material is not well cemented. The elongation indicates the direction of the wind. Orbit Number: 65299 Latitude: -10.1078 Longitude: 183.91 Instrument: VIS Captured: 2016-09-02 13:39 http://photojournal.jpl.nasa.gov/catalog/PIA21019

  1. Late Pleistocene eolian features in southeastern Maryland and Chesapeake Bay region indicate strong WNW-NW winds accompanied growth of the Laurentide Ice Sheet

    USGS Publications Warehouse

    Markewich, H.W.; Litwin, R.J.; Pavich, M.J.; Brook, G.A.

    2009-01-01

    Inactive parabolic dunes are present in southeastern Maryland, USA, along the east bank of the Potomac River. More elongate and finer-grained eolian deposits and paha-like ridges characterize the Potomac River-Patuxent River upland and the west side of Chesapeake Bay. These ridges are streamlined erosional features, veneered with eolian sediment and interspersed with dunes in the low-relief headwaters of Potomac- and Patuxent-river tributaries. Axis data for the dunes and ridges indicate formation by WNW-NW winds. Optically stimulated luminescence and radiocarbon age data suggest dune formation from ??? 33-15??ka, agreeing with the 30-13??ka ages Denny, C.S., Owens, J.P., Sirkin, L., Rubin, M., 1979. The Parsonburg Sand in the central Delmarva Peninsula, Maryland and Delaware. U.S. Geol. Surv. Prof. Pap. 1067-B, 16??pp. suggested for eolian deposits east of Chesapeake Bay. Age range and paleowind direction(s) for eolian features in the Bay region approximate those for late Wisconsin loess in the North American midcontinent. Formation of midcontinent loess and Bay-region eolian features was coeval with rapid growth of the Laurentide Ice Sheet and strong cooling episodes (??18O minima) evident in Greenland ice cores. Age and paleowind-direction coincidence, for eolian features in the midcontinent and Bay region, indicates strong mid-latitude WNW-NW winds for several hundred kilometers south of the Laurentide glacial terminus that were oblique to previously simulated anticyclonic winds for the last glacial maximum.

  2. Statistical Short-Range Guidance for Peak Wind Speed Forecasts on Kennedy Space Center/Cape Canaveral Air Force Station: Phase I Results

    NASA Technical Reports Server (NTRS)

    Lambert, Winifred C.; Merceret, Francis J. (Technical Monitor)

    2002-01-01

    This report describes the results of the ANU's (Applied Meteorology Unit) Short-Range Statistical Forecasting task for peak winds. The peak wind speeds are an important forecast element for the Space Shuttle and Expendable Launch Vehicle programs. The Keith Weather Squadron and the Spaceflight Meteorology Group indicate that peak winds are challenging to forecast. The Applied Meteorology Unit was tasked to develop tools that aid in short-range forecasts of peak winds at tower sites of operational interest. A 7 year record of wind tower data was used in the analysis. Hourly and directional climatologies by tower and month were developed to determine the seasonal behavior of the average and peak winds. In all climatologies, the average and peak wind speeds were highly variable in time. This indicated that the development of a peak wind forecasting tool would be difficult. Probability density functions (PDF) of peak wind speed were calculated to determine the distribution of peak speed with average speed. These provide forecasters with a means of determining the probability of meeting or exceeding a certain peak wind given an observed or forecast average speed. The climatologies and PDFs provide tools with which to make peak wind forecasts that are critical to safe operations.

  3. Imprint of the Sun’s Evolving Polar Winds on IBEX Energetic Neutral Atom All-sky Observations of the Heliosphere

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zirnstein, E. J.; McComas, D. J.; Dayeh, M. A.

    2017-09-01

    With 7 years of Interstellar Boundary Explorer ( IBEX ) measurements of energetic neutral atoms (ENAs), IBEX has shown a clear correlation between dynamic changes in the solar wind and the heliosphere’s response in the formation of ENAs. In this paper, we investigate temporal variations in the latitudinal-dependent ENA spectrum from IBEX and their relationship to the solar wind speed observed at 1 au. We find that the variation in latitude of the transition in ENA spectral indices between low (≲1.8) and high (≳1.8) values, as well as the distribution of ENA spectral indices at high and low latitudes, correlatesmore » well with the evolution of the fast and slow solar wind latitudinal structure observed near 1 au. This correlation includes a delay due to the time it takes the solar wind to propagate to the termination shock and into the inner heliosheath, and for ENAs to be generated via charge-exchange and travel back toward 1 au. Moreover, we observe a temporal asymmetry in the steepening of the ENA spectrum in the northern and southern hemispheres, consistent with asymmetries observed in the solar wind and polar coronal holes. While this asymmetry is observed near the upwind direction of the heliosphere, it is not yet observed in the tail direction, suggesting a longer line-of-sight integration distance or different processing of the solar wind plasma downstream of the termination shock.« less

  4. A free-trailing vane flow direction indicator employing a linear output Hall effect transducer

    NASA Technical Reports Server (NTRS)

    Zell, Peter T.; Mcmahon, Robert D.

    1988-01-01

    The Hall effect vane (HEV) was developed to measure flow angularity in the NASA 40-by-80-foot and 80-by-120-foot wind tunnels. This indicator is capable of sensing flow direction at air speeds from 5 to 300 knots and over a + or - 40 deg angle range with a resolution of 0.1 deg. A free-trailing vane configuration employing a linear output Hall effect transducer as a shaft angle resolver was used. The current configuration of the HEV is designed primarily for wind tunnel calibration testing; however, other potential applications include atmospheric, flight or ground research testing. The HEV met initial design requirements.

  5. Ionospheric plasma cloud dynamics

    NASA Technical Reports Server (NTRS)

    1976-01-01

    Measurements of the thermospheric neutral wind and ionospheric drift made at Eglin AFB, Florida and Kwajalein Atoll are discussed. The neutral wind measurements at Eglin had little variation over a period of four years for moderate magnetic activity (Kp 4); the ionospheric drifts are small. Evidence is presented that indicates that increased magnetic activity has a significant effect on the neutral wind magnitude and direction at this midlatitude station. The neutral wind at dusk near the equator is generally small although in one case out of seven it was significantly larger. It is described how observations of large barium releases can be used to infer the degree of electrodynamic coupling of ion clouds to the background ionosphere. Evidence is presented that indicates that large barium releases are coupled to the conjugate ionosphere at midlatitudes.

  6. Hardwall acoustical characteristics and measurement capabilities of the NASA Lewis 9 x 15 foot low speed wind tunnel

    NASA Technical Reports Server (NTRS)

    Rentz, P. E.

    1976-01-01

    Experimental evaluations of the acoustical characteristics and source sound power and directionality measurement capabilities of the NASA Lewis 9 x 15 foot low speed wind tunnel in the untreated or hardwall configuration were performed. The results indicate that source sound power estimates can be made using only settling chamber sound pressure measurements. The accuracy of these estimates, expressed as one standard deviation, can be improved from + or - 4 db to + or - 1 db if sound pressure measurements in the preparation room and diffuser are also used and source directivity information is utilized. A simple procedure is presented. Acceptably accurate measurements of source direct field acoustic radiation were found to be limited by the test section reverberant characteristics to 3.0 feet for omni-directional and highly directional sources. Wind-on noise measurements in the test section, settling chamber and preparation room were found to depend on the sixth power of tunnel velocity. The levels were compared with various analytic models. Results are presented and discussed.

  7. Venus' upper atmospheric dynamical structure from ground-based observations shortly before and after Venus' inferior conjunction 2009

    NASA Astrophysics Data System (ADS)

    Sornig, M.; Sonnabend, G.; Stupar, D.; Kroetz, P.; Nakagawa, H.; Mueller-Wodarg, I.

    2013-07-01

    Investigations on the dynamical structure of Venus upper atmosphere were carried out by infrared heterodyne Doppler wind measurements shortly before and after the venusian inferior conjunction on March 27, 2009. The Cologne Tuneable Heterodyne Infrared Spectrometer (THIS) has been installed at the McMath-Pierce Solar Telescope on Kitt Peak, Arizona, USA to detect non-local thermodynamical equilibrium (non-LTE) emission lines of CO2 at a wavelength of 10.5 μm. These solar induced emission lines originate at a pressure level of 1 μbar corresponding to an altitude level of 110 ± 10 km. From the frequency position of the spectral lines we directly derived Doppler winds without any additional information. The high spatial resolution with a field-of-view of 1.6 arcsec compared to an apparent diameter of Venus of 57 arcsec allowed to collect information at different latitudes of the illuminated planet. Line of sight wind velocities between 189 ± 11 m/s and 41 ± 14 m/s were detected along the illuminated evening (western) limb in March and along the bright morning (eastern) limb in April. Single observations at the evening and morning terminator do not show a systematic difference of wind velocities. The measured wind is uniform at low and mid latitudes. In March a lower mean value of 134 ± 1 m/s was found compared to April where we retrieved a value of 141 ± 1 m/s. Poleward of a latitude of 50° we observed a strong decrease in wind speed down to 41 ± 14 m/s. In addition to the pure line of sight wind velocities we used the observing geometry for additional interpretations regarding a global flow from the subsolar point to the antisolar point (SS-AS flow) and a global retrograde superrotational zonal wind (RSZ). The estimations indicate a dominating SS-AS flow with a maximum wind velocity at the terminator of 138 ± 1 m/s at low and mid latitudes. No indication of a global RSZ component was found. Corresponding wind values for the latter yield wind velocities in the zonal direction between+20 m/s (retrograde direction) and -20 m/s (prograde direction) at different latitudes. An inversion of the wind direction is in disagreement with a global RSZ behavior. The comprehensive dataset was used to investigate short term wind variabilities and changes up to 58 m/s within few days were found. We included a detailed comparison of concurrent single position observations with sub-millimeter measurements (Clancy, R.T., Sandor, B.J., Moriarty-Schieven, G. [2012]. Icarus 217, 794-812) suggesting a cross terminator gradient at certain latitudes. A detailed interpretation of the observed time dependent behavior by global circulation models including wave activities will be addressed in future work.

  8. Microphone directionality, pre-emphasis filter, and wind noise in cochlear implants.

    PubMed

    Chung, King; McKibben, Nicholas

    2011-10-01

    Wind noise can be a nuisance or a debilitating masker for cochlear implant users in outdoor environments. Previous studies indicated that wind noise at the microphone/hearing aid output had high levels of low-frequency energy and the amount of noise generated is related to the microphone directionality. Currently, cochlear implants only offer either directional microphones or omnidirectional microphones for users at-large. As all cochlear implants utilize pre-emphasis filters to reduce low-frequency energy before the signal is encoded, effective wind noise reduction algorithms for hearing aids might not be applicable for cochlear implants. The purposes of this study were to investigate the effect of microphone directionality on speech recognition and perceived sound quality of cochlear implant users in wind noise and to derive effective wind noise reduction strategies for cochlear implants. A repeated-measure design was used to examine the effects of spectral and temporal masking created by wind noise recorded through directional and omnidirectional microphones and the effects of pre-emphasis filters on cochlear implant performance. A digital hearing aid was programmed to have linear amplification and relatively flat in-situ frequency responses for the directional and omnidirectional modes. The hearing aid output was then recorded from 0 to 360° at flow velocities of 4.5 and 13.5 m/sec in a quiet wind tunnel. Sixteen postlingually deafened adult cochlear implant listeners who reported to be able to communicate on the phone with friends and family without text messages participated in the study. Cochlear implant users listened to speech in wind noise recorded at locations that the directional and omnidirectional microphones yielded the lowest noise levels. Cochlear implant listeners repeated the sentences and rated the sound quality of the testing materials. Spectral and temporal characteristics of flow noise, as well as speech and/or noise characteristics before and after the pre-emphasis filter, were analyzed. Correlation coefficients between speech recognition scores and crest factors of wind noise before and after pre-emphasis filtering were also calculated. Listeners obtained higher scores using the omnidirectional than the directional microphone mode at 13.5 m/sec, but they obtained similar speech recognition scores for the two microphone modes at 4.5 m/sec. Higher correlation coefficients were obtained between speech recognition scores and crest factors of wind noise after pre-emphasis filtering rather than before filtering. Cochlear implant users would benefit from both directional and omnidirectional microphones to reduce far-field background noise and near-field wind noise. Automatic microphone switching algorithms can be more effective if the incoming signal were analyzed after pre-emphasis filters for microphone switching decisions. American Academy of Audiology.

  9. Earth aeolian wind streaks: Comparison to wind data from model and stations

    NASA Astrophysics Data System (ADS)

    Cohen-Zada, A. L.; Maman, S.; Blumberg, D. G.

    2017-05-01

    Wind streak is a collective term for a variety of aeolian features that display distinctive albedo surface patterns. Wind streaks have been used to map near-surface winds and to estimate atmospheric circulation patterns on Mars and Venus. However, because wind streaks have been studied mostly on Mars and Venus, much of the knowledge regarding the mechanism and time frame of their formation and their relationship to the atmospheric circulation cannot be verified. This study aims to validate previous studies' results by a comparison of real and modeled wind data with wind streak orientations as measured from remote-sensing images. Orientations of Earth wind streaks were statistically correlated to resultant drift direction (RDD) values calculated from reanalysis and wind data from 621 weather stations. The results showed good agreement between wind streak orientations and reanalysis RDD (r = 0.78). A moderate correlation was found between the wind streak orientations and the weather station data (r = 0.47); a similar trend was revealed on a regional scale when the analysis was performed by continent, with r ranging from 0.641 in North America to 0.922 in Antarctica. At sites where wind streak orientations did not correspond to the RDDs (i.e., a difference of 45°), seasonal and diurnal variations in the wind flow were found to be responsible for deviation from the global pattern. The study thus confirms that Earth wind streaks were formed by the present wind regime and they are indeed indicative of the long-term prevailing wind direction on global and regional scales.

  10. Thermal responses and perceptions under distinct ambient temperature and wind conditions.

    PubMed

    Shimazaki, Yasuhiro; Yoshida, Atsumasa; Yamamoto, Takanori

    2015-01-01

    Wind conditions are widely recognized to influence the thermal states of humans. In this study, we investigated the relationship between wind conditions and thermal perception and energy balance in humans. The study participants were exposed for 20 min to 3 distinct ambient temperatures, wind speeds, and wind angles. During the exposure, the skin temperatures as a physiological reaction and mental reactions of the human body were measured and the energy balance was calculated based on the human thermal-load method. The results indicate that the human thermal load is an accurate indicator of human thermal states under all wind conditions. Furthermore, wind speed and direction by themselves do not account for the human thermal experience. Because of the thermoregulation that occurs to prevent heat loss and protect the core of the body, a low skin temperature was maintained and regional differences in skin temperature were detected under cool ambient conditions. Thus, the human thermal load, which represents physiological parameters such as skin-temperature change, adequately describes the mixed sensation of the human thermal experience. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Studies of the Lateral-Directional Flying Qualities of a Tandem Helicopter in Forward Flight

    NASA Technical Reports Server (NTRS)

    Amer, Kenneth B; Tapscott, Robert J

    1954-01-01

    An investigation of the lateral-directional flying qualities of a tandem-rotor helicopter in forward flight was undertaken to determine desirable goals for helicopter lateral-directional flying qualities and possible methods of achieving these goals in the tandem-rotor helicopter. Comparison between directional stability as measured in flight and rotor-off model tests in a wind tunnel shows qualitative agreement and, hence, indicates such wind-tunnel test, despite the absence of the rotors, to be one effective method of studying means of improving the directional stability of the tandem helicopter. Flight-test measurements of turns and oscillations, in conjunction with analytical studies, suggest possible practical methods of achieving the goals of satisfactory turn and oscillatory characteristics in the tandem helicopter.

  12. Statistical distribution of wind speeds and directions globally observed by NSCAT

    NASA Astrophysics Data System (ADS)

    Ebuchi, Naoto

    1999-05-01

    In order to validate wind vectors derived from the NASA scatterometer (NSCAT), statistical distributions of wind speeds and directions over the global oceans are investigated by comparing with European Centre for Medium-Range Weather Forecasts (ECMWF) wind data. Histograms of wind speeds and directions are calculated from the preliminary and reprocessed NSCAT data products for a period of 8 weeks. For wind speed of the preliminary data products, excessive low wind distribution is pointed out through comparison with ECMWF winds. A hump at the lower wind speed side of the peak in the wind speed histogram is discernible. The shape of the hump varies with incidence angle. Incompleteness of the prelaunch geophysical model function, SASS 2, tentatively used to retrieve wind vectors of the preliminary data products, is considered to cause the skew of the wind speed distribution. On the contrary, histograms of wind speeds of the reprocessed data products show consistent features over the whole range of incidence angles. Frequency distribution of wind directions relative to spacecraft flight direction is calculated to assess self-consistency of the wind directions. It is found that wind vectors of the preliminary data products exhibit systematic directional preference relative to antenna beams. This artificial directivity is also considered to be caused by imperfections in the geophysical model function. The directional distributions of the reprocessed wind vectors show less directivity and consistent features, except for very low wind cases.

  13. On the nature of low-frequency currents over a shallow area of the southern coast of the Gulf of Finland

    NASA Astrophysics Data System (ADS)

    Lilover, M.-J.; Pavelson, J.; Kõuts, T.

    2014-01-01

    This study aims to explain those factors influencing low-frequency currents in a shallow unstratified sea with complex topography. Current velocity measurements using a bottom-mounted ADCP, deployed at 8 m depth on the slope of Naissaar Bank (northern entrance to the Tallinn Bay, Gulf of Finland), were performed over five weeks in late autumn 2008. A quasi-steady current from nine sub-periods (two weeks) was relatively well correlated with wind (mean correlation coefficient of 0.70). During moderate to fresh winds, the current is veered to the right relative to the wind direction, by angles in the range of 14-38°. The flow is directed to the left, relative to the wind direction in stronger wind conditions, indicating evidence of topographic forcing. The observed current was reasonably in accordance with the flow predicted by the classical Ekman model. The modelled current speeds (wind speeds < 11 m s- 1) appear to be overestimated by 3-6 cm s- 1, whilst the observed rotation angles were mostly less than those predicted by the model. Inclusion of barotropic forcing to the Ekman model improved its performance. The discrepancies between the model and observations are discussed in terms of topographic steering, baroclinic effect and surface wave induced forcing.

  14. ELECTRONIC BIVANE WIND DIRECTION INDICATOR

    DOEpatents

    Moses, H.

    1961-05-01

    An apparatus is described for determining and recording three dimensional wind vectors. The apparatus comprises a rotatably mounted azimuthal wind component sensing head and an elevational wind component sensing head mounted to the azimuthal head and adapted to rotate therewith in the azimuthal plane and independently in the elevational plane. A heat source and thermocouples disposed thereabout are mounted within each of the sensing heads, the thermocouples providing electrical signals responsive to the temperature differential created by the passage of air through the sensing tuhes. The thermocouple signals are applied to drive mechanisms which position the sensing heads to a null wind position. Recording means are provided responsive to positional data from the drive mechanisms which are a measurement of the three dimensional wind vectors.

  15. Stability Impact on Wake Development in Moderately Complex Terrain

    NASA Astrophysics Data System (ADS)

    Infield, D.; Zorzi, G.

    2017-05-01

    This paper uses a year of SCADA data from Whitelee Wind Farm near Glasgow to investigate wind turbine wake development in moderately complex terrain. Atmospheric stability measurements in terms of Richardson number from a met mast at an adjoining site have been obtained and used to assess the impact of stability on wake development. Considerable filtering of these data has been undertaken to ensure that all turbines are working normally and are well aligned with the wind direction. A group of six wind turbines, more or less in a line, have been selected for analysis, and winds within a 2 degree direction sector about this line are used to ensure, as far as possible, that all the turbines investigated are fully immersed in the wake/s of the upstream turbine/s. Results show how the terrain effects combine with the wake effects, with both being of comparable importance for the site in question. Comparison has been made with results from two commercial CFD codes for neutral stability, and reasonable agreement is demonstrated. Richardson number has been plotted against wind shear and turbulence intensity at a met mast on the wind farm that for the selected wind direction is not in the wake of any turbines. Good correlations are found indicating that the Richardson numbers obtained are reliable. The filtered data used for wake analysis were split according to Richardson number into two groups representing slightly stable to neutral, and unstable conditions. Very little difference in wake development is apparent. A greater difference can be observed when the data are separated simply by turbulence intensity, suggesting that, although turbulence intensity is correlated with stability, of the two it is the parameter that most directly impacts on wake development through mixing of ambient and wake flows.

  16. Assessing simulated summer 10-m wind speed over China: influencing processes and sensitivities to land surface schemes

    NASA Astrophysics Data System (ADS)

    Zeng, Xin-Min; Wang, Ming; Wang, Ning; Yi, Xiang; Chen, Chaohui; Zhou, Zugang; Wang, Guiling; Zheng, Yiqun

    2018-06-01

    We assessed the sensitivity of 10-m wind speed to land surface schemes (LSSs) and the processes affecting wind speed in China during the summer of 2003 using the ARWv3 mesoscale model. The derived hydrodynamic equation, which directly reflects the effects of the processes that drive changes in the full wind speed, shows that the convection term CON (the advection effect) plays the smallest role; thus, the summer 10-m wind speed is largely dominated by the pressure gradient (PRE) and the diffusion (DFN) terms, and the equation shows that both terms are highly sensitive to the choice of LSS within the studied subareas (i.e., Northwest China, East China, and the Tibetan Plateau). For example, Northwest China had the largest DFN, with a PRE four times that of CON and the highest sensitivity of PRE to the choice of LSS, as indicated by a difference index value of 63%. Moreover, we suggest that two types of mechanisms, direct and indirect effects, affect the 10-m wind speed. Through their simulated surface fluxes (mainly the sensible heat flux), the different LSSs directly provide different amounts of heat to the surface air at local scales, which influences atmospheric stratification and the characteristics of downward momentum transport. Meanwhile, through the indirect effect, the LSS-induced changes in surface fluxes can significantly modify the distributions of the temperature and pressure fields in the lower atmosphere over larger scales. These changes alter the thermal and geostrophic winds, respectively, as well as the 10-m wind speed. Due to the differences in land properties and climates, the indirect effect (e.g., PRE) can be greater than the direct effect (e.g., DFN).

  17. Assessment and Analysis of QuikSCAT Vector Wind Products for the Gulf of Mexico: A Long-Term and Hurricane Analysis.

    PubMed

    Sharma, Neha; D'Sa, Eurico

    2008-03-18

    The northern Gulf of Mexico is a region that has been frequently impacted in recent years by natural disasters such as hurricanes. The use of remote sensing data such as winds from NASA's QuikSCAT satellite sensor would be useful for emergency preparedness during such events. In this study, the performance of QuikSCAT products, including JPL's latest Level 2B (L2B) 12.5 km swath winds, were evaluated with respect to buoy-measured winds in the Gulf of Mexico for the period January 2005 to February 2007. Regression analyses indicated better accuracy of QuikSCAT's L2B DIRTH, 12.5 km than the Level 3 (L3), 25 km wind product. QuikSCAT wind data were compared directly with buoy data keeping a maximum time interval of 20 min and spatial interval of 0.1° (≈10 km). R² values for moderate wind speeds were 0.88 and 0.93 for L2B, and 0.75 and 0.89 for L3 for speed and direction, respectively. QuikSCAT wind comparisons for buoys located offshore were better than those located near the coast. Hurricanes that took place during 2002-06 were studied individually to obtain regressions of QuikSCAT versus buoys for those events. Results show QuikSCAT's L2B DIRTH wind product compared well with buoys during hurricanes up to the limit of buoy measurements. Comparisons with the National Hurricane Center (NHC) best track analyses indicated QuikSCAT winds to be lower than those obtained by NHC, possibly due to rain contamination, while buoy measurements appeared to be constrained at high wind speeds. This study has confirmed good agreement of the new QuikSCAT L2B product with buoy measurements and further suggests its potential use during extreme weather conditions in the Gulf of Mexico.

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Debnath, Mithu; Iungo, Giacomo Valerio; Brewer, W. Alan

    During the eXperimental Planetary boundary layer Instrumentation Assessment (XPIA) campaign, which was carried out at the Boulder Atmospheric Observatory (BAO) in spring 2015, multiple-Doppler scanning strategies were carried out with scanning wind lidars and Ka-band radars. Specifically, step–stare measurements were collected simultaneously with three scanning Doppler lidars, while two scanning Ka-band radars carried out simultaneous range height indicator (RHI) scans. The XPIA experiment provided the unique opportunity to compare directly virtual-tower measurements performed simultaneously with Ka-band radars and Doppler wind lidars. Furthermore, multiple-Doppler measurements were assessed against sonic anemometer data acquired from the meteorological tower (met-tower) present at the BAOmore » site and a lidar wind profiler. As a result, this survey shows that – despite the different technologies, measurement volumes and sampling periods used for the lidar and radar measurements – a very good accuracy is achieved for both remote-sensing techniques for probing horizontal wind speed and wind direction with the virtual-tower scanning technique.« less

  19. Assessment of virtual towers performed with scanning wind lidars and Ka-band radars during the XPIA experiment

    DOE PAGES

    Debnath, Mithu; Iungo, Giacomo Valerio; Brewer, W. Alan; ...

    2017-03-29

    During the eXperimental Planetary boundary layer Instrumentation Assessment (XPIA) campaign, which was carried out at the Boulder Atmospheric Observatory (BAO) in spring 2015, multiple-Doppler scanning strategies were carried out with scanning wind lidars and Ka-band radars. Specifically, step–stare measurements were collected simultaneously with three scanning Doppler lidars, while two scanning Ka-band radars carried out simultaneous range height indicator (RHI) scans. The XPIA experiment provided the unique opportunity to compare directly virtual-tower measurements performed simultaneously with Ka-band radars and Doppler wind lidars. Furthermore, multiple-Doppler measurements were assessed against sonic anemometer data acquired from the meteorological tower (met-tower) present at the BAOmore » site and a lidar wind profiler. As a result, this survey shows that – despite the different technologies, measurement volumes and sampling periods used for the lidar and radar measurements – a very good accuracy is achieved for both remote-sensing techniques for probing horizontal wind speed and wind direction with the virtual-tower scanning technique.« less

  20. Near-ground tornado wind fields

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McDonald, J.R.

    1984-07-01

    A study of near-ground tornado wind fields has been conducted by inspecting damage and debris patterns found in tornado damage paths. Because there were no significant tornado events (F4 or greater) during the contract performance period, data from the literature and the files of the Institute for Disaster Research were used to perform the analyses. The results indicate: (1) maximum tornado wind speed ever experienced or expected is in the range of 250 to 300 mph; (2) appearance of damage, taken by itself, is a misleading parameter of tornado intensity. Type of construction, age of construction, materials and other constructionmore » features significantly affect structural performance of a building subjected to wind loads and should be taken into account in assigning Fujita-Scale ratings; (3) damage to forests gives a good indication of tornado wind field flow patterns, but do not give verifiable values of wind speed; (4) factors such as translational speed, wind direction and path width affect appearance of damage or a tornado; and (5) even the most awesome appearing missiles do not require incredible wind speeds to explain them. Some progress in computer simulation of tornado missiles have been made. 31 references, 8 figures, 2 tables.« less

  1. Late Pleistocene eolian features in southeastern Maryland and Chesapeake Bay region indicate strong WNW-NW winds accompanied growth of the Laurentide Ice Sheet

    NASA Astrophysics Data System (ADS)

    Markewich, Helaine W.; Litwin, Ronald J.; Pavich, Milan J.; Brook, George A.

    2009-05-01

    Inactive parabolic dunes are present in southeastern Maryland, USA, along the east bank of the Potomac River. More elongate and finer-grained eolian deposits and paha-like ridges characterize the Potomac River-Patuxent River upland and the west side of Chesapeake Bay. These ridges are streamlined erosional features, veneered with eolian sediment and interspersed with dunes in the low-relief headwaters of Potomac- and Patuxent-river tributaries. Axis data for the dunes and ridges indicate formation by WNW-NW winds. Optically stimulated luminescence and radiocarbon age data suggest dune formation from ˜ 33-15 ka, agreeing with the 30-13 ka ages Denny, C.S., Owens, J.P., Sirkin, L., Rubin, M., 1979. The Parsonburg Sand in the central Delmarva Peninsula, Maryland and Delaware. U.S. Geol. Surv. Prof. Pap. 1067-B, 16 pp. suggested for eolian deposits east of Chesapeake Bay. Age range and paleowind direction(s) for eolian features in the Bay region approximate those for late Wisconsin loess in the North American midcontinent. Formation of midcontinent loess and Bay-region eolian features was coeval with rapid growth of the Laurentide Ice Sheet and strong cooling episodes (δ 18O minima) evident in Greenland ice cores. Age and paleowind-direction coincidence, for eolian features in the midcontinent and Bay region, indicates strong mid-latitude WNW-NW winds for several hundred kilometers south of the Laurentide glacial terminus that were oblique to previously simulated anticyclonic winds for the last glacial maximum.

  2. A Hybrid Wind-Farm Parametrization for Mesoscale and Climate Models

    NASA Astrophysics Data System (ADS)

    Pan, Yang; Archer, Cristina L.

    2018-04-01

    To better understand the potential impact of wind farms on weather and climate at the regional to global scales, a new hybrid wind-farm parametrization is proposed for mesoscale and climate models. The proposed parametrization is a hybrid model because it is not based on physical processes or conservation laws, but on the multiple linear regression of the results of large-eddy simulations (LES) with the geometric properties of the wind-farm layout (e.g., the blockage ratio and blockage distance). The innovative aspect is that each wind turbine is treated individually based on its position in the farm and on the wind direction by predicting the velocity upstream of each turbine. The turbine-induced forces and added turbulence kinetic energy (TKE) are first derived analytically and then implemented in the Weather Research and Forecasting model. Idealized simulations of the offshore Lillgrund wind farm are conducted. The wind-speed deficit and TKE predicted with the hybrid model are in excellent agreement with those from the LES results, while the wind-power production estimated with the hybrid model is within 10% of that observed. Three additional wind farms with larger inter-turbine spacing than at Lillgrund are also considered, and a similar agreement with LES results is found, proving that the hybrid parametrization works well with any wind farm regardless of the spacing between turbines. These results indicate the wind-turbine position, wind direction, and added TKE are essential in accounting for the wind-farm effects on the surroundings, for which the hybrid wind-farm parametrization is a promising tool.

  3. Prospecting by sampling and analysis of airborne particulates and gases

    DOEpatents

    Sehmel, G.A.

    1984-05-01

    A method is claimed for prospecting by sampling airborne particulates or gases at a ground position and recording wind direction values at the time of sampling. The samples are subsequently analyzed to determine the concentrations of a desired material or the ratios of the desired material to other identifiable materials in the collected samples. By comparing the measured concentrations or ratios to expected background data in the vicinity sampled, one can select recorded wind directions indicative of the upwind position of the land-based source of the desired material.

  4. Magnetic discontinuities in magnetohydrodynamic turbulence and in the solar wind.

    PubMed

    Zhdankin, Vladimir; Boldyrev, Stanislav; Mason, Joanne; Perez, Jean Carlos

    2012-04-27

    Recent measurements of solar wind turbulence report the presence of intermittent, exponentially distributed angular discontinuities in the magnetic field. In this Letter, we study whether such discontinuities can be produced by magnetohydrodynamic (MHD) turbulence. We detect the discontinuities by measuring the fluctuations of the magnetic field direction, Δθ, across fixed spatial increments Δx in direct numerical simulations of MHD turbulence with an imposed uniform guide field B(0). A large region of the probability density function (pdf) for Δθ is found to follow an exponential decay, proportional to exp(-Δθ/θ(*)), with characteristic angle θ(*)≈(14°)(b(rms)/B(0))(0.65) for a broad range of guide-field strengths. We find that discontinuities observed in the solar wind can be reproduced by MHD turbulence with reasonable ratios of b(rms)/B(0). We also observe an excess of small angular discontinuities when Δx becomes small, possibly indicating an increasing statistical significance of dissipation-scale structures. The structure of the pdf in this case closely resembles the two-population pdf seen in the solar wind. We thus propose that strong discontinuities are associated with inertial-range MHD turbulence, while weak discontinuities emerge from dissipation-range turbulence. In addition, we find that the structure functions of the magnetic field direction exhibit anomalous scaling exponents, which indicates the existence of intermittent structures.

  5. Winds and the orientation of a coastal plane estuary plume

    NASA Astrophysics Data System (ADS)

    Xia, Meng; Xie, Lian; Pietrafesa, Leonard J.

    2010-10-01

    Based on a calibrated coastal plane estuary plume model, ideal model hindcasts of estuary plumes are used to describe the evolution of the plume pattern in response to river discharge and local wind forcing by selecting a typical partially mixed estuary (the Cape Fear River Estuary or CFRE). With the help of an existing calibrated plume model, as described by Xia et al. (2007), simulations were conducted using different parameters to evaluate the plume behavior type and its change associated with the variation of wind forcing and river discharge. The simulations indicate that relatively moderate winds can mechanically reverse the flow direction of the plume. Downwelling favorably wind will pin the plume to the coasts while the upwelling plume could induce plume from the left side to right side in the application to CFRE. It was found that six major types of plumes may occur in the estuary and in the corresponding coastal ocean. To better understand these plumes in the CFRE and other similar river estuary systems, we also investigated how the plumes transition from one type to another. Results showed that wind direction, wind speed, and sometimes river discharge contribute to plume transitions.

  6. Patterns of weak, near-surface winds at Melbourne, Australia

    NASA Astrophysics Data System (ADS)

    Tapp, R. G.

    1985-12-01

    Up to 30 months of near-surface anemograph records have been examined from 13 locations in and near Melbourne, Australia, to determine the wind patterns which existed during prolonged periods of light winds (at least 3 hours at 2 m s-1 or less). A coherent katabatic wind system was found to develop in at least part of the monitored region on approximately 30% of nights. The flow broadly followed the slope of the basin surrounding the city, with a strong flow down the main river valley, and was partly reinforced by a land breeze in bayside areas. Other valleys also acted as channels for these winds. The general tendency of these katabatic winds was to converge towards the central business district and the northern part of Port Phillip Bay adjacent to the city centre. Where winds from different directions interacted, one of the winds dominated or successive replacement occurred causing the wind direction to vary considerably during a period. There were indications that in the presence of low-level stability with a synoptic gradient wind between east and north, the gradient flow may be deflected around the major topographic barrier to the northeast of the city. The existence of such a situation would have major implications in terms of air quality due to the possibility of pollutants being recirculated in conditions when vertical diffusion was very limited.

  7. Statistical wind analysis for near-space applications

    NASA Astrophysics Data System (ADS)

    Roney, Jason A.

    2007-09-01

    Statistical wind models were developed based on the existing observational wind data for near-space altitudes between 60 000 and 100 000 ft (18 30 km) above ground level (AGL) at two locations, Akon, OH, USA, and White Sands, NM, USA. These two sites are envisioned as playing a crucial role in the first flights of high-altitude airships. The analysis shown in this paper has not been previously applied to this region of the stratosphere for such an application. Standard statistics were compiled for these data such as mean, median, maximum wind speed, and standard deviation, and the data were modeled with Weibull distributions. These statistics indicated, on a yearly average, there is a lull or a “knee” in the wind between 65 000 and 72 000 ft AGL (20 22 km). From the standard statistics, trends at both locations indicated substantial seasonal variation in the mean wind speed at these heights. The yearly and monthly statistical modeling indicated that Weibull distributions were a reasonable model for the data. Forecasts and hindcasts were done by using a Weibull model based on 2004 data and comparing the model with the 2003 and 2005 data. The 2004 distribution was also a reasonable model for these years. Lastly, the Weibull distribution and cumulative function were used to predict the 50%, 95%, and 99% winds, which are directly related to the expected power requirements of a near-space station-keeping airship. These values indicated that using only the standard deviation of the mean may underestimate the operational conditions.

  8. Spatial-temporal variations of particle number concentrations between a busy street and the urban background

    NASA Astrophysics Data System (ADS)

    Dos Santos-Juusela, Vanessa; Petäjä, Tuukka; Kousa, Anu; Hämeri, Kaarle

    2013-11-01

    To estimate spatial-temporal variations of ultrafine particles (UFP) in Helsinki, we measured particle total number concentrations (PNC) continuously in a busy street and an urban background site for six months, using condensation particle counters (CPC). We also evaluated the effects of temperature, wind speed and wind direction on PNC, as well as the correlation between PNC and PM2.5, PM10 and black carbon (BC) at the street. We found that on weekdays, hourly median PNC were highly correlated with BC (r = 0.88), moderately correlated with PM2.5 (r = 0.59) and weakly correlated with PM10 (r = 0.22). Number concentrations at the street were inversely proportional to temperature and wind speed, and highly dependent on wind direction. The highest PNC occurred during northeastern winds while the lowest occurred during southwestern winds. As these wind directions are nearly perpendicular to the street axis, the formation of wind vortices may have influenced the dispersion of UFP in the site. Although the temporal correlation for PNC was moderately high between the sites (r = 0.71), the median concentration at the street was 3 times higher than the urban background levels. The results indicate that people living or passing by the busy street are exposed to UFP concentrations well above the urban background levels. Thus, the study suggests that urban microenvironments should be considered in epidemiological studies. In addition the results emphasize that regulations based solely on PM2.5 and PM10 concentrations may be insufficient for preventing the adverse health effects of airborne particles.

  9. VELOCITY INDICATOR FOR EXTRUSION PRESS

    DOEpatents

    Digney, F.J. Jr.; Bevilacqua, F.

    1959-04-01

    An indicator is presented for measuring the lowspeed velocity of an object in one direction where the object returns in the opposite direction at a high speed. The indicator comprises a drum having its axis of rotation transverse to the linear movement of the object and a tape wound upon the drum with its free end extending therefrom and adapted to be connected to the object. A constant torque is applied to the drum in a direction to wind the tape on the drum. The speed of the tape in the unwinding direction is indicated on a tachometer which is coupled through a shaft and clutch means to the drum only when the tape is unwinding.

  10. Microwave Limb Sounder/El Nino Watch - 1997 Research Data Reveal Clues about El Nino's Influence

    NASA Technical Reports Server (NTRS)

    1998-01-01

    This image displays wind measurements taken by the satellite-borne NASA Scatterometer (NSCAT) during the last 10 days of May 1997, showing the relationship between the ocean and the atmosphere at the onset of the 1997-98 El Nino condition. The data have helped scientists confirm that the event began as an unusual weakening of the trade winds that preceded an increase in sea surface temperatures. The arrows represent wind speed and direction while the colors indicate sea surface temperature. The sea surface temperatures were measured by the Advanced Very High Resolution Radiometer, a joint mission of NASA and the National Oceanographic and Atmospheric Administration (NOAA). The trade winds normally blow from east to west, but the small arrows in the center of the image show the winds have changed direction and are blowing in the opposite direction. The areas shown in red are above normal sea surface temperatures -- along the equator, off the west coast of the U.S., and along the west coast of Mexico. This image also shows an unusual low pressure system with cyclonic (counterclockwise) circulation near the western North American coast. NSCAT also observed that winds associated with this circulation pattern branched off from the equator, bypassed Hawaii, and brought heat and moisture from the tropical ocean towards San Francisco, in what is often called the 'pineapple express.'

  11. Aeolian Processes and Features on Venus

    NASA Technical Reports Server (NTRS)

    Greeley, Ronald; Bender, Kelly C.; Saunders, Stephen; Schubert, Gerald; Weitz, Catherine M.

    1997-01-01

    Aeolian features on Venus include dune fields, eroded hills (yardangs), wind streaks, (miniature dunes of 10 to 30 cm wavelength). Although and possibly microdunes (in repetitive imaging by Magellan did show changes in the appearance of the surface, these changes are attributed to radar artifacts as a consequence of look direction rather than to physical changes of the surface. Nonetheless, measurements of wind speeds near the surface of Venus and wind tunnel simulations suggest that aeolian processes could be currently active on Venus. Study of radar images of terrestrial analogs shows that radar wavelength, polarization, and viewing geometry, including look direction and incidence angle, all influence the detection of dunes, yardangs, and wind streaks. For best detection, dune crests and yardangs should be oriented perpendicular to look direction. Longer wavelength systems can penetrate sand sheets a meter or more thick, rendering them invisible, especially in arid regions. For wind streaks to be visible, there must be a contrast in surface properties between the streak and the background on which it occurs. Nonetheless, more than 6000 aeolian features have been found on Magellan images of Venus, the most common of which are various wind streaks. Mapping wind streak orientations enables near-surface wind patterns to be inferred for the time of their formation. Type P streaks are associated with parabolic ejecta crater deposits and are considered to have formed in association with the impact event. Most Type P streaks are oriented westward, indicative of the upper altitude superrotation winds of Venus. Non Type P streaks have occurrences and orientations consistent with Hadley circulation. Some streaks in the southern hemisphere are oriented to the northeast, suggesting a Coriolis effect.

  12. Correlative Observations with Space-Borne Direct Doppler Wind Instruments of the Rapid Transport of Shuttle Exhaust Plumes (Invited)

    NASA Astrophysics Data System (ADS)

    Niciejewski, R.; Meier, R. R.; Stevens, M. H.; Skinner, W. R.; Cooper, M.; Marshall, A.; Ortland, D. A.; Wu, Q.

    2010-12-01

    The Upper Atmosphere Research Satellite (UARS) was launched by Space Shuttle STS-48 on 12 September 1991 and included a direct Doppler experiment, the High Resolution Doppler Imager, HRDI. Ten years later, the TIMED Doppler Interferometer, TIDI, joined HRDI in direct neutral wind observations of the mesosphere and lower thermosphere (MLT). The removal of instrumental artifacts from the raw spectra, complicated by the loss of good attitude knowledge for HRDI and unexpected signal contamination for TIDI has matured to a level where excellent agreement exists for common volume measurements between them. The two experiments were able to perform overlapping measurements of tidal and planetary wave fields for three years permitting unprecedented clarity in the description of the cyclical behaviour of the MLT. The exhaust plume left in the wake of the launch of STS-107 (16 January 2003) provided a stringent test between TIDI, HRDI, and independent imagery, the latter of which showed rapid transport across the equator to the Antarctic. Though TIDI and HRDI observed the atmosphere at the plume’s location at different local solar times, all correlative observations supported the hypothesis indicated by once-a-day images of the plume - rapid southern transport over thousands of kilometers. A simple spectral analysis of simultaneous observations of the neutral winds by HRDI and TIDI indicates that a classical two-day wave (longitudinal wavenumber = 3) exists in the southern hemisphere during the ~80-hour transit time coinciding with the transport of the plume exhaust from launch to the Antarctic. A least-squares fit of the wave in the meridional wind indicates maximum amplitude in the MLT of ~80 m/s southwards. Other shuttle launches have also been accompanied by evidence that implies rapid transport of exhaust plumes to Arctic latitudes. This paper will summarize correlative HRDI and/or TIDI wind observations of these events and associated spectral analysis of the meridional wind in the MLT. There is no question that TIDI and HRDI confirm the rapid implied motion suggested by space-borne imagery of shuttle exhaust plumes. Empirical and first-principle physical models of MLT dynamics fall short in describing the amplitude and long life of strong meridional flow. The consistency between TIDI, HRDI, and independent observations of rapid plume transport indicate that our understanding of MLT dynamics is far from complete.

  13. Auditory modulation of wind-elicited walking behavior in the cricket Gryllus bimaculatus.

    PubMed

    Fukutomi, Matasaburo; Someya, Makoto; Ogawa, Hiroto

    2015-12-01

    Animals flexibly change their locomotion triggered by an identical stimulus depending on the environmental context and behavioral state. This indicates that additional sensory inputs in different modality from the stimulus triggering the escape response affect the neuronal circuit governing that behavior. However, how the spatio-temporal relationships between these two stimuli effect a behavioral change remains unknown. We studied this question, using crickets, which respond to a short air-puff by oriented walking activity mediated by the cercal sensory system. In addition, an acoustic stimulus, such as conspecific 'song' received by the tympanal organ, elicits a distinct oriented locomotion termed phonotaxis. In this study, we examined the cross-modal effects on wind-elicited walking when an acoustic stimulus was preceded by an air-puff and tested whether the auditory modulation depends on the coincidence of the direction of both stimuli. A preceding 10 kHz pure tone biased the wind-elicited walking in a backward direction and elevated a threshold of the wind-elicited response, whereas other movement parameters, including turn angle, reaction time, walking speed and distance were unaffected. The auditory modulations, however, did not depend on the coincidence of the stimulus directions. A preceding sound consistently altered the wind-elicited walking direction and response probability throughout the experimental sessions, meaning that the auditory modulation did not result from previous experience or associative learning. These results suggest that the cricket nervous system is able to integrate auditory and air-puff stimuli, and modulate the wind-elicited escape behavior depending on the acoustic context. © 2015. Published by The Company of Biologists Ltd.

  14. Dust Devil Tracks and Wind Streaks in the North Polar Region of Mars: A Study of the 2007 Phoenix Mars Lander Sites

    NASA Technical Reports Server (NTRS)

    Drake, Nathan B.; Tamppari, Leslie K.; Baker, R. David; Cantor, Bruce A.; Hale, Amy S.

    2006-01-01

    The 65-72 latitude band of the North Polar Region of Mars, where the 2007 Phoenix Mars Lander will land, was studied using satellite images from the Mars Global Surveyor (MGS) Mars Orbiter Camera Narrow-Angle (MOC-NA) camera. Dust devil tracks (DDT) and wind streaks (WS) were observed and recorded as surface evidence for winds. No active dust devils (DDs) were observed. 162 MOC-NA images, 10.3% of total images, contained DDT/WS. Phoenix landing Region C (295-315W) had the highest concentration of images containing DDT/WS per number of available images (20.9%); Region D (130-150W) had the lowest (3.5%). DDT and WS direction were recorded for Phoenix landing regions A (110-130W), B (240-260W), and C to infer local wind direction. Region A showed dominant northwest-southeast DDT/WS, Region B showed dominant north-south, east-west and northeast-southwest DDT/WS, and region C showed dominant west/northwest - east/southeast DDT/ WS. Results indicate the 2007 Phoenix Lander has the highest probability of landing near DDT/WS in landing Region C. Based on DDT/WS linearity, we infer Phoenix would likely encounter directionally consistent background wind in any of the three regions.

  15. 3D Anisotropy of Solar Wind Turbulence, Tubes, or Ribbons?

    NASA Astrophysics Data System (ADS)

    Verdini, Andrea; Grappin, Roland; Alexandrova, Olga; Lion, Sonny

    2018-01-01

    We study the anisotropy with respect to the local magnetic field of turbulent magnetic fluctuations at magnetofluid scales in the solar wind. Previous measurements in the fast solar wind obtained axisymmetric anisotropy, despite that the analysis method allows nonaxisymmetric structures. These results are probably contaminated by the wind expansion that introduces another symmetry axis, namely, the radial direction, as indicated by recent numerical simulations. These simulations also show that while the expansion is strong, the principal fluctuations are in the plane perpendicular to the radial direction. Using this property, we separate 11 yr of Wind spacecraft data into two subsets characterized by strong and weak expansion and determine the corresponding turbulence anisotropy. Under strong expansion, the small-scale anisotropy is consistent with the Goldreich & Sridhar critical balance. As in previous works, when the radial symmetry axis is not eliminated, the turbulent structures are field-aligned tubes. Under weak expansion, we find 3D anisotropy predicted by the Boldyrev model, that is, turbulent structures are ribbons and not tubes. However, the very basis of the Boldyrev phenomenology, namely, a cross-helicity increasing at small scales, is not observed in the solar wind: the origin of the ribbon formation is unknown.

  16. Joint Offshore Wind Field Monitoring with Spaceborne SAR and Platform-Based Doppler LIDAR Measurements

    NASA Astrophysics Data System (ADS)

    Jacobsen, S.; Lehner, S.; Hieronimus, J.; Schneemann, J.; Kuhn, M.

    2015-04-01

    The increasing demand for renewable energy resources has promoted the construction of offshore wind farms e.g. in the North Sea. While the wind farm layout consists of an array of large turbines, the interrelation of wind turbine wakes with the remaining array is of substantial interest. The downstream spatial evolution of turbulent wind turbine wakes is very complex and depends on manifold parameters such as wind speed, wind direction and ambient atmospheric stability conditions. To complement and validate existing numerical models, corresponding observations are needed. While in-situ measurements with e.g. anemometers provide a time-series at the given location, the merits of ground-based and space- or airborne remote sensing techniques are indisputable in terms of spatial coverage. Active microwave devices, such as Scatterometer and Synthetic Aperture Radar (SAR), have proven their capabilities of providing sea surface wind measurements and particularly SAR images reveal wind variations at a high spatial resolution while retaining the large coverage area. Platform-based Doppler LiDAR can resolve wind fields with a high spatial coverage and repetition rates of seconds to minutes. In order to study the capabilities of both methods for the investigation of small scale wind field structures, we present a direct comparison of observations obtained by high resolution TerraSAR-X (TS-X) X-band SAR data and platform-based LiDAR devices at the North Sea wind farm alpha ventus. We furthermore compare the results with meteorological data from the COSMO-DE model run by the German Weather Service DWD. Our study indicates that the overall agreement between SAR and LiDAR wind fields is good and that under appropriate conditions small scale wind field variations compare significantly well.

  17. Vorticity and turbulence observations during a wildland fire on sloped terrain

    NASA Astrophysics Data System (ADS)

    Contezac, J.; Clements, C. B.; Hall, D.; Seto, D.; Davis, B.

    2013-12-01

    Fire-atmosphere interactions represent an atmospheric boundary-layer regime typically associated with complex circulations that interact with the fire front. In mountainous terrain, these interactions are compounded by terrain-driven circulations that often lead to extreme fire behavior. To better understand the role of complex terrain on fire behavior, a set of field experiments was conducted in June 2012 in the Coast Range of central California. The experiments were conducted on steep valley sidewalls to allow fires to spread upslope. Instrumentation used to measure fire-atmosphere interactions included three micrometeorological towers arranged along the slope and equipped with sonic anemometers, heat flux radiometers, and fine-wire thermocouples. In addition, a scanning Doppler lidar was used to measured winds within and above the valley, and airborne video imagery was collected to monitor fire behavior characteristics. The experimental site was located on the leeside of a ridge where terrain-induced flow and opposing mesoscale winds aloft interacted to create a zone of high wind shear. During the burn, the interaction between the fire and atmosphere caused the generation of several fire whirls that develop as a result of several environmental conditions including shear-generated vorticity and fire front geometry. Airborne video imagery indicated that upon ignition, the plume tilted in the opposite direction from the fire movement suggesting that higher horizontal momentum from aloft was brought to the surface, resulting in much slower fire spread rates due to opposing winds. However, after the fire front had passed the lowest tower located at the base of the slope, a shift in wind speed and direction caused a fire whirl to develop near an L-shaped kink in the fire front. Preliminary results indicate that at this time, winds at the bottom of the slope began to rotate with horizontal vorticity values of -0.2 s^-1. Increased heat flux values at this time indicated that winds were continuing to transport heat towards the slope. As the winds shifted with the fire whirl, heat flux values returned to ambient indicating the passage of the fire plume. A 0.15 hPa decrease in pressure was also observed at the first tower during this period. Further analyses to be presented include vorticity estimates from the Doppler lidar and turbulence kinetic energy measurements from the in situ towers.

  18. Characterization of Florida red tide aerosol and the temporal profile of aerosol concentration.

    PubMed

    Cheng, Yung Sung; Zhou, Yue; Pierce, Richard H; Henry, Mike; Baden, Daniel G

    2010-05-01

    Red tide aerosols containing aerosolized brevetoxins are produced during the red tide bloom and transported by wind to coastal areas of Florida. This study reports the characterization of Florida red tide aerosols in human volunteer studies, in which an asthma cohort spent 1h on Siesta Beach (Sarasota, Florida) during aerosolized red tide events and non-exposure periods. Aerosol concentrations, brevetoxin levels, and particle size distribution were measured. Hourly filter samples were taken and analyzed for brevetoxin and NaCl concentrations. In addition, the aerosol mass concentration was monitored in real time. The results indicated that during a non-exposure period in October 2004, no brevetoxin was detected in the water, resulting in non-detectable levels of brevetoxin in the aerosol. In March 2005, the time-averaged concentrations of brevetoxins in water samples were moderate, in the range of 5-10 microg/L, and the corresponding brevetoxin level of Florida red tide aerosol ranged between 21 and 39 ng/m(3). The temporal profiles of red tide aerosol concentration in terms of mass, NaCl, and brevetoxin were in good agreement, indicating that NaCl and brevetoxins are components of the red tide aerosol. By continuously monitoring the marine aerosol and wind direction at Siesta Beach, we observed that the marine aerosol concentration varied as the wind direction changed. The temporal profile of the Florida red tide aerosol during a sampling period could be explained generally with the variation of wind direction. Copyright 2009 Elsevier Ltd. All rights reserved.

  19. Wind modulation of upwelling at the shelf-break front off Patagonia: Observational evidence

    NASA Astrophysics Data System (ADS)

    Carranza, M. M.; Gille, S. T.; Piola, A. R.; Charo, M.; Romero, S. I.

    2017-03-01

    The South-Atlantic Patagonian shelf is the largest chlorophyll-a (Chl-a) hot spot in Southern Ocean color images. While a persistent 1500 km long band of high Chl-a along the shelf-break front (SBF) is indicative of upwelling, the mechanisms that drive it are not entirely known. Along-front wind oscillations can enhance upwelling and provide a nutrient pumping mechanism at shelf-break fronts of western boundary currents. Here we assess wind-induced upwelling at the SBF off Patagonia from daily satellite Chl-a and winds, historical hydrographic observations, cross-shelf Chl-a fluorescence transects from two cruises, and in situ winds and water column structure from a mooring site. Satellite Chl-a composites segregated by along-front wind direction indicate that surface Chl-a is enhanced at the SBF with southerly winds and suppressed with northerly winds. Northerly winds also result in enhanced Chl-a further offshore (˜25-50 km). Synoptic transects as well as mean hydrographic sections segregated by along-front winds show isopycnals tilted upward for southerly winds. Spring observations from the mooring also suggest that southerly winds destratify the water column and northerly winds restratify, in agreement with Ekman transport interacting with the front. Moreover, changes in water column temperature lag along-front wind forcing by 2-4 days. Our results suggest that oscillations in along-front winds, on timescales typical of atmospheric storms (2-10 days), can significantly modulate the upwelling and Chl-a concentrations at the SBF off Patagonia, revealing the importance of wind-induced upwelling for shelf-slope exchange at shelf-break fronts of western boundary currents.

  20. Sand dune tracking from satellite laser altimetry

    NASA Astrophysics Data System (ADS)

    Dabboor, Mohammed

    Substantial problems arise from sand movement in arid and semi-arid countries. Sand poses a threat to infrastructure, agricultural and urban areas. These issues are caused by the encroachment of sand on roads and railway tracks, farmland, towns and villages, and airports, to name a few. Sand movement highly depends on geomorphology including vegetation cover, shape and height of the terrain, and grain size of the sand. However, wind direction and speed are the most important factors that affect efficient sand movement. The direction of the movement depends on the main direction of the wind, but it has been shown that a minimum wind speed is required, e.g. wind gusts, to initiate sand transport. This fact prevents a simple calculation of sand transport from conventional wind data as wind records rarely contain sub-minute intervals masking out any wind gusts. An alternative of predicting sand transport is the direct observation of sand advance by in situ measurements or via satellite. Until recently, satellite imagery was the only means to compare dune shape and position for predicting dune migration over several years. In 2003, the NASA laser altimetry mission ICESat became operational and monitors elevations over all surface types including sand dunes with an accuracy of about 10-20 cm. In this study, ICESat observations from repeat tracks (tracks overlapping eachother within 50 m) are used to derive sand dune advance and direction. The method employs a correlation of the elevation profiles over several dunes and was sucessfully validated with synthetic data. The accuracy of this method is 5 meters of dune advance. One of the most active areas exhibiting sand and dune movement is the area of the Arabian Peninsula. Approximately one-third of the Arabian Peninsula is covered by sand dunes. Different wind regimes (Shamal, Kaus) cause sand dune movement in the selected study area in the eastern part of the Arabian Peninsula between 20-25 degrees North and 45-55 degrees East. Two different dune types can be distinguised which exhibit a 6 m and 26 m average dune advance over a 6 months time period. Wind speed/direction data and the observed dune advance agree well and indicate that dune tracking from space is a viable alternative to in situ or model data.

  1. Meroe Patera

    NASA Image and Video Library

    2002-11-26

    This image is located in Meroe Patera (longitude: 292W/68E, latitude: 7.01), which is a small region within Syrtis Major Planitia. Syrtis Major is a low-relief shield volcano whose lava flows make up a plateau more than 1000 km across. These flows are of Hesperian age (Martian activity of intermediate age) and are believed to have originated from a series of volcanic depressions, called calderas. The caldera complex lies on extensions of the ring faults associated with the Isidis impact basin toward the northeast - thus Syrtis Major volcanism may be associated with post-impact adjustments of the Martian crust. The most striking feature in this image is the light streaks across the image that lead to dunes in the lower left region. Wind streaks are albedo markings interpreted to be formed by aeolian action on surface materials. Most are elongate and allow an interpretation of effective wind directions. Many streaks are time variable and thus provide information on seasonal or long-term changes in surface wind directions and strengths. The wind streaks in this image are lighter than their surroundings and are the most common type of wind streak found on Mars. These streaks are formed downwind from crater rims (as in this example), mesas, knobs, and other positive topographic features. The dune field in this image is a mixture of barchan dunes and transverse dunes. Dunes are among the most distinctive aeolian feature on Mars, and are similar in form to barchan and transverse dunes on Earth. This similarity is the best evidence to indicate that martian dunes are composed of sand-sized material, although the source and composition of the sand remain controversial. Both the observations of dunes and wind streaks indicate that this location has a windy environment - and these winds are persistent enough to product dunes, as sand-sized material accumulates in this region. These features also indicate that the winds in this region are originating from the right side of the image, and moving towards the left. http://photojournal.jpl.nasa.gov/catalog/PIA04012

  2. A directional cylindrical anemometer with four sets of differential pressure sensors

    NASA Astrophysics Data System (ADS)

    Liu, C.; Du, L.; Zhao, Z.

    2016-03-01

    This paper presents a solid-state directional anemometer for simultaneously measuring the speed and direction of a wind in a plane in a speed range 1-40 m/s. This instrument has a cylindrical shape and works by detecting the pressure differences across diameters of the cylinder when exposed to wind. By analyzing our experimental data in a Reynolds number regime 1.7 × 103-7 × 104, we figure out the relationship between the pressure difference distribution and the wind velocity. We propose a novel and simple solution based on the relationship and design an anemometer which composes of a circular cylinder with four sets of differential pressure sensors, tubes connecting these sensors with the cylinder's surface, and corresponding circuits. In absence of moving parts, this instrument is small and immune of friction. It has simple internal structures, and the fragile sensing elements are well protected. Prototypes have been fabricated to estimate performance of proposed approach. The power consumption of the prototype is less than 0.5 W, and the sample rate is up to 31 Hz. The test results in a wind tunnel indicate that the maximum relative speed measuring error is 5% and the direction error is no more than 5° in a speed range 2-40 m/s. In theory, it is capable of measuring wind up to 60 m/s. When the air stream goes slower than 2 m/s, the measuring errors of directions are slightly greater, and the performance of speed measuring degrades but remains in an acceptable range of ±0.2 m/s.

  3. Wind directions predicted from global circulation models and wind directions determined from eolian sandstones of the western United States-A comparison

    USGS Publications Warehouse

    Parrish, Judith T.; Peterson, F.

    1988-01-01

    Wind directions for Middle Pennsylvanian through Jurassic time are predicted from global circulation models for the western United States. These predictions are compared with paleowind directions interpreted from eolian sandstones of Middle Pennsylvanian through Jurassic age. Predicted regional wind directions correspond with at least three-quarters of the paleowind data from the sandstones; the rest of the data may indicate problems with correlation, local effects of paleogeography on winds, and lack of resolution of the circulation models. The data and predictions suggest the following paleoclimatic developments through the time interval studied: predominance of winter subtropical high-pressure circulation in the Late Pennsylvanian; predominance of summer subtropical high-pressure circulation in the Permian; predominance of summer monsoonal circulation in the Triassic and earliest Jurassic; and, during the remainder of the Jurassic, influence of both summer subtropical and summer monsoonal circulation, with the boundary between the two systems over the western United States. This sequence of climatic changes is largely owing to paleogeographic changes, which influenced the buildup and breakdown of the monsoonal circulation, and possibly owing partly to a decrease in the global temperature gradient, which might have lessened the influence of the subtropical high-pressure circulation. The atypical humidity of Triassic time probably resulted from the monsoonal circulation created by the geography of Pangaea. This circulation is predicted to have been at a maximum in the Triassic and was likely to have been powerful enough to draw moisture along the equator from the ocean to the west. ?? 1988.

  4. Accuracy of National Weather Service wind-direction forecasts at Macon and Augusta, Georgia

    Treesearch

    Leonidas G. Lavdas

    1997-01-01

    National Weather Service wind forecasts and observations over a nine-year period (1985 to 1993) were analyzed to determine the usefulness of these forecasts for forestry smoke management. Data from Macon, GA indicated that forecasts were accurate to within plus or minus 22.5E about 38 percent of the time. When a wider plus or minus 67.5E window was used, accuracy...

  5. Measurements of Wind Velocity and Direction Using Acoustic Reflection against Wall

    NASA Astrophysics Data System (ADS)

    Saito, Ikumi; Wakatsuki, Naoto; Mizutani, Koichi; Ishii, Masahisa; Okushima, Limi; Sase, Sadanori

    2008-05-01

    The measurements of wind velocity and direction using an acoustic reflection against a wall are described. We aim to measure the spatial mean wind velocity and direction to be used for an air-conditioning system. The proposed anemometer consists of a single wall and two pairs of loudspeakers (SP) and microphones (MIC) that form a triangular shape. Two sound paths of direct and reflected waves are available. One is that of the direct wave and the other is that of the wave reflected on the wall. The times of flights (TOFs) of the direct and reflected waves can be measured using a single MIC because there is a difference in the TOF between direct and reflected waves. By using these TOFs, wind velocity and direction can be calculated. In the experiments, the wind velocities and directions were measured in a wind tunnel by changing the wind velocity. The wind direction was examined by changing the setup of the transducers. The measured values using the proposed and conventional anemometers agreed with each other. By using the wave reflected against a wall, wind velocities and directions can be measured using only two pairs of transducers, while four pairs are required in the case of conventional anemometers.

  6. Wind extremes in the North Sea basin under climate change: an ensemble study of 12 CMIP5 GCMs

    NASA Astrophysics Data System (ADS)

    de Winter, R.; Ruessink, G.; Sterl, A.

    2012-12-01

    Coastal safety may be influenced by climate change, as changes in extreme surge levels and wave extremes may increase the vulnerability of dunes and other coastal defenses. In the North Sea, an area already prone to severe flooding, these high surge levels and waves are generated by severe wind speeds during storm events. As a result of the geometry of the North Sea, not only the maximum wind speed is relevant, but also wind direction. Analyzing changes in a changing climate implies that several uncertainties need to be taken into account. First, there is the uncertainty in climate experiments, which represents the possible development of the emission of greenhouse gases. Second, there is uncertainty between the climate models that are used to analyze the effect of different climate experiments. The third uncertainty is the natural variability of the climate. When this system variability is large, small trends will be difficult to detect. The natural variability results in statistical uncertainty, especially for events with high return values. We addressed the first two types of uncertainties for extreme wind conditions in the North Sea using 12 CMIP5 GCMs. To evaluate the differences between the climate experiments, two climate experiments (rcp4.5 and rcp8.5) from 2050-2100 are compared with historical runs, running from 1950-2000. Rcp4.5 is considered to be a middle climate experiment and rcp8.5 represents high-end climate scenarios. The projections of the 12 GCMs for a given scenario illustrate model uncertainty. We focus on the North Sea basin, because changes in wind conditions could have a large impact on safety of the densely populated North Sea coast, an area that has already a high exposure to flooding. Our results show that, consistent with ERA-Interim results, the annual maximum wind speed in the historical run demonstrates large interannual variability. For the North Sea, the annual maximum wind speed is not projected to change in either rcp4.5 or rcp8.5. In fact, the differences in the 12 GCMs are larger than the difference between the three experiments. Furthermore, our results show that, the variation in direction of annual maximum wind speed is large and this precludes a firm statement on climate-change induced changes in these directions. Nonetheless, most models indicate a decrease in annual maximum wind speed from south-eastern directions and an increase from south-western and western directions. This might be caused by a poleward shift of the storm track. The amount of wind from north-west and north-north-west, wind directions that are responsible for the development of extreme storm surges in the southern part of the North Sea, are not projected to change. However, North Sea coasts that have the longest fetch for western direction, e.g. the German Bight, may encounter more often high storm surge levels and extreme waves when the annual maximum wind will indeed be more often from western direction.

  7. Solar Wind Halo Formation by the Scattering of the Strahl via Direct Cluster/PEACE Observations of the 3D Velocity Distribution Function

    NASA Technical Reports Server (NTRS)

    Figueroa-Vinas, Adolfo; Gurgiolo, Chris A.; Nieves-Chinchilla, Teresa; Goldstein, Melvyn L.

    2010-01-01

    It has been suggested by a number of authors that the solar wind electron halo can be formed by the scattering of the strahl. On frequent occasions we have observed in electron angular skymaps (Phi/Theta-plots) of the electron 3D velocity distribution functions) a bursty-filament of particles connecting the strahl to the solar wind core-halo. These are seen over a very limited energy range. When the magnetic field is well off the nominal solar wind flow direction such filaments are inconsistent with any local forces and are probably the result of strong scattering. Furthermore, observations indicates that the strahl component is frequently and significantly anisotropic (Tper/Tpal approx.2). This provides a possible free energy source for the excitation of whistler waves as a possible scattering mechanism. The empirical observational evidence between the halo and the strahl suggests that the strahl population may be, at least in part, the source of the halo component.

  8. A multiple-fan active control wind tunnel for outdoor wind speed and direction simulation

    NASA Astrophysics Data System (ADS)

    Wang, Jia-Ying; Meng, Qing-Hao; Luo, Bing; Zeng, Ming

    2018-03-01

    This article presents a new type of active controlled multiple-fan wind tunnel. The wind tunnel consists of swivel plates and arrays of direct current fans, and the rotation speed of each fan and the shaft angle of each swivel plate can be controlled independently for simulating different kinds of outdoor wind fields. To measure the similarity between the simulated wind field and the outdoor wind field, wind speed and direction time series of two kinds of wind fields are recorded by nine two-dimensional ultrasonic anemometers, and then statistical properties of the wind signals in different time scales are analyzed based on the empirical mode decomposition. In addition, the complexity of wind speed and direction time series is also investigated using multiscale entropy and multivariate multiscale entropy. Results suggest that the simulated wind field in the multiple-fan wind tunnel has a high degree of similarity with the outdoor wind field.

  9. Experimental Study on the Wake Meandering Within a Scale Model Wind Farm Subject to a Wind-Tunnel Flow Simulating an Atmospheric Boundary Layer

    NASA Astrophysics Data System (ADS)

    Coudou, Nicolas; Buckingham, Sophia; Bricteux, Laurent; van Beeck, Jeroen

    2017-12-01

    The phenomenon of meandering of the wind-turbine wake comprises the motion of the wake as a whole in both horizontal and vertical directions as it is advected downstream. The oscillatory motion of the wake is a crucial factor in wind farms, because it increases the fatigue loads, and, in particular, the yaw loads on downstream turbines. To address this phenomenon, experimental investigations are carried out in a wind-tunnel flow simulating an atmospheric boundary layer with the Coriolis effect neglected. A 3 × 3 scaled wind farm composed of three-bladed rotating wind-turbine models is subject to a neutral boundary layer over a slightly-rough surface, i.e. corresponding to offshore conditions. Particle-image-velocimetry measurements are performed in a horizontal plane at hub height in the wakes of the three wind turbines occupying the wind-farm centreline. These measurements allow determination of the wake centrelines, with spectral analysis indicating the characteristic wavelength of the wake-meandering phenomenon. In addition, measurements with hot-wire anemometry are performed along a vertical line in the wakes of the same wind turbines, with both techniques revealing the presence of wake meandering behind all three turbines. The spectral analysis performed with the spatial and temporal signals obtained from these two measurement techniques indicates a Strouhal number of ≈ 0.20 - 0.22 based on the characteristic wake-meandering frequency, the rotor diameter and the flow speed at hub height.

  10. Experimental Study on the Wake Meandering Within a Scale Model Wind Farm Subject to a Wind-Tunnel Flow Simulating an Atmospheric Boundary Layer

    NASA Astrophysics Data System (ADS)

    Coudou, Nicolas; Buckingham, Sophia; Bricteux, Laurent; van Beeck, Jeroen

    2018-04-01

    The phenomenon of meandering of the wind-turbine wake comprises the motion of the wake as a whole in both horizontal and vertical directions as it is advected downstream. The oscillatory motion of the wake is a crucial factor in wind farms, because it increases the fatigue loads, and, in particular, the yaw loads on downstream turbines. To address this phenomenon, experimental investigations are carried out in a wind-tunnel flow simulating an atmospheric boundary layer with the Coriolis effect neglected. A 3 × 3 scaled wind farm composed of three-bladed rotating wind-turbine models is subject to a neutral boundary layer over a slightly-rough surface, i.e. corresponding to offshore conditions. Particle-image-velocimetry measurements are performed in a horizontal plane at hub height in the wakes of the three wind turbines occupying the wind-farm centreline. These measurements allow determination of the wake centrelines, with spectral analysis indicating the characteristic wavelength of the wake-meandering phenomenon. In addition, measurements with hot-wire anemometry are performed along a vertical line in the wakes of the same wind turbines, with both techniques revealing the presence of wake meandering behind all three turbines. The spectral analysis performed with the spatial and temporal signals obtained from these two measurement techniques indicates a Strouhal number of ≈ 0.20 - 0.22 based on the characteristic wake-meandering frequency, the rotor diameter and the flow speed at hub height.

  11. Effects of venting on wind noise levels measured at the eardrum.

    PubMed

    Chung, King

    2013-01-01

    Wind noise can be a nuisance to hearing aid users. With the advent of sophisticated feedback reduction algorithms, people with higher degrees of hearing loss are fit with larger vents than previously allowed, and more people with lesser degrees of hearing loss are fit with open hearing aids. The purpose of this study was to examine the effects of venting on wind noise levels in the ear canal for hearing aids with omnidirectional and directional microphones. Two behind-the-ear hearing aids were programmed when they were worn on a Knowles Electronics Manikin for Acoustic Research. The hearing aid worn on the right ear was programmed to the omnidirectional microphone mode and the one on the left to the directional microphone mode. The hearing aids were adjusted to linear amplification with flat frequency response in an anechoic chamber. Gains below 10 dB were used to avoid output limiting of wind noise levels at low input levels. Wind noise samples were recorded at the eardrum location in a wind tunnel at wind velocities ranging from a gentle to a strong breeze. The hearing aids were coupled to #13 tubings (i.e., open vent), or conventional skeleton earmolds with no vent, pressure vents, or 3mm vents. Polar and spectral characteristics of wind noise were analyzed off-line using MatLab programs. Wind noise levels in the ear canals were mostly predicted by vent-induced frequency response changes in the conventional earmold conditions for both omnidirectional and directional hearing aids. The open vent condition, however, yielded the lowest levels, which could not be entirely predicted by the frequency response changes of the hearing aids. This indicated that a wind-related vent effect permitted an additional amount of sound reduction in the ear canal, which could not be explained by known vent effects. For the microphone location, form factor, and gain settings tested, open fit hearing aids yielded lower noise levels at the eardrum location than conventional behind-the-ear hearing aids.

  12. Distinct sensory representations of wind and near-field sound in the Drosophila brain

    PubMed Central

    Yorozu, Suzuko; Wong, Allan; Fischer, Brian J.; Dankert, Heiko; Kernan, Maurice J.; Kamikouchi, Azusa; Ito, Kei; Anderson, David J.

    2009-01-01

    Behavioral responses to wind are thought to play a critical role in controlling the dispersal and population genetics of wild Drosophila species1,2, as well as their navigation in flight3, but their underlying neurobiological basis is unknown. We show that Drosophila melanogaster, like wild-caught Drosophila strains4, exhibits robust wind-induced suppression of locomotion (WISL), in response to air currents delivered at speeds normally encountered in nature1,2. Here we identify wind-sensitive neurons in Johnston’s Organ (JO), an antennal mechanosensory structure previously implicated in near-field sound detection (reviewed in5,6). Using Gal4 lines targeted to different subsets of JO neurons7, and a genetically encoded calcium indicator8, we show that wind and near-field sound (courtship song) activate distinct populations of JO neurons, which project to different regions of the antennal and mechanosensory motor center (AMMC) in the central brain. Selective genetic ablation of wind-sensitive JO neurons in the antenna abolishes WISL behavior, without impairing hearing. Different neuronal subsets within the wind-sensitive population, moreover, respond to different directions of arista deflection caused by airflow and project to different regions of the AMMC, providing a rudimentary map of wind-direction in the brain. Importantly, sound- and wind-sensitive JO neurons exhibit different intrinsic response properties: the former are phasically activated by small, bi-directional, displacements of the aristae, while the latter are tonically activated by unidirectional, static deflections of larger magnitude. These different intrinsic properties are well suited to the detection of oscillatory pulses of near-field sound and laminar airflow, respectively. These data identify wind-sensitive neurons in JO, a structure that has been primarily associated with hearing, and reveal how the brain can distinguish different types of air particle movements, using a common sensory organ. PMID:19279637

  13. In situ observations of the influence of a large onshore wind farm on near-surface temperature, turbulence intensity and wind speed profiles

    NASA Astrophysics Data System (ADS)

    Smith, Craig M.; Barthelmie, R. J.; Pryor, S. C.

    2013-09-01

    Observations of wakes from individual wind turbines and a multi-megawatt wind energy installation in the Midwestern US indicate that directly downstream of a turbine (at a distance of 190 m, or 2.4 rotor diameters (D)), there is a clear impact on wind speed and turbulence intensity (TI) throughout the rotor swept area. However, at a downwind distance of 2.1 km (26 D downstream of the closest wind turbine) the wake of the whole wind farm is not evident. There is no significant reduction of hub-height wind speed or increase in TI especially during daytime. Thus, in high turbulence regimes even very large wind installations may have only a modest impact on downstream flow fields. No impact is observable in daytime vertical potential temperature gradients at downwind distances of >2 km, but at night the presence of the wind farm does significantly decrease the vertical gradients of potential temperature (though the profile remains stably stratified), largely by increasing the temperature at 2 m.

  14. Wind Retrievals under Rain for Passive Satellite Microwave Radiometers and its Applications to Hurricane Tracking

    NASA Technical Reports Server (NTRS)

    Meissner, Thomas; Wentz, Frank J.

    2008-01-01

    We have developed an algorithm that retrieves wind speed under rain using C-hand and X-band channels of passive microwave satellite radiometers. The spectral difference of the brightness temperature signals due to wind or rain allows to find channel combinations that are sufficiently sensitive to wind speed but little or not sensitive to rain. We &ve trained a statistical algorithm that applies under hurricane conditions and is able to measure wind speeds in hurricanes to an estimated accuracy of about 2 m/s. We have also developed a global algorithm, that is less accurate but can be applied under all conditions. Its estimated accuracy is between 2 and 5 mls, depending on wind speed and rain rate. We also extend the wind speed region in our model for the wind induced sea surface emissivity from currently 20 m/s to 40 mls. The data indicate that the signal starts to saturate above 30 mls. Finally, we make an assessment of the performance of wind direction retrievals from polarimetric radiometers as function of wind speed and rain rate

  15. Measurements of heavy solar wind and higher energy solar particles during the Apollo 17 mission

    NASA Technical Reports Server (NTRS)

    Walker, R. M.; Zinner, E.; Maurette, M.

    1973-01-01

    The lunar surface cosmic ray experiment, consisting of sets of mica, glass, plastic, and metal foil detectors, was successfully deployed on the Apollo 17 mission. One set of detectors was exposed directly to sunlight and another set was placed in shade. Preliminary scanning of the mica detectors shows the expected registration of heavy solar wind ions in the sample exposed directly to the sun. The initial results indicate a depletion of very-heavy solar wind ions. The effect is probably not real but is caused by scanning inefficiencies. Despite the lack of any pronounced solar activity, energetic heavy particles with energies extending to 1 MeV/nucleon were observed. Equal track densities of approximately 6000 tracks/cm sq 0.5 microns in length were measured in mica samples exposed in both sunlight and shade.

  16. Fitting a circular distribution based on nonnegative trigonometric sums for wind direction in Malaysia

    NASA Astrophysics Data System (ADS)

    Masseran, Nurulkamal; Razali, Ahmad Mahir; Ibrahim, Kamarulzaman; Zaharim, Azami; Sopian, Kamaruzzaman

    2015-02-01

    Wind direction has a substantial effect on the environment and human lives. As examples, the wind direction influences the dispersion of particulate matter in the air and affects the construction of engineering structures, such as towers, bridges, and tall buildings. Therefore, a statistical analysis of the wind direction provides important information about the wind regime at a particular location. In addition, knowledge of the wind direction and wind speed can be used to derive information about the energy potential. This study investigated the characteristics of the wind regime of Mersing, Malaysia. A circular distribution based on Nonnegative Trigonometric Sums (NNTS) was fitted to a histogram of the average hourly wind direction data. The Newton-like manifold algorithm was used to estimate the parameter of each component of the NNTS model. Next, the suitability of each NNTS model was judged based on a graphical representation and Akaike's Information Criteria. The study found that the NNTS model with six or more components was able to fit the wind directional data for the Mersing station.

  17. Modelling Wind Effects on Subtidal Salinity in Apalachicola Bay, Florida

    NASA Astrophysics Data System (ADS)

    Huang, W.; Jones, W. K.; Wu, T. S.

    2002-07-01

    Salinity is an important factor for oyster and estuarine productivity in Apalachicola Bay. Observations of salinity at oyster reefs have indicated a high correlation between subtidal salinity variations and the surface winds along the bay axis in an approximately east-west direction. In this paper, we applied a calibrated hydrodynamic model to examine the surface wind effects on the volume fluxes in the tidal inlets and the subtidal salinity variations in the bay. Model simulations show that, due to the large size of inlets located at the east and west ends of this long estuary, surface winds have significant effects on the volume fluxes in the estuary inlets for the water exchanges between the estuary and ocean. In general, eastward winds cause the inflow from the inlets at the western end and the outflow from inlets at the eastern end of the bay. Winds at 15 mph speed in the east-west direction can induce a 2000 m3 s-1 inflow of saline seawater into the bay from the inlets, a rate which is about 2·6 times that of the annual average freshwater inflow from the river. Due to the varied wind-induced volume fluxes in the inlets and the circulation in the bay, the time series of subtidal salinity at oyster reefs considerably increases during strong east-west wind conditions in comparison to salinity during windless conditions. In order to have a better understanding of the characteristics of the wind-induced subtidal circulation and salinity variations, the researchers also connected model simulations under constant east-west wind conditions. Results show that the volume fluxes are linearly proportional to the east-west wind stresses. Spatial distributions of daily average salinity and currents clearly show the significant effects of winds on the bay.

  18. Focused Wind Mass Accretion in Mira AB

    NASA Astrophysics Data System (ADS)

    Karovska, Margarita; de Val-Borro, M.; Hack, W.; Raymond, J.; Sasselov, D.; Lee, N. P.

    2011-05-01

    At a distance of about only 100pc, Mira AB is the nearest symbiotic system containing an Asymptotic Giant Branch (AGB) star (Mira A), and a compact accreting companion (Mira B) at about 0.5" from Mira A. Symbiotic systems are interacting binaries with a key evolutionary importance as potential progenitors of a fraction of asymmetric Planetary Nebulae, and SN type Ia, cosmological distance indicators. The region of interaction has been studied using high-angular resolution, multiwavelength observations ranging from radio to X-ray wavelengths. Our results, including high-angular resolution Chandra imaging, show a "bridge" between Mira A and Mira B, indicating gravitational focusing of the Mira A wind, whereby components exchange matter directly in addition to the wind accretion. We carried out a study using 2-D hydrodynamical models of focused wind mass accretion to determine the region of wind acceleration and the characteristics of the accretion in Mira AB. We highlight some of our results and discuss the impact on our understanding of accretion processes in symbiotic systems and other detached and semidetached interacting systems.

  19. The modification of X and L band radar signals by monomolecular sea slicks

    NASA Technical Reports Server (NTRS)

    Huehnerfuss, H.; Alpers, W.; Cross, A.; Garrett, W. D.; Keller, W. C.; Plant, W. J.; Schuler, D. L.; Lange, P. A.; Schlude, F.

    1983-01-01

    One methyl oleate and two oleyl alcohol surface films were produced on the surface of the North Sea under comparable oceanographic and meteorological conditions in order to investigate their influence on X and L band radar backscatter. Signals are backscattered in these bands primarily by surface waves with lengths of about 2 and 12 cm, respectively, and backscattered power levels in both bands were reduced by the slicks. The reduction was larger at X band than at L band, however, indicating that shorter waves are more intensely damped by the surface films. The oleyl alcohol film caused greater attenuation of short gravity waves than the film of methyl oleate, thus demonstrating the importance of the physicochemical properties of films on the damping of wind-generated gravity capillary waves. Finally, these experiments indicate a distinct dependence of the degree of damping on the angle between wind and waves. Wind-generated waves traveling in the wind direction are more intensely damped by surface films than are waves traveling at large angles to the wind.

  20. Using wind fields from a high resolution atmospheric model for simulating snow dynamics in mountainous terrain

    NASA Astrophysics Data System (ADS)

    Bernhardt, M.; Strasser, U.; Zängl, G.; Mauser, W.; Liston, G.; Pohl, S.

    2008-12-01

    Wind-induced snow transport processes lead to a significant variability of the snow cover. Knowledge about this variability is important for e.g. determining the temporal dynamics of the snowmelt runoff. For predicting the correct amount of transported snow knowledge of the local wind-field is an essential. In high-alpine rugged relief wind fields can hardly be provided by a simple interpolation of station recordings. In this work we use a modified version of the PSU/NCAR Mesoscale Model MM5 to derive wind fields for a 450 km² area at a target resolution of 200 m, accounting for topography and related dynamic effects. We have modelled 220 wind fields representing the most characteristic wind situations within the test-area. The criteria for the extraction of the wind field for the current snowmodel (SNOWTRAND-3D) time step are mean wind speeds and directions in the 700 hPa level derived from DWD (German Weather Service) Local Model reanalysis data with a temporal resolution of one hour. These data are then compared with the corresponding mean wind speeds and directions from the appropriate MM5 nesting area indicating which one of the library files represents the best fit. Verification is conducted by comparison of historical station measurements with corresponding downscaled simulation results. For this downscaling a semi-empirical approach is utilized which accounts for topographic effects. Results for the winter seasons 2003/04 and 2004/05 showing that the presented scheme is able to improve the quality of SNOWTRAN-3D runs with respect to the snow height.

  1. The influence of wave-, wind- and tide-forced currents on headland sand bypassing - Study case: Santa Catarina Island north shore, Brazil

    NASA Astrophysics Data System (ADS)

    Vieira da Silva, Guilherme; Toldo, Elírio E., Jr.; Klein, Antonio H. da F.; Short, Andrew D.

    2018-07-01

    Investigations of headland sand bypassing are still an under-reported subject in the literature. This paper aims to understand the contribution of currents forced by different mechanisms such as tides, winds (i.e. local wind acting over the ocean surface generating currents, without considering wave generation) and waves (as they approach/break on the coast) to headland sand bypassing. The study was carried out in an area comprising a series of seven headlands with varying wave exposure due to changes in shoreline orientation and increasing tidal influence close to a relatively large bay. This paper uses a calibrated and validated process-based model (Delft3D) to simulate a series of scenarios including spring and neap tides during flood and ebb conditions and a range of wind and wave scenarios that encompass both average and extreme conditions. The results indicate that waves are the main driving force for the headland bypassing as they transport sand at rates two orders of magnitude higher than tide- or wind-driven sediment transport. The tide-driven currents can only transport sediment during spring tides in locations where the currents are intensified. It is also demonstrated that the wave direction plays an important role in sediment transport. In exposed areas with larger headlands a combination of wave directions is required to first transport sediment offshore (out of the beach) and secondly to transport sediment alongshore and back to the next beach. Whereas in areas with little variation in wave direction exposure, the same oblique wave direction is responsible for the entire headland bypassing process. This is the first time the contribution of tide-, winds- and wave-generated sediment transport to headland bypassing have been studied.

  2. Seasat scatterometer - Results of the Gulf of Alaska workshop

    NASA Technical Reports Server (NTRS)

    Jones, W. L.; Bracalente, E. M.; Black, P. G.; Boggs, D. M.; Halberstam, I. M.; Brown, R. A.; Dome, G.; Ernst, J. A.; Overland, J. E.; Peteherych, S.

    1979-01-01

    The Seasat microwave scatterometer was designed to measure, globally and in nearly all weather, wind speed to an accuracy of plus or minus 2 meters per second and wind direction to plus or minus 20 deg in two swaths 500 kilometers wide on either side of the spacecraft. For two operating modes in rain-free conditions, a limited number of comparisons to high-quality surface truth indicates that these specifications may have been met.

  3. Twin Cyclones Result From Shift in the Trade Winds

    NASA Technical Reports Server (NTRS)

    2002-01-01

    QuikSCAT, a NASA satellite instrument that measures winds, observed a strong typhoon threatening the Philippines on March 4, 2002, (top) unusual in the winter season, and a similar tropical cyclone passing along the Australian coast towards Nuomea. These unusual phenomena are results of the westerly winds (blowing from Indonesia towards the American coast) along the equator which started back in February 25, (lower) as QuikSCAT revealed. Color in these images relates to wind speed, arrows indicate direction. The reversal of the usual Trade Winds (which blow from the American coast towards Asia) generally triggers Kelvin waves (warm surface water that moves along the equator from Indonesia to the coast of Peru) and twin cyclones, which are early indicators of El Nino. The equatorial westerly winds generate a counter-clockwise vortex in the Northern Hemisphere and a clockwise vortex in the Southern Hemisphere. The Trade Winds push warm water from east to west across the Pacific, reaching the American coast in one to two months. The increase in frequency and strength of the Kelvin Waves may lead to El Nino. Strong westerly winds and twin cyclones were also observed by QuikSCAT during last Christmas season (2001) and the Kelvin wave triggered at that time reached South America in Early March 2002. Images courtesy Liu, Xie, and Tang, QuikSCAT Science Team

  4. Results of the Imager for Mars Pathfinder windsock experiment

    USGS Publications Warehouse

    Sullivan, R.; Greeley, R.; Kraft, M.; Wilson, G.; Golombek, M.; Herkenhoff, K.; Murphy, J.; Smith, P.

    2000-01-01

    The Imager for Mars Pathfinder (IMP) windsock experiment measured wind speeds at three heights within 1.2 m of the Martian surface during Pathfinder landed operations. These wind data allowed direct measurement of near-surface wind profiles on Mars for the first time, including determination of aerodynamic roughness length and wind friction speeds. Winds were light during periods of windsock imaging, but data from the strongest breezes indicate aerodynamic roughness length of 3 cm at the landing site, with wind friction speeds reaching 1 m/s. Maximum wind friction speeds were about half of the threshold-of-motion friction speeds predicted for loose, fine-grained materials on smooth Martian terrain and about one third of the threshold-of-motion friction speeds predicted for the same size particles over terrain with aerodynamic roughness of 3 cm. Consistent with this, and suggesting that low wind speeds prevailed when the windsock array was not imaged and/or no particles were available for aeolian transport, no wind-related changes to the surface during mission operations have been recognized. The aerodynamic roughness length reported here implies that proposed deflation of fine particles around the landing site, or activation of duneforms seen by IMP and Sojourner, would require wind speeds >28 m/s at the Pathfinder top windsock height (or >31 m/s at the equivalent Viking wind sensor height of 1.6 m) and wind speeds >45 m/s above 10 m. These wind speeds would cause rock abrasion if a supply of durable particles were available for saltation. Previous analyses indicate that the Pathfinder landing site probably is rockier and rougher than many other plains units on Mars, so aerodynamic roughness length elsewhere probably is less than the 3-cm value reported for the Pathfinder site. Copyright 2000 by the American Geophysical Union.

  5. Identifying the impacts of climate on the regional transport of haze pollution and inter-cities correspondence within the Yangtze River Delta.

    PubMed

    Xiao, Hang; Huang, Zhongwen; Zhang, Jingjing; Zhang, Huiling; Chen, Jinsheng; Zhang, Han; Tong, Lei

    2017-09-01

    Regional haze pollution has become an important environmental issue in the Yangtze River Delta (YRD) region. Regional transport and inter-influence of PM 2.5 among cities occurs frequently as a result of the subtropical monsoon climate. Backward trajectory statistics indicated that a north wind prevailed from October to March, while a southeast wind predominated from May to September. The temporal relationships of carbon and nitrogen isotopes among cities were dependent on the prevailing wind direction. Regional PM 2.5 pollution was confirmed in the YRD region by means of significant correlations and similar cyclical characteristics of PM 2.5 among Lin'an, Ningbo, Nanjing and Shanghai. Granger causality tests of the time series of PM 2.5 values indicate that the regional transport of haze pollutants is governed by prevailing wind direction, as the PM 2.5 concentrations from upwind area cities generally influence that of the downwind cities. Furthermore, stronger correlation coefficients were identified according to monsoon pathways. To clarify the impacts of the monsoon climate, a vector autoregressive (VAR) model was introduced. Variance decomposition in the VAR model also indicated that the upwind area cities contributed significantly to PM 2.5 in the downwind area cities. Finally, we attempted to predict daily PM 2.5 concentrations in each city based on the VAR model using data from all cities and obtained fairly reasonable predictions. These indicate that statistical methods of the Granger causality test and VAR model have the potential to evaluate inter-influence and the relative contribution of PM 2.5 among cities, and to predict PM 2.5 concentrations as well. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Strong refraction near the Venus surface - Effects observed by descent probes

    NASA Technical Reports Server (NTRS)

    Croft, T. A.

    1982-01-01

    The telemetry signals from Pioneer Venus probes indicated the strong downward refraction of radio waves. As the probes descended, the strength of the direct signal decreased because of absorption and refractive defocusing. During the last 30 km of descent there was a second measured component in addition to the direct signal. Strong atmospheric reaction is important in strengthening echoes that are scattered toward the earth. Such surface-reflected signals are good indicators of horizontal winds.

  7. A new approach to correct yaw misalignment in the spinning ultrasonic anemometer

    NASA Astrophysics Data System (ADS)

    Ghaemi-Nasab, M.; Davari, Ali R.; Franchini, S.

    2018-01-01

    Single-axis ultrasonic anemometers are the modern instruments for accurate wind speed measurements. Despite their widespread and ever increasing applications, little attention has been paid up to now to spinning ultrasonic anemometers that can accurately measure both the wind speed and its direction in a single and robust apparatus. In this study, intensive wind-tunnel tests were conducted on a spinning single-axis ultrasonic anemometer to investigate the yaw misalignment in ultrasonic wind speed measurements during the yaw rotation. The anemometer was rotating inside the test section with various angular velocities, and the experiments were performed at several combinations of wind speed and anemometer angular velocity. The instantaneous angular position of the ultrasonic signal path with wind direction was measured using an angular position sensor. For a spinning anemometer, the circulatory wake and the associated flow distortion, along with the Doppler effect, impart a phase shift in the signals measured by the anemometer, which should be added to the position data for correcting the yaw misalignment. In this paper, the experimental data are used to construct a theoretical model, based on a response surface method, to correct the phase shift for various wind speeds and anemometer rotational velocities. This model is shown to successfully correct the velocity indicated by the spinning anemometer for the phase shift due to the rotation, and can easily be used in the calibration process for such anemometers.

  8. Extended Statistical Short-Range Guidance for Peak Wind Speed Analyses at the Shuttle Landing Facility: Phase II Results

    NASA Technical Reports Server (NTRS)

    Lambert, Winifred C.

    2003-01-01

    This report describes the results from Phase II of the AMU's Short-Range Statistical Forecasting task for peak winds at the Shuttle Landing Facility (SLF). The peak wind speeds are an important forecast element for the Space Shuttle and Expendable Launch Vehicle programs. The 45th Weather Squadron and the Spaceflight Meteorology Group indicate that peak winds are challenging to forecast. The Applied Meteorology Unit was tasked to develop tools that aid in short-range forecasts of peak winds at tower sites of operational interest. A seven year record of wind tower data was used in the analysis. Hourly and directional climatologies by tower and month were developed to determine the seasonal behavior of the average and peak winds. Probability density functions (PDF) of peak wind speed were calculated to determine the distribution of peak speed with average speed. These provide forecasters with a means of determining the probability of meeting or exceeding a certain peak wind given an observed or forecast average speed. A PC-based Graphical User Interface (GUI) tool was created to display the data quickly.

  9. Correlations between solar wind parameters and auroral kilometric radiation intensity

    NASA Technical Reports Server (NTRS)

    Gallagher, D. L.; Dangelo, N.

    1981-01-01

    The relationship between solar wind properties and the influx of energy into the nightside auroral region as indicated by the intensity of auroral kilometric radiation is investigated. Smoothed Hawkeye satellite observations of auroral radiation at 178, 100 and 56.2 kHz for days 160 through 365 of 1974 are compared with solar wind data from the composite Solar Wind Plasma Data Set, most of which was supplied by the IMP-8 spacecraft. Correlations are made between smoothed daily averages of solar wind ion density, bulk flow speed, total IMF strength, electric field, solar wind speed in the southward direction, solar wind speed multiplied by total IMF strength, the substorm parameter epsilon and the Kp index. The greatest correlation is found between solar wind bulk flow speed and auroral radiation intensity, with a linear correlation coefficient of 0.78 for the 203 daily averages examined. A possible mechanism for the relationship may be related to the propagation into the nightside magnetosphere of low-frequency long-wavelength electrostatic waves produced in the magnetosheath by the solar wind.

  10. Hydrodynamic modelling of recreational water quality using Escherichia coli as an indicator of microbial contamination

    NASA Astrophysics Data System (ADS)

    Eregno, Fasil Ejigu; Tryland, Ingun; Tjomsland, Torulv; Kempa, Magdalena; Heistad, Arve

    2018-06-01

    Microbial contamination of recreational beaches is often at its worst after heavy rainfall events due to storm floods that carry fecal matter and other pollutants from the watershed. Similarly, overflows of untreated sewage from combined sewerage systems may discharge directly into coastal water or via rivers and streams. In order to understand the effect of rainfall events, wind-directions and tides on the recreational water quality, GEMSS, an integrated 3D hydrodynamic model was applied to assess the spreading of Escherichia coli (E. coli) at the Sandvika beaches, located in the Oslo fjord. The model was also used to theoretically investigate the effect of discharges from septic tanks from boats on the water quality at local beaches. The model make use of microbial decay rate as the main input representing the survival of microbial pathogens in the ocean, which vary widely depending on the type of pathogen and environmental stress. The predicted beach water quality was validated against observed data after a heavy rainfall event using Nash-Sutcliffe coefficient (E) and the overall result indicated that the model performed quite well and the simulation was in - good agreement with the observed E. coli concentrations for all beaches. The result of this study indicated that: 1) the bathing water quality was poor according to the EU bathing water directive up to two days after the heavy rainfall event depending on the location of the beach site. 2) The discharge from a boat at 300-meter distance to the beaches slightly increased the E. coli levels at the beaches. 3) The spreading of microbial pathogens from its source to the different beaches depended on the wind speed and the wind direction.

  11. Impact of geostationary satellite water vapor channel data on weather analysis and forecasting

    NASA Technical Reports Server (NTRS)

    Velden, Christopher S.

    1995-01-01

    Preliminary results from NWP impact studies are indicating that upper-tropospheric wind information provided by tracking motions in sequences of geostationary satellite water vapor imagery can positively influence forecasts on regional scales, and possibly on global scales as well. The data are complimentary to cloud-tracked winds by providing data in cloud-free regions, as well as comparable in quality. First results from GOES-8 winds are encouraging, and further efforts and model impacts will be directed towards optimizing these data in numerical weather prediction (NWP). Assuming successful launches of GOES-J and GMS-5 satellites in 1995, high quality and resolution water vapor imagers will be available to provide nearly complete global upper-tropospheric wind coverage.

  12. Wind driven saltation: a hitherto overlooked challenge for life on Mars

    NASA Astrophysics Data System (ADS)

    Bak, Ebbe; Goul, Michael; Rasmussen, Martin; Moeller, Ralf; Nørnberg, Per; Knak Jensen, Svend; Finster, Kai

    2017-04-01

    The Martian surface is a hostile environment characterized by low water availability, low atmospheric pressure and high UV and ionizing radiation. Furthermore, wind-driven saltation leads to abrasion of silicates with a production of reactive surface sites and, through triboelectric charging, a release of electrical discharges with a concomitant production of reactive oxygen species. While the effects of low water availability, low pressure and radiation have been extensively studied in relation to the habitability of the Martian surface and the preservation of organic biosignatures, the effects of wind-driven saltation have hitherto been ignored. In this study, we have investigated the effect of exposing bacteria to wind-abraded silicates and directly to wind-driven saltation on Mars in controlled laboratory simulation experiments. Wind-driven saltation was simulated by tumbling mineral samples in a Mars-like atmosphere in sealed quartz ampoules. The effects on bacterial survival and structure were evaluated by colony forming unit counts in combination with scanning electron microscopy, quantitative polymerase chain reaction and life/dead-staining with flow cytometry. The viability of vegetative cells of P. putida, B. subtilis and D. radiodurans in aqueous suspensions was reduced by more than 99% by exposure to abraded basalt, while the viability of B. subtilis endospores was unaffected. B. subtilis mutants lacking different spore components were likewise highly resistant to the exposure to abraded basalt, which indicates that the resistance of spores is not associated with any specific spore component. We found a significant but reduced effect of abraded quartz and we suggest that the stress effect of abraded silicates is induced by a production of reactive oxygen species and hydroxyl radicals produced by Fenton-like reactions in the presence of transition metals. Direct exposure to simulated saltation had a dramatic effect on both D. radiodurans cells and B. subtilis spore with a more than 99.9% decrease in survival after 17 days. The high susceptibility of the usually multi-resistant D. radiodurans cells and B. sublitis spores to the effects of wind-driven saltation indicates that wind abraded silicates as well as direct exposure to saltation represent a considerable stress for microorganisms at the Martian surface, which may have limited the chance of indigenous life, could limit the risk of forward contamination and may have degraded potential organic biosignatures.

  13. Comparison of Space Shuttle Orbiter low-speed static stability and control derivatives obtained from wind-tunnel and approach and landing flight tests

    NASA Technical Reports Server (NTRS)

    Freeman, D. C., Jr.; Spencer, B., Jr.

    1980-01-01

    Tests were conducted in the 8 foot transonic pressure tunnel to obtain wind tunnel data for comparison with static stability and control parameters measured on the space shuttle orbiter approach and landing flight tests. The longitudinal stability, elevon effectiveness, lateral directional stability, and aileron effectiveness derivatives were determined from the wind tunnel data and compared with the flight test results. The comparison covers a range of angles of attack from approximately 2 deg to 10 deg at subsonic Mach numbers of 0.41 to 0.56. In general the wind tunnel results agreed well with the flight test results, indicating the wind tunnel data is applicable to the design of entry vehicles for subsonic speeds over the angle of attack range studied.

  14. The neutral wind 'flywheel' as a source of quiet-time, polar-cap currents

    NASA Technical Reports Server (NTRS)

    Lyons, L. R.; Walterscheid, R. L.; Killeen, T. L.

    1985-01-01

    The neutral wind pattern over the summer polar cap can be driven by plasma convection to resemble the convection pattern. For a north-south component of the interplanetary magnetic field Bz directed southward, the wind speeds in the conducting E-region can become approximately 25 percent of the electric field drift speeds. If convection ceases, this neutral wind distribution can drive a significant polar cap current system for approximately 6 hours. The currents are reversed from those driven by the electric fields for southward Bz, and the Hall and field-aligned components of the current system resemble those observed during periods of northward Bz. The current magnitudes are similar to those observed during periods of small, northward Bz; however, observations indicate that electric fields often contribute to the currents as much as, or more than, the neutral winds.

  15. El Niño-related offshore phytoplankton bloom events around the Spratley Islands in the South China Sea

    NASA Astrophysics Data System (ADS)

    Isoguchi, Osamu; Kawamura, Hiroshi; Ku-Kassim, Ku-Yaacob

    2005-11-01

    Satellite chlorophyll-a (Chl-a) observations reveal offshore phytoplankton bloom events with high Chl-a (>1 mg m-3) spreading over 300 km off the coasts around the Spratley Islands in the South China Sea (SCS) during the spring of 1998. The bloom entails anomalous wind jet and sea surface temperature (SST) cooling, suggesting that the wind jet-induced mixing and/or offshore upwelling bring about the cooling and the bloom through the supply of nutrient-rich waters into the euphotic zone. The strong wind jet is orographically formed responding to shifts in wind direction over the eastern SCS. The wind shift is connected with the Philippine Sea anomalous anticyclone that is established during El Niño, indicating the El Niño-related offshore bloom. The long-term reanalysis winds over the eastern SCS demonstrates that wind jet formation and associated offshore cooling/bloom are expected to occur in most cases of the subsequent El Niño years.

  16. The magnetospheric electric field and convective processes as diagnostics of the IMF and solar wind

    NASA Technical Reports Server (NTRS)

    Kaye, S. M.

    1979-01-01

    Indirect measurements of the convection field as well as direct of the ionospheric electric field provide a means to at least monitor quanitatively solar wind processes. For instance, asymmetries in the ionospheric electric field and ionospheric Hall currents over the polar cap reflect the solar wind sector polarity. A stronger electric field, and thus convective flow, is found on the side of the polar cap where the y component of the IMF is parallel to the y component of the geomagnetic field. Additionally, the magnitude of the electric field and convective southward B sub Z and/or solar wind velocity, and thus may indicate the arrival at Earth of an interaction region in the solar wind. It is apparent that processes associated with the convention electric field may be used to predict large scale features in the solar wind; however, with present empirical knowledge it is not possible to make quantitative predictions of individual solar wind or IMF parameters.

  17. Aeolian processes at the Mars Exploration Rover Meridiani Planum landing site.

    PubMed

    Sullivan, R; Banfield, D; Bell, J F; Calvin, W; Fike, D; Golombek, M; Greeley, R; Grotzinger, J; Herkenhoff, K; Jerolmack, D; Malin, M; Ming, D; Soderblom, L A; Squyres, S W; Thompson, S; Watters, W A; Weitz, C M; Yen, A

    2005-07-07

    The martian surface is a natural laboratory for testing our understanding of the physics of aeolian (wind-related) processes in an environment different from that of Earth. Martian surface markings and atmospheric opacity are time-variable, indicating that fine particles at the surface are mobilized regularly by wind. Regolith (unconsolidated surface material) at the Mars Exploration Rover Opportunity's landing site has been affected greatly by wind, which has created and reoriented bedforms, sorted grains, and eroded bedrock. Aeolian features here preserve a unique record of changing wind direction and wind strength. Here we present an in situ examination of a martian bright wind streak, which provides evidence consistent with a previously proposed formational model for such features. We also show that a widely used criterion for distinguishing between aeolian saltation- and suspension-dominated grain behaviour is different on Mars, and that estimated wind friction speeds between 2 and 3 m s(-1), most recently from the northwest, are associated with recent global dust storms, providing ground truth for climate model predictions.

  18. Aeolian processes at the Mars Exploration Rover Meridiani Planum landing site

    USGS Publications Warehouse

    Sullivan, R.; Banfield, D.; Bell, J.F.; Calvin, W.; Fike, D.; Golombek, M.; Greeley, R.; Grotzinger, J.; Herkenhoff, K.; Jerolmack, D.; Malin, M.; Ming, D.; Soderblom, L.A.; Squyres, S. W.; Thompson, S.; Watters, W.A.; Weitz, C.M.; Yen, A.

    2005-01-01

    The martian surface is a natural laboratory for testing our understanding of the physics of aeolian (wind-related) processes in an environment different from that of Earth. Martian surface markings and atmospheric opacity are time-variable, indicating that fine particles at the surface are mobilized regularly by wind. Regolith (unconsolidated surface material) at the Mars Exploration Rover Opportunity's landing site has been affected greatly by wind, which has created and reoriented bedforms, sorted grains, and eroded bedrock. Aeolian features here preserve a unique record of changing wind direction and wind strength. Here we present an in situ examination of a martian bright wind streak, which provides evidence consistent with a previously proposed formational model for such features. We also show that a widely used criterion for distinguishing between aeolian saltation- and suspension-dominated grain behaviour is different on Mars, and that estimated wind friction speeds between 2 and 3 m s-1, most recently from the northwest, are associated with recent global dust storms, providing ground truth for climate model predictions.

  19. Tail Shape Design of Boat Wind Turbines

    NASA Astrophysics Data System (ADS)

    Singamsitty, Venkatesh

    Wind energy is a standout among the most generally utilized sustainable power source assets. A great deal of research and improvements have been happening in the wind energy field. Wind turbines are mechanical devices that convert kinetic energy into electrical power. Boat wind turbines are for the small-scale generation of electric power. In order to catch wind energy effectively, boat wind turbines need to face wind direction. Tails are used in boat wind turbines to alter the wind turbine direction and receive the variation of the incoming direction of wind. Tails are used to change the performance of boat wind turbines in an effective way. They are required to generate a quick and steady response as per change in wind direction. Tails can have various shapes, and their effects on boat wind turbines are different. However, the effects of tail shapes on the performance of boat wind turbines are not thoroughly studied yet. In this thesis, five tail shapes were studied. Their effects on boat wind turbines were investigated. The power extracted by the turbines from the air and the force acting on the boat wind turbine tail were analyzed. The results of this thesis provide a guideline of tail shape design for boat wind turbines.

  20. Experimental and Numerical Study of Wind and Turbulence in a Near-Field Dispersion Campaign at an Inhomogeneous Site

    NASA Astrophysics Data System (ADS)

    Wei, Xiao; Dupont, Eric; Gilbert, Eric; Musson-Genon, Luc; Carissimo, Bertrand

    2016-09-01

    We present a detailed experimental and numerical study of the local flow field for a pollutant dispersion experimental program conducted at SIRTA (Site Instrumental de Recherche par Télédétection Atmosphérique), a complex and intensively instrumented site in a southern suburb of Paris. Global analysis of continuous measurements over 2 years highlights the impact of terrain heterogeneity on wind and turbulence. It shows that the forest to the north of the experimental field induces strong directional shear and wind deceleration below the forest canopy height. This directional shear is stronger with decreasing height and decreasing distance from the forest edge. Numerical simulations are carried out using Code_Saturne, a computational fluid dynamics code, in Reynolds-averaged Navier-Stokes mode with a standard k{-}ɛ closure and a canopy model, in neutral and stable stratifications. These simulations are shown to reproduce globally well the characteristics of the mean flow, especially the directional wind shear in northeasterly and northwesterly cases and the turbulent kinetic energy increase induced by the forest. However, they slightly underestimate wind speed and the directional shear of the flow below the forest canopy height. Sensitivity studies are performed to investigate the influence of leaf area density, inlet stability condition, and roughness length. These studies show that the typical features of the canopy flow become more pronounced as canopy density increases. Performance statistics indicate that the impact of the forest and adequate inlet profiles are the most important factors in the accurate reproduction of flow at the site, especially under stable stratification.

  1. In-Street Wind Direction Variability in the Vicinity of a Busy Intersection in Central London

    NASA Astrophysics Data System (ADS)

    Balogun, Ahmed A.; Tomlin, Alison S.; Wood, Curtis R.; Barlow, Janet F.; Belcher, Stephen E.; Smalley, Robert J.; Lingard, Justin J. N.; Arnold, Sam J.; Dobre, Adrian; Robins, Alan G.; Martin, Damien; Shallcross, Dudley E.

    2010-09-01

    We present results from fast-response wind measurements within and above a busy intersection between two street canyons (Marylebone Road and Gloucester Place) in Westminster, London taken as part of the DAPPLE (Dispersion of Air Pollution and Penetration into the Local Environment; www.dapple.org.uk ) 2007 field campaign. The data reported here were collected using ultrasonic anemometers on the roof-top of a building adjacent to the intersection and at two heights on a pair of lamp-posts on opposite sides of the intersection. Site characteristics, data analysis and the variation of intersection flow with the above-roof wind direction ( θ ref ) are discussed. Evidence of both flow channelling and recirculation was identified within the canyon, only a few metres from the intersection for along-street and across-street roof-top winds respectively. Results also indicate that for oblique roof-top flows, the intersection flow is a complex combination of bifurcated channelled flows, recirculation and corner vortices. Asymmetries in local building geometry around the intersection and small changes in the background wind direction (changes in 15- min mean θ ref of 5°-10°) were also observed to have profound influences on the behaviour of intersection flow patterns. Consequently, short time-scale variability in the background flow direction can lead to highly scattered in-street mean flow angles masking the true multi-modal features of the flow and thus further complicating modelling challenges.

  2. The sedimentology and dynamics of crater-affiliated wind streaks in western Arabia Terra, Mars and Patagonia, Argentina

    USGS Publications Warehouse

    Rodriguez, J.A.P.; Tanaka, K.L.; Yamamoto, A.; Berman, D.C.; Zimbelman, J.R.; Kargel, J.S.; Sasaki, S.; Jinguo, Y.; Miyamoto, H.

    2010-01-01

    Wind streaks comprise recent aeolian deposits that have been extensively documented on Venus, Earth and Mars. Martian wind streaks are among the most abundant surface features on the planet and commonly extend from the downwind margins of impact craters. Previous studies of wind streaks emerging from crater interior deposits suggested that the mode of emplacement was primarily related to the deposition of silt-sized particles as these settled from plumes. We have performed geologic investigations of two wind streaks clusters; one situated in western Arabia Terra, a region in the northern hemisphere of Mars, and another in an analogous terrestrial site located in southern Patagonia, Argentina, where occurrences of wind streaks emanate from playas within maar craters. In both these regions we have identified bedforms in sedimentary deposits on crater floors, along wind-facing interior crater margins, and along wind streaks. These observations indicate that these deposits contain sand-sized particles and that sediment migration has occurred via saltation from crater interior deposits to wind streaks. In Arabia Terra and in Patagonia wind streaks initiate from crater floors that contain lithic and evaporitic sedimentary deposits, suggesting that the composition of wind streak source materials has played an important role in development. Spatial and topographic analyses suggest that regional clustering of wind streaks in the studied regions directly correlates to the areal density of craters with interior deposits, the degree of proximity of these deposits, and the craters' rim-to-floor depths. In addition, some (but not all) wind streaks within the studied clusters have propagated at comparable yearly (Earth years) rates. Extensive saltation is inferred to have been involved in its propagation based on the studied terrestrial wind streak that shows ripples and dunes on its surface and the Martian counterpart changes orientation toward the downslope direction where it extends into an impact crater. ?? 2009 Elsevier B.V.

  3. Flying with the wind: Scale dependency of speed and direction measurements in modelling wind support in avian flight

    USGS Publications Warehouse

    Safi, Kamran; Kranstauber, Bart; Weinzierl, Rolf P.; Griffin, Larry; Reese, Eileen C.; Cabot, David; Cruz, Sebastian; Proaño, Carolina; Takekawa, John Y.; Newman, Scott H.; Waldenström, Jonas; Bengtsson, Daniel; Kays, Roland; Wikelski, Martin; Bohrer, Gil

    2013-01-01

    Background: Understanding how environmental conditions, especially wind, influence birds' flight speeds is a prerequisite for understanding many important aspects of bird flight, including optimal migration strategies, navigation, and compensation for wind drift. Recent developments in tracking technology and the increased availability of data on large-scale weather patterns have made it possible to use path annotation to link the location of animals to environmental conditions such as wind speed and direction. However, there are various measures available for describing not only wind conditions but also the bird's flight direction and ground speed, and it is unclear which is best for determining the amount of wind support (the length of the wind vector in a bird’s flight direction) and the influence of cross-winds (the length of the wind vector perpendicular to a bird’s direction) throughout a bird's journey.Results: We compared relationships between cross-wind, wind support and bird movements, using path annotation derived from two different global weather reanalysis datasets and three different measures of direction and speed calculation for 288 individuals of nine bird species. Wind was a strong predictor of bird ground speed, explaining 10-66% of the variance, depending on species. Models using data from different weather sources gave qualitatively similar results; however, determining flight direction and speed from successive locations, even at short (15 min intervals), was inferior to using instantaneous GPS-based measures of speed and direction. Use of successive location data significantly underestimated the birds' ground and airspeed, and also resulted in mistaken associations between cross-winds, wind support, and their interactive effects, in relation to the birds' onward flight.Conclusions: Wind has strong effects on bird flight, and combining GPS technology with path annotation of weather variables allows us to quantify these effects for understanding flight behaviour. The potentially strong influence of scaling effects must be considered and implemented in developing sampling regimes and data analysis.

  4. Flying with the wind: scale dependency of speed and direction measurements in modelling wind support in avian flight.

    PubMed

    Safi, Kamran; Kranstauber, Bart; Weinzierl, Rolf; Griffin, Larry; Rees, Eileen C; Cabot, David; Cruz, Sebastian; Proaño, Carolina; Takekawa, John Y; Newman, Scott H; Waldenström, Jonas; Bengtsson, Daniel; Kays, Roland; Wikelski, Martin; Bohrer, Gil

    2013-01-01

    Understanding how environmental conditions, especially wind, influence birds' flight speeds is a prerequisite for understanding many important aspects of bird flight, including optimal migration strategies, navigation, and compensation for wind drift. Recent developments in tracking technology and the increased availability of data on large-scale weather patterns have made it possible to use path annotation to link the location of animals to environmental conditions such as wind speed and direction. However, there are various measures available for describing not only wind conditions but also the bird's flight direction and ground speed, and it is unclear which is best for determining the amount of wind support (the length of the wind vector in a bird's flight direction) and the influence of cross-winds (the length of the wind vector perpendicular to a bird's direction) throughout a bird's journey. We compared relationships between cross-wind, wind support and bird movements, using path annotation derived from two different global weather reanalysis datasets and three different measures of direction and speed calculation for 288 individuals of nine bird species. Wind was a strong predictor of bird ground speed, explaining 10-66% of the variance, depending on species. Models using data from different weather sources gave qualitatively similar results; however, determining flight direction and speed from successive locations, even at short (15 min intervals), was inferior to using instantaneous GPS-based measures of speed and direction. Use of successive location data significantly underestimated the birds' ground and airspeed, and also resulted in mistaken associations between cross-winds, wind support, and their interactive effects, in relation to the birds' onward flight. Wind has strong effects on bird flight, and combining GPS technology with path annotation of weather variables allows us to quantify these effects for understanding flight behaviour. The potentially strong influence of scaling effects must be considered and implemented in developing sampling regimes and data analysis.

  5. Evaluation of the Environmental Instruments, Incorporated Series 200 Dual Component Wind Set.

    DTIC Science & Technology

    1980-09-01

    elements is sensed to derive the sign (+ or -), which indicates the wind direction across the element pair. The reference arm of the Wheatstone bridge...Csine a for the crosswind axis, r and PF=a Vw Sine a for the headwind axis, r where Pa is the ambient air density, Pr is reference density at standard...pressure transducer is a hybrid linear silicon device which consists of a diaphragm and pressure reference , piezoresistive sensor, signal discriminator

  6. Plants and ventifacts delineate late Holocene wind vectors in the Coachella Valley, USA

    USGS Publications Warehouse

    Griffiths, P.G.; Webb, R.H.; Fisher, M.; Muth, Allan

    2009-01-01

    Strong westerly winds that emanate from San Gorgonio Pass, the lowest point between Palm Springs and Los Angeles, California, dominate aeolian transport in the Coachella Valley of the western Sonoran Desert. These winds deposit sand in coppice dunes that are critical habitat for several species, including the state and federally listed threatened species Uma inornata, a lizard. Although wind directions are generally defined in this valley, the wind field has complex interactions with local topography and becomes more variable with distance from the pass. Local, dominant wind directions are preserved by growth patterns of Larrea tridentata (creosote bush), a shrub characteristic of the hot North American deserts, and ventifacts. Exceptionally long-lived, Larrea has the potential to preserve wind direction over centuries to millennia, shaped by the abrasive pruning of windward branches and the persistent training of leeward branches. Wind direction preserved in Larrea individuals and clones was mapped at 192 locations. Compared with wind data from three weather stations, Larrea vectors effectively reflect annual prevailing winds. Ventifacts measured at 24 locations record winds 10° more westerly than Larrea and appear to reflect the direction of the most erosive winds. Based on detailed mapping of local wind directions as preserved in Larrea, only the northern half of the Mission-Morongo Creek floodplain is likely to supply sand to protected U. inornata habitat in the Willow Hole ecological reserve.

  7. The wind-wind collision hole in eta Car

    NASA Astrophysics Data System (ADS)

    Damineli, A.; Teodoro, M.; Richardson, N. D.; Gull, T. R.; Corcoran, M. F.; Hamaguchi, K.; Groh, J. H.; Weigelt, G.; Hillier, D. J.; Russell, C.; Moffat, A.; Pollard, K. R.; Madura, T. I.

    2017-11-01

    Eta Carinae is one of the most massive observable binaries. Yet determination of its orbital and physical parameters is hampered by obscuring winds. However the effects of the strong, colliding winds changes with phase due to the high orbital eccentricity. We wanted to improve measures of the orbital parameters and to determine the mechanisms that produce the relatively brief, phase-locked minimum as detected throughout the electromagnetic spectrum. We conducted intense monitoring of the He ii λ4686 line in η Carinae for 10 months in the year 2014, gathering ~300 high S/N spectra with ground- and space-based telescopes. We also used published spectra at the FOS4 SE polar region of the Homunculus, which views the minimum from a different direction. We used a model in which the He ii λ4686 emission is produced by two mechanisms: a) one linked to the intensity of the wind-wind collision which occurs along the whole orbit and is proportional to the inverse square of the separation between the companion stars; and b) the other produced by the `bore hole' effect which occurs at phases across the periastron passage. The opacity (computed from 3D SPH simulations) as convolved with the emission reproduces the behavior of equivalent widths both for direct and reflected light. Our main results are: a) a demonstration that the He ii λ4686 light curve is exquisitely repeatable from cycle to cycle, contrary to previous claims for large changes; b) an accurate determination of the longitude of periastron, indicating that the secondary star is `behind' the primary at periastron, a dispute extended over the past decade; c) a determination of the time of periastron passage, at ~4 days after the onset of the deep light curve minimum; and d) show that the minimum is simultaneous for observers at different lines of sight, indicating that it is not caused by an eclipse of the secondary star, but rather by the immersion of the wind-wind collision interior to the inner wind of the primary.

  8. Investigation of the Impact of the Upstream Induction Zone on LIDAR Measurement Accuracy for Wind Turbine Control Applications using Large-Eddy Simulation

    NASA Astrophysics Data System (ADS)

    Simley, Eric; Y Pao, Lucy; Gebraad, Pieter; Churchfield, Matthew

    2014-06-01

    Several sources of error exist in lidar measurements for feedforward control of wind turbines including the ability to detect only radial velocities, spatial averaging, and wind evolution. This paper investigates another potential source of error: the upstream induction zone. The induction zone can directly affect lidar measurements and presents an opportunity for further decorrelation between upstream wind and the wind that interacts with the rotor. The impact of the induction zone is investigated using the combined CFD and aeroelastic code SOWFA. Lidar measurements are simulated upstream of a 5 MW turbine rotor and the true wind disturbances are found using a wind speed estimator and turbine outputs. Lidar performance in the absence of an induction zone is determined by simulating lidar measurements and the turbine response using the aeroelastic code FAST with wind inputs taken far upstream of the original turbine location in the SOWFA wind field. Results indicate that while measurement quality strongly depends on the amount of wind evolution, the induction zone has little effect. However, the optimal lidar preview distance and circular scan radius change slightly due to the presence of the induction zone.

  9. Spatial-temporal analysis of coherent offshore wind field structures measured by scanning Doppler-lidar

    NASA Astrophysics Data System (ADS)

    Valldecabres, L.; Friedrichs, W.; von Bremen, L.; Kühn, M.

    2016-09-01

    An analysis of the spatial and temporal power fluctuations of a simplified wind farm model is conducted on four offshore wind fields data sets, two from lidar measurements and two from LES under unstable and neutral atmospheric conditions. The integral length scales of the horizontal wind speed computed in the streamwise and the cross-stream direction revealed the elongation of the structures in the direction of the mean flow. To analyse the effect of the structures on the power output of a wind turbine, the aggregated equivalent power of two wind turbines with different turbine spacing in the streamwise and cross-stream direction is analysed at different time scales under 10 minutes. The fact of considering the summation of the power of two wind turbines smooths out the fluctuations of the power output of a single wind turbine. This effect, which is stronger with increasing spacing between turbines, can be seen in the aggregation of the power of two wind turbines in the streamwise direction. Due to the anti-correlation of the coherent structures in the cross-stream direction, this smoothing effect is stronger when the aggregated power is computed with two wind turbines aligned orthogonally to the mean flow direction.

  10. Egomotion estimation with optic flow and air velocity sensors.

    PubMed

    Rutkowski, Adam J; Miller, Mikel M; Quinn, Roger D; Willis, Mark A

    2011-06-01

    We develop a method that allows a flyer to estimate its own motion (egomotion), the wind velocity, ground slope, and flight height using only inputs from onboard optic flow and air velocity sensors. Our artificial algorithm demonstrates how it could be possible for flying insects to determine their absolute egomotion using their available sensors, namely their eyes and wind sensitive hairs and antennae. Although many behaviors can be performed by only knowing the direction of travel, behavioral experiments indicate that odor tracking insects are able to estimate the wind direction and control their absolute egomotion (i.e., groundspeed). The egomotion estimation method that we have developed, which we call the opto-aeronautic algorithm, is tested in a variety of wind and ground slope conditions using a video recorded flight of a moth tracking a pheromone plume. Over all test cases that we examined, the algorithm achieved a mean absolute error in height of 7% or less. Furthermore, our algorithm is suitable for the navigation of aerial vehicles in environments where signals from the Global Positioning System are unavailable.

  11. Transport of airborne pollen into the city of Thessaloniki: the effects of wind direction, speed and persistence

    NASA Astrophysics Data System (ADS)

    Damialis, Athanasios; Gioulekas, Dimitrios; Lazopoulou, Chariklia; Balafoutis, Christos; Vokou, Despina

    2005-01-01

    We examined the effect of the wind vector analyzed into its three components (direction, speed and persistence), on the circulation of pollen from differe nt plant taxa prominent in the Thessaloniki area for a 4-year period (1996- 1999). These plant taxa were Ambrosia spp., Artemisia spp., Chenopodiaceae, spp., Cupressaceae, Olea europaea, Pinaceae, Platanus spp., Poaceae, Populus spp., Quercus spp., and Urticaceae. Airborne pollen of Cupressaceae, Urticaceae, Quercus spp. and O. europaea make up approximately 70% of the total average annual pollen counts. The set of data that we worked with represented days without precipitation and time intervals during which winds blew from the same direction for at least 4 consecutive hours. We did this in order to study the effect of the different wind components independently of precipitation, and to avoid secondary effects produced by pollen resuspension phenomena. Factorial regression analysis among the summed bi-hourly pollen counts for each taxon and the values of wind speed and persistence per wind direction gave significant results in 22 cases (combinations of plant taxa and wind directions). The pollen concentrations of all taxa correlated significantly with at least one of the three wind components. In seven out of the 22 taxon-wind direction combinations, the pollen counts correlated positively with wind persistence, whereas this was the case for only two of the taxon-wind speed combinations. In seven cases, pollen counts correlated with the interaction effect of wind speed and persistence. This shows the importance of wind persistence in pollen transport, particularly when weak winds prevail for a considerable part of the year, as is the case for Thessaloniki. Medium/long-distance pollen transport was evidenced for Olea (NW, SW directions), Corylus (NW, SW), Poaceae (SW) and Populus (NW).

  12. Wind direction change criteria for wind turbine design

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cliff, W.C.

    1979-01-01

    A method is presented for estimating the root mean square (rms) value of the wind direction change, ..delta..theta(tau) = theta(tau + tau) - theta(tau), that occurs over the swept area of wind turbine rotor systems. An equation is also given for the rms value of the wind direction change that occurs at a single point in space, i.e., a direcion change that a wind vane would measure. Assuming a normal probability density function for the lateral wind velocity change and relating this to angular changes, equations are given for calculating the expected number of wind direction changes, larger than anmore » arbitrary value, that will occur in 1 hr as well as the expected number that will occur during the design life of a wind turbine. The equations presented are developed using a small angle approximation and are, therefore, considered appropriate for wind direction changes of less than 30/sup 0/. The equations presented are based upon neutral atmospheric boundary-layer conditions and do not include information regarding events such as tornados, hurricanes, etc.« less

  13. Optimized Generator Designs for the DTU 10-MW Offshore Wind Turbine using GeneratorSE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sethuraman, Latha; Maness, Michael; Dykes, Katherine

    Compared to land-based applications, offshore wind imposes challenges for the development of next generation wind turbine generator technology. Direct-drive generators are believed to offer high availability, efficiency, and reduced operation and maintenance requirements; however, previous research suggests difficulties in scaling to several megawatts or more in size. The resulting designs are excessively large and/or massive, which are major impediments to transportation logistics, especially for offshore applications. At the same time, geared wind turbines continue to sustain offshore market growth through relatively cheaper and lightweight generators. However, reliability issues associated with mechanical components in a geared system create significant operation andmore » maintenance costs, and these costs make up a large portion of overall system costs offshore. Thus, direct-drive turbines are likely to outnumber their gear-driven counterparts for this market, and there is a need to review the costs or opportunities of building machines with different types of generators and examining their competitiveness at the sizes necessary for the next generation of offshore wind turbines. In this paper, we use GeneratorSE, the National Renewable Energy Laboratory's newly developed systems engineering generator sizing tool to estimate mass, efficiency, and the costs of different generator technologies satisfying the electromagnetic, structural, and basic thermal design requirements for application in a very large-scale offshore wind turbine such as the Technical University of Denmark's (DTU) 10-MW reference wind turbine. For the DTU reference wind turbine, we use the previously mentioned criteria to optimize a direct-drive, radial flux, permanent-magnet synchronous generator; a direct-drive electrically excited synchronous generator; a medium-speed permanent-magnet generator; and a high-speed, doubly-fed induction generator. Preliminary analysis of leveled costs of energy indicate that for large turbines, the cost of permanent magnets and reliability issues associated with brushes in electrically excited machines are the biggest deterrents for building direct-drive systems. The advantage of medium-speed permanent-magnet machines over doubly-fed induction generators is evident, yet, variability in magnet prices and solutions to address reliability issues associated with gearing and brushes can change this outlook. This suggests the need to potentially pursue fundamentally new innovations in generator designs that help avoid high capital costs but still have significant reliability related to performance.« less

  14. Optimized Generator Designs for the DTU 10-MW Offshore Wind Turbine using GeneratorSE: Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sethuraman, Latha; Maness, Michael; Dykes, Katherine

    Compared to land-based applications, offshore wind imposes challenges for the development of next generation wind turbine generator technology. Direct-drive generators are believed to offer high availability, efficiency, and reduced operation and maintenance requirements; however, previous research suggests difficulties in scaling to several megawatts or more in size. The resulting designs are excessively large and/or massive, which are major impediments to transportation logistics, especially for offshore applications. At the same time, geared wind turbines continue to sustain offshore market growth through relatively cheaper and lightweight generators. However, reliability issues associated with mechanical components in a geared system create significant operation andmore » maintenance costs, and these costs make up a large portion of overall system costs offshore. Thus, direct-drive turbines are likely to outnumber their gear-driven counterparts for this market, and there is a need to review the costs or opportunities of building machines with different types of generators and examining their competitiveness at the sizes necessary for the next generation of offshore wind turbines. In this paper, we use GeneratorSE, the National Renewable Energy Laboratory's newly developed systems engineering generator sizing tool to estimate mass, efficiency, and the costs of different generator technologies satisfying the electromagnetic, structural, and basic thermal design requirements for application in a very large-scale offshore wind turbine such as the Technical University of Denmark's (DTU) 10-MW reference wind turbine. For the DTU reference wind turbine, we use the previously mentioned criteria to optimize a direct-drive, radial flux, permanent-magnet synchronous generator; a direct-drive electrically excited synchronous generator; a medium-speed permanent-magnet generator; and a high-speed, doubly-fed induction generator. Preliminary analysis of leveled costs of energy indicate that for large turbines, the cost of permanent magnets and reliability issues associated with brushes in electrically excited machines are the biggest deterrents for building direct-drive systems. The advantage of medium-speed permanent-magnet machines over doubly-fed induction generators is evident, yet, variability in magnet prices and solutions to address reliability issues associated with gearing and brushes can change this outlook. This suggests the need to potentially pursue fundamentally new innovations in generator designs that help avoid high capital costs but still have significant reliability related to performance.« less

  15. The Novaya Zemlya Bora: Analysis and Numerical Modeling

    NASA Astrophysics Data System (ADS)

    Efimov, V. V.; Komarovskaya, O. I.

    2018-01-01

    We consider the data of an ASRI reanalysis to distinguish the properties of velocity and temperature fields in the region of Novaya Zemlya (NZ). A numerical simulation of the bora development is performed using the WRF-ARW regional model of atmospheric circulation for two cases with different directions of the wind. In the case of southeastern winds, the wind speed and temperature fields are reproduced and the characteristics of the bora are defined: temperature and wind speed increase over the lee slope of mountains and coastal western area of the Barents Sea. In the case of a western wind, the bora does not appear. The estimates of temperature contrasts in the flow of the air stream over the NZ mountains found in the processing of the ASRI data are reported. The region of high velocities and fluxes of sensible and latent heat indicating the climatic role of the NZ archipelago noted earlier in [12] is determined.

  16. The variety of MHD shock waves interactions in the solar wind flow

    NASA Technical Reports Server (NTRS)

    Grib, S. A.

    1995-01-01

    Different types of nonlinear shock wave interactions in some regions of the solar wind flow are considered. It is shown, that the solar flare or nonflare CME fast shock wave may disappear as the result of the collision with the rotational discontinuity. By the way the appearance of the slow shock waves as the consequence of the collision with other directional discontinuity namely tangential is indicated. Thus the nonlinear oblique and normal MHD shock waves interactions with different solar wind discontinuities (tangential, rotational, contact, shock and plasmoidal) both in the free flow and close to the gradient regions like the terrestrial magnetopause and the heliopause are described. The change of the plasma pressure across the solar wind fast shock waves is also evaluated. The sketch of the classification of the MHD discontinuities interactions, connected with the solar wind evolution is given.

  17. The collapse of Tacoma Narrows Bridge: a piece to the puzzle

    NASA Astrophysics Data System (ADS)

    Walther, J. H.; Christensen, D. S.; Malthe, M. G.; Roenne, M.; Spietz, H. J.; Larsen, A.; Larsen, S. V.

    2017-11-01

    On Nov. 7th 1940 the newly constructed Tacoma Narrows Bridge collapsed due to excessive torsional oscillations caused by the formation and shedding of large coherent vortices. The subsequent wind tunnel tests conducted on both section- and full bridge models concluded that the bridge should have collapsed at a wind speed corresponding to approximately half of the wind speed at the day of the collapse. This discrepancy questions our understanding of the phenomena responsible for the failure of the bridge. The present study aims at clarifying this ``mystery'' by considering historical records made available by the US coast guards, and by performing wind tunnel tests and detailed numerical flow simulations. Our findings indicate that the discrepancy is caused by an until now unnoticed yawed wind direction relative to the bridge, which was present at the day of the collapse. Danish Council for Independent Research Grant No. 4184-00349B.

  18. Relationship between gas exchange, wind speed, and radar backscatter in a large wind-wave tank

    NASA Technical Reports Server (NTRS)

    Wanninkhof, Richard H.; Bliven, L. F.

    1991-01-01

    The relationships between the gas exchange, wind speed, friction velocity, and radar backscatter from the water surface was investigated using data obtained in a large water tank in the Delft (Netherlands) wind-wave tunnel, filled with water supersaturated with SF6, N2O, and CH4. Results indicate that the gas-transfer velocities of these substances were related to the wind speed with a power law dependence. Microwave backscatter from water surface was found to be related to gas transfer velocities by a relationship in the form k(gas) = a 10 exp (b A0), where k is the gas transfer velocity for the particular gas, the values of a and b are obtained from a least squares fit of the average backscatter cross section and gas transfer at 80 m, and A0 is the directional (azimuthal) averaged return.

  19. Shapes of strong shock fronts in an inhomogeneous solar wind

    NASA Technical Reports Server (NTRS)

    Heinemann, M. A.; Siscoe, G. L.

    1974-01-01

    The shapes expected for solar-flare-produced strong shock fronts in the solar wind have been calculated, large-scale variations in the ambient medium being taken into account. It has been shown that for reasonable ambient solar wind conditions the mean and the standard deviation of the east-west shock normal angle are in agreement with experimental observations including shocks of all strengths. The results further suggest that near a high-speed stream it is difficult to distinguish between corotating shocks and flare-associated shocks on the basis of the shock normal alone. Although the calculated shapes are outside the range of validity of the linear approximation, these results indicate that the variations in the ambient solar wind may account for large deviations of shock normals from the radial direction.

  20. Transformer current sensor for superconducting magnetic coils

    DOEpatents

    Shen, Stewart S.; Wilson, C. Thomas

    1988-01-01

    A transformer current sensor having primary turns carrying a primary current for a superconducting coil and secondary turns only partially arranged within the primary turns. The secondary turns include an active winding disposed within the primary turns and a dummy winding which is not disposed in the primary turns and so does not experience a magnetic field due to a flow of current in the primary turns. The active and dummy windings are wound in opposite directions or connected in series-bucking relationship, and are exposed to the same ambient magnetic field. Voltages which might otherwise develop in the active and dummy windings due to ambient magnetic fields thus cancel out. The resultant voltage is purely indicative of the rate of change of current flowing in the primary turns.

  1. The effects of wind and altitude in the 400-m sprint.

    PubMed

    Quinn, Mike D

    2004-01-01

    In this paper I use a mathematical model to simulate the effect of wind and altitude on men's and women's 4400-m race performances. Both wind speed and direction were altered to calculate the effect on the velocity profile and the final time of the sprinter. The simulation shows that for a constant wind velocity, changing the wind direction can produce a large variation in the race time and velocity profile. A wind of velocity 2 m x s(-1) is generally a disadvantage to the 400-m runner but this is not so for all wind directions. Constant winds blowing from some directions can provide favourable conditions for the one-lap runner. Differences between the running lanes can be reduced or exaggerated depending on the wind direction. For example, a wind blowing behind the runner in the back straight increases the advantage of lane 8 over lane 1. Wind conditions can change the velocity profile and in some circumstances produce a maximum velocity much later than is evident in windless conditions. Lower air density at altitude produces a time advantage of around 0.06 s for men (0.07 s for women) for each 500-m increase in elevation.

  2. Wind Speed Dependence of Acoustic Ambient Vertical Directional Spectra at High Frequency

    DTIC Science & Technology

    1989-05-26

    the measurements, which is 8 to 32 kHz, is sufficiently high that the propagation is adequately modeled using the Eikonal equation approximation. 4 TD...level spectra were calculated from the resulting time series. Spectral levels at 8, 16, and 32 kHz were recorded in a database along with the wind...indications of biological or industrial contaminations were removed. The resulting database seen here contained 215 samples. 10 * TD 8565 0z 00 a.I. cn

  3. Historical background and design evolution of the transonic aircraft technology supercritical wing

    NASA Technical Reports Server (NTRS)

    Ayers, T. G.; Hallissy, J. B.

    1981-01-01

    Two dimensional wind tunnel test results obtained for supercritical airfoils indicated that substantial improvements in aircraft performance at high subsonic speeds could be achieved by shaping the airfoil to improve the supercritical flow above the upper surface. Significant increases in the drag divergence Mach number, the maximum lift coefficient for buffer onset, and the Mach number for buffet onset at a given lift coefficient were demonstrated for the supercritical airfoil, as compared with a NACA 6 series airfoil of comparable thickness. These trends were corroborated by results from three dimensional wind tunnel and flight tests. Because these indicated extensions of the buffet boundaries could provide significant improvements in the maneuverability of a fighter airplane, an exploratory wind tunnel investigation was initiated which demonstrated that significant aerodynamic improvements could be achieved from the direct substitution of a supercritical airfoil on a variable wing sweep multimission airplane model.

  4. Doppler lidar investigation of wind turbine wake characteristics and atmospheric turbulence under different surface roughness.

    PubMed

    Zhai, Xiaochun; Wu, Songhua; Liu, Bingyi

    2017-06-12

    Four field experiments based on Pulsed Coherent Doppler Lidar with different surface roughness have been carried out in 2013-2015 to study the turbulent wind field in the vicinity of operating wind turbine in the onshore and offshore wind parks. The turbulence characteristics in ambient atmosphere and wake area was analyzed using transverse structure function based on Plane Position Indicator scanning mode. An automatic wake processing procedure was developed to determine the wake velocity deficit by considering the effect of ambient velocity disturbance and wake meandering with the mean wind direction. It is found that the turbine wake obviously enhances the atmospheric turbulence mixing, and the difference in the correlation of turbulence parameters under different surface roughness is significant. The dependence of wake parameters including the wake velocity deficit and wake length on wind velocity and turbulence intensity are analyzed and compared with other studies, which validates the empirical model and simulation of a turbine wake for various atmosphere conditions.

  5. Correlating Solar Wind Modulation with Ionospheric Variability at Mars from MEX and MAVEN Observations

    NASA Astrophysics Data System (ADS)

    Kopf, A. J.; Morgan, D. D.; Halekas, J. S.; Ruhunusiri, S.; Gurnett, D. A.; Connerney, J. E. P.

    2017-12-01

    The synthesis of observations by the Mars Express and Mars Atmosphere and Volatiles Evolution (MAVEN) spacecraft allows for a unique opportunity to study variability in the Martian ionosphere from multiple perspectives. One major source for this variability is the solar wind. Due to its elliptical orbit which precesses over time, MAVEN periodically spends part of its orbit outside the Martian bow shock, allowing for direct measurements of the solar wind impacting the Martian plasma environment. When the Mars Advanced Radar for Subsurface and Ionosphere Sounding (MARSIS) instrument aboard Mars Express is simultaneously sounding the ionosphere, the influence from changes in the solar wind can be observed. Previous studies have suggested a positive correlation, connecting ionospheric density to the solar wind proton flux, but depended on Earth-based measurements for solar wind conditions. More recently, research has indicated that observations of ionospheric variability from these two spacecraft can be connected in special cases, such as shock wave impacts or specific solar wind magnetic field orientations. Here we extend this to more general solar wind conditions and examine how changes in the solar wind properties measured by MAVEN instruments correlate with ionospheric structure and dynamics observed simultaneously in MARSIS remote and local measurements.

  6. Wavelet analysis for wind fields estimation.

    PubMed

    Leite, Gladeston C; Ushizima, Daniela M; Medeiros, Fátima N S; de Lima, Gilson G

    2010-01-01

    Wind field analysis from synthetic aperture radar images allows the estimation of wind direction and speed based on image descriptors. In this paper, we propose a framework to automate wind direction retrieval based on wavelet decomposition associated with spectral processing. We extend existing undecimated wavelet transform approaches, by including à trous with B(3) spline scaling function, in addition to other wavelet bases as Gabor and Mexican-hat. The purpose is to extract more reliable directional information, when wind speed values range from 5 to 10 ms(-1). Using C-band empirical models, associated with the estimated directional information, we calculate local wind speed values and compare our results with QuikSCAT scatterometer data. The proposed approach has potential application in the evaluation of oil spills and wind farms.

  7. Normal and Extreme Wind Conditions for Power at Coastal Locations in China

    PubMed Central

    Gao, Meng; Ning, Jicai; Wu, Xiaoqing

    2015-01-01

    In this paper, the normal and extreme wind conditions for power at 12 coastal locations along China’s coastline were investigated. For this purpose, the daily meteorological data measured at the standard 10-m height above ground for periods of 40–62 years are statistically analyzed. The East Asian Monsoon that affects almost China’s entire coastal region is considered as the leading factor determining wind energy resources. For most stations, the mean wind speed is higher in winter and lower in summer. Meanwhile, the wind direction analysis indicates that the prevalent winds in summer are southerly, while those in winter are northerly. The air densities at different coastal locations differ significantly, resulting in the difference in wind power density. The Weibull and lognormal distributions are applied to fit the yearly wind speeds. The lognormal distribution performs better than the Weibull distribution at 8 coastal stations according to two judgement criteria, the Kolmogorov–Smirnov test and absolute error (AE). Regarding the annual maximum extreme wind speed, the generalized extreme value (GEV) distribution performs better than the commonly-used Gumbel distribution. At these southeastern coastal locations, strong winds usually occur in typhoon season. These 4 coastal provinces, that is, Guangdong, Fujian, Hainan, and Zhejiang, which have abundant wind resources, are also prone to typhoon disasters. PMID:26313256

  8. Normal and Extreme Wind Conditions for Power at Coastal Locations in China.

    PubMed

    Gao, Meng; Ning, Jicai; Wu, Xiaoqing

    2015-01-01

    In this paper, the normal and extreme wind conditions for power at 12 coastal locations along China's coastline were investigated. For this purpose, the daily meteorological data measured at the standard 10-m height above ground for periods of 40-62 years are statistically analyzed. The East Asian Monsoon that affects almost China's entire coastal region is considered as the leading factor determining wind energy resources. For most stations, the mean wind speed is higher in winter and lower in summer. Meanwhile, the wind direction analysis indicates that the prevalent winds in summer are southerly, while those in winter are northerly. The air densities at different coastal locations differ significantly, resulting in the difference in wind power density. The Weibull and lognormal distributions are applied to fit the yearly wind speeds. The lognormal distribution performs better than the Weibull distribution at 8 coastal stations according to two judgement criteria, the Kolmogorov-Smirnov test and absolute error (AE). Regarding the annual maximum extreme wind speed, the generalized extreme value (GEV) distribution performs better than the commonly-used Gumbel distribution. At these southeastern coastal locations, strong winds usually occur in typhoon season. These 4 coastal provinces, that is, Guangdong, Fujian, Hainan, and Zhejiang, which have abundant wind resources, are also prone to typhoon disasters.

  9. Solar Wind Ablation of Terrestrial Planet Atmospheres

    NASA Technical Reports Server (NTRS)

    Moore, Thomas Earle; Fok, Mei-Ching H.; Delcourt, Dominique C.

    2009-01-01

    Internal plasma sources usually arise in planetary magnetospheres as a product of stellar ablation processes. With the ignition of a new star and the onset of its ultraviolet and stellar wind emissions, much of the volatiles in the stellar system undergo a phase transition from gas to plasma. Condensation and accretion into a disk is replaced by radiation and stellar wind ablation of volatile materials from the system- Planets or smaller bodies that harbor intrinsic magnetic fields develop an apparent shield against direct stellar wind impact, but UV radiation still ionizes their gas phases, and the resulting internal plasmas serve to conduct currents to and from the central body along reconnected magnetic field linkages. Photoionization and thermalization of electrons warms the ionospheric topside, enhancing Jeans' escape of super-thermal particles, with ambipolar diffusion and acceleration. Moreover, observations and simulations of auroral processes at Earth indicate that solar wind energy dissipation is concentrated by the geomagnetic field by a factor of 10-100, enhancing heavy species plasma and gas escape from gravity, and providing more current carrying capacity. Thus internal plasmas enable coupling with the plasma, neutral gas and by extension, the entire body. The stellar wind is locally loaded and slowed to develop the required power. The internal source plasma is accelerated and heated, inflating the magnetosphere as it seeks escape, and is ultimately blown away in the stellar wind. Bodies with little sensible atmosphere may still produce an exosphere of sputtered matter when exposed to direct solar wind impact. Bodies with a magnetosphere and internal sources of plasma interact more strongly with the stellar wind owing to the magnetic linkage between the two created by reconnection.

  10. Aeolian Landscapes of Titan from Cassini RADAR Reveal Winds, Elevation Constraints and Sediment Characteristics

    NASA Astrophysics Data System (ADS)

    Radebaugh, J.; Lewis, R. C.; Bishop, B.; Christiansen, E. H.; Kerber, L.; Rodriguez, S.; Narteau, C.; Le Gall, A. A.; Lucas, A.; Malaska, M.

    2017-12-01

    Similar to terrestrial bodies with atmospheres, a significant portion of the surface of Titan is covered in aeolian landscapes, now imaged by Cassini RADAR at close to 50% coverage. While the compositions of the wind-carried and wind-carved sediments are under discussion, their characteristics, such as being rounded, loose and capable of being saltated, or being fine, soft and forming easily erodible deposits, can be discerned from the geomorphology. Large duneforms are similar to those in Earth's big deserts, formed by particles in strict size and shape limits, and steep, badlands-like morphologies of yardang regions indicate soft rocks with armored features. Shapes and orientations of dunes and yardangs can also reveal wind directions and effects of elevation and topographic obstacles. Recent studies of dunes in the Belet Sand Sea of Titan's equatorial trailing hemisphere reveal dunes are generally wider and with greater spacing near the center, similar to dunes in the Namib Sand Sea of Earth. Dune-to-interdune ratios decrease toward higher latitudes, as was previously observed, and are slightly higher in regions of low elevation, which may relate to elevation affecting winds and sand transport capacity. However, this relationship is not as strong for the Namib. Furthermore, the effects of the location of dunes with respect to sand sea margins on dune parameter values has only begun to be explored. The European ERA-Interim (observations plus model) wind results for the Namib reveal vector sum winds are several degrees away from down the dune long axis, consistent with the fingering mode of dune growth, and allowing for down-axis sand transport. We assume similar model winds for the dunes of Titan. Model winds for the yardangs of the Lut desert of Earth are directly down axis, which means wind directions should be able to be determined in the isolated yardang fields of Titan's northern midlatitudes. Further studies of dune parameters on Titan from Cassini can help reveal the reasons for the extent of the sand seas and how (and whether) sands are transported across them. Further studies of winds and sediment properties of yardangs on Earth will reveal expected winds, material requirements and relative ages of the yardangs with respect to other landforms of Titan.

  11. An empirical model for ocean radar backscatter and its application in inversion routine to eliminate wind speed and direction effects

    NASA Technical Reports Server (NTRS)

    Dome, G. J.; Fung, A. K.; Moore, R. K.

    1977-01-01

    Several regression models were tested to explain the wind direction dependence of the 1975 JONSWAP (Joint North Sea Wave Project) scatterometer data. The models consider the radar backscatter as a harmonic function of wind direction. The constant term accounts for the major effect of wind speed and the sinusoidal terms for the effects of direction. The fundamental accounts for the difference in upwind and downwind returns, while the second harmonic explains the upwind-crosswind difference. It is shown that a second harmonic model appears to adequately explain the angular variation. A simple inversion technique, which uses two orthogonal scattering measurements, is also described which eliminates the effect of wind speed and direction. Vertical polarization was shown to be more effective in determining both wind speed and direction than horizontal polarization.

  12. Temporal and spatial variation of maximum wind speed days during the past 20 years in major cities of Xinjiang

    NASA Astrophysics Data System (ADS)

    Baidourela, Aliya; Jing, Zhen; Zhayimu, Kahaer; Abulaiti, Adili; Ubuli, Hakezi

    2018-04-01

    Wind erosion and sandstorms occur in the neighborhood of exposed dust sources. Wind erosion and desertification increase the frequency of dust storms, deteriorate air quality, and damage the ecological environment and agricultural production. The Xinjiang region has a relatively fragile ecological environment. Therefore, the study of the characteristics of maximum wind speed and wind direction in this region is of great significance to disaster prevention and mitigation, the management of activated dunes, and the sustainable development of the region. Based on the latest data of 71 sites in Xinjiang, this study explores the temporal evolution and spatial distribution of maximum wind speed in Xinjiang from 1993 to 2013, and highlights the distribution of annual and monthly maximum wind speed and the characteristics of wind direction in Xinjiang. Between 1993 and 2013, Ulugchat County exhibited the highest number of days with the maximum wind speed (> 17 m/s), while Wutian exhibited the lowest number. In Xinjiang, 1999 showed the highest number of maximum wind speed days (257 days), while 2013 showed the lowest number (69 days). Spring and summer wind speeds were greater than those in autumn and winter. There were obvious differences in the direction of maximum wind speed in major cities and counties of Xinjiang. East of the Tianshan Mountains, maximum wind speeds are mainly directed southeast and northeast. North and south of the Tianshan Mountains, they are mainly directed northwest and northeast, while west of the Tianshan Mountains, they are mainly directed southeast and northwest.

  13. WIND SPEED Monitoring in Northern Eurasia

    NASA Astrophysics Data System (ADS)

    Bulygina, O.; Korshunova, N. N.; Razuvaev, V. N.; Groisman, P. Y.

    2016-12-01

    The wind regime of Russia varies a great deal due to the large size of the country's territory and variety of climate and terrain conditions. Changes in the regime of surface wind are of great practical importance. They can affect heat and water balance. Strong wind is one of the most hazardous meteorological event for various sectors of economy and for infrastructure. The main objective of this research is to monitoring wind speed change in Northern Eurasia At meteorological stations wind speed and wind direction are measured at the height of 10-12 meters over the land surface with the help of wind meters or wind wanes. Calculations were made on the basis of data for the period of 1980-2015. It allowed the massive scale disruption of homogeneity to be eliminated and sufficient period needed to obtain sustainable statistic characteristics to be retained. Data on average and maximum wind speed measured at 1457 stations of Russia were used. The analysis of changes in wind characteristics was made on the basis of point data and series of average characteristics obtained for 18 quasi-homogeneous climatic regions. Statistical characteristics (average and maximum values of wind speed, prevailing wind direction, values of the boundary of the 90%, 95% and 99%-confidence interval in the distribution of maximum wind speed) were obtained for all seasons and for the year as a whole. Values of boundaries of the 95% and 99%-confidence interval in the distribution of maximum wind speed were considered as indicators of extremeness of the wind regime. The trend of changes in average and maximum wind speed was assessed with a linear trend coefficient. A special attention was paid to wind changes in the Arctic where dramatic changes in surface air temperature and sea ice extent and density have been observed during the past decade. The analysis of the results allowed seasonal and regional features of changes in the wind regime on the territory of the northern part of Eurasia to be determined. The outcomes could help to provide specific recommendations to users of hydrometeorological information for making reasonable decisions to minimize losses caused by adverse wind-related weather conditions. The work was supported by the Ministry of Education and Science of the Russian Federation (grant 14.B25.31.0026).

  14. Lidar Wind Profiler Comparison to Weather Balloon for Support of Orion Crew Exploration Vehicle Landings

    NASA Technical Reports Server (NTRS)

    Houtas, Franzeska; Teets, Edward H., Jr.

    2010-01-01

    A comparison study by the National Aeronautics and Space Administration Dryden Flight Research Center, Edwards, CA and the Naval Post Graduate School Center for Interdisciplinary Remotely-Piloted Aircraft Studies, Marina, CA was conducted to show the advantages of an airborne wind profiling lidar system in reducing drift uncertainty along a reentry vehicle descent trajectory. This effort was in support of the once planned Orion Crew Exploration Vehicle ground landing. A Twin Otter Doppler Wind Lidar was flown on multiple flights along the approximate ground track of an ascending weather balloons launched from the Marina Municipal Airport. The airborne lidar used was a 5-milli-Joules, 2-micron infrared laser with a 10-centimeter telescope and a two-axis scanner. Each lidar wind profile contains data for an altitude range between the surface and flight altitude of 2,700 meters, processed on board every 20 seconds. In comparison, a typical weather balloon would traverse that same altitude range with a similar data set available in approximately 15-20 minutes. These tests were conducted on November 15 & 16, 2007. Results comparing the balloon and a 10 minute multiple lidar profile averages show a best case absolute difference of 0.18 m/s (0.35 knots) in speed and 1 degree in direction during light and variable (less than 5 knots, without constant direction) wind conditions. These limited test results indicated a standard deviation wind velocity and direction differences of 0.71 m/s (1.3 knots) and 7.17 degrees for 1800Z, and 0.70 m/s (1.3 knots) and 6.79 degrees, outside of cloud layer.

  15. [Analysis of acid rain characteristics of Lin'an Regional Background Station using long-term observation data].

    PubMed

    Li, Zheng-Quan; Ma, Hao; Mao, Yu-Ding; Feng, Tao

    2014-02-01

    Using long-term observation data of acid rain at Lin'an Regional Background Station (Lin'an RBS), this paper studied the interannual and monthly variations of acid rain, the reasons for the variations, and the relationships between acid rain and meteorological factors. The results showed that interannual variation of acid rain at Lin'an RBS had a general increasing trend in which there were two obvious intensifying processes and two distinct weakening processes, during the period ranging from 1985 to 2012. In last two decades, the monthly variation of acid rain at Lin'an RBS indicated that rain acidity and frequency of severe acid rain were increasing but the frequency of weak acid rain was decreasing when moving towards bilateral side months of July. Acid rain occurrence was affected by rainfall intensity, wind speed and wind direction. High frequency of severe acid rain and low frequency of weak acid rain were on days with drizzle, but high frequency of weak acid rain and low frequency of severe acid rain occurred on rainstorm days. With wind speed upgrading, the frequency of acid rain and the proportion of severe acid rain were declining, the pH value of precipitation was reducing too. Another character is that daily dominant wind direction of weak acid rain majorly converged in S-W section ,however that of severe acid rain was more likely distributed in N-E section. The monthly variation of acid rain at Lin'an RBS was mainly attributed to precipitation variation, the increasing and decreasing of monthly incoming wind from SSE-WSW and NWN-ENE sections of wind direction. The interannual variation of acid rain could be due to the effects of energy consumption raising and significant green policies conducted in Zhejiang, Jiangsu and Shanghai.

  16. A comparison of wake characteristics of model and prototype buildings in transverse winds

    NASA Technical Reports Server (NTRS)

    Logan, E., Jr.; Phataraphruk, P.; Chang, J.

    1978-01-01

    Previously measured mean velocity and turbulence intensity profiles in the wake of a 26.8-m long building 3.2 m high and transverse to the wind direction in an atmospheric boundary layer several hundred meters thick were compared with profiles at corresponding stations downstream of a 1/50-scale model on the floor of a large meteorological wind tunnel in a boundary layer 0.61 m in thickness. The validity of using model wake data to predict full scale data was determined. Preliminary results are presented which indicate that disparities result from differences in relative depth of logarithmic layers, surface roughness, and the proximity of upstream obstacles.

  17. Some theoretical considerations of longitudinal stability in power-on flight with special reference to wind-tunnel testing, November 1942

    NASA Technical Reports Server (NTRS)

    Donlan, C. J.

    1976-01-01

    Some problems relating to longitudinal stability in power-on flight are considered. A derivation is included which shows that, under certain conditions, the rate of change of the pitching moment coefficient with lift coefficient as obtained in wind tunnel tests simulating constant power operation is directly proportional to one of the indices of stability commonly associated with flight analysis, (the slope of the curve relating the elevator angle for trim and lift coefficient). The necessity of analyzing power-on wind tunnel data for trim conditions is emphasized, and a method is provided for converting data obtained from constant thrust tests to simulated constant throttle flight conditions.

  18. Wind-tunnel free-flight investigation of a supersonic persistence fighter

    NASA Technical Reports Server (NTRS)

    Hahne, David E.; Wendel, Thomas R.; Boland, Joseph R.

    1993-01-01

    Wind-tunnel free-flight tests have been conducted in the Langley 30- by 60-Foot Wind Tunnel to examine the high-angle-of-attack stability and control characteristics and control law design of a supersonic persistence fighter (SSPF) at 1 g flight conditions. In addition to conventional control surfaces, the SSPF incorporated deflectable wingtips (tiperons) and pitch and yaw thrust vectoring. A direct eigenstructure assignment technique was used to design control laws to provide good flying characteristics well into the poststall angle-of-attack region. Free-flight tests indicated that it was possible to blend effectively conventional and unconventional control surfaces to achieve good flying characteristics well into the poststall angle-of-attack region.

  19. Methods and apparatus for reducing peak wind turbine loads

    DOEpatents

    Moroz, Emilian Mieczyslaw

    2007-02-13

    A method for reducing peak loads of wind turbines in a changing wind environment includes measuring or estimating an instantaneous wind speed and direction at the wind turbine and determining a yaw error of the wind turbine relative to the measured instantaneous wind direction. The method further includes comparing the yaw error to a yaw error trigger that has different values at different wind speeds and shutting down the wind turbine when the yaw error exceeds the yaw error trigger corresponding to the measured or estimated instantaneous wind speed.

  20. Wavelet Analysis for Wind Fields Estimation

    PubMed Central

    Leite, Gladeston C.; Ushizima, Daniela M.; Medeiros, Fátima N. S.; de Lima, Gilson G.

    2010-01-01

    Wind field analysis from synthetic aperture radar images allows the estimation of wind direction and speed based on image descriptors. In this paper, we propose a framework to automate wind direction retrieval based on wavelet decomposition associated with spectral processing. We extend existing undecimated wavelet transform approaches, by including à trous with B3 spline scaling function, in addition to other wavelet bases as Gabor and Mexican-hat. The purpose is to extract more reliable directional information, when wind speed values range from 5 to 10 ms−1. Using C-band empirical models, associated with the estimated directional information, we calculate local wind speed values and compare our results with QuikSCAT scatterometer data. The proposed approach has potential application in the evaluation of oil spills and wind farms. PMID:22219699

  1. Optimizing wind farm layout via LES-calibrated geometric models inclusive of wind direction and atmospheric stability effects

    NASA Astrophysics Data System (ADS)

    Archer, Cristina; Ghaisas, Niranjan

    2015-04-01

    The energy generation at a wind farm is controlled primarily by the average wind speed at hub height. However, two other factors impact wind farm performance: 1) the layout of the wind turbines, in terms of spacing between turbines along and across the prevailing wind direction; staggering or aligning consecutive rows; angles between rows, columns, and prevailing wind direction); and 2) atmospheric stability, which is a measure of whether vertical motion is enhanced (unstable), suppressed (stable), or neither (neutral). Studying both factors and their complex interplay with Large-Eddy Simulation (LES) is a valid approach because it produces high-resolution, 3D, turbulent fields, such as wind velocity, temperature, and momentum and heat fluxes, and it properly accounts for the interactions between wind turbine blades and the surrounding atmospheric and near-surface properties. However, LES are computationally expensive and simulating all the possible combinations of wind directions, atmospheric stabilities, and turbine layouts to identify the optimal wind farm configuration is practically unfeasible today. A new, geometry-based method is proposed that is computationally inexpensive and that combines simple geometric quantities with a minimal number of LES simulations to identify the optimal wind turbine layout, taking into account not only the actual frequency distribution of wind directions (i.e., wind rose) at the site of interest, but also atmospheric stability. The geometry-based method is calibrated with LES of the Lillgrund wind farm conducted with the Software for Offshore/onshore Wind Farm Applications (SOWFA), based on the open-access OpenFOAM libraries. The geometric quantities that offer the best correlations (>0.93) with the LES results are the blockage ratio, defined as the fraction of the swept area of a wind turbine that is blocked by an upstream turbine, and the blockage distance, the weighted distance from a given turbine to all upstream turbines that can potentially block it. Based on blockage ratio and distance, an optimization procedure is proposed that explores many different layout variables and identifies, given actual wind direction and stability distributions, the optimal wind farm layout, i.e., the one with the highest wind energy production. The optimization procedure is applied to both the calibration wind farm (Lillgrund) and a test wind farm (Horns Rev) and a number of layouts more efficient than the existing ones are identified. The optimization procedure based on geometric models proposed here can be applied very quickly (within a few hours) to any proposed wind farm, once enough information on wind direction frequency and, if available, atmospheric stability frequency has been gathered and once the number of turbines and/or the areal extent of the wind farm have been identified.

  2. REMOTE RECORDING ANNULAR VANE ASSEMBLY

    DOEpatents

    Wehmann, G.

    1963-06-25

    A weather vane apparatus is described which is capable of movement in horizontal and vertical planes. Associated with the vane are tangent potentiometers, commutators, and other electrical apparatus for deriving electrical output voltages as a function of the wind direction. The apparatus is particularly adapted for use with an anemometer to provide an electrical output indicating the amount and direction of an up or down draft. (AEC)

  3. An Analysis of Wintertime Winds in Washington, D.C.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Berg, Larry K.; Allwine, K Jerry

    This report consists of a description of the wintertime climatology of wind speed and wind direction around the National Mall in Washington, D.C. Meteorological data for this study were collected at Ronald Reagan Washington National Airport (Reagan National), Dulles International Airport (Dulles), and a set of surface meteorological stations that are located on a number of building tops around the National Mall. A five-year wintertime climatology of wind speed and wind direction measured at Reagan National and Dulles are presented. A more detailed analysis was completed for the period December 2003 through February 2004 using data gathered from stations locatedmore » around the National Mall, Reagan National, and Dulles. Key findings of our study include the following: * There are systematic differences between the wind speed and wind direction observed at Reagan National and the wind speed and wind direction measured by building top weather stations located in the National Mall. Although Dulles is located much further from the National Mall than Reagan National, there is better agreement between the wind speed and wind direction measured at Dulles and the weather stations in the National Mall. * When the winds are light (less than 3 ms-1 or 7 mph), there are significant differences in the wind directions reported at the various weather stations within the Mall. * Although the mean characteristics of the wind are similar at the various locations, significant, short-term differences are found when the time series are compared. These differences have important implications for the dispersion of airborne contaminants. In support of wintertime special events in the area of the National Mall, we recommend placing four additional meteorological instruments: three additional surface stations, one on the east bank of the Potomac River, one south of the Reflecting Pool (to better define the flow within the Mall), and a surface station near the Herbert C. Hoover Building; and wind-profiling instrument located along the southern edge of the National Mall to give measurements of the wind speed and direction as a function of height.« less

  4. Determination of the effect of wind velocity and direction changes on turbidity removal in rectangular sedimentation tanks.

    PubMed

    Khezri, Seyed Mostafa; Biati, Aida; Erfani, Zeynab

    2012-01-01

    In the present study, a pilot-scale sedimentation tank was used to determine the effect of wind velocity and direction on the removal efficiency of particles. For this purpose, a 1:20 scale pilot simulated according to Frude law. First, the actual efficiency of total suspended solids (TSS) removal was calculated in no wind condition. Then, the wind was blown in the same and the opposite directions of water flow. At each direction TSS removal was calculated at three different velocities from 2.5 to 7 m/s. Results showed that when the wind was in the opposite direction of water flow, TSS removal efficiency initially increased with the increase of wind velocity from 0 to 2.5 m/s, then it decreased with the increase of velocity to 5 m/s. This mainly might happen because the opposite direction of wind can increase particles' retention time in the sedimentation tank. However, higher wind velocities (i.e. 3.5 and 5.5 m/s) could not increase TSS removal efficiency. Thus, if sedimentation tanks are appropriately exposed to the wind, TSS removal efficiency increases by approximately 6%. Therefore, energy consumption will be reduced by a proper site selection for sedimentation tank unit in water and waste water treatment plants.

  5. Design and laboratory testing of a new flow-through directional passive air sampler for ambient particulate matter.

    PubMed

    Lin, Chun; Solera Garcia, Maria Angeles; Timmis, Roger; Jones, Kevin C

    2011-03-01

    A new type of directional passive air sampler (DPAS) is described for collecting particulate matter (PM) in ambient air. The prototype sampler has a non-rotating circular sampling tray that is divided into covered angular channels, whose ends are open to winds from sectors covering the surrounding 360°. Wind-blown PM from different directions enters relevant wind-facing channels, and is retained there in collecting pools containing various sampling media. Information on source direction and type can be obtained by examining the distribution of PM between channels. Wind tunnel tests show that external wind velocities are at least halved over an extended area of the collecting pools, encouraging PM to settle from the air stream. Internal and external wind velocities are well-correlated over an external velocity range of 2.0-10.0 m s⁻¹, which suggests it may be possible to relate collected amounts of PM simply to ambient concentrations and wind velocities. Measurements of internal wind velocities in different channels show that velocities decrease from the upwind channel round to the downwind channel, so that the sampler effectively resolves wind directions. Computational fluid dynamics (CFD) analyses were performed on a computer-generated model of the sampler for a range of external wind velocities; the results of these analyses were consistent with those from the wind tunnel. Further wind tunnel tests were undertaken using different artificial particulates in order to assess the collection performance of the sampler in practice. These tests confirmed that the sampler can resolve the directions of sources, by collecting particulates preferentially in source-facing channels.

  6. The 630 nm MIG and the vertical neutral wind in the low latitude nighttime thermosphere

    NASA Technical Reports Server (NTRS)

    Herrero, F. A.; Meriwether, J. W., Jr.

    1994-01-01

    It is shown that large negative divergences (gradients) in the horizontal neutral wind in the equatorial thermosphere can support downward neutral winds in excess of 20 m/s. With attention to the meridional and vertical winds only, the pressure tendency equation is used to derive the expression U(sub z0) approximately equals (Partial derivative U(sub y)/Partial derivative y)H for the vertical wind U(sub z0) at the reference altitude for the pressure tendency equation; H is the atmospheric density scale height, and (Partial derivative U(sub y)/Partial derivative y) is the meridional wind gradient. The velocity gradient associated with the Meridional Intensity Gradient (MIG) of the O((sup 1)D) emission (630 nm) at low latitudes is used to estimate the vertical neutral wind in the MIG region. Velocity gradients derived from MIG data are about 0.5 (m/s)/km) or more, indicating that the MIG region may contain downward neutral winds in excess of 20 m/s. Though direct measurements of the vertical wind are scarce, Fabry-Perot interferometer data of the equatorial F-region above Natal, Brazil, showed downward winds of 30 m/s occurring during a strong meridional wind convergence in 1982. In-situ measurements with the WATS instrument on the DE-2 satellite also show large vertical neutral winds in the equatorial region.

  7. Comparison of Magnetospheric Multiscale Ion Jet Signatures with Predicted Reconnection Site Locations at the Magnetopause

    NASA Technical Reports Server (NTRS)

    Petrinec, S. M.; Burch, J. L.; Fuselier, S. A.; Gomez, R. G.; Lewis, W.; Trattner, K. J.; Ergun, R.; Mauk, B.; Pollock, C. J.; Schiff, C.; hide

    2016-01-01

    Magnetic reconnection at the Earths magnetopause is the primary process by which solar wind plasma and energy gains access to the magnetosphere. One indication that magnetic reconnection is occurring is the observation of accelerated plasma as a jet tangential to the magnetopause. The direction of ion jets along the magnetopause surface as observed by the Fast Plasma Instrument (FPI) and the Hot Plasma Composition Analyzer (HPCA) instrument on board the recently launched Magnetospheric Multiscale (MMS) set of spacecraft is examined. For those cases where ion jets are clearly discerned, the direction of origin compares well statistically with the predicted location of magnetic reconnection using convected solar wind observations in conjunction with the Maximum Magnetic Shear model.

  8. Anisotropy of the Reynolds stress tensor in the wakes of wind turbine arrays in Cartesian arrangements with counter-rotating rotors

    NASA Astrophysics Data System (ADS)

    Hamilton, Nicholas; Cal, Raúl Bayoán

    2015-01-01

    A 4 × 3 wind turbine array in a Cartesian arrangement was constructed in a wind tunnel setting with four configurations based on the rotational sense of the rotor blades. The fourth row of devices is considered to be in the fully developed turbine canopy for a Cartesian arrangement. Measurements of the flow field were made with stereo particle-image velocimetry immediately upstream and downstream of the selected model turbines. Rotational sense of the turbine blades is evident in the mean spanwise velocity W and the Reynolds shear stress - v w ¯ . The flux of kinetic energy is shown to be of greater magnitude following turbines in arrays where direction of rotation of the blades varies. Invariants of the normalized Reynolds stress anisotropy tensor (η and ξ) are plotted in the Lumley triangle and indicate that distinct characters of turbulence exist in regions of the wake following the nacelle and the rotor blade tips. Eigendecomposition of the tensor yields principle components and corresponding coordinate system transformations. Characteristic spheroids representing the balance of components in the normalized anisotropy tensor are composed with the eigenvalues yielding shapes predicted by the Lumley triangle. Rotation of the coordinate system defined by the eigenvectors demonstrates trends in the streamwise coordinate following the rotors, especially trailing the top-tip of the rotor and below the hub. Direction of rotation of rotor blades is shown by the orientation of characteristic spheroids according to principle axes. In the inflows of exit row turbines, the normalized Reynolds stress anisotropy tensor shows cumulative effects of the upstream turbines, tending toward prolate shapes for uniform rotational sense, oblate spheroids for streamwise organization of rotational senses, and a mixture of characteristic shapes when the rotation varies by row. Comparison between the invariants of the Reynolds stress anisotropy tensor and terms from the mean mechanical energy equation indicate correlation between the degree of anisotropy and the regions of the wind turbine wakes where turbulence kinetic energy is produced. The flux of kinetic energy into the momentum-deficit area of the wake from above the canopy is associated with prolate characteristic spheroids. Flux upward into the wake from below the rotor area is associated with oblate characteristic spheroids. Turbulence in the region of the flow directly following the nacelle of the wind turbines demonstrates greater isotropy than regions following the rotor blades. The power and power coefficients for wind turbines indicate that flow structures on the order of magnitude of the spanwise turbine spacing that increase turbine efficiency depending on particular array configuration.

  9. The influence of winding direction of two-layer HTS DC cable on the critical current

    NASA Astrophysics Data System (ADS)

    Vyatkin, V. S.; Kashiwagi, K.; Ivanov, Y. V.; Otabe, E. S.; Yamaguchi, S.

    2017-09-01

    The design of twist pitch and direction of winding in multilayer HTS coaxial cable is important. For HTS AC transmitting cables, the main condition of twist pitch is the balance of inductances of each layer for providing the current balance between layers. In this work, the finite element method analysis for the coaxial cables with both same and opposite directions winding is used to calculate magnetic field distribution, and critical current of the cable is estimated. It was found that the critical current of the cable with same direction winding is about 10 percent higher than that in the case of the cable with the opposite direction winding.

  10. Statistical Short-Range Guidance for Peak Wind Speed Forecasts at Edwards Air Force Base, CA

    NASA Technical Reports Server (NTRS)

    Dreher, Joseph; Crawford, Winifred; Lafosse, Richard; Hoeth, Brian; Burns, Kerry

    2008-01-01

    The peak winds near the surface are an important forecast element for Space Shuttle landings. As defined in the Shuttle Flight Rules (FRs), there are peak wind thresholds that cannot be exceeded in order to ensure the safety of the shuttle during landing operations. The National Weather Service Spaceflight Meteorology Group (SMG) is responsible for weather forecasts for all shuttle landings. They indicate peak winds are a challenging parameter to forecast. To alleviate the difficulty in making such wind forecasts, the Applied Meteorology Unit (AMTJ) developed a personal computer based graphical user interface (GUI) for displaying peak wind climatology and probabilities of exceeding peak-wind thresholds for the Shuttle Landing Facility (SLF) at Kennedy Space Center. However, the shuttle must land at Edwards Air Force Base (EAFB) in southern California when weather conditions at Kennedy Space Center in Florida are not acceptable, so SMG forecasters requested that a similar tool be developed for EAFB. Marshall Space Flight Center (MSFC) personnel archived and performed quality control of 2-minute average and 10-minute peak wind speeds at each tower adjacent to the main runway at EAFB from 1997- 2004. They calculated wind climatologies and probabilities of average peak wind occurrence based on the average speed. The climatologies were calculated for each tower and month, and were stratified by hour, direction, and direction/hour. For the probabilities of peak wind occurrence, MSFC calculated empirical and modeled probabilities of meeting or exceeding specific 10-minute peak wind speeds using probability density functions. The AMU obtained and reformatted the data into Microsoft Excel PivotTables, which allows users to display different values with point-click-drag techniques. The GUT was then created from the PivotTables using Visual Basic for Applications code. The GUI is run through a macro within Microsoft Excel and allows forecasters to quickly display and interpret peak wind climatology and likelihoods in a fast-paced operational environment. A summary of how the peak wind climatologies and probabilities were created and an overview of the GUT will be presented.

  11. Effect of Wind Angle Direction on Carbon Monoxide (CO) Concentration Dispersion on Traffic Flow in Padang City

    NASA Astrophysics Data System (ADS)

    Bachtiar, V. S.; Purnawan, P.; Afrianita, R.; Dahlia, N.

    2018-01-01

    This study aims to analyze the relationship between CO concentration and wind direction. Wind direction in this context is the wind angle to the road on the traffic flow in Padang City. Sampling of CO concentration was conducted for 9 days at 3 monitoring points (each 3-day point) representing the wind angle to the road (a) i.e. at Jend. A. Yani road (0 degrees), Andalas road (30 degrees) and Prof. Dr. Hamka road (60 degrees), using impinger and analyzed by spectrophotometer. The results of the research in the three monitoring sites showed that the concentration of CO ranged between 137.217 and 600.525 μg/Nm3. The highest and lowest concentrations respectively on Prof. Dr. Hamka road and Jend. A. Yani road. The sampling showed that CO concentrations will be decreased if wind direction is changed from perpendicular wind direction (a 90°) to a 60°, 30°, and 0° respectively by 64.62%, 37.77% and 27.09%. It can be concluded that the wind angle direction to the road affects the CO concentrations in the roadside.

  12. Anisotropic Behaviour of Magnetic Power Spectra in Solar Wind Turbulence.

    NASA Astrophysics Data System (ADS)

    Banerjee, S.; Saur, J.; Gerick, F.; von Papen, M.

    2017-12-01

    Introduction:High altitude fast solar wind turbulence (SWT) shows different spectral properties as a function of the angle between the flow direction and the scale dependent mean magnetic field (Horbury et al., PRL, 2008). The average magnetic power contained in the near perpendicular direction (80º-90º) was found to be approximately 5 times larger than the average power in the parallel direction (0º- 10º). In addition, the parallel power spectra was found to give a steeper (-2) power law than the perpendicular power spectral density (PSD) which followed a near Kolmogorov slope (-5/3). Similar anisotropic behaviour has also been observed (Chen et al., MNRAS, 2011) for slow solar wind (SSW), but using a different method exploiting multi-spacecraft data of Cluster. Purpose:In the current study, using Ulysses data, we investigate (i) the anisotropic behaviour of near ecliptic slow solar wind using the same methodology (described below) as that of Horbury et al. (2008) and (ii) the dependence of the anisotropic behaviour of SWT as a function of the heliospheric latitude.Method:We apply the wavelet method to calculate the turbulent power spectra of the magnetic field fluctuations parallel and perpendicular to the local mean magnetic field (LMF). According to Horbury et al., LMF for a given scale (or size) is obtained using an envelope of the envelope of that size. Results:(i) SSW intervals always show near -5/3 perpendicular spectra. Unlike the fast solar wind (FSW) intervals, for SSW, we often find intervals where power parallel to the mean field is not observed. For a few intervals with sufficient power in parallel direction, slow wind turbulence also exhibit -2 parallel spectra similar to FSW.(ii) The behaviours of parallel and perpendicular power spectra are found to be independent of the heliospheric latitude. Conclusion:In the current study we do not find significant influence of the heliospheric latitude on the spectral slopes of parallel and perpendicular magnetic spectra. This indicates that the spectral anisotropy in parallel and perpendicular direction is governed by intrinsic properties of SWT.

  13. Post-processing method for wind speed ensemble forecast using wind speed and direction

    NASA Astrophysics Data System (ADS)

    Sofie Eide, Siri; Bjørnar Bremnes, John; Steinsland, Ingelin

    2017-04-01

    Statistical methods are widely applied to enhance the quality of both deterministic and ensemble NWP forecasts. In many situations, like wind speed forecasting, most of the predictive information is contained in one variable in the NWP models. However, in statistical calibration of deterministic forecasts it is often seen that including more variables can further improve forecast skill. For ensembles this is rarely taken advantage of, mainly due to that it is generally not straightforward how to include multiple variables. In this study, it is demonstrated how multiple variables can be included in Bayesian model averaging (BMA) by using a flexible regression method for estimating the conditional means. The method is applied to wind speed forecasting at 204 Norwegian stations based on wind speed and direction forecasts from the ECMWF ensemble system. At about 85 % of the sites the ensemble forecasts were improved in terms of CRPS by adding wind direction as predictor compared to only using wind speed. On average the improvements were about 5 %, but mainly for moderate to strong wind situations. For weak wind speeds adding wind direction had more or less neutral impact.

  14. Yardangs: Nature's Weathervanes

    NASA Image and Video Library

    2017-11-28

    The prominent tear-shaped features in this image from NASA's Mars Reconnaissance Orbiter (MRO) are erosional features called yardangs. Yardangs are composed of sand grains that have clumped together and have become more resistant to erosion than their surrounding materials. As the winds of Mars blow and erode away at the landscape, the more cohesive rock is left behind as a standing feature. (This Context Camera image shows several examples of yardangs that overlie the darker iron-rich material that makes up the lava plains in the southern portion of Elysium Planitia.) Resistant as they may be, the yardangs are not permanent, and will eventually be eroded away by the persistence of the Martian winds. For scientists observing the Red Planet, yardangs serve as a useful indicator of regional prevailing wind direction. The sandy structures are slowly eroded down and carved into elongated shapes that point in the downwind direction, like giant weathervanes. In this instance, the yardangs are all aligned, pointing towards north-northwest. This shows that the winds in this area generally gust in that direction. The map is projected here at a scale of 50 centimeters (19.7 inches) per pixel. [The original image scale is 55.8 centimeters (21 inches) per pixel (with 2 x 2 binning); objects on the order of 167 centimeters (65.7 inches) across are resolved.] North is up. https://photojournal.jpl.nasa.gov/catalog/PIA22119

  15. An Update to the Warm-Season Convective Wind Climatology of KSC/CCAFS

    NASA Technical Reports Server (NTRS)

    Lupo, Kevin

    2012-01-01

    Total of 1100 convective events in the 17-year warm-season climatology at KSC/CCAFS. July and August typically are the peak of convective events, May being the minimum. Warning and non-warning level convective winds are more likely to occur in the late afternoon (1900-2000Z). Southwesterly flow regimes and wind directions produce the strongest winds. Storms moving from southwesterly direction tend to produce more warning level winds than those moving from the northerly and easterly directions.

  16. Scientific Impacts of Wind Direction Errors

    NASA Technical Reports Server (NTRS)

    Liu, W. Timothy; Kim, Seung-Bum; Lee, Tong; Song, Y. Tony; Tang, Wen-Qing; Atlas, Robert

    2004-01-01

    An assessment on the scientific impact of random errors in wind direction (less than 45 deg) retrieved from space-based observations under weak wind (less than 7 m/s ) conditions was made. averages, and these weak winds cover most of the tropical, sub-tropical, and coastal oceans. Introduction of these errors in the semi-daily winds causes, on average, 5% changes of the yearly mean Ekman and Sverdrup volume transports computed directly from the winds, respectively. These poleward movements of water are the main mechanisms to redistribute heat from the warmer tropical region to the colder high- latitude regions, and they are the major manifestations of the ocean's function in modifying Earth's climate. Simulation by an ocean general circulation model shows that the wind errors introduce a 5% error in the meridional heat transport at tropical latitudes. The simulation also shows that the erroneous winds cause a pile-up of warm surface water in the eastern tropical Pacific, similar to the conditions during El Nino episode. Similar wind directional errors cause significant change in sea-surface temperature and sea-level patterns in coastal oceans in a coastal model simulation. Previous studies have shown that assimilation of scatterometer winds improves 3-5 day weather forecasts in the Southern Hemisphere. When directional information below 7 m/s was withheld, approximately 40% of the improvement was lost

  17. The normalized magnetic helicity spectrum as a function of the angle between the local mean magnetic field and the flow direction of the solar wind: First results using high resolution magnetic field data from the Wind spacecraft

    NASA Astrophysics Data System (ADS)

    Podesta, J. J.

    2011-12-01

    This year, for the first time, the reduced normalized magnetic helicity spectrum has been analyzed as a function of the angle θ between the local mean magnetic field and the flow direction of the solar wind using wavelet techniques. In fast wind, at scales localized near kρp = 1 and kc/ωpp = 1, where ρp is the thermal proton gyro-radius and c/ωpp is the proton inertial length, the analysis reveals two distinct populations of fluctuations. There is a population of fluctuations at oblique angles, centered about an angle of 90 degrees, which are right hand polarized in the spacecraft frame and are believed to be associated with kinetic Alfven waves although the signal covers a wide range of oblique angles and a satisfactory interpretation of their spectrum through comparison with theory has not yet been obtained. A second population of fluctuations is found at angles near zero degrees which are left-hand polarized in the spacecraft frame. The data indicates that these are parallel propagating electromagnetic waves consisting either of left-hand polarized ion cyclotron waves propagating predominantly away from the sun or right-hand polarized whistler waves propagating predominantly toward the sun along the local mean magnetic field. As a consequence of the Doppler shift, both types of waves have the same polarization in the spacecraft frame. Unfortunately, the wave polarization in the plasma frame is difficult to determine using magnetic field data alone. Whether the observed waves are right- or left hand polarized in the plasma frame is a fundamental problem for future investigations. The analyses of spacecraft data performed so far have assumed that the solar wind velocity is directed radially outward from the sun. However, in the ecliptic plane at 1 AU, the flow direction typically deviates from the radial direction by a few degrees, sometimes more, and this adversely affects measurements of the angular helicity spectrum. To correct this, new measurements obtained using data from the Wind spacecraft use the scale dependent local mean solar wind velocity when computing the angle from the data. The first results from this study are presented here.

  18. On the role of high frequency waves in ocean altimetry

    NASA Astrophysics Data System (ADS)

    Vandemark, Douglas C.

    This work mines a coastal and open ocean air-sea interaction field experiment data set where the goals are to refine satellite retrieval of wind, wind stress, and sea level using a microwave radar altimeter. The data were collected from a low-flying aircraft using a sensor suite designed to measure the surface waves, radar backscatter, the atmospheric flow, and turbulent fluxes within the marine boundary layer. This uncommon ensemble provides the means to address several specific altimeter-related topics. First, we examine and document the impact that non wind-driven gravity wave variability, e.g. swell, has upon the commonly-invoked direct relationship between altimeter backscatter and near surface wind speed. The demonstrated impact is larger in magnitude and more direct than previously suggested. The study also isolates the wind-dependence of short-scale slope variance and suggests its magnitude is somewhat lower than shown elsewhere while a second-order dependence on long waves is also evident. A second study assesses the hypothesis that wind-aligned swell interacts with the atmospheric boundary flow leading to a depressed level of turbulence. Cases of reduced drag coefficient at moderate wind speeds were in evidence within the data set, and buoy observations indicate that swell was present and a likely control during these events. Coincidentally, short-scale wave roughness was also depressed suggesting decreased wind stress. Attempts to confirm the theory failed, however, due to numerous limitations in the quantity and quality of the data in hand. A lesson learned is that decoupling atmospheric stability and wave impacts in field campaigns requires both a very large amount of data as well as vertical resolution of fluxes within the first 10--20 m of the surface.

  19. Wind-Driven Waves in Tampa Bay, Florida

    NASA Astrophysics Data System (ADS)

    Gilbert, S. A.; Meyers, S. D.; Luther, M. E.

    2002-12-01

    Turbidity and nutrient flux due to sediment resuspension by waves and currents are important factors controlling water quality in Tampa Bay. During December 2001 and January 2002, four Sea Bird Electronics SeaGauge wave and tide recorders were deployed in Tampa Bay in each major bay segment. Since May 2002, a SeaGauge has been continuously deployed at a site in middle Tampa Bay as a component of the Bay Regional Atmospheric Chemistry Experiment (BRACE). Initial results for the summer 2002 data indicate that significant wave height is linearly dependent on wind speed and direction over a range of 1 to 12 m/s. The data were divided into four groups according to wind direction. Wave height dependence on wind speed was examined for each group. Both northeasterly and southwesterly winds force significant wave heights that are about 30% larger than those for northwesterly and southeasterly winds. This difference is explained by variations in fetch due to basin shape. Comparisons are made between these observations and the results of a SWAN-based model of Tampa Bay. The SWAN wave model is coupled to a three-dimensional circulation model and computes wave spectra at each model grid cell under observed wind conditions and modeled water velocity. When SWAN is run without dissipation, the model results are generally similar in wave period but about 25%-50% higher in significant wave height than the observations. The impact of various dissipation mechanisms such as bottom drag and whitecapping on the wave state is being investigated. Preliminary analyses on winter data give similar results.

  20. Directional Wave Spectra Observed During Intense Tropical Cyclones

    NASA Astrophysics Data System (ADS)

    Collins, C. O.; Potter, H.; Lund, B.; Tamura, H.; Graber, H. C.

    2018-02-01

    Two deep-sea moorings were deployed 780 km off the coast of southern Taiwan for 4-5 months during the 2010 typhoon season. Directional wave spectra, wind speed and direction, and momentum fluxes were recorded on two Extreme Air-Sea Interaction buoys during the close passage of Severe Tropical Storm Dianmu and three tropical cyclones (TCs): Typhoon Fanapi, Super Typhoon Megi, and Typhoon Chaba. Conditions sampled include significant wave heights up to 11 m and wind speeds up to 26 m s-1. Details varied for large-scale spectral structure in frequency and direction but were mostly bimodal. The modes were generally composed of a swell system emanating from the most intense storm region and local wind-seas. The peak systems were consistently young, meaning actively forced by winds, when the storms were close. During the peaks of the most intense passages—Chaba at the northern mooring and Megi at the southern—the bimodal seas coalesced. During Chaba, the swell and wind-sea coupling directed the high frequency waves and the wind stress away from the wind direction. A spectral wave model was able reproduce many of the macrofeatures of the directional spectra.

  1. 46 CFR 108.241 - Visual aids.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... Construction and Arrangement Helicopter Facilities § 108.241 Visual aids. (a) Each helicopter deck must— (1) Have a wind direction indicator located in an unobstructed area readily visible to helicopter pilots... considering deck configuration, helicopter type, and operational requirements. (b) All markings must be in a...

  2. 46 CFR 108.241 - Visual aids.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... Construction and Arrangement Helicopter Facilities § 108.241 Visual aids. (a) Each helicopter deck must— (1) Have a wind direction indicator located in an unobstructed area readily visible to helicopter pilots... considering deck configuration, helicopter type, and operational requirements. (b) All markings must be in a...

  3. 46 CFR 108.241 - Visual aids.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... Construction and Arrangement Helicopter Facilities § 108.241 Visual aids. (a) Each helicopter deck must— (1) Have a wind direction indicator located in an unobstructed area readily visible to helicopter pilots... considering deck configuration, helicopter type, and operational requirements. (b) All markings must be in a...

  4. 46 CFR 108.241 - Visual aids.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... Construction and Arrangement Helicopter Facilities § 108.241 Visual aids. (a) Each helicopter deck must— (1) Have a wind direction indicator located in an unobstructed area readily visible to helicopter pilots... considering deck configuration, helicopter type, and operational requirements. (b) All markings must be in a...

  5. 46 CFR 108.241 - Visual aids.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... Construction and Arrangement Helicopter Facilities § 108.241 Visual aids. (a) Each helicopter deck must— (1) Have a wind direction indicator located in an unobstructed area readily visible to helicopter pilots... considering deck configuration, helicopter type, and operational requirements. (b) All markings must be in a...

  6. Detection of Bi-Directionality in Strain-Gage Balance Calibration Data

    NASA Technical Reports Server (NTRS)

    Ulbrich, Norbert

    2012-01-01

    An indicator variable was developed for both visualization and detection of bi-directionality in wind tunnel strain-gage balance calibration data. First, the calculation of the indicator variable is explained in detail. Then, a criterion is discussed that may be used to decide which gage outputs of a balance have bi- directional behavior. The result of this analysis could be used, for example, to justify the selection of certain absolute value or other even function terms in the regression model of gage outputs whenever the Iterative Method is chosen for the balance calibration data analysis. Calibration data of NASA s MK40 Task balance is analyzed to illustrate both the calculation of the indicator variable and the application of the proposed criterion. Finally, bi directionality characteristics of typical multi piece, hybrid, single piece, and semispan balances are determined and discussed.

  7. Wind-tunnel static and free-flight investigation of high-angle-of-attack stability and control characteristics of a model of the EA-6B airplane

    NASA Technical Reports Server (NTRS)

    Jordan, Frank L., Jr.; Hahne, David E.

    1992-01-01

    An investigation was conducted in the Langley 30- by 60-Foot Tunnel and the Langley 12-Foot Low-Speed Tunnel to identify factors contributing to a directional divergence at high angles of attack for the EA-6B airplane. The study consisted of static wind-tunnel tests, smoke and tuft flow-visualization tests, and free-flight tests of a 1/8.5-scale model of the airplane. The results of the investigation indicate that the directional divergence of the airplane is brought about by a loss of directional stability and effective dihedral at high angles of attack. Several modifications were tested that significantly alleviate the stability problem. The results of the free-flight study show that the modified configuration exhibits good dynamic stability characteristics and could be flown at angles of attack significantly higher than those of the unmodified configuration.

  8. Retrieving mesospheric winds and gravity waves using high resolution radar measurements of polar mesospheric summer echoes with MAARSY

    NASA Astrophysics Data System (ADS)

    Stober, G.; Sommer, S.; Schult, C.; Chau, J. L.; Latteck, R.

    2013-12-01

    The Middle Atmosphere Alomar Radar System (MAARSY) located at the northern Norwegian island of Andøya (69.3 ° N, 16° E) observes polar mesosphere summer echoes (PMSE) on a regular basis. This backscatter turned out to be an ideal tracer of atmospheric dynamics and to investigate the wind field at the mesosphere/lower thermosphere (MLT) at high spatial and temporal scales. MAARSY is dedicated to explore the polar mesosphere at such high resolution and employs an active phased array antenna with the capability to steer the beam on a pulse-to-pulse basis, which permits to perform systematic scanning of PMSE and to investigate the horizontal structure of the backscatter. The radar also uses a 16 channel receiver system for interferometric applications e.g. mean angle of arrival analysis or coherent radar imaging. Here we present measurements using these features of MAARSY to study the wind field at the MLT applying sophisticated wind analysis algorithms such as velocity azimuth display or volume velocity processing to derive gravity wave parameters such as horizontal wave length, phase speed and propagation direction. Further, we compare the interferometrically corrected and uncorrected wind measurements to emphasize the importance to account for likely edge effects using PMSE as tracer of the dynamics. The observations indicate huge deviations from the nominal beam pointing direction at the upper and lower edges of the PMSE altering the wind analysis.

  9. Eddy-correlation measurements of fluxes of CO 2 and H 2O above a spruce stand

    NASA Astrophysics Data System (ADS)

    Ibrom, A.; Schütz, C.; Tworek, T.; Morgenstern, K.; Oltchev, A.; Falk, M.; Constantin, J.; Gravenhorst, G.

    1996-12-01

    Atmospheric fluxes of CO 2 and H 2O above a mature spruce stand ( Picea abies (L.) Karst.) have been investigated using the eddy- correlation technique. A closed path sensor adapted to the special requirements of long-term studies has been developed and tested. Field measurements have been performed since April 1995. Estimates of fetch showed a very narrow source area dimension under instable stratification (≤ 200 m). Fetch requirements at night are not met in some directions. Energy balance closure was influenced systematically by the wind direction indicating a substantial attenuation of the vertical wind motion by the tower (up to 40 %). Even for optimal flow directions, energy balance closure was about 88%. Intercomparison of the used ultra sonic anemometer (USAT-3) with a GILL - anemometer showed systematically lower values of vertical wind speed fluctuations (13 %). Average CO 2-fluxes ranged between -13 at noon to 3 μ mol m-2, s-1 at night in summer. In November and December the stand released CO 2 on a daily basis. A preliminary estimate of the cumulative net carbon balance over the observed period of 9 months is 4-5 t, Cha-1.

  10. Numerical modeling on air quality in an urban environment with changes of the aspect ratio and wind direction.

    PubMed

    Yassin, Mohamed F

    2013-06-01

    Due to heavy traffic emissions within an urban environment, air quality during the last decade becomes worse year by year and hazard to public health. In the present work, numerical modeling of flow and dispersion of gaseous emissions from vehicle exhaust in a street canyon were investigated under changes of the aspect ratio and wind direction. The three-dimensional flow and dispersion of gaseous pollutants were modeled using a computational fluid dynamics (CFD) model which was numerically solved using Reynolds-averaged Navier-Stokes (RANS) equations. The diffusion flow field in the atmospheric boundary layer within the street canyon was studied for different aspect ratios (W/H=1/2, 3/4, and 1) and wind directions (θ=90°, 112.5°, 135°, and 157.5°). The numerical models were validated against wind tunnel results to optimize the turbulence model. The numerical results agreed well with the wind tunnel results. The simulation demonstrated that the minimum concentration at the human respiration height within the street canyon was on the windward side for aspect ratios W/H=1/2 and 1 and wind directions θ=112.5°, 135°, and 157.5°. The pollutant concentration level decreases as the wind direction and aspect ratio increase. The wind velocity and turbulence intensity increase as the aspect ratio and wind direction increase.

  11. Nocturnal migratory songbirds adjust their travelling direction aloft: evidence from a radiotelemetry and radar study

    PubMed Central

    Sjöberg, Sissel; Nilsson, Cecilia

    2015-01-01

    In order to fully understand the orientation behaviour of migrating birds, it is important to understand when birds set their travel direction. Departure directions of migratory passerines leaving stopover sites are often assumed to reflect the birds' intended travel directions, but this assumption has not been critically tested. We used data from an automated radiotelemetry system and a tracking radar at Falsterbo peninsula, Sweden, to compare the initial orientation of departing songbirds (recorded by radiotelemetry) with the orientation of songbird migrants in climbing and level flight (recorded by radar). We found that the track directions of birds at high altitudes and in level flight were more concentrated than the directions of departing birds and birds in climbing flight, which indicates that the birds adjust their travelling direction once aloft. This was further supported by a wide scatter of vanishing bearings in a subsample of radio-tracked birds that later passed an offshore radio receiver station 50 km southeast of Falsterbo. Track directions seemed to be more affected by winds in climbing compared with level flights, which may be explained by birds not starting to partially compensate for wind drift until they have reached cruising altitudes. PMID:26085501

  12. Comparison of Fixed-Stabilizer, Adjustable-Stabilizer and All-Moveable Horizontal Tails

    DTIC Science & Technology

    1945-10-01

    the thrust axis and wind direction at Infinity, degrees; primed to indicate that a is corrected for ground interference effects 5 angular ...deflection of control surface, degrees i+- maximum angular deflection of stabilizer measured with reference to thrust axis, degrees hnax...5e maximum negative angular deflection of elevator, degrees E downwash angle at teil, degrees; primed to indicate that e Is

  13. Comparing wind directions inferred from Martian dust devil tracks analysis with those predicted by the Mars Climate Database

    NASA Astrophysics Data System (ADS)

    Statella, T.; Pina, P.; Silva, E. A.; Nervis Frigeri, Ary Vinicius; Neto, Frederico Gallon

    2016-10-01

    We have calculated the prevailing dust devil tracks direction as a means of verifying the Mars Climate Database (MCD) predicted wind directions accuracy. For that purpose we have applied an automatic method based on morphological openings for inferring the prevailing tracks direction in a dataset comprising 200 Mars Orbiter Camera (MOC) Narrow Angle (NA) and High Resolution Imaging Science Experiment (HiRISE) images of the Martian surface, depicting regions in the Aeolis, Eridania, Noachis, Argyre and Hellas quadrangles. The prevailing local wind directions were calculated from the MCD predicted speeds for the WE and SN wind components. The results showed that the MCD may not be able to predict accurately the locally dominant wind direction near the surface. In adittion, we confirm that the surface wind stress alone cannot produce dust lifting in the studied sites, since it never exceeds the threshold value of 0.0225 Nm-2 in the MCD.

  14. Two Capacitive Micro-Machined Ultrasonic Transducers for Wind Speed Measurement

    PubMed Central

    Bui, Gia Thinh; Jiang, Yu-Tsung; Pang, Da-Chen

    2016-01-01

    This paper presents a new wind speed measurement method using a single capacitive micro-machined ultrasonic transducer (CMUT). The CMUT was arranged perpendicular to the direction of the wind flow, and a reflector was set up a short distance away, facing the CMUT. To reduce the size, weight, cost, and power consumption of conventional ultrasonic anemometers this study proposes two CMUT designs for the measurement of wind speed using either the amplitude of the signal or the time of flight (TOF). Each CMUT with a double array element design can transmit and receive signals in five different operation modes. Experiments showed that the two CMUT designs utilizing the TOF were better than those utilizing the amplitude of the signal for wind speed measurements ranging from 1 m/s to 10 m/s, providing a measurement error of less than 0.2 m/s. These results indicate that the sensitivity of the TOF is independent of the five operation modes. PMID:27271625

  15. Wind-US Code Contributions to the First AIAA Shock Boundary Layer Interaction Prediction Workshop

    NASA Technical Reports Server (NTRS)

    Georgiadis, Nicholas J.; Vyas, Manan A.; Yoder, Dennis A.

    2013-01-01

    This report discusses the computations of a set of shock wave/turbulent boundary layer interaction (SWTBLI) test cases using the Wind-US code, as part of the 2010 American Institute of Aeronautics and Astronautics (AIAA) shock/boundary layer interaction workshop. The experiments involve supersonic flows in wind tunnels with a shock generator that directs an oblique shock wave toward the boundary layer along one of the walls of the wind tunnel. The Wind-US calculations utilized structured grid computations performed in Reynolds-averaged Navier-Stokes mode. Four turbulence models were investigated: the Spalart-Allmaras one-equation model, the Menter Baseline and Shear Stress Transport k-omega two-equation models, and an explicit algebraic stress k-omega formulation. Effects of grid resolution and upwinding scheme were also considered. The results from the CFD calculations are compared to particle image velocimetry (PIV) data from the experiments. As expected, turbulence model effects dominated the accuracy of the solutions with upwinding scheme selection indicating minimal effects.

  16. Two Capacitive Micro-Machined Ultrasonic Transducers for Wind Speed Measurement.

    PubMed

    Bui, Gia Thinh; Jiang, Yu-Tsung; Pang, Da-Chen

    2016-06-02

    This paper presents a new wind speed measurement method using a single capacitive micro-machined ultrasonic transducer (CMUT). The CMUT was arranged perpendicular to the direction of the wind flow, and a reflector was set up a short distance away, facing the CMUT. To reduce the size, weight, cost, and power consumption of conventional ultrasonic anemometers this study proposes two CMUT designs for the measurement of wind speed using either the amplitude of the signal or the time of flight (TOF). Each CMUT with a double array element design can transmit and receive signals in five different operation modes. Experiments showed that the two CMUT designs utilizing the TOF were better than those utilizing the amplitude of the signal for wind speed measurements ranging from 1 m/s to 10 m/s, providing a measurement error of less than 0.2 m/s. These results indicate that the sensitivity of the TOF is independent of the five operation modes.

  17. Multi-Instrument Observations of Prolonged Stratified Wind Layers at Iqaluit, Nunavut

    NASA Astrophysics Data System (ADS)

    Mariani, Zen; Dehghan, Armin; Gascon, Gabrielle; Joe, Paul; Hudak, David; Strawbridge, Kevin; Corriveau, Julien

    2018-02-01

    Data collected between October 2015 and May 2016 at Environment and Climate Change Canada's Iqaluit research site (64°N, 69°W) have revealed a high frequency (40% of all days for which observations were available) of stratified wind layer events that occur from near the surface up to about 7.2 km above sea level. These stratified wind layers are clearly visible as wind shifts (90 to 180°) with height in range-height indicator scans from the Doppler lidar and Ka-band radar and in wind direction profiles from the Doppler lidar and radiosonde. During these events, the vertical structure of the flow appears to be a stack of 4 to 10 layers ranging in vertical width from 0.1 to 4.4 km. The stratification events that were observed occurred predominantly (81%) during light precipitation and lasted up to 27.5 h. The integrated measurement platforms at Iqaluit permitted continuous observations of the evolution of stratification events in different meteorological conditions.

  18. Effect of Wind Turbine Wakes on the Performance of a Real Case WRF-LES Simulation

    NASA Astrophysics Data System (ADS)

    Doubrawa, P.; Montornès, A.; Barthelmie, R. J.; Pryor, S. C.; Giroux, G.; Casso, P.

    2017-05-01

    The main objective of this work is to estimate how much of the discrepancy between measured and modeled flow parameters can be attributed to wake effects. The real case simulations were performed for a period of 15 days with the Weather Research and Forecasting (WRF) model and nested down to a Large-Eddy Simulation (LES) scale of ∼ 100 m. Beyond the coastal escarpment, the site is flat and homogeneous and the study focuses on a meteorological mast and a northern turbine subjected to the wake of a southern turbine. The observational data set collected during the Prince Edward Island Wind Energy Experiment (PEIWEE) includes a sonic anemometer at 60 m mounted onto the mast, and measurements from the two turbines. Wake versus free stream conditions are distinguished based on measured wind direction while assuming constant expansion for the wake of the southern turbine. During the period considered the mast and northern turbine were under the southern turbine wake ∼ 16% and ∼ 11% of the time, respectively. Under these conditions, the model overestimates the wind speed and underestimates the turbulence intensity at the mast but not at the northern turbine, where the effect of wakes on the model error is unclear and other model limitations are likely more important. The wind direction difference between the southern and northern turbines is slightly underestimated by the model regardless of whether free stream or wake conditions are observed, indicating that it may be due to factors unrelated to the wake development such as surface forcings. Finally, coupling an inexpensive wake model to the high-fidelity simulation as a post-processing tool drives the simulated wind speeds at the mast significantly closer to the observed values, but the opposite is true at the coastal turbine which is in the far wake. This indicates that the application of a post-processing wake correction should be performed with caution and may increase the wind speed errors when other important sources of uncertainty in the model and data are not considered.

  19. Indirect Solar Wind Measurements Using Archival Cometary Tail Observations

    NASA Astrophysics Data System (ADS)

    Zolotova, Nadezhda; Sizonenko, Yuriy; Vokhmyanin, Mikhail; Veselovsky, Igor

    2018-05-01

    This paper addresses the problem of the solar wind behaviour during the Maunder minimum. Records on plasma tails of comets can shed light on the physical parameters of the solar wind in the past. We analyse descriptions and drawings of comets between the eleventh and eighteenth century. To distinguish between dust and plasma tails, we address their colour, shape, and orientation. Based on the calculations made by F.A. Bredikhin, we found that cometary tails deviate from the antisolar direction on average by more than 10°, which is typical for dust tails. We also examined the catalogues of Hevelius and Lubieniecki. The first indication of a plasma tail was revealed only for the great comet C/1769 P1.

  20. Twistact techno-economic analysis for wind turbine applications.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Naughton, Brian Thomas; Koplow, Jeffrey P.; Vanness, Justin William

    This report is the final deliverable for a techno-economic analysis of the Sandia National Laboratories-developed Twistact rotary electrical conductor. The U.S. Department of Energy Wind Energy Technologies Office supported a team of researchers at Sandia National Laboratories and the National Renewable Energy Laboratory to evaluate the potential of the Twistact technology to serve as a viable replacement to rare-earth materials used in permanent-magnet direct-drive wind turbine generators. This report compares three detailed generator models, two as baseline technologies and a third incorporating the Twistact technology. These models are then used to calculate the levelized cost of energy (LCOE) for threemore » comparable offshore wind plants using the three generator topologies. The National Renewable Energy Laboratorys techno-economic analysis indicates that Twistact technology can be used to design low-maintenance, brush-free, and wire-wound (instead of rare-earth-element (REE) permanent-magnet), direct-drive wind turbine generators without a significant change in LCOE and generation efficiency. Twistact technology acts as a hedge against sources of uncertain costs for direct-drive generators. On the one hand, for permanent-magnet direct-drive (PMDD) generators, the long-term price of REEs may increase due to increases in future demand, from electric vehicles and other technologies, whereas the supply remains limited and geographically concentrated. The potential higher prices in the future adversely affect the cost competitiveness of PMDD generators and may thwart industry investment in the development of the technology for wind turbine applications. Twistact technology can eliminate industry risk around the uncertainty of REE price and availability. Traditional wire-wound direct-drive generators experience reliability issues and higher maintenance costs because of the wear on the contact brushes necessary for field excitation. The brushes experience significant wear and require regular replacement over the lifetime of operation (on the order of a year or potentially less time). For offshore wind applications, the focus of this study, maintenance costs are higher than typical land-based systems due to the added time it often requires to access the site for repairs. Thus, eliminating the need for regular brush replacements reduces the uncertain costs and energy production losses associated with maintenance and replacement of contact brushes. Further, Twistact has a relatively negligible impact on LCOE but hedges risks associated with the current dominant designs for direct-drive generators for PMDD REE price volatility and wire-wound generator contact brush reliability. A final section looks at the overall supply chain of REEs considering the supply-side and demand-side drivers that encourage the risk of depending on these materials to support future deployment of not only wind energy but other industries as well.« less

  1. Aeolian sediment transport on a beach: Surface moisture, wind fetch, and mean transport

    NASA Astrophysics Data System (ADS)

    Bauer, B. O.; Davidson-Arnott, R. G. D.; Hesp, P. A.; Namikas, S. L.; Ollerhead, J.; Walker, I. J.

    2009-04-01

    Temporal and spatial changes in wind speed, wind direction, and moisture content are ubiquitous across sandy coastal beaches. Often these factors interact in unknown ways to create complexity that confounds our ability to model sediment transport at any point across the beach as well as our capacity to predict sediment delivery into the adjacent foredunes. This study was designed to measure wind flow and sediment transport over a beach and foredune at Greenwich Dunes, Prince Edward Island National Park, with the express purpose of addressing these complex interactions. Detailed measurements are reported for one stormy day, October 11, 2004, during which meteorological conditions were highly variable. Wind speed ranged from 4 ms - 1 to over 20 ms - 1 , wind direction was highly oblique varying between 60° and 85° from shore perpendicular, and moisture content of the sand surface ranged from a minimum of about 3% (by mass) to complete saturation depending on precipitation, tidal excursion, and storm surge that progressively inundated the beach. The data indicate that short-term variations (i.e., minutes to hours) in sediment transport across this beach arise predominantly because of short-term changes in wind speed, as is expected, but also because of variations in wind direction, precipitation intensity, and tide level. Even slight increases in wind speed are capable of driving more intense saltation events, but this relationship is mediated by other factors on this characteristically narrow beach. As the angle of wind approach becomes more oblique, the fetch distance increases and allows greater opportunity for the saltation system to evolve toward an equilibrium transport state before reaching the foredunes. Whether the theoretically-predicted maximum rate of transport is ever achieved depends on the character of the sand surface (e.g., grain size, slope, roughness, vegetation, moisture content) and on various attributes of the wind field (e.g., average wind speed, unsteadiness, approach angle, flow compression, boundary layer development). Moisture content is widely acknowledged as an important factor in controlling release of sediment from the beach surface. All other things being equal, the rate of sediment transport over a wet surface is lesser than over a dry surface. On this beach, the moisture effect has two important influences: (a) in a temporal sense, the rate of sediment transport typically decreases in association with rainfall and increases when surface drying takes place; and (b) in a spatio-temporal sense, shoreline excursions associated with nearshore processes (such as wave run-up, storm surge, and tidal excursions) have the effect of constraining the fetch geometry of the beach—i.e., narrowing the width of the beach. Because saturated sand surfaces, such as found in the swash zone, will only reluctantly yield sediments to aeolian entrainment, the available beach surface across which aeolian transport can occur becomes narrower as the sea progressively inundates the beach. Under these constrained conditions, the transport system begins to shut down unless wind angle becomes highly oblique (thereby increasing fetch distance). In this study, maximum sediment transport was usually measured on the mid-beach rather than the upper beach (i.e., closer to the foredunes). This unusual finding is likely because of internal boundary layer development across the beach, which yields a decrease in near-surface wind speed (and hence, transport capacity) in the landward direction. Although widely recognized in the fluid mechanics literature, this decrease in near-surface shear stress as a by-product of a developing boundary layer in the downwind direction has not been adequately investigated in the context of coastal aeolian geomorphology.

  2. Flight directions of passerine migrants in daylight and darkness: A radar and direct visual study

    NASA Technical Reports Server (NTRS)

    Gauthreaux, S. A., Jr.

    1972-01-01

    The application of radar and visual techniques to determine the migratory habits of passerine birds during daylight and darkness is discussed. The effects of wind on the direction of migration are examined. Scatter diagrams of daytime and nocturnal migration track directions correlated with wind direction are presented. It is concluded that migratory birds will fly at altitudes where wind direction and migratory direction are nearly the same. The effects of cloud cover and solar obscuration are considered negligible.

  3. Analysis of the Viking Lander 1 surface wind vector for sols 45 to 375

    NASA Technical Reports Server (NTRS)

    Leovy, C. B.

    1984-01-01

    The Viking Lander 1 wind sensor data during the period between sols 45 and 375 were corrected. During this period, the heating element of the quadrant sensor which provided the primary signal used for determining wind direction had failed, but both hot film wind sensors were functioning normally. The wind speed and direction corrections are explained.

  4. Wind-waves interactions in the Gulf of Eilat

    NASA Astrophysics Data System (ADS)

    Shani-Zerbib, Almog; Liberzon, Dan; T-SAIL Team

    2017-11-01

    The Gulf of Eilat, at the southern tip of Israel, with its elongated rectangular shape and unique diurnal wind pattern is an appealing location for wind-waves interactions research. Results of experimental work will be reported analyzing a continuous, 50 hour long, data. Using a combined array of wind and waves sensing instruments, the wave field statistics and its response to variations of wind forcing were investigated. Correlations between diurnal fluctuations in wind magnitude and direction and the wave field response will be discussed. The directional spread of waves' energy, as estimated by the Wavelet Directional Method, showed a strong response to small variations in wind flow direction attributed to the unique topography of the gulf surroundings and its bathymetry. Influenced by relatively strong winds during the light hours, the wave field was dominated by a significant amount of breakings that are well pronounced in the saturation range of waves spectra. Temporal growth and decay behavior of the waves during the morning and evening wind transition periods was examined. Sea state induced roughness, as experienced by the wind flow turbulent boundary layer, is examined in view of the critical layer theory. Israel Science Foundation Grant # 1521/15.

  5. Prescribed burning weather in Minnesota.

    Treesearch

    Rodney W. Sando

    1969-01-01

    Describes the weather patterns in northern Minnesota as related to prescribed burning. The prevailing wind direction, average wind speed, most persistent wind direction, and average Buildup Index are considered in making recommendations.

  6. Effects of Control-Response Characteristics on the Capability of Helicopter for Use as a Gun Platform

    NASA Technical Reports Server (NTRS)

    Pegg, Robert J.; Connor, Andrew B.

    1960-01-01

    An investigation with a variable-stability helicopter was undertaken to ascertain the steadiness and ability to "hold on" to the target of a helicopter employed as a gun platform. Simulated tasks were per formed under differing flight conditions with the control-response characteristics of the helicopter varied for each task. The simulated gun-platform mission included: Variations of headings with respect to wind, constant altitude and "swing around" to a wind heading of 0 deg, and increases in altitude while performing a swing around to a wind heading of 0 deg. The results showed that increases in control power and damping increased pilot ability to hold on to the target with fewer yawing oscillations and in a shorter time. The results also indicated that wind direction must be considered in accuracy assessment. Greatest accuracy throughout these tests was achieved by aiming upwind.

  7. On the association between the recent episode of the quasi-biennial oscillation and the strong El Niño event

    NASA Astrophysics Data System (ADS)

    Varotsos, Costas A.; Sarlis, Nikos V.; Efstathiou, Maria

    2017-07-01

    Since February 2016, the equatorial quasi-biennial oscillation (QBO) in zonal wind of the lower stratosphere exhibited anomalous behavior. In more detail, it broke down from its typical pattern and the eastward stratospheric winds unexpectedly reversed to a westward direction. We herewith attempt to detect whether this unprecedented event could be considered as a result of plausible long-range correlations in the QBO temporal evolution. The analyses performed using all the available QBO data sets showed that such an interpretation could not be inferred, because the temporal evolution of the equatorial zonal wind in the lower stratosphere does not exhibit power-law behavior. Further, the natural time analysis of the QBO data indicates precursory behavior before the maximization of the zonal wind velocity and that the recent strong El Niño event might be related with the aforementioned unprecedented behavior.

  8. Energy coupling between the solar wind and the magnetosphere

    NASA Technical Reports Server (NTRS)

    Akasofu, S.-I.

    1981-01-01

    A description is given of the path leading to the first approximation expression for the solar wind-magnetosphere energy coupling function (epsilon), which correlates well with the total energy consumption rate (U sub T) of the magnetosphere. It is shown that epsilon is the primary factor controlling the time development of magnetospheric substorms and storms. The finding of this particular expression epsilon indicates how the solar wind couples its energy to the magnetosphere; the solar wind and the magnetosphere make up a dynamo. In fact, the power generated by the dynamo can be identified as epsilon through the use of a dimensional analysis. In addition, the finding of epsilon suggests that the magnetosphere is closer to a directly driven system than to an unloading system which stores the generated energy before converting it to substorm and storm energies. The finding of epsilon and its implications is considered to have significantly advanced and improved the understanding of magnetospheric processes.

  9. Impact of combustion products from Space Shuttle launches on ambient air quality

    NASA Technical Reports Server (NTRS)

    Dumbauld, R. K.; Bowers, J. F.; Cramer, H. E.

    1974-01-01

    The present work describes some multilayer diffusion models and a computer program for these models developed to predict the impact of ground clouds formed during Space Shuttle launches on ambient air quality. The diffusion models are based on the Gaussian plume equation for an instantaneous volume source. Cloud growth is estimated on the basis of measurable meteorological parameters: standard deviation of the wind azimuth angle, standard deviation of wind elevation angle, vertical wind-speed shear, vertical wind-direction shear, and depth of the surface mixing layer. Calculations using these models indicate that Space Shuttle launches under a variety of meteorological regimes at Kennedy Space Center and Vandenberg AFB are unlikely to endanger the exposure standards for HCl; similar results have been obtained for CO and Al2O3. However, the possibility that precipitation scavenging of the ground cloud might result in an acidic rain that could damage vegetation has not been investigated.

  10. Effects of low-scale landscape structures on aeolian transport processes on arable land

    NASA Astrophysics Data System (ADS)

    Siegmund, Nicole; Funk, Roger; Koszinsky, Sylvia; Buschiazzo, Daniel Eduardo; Sommer, Michael

    2018-06-01

    The landscape of the semiarid Pampa in central Argentina is characterized by late Pleistocene aeolian deposits, covering large plains with sporadic dune structures. Since the current land use changed from extensive livestock production within the Caldenal forest ecosystem to arable land, the wind erosion risk increased distinctly. We measured wind erosion and deposition patterns at the plot scale and investigated the spatial variability of the erosion processes. The wind-induced mass-transport was measured with 18 Modified Wilson and Cooke samplers (MWAC), installed on a 1.44 ha large field in a 20 × 40 m grid. Physical and chemical soil properties from the upper soil as well as a digital elevation model were recorded in a 20 × 20 m grid. In a 5-month measuring campaign data from seven storms with three different wind directions was obtained. Results show very heterogeneous patterns of erosion and deposition for each storm and indicate favoured erosion on windward and deposits on leeward terrain positions. Furthermore, a multiple regression model was build, explaining up to 70% of the spatial variance of erosion by just using four predictors: topsoil thickness, relative elevation, soil organic carbon content and slope direction. Our findings suggest a structure-process-structure complex where the landscape structure determines the effects of recent wind erosion processes which again slowly influence the structure, leading to a gradual increase of soil heterogeneity.

  11. Comparison of upwind and downwind rotor operation of the DOE/NASA 100-kW MOD-0 wind turbine

    NASA Technical Reports Server (NTRS)

    Glasgow, J. C.; Miller, D. R.; Corrigan, R. D.

    1981-01-01

    Tests were conducted on a 38m diameter horizontal axis wind turbine, which had first a rotor downwind of the supporting truss tower and then upwind of the tower. Aside from the placement of the rotor and the direction of rotation of the drive train, the wind turbine was identical for both tests. Three aspects of the test results are compared: rotor blade bending loads, rotor teeter response, and nacelle yaw moments. As a result of the tests, it is shown that while mean flatwise bending moments were unaffected by the placement of the rotor, cyclic flatwise bending tended to increase with wind speed for the downwind rotor while remaining somewhat uniform with wind speed for the upwind rotor, reflecting the effects of increased flow disturbance for downwind rotor. Rotor teeter response was not significantly affected by the rotor location relative to the tower, but appears to reflect reduced teeter stability near rated wind speed for both configurations. Teeter stability appears to return above rated wind speed, however. Nacelle yaw moments are higher for the upwind rotor but do not indicate significant design problems for either configuration.

  12. Characterizing a Wind Energy Converter's Wake in distinct ABL Conditions by means of Long-Range Lidar Measurements in the Context of the Perdigão 2017 Experiment

    NASA Astrophysics Data System (ADS)

    Wildmann, N.; Kigle, S.; Hagen, M.; Gerz, T.

    2017-12-01

    As the resource wind is increasingly exploited to produce electricity, wind energy converter (WEC) deployment relocates to more complex terrain such as hilltops or mountain ridges. In that context, it is crucial to understand the interaction between the atmospheric boundary layer (ABL) flow and the WEC in order to predict downstream flow characteristics. In the context of the Perdigão 2017 experiment, the German Aerospace Center (DLR) performed full-scale wake measurements on a single WEC of type Enercon E82 with three Leosphere Windcube 200S long-range scanning lidar systems. The experimental setup covers two parallel ridges 1.4 km apart, separated by a 200 m deep valley. The ridges are oriented in NW-SE direction, perpendicular to main wind direction, which is SW. Two of the three scanning lidar systems are positioned downstream of the WEC in line with main wind direction to span a vertical plane, perpendicular to the ridges, with RHI scans. This allows investigating wake events with single or dual-doppler lidar techniques. The third lidar system, which is positioned along the WEC ridge, is used to measure the wake position outside the before mentioned measurement plane. Wake events in three different ABL regimes (neutral, stable and convective) are evaluated with respect to wake position, dispersion, propagation and the wind-speed deficit. It is found that wake position and propagation are strongly influenced by the atmospheric stability, forcing the wake to deviate from hub height, migrating to higher levels for convective regimes. For stable ABL conditions wakes descend into the valley, and are clearly detectable up to at least eight rotor diameters downstream of the WEC. The coplanar scanning strategy furthermore allows to calculate the two-dimensional wind vector in the vertical scanning plane, indicating that vertical wind components with up to 2 ms-1 play an important role in the interaction between ABL flow and WEC. With the help of the third lidar system on the WEC ridge, wake meandering can be quantified. The presentation will provide a thorough analysis of three exemplary measurement days.

  13. Outer layer effects in wind-farm boundary layers: Coriolis forces and boundary layer height

    NASA Astrophysics Data System (ADS)

    Allaerts, Dries; Meyers, Johan

    2015-11-01

    In LES studies of wind-farm boundary layers, scale separation between the inner and outer region of the atmospheric boundary layer (ABL) is frequently assumed, i.e., wind turbines are presumed to fall within the inner layer and are not affected by outer layer effects. However, modern wind turbine and wind farm design tends towards larger rotor diameters and farm sizes, which means that outer layer effects will become more important. In a prior study, it was already shown for fully-developed wind farms that the ABL height influences the power performance. In this study, we use the in-house LES code SP-Wind to investigate the importance of outer layer effects on wind-farm boundary layers. In a suite of LES cases, the ABL height is varied by imposing a capping inversion with varying inversion strengths. Results indicate the growth of an internal boundary layer (IBL), which is limited in cases with low inversion layers. We further find that flow deceleration combined with Coriolis effects causes a change in wind direction throughout the farm. This effect increases with decreasing boundary layer height, and can result in considerable turbine wake deflection near the end of the farm. The authors are supported by the ERC (ActiveWindFarms, grant no: 306471). Computations were performed on VSC infrastructiure (Flemish Supercomputer Center), funded by the Hercules Foundation and the Flemish Government-department EWI.

  14. Nearshore currents on the southern Namaqua shelf of the Benguela upwelling system

    NASA Astrophysics Data System (ADS)

    Fawcett, A. L.; Pitcher, G. C.; Shillington, F. A.

    2008-05-01

    Nearshore currents of the southern Namaqua shelf were investigated using data from a mooring situated three and a half kilometres offshore of Lambert's Bay, downstream of the Cape Columbine upwelling cell, on the west coast of South Africa. This area is susceptible to harmful algal blooms (HABs) and wind-forced variations in currents and water column structure are critical in determining the development, transport and dissipation of blooms. Time series of local wind data, and current and temperature profile data are described for three periods, considered to be representative of the latter part of the upwelling season (27 January-22 February), winter conditions (5-29 May) and the early part of the upwelling season (10 November-12 December) in 2005. Differences observed in mean wind strength and direction between data sets are indicative of seasonal changes in synoptic meteorological conditions. These quasi-seasonal variations in wind forcing affect nearshore current flow, leading to mean northward flow in surface waters early in the upwelling season when equatorward, upwelling-favourable winds are persistent. Mean near-surface currents are southward during the latter part of the upwelling season, consistent with more prolonged periods of relaxation from equatorward winds, and under winter conditions when winds were predominantly poleward. Within these seasonal variations in mean near-surface current direction, two scales of current variability were evident within all data sets: strong inertial oscillations were driven by diurnal winds and introduced vertical shear into the water column enhancing mixing across the thermocline, while sub-inertial current variability was driven by north-south wind reversals at periods of 2-5 days. Sub-inertial currents were found to lag wind reversals by approximately 12 h, with a tendency for near-surface currents to flow poleward in the absence of wind forcing. Consistent with similar sites along the Californian and Iberian coasts, the headland at Cape Columbine is considered to influence currents and circulation patterns during periods of relaxation from upwelling-favourable winds, favouring the development of a nearshore poleward current, leading to poleward advection of warm water, the development of stratification, and the creation of potentially favourable conditions for HAB development.

  15. Response of water temperatures and stratification to changing climate in three lakes with different morphometry

    NASA Astrophysics Data System (ADS)

    Magee, Madeline R.; Wu, Chin H.

    2017-12-01

    Water temperatures and stratification are important drivers for ecological and water quality processes within lake systems, and changes in these with increases in air temperature and changes to wind speeds may have significant ecological consequences. To properly manage these systems under changing climate, it is important to understand the effects of increasing air temperatures and wind speed changes in lakes of different depths and surface areas. In this study, we simulate three lakes that vary in depth and surface area to elucidate the effects of the observed increasing air temperatures and decreasing wind speeds on lake thermal variables (water temperature, stratification dates, strength of stratification, and surface heat fluxes) over a century (1911-2014). For all three lakes, simulations showed that epilimnetic temperatures increased, hypolimnetic temperatures decreased, the length of the stratified season increased due to earlier stratification onset and later fall overturn, stability increased, and longwave and sensible heat fluxes at the surface increased. Overall, lake depth influences the presence of stratification, Schmidt stability, and differences in surface heat flux, while lake surface area influences differences in hypolimnion temperature, hypolimnetic heating, variability of Schmidt stability, and stratification onset and fall overturn dates. Larger surface area lakes have greater wind mixing due to increased surface momentum. Climate perturbations indicate that our larger study lakes have more variability in temperature and stratification variables than the smaller lakes, and this variability increases with larger wind speeds. For all study lakes, Pearson correlations and climate perturbation scenarios indicate that wind speed has a large effect on temperature and stratification variables, sometimes greater than changes in air temperature, and wind can act to either amplify or mitigate the effect of warmer air temperatures on lake thermal structure depending on the direction of local wind speed changes.

  16. Short-term Influences on Suspended Particulate Matter Distribution in the Northern Gulf of Mexico: Satellite and Model Observations.

    PubMed

    D'Sa, Eurico J; Ko, Dong S

    2008-07-15

    Energetic meteorological events such as frontal passages and hurricanes often impact coastal regions in the northern Gulf of Mexico that influence geochemical processes in the region. Satellite remote sensing data such as winds from QuikSCAT, suspended particulate matter (SPM) concentrations derived from SeaWiFS and the outputs (sea level and surface ocean currents) of a nested navy coastal ocean model (NCOM) were combined to assess the effects of frontal passages between 23-28 March 2005 on the physical properties and the SPM characteristics in the northern Gulf of Mexico. Typical changes in wind speed and direction associated with frontal passages were observed in the latest 12.5 km wind product from QuikSCAT with easterly winds before the frontal passage undergoing systematic shifts in direction and speed and turning northerly, northwesterly during a weak and a strong front on 23 and 27 March, respectively. A quantitative comparison of model sea level results with tide gauge observations suggest better correlations near the delta than in the western part of the Gulf with elevated sea levels along the coast before the frontal passage and a large drop in sea level following the frontal passage on 27 March. Model results of surface currents suggested strong response to wind forcing with westward and onshore currents before the frontal passage reversing into eastward, southeastward direction over a six day period from 23 to 28 March 2005. Surface SPM distribution derived from SeaWiFS ocean color data for two clear days on 23 and 28 March 2005 indicated SPM plumes to be oriented with the current field with increasing concentrations in nearshore waters due to resuspension and discharge from the rivers and bays and its seaward transport following the frontal passage. The backscattering spectral slope γ, a parameter sensitive to particle size distribution also indicated lower γ values (larger particles) in nearshore waters that decreased offshore (smaller particles). The use of both satellite and model results revealed the strong interactions between physical processes and the surface particulate field in response to the frontal passage in a large riverdominated coastal margin.

  17. Potential of wind power projects under the Clean Development Mechanism in India

    PubMed Central

    Purohit, Pallav; Michaelowa, Axel

    2007-01-01

    Background So far, the cumulative installed capacity of wind power projects in India is far below their gross potential (≤ 15%) despite very high level of policy support, tax benefits, long term financing schemes etc., for more than 10 years etc. One of the major barriers is the high costs of investments in these systems. The Clean Development Mechanism (CDM) of the Kyoto Protocol provides industrialized countries with an incentive to invest in emission reduction projects in developing countries to achieve a reduction in CO2 emissions at lowest cost that also promotes sustainable development in the host country. Wind power projects could be of interest under the CDM because they directly displace greenhouse gas emissions while contributing to sustainable rural development, if developed correctly. Results Our estimates indicate that there is a vast theoretical potential of CO2 mitigation by the use of wind energy in India. The annual potential Certified Emissions Reductions (CERs) of wind power projects in India could theoretically reach 86 million. Under more realistic assumptions about diffusion of wind power projects based on past experiences with the government-run programmes, annual CER volumes by 2012 could reach 41 to 67 million and 78 to 83 million by 2020. Conclusion The projections based on the past diffusion trend indicate that in India, even with highly favorable assumptions, the dissemination of wind power projects is not likely to reach its maximum estimated potential in another 15 years. CDM could help to achieve the maximum utilization potential more rapidly as compared to the current diffusion trend if supportive policies are introduced. PMID:17663772

  18. Communication of direction by the honey bee.

    PubMed

    Gould, J L; Henerey, M; MacLeod, M C

    1970-08-07

    In the presence of controls for site- and path-specific odors, observer and food-source scents, Nasanov gland and alarm odors, visual cues, wind, and general site taxis, recruited bees were able to locate the food source indicated by the dances of returning foragers in preference to a food source located at an equal distance in the opposite direction. This was true even when foragers were simultaneously dancing to indicate two different stations. Recruitment in the absence of dancing was very low, while in the absence of foraging it was virtually zero. Thus, under the experimental conditions used, the directional information contained in the dance appears to have been communicated from forager to recruit and subsequently used by the recruit.

  19. Influence of omni-directional guide vane on the performance of cross-flow rotor for urban wind energy

    NASA Astrophysics Data System (ADS)

    Wicaksono, Yoga Arob; Tjahjana, Dominicus Danardono Dwi Prija; Hadi, Syamsul

    2018-02-01

    Vertical axis wind turbine like cross-flow rotor have some advantage there are, high self-starting torque, low noise, and high stability; so, it can be installed in the urban area to produce electricity. But, the urban area has poor wind condition, so the cross-flow rotor needs a guide vane to increase its performance. The aim of this study is to determine experimentally the effect of Omni-Directional Guide Vane (ODGV) on the performance of a cross-flow wind turbine. Wind tunnel experiment has been carried out for various configurations. The ODGV was placed around the cross-flow rotor in order to increase ambient wind environment of the wind turbine. The maximum power coefficient is obtained as Cpmax = 0.125 at 60° wind direction. It was 21.46% higher compared to cross-flow wind turbine without ODGV. This result showed that the ODGV able to increase the performance of the cross-flow wind turbine.

  20. High Resolution Wind Direction and Speed Information for Support of Fire Operations

    Treesearch

    B.W. Butler; J.M. Forthofer; M.A. Finney; L.S. Bradshaw; R. Stratton

    2006-01-01

    Computational Fluid Dynamics (CFD) technology has been used to model wind speed and direction in mountainous terrain at a relatively high resolution compared to other readily available technologies. The process termed “gridded wind” is not a forecast, but rather represents a method for calculating the influence of terrain on general wind flows. Gridded wind simulations...

  1. GHRS Observations of Cool, Low-Gravity Stars. 5; The Outer Atmosphere and Wind of the Nearby K Supergiant Lambda Velorum

    NASA Technical Reports Server (NTRS)

    Carpenter, Kenneth G.; Robinson, Richard D.; Harper, Graham M.; Bennett, Philip D.; Brown, Alexander; Mullan, Dermott J.

    1999-01-01

    UV spectra of lambda Velorum taken with the Goddard High Resolution Spectrograph (GHRS) on the Hubble Space Telescope are used to probe the structure of the outer atmospheric layers and wind and to estimate the mass-loss rate from this K5 lb-II supergiant. VLA radio observations at lambda = 3.6 cm are used to obtain an independent check on the wind velocity and mass-loss rate inferred from the UV observations, Parameters of the chromospheric structure are estimated from measurements of UV line widths, positions, and fluxes and from the UV continuum flux distribution. The ratios of optically thin C II] emission lines indicate a mean chromospheric electron density of log N(sub e) approximately equal 8.9 +/- 0.2 /cc. The profiles of these lines indicate a chromospheric turbulence (v(sub 0) approximately equal 25-36 km/s), which greatly exceeds that seen in either the photosphere or wind. The centroids of optically thin emission lines of Fe II and of the emission wings of self-reversed Fe II lines indicate that they are formed in plasma approximately at rest with respect to the photosphere of the star. This suggests that the acceleration of the wind occurs above the chromospheric regions in which these emission line photons are created. The UV continuum detected by the GHRS clearly traces the mean flux-formation temperature as it increases with height in the chromosphere from a well-defined temperature minimum of 3200 K up to about 4600 K. Emission seen in lines of C III] and Si III] provides evidence of material at higher than chromospheric temperatures in the outer atmosphere of this noncoronal star. The photon-scattering wind produces self-reversals in the strong chromospheric emission lines, which allow us to probe the velocity field of the wind. The velocities to which these self-absorptions extend increase with intrinsic line strength, and thus height in the wind, and therefore directly map the wind acceleration. The width and shape of these self-absorptions reflect a wind turbulence of approximately equal 9-21 km/s. We further characterize the wind by comparing the observations with synthetic profiles generated with the Lamers et al. Sobolev with Exact Integration (SEI) radiative transfer code, assuming simple models of the outer atmospheric structure. These comparisons indicate that the wind in 1994 can be described by a model with a wind acceleration parameter beta approximately 0.9, a terminal velocity of 29-33 km/s, and a mass-loss rate approximately 3 x 10(exp -9) solar M/yr. Modeling of the 3.6 cm radio flux observed in 1997 suggests a more slowly accelerating wind (higher beta) and/or a higher mass-loss rate than inferred from the UV line profiles. These differences may be due to temporal variations in the wind or from limitations in one or both of the models. The discrepancy is currently under investigation.

  2. Application of nonparametric regression methods to study the relationship between NO2 concentrations and local wind direction and speed at background sites.

    PubMed

    Donnelly, Aoife; Misstear, Bruce; Broderick, Brian

    2011-02-15

    Background concentrations of nitrogen dioxide (NO(2)) are not constant but vary temporally and spatially. The current paper presents a powerful tool for the quantification of the effects of wind direction and wind speed on background NO(2) concentrations, particularly in cases where monitoring data are limited. In contrast to previous studies which applied similar methods to sites directly affected by local pollution sources, the current study focuses on background sites with the aim of improving methods for predicting background concentrations adopted in air quality modelling studies. The relationship between measured NO(2) concentration in air at three such sites in Ireland and locally measured wind direction has been quantified using nonparametric regression methods. The major aim was to analyse a method for quantifying the effects of local wind direction on background levels of NO(2) in Ireland. The method was expanded to include wind speed as an added predictor variable. A Gaussian kernel function is used in the analysis and circular statistics employed for the wind direction variable. Wind direction and wind speed were both found to have a statistically significant effect on background levels of NO(2) at all three sites. Frequently environmental impact assessments are based on short term baseline monitoring producing a limited dataset. The presented non-parametric regression methods, in contrast to the frequently used methods such as binning of the data, allow concentrations for missing data pairs to be estimated and distinction between spurious and true peaks in concentrations to be made. The methods were found to provide a realistic estimation of long term concentration variation with wind direction and speed, even for cases where the data set is limited. Accurate identification of the actual variation at each location and causative factors could be made, thus supporting the improved definition of background concentrations for use in air quality modelling studies. Copyright © 2010 Elsevier B.V. All rights reserved.

  3. Flight paths of seabirds soaring over the ocean surface enable measurement of fine-scale wind speed and direction.

    PubMed

    Yonehara, Yoshinari; Goto, Yusuke; Yoda, Ken; Watanuki, Yutaka; Young, Lindsay C; Weimerskirch, Henri; Bost, Charles-André; Sato, Katsufumi

    2016-08-09

    Ocean surface winds are an essential factor in understanding the physical interactions between the atmosphere and the ocean. Surface winds measured by satellite scatterometers and buoys cover most of the global ocean; however, there are still spatial and temporal gaps and finer-scale variations of wind that may be overlooked, particularly in coastal areas. Here, we show that flight paths of soaring seabirds can be used to estimate fine-scale (every 5 min, ∼5 km) ocean surface winds. Fine-scale global positioning system (GPS) positional data revealed that soaring seabirds flew tortuously and ground speed fluctuated presumably due to tail winds and head winds. Taking advantage of the ground speed difference in relation to flight direction, we reliably estimated wind speed and direction experienced by the birds. These bird-based wind velocities were significantly correlated with wind velocities estimated by satellite-borne scatterometers. Furthermore, extensive travel distances and flight duration of the seabirds enabled a wide range of high-resolution wind observations, especially in coastal areas. Our study suggests that seabirds provide a platform from which to measure ocean surface winds, potentially complementing conventional wind measurements by covering spatial and temporal measurement gaps.

  4. Flight paths of seabirds soaring over the ocean surface enable measurement of fine-scale wind speed and direction

    PubMed Central

    Yonehara, Yoshinari; Goto, Yusuke; Yoda, Ken; Watanuki, Yutaka; Young, Lindsay C.; Weimerskirch, Henri; Bost, Charles-André; Sato, Katsufumi

    2016-01-01

    Ocean surface winds are an essential factor in understanding the physical interactions between the atmosphere and the ocean. Surface winds measured by satellite scatterometers and buoys cover most of the global ocean; however, there are still spatial and temporal gaps and finer-scale variations of wind that may be overlooked, particularly in coastal areas. Here, we show that flight paths of soaring seabirds can be used to estimate fine-scale (every 5 min, ∼5 km) ocean surface winds. Fine-scale global positioning system (GPS) positional data revealed that soaring seabirds flew tortuously and ground speed fluctuated presumably due to tail winds and head winds. Taking advantage of the ground speed difference in relation to flight direction, we reliably estimated wind speed and direction experienced by the birds. These bird-based wind velocities were significantly correlated with wind velocities estimated by satellite-borne scatterometers. Furthermore, extensive travel distances and flight duration of the seabirds enabled a wide range of high-resolution wind observations, especially in coastal areas. Our study suggests that seabirds provide a platform from which to measure ocean surface winds, potentially complementing conventional wind measurements by covering spatial and temporal measurement gaps. PMID:27457932

  5. Observations of Thermospheric Horizontal Winds at Watson Lake, Yukon Territory (lambda=65 Deg N)

    NASA Technical Reports Server (NTRS)

    Niciejewski, R. J.; Killeen, T. L.; Solomon, Stanley C.

    1996-01-01

    Fabry-Perot interferometer observations of the thermospheric O I (6300 A) emission have been conducted from an airglow observatory at a dark field site in the southeastern Yukon Territory, Canada, for the period November 1991 to April 1993. The experiment operated in unattended, remote fashion, has resulted in a substantial data set from which mean neutral winds have been determined. Dependent upon geomagnetic activity, the nocturnal location of the site is either equatorward of the auroral oval or within oval boundaries. The data set is rich enough to permit hourly binning of neutral winds based upon the K(sub p) geomagnetic disturbance index as well as the season. For cases of low geomagnetic activity the averaged vector horizontal neutral wind exhibits the characteristics of a midlatitude site displaying antisunward pressure-gradient-driven winds. As the geomagnetic activity rises in the late afternoon and evening winds slowly rotate sunward in an anticlockwise direction, initially remaining near 100 m/s in speed but eventually increasing to 300 m/s for K(sub p) greater than 5. For the higher levels of activity the observed neutral wind flow pattern resembles a higher-latitude polar cap pattern characterized by ion drag forcing of thermospheric neutral gases. In addition, rotational Coriolis forcing on the dusk side enhances the ion drag forcing, resulting in dusk winds which trace out the clockwise dusk cell plasma flow. On the dawn side the neutral winds also rotate in an anticlockwise direction as the strength of geomagnetic disturbances increase. Since the site is located at a transition latitude between the midlatitude and the polar cap the data set provides a sensitive test for general circulation models which attempt to parameterize the contribution of magnetospheric processes. A comparison with the Vector Spherical Harmonic (VSH) model indicates several regions of poor correspondence for December solstice conditions but reasonable agreement for the vernal equinox.

  6. Great Barrier Reef, Queensland, Australia

    NASA Technical Reports Server (NTRS)

    1991-01-01

    Along the coast of Queensland, Australia (18.0S, 147.5E), timbered foothills of the Great Dividing Range separate the semi-arid interior of Queensland from the farmlands of the coastal plains. Prominent cleared areas in the forest indicate deforestation for farm and pasture lands. Offshore, islands and the Great Barrier Reef display sand banks along the southern sides of the structures indicating a dominant southerly wind and current direction.

  7. LOCATING NEARBY SOURCES OF AIR POLLUTION BY NONPARAMETRIC REGRESSION OF ATMOSPHERIC CONCENTRATIONS ON WIND DIRECTION. (R826238)

    EPA Science Inventory

    The relationship of the concentration of air pollutants to wind direction has been determined by nonparametric regression using a Gaussian kernel. The results are smooth curves with error bars that allow for the accurate determination of the wind direction where the concentrat...

  8. Using Rare Earth Elements (REE) to determine wind-driven soil dispersal from a point source

    USDA-ARS?s Scientific Manuscript database

    Although erosion of soil by water is a predictably directional process, the erosion of soil by wind is determined by wind direction on an event-wise basis. The wind-driven dispersal patterns of chemical constituents including natural soil components and anthropogenic contaminants are not well under...

  9. The dependence of sea surface slope on atmospheric stability and swell conditions

    NASA Technical Reports Server (NTRS)

    Hwang, Paul A.; Shemdin, Omar H.

    1988-01-01

    A tower-mounted optical device is used to measure the two-orthogonal components of the sea surface slope. The results indicate that an unstable stratification at the air-sea interface tends to enhance the surface roughness. The presence of a long ocean swell system steers the primary direction of shortwave propagation away from wind direction, and may increase or reduce the mean square slope of the sea surface.

  10. On wind-wave-current interactions during the Shoaling Waves Experiment

    NASA Astrophysics Data System (ADS)

    Zhang, Fei W.; Drennan, William M.; Haus, Brian K.; Graber, Hans C.

    2009-01-01

    This paper presents a case study of wind-wave-current interaction during the Shoaling Waves Experiment (SHOWEX). Surface current fields off Duck, North Carolina, were measured by a high-frequency Ocean Surface Current Radar (OSCR). Wind, wind stress, and directional wave data were obtained from several Air Sea Interaction Spar (ASIS) buoys moored in the OSCR scanning domain. At several times during the experiment, significant coastal currents entered the experimental area. High horizontal shears at the current edge resulted in the waves at the peak of wind-sea spectra (but not those in the higher-frequency equilibrium range) being shifted away from the mean wind direction. This led to a significant turning of the wind stress vector away from the mean wind direction. The interactions presented here have important applications in radar remote sensing and are discussed in the context of recent radar imaging models of the ocean surface.

  11. Radiotelemetric analysis of the effects of prevailing wind direction on Mormon cricket migratory band movement.

    PubMed

    Sword, G A; Lorch, P D; Gwynne, D T

    2008-08-01

    During outbreaks, flightless Mormon crickets [Anabrus simplex Haldeman (Orthoptera: Tettigoniidae)] form large mobile groups known as migratory bands. These bands can contain millions of individuals that march en masse across the landscape. The role of environmental cues in influencing the movement direction of migratory bands is poorly understood and has been the subject of little empirical study. We examined the effect of wind direction on Mormon cricket migratory band movement direction by monitoring the local weather conditions and daily movement patterns of individual insects traveling in bands over the same time course at three close, but spatially distinct sites. Although weather conditions were relatively homogeneous across sites, wind directions tended to be more variable across sites during the morning hours, the period during which directional movement begins. Migratory bands at different sites traveled in distinctly different directions. However, we failed to find any evidence to suggest that the observed variation in migratory band movement direction was correlated with local wind direction at any time during the day. These results support the notion that the cues mediating migratory band directionality are likely to be group specific and that a role for landscape-scale environmental cues such as wind direction is unlikely.

  12. Understanding the Rising Phase of the PM2.5 Concentration Evolution in Large China Cities

    PubMed Central

    Lv, Baolei; Cai, Jun; Xu, Bing; Bai, Yuqi

    2017-01-01

    Long-term air quality observations are seldom analyzed from a dynamic view. This study analyzed fine particulate matter (PM2.5) pollution processes using long-term PM2.5 observations in three Chinese cities. Pollution processes were defined as linearly growing PM2.5 concentrations following the criteria of coefficient of determination R2 > 0.8 and duration time T ≥ 18 hrs. The linear slopes quantitatively measured pollution levels by PM2.5 concentrations rising rates (PMRR, μg/(m3·hr)). The 741, 210 and 193 pollution processes were filtered out, respectively, in Beijing (BJ), Shanghai (SH), and Guangzhou (GZ). Then the relationships between PMRR and wind speed, wind direction, 24-hr backward points, gaseous pollutants (CO, NO2 and SO2) concentrations, and regional PM2.5 levels were studied. Inverse relationships existed between PMRR and wind speed. The wind directions and 24-hr backward points converged in specific directions indicating long-range transport. Gaseous pollutants concentrations increased at variable rates in the three cities with growing PMRR values. PM2.5 levels at the upwind regions of BJ and SH increased at high PMRRs. Regional transport dominated the PM2.5 pollution processes of SH. In BJ, both local contributions and regional transport increased during high-PMRR pollution processes. In GZ, PM2.5 pollution processes were mainly caused by local emissions. PMID:28440282

  13. Source apportionment of PAHs and n-alkanes in respirable particles in Tehran, Iran by wind sector and vertical profile.

    PubMed

    Moeinaddini, Mazaher; Esmaili Sari, Abbas; Riyahi bakhtiari, Alireza; Chan, Andrew Yiu-Chung; Taghavi, Seyed Mohammad; Hawker, Darryl; Connell, Des

    2014-06-01

    The vertical concentration profiles and source contributions of polycyclic aromatic hydrocarbons (PAHs) and n-alkanes in respirable particle samples (PM4) collected at 10, 100, 200 and 300-m altitude from the Milad Tower of Tehran, Iran during fall and winter were investigated. The average concentrations of total PAHs and total n-alkanes were 16.7 and 591 ng/m(3), respectively. The positive matrix factorization (PMF) model was applied to the chemical composition and wind data to apportion the contributing sources. The five PAH source factors identified were: 'diesel' (56.3% of total PAHs on average), 'gasoline' (15.5%), 'wood combustion, and incineration' (13%), 'industry' (9.2%), and 'road soil particle' (6.0%). The four n-alkane source factors identified were: 'petrogenic' (65% of total n-alkanes on average), 'mixture of petrogenic and biomass burning' (15%), 'mixture of biogenic and fossil fuel' (11.5%), and 'biogenic' (8.5%). Source contributions by wind sector were also estimated based on the wind sector factor loadings from PMF analysis. Directional dependence of sources was investigated using the conditional probability function (CPF) and directional relative strength (DRS) methods. The calm wind period was found to contribute to 4.4% of total PAHs and 5.0% of total n-alkanes on average. Highest average concentrations of PAHs and n-alkanes were found in the 10 and 100 m samples, reflecting the importance of contributions from local sources. Higher average concentrations in the 300 m samples compared to those in the 200 m samples may indicate contributions from long-range transport. The vertical profiles of source factors indicate the gasoline and road soil particle-associated PAHs, and the mixture from biogenic and fossil fuel source-associated n-alkanes were mostly from local emissions. The smaller average contribution of diesel-associated PAHs in the lower altitude samples also indicates that the restriction of diesel-fueled vehicle use in the central area of Tehran has been effective in reducing the PAHs concentration.

  14. Characterizing overwater roughness Reynolds number during hurricanes

    NASA Astrophysics Data System (ADS)

    Hsu, S. A.; Shen, Hui; He, Yijun

    2017-11-01

    The Reynolds number, which is the dimensionless ratio of the inertial force to the viscous force, is of great importance in the theory of hydrodynamic stability and the origin of turbulence. To investigate aerodynamically rough flow over a wind sea, pertinent measurements of wind and wave parameters from three data buoys during Hurricanes Kate, Lili, Ivan, Katrina, Rita, and Wilma are analyzed. It is demonstrated that wind seas prevail when the wind speed at 10 m and the wave steepness exceed 9 m s-1 and 0.020, respectively. It is found that using a power law the roughness Reynolds number is statistically significantly related to the significant wave height instead of the wind speed as used in the literature. The reason for this characterization is to avoid any self-correlation between Reynolds number and the wind speed. It is found that although most values of R_{*} were below 500, they could reach to approximately 1000 near the radius of maximum wind. It is shown that, when the significant wave height exceeds approximately 2 m in a wind sea, the air flow over that wind sea is already under the fully rough condition. Further analysis of simultaneous measurements of wind and wave parameters using the logarithmic law indicates that the estimated overwater friction velocity is consistent with other methods including the direct (eddy-covariance flux) measurements, the atmospheric vorticity approach, and the sea-surface current measurements during four slow moving super typhoons with wind speed up to 70 m s-1.

  15. Wind energy resource modelling in Portugal and its future large-scale alteration due to anthropogenic induced climate changes =

    NASA Astrophysics Data System (ADS)

    Carvalho, David Joao da Silva

    The high dependence of Portugal from foreign energy sources (mainly fossil fuels), together with the international commitments assumed by Portugal and the national strategy in terms of energy policy, as well as resources sustainability and climate change issues, inevitably force Portugal to invest in its energetic self-sufficiency. The 20/20/20 Strategy defined by the European Union defines that in 2020 60% of the total electricity consumption must come from renewable energy sources. Wind energy is currently a major source of electricity generation in Portugal, producing about 23% of the national total electricity consumption in 2013. The National Energy Strategy 2020 (ENE2020), which aims to ensure the national compliance of the European Strategy 20/20/20, states that about half of this 60% target will be provided by wind energy. This work aims to implement and optimise a numerical weather prediction model in the simulation and modelling of the wind energy resource in Portugal, both in offshore and onshore areas. The numerical model optimisation consisted in the determination of which initial and boundary conditions and planetary boundary layer physical parameterizations options provide wind power flux (or energy density), wind speed and direction simulations closest to in situ measured wind data. Specifically for offshore areas, it is also intended to evaluate if the numerical model, once optimised, is able to produce power flux, wind speed and direction simulations more consistent with in situ measured data than wind measurements collected by satellites. This work also aims to study and analyse possible impacts that anthropogenic climate changes may have on the future wind energetic resource in Europe. The results show that the ECMWF reanalysis ERA-Interim are those that, among all the forcing databases currently available to drive numerical weather prediction models, allow wind power flux, wind speed and direction simulations more consistent with in situ wind measurements. It was also found that the Pleim-Xiu and ACM2 planetary boundary layer parameterizations are the ones that showed the best performance in terms of wind power flux, wind speed and direction simulations. This model optimisation allowed a significant reduction of the wind power flux, wind speed and direction simulations errors and, specifically for offshore areas, wind power flux, wind speed and direction simulations more consistent with in situ wind measurements than data obtained from satellites, which is a very valuable and interesting achievement. This work also revealed that future anthropogenic climate changes can negatively impact future European wind energy resource, due to tendencies towards a reduction in future wind speeds especially by the end of the current century and under stronger radiative forcing conditions.

  16. Wind direction variability in Afternoon and Sunset Turbulence

    NASA Astrophysics Data System (ADS)

    Nilsson, Erik; Lothon, Marie; Lohou, Fabienne; Mahrt, Larry

    2014-05-01

    Understanding wind direction (WD) variability better is important for several reasons. Air pollution models need information about how variable wind direction is in different conditions (Davies and Thomson 1999). Accurate predictions of dispersion are important for human health and safety and allow for adaptation planning (Nagle et al. 2011). Other applications include horizontal diffusion, efficiency and fatigue of wind machines and air-sea interaction (Mahrt 2011). Most studies of wind direction variability have focused on nocturnal conditions because of greater variability in light winds. Modelling WD variability in transition periods when both mean wind speed and variance of the wind components are in a state of change can, however, also be very challenging and has not been the focus of earlier studies. The evening transitioning to the nocturnal boundary layer can play an important role in the diffusion process of pollutants and scalars emitted at surface and transported within the atmosphere. The Boundary Layer Late Afternoon and Sunset Turbulence (BLLAST) field campaign that took place in southern France in June and July 2011 focused on the decaying turbulence of the late afternoon boundary layer and related issues (Lothon et al. 2012). We analyse field measurements from BLLAST to investigate WD variability in the evening transition period. Standard deviations of horizontal wind direction fluctuations in the lowest 60 m of the boundary layer have been examined for dependence on mean wind speed, higher order moments and averaging time. Measurement results are interpreted using measured and idealized probability density functions of horizontal wind vectors. These are also used to develop analytical functions describing how WD variability depends on wind speed, variance and other controlling factors in the atmospheric boundary layer. References: Davies B.M., Thomson D.J., 1999. Comparison of some parameterizations of wind direction variability with observations, Atmospheric Enviroment 33, 4909-4917. Lothon M. et al., 2012. The Boundary-Layer Late Afternoon and Sunset Turbulence field experiment, Proc. of the 20th Symposium on Boundary-Layers and Turbulence, 7-13 July, Boston, MA, USA. Mahrt L., 2011. Surface Wind Direction Variability, Journal of Applied Meteorology and Climatology 50. 144-152. Nagle J.C., 2011. Adapting to Pollution, Research Roundtable on Climate Change, Adaptation, and Enviromental Law, Northwestern Law Searle Center, Legal and Regulatory Studies 7-18 April, IL, USA.

  17. Effects of Sea-Surface Waves and Ocean Spray on Air-Sea Momentum Fluxes

    NASA Astrophysics Data System (ADS)

    Zhang, Ting; Song, Jinbao

    2018-04-01

    The effects of sea-surface waves and ocean spray on the marine atmospheric boundary layer (MABL) at different wind speeds and wave ages were investigated. An MABL model was developed that introduces a wave-induced component and spray force to the total surface stress. The theoretical model solution was determined assuming the eddy viscosity coefficient varied linearly with height above the sea surface. The wave-induced component was evaluated using a directional wave spectrum and growth rate. Spray force was described using interactions between ocean-spray droplets and wind-velocity shear. Wind profiles and sea-surface drag coefficients were calculated for low to high wind speeds for wind-generated sea at different wave ages to examine surface-wave and ocean-spray effects on MABL momentum distribution. The theoretical solutions were compared with model solutions neglecting wave-induced stress and/or spray stress. Surface waves strongly affected near-surface wind profiles and sea-surface drag coefficients at low to moderate wind speeds. Drag coefficients and near-surface wind speeds were lower for young than for old waves. At high wind speeds, ocean-spray droplets produced by wind-tearing breaking-wave crests affected the MABL strongly in comparison with surface waves, implying that wave age affects the MABL only negligibly. Low drag coefficients at high wind caused by ocean-spray production increased turbulent stress in the sea-spray generation layer, accelerating near-sea-surface wind. Comparing the analytical drag coefficient values with laboratory measurements and field observations indicated that surface waves and ocean spray significantly affect the MABL at different wind speeds and wave ages.

  18. Wind, rain and bacteria: The effect of weather on the microbial composition of roof-harvested rainwater.

    PubMed

    Evans, C A; Coombes, P J; Dunstan, R H

    2006-01-01

    The microbiological and chemical quality of tank-stored rainwater is impacted directly by roof catchment and subsequent run-off contamination, via direct depositions by birds and small mammals, decay of accumulated organic debris, and atmospheric deposition of airborne micro-organisms and chemical pollutants. Previous literature reports on roof water quality have given little consideration to the relative significance of airborne micro-organisms. This study involved analyses of direct roof run-off at an urban housing development in Newcastle, on the east coast of Australia. A total of 77 samples were collected during 11 separate rainfall events, and microbial counts and mean concentrations of several ionic contaminants were matched to climatic data corresponding to each of the monitored events. Conditions both antecedent to, and those prevailing during each event, were examined to investigate the influence of certain meteorological parameters on the bacterial composition of the roof water and indirectly assess the relative contribution of airborne micro-organisms to the total bacterial load. Results indicated that airborne micro-organisms represented a significant contribution to the bacterial load of roof water at this site, and that the overall contaminant load was influenced by wind velocities, while the profile (composition) of the load varied with wind direction. The implications of these findings to the issues of tank water quality and health risk analysis, appropriate usage and system design are discussed.

  19. Meroe Patera

    NASA Technical Reports Server (NTRS)

    2002-01-01

    [figure removed for brevity, see original site]

    This image is located in Meroe Patera (longitude: 292W/68E, latitude: 7.01), which is a small region within Syrtis Major Planitia. Syrtis Major is a low-relief shield volcano whose lava flows make up a plateau more than 1000 km across. These flows are of Hesperian age (Martian activity of intermediate age) and are believed to have originated from a series of volcanic depressions, called calderas. The caldera complex lies on extensions of the ring faults associated with the Isidis impact basin toward the northeast - thus Syrtis Major volcanism may be associated with post-impact adjustments of the Martian crust.

    The most striking feature in this image is the light streaks across the image that lead to dunes in the lower left region. Wind streaks are albedo markings interpreted to be formed by aeolian action on surface materials. Most are elongate and allow an interpretation of effective wind directions. Many streaks are time variable and thus provide information on seasonal or long-term changes in surface wind directions and strengths. The wind streaks in this image are lighter than their surroundings and are the most common type of wind streak found on Mars. These streaks are formed downwind from crater rims (as in this example), mesas, knobs, and other positive topographic features.

    The dune field in this image is a mixture of barchan dunes and transverse dunes. Dunes are among the most distinctive aeolian feature on Mars, and are similar in form to barchan and transverse dunes on Earth. This similarity is the best evidence to indicate that martian dunes are composed of sand-sized material, although the source and composition of the sand remain controversial. Both the observations of dunes and wind streaks indicate that this location has a windy environment - and these winds are persistent enough to product dunes, as sand-sized material accumulates in this region. These features also indicate that the winds in this region are originating from the right side of the image, and moving towards the left.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

  20. Representativeness of wind measurements in moderately complex terrain

    NASA Astrophysics Data System (ADS)

    van den Bossche, Michael; De Wekker, Stephan F. J.

    2018-02-01

    We investigated the representativeness of 10-m wind measurements in a 4 km × 2 km area of modest relief by comparing observations at a central site with those at four satellite sites located in the same area. Using a combination of established and new methods to quantify and visualize representativeness, we found significant differences in wind speed and direction between the four satellite sites and the central site. The representativeness of the central site wind measurements depended strongly on surface wind speed and direction, and atmospheric stability. Through closer inspection of the observations at one of the satellite sites, we concluded that terrain-forced flows combined with thermally driven downslope winds caused large biases in wind direction and speed. We used these biases to generate a basic model, showing that terrain-related differences in wind observations can to a large extent be predicted. Such a model is a cost-effective way to enhance an area's wind field determination and to improve the outcome of pollutant dispersion and weather forecasting models.

  1. Geochemical evidence for the origin of late Quaternary loess in central Alaska

    USGS Publications Warehouse

    Muhs, D.R.; Budahn, J.R.

    2006-01-01

    Loess is extensive in central Alaska, but there are uncertainties about its source and the direction of paleo-winds that deposited it. Both northerly and southerly winds have been inferred. The most likely sources of loess are the Tanana River (south), the Nenana River (southeast), and the Yukon River (north). Late Quaternary loess in central Alaska has immobile trace-element compositions (Cr/Sc, Th/Ta, Th/ Sc, Th/U, Eu/Eu*, GdN/YbN) that indicate derivation mostly from the Tanana River. However, other ratios (As/Sb, Zr/Hf, LaN/YbN) and quantitative modeling indicate that the Yukon River was also a source. During the last glacial period, there may have been a longer residence time of the Siberian and Canadian high-pressure cells, along with a strengthened Aleutian low-pressure cell. This would have generated regional-scale northeasterly winds and explains derivation of loess from the Yukon River. However, superim-posed upon this synoptic-scale circulation, there may have been strong, southerly katabatic winds from expanded glaciers on the northern flank of the Alaska Range. These winds could have provided eolian silt from the Tanana River. Yukon River and Tanana River sediments are highly calcareous, whereas Fairbanks-area loess is not. This suggests that carbonate leaching in loess kept ahead of sedimentation and that late Quaternary loess in central Alaska was deposited relatively slowly. ?? 2006 NRC Canada.

  2. Pollutant Concentrations in Street Canyons of Different Aspect Ratio with Avenues of Trees for Various Wind Directions

    NASA Astrophysics Data System (ADS)

    Gromke, Christof; Ruck, Bodo

    2012-07-01

    This study summarizes the effects of avenues of trees in urban street canyons on traffic pollutant dispersion. We describe various wind-tunnel experiments with different tree-avenue models in combination with variations in street-canyon aspect ratio W/ H (with W the street-canyon width and H the building height) and approaching wind direction. Compared to tree-free street canyons, in general, higher pollutant concentrations are found. Avenues of trees do not suppress canyon vortices, although the air ventilation in canyons is hindered significantly. For a perpendicular wind direction, increases in wall-average and wall-maximum concentrations at the leeward canyon wall and decreases in wall-average concentrations at the windward wall are found. For oblique and perpendicular wind directions, increases at both canyon walls are obtained. The strongest effects of avenues of trees on traffic pollutant dispersion are observed for oblique wind directions for which also the largest concentrations at the canyon walls are found. Thus, the prevailing assumption that attributes the most harmful dispersion conditions to a perpendicular wind direction does not hold for street canyons with avenues of trees. Furthermore, following dimensional analysis, an estimate of the normalized wall-maximum traffic pollutant concentration in street canyons with avenues of trees is derived.

  3. The influence of several changes in atmospheric states over semi-arid areas on the incidence of mental health disorders

    NASA Astrophysics Data System (ADS)

    Yackerson, Naomy S.; Zilberman, Arkadi; Todder, Doron; Kaplan, Zeev

    2011-05-01

    The incidence of suicide attempts [Deliberate Self Harm (DSH); ICD-10: X60-X84] and psychotic attacks (PsA; ICD-10, F20-F29) in association with atmospheric states, typical for areas close to big deserts, was analyzed. A retrospective study is based on the 4,325 cases of DSH and PsA registered in the Mental Health Center (MHC) of Ben-Gurion University (Be'er-Sheva, Israel) during 2001-2003. Pearson and Spearman test correlations were used; the statistical significance was tested at p < 0.1. The influence of temperature and humidity on suicide attempts ( N SU ) and psychotic attacks ( N PS ) was weakly pronounced ( p > 0.1). Correlation coefficients between N SU and N PS and speed WS of westerly wind reaches 0.3 ( p < 0.05), while their dependence on easterly WS was weaker ( p > 0.09). Variations in easterly wind direction WD influence N SU and N PS values ( p < 0.04), but no corresponding correlation with westerly winds was found ( p > 0.3). Obviously ,in transition areas located between different regions ,the main role of air streams in meteorological-biological impact can scarcely be exaggerated. An unstable balance in the internal state of a weather-sensitive person is disturbed when the atmospheric state is changed by specific desert winds, which can provoke significant perturbations in meteorological parameters. Results indicate the importance of wind direction, defining mainly the atmospheric situation in semi-arid areas: changes in direction of the easterly wind influence N SU and N PS , while changes in WS are important for mental health under westerly air streams. Obviously, N SU and N PS are more affected by the disturbance of weather from its normal state, for a given season, to which the local population is accustomed, than by absolute values of meteorological parameters.

  4. Traffic-related air pollution in the community of San Ysidro, CA, in relation to northbound vehicle wait times at the US-Mexico border Port of Entry

    NASA Astrophysics Data System (ADS)

    Quintana, Penelope J. E.; Dumbauld, Jill J.; Garnica, Lynelle; Chowdhury, M. Zohir; Velascosoltero, José; Mota-Raigoza, Arturo; Flores, David; Rodríguez, Edgar; Panagon, Nicolas; Gamble, Jamison; Irby, Travis; Tran, Cuong; Elder, John; Galaviz, Vanessa E.; Hoffman, Lisa; Zavala, Miguel; Molina, Luisa T.

    2014-05-01

    The San Diego/Tijuana US-Mexico border crossing at the San Ysidro Port of Entry (POE) is the world's busiest international land border crossing (GSA, 2013). San Ysidro, California, is the US community immediately adjacent to the border crossing. More than 90% of San Ysidro residents are Hispanic, and the average household income is less than 60% of the San Diego regional average. This study investigated the San Ysidro POE as a source of traffic-related air pollutants in San Ysidro, especially in relation to wind direction and northbound vehicle wait times. The pollutants ultrafine particulate matter (UFP), black carbon (BC), and particulate matter <2.5 μm in diameter (PM2.5) were periodically sampled through the course of 2010 at four rooftop locations: one commercial establishment near the POE, two elementary schools in San Ysidro, and a coastal estuary reference site. Weather data from two nearby sites and northbound border wait times were also collected. Results indicate consistently higher daytime BC and UFP concentrations at the measurement sites near the POE. Pollution concentrations were higher during low wind speeds or when wind was blowing from the POE towards San Ysidro. In February, March and November measurements, black carbon pollution appeared to be significantly positively associated with the POE northbound wait times when the wind direction was blowing from the POE towards San Ysidro or during low wind speeds, but not when the wind direction was from the west/northwest towards the POE. This pilot study is the first to investigate the potential effect of the POE, especially the long northbound traffic delays, on the nearby community of San Ysidro. Disparities in traffic exposures are an environmental justice issue and this should be taken into account during planning and operation of POEs.

  5. Wind influence on a coastal buoyant outflow

    NASA Astrophysics Data System (ADS)

    Whitney, Michael M.; Garvine, Richard W.

    2005-03-01

    This paper investigates the interplay between river discharge and winds in forcing coastal buoyant outflows. During light winds a plume influenced by the Earth's rotation will flow down shelf (in the direction of Kelvin wave propagation) as a slender buoyancy-driven coastal current. Downwelling favorable winds augment this down-shelf flow, narrow the plume, and mix the water column. Upwelling favorable winds drive currents that counter the buoyancy-driven flow, spread plume waters offshore, and rapidly mix buoyant waters. Two criteria are developed to assess the wind influence on a buoyant outflow. The wind strength index (Ws) determines whether a plume's along-shelf flow is in a wind-driven or buoyancy-driven state. Ws is the ratio of the wind-driven and buoyancy-driven along-shelf velocities. Wind influence on across-shelf plume structure is rated with a timescale (ttilt) for the isopycnal tilting caused by wind-driven Ekman circulation. These criteria are used to characterize wind influence on the Delaware Coastal Current and can be applied to other coastal buoyant outflows. The Delaware buoyant outflow is simulated for springtime high-river discharge conditions. Simulation results and Ws values reveal that the coastal current is buoyancy-driven most of the time (∣Ws∣ < 1 on average). Wind events, however, overwhelm the buoyancy-driven flow (∣Ws∣ > 1) several times during the high-discharge period. Strong upwelling events reverse the buoyant outflow; they constitute an important mechanism for transporting fresh water up shelf. Across-shelf plume structure is more sensitive to wind influence than the along-shelf flow. Values of ttilt indicate that moderate or strong winds persisting throughout a day can modify plume width significantly. Plume widening during upwelling events is accompanied by mixing that can erase the buoyant outflow.

  6. Type II Radio Bursts Observed by STEREO/Waves and Wind/Waves instruments

    NASA Astrophysics Data System (ADS)

    Krupar, V.; Magdalenic, J.; Zhukov, A.; Rodriguez, L.; Mierla, M.; Maksimovic, M.; Cecconi, B.; Santolik, O.

    2013-12-01

    Type II radio bursts are slow-drift emissions triggered by suprathermal electrons accelerated on shock fronts of propagating CMEs. We present several events at kilometric wavelengths observed by radio instruments onboard the STEREO and Wind spacecraft. The STEREO/Waves and Wind/Waves have goniopolarimetric (GP, also referred to as direction finding) capabilities that allow us to triangulate radio sources when an emission is observed by two or more spacecraft. As the GP inversion has high requirements on the signal-to-noise ratio we only have a few type II radio bursts with sufficient intensity for this analysis. We have compared obtained radio sources with white-light observations of STEREO/COR and STEREO/HI instruments. Our preliminary results indicate that radio sources are located at flanks of propagating CMEs.

  7. Contour Error Map Algorithm

    NASA Technical Reports Server (NTRS)

    Merceret, Francis; Lane, John; Immer, Christopher; Case, Jonathan; Manobianco, John

    2005-01-01

    The contour error map (CEM) algorithm and the software that implements the algorithm are means of quantifying correlations between sets of time-varying data that are binarized and registered on spatial grids. The present version of the software is intended for use in evaluating numerical weather forecasts against observational sea-breeze data. In cases in which observational data come from off-grid stations, it is necessary to preprocess the observational data to transform them into gridded data. First, the wind direction is gridded and binarized so that D(i,j;n) is the input to CEM based on forecast data and d(i,j;n) is the input to CEM based on gridded observational data. Here, i and j are spatial indices representing 1.25-km intervals along the west-to-east and south-to-north directions, respectively; and n is a time index representing 5-minute intervals. A binary value of D or d = 0 corresponds to an offshore wind, whereas a value of D or d = 1 corresponds to an onshore wind. CEM includes two notable subalgorithms: One identifies and verifies sea-breeze boundaries; the other, which can be invoked optionally, performs an image-erosion function for the purpose of attempting to eliminate river-breeze contributions in the wind fields.

  8. Feasibility study of wind-generated electricity for rural applications in southwestern Ohio

    NASA Astrophysics Data System (ADS)

    Kohring, G. W.

    The parameters associated with domestic production of wind generated electricity for direct use by small farms and rural homes in the southwestern Ohio region are discussed. The project involves direct utility interfaced electricity generation from a horizontal axis, down-wind, fixed pitch, wind powered induction generator system. Goals of the project are to determine: the ability to produce useful amounts of domestic wind generated electricity in the southwestern Ohio region; economic justification for domestic wind generated electrical production; and the potential of domestic wind generated electricity for reducing dependence on non-renewable energy resources in the southwestern Ohio region.

  9. Engineering handbook on the atmospheric environmental guidelines for use in wind turbine generator development

    NASA Technical Reports Server (NTRS)

    Frost, W.; Long, B. H.; Turner, R. E.

    1978-01-01

    The guidelines are given in the form of design criteria relative to wind speed, wind shear, turbulence, wind direction, ice and snow loading, and other climatological parameters which include rain, hail, thermal effects, abrasive and corrosive effects, and humidity. This report is a presentation of design criteria in an engineering format which can be directly input to wind turbine generator design computations. Guidelines are also provided for developing specialized wind turbine generators or for designing wind turbine generators which are to be used in a special region of the United States.

  10. Impacts of a lengthening open water season on Alaskan coastal communities: deriving locally relevant indices from large-scale datasets and community observations

    NASA Astrophysics Data System (ADS)

    Rolph, Rebecca J.; Mahoney, Andrew R.; Walsh, John; Loring, Philip A.

    2018-05-01

    Using thresholds of physical climate variables developed from community observations, together with two large-scale datasets, we have produced local indices directly relevant to the impacts of a reduced sea ice cover on Alaska coastal communities. The indices include the number of false freeze-ups defined by transient exceedances of ice concentration prior to a corresponding exceedance that persists, false break-ups, timing of freeze-up and break-up, length of the open water duration, number of days when the winds preclude hunting via boat (wind speed threshold exceedances), the number of wind events conducive to geomorphological work or damage to infrastructure from ocean waves, and the number of these wind events with on- and along-shore components promoting water setup along the coastline. We demonstrate how community observations can inform use of large-scale datasets to derive these locally relevant indices. The two primary large-scale datasets are the Historical Sea Ice Atlas for Alaska and the atmospheric output from a regional climate model used to downscale the ERA-Interim atmospheric reanalysis. We illustrate the variability and trends of these indices by application to the rural Alaska communities of Kotzebue, Shishmaref, and Utqiaġvik (previously Barrow), although the same procedure and metrics can be applied to other coastal communities. Over the 1979-2014 time period, there has been a marked increase in the number of combined false freeze-ups and false break-ups as well as the number of days too windy for hunting via boat for all three communities, especially Utqiaġvik. At Utqiaġvik, there has been an approximate tripling of the number of wind events conducive to coastline erosion from 1979 to 2014. We have also found a delay in freeze-up and earlier break-up, leading to a lengthened open water period for all of the communities examined.

  11. Pattern recognition methods and air pollution source identification. [based on wind direction

    NASA Technical Reports Server (NTRS)

    Leibecki, H. F.; King, R. B.

    1978-01-01

    Directional air samplers, used for resolving suspended particulate matter on the basis of time and wind direction were used to assess the feasibility of characterizing and identifying emission source types in urban multisource environments. Filters were evaluated for 16 elements and X-ray fluorescence methods yielded elemental concentrations for direction, day, and the interaction of direction and day. Large numbers of samples are necessary to compensate for large day-to-day variations caused by wind perturbations and/or source changes.

  12. Initial observations of the pioneer venus orbiter solar wind plasma experiment.

    PubMed

    Wolfe, J; Intriligator, D S; Mihalov, J; Collard, H; McKibbin, D; Whitten, R; Barnes, A

    1979-02-23

    Initial results of observations of the solar wind interaction with Venus indicate that Venus has a well-defined, strong, standing bow shock wave. Downstream from the shock, an ionosheath is observed in which the compressed and heated postshock plasma evidently interacts directly with the Venus ionosphere. Plasma ion velocity deflections observed within the ionosheath are consistent with flow around the blunt shape of the ionopause. The ionopause boundary is observed and defined by this experiment as the location where the ionosheath ion flow is first excluded. The positions of the bow shock and ionopause are variable and appear to respond to changes in the external solar wind pressure. Near the terminator the bow shock was observed at altitudes of approximately 4600 to approximately 12,000 kilometers. The ionopause altitutde ranged fromn as low as approximately 450 to approximately 1950 kilometers. Within the Venus ionosphere low-energy ions (energy per untit charge < 30 volts) were detected and have been tentatively idtentified as nonflowing ionospheric ions incident from a direction along the spacecraft velocity vector.

  13. Spatial Vertical Directionality and Correlation of Low-Frequency Ambient Noise in Deep Ocean Direct-Arrival Zones.

    PubMed

    Yang, Qiulong; Yang, Kunde; Cao, Ran; Duan, Shunli

    2018-01-23

    Wind-driven and distant shipping noise sources contribute to the total noise field in the deep ocean direct-arrival zones. Wind-driven and distant shipping noise sources may significantly and simultaneously affect the spatial characteristics of the total noise field to some extent. In this work, a ray approach and parabolic equation solution method were jointly utilized to model the low-frequency ambient noise field in a range-dependent deep ocean environment by considering their calculation accuracy and efficiency in near-field wind-driven and far-field distant shipping noise fields. The reanalysis databases of National Center of Environment Prediction (NCEP) and Volunteer Observation System (VOS) were used to model the ambient noise source intensity and distribution. Spatial vertical directionality and correlation were analyzed in three scenarios that correspond to three wind speed conditions. The noise field was dominated by distant shipping noise sources when the wind speed was less than 3 m/s, and then the spatial vertical directionality and vertical correlation of the total noise field were nearly consistent with those of distant shipping noise field. The total noise field was completely dominated by near field wind generated noise sources when the wind speed was greater than 12 m/s at 150 Hz, and then the spatial vertical correlation coefficient and directionality pattern of the total noise field was approximately consistent with that of the wind-driven noise field. The spatial characteristics of the total noise field for wind speeds between 3 m/s and 12 m/s were the weighted results of wind-driven and distant shipping noise fields. Furthermore, the spatial characteristics of low-frequency ambient noise field were compared with the classical Cron/Sherman deep water noise field coherence function. Simulation results with the described modeling method showed good agreement with the experimental measurement results based on the vertical line array deployed near the bottom in deep ocean direct-arrival zones.

  14. Spatial Vertical Directionality and Correlation of Low-Frequency Ambient Noise in Deep Ocean Direct-Arrival Zones

    PubMed Central

    Yang, Qiulong; Yang, Kunde; Cao, Ran; Duan, Shunli

    2018-01-01

    Wind-driven and distant shipping noise sources contribute to the total noise field in the deep ocean direct-arrival zones. Wind-driven and distant shipping noise sources may significantly and simultaneously affect the spatial characteristics of the total noise field to some extent. In this work, a ray approach and parabolic equation solution method were jointly utilized to model the low-frequency ambient noise field in a range-dependent deep ocean environment by considering their calculation accuracy and efficiency in near-field wind-driven and far-field distant shipping noise fields. The reanalysis databases of National Center of Environment Prediction (NCEP) and Volunteer Observation System (VOS) were used to model the ambient noise source intensity and distribution. Spatial vertical directionality and correlation were analyzed in three scenarios that correspond to three wind speed conditions. The noise field was dominated by distant shipping noise sources when the wind speed was less than 3 m/s, and then the spatial vertical directionality and vertical correlation of the total noise field were nearly consistent with those of distant shipping noise field. The total noise field was completely dominated by near field wind generated noise sources when the wind speed was greater than 12 m/s at 150 Hz, and then the spatial vertical correlation coefficient and directionality pattern of the total noise field was approximately consistent with that of the wind-driven noise field. The spatial characteristics of the total noise field for wind speeds between 3 m/s and 12 m/s were the weighted results of wind-driven and distant shipping noise fields. Furthermore, the spatial characteristics of low-frequency ambient noise field were compared with the classical Cron/Sherman deep water noise field coherence function. Simulation results with the described modeling method showed good agreement with the experimental measurement results based on the vertical line array deployed near the bottom in deep ocean direct-arrival zones. PMID:29360793

  15. Ventifacts at the Pathfinder landing site

    USGS Publications Warehouse

    Bridges, N.T.; Greeley, R.; Haldemann, A.F.C.; Herkenhoff, K. E.; Kraft, M.; Parker, T.J.; Ward, A.W.

    1999-01-01

    About half of the rocks at the Mars Pathfinder Ares Vallis landing site appear to be ventifacts, rocks abraded by windborne particles. Comparable resolution images taken by the Imager for Mars Pathfinder (IMP) camera and the Viking landers show that ventifacts are more abundant at the Pathfinder site. The ventifacts occur in several forms, including rocks with faceted edges, finger-like projections, elongated pits, flutes, grooves, and possible rills. The trends of elongated pits, flutes, grooves, and rills cluster at ???280-330?? clockwise from north and generally dip 10-30?? away from their trend direction. These orientations are indicative of southeast to northwest winds and differ from the trend of wind tails at the landing site, the direction of local wind streaks, and predictions of the Global Circulation Model, all of which indicate northeast to southwest winds. The disparity between these data sets strongly suggests that local circulation patterns have changed since the abrasion of the ventifacted rocks. The greater number of ventifacts at the Pathfinder site compared to either of the Viking sites is most easily explained as being due to a larger supply of abrading particles, composed of either sand-sized grains or indurated dust aggregates, and higher surface roughness, which should increase the momentum of saltating grains. The Pathfinder ventifacts may have formed shortly after the deposition of outflow channel sediments nearly 2 Gry ago, when a large local supply of abrading particles should have been abundant and atmospheric conditions may have been more conducive to rock abrasion from saltating grains. Based on how ventifacts form on Earth, the several ventifact forms seen at the Pathfinder site and their presence on some rocks but not on others are probably due to local airflow conditions, original rock shape, exposure duration, rock movement, and to a lesser extent, rock lithology. The abundance of ventifacts at the Pathfinder site, together with other evidence of weathering, indicates that unaltered rock surfaces are rare on Mars. Copyright 1999 by the American Geophysical Union.

  16. Nocturnal migratory songbirds adjust their travelling direction aloft: evidence from a radiotelemetry and radar study.

    PubMed

    Sjöberg, Sissel; Nilsson, Cecilia

    2015-06-01

    In order to fully understand the orientation behaviour of migrating birds, it is important to understand when birds set their travel direction. Departure directions of migratory passerines leaving stopover sites are often assumed to reflect the birds' intended travel directions, but this assumption has not been critically tested. We used data from an automated radiotelemetry system and a tracking radar at Falsterbo peninsula, Sweden, to compare the initial orientation of departing songbirds (recorded by radiotelemetry) with the orientation of songbird migrants in climbing and level flight (recorded by radar). We found that the track directions of birds at high altitudes and in level flight were more concentrated than the directions of departing birds and birds in climbing flight, which indicates that the birds adjust their travelling direction once aloft. This was further supported by a wide scatter of vanishing bearings in a subsample of radio-tracked birds that later passed an offshore radio receiver station 50 km southeast of Falsterbo. Track directions seemed to be more affected by winds in climbing compared with level flights, which may be explained by birds not starting to partially compensate for wind drift until they have reached cruising altitudes. © 2015 The Author(s) Published by the Royal Society. All rights reserved.

  17. Climate related trends and meteorological conditions in European Arctic region - Porsanger fjord, Norway

    NASA Astrophysics Data System (ADS)

    Cieszyńska, Agata; Stramska, Małgorzata

    2017-04-01

    Climate change has significant effect on the Arctic environment, where global trends are amplified. In this study, we have focused on the Porsanger fjord, located in European Arctic in the coastal region of the Barents Sea. We have analyzed climate related trends and meteorological condititions in the area of interest. Meteorological data included wind speed and direction, air temperature (AT) and precipitation from Era-Interim reanalysis (1986-2015) and local observations (1996-2015) from Lakselv (L, fjord's head area) and Honningsvaag (H - fjord's exit area). Our results confirm that this region is undergoing climate change related warming, which is indicated by rising air temperatures. Based on long-term reanalysis data, estimated trends for air temperature (AT) in Porsanger fjord are: 0.0536 °C year-1 at fjord's exit and 0.0428 °C year-1 at fjord's head. The results show that climate change does not seem to have a significant effect on long-term changes of wind speed and precipitation in the Porsanger fjord. Statistical analysis underlined significant spatial variability of meteorological conditions inside the fjord. For example, there are large differences in the annual cycle of AT with monthly mean January and July values of -8.4 and 12.6 °C in L and -2.5 and 10.1 °C in H. Dominant wind directions in Lakselv are S and SSE, while in Honningsvaag S and SSW directions prevail. Strong wind events (above 12 m s-1) are more frequent in H than in L. Annual cycle is characterized by stronger winds in winter and seasonality of wind direction. Precipitation for a given location can change by about 50% between years and varies spatially. Synoptic scale and within day variability are extremely intense in the area of interest. Air temperature and wind speed and direction can change dramatically in hours. In addition, regular patterns of the daily cycle of AT have different intensity in L and H. It is interesting to note that in spring/summer season, the daily cycle of air temperature difference between L and H is also strong and has an influence on winds. Estimates of land-originated water discharge (derived from the E-Hype model) show seasonal cycle with the maximum runoff in late spring/early summer. The main features of climate related trends and the effects of oceanic/continental interactions, presented in this study, shape the environment of the fjord and are possible to be analogous in other Norwegian fjords with comparable geographical location. This work was funded by the Norway Grants (NCBR contract No. 201985, project NORDFLUX). Partial support for MS comes from the Institute of Oceanology (IO PAN).

  18. Objective classification of historical tropical cyclone intensity

    NASA Astrophysics Data System (ADS)

    Chenoweth, Michael

    2007-03-01

    Preinstrumental records of historical tropical cyclone activity require objective methods for accurately categorizing tropical cyclone intensity. Here wind force terms and damage reports from newspaper accounts in the Lesser Antilles and Jamaica for the period 1795-1879 are compared with wind speed estimates calculated from barometric pressure data. A total of 95 separate barometric pressure readings and colocated simultaneous wind force descriptors and wind-induced damage reports are compared. The wind speed estimates from barometric pressure data are taken as the most reliable and serve as a standard to compare against other data. Wind-induced damage reports are used to produce an estimated wind speed range using a modified Fujita scale. Wind force terms are compared with the barometric pressure data to determine if a gale, as used in the contemporary newspapers, is consistent with the modern definition of a gale. Results indicate that the modern definition of a gale (the threshold point separating the classification of a tropical depression from a tropical storm) is equivalent to that in contemporary newspaper accounts. Barometric pressure values are consistent with both reported wind force terms and wind damage on land when the location, speed and direction of movement of the tropical cyclone are determined. Damage reports and derived wind force estimates are consistent with other published results. Biases in ships' logbooks are confirmed and wind force terms of gale strength or greater are identified. These results offer a bridge between the earlier noninstrumental records of tropical cyclones and modern records thereby offering a method of consistently classifying storms in the Caribbean region into tropical depressions, tropical storms, nonmajor and major hurricanes.

  19. Local and regional effects of large scale atmospheric circulation patterns on winter wind power output in Western Europe

    NASA Astrophysics Data System (ADS)

    Zubiate, Laura; McDermott, Frank; Sweeney, Conor; O'Malley, Mark

    2014-05-01

    Recent studies (Brayshaw, 2009, Garcia-Bustamante, 2010, Garcia-Bustamante, 2013) have drawn attention to the sensitivity of wind speed distributions and likely wind energy power output in Western Europe to changes in low-frequency, large scale atmospheric circulation patterns such as the North Atlantic Oscillation (NAO). Wind speed variations and directional shifts as a function of the NAO state can be larger or smaller depending on the North Atlantic region that is considered. Wind speeds in Ireland and the UK for example are approximately 20 % higher during NAO + phases, and up to 30 % lower during NAO - phases relative to the long-term (30 year) climatological means. By contrast, in southern Europe, wind speeds are 15 % lower than average during NAO + phases and 15 % higher than average during NAO - phases. Crucially however, some regions such as Brittany in N.W. France have been identified in which there is negligible variability in wind speeds as a function of the NAO phase, as observed in the ERA-Interim 0.5 degree gridded reanalysis database. However, the magnitude of these effects on wind conditions is temporally and spatially non-stationary. As described by Comas-Bru and McDermott (2013) for temperature and precipitation, such non-stationarity is caused by the influence of two other patterns, the East Atlantic pattern, (EA), and the Scandinavian pattern, (SCA), which modulate the position of the NAO dipole. This phenomenon has also implications for wind speeds and directions, which has been assessed using the ERA-Interim reanalysis dataset and the indices obtained from the PC analysis of sea level pressure over the Atlantic region. In order to study the implications for power production, the interaction of the NAO and the other teleconnection patterns with local topography was also analysed, as well as how these interactions ultimately translate into wind power output. The objective is to have a better defined relationship between wind speed and power output at a local level and a tool that wind farm developers could use to inform site selection. A particular priority was to assess how the potential wind power outputs over a 25-30 year windfarm lifetime in less windy, but resource-stable regions, compare with those from windier but more variable sites.

  20. LIDAR wind speed measurements at a Taiwan onshore wind park

    NASA Astrophysics Data System (ADS)

    Wu, Yu-Ting; Lin, Ta-Hui; Hsuan, Chung-Yao; Li, Yu-Cheng; Yang, Ya-Fei; Tai, Tzy-Hwan; Huang, Chien-Cheng

    2016-04-01

    Measurements of wind speed and wind direction were carried out using a Leosphere Windcube LIDAR system at a Taiwan onshore wind park. The Lidar shot a total of five laser beams to the atmosphere to collect the light-of-sight (LOS) velocity. Four beams were sent successively in four cardinal directions along a 28° scanning cone angle, followed by a fifth, vertical beam. An unchangeable sampling rate of approximately 1.2 Hz was set in the LIDAR system to collect the LOS velocity. The supervisory control and data acquisition (SCADA) data from two GE 1.5 MW wind turbines near the LIDAR deployment site were acquired for the whole measuring period from February 4 to February 16 of 2015. The SCADA data include the blade angular velocity, the wind velocity measured at hub height from an anemometer mounted on the nacelle, the wind turbine yaw angle, and power production; each parameter was recorded as averages over 1-min periods. The data analysis involving the LIDAR measurements and the SCADA data were performed to obtain the turbulent flow statistics. The results show that the turbine power production has significant dependence to the wind speed, wind direction, turbulence intensity and wind shear.

  1. Yardangs near Olympus Mons

    NASA Image and Video Library

    2002-12-16

    In this region of the Olympus Mons aureole, located to the SW of the volcano, the surface has been eroded by the wind into linear landforms called yardangs. These ridges generally point in direction of the prevailing winds that carved them, in this case winds from the southeast. Yardangs typically occur on surfaces that are easily erodable, such as wind-blown dust or volcanic ash. The northeast - southwest trending ridges and valleys in the northwest corner of the image are typical of the Olympus Mons aureole. The varying concentration and shape of the yardangs in this area may be controlled by the motion of winds around these topographic features. Some crater outlines are visible near the top of this image. The rims of these craters appear to have been stripped away - indicating that the wind erosion is younger than these craters. There are two round knobs in the image, one on the bottom on the right side of the image and another about midway down on the left. These may be inverted craters, formed because the impacts caused materials underneath the crater to become harder to erode than the surrounding materials. http://photojournal.jpl.nasa.gov/catalog/PIA04036

  2. Estimation of the mid-century Etesians wind pattern from EURO-CORDEX models

    NASA Astrophysics Data System (ADS)

    Dafka, Stella; Toreti, Andrea; Luterbacher, Juerg; Zanis, Prodromos; Tyrlis, Evangelos; Xoplaki, Elena

    2017-04-01

    The Etesians are one of the major and most prominent wind system, prevailing over the Aegean Sea during summer and early autumn. Here, projections of changes in 30-year (2021-2050) wind speeds relative to 1971-2000, under the 8.5 and 4.5 Representative Concentration Pathways, have been produced for Etesians. Future changes in the number of Etesian days and the associated large scale dynamics are also considered. We analyze seven simulations from three EURO-CORDEX regional climate models at a 12 km grid resolution. Both scenarios indicate that in most RCMs daily wind speeds are projected to increase by 1-1.5m/s over the Aegean Sea, suggesting that the current estimate of wind power potential for Aegean Sea will be increased with the greenhouse gas forcing in the coming decades (2021-2050). Wind direction at 10-m as well as the number of Etesian days have shown to undergo minor changes. The projected changes in sea level pressure and geopotential height anomalies at 500 hPa have a large spread among the seven simulations with a disperse tendency of strengthening of the ridge over the Balkans.

  3. Direct-reading inductance meter

    NASA Technical Reports Server (NTRS)

    Kolbly, R. B.

    1977-01-01

    Meter indicates from 30 nH to 3 micro H. Reference inductor of 15 micro H is made by winding 50 turns of Number 26 Formvar wire on Micrometal type 50-2 (or equivalent) core. Circuit eliminates requirement for complex instrument compensation prior to taking coil inductance measurement and thus is as easy to operate as common ohmmeter.

  4. Emmons spot forcing for turbulent drag reduction

    NASA Technical Reports Server (NTRS)

    Goodman, W. L.

    1985-01-01

    An Emmons spot-generation wind tunnel system has been designed to trigger closely spaced Emmons spots in the spanwise and longitudinal directions of an aerodynamic surface. For certain combinations of generator frequencies and amplitude, hole size, and hole spacing, experimental results indicate smaller turbulence scales and a reduction in skin friction of about 15 percent.

  5. Quantifying array losses due to spacing and staggering in offshore wind farms (Invited)

    NASA Astrophysics Data System (ADS)

    Archer, C. L.; Mirzaeisefat, S.; Lee, S.; Xie, S.

    2013-12-01

    The layout of wind turbines can have an impact on the power production of a wind farm. Design variables that define the layout of wind turbines within a wind farm include: orientation of the rows with respect to the prevailing wind direction, size and shape of the wind farm, spacing between turbines, and alignment of the turbines (i.e., whether in-line or staggered with one another). There are no universal layout recommendations for offshore wind farms, partly because isolating the contribution of each individual design variable is impossible at existing offshore wind farms, where multiple effects overlap non-linearly on one another, and partly because analyzing the sensitivity to design variables requires sophisticated and computer-intensive numerical codes, such as large-eddy simulations (LES), that can simulate the small-scale turbulent features of turbine wakes. The National Renewable Energy Laboratory (NREL) developed the only publicly available and open-source LES code that is capable of resolving wind turbine blades as rotating actuator lines (not fixed disks), includes both neutral and unstable atmospheric conditions (stable case is currently under development), and does not rely on periodic boundary conditions. This code, named Simulator for Offshore/Onshore Wind Farm Applications (SOWFA), is based on OpenFOAM and has been used successfully in the past for turbulent wake simulations. Here we address the issue of quantifying two design variables: turbine spacing (both along and across the prevailing wind direction) and alignment (in-line or staggered for consecutive rows). SOWFA is used to simulate an existing offshore wind farm in Lillgrund (Sweden), consisting of 48 Siemens 2.3 MW turbines with spacing of 3.2D across and 4.3D along the prevailing wind direction and without staggering, where D is the turbine diameter (93 m). This spacing is exceptionally tight, to our knowledge the tightest of all modern wind farms. While keeping the area and the shape of the farm constant, we design several new Lillgrund farm layouts with and without staggering, with increased spacing in each direction individually and in both directions together, and with various wind directions and atmospheric stabilities. We found that the average wind power generated per turbine is increased by ~32% (from 696 kW to 922 kW) if both staggering and doubling of the across-spacing are implemented simultaneously in a neutral stability case. Wake losses are quantified in terms of average power in the first (upwind) row of wind turbines in the control case, representative of the power that could be generated if there were no wakes, over the average power of all the wind turbines in the farm. Wake losses at Lillgrund are relatively high due to the tight packing, of the order of 35%, but smart combinations of staggering and doubling of turbine spacing can reduce them to 15%-26%. In summary, we provide estimates of the losses/gains associated with individual and combined changes in two design variables, spacing and staggering, under various atmospheric stabilities, wind directions, and wind speeds. These estimates will be useful to the wind industry to optimize a wind project because the effects of alternative layouts can be quantified quickly with respect to total power, capacity factor, and number of wind turbines, all of which can ultimately be converted to actual costs or savings.

  6. Quantifying array losses due to spacing and staggering in offshore wind farms (Invited)

    NASA Astrophysics Data System (ADS)

    Archer, C. L.; Mirzaeisefat, S.; Lee, S.; Xie, S.

    2011-12-01

    The layout of wind turbines can have an impact on the power production of a wind farm. Design variables that define the layout of wind turbines within a wind farm include: orientation of the rows with respect to the prevailing wind direction, size and shape of the wind farm, spacing between turbines, and alignment of the turbines (i.e., whether in-line or staggered with one another). There are no universal layout recommendations for offshore wind farms, partly because isolating the contribution of each individual design variable is impossible at existing offshore wind farms, where multiple effects overlap non-linearly on one another, and partly because analyzing the sensitivity to design variables requires sophisticated and computer-intensive numerical codes, such as large-eddy simulations (LES), that can simulate the small-scale turbulent features of turbine wakes. The National Renewable Energy Laboratory (NREL) developed the only publicly available and open-source LES code that is capable of resolving wind turbine blades as rotating actuator lines (not fixed disks), includes both neutral and unstable atmospheric conditions (stable case is currently under development), and does not rely on periodic boundary conditions. This code, named Simulator for Offshore/Onshore Wind Farm Applications (SOWFA), is based on OpenFOAM and has been used successfully in the past for turbulent wake simulations. Here we address the issue of quantifying two design variables: turbine spacing (both along and across the prevailing wind direction) and alignment (in-line or staggered for consecutive rows). SOWFA is used to simulate an existing offshore wind farm in Lillgrund (Sweden), consisting of 48 Siemens 2.3 MW turbines with spacing of 3.2D across and 4.3D along the prevailing wind direction and without staggering, where D is the turbine diameter (93 m). This spacing is exceptionally tight, to our knowledge the tightest of all modern wind farms. While keeping the area and the shape of the farm constant, we design several new Lillgrund farm layouts with and without staggering, with increased spacing in each direction individually and in both directions together, and with various wind directions and atmospheric stabilities. We found that the average wind power generated per turbine is increased by ~32% (from 696 kW to 922 kW) if both staggering and doubling of the across-spacing are implemented simultaneously in a neutral stability case. Wake losses are quantified in terms of average power in the first (upwind) row of wind turbines in the control case, representative of the power that could be generated if there were no wakes, over the average power of all the wind turbines in the farm. Wake losses at Lillgrund are relatively high due to the tight packing, of the order of 35%, but smart combinations of staggering and doubling of turbine spacing can reduce them to 15%-26%. In summary, we provide estimates of the losses/gains associated with individual and combined changes in two design variables, spacing and staggering, under various atmospheric stabilities, wind directions, and wind speeds. These estimates will be useful to the wind industry to optimize a wind project because the effects of alternative layouts can be quantified quickly with respect to total power, capacity factor, and number of wind turbines, all of which can ultimately be converted to actual costs or savings.

  7. Evaluation of microwave landing system approaches in a wide-body transport simulator

    NASA Technical Reports Server (NTRS)

    Summers, L. G.; Feather, J. B.

    1992-01-01

    The objective of this study was to determine the suitability of flying complex curved approaches using the microwave landing system (MLS) with a wide-body transport aircraft. Fifty pilots in crews of two participated in the evaluation using a fixed-base simulator that emulated an MD-11 aircraft. Five approaches, consisting of one straight-in approach and four curved approaches, were flown by the pilots using a flight director. The test variables include the following: (1) manual and autothrottles; (2) wind direction; and (3) type of navigation display. The navigation display was either a map or a horizontal situation indicator (HSI). A complex wind that changed direction and speed with altitude, and included moderate turbulence, was used. Visibility conditions were Cat 1 or better. Subjective test data included pilot responses to questionnaires and pilot comments. Objective performance data included tracking accuracy, position error at decision height, and control activity. Results of the evaluation indicate that flying curved MLS approaches with a wide-body transport aircraft is operationally acceptable, depending upon the length of the final straight segment and the complexity of the approach.

  8. Multiscale Pressure-Balanced Structures in Three-dimensional Magnetohydrodynamic Turbulence

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Liping; Zhang, Lei; Feng, Xueshang

    2017-02-10

    Observations of solar wind turbulence indicate the existence of multiscale pressure-balanced structures (PBSs) in the solar wind. In this work, we conduct a numerical simulation to investigate multiscale PBSs and in particular their formation in compressive magnetohydrodynamic turbulence. By the use of the higher-order Godunov code Athena, a driven compressible turbulence with an imposed uniform guide field is simulated. The simulation results show that both the magnetic pressure and the thermal pressure exhibit a turbulent spectrum with a Kolmogorov-like power law, and that in many regions of the simulation domain they are anticorrelated. The computed wavelet cross-coherence spectra of themore » magnetic pressure and the thermal pressure, as well as their space series, indicate the existence of multiscale PBSs, with the small PBSs being embedded in the large ones. These multiscale PBSs are likely to be related to the highly oblique-propagating slow-mode waves, as the traced multiscale PBS is found to be traveling in a certain direction at a speed consistent with that predicted theoretically for a slow-mode wave propagating in the same direction.« less

  9. Osan AB, Korea. Revised Uniform Summary of Surface Weather Observations (RUSSWO). Parts A-F.

    DTIC Science & Technology

    1982-06-14

    USAFETAC SURFACE WINDS2 AIR WATHER SERVICE/MAC PERCENTAGE FREQUENCY OF WIND DIRECTION AND SPEED (FROM HOURLY OBSERVATIONS) 1471220 OSAN AS KO 73-S1 FED...BRANCHusAF’TAC SURFACE WINDS AIR WATHER SERVICE/MAC PERCENTAGE FREQUENCY OF WIND DIRECTION AND SPEED (FROM HOURLY OBSERVATIONS) 47122’ OSAN AS KO 73-81 NOV _RLL

  10. Dust and nutrient enrichment by wind erosion from Danish soils in dependence of tillage direction

    NASA Astrophysics Data System (ADS)

    Mohammadian Behbahani, Ali; Fister, Wolfgang; Heckrath, Goswin; Kuhn, Nikolaus J.

    2016-04-01

    Wind erosion is a selective process, which promotes erosion of fine particles. Therefore, it can be assumed that increasing erosion rates are generally associated with increasing loss of dust sized particles and nutrients. However, this selective process is strongly affected by the orientation and respective trapping efficiency of tillage ridges and furrows. Since tillage ridges are often the only protection measure available on poorly aggregated soils in absence of a protective vegetation cover, it is very important to know which orientation respective to the dominant wind direction provides best protection. This knowledge could be very helpful for planning erosion protection measures on fields with high wind erosion susceptibility. The main objective of this study, therefore, was to determine the effect of tillage direction on dust and nutrient mobilization by wind, using wind tunnel simulations. In order to assess the relationship between the enrichment ratio of specific particle sizes and the amount of eroded nutrients, three soils with loamy sand texture, but varying amounts of sand-sized particles, were selected. In addition, a soil with slightly less sand, but much higher organic matter content was chosen. The soils were tested with three different soil surface scenarios - flat surface, parallel tillage, perpendicular tillage. The parallel tillage operation experienced the greatest erosion rates, independent of soil type. Particles with D50 between 100-155 μm showed the greatest risk of erosion. However, due to a greater loss of dust sized particles from perpendicularly tilled surfaces, this wind-surface arrangement showed a significant increase in nutrient enrichment ratio compared to parallel tillage and flat surfaces. The main reason for this phenomenon is most probably the trapping of larger particles in the perpendicular furrows. This indicates that the highest rate of soil protection does not necessarily coincide with lowest soil nutrient losses and dust emissions. For the evaluation of protection measures on these soil types in Denmark it is, therefore, important to differentiate between their effectivity to reduce total soil erosion amount, dust emission, and nutrient loss.

  11. Field Calibration of Wind Direction Sensor to the True North and Its Application to the Daegwanryung Wind Turbine Test Sites

    PubMed Central

    Lee, Jeong Wan

    2008-01-01

    This paper proposes a field calibration technique for aligning a wind direction sensor to the true north. The proposed technique uses the synchronized measurements of captured images by a camera, and the output voltage of a wind direction sensor. The true wind direction was evaluated through image processing techniques using the captured picture of the sensor with the least square sense. Then, the evaluated true value was compared with the measured output voltage of the sensor. This technique solves the discordance problem of the wind direction sensor in the process of installing meteorological mast. For this proposed technique, some uncertainty analyses are presented and the calibration accuracy is discussed. Finally, the proposed technique was applied to the real meteorological mast at the Daegwanryung test site, and the statistical analysis of the experimental testing estimated the values of stable misalignment and uncertainty level. In a strict sense, it is confirmed that the error range of the misalignment from the exact north could be expected to decrease within the credibility level. PMID:27873957

  12. Development and testing of a portable wind sensitive directional air sampler

    NASA Technical Reports Server (NTRS)

    Deyo, J.; Toma, J.; King, R. B.

    1975-01-01

    A portable wind sensitive directional air sampler was developed as part of an air pollution source identification system. The system is designed to identify sources of air pollution based on the directional collection of field air samples and their analysis for TSP and trace element characteristics. Sources can be identified by analyzing the data on the basis of pattern recognition concepts. The unit, designated Air Scout, receives wind direction signals from an associated wind vane. Air samples are collected on filter slides using a standard high volume air sampler drawing air through a porting arrangement which tracks the wind direction and permits collection of discrete samples. A preset timer controls the length of time each filter is in the sampling position. At the conclusion of the sampling period a new filter is automatically moved into sampling position displacing the previous filter to a storage compartment. Thus the Air Scout may be set up at a field location, loaded with up to 12 filter slides, and left to acquire air samples automatically, according to the wind, at any timer interval desired from 1 to 30 hours.

  13. The potential for geostationary remote sensing of NO2 to improve weather prediction

    NASA Astrophysics Data System (ADS)

    Liu, X.; Mizzi, A. P.; Anderson, J. L.; Fung, I. Y.; Cohen, R. C.

    2017-12-01

    Observations of surface winds remain sparse making it challenging to simulate and predict the weather in circumstances of light winds that are most important for poor air quality. Direct measurements of short-lived chemicals from space might be a solution to this challenge. Here we investigate the application of data assimilation of NO­2 columns as will be observed from geostationary orbit to improve predictions and retrospective analysis of surface wind fields. Specifically, synthetic NO2 observations are sampled from a "nature run (NR)" regarded as the true atmosphere. Then NO2 observations are assimilated using EAKF methods into a "control run (CR)" which differs from the NR in the wind field. Wind errors are generated by introducing (1) errors in the initial conditions, (2) creating a model error by using two different formulations for the planetary boundary layer, (3) and by combining both of these effects. Assimilation of NO2 column observations succeeds in reducing wind errors, indicating the prospects for future geostationary atmospheric composition measurements to improve weather forecasting are substantial. We find that due to the temporal heterogeneity of wind errors, the success of this application favors chemical observations of high frequency, such as those from geostationary platform. We also show the potential to improve soil moisture field by assimilating NO­2 columns.

  14. Gusts and shear within hurricane eyewalls can exceed offshore wind turbine design standards

    NASA Astrophysics Data System (ADS)

    Worsnop, Rochelle P.; Lundquist, Julie K.; Bryan, George H.; Damiani, Rick; Musial, Walt

    2017-06-01

    Offshore wind energy development is underway in the U.S., with proposed sites located in hurricane-prone regions. Turbine design criteria outlined by the International Electrotechnical Commission do not encompass the extreme wind speeds and directional shifts of hurricanes stronger than category 2. We examine a hurricane's turbulent eyewall using large-eddy simulations with Cloud Model 1. Gusts and mean wind speeds near the eyewall of a category 5 hurricane exceed the current Class I turbine design threshold of 50 m s-1 mean wind and 70 m s-1 gusts. Largest gust factors occur at the eye-eyewall interface. Further, shifts in wind direction suggest that turbines must rotate or yaw faster than current practice. Although current design standards omit mention of wind direction change across the rotor layer, large values (15-50°) suggest that veer should be considered.

  15. Gusts and shear within hurricane eyewalls can exceed offshore wind turbine design standards

    DOE PAGES

    Worsnop, Rochelle P.; Lundquist, Julie K.; Bryan, George H.; ...

    2017-05-30

    Here, offshore wind energy development is underway in the U.S., with proposed sites located in hurricane-prone regions. Turbine design criteria outlined by the International Electrotechnical Commission do not encompass the extreme wind speeds and directional shifts of hurricanes stronger than category 2. We examine a hurricane's turbulent eyewall using large-eddy simulations with Cloud Model 1. Gusts and mean wind speeds near the eyewall of a category 5 hurricane exceed the current Class I turbine design threshold of 50 m s –1 mean wind and 70 m s –1 gusts. Largest gust factors occur at the eye-eyewall interface. Further, shifts inmore » wind direction suggest that turbines must rotate or yaw faster than current practice. Although current design standards omit mention of wind direction change across the rotor layer, large values (15–50°) suggest that veer should be considered.« less

  16. Gusts and shear within hurricane eyewalls can exceed offshore wind turbine design standards

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Worsnop, Rochelle P.; Lundquist, Julie K.; Bryan, George H.

    Here, offshore wind energy development is underway in the U.S., with proposed sites located in hurricane-prone regions. Turbine design criteria outlined by the International Electrotechnical Commission do not encompass the extreme wind speeds and directional shifts of hurricanes stronger than category 2. We examine a hurricane's turbulent eyewall using large-eddy simulations with Cloud Model 1. Gusts and mean wind speeds near the eyewall of a category 5 hurricane exceed the current Class I turbine design threshold of 50 m s –1 mean wind and 70 m s –1 gusts. Largest gust factors occur at the eye-eyewall interface. Further, shifts inmore » wind direction suggest that turbines must rotate or yaw faster than current practice. Although current design standards omit mention of wind direction change across the rotor layer, large values (15–50°) suggest that veer should be considered.« less

  17. The effect of wind direction and building surroundings on a marina bay in the Black Sea

    NASA Astrophysics Data System (ADS)

    Katona, Cosmin; Safta, Carmen Anca

    2017-01-01

    The wind effect has usually a major importance in the marina bay. These environmental sites are an interplay between tourist and commercial activities, requiring a high-detailed and definition studies of the dynamic fluid in the harbor. Computational Fluid Dynamics (CFD) has been used elaborately in urban surroundings research. However, most CFD studies were performed for harbors for only a confined number of wind directions and/or without considering the building surroundings effects. This paper presents the results of different simulations based on various wind flows and the CFD simulation of coupled urban wind flow and general wind directions upon a semi-closed area. Thus the importance of wind effects on the evaluation of the marina bay will be pointed out to achieve a safe and secure mooring at the berth and eventually a good potential of renewable energy for an impending green harbor.

  18. Empirical wind retrieval model based on SAR spectrum measurements

    NASA Astrophysics Data System (ADS)

    Panfilova, Maria; Karaev, Vladimir; Balandina, Galina; Kanevsky, Mikhail; Portabella, Marcos; Stoffelen, Ad

    The present paper considers polarimetric SAR wind vector applications. Remote-sensing measurements of the near-surface wind over the ocean are of great importance for the understanding of atmosphere-ocean interaction. In recent years investigations for wind vector retrieval using Synthetic Aperture Radar (SAR) data have been performed. In contrast with scatterometers, a SAR has a finer spatial resolution that makes it a more suitable microwave instrument to explore wind conditions in the marginal ice zones, coastal regions and lakes. The wind speed retrieval procedure from scatterometer data matches the measured radar backscattering signal with the geophysical model function (GMF). The GMF determines the radar cross section dependence on the wind speed and direction with respect to the azimuthal angle of the radar beam. Scatterometers provide information on wind speed and direction simultaneously due to the fact that each wind vector cell (WVC) is observed at several azimuth angles. However, SAR is not designed to be used as a high resolution scatterometer. In this case, each WVC is observed at only one single azimuth angle. That is why for wind vector determination additional information such as wind streak orientation over the sea surface is required. It is shown that the wind vector can be obtained using polarimetric SAR without additional information. The main idea is to analyze the spectrum of a homogeneous SAR image area instead of the backscattering normalized radar cross section. Preliminary numerical simulations revealed that SAR image spectral maxima positions depend on the wind vector. Thus the following method for wind speed retrieval is proposed. In the first stage of the algorithm, the SAR spectrum maxima are determined. This procedure is carried out to estimate the wind speed and direction with ambiguities separated by 180 degrees due to the SAR spectrum symmetry. The second stage of the algorithm allows us to select the correct wind direction ambiguity from polarimetric SAR. A criterion based on the complex correlation coefficient between the VV and VH signals sign is applied to select the wind direction. An additional quality control on the wind speed value retrieved with the spectral method is applied. Here, we use the direction obtained with the spectral method and the backscattered signal for CMOD wind speed estimate. The algorithm described above may be refined by the use of numerous SAR data and wind measurements. In the present preliminary work the first results of SAR images combined with in situ data processing are presented. Our results are compared to the results obtained using previously developed models CMOD, C-2PO for VH polarization and statistical wind retrieval approaches [1]. Acknowledgments. This work is supported by the Russian Foundation of Basic Research (grants 13-05-00852-a). [1] M. Portabella, A. Stoffelen, J. A. Johannessen, Toward an optimal inversion method for synthetic aperture radar wind retrieval, Journal of geophysical research, V. 107, N C8, 2002

  19. Enhancement of Directional Ambiguity Removal Skill in Scatterometer Data Processing Using Planetary Boundary Layer Models

    NASA Technical Reports Server (NTRS)

    Kim, Young-Joon; Pak, Kyung S.; Dunbar, R. Scott; Hsiao, S. Vincent; Callahan, Philip S.

    2000-01-01

    Planetary boundary layer (PBL) models are utilized to enhance directional ambiguity removal skill in scatterometer data processing. The ambiguity in wind direction retrieved from scatterometer measurements is removed with the aid of physical directional information obtained from PBL models. This technique is based on the observation that sea level pressure is scalar and its field is more coherent than the corresponding wind. An initial wind field obtained from the scatterometer measurements is used to derive a pressure field with a PBL model. After filtering small-scale noise in the derived pressure field, a wind field is generated with an inverted PBL model. This derived wind information is then used to remove wind vector ambiguities in the scatterometer data. It is found that the ambiguity removal skill can be improved when the new technique is used properly in conjunction with the median filter being used for scatterometer wind dealiasing at JPL. The new technique is applied to regions of cyclone systems which are important for accurate weather prediction but where the errors of ambiguity removal are often large.

  20. A Full Body Steerable Wind Display for a Locomotion Interface.

    PubMed

    Kulkarni, Sandip D; Fisher, Charles J; Lefler, Price; Desai, Aditya; Chakravarthy, Shanthanu; Pardyjak, Eric R; Minor, Mark A; Hollerbach, John M

    2015-10-01

    This paper presents the Treadport Active Wind Tunnel (TPAWT)-a full-body immersive virtual environment for the Treadport locomotion interface designed for generating wind on a user from any frontal direction at speeds up to 20 kph. The goal is to simulate the experience of realistic wind while walking in an outdoor virtual environment. A recirculating-type wind tunnel was created around the pre-existing Treadport installation by adding a large fan, ducting, and enclosure walls. Two sheets of air in a non-intrusive design flow along the side screens of the back-projection CAVE-like visual display, where they impinge and mix at the front screen to redirect towards the user in a full-body cross-section. By varying the flow conditions of the air sheets, the direction and speed of wind at the user are controlled. Design challenges to fit the wind tunnel in the pre-existing facility, and to manage turbulence to achieve stable and steerable flow, were overcome. The controller performance for wind speed and direction is demonstrated experimentally.

  1. A new long instrumental serie for the Etesian winds since 1877

    NASA Astrophysics Data System (ADS)

    Gómez-Delgado, F. de Paula; Vega, Inmaculada; Gallego, David; Peña-Ortiz, Cristina; Ribera, Pedro; García-Herrera, Ricardo

    2016-04-01

    The meteorological observations found in old ships' logbooks have been recognized as a useful source of climatic information in periods and areas not covered by other sources. In the last five years several studies have employed the wind direction observations contained in logbooks to generate climatic indices of instrumental character related to large scale patterns such as the atmospheric westerly circulation in North Atlantic, the strength of the West African Monsoon or the start date of the Indian Summer Monsoon (ISM). This study is focused on the winds in the eastern Mediterranean (EM) and its relation to the subtropical climate at decadal scale. Previous studies have shown a significant link between the frequency and strength of the prevalent summer northerly winds (Etesian winds) of the EM and the strength of the ISM. This relationship had only been studied in detail for the second half of the 20th century due to the absence of long and continuous series of wind observations in the EM for previous periods. In this work, we use historical wind data contained in ship's logbooks to generate a new climatic index, the "Etesian Wind Index", which can be defined as the percentage of days with prevalent northerly wind (between 315° and 45°) in a fixed region [10°W-20°W, 32°N-36°N]. We have been able to produce an index of the Etesian winds starting in 1877 suitable to analyze its long term variability and its relation with the ISM in unprecedented detail. Our first results show that the frequency of the northerly winds in the EM was significantly larger in the first half of the studied period, mainly due to an intensification of the zonal component in the second half of the studied period. Interestingly, the comparison with analogous Etesian wind indices computed from reanalysis products (NCEP/NCAR 20th Century (V2c) and ERA20C), shows strong discrepancies among them and with our instrumental reconstruction, which could indicate a misrepresentation of the Etesian winds in the reanalysis products prior to 1948. Accordingly to previous works, we have found a strong and significant positive correlation between the Etesian Wind Index and the ISM since 1950 to 2013. This link is also shown for the 1877-1900 period. However the correlation fades out in the period 1900-1950 , even reversing its sign in the central part of the latter period. The origin and causes of this change is still under research. This research was funded by the Spanish Ministerio de Economia y Competitividad through the project INCITE (CGL2013-44530-P, BES-2014-069733)

  2. Lidar Measurements of Tropospheric Wind Profiles with the Double Edge Technique

    NASA Technical Reports Server (NTRS)

    Gentry, Bruce M.; Li, Steven X.; Korb, C. Laurence; Mathur, Savyasachee; Chen, Huailin

    1998-01-01

    Research has established the importance of global tropospheric wind measurements for large scale improvements in numerical weather prediction. In addition, global wind measurements provide data that are fundamental to the understanding and prediction of global climate change. These tasks are closely linked with the goals of the NASA Earth Science Enterprise and Global Climate Change programs. NASA Goddard has been actively involved in the development of direct detection Doppler lidar methods and technologies to meet the wind observing needs of the atmospheric science community. A variety of direct detection Doppler wind lidar measurements have recently been reported indicating the growing interest in this area. Our program at Goddard has concentrated on the development of the edge technique for lidar wind measurements. Implementations of the edge technique using either the aerosol or molecular backscatter for the Doppler wind measurement have been described. The basic principles have been verified in lab and atmospheric lidar wind experiments. The lidar measurements were obtained with an aerosol edge technique lidar operating at 1064 nm. These measurements demonstrated high spatial resolution (22 m) and high velocity sensitivity (rms variances of 0.1 m/s) in the planetary boundary layer (PBL). The aerosol backscatter is typically high in the PBL and the effects of the molecular backscatter can often be neglected. However, as was discussed in the original edge technique paper, the molecular contribution to the signal is significant above the boundary layer and a correction for the effects of molecular backscatter is required to make wind measurements. In addition, the molecular signal is a dominant source of noise in regions where the molecular to aerosol ratio is large since the energy monitor channel used in the single edge technique measures the sum of the aerosol and molecular signals. To extend the operation of the edge technique into the free troposphere we have developed a variation of the edge technique called the double edge technique. In this paper a ground based aerosol double edge lidar is described and the first measurements of wind profiles in the free troposphere obtained with this lidar will be presented.

  3. Are estimates of wind characteristics based on measurements with Pitot tubes and GNSS receivers mounted on consumer-grade unmanned aerial vehicles applicable in meteorological studies?

    PubMed

    Niedzielski, Tomasz; Skjøth, Carsten; Werner, Małgorzata; Spallek, Waldemar; Witek, Matylda; Sawiński, Tymoteusz; Drzeniecka-Osiadacz, Anetta; Korzystka-Muskała, Magdalena; Muskała, Piotr; Modzel, Piotr; Guzikowski, Jakub; Kryza, Maciej

    2017-09-01

    The objective of this paper is to empirically show that estimates of wind speed and wind direction based on measurements carried out using the Pitot tubes and GNSS receivers, mounted on consumer-grade unmanned aerial vehicles (UAVs), may accurately approximate true wind parameters. The motivation for the study is that a growing number of commercial and scientific UAV operations may soon become a new source of data on wind speed and wind direction, with unprecedented spatial and temporal resolution. The feasibility study was carried out within an isolated mountain meadow of Polana Izerska located in the Izera Mountains (SW Poland) during an experiment which aimed to compare wind characteristics measured by several instruments: three UAVs (swinglet CAM, eBee, Maja) equipped with the Pitot tubes and GNSS receivers, wind speed and direction meters mounted at 2.5 and 10 m (mast), conventional weather station and vertical sodar. The three UAVs performed seven missions along spiral-like trajectories, most reaching 130 m above take-off location. The estimates of wind speed and wind direction were found to agree between UAVs. The time series of wind speed measured at 10 m were extrapolated to flight altitudes recorded at a given time so that a comparison was made feasible. It was found that the wind speed estimates provided by the UAVs on a basis of the Pitot tube/GNSS data are in agreement with measurements carried out using dedicated meteorological instruments. The discrepancies were recorded in the first and last phases of UAV flights.

  4. Impact of wind direction on near-road pollutant concentrations

    NASA Astrophysics Data System (ADS)

    Venkatram, Akula; Snyder, Michelle; Isakov, Vlad; Kimbrough, Sue

    2013-12-01

    Exposure to roadway emissions is an emerging area of research because of recent epidemiological studies reporting association between living within a few hundred meters of high-traffic roadways and adverse health effects. The air quality impact of roadway emissions has been studied in a number of field experiments, most of which have not fully considered the impact of wind direction on near-road concentrations. This paper examines the role of wind direction by using a dispersion model to analyze data from three field studies that include measurements under varying wind directions: 1) a tracer study conducted adjacent to highway 99 in Sacramento, CA in 1981-82, 2) a field study next to a highway in Raleigh, North Carolina in 2006, and 3) a field study conducted next to a depressed highway in Las Vegas, Nevada in 2010. We find that wind direction is an important variable in characterizing exposure to roadway emissions. Under stable conditions, the near-surface concentrations at receptors up to 100 m from the road increase with wind angle before dropping off at angles close to parallel to the road. It is only for pollutants with short life times does the maximum concentration occur when the wind direction is normal to the road. We also show that current dispersion models are reliable tools for interpreting observations and for formulating plans for field studies.

  5. Program to determine space vehicle response to wind turbulence

    NASA Technical Reports Server (NTRS)

    Wilkening, H. D.

    1972-01-01

    Computer program was developed as prelaunch wind monitoring tool for Saturn 5 vehicle. Program accounts for characteristic wind changes including turbulence power spectral density, wind shear, peak wind velocity, altitude, and wind direction using stored variational statistics.

  6. Weathering a Dynamic Seascape: Influences of Wind and Rain on a Seabird’s Year-Round Activity Budgets

    PubMed Central

    Pistorius, Pierre A.; Hindell, Mark A.; Tremblay, Yann; Rishworth, Gavin M.

    2015-01-01

    How animals respond to varying environmental conditions is fundamental to ecology and is a question that has gained impetus due to mounting evidence indicating negative effects of global change on biodiversity. Behavioural plasticity is one mechanism that enables individuals and species to deal with environmental changes, yet for many taxa information on behavioural parameters and their capacity to change are lacking or restricted to certain periods within the annual cycle. This is particularly true for seabirds where year-round behavioural information is intrinsically challenging to acquire due to their reliance on the marine environment where they are difficult to study. Using data from over 13,000 foraging trips throughout the annual cycle, acquired using new-generation automated VHF technology, we described sex-specific, year-round activity budgets in Cape gannets. Using these data we investigated the role of weather (wind and rain) on foraging activity and time allocated to nest attendance. Foraging activity was clearly influenced by wind speed, wind direction and rainfall during and outside the breeding season. Generally, strong wind conditions throughout the year resulted in relatively short foraging trips. Birds spent longer periods foraging when rainfall was moderate. Nest attendance, which was sex-specific outside of the breeding season, was also influenced by meteorological conditions. Large amounts of rainfall (> 2.5 mm per hour) and strong winds (> 13 m s-1) resulted in gannets spending shorter amounts of time at their nests. We discuss these findings in terms of life history strategies and implications for the use of seabirds as bio-indicators. PMID:26581108

  7. Observing Equatorial Thermospheric Winds and Temperatures with a New Mapping Technique

    NASA Astrophysics Data System (ADS)

    Faivre, M. W.; Meriwether, J. W.; Sherwood, P.; Veliz, O.

    2005-12-01

    Application of the Fabry-Perot interferometer (FPI) at Arequipa, Peru (16.4S, 71.4 W) to measure the Doppler shifts and Doppler broadenings in the equatorial O(1D) 630-nm nightglow has resulted in numerous detections of a large-scale thermospheric phenomenon called the Midnight Temperature Maximum (MTM). A recent detector upgrade with a CCD camera has improved the accuracy of these measurements by a factor of 5. Temperature increases of 50 to 150K have been measured during nights in April and July, 2005, with error bars less than 10K after averaging in all directions. Moreover, the meridional wind measurements show evidence for a flow reversal from equatorward to poleward near local midnight for such events. A new observing strategy based upon the pioneering work of Burnside et al.[1981] maps the equatorial wind and temperature fields by observing in eight equally-spaced azimuth directions, each with a zenith angle of 60 degrees. Analysis of the data obtained with this technique gives the mean wind velocities in the meridional and zonal directions as well as the horizontal gradients of the wind field for these directions. Significant horizontal wind gradients are found for the meridional direction but not for the zonal direction. The zonal wind blows eastward throughout the night with a maximum speed of ~150 m/s near the middle of the night and then decreases towards zero just before dawn. In general, the fastest poleward meridional wind is observed near mid-evening. By the end of the night, the meridional flow tends to be more equatorward at speeds of about 50 m/s. Using the assumption that local time and longitude are equivalent over a period of 30 minutes, a map of the horizontal wind field vector field is constructed over a range of 12 degrees latitude centered at 16.5 S. Comparison between MTM nights and quiet nights (no MTM) revealed significant differences in the horizontal wind fields. Using the method of Fourier decomposition of the line-of-sight winds, the vertical wind can be retrieved from the horizontal flow divergence with a much-improved sensitivity than that represented by direct zenith measurements. The value of the vertical wind speed ranges from -5 to 5 m/s. Some nights seem to present gravity wave activity with periodic fluctuations of 1-2 hours visible in the vertical winds as well as in the temperature series.

  8. Atmospheric stability effects on wind farm performance using large-eddy simulation

    NASA Astrophysics Data System (ADS)

    Archer, C. L.; Ghaisas, N.; Xie, S.

    2014-12-01

    Atmospheric stability has been recently found to have significant impacts on wind farm performance, especially since offshore and onshore wind farms are known to operate often under non-neutral conditions. Recent field observations have revealed that changes in stability are accompanied by changes in wind speed, direction, and turbulent kinetic energy (TKE). In order to isolate the effects of stability, large-eddy simulations (LES) are performed under neutral, stable, and unstable conditions, keeping the wind speed and direction unchanged at a fixed height. The Lillgrund wind farm, comprising of 48 turbines, is studied in this research with the Simulator for Offshore/Onshore Wind Farm Applications (SOWFA) developed by the National Renewable Energy Laboratory. Unlike most previous numerical simulations, this study does not impose periodic boundary conditions and therefore is ideal for evaluating the effects of stability in large, but finite, wind farms. Changes in power generation, velocity deficit, rate of wake recovery, TKE, and surface temperature are quantified as a function of atmospheric stability. The sensitivity of these results to wind direction is also discussed.

  9. Clues From Pluto's Ions

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2016-05-01

    Nearly a year ago, in July 2015, the New Horizons spacecraft passed by the Pluto system. The wealth of data amassed from that flyby is still being analyzed including data from the Solar Wind Around Pluto (SWAP) instrument. Recent examination of this data has revealedinteresting new information about Plutos atmosphere and how the solar wind interacts with it.A Heavy Ion TailThe solar wind is a constant stream of charged particles released by the Sun at speeds of around 400 km/s (thats 1 million mph!). This wind travels out to the far reaches of the solar system, interacting with the bodies it encounters along the way.By modeling the SWAP detections, the authors determine the directions of the IMF that could produce the heavy ions detected. Red pixels represent IMF directions permitted. No possible IMF could reproduce the detections if the ions are nitrogen (bottom panels), and only retrograde IMF directions can produce the detections if the ions are methane. [Adapted from Zirnstein et al. 2016]New Horizons data has revealed that Plutos atmosphere leaks neutral nitrogen, methane, and carbon monoxide molecules that sometimes escape its weak gravitational pull. These molecules become ionized and are subsequently picked up by the passing solar wind, forming a tail of heavy ions behind Pluto. The details of the geometry and composition of this tail, however, had not yet been determined.Escaping MethaneIn a recent study led by Eric Zirnstein (Southwest Research Institute), the latest analysis of data from the SWAP instrument on board New Horizons is reported. The team used SWAPs ion detections from just after New Horizons closest approach to Pluto to better understand how the heavy ions around Pluto behave, and how the solar wind interacts with Plutos atmosphere.In the process of analyzing the SWAP data, Zirnstein and collaborators first establish what the majority of the heavy ions picked up by the solar wind are. Models of the SWAP detections indicate they are unlikely to be nitrogen ions, despite nitrogen being the most abundant molecule in Plutos atmosphere. Instead, the detections are likely of methane ions possibly present because methane molecules are lighter, allowing them to more efficiently escape Plutos atmosphere.Reconstructed origins of heavy ions detected by SWAP shortly after New Horizons closest approach to Pluto. Color represents the energy at the time of detection. [Adapted from Zirnstein et al. 2016]Magnetic DirectionNew Horizons does not have a magnetometer on board, which prevented it from making direct measurements of the interplanetary magnetic field (IMF; the solar magnetic field extended throughout the solar system) during the Pluto encounter. In spite of this, Zirnstein and collaborators are able to determine the IMF direction using some clever calculations about SWAPs field of view and the energies of heavy ions it detected.They demonstrate that the IMF was likely oriented roughly parallel to the ecliptic plane, and in the opposite direction of Plutos orbital motion, during New Horizons Pluto encounter. This would cause the solar wind to deflect southward around Pluto, resulting in a north-south asymmetry in the heavy ion tail behind Pluto.The new knowledge gained from SWAP about the geometry and the composition of Plutos extended atmosphere will help us to interpret further data from New Horizons. Ultimately, this provides us with a better understanding both of Plutos atmosphere and how the solar wind interacts with bodies in our solar system.CitationE. J. Zirnstein et al 2016 ApJ 823 L30. doi:10.3847/2041-8205/823/2/L30

  10. Remotely sensed wind speed predicts soaring behaviour in a wide-ranging pelagic seabird.

    PubMed

    Gibb, Rory; Shoji, Akiko; Fayet, Annette L; Perrins, Chris M; Guilford, Tim; Freeman, Robin

    2017-07-01

    Global wind patterns affect flight strategies in many birds, including pelagic seabirds, many of which use wind-powered soaring to reduce energy costs during at-sea foraging trips and migration. Such long-distance movement patterns are underpinned by local interactions between wind conditions and flight behaviour, but these fine-scale relationships are far less well understood. Here we show that remotely sensed ocean wind speed and direction are highly significant predictors of soaring behaviour in a migratory pelagic seabird, the Manx shearwater ( Puffinus puffinus ). We used high-frequency GPS tracking data (10 Hz) and statistical behaviour state classification to identify two energetic modes in at-sea flight, corresponding to flap-like and soar-like flight. We show that soaring is significantly more likely to occur in tailwinds and crosswinds above a wind speed threshold of around 8 m s -1 , suggesting that these conditions enable birds to reduce metabolic costs by preferentially soaring over flapping. Our results suggest a behavioural mechanism by which wind conditions may shape foraging and migration ecology in pelagic seabirds, and thus indicate that shifts in wind patterns driven by climate change could impact this and other species. They also emphasize the emerging potential of high-frequency GPS biologgers to provide detailed quantitative insights into fine-scale flight behaviour in free-living animals. © 2017 The Author(s).

  11. Assessment of Global Wind Energy Resource Utilization Potential

    NASA Astrophysics Data System (ADS)

    Ma, M.; He, B.; Guan, Y.; Zhang, H.; Song, S.

    2017-09-01

    Development of wind energy resource (WER) is a key to deal with climate change and energy structure adjustment. A crucial issue is to obtain the distribution and variability of WER, and mine the suitable location to exploit it. In this paper, a multicriteria evaluation (MCE) model is constructed by integrating resource richness and stability, utilization value and trend of resource, natural environment with weights. The global resource richness is assessed through wind power density (WPD) and multi-level wind speed. The utilizable value of resource is assessed by the frequency of effective wind. The resource stability is assessed by the coefficient of variation of WPD and the frequency of prevailing wind direction. Regression slope of long time series WPD is used to assess the trend of WER. All of the resource evaluation indicators are derived from the atmospheric reanalysis data ERA-Interim with spatial resolution 0.125°. The natural environment factors mainly refer to slope and land-use suitability, which are derived from multi-resolution terrain elevation data 2010 (GMTED 2010) and GlobalCover2009. Besides, the global WER utilization potential map is produced, which shows most high potential regions are located in north of Africa. Additionally, by verifying that 22.22 % and 48.8 9% operational wind farms fall on medium-high and high potential regions respectively, the result can provide a basis for the macroscopic siting of wind farm.

  12. Radionuclide counting technique for measuring wind velocity and direction

    NASA Technical Reports Server (NTRS)

    Singh, J. J. (Inventor)

    1984-01-01

    An anemometer utilizing a radionuclide counting technique for measuring both the velocity and the direction of wind is described. A pendulum consisting of a wire and a ball with a source of radiation on the lower surface of the ball is positioned by the wind. Detectors and are located in a plane perpendicular to pendulum (no wind). The detectors are located on the circumferene of a circle and are equidistant from each other as well as the undisturbed (no wind) source ball position.

  13. Wind selectivity and partial compensation for wind drift among nocturnally migrating passerines

    PubMed Central

    McLaren, James D.

    2012-01-01

    A migrating bird’s response to wind can impact its timing, energy expenditure, and path taken. The extent to which nocturnal migrants select departure nights based on wind (wind selectivity) and compensate for wind drift remains unclear. In this paper, we determine the effect of wind selectivity and partial drift compensation on the probability of successfully arriving at a destination area and on overall migration speed. To do so, we developed an individual-based model (IBM) to simulate full drift and partial compensation migration of juvenile Willow Warblers (Phylloscopus trochilus) along the southwesterly (SW) European migration corridor to the Iberian coast. Various degrees of wind selectivity were tested according to how large a drift angle and transport cost (mechanical energy per unit distance) individuals were willing to tolerate on departure after dusk. In order to assess model results, we used radar measurements of nocturnal migration to estimate the wind selectivity and proportional drift among passerines flying in SW directions. Migration speeds in the IBM were highest for partial compensation populations tolerating at least 25% extra transport cost compared to windless conditions, which allowed more frequent departure opportunities. Drift tolerance affected migration speeds only weakly, whereas arrival probabilities were highest with drift tolerances below 20°. The radar measurements were indicative of low drift tolerance, 25% extra transport cost tolerance and partial compensation. We conclude that along migration corridors with generally nonsupportive winds, juvenile passerines should not strictly select supportive winds but partially compensate for drift to increase their chances for timely and accurate arrival. PMID:22936843

  14. Wind selectivity and partial compensation for wind drift among nocturnally migrating passerines.

    PubMed

    McLaren, James D; Shamoun-Baranes, Judy; Bouten, Willem

    2012-09-01

    A migrating bird's response to wind can impact its timing, energy expenditure, and path taken. The extent to which nocturnal migrants select departure nights based on wind (wind selectivity) and compensate for wind drift remains unclear. In this paper, we determine the effect of wind selectivity and partial drift compensation on the probability of successfully arriving at a destination area and on overall migration speed. To do so, we developed an individual-based model (IBM) to simulate full drift and partial compensation migration of juvenile Willow Warblers (Phylloscopus trochilus) along the southwesterly (SW) European migration corridor to the Iberian coast. Various degrees of wind selectivity were tested according to how large a drift angle and transport cost (mechanical energy per unit distance) individuals were willing to tolerate on departure after dusk. In order to assess model results, we used radar measurements of nocturnal migration to estimate the wind selectivity and proportional drift among passerines flying in SW directions. Migration speeds in the IBM were highest for partial compensation populations tolerating at least 25% extra transport cost compared to windless conditions, which allowed more frequent departure opportunities. Drift tolerance affected migration speeds only weakly, whereas arrival probabilities were highest with drift tolerances below 20°. The radar measurements were indicative of low drift tolerance, 25% extra transport cost tolerance and partial compensation. We conclude that along migration corridors with generally nonsupportive winds, juvenile passerines should not strictly select supportive winds but partially compensate for drift to increase their chances for timely and accurate arrival.

  15. Sensitivity of Turbine-Height Wind Speeds to Parameters in Planetary Boundary-Layer and Surface-Layer Schemes in the Weather Research and Forecasting Model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Ben; Qian, Yun; Berg, Larry K.

    We evaluate the sensitivity of simulated turbine-height winds to 26 parameters applied in a planetary boundary layer (PBL) scheme and a surface layer scheme of the Weather Research and Forecasting (WRF) model over an area of complex terrain during the Columbia Basin Wind Energy Study. An efficient sampling algorithm and a generalized linear model are used to explore the multiple-dimensional parameter space and quantify the parametric sensitivity of modeled turbine-height winds. The results indicate that most of the variability in the ensemble simulations is contributed by parameters related to the dissipation of the turbulence kinetic energy (TKE), Prandtl number, turbulencemore » length scales, surface roughness, and the von Kármán constant. The relative contributions of individual parameters are found to be dependent on both the terrain slope and atmospheric stability. The parameter associated with the TKE dissipation rate is found to be the most important one, and a larger dissipation rate can produce larger hub-height winds. A larger Prandtl number results in weaker nighttime winds. Increasing surface roughness reduces the frequencies of both extremely weak and strong winds, implying a reduction in the variability of the wind speed. All of the above parameters can significantly affect the vertical profiles of wind speed, the altitude of the low-level jet and the magnitude of the wind shear strength. The wind direction is found to be modulated by the same subset of influential parameters. Remainder of abstract is in attachment.« less

  16. Research and analysis on response characteristics of bracket-line coupling system under wind load

    NASA Astrophysics Data System (ADS)

    Jiayu, Zhao; Qing, Sun

    2018-01-01

    In this paper, a three-dimensional finite element model of bracket-line coupling system is established based on ANSYS software. Using the wind velocity time series which is generated by MATLAB as a power input, by comparing and analyzing the influence of different wind speeds and different wind attack angles, it is found that when 0 degree wind acts on the structure, wires have a certain damping effect in the bracket-line coupling system and at the same wind speed, the 90 degree direction is the most unfavorable wind direction for the whole structure according to the three kinds of angle wind calculated at present. In the bracket-line coupling system, the bracket structure is more sensitive to the increase of wind speed while the conductors are more sensitive to the change of wind attack angle.

  17. An Experimental High-Resolution Forecast System During the Vancouver 2010 Winter Olympic and Paralympic Games

    NASA Astrophysics Data System (ADS)

    Mailhot, J.; Milbrandt, J. A.; Giguère, A.; McTaggart-Cowan, R.; Erfani, A.; Denis, B.; Glazer, A.; Vallée, M.

    2014-01-01

    Environment Canada ran an experimental numerical weather prediction (NWP) system during the Vancouver 2010 Winter Olympic and Paralympic Games, consisting of nested high-resolution (down to 1-km horizontal grid-spacing) configurations of the GEM-LAM model, with improved geophysical fields, cloud microphysics and radiative transfer schemes, and several new diagnostic products such as density of falling snow, visibility, and peak wind gust strength. The performance of this experimental NWP system has been evaluated in these winter conditions over complex terrain using the enhanced mesoscale observing network in place during the Olympics. As compared to the forecasts from the operational regional 15-km GEM model, objective verification generally indicated significant added value of the higher-resolution models for near-surface meteorological variables (wind speed, air temperature, and dewpoint temperature) with the 1-km model providing the best forecast accuracy. Appreciable errors were noted in all models for the forecasts of wind direction and humidity near the surface. Subjective assessment of several cases also indicated that the experimental Olympic system was skillful at forecasting meteorological phenomena at high-resolution, both spatially and temporally, and provided enhanced guidance to the Olympic forecasters in terms of better timing of precipitation phase change, squall line passage, wind flow channeling, and visibility reduction due to fog and snow.

  18. Airborne Doppler Wind Lidar Post Data Processing Software DAPS-LV

    NASA Technical Reports Server (NTRS)

    Kavaya, Michael J. (Inventor); Beyon, Jeffrey Y. (Inventor); Koch, Grady J. (Inventor)

    2015-01-01

    Systems, methods, and devices of the present invention enable post processing of airborne Doppler wind LIDAR data. In an embodiment, airborne Doppler wind LIDAR data software written in LabVIEW may be provided and may run two versions of different airborne wind profiling algorithms. A first algorithm may be the Airborne Wind Profiling Algorithm for Doppler Wind LIDAR ("APOLO") using airborne wind LIDAR data from two orthogonal directions to estimate wind parameters, and a second algorithm may be a five direction based method using pseudo inverse functions to estimate wind parameters. The various embodiments may enable wind profiles to be compared using different algorithms, may enable wind profile data for long haul color displays to be generated, may display long haul color displays, and/or may enable archiving of data at user-selectable altitudes over a long observation period for data distribution and population.

  19. Imaging the Top of the Solar Corona and the Young Solar Wind

    NASA Astrophysics Data System (ADS)

    DeForest, C. E.; Matthaeus, W. H.; Viall, N. M.; Cranmer, S. R.

    2016-12-01

    We present the first direct visual evidence of the quasi-stationary breakup of solar coronal structure and the rise of turbulence in the young solar wind, directly in the future flight path of Solar Probe. Although the corona and, more recently, the solar wind have both been observed directly with Thomson scattered light, the transition from the corona to the solar wind has remained a mystery. The corona itself is highly structured by the magnetic field and the outflowing solar wind, giving rise to radial "striae" - which comprise the familiar streamers, pseudostreamers, and rays. These striae are not visible in wide-field heliospheric images, nor are they clearly delineated with in-situ measurements of the solar wind. Using careful photometric analysis of the images from STEREO/HI-1, we have, for the first time, directly observed the breakup of radial coronal structure and the rise of nearly-isotropic turbulent structure in the outflowing slow solar wind plasma between 10° (40 Rs) and 20° (80 Rs) from the Sun. These observations are important not only for their direct science value, but for predicting and understanding the conditions expected near SPP as it flies through - and beyond - this final frontier of the heliosphere, the outer limits of the solar corona.

  20. Simulation comparison of a decoupled longitudinal control system and a velocity vector control wheel steering system during landings in wind shear

    NASA Technical Reports Server (NTRS)

    Kimball, G., Jr.

    1980-01-01

    A simulator comparison of the velocity vector control wheel steering (VCWS) system and a decoupled longitudinal control system is presented. The piloting task was to use the electronic attitude direction indicator (EADI) to capture and maintain a 3 degree glide slope in the presence of wind shear and to complete the landing using the perspective runway included on the EADI. The decoupled control system used constant prefilter and feedback gains to provide steady state decoupling of flight path angle, pitch angle, and forward velocity. The decoupled control system improved the pilots' ability to control airspeed and flight path angle during the final stages of an approach made in severe wind shear. The system also improved their ability to complete safe landings. The pilots preferred the decoupled control system in severe winds and, on a pilot rating scale, rated the approach and landing task with the decoupled control system as much as 3 to 4 increments better than use of the VCWS system.

  1. Solar wind conditions leading to efficient radiation belt electron acceleration: A superposed epoch analysis

    DOE PAGES

    Li, W.; Thorne, R. M.; Bortnik, J.; ...

    2015-09-07

    In this study by determining preferential solar wind conditions leading to efficient radiation belt electron acceleration is crucial for predicting radiation belt electron dynamics. Using Van Allen Probes electron observations (>1 MeV) from 2012 to 2015, we identify a number of efficient and inefficient acceleration events separately to perform a superposed epoch analysis of the corresponding solar wind parameters and geomagnetic indices. By directly comparing efficient and inefficient acceleration events, we clearly show that prolonged southward Bz, high solar wind speed, and low dynamic pressure are critical for electron acceleration to >1 MeV energies in the heart of the outermore » radiation belt. We also evaluate chorus wave evolution using the superposed epoch analysis for the identified efficient and inefficient acceleration events and find that chorus wave intensity is much stronger and lasts longer during efficient electron acceleration events, supporting the scenario that chorus waves play a key role in MeV electron acceleration.« less

  2. Baseline predictability of daily east Asian summer monsoon circulation indices

    NASA Astrophysics Data System (ADS)

    Ai, Shucong; Chen, Quanliang; Li, Jianping; Ding, Ruiqiang; Zhong, Quanjia

    2017-05-01

    The nonlinear local Lyapunov exponent (NLLE) method is adopted to quantitatively determine the predictability limit of East Asian summer monsoon (EASM) intensity indices on a synoptic timescale. The predictability limit of EASM indices varies widely according to the definitions of indices. EASM indices defined by zonal shear have a limit of around 7 days, which is higher than the predictability limit of EASM indices defined by sea level pressure (SLP) difference and meridional wind shear (about 5 days). The initial error of EASM indices defined by SLP difference and meridional wind shear shows a faster growth than indices defined by zonal wind shear. Furthermore, the indices defined by zonal wind shear appear to fluctuate at lower frequencies, whereas the indices defined by SLP difference and meridional wind shear generally fluctuate at higher frequencies. This result may explain why the daily variability of the EASM indices defined by zonal wind shear tends be more predictable than those defined by SLP difference and meridional wind shear. Analysis of the temporal correlation coefficient (TCC) skill for EASM indices obtained from observations and from NCEP's Global Ensemble Forecasting System (GEFS) historical weather forecast dataset shows that GEFS has a higher forecast skill for the EASM indices defined by zonal wind shear than for indices defined by SLP difference and meridional wind shear. The predictability limit estimated by the NLLE method is shorter than that in GEFS. In addition, the June-September average TCC skill for different daily EASM indices shows significant interannual variations from 1985 to 2015 in GEFS. However, the TCC for different types of EASM indices does not show coherent interannual fluctuations.

  3. Barchan asymmetry as a proxy for wind conditions on Earth and Mars

    NASA Astrophysics Data System (ADS)

    Dwyer, Diarmuid; Bourke, Mary

    2014-05-01

    The absence of weather stations in many remote arid regions on Earth and Mars introduces a difficulty in testing atmospheric circulation models. While several proxies have been recommended for the reconstruction of wind regimes, they remain to be tested in a wide range of terrains. We examine the relationship between instrumented wind data and barchan asymmetric shape in order to ascertain if this dune attribute can be used to reliably infer aspects of a wind regime. The two study areas are located in La Joya, Peru and the Namib Desert, Namibia. Dune observations were made using high resolution satellite images available on Google Earth. The wind data was sourced from Wunderground and the National Peruvian Meteorological Service. Asymmetric barchans are reported to form in bimodal wind regimes (Tsoar, 1984). The barchan dune is oriented parallel to the strong wind regime and is modified by oblique gentler winds. Our analysis of wind data and dune form supports the Tsoar model for barchan asymmetry. Numerical simulations have shown that the duration of winds in bi-directional regimes also influences asymmetry (Parteli, 2014). Our analysis finds good agreement between the model simulations of Parteli et al (2014) and the instrument data for Namibia and Peru. We use our findings on Earth to infer formative wind direction and duration at five sites on Mars. These are the first maps of wind direction and relative duration for Mars. Our findings do not concur with previous estimates of wind direction derived either from the NASA Ames General Circulation Model or dune slipface orientation. We propose that the Parteli et al (2014) approach can be usefully applied to remote areas on Earth and Mars to extract data on relative wind duration and direction. Parteli, E.J.R., Duran, O., Bourke, M.C., Tsoar, H., Poschel, T., Herrmann, H.J., (in press). Origins of barchan dune asymmetry: Insights from numerical simulations. Aeolian Research. Tsoar, H., (1984). The formation of seif dunes from barchans - a discussion. Zeitschrift fur Geomorphologie, 28, 99-103.

  4. Optimal strategies for insects migrating in the flight boundary layer: mechanisms and consequences.

    PubMed

    Srygley, Robert B; Dudley, Robert

    2008-07-01

    Directed aerial displacement requires that a volant organism's airspeed exceeds ambient wind speed. For biologically relevant altitudes, wind speed increases exponentially with increased height above the ground. Thus, dispersal of most insects is influenced by atmospheric conditions. However, insects that fly close to the Earth's surface displace within the flight boundary layer where insect airspeeds are relatively high. Over the past 17 years, we have studied boundary-layer insects by following individuals as they migrate across the Caribbean Sea and the Panama Canal. Although most migrants evade either drought or cold, nymphalid and pierid butterflies migrate across Panama near the onset of the rainy season. Dragonflies of the genus Pantala migrate in October concurrently with frontal weather systems. Migrating the furthest and thereby being the most difficult to study, the diurnal moth Urania fulgens migrates between Central and South America. Migratory butterflies and dragonflies are capable of directed movement towards a preferred compass direction in variable winds, whereas the moths drift with winds over water. Butterflies orient using both global and local cues. Consistent with optimal migration theory, butterflies and dragonflies adjust their flight speeds in ways that maximize migratory distance traveled per unit fuel, whereas the moths do not. Moreover, only butterflies adjust their flight speed in relation to endogenous fat reserves. It is likely that these insects use optic flow to gauge their speed and drift, and thus must migrate where sufficient detail in the Earth's surface is visible to them. The abilities of butterflies and dragonflies to adjust their airspeed over water indicate sophisticated control and guidance systems pertaining to migration.

  5. A Free-flight Wind Tunnel for Aerodynamic Testing at Hypersonic Speeds

    NASA Technical Reports Server (NTRS)

    Seiff, Alvin

    1954-01-01

    The supersonic free-flight wind tunnel is a facility at the Ames Laboratory of the NACA in which aerodynamic test models are gun-launched at high speed and directed upstream through the test section of a supersonic wind tunnel. In this way, test Mach numbers up to 10 have been attained and indications are that still higher speeds will be realized. An advantage of this technique is that the air and model temperatures simulate those of flight through the atmosphere. Also the Reynolds numbers are high. Aerodynamic measurements are made from photographic observation of the model flight. Instruments and techniques have been developed for measuring the following aerodynamic properties: drag, initial lift-curve slope, initial pitching-moment-curve slope, center of pressure, skin friction, boundary-layer transition, damping in roll, and aileron effectiveness. (author)

  6. An interpretation of Mariner 10 helium /584 A/ and hydrogen /1216 A/ interplanetary emission observations

    NASA Technical Reports Server (NTRS)

    Ajello, J. M.

    1978-01-01

    Measurements of the interplanetary emissions of both He(584 A) and H(1216 A) on January 28, 1974, a time of solar minimum, are reported and discussed. An analysis of the Mariner 10 ultraviolet spectrometer data shows that a simultaneous measurement of both emissions results in a self-consistent determination of the physical properties of the interstellar wind. With the aid of a model the number densities of helium and hydrogen outside the solar system were found to be 0.008 + or - 0.003/cu cm and 0.04 (+0.03, -0.02)/cu cm, respectively, which indicates a He/H ratio of 0.20 (+0.30, -0.13). Values characterizing the helium cone, interstellar wind temperature, effective lifetime of hydrogen atoms in the solar system, and downstream direction of the interstellar wind are presented.

  7. Determining hydroclimatic extreme events over the south-central Andes

    NASA Astrophysics Data System (ADS)

    RamezaniZiarani, Maryam; Bookhagen, Bodo; Schmidt, Torsten; Wickert, Jens; de la Torre, Alejandro; Volkholz, Jan

    2017-04-01

    The south-central Andes in NW Argentina are characterized by a strong rainfall asymmetry. In the east-west direction exists one of the steepest rainfall gradients on Earth, resulting from the large topographic differences in this region. In addition, in the north-south direction the rainfall intensity varies as the climatic regime shifts from the tropical central Andes to the subtropical south-central Andes. In this study, we investigate hydroclimatic extreme events over the south-central Andes using ERA-Interim reanalysis data of the ECMWF (European Centre for Medium-Range Weather Forecasts), the high resolution regional climate model (COSMO-CLM) data and TRMM (Tropical Rainfall Measuring Mission) data. We divide the area in three different study regions based on elevation: The high-elevation Altiplano-Puna plateau, an intermediate area characterized by intramontane basins, and the foreland area. We analyze the correlations between climatic variables, such as specific humidity, zonal wind component, meridional wind component and extreme rainfall events in all three domains. The results show that there is a high positive temporal correlation between extreme rainfall events (90th and 99th percentile rainfall) and extreme specific humidity events (90th and 99th percentile specific humidity). In addition, the temporal variations analysis represents a trend of increasing specific humidity with time during time period (1994-2013) over the Altiplano-Puna plateau which is in agreement with rainfall trend. Regarding zonal winds, our results indicate that 99th percentile rainfall events over the Altiplano-Puna plateau coincide temporally with strong easterly winds from intermountain and foreland regions in the east. In addition, the results regarding the meridional wind component represent strong northerly winds in the foreland region coincide temporally with 99th percentile rainfall over the Altiplano-Puna plateau.

  8. Local wind forcing of the Monterey Bay area inner shelf

    USGS Publications Warehouse

    Drake, P.T.; McManus, M.A.; Storlazzi, C.D.

    2005-01-01

    Wind forcing and the seasonal cycles of temperature and currents were investigated on the inner shelf of the Monterey Bay area of the California coast for 460 days, from June 2001 to September 2002. Temperature measurements spanned an approximate 100 km stretch of coastline from a bluff just north of Monterey Bay south to Point Sur. Inner shelf currents were measured at two sites near the bay's northern shore. Seasonal temperature variations were consistent with previous observations from the central California shelf. During the spring, summer and fall, a seasonal mean alongshore current was observed flowing northwestward in the northern bay, in direct opposition to a southeastward wind stress. A barotropic alongshore pressure gradient, potentially driving the northwestward flow, was needed to balance the alongshore momentum equation. With the exception of the winter season, vertical profiles of mean cross-shore currents were consistent with two-dimensional upwelling and existing observations from upwelling regions with poleward subsurface flow. At periods of 15-60 days, temperature fluctuations were coherent both throughout the domain and with the regional wind field. Remote wind forcing was minimal. During the spring upwelling season, alongshore currents and temperatures in the northern bay were most coherent with winds measured at a nearby land meteorological station. This wind site showed relatively low correlations to offshore buoy wind stations, indicating localized wind effects are important to the circulation along this stretch of Monterey Bay's inner shelf. ?? 2004 Elsevier Ltd. All rights reserved.

  9. Influences of wind and precipitation on different-sized particulate matter concentrations (PM2.5, PM10, PM2.5-10)

    NASA Astrophysics Data System (ADS)

    Zhang, Boen; Jiao, Limin; Xu, Gang; Zhao, Suli; Tang, Xin; Zhou, Yue; Gong, Chen

    2018-06-01

    Though it is recognized that meteorology has a great impact on the diffusion, accumulation and transport of air pollutants, few studies have investigated the impacts on different-sized particulate matter concentrations. We conducted a systematic comparative analysis and used the framework of generalized additive models (GAMs) to explore the influences of critical meteorological parameters, wind and precipitation, on PM2.5, PM10 and PM2.5-10 concentrations in Wuhan during 2013-2016. Overall, results showed that the impacts of wind and precipitation on different-sized PM concentrations are significantly different. The fine PM concentrations decreased gradually with the increase of wind speed, while coarse PM concentrations would increase due to dust resuspension under strong wind. Wind direction exerts limited influence on coarse PM concentrations. Wind speed was linearly correlated with log-transformed PM2.5 concentrations, but nonlinearly correlated with log-transformed PM10 and PM2.5-10 concentrations. We also found the PM2.5 and PM2.5-10 concentrations decreased by nearly 60 and 15% when the wind speed was up to 6 m/s, respectively, indicating a stronger negative impact of wind-speed on fine PM than coarse PM. The scavenging efficiency of precipitation on PM2.5-10 was over twice as high as on PM2.5. Our findings may help to understand the impacts of meteorology on different PM concentrations as well as discriminate and forecast variation in particulate matter concentrations.

  10. Direct Torque Control of a Small Wind Turbine with a Sliding-Mode Speed Controller

    NASA Astrophysics Data System (ADS)

    Sri Lal Senanayaka, Jagath; Karimi, Hamid Reza; Robbersmyr, Kjell G.

    2016-09-01

    In this paper. the method of direct torque control in the presence of a sliding-mode speed controller is proposed for a small wind turbine being used in water heating applications. This concept and control system design can be expanded to grid connected or off-grid applications. Direct torque control of electrical machines has shown several advantages including very fast dynamics torque control over field-oriented control. Moreover. the torque and flux controllers in the direct torque control algorithms are based on hvsteretic controllers which are nonlinear. In the presence of a sliding-mode speed control. a nonlinear control system can be constructed which is matched for AC/DC conversion of the converter that gives fast responses with low overshoots. The main control objectives of the proposed small wind turbine can be maximum power point tracking and soft-stall power control. This small wind turbine consists of permanent magnet synchronous generator and external wind speed. and rotor speed measurements are not required for the system. However. a sensor is needed to detect the rated wind speed overpass events to activate proper speed references for the wind turbine. Based on the low-cost design requirement of small wind turbines. an available wind speed sensor can be modified. or a new sensor can be designed to get the required measurement. The simulation results will be provided to illustrate the excellent performance of the closed-loop control system in entire wind speed range (4-25 m/s).

  11. Direct experimental determination of the topological winding number of skyrmions in Cu2OSeO3

    NASA Astrophysics Data System (ADS)

    Zhang, S. L.; van der Laan, G.; Hesjedal, T.

    2017-02-01

    The mathematical concept of topology has brought about significant advantages that allow for a fundamental understanding of the underlying physics of a system. In magnetism, the topology of spin order manifests itself in the topological winding number which plays a pivotal role for the determination of the emergent properties of a system. However, the direct experimental determination of the topological winding number of a magnetically ordered system remains elusive. Here, we present a direct relationship between the topological winding number of the spin texture and the polarized resonant X-ray scattering process. This relationship provides a one-to-one correspondence between the measured scattering signal and the winding number. We demonstrate that the exact topological quantities of the skyrmion material Cu2OSeO3 can be directly experimentally determined this way. This technique has the potential to be applicable to a wide range of materials, allowing for a direct determination of their topological properties.

  12. Titan's Atmospheric Dynamics and Meteorology

    NASA Technical Reports Server (NTRS)

    Flasar, F. M.; Baines, K. H.; Bird, M. K.; Tokano, T.; West, R. A.

    2008-01-01

    Titan, after Venus, is the second example of an atmosphere with a global cyclostrophic circulation in the solar system, but a circulation that has a strong seasonal modulation in the middle atmosphere. Direct measurement of Titan's winds, particularly observations tracking the Huygens probe at 10degS, indicate that the zonal winds are generally in the sense of the satellites rotation. They become cyclostrophic approx. 35 km above the surface and generally increase with altitude, with the exception of a sharp minimum centered near 75 km, where the wind velocity decreases to nearly zero. Zonal winds derived from the temperature field retrieved from Cassini measurements, using the thermal wind equation, indicate a strong winter circumpolar vortex, with maximum winds at mid northern latitudes of 190 ms-' near 300 km. Above this level, the vortex decays. Curiously, the zonal winds and temperatures are symmetric about a pole that is offset from the surface pole by approx.4 degrees. The cause of this is not well understood, but it may reflect the response of a cyclostrophic circulation to the offset between the equator, where the distance to the rotation axis is greatest, and the solar equator. The mean meridional circulation can be inferred from the temperature field and the meridional distribution of organic molecules and condensates and hazes. Both the warm temperatures in the north polar region near 400 km and the enhanced concentration of several organic molecules suggests subsidence there during winter and early spring. Stratospheric condensates are localized at high northern latitudes, with a sharp cut-off near 50degN. Titan's winter polar vortex appears to share many of the same characteristics of winter vortices on Earth-the ozone holes. Global mapping of temperatures, winds, and composition in he troposphere, by contrast, is incomplete. The few suitable discrete clouds that have bee found for tracking indicate smaller velocities than aloft, consistent with the Huygens measurements. At low latitudes the zonal winds near the surface appear not to be westward as on Earth, but eastward. Because the net zonal-mean time-averaged torq exerted by the surface on the atmosphere should vanish, this implies westward flow o part of the surface; the question is where. The latitude contrast in tropospheric temperatures, deduced from radio occultations at low, mid, and high latitudes, is small approx.5 K at the tropopause and approx.3 K at the surface.

  13. European shags optimize their flight behavior according to wind conditions.

    PubMed

    Kogure, Yukihisa; Sato, Katsufumi; Watanuki, Yutaka; Wanless, Sarah; Daunt, Francis

    2016-02-01

    Aerodynamics results in two characteristic speeds of flying birds: the minimum power speed and the maximum range speed. The minimum power speed requires the lowest rate of energy expenditure per unit time to stay airborne and the maximum range speed maximizes air distance traveled per unit of energy consumed. Therefore, if birds aim to minimize the cost of transport under a range of wind conditions, they are predicted to fly at the maximum range speed. Furthermore, take-off is predicted to be strongly affected by wind speed and direction. To investigate the effect of wind conditions on take-off and cruising flight behavior, we equipped 14 European shags Phalacrocorax aristotelis with a back-mounted GPS logger to measure position and hence ground speed, and a neck-mounted accelerometer to record wing beat frequency and strength. Local wind conditions were recorded during the deployment period. Shags always took off into the wind regardless of their intended destination and take-off duration was correlated negatively with wind speed. We combined ground speed and direction during the cruising phase with wind speed and direction to estimate air speed and direction. Whilst ground speed was highly variable, air speed was comparatively stable, although it increased significantly during strong head winds, because of stronger wing beats. The increased air speeds in head winds suggest that birds fly at the maximum range speed, not at the minimum power speed. Our study demonstrates that European shags actively adjust their flight behavior to utilize wind power to minimize the costs of take-off and cruising flight. © 2016. Published by The Company of Biologists Ltd.

  14. Vector wind and vector wind shear models 0 to 27 km altitude for Cape Kennedy, Florida, and Vandenberg AFB, California

    NASA Technical Reports Server (NTRS)

    Smith, O. E.

    1976-01-01

    The techniques are presented to derive several statistical wind models. The techniques are from the properties of the multivariate normal probability function. Assuming that the winds can be considered as bivariate normally distributed, then (1) the wind components and conditional wind components are univariate normally distributed, (2) the wind speed is Rayleigh distributed, (3) the conditional distribution of wind speed given a wind direction is Rayleigh distributed, and (4) the frequency of wind direction can be derived. All of these distributions are derived from the 5-sample parameter of wind for the bivariate normal distribution. By further assuming that the winds at two altitudes are quadravariate normally distributed, then the vector wind shear is bivariate normally distributed and the modulus of the vector wind shear is Rayleigh distributed. The conditional probability of wind component shears given a wind component is normally distributed. Examples of these and other properties of the multivariate normal probability distribution function as applied to Cape Kennedy, Florida, and Vandenberg AFB, California, wind data samples are given. A technique to develop a synthetic vector wind profile model of interest to aerospace vehicle applications is presented.

  15. Observations of the microclimate of a lake under cold air advective conditions

    NASA Technical Reports Server (NTRS)

    Bill, R. G., Jr.; Sutherland, R. A.; Bartholic, J. F.

    1977-01-01

    The moderating effects of Lake Apopka, Florida, on downwind surface temperatures were evaluated under cold air advective conditions. Point temperature measurements north and south of the lake and data obtained from the NOAA satellite and a thermal scanner flown at 1.6 km, indicate that, under conditions of moderate winds (approximately 4m/sec), surface temperatures directly downwind may be higher than surrounding surface temperatures by as much as 5 C. With surface wind speed less than 1m/sec, no substantial temperature effects were observed. Results of this study are being used in land use planning, lake level control and in agriculture for selecting planting sites.

  16. Self-Powered Wind Sensor System for Detecting Wind Speed and Direction Based on a Triboelectric Nanogenerator.

    PubMed

    Wang, Jiyu; Ding, Wenbo; Pan, Lun; Wu, Changsheng; Yu, Hua; Yang, Lijun; Liao, Ruijin; Wang, Zhong Lin

    2018-04-24

    The development of the Internet of Things has brought new challenges to the corresponding distributed sensor systems. Self-powered sensors that can perceive and respond to environmental stimuli without an external power supply are highly desirable. In this paper, a self-powered wind sensor system based on an anemometer triboelectric nanogenerator (a-TENG, free-standing mode) and a wind vane triboelectric nanogenerator (v-TENG, single-electrode mode) is proposed for simultaneously detecting wind speed and direction. A soft friction mode is adopted instead of a typical rigid friction for largely enhancing the output performance of the TENG. The design parameters including size, unit central angle, and applied materials are optimized to enhance sensitivity, resolution, and wide measurement scale. The optimized a-TENG could deliver an open-circuit voltage of 88 V and short-circuit current of 6.3 μA, corresponding to a maximum power output of 0.47 mW (wind speed of 6.0 m/s), which is capable of driving electronics for data transmission and storage. The current peak value of the a-TENG signal is used for analyzing wind speed for less energy consumption. Moreover, the output characteristics of a v-TENG are further explored, with six actual operation situations, and the v-TENG delivers fast response to the incoming wind and accurately outputs the wind direction data. As a wind sensor system, wind speed ranging from 2.7 to 8.0 m/s can be well detected (consistent with a commercial sensor) and eight regular directions can be monitored. Therefore, the fabricated wind sensor system has great potential in wireless environmental monitoring applications.

  17. Initializing a Mesoscale Boundary-Layer Model with Radiosonde Observations

    NASA Astrophysics Data System (ADS)

    Berri, Guillermo J.; Bertossa, Germán

    2018-01-01

    A mesoscale boundary-layer model is used to simulate low-level regional wind fields over the La Plata River of South America, a region characterized by a strong daily cycle of land-river surface-temperature contrast and low-level circulations of sea-land breeze type. The initial and boundary conditions are defined from a limited number of local observations and the upper boundary condition is taken from the only radiosonde observations available in the region. The study considers 14 different upper boundary conditions defined from the radiosonde data at standard levels, significant levels, level of the inversion base and interpolated levels at fixed heights, all of them within the first 1500 m. The period of analysis is 1994-2008 during which eight daily observations from 13 weather stations of the region are used to validate the 24-h surface-wind forecast. The model errors are defined as the root-mean-square of relative error in wind-direction frequency distribution and mean wind speed per wind sector. Wind-direction errors are greater than wind-speed errors and show significant dispersion among the different upper boundary conditions, not present in wind speed, revealing a sensitivity to the initialization method. The wind-direction errors show a well-defined daily cycle, not evident in wind speed, with the minimum at noon and the maximum at dusk, but no systematic deterioration with time. The errors grow with the height of the upper boundary condition level, in particular wind direction, and double the errors obtained when the upper boundary condition is defined from the lower levels. The conclusion is that defining the model upper boundary condition from radiosonde data closer to the ground minimizes the low-level wind-field errors throughout the region.

  18. Factors associated with NO2 and NOX concentration gradients near a highway

    NASA Astrophysics Data System (ADS)

    Richmond-Bryant, J.; Snyder, M. G.; Owen, R. C.; Kimbrough, S.

    2018-02-01

    The objective of this research is to learn how the near-road gradient, in which NO2 and NOX (NO + NO2) concentrations are elevated, varies with changes in meteorological and traffic variables. Measurements of NO2 and NOX were obtained east of I-15 in Las Vegas and fit to functions whose slopes (dCNO2/dx and dCNOX/dx, respectively) characterize the size of the near-road zone where NO2 and NOX concentrations from mobile sources on the highway are elevated. These metrics were used to learn about the near-road gradient by modeling dCNO2/dx and dCNOX/dx as functions of meteorological variables (e.g., wind direction, wind speed), traffic (vehicle count), NOX concentration upwind of the road, and O3 concentration at two fixed-site ambient monitors. Generalized additive models (GAM) were used to model dCNO2/dx and dCNOX/dx versus the independent variables because they allowed for nonlinearity of the variables being compared. When data from all wind directions were included in the analysis, variability in O3 concentration comprised the largest proportion of variability in dCNO2/dx, followed by variability in wind direction. In a second analysis constrained to winds from the west, variability in O3 concentration remained the largest contributor to variability in dCNO2/dx, but the relative contribution of variability in wind speed to variability in dCNO2/dx increased relative to its contribution for the all-wind analysis. When data from all wind directions were analyzed, variability in wind direction was by far the largest contributor to variability in dCNOX/dx, with smaller contributions from hour of day and upwind NOX concentration. When only winds from the west were analyzed, variability in upwind NOX concentration, wind speed, hour of day, and traffic count all were associated with variability in dCNOX/dx. Increases in O3 concentration were associated with increased magnitude near-road dCNO2/dx, possibly shrinking the zone of elevated concentrations occurring near roads. Wind direction parallel to the highway was also related to an increased magnitude of both dCNO2/dx and dCNOX/dx, again likely shrinking the zone of elevated concentrations occurring near roads. Wind direction perpendicular to the road decreased the magnitude of dCNO2/dx and dCNOX/dx and likely contributed to growth of the zone of elevated concentrations occurring near roads. Thus, variability in near-road concentrations is influenced by local meteorology and ambient O3 concentration.

  19. The dynamic monitoring of aeolian desertification land distribution and its response to climate change in northern China

    NASA Astrophysics Data System (ADS)

    Feng, Lili; Jia, Zhiqing; Li, Qingxue

    2016-12-01

    Aeolian desertification is poorly understood despite its importance for indicating environment change. Here we exploit Gaofen-1(GF-1) and Moderate Resolution Imaging Spectroradiometer (MODIS) data to develop a quick and efficient method for large scale aeolian desertification dynamic monitoring in northern China. This method, which is based on Normalized Difference Desertification Index (NDDI) calculated by band1 & band2 of MODIS reflectance data (MODIS09A1). Then we analyze spatial-temporal change of aeolian desertification area and detect its possible influencing factors, such as precipitation, temperature, wind speed and population by Convergent Cross Mapping (CCM) model. It suggests that aeolian desertification area with population indicates feedback (bi-directional causality) between the two variables (P < 0.05), but forcing of aeolian desertification area by population is weak. Meanwhile, we find aeolian desertification area is significantly affected by temperature, as expected. However, there is no obvious forcing for the aeolian desertification area and precipitation. Aeolian desertification area with wind speed indicates feedback (bi-directional causality) between the two variables with significant signal (P < 0.01). We infer that aeolian desertification is greatly affected by natural factors compared with anthropogenic factors. For the desertification in China, we are greatly convinced that desertification prevention is better than control.

  20. The dynamic monitoring of aeolian desertification land distribution and its response to climate change in northern China

    PubMed Central

    Feng, Lili; Jia, Zhiqing; Li, Qingxue

    2016-01-01

    Aeolian desertification is poorly understood despite its importance for indicating environment change. Here we exploit Gaofen-1(GF-1) and Moderate Resolution Imaging Spectroradiometer (MODIS) data to develop a quick and efficient method for large scale aeolian desertification dynamic monitoring in northern China. This method, which is based on Normalized Difference Desertification Index (NDDI) calculated by band1 & band2 of MODIS reflectance data (MODIS09A1). Then we analyze spatial-temporal change of aeolian desertification area and detect its possible influencing factors, such as precipitation, temperature, wind speed and population by Convergent Cross Mapping (CCM) model. It suggests that aeolian desertification area with population indicates feedback (bi-directional causality) between the two variables (P < 0.05), but forcing of aeolian desertification area by population is weak. Meanwhile, we find aeolian desertification area is significantly affected by temperature, as expected. However, there is no obvious forcing for the aeolian desertification area and precipitation. Aeolian desertification area with wind speed indicates feedback (bi-directional causality) between the two variables with significant signal (P < 0.01). We infer that aeolian desertification is greatly affected by natural factors compared with anthropogenic factors. For the desertification in China, we are greatly convinced that desertification prevention is better than control. PMID:28004798

  1. 40 CFR 69.41 - New exemptions.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... operating specifications. At a minimum, the wind direction data will be monitored, collected and reported as 1-hour averages, starting on the hour. If the average wind direction for a given hour is from within the designated sector, the wind will be deemed to have flowed from within the sector for that hour...

  2. 40 CFR 69.41 - New exemptions.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... operating specifications. At a minimum, the wind direction data will be monitored, collected and reported as 1-hour averages, starting on the hour. If the average wind direction for a given hour is from within the designated sector, the wind will be deemed to have flowed from within the sector for that hour...

  3. Wind turbine having a direct-drive drivetrain

    DOEpatents

    Bevington, Christopher M.; Bywaters, Garrett L.; Coleman, Clint C.; Costin, Daniel P.; Danforth, William L.; Lynch, Jonathan A.; Rolland, Robert H.

    2011-02-22

    A wind turbine comprising an electrical generator that includes a rotor assembly. A wind rotor that includes a wind rotor hub is directly coupled to the rotor assembly via a simplified connection. The wind rotor and generator rotor assembly are rotatably mounted on a central spindle via a bearing assembly. The wind rotor hub includes an opening having a diameter larger than the outside diameter of the central spindle adjacent the bearing assembly so as to allow access to the bearing assembly from a cavity inside the wind rotor hub. The spindle is attached to a turret supported by a tower. Each of the spindle, turret and tower has an interior cavity that permits personnel to traverse therethrough to the cavity of the wind rotor hub. The wind turbine further includes a frictional braking system for slowing, stopping or keeping stopped the rotation of the wind rotor and rotor assembly.

  4. The dune effect on sand-transporting winds on Mars.

    PubMed

    Jackson, Derek W T; Bourke, Mary C; Smyth, Thomas A G

    2015-11-05

    Wind on Mars is a significant agent of contemporary surface change, yet the absence of in situ meteorological data hampers the understanding of surface-atmospheric interactions. Airflow models at length scales relevant to landform size now enable examination of conditions that might activate even small-scale bedforms (ripples) under certain contemporary wind regimes. Ripples have the potential to be used as modern 'wind vanes' on Mars. Here we use 3D airflow modelling to demonstrate that local dune topography exerts a strong influence on wind speed and direction and that ripple movement likely reflects steered wind direction for certain dune ridge shapes. The poor correlation of dune orientation with effective sand-transporting winds suggests that large dunes may not be mobile under modelled wind scenarios. This work highlights the need to first model winds at high resolution before inferring regional wind patterns from ripple movement or dune orientations on the surface of Mars today.

  5. The dune effect on sand-transporting winds on Mars

    PubMed Central

    Jackson, Derek W. T.; Bourke, Mary C; Smyth, Thomas A. G.

    2015-01-01

    Wind on Mars is a significant agent of contemporary surface change, yet the absence of in situ meteorological data hampers the understanding of surface–atmospheric interactions. Airflow models at length scales relevant to landform size now enable examination of conditions that might activate even small-scale bedforms (ripples) under certain contemporary wind regimes. Ripples have the potential to be used as modern ‘wind vanes' on Mars. Here we use 3D airflow modelling to demonstrate that local dune topography exerts a strong influence on wind speed and direction and that ripple movement likely reflects steered wind direction for certain dune ridge shapes. The poor correlation of dune orientation with effective sand-transporting winds suggests that large dunes may not be mobile under modelled wind scenarios. This work highlights the need to first model winds at high resolution before inferring regional wind patterns from ripple movement or dune orientations on the surface of Mars today. PMID:26537669

  6. Comparison of surface wind stress measurements - Airborne radar scatterometer versus sonic anemometer

    NASA Technical Reports Server (NTRS)

    Brucks, J. T.; Leming, T. D.; Jones, W. L.

    1980-01-01

    Sea surface wind stress measurements recorded by a sonic anemometer are correlated with airborne scatterometer measurements of ocean roughness (cross section of radar backscatter) to establish the accuracy of remotely sensed data and assist in the definition of geophysical algorithms for the scatterometer sensor aboard Seasat A. Results of this investigation are as follows: Comparison of scatterometer and sonic anemometer wind stress measurements are good for the majority of cases; however, a tendency exists for scatterometer wind stress to be somewhat high for higher wind conditions experienced in this experiment (6-9 m/s). The scatterometer wind speed algorithm tends to overcompute the higher wind speeds by approximately 0.5 m/s. This is a direct result of the scatterometer overestimate of wind stress from which wind speeds are derived. Algorithmic derivations of wind speed and direction are, in most comparisons, within accuracies defined by Seasat A scatterometer sensor specifications.

  7. Air Pollution and urban climatology at Norfolk, Virginia

    Treesearch

    W. Maurice Pritchard; Kuldip P. Chopra

    1977-01-01

    The atmosphere at Norfolk is usually stable, with no strongly prevailing wind direction. Linear regression analyses of visibility data indicate a generally decreasing visibility trend between 1960 and 1972, with a possible trend reversal in later years. A 44 percent increase in the annual frequency of 0-4-mile visibility occurred in 1960-72. Similar analyses of...

  8. Martian Morse Code

    NASA Image and Video Library

    2016-06-29

    These dark dunes are influenced by local topography. The shape and orientation of dunes can usually tell us about wind direction, but in this image, the dune-forms are very complex, so it's difficult to know the wind direction. However, a circular depression (probably an old and infilled impact crater) has limited the amount of sand available for dune formation and influenced local winds. As a result, the dunes here form distinct dots and dashes. The "dashes" are linear dunes formed by bi-directional winds, which are not traveling parallel to the dune. Instead, the combined effect of winds from two directions at right angles to the dunes, funnels material into a linear shape. The smaller "dots" (called "barchanoid dunes") occur where there is some interruption to the process forming those linear dunes. This process is not well understood at present and is one motivation for HiRISE to image this area. http://photojournal.jpl.nasa.gov/catalog/PIA20735

  9. Calibration of a Direct Detection Doppler Wind Lidar System using a Wind Tunnel

    NASA Astrophysics Data System (ADS)

    Rees, David

    2012-07-01

    As a critical stage of a Project to develop an airborne Direct-Detection Doppler Wind Lidar System, it was possible to exploit a Wind Tunnel of the VZLU, Prague, Czech Republic for a comprehensive series of tests against calibrated Air Speed generated by the Wind Tunnel. The initial results from these test sequences will be presented. The rms wind speed errors were of order 0.25 m/sec - very satisfactory for this class of Doppler Wind Lidar measurements. The next stage of this Project will exploit a more highly-developed laser and detection system for measurements of wind shear, wake vortex and other potentially hazardous meteorological phenomena at Airports. Following the end of this Project, key parts of the instrumentation will be used for routine ground-based Doppler Wind Lidar measurements of the troposphere and stratosphere.

  10. Periodic Alpha Signatures and the Origins of the Slow Solar Wind

    NASA Astrophysics Data System (ADS)

    Blume, Catherine; Kepko, Larry

    2017-01-01

    The origin of the slow solar wind has puzzled scientists for decades. Both flux tube geometry of field lines open to the heliosphere and magnetic reconnection that opens field lines that were previously closed to the heliosphere have been proposed as explanations (via the expansion factor and S-web models, respectively), but the observations to date have proven an inadequate test for distinguishing between the theories. However, short term (~hours) variability of alpha particles could provide the set of observations that tips the balance. Alpha particles compose about 4% of the solar wind, and its precise composition is determined by dynamics in the solar atmosphere. Therefore, compositional changes in the alpha to proton ratio must have originated at the Sun, making alphs tracer particles of sorts and carrying signatures of their solar creation. We examined in situ alpha density and proton density data from the Wind, ACE, STEREO-B, AND STEREO-A spacecraft, focusing on a pseudostreamer that occurred August 9, 2008. This case study found one clear periodic structure in the slow solar wind preceding the pseudostreamer in Wind/ACE and the same periodic structure in the in situ data at STEREO-B. The existence of this slow wind structure in association with a pseudostreamer directly contradicts the expansion factor model, which predicts that pseudostreamers produce fast wind. The structure's appearance at STEREO-B, which was located 30 degrees behind the Earth-Sun line, further indicates that the mechanism at the Sun is responsible for its formation was active for at least three days. Moreover, an analysis of both helmet streamer and pseudostreamer events between 2007-2009 finds that similar density structures exist in at least 35% of all streamers. This indicates that the same physical process that produces this slow solar wind occurs with a degree of frequency in association with both types of streamers. The clarity, duration, and frequency of these periodic density structures seem to support the S-web model over the expansion factor model and can provide additional constrains to slow solar wind models moving forward.

  11. Average dimension and magnetic structure of the distant Venus magnetotail

    NASA Technical Reports Server (NTRS)

    Saunders, M. A.; Russell, C. T.

    1986-01-01

    The first major statistical investigation of the far wake of an unmagnetized object embedded in the solar wind is reported. The investigation is based on Pioneer Venus Orbiter magnetometer data from 70 crossings of the Venus wake at altitudes between 5 and 11 Venus radii during reasonably steady IMF conditions. It is found that Venus has a well-developed-tail, flaring with altitude and possibly broader in the direction parallel to the IMF cross-flow component. Tail lobe field polarities and the direction of the cross-tail field are consistent with tail accretion from the solar wind. Average values for the cross-tail field (2 nT) and the distant tail flux (3 MWb) indicate that most distant tail field lines close across the center of the tail and are not rooted in the Venus ionosphere. The findings are illustrated in a three-dimensional schematic.

  12. 14C content in vegetation in the vicinities of Brazilian nuclear power reactors.

    PubMed

    Dias, Cíntia Melazo; Santos, Roberto Ventura; Stenström, Kristina; Nícoli, Iêda Gomes; Skog, Göran; da Silveira Corrêa, Rosangela

    2008-07-01

    (14)C specific activities were measured in grass samples collected around Brazilian nuclear power reactors. The specific activity values varied between 227 and 299 Bq/kg C. Except for two samples which showed (14)C specific activities 22% above background values, half of the samples showed background specific activities, and the other half had a (14)C excess of 1-18%. The highest specific activities were found close to the nuclear power plants and along the main wind directions (NE and NNE). The activity values were found to decrease with increasing distance from the reactors. The unexpectedly high (14)C excess values found in two samples were related to the local topography, which favors (14)C accumulation and limits the dispersion of the plume. The results indicate a clear (14)C anthropogenic signal within 5 km around the nuclear power plants which is most prominent along northeastwards, the prevailing wind direction.

  13. A high resolution WRF model for wind energy forecasting

    NASA Astrophysics Data System (ADS)

    Vincent, Claire Louise; Liu, Yubao

    2010-05-01

    The increasing penetration of wind energy into national electricity markets has increased the demand for accurate surface layer wind forecasts. There has recently been a focus on forecasting the wind at wind farm sites using both statistical models and numerical weather prediction (NWP) models. Recent advances in computing capacity and non-hydrostatic NWP models means that it is possible to nest mesoscale models down to Large Eddy Simulation (LES) scales over the spatial area of a typical wind farm. For example, the WRF model (Skamarock 2008) has been run at a resolution of 123 m over a wind farm site in complex terrain in Colorado (Liu et al. 2009). Although these modelling attempts indicate a great hope for applying such models for detailed wind forecasts over wind farms, one of the obvious challenges of running the model at this resolution is that while some boundary layer structures are expected to be modelled explicitly, boundary layer eddies into the inertial sub-range can only be partly captured. Therefore, the amount and nature of sub-grid-scale mixing that is required is uncertain. Analysis of Liu et al. (2009) modelling results in comparison to wind farm observations indicates that unrealistic wind speed fluctuations with a period of around 1 hour occasionally occurred during the two day modelling period. The problem was addressed by re-running the same modelling system with a) a modified diffusion constant and b) two-way nesting between the high resolution model and its parent domain. The model, which was run with horizontal grid spacing of 370 m, had dimensions of 505 grid points in the east-west direction and 490 points in the north-south direction. It received boundary conditions from a mesoscale model of resolution 1111 m. Both models had 37 levels in the vertical. The mesoscale model was run with a non-local-mixing planetary boundary layer scheme, while the 370 m model was run with no planetary boundary layer scheme. It was found that increasing the diffusion constant caused damping of the unrealistic fluctuations, but did not completely solve the problem. Using two-way nesting also mitigated the unrealistic fluctuations significantly. It can be concluded that for real case LES modelling of wind farm circulations, care should be taken to ensure the consistency between the mesoscale weather forcing and LES models to avoid exciting spurious noise along the forcing boundary. The development of algorithms that adequately model the sub-grid-scale mixing that cannot be resolved by LES models is an important area for further research. References Liu, Y. Y._W. Liu, W. Y.Y. Cheng, W. Wu, T. T. Warner and K. Parks, 2009: Simulating intra-farm wind variations with the WRF-RTFDDA-LES modeling system. 10th WRF Users' Workshop, Boulder, C, USA. June 23 - 26, 2009. Skamarock, W., J. Dudhia, D.O. Gill, D.M. Barker, M.G.Duda, X-Y. Huang, W. Wang and J.G. Powers, A Description of the Advanced Research WRF version 3, NCAR Technical Note TN-475+STR, NCAR, Boulder, Colorado, 2008.

  14. Direct monitoring of wind-induced pressure-pumping on gas transport in soil

    NASA Astrophysics Data System (ADS)

    Laemmel, Thomas; Mohr, Manuel; Schindler, Dirk; Schack-Kirchner, Helmer; Maier, Martin

    2017-04-01

    Gas exchange between soil and atmosphere is important for the biogeochemistry of soils and is commonly assumed to be governed by molecular diffusion. Yet a few previous field studies identified other gas transport processes such as wind-induced pressure-pumping to enhance soil-atmosphere fluxes significantly. However, since these wind-induced non-diffusive gas transport processes in soil often occur intermittently, the quantification of their contribution to soil gas emissions is challenging. To quantify the effects of wind-induced pressure-pumping on soil gas transport, we developed a method for in situ monitoring of soil gas transport. The method includes the use of Helium (He) as a tracer gas which was continuously injected into the soil. The resulting He steady-state concentration profile was monitored. Gas transport parameters of the soil were inversely modelled. We used our method during a field campaign in a well-aerated forest soil over three months. During periods of low wind speed, soil gas transport was modelled assuming diffusion as transport process. During periods of high wind speed, the previously steady diffusive He concentration profile showed temporary concentration decreases in the topsoil, indicating an increase of the effective gas transport rate in the topsoil up to 30%. The enhancement of effective topsoil soil gas diffusivity resulted from wind-induced air pressure fluctuations which are referred to as pressure-pumping. These air pressure fluctuations had frequencies between 0.1 and 0.01 Hz and amplitudes up to 10 Pa and occurred at above-canopy wind speeds greater than 5 m s-1. We could show the importance of the enhancement of the gas transport rate in relation with the wind intensity and corresponding air pressure fluctuations characteristics. We directly detected and quantified the pressure-pumping effect on gas transport in soil in a field study for the first time, and could thus validate and underpin the importance of this non-diffusive gas transport process. Our method can also be used to study other non-diffusive gas transport processes occurring in soil and snow, and their possible feedbacks or interactions with biogeochemical processes.

  15. Analysis of environmental dispersion in a wetland flow under the effect of wind: Extended solution

    NASA Astrophysics Data System (ADS)

    Wang, Huilin; Huai, Wenxin

    2018-02-01

    The accurate analysis of the contaminant transport process in wetland flows is essential for environmental assessment. However, dispersivity assessment becomes complicated when the wind strength and direction are taken into consideration. Prior studies illustrating the wind effect on environmental dispersion in wetland flows simply focused on the mean longitudinal concentration distribution. Moreover, the results obtained by these analyses are not accurate when done on a smaller scale, namely, the initial stage of the contaminant transport process. By combining the concentration moments method (the Aris' method) and Gill's expansion theory, the previous researches on environmental dispersion in wetland flows with effect of wind have been extended. By adopting up to 4th-order moments, the wind effect-as illustrated by dimensionless parameters Er (wind force) and ω (wind direction)-on kurtosis and skewness is discussed, the up to 4th-order vertical concentration distribution is obtained, and the two-dimensional concentration distribution is illustrated. This work demonstrates that wind intensity and direction can significantly affect the contaminant dispersion. Moreover, the study presents a more accurate analytical solution of environmental dispersion in wetland flows under various wind conditions.

  16. Supporting data for hydrologic studies in San Francisco Bay, California : meteorological measurements at the Port of Redwood City during 1998-2001

    USGS Publications Warehouse

    Schemel, Laurence E.

    2002-01-01

    Meteorological data were collected during 1998-2001 at the Port of Redwood City, California, to support hydrologic studies in South San Francisco Bay. The measured meteorological variables were air temperature, atmospheric pressure, quantum flux (insolation), and four parameters of wind speed and direction: scalar mean horizontal wind speed, (vector) resultant horizontal wind speed, resultant wind direction, and standard deviation of the wind direction. Hourly mean values based on measurements at five-minute intervals were logged at the site. Daily mean values were computed for temperature, infolation, pressure, and scalar wind speed. Daily mean values for 1998-2001 are described in this report, and a short record of hourly mean values is compared to data from another near-by station. Data (hourly and daily mean) from the entire period of record (starting in April 1992) and reports describing data prior to 1998 are provided.

  17. A Numerical Model Study of Nocturnal Drainage Flows with Strong Wind and Temperature Gradients.

    NASA Astrophysics Data System (ADS)

    Yamada, T.; Bunker, S.

    1989-07-01

    A second-moment turbulence-closure model described in Yamada and Bunker is used to simulate nocturnal drainage flows observed during the 1984 ASCOT field expedition in Brush Creek, Colorado. In order to simulate the observed strong wind directional shear and temperature gradients, two modifications are added to the model. The strong wind directional shear was maintained by introducing a `nudging' term in the equation of motion to guide the modeled winds in the layers above the ridge top toward the observed wind direction. The second modification was accomplished by reformulating the conservation equation for the potential temperature in such a way that only the deviation from the horizontally averaged value was prognostically computed.The vegetation distribution used in this study is undoubtedly crude. Nevertheless, the present simulation suggests that tall tree canopy can play an important role in producing inhomogeneous wind distribution, particularly in the levels below the canopy top.

  18. Multifractal scaling of the kinetic energy flux in solar wind turbulence

    NASA Technical Reports Server (NTRS)

    Marsch, E.; Rosenbauer, H.; Tu, C.-Y.

    1995-01-01

    The geometrical and scaling properties of the energy flux of the turbulent kinetic energy in the solar wind have been studied. By present experimental technology in solar wind measurements, we cannot directly measure the real volumetric dissipation rate, epsilon(t), but are constrained to represent it by surrogating the energy flux near the dissipation range at the proton gyro scales. There is evidence for the multifractal nature of the so defined dissipation field epsilon(t), a result derived from the scaling exponents of its statistical q-th order moments. The related generalized dimension D(q) has been determined and reveals that the dissipation field has a multifractal structure. which is not compatible with a scale-invariant cascade. The associated multifractal spectrum f(alpha) has been estimated for the first time for MHD turbulence in the solar wind. Its features resemble those obtained for turbulent fluids and other nonlinear multifractal systems. The generalized dimension D(q) can, for turbulence in high-speed streams, be fitted well by the functional dependence of the p-model with a comparatively large parameter, p = 0.87. indicating a strongly intermittent multifractal energy cascade. The experimental value for D(p)/3, if used in the scaling exponent s(p) of the velocity structure function, gives an exponent that can describe some of the observations. The scaling exponent mu of the auto correlation function of epsilon(t) has also been directly evaluated. It has the value of 0.37. Finally. the mean dissipation rate was determined, which could be used in solar wind heating models.

  19. Forecasting surface-layer atmospheric parameters at the Large Binocular Telescope site

    NASA Astrophysics Data System (ADS)

    Turchi, Alessio; Masciadri, Elena; Fini, Luca

    2017-04-01

    In this paper, we quantify the performance of an automated weather forecast system implemented on the Large Binocular Telescope (LBT) site at Mt Graham (Arizona) in forecasting the main atmospheric parameters close to the ground. The system employs a mesoscale non-hydrostatic numerical model (Meso-Nh). To validate the model, we compare the forecasts of wind speed, wind direction, temperature and relative humidity close to the ground with the respective values measured by instrumentation installed on the telescope dome. The study is performed over a large sample of nights uniformly distributed over 2 yr. The quantitative analysis is done using classical statistical operators [bias, root-mean-square error (RMSE) and σ] and contingency tables, which allows us to extract complementary key information, such as the percentage of correct detections (PC) and the probability of obtaining a correct detection within a defined interval of values (POD). The results of our study indicate that the model performance in forecasting the atmospheric parameters we have just cited are very good, in some cases excellent: RMSE for temperature is below 1°C, for relative humidity it is 14 per cent and for the wind speed it is around 2.5 m s-1. The relative error of the RMSE for wind direction varies from 9 to 17 per cent depending on the wind speed conditions. This work is performed in the context of the ALTA (Advanced LBT Turbulence and Atmosphere) Center project, whose final goal is to provide forecasts of all the atmospheric parameters and the optical turbulence to support LBT observations, adaptive optics facilities and interferometric facilities.

  20. An Electronic Weather Vane for Field Science

    ERIC Educational Resources Information Center

    Burman, J.; Talbert, R.; Carlton, K.

    2014-01-01

    This paper details the construction of a weather vane for the measurement of wind direction in field situations. The purpose of its construction was to analyse how wind direction affected the attractiveness of an insect pheromone in a dynamic outdoor environment, where wind could be a significant contributor to odour movement. The apparatus…

  1. Assessment of Wind Parameter Sensitivity on Ultimate and Fatigue Wind Turbine Loads: Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Robertson, Amy N; Sethuraman, Latha; Jonkman, Jason

    Wind turbines are designed using a set of simulations to ascertain the structural loads that the turbine could encounter. While mean hub-height wind speed is considered to vary, other wind parameters such as turbulence spectra, sheer, veer, spatial coherence, and component correlation are fixed or conditional values that, in reality, could have different characteristics at different sites and have a significant effect on the resulting loads. This paper therefore seeks to assess the sensitivity of different wind parameters on the resulting ultimate and fatigue loads on the turbine during normal operational conditions. Eighteen different wind parameters are screened using anmore » Elementary Effects approach with radial points. As expected, the results show a high sensitivity of the loads to the turbulence standard deviation in the primary wind direction, but the sensitivity to wind shear is often much greater. To a lesser extent, other wind parameters that drive loads include the coherence in the primary wind direction and veer.« less

  2. Assessment of Wind Parameter Sensitivity on Extreme and Fatigue Wind Turbine Loads

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Robertson, Amy N; Sethuraman, Latha; Jonkman, Jason

    Wind turbines are designed using a set of simulations to ascertain the structural loads that the turbine could encounter. While mean hub-height wind speed is considered to vary, other wind parameters such as turbulence spectra, sheer, veer, spatial coherence, and component correlation are fixed or conditional values that, in reality, could have different characteristics at different sites and have a significant effect on the resulting loads. This paper therefore seeks to assess the sensitivity of different wind parameters on the resulting ultimate and fatigue loads on the turbine during normal operational conditions. Eighteen different wind parameters are screened using anmore » Elementary Effects approach with radial points. As expected, the results show a high sensitivity of the loads to the turbulence standard deviation in the primary wind direction, but the sensitivity to wind shear is often much greater. To a lesser extent, other wind parameters that drive loads include the coherence in the primary wind direction and veer.« less

  3. Influence of wind on daily airborne pollen counts in Catalonia (NE Iberian Peninsula)

    NASA Astrophysics Data System (ADS)

    tareq Majeed, Husam; Periago, Cristina; Alarcón, Marta; De Linares, Concepción; Belmonte, Jordina

    2016-04-01

    The aim of this study is to analize the influence of wind (speed and direction) on the daily airborne pollen counts recorded in Catalonia (NE Iberian Peninsula) of 21 pollen taxa recorded at 6 aerobiological stations: Barcelona, Bellaterra, Girona, Lleida Manresa, and Tarragona for the period 2004-2014. The taxa studied are Alnus, Betula, Castanea, Cupressaceae, Fagus, Fraxinus, Olea, Pinus, Platanus, total Quercus, Quercus deciduous type, Quercus evergreen type, Ulmus, Corylus, Pistacia, Artemisia, Chenopodiaceae/Amaranthaceae, Plantago, Poaceae, Polygonaceae, and Urticaceae. The mean daily wind direction was divided into 8 sectors: N, NE, E, SE, S, SW, W and NW. For each sector, the correlation between the daily pollen concentrations and wind speed using Spearman's rank correlation coefficient was computed and compared with the wind rose charts. The results showed that Tarragona was the station with more significant correlations followed by Bellaterra, Lleida and Manresa. On the other hand, Artemisia was the most correlated taxon with mainly negative values, and Fagus was the least. The W wind direction showed the largest number of significant correlations, mostly positive, while the N direction was the least and negatively correlated.

  4. Wind reconstruction algorithm for Viking Lander 1

    NASA Astrophysics Data System (ADS)

    Kynkäänniemi, Tuomas; Kemppinen, Osku; Harri, Ari-Matti; Schmidt, Walter

    2017-06-01

    The wind measurement sensors of Viking Lander 1 (VL1) were only fully operational for the first 45 sols of the mission. We have developed an algorithm for reconstructing the wind measurement data after the wind measurement sensor failures. The algorithm for wind reconstruction enables the processing of wind data during the complete VL1 mission. The heater element of the quadrant sensor, which provided auxiliary measurement for wind direction, failed during the 45th sol of the VL1 mission. Additionally, one of the wind sensors of VL1 broke down during sol 378. Regardless of the failures, it was still possible to reconstruct the wind measurement data, because the failed components of the sensors did not prevent the determination of the wind direction and speed, as some of the components of the wind measurement setup remained intact for the complete mission. This article concentrates on presenting the wind reconstruction algorithm and methods for validating the operation of the algorithm. The algorithm enables the reconstruction of wind measurements for the complete VL1 mission. The amount of available sols is extended from 350 to 2245 sols.

  5. Wind and fairness in ski jumping: A computer modelling analysis.

    PubMed

    Jung, Alexander; Müller, Wolfram; Staat, Manfred

    2018-06-25

    Wind is closely associated with the discussion of fairness in ski jumping. To counter-act its influence on the jump length, the International Ski Federation (FIS) has introduced a wind compensation approach. We applied three differently accurate computer models of the flight phase with wind (M1, M2, and M3) to study the jump length effects of various wind scenarios. The previously used model M1 is accurate for wind blowing in direction of the flight path, but inaccuracies are to be expected for wind directions deviating from the tangent to the flight path. M2 considers the change of airflow direction, but it does not consider the associated change in the angle of attack of the skis which additionally modifies drag and lift area time functions. M3 predicts the length effect for all wind directions within the plane of the flight trajectory without any mathematical simplification. Prediction errors of M3 are determined only by the quality of the input data: wind velocity, drag and lift area functions, take-off velocity, and weight. For comparing the three models, drag and lift area functions of an optimized reference jump were used. Results obtained with M2, which is much easier to handle than M3, did not deviate noticeably when compared to predictions of the reference model M3. Therefore, we suggest to use M2 in future applications. A comparison of M2 predictions with the FIS wind compensation system showed substantial discrepancies, for instance: in the first flight phase, tailwind can increase jump length, and headwind can decrease it; this is opposite of what had been anticipated before and is not considered in the current wind compensation system in ski jumping. Copyright © 2018 Elsevier Ltd. All rights reserved.

  6. Wind-induced structural response of a large telescope

    NASA Astrophysics Data System (ADS)

    Smith, David R.; Avitabile, Peter; Gwaltney, Geoff; Cho, Myung; Sheehan, Michael

    2004-09-01

    In May of 2000, the construction progress of the Gemini South 8m telescope at Cerro Pachon in Chile was such that the telescope and dome were installed and able to move, but the primary mirror had not been installed. This provided a unique opportunity to make extensive tests of the structure in its nearly-completed state, including a modal impact test and simultaneous measurements of wind pressure and structural response. The testing was even more comprehensive because the Gemini dome design allows for a wide range of wind flow configurations, from nearly enclosed to almost fully exposed. In these tests, the operating response of 24 surface pressures on the primary mirror cell, 5 wind velocity channels (each with direction vector information), and more than 70 channels of accelerometers on the telescope structure were measured. The data were taken in a variety of wind loading configurations. While previous analysis efforts have focused on the wind velocity and pressure measurement, this paper investigates the dynamic behavior of the telescope structure itself. Specifically, the discussion includes the participation of the modes measured in the modal impact test as a function of wind loading configuration. Data that indicate the most important frequency ranges in the operating response of the telescope are also presented. Finally, the importance of the response of the enclosure on the structural vibration of the telescope structure is discussed.

  7. WIND1 Promotes Shoot Regeneration through Transcriptional Activation of ENHANCER OF SHOOT REGENERATION1 in Arabidopsis[OPEN

    PubMed Central

    Ohnuma, Mariko; Kurata, Tetsuya; Nakata, Masaru; Ohme-Takagi, Masaru

    2017-01-01

    Many plant species display remarkable developmental plasticity and regenerate new organs after injury. Local signals produced by wounding are thought to trigger organ regeneration but molecular mechanisms underlying this control remain largely unknown. We previously identified an AP2/ERF transcription factor WOUND INDUCED DEDIFFERENTIATION1 (WIND1) as a central regulator of wound-induced cellular reprogramming in plants. In this study, we demonstrate that WIND1 promotes callus formation and shoot regeneration by upregulating the expression of the ENHANCER OF SHOOT REGENERATION1 (ESR1) gene, which encodes another AP2/ERF transcription factor in Arabidopsis thaliana. The esr1 mutants are defective in callus formation and shoot regeneration; conversely, its overexpression promotes both of these processes, indicating that ESR1 functions as a critical driver of cellular reprogramming. Our data show that WIND1 directly binds the vascular system-specific and wound-responsive cis-element-like motifs within the ESR1 promoter and activates its expression. The expression of ESR1 is strongly reduced in WIND1-SRDX dominant repressors, and ectopic overexpression of ESR1 bypasses defects in callus formation and shoot regeneration in WIND1-SRDX plants, supporting the notion that ESR1 acts downstream of WIND1. Together, our findings uncover a key molecular pathway that links wound signaling to shoot regeneration in plants. PMID:28011694

  8. The potential for geostationary remote sensing of NO2 to improve weather prediction

    NASA Astrophysics Data System (ADS)

    Liu, X.; Mizzi, A. P.; Anderson, J. L.; Fung, I. Y.; Cohen, R. C.

    2016-12-01

    Observations of surface winds remain sparse making it challenging to simulate and predict the weather in circumstances of light winds that are most important for poor air quality. Direct measurements of short-lived chemicals from space might be a solution to this challenge. Here we investigate the application of data assimilation of NO­2 columns as will be observed from geostationary orbit to improve predictions and retrospective analysis of surface wind fields. Specifically, synthetic NO2 observations are sampled from a "nature run (NR)" regarded as the true atmosphere. Then NO2 observations are assimilated using EAKF methods into a "control run (CR)" which differs from the NR in the wind field. Wind errors are generated by introducing (1) errors in the initial conditions, (2) creating a model error by using two different formulations for the planetary boundary layer, (3) and by combining both of these effects. The assimilation reduces wind errors by up to 50%, indicating the prospects for future geostationary atmospheric composition measurements to improve weather forecasting are substantial. We also examine the assimilation sensitivity to the data assimilation window length. We find that due to the temporal heterogeneity of wind errors, the success of this application favors chemical observations of high frequency, such as those from geostationary platform. We also show the potential to improve soil moisture field by assimilating NO­2 columns.

  9. Direct mechanical torque sensor for model wind turbines

    NASA Astrophysics Data System (ADS)

    Kang, Hyung Suk; Meneveau, Charles

    2010-10-01

    A torque sensor is developed to measure the mechanical power extracted by model wind turbines. The torque is measured by mounting the model generator (a small dc motor) through ball bearings to the hub and by preventing its rotation by the deflection of a strain-gauge-instrumented plate. By multiplying the measured torque and rotor angular velocity, a direct measurement of the fluid mechanical power extracted from the flow is obtained. Such a measurement is more advantageous compared to measuring the electrical power generated by the model generator (dc motor), since the electrical power is largely affected by internal frictional, electric and magnetic losses. Calibration experiments are performed, and during testing, the torque sensor is mounted on a model wind turbine in a 3 rows × 3 columns array of wind turbines in a wind tunnel experiment. The resulting electrical and mechanical powers are quantified and compared over a range of applied loads, for three different incoming wind velocities. Also, the power coefficients are obtained as a function of the tip speed ratio. Significant differences between the electrical and mechanical powers are observed, which highlights the importance of using the direct mechanical power measurement for fluid dynamically meaningful results. A direct calibration with the measured current is also explored. The new torque sensor is expected to contribute to more accurate model wind tunnel tests which should provide added flexibility in model studies of the power that can be harvested from wind turbines and wind-turbine farms.

  10. Windstorm Impact Reduction Implementation Plan

    DTIC Science & Technology

    2007-01-01

    wind events, including hurricanes, tornadoes and straight line winds from thunderstorms. This information is repeated in brief during severe weather...event documentation and damage analyses. Better understanding of atmospheric dynamics of straight - line winds Wind observing systems and...Developed techniques for improved extreme wind speed maps Investigation of straight - line winds Wind speed and direction analysis for input to

  11. Study on typhoon characteristic based on bridge health monitoring system.

    PubMed

    Wang, Xu; Chen, Bin; Sun, Dezhang; Wu, Yinqiang

    2014-01-01

    Through the wind velocity and direction monitoring system installed on Jiubao Bridge of Qiantang River, Hangzhou city, Zhejiang province, China, a full range of wind velocity and direction data was collected during typhoon HAIKUI in 2012. Based on these data, it was found that, at higher observed elevation, turbulence intensity is lower, and the variation tendency of longitudinal and lateral turbulence intensities with mean wind speeds is basically the same. Gust factor goes higher with increasing mean wind speed, and the change rate obviously decreases as wind speed goes down and an inconspicuous increase occurs when wind speed is high. The change of peak factor is inconspicuous with increasing time and mean wind speed. The probability density function (PDF) of fluctuating wind speed follows Gaussian distribution. Turbulence integral scale increases with mean wind speed, and its PDF does not follow Gaussian distribution. The power spectrum of observation fluctuating velocity is in accordance with Von Karman spectrum.

  12. Mountain Breathing Revisited-the Hyperventilation of a Volcano Cinder Cone.

    NASA Astrophysics Data System (ADS)

    Woodcock, Alfred H.

    1987-02-01

    During 23 hours of fresh to strong winds in December 1975, air flowed rapidly and continuously out of a drill hole in the top of the summit cone of Mauna Kea volcano, Hawaii. Measurements made during this outflow indicate that the air entered the mountain dry and cold, but flowed out relatively wet and warm, resulting in an average latent- and sensible-heat loss from the cone interior of about 116 W·m2. A sensitive vane anemometer, and thermistor and mercury-in-glass thermometers, were used to make these observations.Published observations made during moderate winds in this and a second drill hole had revealed relatively low air and heat flow rates, alternating daily into as well as out of the cone, with outflow generally during the day and inflow largely at night. The diurnal differences in the flow direction suggested that the well-known, semidiurnal atmospheric-pressure changes were the main cause of the air "breathing" within the cone. The latent-heat outflow in moderate winds was about 4 W·m2.The continuous outflow observations presented here indicate that wind speed has a marked if not dominant effect on the airflow and heat flow from the Mauna Kea summit cones, and that the resulting cooling during one day of strong winds can equal that of ten or more days of lower winds. This intense local cooling may explain the long survival of permafrost on Mauna Kea, and underscores the potential of air-land interaction in altering the internal air pressure and heat and water distribution in the cinder cones of Mauna Kea and perhaps in other volcanoes as well.

  13. The roles of direct input of energy from the solar wind and unloading of stored magnetotail energy in driving magnetospheric substorms

    NASA Technical Reports Server (NTRS)

    Rostoker, G.; Akasofu, S. I.; Baumjohann, W.; Kamide, Y.; Mcpherron, R. L.

    1987-01-01

    The contributions to the substorm expansive phase of direct energy input from the solar wind and from energy stored in the magnetotail which is released in an unpredictable manner are considered. Two physical processes for the dispensation of the energy input from the solar wind are identified: (1) a driven process in which energy supplied from the solar wind is directly dissipated in the ionosphere; and (2) a loading-unloading process in which energy from the solar wind is first stored in the magnetotail and then is suddenly released to be deposited in the ionosphere. The pattern of substorm development in response to changes in the interplanetary medium has been elucidated for a canonical isolated substorm.

  14. The Potential of Combined Heat and Power Generation, Wind Power Generation and Load Management Techniques for Cost Reduction in Small Electricity Supply Systems.

    NASA Astrophysics Data System (ADS)

    Bass, Jeremy Hugh

    Available from UMI in association with The British Library. Requires signed TDF. An evaluation is made of the potential fuel and financial savings possible when a small, autonomous diesel system sized to meet the demands of an individual, domestic consumer is adapted to include: (1) combined heat and power (CHP) generation, (2) wind turbine generation, (3) direct load control. The potential of these three areas is investigated by means of time-step simulation modelling on a microcomputer. Models are used to evaluate performance and a Net Present Value analysis used to assess costs. A cost/benefit analysis then enables those areas, or combination of areas, that facilitate and greatest savings to be identified. The modelling work is supported by experience gained from the following: (1) field study of the Lundy Island wind/diesel system, (2) laboratory testing of a small diesel generator set, (3) study of a diesel based CHP unit, (4) study of a diesel based direct load control system, (5) statistical analysis of data obtained from the long-term monitoring of a large number of individual household's electricity consumption. Rather than consider the consumer's electrical demand in isolation, a more flexible approach is adopted, with consumer demand being regarded as the sum of primarily two components: a small, electricity demand for essential services and a large, reschedulable demand for heating/cooling. The results of the study indicate that: (1) operating a diesel set in a CHP mode is the best strategy for both financial and fuel savings. A simple retrofit enables overall conversion efficiencies to be increased from 25% to 60%, or greater, at little cost. (2) wind turbine generation in association with direct load control is a most effective combination. (3) a combination of both the above areas enables greatest overall financial savings, in favourable winds resulting in unit energy costs around 20% of those of diesel only operation.

  15. North Atlantic Surface Winds Examined as the Source of Warm Advection into Europe in Winter

    NASA Technical Reports Server (NTRS)

    Otterman, J.; Angell, J. K.; Ardizzone, J.; Atlas, Robert; Schubert, S.; Starr, D.; Wu, M.-L.

    2002-01-01

    When from the southwest, North Atlantic ocean surface winds are known to bring warm and moist airmasses into central Europe in winter. By tracing backward trajectories from western Europe, we establish that these airmasses originate in the southwestern North Atlantic, in the very warm regions of the Gulf Stream. Over the eastern North Atlantic, Lt the gateway to Europe, the ocean-surface winds changed directions in the second half of the XXth century, those from the northwest and from the southeast becoming so infrequent, that the direction from the southwest became even more dominant. For the January-to-March period, the strength of south-westerlies in this region, as well as in the source region, shows in the years 1948-1995 a significant increase, above 0.2 m/sec/ decade. Based on the sensitivity of the surface temperature in Europe, slightly more than 1 C for a 1m/sec increase in the southwesterly wind, found in the previous studies, the trend in the warm advection accounts for a large part of the warming in Europe established for this period in several reports. However, for the most recent years, 1996-2001, the positive trend in the southwesterly advection appears to be is broken, which is consistent with unseasonally cold events reported in Europe in those winters. This study had, some bearing on evaluating the respective roles of the North Atlantic Oscillation and the Greenhouse Gas Global warming, GGG, in the strong winter warming observed for about half a century over the northern-latitude continents. Changes in the ocean-surface temperatures induced by GGG may have produced the dominant southwesterly direction of the North Atlantic winds. However, this implies a monotonically (apart from inherent interannual variability) increasing advection, and if the break in the trend which we observe after 1995 persists, this mechanism is counter-indicated. The 1948-1995 trend in the south-westerlies could then be considered to a large degree attributable to the North Atlantic Oscillation.

  16. Thermospheric density and wind retrieval from Swarm observations

    NASA Astrophysics Data System (ADS)

    Visser, Pieter; Doornbos, Eelco; van den IJssel, Jose; Teixeira da Encarnação, João

    2013-11-01

    The three-satellite ESA Swarm mission aims at mapping the Earth's global geomagnetic field at unprecedented spatial and temporal resolution and precision. Swarm also aims at observing thermospheric density and possibly horizontal winds. Precise orbit determination (POD) and Thermospheric Density and Wind (TDW) chains form part of the Swarm Constellation and Application Facility (SCARF), which will provide the so-called Level 2 products. The POD and TDW chains generate the orbit, accelerometer calibration, and thermospheric density and wind Level 2 products. The POD and TDW chains have been tested with data from the CHAMP and GRACE missions, indicating that a 3D orbit precision of about 10 cm can be reached. In addition, POD allows to determine daily accelerometer bias and scale factor values with a precision of around 10-15 nm/s2 and 0.01-0.02, respectively, for the flight direction. With these accelerometer calibration parameter values, derived thermospheric density is consistent at the 9-11% level (standard deviation) with values predicted by models (taking into account that model values are 20-30% higher). The retrieval of crosswinds forms part of the processing chain, but will be challenging. The Swarm observations will be used for further developing and improving density and wind retrieval algorithms.

  17. Solar Wind Proton Temperature Anisotropy: Linear Theory and WIND/SWE Observations

    NASA Technical Reports Server (NTRS)

    Hellinger, P.; Travnicek, P.; Kasper, J. C.; Lazarus, A. J.

    2006-01-01

    We present a comparison between WIND/SWE observations (Kasper et al., 2006) of beta parallel to p and T perpendicular to p/T parallel to p (where beta parallel to p is the proton parallel beta and T perpendicular to p and T parallel to p are the perpendicular and parallel proton are the perpendicular and parallel proton temperatures, respectively; here parallel and perpendicular indicate directions with respect to the ambient magnetic field) and predictions of the Vlasov linear theory. In the slow solar wind, the observed proton temperature anisotropy seems to be constrained by oblique instabilities, by the mirror one and the oblique fire hose, contrary to the results of the linear theory which predicts a dominance of the proton cyclotron instability and the parallel fire hose. The fast solar wind core protons exhibit an anticorrelation between beta parallel to c and T perpendicular to c/T parallel to c (where beta parallel to c is the core proton parallel beta and T perpendicular to c and T parallel to c are the perpendicular and parallel core proton temperatures, respectively) similar to that observed in the HELIOS data (Marsch et al., 2004).

  18. An efficient, self-orienting, vertical-array, sand trap

    NASA Astrophysics Data System (ADS)

    Hilton, Michael; Nickling, Bill; Wakes, Sarah; Sherman, Douglas; Konlechner, Teresa; Jermy, Mark; Geoghegan, Patrick

    2017-04-01

    There remains a need for an efficient, low-cost, portable, passive sand trap, which can provide estimates of vertical sand flux over topography and within vegetation and which self-orients into the wind. We present a design for a stacked vertical trap that has been modelled (computational fluid dynamics, CFD) and evaluated in the field and in the wind tunnel. The 'swinging' trap orients to within 10° of the flow in the wind tunnel at 8 m s-1, and more rapidly in the field, where natural variability in wind direction accelerates orientation. The CFD analysis indicates flow is steered into the trap during incident wind flow. The trap has a low profile and there is only a small decrease in mass flow rate for multiple traps, poles and rows of poles. The efficiency of the trap was evaluated against an isokinetic sampler and found to be greater than 95%. The centre pole is a key element of the design, minimally decreasing trap efficiency. Finally, field comparisons with the trap of Sherman et al. (2014) yielded comparable estimates of vertical sand flux. The trap described in this paper provides accurate estimates of sand transport in a wide range of field conditions.

  19. Bi-directional vibration control of offshore wind turbines using a 3D pendulum tuned mass damper

    NASA Astrophysics Data System (ADS)

    Sun, C.; Jahangiri, V.

    2018-05-01

    Offshore wind turbines suffer from excessive bi-directional vibrations due to wind-wave misalignment and vortex induced vibrations. However, most of existing research focus on unidirectional vibration attenuation which is inadequate for real applications. The present paper proposes a three dimensional pendulum tuned mass damper (3d-PTMD) to mitigate the tower and nacelle dynamic response in the fore-aft and side-side directions. An analytical model of the wind turbine coupled with the 3d-PTMD is established wherein the interaction between the blades, the tower and the 3d-PTMD is modeled. Aerodynamic loading is computed using the Blade Element Momentum method where the Prandtls tip loss factor and the Glauert correction are considered. JONSWAP spectrum is adopted to generate wave data. Wave loading is computed using Morisons equation in collaboration with the strip theory. Via a numerical search approach, the design formula of the 3d-PTMD is obtained and examined on a National Renewable Energy Lab (NREL) monopile 5 MW baseline wind turbine model under misaligned wind, wave and seismic loading. Dual linear tuned mass dampers (TMDs) deployed in the fore-aft and side-side directions are utilized for comparison. It is found that the 3d-PTMD with a mass ratio of 2 % can improve the mitigation of the root mean square and peak response by around 10 % when compared with the dual linear TMDs in controlling the bi-directional vibration of the offshore wind turbines under misaligned wind, wave and seismic loading.

  20. Lidar arc scan uncertainty reduction through scanning geometry optimization

    NASA Astrophysics Data System (ADS)

    Wang, H.; Barthelmie, R. J.; Pryor, S. C.; Brown, G.

    2015-10-01

    Doppler lidars are frequently operated in a mode referred to as arc scans, wherein the lidar beam scans across a sector with a fixed elevation angle and the resulting measurements are used to derive an estimate of the n minute horizontal mean wind velocity (speed and direction). Previous studies have shown that the uncertainty in the measured wind speed originates from turbulent wind fluctuations and depends on the scan geometry (the arc span and the arc orientation). This paper is designed to provide guidance on optimal scan geometries for two key applications in the wind energy industry: wind turbine power performance analysis and annual energy production. We present a quantitative analysis of the retrieved wind speed uncertainty derived using a theoretical model with the assumption of isotropic and frozen turbulence, and observations from three sites that are onshore with flat terrain, onshore with complex terrain and offshore, respectively. The results from both the theoretical model and observations show that the uncertainty is scaled with the turbulence intensity such that the relative standard error on the 10 min mean wind speed is about 30 % of the turbulence intensity. The uncertainty in both retrieved wind speeds and derived wind energy production estimates can be reduced by aligning lidar beams with the dominant wind direction, increasing the arc span and lowering the number of beams per arc scan. Large arc spans should be used at sites with high turbulence intensity and/or large wind direction variation when arc scans are used for wind resource assessment.

  1. Session: What can we learn from developed wind resource areas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thelander, Carl; Erickson, Wally

    This session at the Wind Energy and Birds/Bats workshop was composed of two parts intended to examine what existing science tells us about wind turbine impacts at existing wind project sites. Part one dealt with the Altamont Wind Resource area, one of the older wind projects in the US, with a paper presented by Carl Thelander titled ''Bird Fatalities in the Altamont Pass Wind Resource Area: A Case Study, Part 1''. Questions addressed by the presenter included: how is avian habitat affected at Altamont and do birds avoid turbine sites; are birds being attracted to turbine strings; what factors contributemore » to direct impacts on birds by wind turbines at Altamont; how do use, behavior, avoidance and other factors affect risk to avian species, and particularly impacts those species listed as threatened, endangered, or of conservation concern, and other state listed species. The second part dealt with direct impacts to birds at new generation wind plants outside of California, examining such is sues as mortality, avoidance, direct habitat impacts from terrestrial wind projects, species and numbers killed per turbine rates/MW generated, impacts to listed threatened and endangered species, to USFWS Birds of Conservation Concern, and to state listed species. This session focused on newer wind project sites with a paper titled ''Bird Fatality and Risk at New Generation Wind Projects'' by Wally Erickson. Each paper was followed by a discussion/question and answer period.« less

  2. Directional spectra of hurricane-generated waves in the Gulf of Mexico

    NASA Astrophysics Data System (ADS)

    Hu, Kelin; Chen, Qin

    2011-10-01

    Hurricane-induced directional wave spectra in the Gulf of Mexico are investigated based on the measurements collected at 12 buoys during 7 hurricane events in recent years. Focusing on hurricane-generated wave spectra, we only consider the wave measurements at the buoys within eight times the radius of the hurricane maximum wind speed (Rmax) from the hurricane center. A series of numerical experiments using a third-generation spectral wave prediction model were carried out to gain insight into the mechanism controlling the directional and frequency distributions of hurricane wave energy. It is found that hurricane wave spectra are almost swell-dominated except for the right-rear quadrant of a hurricane with respect to the forward direction, where the local strong winds control the spectra. Despite the complexity of a hurricane wind field, most of the spectra are mono-modal, similar to those under fetch-limited, unidirectional winds. However, bi-modal spectra were also found in both measurements and model results. Four types of bi-modal spectra have been observed. Type I happens far away (>6 × Rmax) from a hurricane. Type II is bi-modal in frequency with significant differences in direction. It happens in the two left quadrants when the direction of hurricane winds deviates considerably from the swell direction. Type III is bi-modal in frequency in almost the same wave direction with two close peaks. It occurs when the energy of locally-generated wind-sea is only partially transferred to the swell energy by non-linear wave-wave interactions. Type IV was observed in shallow waters owing to coastal effects.

  3. Atmospheric turbulence review of space shuttle launches

    NASA Technical Reports Server (NTRS)

    Susko, Michael

    1991-01-01

    Research and analysis on the identification of turbulent regions from the surface to 16 km during Space Shuttle launches are discussed. It was demonstrated that the results from the FPS-16 radar/jimsphere balloon system in measuring winds can indeed indicate the presence or conditions ripe for turbulence in the troposphere and lower stratosphere. It was further demonstrated that atmospheric data obtained during the shuttle launches by the rawinsonde in conjunction with the jimsphere provides the necessary meteorological data to compute aerodynamic parameters to identify turbulence, such as Reynolds number drag coefficient, turbulent stresses, total energy, stability parameter, vertical gradient of kinetic energy, Richardson number, and the turbulence probability index. Enhanced temperature lapse rates and inversion rates, strong vector wind shears, and large changes in wind direction identify the occurrence of turbulence at the troposphere. When any two of the above conditions occur simultaneously, a significant probability of turbulence can occur.

  4. What determines the direction of minimum variance of the magnetic field fluctuations in the solar wind?

    NASA Technical Reports Server (NTRS)

    Grappin, R.; Velli, M.

    1995-01-01

    The solar wind is not an isotropic medium; two symmetry axis are provided, first the radial direction (because the mean wind is radial) and second the spiral direction of the mean magnetic field, which depends on heliocentric distance. Observations show very different anisotropy directions, depending on the frequency waveband; while the large-scale velocity fluctuations are essentially radial, the smaller scale magnetic field fluctuations are mostly perpendicular to the mean field direction, which is not the expected linear (WkB) result. We attempt to explain how these properties are related, with the help of numerical simulations.

  5. Use of wind data for estimating horizontal dilution potential of atmosphere.

    PubMed

    George, K V; Verma, P; Devotta, S

    2007-04-01

    In this study, a new methodology is suggested for estimating horizontal dilution potential of an area using wind data. The mean wind speed and wind direction variation are used as a measure of linear and angular spread of pollutants in the atmosphere. A formula is developed for estimating the potential of horizontal spread of pollutants in an area wherein only the wind speed and direction are used. The methodology is further applied to monitor wind data of one year. It is found that there is a very smooth variation of horizontal dilution potential over a year with limited dilution during post monsoon period and a high dilution in pre monsoon period.

  6. A teaching-learning sequence about weather map reading

    NASA Astrophysics Data System (ADS)

    Mandrikas, Achilleas; Stavrou, Dimitrios; Skordoulis, Constantine

    2017-07-01

    In this paper a teaching-learning sequence (TLS) introducing pre-service elementary teachers (PET) to weather map reading, with emphasis on wind assignment, is presented. The TLS includes activities about recognition of wind symbols, assignment of wind direction and wind speed on a weather map and identification of wind characteristics in a weather forecast. Sixty PET capabilities and difficulties in understanding weather maps were investigated, using inquiry-based learning activities. The results show that most PET became more capable of reading weather maps and assigning wind direction and speed on them. Our results also show that PET could be guided to understand meteorology concepts useful in everyday life and in teaching their future students.

  7. A circular median filter approach for resolving directional ambiguities in wind fields retrieved from spaceborne scatterometer data

    NASA Technical Reports Server (NTRS)

    Schultz, Howard

    1990-01-01

    The retrieval algorithm for spaceborne scatterometry proposed by Schultz (1985) is extended. A circular median filter (CMF) method is presented, which operates on wind directions independently of wind speed, removing any implicit wind speed dependence. A cell weighting scheme is included in the algorithm, permitting greater weights to be assigned to more reliable data. The mathematical properties of the ambiguous solutions to the wind retrieval problem are reviewed. The CMF algorithm is tested on twelve simulated data sets. The effects of spatially correlated likelihood assignment errors on the performance of the CMF algorithm are examined. Also, consideration is given to a wind field smoothing technique that uses a CMF.

  8. Airborne Wind Profiling Algorithm for Doppler Wind LIDAR

    NASA Technical Reports Server (NTRS)

    Kavaya, Michael J. (Inventor); Beyon, Jeffrey Y. (Inventor); Koch, Grady J. (Inventor)

    2015-01-01

    Systems, methods, and devices of the present invention enable airborne Doppler Wind LIDAR system measurements and INS/GPS measurements to be combined to estimate wind parameters and compensate for instrument misalignment. In a further embodiment, the wind speed and wind direction may be computed based on two orthogonal line-of-sight LIDAR returns.

  9. Solar and Wind Forecasting | Grid Modernization | NREL

    Science.gov Websites

    and Wind Forecasting Solar and Wind Forecasting As solar and wind power become more common system operators. An aerial photo of the National Wind Technology Center's PV arrays. Capabilities value of accurate forecasting Wind power visualization to direct questions and feedback during industry

  10. Factors associated with NO2 and NOX concentration gradients near a highway.

    PubMed

    Richmond-Bryant, J; Snyder, M G; Owen, R C; Kimbrough, S

    2017-11-21

    The objective of this research is to learn how the near-road gradient, in which NO 2 and NO X (NO + NO 2 ) concentrations are elevated, varies with changes in meteorological and traffic variables. Measurements of NO 2 and NO X were obtained east of I-15 in Las Vegas and fit to functions whose slopes (dC NO 2 /dx and dC NO X /dx, respectively) characterize the size of the near-road zone where NO 2 and NO X concentrations from mobile sources on the highway are elevated. These metrics were used to learn about the near-road gradient by modeling dC NO 2 /dx and dC NO X /dx as functions of meteorological variables (e.g., wind direction, wind speed), traffic (vehicle count), NO X concentration upwind of the road, and O 3 concentration at two fixed-site ambient monitors. Generalized additive models (GAM) were used to model dC NO 2 /dx and dC NO X /dx versus the independent variables because they allowed for nonlinearity of the variables being compared. When data from all wind directions were included in the analysis, variability in O 3 concentration comprised the largest proportion of variability in dC NO 2 /dx, followed by variability in wind direction. In a second analysis constrained to winds from the west, variability in O 3 concentration remained the largest contributor to variability in dC NO 2 /dx, but the relative contribution of variability in wind speed to variability in dC NO 2 /dx increased relative to its contribution for the all-wind analysis. When data from all wind directions were analyzed, variability in wind direction was by far the largest contributor to variability in dC NO X /dx, with smaller contributions from hour of day and upwind NO X concentration. When only winds from the west were analyzed, variability in upwind NO X concentration, wind speed, hour of day, and traffic count all were associated with variability in dC NO X /dx. Increases in O 3 concentration were associated with increased magnitude near-road dC NO 2 /dx, possibly shrinking the zone of elevated concentrations occurring near roads. Wind direction parallel to the highway was also related to an increased magnitude of both dC NO 2 /dx and dC NO X /dx, again likely shrinking the zone of elevated concentrations occurring near roads. Wind direction perpendicular to the road decreased the magnitude of dC NO 2 /dx and dC NO X /dx and likely contributed to growth of the zone of elevated concentrations occurring near roads. Thus, variability in near-road concentrations is influenced by local meteorology and ambient O 3 concentration.

  11. An Initial Assessment of the Impact of CYGNSS Ocean Surface Wind Assimilation on Navy Global and Mesoscale Numerical Weather Prediction

    NASA Astrophysics Data System (ADS)

    Baker, N. L.; Tsu, J.; Swadley, S. D.

    2017-12-01

    We assess the impact of assimilation of CYclone Global Navigation Satellite System (CYGNSS) ocean surface winds observations into the NAVGEM[i] global and COAMPS®[ii] mesoscale numerical weather prediction (NWP) systems. Both NAVGEM and COAMPS® used the NRL 4DVar assimilation system NAVDAS-AR[iii]. Long term monitoring of the NAVGEM Forecast Sensitivity Observation Impact (FSOI) indicates that the forecast error reduction for ocean surface wind vectors (ASCAT and WindSat) are significantly larger than for SSMIS wind speed observations. These differences are larger than can be explained by simply two pieces of information (for wind vectors) versus one (wind speed). To help understand these results, we conducted a series of Observing System Experiments (OSEs) to compare the assimilation of ASCAT wind vectors with the equivalent (computed) ASCAT wind speed observations. We found that wind vector assimilation was typically 3 times more effective at reducing the NAVGEM forecast error, with a higher percentage of beneficial observations. These results suggested that 4DVar, in the absence of an additional nonlinear outer loop, has limited ability to modify the analysis wind direction. We examined several strategies for assimilating CYGNSS ocean surface wind speed observations. In the first approach, we assimilated CYGNSS as wind speed observations, following the same methodology used for SSMIS winds. The next two approaches converted CYGNSS wind speed to wind vectors, using NAVGEM sea level pressure fields (following Holton, 1979), and using NAVGEM 10-m wind fields with the AER Variational Analysis Method. Finally, we compared these methods to CYGNSS wind speed assimilation using multiple outer loops with NAVGEM Hybrid 4DVar. Results support the earlier studies suggesting that NAVDAS-AR wind speed assimilation is sub-optimal. We present detailed results from multi-month NAVGEM assimilation runs along with case studies using COAMPS®. Comparisons include the fit of analyses and forecasts with in-situ observations and analyses from other NWP centers (e.g. ECMWF and GFS). [i] NAVy Global Environmental Model [ii] COAMPS® is a registered trademark of the Naval Research Laboratory for the Navy's Coupled Ocean Atmosphere Mesoscale Prediction System. [iii] NRL Atmospheric Variational Data Assimilation System

  12. Effect of Wind Flow on Convective Heat Losses from Scheffler Solar Concentrator Receivers

    NASA Astrophysics Data System (ADS)

    Nene, Anita Arvind; Ramachandran, S.; Suyambazhahan, S.

    2018-05-01

    Receiver is an important element of solar concentrator system. In a Scheffler concentrator, solar rays get concentrated at focus of parabolic dish. While radiation losses are more predictable and calculable since strongly related to receiver temperature, convective looses are difficult to estimate in view of additional factors such as wind flow direction, speed, receiver geometry, prior to current work. Experimental investigation was carried out on two geometries of receiver namely cylindrical and conical with 2.7 m2 Scheffler to find optimum condition of tilt to provide best efficiency. Experimental results showed that as compared to cylindrical receiver, conical receiver gave maximum efficiency at 45° tilt angle. However effect of additional factors like wind speed, wind direction on especially convective losses could not be separately seen. The current work was undertaken to investigate further the same two geometries using computation fluid dynamics using FLUENT to compute convective losses considering all variables such at tilt angle of receiver, wind velocity and wind direction. For cylindrical receiver, directional heat transfer coefficient (HTC) is remarkably high to tilt condition meaning this geometry is critical to tilt leading to higher convective heat losses. For conical receiver, directional average HTC is remarkably less to tilt condition leading to lower convective heat loss.

  13. Late Pleistocene aeolian dust provenances and wind direction changes reconstructed by heavy mineral analysis of the sediments of the Dehner dry maar (Eifel, Germany)

    NASA Astrophysics Data System (ADS)

    Römer, Wolfgang; Lehmkuhl, Frank; Sirocko, Frank

    2016-12-01

    The study presents the results of a heavy mineral analysis from a 38 m long record of lacustrine Eifel maar sediments from a core section of the Dehner dry maar. The record encompasses the period from 29,000 to about 12,500 b2k. Statistical analyses enabled the distinction of local and regional source areas of aeolian material and revealed pronounced changes in the amounts of different heavy mineral species and corresponding changes in the grain size Index (GSI and CSI). The results indicate that during the early stages of MIS2 (39 to 30 m depth) aeolian sediments were supplied mostly from local sources. This period is characterized by low GSI and CSI ratios resulting from a reduced mobility of material due to a vegetation cover. The period between 23,000 and 12,900 b2k is characterized by a higher supply of heavy minerals from regional and more distant sources. Changes in the provenance areas are indicated in inverse relationships between zircon, rutile, tourmaline (ZRT) and carbonate particles. Shifts in the wind direction are documented in pronounced peaks of carbonate particles indicating easterly winds that have crossed the limestone basins in the Eifeler North South Zone. ZRT-group minerals on the other hand suggest a westerly source area from Palaeozoic clastic sedimentary rocks. The heavy mineral assemblage of the LGM section at 23,000 to 15,000 b2k displays a close correspondence with the stratigraphic relationships that have been obtained for the Landscape Evolution Zone 4 of the ELSA-Vegetation Stack of Sirocko et al. (2016). From the Heinrich 2 event onwards the analyses indicate an increasing degree of mixing of heavy minerals from various provinces. This suggests the existence of a presumably incomplete, thin cover of deflated loess-like sediments that has been repeatedly reworked on the elevated surfaces of the Eifel.

  14. Getting Defense Acquisition Right

    DTIC Science & Technology

    2017-01-01

    cost increases, schedule slips , and sometimes failure to deliver an acceptable or 8 Getting Defense Acquisition Right affordable...did not make any allowance for overruns, schedule slips , or increases in costs for services beyond the standard indices assumed by the Office of...that we are not taking enough risks. With respect to our major programs, I find myself pushed in two directions simultaneously by the political winds

  15. Field Observations of Coastal Air-Sea Interaction

    NASA Astrophysics Data System (ADS)

    Ortiz-Suslow, D. G.; Haus, B. K.; Williams, N. J.; Graber, H. C.

    2016-12-01

    In the nearshore zone wind, waves, and currents generated from different forcing mechanisms converge in shallow water. This can profoundly affect the physical nature of the ocean surface, which can significantly modulate the exchange of momentum, heat, and mass across the air-sea interface. For decades, the focus of air-sea interaction research has been on the open ocean while the shallow water regime has been relatively under-explored. This bears implications for efforts to understand and model various coastal processes, such as mixing, surface transport, and air-sea gas flux. The results from a recent study conducted at the New River Inlet in North Carolina showed that directly measured air-sea flux parameters, such as the atmospheric drag coefficient, are strong functions of space as well as the ambient conditions (i.e. wind speed and direction). The drag is typically used to parameterize the wind stress magnitude. It is generally assumed that the wind direction is the direction of the atmospheric forcing (i.e. wind stress), however significant wind stress steering off of the azimuthal wind direction was observed and was found to be related to the horizontal surface current shear. The authors have just returned from a field campaign carried out within Monterey Bay in California. Surface observations made from two research vessels were complimented by an array of beach and inland flux stations, high-resolution wind forecasts, and satellite image acquisitions. This is a rich data set and several case studies will be analyzed to highlight the importance of various processes for understanding the air-sea fluxes. Preliminary findings show that interactions between the local wind-sea and the shoaling, incident swell can have a profound effect on the wind stress magnitude. The Monterey Bay coastline contains a variety of topographical features and the importance of land-air-sea interactions will also be investigated.

  16. Magnetosphere-Ionosphere-Thermosphere Response to Quasi-periodic Oscillations in Solar Wind Driving Conditions

    NASA Astrophysics Data System (ADS)

    Liu, J.; Wang, W.; Zhang, B.; Huang, C.

    2017-12-01

    Periodical oscillations with periods of several tens of minutes to several hours are commonly seen in the Alfven wave embedded in the solar wind. It is yet to be known how the solar wind oscillation frequency modulates the solar wind-magnetosphere-ionosphere coupled system. Utilizing the Coupled Magnetosphere-Ionosphere-Thermosphere Model (CMIT), we analyzed the magnetosphere-ionosphere-thermosphere system response to IMF Bz oscillation with periods of 10, 30, and 60 minutes from the perspective of energy budget and electrodynamic coupling processes. Our results indicate that solar wind energy coupling efficiency depends on IMF Bz oscillation frequency; energy coupling efficiency, represented by the ratio between globally integrated Joule heating and Epsilon function, is higher for lower frequency IMF Bz oscillation. Ionospheric Joule heating dissipation not only depends on the direct solar wind driven process but also is affected by the intrinsic nature of magnetosphere (i.e. loading-unloading process). In addition, ionosphere acts as a low-pass filter and tends to filter out very high-frequency solar wind oscillation (i.e. shorter than 10 minutes). Ionosphere vertical ion drift is most sensitive to IMF Bz oscillation compared to hmF2, and NmF2, while NmF2 is less sensitive. This can account for not synchronized NmF2 and hmF2 response to penetration electric fields in association with fast solar wind changes. This research highlights the critical role of IMF Bz oscillation frequency in constructing energy coupling function and understanding electrodynamic processes in the coupled solar wind-magnetosphere-ionosphere system.

  17. Avian sensitivity to mortality: prioritising migratory bird species for assessment at proposed wind farms.

    PubMed

    Desholm, Mark

    2009-06-01

    Wind power generation is likely to constitute one of the most extensive human physical exploitation activities of European marine areas in the near future. The many millions of migrating birds that pass these man-made obstacles are protected by international obligations and the subject of public concerns. Yet some bird species are more sensitive to bird-wind turbine mortality than others. This study developed a simple and logical framework for ranking bird species with regard to their relative sensitivity to bird-wind turbine-collisions, and applied it to a data set comprising 38 avian migrant species at the Nysted offshore wind farm in Denmark. Two indicators were selected to characterize the sensitivity of each individual species: 1) relative abundance and 2) demographic sensitivity (elasticity of population growth rate to changes in adult survival). In the case-study from the Nysted offshore wind farm, birds of prey and waterbirds dominated the group of high priority species and only passerines showed a low risk of being impacted by the wind farm. Even where passerines might be present in very high numbers, they often represent insignificant segments of huge reference populations that, from a demographic point of view, are relatively insensitive to wind farm-related adult mortality. It will always be important to focus attention and direct the resources towards the most sensitive species to ensure cost-effective environmental assessments in the future, and in general, this novel index seems capable of identifying the species that are at high risk of being adversely affected by wind farms.

  18. Wind Advisory System

    NASA Technical Reports Server (NTRS)

    Curto, Paul A. (Inventor); Brown, Gerald E. (Inventor); Zysko, Jan A. (Inventor)

    2001-01-01

    The present invention is a two-part wind advisory system comprising a ground station at an airfield and an airborne unit placed inside an aircraft. The ground station monitors wind conditions (wind speed, wind direction, and wind gust) at the airfield and transmits the wind conditions and an airfield ID to the airborne unit. The airborne unit identifies the airfield by comparing the received airfield ID with airfield IDs stored in a database. The airborne unit also calculates the headwind and crosswind for each runway in both directions at the airfield using the received wind conditions and runway information stored in the database. The airborne unit then determines a recommended runway for takeoff and landing operations of the aircraft based on th runway having the greatest headwind value and displays the airfield ID, wind conditions, and recommended runway to the pilot. Another embodiment of the present invention includes a wireless internet based airborne unit in which the airborne unit can receive the wind conditions from the ground station over the internet.

  19. Wind turbine having a direct-drive drivetrain

    DOEpatents

    Bevington, Christopher M.; Bywaters, Garrett L.; Coleman, Clint C.; Costin, Daniel P.; Danforth, William L.; Lynch, Jonathan A.; Rolland, Robert H.

    2008-10-07

    A wind turbine (100) comprising an electrical generator (108) that includes a rotor assembly (112). A wind rotor (104) that includes a wind rotor hub (124) is directly coupled to the rotor assembly via a simplified connection. The wind rotor and generator rotor assembly are rotatably mounted on a central spindle (160) via a bearing assembly (180). The wind rotor hub includes an opening (244) having a diameter larger than the outside diameter of the central spindle adjacent the bearing assembly so as to allow access to the bearing assembly from a cavity (380) inside the wind rotor hub. The spindle is attached to a turret (140) supported by a tower (136). Each of the spindle, turret and tower has an interior cavity (172, 176, 368) that permits personnel to traverse therethrough to the cavity of the wind rotor hub. The wind turbine further includes a frictional braking system (276) for slowing, stopping or keeping stopped the rotation of the wind rotor and rotor assembly.

  20. Seasonal prevailing surface winds in Northern Serbia

    NASA Astrophysics Data System (ADS)

    Tošić, Ivana; Gavrilov, Milivoj B.; Marković, Slobodan B.; Ruman, Albert; Putniković, Suzana

    2018-02-01

    Seasonal prevailing surface winds are analyzed in the territory of Northern Serbia, using observational data from 12 meteorological stations over several decades. In accordance with the general definition of prevailing wind, two special definitions of this term are used. The seasonal wind roses in 16 directions at each station are analyzed. This study shows that the prevailing winds in Northern Serbia have northwestern and southeastern directions. Circulation weather types over Serbia are presented in order to determine the connections between the synoptic circulations and prevailing surface winds. Three controlling pressure centers, i.e., the Mediterranean cyclone, Siberian high, and the Azores anticyclone, appear as the most important large-scale factors that influence the creation of the prevailing winds over Northern Serbia. Beside the synoptic cause of the prevailing winds, it is noted that the orography of the eastern Balkans has a major influence on the winds from the second quadrant. It was found that the frequencies of circulation weather types are in agreement with those of the prevailing winds over Northern Serbia.

  1. Aeolian Abrasion at the Curiosity Landing Site: Clues to the Role of Wind in Landscape Modification

    NASA Astrophysics Data System (ADS)

    Bridges, N. T.; Le Mouélic, S.; Hallet, B.; Newman, C. E.; Rice, M. S.; Blaney, D. L.; Calef, F. J.; Herkenhoff, K. E.; Langevin, Y.; Lewis, K. W.; Maurice, S.; Pinet, P. C.; Wiens, R. C.; de Pablo, M.; Renno, N. O.

    2013-12-01

    The broad scale geomorphology of Gale Crater reflects diverse aeolian processes, from airfall settling that likely deposited much of the upper and some of the lower units of Mt. Sharp, to evidence of extensive wind exhumation and removal of material exterior to the mound, to active dunes on the crater floor. The integrated effect of aeolian sand transport can also be examined on a much smaller scale by the study of ventifacts, rocks that have been abraded by windborne particles. A diversity of ventifacts are found along Curiosity's traverse through the upper 'hummocky' (HY) geomorphic unit and the lower Yellowknife Bay (YKB) sedimentary rocks. The textures are analogous to abrasion features found on Earth and include cm-scale facets, keels, elongated pits, grooves, flutes, and basal sills. High-resolution images from ChemCam's Remote Micro-Imager also show mm-scale lineations. Evidence of differential erosion is common, with HY conglomerates (e.g., Hottah, Link) and the YKB Sheepbed mudstone unit containing distinct wind tails in the lee of resistant pebbles, and bedding features within Rocknest 3, the YKB Shaler sandstone unit, and other layered rocks displaying prominent ridge-groove topography. ChemCam LIBS depth profile data so far show no strong evidence for chemical differences in the elemental composition between abraded and non-abraded surfaces (as determined from qualitative assessment), as might be expected if there were rock coatings or weathering rinds undergoing active abrasion. Preliminary measurements of ventifact texture and wind tail orientations indicate sandblasting in HY and YKB from predominantly southwesterly and northerly directions, respectively. Based on meso-scale models of current winds and REMS results, SW flow is uncommon whereas N winds are frequent. Compositional and textural information from the suite of MSL instruments indicate that HY rocks are dominated by various types of basalt (either as whole rocks or the resistant clasts in conglomerates), whereas YKB are basaltic clastic rocks, with the lower members impregnated with sulfate veins, and were easily drilled. The HY rocks are therefore likely more resistant to abrasion than those of YKB. Combined, these results indicate that ventifacts so far investigated by MSL record two wind regimes, one a long-term integrated record of rare, yet strong winds and the other more reflective of typical conditions.

  2. Inclusion of surface gravity wave effects in vertical mixing parameterizations with application to Chesapeake Bay, USA

    NASA Astrophysics Data System (ADS)

    Fisher, A. W.; Sanford, L. P.; Scully, M. E.; Suttles, S. E.

    2016-02-01

    Enhancement of wind-driven mixing by Langmuir turbulence (LT) may have important implications for exchanges of mass and momentum in estuarine and coastal waters, but the transient nature of LT and observational constraints make quantifying its impact on vertical exchange difficult. Recent studies have shown that wind events can be of first order importance to circulation and mixing in estuaries, prompting this investigation into the ability of second-moment turbulence closure schemes to model wind-wave enhanced mixing in an estuarine environment. An instrumented turbulence tower was deployed in middle reaches of Chesapeake Bay in 2013 and collected observations of coherent structures consistent with LT that occurred under regions of breaking waves. Wave and turbulence measurements collected from a vertical array of Acoustic Doppler Velocimeters (ADVs) provided direct estimates of TKE, dissipation, turbulent length scale, and the surface wave field. Direct measurements of air-sea momentum and sensible heat fluxes were collected by a co-located ultrasonic anemometer deployed 3m above the water surface. Analyses of the data indicate that the combined presence of breaking waves and LT significantly influences air-sea momentum transfer, enhancing vertical mixing and acting to align stress in the surface mixed layer in the direction of Lagrangian shear. Here these observations are compared to the predictions of commonly used second-moment turbulence closures schemes, modified to account for the influence of wave breaking and LT. LT parameterizations are evaluated under neutrally stratified conditions and buoyancy damping parameterizations are evaluated under stably stratified conditions. We compare predicted turbulent quantities to observations for a variety of wind, wave, and stratification conditions. The effects of fetch-limited wave growth, surface buoyancy flux, and tidal distortion on wave mixing parameterizations will also be discussed.

  3. The development and testing of a novel cross axis wind turbine

    NASA Astrophysics Data System (ADS)

    Chong, W. T.; Muzammil, W. K.; Gwani, M.; Wong, K. H.; Fazlizan, A.; Wang, C. T.; Poh, S. C.

    2016-06-01

    A novel cross axis wind turbine (CAWT) which comprises of a cross axis blades arrangement was presented and investigated experimentally. The CAWT is a new type of wind turbine that extracts wind energy from airflow coming from the horizontal and vertical directions. The wind turbine consists of three vertical blades and six horizontal blades arranged in a cross axis orientation. Hubs in the middle of the CAWT link the horizontal and vertical blades through connectors to form the CAWT. The study used a 45° deflector to guide the oncoming airflow upward (vertical wind direction). The results from the study showed that the CAWT produced significant improvements in power output and rotational speed performance compared to a conventional straight-bladed vertical axis wind turbine (VAWT).

  4. Nowcast modeling of Escherichia coli concentrations at multiple urban beaches of southern Lake Michigan

    USGS Publications Warehouse

    Nevers, Meredith B.; Whitman, Richard L.

    2005-01-01

    Predictive modeling for Escherichia coli concentrations at effluent-dominated beaches may be a favorable alternative to current, routinely criticized monitoring standards. The ability to model numerous beaches simultaneously and provide real-time data decreases cost and effort associated with beach monitoring. In 2004, five Lake Michigan beaches and the nearby Little Calumet River outfall were monitored for E. coli 7 days a week; on nine occasions, samples were analyzed for coliphage to indicate a sewage source. Ambient lake, river, and weather conditions were measured or obtained from independent monitoring sources. Positive tests for coliphage analysis indicated sewage was present in the river and on bathing beaches following heavy rainfall. Models were developed separately for days with prevailing onshore and offshore winds due to the strong influence of wind direction in determining the river's impact on the beaches. Using regression modeling, it was determined that during onshore winds, E. coli   could be adequately predicted using wave height, lake chlorophyll and turbidity, and river turbidity (R2=0.635, N=94); model performance decreased for offshore winds using wave height, wave period, and precipitation (R2=0.320, N=124). Variation was better explained at individual beaches. Overall, the models only failed to predict E. coli levels above the EPA closure limit (235 CFU/100 ml) on five of eleven occasions, indicating that the model is a more reliable alternative to the monitoring approach employed at most recreational beaches.

  5. Design of a Data Catalogue for Perdigão-2017 Field Experiment: Establishing the Relevant Parameters, Post-Processing Techniques and Users Access

    NASA Astrophysics Data System (ADS)

    Palma, J. L.; Belo-Pereira, M.; Leo, L. S.; Fernando, J.; Wildmann, N.; Gerz, T.; Rodrigues, C. V.; Lopes, A. S.; Lopes, J. C.

    2017-12-01

    Perdigão is the largest of a series of wind-mapping studies embedded in the on-going NEWA (New European Wind Atlas) Project. The intensive observational period of the Perdigão field experiment resulted in an unprecedented volume of data, covering several wind conditions through 46 consecutive days between May and June 2017. For researchers looking into specific events, it is time consuming to scrutinise the datasets looking for appropriate conditions. Such task becomes harder if the parameters of interest were not measured directly, instead requiring their computation from the raw datasets. This work will present the e-Science platform developed by University of Porto for the Perdigao dataset. The platform will assist scientists of Perdigao and the larger scientific community in extrapolating the datasets associated to specific flow regimes of interest as well as automatically performing post-processing/filtering operations internally in the platform. We will illustrate the flow regime categories identified in Perdigao based on several parameters such as weather type classification, cloud characteristics, as well as stability regime indicators (Brunt-Väisälä frequency, Scorer parameter, potential temperature inversion heights, dimensionless Richardson and Froude numbers) and wind regime indicators. Examples of some of the post-processing techniques available in the e-Science platform, such as the Savitzky-Golay low-pass filtering technique, will be also presented.

  6. Precipitation structure in the Sierra Nevada of California during winter

    USGS Publications Warehouse

    Pandey, G.R.; Cayan, D.R.; Georgakakos, K.P.

    1999-01-01

    Influences of upper air characteristics along the coast of California upon wintertime (November-April) precipitation in the Sierra Nevada are investigated. Precipitation events in the Sierra Nevada region occur mostly during wintertime, irrespective of station location (leeside or wihdside) and elevation. Most precipitation episodes in the region are associated with moist southwesterly winds (coming from the southwest direction) and also tend to occur when the 700-mbar temperature at the upwind direction is close to -2??C. This favored wind direction and temperature signify the importance of both moisture transport and orographic lifting in augmenting precipitation in the region. By utilizing the observed dependency of the precipitation upon the upper air conditions, a linear model is formulated to quantify the precipitation observed at different sites as a function of moisture transport. The skill of the model increases with timescale of aggregation, reaching more than 50% variance explained at an aggregation period of 5-7 days. This indicates that upstream air moisture transport can be used to estimate the precipitation totals in the Sierra Nevada region. Copyright 1999 by the American Geophysical Union.

  7. ­­MMS Observations of a Hot Flow Anomaly in the Magnetosheath

    NASA Astrophysics Data System (ADS)

    Zhang, H.; Le, G.; Sibeck, D. G.

    2017-12-01

    Hot flow anomalies (HFAs) are events observed near planetary bow shocks that are characterized by greatly heated solar wind plasmas and substantial flow deflection. HFAs are universal phenomena that have been observed near the bow shock of Earth, Venus, Mars, and Saturn. The dynamic pressure inside HFAs is lower than the ambient solar wind due to the density depletion and flow deflection. The passage of HFAs will therefore result in local negative pressure impulses, which lead to a local sunward expansion of the magnetopause. NASA's MMS mission produce unprecedented high resolution data, which enable the observations of HFA structures in great details. We report MMS observations of an HFA in the post-noon magnetosheath which lasted 25 minutes. Sunward and dawnward plasma flow was observed in the core of the HFA, which is in the opposite direction of the plasma flow in the ambient magnetosheath. The plasma density in the HFA was about one order of magnitude lower than that in the ambient magnetosheath. Two magnetopause crossings were observed inside the HFA. Boundary normal analysis shows the normal direction of the magnetopause was along the GSE Y direction, indicating a strongly deformed magnetopause. The first in, first out crossing sequence of the magnetopause by multiple spacecraft also indicates that the two magnetopause crossings were due to a bulged-out magnetopause rather than the back and forth motion of the magnetopause.

  8. Mid-latitude ionospheric irregularity spectral density as determined by ground-based GPS receiver networks

    DOE PAGES

    Lay, Erin H.; Parker, Peter A.; Light, Max; ...

    2018-05-22

    In this paper, we present a new technique to experimentally measure the spatial spectrum of ionospheric disturbances in the spatial scale regime of 40 – 200 km. This technique produces a 2-dimensional (2-D) spectrum for each time snapshot over two dense GPS receiver networks (GEONET in Japan and PBO in the Western U.S.). Because this technique created the spectrum from an instantaneous time snapshot, no assumptions are needed about the speed of ionospheric irregularities. We examine spectra from three days: one with an intense geomagnetic storm, one with significant lightning activity, and one quiet day. Radial slices along the 2-Dmore » spectra provide 1-dimensional spectra that can be fit to a power law to quantify the steepness of the fall-off in the spatial scale sizes. Continuous data of this type in a stationary location allows monitoring the variability in the 2-D spectrum over the course of a day and comparing between days, as shown here, or even over a year or many years. We find that the spectra are highly variable over the course of a day and between the two selected regions of Japan and the Western U.S. When strong travelling ionospheric disturbances (TIDs) are present, the 2-D spectra provide information about the direction of propagation of the TIDs. We compare the TID propagation direction with horizontal wind directions from the Horizontal Wind Model. Finally, TID direction is correlated with the horizontal wind direction on all days, strongly indicating that the primary source of the TIDs measured by this technique is tropospheric.« less

  9. Mid-latitude ionospheric irregularity spectral density as determined by ground-based GPS receiver networks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lay, Erin H.; Parker, Peter A.; Light, Max

    In this paper, we present a new technique to experimentally measure the spatial spectrum of ionospheric disturbances in the spatial scale regime of 40 – 200 km. This technique produces a 2-dimensional (2-D) spectrum for each time snapshot over two dense GPS receiver networks (GEONET in Japan and PBO in the Western U.S.). Because this technique created the spectrum from an instantaneous time snapshot, no assumptions are needed about the speed of ionospheric irregularities. We examine spectra from three days: one with an intense geomagnetic storm, one with significant lightning activity, and one quiet day. Radial slices along the 2-Dmore » spectra provide 1-dimensional spectra that can be fit to a power law to quantify the steepness of the fall-off in the spatial scale sizes. Continuous data of this type in a stationary location allows monitoring the variability in the 2-D spectrum over the course of a day and comparing between days, as shown here, or even over a year or many years. We find that the spectra are highly variable over the course of a day and between the two selected regions of Japan and the Western U.S. When strong travelling ionospheric disturbances (TIDs) are present, the 2-D spectra provide information about the direction of propagation of the TIDs. We compare the TID propagation direction with horizontal wind directions from the Horizontal Wind Model. Finally, TID direction is correlated with the horizontal wind direction on all days, strongly indicating that the primary source of the TIDs measured by this technique is tropospheric.« less

  10. Coastal upwelling by wind-driven forcing in Jervis Bay, New South Wales: A numerical study for 2011

    NASA Astrophysics Data System (ADS)

    Sun, Youn-Jong; Jalón-Rojas, Isabel; Wang, Xiao Hua; Jiang, Donghui

    2018-06-01

    The Princeton Ocean Model (POM) was used to investigate an upwelling event in Jervis Bay, New South Wales (SE Australia), with varying wind directions and strengths. The POM was adopted with a downscaling approach for the regional ocean model one-way nested to a global ocean model. The upwelling event was detected from the observed wind data and satellite sea surface temperature images. The validated model reproduced the upwelling event showing the input of bottom cold water driven by wind to the bay, its subsequent deflection to the south, and its outcropping to the surface along the west and south coasts. Nevertheless, the behavior of the bottom water that intruded into the bay varied with different wind directions and strengths. Upwelling-favorable wind directions for flushing efficiency within the bay were ranked in the following order: N (0°; northerly) > NNE (30°; northeasterly) > NW (315°; northwesterly) > NE (45°; northeasterly) > ENE (60°; northeasterly). Increasing wind strengths also enhance cold water penetration and water exchange. It was determined that wind-driven downwelling within the bay, which occurred with NNE, NE and ENE winds, played a key role in blocking the intrusion of the cold water upwelled through the bay entrance. A northerly wind stress higher than 0.3 N m-2 was required for the cold water to reach the northern innermost bay.

  11. Wind Tunnel Test of Mach 5 Class Hypersonic Airplane

    NASA Astrophysics Data System (ADS)

    Nakatani, Hiroki; Taguchi, Hideyuki; Fujita, Kazuhisa; Shindo, Shigemi; Honami, Shinji

    JAXA is currently performing studies on a Hypersonic Turbojet Experimental Vehicle, which involve a hypersonic flight test of a Small Pre-cooled Turbojet Engine. The aerodynamic performance of this airplane was examined at the JAXA hypersonic, supersonic, and transonic wind tunnel facilities. The 6-degrees-of-freedom forces and pressure distribution around the model were measured and evaluated. This airplane satisfies the lift-to-drag ratio requirement for a flight test at Mach 5. In addition, the results indicate that this airplane has longitudinal and directional static stability if the moment reference point is x/l smaller than 0.35. A separation occurs at the external expanding nozzle. Therefore, a redesign is necessary to solve these problems.

  12. Planet-wide sand motion on mars

    USGS Publications Warehouse

    Bridges, N.T.; Bourke, M.C.; Geissler, P.E.; Banks, M.E.; Colon, C.; Diniega, S.; Golombek, M.P.; Hansen, C.J.; Mattson, S.; McEwen, A.S.; Mellon, M.T.; Stantzos, N.; Thomson, B.J.

    2012-01-01

    Prior to Mars Reconnaissance Orbiter data, images of Mars showed no direct evidence for dune and ripple motion. This was consistent with climate models and lander measurements indicating that winds of sufficient intensity to mobilize sand were rare in the low-density atmosphere. We show that many sand ripples and dunes across Mars exhibit movement of as much as a few meters per year, demonstrating that Martian sand migrates under current conditions in diverse areas of the planet. Most motion is probably driven by wind gusts that are not resolved in global circulation models. A past climate with a thicker atmosphere is only required to move large ripples that contain coarse grains. ?? 2012 Geological Society of America.

  13. Zonal wind observations during a geomagnetic storm

    NASA Technical Reports Server (NTRS)

    Miller, N. J.; Spencer, N. W.

    1986-01-01

    In situ measurements taken by the Wind and Temperature Spectrometer (WATS) onboard the Dynamics Explorer 2 spacecraft during a geomagnetic storm display zonal wind velocities that are reduced in the corotational direction as the storm intensifies. The data were taken within the altitudes 275 to 475 km in the dusk local time sector equatorward of the auroral region. Characteristic variations in the value of the Dst index of horizontal geomagnetic field strength are used to monitor the storm evolution. The detected global rise in atmospheric gas temperature indicates the development of thermospheric heating. Concurrent with that heating, reductions in corotational wind velocities were measured equatorward of the auroral region. Just after the sudden commencement, while thermospheric heating is intense in both hemispheres, eastward wind velocities in the northern hemisphere show reductions ranging from 500 m/s over high latitudes to 30 m/s over the geomagnetic equator. After 10 hours storm time, while northern thermospheric heating is diminishing, wind velocity reductions, distinct from those initially observed, begin to develop over southern latitudes. In the latter case, velocity reductions range from 300 m/s over the highest southern latitudes to 150 m/s over the geomagnetic equator and extend into the Northern Hemisphere. The observations highlight the interhemispheric asymmetry in the development of storm effects detected as enhanced gas temperatures and reduced eastward wind velocities. Zonal wind reductions over high latitudes can be attributed to the storm induced equatorward spread of westward polar cap plasma convection and the resulting plasma-neutral collisions. However, those collisions are less significant over low latitudes; so zonal wind reductions over low latitudes must be attributed to an equatorward extension of a thermospheric circulation pattern disrupted by high latitude collisions between neutrals transported via eastward winds and ions convecting westward.

  14. Maximizing the spatial representativeness of NO2 monitoring data using a combination of local wind-based sectoral division and seasonal and diurnal correction factors.

    PubMed

    Donnelly, Aoife; Naughton, Owen; Misstear, Bruce; Broderick, Brian

    2016-10-14

    This article describes a new methodology for increasing the spatial representativeness of individual monitoring sites. Air pollution levels at a given point are influenced by emission sources in the immediate vicinity. Since emission sources are rarely uniformly distributed around a site, concentration levels will inevitably be most affected by the sources in the prevailing upwind direction. The methodology provides a means of capturing this effect and providing additional information regarding source/pollution relationships. The methodology allows for the division of the air quality data from a given monitoring site into a number of sectors or wedges based on wind direction and estimation of annual mean values for each sector, thus optimising the information that can be obtained from a single monitoring station. The method corrects for short-term data, diurnal and seasonal variations in concentrations (which can produce uneven weighting of data within each sector) and uneven frequency of wind directions. Significant improvements in correlations between the air quality data and the spatial air quality indicators were obtained after application of the correction factors. This suggests the application of these techniques would be of significant benefit in land-use regression modelling studies. Furthermore, the method was found to be very useful for estimating long-term mean values and wind direction sector values using only short-term monitoring data. The methods presented in this article can result in cost savings through minimising the number of monitoring sites required for air quality studies while also capturing a greater degree of variability in spatial characteristics. In this way, more reliable, but also more expensive monitoring techniques can be used in preference to a higher number of low-cost but less reliable techniques. The methods described in this article have applications in local air quality management, source receptor analysis, land-use regression mapping and modelling and population exposure studies.

  15. Nutrient and dust enrichment in Danish wind erosion sediments for different tillage directions

    NASA Astrophysics Data System (ADS)

    Mohammadian Behbahani, Ali; Fister, Wolfgang; Heckrath, Goswin; Kuhn, Nikolaus J.

    2015-04-01

    More than 80% of the soil types in Denmark have a sandy texture. Denmark is also subject to strong offshore and onshore winds, therefore, Danish soils are considered especially vulnerable to wind erosion. Where conventional tillage operations are applied on poorly aggregated soils, tillage ridges are more or less the only roughness element that can be used to protect soils against wind erosion until crop plants are large enough to provide sufficient breaks. Since wind erosion is a selective process, it can be assumed that increasing erosion rates are associated with increasing loss of dust sized particles and nutrients. However, selective erosion is strongly affected by the orientation and respective trapping efficiency of tillage ridges and furrows. The main objective of this study, therefore, was to determine the effect of tillage direction on nutrient mobilization by wind erosion from agricultural land in Denmark. In order to assess the relationship between the enrichment ratio of specific particle sizes and the amount of eroded nutrients, three soils with loamy sand texture, but varying amounts of sand-sized particles, were selected. In addition, a soil with slightly less sand, but much higher organic matter content was chosen. The soils were tested with three different soil surface scenarios (flat surface, parallel tillage, perpendicular tillage) in a wind tunnel simulation. The parallel tillage operation experienced the greatest erosion rates, independent of soil type. Particles with D50 between 100-155 µm showed the greatest risk of erosion. However, due to a greater loss of dust sized particles from perpendicularly tilled surfaces, this wind-surface arrangement showed a significant increase in nutrient enrichment ratio compared to parallel tillage and flat surfaces. The main reason for this phenomenon is most probably the trapping of larger particles in the perpendicular furrows. This indicates that the highest rate of soil protection does not necessarily coincide with lowest soil nutrient losses and dust emissions. For the evaluation of protection measures on these soil types in Denmark it is, therefore, important to differentiate between their effectivity to reduce total soil erosion amount, dust emission, and nutrient loss.

  16. Lidar arc scan uncertainty reduction through scanning geometry optimization

    NASA Astrophysics Data System (ADS)

    Wang, Hui; Barthelmie, Rebecca J.; Pryor, Sara C.; Brown, Gareth.

    2016-04-01

    Doppler lidars are frequently operated in a mode referred to as arc scans, wherein the lidar beam scans across a sector with a fixed elevation angle and the resulting measurements are used to derive an estimate of the n minute horizontal mean wind velocity (speed and direction). Previous studies have shown that the uncertainty in the measured wind speed originates from turbulent wind fluctuations and depends on the scan geometry (the arc span and the arc orientation). This paper is designed to provide guidance on optimal scan geometries for two key applications in the wind energy industry: wind turbine power performance analysis and annual energy production prediction. We present a quantitative analysis of the retrieved wind speed uncertainty derived using a theoretical model with the assumption of isotropic and frozen turbulence, and observations from three sites that are onshore with flat terrain, onshore with complex terrain and offshore, respectively. The results from both the theoretical model and observations show that the uncertainty is scaled with the turbulence intensity such that the relative standard error on the 10 min mean wind speed is about 30 % of the turbulence intensity. The uncertainty in both retrieved wind speeds and derived wind energy production estimates can be reduced by aligning lidar beams with the dominant wind direction, increasing the arc span and lowering the number of beams per arc scan. Large arc spans should be used at sites with high turbulence intensity and/or large wind direction variation.

  17. Interstellar Pickup Ion Observations to 38 au

    NASA Astrophysics Data System (ADS)

    McComas, D. J.; Zirnstein, E. J.; Bzowski, M.; Elliott, H. A.; Randol, B.; Schwadron, N. A.; Sokół, J. M.; Szalay, J. R.; Olkin, C.; Spencer, J.; Stern, A.; Weaver, H.

    2017-11-01

    We provide the first direct observations of interstellar H+ and He+ pickup ions in the solar wind from 22 to 38 au. We use the Vasyliunas and Siscoe model functional form to quantify the pickup ion distributions, and while the fit parameters generally lie outside their physically expected ranges, this form allows fits that quantify variations in the pickup H+ properties with distance. By ˜20 au, the pickup ions already provide the dominant internal pressure in the solar wind. We determine the radial trends and extrapolate them to the termination shock at ˜90 au, where the pickup H+ to core solar wind density reaches ˜0.14. The pickup H+ temperature and thermal pressure increase from 22 to 38 au, indicating additional heating of the pickup ions. This produces very large extrapolated ratios of pickup H+ to solar wind temperature and pressure, and an extrapolated ratio of the pickup ion pressure to the solar wind dynamic pressure at the termination shock of ˜0.16. Such a large ratio has profound implications for moderating the termination shock and the overall outer heliospheric interaction. We also identify suprathermal tails in the H+ spectra and complex features in the He+ spectra, likely indicating variations in the pickup ion history and processing. Finally, we discover enhancements in both H+ and He+ populations just below their cutoff energies, which may be associated with enhanced local pickup. This study serves to document the release and serves as a citable reference of these pickup ion data for broad community use and analysis.

  18. Wind and ecosystem response at the GLEES

    Treesearch

    Robert C. Musselman; Gene L. Wooldridge; William J. Massman; Richard A. Sommerfeld

    1995-01-01

    Research was conducted to determine wind patterns and snow deposition at a high elevation alpine/subalpine ecotone site using deformation response of trees to prevailing winds. The research has provided detailed maps of wind speed, wind direction, and snow depth as determined from tree deformation. The effects of prevailing wind on tree blowdown at the site have also...

  19. Field measurements of horizontal forward motion velocities of terrestrial dust devils: Towards a proxy for ambient winds on Mars and Earth

    NASA Astrophysics Data System (ADS)

    Balme, M. R.; Pathare, A.; Metzger, S. M.; Towner, M. C.; Lewis, S. R.; Spiga, A.; Fenton, L. K.; Renno, N. O.; Elliott, H. M.; Saca, F. A.; Michaels, T. I.; Russell, P.; Verdasca, J.

    2012-11-01

    Dust devils - convective vortices made visible by the dust and debris they entrain - are common in arid environments and have been observed on Earth and Mars. Martian dust devils have been identified both in images taken at the surface and in remote sensing observations from orbiting spacecraft. Observations from landing craft and orbiting instruments have allowed the dust devil translational forward motion (ground velocity) to be calculated, but it is unclear how these velocities relate to the local ambient wind conditions, for (i) only model wind speeds are generally available for Mars, and (ii) on Earth only anecdotal evidence exists that compares dust devil ground velocity with ambient wind velocity. If dust devil ground velocity can be reliably correlated to the ambient wind regime, observations of dust devils could provide a proxy for wind speed and direction measurements on Mars. Hence, dust devil ground velocities could be used to probe the circulation of the martian boundary layer and help constrain climate models or assess the safety of future landing sites. We present results from a field study of terrestrial dust devils performed in the southwest USA in which we measured dust devil horizontal velocity as a function of ambient wind velocity. We acquired stereo images of more than a 100 active dust devils and recorded multiple size and position measurements for each dust devil. We used these data to calculate dust devil translational velocity. The dust devils were within a study area bounded by 10 m high meteorology towers such that dust devil speed and direction could be correlated with the local ambient wind speed and direction measurements. Daily (10:00-16:00 local time) and 2-h averaged dust devil ground speeds correlate well with ambient wind speeds averaged over the same period. Unsurprisingly, individual measurements of dust devil ground speed match instantaneous measurements of ambient wind speed more poorly; a 20-min smoothing window applied to the ambient wind speed data improves the correlation. In general, dust devils travel 10-20% faster than ambient wind speed measured at 10 m height, suggesting that their ground speeds are representative of the boundary layer winds a few tens of meters above ground level. Dust devil ground motion direction closely matches the measured ambient wind direction. The link between ambient winds and dust devil ground velocity demonstrated here suggests that a similar one should apply on Mars. Determining the details of the martian relationship between dust devil ground velocity and ambient wind velocity might require new in situ or modelling studies but, if completed successfully, would provide a quantitative means of measuring wind velocities on Mars that would otherwise be impossible to obtain.

  20. Field-aligned Poynting flux observations in the high-latitude ionosphere

    NASA Astrophysics Data System (ADS)

    Gary, J. B.; Heelis, R. A.; Hanson, W. B.; Slavin, J. A.

    1994-06-01

    We have used data from Dynamics Explorer 2 to investigate the rate of conversion of electromagnetic energy into both thermal and bulk flow particle kinetic energy in the high-latitude ionosphere. The flux tube integrated conversion rate E.J can be determined from spacecraft measurements of the electric and magnetic field vectors by deriving the field-aligned Poynting flux, S∥=S.B0, where B0 is in the direction of the geomagnetic field. Determination of the Poynting flux from satellite observations is critically dependent upon the establishment of accurate values of the fields and is especially sensitive to errors in the baseline (unperturbed) geomagnetic field. We discuss our treatment of the data in some detail, particularly in regard to systematically correcting the measured magnetic field to account for attitude changes and model deficiencies. S∥ can be used to identify the relative strengths of the magnetosphere and thermospheric winds as energy drivers and we present observations demonstrating the dominance of each of these. Dominance of the magnetospheric driver is indicated by S∥ directed into the ionosphere. Electromagnetic energy is delivered to and dissipated within the region. Dominance of the neutral wind requires that the conductivity weighted neutral wind speed in the direction of the ion drift be larger than the ion drift, resulting in observations of an upward directed Poynting flux. Electromagnetic energy is generated within the ionospheric region in this case. We also present observations of a case where the neutral atmosphere motion may be reaching a state of sustained bulk flow velocity as evidenced by very small Poynting flux in the presence of large electric fields.

  1. Dynamics of the Solar Wind Electromagnetic Energy Transmission Into Magnetosphere during Large Geomagnetic Storms

    NASA Astrophysics Data System (ADS)

    Kuznetsova, Tamara; Laptukhov, Alexej; Petrov, Valery

    Causes of the geomagnetic activity (GA) in the report are divided into temporal changes of the solar wind parameters and the changes of the geomagnetic moment orientation relative directions of the solar wind electric and magnetic fields. Based on our previous study we concluded that a reconnection based on determining role of mutual orientation of the solar wind electric field and geomagnetic moment taking into account effects of the Earth's orbital and daily motions is the most effective compared with existing mechanisms. At present a reconnection as paradigma that has applications in broad fields of physics needs analysis of experimental facts to be developed. In terms of reconnection it is important not only mutual orientation of vectors describing physics of interaction region but and reconnection rate which depends from rate of energy flux to those regions where the reconnection is permitted. Applied to magnetosphere these regions first of all are dayside magnetopause and polar caps. Influence of rate of the energy flux to the lobe magnetopause (based on calculations of the Poyting electromagnetic flux component controlling the reconnection rate along the solar wind velocity Pv) on planetary GA (Dst, Kp indices) is investigated at different phases of geomagnetic storms. We study also the rate of energy flux to the polar caps during storms (based on calculations of the Poyting flux vector component along the geomagnetic moment Pm) and its influence on magnetic activity in the polar ionosphere: at the auroral zone (AU,AL indices). Results allow to evaluate contributions of high and low latitude sources of electromagnetic energy to the storm development and also to clear mechanism of the electromagnetic energy transmission from the solar wind to the magnetosphere. We evaluate too power of the solar wind electromagnetic energy during well-known large storms and compare result with power of the energy sources of other geophysical processes (atmosphere, ocean, earthquakes and etc). The study was supported by a grant of RFBR, n 06-05-64998.

  2. Wind Carved Rock

    NASA Image and Video Library

    2016-10-19

    The distinctively fluted surface and elongated hills in this image in Medusae Fossae are caused by wind erosion of a soft fine-grained rock. Called yardangs, these features are aligned with the prevailing wind direction. This wind direction would have dominated for a very long time to carve these large-scale features into the exposed rock we see today. Yardangs not only reveal the strength and direction of historic winds, but also reveal something of the host rock itself. Close inspection by HiRISE shows an absence of boulders or rubble, especially along steep yardang cliffs and buttresses. The absence of rubble and the scale of the yardangs tells us that the host rock consists only of weakly cemented fine granules in tens of meters or more thick deposits. Such deposits could have come from extended settling of volcanic ash, atmospheric dust, or accumulations of wind deposited fine sands. After a time these deposits became cemented and cohesive, illustrated by the high standing relief and exposed cliffs. http://photojournal.jpl.nasa.gov/catalog/PIA21111

  3. Application of Surface Protective Coating to Enhance Environment-Withstanding Property of the MEMS 2D Wind Direction and Wind Speed Sensor.

    PubMed

    Shin, Kyu-Sik; Lee, Dae-Sung; Song, Sang-Woo; Jung, Jae Pil

    2017-09-19

    In this study, a microelectromechanical system (MEMS) two-dimensional (2D) wind direction and wind speed sensor consisting of a square heating source and four thermopiles was manufactured using the heat detection method. The heating source and thermopiles of the manufactured sensor must be exposed to air to detect wind speed and wind direction. Therefore, there are concerns that the sensor could be contaminated by deposition or adhesion of dust, sandy dust, snow, rain, and so forth, in the air, and that the membrane may be damaged by physical shock. Hence, there was a need to protect the heating source, thermopiles, and the membrane from environmental and physical shock. The upper protective coating to protect both the heating source and thermopiles and the lower protective coating to protect the membrane were formed by using high-molecular substances such as SU-8, Teflon and polyimide (PI). The sensor characteristics with the applied protective coatings were evaluated.

  4. An experimental investigation of three dimensional low speed minimum interference wind tunnel for high lift wings

    NASA Technical Reports Server (NTRS)

    Shindo, S.; Joppa, R. G.

    1980-01-01

    As a means to achieve a minimum interference correction wind tunnel, a partially actively controlled test section was experimentally examined. A jet flapped wing with 0.91 m (36 in) span and R = 4.05 was used as a model to create moderately high lift coefficients. The partially controlled test section was simulated using an insert, a rectangular box 0.96 x 1.44 m (3.14 x 4.71 ft) open on both ends in the direction of the tunnel air flow, placed in the University of Washington Aeronautical Laboratories (UWAL) 2.44 x 3.66 m (8 x 12 ft) wind tunnel. A tail located three chords behind the wing was used to measure the downwash at the tail region. The experimental data indicates that, within the range of momentum coefficient examined, it appears to be unnecessary to actively control all four sides of the test section walls in order to achieve the near interference free flow field environment in a small wind tunnel. The remaining wall interference can be satisfactorily corrected by the vortex lattice method.

  5. Comparison of nozzle and afterbody surface pressures from wind tunnel and flight test of the YF-17 aircraft

    NASA Technical Reports Server (NTRS)

    Lucas, E. J.; Fanning, A. E.; Steers, L. I.

    1978-01-01

    Results are reported from the initial phase of an effort to provide an adequate technical capability to accurately predict the full scale, flight vehicle, nozzle-afterbody performance of future aircraft based on partial scale, wind tunnel testing. The primary emphasis of this initial effort is to assess the current capability and identify the cause of limitations on this capability. A direct comparison of surface pressure data is made between the results from an 0.1-scale model wind tunnel investigation and a full-scale flight test program to evaluate the current subscale testing techniques. These data were acquired at Mach numbers 0.6, 0.8, 0.9, 1.2, and 1.5 on four nozzle configurations at various vehicle pitch attitudes. Support system interference increments were also documented during the wind tunnel investigation. In general, the results presented indicate a good agreement in trend and level of the surface pressures when corrective increments are applied for known effects and surface differences between the two articles under investigation.

  6. Wave-Induced Momentum Flux over Wind-driven Surface Waves

    NASA Astrophysics Data System (ADS)

    Yousefi, Kianoosh; Veron, Fabrice; Buckley, Marc; Husain, Nyla; Hara, Tetsu

    2017-11-01

    In recent years, the exchange of momentum between the atmosphere and the ocean has been the subject of several investigations. Although the role of surface waves on the air-sea momentum flux is now well established, detailed quantitative measurements of wave-induced momentum fluxes are lacking. In the current study, using a combined Particle Image Velocimetry (PIV) and Laser Induced Fluorescence (LIF) system, we obtained laboratory measurements of the airflow velocity above surface waves for wind speeds ranging from 0.86 to 16.63 m s-1. The mean, turbulent, and wave-coherent velocity fields are then extracted from instantaneous measurements. Wave-induced stress can, therefore, be estimated. In strongly forced cases in high wind speeds, the wave-induced stress near the surface is a significant fraction of the total stress. At lower wind speeds and larger wave ages, the wave-induced stress is positive very close to the surface, below the critical height and decreases to a negative value further above the critical height. This indicates a shift in the direction of the wave-coherent momentum flux across the critical layer. NSF OCE1458977, NSF OCE1634051.

  7. Analysis of the Variability of Poor Visibility Events in North and Central United Arab Emirates

    NASA Astrophysics Data System (ADS)

    Aldababseh, Amal; Temimi, Marouane

    2016-12-01

    Good visibility is essential for the safety of ground transportation and aviation sectors. Degradation in visibility can occur during wet or dry conditions and can therefore be a proxy for air pollution and atmospheric conditions. Moreover, visibility indicates the long-term impact on human health and climate and the relationship with local atmospheric pollution. The major factors triggering the degradation of visibility can be inferred by analyzing visibility long-term trends. In the UAE, we expect that the unprecedented growth in urban development and the aviation sector has impacted visibility records. This study is the first attempt to thoroughly investigate temporal and spatial variations in poor visibility measurements in the UAE and at four different visibility observation levels; less than 5000m, 2500m, 1000m and 100m, as well as to analyze the correlation between poor visibility measurements and different meteorological parameters (relative humidity, air temperature, wind direction and speed) under two weather conditions; wet and dry. Results show that eliminating all meteorological conditions (fog, mist, haze, and precipitation and dust) does not change the overall decreasing trend in visibility, this suggests that the changes in the air quality might be responsible for the long-term visibility degradation. The decreasing trends in visibility vary from the different major cities in the UAE. All the meteorological parameters studied are significantly related to visibility, indicating the existence of complex mechanisms (physical and chemical) that affect the visibility in the atmosphere. Visibility is positively correlated to relative humidity and wind direction, however, it is negatively correlated with temperature, wind speed and dew point. This is possibly related to the weather systems in summer and winter. In summer the presence of synoptic systems along with the very high temperature, low pressure, very high humidity, and very high wind speed due to the Shamal often lead to low visibility, whereas in winter the relatively high wind speed suggests more efficient diffusion conditions and dilutes pollutions and dust particulates to low concentration, with lower temperature and limited precipitation favors high visibility.

  8. SeaWinds Global Coverage with Detail of Hurricane Floyd

    NASA Technical Reports Server (NTRS)

    1999-01-01

    The distribution of ocean surface winds over the Atlantic Ocean, based on September 1999 data from NASA's SeaWinds instrument on the QuikScat satellite, shows wind direction (white streamlines) at a resolution of 25 kilometers (15.5 miles), superimposed on the color image indicating wind speed.

    Over the ocean, the strong (seen in violet) trade winds blow steadily from the cooler subtropical oceans to warm waters just north of the equator. The air rises over these warm waters and sinks in the subtropics at the horse latitudes. Low wind speeds are indicated in blue. In the mid-latitudes, the high vorticity caused by the rotation of the Earth generates the spirals of weather systems. The North Atlantic is dominated by a high-pressure system, whose anti-cyclonic (clockwise) flow creates strong winds blowing parallel to the coast of Spain and Morocco. This creates strong ocean upwelling and cold temperature. Hurricane Floyd, with its high winds (yellow), is clearly visible west of the Bahamas. Tropical depression Gert is seen as it was forming in the tropical mid-Atlantic (as an anti-clockwise spiral); it later developed into a full-blown hurricane.

    Because the atmosphere is largely transparent to microwaves, SeaWinds is able to cover 93 percent of the global oceans, under both clear and cloudy conditions, in a single day, with the capability of a synoptic view of the ocean. The high resolution of the data also gives detailed description of small and intense weather systems, like Hurricane Floyd. The image in the insert is based on data specially produced at 12.5 kilometers (7.7 miles). In the insert, white arrows of wind vector are imposed on the color image of wind speed. The insert represents a 3-degree area occupied by Hurricane Floyd. After these data were acquired, Hurricane Floyd turned north. Its strength and proximity to the Atlantic coast of the U.S. caused the largest evacuation of citizens in U.S. history. Its landfall on September 16, 1999 resulted in severe flooding and devastation in the Carolinas. The high-resolution SeaWinds data provided an opportunity to monitor and study this hurricane.

    NASA's Earth Science Enterprise is a long-term research and technology program designed to examine Earth's land, oceans, atmosphere, ice and life as a total integrated system. JPL is a division of the California Institute of Technology, Pasadena, CA.

  9. Flight speed and performance of the wandering albatross with respect to wind.

    PubMed

    Richardson, Philip L; Wakefield, Ewan D; Phillips, Richard A

    2018-01-01

    Albatrosses and other large seabirds use dynamic soaring to gain sufficient energy from the wind to travel large distances rapidly and with little apparent effort. The recent development of miniature bird-borne tracking devices now makes it possible to explore the physical and biological implications of this means of locomotion in detail. Here we use GPS tracking and concurrent reanalyzed wind speed data to model the flight performance of wandering albatrosses Diomedea exulans soaring over the Southern Ocean. We investigate the extent to which flight speed and performance of albatrosses is facilitated or constrained by wind conditions encountered during foraging trips. We derived simple equations to model observed albatross ground speed as a function of wind speed and relative wind direction. Ground speeds of the tracked birds in the along-wind direction varied primarily by wind-induced leeway, which averaged 0.51 (± 0.02) times the wind speed at a reference height of 5 m. By subtracting leeway velocity from ground velocity, we were able to estimate airspeed (the magnitude of the bird's velocity through the air). As wind speeds increased from 3 to 18 m/s, the airspeed of wandering albatrosses flying in an across-wind direction increased by 0.42 (± 0.04) times the wind speed (i.e. ~ 6 m/s). At low wind speeds, tracked birds increased their airspeed in upwind flight relative to that in downwind flight. At higher wind speeds they apparently limited their airspeeds to a maximum of around 20 m/s, probably to keep the forces on their wings in dynamic soaring well within tolerable limits. Upwind airspeeds were nearly constant and downwind leeway increased with wind speed. Birds therefore achieved their fastest upwind ground speeds (~ 9 m/s) at low wind speeds (~ 3 m/s). This study provides insights into which flight strategies are optimal for dynamic soaring. Our results are consistent with the prediction that the optimal range speed of albatrosses is higher in headwind than tailwind flight but only in wind speeds of up to ~ 7 m/s. Our models predict that wandering albatrosses have oval-shaped airspeed polars, with the fastest airspeeds ~ 20 m/s centered in the across-wind direction. This suggests that in upwind flight in high winds, albatrosses can increase their ground speed by tacking like sailboats.

  10. The stellar wind velocity function for red supergiants determined in eclipsing binaries

    NASA Technical Reports Server (NTRS)

    Ahmad, Imad A.; Stencel, Robert E.

    1988-01-01

    The potential for direct measurement of the acceleration of stellar winds from the supergiant component of Zeta Aurigae-type binary stars is discussed. The aberration angle of the interaction shock cone centered on the hot star provides a measure of the velocity of the cool star wind at the orbit of the secondary. This is confirmed by direct observations of stellar wind (P Cygni) line profile variations. This velocity is generally smaller than the final (terminal) velocity of the wind, deduced from the P Cygni line profiles. The contrast between these results and previously published supergiant wind models is discussed. The implication on the physics of energy source dissipation predicted in the theoretical models is considered.

  11. A directional microphone array for acoustic studies of wind tunnel models

    NASA Technical Reports Server (NTRS)

    Soderman, P. T.; Noble, S. C.

    1974-01-01

    An end-fire microphone array that utilizes a digital time delay system has been designed and evaluated for measuring noise in wind tunnels. The directional response of both a four- and eight-element linear array of microphones has enabled substantial rejection of background noise and reverberations in the NASA Ames 40- by 80-foot wind tunnel. In addition, it is estimated that four- and eight-element arrays reject 6 and 9 dB, respectively, of microphone wind noise, as compared with a conventional omnidirectional microphone with nose cone. Array response to two types of jet engine models in the wind tunnel is presented. Comparisons of array response to loudspeakers in the wind tunnel and in free field are made.

  12. Air Modeling - Observational Meteorological Data

    EPA Pesticide Factsheets

    Observed meteorological data for use in air quality modeling consist of physical parameters that are measured directly by instrumentation, and include temperature, dew point, wind direction, wind speed, cloud cover, cloud layer(s), ceiling height,

  13. Analysing wind farm efficiency on complex terrains

    NASA Astrophysics Data System (ADS)

    Castellani, Francesco; Astolfi, Davide; Terzi, Ludovico; Schaldemose Hansen, Kurt; Sanz Rodrigo, Javier

    2014-06-01

    Actual performances of onshore wind farms are deeply affected both by wake interactions and terrain complexity: therefore monitoring how the efficiency varies with the wind direction is a crucial task. Polar efficiency plot is therefore a useful tool for monitoring wind farm performances. The approach deserves careful discussion for onshore wind farms, where orography and layout commonly affect performance assessment. The present work deals with three modern wind farms, owned by Sorgenia Green, located on hilly terrains with slopes from gentle to rough. Further, onshore wind farm of Nprrekffir Enge has been analysed as a reference case: its layout is similar to offshore wind farms and the efficiency is mainly driven by wakes. It is shown and justified that terrain complexity imposes a novel and more consistent way for defining polar efficiency. Dependency of efficiency on wind direction, farm layout and orography is analysed and discussed. Effects of atmospheric stability have been also investigated through MERRA reanalysis data from NASA satellites. Monin-Obukhov Length has been used to discriminate climate regimes.

  14. Development of the ClearSky smoke dispersion forecast system for agricultural field burning in the Pacific Northwest

    NASA Astrophysics Data System (ADS)

    Jain, Rahul; Vaughan, Joseph; Heitkamp, Kyle; Ramos, Charleston; Claiborn, Candis; Schreuder, Maarten; Schaaf, Mark; Lamb, Brian

    The post-harvest burning of agricultural fields is commonly used to dispose of crop residue and provide other desired services such as pest control. Despite careful regulation of burning, smoke plumes from field burning in the Pacific Northwest commonly degrade air quality, particularly for rural populations. In this paper, ClearSky, a numerical smoke dispersion forecast system for agricultural field burning that was developed to support smoke management in the Inland Pacific Northwest, is described. ClearSky began operation during the summer through fall burn season of 2002 and continues to the present. ClearSky utilizes Mesoscale Meteorological Model version 5 (MM5v3) forecasts from the University of Washington, data on agricultural fields, a web-based user interface for defining burn scenarios, the Lagrangian CALPUFF dispersion model and web-served animations of plume forecasts. The ClearSky system employs a unique hybrid source configuration, which treats the flaming portion of a field as a buoyant line source and the smoldering portion of the field as a buoyant area source. Limited field observations show that this hybrid approach yields reasonable plume rise estimates using source parameters derived from recent field burning emission field studies. The performance of this modeling system was evaluated for 2003 by comparing forecast meteorology against meteorological observations, and comparing model-predicted hourly averaged PM 2.5 concentrations against observations. Examples from this evaluation illustrate that while the ClearSky system can accurately predict PM 2.5 surface concentrations due to field burning, the overall model performance depends strongly on meteorological forecast error. Statistical evaluation of the meteorological forecast at seven surface stations indicates a strong relationship between topographical complexity near the station and absolute wind direction error with wind direction errors increasing from approximately 20° for sites in open areas to 70° or more for sites in very complex terrain. The analysis also showed some days with good forecast meteorology with absolute mean error in wind direction less than 30° when ClearSky correctly predicted PM 2.5 surface concentrations at receptors affected by field burns. On several other days with similar levels of wind direction error the model did not predict apparent plume impacts. In most of these cases, there were no reported burns in the vicinity of the monitor and, thus, it appeared that other, non-reported burns were responsible for the apparent plume impact at the monitoring site. These cases do not provide information on the performance of the model, but rather indicate that further work is needed to identify all burns and to improve burn reports in an accurate and timely manner. There were also a number of days with wind direction errors exceeding 70° when the forecast system did not correctly predict plume behavior.

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Verdini, Andrea; LPP, Ecole Polytechnique, Palaiseau; Université Pierre et Marie Curie, Paris

    The spectral anisotropy of turbulent structures has been measured in the solar wind since 1990, relying on the assumption of axisymmetry about the mean magnetic field, B {sub 0}. However, several works indicate that this hypothesis might be partially wrong, thus raising two questions: (i) is it correct to interpret measurements at 1 au (the so-called Maltese cross) in term of a sum of slab and two-dimensional (2D) turbulence; and (ii) what information is really contained in the Maltese cross? We solve direct numerical simulations of the magnetohydrodynamic equations including the transverse stretching exerted by the solar wind flow andmore » study the genuine 3D anisotropy of turbulence as well as that one resulting from the assumption of axisymmetry about B {sub 0}. We show that the evolution of the turbulent spectrum from 0.2 to 1 au depends strongly on its initial anisotropy. An axisymmetric spectrum with respect to B {sub 0} keeps its axisymmetry, i.e., resists stretching perpendicular to radial, while an isotropic spectrum becomes essentially axisymmetric with respect to the radial direction. We conclude that close to the Sun, slow-wind turbulence has a spectrum that is axisymmetric around B {sub 0} and the measured 2D component at 1 au describes the real shape of turbulent structures. In contrast, fast-wind turbulence has a more isotropic spectrum at the source and becomes radially symmetric at 1 au. Such structure is hidden by the symmetrization applied to the data that instead returns a slab geometry.« less

  16. Analysis of concentration fluctuations in gas dispersion around high-rise building for different incident wind directions.

    PubMed

    Liu, X P; Niu, J L; Kwok, K C S

    2011-09-15

    This article presents experimental results that illustrate the unsteady characteristics of gas dispersion around a complex-shaped high-rise building for different incident wind directions. A series of wind tunnel experiments were conducted using a 1:30 scale model that represented the real structures under study. The objective of this paper is to study the behaviour of concentration fluctuations through transient analysis. Tracer gas was continuously released from a point source located at different positions, and a time series of fluctuating concentrations were recorded at a large number of points using fast flame ionization detectors. The experimental data were analysed to provide a comprehensive data set including variances and associated statistical quantities. Both the unsteady characteristics of the system and their potential practical impact are presented and discussed. Under crowd living conditions, the air pollutant exhausted from one household could probably re-enter into the neighbouring households, traveling with ambient airflow. Such pollutant dispersion process is defined as air cross-contamination in this study. The results indicate that the wind-induced cross-contamination around the studied type of high-rise building should not be overlooked, and the fluctuating concentrations should be paid attention to particularly during the evaluation of a potential contamination risk. This study can help deepen our understanding of the mechanisms of air cross-contamination, and will be useful for implementing optimization strategies to improve the built environments in metropolitan cities such as Hong Kong. Copyright © 2011 Elsevier B.V. All rights reserved.

  17. Alongshore momentum transfer to the nearshore zone from energetic ocean waves generated by passing hurricanes

    NASA Astrophysics Data System (ADS)

    Mulligan, Ryan P.; Hanson, Jeffrey L.

    2016-06-01

    Wave and current measurements from a cross-shore array of nearshore sensors in Duck, NC, are used to elucidate the balance of alongshore momentum under energetic wave conditions with wide surf zones, generated by passing hurricanes that are close to and far from to the coast. The observations indicate that a distant storm (Hurricane Bill, 2009) with large waves has low variability in directional wave characteristics resulting in alongshore currents that are driven mainly by the changes in wave energy. A storm close to the coast (Hurricane Earl, 2010), with strong local wind stress and combined sea and swell components in wave energy spectra, has high variability in wave direction and wave period that influence wave breaking and nearshore circulation as the storm passes. During both large wave events, the horizontal current shear is strong and radiation stress gradients, bottom stress, wind stress, horizontal mixing, and cross-shore advection contribute to alongshore momentum at different spatial locations across the nearshore region. Horizontal mixing during Hurricane Earl, estimated from rotational velocities, was particularly strong suggesting that intense eddies were generated by the high horizontal shear from opposing wind-driven and wave-driven currents. The results provide insight into the cross-shore distribution of the alongshore current and the connection between flows inside and outside the surf zone during major storms, indicating that the current shear and mixing at the interface between the surf zone and shallow inner shelf is strongly dependent on the distance from the storm center to the coast.

  18. The Wind Energy Potential of Kurdistan, Iran

    PubMed Central

    Arefi, Farzad; Moshtagh, Jamal; Moradi, Mohammad

    2014-01-01

    In the current work by using statistical methods and available software, the wind energy assessment of prone regions for installation of wind turbines in, Qorveh, has been investigated. Information was obtained from weather stations of Baneh, Bijar, Zarina, Saqez, Sanandaj, Qorveh, and Marivan. The monthly average and maximum of wind speed were investigated between the years 2000–2010 and the related curves were drawn. The Golobad curve (direction and percentage of dominant wind and calm wind as monthly rate) between the years 1997–2000 was analyzed and drawn with plot software. The ten-minute speed (at 10, 30, and 60 m height) and direction (at 37.5 and 10 m height) wind data were collected from weather stations of Iranian new energy organization. The wind speed distribution during one year was evaluated by using Weibull probability density function (two-parametrical), and the Weibull curve histograms were drawn by MATLAB software. According to the average wind speed of stations and technical specifications of the types of turbines, the suitable wind turbine for the station was selected. Finally, the Divandareh and Qorveh sites with favorable potential were considered for installation of wind turbines and construction of wind farms. PMID:27355042

  19. WSR-88D doppler radar detection of corn earworm moth migration.

    PubMed

    Westbrook, J K; Eyster, R S; Wolf, W W

    2014-07-01

    Corn earworm (Lepidoptera: Noctuidae) (CEW) populations infesting one crop production area may rapidly migrate and infest distant crop production areas. Although entomological radars have detected corn earworm moth migrations, the spatial extent of the radar coverage has been limited to a small horizontal view above crop production areas. The Weather Service Radar (version 88D) (WSR-88D) continuously monitors the radar-transmitted energy reflected by, and radial speed of, biota as well as by precipitation over areas that may encompass crop production areas. We analyzed data from the WSR-88D radar (S-band) at Brownsville, Texas, and related these data to aerial concentrations of CEW estimated by a scanning entomological radar (X-band) and wind velocity measurements from rawinsonde and pilot balloon ascents. The WSR-88D radar reflectivity was positively correlated (r2=0.21) with the aerial concentration of corn earworm-size insects measured by a scanning X-band radar. WSR-88D radar constant altitude plan position indicator estimates of wind velocity were positively correlated with wind speed (r2=0.56) and wind direction (r2=0.63) measured by pilot balloons and rawinsondes. The results reveal that WSR-88D radar measurements of insect concentration and displacement speed and direction can be used to estimate the migratory flux of corn earworms and other nocturnal insects, information that could benefit areawide pest management programs. In turn, identification of the effects of spatiotemporal patterns of migratory flights of corn earworm-size insects on WSR-88D radar measurements may lead to the development of algorithms that increase the accuracy of WSR-88D radar measurements of reflectivity and wind velocity for operational meteorology.

  20. WSR-88D doppler radar detection of corn earworm moth migration

    NASA Astrophysics Data System (ADS)

    Westbrook, J. K.; Eyster, R. S.; Wolf, W. W.

    2014-07-01

    Corn earworm (Lepidoptera: Noctuidae) (CEW) populations infesting one crop production area may rapidly migrate and infest distant crop production areas. Although entomological radars have detected corn earworm moth migrations, the spatial extent of the radar coverage has been limited to a small horizontal view above crop production areas. The Weather Service Radar (version 88D) (WSR-88D) continuously monitors the radar-transmitted energy reflected by, and radial speed of, biota as well as by precipitation over areas that may encompass crop production areas. We analyzed data from the WSR-88D radar (S-band) at Brownsville, Texas, and related these data to aerial concentrations of CEW estimated by a scanning entomological radar (X-band) and wind velocity measurements from rawinsonde and pilot balloon ascents. The WSR-88D radar reflectivity was positively correlated ( r 2 = 0.21) with the aerial concentration of corn earworm-size insects measured by a scanning X-band radar. WSR-88D radar constant altitude plan position indicator estimates of wind velocity were positively correlated with wind speed ( r 2 = 0.56) and wind direction ( r 2 = 0.63) measured by pilot balloons and rawinsondes. The results reveal that WSR-88D radar measurements of insect concentration and displacement speed and direction can be used to estimate the migratory flux of corn earworms and other nocturnal insects, information that could benefit areawide pest management programs. In turn, identification of the effects of spatiotemporal patterns of migratory flights of corn earworm-size insects on WSR-88D radar measurements may lead to the development of algorithms that increase the accuracy of WSR-88D radar measurements of reflectivity and wind velocity for operational meteorology.

  1. Modeling of sediment transport in a saltwater lake with supplemental sandy freshwater.

    PubMed

    Liang, Li; Deng, Yun; Li, Ran; Li, Jia

    2018-06-22

    Considering the highly complex flow structure of saltwater lakes during freshwater supplementation, a three-dimensional numerical model was developed to simulate suspended sediment transport in saltwater lakes. The model was validated using measurements of the salinity and sediment concentration during a pumping test at Yamdrok Lake. The simulation results were in quantitative agreement with the measured data. The observed and simulated results also indicated that the wind stress and vertical salinity gradient have a significant influence on salinity and sediment transport in a saltwater lake. The validated model was then used to predict and analyze the contributions of wind, the supplement flow rate and salinity stratification to the sediment transport process in Yamdrok Lake during continuous river water supplementation. The simulation results showed that after the sandy river water was continuously discharged into the saltwater lake, the lateral diffusion trends of the sediment exhibited three stages: linear growth in the inflow direction, logarithmic growth in the wind direction, and stabilization. Furthermore, wind was the dominant factor in driving the lake flow pattern and sediment transport. Specifically, wind can effectively reduce the area of the sediment diffusion zone by increasing the lateral sediment carrying and dilution capacities. The effect of inflow on the lake current is negligible, but the extent of the sediment turbidity zone mainly depends on the inflow. Reducing the inflow discharge can decrease the area of the sediment turbidity zone to proportions that far exceed the proportions of inflow discharge reductions. In addition, the high-salinity lake water can support the supplemented freshwater via buoyancy forces, which weaken vertical mixing and sediment settlement and increase lake currents and sediment diffusion near the surface.

  2. Combined effect of boundary layer recirculation factor and stable energy on local air quality in the Pearl River Delta over southern China.

    PubMed

    Li, Haowen; Wang, Baomin; Fang, Xingqin; Zhu, Wei; Fan, Qi; Liao, Zhiheng; Liu, Jian; Zhang, Asi; Fan, Shaojia

    2018-03-01

    Atmospheric boundary layer (ABL) has a significant impact on the spatial and temporal distribution of air pollutants. In order to gain a better understanding of how ABL affects the variation of air pollutants, atmospheric boundary layer observations were performed at Sanshui in the Pearl River Delta (PRD) region over southern China during the winter of 2013. Two types of typical ABL status that could lead to air pollution were analyzed comparatively: weak vertical diffusion ability type (WVDAT) and weak horizontal transportation ability type (WHTAT). Results show that (1) WVDAT was featured by moderate wind speed, consistent wind direction, and thick inversion layer at 600~1000 m above ground level (AGL), and air pollutants were restricted in the low altitudes due to the stable atmospheric structure; (2) WHTAT was characterized by calm wind, varied wind direction, and shallow intense ground inversion layer, and air pollutants accumulated in locally because of strong recirculation in the low ABL; (3) recirculation factor (RF) and stable energy (SE) were proved to be good indicators for horizontal transportation ability and vertical diffusion ability of the atmosphere, respectively. Combined utilization of RF and SE can be very helpful in the evaluation of air pollution potential of the ABL. Air quality data from ground and meteorological data collected from radio sounding in Sanshui in the Pearl River Delta showed that local air quality was poor when wind reversal was pronounced or temperature stratification state was stable. The combination of horizontal and vertical transportation ability of the local atmosphere should be taken into consideration when evaluating local environmental bearing capacity for air pollution.

  3. SUNWARD PROPAGATING ALFVÉN WAVES IN ASSOCIATION WITH SUNWARD DRIFTING PROTON BEAMS IN THE SOLAR WIND

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    He, Jiansen; Pei, Zhongtian; Wang, Linghua

    Using measurements from the WIND spacecraft, here we report the observation of sunward propagating Alfvén waves (AWs) in solar wind that is magnetically disconnected from the Earth's bow shock. In the sunward magnetic field sector, we find a period lasting for more than three days in which there existed (during most time intervals) a negative correlation between the flow velocity and magnetic field fluctuations, thus indicating that the related AWs are mainly propagating sunward. Simultaneous observations of counter-streaming suprathermal electrons suggest that these sunward AWs may not simply be due to the deflection of an open magnetic field line. Moreover,more » no interplanetary coronal mass ejection appears to be associated with the counter-streaming suprathermal electrons. As the scale goes from the magnetohydrodynamic down to the ion kinetic regime, the wave vector of magnetic fluctuations usually becomes more orthogonal to the mean magnetic field direction, and the fluctuations become increasingly compressible, which are both features consistent with quasi-perpendicular kinetic AWs. However, in the case studied here, we find clear signatures of quasi-parallel sunward propagating ion-cyclotron waves. Concurrently, the solar wind proton velocity distribution reveals a sunward field-aligned beam that drifts at about the local Alfvén speed. This beam is found to run in the opposite direction of the normally observed (anti-sunward) proton beam, and is apparently associated with sunward propagating Alfvén/ion-cyclotron waves. The results and conclusions of this study enrich our knowledge of solar wind turbulence and foster our understanding of proton heating and acceleration within a complex magnetic field geometry.« less

  4. Timing and Spatial Distribution of Loess in Xinjiang, NW China.

    PubMed

    Li, Yun; Song, Yougui; Yan, Libin; Chen, Tao; An, Zhisheng

    2015-01-01

    Central Asia is one of the most significant loess regions on Earth, with an important role in understanding Quaternary climate and environmental change. However, in contrast to the widely investigated loess deposits in the Chinese Loess Plateau, the Central Asian loess-paleosol sequences are still insufficiently known and poorly understood. Through field investigation and review of the previous literature, the authors have investigated the distribution, thickness and age of the Xinjiang loess, and analyzed factors that control these parameters in the Xinjiang in northwest China, Central Asia. The loess sediments cover river terraces, low uplands, the margins of deserts and the slopes of the Tianshan Mountains and Kunlun Mountains and are also present in the Ili Basin. The thickness of the Xinjiang loess deposits varies from several meters to 670 m. The variation trend of the sand fraction (>63 μm) grain-size contour can indicate the local major wind directions, so we conclude that the NW and NE winds are the main wind directions in the North and South Xinjiang, and the westerly wind mainly transport dust into the Ili basin. We consider persistent drying, adequate regional wind energy and well-developed river terraces to be the main factors controlling the distribution, thickness and formation age of the Xinjiang loess. The well-outcropped loess sections have mainly developed since the middle Pleistocene in Xinjiang, reflecting the appearance of the persistent drying and the present air circulation system. However, the oldest loess deposits are as old as the beginning of the Pliocene in the Tarim Basin, which suggests that earlier aridification occurred in the Tarim Basin rather than in the Ili Basin and the Junggar Basin.

  5. Double-Edge Molecular Measurement of Lidar Wind Profiles in the VALID Campaign

    NASA Technical Reports Server (NTRS)

    Korb, C. Laurence; Flesia, Cristina; Lolli, Simone; Hirt, Christian

    2000-01-01

    We have developed a transportable container based direct detection Doppler lidar based on the double-edge molecular technique. The pulsed solid state system was built at the University of Geneva. It was used to make range resolved measurements of the atmospheric wind field as part of the VALID campaign at the Observatoire de Haute Provence in Provence, France in July 1999. Comparison of our lidar wind measurements, which were analyzed without knowledge of the results of rawinsonde measurements made under the supervision of ESA, show good agreement with these rawinsondes. These are the first Doppler lidar field measurements made with an eyesafe direct detection molecular-based system at 355 nm and serve as a demonstrator for future spaceborne direct detection wind systems such as the Atmospheric Dynamics mission. Winds are an important contributor to sea surface temperature measurements made with the Tropical Rainfall Measuring Mission (TRMM) and also affect the TRMM rainfall estimates.

  6. Multisensor satellite data integration for sea surface wind speed and direction determination

    NASA Technical Reports Server (NTRS)

    Glackin, D. L.; Pihos, G. G.; Wheelock, S. L.

    1984-01-01

    Techniques to integrate meteorological data from various satellite sensors to yield a global measure of sea surface wind speed and direction for input to the Navy's operational weather forecast models were investigated. The sensors were launched or will be launched, specifically the GOES visible and infrared imaging sensor, the Nimbus-7 SMMR, and the DMSP SSM/I instrument. An algorithm for the extrapolation to the sea surface of wind directions as derived from successive GOES cloud images was developed. This wind veering algorithm is relatively simple, accounts for the major physical variables, and seems to represent the best solution that can be found with existing data. An algorithm for the interpolation of the scattered observed data to a common geographical grid was implemented. The algorithm is based on a combination of inverse distance weighting and trend surface fitting, and is suited to combing wind data from disparate sources.

  7. Comparison of wind tunnel and field experiments to measure potential deposition of fenpropimorph following volatilisation from treated crops.

    PubMed

    Hassink, Jan; Platz, Klaus; Stadler, Reinhold; Zangmeister, Werner; Fent, Gunnar; Möndel, Martin; Kubiak, Roland

    2007-02-01

    The potential for short-range transport via air, i.e. volatilisation from the area of application and subsequent deposition on adjacent non-target areas, was investigated for the fungicide fenpropimorph in a wind tunnel system and under outdoor conditions in a higher-tier field study. Fenpropimorph 750 g L(-1) EC was applied post-emergence to cereal along with a reference standard lindane EC. Stainless steel containers of water were placed at different distances downwind of the application area to trap volatile residues during a study period of 24 h following application. Meteorological conditions in the wind tunnel as well as on the field were constantly monitored during the study period. The wind tunnel system was a partly standardised system on a semi-field scale, i.e. wind direction and wind speed (2 m s(-1)) were constant, but temperature and humidity varied according to the conditions outside. In the field experiment, the average wind speed over the 24 h study period was 3 m s(-1) and no rainfall occurred. Three different measuring lines were installed on the non-target area beside the treated field to cover potential variations in the wind direction. However, no significant differences were observed since the wind direction was generally constant. Fenpropimorph was detected in minor amounts of 0.01-0.05% of the applied material in the wind tunnel experiment. Even at a distance of 1 m beside the treated field, no significant deposition occurred (0.04% of applied material after 24 h). In the field, less than 0.1% of the applied fenpropimorph was detected at 0 m directly beside the treated field. At 5 m distance the deposition values were below 0.04%, and at 20 m distance about 0.01%. In general, the amounts of deposited fenpropimorph detected in the partly standardised wind tunnel system and the higher-tier field study were in good agreement.

  8. Discharge and nutrient transport between lakes in a hydrologically complex area of Voyageurs National Park, Minnesota, 2010-2012

    USGS Publications Warehouse

    Christensen, Victoria G.; Wakeman, Eric; Maki, Ryan P.

    2016-01-01

    An acoustic Doppler velocity meter (ADVM) was deployed in the narrows between Namakan and Kabetogama Lakes in Voyageurs National Park, Minnesota, from November 3, 2010, through October 3, 2012. The ADVM can account for wind, seiche, and changing flow direction in hydrologically complex areas. The objectives were to (1) estimate discharge and document the direction of water flow, (2) assess whether specific conductance can be used to determine flow direction, and (3) document nutrient and chlorophyll a concentrations at the narrows. The discharge direction through the narrows was seasonal. Water generally flowed out of Kabetogama Lake and into Namakan Lake throughout the ice-covered season. During spring, water flow was generally from Namakan Lake to Kabetogama Lake. During the summer and fall, the water flowed in both directions, affected in part by wind. Water flowed into Namakan Lake 70% of water year 2011 and 56% of water year 2012. Nutrient and chlorophyll a concentrations were highest during the summer months when water-flow direction was unpredictable. The use of an ADVM was effective for assessing flow direction and provided flow direction under ice. The results indicated the eutrophic Kabetogama Lake may have a negative effect on the more pristine Namakan Lake. The results also provide data on the effects of the current water-level management plan and may help determine if adjustments are necessary to help protect the aquatic ecosystem of Voyageurs National Park.

  9. Tropospheric Wind Profile Measurements with a Direct Detection Doppler Lidar

    NASA Technical Reports Server (NTRS)

    Gentry, Bruce M.; Li, Steven X.; Korb, C. Laurence; Chen, Huailin; Mathur, Savyasachee

    1998-01-01

    Research has established the importance of global tropospheric wind measurements for large scale improvements in numerical weather prediction. In addition, global wind measurements provide data that are fundamental to the understanding and prediction of global climate change. These tasks are closely linked with the goals of the NASA Earth Science Enterprise and Global Climate Change programs. NASA Goddard has been actively involved in the development of direct detection Doppler lidar methods and technologies to meet the wind observing needs of the atmospheric science community. In this paper we describe a recently developed prototype wind lidar system using a direct detection Doppler technique for measuring wind profiles from the surface through the troposphere. This system uses a pulsed ND:YAG laser operating at 1064 nm as the transmitter. The laser pulse is directed to the atmosphere using a 40 cm diameter scan mirror. The portion of the laser energy backscattered from aerosols and molecules is collected by a 40 cm diameter telescope and coupled via fiber optics into the Doppler receiver. Single photon counting APD's are used to detect the atmospheric backscattered signal. The principle element of the receiver is a dual bandpass tunable Fabry Perot etalon which analyzes the Doppler shift of the incoming laser signal using the double edge technique. The double edge technique uses two high resolution optical filters having bandpasses offset relative to one another such that the 'edge' of the first filter's transmission function crosses that of the second at the half power point. The outgoing laser frequency is located approximately at the crossover point. Due to the opposite going slopes of the edges, a Doppler shift in the atmospheric backscattered laser frequency produces a positive change in signal for one filter and a negative change in the second filter. Taking the ratio of the two edge channel signals yields a result which is directly proportional to the component of the wind along the line-of-sight of the laser. Measuring the radial wind in several directions provides sufficient information to determine the true wind speed and direction. The lidar has operated from our laboratory at Goddard since June, 1997. Wind profiles have been obtained to altitudes of 12 km with a vertical resolution of 330 in. Vector wind data are obtained by rotating the scan mirror to measure line-of-sight wind profiles for at least two azimuth angles at an elevation angle of 45 degrees. The precision of the data as determined from the standard deviation of multiple independent lidar profiles is in the range of 1 to 3 m/sec up to 10 km. Good agreement is obtained when the lidar data are compared with the upper air rawinsonde soundings taken at Dulles airport. Examples of the wind lidar data will be presented along with a description of the instrument and future developments.

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hernandez, G.; Meriwether, J.W.; Tepley, C.A.

    Thermospheric winds and temperatures were observed from Fritz Peak, Colorado and Calgary, Alberta during the 23 October 1981 Stable Auroral Red Arc (SAR-arc) and aurora event. Ground-based photometer observations during the SAR-arc event allowed the position, 630.0 nm emission rate, and width of the SAR-arc over Fritz Peak to be monitored throughout the night. Data from the DE-2 satellite overflight near 0400UT allowed the structure of the SAR-arc near Fritz Peak and the aurora in Canada to be determined. The measurements made from Fritz Peak Observatory during the early evening hours showed a thermospheric response to heating within the SAR-arcmore » with meridional winds flowing away from the region of maximum heating at velocities less than 50 m s/sup -1/. Later during the night the meridional winds measured over Fritz Peak shifted equatorward. The neutral gas temperature decreased from about 1700/sup 0/K in the early evening to about 1200/sup 0/K before sunrise. The wind measurements made from Calgary indicated a more complex flow pattern. During the early evening hours the winds were directed poleward, increasing in velocity with latitude from about 50 to 300 m s/sup -1/. Near local midnight the winds reversed to equatorward and also became irregular in the vicinity of the station. The winds in the vicinity of Calgary are under the influence of intense particle precipitation and enhanced ion drag associated with magnetospheric convection that give rise to considerable variability.« less

  11. Compact magnetic energy storage module

    DOEpatents

    Prueitt, M.L.

    1994-12-20

    A superconducting compact magnetic energy storage module in which a plurality of superconducting toroids, each having a toroidally wound superconducting winding inside a poloidally wound superconducting winding, are stacked so that the flow of electricity in each toroidally wound superconducting winding is in a direction opposite from the direction of electrical flow in other contiguous superconducting toroids. This allows for minimal magnetic pollution outside of the module. 4 figures.

  12. Compact magnetic energy storage module

    DOEpatents

    Prueitt, Melvin L.

    1994-01-01

    A superconducting compact magnetic energy storage module in which a plurality of superconducting toroids, each having a toroidally wound superconducting winding inside a poloidally wound superconducting winding, are stacked so that the flow of electricity in each toroidally wound superconducting winding is in a direction opposite from the direction of electrical flow in other contiguous superconducting toroids. This allows for minimal magnetic pollution outside of the module.

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Newsom, R. K.; Sivaraman, C.; Shippert, T. R.

    Wind speed and direction, together with pressure, temperature, and relative humidity, are the most fundamental atmospheric state parameters. Accurate measurement of these parameters is crucial for numerical weather prediction. Vertically resolved wind measurements in the atmospheric boundary layer are particularly important for modeling pollutant and aerosol transport. Raw data from a scanning coherent Doppler lidar system can be processed to generate accurate height-resolved measurements of wind speed and direction in the atmospheric boundary layer.

  14. Axial gap rotating electrical machine

    DOEpatents

    None

    2016-02-23

    Direct drive rotating electrical machines with axial air gaps are disclosed. In these machines, a rotor ring and stator ring define an axial air gap between them. Sets of gap-maintaining rolling supports bear between the rotor ring and the stator ring at their peripheries to maintain the axial air gap. Also disclosed are wind turbines using these generators, and structures and methods for mounting direct drive rotating electrical generators to the hubs of wind turbines. In particular, the rotor ring of the generator may be carried directly by the hub of a wind turbine to rotate relative to a shaft without being mounted directly to the shaft.

  15. Estimating direct fatality impacts at wind farms: how far we’ve come, where we have yet to go

    USGS Publications Warehouse

    Huso, Manuela M.; Schwartz, Susan Savitt

    2013-01-01

    Measuring the potential impacts of wind farms on wildlife can be difficult and may require development of new statistical tools and models to accurately reflect the measurement process. This presentation reviews the recent history of approaches to estimating wildlife fatality under the unique conditions encountered at wind farms, their unifying themes and their potential shortcomings. Avenues of future research are suggested to continue to address the needs of resource managers and industry in understanding direct impacts of wind turbine-caused wildlife fatality.

  16. Wind machines. [aerodynamics of sailwing vehicles

    NASA Technical Reports Server (NTRS)

    Lissaman, P. B. S.

    1973-01-01

    The basic elements of the air/water momentum exchange are described by the environment, the potential, the air and water subsystems, the total system, and the rule. Many of these topics have direct analogues in aerogenerator design. Aspects of optimal sail design and of waveless hulls are briefly outlined. A wind driven vehicle capable of moving directly downwind faster than the wind, is reported. The lecture is illustrated with slides and movie clips showing surfing catamarans, land and water versions of the Bauer vehicle, hang gliding, land sailing, and wind surfing.

  17. Impact of macrozoobenthic bioturbation and wind fluctuation interactions on net methylmercury in freshwater lakes.

    PubMed

    Wang, Peifang; Yao, Yu; Wang, Chao; Hou, Jun; Qian, Jin; Miao, Lingzhan

    2017-11-01

    The methylmercury (MeHg) as the toxic fractions has presented significant threats to biota in freshwater ecosystems. Hg methylation process is demonstrated to be manipulated by biota process (benthic disturbance and algae bloom existence) as well as the abiotic influence (wind fluctuation and illumination intensity) in freshwater ecosystems. However, the mechanisms influencing Hg methylation are still unclear, and the coupled influences of the biotic and abiotic process with the shifts in variation on methylmercury remain unexplored. Accordingly, an annular flume experiment which simulated the freshwater ecosystem, was conducted for 108 days to examine the influences of typical disturbance by chironomid larvae and wind fluctuations on MeHg variation in sediment profiles. The in-situ, passive sampler technique of revealing diffusive gradients in thin films (DGT) encompassed the special resin, based on referenced extraction and coloration-computer imaging densitometry, were employed to obtain labile MeHg, Fe, and S concentrations at high resolution. The results indicate that larval bioturbation during the initial period of the experiment could diminish bioavailable MeHg concentrations and change the diffusion direction of MeHg fluxes. However, this inhibitive effect on MeHg concentrations ceased with larvae eclosion. Compared to bioturbation, wind fluctuation exerted slow but sustained inhibition on MeHg release. Furthermore, the eight parameters (dissolved organic carbon (DOC), DO, labile Fe and S concentrations, pH, sulfate-reducing bacteria (SRB) abundance in sediment, oxidation-reduction potential (ORP) and EC) could explain more of variation in MeHg concentrations which indicated by the canonical correspondence analysis. And these eight parameters manifest higher explanatory power for MeHg distributed in newly formed sediment. More notably, the comparison results of the multiple and simple regression directly demonstrated the DOC was the fundamental and robust factor to control the MeHg variation in the freshwater ecosystem. Copyright © 2017. Published by Elsevier Ltd.

  18. A Teaching-Learning Sequence about Weather Map Reading

    ERIC Educational Resources Information Center

    Mandrikas, Achilleas; Stavrou, Dimitrios; Skordoulis, Constantine

    2017-01-01

    In this paper a teaching-learning sequence (TLS) introducing pre-service elementary teachers (PET) to weather map reading, with emphasis on wind assignment, is presented. The TLS includes activities about recognition of wind symbols, assignment of wind direction and wind speed on a weather map and identification of wind characteristics in a…

  19. Using Kites to Illustrate Some Features of Boundary Layer Winds.

    ERIC Educational Resources Information Center

    Tuller, Stanton E.

    1983-01-01

    Kites allow teachers to illustrate wind patterns by calling on past experience and by present demonstration. Features of the wind illustrated by kites--the effect of surface friction on wind speed, change of wind direction with elevation, gust and lull sequence, and atmospheric stability and turbulence type--are discussed. (SR)

  20. Golf in the Wind: Exploring the Effect of Wind on the Accuracy of Golf Shots

    NASA Astrophysics Data System (ADS)

    Yaghoobian, Neda; Mittal, Rajat

    2015-11-01

    Golf play is highly dependent on the weather conditions with wind being the most significant factor in the unpredictability of the ball landing position. The direction and strength of the wind alters the aerodynamic forces on a ball in flight, and consequently its speed, distance and direction of travel. The fact that local wind conditions on any particular hole change over times-scales ranging all the way from a few seconds to minutes, hours and days introduces an element of variability in the ball trajectory that is not understood. Any such analysis is complicated by the effect of the local terrestrial and vegetation topology, as well as the inherent complexity of golf-ball aerodynamics. In the current study, we use computational modeling to examine the unpredictability of the shots under different wind conditions over Hole-12 at the Augusta National Golf Club, where the Masters Golf Tournament takes place every year. Despite this being the shortest hole on the course, the presence of complex vegetation canopy around this hole introduces a spatial and temporal variability in wind conditions that evokes uncertainty and even fear among professional golfers. We use our model to examine the effect of wind direction and wind-speed on the accuracy of the golf shots at this hole and use the simulations to determine the key aerodynamic factors that affect the accuracy of the shot.

  1. Combined analysis of the radar cross-section modulation due to the long ocean waves around 14° and 34° incidence: Implication for the hydrodynamic modulation

    NASA Astrophysics Data System (ADS)

    Hauser, DanièLe; Caudal, GéRard

    1996-11-01

    The analysis of synthetic aperture radar observations over the ocean to derive the directional spectra of the waves is based upon a complex transfer function which is the sum of three terms: tilt modulation, hydrodynamic modulation, and velocity bunching effect. Both the hydrodynamic and the velocity bunching terms are still poorly known. Here we focus on the hydrodynamic part of the transfer function, from an experimental point of view. In this paper a new method is proposed to estimate the hydrodynamic modulation. The approach consists in analyzing observations obtained with an airborne real-aperture radar (called RESSAC). This radar (C band, HH polarized, broad beam of 14° × 3°) was used during the SEMAPHORE experiment, in two different modes. From the first mode (incidence angles from 7° to 21°) the directional spectra of the long waves are deduced under the assumption that the hydrodynamic modulation can be neglected (small incidence angles) and validated against in situ measurements. From the second mode (incidence angle from 27° to 41°) the amplitude and phase of the hydrodynamic modulation are deduced by combining the measured signal modulation spectrum at a mean incidence angle of 34° and the directional wave spectrum obtained from the first mode. The results, obtained in four different wind-wave cases of the SEMAPHORE experiment, show that the modulus of the hydrodynamic modulation is larger than that of the tilt modulation. Furthermore, we find that the modulus of the hydrodynamic transfer function is several times larger (by a factor 2-12) than the theoretical value proposed in previous works and 1.5-2.5 larger than experimental values reported in recent papers. The phase of the hydrodynamic modulation is found to be close to zero for waves propagating at an angle from the wind direction and between -20° and -40° for waves propagating along the wind direction. This indicates a significant influence of the wind-wave angle on the phase of the hydrodynamic modulation, in agreement with experimental results reported in recent papers.

  2. Impacts of subgrid-scale orography parameterization on simulated atmospheric fields over Korea using a high-resolution atmospheric forecast model

    NASA Astrophysics Data System (ADS)

    Lim, Kyo-Sun Sunny; Lim, Jong-Myoung; Shin, Hyeyum Hailey; Hong, Jinkyu; Ji, Young-Yong; Lee, Wanno

    2018-06-01

    A substantial over-prediction bias at low-to-moderate wind speeds in the Weather Research and Forecasting (WRF) model has been reported in the previous studies. Low-level wind fields play an important role in dispersion of air pollutants, including radionuclides, in a high-resolution WRF framework. By implementing two subgrid-scale orography parameterizations (Jimenez and Dudhia in J Appl Meteorol Climatol 51:300-316, 2012; Mass and Ovens in WRF model physics: problems, solutions and a new paradigm for progress. Preprints, 2010 WRF Users' Workshop, NCAR, Boulder, Colo. http://www.mmm.ucar.edu/wrf/users/workshops/WS2010/presentations/session%204/4-1_WRFworkshop2010Final.pdf, 2010), we tried to compare the performance of parameterizations and to enhance the forecast skill of low-level wind fields over the central western part of South Korea. Even though both subgrid-scale orography parameterizations significantly alleviated the positive bias at 10-m wind speed, the parameterization by Jimenez and Dudhia revealed a better forecast skill in wind speed under our modeling configuration. Implementation of the subgrid-scale orography parameterizations in the model did not affect the forecast skills in other meteorological fields including 10-m wind direction. Our study also brought up the problem of discrepancy in the definition of "10-m" wind between model physics parameterizations and observations, which can cause overestimated winds in model simulations. The overestimation was larger in stable conditions than in unstable conditions, indicating that the weak diurnal cycle in the model could be attributed to the representation error.

  3. Analysis of Dynamic Characteristics of the 21st Century Maritime Silk Road

    NASA Astrophysics Data System (ADS)

    Zhang, Xudong; Zhang, Jie; Fan, Chenqing; Meng, Junmin; Wang, Jing; Wan, Yong

    2018-06-01

    The 21st century Maritime Silk Road (MSR) proposed by China strongly promotes the maritime industry. In this paper, we use wind and ocean wave datasets from 1979 to 2014 to analyze the spatial and temporal distributions of the wind speed, significant wave height (SWH), mean wave direction (MWD), and mean wave period (MWP) in the MSR. The analysis results indicate that the Luzon Strait and Gulf of Aden have the most obvious seasonal variations and that the central Indian Ocean is relatively stable. We analyzed the distributions of the maximum wind speed and SWH in the MSR over this 36-year period. The results show that the distribution of the monthly average frequency for SWH exceeds 4 m (huge waves) and that of the corresponding wind speed exceeds 13.9 m s-1 (high wind speed). The occurrence frequencies of huge waves and high winds in regions east of the Gulf of Aden are as high as 56% and 80%, respectively. We also assessed the wave and wind energies in different seasons. Based on our analyses, we propose a risk factor (RF) for determining navigation safety levels, based on the wind speed and SWH. We determine the spatial and temporal RF distributions for different seasons and analyze the corresponding impact on four major sea routes. Finally, we determine the spatial distribution of tropical cyclones from 2000 to 2015 and analyze the corresponding impact on the four sea routes. The analysis of the dynamic characteristics of the MSR provides references for ship navigation as well as ocean engineering.

  4. Wind direction and its linkage with Vibrio cholerae dissemination.

    PubMed

    Paz, Shlomit; Broza, Meir

    2007-02-01

    The relevance of climatic events as causative factors for cholera epidemics is well known. However, examinations of the involvement of climatic factors in intracontinental disease distribution are still absent. The spreading of cholera epidemics may be related to the dominant wind direction over land. We examined the geographic diffusion of three cholera outbreaks through their linkage with the wind direction: a) the progress of Vibrio cholerae O1 biotype El Tor in Africa during 1970-1971 and b) again in 2005-2006; and c) the rapid spread of Vibrio cholerae O139 over India during 1992-1993. We also discuss the possible influence of the wind direction on windborn dissemination by flying insects, which may serve as vectors. Analysis of air pressure data at sea level and at several altitudes over Africa, India, and Bangladesh show a correspondence between the dominant wind direction and the intracontinental spread of cholera. We explored the hypothesis that winds have assisted the progress of cholera Vibrios throughout continents. The current analysis supports the hypothesis that aeroplankton (the tiny life forms that float in the air and that may be caught and carried upward by the wind, landing far from their origin) carry the cholera bacteria from one body of water to an adjacent one. This finding may improve our understanding of how climatic factors are involved in the rapid distribution of new strains throughout a vast continental area. Awareness of the aerial transfer of Vibrio cholerae may assist health authorities by improving the prediction of the disease's geographic dissemination.

  5. MESSENGER Observations of Extreme Space Weather in Mercury's Magnetosphere

    NASA Astrophysics Data System (ADS)

    Slavin, J. A.

    2013-09-01

    Increasing activity on the Sun is allowing MESSENGER to make its first observations of Mercury's magnetosphere under extreme solar wind conditions. At Earth interplanetary shock waves and coronal mass ejections produce severe "space weather" in the form of large geomagnetic storms that affect telecommunications, space systems, and ground-based power grids. In the case of Mercury the primary effect of extreme space weather in on the degree to which this it's weak global magnetic field can shield the planet from the solar wind. Direct impact of the solar wind on the surface of airless bodies like Mercury results in space weathering of the regolith and the sputtering of atomic species like sodium and calcium to high altitudes where they contribute to a tenuous, but highly dynamic exosphere. MESSENGER observations indicate that during extreme interplanetary conditions the solar wind plasma gains access to the surface of Mercury through three main regions: 1. The magnetospheric cusps, which fill with energized solar wind and planetary ions; 2. The subsolar magnetopause, which is compressed and eroded by reconnection to very low altitudes where the natural gyro-motion of solar wind protons may result in their impact on the surface; 3. The magnetotail where hot plasma sheet ions rapidly convect sunward to impact the surface on the nightside of Mercury. The possible implications of these new MESSENGER observations for our ability to predict space weather at Earth and other planets will be described.

  6. New Observations of C-band Brightness Temperatures and Ocean Surface Wind Speed and Rain Rate From the Hurricane Imaging Radiometer (HIRAD)

    NASA Technical Reports Server (NTRS)

    Miller, Timothy L.; James, M. W.; Roberts, J. B.; Buckley, C. D.; Biswas, S.; May, C.; Ruf, C. S.; Uhlhorn, E. W.; Atlas, R.; Black, P.; hide

    2012-01-01

    HIRAD flew on the WB-57 during NASA's GRIP (Genesis and Rapid Intensification Processes) campaign in August September of 2010. HIRAD is a new C-band radiometer using a synthetic thinned array radiometer (STAR) technology to obtain cross-track resolution of approximately 3 degrees, out to approximately 60 degrees to each side of nadir. By obtaining measurements of emissions at 4, 5, 6, and 6.6 GHz, observations of ocean surface wind speed and rain rate can be retrieved. This technique has been used for many years by precursor instruments, including the Stepped Frequency Microwave Radiometer (SFMR), which has been flying on the NOAA and USAF hurricane reconnaissance aircraft for several years to obtain observations within a single footprint at nadir angle. Results from the flights during the GRIP campaign will be shown, including images of brightness temperatures, wind speed, and rain rate. Comparisons will be made with observations from other instruments on the GRIP campaign, for which HIRAD observations are either directly comparable or are complementary. Features such as storm eye and eyewall, location of storm wind and rain maxima, and indications of dynamical features such as the merging of a weaker outer wind/rain maximum with the main vortex may be seen in the data. Potential impacts on operational ocean surface wind analyses and on numerical weather forecasts will also be discussed.

  7. Weather and climate needs for lidar observations from space and concepts for their realization

    NASA Technical Reports Server (NTRS)

    Atlas, D.; Korb, C. L.

    1981-01-01

    The spectrum of weather and climate needs for lidar observations from space is discussed. This paper focuses mainly on the requirements for winds, temperature, moisture, and pressure. Special emphasis is given to the need for wind observations, and it is shown that winds are required to depict realistically all atmospheric scales in the tropics and the smaller scales at higher latitudes, where both temperature and wind profiles are necessary. The need for means to estimate air-sea exchanges of sensible and latent heat also is noted. Lidar can aid here by measurement of the slope of the boundary layer. Recent theoretical feasibility studies concerning the profiling of temperature, pressure, and humidity by differential absorption lidar (DIAL) from space and expected accuracies are reviewed. Initial ground-based trials provide support for these approaches and also indicate their direct applicability to path-average temperature measurements near the surface. An alternative approach to Doppler lidar wind measurements also is presented. The concept involves the measurement of the displacement of the aerosol backscatter pattern, at constant height, between two successive scans of the same area, one ahead of the spacecraft and the other behind it, a few minutes later. Finally, an integrated space lidar system capable of measuring temperature, pressure, humidity, and winds which combines the DIAL methods with the aerosol pattern displacement concept is described briefly.

  8. Lidar arc scan uncertainty reduction through scanning geometry optimization

    DOE PAGES

    Wang, Hui; Barthelmie, Rebecca J.; Pryor, Sara C.; ...

    2016-04-13

    Doppler lidars are frequently operated in a mode referred to as arc scans, wherein the lidar beam scans across a sector with a fixed elevation angle and the resulting measurements are used to derive an estimate of the n minute horizontal mean wind velocity (speed and direction). Previous studies have shown that the uncertainty in the measured wind speed originates from turbulent wind fluctuations and depends on the scan geometry (the arc span and the arc orientation). This paper is designed to provide guidance on optimal scan geometries for two key applications in the wind energy industry: wind turbine power performance analysis and annualmore » energy production prediction. We present a quantitative analysis of the retrieved wind speed uncertainty derived using a theoretical model with the assumption of isotropic and frozen turbulence, and observations from three sites that are onshore with flat terrain, onshore with complex terrain and offshore, respectively. The results from both the theoretical model and observations show that the uncertainty is scaled with the turbulence intensity such that the relative standard error on the 10 min mean wind speed is about 30% of the turbulence intensity. The uncertainty in both retrieved wind speeds and derived wind energy production estimates can be reduced by aligning lidar beams with the dominant wind direction, increasing the arc span and lowering the number of beams per arc scan. As a result, large arc spans should be used at sites with high turbulence intensity and/or large wind direction variation.« less

  9. Gap winds and their effects on regional oceanography Part II: Kodiak Island, Alaska

    NASA Astrophysics Data System (ADS)

    Ladd, Carol; Cheng, Wei; Salo, Sigrid

    2016-10-01

    Frequent gap winds, defined here as offshore-directed flow channeled through mountain gaps, have been observed near Kodiak Island in the Gulf of Alaska (GOA). Gap winds from the Iliamna Lake gap were investigated using QuikSCAT wind data. The influence of these wind events on the regional ocean was examined using satellite and in situ data combined with Regional Ocean Modeling System (ROMS) model runs. Gap winds influence the entire shelf width (> 200 km) northeast of Kodiak Island and extend an additional 150 km off-shelf. Due to strong gradients in the along-shelf direction, they can result in vertical velocities in the ocean of over 20 m d-1 due to Ekman pumping. The wind events also disrupt flow of the Alaska Coastal Current (ACC), resulting in decreased flow down Shelikof Strait and increased velocities on the outer shelf. This disruption of the ACC has implications for freshwater transport into the Bering Sea. The oceanographic response to gap winds may influence the survival of larval fishes as Arrowtooth Flounder recruitment is negatively correlated with the interannual frequency of gap-wind events, and Pacific Cod recruitment is positively correlated. The frequency of offshore directed winds exhibits a strong seasonal cycle averaging 7 days per month during winter and 2 days per month during summer. Interannual variability is correlated with the Pacific North America Index and shows a linear trend, increasing by 1.35 days per year. An accompanying paper discusses part I of our study (Ladd and Cheng, 2016) focusing on gap-wind events flowing out of Cross Sound in the eastern GOA.

  10. Lidar arc scan uncertainty reduction through scanning geometry optimization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Hui; Barthelmie, Rebecca J.; Pryor, Sara C.

    Doppler lidars are frequently operated in a mode referred to as arc scans, wherein the lidar beam scans across a sector with a fixed elevation angle and the resulting measurements are used to derive an estimate of the n minute horizontal mean wind velocity (speed and direction). Previous studies have shown that the uncertainty in the measured wind speed originates from turbulent wind fluctuations and depends on the scan geometry (the arc span and the arc orientation). This paper is designed to provide guidance on optimal scan geometries for two key applications in the wind energy industry: wind turbine power performance analysis and annualmore » energy production prediction. We present a quantitative analysis of the retrieved wind speed uncertainty derived using a theoretical model with the assumption of isotropic and frozen turbulence, and observations from three sites that are onshore with flat terrain, onshore with complex terrain and offshore, respectively. The results from both the theoretical model and observations show that the uncertainty is scaled with the turbulence intensity such that the relative standard error on the 10 min mean wind speed is about 30% of the turbulence intensity. The uncertainty in both retrieved wind speeds and derived wind energy production estimates can be reduced by aligning lidar beams with the dominant wind direction, increasing the arc span and lowering the number of beams per arc scan. As a result, large arc spans should be used at sites with high turbulence intensity and/or large wind direction variation.« less

  11. Mars Global Digital Dune Database (MGD3): Global dune distribution and wind pattern observations

    USGS Publications Warehouse

    Hayward, Rosalyn K.; Fenton, Lori; Titus, Timothy N.

    2014-01-01

    The Mars Global Digital Dune Database (MGD3) is complete and now extends from 90°N to 90°S latitude. The recently released south pole (SP) portion (MC-30) of MGD3 adds ∼60,000 km2 of medium to large-size dark dune fields and ∼15,000 km2 of sand deposits and smaller dune fields to the previously released equatorial (EQ, ∼70,000 km2), and north pole (NP, ∼845,000 km2) portions of the database, bringing the global total to ∼975,000 km2. Nearly all NP dunes are part of large sand seas, while the majority of EQ and SP dune fields are individual dune fields located in craters. Despite the differences between Mars and Earth, their dune and dune field morphologies are strikingly similar. Bullseye dune fields, named for their concentric ring pattern, are the exception, possibly owing their distinctive appearance to winds that are unique to the crater environment. Ground-based wind directions are derived from slipface (SF) orientation and dune centroid azimuth (DCA), a measure of the relative location of a dune field inside a crater. SF and DCA often preserve evidence of different wind directions, suggesting the importance of local, topographically influenced winds. In general however, ground-based wind directions are broadly consistent with expected global patterns, such as polar easterlies. Intriguingly, between 40°S and 80°S latitude both SF and DCA preserve their strongest, though different, dominant wind direction, with transport toward the west and east for SF-derived winds and toward the north and west for DCA-derived winds.

  12. Coprates Chasma

    NASA Technical Reports Server (NTRS)

    2002-01-01

    (Released 21 June 2002) The Science This image covers a portion of Coprates Chasma, located near 15.5S, 57.8W, which is part of the Valles Marineris system of canyons that stretch for thousands of kilometers. This image displays clearly the contrast between bedrock, sand, and dust surfaces. The steepest slopes, such as on the canyon walls, appear to be free of the mantle of dust and sand that is nearly ubiquitous elsewhere in the image. Layering is clearly present in the bedrock unit, but it is not clear if that layering is due to sedimentary deposits or volcanic lava flows. Superimposed on the slopes is a mantle of dust in a manner that appears similar to snow covered mountains on Earth. This is because in both situations, fine-grained dry, particulate material is settling on a sloped surface. Collecting in the valleys and, in some cases, climbing up the slopes are several sand sheets. The amount of cover and the apparent thickness of these sands give some indication to the huge volume of material that is collected here. The orientation of the slip faces of the dunes in this image can be used to deduce the prevalent wind patterns in the region. In this case, the prevalent wind direction is towards the east but there are areas where the winds indicate a more complex system, perhaps indicating topographic control of the local winds. The Story The canyon walls of Coprates, the old name for the Persian River Ab-I-Diz, descend clearly at the top of this image, without being obscured by the dust that covers much of this region. Coprates Chasma is part of Valles Marineris, the largest canyon system in the solar system. In addition to the hard bedrock and dust, sand dunes also appear on the floor of the canyon. They almost look as though they've been raked by a Zen gardener, but the eastward-blowing wind is really responsible for their rows. Scientists can tell the direction of the wind by looking at the slip faces of the dunes -- that is, by identifying the steep, downward slope formed from loose, cascading sand. Some areas seem to have been formed by more complex wind patterns that may have emerged due to the topography of the area. This region is, in fact, pretty complex. The sand in this area looks like it is thick and abundant. Not only has it collected in the valleys, it has also built up enough to begin to 'climb up' the slopes. There is also layering in the bedrock, but who knows if this layering is made of deposits of 'dirt' and rock or from lava. Finally, at the bottom of this image, dust-covered slopes appear like snow-covered mountain s on Earth. This similar look occurs because both dust and snow are fine-grained particles and cover the slopes in comparable ways.

  13. Chapter 13. Atmospheric Dynamics and Meteorology

    NASA Technical Reports Server (NTRS)

    Flasar, F. M.; Baines, K. H.; Bird, M. K.; Tokano, T.

    2009-01-01

    Titan, after Venus, is the second example in the solar system of an atmosphere with a global cyclostrophic circulation, but in this case a circulation that has a strong seasonal modulation in the middle atmosphere. Direct measurement of Titan's winds, particularly observations tracking the Huygens probe at 10 deg S, indicate that the zonal winds are mostly in the sense of the satellite's rotation. They generally increase with altitude and become cyclostrophic near 35 km above the surface. An exception to this is a sharp minimum centered near 75 km, where the wind velocity decreases to nearly zero. Zonal winds derived from temperatures retrieved from Cassini orbiter measurements, using the thermal wind equation, indicate a strong winter circumpolar vortex, with maximum winds of 190 m/s at mid northern latitudes near 300 km. Above this level, the vortex decays. Curiously, the stratospheric zonal winds and temperatures in both hemispheres are symmetric about a pole that is offset from the surface pole by about 4 deg. The cause of this is not well understood, but it may reflect the response of a cyclostrophic circulation to the onset between the equator, where the distance to the rotation axis is greatest, and the seasonally varying subsolar latitude. The mean meridional circulation can be inferred from the temperature field and the meridional distribution of organic molecules and condensates and hazes. Both the warm temperatures near 400 km and the enhanced concentration of several organic molecules suggest subsidence in the north polar region during winter and early spring. Stratospheric condensates are localized at high northern latitudes, with a sharp cut-off near 50 deg N. Titan's winter polar vortex appears to share many of the same characteristics of isolating high and low-latitude air masses as do the winter polar vortices on Earth that envelop the ozone holes. Global mapping of temperatures, winds, and composition in the troposphere, by contrast, is incomplete. The few suitable discrete clouds that have been found for tracking indicate smaller velocities than aloft, consistent: with the Huygens measurements, Along the descent trajectory, the Huygens measurements indicate eastward zonal winds down to 7 km, where they shift westward, and then eastward again below 1 km dawn to the surface. The low-latitude dune fields seen in Cassini RADAR images have been interpreted as longitudinal dunes occurring in a mean eastward zonal wind. This is not like Earth, where the low-latitude winds are westward above the surface. Because the net zonal-mean time-averaged torque exerted by the surface on the atmosphere should vanish, there must be westward flow over part of the surface; the question is where and when. The meridional contrast in tropospheric temperatures deduced from radio occultations at low, mid, and high latitudes. is small, approximately 5 K at the tropopause and approximately 3 K at the surface. This implies efficient heat transport, probably by axisymmetric meridional circulations. The effect of the methane "hydrological" cycle on the atmospheric circulation is not well constrained by existing measurements, Understanding the mature of the surface-atmosphere coupling will be critical to elucidating the atmospheric transports of momentum, heat, and volatiles.

  14. Responses of insect herbivores and their food plants to wind exposure and the importance of predation risk.

    PubMed

    Chen, Cong; Biere, Arjen; Gols, Rieta; Halfwerk, Wouter; van Oers, Kees; Harvey, Jeffrey A

    2018-04-19

    Wind is an important abiotic factor that influences an array of biological processes, but it is rarely considered in studies on plant-herbivore interactions. Here, we tested whether wind exposure could directly or indirectly affect the performance of two insect herbivores, Plutella xylostella and Pieris brassicae, feeding on Brassica nigra plants. In a greenhouse study using a factorial design, B. nigra plants were exposed to different wind regimes generated by fans before and after caterpillars were introduced on plants in an attempt to separate the effects of direct and indirect wind exposure on herbivores. Wind exposure delayed flowering, decreased plant height and increased leaf concentrations of amino acids and glucosinolates. Plant-mediated effects of wind on herbivores, that is effects of exposure of plants to wind prior to herbivore feeding, were generally small. However, development time of both herbivores was extended and adult body mass of P. xylostella was reduced when they were directly exposed to wind. By contrast, wind-exposed adult P. brassicae butterflies were significantly larger, revealing a trade-off between development time and adult size. Based on these results, we conducted a behavioural experiment to study preference by an avian predator, the great tit (Parus major) for last instar P. brassicae caterpillars on plants that were exposed to either control (no wind) or wind (fan-exposed) treatments. Tits captured significantly more caterpillars on still than on wind-exposed plants. Our results suggest that P. brassicae caterpillars are able to perceive the abiotic environment and to trade off the costs of extended development time against the benefits of increased size depending on the perceived risk of predation mediated by wind exposure. Such adaptive phenotypic plasticity in insects has not yet been described in response to wind exposure. © 2018 The Author. Journal of Animal Ecology published by John Wiley & Sons Ltd on behalf of British Ecological Society.

  15. Storm-induced inner-continental shelf circulation and sediment transport: Long Bay, South Carolina

    USGS Publications Warehouse

    Warner, John C.; Armstrong, Brandy N.; Sylvester, Charlene S.; Voulgaris, George; Nelson, Tim; Schwab, William C.; Denny, Jane F.

    2012-01-01

    Long Bay is a sediment-starved, arcuate embayment located along the US East Coast connecting both South and North Carolina. In this region the rates and pathways of sediment transport are important because they determine the availability of sediments for beach nourishment, seafloor habitat, and navigation. The impact of storms on sediment transport magnitude and direction were investigated during the period October 2003–April 2004 using bottom mounted flow meters, acoustic backscatter sensors and rotary sonars deployed at eight sites offshore of Myrtle Beach, SC, to measure currents, water levels, surface waves, salinity, temperature, suspended sediment concentrations, and bedform morphology. Measurements identify that sediment mobility is caused by waves and wind driven currents from three predominant types of storm patterns that pass through this region: (1) cold fronts, (2) warm fronts and (3) low-pressure storms. The passage of a cold front is accompanied by a rapid change in wind direction from primarily northeastward to southwestward. The passage of a warm front is accompanied by an opposite change in wind direction from mainly southwestward to northeastward. Low-pressure systems passing offshore are accompanied by a change in wind direction from southwestward to southeastward as the offshore storm moves from south to north.During the passage of cold fronts more sediment is transported when winds are northeastward and directed onshore than when the winds are directed offshore, creating a net sediment flux to the north–east. Likewise, even though the warm front has an opposite wind pattern, net sediment flux is typically to the north–east due to the larger fetch when the winds are northeastward and directed onshore. During the passage of low-pressure systems strong winds, waves, and currents to the south are sustained creating a net sediment flux southwestward. During the 3-month deployment a total of 8 cold fronts, 10 warm fronts, and 10 low-pressure systems drove a net sediment flux southwestward. Analysis of a 12-year data record from a local buoy shows an average of 41 cold fronts, 32 warm fronts, and 26 low-pressure systems per year. The culmination of these events would yield a cumulative net inner-continental shelf transport to the south–west, a trend that is further verified by sediment textural analysis and bedform morphology on the inner-continental shelf.

  16. Anvil Forecast Tool in the Advanced Weather Interactive Processing System

    NASA Technical Reports Server (NTRS)

    Barrett, Joe H., III; Hood, Doris

    2009-01-01

    Meteorologists from the 45th Weather Squadron (45 WS) and National Weather Service Spaceflight Meteorology Group (SMG) have identified anvil forecasting as one of their most challenging tasks when predicting the probability of violations of the Lightning Launch Commit Criteria and Space Shuttle Flight Rules. As a result, the Applied Meteorology Unit (AMU) was tasked to create a graphical overlay tool for the Meteorological Interactive Data Display System (MIDDS) that indicates the threat of thunderstorm anvil clouds, using either observed or model forecast winds as input. The tool creates a graphic depicting the potential location of thunderstorm anvils one, two, and three hours into the future. The locations are based on the average of the upper level observed or forecasted winds. The graphic includes 10 and 20 n mi standoff circles centered at the location of interest, as well as one-, two-, and three-hour arcs in the upwind direction. The arcs extend outward across a 30 sector width based on a previous AMU study that determined thunderstorm anvils move in a direction plus or minus 15 of the upper-level wind direction. The AMU was then tasked to transition the tool to the Advanced Weather Interactive Processing System (AWIPS). SMG later requested the tool be updated to provide more flexibility and quicker access to model data. This presentation describes the work performed by the AMU to transition the tool into AWIPS, as well as the subsequent improvements made to the tool.

  17. Quantification of storm-induced bathymetric change in a back-barrier estuary

    USGS Publications Warehouse

    Ganju, Neil K.; Suttles, Steven E.; Beudin, Alexis; Nowacki, Daniel J.; Miselis, Jennifer L.; Andrews, Brian D.

    2017-01-01

    Geomorphology is a fundamental control on ecological and economic function of estuaries. However, relative to open coasts, there has been little quantification of storm-induced bathymetric change in back-barrier estuaries. Vessel-based and airborne bathymetric mapping can cover large areas quickly, but change detection is difficult because measurement errors can be larger than the actual changes over the storm timescale. We quantified storm-induced bathymetric changes at several locations in Chincoteague Bay, Maryland/Virginia, over the August 2014 to July 2015 period using fixed, downward-looking altimeters and numerical modeling. At sand-dominated shoal sites, measurements showed storm-induced changes on the order of 5 cm, with variability related to stress magnitude and wind direction. Numerical modeling indicates that the predominantly northeasterly wind direction in the fall and winter promotes southwest-directed sediment transport, causing erosion of the northern face of sandy shoals; southwesterly winds in the spring and summer lead to the opposite trend. Our results suggest that storm-induced estuarine bathymetric change magnitudes are often smaller than those detectable with methods such as LiDAR. More precise fixed-sensor methods have the ability to elucidate the geomorphic processes responsible for modulating estuarine bathymetry on the event and seasonal timescale, but are limited spatially. Numerical modeling enables interpretation of broad-scale geomorphic processes and can be used to infer the long-term trajectory of estuarine bathymetric change due to episodic events, when informed by fixed-sensor methods.

  18. Effect of atmospherics on beamforming accuracy

    NASA Technical Reports Server (NTRS)

    Alexander, Richard M.

    1990-01-01

    Two mathematical representations of noise due to atmospheric turbulence are presented. These representations are derived and used in computer simulations of the Bartlett Estimate implementation of beamforming. Beamforming is an array processing technique employing an array of acoustic sensors used to determine the bearing of an acoustic source. Atmospheric wind conditions introduce noise into the beamformer output. Consequently, the accuracy of the process is degraded and the bearing of the acoustic source is falsely indicated or impossible to determine. The two representations of noise presented here are intended to quantify the effects of mean wind passing over the array of sensors and to correct for these effects. The first noise model is an idealized case. The effect of the mean wind is incorporated as a change in the propagation velocity of the acoustic wave. This yields an effective phase shift applied to each term of the spatial correlation matrix in the Bartlett Estimate. The resultant error caused by this model can be corrected in closed form in the beamforming algorithm. The second noise model acts to change the true direction of propagation at the beginning of the beamforming process. A closed form correction for this model is not available. Efforts to derive effective means to reduce the contributions of the noise have not been successful. In either case, the maximum error introduced by the wind is a beam shift of approximately three degrees. That is, the bearing of the acoustic source is indicated at a point a few degrees from the true bearing location. These effects are not quite as pronounced as those seen in experimental results. Sidelobes are false indications of acoustic sources in the beamformer output away from the true bearing angle. The sidelobes that are observed in experimental results are not caused by these noise models. The effects of mean wind passing over the sensor array as modeled here do not alter the beamformer output as significantly as expected.

  19. Impact of wind turbine sound on general health, sleep disturbance and annoyance of workers: a pilot- study in Manjil wind farm, Iran.

    PubMed

    Abbasi, Milad; Monazzam, Mohammad Reza; Akbarzadeh, Arash; Zakerian, Seyyed Abolfazl; Ebrahimi, Mohammad Hossein

    2015-01-01

    The wind turbine's sound seems to have a proportional effect on health of people living near to wind farms. This study aimed to investigate the effect of noise emitted from wind turbines on general health, sleep and annoyance among workers of manjil wind farm, Iran. A total number of 53 workers took part in this study. Based on the type of job, they were categorized into three groups of maintenance, security and office staff. The persons' exposure at each job-related group was measured by eight-hour equivalent sound level (LAeq, 8 h). A Noise annoyance scale, Epworth sleepiness scale and 28-item general health questionnaire was used for gathering data from workers. The data were analyzed through Multivariate Analysis of variance (MANOVA) test, Pillai's Trace test, Paired comparisons analysis and Multivariate regression test were used in the R software. The results showed that, response variables (annoyance, sleep disturbance and health) were significantly different between job groups. The results also indicated that sleep disturbance as well as noise exposure had a significant effect on general health. Noise annoyance and distance from wind turbines could significantly explain about 44.5 and 34.2 % of the variance in sleep disturbance and worker's general health, respectively. General health was significantly different in different age groups while age had no significant impact on sleep disturbance. The results were reverse for distance because it had no significant impact on health, but sleep disturbance was significantly affected. We came to this conclusion that wind turbines noise can directly impact on annoyance, sleep and health. This type of energy generation can have potential health risks for wind farm workers. However, further research is needed to confirm the results of this study.

  20. Righting response of artificially inclined maritime pine (Pinus pinaster) saplings to wind loading.

    PubMed

    Berthier, Stephane; Stokes, Alexia

    2006-01-01

    To determine if trees respond to dynamic and static loading in the same manner, 2-year-old maritime pine (Pinus pinaster Ait.) trees were subjected to different types of mechanical loading in the field. One block of trees (the control) were kept in pots and planted in the field at an angle of 0 or 45 degrees to the vertical. A similar block of leaning potted trees was planted nearby and subjected to frequent, unilateral wind loading for a period of 1 s every 2 min. Half the leaning trees were oriented toward the direction of wind loading and half were oriented along the axis of wind loading. The stem profile was measured three times during the growing season to quantify the rate of stem straightening. Compression wood formation and stem shape were measured in all plants. No differences in mean height or diameter were observed between blocks and all leaning trees straightened, but not at the same rate. Although no difference in the rate of apical straightening occurred between control and wind-treated trees, the righting response of the basal part of the stem of leaning trees subjected to wind was four times greater than that of leaning trees without wind. No differences in the righting response were observed between leaning trees growing toward and trees growing away from the source of wind. No significant differences in compression wood formation were found between control trees and wind-treated trees, indicating that other factors must determine the reorientation rate of leaning trees. Results are discussed with reference to the quality of compression wood in conifers and the mechanotransductive pathway in plants.

  1. Determination of the geophysical model function of NSCAT and its corresponding variance by the use of neural networks

    NASA Astrophysics Data System (ADS)

    Mejia, C.; Badran, F.; Bentamy, A.; Crepon, M.; Thiria, S.; Tran, N.

    1999-05-01

    We have computed two geophysical model functions (one for the vertical and one for the horizontal polarization) for the NASA scatterometer (NSCAT) by using neural networks. These neural network geophysical model functions (NNGMFs) were estimated with NSCAT scatterometer σO measurements collocated with European Centre for Medium-Range Weather Forecasts analyzed wind vectors during the period January 15 to April 15, 1997. We performed a student t test showing that the NNGMFs estimate the NSCAT σO with a confidence level of 95%. Analysis of the results shows that the mean NSCAT signal depends on the incidence angle and the wind speed and presents the classical biharmonic modulation with respect to the wind azimuth. NSCAT σO increases with respect to the wind speed and presents a well-marked change at around 7 m s-1. The upwind-downwind amplitude is higher for the horizontal polarization signal than for vertical polarization, indicating that the use of horizontal polarization can give additional information for wind retrieval. Comparison of the σO computed by the NNGMFs against the NSCAT-measured σO show a quite low rms, except at low wind speeds. We also computed two specific neural networks for estimating the variance associated to these GMFs. The variances are analyzed with respect to geophysical parameters. This led us to compute the geophysical signal-to-noise ratio, i.e., Kp. The Kp values are quite high at low wind speed and decrease at high wind speed. At constant wind speed the highest Kp are at crosswind directions, showing that the crosswind values are the most difficult to estimate. These neural networks can be expressed as analytical functions, and FORTRAN subroutines can be provided.

  2. Effects of Visual Information on Wind-Evoked Escape Behavior of the Cricket, Gryllus bimaculatus.

    PubMed

    Kanou, Masamichi; Matsuyama, Akane; Takuwa, Hiroyuki

    2014-09-01

    We investigated the effects of visual information on wind-evoked escape behavior in the cricket, Gryllus bimaculatus. Most agitated crickets were found to retreat into a shelter made of cardboard installed in the test arena within a short time. As this behavior was thought to be a type of escape, we confirmed how a visual image of a shelter affected wind-evoked escape behavior. Irrespective of the brightness of the visual background (black or white) or the absence or presence of a shelter, escape jumps were oriented almost 180° opposite to the source of the air puff stimulus. Therefore, the direction of wind-evoked escape depends solely depended on the direction of the stimulus air puff. In contrast, the turning direction of the crickets during the escape was affected by the position of the visual image of the shelter. During the wind-evoked escape jump, most crickets turned in the direction in which a shelter was presented. This behavioral nature is presumably necessary for crickets to retreat into a shelter within a short time after their escape jump.

  3. Reverberation effects on directionality and response of stationary monopole and dipole sources in a wind tunnel

    NASA Technical Reports Server (NTRS)

    Baumeister, K. J.

    1985-01-01

    Analytical solutions for the three dimensional inhomogeneous wave equation with flow in a hardwall rectangular wind tunnel and in the free field are presented for a stationary monopole noise source. Dipole noise sources are calculated by combining two monopoles 180 deg out of phase. Numerical calculations for the modal content, spectral response and directivity for both monopole and dipole sources are presented. In addition, the effect of tunnel alterations, such as the addition of a mounting plate, on the tunnels reverberant response are considered. In the frequency range of practical importance for the turboprop response, important features of the free field directivity can be approximated in a hardwall wind tunnel with flow if the major lobe of the noise source is not directed upstream. However, for an omnidirectional source, such as a monopole, the hardwall wind tunnel and free field response are not comparable.

  4. Evaluation of IOM personal sampler at different flow rates.

    PubMed

    Zhou, Yue; Cheng, Yung-Sung

    2010-02-01

    The Institute of Occupational Medicine (IOM) personal sampler is usually operated at a flow rate of 2.0 L/min, the rate at which it was designed and calibrated, for sampling the inhalable mass fraction of airborne particles in occupational environments. In an environment of low aerosol concentrations only small amounts of material are collected, and that may not be sufficient for analysis. Recently, a new sampling pump with a flow rate up to 15 L/min became available for personal samplers, with the potential of operating at higher flow rates. The flow rate of a Leland Legacy sampling pump, which operates at high flow rates, was evaluated and calibrated, and its maximum flow was found to be 10.6 L/min. IOM samplers were placed on a mannequin, and sampling was conducted in a large aerosol wind tunnel at wind speeds of 0.56 and 2.22 m/s. Monodisperse aerosols of oleic acid tagged with sodium fluorescein in the size range of 2 to 100 microm were used in the test. The IOM samplers were operated at flow rates of 2.0 and 10.6 L/min. Results showed that the IOM samplers mounted in the front of the mannequin had a higher sampling efficiency than those mounted at the side and back, regardless of the wind speed and flow rate. For the wind speed of 0.56 m/s, the direction-averaged (the average value of all orientations facing the wind direction) sampling efficiency of the samplers operated at 2.0 L/min was slightly higher than that of 10.6 L/min. For the wind speed of 2.22 m/s, the sampling efficiencies at both flow rates were similar for particles < 60 microm. The results also show that the IOM's sampling efficiency at these two different flow rates follows the inhalable mass curve for particles in the size range of 2 to 20 microm. The test results indicate that the IOM sampler can be used at higher flow rates.

  5. A MODEL FOR THERMAL PHASE VARIATIONS OF CIRCULAR AND ECCENTRIC EXOPLANETS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cowan, Nicolas B.; Agol, Eric, E-mail: n-cowan@northwestern.edu

    2011-01-10

    We present a semi-analytic model atmosphere for close-in exoplanets that captures the essential physics of phase curves: orbital and viewing geometry, advection, and re-radiation. We calibrate the model with the well-characterized transiting planet, HD 189733b, then compute light curves for seven of the most eccentric transiting planets: Gl 436b, HAT-P-2b, HAT-P-11b, HD 17156b, HD 80606b, WASP-17b, and XO-3b. We present phase variations for a variety of different radiative times and wind speeds. In the limit of instant re-radiation, the light-curve morphology is entirely dictated by the planet's eccentricity and argument of pericenter: the light curve maximum leads or trails themore » eclipse depending on whether the planet is receding from or approaching the star at superior conjunction, respectively. For a planet with non-zero radiative timescales, the phase peak occurs early for super-rotating winds, and late for sub-rotating winds. We find that for a circular orbit, the timing of the phase variation maximum with respect to superior conjunction indicates the direction of the dominant winds, but cannot break the degeneracy between wind speed and radiative time. For circular planets the phase minimum occurs half an orbit away from the phase maximum-despite the fact that the coolest longitudes are always near the dawn terminator-and therefore does not convey any additional information. In general, increasing the advective frequency or the radiative time has the effect of reducing the peak-to-trough amplitude of phase variations, but there are interesting exceptions to these trends. Lastly, eccentric planets with orbital periods significantly longer than their radiative time exhibit 'ringing', whereby the hot spot generated at periastron rotates in and out of view. The existence of ringing makes it possible to directly measure the wind speed (the frequency of the ringing) and the radiative time constant (the damping of the ringing).« less

  6. Evaluation of wind regimes and their impact on vertical mixing and coupling in a moderately dense forest

    NASA Astrophysics Data System (ADS)

    Wunder, Tobias; Ehrnsperger, Laura; Thomas, Christoph

    2017-04-01

    In the last decades much attention has been devoted to improving our understanding of organized motions in plant canopies. Particularly the impact of coherent structures on turbulent flows and vertical mixing in near-neutral conditions has been the focus of many experimental and modeling studies. Despite this progress, the weak-wind subcanopy airflow in concert with stable or weak-wind above-canopy conditions remains poorly understood. In these conditions, evidence is mounting that larger-scale motions, so called sub-meso motions which occupy time scales from minutes to hours and spatial scales from tens of meters to kilometers, dominate transport and turbulent mixing particularly in the subcanopy, because of generally weaker background flow as a result of the enhanced friction due to the plant material. We collected observations from a network of fast-response sensor across the vertical and horizontal dimensions during the INTRAMIX experiment at the Fluxnet site Waldstein/ Weidenbrunnen (DE-Bay) in a moderately dense Norway spruce (Picea Abies) forest over a period of ten weeks. Its main goal was to investigate the role of the submeso-structures on the turbulent wind field and the mixing mechanisms including coherent structures. In a first step, coupling regimes differentiating between weak and strong flows and day- and nighttime-conditions are determined. Subsequently, each of the regimes is analyzed for its dominant flow dynamics identified by wavelet analysis. It is hypothesized that strong vertical wind directional shear does not necessarily indicate a decoupling of vertical layers, but on the contrary may create situations of significant coupling of the sub-canopy with the canopy layers above. Moreover, rapid changes of wind direction or even reversals may generate substantial turbulence and induce intermittent coupling on a variety of time scales. The overarching goal is to improve diagnostics for vertical mixing in plant canopies incorporating turbulence and submeso-motions and to develop a classification of flow modes capable of representing the main driving mechanisms of mixing in forest canopies.

  7. Investigation of boundary-layer wind predictions during nocturnal low-level jet events using the Weather Research and Forecasting model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mirocha, Jeff D.; Simpson, Matthew D.; Fast, Jerome D.

    Simulations of two periods featuring three consecutive low level jet (LLJ) events in the US Upper Great Plains during the autumn of 2011 were conducted to explore the impacts of various setup configurations and physical process models on simulated flow parameters within the lowest 200 m above the surface, using the Weather Research and Forecasting (WRF) model. Sensitivities of simulated flow parameters to the horizontal and vertical grid spacing, planetary boundary layer (PBL) and land surface model (LSM) physics options, were assessed. Data from a Light Detection and Ranging (lidar) system, deployed to the Weather Forecast Improvement Project (WFIP; Finleymore » et al. 2013) were used to evaluate the accuracy of simulated wind speed and direction at 80 m above the surface, as well as their vertical distributions between 120 and 40 m, covering the typical span of contemporary tall wind turbines. All of the simulations qualitatively captured the overall diurnal cycle of wind speed and stratification, producing LLJs during each overnight period, however large discrepancies occurred at certain times for each simulation in relation to the observations. 54-member ensembles encompassing changes of the above discussed configuration parameters displayed a wide range of simulated vertical distributions of wind speed and direction, and potential temperature, reflecting highly variable representations of stratification during the weakly stable overnight conditions. Root mean square error (RMSE) statistics show that different ensemble members performed better and worse in various simulated parameters at different times, with no clearly superior configuration . Simulations using a PBL parameterization designed specifically for the stable conditions investigated herein provided superior overall simulations of wind speed at 80 m, demonstrating the efficacy of targeting improvements of physical process models in areas of known deficiencies. However, the considerable magnitudes of the RMSE values of even the best performing simulations indicate ample opportunities for further improvements.« less

  8. Gusts and Shear in an Idealized LES-modeled Hurricane

    NASA Astrophysics Data System (ADS)

    Worsnop, R.; Lundquist, J. K.; Bryan, G. H.; Damiani, R.; Musial, W.

    2016-12-01

    Tropical cyclone winds can cause extreme loading and damage to coastal structures such as buildings and energy infrastructure. Offshore wind energy development is underway along the US East Coast where hurricanes pose a substantial risk. Understanding wind gusts, gust factor, shear, and veer in the hurricane boundary layer (HBL) can help manufacturers assess risk and design wind turbines to better withstand these extreme wind conditions. Because of the paucity of observational data at low-levels (200 m and below), we use the Cloud Model Version I (CM1) large-eddy simulation numerical model to simulate high spatial- (10 m) and temporal- (0.1 s) resolution data. This unique dataset is used to answer the following questions: do severe mean wind speeds and gusts that exceed current design limits occur?; how does the gust factor vary with distance from the eye?; and lastly, how does wind direction vary horizontally and with height? We find that mean winds and gusts near the eyewall can exceed current turbine design thresholds of 50 m s-1 and 70 m s-1, respectively. Gust factors are greatest at the eye-eyewall interface just inward of the peak gust location and can exceed the 1.4 value used to convert a 50 m s-1 reference wind speed to a 50-year 3-second gust. Strong veer (15-30 degrees) across a 120 m-layer suggests that veer should be assessed against standard design prescriptions. Lastly, wind directions can shift 10-25 degrees in durations shorter than 10 minutes, which can challenge structures designed to endure winds from a consistent direction for periods longer than 10 minutes, including wind turbines.

  9. Wind power. [electricity generation

    NASA Technical Reports Server (NTRS)

    Savino, J. M.

    1975-01-01

    A historical background on windmill use, the nature of wind, wind conversion system technology and requirements, the economics of wind power and comparisons with alternative systems, data needs, technology development needs, and an implementation plan for wind energy are presented. Considerable progress took place during the 1950's. Most of the modern windmills feature a wind turbine electricity generator located directly at the top of their rotor towers.

  10. Wind speed and power characteristics of Kalasin province, Thailand

    NASA Astrophysics Data System (ADS)

    Polnumtiang, Supachai; Tangchaichit, Kiatfa

    2018-05-01

    This paper presents a wind energy assessment of Kalasin province in the Upper North-Eastern region of Thailand. Four year wind data were recorded continuously from January 2012 to December 2015 at different heights of 60, 90 and 120 m above ground level (AGL). The mean wind speeds were found to be 3.14, 3.63 and 3.94 m/s at 60, 90 and 120 m AGL, respectively. The majority of wind directions for this region are distributed from the East to South directions. The highest wind power density was observed in the summer season, followed by winter and rainy seasons, in order. Four commercial wind turbines were selected to estimate energy yield output using the WAsP 10.0 software application; the results show that VESTAS with rated power of 2.0 MW was estimated to give 2,747 MWh/year with the highest capacity factor of 15.68%.

  11. Characterization and Impact of Low Frequency Wind Turbine Noise Emissions

    NASA Astrophysics Data System (ADS)

    Finch, James

    Wind turbine noise is a complex issue that requires due diligence to minimize any potential impact on quality of life. This study enhances existing knowledge of wind turbine noise through focused analyses of downwind sound propagation, directionality, and the low frequency component of the noise. Measurements were conducted at four wind speeds according to a design of experiments at incremental distances and angles. Wind turbine noise is shown to be highly directional, while downwind sound propagation is spherical with limited ground absorption. The noise is found to have a significant low frequency component that is largely independent of wind speed over the 20-250 Hz range. The generated low frequency noise is shown to be audible above 40 Hz at the MOE setback distance of 550 m. Infrasound levels exhibit higher dependency on wind speed, but remain below audible levels up to 15 m/s.

  12. Aeolian Dunes: New High-Resolution Archives of Past Wind-Intensity and -Direction

    NASA Astrophysics Data System (ADS)

    Lindhorst, S.; Betzler, C.

    2017-12-01

    The understanding of the long-term variability of local wind-fields is most relevant for calibrating climate models and for the prediction of the socio-economic consequences of climate change. Continuous instrumental-based weather observations go back less than two centuries; aeolian dunes, however, contain an archive of past wind-field fluctuations which is basically unread. We present new ways to reconstruct annual to seasonal changes of wind intensity and predominant wind direction from dune-sediment composition and -geometries based on ground-penetrating radar (GPR) data, grain-size analyses and different age-dating approaches. Resulting proxy-based data series on wind are validated against instrumental based weather observations. Our approach can be applied to both recent as well as fossil dunes. Potential applications include the validation of climate models, the reconstruction of past supra-regional wind systems and the monitoring of future shifts in the climate system.

  13. A New Objective Technique for Verifying Mesoscale Numerical Weather Prediction Models

    NASA Technical Reports Server (NTRS)

    Case, Jonathan L.; Manobianco, John; Lane, John E.; Immer, Christopher D.

    2003-01-01

    This report presents a new objective technique to verify predictions of the sea-breeze phenomenon over east-central Florida by the Regional Atmospheric Modeling System (RAMS) mesoscale numerical weather prediction (NWP) model. The Contour Error Map (CEM) technique identifies sea-breeze transition times in objectively-analyzed grids of observed and forecast wind, verifies the forecast sea-breeze transition times against the observed times, and computes the mean post-sea breeze wind direction and speed to compare the observed and forecast winds behind the sea-breeze front. The CEM technique is superior to traditional objective verification techniques and previously-used subjective verification methodologies because: It is automated, requiring little manual intervention, It accounts for both spatial and temporal scales and variations, It accurately identifies and verifies the sea-breeze transition times, and It provides verification contour maps and simple statistical parameters for easy interpretation. The CEM uses a parallel lowpass boxcar filter and a high-order bandpass filter to identify the sea-breeze transition times in the observed and model grid points. Once the transition times are identified, CEM fits a Gaussian histogram function to the actual histogram of transition time differences between the model and observations. The fitted parameters of the Gaussian function subsequently explain the timing bias and variance of the timing differences across the valid comparison domain. Once the transition times are all identified at each grid point, the CEM computes the mean wind direction and speed during the remainder of the day for all times and grid points after the sea-breeze transition time. The CEM technique performed quite well when compared to independent meteorological assessments of the sea-breeze transition times and results from a previously published subjective evaluation. The algorithm correctly identified a forecast or observed sea-breeze occurrence or absence 93% of the time during the two- month evaluation period from July and August 2000. Nearly all failures in CEM were the result of complex precipitation features (observed or forecast) that contaminated the wind field, resulting in a false identification of a sea-breeze transition. A qualitative comparison between the CEM timing errors and the subjectively determined observed and forecast transition times indicate that the algorithm performed very well overall. Most discrepancies between the CEM results and the subjective analysis were again caused by observed or forecast areas of precipitation that led to complex wind patterns. The CEM also failed on a day when the observed sea- breeze transition affected only a very small portion of the verification domain. Based on the results of CEM, the RAMS tended to predict the onset and movement of the sea-breeze transition too early and/or quickly. The domain-wide timing biases provided by CEM indicated an early bias on 30 out of 37 days when both an observed and forecast sea breeze occurred over the same portions of the analysis domain. These results are consistent with previous subjective verifications of the RAMS sea breeze predictions. A comparison of the mean post-sea breeze winds indicate that RAMS has a positive wind-speed bias for .all days, which is also consistent with the early bias in the sea-breeze transition time since the higher wind speeds resulted in a faster inland penetration of the sea breeze compared to reality.

  14. Elysium Winds

    NASA Technical Reports Server (NTRS)

    2005-01-01

    [figure removed for brevity, see original site] Context image for PIA03283 Elysium Winds

    The multiple trends of yardangs in this image indicate that the winds in the Elysium region have changed direction several times.

    Image information: VIS instrument. Latitude 2.6N, Longitude 151.2E. 18 meter/pixel resolution.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

  15. Wind noise in hearing aids with directional and omnidirectional microphones: polar characteristics of behind-the-ear hearing aids.

    PubMed

    Chung, King; Mongeau, Luc; McKibben, Nicholas

    2009-04-01

    Wind noise can be a significant problem for hearing instrument users. This study examined the polar characteristics of flow noise at outputs of two behind-the-ear digital hearing aids, and a microphone mounted on the surface of a cylinder at flow velocities ranging from a gentle breeze (4.5 m/s) to a strong gale (22.5 m/s) . The hearing aids were programed in an anechoic chamber, and tested in a quiet wind tunnel for flow noise recordings. Flow noise levels were estimated by normalizing the overall gain of the hearing aids to 0 dB. The results indicated that the two hearing aids had similar flow noise characteristics: The noise level was generally the lowest when the microphone faced upstream, higher when the microphone faced downstream, and the highest for frontal and rearward incidence angles. Directional microphones often generated higher flow noise level than omnidirectional microphones but they could reduce far-field background noise, resulting in a lower ambient noise level than omnidirectional microphones. Data for the academic microphone- on-cylinder configuration suggested that both turbulence and flow impingement might have contributed to the generation of flow noise in the hearing aids. Clinical and engineering design applications are discussed.

  16. Load-Direction-Derived Support Structures for Wind Turbines: A Lattice Tower Concept and Preparations for Future Certifications: Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jonkman, Jason; Damiani, Rick R; Struve, Achim

    The call for more cost-effective and environmentally friendly tower concepts is motivated by tower costs [1] and tower CO2-emission contributions [2], which are high relative to the whole wind turbine system. The proposed rotatable tower concept with yaw bearing at the bottom instead of the top of the tower will provide beneficial economic and environmental impacts to the turbine system. This wind alignment capability indicates a load-direction-derived tower design. By combining this approach with a lattice concept, large material and cost savings for the tower can be achieved. This paper presents a way to analyze and verify the proposed designmore » through aero-servo-elastic simulations, which make future certifications of rotatable tower concepts viable. For this reason, the state-of-the-art, open-source lattice-tower finite-element-method (FEM) module SubDyn [10], developed by the National Renewable Energy Laboratory, has been modified to account for arbitrary member cross-sections. Required changes in the beam element stiffness and mass matrix formulation took place according to an energy method [13]. All validated adaptions will be usable within the aero-servo-elastic simulation framework FAST and are also beneficial for other nonrotatable lattice structures.« less

  17. In-blade angle of attack measurement and comparison with models

    NASA Astrophysics Data System (ADS)

    Gallant, T. E.; Johnson, D. A.

    2016-09-01

    The torque generated by a wind turbine blade is dependent on several parameters, one of which is the angle of attack. Several models for predicting the angle of attack in yawed conditions have been proposed in the literature, but there is a lack of experimental data to use for direct validation. To address this problem, experiments were conducted at the University of Waterloo Wind Generation Research Facility using a 3.4 m diameter test turbine. A five-hole pressure probe was installed in a modular 3D printed blade and was used to measure the angle of attack, a, as a function of several parameters. Measurements were conducted at radial positions of r/R = 0.55 and 0.72 at tip speed ratios of λ = 5.0, 3.6, and 3.1. The yaw offset of the turbine was varied from -15° to +15°. Experimental results were compared directly to angle of attack values calculated using a model proposed by Morote in 2015. Modeled values were found to be in close agreement with the experimental results. The angle of attack was shown to vary cyclically in the yawed case while remaining mostly constant when aligned with the flow, as expected. The quality of results indicates the potential of the developed instrument for wind turbine measurements.

  18. Tracking fluid-borne odors in diverse and dynamic environments using multiple sensory mechanisms

    NASA Astrophysics Data System (ADS)

    Taylor, Brian Kyle

    The ability to locate odor sources in different types of environments (i.e. diverse) and environments that change radically during the mission (i.e., dynamic) is essential. While many engineered odor tracking systems have been developed, they appear to be designed for a particular environment (e.g., strong or low flow). In field conditions, agents may encounter both. Insect olfactory orientation studies show that several animals can locate odor sources in both high and low flow environments, and environments where the wind vanishes during tracking behavior. Furthermore, animals use multi-modal sensing, including olfaction, vision and touch to localize a source. This work uses simulated and hardware environments to explore how engineered systems can maintain wind-driven tracking behavior in diverse and dynamic environments. The simulation uses olfaction, vision and tactile attributes to track and localize a source in the following environments: high flow, low flow, and transition from high to low flow (i.e., Wind Stop). The hardware platform tests two disparate tracking strategies (including the simulated strategy) in an environment that transitions from strong to low flow. Results indicate that using a remembered wind direction post wind-shutoff is a viable way to maintain wind-driven tracking behavior in a wind stop environment, which can help bridge the gap between high flow and low flow strategies. Also, multi-modal sensing with tactile attributes, vision and olfaction helps a vehicle to localize a source. In addition to engineered systems, the moth Manduca sexta is challenged to track in the following environments: Wind and Odor, Wind Stop, Odor and No Wind, No Odor and No Wind to gain a better understanding of animal behavior in these environments. Results show that contrary to previous studies of different moth species, M. sexta does not generally maintain its wind-driven tracking behavior post-wind shutoff, but instead executes a stereotyped sequence of maneuvers followed by odor-modulated undirected exploration of its environment. In the Odor and No Wind environment, animals become biased towards the area of the arena where odor is located compared to the No Odor and No Wind environment. Robot and animal results are compared to learn more about both.

  19. Comparing offshore wind farm wake observed from satellite SAR and wake model results

    NASA Astrophysics Data System (ADS)

    Bay Hasager, Charlotte

    2014-05-01

    Offshore winds can be observed from satellite synthetic aperture radar (SAR). In the FP7 EERA DTOC project, the European Energy Research Alliance project on Design Tools for Offshore Wind Farm Clusters, there is focus on mid- to far-field wind farm wakes. The more wind farms are constructed nearby other wind farms, the more is the potential loss in annual energy production in all neighboring wind farms due to wind farm cluster effects. It is of course dependent upon the prevailing wind directions and wind speed levels, the distance between the wind farms, the wind turbine sizes and spacing. Some knowledge is available within wind farm arrays and in the near-field from various investigations. There are 58 offshore wind farms in the Northern European seas grid connected and in operation. Several of those are spaced near each other. There are several twin wind farms in operation including Nysted-1 and Rødsand-2 in the Baltic Sea, and Horns Rev 1 and Horns Rev 2, Egmond aan Zee and Prinses Amalia, and Thompton 1 and Thompton 2 all in the North Sea. There are ambitious plans of constructing numerous wind farms - great clusters of offshore wind farms. Current investigation of offshore wind farms includes mapping from high-resolution satellite SAR of several of the offshore wind farms in operation in the North Sea. Around 20 images with wind farm wake cases have been retrieved and processed. The data are from the Canadian RADARSAT-1/-2 satellites. These observe in microwave C-band and have been used for ocean surface wind retrieval during several years. The satellite wind maps are valid at 10 m above sea level. The wakes are identified in the raw images as darker areas downwind of the wind farms. In the SAR-based wind maps the wake deficit is found as areas of lower winds downwind of the wind farms compared to parallel undisturbed flow in the flow direction. The wind direction is clearly visible from lee effects and wind streaks in the images. The wind farm wake cases are modeled by various types of wake models. In the EERA DTOC project the model suite consists of engineering models (Ainslie, DWM, GLC, PARK, WASP/NOJ), simplified CFD models (FUGA, FarmFlow), full CFD models (CRES-flowNS, RANS), mesoscale model (SKIRON, WRF) and coupled meso-scale and microscale models. The comparison analysis between the satellite wind wake and model results will be presented and discussed. It is first time a comprehensive analysis is performed on this subject. The topic gains increasing importance because there is a growing need to precisely model also mid- and far-field wind farms wakes for development and planning of offshore wind farm clusters.

  20. Telescope aperture optimization for spacebased coherent wind lidar

    NASA Astrophysics Data System (ADS)

    Ge, Xian-ying; Zhu, Jun; Cao, Qipeng; Zhang, Yinchao; Yin, Huan; Dong, Xiaojing; Wang, Chao; Zhang, Yongchao; Zhang, Ning

    2015-08-01

    Many studies have indicated that the optimum measurement approach for winds from space is a pulsed coherent wind lidar, which is an active remote sensing tool with the characteristics that high spatial and temporal resolutions, real-time detection, high mobility, facilitated control and so on. Because of the significant eye safety, efficiency, size, and lifetime advantage, 2μm wavelength solid-state laser lidar systems have attracted much attention in spacebased wind lidar plans. In this paper, the theory of coherent detection is presented and a 2μm wavelength solid-state laser lidar system is introduced, then the ideal aperture is calculated from signal-to-noise(SNR) view at orbit 400km. However, considering real application, even if the lidar hardware is perfectly aligned, the directional jitter of laser beam, the attitude change of the lidar in the long round trip time of the light from the atmosphere and other factors can bring misalignment angle. So the influence of misalignment angle is considered and calculated, and the optimum telescope diameter(0.45m) is obtained as the misalignment angle is 4 μrad. By the analysis of the optimum aperture required for spacebased coherent wind lidar system, we try to present the design guidance for the telescope.

Top