NASA Technical Reports Server (NTRS)
Schultz, Howard
1990-01-01
The retrieval algorithm for spaceborne scatterometry proposed by Schultz (1985) is extended. A circular median filter (CMF) method is presented, which operates on wind directions independently of wind speed, removing any implicit wind speed dependence. A cell weighting scheme is included in the algorithm, permitting greater weights to be assigned to more reliable data. The mathematical properties of the ambiguous solutions to the wind retrieval problem are reviewed. The CMF algorithm is tested on twelve simulated data sets. The effects of spatially correlated likelihood assignment errors on the performance of the CMF algorithm are examined. Also, consideration is given to a wind field smoothing technique that uses a CMF.
Empirical wind retrieval model based on SAR spectrum measurements
NASA Astrophysics Data System (ADS)
Panfilova, Maria; Karaev, Vladimir; Balandina, Galina; Kanevsky, Mikhail; Portabella, Marcos; Stoffelen, Ad
The present paper considers polarimetric SAR wind vector applications. Remote-sensing measurements of the near-surface wind over the ocean are of great importance for the understanding of atmosphere-ocean interaction. In recent years investigations for wind vector retrieval using Synthetic Aperture Radar (SAR) data have been performed. In contrast with scatterometers, a SAR has a finer spatial resolution that makes it a more suitable microwave instrument to explore wind conditions in the marginal ice zones, coastal regions and lakes. The wind speed retrieval procedure from scatterometer data matches the measured radar backscattering signal with the geophysical model function (GMF). The GMF determines the radar cross section dependence on the wind speed and direction with respect to the azimuthal angle of the radar beam. Scatterometers provide information on wind speed and direction simultaneously due to the fact that each wind vector cell (WVC) is observed at several azimuth angles. However, SAR is not designed to be used as a high resolution scatterometer. In this case, each WVC is observed at only one single azimuth angle. That is why for wind vector determination additional information such as wind streak orientation over the sea surface is required. It is shown that the wind vector can be obtained using polarimetric SAR without additional information. The main idea is to analyze the spectrum of a homogeneous SAR image area instead of the backscattering normalized radar cross section. Preliminary numerical simulations revealed that SAR image spectral maxima positions depend on the wind vector. Thus the following method for wind speed retrieval is proposed. In the first stage of the algorithm, the SAR spectrum maxima are determined. This procedure is carried out to estimate the wind speed and direction with ambiguities separated by 180 degrees due to the SAR spectrum symmetry. The second stage of the algorithm allows us to select the correct wind direction ambiguity from polarimetric SAR. A criterion based on the complex correlation coefficient between the VV and VH signals sign is applied to select the wind direction. An additional quality control on the wind speed value retrieved with the spectral method is applied. Here, we use the direction obtained with the spectral method and the backscattered signal for CMOD wind speed estimate. The algorithm described above may be refined by the use of numerous SAR data and wind measurements. In the present preliminary work the first results of SAR images combined with in situ data processing are presented. Our results are compared to the results obtained using previously developed models CMOD, C-2PO for VH polarization and statistical wind retrieval approaches [1]. Acknowledgments. This work is supported by the Russian Foundation of Basic Research (grants 13-05-00852-a). [1] M. Portabella, A. Stoffelen, J. A. Johannessen, Toward an optimal inversion method for synthetic aperture radar wind retrieval, Journal of geophysical research, V. 107, N C8, 2002
Debnath, Mithu; Iungo, G. Valerio; Ashton, Ryan; ...
2017-02-06
Vertical profiles of 3-D wind velocity are retrieved from triple range-height-indicator (RHI) scans performed with multiple simultaneous scanning Doppler wind lidars. This test is part of the eXperimental Planetary boundary layer Instrumentation Assessment (XPIA) campaign carried out at the Boulder Atmospheric Observatory. The three wind velocity components are retrieved and then compared with the data acquired through various profiling wind lidars and high-frequency wind data obtained from sonic anemometers installed on a 300 m meteorological tower. The results show that the magnitude of the horizontal wind velocity and the wind direction obtained from the triple RHI scans are generally retrieved withmore » good accuracy. Furthermore, poor accuracy is obtained for the evaluation of the vertical velocity, which is mainly due to its typically smaller magnitude and to the error propagation connected with the data retrieval procedure and accuracy in the experimental setup.« less
Validating precision estimates in horizontal wind measurements from a Doppler lidar
Newsom, Rob K.; Brewer, W. Alan; Wilczak, James M.; ...
2017-03-30
Results from a recent field campaign are used to assess the accuracy of wind speed and direction precision estimates produced by a Doppler lidar wind retrieval algorithm. The algorithm, which is based on the traditional velocity-azimuth-display (VAD) technique, estimates the wind speed and direction measurement precision using standard error propagation techniques, assuming the input data (i.e., radial velocities) to be contaminated by random, zero-mean, errors. For this study, the lidar was configured to execute an 8-beam plan-position-indicator (PPI) scan once every 12 min during the 6-week deployment period. Several wind retrieval trials were conducted using different schemes for estimating themore » precision in the radial velocity measurements. Here, the resulting wind speed and direction precision estimates were compared to differences in wind speed and direction between the VAD algorithm and sonic anemometer measurements taken on a nearby 300 m tower.« less
NASA Astrophysics Data System (ADS)
Dong, X.; Lin, W.; Zhu, D.; Song, Z.
2011-12-01
Spaceborne radar scatterometry is the most important tool for global ocean surface wind vector (OSVW) measurement. Performances under condition of high-wind speed and accuracy of wind direction retrievals are two very important concerns for the development of OSVW measurement techniques by radar scatterometry. Co-polarized sigma 0 measurements are employed, for all the spaceborne radar scatterometers developed in past, and future planned missions. The main disadvantages of co-polarized only radar scatterometers for OSVW measurement are: firstly, wind vector retrieval performances varies with the position of the wind vector cells (WVC) within the swath, where WVCs with small incident angels with weaker modulation effect between sigma0 and azimuth incident angle, and the WVCs located in the outer part of the swath with lower signal-to-noise ratio and lower radiometric accuracies, have worse retrieval performances; secondly, for co-polarization measurements, Sigma 0 is the even function of the azimuth incident angle with respect to the real wind direction, which can results in directional ambiguity, and more additional information is need for the ambiguity removal. Theoretical and experimental results show that the cross-polarization measurement can provide complementary directional information to the co-polarization measurements, which can provide useful improvement to the wind vector retrieval performances. In this paper, the simulation and performance assessment of a full-polarized Ku-band radar scatterometer are provided. Some important conclusions are obtained: (1) Compared with available dual co-polarized radar scatterometer, the introduction of cross-polarization information can significantly improve the OSVW retrieval accuracies, where a relatively identical performance can be obtained within the whole swath. Simulation show that without significantly power increase, system design based on rotating-pencil beam design has much better performances than rotation fan-beam system due to its higher antenna gain and signal-to-noise ratio; (2) The performances of the full-polarized measurement, where all the 9 element covariant coefficient elements will be measurement, only have a little improvement compared with the "dual-co-polarization+HVVV" design, which is because of the almost identical characteristics of HVVV and VHHH measurement due to reciprocity; (3) The propagation error of rotation pencil-beam system is obviously much smaller than that of the rotation fan-beam system, which is due to the significant difference of antenna gains and signal-to-noise ratios; (4) Introduction of cross-polarized HVVV measurement can lead to almost identical wind direction retrieval performance for both the rotation pencil-beam and rotation fan-beam systems, which show that the cross-polarization information can significantly improve the wind direction retrieval performances by increasing the number of look angles, compared with the available fixed-fan-beam systems.
NASA Astrophysics Data System (ADS)
Khachaturian, A. B.; Nekrasov, A. V.; Bogachev, M. I.
2018-05-01
The authors report the results of the computer simulations of the performance and accuracy of the sea wind speed and direction retrieval. The analyzed measurements over the sea surface are made by the airborne microwave Doppler navigation system (DNS) with three Y-configured beams operated as a scatterometer enhancing its functionality. Single- and double-stage wind measurement procedures are proposed and recommendations for their implementation are described.
NASA Technical Reports Server (NTRS)
Meissner, Thomas; Wentz, Frank J.
2008-01-01
We have developed an algorithm that retrieves wind speed under rain using C-hand and X-band channels of passive microwave satellite radiometers. The spectral difference of the brightness temperature signals due to wind or rain allows to find channel combinations that are sufficiently sensitive to wind speed but little or not sensitive to rain. We &ve trained a statistical algorithm that applies under hurricane conditions and is able to measure wind speeds in hurricanes to an estimated accuracy of about 2 m/s. We have also developed a global algorithm, that is less accurate but can be applied under all conditions. Its estimated accuracy is between 2 and 5 mls, depending on wind speed and rain rate. We also extend the wind speed region in our model for the wind induced sea surface emissivity from currently 20 m/s to 40 mls. The data indicate that the signal starts to saturate above 30 mls. Finally, we make an assessment of the performance of wind direction retrievals from polarimetric radiometers as function of wind speed and rain rate
Santa Ana Winds Over Los Angeles
2003-01-08
High-resolution ocean surface wind data from NASA's Quick Scatterometer (QuikScat) illustrate the strength of Santa Ana winds that pounded Southern California this week, causing damage and spreading brush fires. The colored arrows represent various ranges of wind speed, which were still well in excess of 30 knots (34 miles per hour), even after reaching the ocean and weakening. Santa Ana winds are offshore and down-slope winds unique to Southern California that are usually channeled through mountain gaps. These Santa Ana winds extend more than 500 kilometers (310 miles) offshore before changing direction to flow along the shore. The wind speeds and directions are retrieved from range-compressed backscatter data measured by QuikScat that has much higher spatial resolution than QuikScat's standard data products. Useful applications of high-resolution science-quality wind products derived from range-compressed backscatter have been demonstrated in two scientific papers: one on Hurricane Floyd and the other on Catalina Eddies. This is the first demonstration on near-real-time retrieval applications. http://photojournal.jpl.nasa.gov/catalog/PIA03892
Wavelet analysis for wind fields estimation.
Leite, Gladeston C; Ushizima, Daniela M; Medeiros, Fátima N S; de Lima, Gilson G
2010-01-01
Wind field analysis from synthetic aperture radar images allows the estimation of wind direction and speed based on image descriptors. In this paper, we propose a framework to automate wind direction retrieval based on wavelet decomposition associated with spectral processing. We extend existing undecimated wavelet transform approaches, by including à trous with B(3) spline scaling function, in addition to other wavelet bases as Gabor and Mexican-hat. The purpose is to extract more reliable directional information, when wind speed values range from 5 to 10 ms(-1). Using C-band empirical models, associated with the estimated directional information, we calculate local wind speed values and compare our results with QuikSCAT scatterometer data. The proposed approach has potential application in the evaluation of oil spills and wind farms.
NASA Astrophysics Data System (ADS)
Grieco, G.; Nirchio, F.; Montuori, A.; Migliaccio, M.; Lin, W.; Portabella, M.
2016-08-01
The dependency of the azimuth wavelength cut-off on the wind speed has been studied through a dataset of Sentinel-1 multi look SAR images co-located with wind speed measurements, significant wave height and mean wave direction from ECMWF operational output.A Geophysical Model Function (GMF) has been fitted and a retrieval exercise has been done comparing the results to a set of independent wind speed scatterometer measurements of the Chinese mission HY-2A. The preliminary results show that the dependency of the azimuth cut-off on the wind speed is linear only for fully developed sea states and that the agreement between the retrieved values and the measurements is good especially for high wind speed.A similar approach has been used to assess the dependency of the azimuth cut-off also for X-band COSMO-SkyMed data. The dataset is still incomplete but the preliminary results show a similar trend.
Wavelet Analysis for Wind Fields Estimation
Leite, Gladeston C.; Ushizima, Daniela M.; Medeiros, Fátima N. S.; de Lima, Gilson G.
2010-01-01
Wind field analysis from synthetic aperture radar images allows the estimation of wind direction and speed based on image descriptors. In this paper, we propose a framework to automate wind direction retrieval based on wavelet decomposition associated with spectral processing. We extend existing undecimated wavelet transform approaches, by including à trous with B3 spline scaling function, in addition to other wavelet bases as Gabor and Mexican-hat. The purpose is to extract more reliable directional information, when wind speed values range from 5 to 10 ms−1. Using C-band empirical models, associated with the estimated directional information, we calculate local wind speed values and compare our results with QuikSCAT scatterometer data. The proposed approach has potential application in the evaluation of oil spills and wind farms. PMID:22219699
Lidar arc scan uncertainty reduction through scanning geometry optimization
NASA Astrophysics Data System (ADS)
Wang, H.; Barthelmie, R. J.; Pryor, S. C.; Brown, G.
2015-10-01
Doppler lidars are frequently operated in a mode referred to as arc scans, wherein the lidar beam scans across a sector with a fixed elevation angle and the resulting measurements are used to derive an estimate of the n minute horizontal mean wind velocity (speed and direction). Previous studies have shown that the uncertainty in the measured wind speed originates from turbulent wind fluctuations and depends on the scan geometry (the arc span and the arc orientation). This paper is designed to provide guidance on optimal scan geometries for two key applications in the wind energy industry: wind turbine power performance analysis and annual energy production. We present a quantitative analysis of the retrieved wind speed uncertainty derived using a theoretical model with the assumption of isotropic and frozen turbulence, and observations from three sites that are onshore with flat terrain, onshore with complex terrain and offshore, respectively. The results from both the theoretical model and observations show that the uncertainty is scaled with the turbulence intensity such that the relative standard error on the 10 min mean wind speed is about 30 % of the turbulence intensity. The uncertainty in both retrieved wind speeds and derived wind energy production estimates can be reduced by aligning lidar beams with the dominant wind direction, increasing the arc span and lowering the number of beams per arc scan. Large arc spans should be used at sites with high turbulence intensity and/or large wind direction variation when arc scans are used for wind resource assessment.
Lidar arc scan uncertainty reduction through scanning geometry optimization
NASA Astrophysics Data System (ADS)
Wang, Hui; Barthelmie, Rebecca J.; Pryor, Sara C.; Brown, Gareth.
2016-04-01
Doppler lidars are frequently operated in a mode referred to as arc scans, wherein the lidar beam scans across a sector with a fixed elevation angle and the resulting measurements are used to derive an estimate of the n minute horizontal mean wind velocity (speed and direction). Previous studies have shown that the uncertainty in the measured wind speed originates from turbulent wind fluctuations and depends on the scan geometry (the arc span and the arc orientation). This paper is designed to provide guidance on optimal scan geometries for two key applications in the wind energy industry: wind turbine power performance analysis and annual energy production prediction. We present a quantitative analysis of the retrieved wind speed uncertainty derived using a theoretical model with the assumption of isotropic and frozen turbulence, and observations from three sites that are onshore with flat terrain, onshore with complex terrain and offshore, respectively. The results from both the theoretical model and observations show that the uncertainty is scaled with the turbulence intensity such that the relative standard error on the 10 min mean wind speed is about 30 % of the turbulence intensity. The uncertainty in both retrieved wind speeds and derived wind energy production estimates can be reduced by aligning lidar beams with the dominant wind direction, increasing the arc span and lowering the number of beams per arc scan. Large arc spans should be used at sites with high turbulence intensity and/or large wind direction variation.
Wind Measurements from Arc Scans with Doppler Wind Lidar
Wang, H.; Barthelmie, R. J.; Clifton, Andy; ...
2015-11-25
When defining optimal scanning geometries for scanning lidars for wind energy applications, we found that it is still an active field of research. Our paper evaluates uncertainties associated with arc scan geometries and presents recommendations regarding optimal configurations in the atmospheric boundary layer. The analysis is based on arc scan data from a Doppler wind lidar with one elevation angle and seven azimuth angles spanning 30° and focuses on an estimation of 10-min mean wind speed and direction. When flow is horizontally uniform, this approach can provide accurate wind measurements required for wind resource assessments in part because of itsmore » high resampling rate. Retrieved wind velocities at a single range gate exhibit good correlation to data from a sonic anemometer on a nearby meteorological tower, and vertical profiles of horizontal wind speed, though derived from range gates located on a conical surface, match those measured by mast-mounted cup anemometers. Uncertainties in the retrieved wind velocity are related to high turbulent wind fluctuation and an inhomogeneous horizontal wind field. Moreover, the radial velocity variance is found to be a robust measure of the uncertainty of the retrieved wind speed because of its relationship to turbulence properties. It is further shown that the standard error of wind speed estimates can be minimized by increasing the azimuthal range beyond 30° and using five to seven azimuth angles.« less
NASA Technical Reports Server (NTRS)
Stoffelen, AD; Anderson, David L. T.; Woiceshyn, Peter M.
1992-01-01
Calibration and validation activities for the ERS-1 scatterometer were carried out at ECMWF (European Center for Medium range Weather Forecast) complementary to the 'Haltenbanken' field campaign off the coast of Norway. At a Numerical Weather Prediction (NWP) center a wealth of verifying data is available both in time and space. This data is used to redefine the wind retrieval procedure given the instrumental characteristics. It was found that a maximum likelihood estimation procedure to obtain the coefficients of a reformulated sigma deg to wind relationship should use radar measurements in logarithmic rather than physical space, and use winds as the wind components rather than wind speed and direction. Doing this, a much more accurate transfer function than the one currently operated by ESA was derived. Sigma deg measurement space shows no signature of a separation in an upwind solution cone and a downwind solution cone. As such signature was anticipated in ESA's wind direction ambiguity removal algorithm, reconsideration of the procedure is necessary. Despite the fact that revisions have to be made in the process of wind retrieval; a grid potential is shown for scatterometry in meteorology and climatology.
Statistical distribution of wind speeds and directions globally observed by NSCAT
NASA Astrophysics Data System (ADS)
Ebuchi, Naoto
1999-05-01
In order to validate wind vectors derived from the NASA scatterometer (NSCAT), statistical distributions of wind speeds and directions over the global oceans are investigated by comparing with European Centre for Medium-Range Weather Forecasts (ECMWF) wind data. Histograms of wind speeds and directions are calculated from the preliminary and reprocessed NSCAT data products for a period of 8 weeks. For wind speed of the preliminary data products, excessive low wind distribution is pointed out through comparison with ECMWF winds. A hump at the lower wind speed side of the peak in the wind speed histogram is discernible. The shape of the hump varies with incidence angle. Incompleteness of the prelaunch geophysical model function, SASS 2, tentatively used to retrieve wind vectors of the preliminary data products, is considered to cause the skew of the wind speed distribution. On the contrary, histograms of wind speeds of the reprocessed data products show consistent features over the whole range of incidence angles. Frequency distribution of wind directions relative to spacecraft flight direction is calculated to assess self-consistency of the wind directions. It is found that wind vectors of the preliminary data products exhibit systematic directional preference relative to antenna beams. This artificial directivity is also considered to be caused by imperfections in the geophysical model function. The directional distributions of the reprocessed wind vectors show less directivity and consistent features, except for very low wind cases.
Preliminary Assessment of Wind and Wave Retrieval from Chinese Gaofen-3 SAR Imagery
Sun, Jian
2017-01-01
The Chinese Gaofen-3 (GF-3) synthetic aperture radar (SAR) launched by the China Academy of Space Technology (CAST) has operated at C-band since September 2016. To date, we have collected 16/42 images in vertical-vertical (VV)/horizontal-horizontal (HH) polarization, covering the National Data Buoy Center (NDBC) buoy measurements of the National Oceanic and Atmospheric Administration (NOAA) around U.S. western coastal waters. Wind speeds from NDBC in situ buoys are up to 15 m/s and buoy-measured significant wave height (SWH) has ranged from 0.5 m to 3 m. In this study, winds were retrieved using the geophysical model function (GMF) together with the polarization ratio (PR) model and waves were retrieved using a new empirical algorithm based on SAR cutoff wavelength in satellite flight direction, herein called CSAR_WAVE. Validation against buoy measurements shows a 1.4/1.9 m/s root mean square error (RMSE) of wind speed and a 24/23% scatter index (SI) of SWH for VV/HH polarization. In addition, wind and wave retrieval results from 166 GF-3 images were compared with the European Centre for Medium-Range Weather Forecasts (ECMWF) re-analysis winds, as well as the SWH from the WaveWatch-III model, respectively. Comparisons show a 2.0 m/s RMSE for wind speed with a 36% SI of SWH for VV-polarization and a 2.2 m/s RMSE for wind speed with a 37% SI of SWH for HH-polarization. Our work gives a preliminary assessment of the wind and wave retrieval results from GF-3 SAR images for the first time and will provide guidance for marine applications of GF-3 SAR. PMID:28757571
NASA Technical Reports Server (NTRS)
Didlake, Anthony C., Jr.; Heymsfield, Gerald M.; Tian, Lin; Guimond, Stephen R.
2015-01-01
The coplane analysis technique for mapping the three-dimensional wind field of precipitating systems is applied to the NASA High Altitude Wind and Rain Airborne Profiler (HIWRAP). HIWRAP is a dual-frequency Doppler radar system with two downward pointing and conically scanning beams. The coplane technique interpolates radar measurements to a natural coordinate frame, directly solves for two wind components, and integrates the mass continuity equation to retrieve the unobserved third wind component. This technique is tested using a model simulation of a hurricane and compared to a global optimization retrieval. The coplane method produced lower errors for the cross-track and vertical wind components, while the global optimization method produced lower errors for the along-track wind component. Cross-track and vertical wind errors were dependent upon the accuracy of the estimated boundary condition winds near the surface and at nadir, which were derived by making certain assumptions about the vertical velocity field. The coplane technique was then applied successfully to HIWRAP observations of Hurricane Ingrid (2013). Unlike the global optimization method, the coplane analysis allows for a transparent connection between the radar observations and specific analysis results. With this ability, small-scale features can be analyzed more adequately and erroneous radar measurements can be identified more easily.
Assessment of the Performance of a Scanning Wind Doppler Lidar at an Urban-Mountain Site in Seoul
NASA Astrophysics Data System (ADS)
Park, S.; Kim, S. W.
2017-12-01
Winds in the planetary boundary layer (PBL) are important factors for accurate modelling of air quality, numerical weather prediction and conversion of satellite measurements to near-surface air quality information (Seibert et al., AE, 2000; Emeis et al., Meteorol. Z., 2008). In this study, we (1) evaluate wind speed (WS) and direction (WD) retrieved from Wind Doppler Lidar (WDL) measurements by two methods [so called, `sine-fitting (SF) method' and `singular value decomposition (SVD) method'] and (2) analyze the WDL data at Seoul National University (SNU), Seoul, to investigate the diurnal evolution of winds and aerosol characteristics in PBL. Evaluation of the two methods used in retrieving wind from radial velocity was done through comparison with radiosonde soundings from the same site. Winds retrieved using the SVD method from mean radial velocity of 15 minutes showed good agreement with radiosonde profiles (i.e., bias of 0.03 m s-1 and root mean square of 1.70 m s-1 in WS). However, the WDL was found to have difficulty retrieving signals under clean conditions (i.e., too small signal to noise ratio) or under the presence of near-surface optically-thick aerosol/cloud layer (i.e., strong signal attenuation). Despite this shortcoming, the WDL was able to successfully capture the diurnal variation of PBL wind. Two major wind patterns were observed at SNU; first of all, when convective boundary layer was strongly developed, thermally induced winds with large variation of vertical WS in the afternoon and a diurnal variation in WD showing characteristics of mountain and valley winds were observed. Secondly, small variation in WS and WD throughout the day was a major characteristic of cases when wind was largely influenced by the synoptic weather pattern.
NASA Astrophysics Data System (ADS)
Geiss, Alexander; Marksteiner, Uwe; Lux, Oliver; Lemmerz, Christian; Reitebuch, Oliver; Kanitz, Thomas; Straume-Lindner, Anne Grete
2018-04-01
By the end of 2017, the European Space Agency (ESA) will launch the Atmospheric laser Doppler instrument (ALADIN), a direct detection Doppler wind lidar operating at 355 nm. An important tool for the validation and optimization of ALADIN's hardware and data processors for wind retrievals with real atmospheric signals is the ALADIN airborne demonstrator A2D. In order to be able to validate and test aerosol retrieval algorithms from ALADIN, an algorithm for the retrieval of atmospheric backscatter and extinction profiles from A2D is necessary. The A2D is utilizing a direct detection scheme by using a dual Fabry-Pérot interferometer to measure molecular Rayleigh signals and a Fizeau interferometer to measure aerosol Mie returns. Signals are captured by accumulation charge coupled devices (ACCD). These specifications make different steps in the signal preprocessing necessary. In this paper, the required steps to retrieve aerosol optical products, i. e. particle backscatter coefficient βp, particle extinction coefficient αp and lidar ratio Sp from A2D raw signals are described.
Coherent Doppler Lidar for Boundary Layer Studies and Wind Energy
NASA Astrophysics Data System (ADS)
Choukulkar, Aditya
This thesis outlines the development of a vector retrieval technique, based on data assimilation, for a coherent Doppler LIDAR (Light Detection and Ranging). A detailed analysis of the Optimal Interpolation (OI) technique for vector retrieval is presented. Through several modifications to the OI technique, it is shown that the modified technique results in significant improvement in velocity retrieval accuracy. These modifications include changes to innovation covariance portioning, covariance binning, and analysis increment calculation. It is observed that the modified technique is able to make retrievals with better accuracy, preserves local information better, and compares well with tower measurements. In order to study the error of representativeness and vector retrieval error, a lidar simulator was constructed. Using the lidar simulator a thorough sensitivity analysis of the lidar measurement process and vector retrieval is carried out. The error of representativeness as a function of scales of motion and sensitivity of vector retrieval to look angle is quantified. Using the modified OI technique, study of nocturnal flow in Owens' Valley, CA was carried out to identify and understand uncharacteristic events on the night of March 27th 2006. Observations from 1030 UTC to 1230 UTC (0230 hr local time to 0430 hr local time) on March 27 2006 are presented. Lidar observations show complex and uncharacteristic flows such as sudden bursts of westerly cross-valley wind mixing with the dominant up-valley wind. Model results from Coupled Ocean/Atmosphere Mesoscale Prediction System (COAMPS RTM) and other in-situ instrumentations are used to corroborate and complement these observations. The modified OI technique is used to identify uncharacteristic and extreme flow events at a wind development site. Estimates of turbulence and shear from this technique are compared to tower measurements. A formulation for equivalent wind speed in the presence of variations in wind speed and direction, combined with shear is developed and used to determine wind energy content in presence of turbulence.
Lidar arc scan uncertainty reduction through scanning geometry optimization
Wang, Hui; Barthelmie, Rebecca J.; Pryor, Sara C.; ...
2016-04-13
Doppler lidars are frequently operated in a mode referred to as arc scans, wherein the lidar beam scans across a sector with a fixed elevation angle and the resulting measurements are used to derive an estimate of the n minute horizontal mean wind velocity (speed and direction). Previous studies have shown that the uncertainty in the measured wind speed originates from turbulent wind fluctuations and depends on the scan geometry (the arc span and the arc orientation). This paper is designed to provide guidance on optimal scan geometries for two key applications in the wind energy industry: wind turbine power performance analysis and annualmore » energy production prediction. We present a quantitative analysis of the retrieved wind speed uncertainty derived using a theoretical model with the assumption of isotropic and frozen turbulence, and observations from three sites that are onshore with flat terrain, onshore with complex terrain and offshore, respectively. The results from both the theoretical model and observations show that the uncertainty is scaled with the turbulence intensity such that the relative standard error on the 10 min mean wind speed is about 30% of the turbulence intensity. The uncertainty in both retrieved wind speeds and derived wind energy production estimates can be reduced by aligning lidar beams with the dominant wind direction, increasing the arc span and lowering the number of beams per arc scan. As a result, large arc spans should be used at sites with high turbulence intensity and/or large wind direction variation.« less
Lidar arc scan uncertainty reduction through scanning geometry optimization
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Hui; Barthelmie, Rebecca J.; Pryor, Sara C.
Doppler lidars are frequently operated in a mode referred to as arc scans, wherein the lidar beam scans across a sector with a fixed elevation angle and the resulting measurements are used to derive an estimate of the n minute horizontal mean wind velocity (speed and direction). Previous studies have shown that the uncertainty in the measured wind speed originates from turbulent wind fluctuations and depends on the scan geometry (the arc span and the arc orientation). This paper is designed to provide guidance on optimal scan geometries for two key applications in the wind energy industry: wind turbine power performance analysis and annualmore » energy production prediction. We present a quantitative analysis of the retrieved wind speed uncertainty derived using a theoretical model with the assumption of isotropic and frozen turbulence, and observations from three sites that are onshore with flat terrain, onshore with complex terrain and offshore, respectively. The results from both the theoretical model and observations show that the uncertainty is scaled with the turbulence intensity such that the relative standard error on the 10 min mean wind speed is about 30% of the turbulence intensity. The uncertainty in both retrieved wind speeds and derived wind energy production estimates can be reduced by aligning lidar beams with the dominant wind direction, increasing the arc span and lowering the number of beams per arc scan. As a result, large arc spans should be used at sites with high turbulence intensity and/or large wind direction variation.« less
Wind Retrieval using Marine Radars
2011-09-30
utilized to remove the 180° directional ambiguity in SAR wave retrieval ( Engen and Johnson, 1995). We have observed a strong dependency of the...1629–1642, Sep 2007. Engen , G., and H. Johnson, “SAR ocean wave inversion using image cross spectra”, IEEE Trans. Geosci. Remote Sensing, vol. 33
A Well-Calibrated Ocean Algorithm for Special Sensor Microwave/Imager
NASA Technical Reports Server (NTRS)
Wentz, Frank J.
1997-01-01
I describe an algorithm for retrieving geophysical parameters over the ocean from special sensor microwave/imager (SSM/I) observations. This algorithm is based on a model for the brightness temperature T(sub B) of the ocean and intervening atmosphere. The retrieved parameters are the near-surface wind speed W, the columnar water vapor V, the columnar cloud liquid water L, and the line-of-sight wind W(sub LS). I restrict my analysis to ocean scenes free of rain, and when the algorithm detects rain, the retrievals are discarded. The model and algorithm are precisely calibrated using a very large in situ database containing 37,650 SSM/I overpasses of buoys and 35,108 overpasses of radiosonde sites. A detailed error analysis indicates that the T(sub B) model rms accuracy is between 0.5 and 1 K and that the rms retrieval accuracies for wind, vapor, and cloud are 0.9 m/s, 1.2 mm, and 0.025 mm, respectively. The error in specifying the cloud temperature will introduce an additional 10% error in the cloud water retrieval. The spatial resolution for these accuracies is 50 km. The systematic errors in the retrievals are smaller than the rms errors, being about 0.3 m/s, 0.6 mm, and 0.005 mm for W, V, and L, respectively. The one exception is the systematic error in wind speed of -1.0 m/s that occurs for observations within +/-20 deg of upwind. The inclusion of the line-of-sight wind W(sub LS) in the retrieval significantly reduces the error in wind speed due to wind direction variations. The wind error for upwind observations is reduced from -3.0 to -1.0 m/s. Finally, I find a small signal in the 19-GHz, horizontal polarization (h(sub pol) T(sub B) residual DeltaT(sub BH) that is related to the effective air pressure of the water vapor profile. This information may be of some use in specifying the vertical distribution of water vapor.
Validation of ERS-1 environmental data products
NASA Technical Reports Server (NTRS)
Goodberlet, Mark A.; Swift, Calvin T.; Wilkerson, John C.
1994-01-01
Evaluation of the launch-version algorithms used by the European Space Agency (ESA) to derive wind field and ocean wave estimates from measurements of sensors aboard the European Remote Sensing satellite, ERS-1, has been accomplished through comparison of the derived parameters with coincident measurements made by 24 open ocean buoys maintained by the National Oceanic and Atmospheric Administration). During the period from November 1, 1991 through February 28, 1992, data bases with 577 and 485 pairs of coincident sensor/buoy wind and wave measurements were collected for the Active Microwave Instrument (AMI) and Radar Altimeter (RA) respectively. Based on these data, algorithm retrieval accuracy is estimated to be plus or minus 4 m/s for AMI wind speed, plus or minus 3 m/s for RA wind speed and plus or minus 0.6 m for RA wave height. After removing 180 degree ambiguity errors, the AMI wind direction retrieval accuracy was estimated at plus or minus 28 degrees. All of the ERS-1 wind and wave retrievals are relatively unbiased. These results should be viewed as interim since improved algorithms are under development. As final versions are implemented, additional assessments should be conducted to complete the validation.
A Preliminary Analysis of Wind Retrieval, Based on GF-3 Wave Mode Data.
Wang, Lei; Han, Bing; Yuan, Xinzhe; Lei, Bin; Ding, Chibiao; Yao, Yulin; Chen, Qi
2018-05-17
This paper presents an analysis of measurements of the normalized radar cross-(NRCS) in Wave Mode for Chinese C-band Gaofen-3(GF-3) synthetic aperture radar (SAR). Based on 2779 images from GF-3 quad-polarization SAR in Wave Mode and collocated wind vectors from ERA-Interim, this experiment verifies the feasibility of using ocean surface wind fields and VV-polarized NRCS to perform normalized calibration. The method uses well-validated empirical C-band geophysical model function (CMOD4) to estimate the calibration constant for each beam. In addition, the relationship between cross-pol NRCS and wind vectors is discussed. The cross-pol NRCS increases linearly with wind speed and it is obviously modulated by the wind direction when the wind speed is greater than 8 m/s. Furthermore, the properties of the polarization ratio, denoted PR, are also investigated. The PR is dependent on incidence angle and azimuth angle. Two empirical models of the PR are fitted, one as a function of incidence angle only, the other with additional dependence on azimuth angle. Assessments show that the σ VV 0 retrieved from new PR models as well as σ HH 0 is in good agreement with σ VV 0 extracted from SAR images directly.
A Preliminary Analysis of Wind Retrieval, Based on GF-3 Wave Mode Data
Wang, Lei; Han, Bing; Yuan, Xinzhe; Lei, Bin; Ding, Chibiao; Yao, Yulin; Chen, Qi
2018-01-01
This paper presents an analysis of measurements of the normalized radar cross-(NRCS) in Wave Mode for Chinese C-band Gaofen-3(GF-3) synthetic aperture radar (SAR). Based on 2779 images from GF-3 quad-polarization SAR in Wave Mode and collocated wind vectors from ERA-Interim, this experiment verifies the feasibility of using ocean surface wind fields and VV-polarized NRCS to perform normalized calibration. The method uses well-validated empirical C-band geophysical model function (CMOD4) to estimate the calibration constant for each beam. In addition, the relationship between cross-pol NRCS and wind vectors is discussed. The cross-pol NRCS increases linearly with wind speed and it is obviously modulated by the wind direction when the wind speed is greater than 8 m/s. Furthermore, the properties of the polarization ratio, denoted PR, are also investigated. The PR is dependent on incidence angle and azimuth angle. Two empirical models of the PR are fitted, one as a function of incidence angle only, the other with additional dependence on azimuth angle. Assessments show that the σVV0 retrieved from new PR models as well as σHH0 is in good agreement with σVV0 extracted from SAR images directly. PMID:29772821
NASA Astrophysics Data System (ADS)
Ivanov, Victor; Borovski, Alexander; Postylyakov, Oleg
2017-10-01
Formaldehyde (HCHO) is involved in a lot of chemical reactions in the atmosphere. Taking into account that HCHO basically undergo by photolysis and reaction with hydroxyl radical within a few hours, short-lived VOCs and direct HCHO emissions can cause local HCHO enhancement over certain areas, and, hence, exceeding background level of HCHO can be examined as a local pollution of the atmosphere by VOCs or existence of a local HCHO source. Several retrieval algorithms applicable for DOAS measurements in cloudless were previously developed. In previous works we proposed a new algorithm applicable for the overcast conditions. The algorithm has the typical F-coefficient error of about 10% for winter season, about 5% for summer season, and varying from 15 to 45% for transition season if the atmospheric boundary layer is below the cloud base. In this paper we briefly present our results of the HCHO vertical column retrieval measured at Zvenigorod Scientific Station (ZSS) for overcast. ZSS (55°41'49''N, 36°46'29''E) is located in Moscow region in 38 km west from Moscow. Because Western winds prevail in this region, ZSS is a background station the most part of time. But in cases of Eastern wind, the air quality at ZSS is affected by Moscow megapolis, and polluted air masses formed above Moscow can reach station in a few hours. Due to the absence of alternative overcast data of HCHO, we compare our overcast data with the HCHO vertical content, which we obtained for clear sky. We investigate similarities and differences in their statistical behavior in different air mass. The average overcast HCHO data have similar to clear-sky HCHO positive temperature trends for all wind direction. We found that the average retrieved overcast HCHO contents are systematically greater than the clear-sky retrieval data. But the difference between data retrieved for the overcast and clear-sky conditions are different for Eastern and Western winds. This difference is about 0.5×1016 mol cm-2 for Western winds and about 1.2×1016 mol cm-2 for Eastern winds. We suppose that observed difference between the overcast and clear-sky formaldehyde data can be caused by dependence of chemical reactions leading to the HCHO destruction and the HCHO formation from Moscow anthropogenic predecessors on the cloudy conditions.
[Measurement of Speed and Direction of Ocean Surface Winds Using Quik Scat Scatterometer
NASA Technical Reports Server (NTRS)
Stiles, Bryan; Pollard, Brian
2000-01-01
The SeaWinds on QuikSCAT scatterometer was developed by NASA JPL to measure the speed and direction of ocean surface winds. Simulations performed to estimate the performance of the instrument prior to its launch have indicated that the mid-swath accuracy is worse than that of the rest of the swath. This behavior is a general characteristic of scanning pencil beam scatterometers. For SeaWinds, the accuracy of the rest of the swath, and the size of the swath are such that the instrument meets its science requirements despite mid-swath shortcomings. However, by understanding the problem at mid-swath, we can improve the performance there as well. We discuss the underlying causes of the problem in detail and propose a new wind retrieval algorithm which improves mid-swath performance. The directional discrimination ability of the instrument varies with cross track distance wind speed, and direction. By estimating the range of likely wind directions for each measurement cell, one can optimally apply information from neighboring cells where necessary in order to reduce random wind direction errors without significantly degrading the resolution of the resultant wind field. In this manner we are able to achieve mid-swath RMS wind direction errors as low as 15 degrees for low winds and 10 degrees for moderate to high winds, while at the same time preserving high resolution structures such as cyclones and fronts.
Thermospheric density and wind retrieval from Swarm observations
NASA Astrophysics Data System (ADS)
Visser, Pieter; Doornbos, Eelco; van den IJssel, Jose; Teixeira da Encarnação, João
2013-11-01
The three-satellite ESA Swarm mission aims at mapping the Earth's global geomagnetic field at unprecedented spatial and temporal resolution and precision. Swarm also aims at observing thermospheric density and possibly horizontal winds. Precise orbit determination (POD) and Thermospheric Density and Wind (TDW) chains form part of the Swarm Constellation and Application Facility (SCARF), which will provide the so-called Level 2 products. The POD and TDW chains generate the orbit, accelerometer calibration, and thermospheric density and wind Level 2 products. The POD and TDW chains have been tested with data from the CHAMP and GRACE missions, indicating that a 3D orbit precision of about 10 cm can be reached. In addition, POD allows to determine daily accelerometer bias and scale factor values with a precision of around 10-15 nm/s2 and 0.01-0.02, respectively, for the flight direction. With these accelerometer calibration parameter values, derived thermospheric density is consistent at the 9-11% level (standard deviation) with values predicted by models (taking into account that model values are 20-30% higher). The retrieval of crosswinds forms part of the processing chain, but will be challenging. The Swarm observations will be used for further developing and improving density and wind retrieval algorithms.
NASA Astrophysics Data System (ADS)
Gommenginger, C.; Foti, G.
2015-12-01
GNSS-Reflectometry (GNSS-R) is a ground breaking ocean remote sensing technique that exploits reflected signals from Global Navigation Satellite Systems (GNSS) to retrieve geophysical information about the ocean surface such as near-surface winds above the ocean. Adopting a bistatic radar configuration, signals emitted by GNSS satellites flying in Medium Earth Orbit (MEO) are received by a GNSS-R receiver on a Low Earth Orbit (LEO) observatory utilizing both a zenith antenna to receive the direct signal from the GNSS and a nadir antenna to acquire the earth-reflected signal. The reflected signal originated from a glistening zone on the ocean surface sited around the Specular Point (SP), the geometrical point on the Earth surface where GNSS signals are forward scattered in the specular direction. The two signals are correlated for different shifts in time (delay) and frequency (Doppler) relative to the specular point (SP) to produce a so-called Delay Doppler Map (DDM) of forward-scattered electromagnetic power over the surface. This paper gives an overview of recent results obtained for wind speed and ocean roughness retrieval with the Low-Earth-Orbiting UK TechDemoSat-1 satellite (TDS-1). Launched in July 2014, TDS-1 provides the first new spaceborne Global Navigation Satellite System-Reflectometry (GNSS-R) data since the pioneering UK-Disaster Monitoring Mission experiment in 2003. We present examples of onboard-processed delay Doppler Maps, including excellent DDM data quality for winds up to 27.9 m/s. The relationship between observed GNSS-R signals, wind speed and ocean roughness is explored using global collocated matchup datasets with METOP ASCAT scatterometer winds and WaveWatch3 numerical wave model output. Several Geophysical Model Functions are proposed, that make it possible to retrieve wind speed without bias and with a precision of the order of 2 m/s even without calibration. This work demonstrates the capabilities of low-cost, low-mass, low-power GNSS-R receivers ahead of their launch on the NASA CYGNSS constellation in 2016.
NASA Astrophysics Data System (ADS)
Troitskaya, Yuliya; Kandaurov, Alexander; Sergeev, Daniil; Bopp, Maximilian; Caulliez, Guillemette
2017-04-01
Air-sea coupling in general is important for weather, climate, fluxes. Wind wave source is crucially important for surface waves' modeling. But the wind-wave growth rate is strongly uncertain. Using direct measurements of pressure by wave-following Elliott probe [1] showed, weak and indefinite dependence of wind-wave growth rate on the wave steepness, while Grare et.al. [2] discuss the limitations of direct measurements of pressure associated with the inability to measure the pressure close to the surface by contact methods. Recently non-invasive methods for determining the pressure on the basis of technology of time-resolved PIV are actively developed [3]. Retrieving air flow velocities by 2D PIV techniques was started from Reul et al [4]. The first attempt for retrieving wind pressure field of waves in the laboratory tank from the time-resolved PIV measurements was done in [5]. The experiments were performed at the Large Air-Sea Interaction Facility (LASIF) - MIO/Luminy (length 40 m, cross section of air channel 3.2 x 1.6 m). For 18 regimes with wind speed up to 14 m/s including presence of puddle waves, a combination of time resolved PIV technique and optical measurements of water surface form was applied to detailed investigation of the characteristics of the wind flow over the water surface. Ammonium chloride smoke was used for flow visualization illuminated by two 6 Wt blue diode lasers combined into a vertical laser plane. Particle movement was captured with high-speed camera using Scheimpflug technique (up to 20 kHz frame rate with 4-frame bursts, spatial resolution about 190 μm, field of view 314x12 mm). Velocity air flow field was retrieved by PIV images processing with adaptive cross-correlation method on the curvilinear grid following surface wave form. The resulting time resolved instantaneous velocity fields on regular grid allowed us to obtain momentum fluxes directly from measured air velocity fluctuations. The average wind velocity patterns were retrieved using conditional averaging with phase like in [5]. Basing on these data we then retrieve the pressure field and find the air-sea interaction parameters. Peculiarity of these experiments was the presence of noticeable modulation of the waves, so we describe peculiarities of the pressure distribution over a wave-train. This work was supported by the Russian Foundation of Basic Research (project codes 16-05-00839, 16-55-52025, 15-35-20953), President Grant for young scientists MK-2041.2017.5, Russian Science Foundation (Agreements 14-17-00667, 15-17-20009) and FP7 Collaborative Project No. 612610. References 1. Saveliev I., et. al. (2011) J. Phys. Oceanogr. 41. 1328-1344. 2. Grare, L., et. al. (2013) J. Fluid Mech., 722, 5-50. 3. van Oudheusden B.W. (2013) Meas. Sci. Technol. 24. 032001 (32pp) 4. Reul N., et.al. (1999) Phys. Fluids. 11. 1959-1961. 5. Troitskaya Yu., et. al.(2011). J. Phys. Oceanogr., 41, 1421-1454
Scientific Impacts of Wind Direction Errors
NASA Technical Reports Server (NTRS)
Liu, W. Timothy; Kim, Seung-Bum; Lee, Tong; Song, Y. Tony; Tang, Wen-Qing; Atlas, Robert
2004-01-01
An assessment on the scientific impact of random errors in wind direction (less than 45 deg) retrieved from space-based observations under weak wind (less than 7 m/s ) conditions was made. averages, and these weak winds cover most of the tropical, sub-tropical, and coastal oceans. Introduction of these errors in the semi-daily winds causes, on average, 5% changes of the yearly mean Ekman and Sverdrup volume transports computed directly from the winds, respectively. These poleward movements of water are the main mechanisms to redistribute heat from the warmer tropical region to the colder high- latitude regions, and they are the major manifestations of the ocean's function in modifying Earth's climate. Simulation by an ocean general circulation model shows that the wind errors introduce a 5% error in the meridional heat transport at tropical latitudes. The simulation also shows that the erroneous winds cause a pile-up of warm surface water in the eastern tropical Pacific, similar to the conditions during El Nino episode. Similar wind directional errors cause significant change in sea-surface temperature and sea-level patterns in coastal oceans in a coastal model simulation. Previous studies have shown that assimilation of scatterometer winds improves 3-5 day weather forecasts in the Southern Hemisphere. When directional information below 7 m/s was withheld, approximately 40% of the improvement was lost
NASA Technical Reports Server (NTRS)
Kim, Young-Joon; Pak, Kyung S.; Dunbar, R. Scott; Hsiao, S. Vincent; Callahan, Philip S.
2000-01-01
Planetary boundary layer (PBL) models are utilized to enhance directional ambiguity removal skill in scatterometer data processing. The ambiguity in wind direction retrieved from scatterometer measurements is removed with the aid of physical directional information obtained from PBL models. This technique is based on the observation that sea level pressure is scalar and its field is more coherent than the corresponding wind. An initial wind field obtained from the scatterometer measurements is used to derive a pressure field with a PBL model. After filtering small-scale noise in the derived pressure field, a wind field is generated with an inverted PBL model. This derived wind information is then used to remove wind vector ambiguities in the scatterometer data. It is found that the ambiguity removal skill can be improved when the new technique is used properly in conjunction with the median filter being used for scatterometer wind dealiasing at JPL. The new technique is applied to regions of cyclone systems which are important for accurate weather prediction but where the errors of ambiguity removal are often large.
NASA Astrophysics Data System (ADS)
Zhang, K.; Han, B.; Mansaray, L. R.; Xu, X.; Guo, Q.; Jingfeng, H.
2017-12-01
Synthetic aperture radar (SAR) instruments on board satellites are valuable for high-resolution wind field mapping, especially for coastal studies. Since the launch of Sentinel-1A on April 3, 2014, followed by Sentinel-1B on April 25, 2016, large amount of C-band SAR data have been added to a growing accumulation of SAR datasets (ERS-1/2, RADARSAT-1/2, ENVISAT). These new developments are of great significance for a wide range of applications in coastal sea areas, especially for high spatial resolution wind resource assessment, in which the accuracy of retrieved wind fields is extremely crucial. Recently, it is reported that wind speeds can also be retrieved from C-band cross-polarized SAR images, which is an important complement to wind speed retrieval from co-polarization. However, there is no consensus on the optimal resolution for wind speed retrieval from cross-polarized SAR images. This paper presents a comparison strategy for investigating the influence of spatial resolutions on sea surface wind speed retrieval accuracy with cross-polarized SAR images. Firstly, for wind speeds retrieved from VV-polarized images, the optimal geophysical C-band model (CMOD) function was selected among four CMOD functions. Secondly, the most suitable C-band cross-polarized ocean (C-2PO) model was selected between two C-2POs for the VH-polarized image dataset. Then, the VH-wind speeds retrieved by the selected C-2PO were compared with the VV-polarized sea surface wind speeds retrieved using the optimal CMOD, which served as reference, at different spatial resolutions. Results show that the VH-polarized wind speed retrieval accuracy increases rapidly with the decrease in spatial resolutions from 100 m to 1000 m, with a drop in RMSE of 42%. However, the improvement in wind speed retrieval accuracy levels off with spatial resolutions decreasing from 1000 m to 5000 m. This demonstrates that the pixel spacing of 1 km may be the compromising choice for the tradeoff between the spatial resolution and wind speed retrieval accuracy with cross-polarized images obtained from RADASAT-2 fine quad polarization mode. Figs. 1 illustrate the variation of the following statistical parameters: Bias, Corr, R2, RMSE and STD as a function of spatial resolution.
Cloud-Scale Vertical Velocity and Turbulent Dissipation Rate Retrievals
Shupe, Matthew
2013-05-22
Time-height fields of retrieved in-cloud vertical wind velocity and turbulent dissipation rate, both retrieved primarily from vertically-pointing, Ka-band cloud radar measurements. Files are available for manually-selected, stratiform, mixed-phase cloud cases observed at the North Slope of Alaska (NSA) site during periods covering the Mixed-Phase Arctic Cloud Experiment (MPACE, late September through early November 2004) and the Indirect and Semi-Direct Aerosol Campaign (ISDAC, April-early May 2008). These time periods will be expanded in a future submission.
NASA Astrophysics Data System (ADS)
Clarizia, Maria Paola; Ruf, Christopher; Gommenginger, Christine
2013-04-01
Global Navigation Satellite System-Reflectometry (GNSS-R) exploits signals of opportunity from navigation constellations (e.g. GPS, GLONASS, Galileo), scattered by the surface of the ocean, to retrieve the surface wind and wave fields. GNSS-R represents a true innovation in remote sensing, and it is receiving a growing interest from the scientific community. Its main advantages lie in the dense space-time sampling capabilities, the ability of L-band signals to penetrate well through rain, and the possibility of simple, low-cost/low-power GNSS receivers. These recognized strengths of GNSS-R recently led to the approval of the NASA EV-2 Cyclone Global Navigation Satellite System (CYGNSS), a spaceborne mission focused on tropical cyclone (TC) inner core process studies. CYGNSS attempts to resolve the problem of inadequate observations and modeling of the inner core, which represents the principal deficiency with current TC intensity forecasts, and which can be overcome with GNSS-R. The present study focuses on the information content about the sea surface roughness and wind speed, that is contained in spaceborne GNSS-R Delay-Doppler Maps (DDMs). A number of algorithms for the retrieval of Mean Square Slopes (MSS) - representative of the surface roughness - are analyzed. These include existing algorithms based on least-square fitting procedures (e.g. 2D least-square fitting of DDMs, using the Zavorotny-Voronovich DDM theoretical model), or based on direct observables (e.g. DDM volume), as well as "new" algorithms, which make use of waveforms derived from the DDM, which have thusfar been unexploited (e.g. integrated delay and Doppler waveforms). The analysis is carried out using simulated DDMs generated by the mature forward model end-to-end simulator developed for CYGNSS. A comparison of the results obtained for different retrieval algorithms will be presented. In particular, the performance of the algorithms considered is investigated and characterized for the case of significant non-uniform wind field across the scattering area, such as will be encountered in and near tropical cyclones. The impact of each algorithm, as well as of other parameters (e.g. the extent of the DDM), on the sensitivity of the results to non-uniform winds will be presented. The results are directly relevant to CYGNSS, where the ultimate objective is to produce standard gridded maps of retrieved wind fields from raw DDM measurements. The value of this research is twofold, in that it addresses the choice of the best algorithms to retrieve MSS and ultimately wind speed in extreme and non-uniform wind conditions, and also provides a first assessment of the data compression requirements and strategies that will be applied to DDMs for the CYGNSS mission.
Helm, Paula J.; Breed, Carol S.; Tigges, Richard; Creighton, Shawn
1998-01-01
The data in this report were obtained by instruments deployed on a GOES-satellite data collection station operated by the U.S. Geological Survey Desert Winds Project at Desert Wells (latitude 33° 42' 08" N, longitude 113° 48' 40" W), La Paz County, west-central Arizona. The elevation is 344 m (1,130 ft). From January 9, 1981 through May 31, 1995 the station recorded eight parameters: wind direction, wind speed, peak gust, air temperature, precipitation, humidity, barometric pressure, and soil temperature. On June 1, 1995, the station was upgraded by adding a SENSIT sand-flux sensor, which records grain impacts concurrently with wind speed and wind direction measurements. Included with the data is descriptive text on the geology, soils, climate, vegetation, and land use at the site, as well as text on data format, date retrieval software and instructions, and metadata
NASA Technical Reports Server (NTRS)
Yueh, Simon H.; Chaubell, Mario J.
2012-01-01
Several L-band microwave radiometer and radar missions have been, or will be, operating in space for land and ocean observations. These include the NASA Aquarius mission and the Soil Moisture Active Passive (SMAP) mission, both of which use combined passive/ active L-band instruments. Aquarius s passive/active L-band microwave sensor has been designed to map the salinity field at the surface of the ocean from space. SMAP s primary objectives are for soil moisture and freeze/thaw detection, but it will operate continuously over the ocean, and hence will have significant potential for ocean surface research. In this innovation, an algorithm has been developed to retrieve simultaneously ocean surface salinity and wind from combined passive/active L-band microwave observations of sea surfaces. The algorithm takes advantage of the differing response of brightness temperatures and radar backscatter to salinity, wind speed, and direction, thus minimizing the least squares error (LSE) measure, which signifies the difference between measurements and model functions of brightness temperatures and radar backscatter. The algorithm uses the conjugate gradient method to search for the local minima of the LSE. Three LSE measures with different measurement combinations have been tested. The first LSE measure uses passive microwave data only with retrieval errors reaching 1 to 2 psu (practical salinity units) for salinity, and 1 to 2 m/s for wind speed. The second LSE measure uses both passive and active microwave data for vertical and horizontal polarizations. The addition of active microwave data significantly improves the retrieval accuracy by about a factor of five. To mitigate the impact of Faraday rotation on satellite observations, the third LSE measure uses measurement combinations invariant under the Faraday rotation. For Aquarius, the expected RMS SSS (sea surface salinity) error will be less than about 0.2 psu for low winds, and increases to 0.3 psu at 25 m/s wind speed for warm waters (25 C). To achieve the required 0.2 psu accuracy, the impact of sea surface roughness (e.g. wind-generated ripples) on the observed brightness temperature has to be corrected to better than one tenth of a degree Kelvin. With this algorithm, the accuracy of retrieved wind speed will be high, varying from a few tenths to 0.6 m/s. The expected direction accuracy is also excellent (less than 10 ) for mid to high winds, but degrades for lower speeds (less than 7 m/s).
Determination of surface stress by Seasat-SASS - A case study with JASIN data
NASA Technical Reports Server (NTRS)
Liu, W. T.; Large, W. G.
1981-01-01
The values of sea surface stress determined with the dissipation method and those determined with a surface-layer model from observations on F.S. Meteor during the Joint Air-Sea Interaction (JASIN) Experiment are compared with the backscatter coefficients measured by the scatterometer SASS on the satellite Seasat. This study demonstrates that SASS can be used to determine surface stress directly as well as wind speed. The quality of the surface observations used in the calibration of the retrieval algorithms, however, is important. This sample of measurements disagrees with the predictions by the existing wind retrieval algorithm under non-neutral conditions and the discrepancies depend on atmospheric stability.
Comparing offshore wind farm wake observed from satellite SAR and wake model results
NASA Astrophysics Data System (ADS)
Bay Hasager, Charlotte
2014-05-01
Offshore winds can be observed from satellite synthetic aperture radar (SAR). In the FP7 EERA DTOC project, the European Energy Research Alliance project on Design Tools for Offshore Wind Farm Clusters, there is focus on mid- to far-field wind farm wakes. The more wind farms are constructed nearby other wind farms, the more is the potential loss in annual energy production in all neighboring wind farms due to wind farm cluster effects. It is of course dependent upon the prevailing wind directions and wind speed levels, the distance between the wind farms, the wind turbine sizes and spacing. Some knowledge is available within wind farm arrays and in the near-field from various investigations. There are 58 offshore wind farms in the Northern European seas grid connected and in operation. Several of those are spaced near each other. There are several twin wind farms in operation including Nysted-1 and Rødsand-2 in the Baltic Sea, and Horns Rev 1 and Horns Rev 2, Egmond aan Zee and Prinses Amalia, and Thompton 1 and Thompton 2 all in the North Sea. There are ambitious plans of constructing numerous wind farms - great clusters of offshore wind farms. Current investigation of offshore wind farms includes mapping from high-resolution satellite SAR of several of the offshore wind farms in operation in the North Sea. Around 20 images with wind farm wake cases have been retrieved and processed. The data are from the Canadian RADARSAT-1/-2 satellites. These observe in microwave C-band and have been used for ocean surface wind retrieval during several years. The satellite wind maps are valid at 10 m above sea level. The wakes are identified in the raw images as darker areas downwind of the wind farms. In the SAR-based wind maps the wake deficit is found as areas of lower winds downwind of the wind farms compared to parallel undisturbed flow in the flow direction. The wind direction is clearly visible from lee effects and wind streaks in the images. The wind farm wake cases are modeled by various types of wake models. In the EERA DTOC project the model suite consists of engineering models (Ainslie, DWM, GLC, PARK, WASP/NOJ), simplified CFD models (FUGA, FarmFlow), full CFD models (CRES-flowNS, RANS), mesoscale model (SKIRON, WRF) and coupled meso-scale and microscale models. The comparison analysis between the satellite wind wake and model results will be presented and discussed. It is first time a comprehensive analysis is performed on this subject. The topic gains increasing importance because there is a growing need to precisely model also mid- and far-field wind farms wakes for development and planning of offshore wind farm clusters.
Impact of Lidar Wind Sounding on Mesoscale Forecast
NASA Technical Reports Server (NTRS)
Miller, Timothy L.; Chou, Shih-Hung; Goodman, H. Michael (Technical Monitor)
2001-01-01
An Observing System Simulation Experiment (OSSE) was conducted to study the impact of airborne lidar wind sounding on mesoscale weather forecast. A wind retrieval scheme, which interpolates wind data from a grid data system, simulates the retrieval of wind profile from a satellite lidar system. A mesoscale forecast system based on the PSU/NCAR MM5 model is developed and incorporated the assimilation of the retrieved line-of-sight wind. To avoid the "identical twin" problem, the NCEP reanalysis data is used as our reference "nature" atmosphere. The simulated space-based lidar wind observations were retrieved by interpolating the NCEP values to the observation locations. A modified dataset obtained by smoothing the NCEP dataset was used as the initial state whose forecast was sought to be improved by assimilating the retrieved lidar observations. Forecasts using wind profiles with various lidar instrument parameters has been conducted. The results show that to significantly improve the mesoscale forecast the satellite should fly near the storm center with large scanning radius. Increasing lidar firing rate also improves the forecast. Cloud cover and lack of aerosol degrade the quality of the lidar wind data and, subsequently, the forecast.
Towards an Optimal Noise Versus Resolution Trade-Off in Wind Scatterometry
NASA Technical Reports Server (NTRS)
Williams, Brent A.
2011-01-01
A scatterometer is a radar that measures the normalized radar cross section sigma(sup 0) of the Earth's surface. Over the ocean this signal is related to the wind via the geophysical model function (GMF). The objective of wind scatterometry is to estimate the wind vector field from sigma(sup 0) measurements; however, there are many subtleties that complicate this problem-making it difficult to obtain a unique wind field estimate. Conventionally, wind estimation is split into two stages: a wind retrieval stage in which several ambiguous solutions are obtained, and an ambiguity removal stage in which ambiguities are chosen to produce an appropriate wind vector field estimate. The most common approach to wind field estimation is to grid the scatterometer swath into wind vector cells and estimate wind vector ambiguities independently for each cell. Then, field wise structure is imposed on the solution by an ambiguity selection routine. Although this approach is simple and practical, it neglects field wise structure in the retrieval step and does not account for the spatial correlation imposed by the sampling. This makes it difficult to develop a theoretically appropriate noise versus resolution trade-off using pointwise retrieval. Fieldwise structure may be imposed in the retrieval step using a model-based approach. However, this approach is generally only practical if a low order wind field model is applied, which may discard more information than is desired. Furthermore, model-based approaches do not account for the structure imposed by the sampling. A more general fieldwise approach is to estimate all the wind vectors for all the WVCs simultaneously from all the measurements. This approach can account for structure of the wind field as well as structure imposed by the sampling in the wind retrieval step. Williams and Long in 2010 developed a fieldwise retrieval method based on maximum a posteriori estimation (MAP). This MAP approach can be extended to perform a noise versus resolution trade-off, and deal with ambiguity selection. This paper extends the fieldwise MAP estimation approach and investigates both the noise versus resolution trade-off as well as ambiguity removal in the fieldwise wind retrieval step. The method is then applied to the Sea Winds scatterometer and the results are analyzed. This paper extends the fieldwise MAP estimation approach and investigates both the noise versus resolution trade-off as well as ambiguity removal in the fieldwise wind retrieval step. The method is then applied to the Sea Winds scatterometer and the results are analyzed.
Wind Field Extractions from SAR Sentinel-1 Images Using Electromagnetic Models
NASA Astrophysics Data System (ADS)
La, Tran Vu; Khenchaf, Ali; Comblet, Fabrice; Nahum, Carole
2016-08-01
Among available wind sources, i.e. measured data, numeric weather models, the retrieval of wind vectors from Synthetic Aperture Radar (SAR) data / images is particularly preferred due to a lot of SAR systems (available data in most meteorological conditions, revisit mode, high resolution, etc.). For this purpose, the retrieval of wind vectors is principally based on the empirical (EP) models, e.g. CMOD series in C-band. Little studies have been reported about the use of the electromagnetic (EM) models for wind vector retrieval, since it is quite complicated to invert. However, the EM models can be applied for most cases of polarization, frequency and wind regime. In order to evaluate the advantages and limits of the EM models for wind vector retrieval, we compare in this study estimated results by the EM and EP models for both cases of polarization (vertical-vertical, or VV-pol and horizontal- horizontal, or HH-pol).
Sequential processing of GNSS-R delay-Doppler maps (DDM's) for ocean wind retrieval
NASA Astrophysics Data System (ADS)
Garrison, J. L.; Rodriguez-Alvarez, N.; Hoffman, R.; Annane, B.; Leidner, M.; Kaitie, S.
2016-12-01
The delay-Doppler map (DDM) is the fundamental data product from GNSS-Reflectometry (GNSS-R), generated by cross-correlating the scattered signal with a local signal model over a range of delays and Doppler frequencies. Delay and Doppler form a set of coordinates on the ocean surface and the shape of the DDM is related to the distribution of ocean slopes. Wind speed can thus be estimated by fitting a scattering model to the shape of the observed DDM or defining an observable (e.g. average power or leading edge slope) which characterizes the change in DDM shape. For spaceborne measurements, the DDM is composed of signals scattered from a glistening zone, which can extend for up to 100 km or more. Setting a reasonable resolution requirement (25 km or less) will limit the usable portion of the DDM at each observation to only a small region near the specular point. Cyclone-GNSS (CYGNSS) is a NASA mission to study developing tropical cyclones using GNSS-R. CYGNSS science requirements call for wind retrieval with an accuracy of 10 percent above 20 m/s within a 25 km resolution. This requirement can be met using an observable defined for DDM samples between +/- 0.25 chips in delay and +/- 1 kHz in Doppler, with some filtering of the observations using a minimum threshold for range corrected gain (RCG). An improved approach, to be reviewed in this presentation, sequentially processes multiple DDM's, to combine observations generated from different "looks" at the same points on the surface. Applying this sequential process to synthetic data indicates a significant improvement in wind retrieval accuracy over a 10 km grid covering a region around the specular point. The attached figure illustrates this improvement, using simulated CYGNSS DDM's generated using the wind fields from hurricanes Earl and Danielle (left). The middle plots show wind retrievals using only an observable defined within the 25 km resolution cell. The plots on the right side show the retrievals from sequential processing of multiple DDM's. Recently, the assimilation of GNSS-R retrievals into weather forecast models has been studied. The authors have begun to investigate the direct assimilation of other data products, such as the DDM itself, or the results of sequential processing.
NASA Astrophysics Data System (ADS)
Lux, Oliver; Lemmerz, Christian; Weiler, Fabian; Marksteiner, Uwe; Witschas, Benjamin; Rahm, Stephan; Schäfler, Andreas; Reitebuch, Oliver
2018-06-01
In preparation of the satellite mission Aeolus carried out by the European Space Agency, airborne wind lidar observations have been performed in the frame of the North Atlantic Waveguide and Downstream Impact Experiment (NAWDEX), employing the prototype of the satellite instrument, the ALADIN Airborne Demonstrator (A2D). The direct-detection Doppler wind lidar system is composed of a frequency-stabilized Nd:YAG laser operating at 355 nm, a Cassegrain telescope and a dual-channel receiver. The latter incorporates a Fizeau interferometer and two sequential Fabry-Pérot interferometers to measure line-of-sight (LOS) wind speeds by analysing both Mie and Rayleigh backscatter signals. The benefit of the complementary design is demonstrated by airborne observations of strong wind shear related to the jet stream over the North Atlantic on 27 September and 4 October 2016, yielding high data coverage in diverse atmospheric conditions. The paper also highlights the relevance of accurate ground detection for the Rayleigh and Mie response calibration and wind retrieval. Using a detection scheme developed for the NAWDEX campaign, the obtained ground return signals are exploited for the correction of systematic wind errors. Validation of the instrument performance and retrieval algorithms was conducted by comparison with DLR's coherent wind lidar which was operated in parallel, showing a systematic error of the A2D LOS winds of less than 0.5 m s-1 and random errors from 1.5 (Mie) to 2.7 m s-1 (Rayleigh).
NASA Astrophysics Data System (ADS)
Zhang, Lei; Yin, Xiaobin; Shi, Hanqing; Wang, Zhenzhan; Xu, Qing
2018-04-01
Accurate estimations of typhoon-level winds are highly desired over the western Pacific Ocean. A wind speed retrieval algorithm is used to retrieve the wind speeds within Super Typhoon Nepartak (2016) using 6.9- and 10.7-GHz brightness temperatures from the Japanese Advanced Microwave Scanning Radiometer 2 (AMSR2) sensor on board the Global Change Observation Mission-Water 1 (GCOM-W1) satellite. The results show that the retrieved wind speeds clearly represent the intensification process of Super Typhoon Nepartak. A good agreement is found between the retrieved wind speeds and the Soil Moisture Active Passive wind speed product. The mean bias is 0.51 m/s, and the root-mean-square difference is 1.93 m/s between them. The retrieved maximum wind speeds are 59.6 m/s at 04:45 UTC on July 6 and 71.3 m/s at 16:58 UTC on July 6. The two results demonstrate good agreement with the results reported by the China Meteorological Administration and the Joint Typhoon Warning Center. In addition, Feng-Yun 2G (FY-2G) satellite infrared images, Feng-Yun 3C (FY-3C) microwave atmospheric sounder data, and AMSR2 brightness temperature images are also used to describe the development and structure of Super Typhoon Nepartak.
Description and evaluation of the CASA dual-Doppler system
NASA Astrophysics Data System (ADS)
Martinez, Matthew
2011-12-01
Long range weather surveillance radars are designed for observing weather events for hundreds of kilometers from the radar and operate over a large coverage domain independently of weather conditions. As a result a loss in spatial resolution and limited temporal sampling of the weather phenomenon occurs. Due to the curvature of the Earth, long-range weather radars tend to make the majority of their precipitation and wind observations in the middle to upper troposphere, resulting in missed features associates with severe weather occurring in the lowest three kilometers of the troposphere. The spacing of long-range weather radars in the United States limits the feasibility of using dual-Doppler wind retrievals that would provide valuable information on the kinematics of weather events to end-users and researchers. The National Science Foundation Center for Collaborative Adapting Sensing of the Atmosphere (CASA) aims to change the current weather sensing model by increasing coverage of the lowest three kilometers of the troposphere by using densely spaced networked short-range weather radars. CASA has deployed a network of these radars in south-western Oklahoma, known as Integrated Project 1 (IP1). The individual radars are adaptively steered by an automated system known as the Meteorological Command and Control (MCC). The geometry of the IP1 network is such that the coverage domains of the individual radars are overlapping. A dual-Doppler system has been developed for the IP1 network which takes advantage of the overlapping coverage domains. The system is comprised of two subsystems, scan optimization and wind field retrieval. The scan strategy subsystem uses the DCAS model and the number of dual-Doppler pairs in the IP1 network to minimizes the normalized standard deviation in the wind field retrieval. The scan strategy subsystem also minimizes the synchronization error between two radars. The retrieval itself is comprised of two steps, data resampling and the retrieval process. The resampling step map data collected in radar coordinates to a common Cartesian grid. The retrieval process uses the radial velocity measurements to estimate the northward, eastward, and vertical component of the wind. The error in the retrieval is related to the beam crossing angle. The best retrievals occur at beam crossing angles greater than 30 degrees. During operations statistics on the scan strategy and wind field retrievals are collected in real-time. For the scan strategy subsystem statistics on the beam crossing angels, maximum elevation angle, number of elevation angles, maximum observable height, and synchronization time between radars in a pair are collected by the MCC. These statistics are used to evaluate the performance of the scan strategy subsystem. Observations of a strong wind event occurring on April 2, 2010 are used to evaluate the decision process associated with the scan strategy optimization. For the retrieval subsystem, the normalized standard deviation for the wind field retrieval is used to evaluate the quality of the retrieval. Wind fields from an EF2 tornado observed on May 14, 2009 are used to evaluate the quality of the wind field retrievals in hazardous wind events. Two techniques for visualizing vector fields are available, streamlines and arrows. Each visualization technique is evaluated based on the task of visualizing small and large scale phenomenon. Applications of the wind field retrievals include the computation of the vorticity and divergence fields. Vorticity and divergence for an EF2 tornado observed on May 14, 2009 are evaluated against vorticity and divergence for other observed tornadoes.
Deriving earth science products from SSM/I
NASA Technical Reports Server (NTRS)
Wentz, Frank J.
1995-01-01
A few of the major accomplishments during the second phase include: (1) all three Special Sensor Microwave Imagers (SSM/I's: F08, F10, and F11) have been cross-calibrated; (2) a very large, quality-controlled, collocated SSM/I and radiosonde data set has been produced; (3) the SSM/I-radiosonde and SSM/I-buoy data sets have been used to calibrate the SSM/I ocean retrieval algorithm; (4) ocean products have been produced for both F10 and F11 SSM/I for 1991-1993; (5) the SSM/I-buoy data set was used to better determine the variation of the ocean T(sub B) with wind direction; and (6) it was demonstrated that under high wind conditions, wind direction information can be obtained from individual SSM/I observations.
Evaluation of Single-Doppler Radar Wind Retrievals in Flat and Complex Terrain
DOE Office of Scientific and Technical Information (OSTI.GOV)
Newsom, Rob K.; Berg, Larry K.; Pekour, Mikhail S.
2014-08-01
The accuracy of winds derived from NEXRAD level II data is assessed by comparison with independent observations from 915 MHz radar wind profilers. The evaluation is carried out at two locations with very different terrain characteristics. One site is located in an area of complex terrain within the State Line Wind Energy Center in northeast Oregon. The other site is located in an area of flat terrain on the east-central Florida coast. The National Severe Storm Laboratory’s 2DVar algorithm is used to retrieve wind fields from the KPDT (Pendleton OR) and KMLB (Melbourne FL) NEXRAD radars. Comparisons between the 2DVarmore » retrievals and the radar profilers were conducted over a period of about 6 months and at multiple height levels at each of the profiler sites. Wind speed correlations at most observation height levels fell in the range from 0.7 to 0.8, indicating that the retrieved winds followed temporal fluctuations in the profiler-observed winds reasonably well. The retrieved winds, however, consistently exhibited slow biases in the range of1 to 2 ms-1. Wind speed difference distributions were broad with standard deviations in the range from 3 to 4 ms-1. Results from the Florida site showed little change in the wind speed correlations and difference standard deviations with altitude between about 300 and 1400 m AGL. Over this same height range, results from the Oregon site showed a monotonic increase in the wind speed correlation and a monotonic decrease in the wind speed difference standard deviation with increasing altitude. The poorest overall agreement occurred at the lowest observable level (~300 m AGL) at the Oregon site, where the effects of the complex terrain were greatest.« less
NASA Technical Reports Server (NTRS)
Langland, R. A.; Stephens, P. L.; Pihos, G. G.
1980-01-01
The techniques used for ingesting SEASAT-A SASS wind retrievals into the existing operational software are described. The intent is to assess the impact of SEASAT data in he marine wind fields produced by the global marine wind/sea level pressure analysis. This analysis is performed on a 21/2 deg latitude/longitude global grid which executes at three hourly time increments. Wind fields with and without SASS winds are being compared. The problems of data volume reduction and aliased wind retrieval ambiquity are treated.
Observation of high-resolution wind fields and offshore wind turbine wakes using TerraSAR-X imagery
NASA Astrophysics Data System (ADS)
Gies, Tobias; Jacobsen, Sven; Lehner, Susanne; Pleskachevsky, Andrey
2014-05-01
1. Introduction Numerous large-scale offshore wind farms have been built in European waters and play an important role in providing renewable energy. Therefore, knowledge of behavior of wakes, induced by large wind turbines and their impact on wind power output is important. The spatial variation of offshore wind turbine wake is very complex, depending on wind speed, wind direction, ambient atmospheric turbulence and atmospheric stability. In this study we demonstrate the application of X-band TerraSAR-X (TS-X) data with high spatial resolution for studies on wind turbine wakes in the near and far field of the offshore wind farm Alpha Ventus, located in the North Sea. Two cases which different weather conditions and different wake pattern as observed in the TS-X image are presented. 2. Methods The space-borne synthetic aperture radar (SAR) is a unique sensor that provides two-dimensional information on the ocean surface. Due to their high resolution, daylight and weather independency and global coverage, SARs are particularly suitable for many ocean and coastal applications. SAR images reveal wind variations on small scales and thus represent a valuable means in detailed wind-field analysis. The general principle of imaging turbine wakes is that the reduced wind speed downstream of offshore wind farms modulates the sea surface roughness, which in turn changes the Normalized Radar Cross Section (NRCS, denoted by σ0) in the SAR image and makes the wake visible. In this study we present two cases at the offshore wind farm Alpha Ventus to investigate turbine-induced wakes and the retrieved sea surface wind field. Using the wind streaks, visible in the TS-X image and the shadow behind the offshore wind farm, induced by turbine wake, the sea surface wind direction is derived and subsequently the sea surface wind speed is calculated using the latest generation of wind field algorithm XMOD2. 3. Case study alpha ventus Alpha Ventus is located approximately 45 km from the coast of Borkum, Germany, and consists of twelve 5-Megawatt wind power turbines. The retrieved results are validated by comparing with QuikSCAT measurements, the results of the German Weather Service (DWD) atmospheric model and in-situ measurements of wind speed and wind direction, obtained from the research platform FiNO1, installed 400 m west of Alpha Ventus. 4. Conclusion In the presented case study we quantify the wake characteristics of wake length, wake width, maximum velocity de?cit, wake merging and wake meandering. We show that SAR has the capability to map the sea surface two-dimensionally in high spatial resolution which provides a unique opportunity to observe spatial characteristics of offshore wind turbine wakes. The SAR derived information can support offshore wind farming with respect to optimal siting and design and help to estimate their effects on the environment.
2012-12-01
traditional buoy measurements , which are based on the analysis of the buoy motion using accelerometer and tilt sensors, is the capacity to detect multi-modal...the radar- based estimates slightly overestimate the measured data. Fig. 6.33 shows a time series of p-p-distances and corresponding water depths as...32 3.5 Time series of wind speed and direction measurements from ship anemome- ters 1 and 2 from
Doppler Lidar Vector Retrievals and Atmospheric Data Visualization in Mixed/Augmented Reality
NASA Astrophysics Data System (ADS)
Cherukuru, Nihanth Wagmi
Environmental remote sensing has seen rapid growth in the recent years and Doppler wind lidars have gained popularity primarily due to their non-intrusive, high spatial and temporal measurement capabilities. While lidar applications early on, relied on the radial velocity measurements alone, most of the practical applications in wind farm control and short term wind prediction require knowledge of the vector wind field. Over the past couple of years, multiple works on lidars have explored three primary methods of retrieving wind vectors viz., using homogeneous windfield assumption, computationally extensive variational methods and the use of multiple Doppler lidars. Building on prior research, the current three-part study, first demonstrates the capabilities of single and dual Doppler lidar retrievals in capturing downslope windstorm-type flows occurring at Arizona's Barringer Meteor Crater as a part of the METCRAX II field experiment. Next, to address the need for a reliable and computationally efficient vector retrieval for adaptive wind farm control applications, a novel 2D vector retrieval based on a variational formulation was developed and applied on lidar scans from an offshore wind farm and validated with data from a cup and vane anemometer installed on a nearby research platform. Finally, a novel data visualization technique using Mixed Reality (MR)/ Augmented Reality (AR) technology is presented to visualize data from atmospheric sensors. MR is an environment in which the user's visual perception of the real world is enhanced with live, interactive, computer generated sensory input (in this case, data from atmospheric sensors like Doppler lidars). A methodology using modern game development platforms is presented and demonstrated with lidar retrieved wind fields. In the current study, the possibility of using this technology to visualize data from atmospheric sensors in mixed reality is explored and demonstrated with lidar retrieved wind fields as well as a few earth science datasets for education and outreach activities.
Yuan, Xinzhe; Sun, Jian; Zhou, Wei; Zhang, Qingjun
2018-01-01
The purpose of our work is to determine the feasibility and effectiveness of retrieving sea surface wind speeds from C-band cross-polarization (herein vertical-horizontal, VH) Chinese Gaofen-3 (GF-3) SAR images in typhoons. In this study, we have collected three GF-3 SAR images acquired in Global Observation (GLO) and Wide ScanSAR (WSC) mode during the summer of 2017 from the China Sea, which includes the typhoons Noru, Doksuri and Talim. These images were collocated with wind simulations at 0.12° grids from a numeric model, called the Regional Assimilation and Prediction System-Typhoon model (GRAPES-TYM). Recent research shows that GRAPES-TYM has a good performance for typhoon simulation in the China Sea. Based on the dataset, the dependence of wind speed and of radar incidence angle on normalized radar cross (NRCS) of VH-polarization GF-3 SAR have been investigated, after which an empirical algorithm for wind speed retrieval from VH-polarization GF-3 SAR was tuned. An additional four VH-polarization GF-3 SAR images in three typhoons, Noru, Hato and Talim, were investigated in order to validate the proposed algorithm. SAR-derived winds were compared with measurements from Windsat winds at 0.25° grids with wind speeds up to 40 m/s, showing a 5.5 m/s root mean square error (RMSE) of wind speed and an improved RMSE of 5.1 m/s wind speed was achieved compared with the retrieval results validated against GRAPES-TYM winds. It is concluded that the proposed algorithm is a promising potential technique for strong wind retrieval from cross-polarization GF-3 SAR images without encountering a signal saturation problem. PMID:29385068
Hurricane Imaging Radiometer (HIRAD) Wind Speed Retrievals and Assessment Using Dropsondes
NASA Technical Reports Server (NTRS)
Cecil, Daniel J.; Biswas, Sayak K.
2018-01-01
The Hurricane Imaging Radiometer (HIRAD) is an experimental C-band passive microwave radiometer designed to map the horizontal structure of surface wind speed fields in hurricanes. New data processing and customized retrieval approaches were developed after the 2015 Tropical Cyclone Intensity (TCI) experiment, which featured flights over Hurricanes Patricia, Joaquin, Marty, and the remnants of Tropical Storm Erika. These new approaches produced maps of surface wind speed that looked more realistic than those from previous campaigns. Dropsondes from the High Definition Sounding System (HDSS) that was flown with HIRAD on a WB-57 high altitude aircraft in TCI were used to assess the quality of the HIRAD wind speed retrievals. The root mean square difference between HIRAD-retrieved surface wind speeds and dropsonde-estimated surface wind speeds was 6.0 meters per second. The largest differences between HIRAD and dropsonde winds were from data points where storm motion during dropsonde descent compromised the validity of the comparisons. Accounting for this and for uncertainty in the dropsonde measurements themselves, we estimate the root mean square error for the HIRAD retrievals as around 4.7 meters per second. Prior to the 2015 TCI experiment, HIRAD had previously flown on the WB-57 for missions across Hurricanes Gonzalo (2014), Earl (2010), and Karl (2010). Configuration of the instrument was not identical to the 2015 flights, but the methods devised after the 2015 flights may be applied to that previous data in an attempt to improve retrievals from those cases.
On the influence of ocean waves on simulated GNSS-R delay-doppler maps
NASA Astrophysics Data System (ADS)
Clarizia, M. P.; di Bisceglie, M.; Galdi, C.; Gommenginger, C.; Srokosz, M.
2012-04-01
Global Navigation Satellite System-Reflectometry (GNSS-R), is an established technique that exploits GNSS signals of opportunity reflected from the surface of the ocean, to look primarily at the ocean surface roughness. The strength of this technique, and the primary motivation to carry it forward, is in the fact that GNSS signals are available globally, all the time and over the long term, and could help dramatically improve the monitoring of ocean wind and waves. GNSS-R offers the prospect of high density global measurements of directional sea surface roughness, which are essential for scientific purposes (i.e. quantifying the air-sea exchanges of gases), operational weather and ocean forecasting (i.e. prediction of high winds, dangerous sea states, risk of flooding and storm surges) and to support important climate-relevant Earth Observation techniques (IR SST, or surface salinity retrieval). The retrieval of ocean roughness from GNSS-R data has now been demonstrated with a reasonable level of accuracy from both airborne [1] and spaceborne [2] platforms. In both cases, Directional Mean Square Slopes (DMSS) of the ocean surface have been retrieved from GNSS-R data, in the form of Delay-Doppler Maps (DDMs), using an established theoretical scattering model by Zavorotny and Voronovich (Z-V) [3]. The need for a better assessment of the way the ocean waves influence the scattering of GPS signals has recently led to a different approach, consisting of simulating the scattering of such signals, using a more sophisticated large-scale scattering model than Z-V, and explicit simulations of realistic seas. Initial results produced from these simulations have been recently published in [4], where the emphasis has been put on the effects of different sea states on Radar Cross Section (RCS) and Polarization Ratio (PR) in space domain. Linear wind wave surfaces have been simulated using the Elfouhaily wind wave spectrum [5], for different wind speeds and directions, and with or without a superimposed swell. Then, the scattering from such surfaces has been computed using the innovative Facet Approach (FA), which approximates the surface through a number of rectangular facets, differently oriented, and calculates the surface scattering as the ensemble of the signals scattered from all the facets. Here we proceed with the next step of the GPS-Reflectometry simulator, through investigation of the results in Delay- Doppler (DD) domain. Changes and variations of the DDMs, computed using the FA scattering model, are investigated for a variety of wind and wave conditions of the underlying sea surfaces simulated. Results are analysed for changing wind speed and direction of the waves, presence of a swell component superimposed on wind waves, and changing parameters (wavelength, amplitude, direction) of the swell, revealing some degree of sensitivity of these maps to different sea states. The effect of polarization is also taken into account, through an analysis of PR in DD domain. Finally, an initial investigation into the effect of nonlinearities on the sea surface in DD domain is carried out, by looking at DDMs of the signal scattered from non linear non gaussian sea surfaces explicitly simulated.
Wang, Zhangjun; Liu, Zhishen; Liu, Liping; Wu, Songhua; Liu, Bingyi; Li, Zhigang; Chu, Xinzhao
2010-12-20
An incoherent Doppler wind lidar based on iodine edge filters has been developed at the Ocean University of China for remote measurements of atmospheric wind fields. The lidar is compact enough to fit in a minivan for mobile deployment. With its sophisticated and user-friendly data acquisition and analysis system (DAAS), this lidar has made a variety of line-of-sight (LOS) wind measurements in different operational modes. Through carefully developed data retrieval procedures, various wind products are provided by the lidar, including wind profile, LOS wind velocities in plan position indicator (PPI) and range height indicator (RHI) modes, and sea surface wind. Data are processed and displayed in real time, and continuous wind measurements have been demonstrated for as many as 16 days. Full-azimuth-scanned wind measurements in PPI mode and full-elevation-scanned wind measurements in RHI mode have been achieved with this lidar. The detection range of LOS wind velocity PPI and RHI reaches 8-10 km at night and 6-8 km during daytime with range resolution of 10 m and temporal resolution of 3 min. In this paper, we introduce the DAAS architecture and describe the data retrieval methods for various operation modes. We present the measurement procedures and results of LOS wind velocities in PPI and RHI scans along with wind profiles obtained by Doppler beam swing. The sea surface wind measured for the sailing competition during the 2008 Beijing Olympics is also presented. The precision and accuracy of wind measurements are estimated through analysis of the random errors associated with photon noise and the systematic errors introduced by the assumptions made in data retrieval. The three assumptions of horizontal homogeneity of atmosphere, close-to-zero vertical wind, and uniform sensitivity are made in order to experimentally determine the zero wind ratio and the measurement sensitivity, which are important factors in LOS wind retrieval. Deviations may occur under certain meteorological conditions, leading to bias in these situations. Based on the error analyses and measurement results, we point out the application ranges of this Doppler lidar and propose several paths for future improvement.
Estimation of wind stress using dual-frequency TOPEX data
NASA Astrophysics Data System (ADS)
Elfouhaily, Tanos; Vandemark, Douglas; Gourrion, Jéro‸me; Chapron, Bertrand
1998-10-01
The TOPEX/POSEIDON satellite carries the first dual-frequency radar altimeter. Monofrequency (Ku-band) algorithms are presently used to retrieve surface wind speed from the altimeter's radar cross-section measurement (σ0Ku). These algorithms work reasonably well, but it is also known that altimeter wind estimates can be contaminated by residual effects, such as sea state, embedded in the σ0Ku measurement. Investigating the potential benefit of using two frequencies for wind retrieval, it is shown that a simple evaluation of TOPEX data yields previously unavailable information, particularly for high and low wind speeds. As the wind speed increases, the dual-frequency data provides a measurement more directly linked to the short-scale surface roughness, which in turn is associated with the local surface wind stress. Using a global TOPEX σ0° data set and TOPEX's significant wave height (Hs) estimate as a surrogate for the sea state's degree of development, it is also shown that differences between the two TOPEX σ0 measurements strongly evidence nonlocal sea state signature. A composite scattering theory is used to show how the dual-frequency data can provide an improved friction velocity model, especially for winds above 7 m/s. A wind speed conversion is included using a sea state dependent drag coefficient fed with TOPEX Hs data. Two colocated TOPEX-buoy data sets (from the National Data Buoy Center (NDBC) and the Structure des Echanges Mer-Atmosphre, Proprietes des Heterogeneites Oceaniques: Recherche Expérimentale (SEMAPHORE) campaign) are employed to test the new wind speed algorithm. A measurable improvement in wind speed estimation is obtained when compared to the monofrequency Witter and Chelton [1991] model.
NASA Technical Reports Server (NTRS)
Cardone, Vincent J.; Cox, Andrew T.
2000-01-01
This study has demonstrated that high-resolution scatterometer measurements in tropical cyclones and other high-marine surface wind regimes may be retrieved accurately for wind speeds up to about 35 mls (1-hour average at 10 m) when the scatterometer data are processed through a revised geophysical model function, and a spatial adaptive algorithm is applied which utilizes the fact that wind direction is so tightly constrained in tile inner core of severe marine storms that wind direction may be prescribed from conventional data. This potential is demonstrated through case studies with NSCAT data in a severe West Pacific Typhoon (Violet, 1996) and an intense North Atlantic hurricane (Lili, 1996). However, operational scatterometer winds from NSCAT and QuickScat in hurricanes and severe winter storms are biased low in winds above 25 m/s. We have developed an inverse model to specify the entire surface wind field about a tropical cyclone from operational QuickScat scatterometer measurements within 150 nm of a storm center with the restriction that only wind speeds up to 20 m/s are used until improved model function are introduced. The inverse model is used to specify the wind field over the entire life-cycle of Hurricane Floyd (1999) for use to drive an ocean wave model. The wind field compares very favorably with wind fields developed from the copious aircraft flight level winds obtained in this storm.
The MIGHTI Wind Retrieval Algorithm: Description and Verification
NASA Astrophysics Data System (ADS)
Harding, Brian J.; Makela, Jonathan J.; Englert, Christoph R.; Marr, Kenneth D.; Harlander, John M.; England, Scott L.; Immel, Thomas J.
2017-10-01
We present an algorithm to retrieve thermospheric wind profiles from measurements by the Michelson Interferometer for Global High-resolution Thermospheric Imaging (MIGHTI) instrument on NASA's Ionospheric Connection Explorer (ICON) mission. MIGHTI measures interferometric limb images of the green and red atomic oxygen emissions at 557.7 nm and 630.0 nm, spanning 90-300 km. The Doppler shift of these emissions represents a remote measurement of the wind at the tangent point of the line of sight. Here we describe the algorithm which uses these images to retrieve altitude profiles of the line-of-sight wind. By combining the measurements from two MIGHTI sensors with perpendicular lines of sight, both components of the vector horizontal wind are retrieved. A comprehensive truth model simulation that is based on TIME-GCM winds and various airglow models is used to determine the accuracy and precision of the MIGHTI data product. Accuracy is limited primarily by spherical asymmetry of the atmosphere over the spatial scale of the limb observation, a fundamental limitation of space-based wind measurements. For 80% of the retrieved wind samples, the accuracy is found to be better than 5.8 m/s (green) and 3.5 m/s (red). As expected, significant errors are found near the day/night boundary and occasionally near the equatorial ionization anomaly, due to significant variations of wind and emission rate along the line of sight. The precision calculation includes pointing uncertainty and shot, read, and dark noise. For average solar minimum conditions, the expected precision meets requirements, ranging from 1.2 to 4.7 m/s.
NASA Astrophysics Data System (ADS)
McKague, D. S.; Ruf, C. S.; Balasubramaniam, R.; Clarizia, M. P.
2017-12-01
The Cyclone Global Navigation Satellite System (CYGNSS) mission, launched in December of 2016, provides all-weather observations of sea surface winds. Using GPS-based bistatic reflectometry, the CYGNSS satellites can estimate sea surface winds even through a hurricane eye wall. This, combined with the high temporal resolution of the CYGNSS constellation (median revisit time of 2.8 hours), yields unprecedented ability to estimate hurricane strength winds. While there are a number of other sources of sea surface wind estimates, such as buoys, dropsondes, passive and active microwave from aircraft and satellite, and models, the combination of all-weather, high accuracy, short revisit time, high spatial coverage, and continuous operation of the CYGNSS mission enables significant advances in the understanding, monitoring, and prediction of cyclones. Validating CYGNSS wind retrievals over the bulk of the global wind speed distribution, which peaks at around 7 meters per second, is relatively straight-forward, requiring spatial-temporal matching of observations with independent sources (such as those mentioned above). Validating CYGNSS wind retrievals for "high" winds (> 20 meters per second), though, is problematic. Such winds occur only in intense storms. While infrequent, making validation opportunities also infrequent and problematic due to their intense nature, such storms are important to study because of the high potential for damage and loss of life. This presentation will describe the efforts of the CYGNSS Calibration/Validation team to gather measurements of high sea surface winds for development and validation of the CYGNSS geophysical model function (GMF), which forms the basis of retrieving winds from CYGNSS observations. The bulk of these observations come from buoy measurements as well as aircraft ("hurricane hunter") measurements from passive microwave and dropsondes. These data are matched in space and time to CYGNSS observations for training of the CYGNSS GMF and an independent set is used for validation of the resulting high wind speed retrievals. In addition to describing the general validation process, results from matchups over the 2017 hurricane season will be presented.
Retrieving current and wind vectors from ATI SAR data: airborne evidence and inversion strategy
NASA Astrophysics Data System (ADS)
Martin, Adrien; Gommenginger, Christine; Chapron, Bertrand; Marquez, José; Doody, Sam
2017-04-01
Conventional and along-track interferometric (ATI) Synthetic Aperture Radar (SAR) sense the motion of the ocean surface by measuring the Doppler shift of reflected signals. Together with the water displacement associated with ocean currents, the SAR measurements are also affected by a Wind-wave induced Artefact Surface Velocity (WASV) caused by the velocity of Bragg scatterers and the orbital velocity of ocean surface gravity waves. The WASV has been modelled theoretically in past studies but has been estimated empirically only once using Envisat ASAR. Here we propose, firstly, to evaluate this WASV from airborne ATI SAR data, secondly, to validate the airborne retrieved surface current after correction of the WASV against HF radar measurements and thirdly to examine the best inversion strategy for a an Ocean Surface Current (OSC) satellite mission to retrieve accurately both the ocean surface current vector (OSCV) and the wind vector in the frame of an OSC satellite mission. The airborne ATI SAR data were acquired in the tidally dominated Irish Sea using a Wavemill-type dual-beam SAR interferometer. A comprehensive collection of airborne Wavemill data acquired in a star pattern over a well-instrumented site made it possible to estimate the magnitude and dependence on azimuth and incidence angle of the WASV. The airborne results compare favourably with those reported for Envisat ASAR, empirical model, which has been used to correct for it. Validation of the current retrieval capabilities of the proof-of-concept has been conducted against HF radar giving a precisions typically better than 0.1 m/s for surface current speed and 7° for direction. Comparisons with POLCOMS (1.8 km) indicate that the model reproduces well the overall temporal evolution but does not capture the high spatial variability of ocean surface currents at the maximum ebb flow. Airborne retrieved currents highlight a short-scale spatial variability up to 100m related to bathymetry channels, which are not observed (HF radar, 4km resolution) or simulated (POLCOMS, 1.8km). The inversion strategy points to the need for accurate measurement of both the backscatter amplitude and the Doppler information (either as a Doppler centroid frequency anomaly for SAR DCA, or as an interferometric phase for ATI) as well as the need for dual polarization capability (VV+HH) for non-ambiguous inversion. Preliminary inversion results show that the retrieval accuracy for OSC velocity better than 10 cm/s can be achieved but that the OSC accuracy is strongly sensitive to the wind direction relative to the antennas orientation. This concept is a unique opportunity to improve our understanding of the air-sea interaction, the ocean submesoscale dynamic and its impact on the oceanic vertical transport. This concept is particularly well fitted for these ocean surface current and wind vectors observations in coastal and polar regions.
Wind Shear Identification with the Retrieval Wind of Doppler Wearth Radar
NASA Astrophysics Data System (ADS)
Zhou, S.; Cui, Y.; Zheng, H.; Zhang, T.
2018-05-01
A new method, which based on the wind field retrieval algorithm of Volume Velocity Process (VVP), has been used to identified the intensity of wind shear occurred in a severe convection process in Guangzhou. The intensity of wind shear's strength shown that new cells would be more likely to generate in areas where the magnitude generally larger than 3.0 m/(s*km). Moreover, in the areas of potential areas of rainfall, the wind shear's strength would larger than 4.5 m/(s*km). This wind shear identify method is very helpful to forecasting severe convections' moving and developments.
Investigation of Surface Waves in Deep and Shallow Water using Coherent Radars at Grazing Incidence
NASA Astrophysics Data System (ADS)
Buckley, M.; Horstmann, J.; Carrasco, R.; Seemann, J.; Stresser, M.
2016-02-01
Coherent microwave radars operating at X-band near grazing incidence are utilized to measure the backscatter intensity and Doppler velocity from the small-scale surface roughness of the ocean. The radar backscatter is dependent on the wind and strongly modulated by the surface waves and therefore enables to retrieve the surface wind as well as surface waves. The radar measured Doppler velocities are also modulated by contributions from the wind, current and waves and allow getting additional information on these parameters. In addition coherent marine radars allow to observe breaking waves, which lead to a increase in radar backscatter as well as a strong change of the Doppler speed.Within this presentation we will introduce and validate new methods to measure spectral wave properties such as wave directions, periods and significant wave height from coherent marine radars. The methods have been applied in deep and shallow water and validated to measurements of directional wave riders as well as an Acoustic Wave and Current Profiler. These comparisons show an overall excellent performance of coherent radars for the retrieval of spectral wave properties (e.g. Hs rms of 0.2 m). Furthermore, new methodologies will be presented that enable to observe and quantify wave breaking in deep water as well as in the littoral zone. The above mentioned methods have been applied to investigate the influence of Offshore Wind Farms (OWF) on the wave field with respect to the spectral properties as well as the amount of wave breaking. We will present the results obtained during a cruise in May 2015 within and around the OWF Dantysk in the German Bight of the North Sea, which consist of eighty 3.5 MW wind turbines. In addition we will present our initial results on the investigation of wave dissipation in the littoral zone at the coast of the island Sylt using marine radars, pressure gauges as well as directional wave riders.
Banakh, V A; Marakasov, D A
2007-08-01
Reconstruction of a wind profile based on the statistics of plane-wave intensity fluctuations in a turbulent atmosphere is considered. The algorithm for wind profile retrieval from the spatiotemporal spectrum of plane-wave weak intensity fluctuations is described, and the results of end-to-end computer experiments on wind profiling based on the developed algorithm are presented. It is shown that the reconstructing algorithm allows retrieval of a wind profile from turbulent plane-wave intensity fluctuations with acceptable accuracy.
NASA Technical Reports Server (NTRS)
Munchak, S. Joseph; Meneghini, Robert; Grecu, Mircea; Olson, William S.
2016-01-01
The Global Precipitation Measurement satellite's Microwave Imager (GMI) and Dual-frequency Precipitation Radar (DPR) are designed to provide the most accurate instantaneous precipitation estimates currently available from space. The GPM Combined Algorithm (CORRA) plays a key role in this process by retrieving precipitation profiles that are consistent with GMI and DPR measurements; therefore, it is desirable that the forward models in CORRA use the same geophysical input parameters. This study explores the feasibility of using internally consistent emissivity and surface backscatter cross-sectional (sigma(sub 0)) models for water surfaces in CORRA. An empirical model for DPR Ku and Ka sigma(sub 0) as a function of 10m wind speed and incidence angle is derived from GMI-only wind retrievals under clear-sky conditions. This allows for the sigma(sub 0) measurements, which are also influenced by path-integrated attenuation (PIA) from precipitation, to be used as input to CORRA and for wind speed to be retrieved as output. Comparisons to buoy data give a wind rmse of 3.7 m/s for Ku+GMI and 3.2 m/s for Ku+Ka+GMI retrievals under precipitation (compared to 1.3 m/s for clear-sky GMI-only), and there is a reduction in bias from GANAL background data (-10%) to the Ku+GMI (-3%) and Ku+Ka+GMI (-5%) retrievals. Ku+GMI retrievals of precipitation increase slightly in light (less than 1 mm/h) and decrease in moderate to heavy precipitation (greater than 1 mm/h). The Ku+Ka+GMI retrievals, being additionally constrained by the Ka reflectivity, increase only slightly in moderate and heavy precipitation at low wind speeds (less than 5 m/s) relative to retrievals using the surface reference estimate of PIA as input.
Evaluation and Windspeed Dependence of MODIS Aerosol Retrievals Over Open Ocean
NASA Technical Reports Server (NTRS)
Kleidman, Richard G.; Smirnov, Alexander; Levy, Robert C.; Mattoo, Shana; Tanre, Didier
2011-01-01
The Maritime Aerosol Network (MAN) data set provides high quality ground-truth to validate the MODIS aerosol product over open ocean. Prior validation of the ocean aerosol product has been limited to coastal and island sites. Comparing MODIS Collection 5 ocean aerosol retrieval products with collocated MAN measurements from ships shows that MODIS is meeting the pre-launch uncertainty estimates for aerosol optical depth (AOD) with 64% and 67% of retrievals at 550 nm, and 74% and 78% of retrievals at 870 nm, falling within expected uncertainty for Terra and Aqua, respectively. Angstrom Exponent comparisons show a high correlation between MODIS retrievals and shipboard measurements (R= 0.85 Terra, 0.83 Aqua), although the MODIS aerosol algorithm tends to underestimate particle size for large particles and overestimate size for small particles, as seen in earlier Collections. Prior analysis noted an offset between Terra and Aqua ocean AOD, without concluding which sensor was more accurate. The simple linear regression reported here, is consistent with other anecdotal evidence that Aqua agreement with AERONET is marginally better. However we cannot claim based on the current study that the better Aqua comparison is statistically significant. Systematic increase of error as a function of wind speed is noted in both Terra and Aqua retrievals. This wind speed dependency enters the retrieval when winds deviate from the 6 m/s value assumed in the rough ocean surface and white cap parameterizations. Wind speed dependency in the results can be mitigated by using auxiliary NCEP wind speed information in the retrieval process.
Spaced-antenna wind estimation using an X-band active phased-array weather radar
NASA Astrophysics Data System (ADS)
Venkatesh, Vijay
Over the past few decades, several single radar methods have been developed to probe the kinematic structure of storms. All these methods trade angular-resolution to retrieve the wind-field. To date, the spaced-antenna method has been employed for profiling the ionosphere and the precipitation free lower atmosphere. This work focuses on applying the spaced-antenna method on an X-band active phased-array radar for high resolution horizontal wind-field retrieval from precipitation echoes. The ability to segment the array face into multiple displaced apertures allows for flexible spaced-antenna implementations. The methodology employed herein comprises of Monte-Carlo simulations to optimize the spaced-antenna system design and analysis of real data collected with the designed phased-array system. The contribution that underpins this dissertation is the demonstration of qualitative agreement between spaced-antenna and Doppler beam swinging retrievals based on real data. First, simulations of backscattered electric fields at the antenna array elements are validated using theoretical expressions. Based on the simulations, the degrees of freedom in the spaced-antenna system design are optimized for retrieval of mean baseline wind. We show that the designed X-band spaced-antenna system has lower retrieval uncertainty than the existing S-band spaced-antenna implementation on the NWRT. This is because of the flexibility to synthesize small overlapping apertures and the ability to obtain statistically independent samples at a faster rate at X-band. We then demonstrate a technique to make relative phase-center displacement measurements based on simulations and real data from the phased-array spaced-antenna system. This simple method uses statistics of precipitation echoes and apriori beamwidth measurements to make field repeatable phase-center displacement measurements. Finally, we test the hypothesis that wind-field curvature effects are common to both the spaced-antenna and Doppler beam swinging methods. Based on a close-range winter storm data set, we find that the spaced-antenna and fine-resolution Doppler beam swinging retrievals are in qualitative agreement. The correlation between the spaced-antenna and fine-resolution Doppler beam swinging retrievals was 0.57. The lowered correlation coefficient was, in part, due to the high standard deviation of the DBS retrievals. At high wind-speeds, the spaced-antenna retrievals significantly departed from variational retrievals of mean baseline wind.
NASA Technical Reports Server (NTRS)
Vancleef, Garrett Warren; Shaw, John H.
1989-01-01
Atmospheric winds at heights between 25 and 120 km have been retrieved with precisions of 5/ms from the Doppler shifts of atmospheric absorption lines measured from a satellite-borne instrument. Lines of the upsilon 3 CO2 and upsilon 2 H2O rotation-vibration bands caused by gases in the instrument allowed the instrumental frequency scale to be absolutely calibrated so that accurate relative speeds could be obtained. By comparing the positions of both sets of instrumental lines the calibration of the frequency scale was determined to be stable to a precision of less than 2 x 10(-5) cm during the course of each occultation. It was found that the instrumental resolution of 0.015 cm after apodization, the signal to noise ratio of about 100 and stable calibration allowed relative speeds to be determined to a precision of 5 ms or better by using small numbers of absorption lines between 1600 and 3200 cm. Absolute absorption line positions were simultaneously recovered to precisions of 5 x 10(-5) cm or better. The wind speed profiles determined from four sunset occultations and one sunrise occultation show remarkable similarities in the magnitudes and directions of the zonal wind velocities as functions of height. These wind profiles appear to be manifestations of atmospheric tides.
Recent Progresses of Microwave Marine Remote Sensing
NASA Astrophysics Data System (ADS)
Yang, Jingsong; Ren, Lin; Zheng, Gang; Wang, He; He, Shuangyan; Wang, Juan; Li, Xiaohui
2016-08-01
It is presented in this paper the recent progresses of Dragon 3 Program (ID. 10412) in the field of microwave marine remote sensing including (1) ocean surface wind fields from full polarization synthetic aperture radars (SAR), (2) joint retrieval of directional ocean wave spectra from SAR and wave spectrometer, (3) error analysis on ENVISAT ASAR wave mode significant wave height (SWH) retrievals using triple collocation model, (4) typhoon observation from SAR and optical sensors, (5) ocean internal wave observation from SAR and optical sensors, (6) ocean eddy observation from SAR and optical sensors, (7) retrieval models of water vapor and wet tropospheric path delay for the HY-2A calibration microwave radiometer, (8) calibration of SWH from HY-2A satellite altimeter.
Evaluation of SEASAT-A SMMR derived wind speed measurements
NASA Technical Reports Server (NTRS)
1982-01-01
Wind speeds derived from versions of the least-squares and regression algorithms developed after the JASIN Workshop were evaluated. The accuracy of scanning multichannel microwave radiometer (SMMR) wind retrievals was determined in terms of the intrinsic accuracy of a baseline surface truth data set in favorable conditions. Effects which degrade the wind retrievals or introduce biases were identified and assessed. The performance of the SMMR in storms was ascertained with particular emphasis on the effects of rain.
NASA Technical Reports Server (NTRS)
Guimond, Stephen Richard; Tian, Lin; Heymsfield, Gerald M.; Frasier, Stephen J.
2013-01-01
Algorithms for the retrieval of atmospheric winds in precipitating systems from downward-pointing, conically-scanning airborne Doppler radars are presented. The focus in the paper is on two radars: the Imaging Wind and Rain Airborne Profiler(IWRAP) and the High-altitude IWRAP (HIWRAP). The IWRAP is a dual-frequency (Cand Ku band), multi-beam (incidence angles of 30 50) system that flies on the NOAAWP-3D aircraft at altitudes of 2-4 km. The HIWRAP is a dual-frequency (Ku and Kaband), dual-beam (incidence angles of 30 and 40) system that flies on the NASA Global Hawk aircraft at altitudes of 18-20 km. Retrievals of the three Cartesian wind components over the entire radar sampling volume are described, which can be determined using either a traditional least squares or variational solution procedure. The random errors in the retrievals are evaluated using both an error propagation analysis and a numerical simulation of a hurricane. These analyses show that the vertical and along-track wind errors have strong across-track dependence with values of 0.25 m s-1 at nadir to 2.0 m s-1 and 1.0 m s-1 at the swath edges, respectively. The across-track wind errors also have across-track structure and are on average, 3.0 3.5 m s-1 or 10 of the hurricane wind speed. For typical rotated figure four flight patterns through hurricanes, the zonal and meridional wind speed errors are 2 3 m s-1.Examples of measured data retrievals from IWRAP during an eyewall replacement cycle in Hurricane Isabel (2003) and from HIWRAP during the development of Tropical Storm Matthew (2010) are shown.
NASA Technical Reports Server (NTRS)
Sahawneh, Saleem; Farrar, Spencer; Johnson, James; Jones, W. Linwood; Roberts, Jason; Biswas, Sayak; Cecil, Daniel
2014-01-01
Microwave remote sensing observations of hurricanes, from NOAA and USAF hurricane surveillance aircraft, provide vital data for hurricane research and operations, for forecasting the intensity and track of tropical storms. The current operational standard for hurricane wind speed and rain rate measurements is the Stepped Frequency Microwave Radiometer (SFMR), which is a nadir viewing passive microwave airborne remote sensor. The Hurricane Imaging Radiometer, HIRAD, will extend the nadir viewing SFMR capability to provide wide swath images of wind speed and rain rate, while flying on a high altitude aircraft. HIRAD was first flown in the Genesis and Rapid Intensification Processes, GRIP, NASA hurricane field experiment in 2010. This paper reports on geophysical retrieval results and provides hurricane images from GRIP flights. An overview of the HIRAD instrument and the radiative transfer theory based, wind speed/rain rate retrieval algorithm is included. Results are presented for hurricane wind speed and rain rate for Earl and Karl, with comparison to collocated SFMR retrievals and WP3D Fuselage Radar images for validation purposes.
The Effect of Sea-Surface Sun Glitter on Microwave Radiometer Measurements
NASA Technical Reports Server (NTRS)
Wentz, F. J.
1981-01-01
A relatively simple model for the microwave brightness temperature of sea surface Sun glitter is presented. The model is an accurate closeform approximation for the fourfold Sun glitter integral. The model computations indicate that Sun glitter contamination of on orbit radiometer measurements is appreciable over a large swath area. For winds near 20 m/s, Sun glitter affects the retrieval of environmental parameters for Sun angles as large as 20 to 25 deg. The model predicted biases in retrieved wind speed and sea surface temperature due to neglecting Sun glitter are consistent with those experimentally observed in SEASAT SMMR retrievals. A least squares retrieval algorithm that uses a combined sea and Sun model function shows the potential of retrieving accurate environmental parameters in the presence of Sun glitter so long as the Sun angles and wind speed are above 5 deg and 2 m/s, respectively.
NASA Technical Reports Server (NTRS)
Yorks, John E.; Mcgill, Matthew J.; Scott, V. Stanley; Kupchock, Andrew; Wake, Shane; Hlavka, Dennis; Hart, William; Selmer, Patrick
2014-01-01
The Airborne Cloud-Aerosol Transport System (ACATS) is a multi-channel Doppler lidar system recently developed at NASA Goddard Space Flight Center (GSFC). A unique aspect of the multi-channel Doppler lidar concept such as ACATS is that it is also, by its very nature, a high spectral resolution lidar (HSRL). Both the particulate and molecular scattered signal can be directly and unambiguously measured, allowing for direct retrievals of particulate extinction. ACATS is therefore capable of simultaneously resolving the backscatterextinction properties and motion of a particle from a high altitude aircraft. ACATS has flown on the NASA ER-2 during test flights over California in June 2012 and science flights during the Wallops Airborne Vegetation Experiment (WAVE) in September 2012. This paper provides an overview of the ACATS method and instrument design, describes the ACATS retrieval algorithms for cloud and aerosol properties, and demonstrates the data products that will be derived from the ACATS data using initial results from the WAVE project. The HSRL retrieval algorithms developed for ACATS have direct application to future spaceborne missions such as the Cloud-Aerosol Transport System (CATS) to be installed on the International Space Station (ISS). Furthermore, the direct extinction and particle wind velocity retrieved from the ACATS data can be used for science applications such 27 as dust or smoke transport and convective outflow in anvil cirrus clouds.
A level 2 wind speed retrieval algorithm for the CYGNSS mission
NASA Astrophysics Data System (ADS)
Clarizia, Maria Paola; Ruf, Christopher; O'Brien, Andrew; Gleason, Scott
2014-05-01
The NASA EV-2 Cyclone Global Navigation Satellite System (CYGNSS) is a spaceborne mission focused on tropical cyclone (TC) inner core process studies. CYGNSS consists of a constellation of 8 microsatellites, which will measure ocean surface wind speed in all precipitating conditions, including those experienced in the TC eyewall, and with sufficient frequency to resolve genesis and rapid intensification. It does so through the use of an innovative remote sensing technique, known as Global Navigation Satellite System-Reflectometry, or GNSS-R. GNSS-R uses signals of opportunity from navigation constellations (e.g. GPS, GLONASS, Galileo), scattered by the surface of the ocean, to retrieve the surface wind speed. The dense space-time sampling capabilities, the ability of L-band signals to penetrate well through rain, and the possibility of simple, low-cost/low-power GNSS receivers, make GNSS-R ideal for the CYGNSS goals. Here we present an overview of a Level 2 (L2) wind speed retrieval algorithm, which would be particularly suitable for CYGNSS, and could be used to estimate winds from GNSS-R in general. The approach makes use of two different observables computed from 1-second Level 2a (L2a) delay-Doppler Maps (DDMs) of radar cross section. The first observable is called Delay-Doppler Map Average (DDMA), and it's the averaged radar cross section over a delay-Doppler window around the DDM peak (i.e. the specular reflection point coordinate in delay and Doppler). The second is called the Leading Edge Slope (LES), and it's the leading edge of the Integrated Delay Waveform (IDW), obtained by integrating the DDM along the Doppler dimension. The observables are calculated over a limited range of delays and Doppler frequencies, to comply with baseline spatial resolution requirements for the retrieved winds, which in the case of CYGNSS is 25 km x 25 km. If the observable from the 1-second DDM corresponds to a resolution higher than the specified one, time-averaging between consecutive observables is also applied, to reduce further the noise in the observables. The observables are correlated with wind speed, allowing one to develop an empirical Geophysical Model Function (GMF) that relates the observable value to the ground truth matchup winds, using a training dataset. The empirical GMF can then be used to estimate the winds from a generic dataset of observables, independent from the training one. In addition to that, the degree of decorrelation existing between winds retrieved from DDMA and from LES leads to the development of a Minimum Variance (MV) estimator, which provides improved wind estimates compared to those from DDMA or LES alone. The retrieval algorithm is applied in this study to GNSS-R synthetic data simulated using an End-to-End Simulator (E2ES) developed for CYGNSS, and using the true wind speeds that constitute the input to the simulations, as the ground-truth matchups. The performances of the retrieval algorithm will be presented in the form of Root Mean Square (RMS) error between the true and retrieved winds, highlighting that, for those specular points acquired with high enough gain of the receiver antenna, the RMS error meets the CYGNSS requirements on the wind speed uncertainty, which must be the greatest between 2 m/s or 10% of the measured wind.
First Retrieval of Thermospheric Carbon Monoxide From Mars Dayglow Observations
NASA Astrophysics Data System (ADS)
Evans, J. Scott; Stevens, Michael H.; Jain, Sonal; Deighan, Justin; Lumpe, Jerry; Schneider, Nicholas M.; Stewart, A. Ian; Crismani, Matteo; Stiepen, Arnaud; Chaffin, Michael S.; Mayyasi-Matta, Majd A.; McClintock, William E.; Holsclaw, Greg; Lefevre, Franck; Lo, Daniel; Clarke, John T.; Montmessin, Franck; Bougher, Stephen W.; Bell, Jared M.; Eparvier, Frank; Thiemann, Ed; Mahaffy, Paul R.; Benna, Mehdi; Elrod, Meredith K.; Jakosky, Bruce
2017-10-01
As a minor species in the Martian thermosphere, Carbon Monoxide (CO) is a tracer that can be used to constrain changing circulation patterns between the lower thermosphere and upper mesosphere of Mars. By linking CO density distributions to dynamical wind patterns, the structure and variability of the atmosphere will be better understood. Direct measurements of CO can therefore provide insight into the magnitude and pattern of winds and provide a metric for studying the response of the atmosphere to solar forcing. In addition, CO measurements can help solve outstanding photochemical modeling problems in explaining the abundance of CO at Mars. CO is directly observable by electron impact excitation and solar resonance fluorescence emissions in the far-ultraviolet (FUV). The retrieval of CO from solar fluorescence was first proposed over 40 years ago, but has been elusive at Mars due to significant spectral blending. However, by simulating the spectral shape of each contributing emission feature, electron impact excitation and solar fluorescence brightnesses can be extracted from the composite spectrum using a multiple linear regression approach. We use CO Fourth Positive Group (4PG) molecular band emission observed on the limb (130 - 200 km) by the Imaging Ultraviolet Spectrograph (IUVS) on NASA’s Mars Atmosphere and Volatile Evolution (MAVEN) spacecraft over both northern and southern hemispheres from October 2014 to December 2016. We present the first direct retrieval of CO densities by FUV remote sensing in the upper atmosphere of Mars. Atmospheric composition is inferred using the terrestrial Atmospheric Ultraviolet Radiance Integrated Code adapted to the Martian atmosphere. We investigate the sensitivity of CO density retrievals to variability in solar irradiance, solar longitude, and local time. We compare our results to predictions from the Mars Global Ionosphere-Thermosphere Model as well as in situ measurements by the Neutral Gas and Ion Mass Spectrometer on MAVEN and quantify any differences.
NASA Technical Reports Server (NTRS)
Tangborn, Andrew; Menard, Richard; Ortland, David; Einaudi, Franco (Technical Monitor)
2001-01-01
A new approach to the analysis of systematic and random observation errors is presented in which the error statistics are obtained using forecast data rather than observations from a different instrument type. The analysis is carried out at an intermediate retrieval level, instead of the more typical state variable space. This method is carried out on measurements made by the High Resolution Doppler Imager (HRDI) on board the Upper Atmosphere Research Satellite (UARS). HRDI, a limb sounder, is the only satellite instrument measuring winds in the stratosphere, and the only instrument of any kind making global wind measurements in the upper atmosphere. HRDI measures doppler shifts in the two different O2 absorption bands (alpha and B) and the retrieved products are tangent point Line-of-Sight wind component (level 2 retrieval) and UV winds (level 3 retrieval). This analysis is carried out on a level 1.9 retrieval, in which the contributions from different points along the line-of-sight have not been removed. Biases are calculated from O-F (observed minus forecast) LOS wind components and are separated into a measurement parameter space consisting of 16 different values. The bias dependence on these parameters (plus an altitude dependence) is used to create a bias correction scheme carried out on the level 1.9 retrieval. The random error component is analyzed by separating the gamma and B band observations and locating observation pairs where both bands are very nearly looking at the same location at the same time. It is shown that the two observation streams are uncorrelated and that this allows the forecast error variance to be estimated. The bias correction is found to cut the effective observation error variance in half.
Observing Equatorial Thermospheric Winds and Temperatures with a New Mapping Technique
NASA Astrophysics Data System (ADS)
Faivre, M. W.; Meriwether, J. W.; Sherwood, P.; Veliz, O.
2005-12-01
Application of the Fabry-Perot interferometer (FPI) at Arequipa, Peru (16.4S, 71.4 W) to measure the Doppler shifts and Doppler broadenings in the equatorial O(1D) 630-nm nightglow has resulted in numerous detections of a large-scale thermospheric phenomenon called the Midnight Temperature Maximum (MTM). A recent detector upgrade with a CCD camera has improved the accuracy of these measurements by a factor of 5. Temperature increases of 50 to 150K have been measured during nights in April and July, 2005, with error bars less than 10K after averaging in all directions. Moreover, the meridional wind measurements show evidence for a flow reversal from equatorward to poleward near local midnight for such events. A new observing strategy based upon the pioneering work of Burnside et al.[1981] maps the equatorial wind and temperature fields by observing in eight equally-spaced azimuth directions, each with a zenith angle of 60 degrees. Analysis of the data obtained with this technique gives the mean wind velocities in the meridional and zonal directions as well as the horizontal gradients of the wind field for these directions. Significant horizontal wind gradients are found for the meridional direction but not for the zonal direction. The zonal wind blows eastward throughout the night with a maximum speed of ~150 m/s near the middle of the night and then decreases towards zero just before dawn. In general, the fastest poleward meridional wind is observed near mid-evening. By the end of the night, the meridional flow tends to be more equatorward at speeds of about 50 m/s. Using the assumption that local time and longitude are equivalent over a period of 30 minutes, a map of the horizontal wind field vector field is constructed over a range of 12 degrees latitude centered at 16.5 S. Comparison between MTM nights and quiet nights (no MTM) revealed significant differences in the horizontal wind fields. Using the method of Fourier decomposition of the line-of-sight winds, the vertical wind can be retrieved from the horizontal flow divergence with a much-improved sensitivity than that represented by direct zenith measurements. The value of the vertical wind speed ranges from -5 to 5 m/s. Some nights seem to present gravity wave activity with periodic fluctuations of 1-2 hours visible in the vertical winds as well as in the temperature series.
An Improved Wind Speed Retrieval Algorithm For The CYGNSS Mission
NASA Astrophysics Data System (ADS)
Ruf, C. S.; Clarizia, M. P.
2015-12-01
The NASA spaceborne Cyclone Global Navigation Satellite System (CYGNSS) mission is a constellation of 8 microsatellites focused on tropical cyclone (TC) inner core process studies. CYGNSS will be launched in October 2016, and will use GPS-Reflectometry (GPS-R) to measure ocean surface wind speed in all precipitating conditions, and with sufficient frequency to resolve genesis and rapid intensification. Here we present a modified and improved version of the current baseline Level 2 (L2) wind speed retrieval algorithm designed for CYGNSS. An overview of the current approach is first presented, which makes use of two different observables computed from 1-second Level 1b (L1b) delay-Doppler Maps (DDMs) of radar cross section. The first observable, the Delay-Doppler Map Average (DDMA), is the averaged radar cross section over a delay-Doppler window around the DDM peak (i.e. the specular reflection point coordinate in delay and Doppler). The second, the Leading Edge Slope (LES), is the leading edge of the Integrated Delay Waveform (IDW), obtained by integrating the DDM along the Doppler dimension. The observables are calculated over a limited range of time delays and Doppler frequencies to comply with baseline spatial resolution requirements for the retrieved winds, which in the case of CYGNSS is 25 km. In the current approach, the relationship between the observable value and the surface winds is described by an empirical Geophysical Model Function (GMF) that is characterized by a very high slope in the high wind regime, for both DDMA and LES observables, causing large errors in the retrieval at high winds. A simple mathematical modification of these observables is proposed, which linearizes the relationship between ocean surface roughness and the observables. This significantly reduces the non-linearity present in the GMF that relate the observables to the wind speed, and reduces the root-mean square error between true and retrieved winds, particularly in the high wind regime. The modified retrieval algorithm is tested using GPS-R synthetic data simulated using an End-to-End Simulator (E2ES) developed for CYGNSS, and it is then applied to GPS-R data from the TechDemoSat-1 (TDS-1) GPS-R experiment. An analysis of the algorithm performances for both synthetic and real data is illustrated.
NASA Technical Reports Server (NTRS)
Miller, Timothy L.; James, M. W.; Roberts, J. B.; Jones, W. L.; Biswas, S.; Ruf, C. S.; Uhlhorn, E. W.; Atlas, R.; Black, P.; Albers, C.
2012-01-01
HIRAD flew on high-altitude aircraft over Earl and Karl during NASA s GRIP (Genesis and Rapid Intensification Processes) campaign in August - September of 2010, and plans to fly over Atlantic tropical cyclones in September of 2012 as part of the Hurricane and Severe Storm Sentinel (HS3) mission. HIRAD is a new C-band radiometer using a synthetic thinned array radiometer (STAR) technology to obtain spatial resolution of approximately 2 km, out to roughly 30 km each side of nadir. By obtaining measurements of emissions at 4, 5, 6, and 6.6 GHz, observations of ocean surface wind speed and rain rate can be retrieved. The physical retrieval technique has been used for many years by precursor instruments, including the Stepped Frequency Microwave Radiometer (SFMR), which has been flying on the NOAA and USAF hurricane reconnaissance aircraft for several years to obtain observations within a single footprint at nadir angle. Results from the flights during the GRIP and HS3 campaigns will be shown, including images of brightness temperatures, wind speed, and rain rate. Comparisons will be made with observations from other instruments on the campaigns, for which HIRAD observations are either directly comparable or are complementary. Features such as storm eye and eye-wall, location of storm wind and rain maxima, and indications of dynamical features such as the merging of a weaker outer wind/rain maximum with the main vortex may be seen in the data. Potential impacts on operational ocean surface wind analyses and on numerical weather forecasts will also be discussed.
Linear retrieval and global measurements of wind speed from the Seasat SMMR
NASA Technical Reports Server (NTRS)
Pandey, P. C.
1983-01-01
Retrievals of wind speed (WS) from Seasat Scanning Multichannel Microwave Radiometer (SMMR) were performed using a two-step statistical technique. Nine subsets of two to five SMMR channels were examined for wind speed retrieval. These subsets were derived by using a leaps and bound procedure based on the coefficient of determination selection criteria to a statistical data base of brightness temperatures and geophysical parameters. Analysis of Monsoon Experiment and ocean station PAPA data showed a strong correlation between sea surface temperature and water vapor. This relation was used in generating the statistical data base. Global maps of WS were produced for one and three month periods.
Study of wind retrieval from space-borne infrared coherent lidar in cloudy atmosphere.
NASA Astrophysics Data System (ADS)
Baron, Philippe; Ishii, Shoken; Mizutani, Kohei; Okamoto, Kozo; Ochiai, Satoshi
2015-04-01
Future spaceborne tropospheric wind missions using infrared coherent lidar are currently being studied in Japan and in the United States [1,2]. The line-of-sight wind velocity is retrieved from the Doppler shift frequency of the signal returned by aerosol particles. However a large percentage (70-80%) of the measured single-shot intensity profiles are expected to be contaminated by clouds [3]. A large number of cloud contaminated profiles (>40%) will be characterized by a cloud-top signal intensity stronger than the aerosol signal by a factor of one order of magnitude, and by a strong attenuation of the signal backscattered from below the clouds. Profiles including more than one cloud layer are also expected. This work is a simulation study dealing with the impacts of clouds on wind retrieval. We focus on the three following points: 1) definition of an algorithm for optimizing the wind retrieval from the cloud-top signal, 2) assessment of the clouds impact on the measurement performance and, 3) definition of a method for averaging the measurements before the retrieval. The retrieval simulations are conducted considering the instrumental characteristics selected for the Japanese study: wavelength at 2 µm, PRF of 30 Hz, pulse power of 0.125 mJ and platform altitude between 200-400 km. Liquid and ice clouds are considered. The analysis uses data from atmospheric models and statistics of cloud effects derived from CALIPSO measurements such as in [3]. A special focus is put on the average method of the measurements before retrieval. Good retrievals in the mid-upper troposphere implie the average of measured single-range power spectra over large horizontal (100 km) and vertical (1 km) ranges. Large differences of signal intensities due to the presence of clouds and the clouds non-uniform distribution have to be taken into account when averaging the data to optimize the measurement performances. References: [1] S. Ishii, T. Iwasaki, M. Sato, R. Oki, K. Okamoto, T. Ishibashi, P. Baron, and T. Nishizawa: Future Doppler lidar wind measurement from space in Japan, Proc. of SPIE Vol. 8529, 2012 [2] D. Wu, J. Tang, Z. Liu, and Y. Hu: Simulation of coherent doppler wind lidar measurement from space based on CALIPSO lidar global aerosol observations. Journal of Quantitative Spectroscopy and Radiative Transfer, 122(0), 79-86, 2013 [3] G.D Emmitt: CFLOS and cloud statistics from satellite and their impact on future space-based Doppler Wind Lidar development. Symposium on Recent Developments in Atmospheric Applications of Radar and Lidar, 2008
NASA Astrophysics Data System (ADS)
Lin, Y. C.; Chu, Y. H.
2015-12-01
There are many physical theories responsible for explanation the generation mechanism of sporadic E (Es) plasma irregularities. In middle latitude, it's generally believed that sporadic E layers occur in vertical ion convergent areas driven by horizontal neutral wind shear. The sporadic E layers appear characteristic of abundant metallic ion species (i.e., Fe+, Mg+, Na+), that lifetime are longer than molecular ions by a factor of several orders, have been demonstrated by rocket-borne mass spectrometric measurements. On the basic of the GPS Radio Occultation (RO), using the scintillations of the GPS signal-to-noise ratio and intense fluctuation of excess phase, the global and seasonal sporadic E layers occurrence rates could be retrieved. In our previous study we found there is averaged 10 kilometers shift in height between the COSMIC-retrieved sporadic E layer occurrence rate and the sporadic E occurrence rate modeled from considering the convergence/divergence of Fe+ vertical flux. There are many reasons that maybe result in the altitude differences, e.g., tidal wind with phase shift, electric field driven force, iron species distributions. In this research, the quantitative analyses for electric field drives Es layers translations in vertical direction are presented. The tidal wind driven sporadic E layers have been simulating by modeling several nonmetallic ions (O+(4S), O+(2D), O+(2p), N+, N2+, O2+, NO+) and metallic ions (Fe+, FeO2+, FeN2+, FeO+) with wind shear transportation. The simulation result shows the Fe+ particles accumulate at zonal wind shear convergent regions and form the thin sporadic E layers. With the electric field taking into account, the whole shape of sporadic E layers vertical shift 2~5 km that depending on what magnitude and direction of electric field is added.
NASA Technical Reports Server (NTRS)
Bauman, William H., III; Flinn, Clay
2013-01-01
On the day of launch, the 45th Weather Squadron (45 WS) Launch Weather Officers (LWOs) monitor the upper-level winds for their launch customers. During launch operations, the payload/launch team sometimes asks the LWOs if they expect the upper-level winds to change during the countdown. The LWOs used numerical weather prediction model point forecasts to provide the information, but did not have the capability to quickly retrieve or adequately display the upper-level observations and compare them directly in the same display to the model point forecasts to help them determine which model performed the best. The LWOs requested the Applied Meteorology Unit (AMU) develop a graphical user interface (GUI) that will plot upper-level wind speed and direction observations from the Cape Canaveral Air Force Station (CCAFS) Automated Meteorological Profiling System (AMPS) rawinsondes with point forecast wind profiles from the National Centers for Environmental Prediction (NCEP) North American Mesoscale (NAM), Rapid Refresh (RAP) and Global Forecast System (GFS) models to assess the performance of these models. The AMU suggested adding observations from the NASA 50 MHz wind profiler and one of the US Air Force 915 MHz wind profilers, both located near the Kennedy Space Center (KSC) Shuttle Landing Facility, to supplement the AMPS observations with more frequent upper-level profiles. Figure 1 shows a map of KSC/CCAFS with the locations of the observation sites and the model point forecasts.
Investigation of statistical parameters of the evolving wind wave field using a laser slope gauge
NASA Astrophysics Data System (ADS)
Zavadsky, A.; Shemer, L.
2017-05-01
Statistical parameters of water waves generated by wind in a small scale facility are studied using extensively a Laser Slope Gauge (LSG), in addition to conventional measuring instruments such as a wave gauge and Pitot tube. The LSG enables direct measurements of two components of the instantaneous surface slope. Long sampling duration in a relatively small experimental facility allowed accumulating records of the measured parameters containing a large number of waves. Data were accumulated for a range of wind velocities at multiple fetches. Frequency spectra of the surface elevation and of the instantaneous local slope variation measured under identical conditions are compared. Higher moments of the surface slope are presented. Information on the waves' asymmetry is retrieved from the computed skewness of the surface slope components.
NASA Technical Reports Server (NTRS)
Lang, Timothy J.; Biswas, Sayak
2017-01-01
AMPR is an airborne instrument that flew aboard the NASA ER-2 during the OLYMPEX/RADEX field campaign in late 2015. This poster's goal is to explore how well the instrument can retrieve near-surface wind speed over the ocean.
High-resolution humidity profiles retrieved from wind profiler radar measurements
NASA Astrophysics Data System (ADS)
Saïd, Frédérique; Campistron, Bernard; Di Girolamo, Paolo
2018-03-01
The retrieval of humidity profiles from wind profiler radars has already been documented in the past 30 years and is known to be neither as straightforward and nor as robust as the retrieval of the wind velocity. The main constraint to retrieve the humidity profile is the necessity to combine measurements from the wind profiler and additional measurements (such as observations from radiosoundings at a coarser time resolution). Furthermore, the method relies on some assumptions and simplifications that restrict the scope of its application. The first objective of this paper is to identify the obstacles and limitations and solve them, or at least define the field of applicability. To improve the method, we propose using the radar capacity to detect transition levels, such as the top level of the boundary layer, marked by a maximum in the radar reflectivity. This forces the humidity profile from the free troposphere and from the boundary layer to coincide at this level, after an optimization of the calibration coefficients, and reduces the error. The resulting mean bias affecting the specific humidity profile never exceeds 0.25 g kg-1. The second objective is to explore the capability of the algorithm to retrieve the humidity vertical profiles for an operational purpose by comparing the results with observations from a Raman lidar.
Wind profiling based on the optical beam intensity statistics in a turbulent atmosphere.
Banakh, Victor A; Marakasov, Dimitrii A
2007-10-01
Reconstruction of the wind profile from the statistics of intensity fluctuations of an optical beam propagating in a turbulent atmosphere is considered. The equations for the spatiotemporal correlation function and the spectrum of weak intensity fluctuations of a Gaussian beam are obtained. The algorithms of wind profile retrieval from the spatiotemporal intensity spectrum are described and the results of end-to-end computer experiments on wind profiling based on the developed algorithms are presented. It is shown that the developed algorithms allow retrieval of the wind profile from the turbulent optical beam intensity fluctuations with acceptable accuracy in many practically feasible laser measurements set up in the atmosphere.
NASA Astrophysics Data System (ADS)
Shin, D.; Chiu, L. S.; Clemente-Colon, P.
2006-05-01
The atmospheric effects on the retrieval of sea ice concentration from passive microwave sensors are examined using simulated data typical for the Arctic summer. The simulation includes atmospheric contributions of cloud liquid water, water vapor and surface wind on the microwave signatures. A plane parallel radiative transfer model is used to compute brightness temperatures at SSM/I frequencies over surfaces that contain open water, first-year (FY) ice and multi-year (MY) ice and their combinations. Synthetic retrievals in this study use the NASA Team (NT) algorithm for the estimation of sea ice concentrations. This study shows that if the satellite sensor's field of view is filled with only FY ice the retrieval is not much affected by the atmospheric conditions due to the high contrast between emission signals from FY ice surface and the signals from the atmosphere. Pure MY ice concentration is generally underestimated due to the low MY ice surface emissivity that results in the enhancement of emission signals from the atmospheric parameters. Simulation results in marginal ice areas also show that the atmospheric effects from cloud liquid water, water vapor and surface wind tend to degrade the accuracy at low sea ice concentration. FY ice concentration is overestimated and MY ice concentration is underestimated in the presence of atmospheric water and surface wind at low ice concentration. This compensating effect reduces the retrieval uncertainties of total (FY and MY) ice concentration. Over marginal ice zones, our results suggest that strong surface wind is more important than atmospheric water in contributing to the retrieval errors of total ice concentrations in the normal ranges of these variables.
NASA Astrophysics Data System (ADS)
Parracino, Stefano; Santoro, Simone; Maio, Giovanni; Nuvoli, Marcello; Aiuppa, Alessandro; Fiorani, Luca
2017-04-01
Carbon dioxide (CO2) is considered a precursor gas of volcanic eruptions by volcanologists. Monitoring the anomalous release of this parameter, we can retrieve useful information for the mitigation of volcanic hazards, such as for air traffic security. From a dataset collected during the Stromboli volcano field campaign, an assessment of the wind speed, in both horizontal and vertical paths, performing a fast tracking of this parameter was retrieved. This was determined with a newly designed shot-per-shot differential absorption LiDAR system operated in the near-infrared spectral region due to the simultaneous reconstruction of CO2 concentrations and wind speeds, using the same sample of LiDAR returns. A correlation method was used for the wind speed retrieval in which the transport of the spatial inhomogeneities of the aerosol backscattering coefficient, along the optical path of the system, was analyzed.
Real-data tests of a single-Doppler radar assimilation system
NASA Astrophysics Data System (ADS)
Nehrkorn, Thomas; Hegarty, James; Hamill, Thomas M.
1994-06-01
Real data tests of a single-Doppler radar data assimilation and forecast system have been conducted for a Florida sea breeze case. The system consists of a hydrostatic mesoscale model used for prediction of the preconvective boundary layer, an objective analysis that combines model first guess fields with radar derived horizontal winds, a thermodynamic retrieval scheme that obtains temperature information from the three-dimensional wind field and its temporal evolution, and a Newtonian nudging scheme for forcing the model forecast to closer agreement with the analysis. As was found in earlier experiments with simulated data, assimilation using Newtonian nudging benefits from temperature data in addition to wind data. The thermodynamic retrieval technique was successful in retrieving a horizontal temperature gradient from the radar-derived wind fields that, when assimilated into the model, led to a significantly improved forecast of the seabreeze strength and position.
Aeolus End-To-End Simulator and Wind Retrieval Algorithms up to Level 1B
NASA Astrophysics Data System (ADS)
Reitebuch, Oliver; Marksteiner, Uwe; Rompel, Marc; Meringer, Markus; Schmidt, Karsten; Huber, Dorit; Nikolaus, Ines; Dabas, Alain; Marshall, Jonathan; de Bruin, Frank; Kanitz, Thomas; Straume, Anne-Grete
2018-04-01
The first wind lidar in space ALADIN will be deployed on ESÁs Aeolus mission. In order to assess the performance of ALADIN and to optimize the wind retrieval and calibration algorithms an end-to-end simulator was developed. This allows realistic simulations of data downlinked by Aeolus. Together with operational processors this setup is used to assess random and systematic error sources and perform sensitivity studies about the influence of atmospheric and instrument parameters.
On The Spatial Homogeneity Of The Wave Spectra In Deep Water Employing ERS-2 SAR Precision Image
NASA Astrophysics Data System (ADS)
Violante-Carvalho, Nelson; Robinson, Ian; Gommenginger, Christine; Carvalho, Luiz Mariano; Goldstein, Brunno
2010-04-01
Using wave spectra extracted from image mode ERS-2 SAR, the spatial homogeneity of the wave field in deep water is investigated against directional buoy measurements. From the 100 x 100 km image, several small images of 6.4 x 6.4 km are selected and the wave spectra are computed. The locally disturbed wind velocity pat- tern, caused by the sheltering effect of large mountains near the coast, translates into the selected SAR image as regions of higher and lower wind speed. Assuming that a swell component is uniform over the whole image, SAR wave spectra retrieved from the sheltered and non-sheltered areas are intercompared. Any difference between them could be related to a possible interaction between wind sea and swell, since the wind sea part of the spectrum would be slightly different due to the different wind speeds. The results show that there is no significative variation, and apparently there is no clear difference in the swell spectra despite the different wind sea components.
Empirical retrieval of sea spray aerosol production using satellite microwave radiometry
NASA Astrophysics Data System (ADS)
Savelyev, I. B.; Yelland, M. J.; Norris, S. J.; Salisbury, D.; Pascal, R. W.; Bettenhausen, M. H.; Prytherch, J.; Anguelova, M. D.; Brooks, I. M.
2017-12-01
This study presents a novel approach to obtaining global sea spray aerosol (SSA) production source term by relying on direct satellite observations of the ocean surface, instead of more traditional approaches driven by surface meteorology. The primary challenge in developing this empirical algorithm is to compile a calibrated, consistent dataset of SSA surface flux collected offshore over a variety of conditions (i.e., regions and seasons), thus representative of the global SSA production variability. Such dataset includes observations from SEASAW, HiWASE, and WAGES field campaigns, during which the SSA flux was measured from the bow of a research vessel using consistent and state-of-the-art eddy covariance methodology. These in situ data are matched to observations of the state of the ocean surface from Windsat polarimetric microwave satellite radiometer. Previous studies demonstrated the ability of WindSat to detect variations in surface waves slopes, roughness and foam, which led to the development of retrieval algorithms for surface wind vector and more recently whitecap fraction. Similarly, in this study, microwave emissions from the ocean surface are matched to and calibrated against in situ observations of the SSA production flux. The resulting calibrated empirical algorithm is applicable for retrieval of SSA source term throughout the duration of Windsat mission, from 2003 to present.
NASA Technical Reports Server (NTRS)
Biswas, Sayak K.; Jones, Linwood; Roberts, Jason; Ruf, Christopher; Ulhorn, Eric; Miller, Timothy
2012-01-01
The Hurricane Imaging Radiometer (HIRAD) is a new airborne synthetic aperture passive microwave radiometer capable of wide swath imaging of the ocean surface wind speed under heavy precipitation e.g. in tropical cyclones. It uses interferometric signal processing to produce upwelling brightness temperature (Tb) images at its four operating frequencies 4, 5, 6 and 6.6 GHz [1,2]. HIRAD participated in NASA s Genesis and Rapid Intensification Processes (GRIP) mission during 2010 as its first science field campaign. It produced Tb images with 70 km swath width and 3 km resolution from a 20 km altitude. From this, ocean surface wind speed and column averaged atmospheric liquid water content can be retrieved across the swath. The column averaged liquid water then could be related to an average rain rate. The retrieval algorithm (and the HIRAD instrument itself) is a direct descendant of the nadir-only Stepped Frequency Microwave Radiometer that is used operationally by the NOAA Hurricane Research Division to monitor tropical cyclones [3,4]. However, due to HIRAD s slant viewing geometry (compared to nadir viewing SFMR) a major modification is required in the algorithm. Results based on the modified algorithm from the GRIP campaign will be presented in the paper.
Towards an automatic wind speed and direction profiler for Wide Field adaptive optics systems
NASA Astrophysics Data System (ADS)
Sivo, G.; Turchi, A.; Masciadri, E.; Guesalaga, A.; Neichel, B.
2018-05-01
Wide Field Adaptive Optics (WFAO) systems are among the most sophisticated adaptive optics (AO) systems available today on large telescopes. Knowledge of the vertical spatio-temporal distribution of wind speed (WS) and direction (WD) is fundamental to optimize the performance of such systems. Previous studies already proved that the Gemini Multi-Conjugated AO system (GeMS) is able to retrieve measurements of the WS and WD stratification using the SLOpe Detection And Ranging (SLODAR) technique and to store measurements in the telemetry data. In order to assess the reliability of these estimates and of the SLODAR technique applied to such complex AO systems, in this study we compared WS and WD values retrieved from GeMS with those obtained with the atmospheric model Meso-NH on a rich statistical sample of nights. It has previously been proved that the latter technique provided excellent agreement with a large sample of radiosoundings, both in statistical terms and on individual flights. It can be considered, therefore, as an independent reference. The excellent agreement between GeMS measurements and the model that we find in this study proves the robustness of the SLODAR approach. To bypass the complex procedures necessary to achieve automatic measurements of the wind with GeMS, we propose a simple automatic method to monitor nightly WS and WD using Meso-NH model estimates. Such a method can be applied to whatever present or new-generation facilities are supported by WFAO systems. The interest of this study is, therefore, well beyond the optimization of GeMS performance.
NASA Astrophysics Data System (ADS)
Rüfenacht, R.; Kämpfer, N.; Murk, A.
2012-11-01
We report on the wind radiometer WIRA, a new ground-based microwave Doppler-spectro-radiometer specifically designed for the measurement of middle-atmospheric horizontal wind by observing ozone emission spectra at 142.17504 GHz. Currently, wind speeds in five levels between 30 and 79 km can be retrieved which makes WIRA the first instrument able to continuously measure horizontal wind in this altitude range. For an integration time of one day the measurement error on each level lies at around 25 m s-1. With a planned upgrade this value is expected to be reduced by a factor of 2 in the near future. On the altitude levels where our measurement can be compared to wind data from the European Centre for Medium-Range Weather Forecasts (ECMWF) very good agreement in the long-term statistics as well as in short time structures with a duration of a few days has been found. WIRA uses a passive double sideband heterodyne receiver together with a digital Fourier transform spectrometer for the data acquisition. A big advantage of the radiometric approach is that such instruments can also operate under adverse weather conditions and thus provide a continuous time series for the given location. The optics enables the instrument to scan a wide range of azimuth angles including the directions east, west, north, and south for zonal and meridional wind measurements. The design of the radiometer is fairly compact and its calibration does not rely on liquid nitrogen which makes it transportable and suitable for campaign use. WIRA is conceived in a way that it can be operated remotely and does hardly require any maintenance. In the present paper, a description of the instrument is given, and the techniques used for the wind retrieval based on the determination of the Doppler shift of the measured atmospheric ozone emission spectra are outlined. Their reliability was tested using Monte Carlo simulations. Finally, a time series of 11 months of zonal wind measurements over Bern (46°57' N, 7°26' E) is presented and compared to ECMWF wind data.
NASA Astrophysics Data System (ADS)
Rüfenacht, R.; Kämpfer, N.; Murk, A.
2012-07-01
We report on the wind radiometer WIRA, a new ground-based microwave Doppler-spectro-radiometer specifically designed for the measurement of middle-atmospheric horizontal wind by observing ozone emission spectra at 142.17504 GHz. Currently, wind speeds in five levels between 30 and 79 km can be retrieved what makes WIRA the first instrument able to continuously measure horizontal wind in this altitude range. For an integration time of one day the measurement error on each level lies at around 25 m s-1. With a planned upgrade this value is expected to be reduced by a factor of 2 in the near future. On the altitude levels where our measurement can be compared to wind data from the European Centre for Medium-Range Weather Forecasts (ECMWF) very good agreement in the long-term statistics as well as in short time structures with a duration of a few days has been found. WIRA uses a passive double sideband heterodyne receiver together with a digital Fourier transform spectrometer for the data acquisition. A big advantage of the radiometric approach is that such instruments can also operate under adverse weather conditions and thus provide a continuous time series for the given location. The optics enables the instrument to scan a wide range of azimuth angles including the directions east, west, north, and south for zonal and meridional wind measurements. The design of the radiometer is fairly compact and its calibration does not rely on liquid nitrogen what makes it transportable and suitable for campaign use. WIRA is conceived in a way that it can be operated remotely and does hardly require any maintenance. In the present paper, a description of the instrument is given, and the used techniques for the wind retrieval based on the determination of the Doppler shift of the measured atmospheric ozone emission spectra are outlined. Their reliability was tested using MonteCarlo simulations. Finally, a first time series of 11 months of zonal wind measurements over Bern (46°57' N, 7°26' E) is presented and compared to ECMWF wind data.
Stereoscopic Height and Wind Retrievals for Aerosol Plumes with the MISR INteractive eXplorer (MINX)
NASA Technical Reports Server (NTRS)
Nelson, D.L.; Garay, M.J.; Kahn, Ralph A.; Dunst, Ben A.
2013-01-01
The Multi-angle Imaging SpectroRadiometer (MISR) instrument aboard the Terra satellite acquires imagery at 275-m resolution at nine angles ranging from 0deg (nadir) to 70deg off-nadir. This multi-angle capability facilitates the stereoscopic retrieval of heights and motion vectors for clouds and aerosol plumes. MISR's operational stereo product uses this capability to retrieve cloud heights and winds for every satellite orbit, yielding global coverage every nine days. The MISR INteractive eXplorer (MINX) visualization and analysis tool complements the operational stereo product by providing users the ability to retrieve heights and winds locally for detailed studies of smoke, dust and volcanic ash plumes, as well as clouds, at higher spatial resolution and with greater precision than is possible with the operational product or with other space-based, passive, remote sensing instruments. This ability to investigate plume geometry and dynamics is becoming increasingly important as climate and air quality studies require greater knowledge about the injection of aerosols and the location of clouds within the atmosphere. MINX incorporates features that allow users to customize their stereo retrievals for optimum results under varying aerosol and underlying surface conditions. This paper discusses the stereo retrieval algorithms and retrieval options in MINX, and provides appropriate examples to explain how the program can be used to achieve the best results.
MISR CMVs and Multiangular Views of Tropical Cyclone Inner-Core Dynamics
NASA Technical Reports Server (NTRS)
Wu, Dong L.; Diner, David J.; Garay, Michael J; Jovanovic, Veljko M.; Lee, Jae N.; Moroney, Catherine M.; Mueller, Kevin J.; Nelson, David L.
2010-01-01
Multi-camera stereo imaging of cloud features from the MISR (Multiangle Imaging SpectroRadiometer) instrument on NASA's Terra satellite provides accurate and precise measurements of cloud top heights (CTH) and cloud motion vector (CMV) winds. MISR observes each cloudy scene from nine viewing angles (Nadir, +/-26(sup o), +/-46(sup o), +/-60(sup o), +/-70(sup o)) with approximatel 275-m pixel resolution. This paper provides an update on MISR CMV and CTH algorithm improvements, and explores a high-resolution retrieval of tangential winds inside the eyewall of tropical cyclones (TC). The MISR CMV and CTH retrievals from the updated algorithm are significantly improved in terms of spatial coverage and systematic errors. A new product, the 1.1-km cross-track wind, provides high accuracy and precision in measuring convective outflows. Preliminary results obtained from the 1.1-km tangential wind retrieval inside the TC eyewall show that the inner-core rotation is often faster near the eyewall, and this faster rotation appears to be related linearly to cyclone intensity.
MENTOR: Adding an outlying receiver to an ST radar for meteor-wind measurement
NASA Technical Reports Server (NTRS)
Roper, R. G.
1984-01-01
Radar scattering from ionized meteor trails has been used for many years as a way to determine mesopause-level winds. Scattering occurs perpendicular to the trails, and since the ionizing efficiency of the incoming meteoroids depends on the cosine of the zenith angle of the radiant, echoes directly overhead are rare. Stratosphere-troposphere (ST) radars normally sample within 15 deg of the vertical, and thus receive few meteor echoes. Even the higher powdered mesosphere-stratosphere-troposphere (MST) radars are not good meteor radars, although they were used to successfully retrieved meteor winds from the Poker Flat, Alaska MST radar by averaging long data intervals. It has been suggested that a receiving station some distance from an ST radar could receive pulses being scattered from meteor trails, determine the particular ST beam in which the scattering occurred, measure the radial Doppler velocity, and thus determine the wind field. This concept has been named MENTOR (Meteor Echoes; No Transmitter, Only Receivers).
Acoustic sounding of wind velocity profiles in a stratified moving atmosphere.
Ostashev, V E; Georges, T M; Clifford, S F; Goedecke, G H
2001-06-01
The paper deals with analytical and numerical studies of the effects of atmospheric stratification on acoustic remote sensing of wind velocity profiles by sodars. Both bistatic and monostatic schemes are considered. Formulas for the Doppler shift of an acoustic echo signal scattered by atmospheric turbulence advected with the mean wind in a stratified moving atmosphere are derived. Numerical studies of these formulas show that errors in retrieving wind velocity can be of the order of 1 m/s if atmospheric stratification is ignored. Formulas for the height at which wind velocity is retrieved are also derived. Approaches are proposed which allow one to take into account the effects of atmospheric stratification when restoring the wind velocity profile from measured values of the Doppler shift and the time interval of acoustic impulse propagation from a sodar to the scattering volume and back to the ground.
NASA Astrophysics Data System (ADS)
Stober, G.; Sommer, S.; Schult, C.; Chau, J. L.; Latteck, R.
2013-12-01
The Middle Atmosphere Alomar Radar System (MAARSY) located at the northern Norwegian island of Andøya (69.3 ° N, 16° E) observes polar mesosphere summer echoes (PMSE) on a regular basis. This backscatter turned out to be an ideal tracer of atmospheric dynamics and to investigate the wind field at the mesosphere/lower thermosphere (MLT) at high spatial and temporal scales. MAARSY is dedicated to explore the polar mesosphere at such high resolution and employs an active phased array antenna with the capability to steer the beam on a pulse-to-pulse basis, which permits to perform systematic scanning of PMSE and to investigate the horizontal structure of the backscatter. The radar also uses a 16 channel receiver system for interferometric applications e.g. mean angle of arrival analysis or coherent radar imaging. Here we present measurements using these features of MAARSY to study the wind field at the MLT applying sophisticated wind analysis algorithms such as velocity azimuth display or volume velocity processing to derive gravity wave parameters such as horizontal wave length, phase speed and propagation direction. Further, we compare the interferometrically corrected and uncorrected wind measurements to emphasize the importance to account for likely edge effects using PMSE as tracer of the dynamics. The observations indicate huge deviations from the nominal beam pointing direction at the upper and lower edges of the PMSE altering the wind analysis.
Development and comparisons of wind retrieval algorithms for small unmanned aerial systems
NASA Astrophysics Data System (ADS)
Bonin, T. A.; Chilson, P. B.; Zielke, B. S.; Klein, P. M.; Leeman, J. R.
2012-12-01
Recently, there has been an increase in use of Unmanned Aerial Systems (UASs) as platforms for conducting fundamental and applied research in the lower atmosphere due to their relatively low cost and ability to collect samples with high spatial and temporal resolution. Concurrent with this development comes the need for accurate instrumentation and measurement methods suitable for small meteorological UASs. Moreover, the instrumentation to be integrated into such platforms must be small and lightweight. Whereas thermodynamic variables can be easily measured using well aspirated sensors onboard, it is much more challenging to accurately measure the wind with a UAS. Several algorithms have been developed that incorporate GPS observations as a means of estimating the horizontal wind vector, with each algorithm exhibiting its own particular strengths and weaknesses. In the present study, the performance of three such GPS-based wind-retrieval algorithms has been investigated and compared with wind estimates from rawinsonde and sodar observations. Each of the algorithms considered agreed well with the wind measurements from sounding and sodar data. Through the integration of UAS-retrieved profiles of thermodynamic and kinematic parameters, one can investigate the static and dynamic stability of the atmosphere and relate them to the state of the boundary layer across a variety of times and locations, which might be difficult to access using conventional instrumentation.
Comparison and application of wind retrieval algorithms for small unmanned aerial systems
NASA Astrophysics Data System (ADS)
Bonin, T. A.; Chilson, P. B.; Zielke, B. S.; Klein, P. M.; Leeman, J. R.
2013-07-01
Recently, there has been an increase in use of Unmanned Aerial Systems (UASs) as platforms for conducting fundamental and applied research in the lower atmosphere due to their relatively low cost and ability to collect samples with high spatial and temporal resolution. Concurrent with this development comes the need for accurate instrumentation and measurement methods suitable for small meteorological UASs. Moreover, the instrumentation to be integrated into such platforms must be small and lightweight. Whereas thermodynamic variables can be easily measured using well-aspirated sensors onboard, it is much more challenging to accurately measure the wind with a UAS. Several algorithms have been developed that incorporate GPS observations as a means of estimating the horizontal wind vector, with each algorithm exhibiting its own particular strengths and weaknesses. In the present study, the performance of three such GPS-based wind-retrieval algorithms has been investigated and compared with wind estimates from rawinsonde and sodar observations. Each of the algorithms considered agreed well with the wind measurements from sounding and sodar data. Through the integration of UAS-retrieved profiles of thermodynamic and kinematic parameters, one can investigate the static and dynamic stability of the atmosphere and relate them to the state of the boundary layer across a variety of times and locations, which might be difficult to access using conventional instrumentation.
Turbulence Impact on Wind Turbines: Experimental Investigations on a Wind Turbine Model
NASA Astrophysics Data System (ADS)
Al-Abadi, A.; Kim, Y. J.; Ertunç, Ö.; Delgado, A.
2016-09-01
Experimental investigations have been conducted by exposing an efficient wind turbine model to different turbulence levels in a wind tunnel. Nearly isotropic turbulence is generated by using two static squared grids: fine and coarse one. In addition, the distance between the wind-turbine and the grid is adjusted. Hence, as the turbulence decays in the flow direction, the wind-turbine is exposed to turbulence with various energy and length scale content. The developments of turbulence scales in the flow direction at various Reynolds numbers and the grid mesh size are measured. Those measurements are conducted with hot-wire anemometry in the absence of the wind-turbine. Detailed measurements and analysis of the upstream and downstream velocities, turbulence intensity and spectrum distributions are done. Performance measurements are conducted with and without turbulence grids and the results are compared. Performance measurements are conducted with an experimental setup that allow measuring of torque, rotational speed from the electrical parameters. The study shows the higher the turbulence level, the higher the power coefficient. This is due to many reasons. First, is the interaction of turbulence scales with the blade surface boundary layer, which in turn delay the stall. Thus, suppressing the boundary layer and preventing it from separation and hence enhancing the aerodynamics characteristics of the blade. In addition, higher turbulence helps in damping the tip vortices. Thus, reduces the tip losses. Adding winglets to the blade tip will reduce the tip vortex. Further investigations of the near and far wake-surrounding intersection are performed to understand the energy exchange and the free stream entrainment that help in retrieving the velocity.
Cloud Spirals and Outflow in Tropical Storm Katrina
NASA Technical Reports Server (NTRS)
2005-01-01
On Tuesday, August 30, 2005, NASA's Multi-angle Imaging SpectroRadiometer retrieved cloud-top heights and cloud-tracked wind velocities for Tropical Storm Katrina, as the center of the storm was situated over the Tennessee valley. At this time Katrina was weakening and no longer classified as a hurricane, and would soon become an extratropical depression. Measurements such as these can help atmospheric scientists compare results of computer-generated hurricane simulations with observed conditions, ultimately allowing them to better represent and understand physical processes occurring in hurricanes. Because air currents are influenced by the Coriolis force (caused by the rotation of the Earth), Northern Hemisphere hurricanes are characterized by an inward counterclockwise (cyclonic) rotation towards the center. It is less widely known that, at high altitudes, outward-spreading bands of cloud rotate in a clockwise (anticyclonic) direction. The image on the left shows the retrieved cloud-tracked winds as red arrows superimposed across the natural color view from MISR's nadir (vertical-viewing) camera. Both the counter-clockwise motion for the lower-level storm clouds and the clockwise motion for the upper clouds are apparent in these images. The speeds for the clockwise upper level winds have typical values between 40 and 45 m/s (144-162 km/hr). The low level counterclockwise winds have typical values between 7 and 24 m/s (25-86 km/hr), weakening with distance from the storm center. The image on the right displays the cloud-top height retrievals. Areas where cloud heights could not be retrieved are shown in dark gray. Both the wind velocity vectors and the cloud-top height field were produced by automated computer recognition of displacements in spatial features within successive MISR images acquired at different view angles and at slightly different times. The Multi-angle Imaging SpectroRadiometer observes the daylit Earth continuously, viewing the entire globe between 82o north and 82o south latitude every nine days. This image covers an area of about 380 kilometers by 1970 kilometers. These data products were generated from a portion of the imagery acquired during Terra orbit 30324 and utilize data from blocks 55-68 within World Reference System-2 path 22. MISR was built and is managed by NASA's Jet Propulsion Laboratory, Pasadena, CA, for NASA's Science Mission Directorate, Washington, DC. The Terra satellite is managed by NASA's Goddard Space Flight Center, Greenbelt, MD. JPL is managed for NASA by the California Institute of Technology.NASA Technical Reports Server (NTRS)
Berndt, Emily; Zavodsky, Bradley; Jedlovec, Gary; Elmer, Nicholas
2013-01-01
Non-convective wind events commonly occur with passing extratropical cyclones and have significant societal and economic impacts. Since non-convective winds often occur in the absence of specific phenomena such as a thunderstorm, tornado, or hurricane, the public are less likely to heed high wind warnings and continue daily activities. Thus non-convective wind events result in as many fatalities as straight line thunderstorm winds. One physical explanation for non-convective winds includes tropopause folds. Improved model representation of stratospheric air and associated non-convective wind events could improve non-convective wind forecasts and associated warnings. In recent years, satellite data assimilation has improved skill in forecasting extratropical cyclones; however errors still remain in forecasting the position and strength of extratropical cyclones as well as the tropopause folding process. The goal of this study is to determine the impact of assimilating satellite temperature and moisture retrieved profiles from hyperspectral infrared (IR) sounders (i.e. Atmospheric Infrared Sounder (AIRS), Cross-track Infrared and Microwave Sounding Suite (CrIMSS), and Infrared Atmospheric Sounding Interferometer (IASI)) on the model representation of the tropopause fold and an associated high wind event that impacted the Northeast United States on 09 February 2013. Model simulations using the Advanced Research Weather Research and Forecasting Model (ARW) were conducted on a 12-km grid with cycled data assimilation mimicking the operational North American Model (NAM). The results from the satellite assimilation run are compared to a control experiment (without hyperspectral IR retrievals), Modern Era-Retrospective Analysis for Research and Applications (MERRA) reanalysis, and Rapid Refresh analyses.
NASA Technical Reports Server (NTRS)
Berndt, E. B.; Zavodsky, B. T.; Folmer, M. J.; Jedlovec, G. J.
2014-01-01
Non-convective wind events commonly occur with passing extratropical cyclones and have significant societal and economic impacts. Since non-convective winds often occur in the absence of specific phenomena such as a thunderstorm, tornado, or hurricane, the public are less likely to heed high wind warnings and continue daily activities. Thus non-convective wind events result in as many fatalities as straight line thunderstorm winds. One physical explanation for non-convective winds includes tropopause folds. Improved model representation of stratospheric air and associated non-convective wind events could improve non-convective wind forecasts and associated warnings. In recent years, satellite data assimilation has improved skill in forecasting extratropical cyclones; however errors still remain in forecasting the position and strength of extratropical cyclones as well as the tropopause folding process. The goal of this study is to determine the impact of assimilating satellite temperature and moisture retrieved profiles from hyperspectral infrared (IR) sounders (i.e. Atmospheric Infrared Sounder (AIRS), Cross-track Infrared and Microwave Sounding Suite (CrIMSS), and Infrared Atmospheric Sounding Interferometer (IASI)) on the model representation of the tropopause fold and an associated high wind event that impacted the Northeast United States on 09 February 2013. Model simulations using the Advanced Research Weather Research and Forecasting Model (ARW) were conducted on a 12-km grid with cycled data assimilation mimicking the operational North American Model (NAM). The results from the satellite assimilation run are compared to a control experiment (without hyperspectral IR retrievals), 32-km North American Regional Reanalysis (NARR) interpolated to a 12-km grid, and 13-km Rapid Refresh analyses.
NASA Technical Reports Server (NTRS)
Berndt, E. B.; Zavodsky, B. T.; Jedlovec, G. J.
2014-01-01
Non-convective wind events commonly occur with passing extratropical cyclones and have significant societal and economic impacts. Since non-convective winds often occur in the absence of specific phenomena such as a thunderstorm, tornado, or hurricane, the public are less likely to heed high wind warnings and continue daily activities. Thus non-convective wind events result in as many fatalities as straight line thunderstorm winds. One physical explanation for non-convective winds includes tropopause folds. Improved model representation of stratospheric air and associated non-convective wind events could improve non-convective wind forecasts and associated warnings. In recent years, satellite data assimilation has improved skill in forecasting extratropical cyclones; however errors still remain in forecasting the position and strength of extratropical cyclones as well as the tropopause folding process. The goal of this study is to determine the impact of assimilating satellite temperature and moisture retrieved profiles from hyperspectral infrared (IR) sounders (i.e. Atmospheric Infrared Sounder (AIRS), Cross-track Infrared and Microwave Sounding Suite (CrIMSS), and Infrared Atmospheric Sounding Interferometer (IASI)) on the model representation of the tropopause fold and an associated high wind event that impacted the Northeast United States on 09 February 2013. Model simulations using the Advanced Research Weather Research and Forecasting Model (ARW) were conducted on a 12-km grid with cycled data assimilation mimicking the operational North American Model (NAM). The results from the satellite assimilation run are compared to a control experiment (without hyperspectral IR retrievals), Modern Era-Retrospective Analysis for Research and Applications (MERRA) reanalysis, and Rapid Refresh analyses.
NASA Astrophysics Data System (ADS)
Polverari, F.; Talone, M.; Crapolicchio, R. Levy, G.; Marzano, F.
2013-12-01
The European Remote-sensing Satellite (ERS)-2 scatterometer provides wind retrievals over Ocean. To satisfy the needs of high quality and homogeneous set of scatterometer measurements, the European Space Agency (ESA) has developed the project Advanced Scatterometer Processing System (ASPS) with which a long-term dataset of new ERS-2 wind products, with an enhanced resolution of 25km square, has been generated by the reprocessing of the entire ERS mission. This paper presents the main results of the validation work of such new dataset using in situ measurements provided by the Prediction and Research Moored Array in the Tropical Atlantic (PIRATA). The comparison indicates that, on average, the scatterometer data agree well with buoys measurements, however the scatterometer tends to overestimates lower winds and underestimates higher winds.
On the role of high frequency waves in ocean altimetry
NASA Astrophysics Data System (ADS)
Vandemark, Douglas C.
This work mines a coastal and open ocean air-sea interaction field experiment data set where the goals are to refine satellite retrieval of wind, wind stress, and sea level using a microwave radar altimeter. The data were collected from a low-flying aircraft using a sensor suite designed to measure the surface waves, radar backscatter, the atmospheric flow, and turbulent fluxes within the marine boundary layer. This uncommon ensemble provides the means to address several specific altimeter-related topics. First, we examine and document the impact that non wind-driven gravity wave variability, e.g. swell, has upon the commonly-invoked direct relationship between altimeter backscatter and near surface wind speed. The demonstrated impact is larger in magnitude and more direct than previously suggested. The study also isolates the wind-dependence of short-scale slope variance and suggests its magnitude is somewhat lower than shown elsewhere while a second-order dependence on long waves is also evident. A second study assesses the hypothesis that wind-aligned swell interacts with the atmospheric boundary flow leading to a depressed level of turbulence. Cases of reduced drag coefficient at moderate wind speeds were in evidence within the data set, and buoy observations indicate that swell was present and a likely control during these events. Coincidentally, short-scale wave roughness was also depressed suggesting decreased wind stress. Attempts to confirm the theory failed, however, due to numerous limitations in the quantity and quality of the data in hand. A lesson learned is that decoupling atmospheric stability and wave impacts in field campaigns requires both a very large amount of data as well as vertical resolution of fluxes within the first 10--20 m of the surface.
Wind scatterometry with improved ambiguity selection and rain modeling
NASA Astrophysics Data System (ADS)
Draper, David Willis
Although generally accurate, the quality of SeaWinds on QuikSCAT scatterometer ocean vector winds is compromised by certain natural phenomena and retrieval algorithm limitations. This dissertation addresses three main contributors to scatterometer estimate error: poor ambiguity selection, estimate uncertainty at low wind speeds, and rain corruption. A quality assurance (QA) analysis performed on SeaWinds data suggests that about 5% of SeaWinds data contain ambiguity selection errors and that scatterometer estimation error is correlated with low wind speeds and rain events. Ambiguity selection errors are partly due to the "nudging" step (initialization from outside data). A sophisticated new non-nudging ambiguity selection approach produces generally more consistent wind than the nudging method in moderate wind conditions. The non-nudging method selects 93% of the same ambiguities as the nudged data, validating both techniques, and indicating that ambiguity selection can be accomplished without nudging. Variability at low wind speeds is analyzed using tower-mounted scatterometer data. According to theory, below a threshold wind speed, the wind fails to generate the surface roughness necessary for wind measurement. A simple analysis suggests the existence of the threshold in much of the tower-mounted scatterometer data. However, the backscatter does not "go to zero" beneath the threshold in an uncontrolled environment as theory suggests, but rather has a mean drop and higher variability below the threshold. Rain is the largest weather-related contributor to scatterometer error, affecting approximately 4% to 10% of SeaWinds data. A simple model formed via comparison of co-located TRMM PR and SeaWinds measurements characterizes the average effect of rain on SeaWinds backscatter. The model is generally accurate to within 3 dB over the tropics. The rain/wind backscatter model is used to simultaneously retrieve wind and rain from SeaWinds measurements. The simultaneous wind/rain (SWR) estimation procedure can improve wind estimates during rain, while providing a scatterometer-based rain rate estimate. SWR also affords improved rain flagging for low to moderate rain rates. QuikSCAT-retrieved rain rates correlate well with TRMM PR instantaneous measurements and TMI monthly rain averages. SeaWinds rain measurements can be used to supplement data from other rain-measuring instruments, filling spatial and temporal gaps in coverage.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Collis, Scott; Protat, Alain; May, Peter T.
2013-08-01
Comparisons between direct measurements and modeled values of vertical air motions in precipitating systems are complicated by differences in temporal and spatial scales. On one hand, vertically profiling radars more directly measure the vertical air motion but do not adequately capture full storm dynamics. On the other hand, vertical air motions retrieved from two or more scanning Doppler radars capture the full storm dynamics but require model constraints that may not capture all updraft features because of inadequate sampling, resolution, numerical constraints, and the fact that the storm is evolving as it is scanned by the radars. To investigate themore » veracity of radar-based retrievals, which can be used to verify numerically modeled vertical air motions, this article presents several case studies from storm events around Darwin, Northern Territory, Australia, in which measurements from a dual-frequency radar profiler system and volumetric radar-based wind retrievals are compared. While a direct comparison was not possible because of instrumentation location, an indirect comparison shows promising results, with volume retrievals comparing well to those obtained from the profiling system. This prompted a statistical analysis of an extended period of an active monsoon period during the Tropical Warm Pool International Cloud Experiment (TWP-ICE). Results show less vigorous deep convective cores with maximum updraft velocities occurring at lower heights than some cloudresolving modeling studies suggest. 1. Introduction The regionalization of global climate models has been a driver of demand for more complex convective parameterization schemes. A key readjustment of the modeled atmosphere« less
NASA Astrophysics Data System (ADS)
Stober, Gunter; Sommer, Svenja; Schult, Carsten; Latteck, Ralph; Chau, Jorge L.
2018-05-01
We present observations obtained with the Middle Atmosphere Alomar Radar System (MAARSY) to investigate short-period wave-like features using polar mesospheric summer echoes (PMSEs) as a tracer for the neutral dynamics. We conducted a multibeam experiment including 67 different beam directions during a 9-day campaign in June 2013. We identified two Kelvin-Helmholtz instability (KHI) events from the signal morphology of PMSE. The MAARSY observations are complemented by collocated meteor radar wind data to determine the mesoscale gravity wave activity and the vertical structure of the wind field above the PMSE. The KHIs occurred in a strong shear flow with Richardson numbers Ri < 0.25. In addition, we observed 15 wave-like events in our MAARSY multibeam observations applying a sophisticated decomposition of the radial velocity measurements using volume velocity processing. We retrieved the horizontal wavelength, intrinsic frequency, propagation direction, and phase speed from the horizontally resolved wind variability for 15 events. These events showed horizontal wavelengths between 20 and 40 km, vertical wavelengths between 5 and 10 km, and rather high intrinsic phase speeds between 45 and 85 m s-1 with intrinsic periods of 5-10 min.
Characterization of the Deep Water Surface Wave Variability in the California Current Region
NASA Astrophysics Data System (ADS)
Villas Bôas, Ana B.; Gille, Sarah T.; Mazloff, Matthew R.; Cornuelle, Bruce D.
2017-11-01
Surface waves are crucial for the dynamics of the upper ocean not only because they mediate exchanges of momentum, heat, energy, and gases between the ocean and the atmosphere, but also because they determine the sea state. The surface wave field in a given region is set by the combination of local and remote forcing. The present work characterizes the seasonal variability of the deep water surface wave field in the California Current region, as retrieved from over two decades of satellite altimetry data combined with wave buoys and wave model hindcast (WaveWatch III). In particular, the extent to which the local wind modulates the variability of the significant wave height, peak period, and peak direction is assessed. During spring/summer, regional-scale wind events of up to 10 m/s are the dominant forcing for waves off the California coast, leading to relatively short-period waves (8-10 s) that come predominantly from the north-northwest. The wave climatology throughout the California Current region shows average significant wave heights exceeding 2 m during most of the year, which may have implications for the planning and retrieval methods of the Surface Water and Ocean Topography (SWOT) satellite mission.
NASA Astrophysics Data System (ADS)
Cavalié, T.; Billebaud, F.; Encrenaz, T.; Dobrijevic, M.; Brillet, J.; Forget, F.; Lellouch, E.
2008-10-01
Aims: We have recorded high spectral resolution spectra and derived precise atmospheric temperature profiles and wind velocities in the atmosphere of Mars. We have compared observations of the planetary mean thermal profile and mesospheric wind velocities on the disk, obtained with our millimetric observations of CO rotational lines, to predictions from the Laboratoire de Météorologie Dynamique (LMD) Mars General Circulation Model, as provided through the Mars Climate Database (MCD) numerical tool. Methods: We observed the atmosphere of Mars at CO(1-0) and CO(2-1) wavelengths with the IRAM 30-m antenna in June 2001 and November 2005. We retrieved the mean thermal profile of the planet from high and low spectral resolution data with an inversion method detailed here. High spectral resolution spectra were used to derive mesospheric wind velocities on the planetary disk. We also report here the use of 13CO(2-1) line core shifts to measure wind velocities at 40 km. Results: Neither the Mars Year 24 (MY24) nor the Dust Storm scenario from the Mars Climate Database (MCD) provides satisfactory fits to the 2001 and 2005 data when retrieving the thermal profiles. The Warm scenario only provides good fits for altitudes lower than 30 km. The atmosphere is warmer than predicted up to 60 km and then becomes colder. Dust loading could be the reason for this mismatch. The MCD MY24 scenario predicts a thermal inversion layer between 40 and 60 km, which is not retrieved from the high spectral resolution data. Our results are generally in agreement with other observations from 10 to 40 km in altitude, but our results obtained from the high spectral resolution spectra differ in the 40-70 km layer, where the instruments are the most sensitive. The wind velocities we retrieve from our 12CO observations confirm MCD predictions for 2001 and 2005. Velocities obtained from 13CO observations are consistent with MCD predictions in 2001, but are lower than predicted in 2005.
Using Buoy and Radar Data to Study Sudden Wind Gusts Over Coastal Regions
NASA Technical Reports Server (NTRS)
Priftis, Georgios; Chronis, Themis; Lang, Timothy J.
2017-01-01
Significant sudden wind gusts can pose a threat to aviation near the coastline, as well as small (sailing) boats and commercial ships approaching the ports. Such cases can result in wind speed changes of more than an order of magnitude within 5 minutes, which can then last up to 20 minutes or more. Although the constellation of scatterometers is a good means of studying maritime convection, those sudden gusts are not easily captured because of the low time resolution. The National Data Buoy Center (NDBC) provides continuous measurements of wind speed and direction along the US coastal regions every 6 minutes. Buoys are platforms placed at specific places on the seas, especially along coastlines, providing data for atmospheric and oceanic studies. Next Generation Radars (NEXRADs), after the recent upgrade of the network to dual-pol systems, offer enhanced capabilities to study atmospheric phenomena. NEXRADs provide continuous full-volume scans approximately every 5 minutes and therefore are close to the time resolution of the buoy measurements. Use of single- Doppler retrievals might also provide a means of further validation.
NASA Astrophysics Data System (ADS)
Mejia, J.; Mitchell, D. L.; Garnier, A.; Hosseinpour, F.; Avery, M. A.
2017-12-01
Global retrievals of cirrus cloud effective diameter De and mid-cloud temperature T were used to make the cirrus clouds simulated in CAM5 conform with the retrieved De, with the ice fall speeds in CAM5 calculated from the retrieved De. This was done by developing De-T relationships for six latitude zones. Within each latitude zone, seasonal De-T relationships were developed for cirrus over land and for cirrus over ocean (making 48 De-T relationships in total). The recently developed CALIPSO retrieval algorithm is sensitive to the ice crystal number concentration N, which is also retrieved, and it utilizes radiances from the infrared imaging radiometer and backscatter from the CALIPSO lidar. Retrieved De (N) is largest (lowest) between 30S and 30N latitude; a region dominated by anvil cirrus where pre-existing ice strongly favors heterogeneous ice nucleation (henceforth het). Therefore, the De-T relations for this region are considered representative for cirrus formed via het. Outside this region, retrieved De (N) tended to be considerably smaller (higher), presumably due to homogeneous ice nucleation (henceforth hom). Two CAM5 simulations were performed; one where cirrus cloud De is based on the CALIPSO retrievals and one where De-T for het cirrus is applied globally. Differences in net cloud radiative forcing between runs are believed due to differences in cirrus formation mechanism (hom vs. het). Such differences are typically 1.3 W m-2 in the mid-to-high latitudes in the N. Hemisphere excepting summer. These differences imply differences in cirrus cloud heating rates that affect temperatures in the underlying troposphere, which in turn affect the wind fields. The natural cirrus (mixture of hom and het) tend to trap more heat than the het cirrus. Changes in zonal wind fields between simulations suggest that heating by polar cirrus clouds have modifed meridional temperature gradients and thus zonal winds through the thermal wind balance. These changes in heating by polar cirrus clouds can modify the amplitude and meridional position of the midlatitude jet streams, which can lead to more extreme weather. Moreover, the retrievals indicate a doubling of Arctic cirrus coverage during winter, which will also result in increased heating of the underlying troposphere, likely contributing to this same phenomenon.
A Multilayer Dataset of SSM/I-Derived Global Ocean Surface Turbulent Fluxes
NASA Technical Reports Server (NTRS)
Chou, Shu-Hsien; Shie, Chung-Lin; Atlas, Robert M.; Ardizzone, Joe; Nelkin, Eric; Einaud, Franco (Technical Monitor)
2001-01-01
A dataset including daily- and monthly-mean turbulent fluxes (momentum, latent heat, and sensible heat) and some relevant parameters over global oceans, derived from the Special Sensor Microwave/Imager (SSM/I) data, for the period July 1987-December 1994 and the 1988-94 annual and monthly-mean climatologies of the same variables is created. It has a spatial resolution of 2.0deg x 2.5deg latitude-longitude. The retrieved surface air humidity is found to be generally accurate as compared to the collocated radiosonde observations over global oceans. The retrieved wind stress and latent heat flux show useful accuracy as verified against research quality measurements of ship and buoy in the western equatorial Pacific. The 1988-94 seasonal-mean wind stress and latent heat flux show reasonable patterns related to seasonal variations of the atmospheric general circulation. The patterns of 1990-93 annual-mean turbulent fluxes and input variables are generally in good agreement with one of the best global analyzed flux datasets that based on COADS (comprehensive ocean-atmosphere data set) with corrections on wind speeds and covered the same period. The retrieved wind speed is generally within +/-1 m/s of the COADS-based, but is stronger by approx. 1-2 m/s in the northern extratropical oceans. The discrepancy is suggested to be mainly due to higher COADS-modified wind speeds resulting from underestimation of anemometer heights. Compared to the COADS-based, the retrieved latent heat flux and sea-air humidity difference are generally larger with significant differences in the trade wind zones and the ocean south of 40degS (up to approx. 40-60 W/sq m and approx. 1-1.5 g/kg). The discrepancy is believed to be mainly caused by higher COADS-based surface air humidity arising from the overestimation of dew point temperatures and from the extrapolation of observed high humidity southward into data-void regions south of 40degS. The retrieved sensible heat flux is generally within +/-5 W/sq m of UWM/COADS, except for some areas in the extratropical oceans, where the differences in wind speed have large impact on the difference in sensible heat flux. The dataset of SSM/I-derived turbulent fluxes is useful for climate studies, forcing of ocean models, and validation of coupled ocean-atmosphere global models.
Multi-component wind measurements of wind turbine wakes performed with three LiDARs
NASA Astrophysics Data System (ADS)
Iungo, G. V.; Wu, Y.-T.; Porté-Agel, F.
2012-04-01
Field measurements of the wake flow produced from the interaction between atmospheric boundary layer and a wind turbine are performed with three wind LiDARs. The tested wind turbine is a 2 MW Enercon E-70 located in Collonges, Switzerland. First, accuracy of mean values and frequency resolution of the wind measurements are surveyed as a function of the number of laser rays emitted for each measurement. Indeed, measurements performed with one single ray allow maximizing sampling frequency, thus characterizing wake turbulence. On the other hand, if the number of emitted rays is increased accuracy of mean wind is increased due to the longer sampling period. Subsequently, two-dimensional measurements with a single LiDAR are carried out over vertical sections of the wind turbine wake and mean wake flow is obtained by averaging 2D measurements consecutively performed. The high spatial resolution of the used LiDAR allows characterizing in details velocity defect present in the central part of the wake and its downstream recovery. Single LiDAR measurements are also performed by staring the laser beam at fixed directions for a sampling period of about ten minutes and maximizing the sampling frequency in order to characterize wake turbulence. From these tests wind fluctuation peaks are detected in the wind turbine wake at blade top-tip height for different downstream locations. The magnitude of these turbulence peaks is generally reduced by moving downstream. This increased turbulence level at blade top-tip height observed for a real wind turbine has been already detected from previous wind tunnel tests and Large Eddy simulations, thus confirming the presence of a source of dangerous fatigue loads for following wind turbines within a wind farm. Furthermore, the proper characterization of wind fluctuations through LiDAR measurements is proved by the detection of the inertial subrange from spectral analysis of these velocity signals. Finally, simultaneous measurements with two LiDARs are performed over the mean vertical symmetry plane of the wind turbine wake, while a third LiDAR measures the incoming wind over a vertical plane parallel to the mean wind direction and lying outside of the wake. One LiDAR is placed in proximity of the wind turbine location and measures pointing downstream, whereas a second LiDAR is located along the mean wind direction at a downstream distance of 6.5 diameters and measures pointing upstream. For these measurements axial and vertical velocity components are retrieved only for measurement points where the two laser beams result to be roughly orthogonal. Statistics of the two velocity components show in the near wake at hub height strong flow fluctuations with magnitudes about 30% of the mean value, and a gradual reduction for downstream distances larger than three rotor diameters.
NASA Technical Reports Server (NTRS)
Weissman, David E.; Hristova-Veleva, Svetla; Callahan, Philip
2006-01-01
The opportunity provided by satellite scatterometers to measure ocean surface winds in strong storms and hurricanes is diminished by the errors in the received backscatter (SIGMA-0) caused by the attenuation, scattering and surface roughening produced by heavy rain. Providing a good rain correction is a very challenging problem, particularly at Ku band (13.4 GHz) where rain effects are strong. Corrections to the scatterometer measurements of ocean surface winds can be pursued with either of two different methods: empirical or physical modeling. The latter method is employed in this study because of the availability of near simultaneous and collocated measurements provided by the MIDORI-II suite of instruments. The AMSR was designed to measure atmospheric water-related parameters on a spatial scale comparable to the SeaWinds scatterometer. These quantities can be converted into volumetric attenuation and scattering at the Ku-band frequency of SeaWinds. Optimal estimates of the volume backscatter and attenuation require a knowledge of the three dimensional distribution of reflectivity on a scale comparable to that of the precipitation. Studies selected near the US coastline enable the much higher resolution NEXRAD reflectivity measurements evaluate the AMSR estimates. We are also conducting research into the effects of different beam geometries and nonuniform beamfilling of precipitation within the field-of-view of the AMSR and the scatterometer. Furthermore, both AMSR and NEXRAD estimates of atmospheric correction can be used to produce corrected SIGMA-0s, which are then input to the JPL wind retrieval algorithm.
Application of SMAP Data for Ocean Surface Remote Sensing
NASA Astrophysics Data System (ADS)
Fore, A.; Yueh, S. H.; Tang, W.; Stiles, B. W.; Hayashi, A.
2017-12-01
The Soil Moisture Active Passive (SMAP) mission was launched January 31st, 2015. It is designed to measure the soil moisture over land using a combined active / passive L-band system. Due to the Aquarius mission, L-band model functions for ocean winds and salinity are mature and are directly applicable to the SMAP mission. In contrast to Aquarius, the higher resolution and scanning geometry of SMAP allow for wide-swath ocean winds and salinities to be retrieved. In this talk we present the SMAP Sea Surface Salinity (SSS) and extreme winds dataset and its performance. First we discuss the heritage of SMAP SSS algorithms, showing that SMAP and Aquarius show excellent agreement in the ocean surface roughness correction. Then, we give an overview of some newly developed algorithms that are only relevant to the SMAP system; a new galaxy correction and land correction enabling SSS retrievals up to 40 km from coast. We discuss recent improvements to the SMAP data processing for version 4.0. Next we compare the performance of the SMAP SSS to in-situ salinity measurements obtained from ARGO floats, tropical moored buoys, and ship-based data. SMAP SSS has accuracy of 0.2 PSU on a monthly basis compared to ARGO gridded data in tropics and mid-latitudes. In tropical oceans, time series comparison of salinity measured at 1 m depth by moored buoys indicates SMAP can track large salinity changes within a month. Synergetic analysis of SMAP, SMOS, and Argo data allows us to identify and exclude erroneous buoy data from assessment of SMAP SSS. The resulting SMAP-buoy matchup analysis gives a mean standard deviation (STD) of 0.22 PSU and correlation of 0.73 on weekly scale; at monthly scale the mean STD decreased to 0.17 PSU and the correlation increased to 0.8. In addition to SSS, SMAP provides a view into tropical cyclones having much higher sensitivity than traditional scatterometers. We validate the high-winds using collocations with SFMR during tropical cyclones as well as triple-collocations with RapidScat and WindSat. We consider two validation regimes, storm force winds and hurricane force winds. For storm force winds we validate using other space-borne scatterometers and microwave radiometers as well as with SFMR, however, for hurricane force winds we must use SFMR. Finally we discuss the various data products and where they may be obtained.
NASA Technical Reports Server (NTRS)
Al-Hamdan, Mohammad; Crosson, William; Burrows, Erica; Coffield, Shane; Crane, Breanna
2016-01-01
This study was part of the research activities of the Center for Applied Atmospheric Research and Education (CAARE) funded by the NASA MUREP (Minority University Research and Education Project) Institutional Research Opportunity (MIRO) Program. Satellite measurements of Aerosol Optical Depth (AOD) have been shown to be correlated with ground measurements of fine particulate matter less than 2.5 microns PM (sub 2.5), which in turn has been linked to respiratory and heart diseases. The strength of the correlation between AOD and PM (sub 2.5) varies for different AOD retrieval algorithms and geographic regions. We evaluated several Moderate Resolution Imaging Spectrometer (MODIS) AOD products from different satellites (Aqua vs. Terra), retrieval algorithms (Dark Target versus Deep Blue), Collections (5.1 versus 6) and spatial resolutions (10-kilometers versus 3-kilometers) for cities in the Western, Midwestern and Southeastern U.S. We developed and validated PM (sub 2.5) prediction models using remotely-sensed AOD data, which were improved by incorporating meteorological variables (temperature, relative humidity, precipitation, wind speed, and wind direction) from the North American Land Data Assimilation System Phase 2 (NLDAS-2). Adding these meteorological data significantly improved the predictive power of all the PM (sub 2.5) models, especially in the Western U.S. Temperature, relative humidity and wind speed were the most significant meteorological variables throughout the year in the Western U.S. Wind speed was the most significant meteorological variable for the cold season while temperature was the most significant variable for the warm season in the Midwestern and Southeastern U.S. Our study re-establishes the connection between PM (sub 2.5) and public health concerns including respiratory and cardiovascular diseases (asthma, high blood pressure, coronary heart disease, heart attack, and stroke). Using PM (sub 2.5) data and health data from the Centers for Disease Control and Prevention (CDC)'s Behavioral Risk Factor Surveillance System (BRFSS), our statistical analysis showed that heart attack and stroke occurrences had the strongest correlations with PM (sub 2.5).
NASA Astrophysics Data System (ADS)
Al-Hamdan, M. Z.; Crosson, W. L.; Burrows, E. C.; Coffield, S.; Crane, B.
2016-12-01
This study was part of the research activities of the Center for Applied Atmospheric Research and Education (CAARE) funded by the NASA MUREP Institutional Research Opportunity (MIRO) Program. Satellite measurements of Aerosol Optical Depth (AOD) have been shown to be correlated with ground measurements of fine particulate matter less than 2.5 microns (PM2.5), which in turn has been linked to respiratory and heart diseases. The strength of the correlation between AOD and PM2.5 varies for different AOD retrieval algorithms and geographic regions. We evaluated several Moderate Resolution Imaging Spectrometer (MODIS) AOD products from different satellites (Aqua vs. Terra), retrieval algorithms (Dark Target vs. Deep Blue), Collections (5.1 vs. 6) and spatial resolutions (10-km vs. 3-km) for cities in the Western, Midwestern and Southeastern United States. We developed and validated PM2.5 prediction models using remotely sensed AOD data, which were improved by incorporating meteorological variables (temperature, relative humidity, precipitation, wind speed, and wind direction) from the North American Land Data Assimilation System Phase 2 (NLDAS-2). Adding these meteorological data significantly improved the predictive power of all the PM2.5 models, and especially in the Western U.S. Temperature, relative humidity and wind speed were the most significant meteorological variables throughout the year in the Western U.S. Wind speed was the most significant meteorological variable for the cold season while temperature was the most significant variable for the warm season in the Midwestern and Southeastern U.S. Finally, our study re-establishes the connection between PM2.5 and public health concerns including respiratory and cardiovascular diseases (asthma, high blood pressure, coronary heart disease, heart attack, and stroke). Using PM2.5 data and health data from the Centers for Disease Control and Prevention (CDC)'s Behavioral Risk Factor Surveillance System (BRFSS), our statistical analysis showed that heart attack and stroke occurrences had the strongest correlations with PM2.5.
Temperature and Wind Measurements in Venus Lower Thermosphere between 2007 and 2015
NASA Astrophysics Data System (ADS)
Krause, Pia; Sornig, Manuela; Wischnewski, Carolin; Sonnabend, Guido; Stangier, Tobias; Herrmann, Maren; Kostiuk, Theodor; Livengood, Timothy A.; Pätzold, Martin
2016-10-01
The structure of Venus atmosphere and its thermal and dynamical behavior was intensely studied during the past decade by groundbased and the space mission Venus Express. A comprehensive understanding of the atmosphere, however, is still missing. Direct measurements of atmospheric parameters on various time scales and at different locations across the planet are essential for better understanding and to validate global circulation models. Line-resolved spectroscopy of infrared CO2 transitions provides a powerful tool to accomplish measurements of temperature and wind speed within the neutral atmosphere, using Doppler line-broadening and Doppler shift. Temperature is the motor to drive circulation, and wind speed is the result. Measuring both provides both the basis and an empirical test for circulation models. Non-LTE emission lines at 10 µm that originate from a pressure level of 1μbar, ~110 km altitude, probe the lower thermosphere and are measurable at high spectral resolution using the infrared heterodyne spectrometers THIS (University of Cologne), HIPWAC (NASA GSFC) and MILAHI (Tohoku University).Thermal and dynamical structures on the Venus day side are retrieved using a newly developed method that considers the influence of the spectrometer field-of-view (FoV) and the dispersion of spectral properties across the FoV. New conclusions from the ground-based observing campaigns between 2007 and 2015 will be presented based on this retrieval methodology. The spatial resolution on the planetary disk is different for each campaign, depending on the apparent diameter of the planet and the diffraction-limited FoV of the telescope. Previously, a comparison of the observing campaigns was limited due to the difference in spatial resolution. The new retrieval method enables comparing observations with different observing geometry. The observations yield a large quantity of temperature and wind measurements at different positions on the planetary disk, which supports mapping most of the dayside of Venus. A detailed study of the interesting area close to the terminator will be given, a region which is not well understood, including the general behavior of the temperature and differences between both terminators.
Seven-Year SSM/I-Derived Global Ocean Surface Turbulent Fluxes
NASA Technical Reports Server (NTRS)
Chou, Shu-Hsien; Shie, Chung-Lin; Atlas, Robert M.; Ardizzone, Joe
2000-01-01
A 7.5-year (July 1987-December 1994) dataset of daily surface specific humidity and turbulent fluxes (momentum, latent heat, and sensible heat) over global oceans has been retrieved from the Special Sensor Microwave/Imager (SSM/I) data and other data. It has a spatial resolution of 2.0 deg.x 2.5 deg. latitude-longitude. The retrieved surface specific humidity is generally accurate over global oceans as validated against the collocated radiosonde observations. The retrieved daily wind stresses and latent heat fluxes show useful accuracy as verified by those measured by the RV Moana Wave and IMET buoy in the western equatorial Pacific. The derived turbulent fluxes and input variables are also found to agree generally with the global distributions of annual-and seasonal-means of those based on 4-year (1990-93) comprehensive ocean-atmosphere data set (COADS) with adjustment in wind speeds and other climatological studies. The COADS has collected the most complete surface marine observations, mainly from merchant ships. However, ship measurements generally have poor accuracy, and variable spatial coverages. Significant differences between the retrieved and COADS-based are found in some areas of the tropical and southern extratropical oceans, reflecting the paucity of ship observations outside the northern extratropical oceans. Averaged over the global oceans, the retrieved wind stress is smaller but the latent heat flux is larger than those based on COADS. The former is suggested to be mainly due to overestimation of the adjusted ship-estimated wind speeds (depending on sea states), while the latter is suggested to be mainly due to overestimation of ship-measured dew point temperatures. The study suggests that the SSM/I-derived turbulent fluxes can be used for climate studies and coupled model validations.
Lu, Z.; Streets, D. G.; de Foy, B.; ...
2015-05-28
Satellite remote sensing of tropospheric nitrogen dioxide (NO 2) can provide valuable information for estimating surface nitrogen oxides (NO x) emissions. Using an exponentially-modified Gaussian (EMG) method and taking into account the effect of wind on observed NO 2 distributions, we estimate three-year moving-average emissions of summertime NO x from 35 US urban areas directly from NO 2 retrievals of the Ozone Monitoring Instrument (OMI) during 2005–2014. Following the conclusions of previous studies that the EMG method provides robust and accurate emission estimates under strong-wind conditions, we derive top-down NO x emissions from each urban area by applying the EMGmore » method to OMI data with wind speeds greater than 3–5 m s -1. Meanwhile, we find that OMI NO 2 observations under weak-wind conditions (i.e., < 3 m s -1) are qualitatively better correlated with the surface NO x source strength in comparison to all-wind OMI maps; and therefore we use them to calculate the satellite-observed NO 2 burdens of urban areas and compare with NO x emission estimates. The EMG results show that OMI-derived NO x emissions are highly correlated ( R > 0.93) with weak-wind OMI NO 2 burdens as well as bottom-up NO x emission estimates over 35 urban areas, implying a linear response of the OMI observations to surface emissions under weak-wind conditions. The simultaneous, EMG-obtained, effective NO 2 lifetimes (~3.5 ± 1.3 h), however, are biased low in comparison to the summertime NO 2 chemical lifetimes. In general, isolated urban areas with NO x emission intensities greater than ~ 2 Mg h -1 produce statistically significant weak-wind signals in three-year average OMI data. From 2005 to 2014, we estimate that total OMI-derived NO x emissions over all selected US urban areas decreased by 49%, consistent with reductions of 43, 47, 49, and 44% in the total bottom-up NO x emissions, the sum of weak-wind OMI NO 2 columns, the total weak-wind OMI NO 2 burdens, and the averaged NO 2 concentrations, respectively, reflecting the success of NO x control programs for both mobile sources and power plants. The decrease rates of these NO x-related quantities are found to be faster (i.e., -6.8 to -9.3% yr -1) before 2010 and slower (i.e., -3.4 to -4.9% yr -1) after 2010. For individual urban areas, we calculate the R values of pair-wise trends among the OMI-derived and bottom-up NO x emissions, the weak-wind OMI NO 2 burdens, and ground-based NO 2 measurements; and high correlations are found for all urban areas (median R = 0.8), particularly large ones ( R up to 0.97). The results of the current work indicate that using the EMG method and considering the wind effect, the OMI data allow for the estimation of NO x emissions from urban areas and the direct constraint of emission trends with reasonable accuracy.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lu, Z.; Streets, D. G.; de Foy, B.
Satellite remote sensing of tropospheric nitrogen dioxide (NO 2) can provide valuable information for estimating surface nitrogen oxides (NO x) emissions. Using an exponentially modified Gaussian (EMG) method and taking into account the effect of wind on observed NO 2 distributions, we estimate 3-year moving-average emissions of summertime NO x from 35 US (United States) urban areas directly from NO 2 retrievals of the Ozone Monitoring Instrument (OMI) during 2005–2014. Following conclusions of previous studies that the EMG method provides robust and accurate emission estimates under strong-wind conditions, we derive top-down NO x emissions from each urban area by applyingmore » the EMG method to OMI data with wind speeds greater than 3–5 m s -1. Meanwhile, we find that OMI NO 2 observations under weak-wind conditions (i.e., < 3 m s −1) are qualitatively better correlated to the surface NO x source strength in comparison to all-wind OMI maps; therefore, we use them to calculate the satellite-observed NO 2 burdens of urban areas and compare with NO x emission estimates. The EMG results show that OMI-derived NO x emissions are highly correlated ( R > 0.93) with weak-wind OMI NO 2 burdens as well as with bottom-up NO x emission estimates over 35 urban areas, implying a linear response of the OMI observations to surface emissions under weak-wind conditions. The simultaneous EMG-obtained effective NO 2 lifetimes (~ 3.5 ± 1.3 h), however, are biased low in comparison to the summertime NO 2 chemical lifetimes. In general, isolated urban areas with NO x emission intensities greater than ~ 2 Mg h -1 produce statistically significant weak-wind signals in 3-year average OMI data. From 2005 to 2014, we estimate that total OMI-derived NO x emissions over all selected US urban areas decreased by 49 %, consistent with reductions of 43, 47, 49, and 44 % in the total bottom-up NO x emissions, the sum of weak-wind OMI NO 2 columns, the total weak-wind OMI NO 2 burdens, and the averaged NO 2 concentrations, respectively, reflecting the success of NO x control programs for both mobile sources and power plants. The decrease rates of these NO x-related quantities are found to be faster (i.e., -6.8 to -9.3 % yr −1) before 2010 and slower (i.e., -3.4 to -4.9 % yr −1) after 2010. For individual urban areas, we calculate the R values of pair-wise trends among the OMI-derived and bottom-up NO x emissions, the weak-wind OMI NO 2 burdens, and ground-based NO 2 measurements, and high correlations are found for all urban areas (median R= 0.8), particularly large ones ( R up to 0.97). The results of the current work indicate that using the EMG method and considering the wind effect, the OMI data allow for the estimation of NO x emissions from urban areas and the direct constraint of emission trends with reasonable accuracy.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lu, Z.; Streets, D. G.; de Foy, B.
Satellite remote sensing of tropospheric nitrogen dioxide (NO 2) can provide valuable information for estimating surface nitrogen oxides (NO x) emissions. Using an exponentially-modified Gaussian (EMG) method and taking into account the effect of wind on observed NO 2 distributions, we estimate three-year moving-average emissions of summertime NO x from 35 US urban areas directly from NO 2 retrievals of the Ozone Monitoring Instrument (OMI) during 2005–2014. Following the conclusions of previous studies that the EMG method provides robust and accurate emission estimates under strong-wind conditions, we derive top-down NO x emissions from each urban area by applying the EMGmore » method to OMI data with wind speeds greater than 3–5 m s -1. Meanwhile, we find that OMI NO 2 observations under weak-wind conditions (i.e., < 3 m s -1) are qualitatively better correlated with the surface NO x source strength in comparison to all-wind OMI maps; and therefore we use them to calculate the satellite-observed NO 2 burdens of urban areas and compare with NO x emission estimates. The EMG results show that OMI-derived NO x emissions are highly correlated ( R > 0.93) with weak-wind OMI NO 2 burdens as well as bottom-up NO x emission estimates over 35 urban areas, implying a linear response of the OMI observations to surface emissions under weak-wind conditions. The simultaneous, EMG-obtained, effective NO 2 lifetimes (~3.5 ± 1.3 h), however, are biased low in comparison to the summertime NO 2 chemical lifetimes. In general, isolated urban areas with NO x emission intensities greater than ~ 2 Mg h -1 produce statistically significant weak-wind signals in three-year average OMI data. From 2005 to 2014, we estimate that total OMI-derived NO x emissions over all selected US urban areas decreased by 49%, consistent with reductions of 43, 47, 49, and 44% in the total bottom-up NO x emissions, the sum of weak-wind OMI NO 2 columns, the total weak-wind OMI NO 2 burdens, and the averaged NO 2 concentrations, respectively, reflecting the success of NO x control programs for both mobile sources and power plants. The decrease rates of these NO x-related quantities are found to be faster (i.e., -6.8 to -9.3% yr -1) before 2010 and slower (i.e., -3.4 to -4.9% yr -1) after 2010. For individual urban areas, we calculate the R values of pair-wise trends among the OMI-derived and bottom-up NO x emissions, the weak-wind OMI NO 2 burdens, and ground-based NO 2 measurements; and high correlations are found for all urban areas (median R = 0.8), particularly large ones ( R up to 0.97). The results of the current work indicate that using the EMG method and considering the wind effect, the OMI data allow for the estimation of NO x emissions from urban areas and the direct constraint of emission trends with reasonable accuracy.« less
Convective Heat Transfer at the Martian Boundary Layer, Measurement and Model
NASA Astrophysics Data System (ADS)
Tomás Soria-Salinas, Álvaro; Zorzano-Mier, María Paz; Martín-Torres, Javier
2016-04-01
We present a measuring concept to measure the convective heat transfer coefficient h near a spacecraft operating on the surface of Mars. This coefficient can be used to derive the speed of the wind and direction, and to detect its modulations. This measuring concept will be used in the instrument HABIT (HabitAbility: Brines, Irradiance and Temperature) for the Surface Platform of ExoMars 2018 (ESA-Roscosmos). The method is based on the use of 3 Resistance Temperature Thermodetectors (RTD) that measure the temperature at 3 locations along the axial direction of a rod of length L: at the base of the rod, Tb, an intermediate point x = L/n, TLn, and the tip,Ta. This sensing fin is called the Air Temperature Sensor (ATS). HABIT shall incorporate three ATS, oriented in perpendicular directions and thus exposed to wind in a different way. Solving these equations for each ATS, provides three fluid temperatures Tf as well as three m parameters that are used to derive three heat transfer coefficients h. This magnitude is dependent on the local forced convection and therefore is sensitive to the direction, speed and modulations of the wind. The m-parameter has already proven to be useful to investigate the convective activity at the planetary boundary layer on Mars and to determine the height of the planetary boundary layer. This method shall be presented here by: 1) Introducing the mathematical concepts for the retrieval of the m-parameter; 2) performing ANSYS simulations of the fluid dynamics and the thermal environment around the ATS-rods under wind conditions in Mars; and 3) comparing the method by using data measurements from the Rover Environmental Monitoring Station (REMS) at the Curiosity rover of NASA's Mars Science Laboratory project currently operating on Mars. The results shall be compared with the wind sensor measurements of three years of REMS operation on Mars.
Observations of the marine environment from spaceborne side-looking real aperture radars
NASA Technical Reports Server (NTRS)
Kalmykov, A. I.; Velichko, S. A.; Tsymbal, V. N.; Kuleshov, Yu. A.; Weinman, J. A.; Jurkevich, I.
1993-01-01
Real aperture, side looking X-band radars have been operated from the Soviet Cosmos-1500, -1602, -1766 and Ocean satellites since 1984. Wind velocities were inferred from sea surface radar scattering for speeds ranging from approximately 2 m/s to those of hurricane proportions. The wind speeds were within 10-20 percent of the measured in situ values, and the direction of the wind velocity agreed with in situ direction measurements within 20-50 deg. Various atmospheric mesoscale eddies and tropical cyclones were thus located, and their strengths were inferred from sea surface reflectivity measurements. Rain cells were observed over both land and sea with these spaceborne radars. Algorithms to retrieve rainfall rates from spaceborne radar measurements were also developed. Spaceborne radars have been used to monitor various marine hazards. For example, information derived from those radars was used to plan rescue operations of distressed ships trapped in sea ice. Icebergs have also been monitored, and oil spills were mapped. Tsunamis produced by underwater earthquakes were also observed from space by the radars on the Cosmos 1500 series of satellites. The Cosmos-1500 satellite series have provided all weather radar imagery of the earths surface to a user community in real time by means of a 137.4 MHz Automatic Picture Transmission channel. This feature enabled the radar information to be used in direct support of Soviet polar maritime activities.
NASA Astrophysics Data System (ADS)
Sornig, M.; Sonnabend, G.; Stupar, D.; Kroetz, P.; Nakagawa, H.; Mueller-Wodarg, I.
2013-07-01
Investigations on the dynamical structure of Venus upper atmosphere were carried out by infrared heterodyne Doppler wind measurements shortly before and after the venusian inferior conjunction on March 27, 2009. The Cologne Tuneable Heterodyne Infrared Spectrometer (THIS) has been installed at the McMath-Pierce Solar Telescope on Kitt Peak, Arizona, USA to detect non-local thermodynamical equilibrium (non-LTE) emission lines of CO2 at a wavelength of 10.5 μm. These solar induced emission lines originate at a pressure level of 1 μbar corresponding to an altitude level of 110 ± 10 km. From the frequency position of the spectral lines we directly derived Doppler winds without any additional information. The high spatial resolution with a field-of-view of 1.6 arcsec compared to an apparent diameter of Venus of 57 arcsec allowed to collect information at different latitudes of the illuminated planet. Line of sight wind velocities between 189 ± 11 m/s and 41 ± 14 m/s were detected along the illuminated evening (western) limb in March and along the bright morning (eastern) limb in April. Single observations at the evening and morning terminator do not show a systematic difference of wind velocities. The measured wind is uniform at low and mid latitudes. In March a lower mean value of 134 ± 1 m/s was found compared to April where we retrieved a value of 141 ± 1 m/s. Poleward of a latitude of 50° we observed a strong decrease in wind speed down to 41 ± 14 m/s. In addition to the pure line of sight wind velocities we used the observing geometry for additional interpretations regarding a global flow from the subsolar point to the antisolar point (SS-AS flow) and a global retrograde superrotational zonal wind (RSZ). The estimations indicate a dominating SS-AS flow with a maximum wind velocity at the terminator of 138 ± 1 m/s at low and mid latitudes. No indication of a global RSZ component was found. Corresponding wind values for the latter yield wind velocities in the zonal direction between+20 m/s (retrograde direction) and -20 m/s (prograde direction) at different latitudes. An inversion of the wind direction is in disagreement with a global RSZ behavior. The comprehensive dataset was used to investigate short term wind variabilities and changes up to 58 m/s within few days were found. We included a detailed comparison of concurrent single position observations with sub-millimeter measurements (Clancy, R.T., Sandor, B.J., Moriarty-Schieven, G. [2012]. Icarus 217, 794-812) suggesting a cross terminator gradient at certain latitudes. A detailed interpretation of the observed time dependent behavior by global circulation models including wave activities will be addressed in future work.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dagher, Habib; Viselli, Anthony; Goupee, Andrew
Volume II of the Final Report for the DeepCwind Consortium National Research Program funded by US Department of Energy Award Number: DE-EE0003278.001 summarizes the design, construction, deployment, testing, numerical model validation, retrieval, and post-deployment inspection of the VolturnUS 1:8-scale floating wind turbine prototype deployed off Castine, Maine on June 2nd, 2013. The 1:8 scale VolturnUS design served as a de-risking exercise for a commercial multi-MW VolturnUS design. The American Bureau of Shipping Guide for Building and Classing Floating Offshore Wind Turbine Installations was used to design the prototype. The same analysis methods, design methods, construction techniques, deployment methods, mooring, andmore » anchoring planned for full-scale were used. A commercial 20kW grid-connected turbine was used and was the first offshore wind turbine in the US.« less
Spaceborne GNSS reflectometry for ocean winds: First results from the UK TechDemoSat-1 mission
NASA Astrophysics Data System (ADS)
Foti, Giuseppe; Gommenginger, Christine; Jales, Philip; Unwin, Martin; Shaw, Andrew; Robertson, Colette; Roselló, Josep
2015-07-01
First results are presented for ocean surface wind speed retrieval from reflected GPS signals measured by the low Earth orbiting UK TechDemoSat-1 satellite (TDS-1). Launched in July 2014, TDS-1 provides the first new spaceborne Global Navigation Satellite System-Reflectometry (GNSS-R) data since the pioneering UK-Disaster Monitoring Mission (UK-DMC) experiment in 2003. Examples of onboard-processed delay-Doppler maps reveal excellent data quality for winds up to 27.9 m/s. Collocated Advanced Scatterometer (ASCAT) winds are used to develop and evaluate a wind speed algorithm based on signal-to-noise ratio (SNR) and the bistatic radar equation. For SNRs greater than 3 dB, wind speed is retrieved without bias and a precision around 2.2 m/s between 3 and 18 m/s even without calibration. Exploiting lower SNR signals, however, requires good knowledge of the antenna beam, platform attitude, and instrument gain setting. This study demonstrates the capabilities of low-cost, low-mass, and low-power GNSS-R receivers ahead of their launch on the NASA Cyclone GNSS (CYGNSS) constellation in 2016.
NASA Astrophysics Data System (ADS)
Su, C. L.; Chen, H. C.; Chu, Y. H.; Chung, M. Z.; Kuong, R. M.; Lin, T. H.; Tzeng, K. J.; Wang, C. Y.; Wu, K. H.; Yang, K. F.
2014-08-01
The neutral winds in the mesosphere and lower thermosphere (MLT) region are measured by a newly installed meteor trail detection system (or meteor radar) at Chung-Li, Taiwan, for the period 10-25 November 2012, which includes the Leonid meteor shower period. In this study, we use the 3 m field-aligned plasma irregularities in the sporadic E (Es) region in combination with the International Geomagnetic Reference Field model to calibrate the system phase biases such that the true positions of the meteor trails can be correctly determined with interferometry technique. The horizontal wind velocities estimated from the radial velocities of the meteor trails and their locations by using a least squares method show that the diurnal tide dominates the variation of the MLT neutral wind with time over Chung-Li, which is in good agreement with the horizontal wind model (HWM07) prediction. However, harmonic analysis reveals that the amplitudes of the mean wind, diurnal, and semidiurnal tides of the radar-measured winds in height range 82-100 km are systematically larger than those of the model-predicted winds by up to a factor of 3. A comparison shows that the overall pattern of the height-local time distribution of the composite radar-measured meteor wind is, in general, consistent with that of the TIMED Doppler Interferometer-observed wind, which is dominated by a diurnal oscillation with downward phase progression at a rate of about 1.3 km/h. The occurrences of the Es layers retrieved from fluctuations of the amplitude and excess phase of the GPS signal received by the FORMOSAT-3/COSMIC satellites during the GPS radio occultation (RO) process are compared with the shear zones of the radar-measured meteor wind and HWM07 wind. The result shows that almost all of the RO-retrieved Es layers occur within the wind shear zones that favor the Es layer formation based on the wind shear theory, suggesting that the primary physical process responsible for the Es layer events retrieved from the scintillations of the GPS RO signal is very likely the plasma convergence effect of the neutral wind shear.
NASA Astrophysics Data System (ADS)
Burrage, D. M.; Wesson, J. C.; Wang, D. W.; Garrison, J. L.; Zhang, H.
2017-12-01
The launch of the Cyclone Global Navigation Satellite System (CYGNSS) constellation of 8 microsats carrying GPS L-band reflectometers on 15 Dec., 2016, and continued operation of the L-band radiometer on the European Space Agency (ESA) Soil Moisture and Ocean Salinity (SMOS) satellite, allow these complementary technologies to coincidentally retrieve Ocean surface roughness (Mean Square Slope, MSS), Surface Wind speed (WSP), and Sea Surface Salinity (SSS). The Carolina Offshore (Caro) airborne experiment was conducted jointly by NRL SSC and Purdue University from 7-11 May, 2017 with the goal of under-flying CYGNSS and SMOS and overflying NOAA buoys, to obtain high-resolution reflectometer and radiometer data for combined retrieval of MSS, SSS and WSP on the continental shelf. Airborne instruments included NRL's Salinity Temperature and Roughness Remote Scanner (STARRS) L-, C- and IR-band radiometer system, and a 4-channel dual-pol L-band (GPS) and S-band (XM radio) reflectometer, built by Purdue University. Flights either crossed NOAA buoys on various headings, or intersected with specular point ground tracks at predicted CYGNSS overpass times. Prevailing winds during Caro were light to moderate (1-8 m/s), so specular returns dominated the reflectometer Delay Doppler Maps (DDMs), and MSS was generally low. In contrast, stronger winds (1-12 m/s) and rougher seas (wave heights 1-5 m) were experienced during the preceding Maine Offshore (Maineo) experiment in March, 2016. Several DDM observables were used to retrieve MSS and WSP, and radiometer brightness temperatures produced Sea Surface Temperature (SST), SSS and also WSP estimates. The complementary relationship of Kirchoff's formula e+r=1, between radiometric emissivity, e, and reflectivity, r, was exploited to seek consistent estimates of MSS, and use it to correct the SSS retrievals for sea surface roughness effects. The relative performance and utility of the various airborne and satellite retrieval algorithms were assessed, and the coincident buoy, aircraft and satellite retrievals of MSS, WSP and SSS were compared. During Caro WSP from the different instruments generally agreed. Some anomalously high wind retrievals found here and elsewhere in current CYGNSS Level 2 data may yield to the science team's recent L1 calibration revision.
NASA Technical Reports Server (NTRS)
Uhlhorn, Eric; Atlas, Robert; Black, Peter; Buckley, Courtney; Chen, Shuyi; El-Nimri, Salem; Hood, Robbie; Johnson, James; Jones, Linwood; Miller, Timothy;
2009-01-01
The Hurricane Imaging Radiometer (HIRAD) is a new airborne microwave remote sensor currently under development to enhance real-time hurricane ocean surface wind observations. HIRAD builds on the capabilities of the Stepped Frequency Microwave Radiometer (SFMR), which now operates on NOAA P-3, G-4, and AFRC C-130 aircraft. Unlike the SFMR, which measures wind speed and rain rate along the ground track directly beneath the aircraft, HIRAD will provide images of the surface wind and rain field over a wide swath (approximately 3 times the aircraft altitude). To demonstrate potential improvement in the measurement of peak hurricane winds, we present a set of Observing System Simulation Experiments (OSSEs) in which measurements from the new instrument as well as those from existing platforms (air, surface, and space-based) are simulated from the output of a high-resolution (approximately 1.7 km) numerical model. Simulated retrieval errors due to both instrument noise as well as model function accuracy are considered over the expected range of incidence angles, wind speeds and rain rates. Based on numerous simulated flight patterns and data source combinations, statistics are developed to describe relationships between the observed and true (from the model s perspective) peak wind speed. These results have implications for improving the estimation of hurricane intensity (as defined by the peak sustained wind anywhere in the storm), which may often go un-observed due to sampling limitations.
Towards an Optimal Noise Versus Resolution Trade-Off in Wind Scatterometry
NASA Technical Reports Server (NTRS)
Williams, Brent A.
2011-01-01
This paper approaches the noise versus resolution trade-off in wind scatterometry from a field-wise retrieval perspective. Theoretical considerations are discussed and practical implementation using a MAP estimator is applied to the Sea-Winds scatterometer. The approach is compared to conventional approaches as well as numerical weather predictions. The new approach incorporates knowledge of the wind spectrum to reduce the impact of components of the wind signal that are expected to be noisy.
NASA Astrophysics Data System (ADS)
Panahifar, Hossein; Khalesifard, Hamid
2018-04-01
The vertical structure of the atmospheric boundary layer (ABL) has been studied by use of a depolarized LiDAR over Tehran, Iran. The boundary layer height (BLH) remains under 1km, and its retrieval from LiDAR have been compared with sonding measurements and meteorological model outputs. It is also shown that the wind speed and direction as well as topography lead to the persistence of air pollution in Tehran. The situation aggravate in fall and winter due to temperature inversion.
A New 1DVAR Retrieval for AMSR2 and GMI: Validation and Sensitivites
NASA Astrophysics Data System (ADS)
Duncan, D.; Kummerow, C. D.
2015-12-01
A new non-raining retrieval has been developed for microwave imagers and applied to the GMI and AMSR2 sensors. With the Community Radiative Transfer Model (CRTM) as the forward model for the physical retrieval, a 1-dimensional variational method finds the atmospheric state which minimizes the difference between observed and simulated brightness temperatures. A key innovation of the algorithm development is a method to calculate the sensor error covariance matrix that is specific to the forward model employed and includes off-diagonal elements, allowing the algorithm to handle various forward models and sensors with little cross-talk. The water vapor profile is resolved by way of empirical orthogonal functions (EOFs) and then summed to get total precipitable water (TPW). Validation of retrieved 10m wind speed, TPW, and sea surface temperature (SST) is performed via comparison with buoys and radiosondes as well as global models and other remotely sensed products. In addition to the validation, sensitivity experiments investigate the impact of ancillary data on the under-constrained retrieval, a concern for climate data records that strive to be independent of model biases. The introduction of model analysis data is found to aid the algorithm most at high frequency channels and affect TPW retrievals, whereas wind and cloud water retrievals show little effect from ingesting further ancillary data.
Hurricane Imaging Radiometer (HIRAD) Wind Speed Retrieval Assessment with Dropsondes
NASA Technical Reports Server (NTRS)
Cecil, Daniel J.; Biswas, Sayak K.
2017-01-01
Map surface wind speed over wide swath (approximately 50-60 km, for aircraft greater than FL600) in hurricanes. Provide research data for understanding hurricane structure, and intensity change. Enable improved forecasts, warnings, and decision support.
NASA Technical Reports Server (NTRS)
Pandey, Prem C.
1987-01-01
The retrieval of ocean-surface wind speed from different channel combinations of Seasat SMMR measurements is demonstrated. Wind speeds derived using the best two channel subsets (10.6 H and 18.0 V) were compared with in situ data collected during the Joint Air-Sea Interaction (JASIN) experiment and an rms difference of 1.5 m/s was found. Global maps of wind speed generated with the present algorithm show that the averaged winds are arranged in well-ordered belts.
AB INITIO calculation of the electromigration wind valence of interstitial hydrogen in f.c.c metals
NASA Astrophysics Data System (ADS)
van Ek, J.; Lodder, A.
1990-02-01
Calculated electromigration wind valences, obtained within a KKR-Green function description, are presented. It is shown that the electromigration wind valence of hydrogen along different migration paths in Cu, Ag and Pd can be calculated including charge transfer effects in the impurity cluster. A nice procedure for retrieving the scalar character of the wind valence in an f.c.c metal introduces an explanation for the isotope effect in the wind valence.
NASA Astrophysics Data System (ADS)
Schreier, M. M.
2017-12-01
The launch of CYGNSS (Cyclone Global Navigation Satellite System) has added an interesting component to satellite observations: it can provide wind speeds in the tropical area with a high repetition rate. Passive microwave sounders that are overpassing the same region can benefit from this information, when it comes to the retrieval of temperature or water profiles: the uncertainty about wind speeds has a strong impact on emissivity and reflectivity calculations with respect to surface temperature. This has strong influences on the uncertainty of retrieval of temperature and water content, especially under extreme weather conditions. Adding CYGNSS information to the retrieval can help to reduce errors and provide a significantly better sounder retrieval. Based on observations during Hurricane Harvey, we want to show the impact of CYGNSS data on the retrieval of passive microwave sensors. We will show examples on the impact on the retrieval from polar orbiting instruments, like the Advanced Technology Microwave Sounder (ATMS) and AMSU-A/B on NOAA-18 and 19. In addition we will also show the impact on retrievals from HAMSR (High Altitude MMIC Sounding Radiometer), which was flying on the Global Hawk during the EPOCH campaign. We will compare the results with other observations and estimate the impact of additional CYGNSS information on the microwave retrieval, especially on the impact in error and uncertainty reduction. We think, that a synergetic use of these different data sources could significantly help to produce better assimilation products for forecast assimilation.
Aurbach, Annika; Schmid, Baptiste; Liechti, Felix; Chokani, Ndaona; Abhari, Reza
2018-06-03
Crossing of large ecological barriers, such as mountains, is in terms of energy considered to be a demanding and critical step during bird migration. Besides forming a geographical barrier, mountains have a profound impact on the resulting wind flow. We use a novel framework of mathematical models to investigate the influences of wind and topography on nocturnal passerine bird behaviour, and to assess the energy costs for different flight strategies for crossing the Jura Mountains. The mathematical models include three biological models of bird behaviour: i) wind drift compensation; ii) adaptation of flight height for favourable winds; and, iii) avoidance of obstacles (cross over and/or circumvention of an obstacle following a minimum energy expenditure strategy), which are assessed separately and in combination. Further, we use a mesoscale weather model for high-resolution predictions of the wind fields. We simulate the broad front nocturnal passerine migration for autumn nights with peak migration intensities. The bird densities retrieved from a weather radar are used as the initial intensities and to specify the vertical distributions of the simulated birds. It is shown that migration over complex terrain represents the most expensive flight option in terms of energy expenditure, and wind is seen to be the main factor that influences the energy expenditure in the bird's preferred flight direction. Further, the combined effects of wind and orography lead to a high concentration of migratory birds within the favourable wind conditions of the Swiss lowlands and north of the Jura Mountains. Copyright © 2018 Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Miller, Timothy L.; James, M. W.; Roberts, J. B.; Buckley, C. D.; Biswas, S.; May, C.; Ruf, C. S.; Uhlhorn, E. W.; Atlas, R.; Black, P.;
2012-01-01
HIRAD flew on the WB-57 during NASA's GRIP (Genesis and Rapid Intensification Processes) campaign in August September of 2010. HIRAD is a new C-band radiometer using a synthetic thinned array radiometer (STAR) technology to obtain cross-track resolution of approximately 3 degrees, out to approximately 60 degrees to each side of nadir. By obtaining measurements of emissions at 4, 5, 6, and 6.6 GHz, observations of ocean surface wind speed and rain rate can be retrieved. This technique has been used for many years by precursor instruments, including the Stepped Frequency Microwave Radiometer (SFMR), which has been flying on the NOAA and USAF hurricane reconnaissance aircraft for several years to obtain observations within a single footprint at nadir angle. Results from the flights during the GRIP campaign will be shown, including images of brightness temperatures, wind speed, and rain rate. Comparisons will be made with observations from other instruments on the GRIP campaign, for which HIRAD observations are either directly comparable or are complementary. Features such as storm eye and eyewall, location of storm wind and rain maxima, and indications of dynamical features such as the merging of a weaker outer wind/rain maximum with the main vortex may be seen in the data. Potential impacts on operational ocean surface wind analyses and on numerical weather forecasts will also be discussed.
Assessing Upper-Level Winds on Day-of-Launch
NASA Technical Reports Server (NTRS)
Bauman, William H., III; Wheeler, Mark M.
2012-01-01
On the day-or-launch. the 45th Weather Squadron Launch Weather Officers (LWOS) monitor the upper-level winds for their launch customers to include NASA's Launch Services Program (LSP). During launch operations, the payload launch team sometimes asks the LWO if they expect the upper level winds to change during the countdown but the LWOs did not have the capability to quickly retrieve or display the upper-level observations and compare them to the numerical weather prediction model point forecasts. The LWOs requested the Applied Meteorology Unit (AMU) develop a capability in the form of a graphical user interface (GUI) that would allow them to plot upper-level wind speed and direction observations from the Kennedy Space Center Doppler Radar Wind Profilers and Cape Canaveral Air Force Station rawinsondes and then overlay model point forecast profiles on the observation profiles to assess the performance of these models and graphically display them to the launch team. The AMU developed an Excel-based capability for the LWOs to assess the model forecast upper-level winds and compare them to observations. They did so by creating a GUI in Excel that allows the LWOs to first initialize the models by comparing the O-hour model forecasts to the observations and then to display model forecasts in 3-hour intervals from the current time through 12 hours.
Global Ocean Evaporation Increases Since 1960 in Climate Reanalyses: How Accurate Are They?
NASA Technical Reports Server (NTRS)
Robertson, Franklin R.; Roberts, Jason B.; Bosilovich, Michael G.
2016-01-01
AGCMs w/ Specified SSTs (AMIPs) GEOS-5, ERA-20CM Ensembles Incorporate best historical estimates of SST, sea ice, radiative forcing Atmospheric "weather noise" is inconsistent with specified SST. Instantaneous Sfc fluxes can be wrong sign (e.g. Indian Ocean Monsoon, high latitude oceans). Averaging over ensemble members helps isolate SST-forced signal. Reduced Observational Reanalyses: NOAA 20CR V2C, ERA-20C, JRA-55C Incorporate observed Sfc Press (20CR), Marine Winds (ERA-20C) and rawinsondes (JRA-55C) to recover much of true synoptic or weather w/o shock of new sat obs. Comprehensive Reanalyses (MERRA-2) Full suite of observational constraints- both conventional and remote sensing. But... substantial uncertainties owing to evolving satellite observing system. Multi-source Statistically Blended OAFlux, LargeYeager Blend reanalysis, satellite, and ocean buoy information. While climatological biases are removed, non-physical trends or variations in components remain. Satellite Retrievals GSSTF3, SeaFlux, HOAPS3... Global coverage. Retrieved near sfc wind speed, & humidity used with SST to drive accurate bulk aerodynamic flux estimates. Satellite inter-calibration, spacecraft pointing variations crucial. Short record ( late 1987-present). In situ Measurements ICOADS, IVAD, Res Cruises VOS and buoys offer direct measurements. Sparse data coverage (esp south of 30S. Changes in measurement techniques (e.g. shipboard anemometer height).
NASA Astrophysics Data System (ADS)
Boquet, M.; Cariou, J. P.; Lolli, S.; Sauvage, L.; Parmentier, R.
2009-09-01
To fully understand atmospheric dynamics, climate studies, energy transfer and weather prediction, the wind field is one of the most important atmospheric state variables. Studies indicate that a global determination of the tropospheric wind field to an accuracy of 0.5 m/s is critical for improved numerical weather forecasting. LEOSPHERE recently developed a long range compact, eye safe and transportable wind Lidar capable to fully determine locally the wind field in real time in the planetary boundary layer (PBL). The WLS70 is a new generation wind Lidar developed for meteorological applications. The Lidar is derived from the commercial Windcube™ widely used by the wind industry and has been modified increasing the range up to 2 km. In this paper are presented results of the inter comparison measurement campaigns EUCAARI, LUAMI and WAVES in which the WLS70 participated together with both up-to-date active and passive ground-based remote-sensing systems for providing high-quality meteorological parameters reference or ground-truth e.g. to satellite sensors. In May 2008, the first WLS70 prototype started retrieving vertical wind speed profiles during the EUCAARI campaign at Cabauw, the Netherlands. First results were very promising with vertical profiles up to 2km showing high frequency updrafts and downdrafts in the boundary layer. From November 2008 to January 2009, a WLS70 was deployed in Germany, together with an EZ Lidar™ ALS450, in the frame of the Lindenberg Upper Air Methods Intercomparison (LUAMI) campaign. During 62 days, the WLS70 Lidar retrieved 24/24 hours vertical profiles of the 3 wind components, putting in evidence wind shears and veers, as well as gusts and high frequency convective effects with the raise of the mixing layer or with incoming rain fronts. In-cloud and multilayer measurements are also available allowing a large range of additional investigations such as cloud-aerosol interactions or cloud droplet activation. From March to May 2009, LEOSPHERE deployed a WLS70 prototype unit at the Howard University Research Campus in Beltsville, Maryland, for the Water Vapor Validation Experiments (WAVES) from the initiative of the NOAA. The presence of numerous wind profilers, lidars and radio soundings was a perfect opportunity to test and improve this new compact and autonomous long range wind Lidar. The WLS70 showed Low Level Jet phenomena which have strong impact on air quality. During these intensive inter comparison campaigns the WLS70 Wind Lidar was validated against Lidars, Radars, Sodars and anemometers. The results show mostly a very good agreement between the instruments. Moreover, the measurements put in evidence both horizontal and vertical wind speed and wind direction vertical profiles and atmosphere structure (PBL height , clouds base) derived from Lidar data with good time resolution (10s/profile), good range resolution (50m from 100m to 2000m), and good velocity resolution (0.2m/s). Enhanced measurement range is now expected through new optical device.
NASA Technical Reports Server (NTRS)
Tzvi, G. C.
1986-01-01
A technique to deduce the virtual temperature from the combined use of the equations of fluid dynamics, observed wind and observed radiances is described. The wind information could come from ground-based sensitivity very high frequency (VHF) Doppler radars and/or from space-borne Doppler lidars. The radiometers are also assumed to be either space-borne and/or ground-based. From traditional radiometric techniques the vertical structure of the temperature can be estimated only crudely. While it has been known for quite some time that the virtual temperature could be deduced from wind information only, such techniques had to assume the infallibility of certain diagnostic relations. The proposed technique is an extension of the Gal-Chen technique. It is assumed that due to modeling uncertainties the equations of fluid dynamics are satisfied only in the least square sense. The retrieved temperature, however, is constrained to reproduce the observed radiances. It is shown that the combined use of the three sources of information (wind, radiances and fluid dynamical equations) can result in a unique determination of the vertical temperature structure with spatial and temporal resolution comparable to that of the observed wind.
Early meteorological records from Latin-America and the Caribbean during the 18th and 19th centuries
NASA Astrophysics Data System (ADS)
Domínguez-Castro, Fernando; Vaquero, José Manuel; Gallego, María Cruz; Farrona, Ana María Marín; Antuña-Marrero, Juan Carlos; Cevallos, Erika Elizabeth; Herrera, Ricardo García; de La Guía, Cristina; Mejía, Raúl David; Naranjo, José Manuel; Del Rosario Prieto, María; Ramos Guadalupe, Luis Enrique; Seiner, Lizardo; Trigo, Ricardo Machado; Villacís, Marcos
2017-11-01
This paper provides early instrumental data recovered for 20 countries of Latin-America and the Caribbean (Argentina, Bahamas, Belize, Brazil, British Guiana, Chile, Colombia, Costa Rica, Cuba, Ecuador, France (Martinique and Guadalupe), Guatemala, Jamaica, Mexico, Nicaragua, Panama, Peru, Puerto Rico, El Salvador and Suriname) during the 18th and 19th centuries. The main meteorological variables retrieved were air temperature, atmospheric pressure, and precipitation, but other variables, such as humidity, wind direction, and state of the sky were retrieved when possible. In total, more than 300,000 early instrumental data were rescued (96% with daily resolution). Especial effort was made to document all the available metadata in order to allow further post-processing. The compilation is far from being exhaustive, but the dataset will contribute to a better understanding of climate variability in the region, and to enlarging the period of overlap between instrumental data and natural/documentary proxies.
Domínguez-Castro, Fernando; Vaquero, José Manuel; Gallego, María Cruz; Farrona, Ana María Marín; Antuña-Marrero, Juan Carlos; Cevallos, Erika Elizabeth; Herrera, Ricardo García; de la Guía, Cristina; Mejía, Raúl David; Naranjo, José Manuel; Del Rosario Prieto, María; Ramos Guadalupe, Luis Enrique; Seiner, Lizardo; Trigo, Ricardo Machado; Villacís, Marcos
2017-11-14
This paper provides early instrumental data recovered for 20 countries of Latin-America and the Caribbean (Argentina, Bahamas, Belize, Brazil, British Guiana, Chile, Colombia, Costa Rica, Cuba, Ecuador, France (Martinique and Guadalupe), Guatemala, Jamaica, Mexico, Nicaragua, Panama, Peru, Puerto Rico, El Salvador and Suriname) during the 18th and 19th centuries. The main meteorological variables retrieved were air temperature, atmospheric pressure, and precipitation, but other variables, such as humidity, wind direction, and state of the sky were retrieved when possible. In total, more than 300,000 early instrumental data were rescued (96% with daily resolution). Especial effort was made to document all the available metadata in order to allow further post-processing. The compilation is far from being exhaustive, but the dataset will contribute to a better understanding of climate variability in the region, and to enlarging the period of overlap between instrumental data and natural/documentary proxies.
NASA Astrophysics Data System (ADS)
Schweitzer, S.; Kirchengast, G.; Proschek, V.
2011-10-01
LEO-LEO infrared-laser occultation (LIO) is a new occultation technique between Low Earth Orbit (LEO) satellites, which applies signals in the short wave infrared spectral range (SWIR) within 2 μm to 2.5 μm. It is part of the LEO-LEO microwave and infrared-laser occultation (LMIO) method that enables to retrieve thermodynamic profiles (pressure, temperature, humidity) and altitude levels from microwave signals and profiles of greenhouse gases and further variables such as line-of-sight wind speed from simultaneously measured LIO signals. Due to the novelty of the LMIO method, detailed knowledge of atmospheric influences on LIO signals and of their suitability for accurate trace species retrieval did not yet exist. Here we discuss these influences, assessing effects from refraction, trace species absorption, aerosol extinction and Rayleigh scattering in detail, and addressing clouds, turbulence, wind, scattered solar radiation and terrestrial thermal radiation as well. We show that the influence of refractive defocusing, foreign species absorption, aerosols and turbulence is observable, but can be rendered small to negligible by use of the differential transmission principle with a close frequency spacing of LIO absorption and reference signals within 0.5%. The influences of Rayleigh scattering and terrestrial thermal radiation are found negligible. Cloud-scattered solar radiation can be observable under bright-day conditions, but this influence can be made negligible by a close time spacing (within 5 ms) of interleaved laser-pulse and background signals. Cloud extinction loss generally blocks SWIR signals, except very thin or sub-visible cirrus clouds, which can be addressed by retrieving a cloud layering profile and exploiting it in the trace species retrieval. Wind can have a small influence on the trace species absorption, which can be made negligible by using a simultaneously retrieved or a moderately accurate background wind speed profile. We conclude that the set of SWIR channels proposed for implementing the LMIO method (Kirchengast and Schweitzer, 2011) provides adequate sensitivity to accurately retrieve eight trace species of key importance to climate and atmospheric chemistry (H2O, CO2, 13CO2, C18OO, CH4, N2O, O3, CO) in the upper troposphere/lower stratosphere region outside clouds under all atmospheric conditions. Two further species (HDO, H218O) can be retrieved in the upper troposphere.
Mao, Xinrui; Tian, Mengxi; Liu, Yi; Li, Bingcan; Jin, Yan; Wu, Yanhong; Guo, Chunyan
2017-01-01
Retrieval inhibition hypothesis of directed forgetting effects assumed TBF (to-be-forgotten) items were not retrieved intentionally, while selective rehearsal hypothesis assumed the memory representation of retrieved TBF (to-be-forgotten) items was weaker than TBR (to-be-remembered) items. Previous studies indicated that directed forgetting effects of item-cueing method resulted from selective rehearsal at encoding, but the mechanism of retrieval inhibition that affected directed forgetting of TBF (to-be-forgotten) items was not clear. Strategic retrieval is a control process allowing the selective retrieval of target information, which includes retrieval orientation and strategic recollection. Retrieval orientation via the comparison of tasks refers to the specific form of processing resulted by retrieval efforts. Strategic recollection is the type of strategies to recollect studied items for the retrieval success of targets. Using a "directed forgetting" paradigm combined with a memory exclusion task, our investigation of strategic retrieval in directed forgetting assisted to explore how retrieval inhibition played a role on directed forgetting effects. When TBF items were targeted, retrieval orientation showed more positive ERPs to new items, indicating that TBF items demanded more retrieval efforts. The results of strategic recollection indicated that: (a) when TBR items were retrieval targets, late parietal old/new effects were only evoked by TBR items but not TBF items, indicating the retrieval inhibition of TBF items; (b) when TBF items were retrieval targets, the late parietal old/new effect were evoked by both TBR items and TBF items, indicating that strategic retrieval could overcome retrieval inhibition of TBF items. These findings suggested the modulation of strategic retrieval on retrieval inhibition of directed forgetting, supporting that directed forgetting effects were not only caused by selective rehearsal, but also retrieval inhibition.
Mao, Xinrui; Tian, Mengxi; Liu, Yi; Li, Bingcan; Jin, Yan; Wu, Yanhong; Guo, Chunyan
2017-01-01
Retrieval inhibition hypothesis of directed forgetting effects assumed TBF (to-be-forgotten) items were not retrieved intentionally, while selective rehearsal hypothesis assumed the memory representation of retrieved TBF (to-be-forgotten) items was weaker than TBR (to-be-remembered) items. Previous studies indicated that directed forgetting effects of item-cueing method resulted from selective rehearsal at encoding, but the mechanism of retrieval inhibition that affected directed forgetting of TBF (to-be-forgotten) items was not clear. Strategic retrieval is a control process allowing the selective retrieval of target information, which includes retrieval orientation and strategic recollection. Retrieval orientation via the comparison of tasks refers to the specific form of processing resulted by retrieval efforts. Strategic recollection is the type of strategies to recollect studied items for the retrieval success of targets. Using a “directed forgetting” paradigm combined with a memory exclusion task, our investigation of strategic retrieval in directed forgetting assisted to explore how retrieval inhibition played a role on directed forgetting effects. When TBF items were targeted, retrieval orientation showed more positive ERPs to new items, indicating that TBF items demanded more retrieval efforts. The results of strategic recollection indicated that: (a) when TBR items were retrieval targets, late parietal old/new effects were only evoked by TBR items but not TBF items, indicating the retrieval inhibition of TBF items; (b) when TBF items were retrieval targets, the late parietal old/new effect were evoked by both TBR items and TBF items, indicating that strategic retrieval could overcome retrieval inhibition of TBF items. These findings suggested the modulation of strategic retrieval on retrieval inhibition of directed forgetting, supporting that directed forgetting effects were not only caused by selective rehearsal, but also retrieval inhibition. PMID:28900411
Bourlier, Christophe
2005-07-10
The emissivity of two-dimensional anisotropic rough sea surfaces with non-Gaussian statistics is investigated. The emissivity derivation is of importance for retrieval of the sea-surface temperature or equivalent temperature of a rough sea surface by infrared thermal imaging. The well-known Cox-Munk slope probability-density function, considered non-Gaussian, is used for the emissivity derivation, in which the skewness and the kurtosis (related to the third- and fourth-order statistics, respectively) are included. The shadowing effect, which is significant for grazing angles, is also taken into account. The geometric optics approximation is assumed to be valid, which means that the rough surface is modeled as a collection of facets reflecting locally the light in the specular direction. In addition, multiple reflections are ignored. Numerical results of the emissivity are presented for Gaussian and non-Gaussian statistics, for moderate wind speeds, for near-infrared wavelengths, for emission angles ranging from 0 degrees (nadir) to 90 degrees (horizon), and according to the wind direction. In addition, the emissivity is compared with both measurements and a Monte Carlo ray-tracing method.
Statistical Evaluation of VIIRS Ocean Color Products
NASA Astrophysics Data System (ADS)
Mikelsons, K.; Wang, M.; Jiang, L.
2016-02-01
Evaluation and validation of satellite-derived ocean color products is a complicated task, which often relies on precise in-situ measurements for satellite data quality assessment. However, in-situ measurements are only available in comparatively few locations, expensive, and not for all times. In the open ocean, the variability in spatial and temporal scales is longer, and the water conditions are generally more stable. We use this fact to perform extensive statistical evaluations of consistency for ocean color retrievals based on comparison of retrieved data at different times, and corresponding to various retrieval parameters. We have used the NOAA Multi-Sensor Level-1 to Level-2 (MSL12) ocean color data processing system for ocean color product data derived from the Visible Infrared Imaging Radiometer Suite (VIIRS). We show the results for statistical dependence of normalized water-leaving radiance spectra with respect to various parameters of retrieval geometry, such as solar- and sensor-zenith angles, as well as physical variables, such as wind speed, air pressure, ozone amount, water vapor, etc. In most cases, the results show consistent retrievals within the relevant range of retrieval parameters, showing a good performance with the MSL12 in the open ocean. The results also yield the upper bounds of solar- and sensor-zenith angles for reliable ocean color retrievals, and also show a slight increase of VIIRS-derived normalized water-leaving radiances with wind speed and water vapor concentration.
Solar wind structure out of the ecliptic plane over solar cycles
NASA Astrophysics Data System (ADS)
Sokol, J. M.; Bzowski, M.; Tokumaru, M.
2017-12-01
Sun constantly emits a stream of plasma known as solar wind. Ground-based observations of the solar wind speed through the interplanetary scintillations (IPS) of radio flux from distant point sources and in-situ measurements by Ulysses mission revealed that the solar wind flow has different characteristics depending on the latitude. This latitudinal structure evolves with the cycle of solar activity. The knowledge on the evolution of solar wind structure is important for understanding the interaction between the interstellar medium surrounding the Sun and the solar wind, which is responsible for creation of the heliosphere. The solar wind structure must be taken into account in interpretation of most of the observations of heliospheric energetic neutral atoms, interstellar neutral atoms, pickup ions, and heliospheric backscatter glow. The information on the solar wind structure is not any longer available from direct measurements after the termination of Ulysses mission and the only source of the solar wind out of the ecliptic plane is the IPS observations. However, the solar wind structure obtained from this method contains inevitable gaps in the time- and heliolatitude coverage. Sokół et al 2015 used the solar wind speed data out of the ecliptic plane retrieved from the IPS observations performed by Institute for Space-Earth Environmental Research (Nagoya University, Japan) and developed a methodology to construct a model of evolution of solar wind speed and density from 1985 to 2013 that fills the data gaps. In this paper we will present a refined model of the solar wind speed and density structure as a function of heliographic latitude updated by the most recent data from IPS observations. And we will discuss methods of extrapolation of the solar wind structure out of the ecliptic plane for the past solar cycles, when the data were not available, as well as forecasting for few years upward.
NASA Astrophysics Data System (ADS)
Wang, Feng; Yang, Dongkai; Zhang, Bo; Li, Weiqiang
2018-03-01
This paper explores two types of mathematical functions to fit single- and full-frequency waveform of spaceborne Global Navigation Satellite System-Reflectometry (GNSS-R), respectively. The metrics of the waveforms, such as the noise floor, peak magnitude, mid-point position of the leading edge, leading edge slope and trailing edge slope, can be derived from the parameters of the proposed models. Because the quality of the UK TDS-1 data is not at the level required by remote sensing mission, the waveforms buried in noise or from ice/land are removed by defining peak-to-mean ratio, cosine similarity of the waveform before wind speed are retrieved. The single-parameter retrieval models are developed by comparing the peak magnitude, leading edge slope and trailing edge slope derived from the parameters of the proposed models with in situ wind speed from the ASCAT scatterometer. To improve the retrieval accuracy, three types of multi-parameter observations based on the principle component analysis (PCA), minimum variance (MV) estimator and Back Propagation (BP) network are implemented. The results indicate that compared to the best results of the single-parameter observation, the approaches based on the principle component analysis and minimum variance could not significantly improve retrieval accuracy, however, the BP networks obtain improvement with the RMSE of 2.55 m/s and 2.53 m/s for single- and full-frequency waveform, respectively.
Global Observation of Planetary-Scale Waves in UARS HRDI and WINDII MLT Winds
NASA Technical Reports Server (NTRS)
Lieberman, Ruth
1999-01-01
The purpose of this study is to use examine planetary-scale motions in the UARS mesosphere and lower thermospheric data. The actual study was confined to HRDI winds and temperatures, since these observations were more continuous, and spanned the 60-120 km range. Three classes of waves were studied: fast equatorial Kelvin waves, nonmigrating tides, and the midlatitude 2-day wave. The purpose of the Kelvin wave and the 2-day wave studies was to test whether the waves significantly affect the mean flow. Such studies require high-quality spectral definitions in order to derive the wave heat and momentum flux divergence which can act in comination to drive the mean flow. Accordingly, HRDI winds from several special observing campaigns were used for analyses of fast (periods under 5 days) waves. The campaigns are characterized by continuous viewing by HRDI in 2 viewing directions, for periods of 10-12 days. Data sampled in this manner lend themselves quite well to "asynoptic spectral analysis", from which motions with periods as low as one day can be retrieved with relatively minimal aliasing.
NASA Technical Reports Server (NTRS)
Meissner, Thomas; Wentz, Frank J.
2006-01-01
The third Stokes parameter of ocean surface brightness temperatures measured by the WindSat instrument is sensitive to the rotation angle between the polarization vectors at the ocean surface and the instrument. This rotation angle depends on the spacecraft attitude (roll, pitch, yaw) as well as the Faraday rotation of the electromagnetic radiation passing through the Earth's ionosphere. Analyzing the WindSat antenna temperatures, we find biases in the third Stokes parameter as function of the along-scan position of up to 1.5 K in all feedhorns. This points to a misspecification of the reported spacecraft attitude. A single attitude correction of -0.16deg roll and 0.18deg pitch for the whole instrument eliminates all the biases. We also study the effect of Faraday rotation at 10.7 GHz on the accuracy of the third Stokes parameter and the sea surface wind direction retrieval and demonstrate how this error can be corrected using values from the International Reference Ionosphere for the total electron content when computing Faraday rotation.
Spectral analysis of meteorites ablated in a wind tunnel
NASA Astrophysics Data System (ADS)
Drouard, A.; Vernazza, P.; Loehle, S.; Gattacceca, J.; Zander, T.; Eberhart, M.; Meindl, A.; Oefele, R.; Vaubaillon, J.; Colas, F.
2017-09-01
Recently and for the very first time, experiments simulating vaporization of a meteorite sample were performed in a wind tunnel near Stuttgart with the specific aim to record emission spectra of the vaporized material. Using a high enthalpy air plasma flow for modeling an equivalent air friction of an entry speed of about 10 km/s, three meteorite types (H, CM and HED) and two meteoritical analogues (basalt and argillite) were ablated and high resolution spectra were recorded simultaneously. After the identification of all atomic lines, we per- formed a detailed study of our spectra using two approaches: (i) by direct comparison of multiplet in- tensities between the samples and (ii) by computation of a synthetic spectrum to constrain some physical parameters (temperature, elemental abundance). Finally, we compared our results to the elemental composition of our samples and we determined how much compositional information can be retrieved for a given meteor using visible sectroscopy.
NASA Technical Reports Server (NTRS)
Bromwich, David H.; Chen, Qiu-shi
2002-01-01
Observations of precipitation over Greenland are limited. Direct precipitation measurements for the whole ice sheet are impractical, and those in the coastal region have substantial uncertainty but may be correctable with some effort. However, the analyzed wind, geopotential height and moisture fields are available for recent years, and the precipitation is retrievable from these fields by a dynamic method. Based on recent Greenland precipitation from dynamic studies, several deficiencies in the precipitation spatial distributions from these dynamic methods were evaluated by Bromwich et al.
Cue generation and memory construction in direct and generative autobiographical memory retrieval.
Harris, Celia B; O'Connor, Akira R; Sutton, John
2015-05-01
Theories of autobiographical memory emphasise effortful, generative search processes in memory retrieval. However recent research suggests that memories are often retrieved directly, without effortful search. We investigated whether direct and generative retrieval differed in the characteristics of memories recalled, or only in terms of retrieval latency. Participants recalled autobiographical memories in response to cue words. For each memory, they reported whether it was retrieved directly or generatively, rated its visuo-spatial perspective, and judged its accompanying recollective experience. Our results indicated that direct retrieval was commonly reported and was faster than generative retrieval, replicating recent findings. The characteristics of directly retrieved memories differed from generatively retrieved memories: directly retrieved memories had higher field perspective ratings and lower observer perspective ratings. However, retrieval mode did not influence recollective experience. We discuss our findings in terms of cue generation and content construction, and the implication for reconstructive models of autobiographical memory. Copyright © 2015 Elsevier Inc. All rights reserved.
Correction of WindScat Scatterometric Measurements by Combining with AMSR Radiometric Data
NASA Technical Reports Server (NTRS)
Song, S.; Moore, R. K.
1996-01-01
The Seawinds scatterometer on the advanced Earth observing satellite-2 (ADEOS-2) will determine surface wind vectors by measuring the radar cross section. Multiple measurements will be made at different points in a wind-vector cell. When dense clouds and rain are present, the signal will be attenuated, thereby giving erroneous results for the wind. This report describes algorithms to use with the advanced mechanically scanned radiometer (AMSR) scanning radiometer on ADEOS-2 to correct for the attenuation. One can determine attenuation from a radiometer measurement based on the excess brightness temperature measured. This is the difference between the total measured brightness temperature and the contribution from surface emission. A major problem that the algorithm must address is determining the surface contribution. Two basic approaches were developed for this, one using the scattering coefficient measured along with the brightness temperature, and the other using the brightness temperature alone. For both methods, best results will occur if the wind from the preceding wind-vector cell can be used as an input to the algorithm. In the method based on the scattering coefficient, we need the wind direction from the preceding cell. In the method using brightness temperature alone, we need the wind speed from the preceding cell. If neither is available, the algorithm can work, but the corrections will be less accurate. Both correction methods require iterative solutions. Simulations show that the algorithms make significant improvements in the measured scattering coefficient and thus is the retrieved wind vector. For stratiform rains, the errors without correction can be quite large, so the correction makes a major improvement. For systems of separated convective cells, the initial error is smaller and the correction, although about the same percentage, has a smaller effect.
NASA Astrophysics Data System (ADS)
Mejia, C.; Badran, F.; Bentamy, A.; Crepon, M.; Thiria, S.; Tran, N.
1999-05-01
We have computed two geophysical model functions (one for the vertical and one for the horizontal polarization) for the NASA scatterometer (NSCAT) by using neural networks. These neural network geophysical model functions (NNGMFs) were estimated with NSCAT scatterometer σO measurements collocated with European Centre for Medium-Range Weather Forecasts analyzed wind vectors during the period January 15 to April 15, 1997. We performed a student t test showing that the NNGMFs estimate the NSCAT σO with a confidence level of 95%. Analysis of the results shows that the mean NSCAT signal depends on the incidence angle and the wind speed and presents the classical biharmonic modulation with respect to the wind azimuth. NSCAT σO increases with respect to the wind speed and presents a well-marked change at around 7 m s-1. The upwind-downwind amplitude is higher for the horizontal polarization signal than for vertical polarization, indicating that the use of horizontal polarization can give additional information for wind retrieval. Comparison of the σO computed by the NNGMFs against the NSCAT-measured σO show a quite low rms, except at low wind speeds. We also computed two specific neural networks for estimating the variance associated to these GMFs. The variances are analyzed with respect to geophysical parameters. This led us to compute the geophysical signal-to-noise ratio, i.e., Kp. The Kp values are quite high at low wind speed and decrease at high wind speed. At constant wind speed the highest Kp are at crosswind directions, showing that the crosswind values are the most difficult to estimate. These neural networks can be expressed as analytical functions, and FORTRAN subroutines can be provided.
Monitoring Snow Using Geostationary Satellite Retrievals During the SAAWSO Project
NASA Astrophysics Data System (ADS)
Rabin, Robert M.; Gultepe, Ismail; Kuligowski, Robert J.; Heidinger, Andrew K.
2016-09-01
The SAAWSO (Satellite Applications for Arctic Weather and SAR (Search And Rescue) Operations) field programs were conducted by Environment Canada near St. Johns, NL and Goose Bay, NL in the winters of 2012-13 and 2013-14, respectively. The goals of these programs were to validate satellite-based nowcasting products, including snow amount, wind intensity, and cloud physical parameters (e.g., cloud cover), over northern latitudes with potential applications to Search And Rescue (SAR) operations. Ground-based in situ sensors and remote sensing platforms were used to measure microphysical properties of precipitation, clouds and fog, radiation, temperature, moisture and wind profiles. Multi-spectral infrared observations obtained from Geostationary Operational Environmental Satellite (GOES)-13 provided estimates of cloud top temperature and height, phase (water, ice), hydrometer size, extinction, optical depth, and horizontal wind patterns at 15 min intervals. In this work, a technique developed for identifying clouds capable of producing high snowfall rates and incorporating wind information from the satellite observations is described. The cloud top physical properties retrieved from operational satellite observations are validated using measurements obtained from the ground-based in situ and remote sensing platforms collected during two precipitation events: a blizzard heavy snow storm case and a moderate snow event. The retrieved snow precipitation rates are found to be comparable to those of ground-based platform measurements in the heavy snow event.
NASA Astrophysics Data System (ADS)
Khaykin, S. M.; Hauchecorne, A.; Cammas, J.-P.; Marqestaut, N.; Mariscal, J.-F.; Posny, F.; Payen, G.; Porteneuve, J.; Keckhut, P.
2018-04-01
A unique Rayleigh-Mie Doppler lidar capable of wind measurements in the 5-50 km altitude range is operated routinely at La Reunion island (21° S, 55° E) since 2015. We evaluate instrument's capacities in capturing fine structures in stratospheric wind profiles and their temporal and spatial variability through comparison with collocated radiosoundings and ECMWF analysis. Perturbations in the wind velocity are used to retrieve gravity wave frequency spectrum.
NASA Astrophysics Data System (ADS)
Zhai, Xiaochun; Wu, Songhua; Liu, Bingyi; Song, Xiaoquan
2018-04-01
Shipborne wind observations by the Coherent Doppler Lidar (CDL) during the 2014 Yellow Sea campaign are presented to study the structure of the Marine Atmospheric Boundary Layer (MABL). This paper gives an analysis of the correction for horizontal and vertical wind measurement, demonstrating that the combination of the CDL with the attitude correction system enables the retrieval of wind profiles in the MABL during both anchored and cruising measurement with satisfied statistical uncertainties.
Scattering by Artificial Wind and Rain Roughened Water Surfaces at Oblique Incidences
NASA Technical Reports Server (NTRS)
Craeye, C.; Sobieski, P. W.; Bliven, L. F.
1997-01-01
Rain affects wind retrievals from scatterometric measurements of the sea surface. To depict the additional roughness caused by rain on a wind driven surface, we use a ring-wave spectral model. This enables us to analyse the rain effect on K(u) band scatterometric observations from two laboratory experiments. Calculations based on the small perturbation method provide good simulation of scattering measurements for the rain-only case, whereas for combined wind and rain cases, the boundary perturbation method is appropriate.
NASA Technical Reports Server (NTRS)
Berndt, Emily B.; Zavodsky, Bradley T; Jedlovec, Gary J.; Elmer, Nicholas J.
2013-01-01
Non-convective wind events commonly occur with passing extratropical cyclones and have significant societal and economic impacts. Since non-convective winds often occur in the absence of specific phenomena such as a thunderstorm, tornado, or hurricane, the public are less likely to heed high wind warnings and continue daily activities. Thus non-convective wind events result in as many fatalities as straight line thunderstorm winds. One physical explanation for non-convective winds includes tropopause folds. Improved model representation of stratospheric air and associated non-convective wind events could improve non-convective wind forecasts and associated warnings. In recent years, satellite data assimilation has improved skill in forecasting extratropical cyclones; however errors still remain in forecasting the position and strength of extratropical cyclones as well as the tropopause folding process. The goal of this study is to determine the impact of assimilating satellite temperature and moisture retrieved profiles from hyperspectral infrared (IR) sounders (i.e. Atmospheric Infrared Sounder (AIRS), Cross-track Infrared and Microwave Sounding Suite (CrIMSS), and Infrared Atmospheric Sounding Interferometer (IASI)) on the model representation of the tropopause fold and an associated high wind event that impacted the Northeast United States on 09 February 2013. Model simulations using the Advanced Research Weather Research and Forecasting Model (ARW) were conducted on a 12-km grid with cycled data assimilation mimicking the operational North American Model (NAM). The results from the satellite assimilation run are compared to a control experiment (without hyperspectral IR retrievals), North American Regional Reanalysis (NARR) reanalysis, and Rapid Refresh analyses.
NASA Astrophysics Data System (ADS)
Kandaurov, Alexander; Troitskaya, Yuliya; Caulliez, Guillemette; Sergeev, Daniil; Vdovin, Maxim
2014-05-01
Three examples of usage of high-speed video filming in investigation of wind-wave interaction in laboratory conditions is described. Experiments were carried out at the Wind - wave stratified flume of IAP RAS (length 10 m, cross section of air channel 0.4 x 0.4 m, wind velocity up to 24 m/s) and at the Large Air-Sea Interaction Facility (LASIF) - MIO/Luminy (length 40 m, cross section of air channel 3.2 x 1.6 m, wind velocity up to 10 m/s). A combination of PIV-measurements, optical measurements of water surface form and wave gages were used for detailed investigation of the characteristics of the wind flow over the water surface. The modified PIV-method is based on the use of continuous-wave (CW) laser illumination of the airflow seeded by particles and high-speed video. During the experiments on the Wind - wave stratified flume of IAP RAS Green (532 nm) CW laser with 1.5 Wt output power was used as a source for light sheet. High speed digital camera Videosprint (VS-Fast) was used for taking visualized air flow images with the frame rate 2000 Hz. Velocity air flow field was retrieved by PIV images processing with adaptive cross-correlation method on the curvilinear grid following surface wave profile. The mean wind velocity profiles were retrieved using conditional in phase averaging like in [1]. In the experiments on the LASIF more powerful Argon laser (4 Wt, CW) was used as well as high-speed camera with higher sensitivity and resolution: Optronics Camrecord CR3000x2, frame rate 3571 Hz, frame size 259×1696 px. In both series of experiments spherical 0.02 mm polyamide particles with inertial time 7 ms were used for seeding airflow. New particle seeding system based on utilization of air pressure is capable of injecting 2 g of particles per second for 1.3 - 2.4 s without flow disturbance. Used in LASIF this system provided high particle density on PIV-images. In combination with high-resolution camera it allowed us to obtain momentum fluxes directly from measured air velocity fluctuations. This data was then compared to values retrieved from wind speed profiles [2]. Visualization of water surface structure and droplets under strong wind conditions was carried out at the Wind - wave stratified flume of IAP RAS with high-speed camera NAC Memrecam HX-3 having a record-breaking performance at the moment. Shooting was performed at frame rates over 4500 Hz in 1080p resolution (1920 x 1080 px). Experimental study of droplets under strong winds has discovered a "bag breakup" droplet-production mechanism (observed previously in technical devices for liquid disintegration [3]). The investigation on this mechanism in the laboratory can improve the parameterization of heat fluxes in the models of hurricanes and intense sea storms. This work was supported by RFBR grants (project code 13-05-00865, 13-05-12093, 12-05-01064, 14-08-31740, 14-05-31415), President Grant for young scientists MK-3550.2014.5 and grant of the Government of the Russian Federation designed to support scientific research project implemented under the supervision of leading scientists at Russian institutions of higher learning (project code 11.G34.31.0048). References 1. Troitskaya Yu., D. Sergeev, O. Ermakova, G. Balandina (2011), Statistical Parameters of the Air Turbulent Boundary Layer over Steep Water Waves Measured by the PIV Technique, J. Phys. Oceanogr., 41, 1421-1454 2. Troitskaya, Y. I., D. A. Sergeev, A. A. Kandaurov, G. A. Baidakov, M. A. Vdovin, and V. I. Kazakov "Laboratory and theoretical modeling of air-sea momentum transfer under severe wind conditions" J. Geophys. Res., 117, C00J21, 2012. 3. Villermaux, E. (2007), Fragmentation, Ann. Review Fluid Mech., 39,419-446, doi:10.1146/annurev.fluid.39.050905.110214.
Ocean Winds and Turbulent Air-Sea Fluxes Inferred From Remote Sensing
NASA Technical Reports Server (NTRS)
Bourassa, Mark A.; Gille, Sarah T.; Jackson, Daren L.; Roberts, J. Brent; Wick, Gary A.
2010-01-01
Air-sea turbulent fluxes determine the exchange of momentum, heat, freshwater, and gas between the atmosphere and ocean. These exchange processes are critical to a broad range of research questions spanning length scales from meters to thousands of kilometers and time scales from hours to decades. Examples are discussed (section 2). The estimation of surface turbulent fluxes from satellite is challenging and fraught with considerable errors (section 3); however, recent developments in retrievals (section 3) will greatly reduce these errors. Goals for the future observing system are summarized in section 4. Surface fluxes are defined as the rate per unit area at which something (e.g., momentum, energy, moisture, or CO Z ) is transferred across the air/sea interface. Wind- and buoyancy-driven surface fluxes are called surface turbulent fluxes because the mixing and transport are due to turbulence. Examples of nonturbulent processes are radiative fluxes (e.g., solar radiation) and precipitation (Schmitt et al., 2010). Turbulent fluxes are strongly dependent on wind speed; therefore, observations of wind speed are critical for the calculation of all turbulent surface fluxes. Wind stress, the vertical transport of horizontal momentum, also depends on wind direction. Stress is very important for many ocean processes, including upper ocean currents (Dohan and Maximenko, 2010) and deep ocean currents (Lee et al., 2010). On short time scales, this horizontal transport is usually small compared to surface fluxes. For long-term processes, transport can be very important but again is usually small compared to surface fluxes.
Improving urban wind flow predictions through data assimilation
NASA Astrophysics Data System (ADS)
Sousa, Jorge; Gorle, Catherine
2017-11-01
Computational fluid dynamic is fundamentally important to several aspects in the design of sustainable and resilient urban environments. The prediction of the flow pattern for example can help to determine pedestrian wind comfort, air quality, optimal building ventilation strategies, and wind loading on buildings. However, the significant variability and uncertainty in the boundary conditions poses a challenge when interpreting results as a basis for design decisions. To improve our understanding of the uncertainties in the models and develop better predictive tools, we started a pilot field measurement campaign on Stanford University's campus combined with a detailed numerical prediction of the wind flow. The experimental data is being used to investigate the potential use of data assimilation and inverse techniques to better characterize the uncertainty in the results and improve the confidence in current wind flow predictions. We consider the incoming wind direction and magnitude as unknown parameters and perform a set of Reynolds-averaged Navier-Stokes simulations to build a polynomial chaos expansion response surface at each sensor location. We subsequently use an inverse ensemble Kalman filter to retrieve an estimate for the probabilistic density function of the inflow parameters. Once these distributions are obtained, the forward analysis is repeated to obtain predictions for the flow field in the entire urban canopy and the results are compared with the experimental data. We would like to acknowledge high-performance computing support from Yellowstone (ark:/85065/d7wd3xhc) provided by NCAR.
Evaluation and Validation of Operational RapidScat Ocean Surface Vector Winds
NASA Astrophysics Data System (ADS)
Chang, Paul; Jelenak, Zorana; Soisuvarn, Seubson; Said, Faozi; Sienkiewicz, Joseph; Brennan, Michael
2015-04-01
NASA launched RapidScat to the International Space Station (ISS) on September 21, 2014 on a two-year mission to support global monitoring of ocean winds for improved weather forecasting and climate studies. The JPL-developed space-based scatterometer is conically scanning and operates at ku-band (13.4 GHz) similar to QuikSCAT. The ISS-RapidScat's measurement swath is approximately 900 kilometers and covers the majority of the ocean between 51.6 degrees north and south latitude (approximately from north of Vancouver, Canada, to the southern tip of Patagonia) in 48 hours. RapidScat data are currently being posted at a spacing of 25 kilometers, but a version to be released in the near future will improve the postings to 12.5 kilometers. RapidScat ocean surface wind vector data are being provided in near real-time to NOAA, and other operational users such as the U.S. Navy, the European Organisation for the Exploitation of Meteorological Satellites (EUMETSAT), the Indian Space Research Organisation (ISRO) and the Royal Netherlands Meteorological Institute (KNMI). The quality of the RapidScat OSVW data are assessed by collocating the data in space and time with "truth" data. Typically "truth" data will include, but are not limited to, the NWS global forecast model analysis (GDAS) fields, buoys, ASCAT, WindSat, AMSR-2, and aircraft measurements during hurricane and winter storm experiment flights. The standard statistical analysis used for satellite microwave wind sensors will be utilized to characterize the RapidScat wind vector retrievals. The global numerical weather prediction (NWP) models are a convenient source of "truth" data because they are available 4 times/day globally which results in the accumulation of a large number of collocations over a relatively short amount of time. The NWP model fields are not "truth" in the same way an actual observation would be, however, as long as there are no systematic errors in the NWP model output the collocations will converge in the mean for winds between approximately 3-20 m/s. The NWP models typically do not properly resolve the very low and high wind speeds in part due to limitations of the spatial scales they can account for. Buoy measurements, aircraft-based measurements and other satellite retrievals can be more directly compared on a point-by-point basis. The RapidScat OSVW validation results will be presented and discussed. Utilization examples of these data in support of NOAA's marine weather forecasting and warning mission will also be presented and discussed.
NASA Technical Reports Server (NTRS)
Nelson, David L.; Diner, David J.; Thompson, Charles K.; Hall, Jeffrey R.; Rheingans, Brian E.; Garay, Michael J.; Mazzoni, Dominic
2010-01-01
MISR (Multi-angle Imaging SpectroRadiometer) INteractive eXplorer (MINX) is an interactive visualization program that allows a user to digitize smoke, dust, or volcanic plumes in MISR multiangle images, and automatically retrieve height and wind profiles associated with those plumes. This innovation can perform 9-camera animations of MISR level-1 radiance images to study the 3D relationships of clouds and plumes. MINX also enables archiving MISR aerosol properties and Moderate Resolution Imaging Spectroradiometer (MODIS) fire radiative power along with the heights and winds. It can correct geometric misregistration between cameras by correlating off-nadir camera scenes with corresponding nadir scenes and then warping the images to minimize the misregistration offsets. Plots of BRF (bidirectional reflectance factor) vs. camera angle for points clicked in an image can be displayed. Users get rapid access to map views of MISR path and orbit locations and overflight dates, and past or future orbits can be identified that pass over a specified location at a specified time. Single-camera, level-1 radiance data at 1,100- or 275- meter resolution can be quickly displayed in color using a browse option. This software determines the heights and motion vectors of features above the terrain with greater precision and coverage than previous methods, based on an algorithm that takes wind direction into consideration. Human interpreters can precisely identify plumes and their extent, and wind direction. Overposting of MODIS thermal anomaly data aids in the identification of smoke plumes. The software has been used to preserve graphical and textural versions of the digitized data in a Web-based database.
The GNSS Reflectometry Response to the Ocean Surface
NASA Astrophysics Data System (ADS)
Chang, Paul; Jelenak, Zorana; Soisuvarn, Seubson; Said, Faozi
2016-04-01
Global Navigation Satellite System - Reflectometry (GNSS-R) exploits signals of opportunity from the Global Navigation Satellite System (GNSS). GNSS transmitters continuously transmit navigation signals at L-band toward the earth's surface. The scattered power reflected off the earth's surface can be sensed by specially designed GNSS-R receivers. The reflected signal can then be used to glean information about the surface of the earth, such as ocean surface roughness, snow depth, sea ice extent, and soil moisture. The use of GNSS-R for ocean wind retrievals was first demonstrated from aircraft. On July 8 2014, the TechDemoSat-1 satellite (TDS-1) was launched by Surrey Satellite Technology, Ltd as a technology risk reduction mission into sun-synchronous orbit. This paper investigates the GNSS-R measurements collected by the Space GNSS Receiver-Remote Sensing Instrument (SGR-ReSI) on board the TDS-1 satellite. The sensitivity of the SGR-ReSI measurements to the ocean surface winds and waves are characterized. The effects of sea surface temperature, wind direction, and rain are also investigated. The SGR-ReSI measurements exhibited sensitivity through the entire range of wind speeds sampled in this dataset, up to 35 m/s. A significant dependence on the larger waves was observed for winds < 6 m/s. Additionally, an interesting dependence on SST was observed where the slope of the SGR-ReSI measurements is positive for winds < 5 m/s and reverses for winds > 5 m/s. There appeared to be very little wind direction signal, and investigation of the rain impacts found no apparent sensitivity in the data. These results are shown through the analysis of global statistics and examination of a few case studies. This released SGR-ReSI dataset provided the first opportunity to comprehensively investigate the sensitivity of satellite-based GNSS-R measurements to various ocean surface parameters. The upcoming NASA's Cyclone Global Navigation Satellite System (CYGNSS) satellite constellation will utilize a similar receiver to SGI-ReSI and thus this data provides valuable pre-launch knowledge for the CYGNSS mission.
Validation campaigns of a coherent Doppler Wind Lidar for PBL Continuous Profiling
NASA Astrophysics Data System (ADS)
Sauvage, Laurent; Cariou, Jean-Pierre; Boquet, Matthieu; Parmentier, Remy
2010-05-01
To fully understand atmospheric dynamics, climate studies, energy transfer and weather prediction, the wind field is one of the most important atmospheric state variables. Studies indicate that a global determination of the tropospheric wind field to an accuracy of 0.5 m/s is critical for improved numerical weather forecasting. LEOSPHERE recently developed a long range compact, eye safe and transportable wind Lidar capable to fully determine locally the wind field in real time in the planetary boundary layer (PBL). The WLS70 is a new generation wind Lidar developed for meteorological applications. The Lidar is derived from the commercial Windcube™ widely used by the wind industry and has been modified increasing the range up to 2 km. In this paper are presented results of the inter comparison measurement campaigns EUCAARI, LUAMI and WAVES in which the WLS70 participated together with both up-to-date active and passive ground-based remote-sensing systems for providing high-quality meteorological parameters reference or ground-truth e.g. to satellite sensors. In May 2008, the first WLS70 prototype started retrieving vertical wind speed profiles during the EUCAARI campaign at Cabauw, the Netherlands. First results were very promising with vertical profiles up to 2km showing high frequency updrafts and downdrafts in the boundary layer. From November 2008 to January 2009, a WLS70 was deployed in Germany, together with an EZ Lidar™ ALS450, in the frame of the Lindenberg Upper Air Methods Intercomparison (LUAMI) campaign. During 62 days, the WLS70 Lidar retrieved 24/24 hours vertical profiles of the 3 wind components, putting in evidence wind shears and veers, as well as gusts and high frequency convective effects with the raise of the mixing layer or with incoming rain fronts. In-cloud and multilayer measurements are also available allowing a large range of additional investigations such as cloud-aerosol interactions or cloud droplet activation. From March to May 2009, LEOSPHERE deployed a WLS70 prototype unit at the Howard University Research Campus in Beltsville, Maryland, for the Water Vapor Validation Experiments (WAVES) from the initiative of the NOAA. The presence of numerous wind profilers, lidars and radio soundings was a perfect opportunity to test and improve this new compact and autonomous long range wind Lidar. The WLS70 showed Low Level Jet phenomena which have strong impact on air quality. In July 2009, the WLS70 took its definitive configuration with a new optical device installed on it allowing enhanced measurement range. New measurements were done at PNNL in Richland, Washington, and NASA Langley in Hampton, Virginia. These results are now processed and will bring a further proof on reliability and accuracy. During these intensive inter comparison campaigns the WLS70 Wind Lidar was validated against Lidars, Radars, Sodars and anemometers. The results show mostly a very good agreement between the instruments. Moreover, the measurements put in evidence both horizontal and vertical wind speed and wind direction vertical profiles and atmosphere structure (PBL height , clouds base) derived from Lidar data with good time resolution (10s/profile), good range resolution (50m from 100m to 2000m), and good velocity accuracy.
Remote sensing of rain over the ocean
NASA Technical Reports Server (NTRS)
1978-01-01
Computer models of the microwave emission from the earth's atmosphere were used to study the problem of retrieving meteorological information from the SMMR instrument that will be flown on NIMBUS-G. Methods for retrieving rain rate, wind speed, cloud height, and ocean temperature are described for the case when the satellite is over the ocean.
USDA-ARS?s Scientific Manuscript database
Estimation of vegetation water content (VWC) by shortwave infrared remote sensing improves soil moisture retrievals. The largest unknown for predicting VWC is stem water content; for woodlands, stem water content is expected to be proportional to stem height. Airborne imagery were acquired and photo...
USDA-ARS?s Scientific Manuscript database
Estimation of vegetation water content (VWC) by shortwave infrared remote sensing improves soil moisture retrievals. The largest unknown for predicting VWC is stem water content, which is assumed to be allometrically related to canopy water content. From forest science, stem volume is linearly relat...
NASA Astrophysics Data System (ADS)
MacKenzie Laxague, Nathan Jean
Short ocean waves play a crucial role in the physical coupling between the ocean and the atmosphere. This is particularly true for gravity-capillary waves, waves of a scale (O(0.01-0.1) m) such that they are similarly restored to equilibrium by gravitational and interfacial tension (capillary) effects. These waves are inextricably linked to the turbulent boundary layer processes which characterize near-interfacial flows, acting as mediators of the momentum, gas, and heat fluxes which bear greatly on surface material transport, tropical storms, and climatic processes. The observation of these waves and the fluid mechanical phenomena which govern their behavior has long posed challenges to the would-be observer. This is due in no small part to the delicacy of centimeter-scale waves and the sensitivity of their properties to disruption via tactile measurement. With the ever-growing interest in satellite remote sensing, direct observations of short wave characteristics are needed along coastal margins. These zones are characterized by a diversity of physical processes which can affect the short-scale sea surface topography that is directly sensed via radar backscatter. In a related vein, these observations are needed to more fully understand the specific hydrodynamic relationship between young, wind-generated gravity-capillary waves and longer gravity waves. Furthermore, understanding of the full oceanic current profile is hampered by a lack of observations in the near-surface domain (z = O(0.01-0.1) m), where flows can differ greatly from those at depth. Here I present the development of analytical techniques for describing gravity-capillary ocean surface waves in order to better understand their role in the mechanical coupling between the atmosphere and ocean. This is divided amongst a number of research topics, each connecting short ocean surface waves to a physical forcing process via the transfer of momentum. One involves the examination of the sensitivity of short ocean surface waves to atmospheric forcing. Another is the exploration of long wave-short wave interactions and their effects on air-sea interaction vis-a-vis hydrodynamic modulation. The third and final topic is the characterization of the gravity-capillary regime of the wavenumber-frequency spectrum for the purpose of retrieving near-surface, wind-driven current. All of these fit as part of the desire to more fully describe the mechanism by which momentum is transferred across the air-sea interface and to discuss the consequences of this flux in the very near-surface layer of the ocean. Gravity-capillary waves are found to have an outsize share of ocean surface roughness, with short wave spectral peaks showing a connection to turbulent atmospheric stress. Short wave modulation is found to occur strongest at high wavenumbers at the lowest wind speeds, with peak modulation occurring immediately downwind of the long wave crest. Furthermore, short scale roughness enhancement is found to occur upwind of the long wave crest for increasing wind forcing magnitude. Observations of the near-surface current profile show that flows retrieved via this method agree well with the results of camera-tracked dye. Application of this method to data collected in the mouth of the Columbia River (MCR) indicates the presence of a near-surface current component that departs considerably from the tidal flow and orients into the wind stress direction. These observations demonstrate that wind speed-based parameterizations may not be sufficient to estimate wind drift and hold implications for the way in which surface material (e.g., debris or spilled oil) transport is estimated when atmospheric stress is of relatively high magnitude or is steered off the mean wind direction.
NASA Astrophysics Data System (ADS)
Garg, P.; Nesbitt, S. W.; Lang, T. J.; Chronis, T.; Thayer, J. D.; Hence, D. A.
2017-12-01
Cold pools generated in the wake of convective activity can enhance the surface sensible heat flux, latent heat flux, and also changes in evaporation out of, and fresh water flux into, the ocean. Recent studies have shown that over the open ocean, cold pool outflow boundaries and their intersections can organize and initiate a spectrum of deep convective clouds, which is a key driver of shallow and deep convection over conditionally-unstable tropical oceans. The primary goal of this study is to understand the structure and characteristics of cold pools over the tropical oceans using observations. With the idea that cold pools will have strong wind gradients at their boundaries, we use ASCAT vector wind retrievals. We identify regions of steep gradients in wind vectors as gradient features (GFs), akin to cold pools. Corresponding to these GFs, sensible and latent heat fluxes were calculated using the observed winds and background temperatures from MERRA-2 reanalysis. To evaluate the proposed technique, cold pools were observed using S-PolKa radar from the DYNAMO/AMIE field campaign in the Indian Ocean for the period of 1 October 2011 to 31 March 2012 and were compared with ASCAT GFs. To relate the thermodynamic and kinematic characteristics of observed and simulated cold pools, simulations were carried out on WRF on a 3-km domain explicitly. The areas of cold pools were identified in the models using virtual temperature (Tv), which is a direct measure of air density, while GFs were identified using model simulated winds. Quantitative measures indicate that GFs are highly correspondent with model-simulated cold pools. In global measurements of cold pools from 2007-2015, it is possible to examine the characteristics of GFs across all tropical ocean basins, and relate them to meteorological conditions, as well as the characteristics of the parent precipitation systems. Our results indicate that while there is a general relationship between the amount of precipitation and the number of cold pools, the largest cold pools exist over the Eastern Pacific basin, where the most stratiform rain is produced from oceanic MCSs. It is anticipated that improved understanding of cold pools, which are a primary triggering mechanism of oceanic shallow and deep convection, will improve prediction of this important component of the climate system.
Regression techniques for oceanographic parameter retrieval using space-borne microwave radiometry
NASA Technical Reports Server (NTRS)
Hofer, R.; Njoku, E. G.
1981-01-01
Variations of conventional multiple regression techniques are applied to the problem of remote sensing of oceanographic parameters from space. The techniques are specifically adapted to the scanning multichannel microwave radiometer (SMRR) launched on the Seasat and Nimbus 7 satellites to determine ocean surface temperature, wind speed, and atmospheric water content. The retrievals are studied primarily from a theoretical viewpoint, to illustrate the retrieval error structure, the relative importances of different radiometer channels, and the tradeoffs between spatial resolution and retrieval accuracy. Comparisons between regressions using simulated and actual SMMR data are discussed; they show similar behavior.
NASA Technical Reports Server (NTRS)
Berndt, E. B.; Zavodsky, B. T.; Jedlovec, G. J.; Molthan, A. L.
2013-01-01
Non-convective wind events commonly occur with passing extratropical cyclones and have significant societal and economic impacts. Since non-convective winds often occur in the absence of specific phenomena such as a thunderstorm, tornado, or hurricane, the public are less likely to heed high wind warnings and continue daily activities. Thus non-convective wind events result in as many fatalities as straight line thunderstorm winds. One physical explanation for non-convective winds includes tropopause folds. Improved model representation of stratospheric air and associated non-convective wind events could improve non-convective wind forecasts and associated warnings. In recent years, satellite data assimilation has improved skill in forecasting extratropical cyclones; however errors still remain in forecasting the position and strength of extratropical cyclones as well as the tropopause folding process. The goal of this study is to determine the impact of assimilating satellite temperature and moisture retrieved profiles from hyperspectral infrared (IR) sounders (i.e. Atmospheric Infrared Sounder (AIRS), Cross-track Infrared and Microwave Sounding Suite (CrIMSS), and Infrared Atmospheric Sounding Interferometer (IASI)) on the model representation of the tropopause fold and an associated high wind event that impacted the Northeast United States on 09 February 2013. Model simulations using the Advanced Research Weather Research and Forecasting Model (ARW) were conducted on a 12-km grid with cycled data assimilation mimicking the operational North American Model (NAM). The results from the satellite assimilation run are compared to a control experiment (without hyperspectral IR retrievals), Modern Era-Retrospective Analysis for Research and Applications (MERRA) reanalysis, and Rapid Refresh analyses.
NASA Astrophysics Data System (ADS)
Troitskaya, Yuliya; Abramov, Victor; Ermoshkin, Alexey; Zuikova, Emma; Kazakov, Vassily; Sergeev, Daniil; Kandaurov, Alexandr
2014-05-01
Satellite remote sensing is one of the main techniques of monitoring severe weather conditions over the ocean. The principal difficulty of the existing algorithms of retrieving wind based on dependence of microwave backscattering cross-section on wind speed (Geophysical Model Function, GMF) is due to its saturation at winds exceeding 25 - 30 m/s. Recently analysis of dual- and quad-polarization C-band radar return measured from satellite Radarsat-2 suggested that the cross-polarized radar return has much higher sensitivity to the wind speed than co-polarized back scattering [1] and conserved sensitivity to wind speed at hurricane conditions [2]. Since complete collocation of these data was not possible and time difference in flight legs and SAR images acquisition was up to 3 hours, these two sets of data were compared in [2] only statistically. The main purpose of this paper is investigation of the functional dependence of cross-polarized radar cross-section on the wind speed in laboratory experiment. Since cross-polarized radar return is formed due to scattering at small-scale structures of the air-sea interface (short-crested waves, foam, sprays, etc), which are well reproduced in laboratory conditions, then the approach based on laboratory experiment on radar scattering of microwaves at the water surface under hurricane wind looks feasible. The experiments were performed in the Wind-wave flume located on top of the Large Thermostratified Tank of the Institute of Applied Physics, where the airflow was produced in the flume with the straight working part of 10 m and operating cross section 0.40?0.40 sq. m, the axis velocity can be varied from 5 to 25 m/s. Microwave measurements were carried out by a coherent Doppler X-band (3.2 cm) scatterometer with the consequent receive of linear polarizations. Experiments confirmed higher sensitivity to the wind speed of the cross-polarized radar return. Simultaneously parameters of the air flow in the turbulent boundary layer (friction velocity and roughness height) were retrieved by velocity profiling and subsequent data processing based on self-similarity of the turbulent boundary layer and 10-m wind speed was calculated. The wind wave field parameters in the flume were measured by three wire gauges. The measured data on wind waves were used for estimation of the short wave spectra and slope probability density function for "long waves" within composite Bragg theory of microwave radar return. Estimations showed that for co-polarized radar returns the difference between measurements and the predictions of the model is about 1-2 dB and it can be explained by our poor knowledge about the short wave part of the spectrum. For cross-polarized return the difference exceeds 10 dB, and it indicates that some non-Bragg mechanisms (short-crested waves, foam, sprays, etc) are responsible for the depolarization of the returned signal. It seems reasonable then to suppose that the cross-polarized radar return in X- and C-bands will demonstrate similar dependence on wind speed. We compared the dependence of cross-polarized X-band radar cross-section on 10-m wind speed obtained in laboratory conditions with the similar dependence obtained in [2] from the field data for C-band radar cross-section and found out that the laboratory data follow the median of the field data with the constant bias -11 dB. Basing on laboratory data an empirical polynomial geophysical model function was suggested for retrieving wind speed up to 40 m/s from cross-polarized microwave return, which is in good agreement with the direct measurements. This work was carried out under financial support of the RFBR (project codes ¹ 13-05-00865, 12-05-12093) and by grant from the Government of the Russian Federation (project code 11.G34.31.0048). References [1] B. Zhang, W. Perrie Bull. Amer. Meteor. Soc., 93, 531-541, 2012. [2] G.-J. van Zadelhoff, et.al. Atmos. Meas. Tech. Discuss., 6, 7945-7984, doi:10.5194/amtd-6-7945-2013, 2013.
TerraSAR-X Measurements of Wind Fields, Ocean Waves and Currents
NASA Astrophysics Data System (ADS)
Lehner, S.; Schulz-Stellenfleth, J.; Brusch, S.
2008-01-01
TerraSAR-X is a new german X-band radar satellite launched on June 15, 2007. In this mission an operational spaceborne synthetic aperture radar (SAR) system with very high spatial resolution is set up producing remote sensing products for commercial and scientific use. TerraSAR-X is a scientific and technological continuation of the successful Space Shuttle missions SIR-C/X and SRTM.The spacecraft is equipped with a phased array X-band SAR, which can operate in different polarisations and has furthermore beam stearing capabilities. In addition the system has a split antenna mode, which is able to provide along track interferometric information. The instrument is designed for multiple imaging modes like Stripmap, Spotlight and ScanSAR.Due to its polarimetric and interferometric capabilities as well as the high spatial resolution of up to 1 m, the TerraSAR-X sensor is a very interesting tool for oceanography. The presentation will give an overview of several applications, which are of both scientific and commercial interest, like e.g. current and ocean wave measurements, monitoring of morphodynamical processes or high resolution wind field retrieval. The potential as well as limitations of the instrument will be summarized and compared with existing sensors. Necessary steps to translate existing C-band SAR inversion algorithms for wind and wave measurements to X-band will be discussed. A strategy will be outlined to achieve this by a combination of theoretical investigations and the use of existing experimental data acquired by both airborne and groundbased X-band radar. First results on the adaption of existing C-band wind retrieval algorithms will be presented. Wind and ocean wave parameter retrievals will be presented, e.g., based on TerraSAR-X scenes taken over the English channel.
Monitoring and Quantifying Particles Emissions around Industrial Sites with Scanning Doppler Lidar
NASA Astrophysics Data System (ADS)
Thobois, L.; Royer, P.; Parmentier, R.; Brooks, M.; Knoepfle, A.; Alexander, J.; Stidwell, P.; Kumar, R.
2018-04-01
Scanning Coherent Doppler Lidars have been used over the last decade for measuring wind for applications in wind energy [1], meteorology [2] and aviation [3]. They allow for accurate measurements of wind speeds up to a distance of 10 km based on the Doppler shift effect of aerosols. The signal reflectivity (CNR or Carrier-to-Noise Ratio) profiles can also be retrieved from the strength of the Lidar signal. In this study, we will present the developments of algorithm for retrieving aerosol optical properties like the relative attenuated backscatter coefficient and the mass concentration of particles. The use of these algorithms during one operational trial in Point Samson, Western Australia to monitor fugitive emissions over a mine will be presented. This project has been initiated by the Australian Department of Environment Regulations to better determine the impact of the Port on the neighboring town. During the trial in Summer, the strong impact of turbulence refractive index on Lidar performances has been observed. Multiple methodologies have been applied to reduce this impact with more or less success. At the end, a dedicated setup and configuration have been established that allow to properly observe the plumes of the mine with the scanning Lidar. The Lidar data has also been coupled to beta attenuation in-situ sensors for retrieving mass concentration maps. A few case of dispersion of plumes will be presented showing the necessity to combine both the wind and aerosol data.
Stereo Cloud Height and Wind Determination Using Measurements from a Single Focal Plane
NASA Astrophysics Data System (ADS)
Demajistre, R.; Kelly, M. A.
2014-12-01
We present here a method for extracting cloud heights and winds from an aircraft or orbital platform using measurements from a single focal plane, exploiting the motion of the platform to provide multiple views of the cloud tops. To illustrate this method we use data acquired during aircraft flight tests of a set of simple stereo imagers that are well suited to this purpose. Each of these imagers has three linear arrays on the focal plane, one looking forward, one looking aft, and one looking down. Push-broom images from each of these arrays are constructed, and then a spatial correlation analysis is used to deduce the delays and displacements required for wind and cloud height determination. We will present the algorithms necessary for the retrievals, as well as the methods used to determine the uncertainties of the derived cloud heights and winds. We will apply the retrievals and uncertainty determination to a number of image sets acquired by the airborne sensors. We then generalize these results to potential space based observations made by similar types of sensors.
NASA Technical Reports Server (NTRS)
Lee, T.; Boland, D. F., Jr.
1980-01-01
This document presents the results of an extensive survey and comparative evaluation of current atmosphere and wind models for inclusion in the Langley Atmospheric Information Retrieval System (LAIRS). It includes recommended models for use in LAIRS, estimated accuracies for the recommended models, and functional specifications for the development of LAIRS.
Thermal zonal winds in the Venus mesosphere from the Venus Express temperature soundings
NASA Astrophysics Data System (ADS)
Piccialli, Arianna; Titov, Dmitri; Tellmann, Silvia; Migliorini, Alessandra; Read, Peter; Grassi, Davide; Paetzold, Martin; Haeusler, Bernd; Piccioni, Giuseppe; Drossart, Pierre
The Venus mesosphere (60-100 km altitude) is a transition region characterized by extremely complex dynamics: strong retrograde zonal winds dominate in the troposphere and lower meso-sphere while a solar-antisolar circulation can be observed in the upper mesosphere. The super-rotation extends from the surface up to the cloud top (˜65 km altitude) with wind speeds of only a few meters per second near the surface and reaching a maximum value of ˜100 m s-1 at cloud top, corresponding to a rotation period of ˜4 Earth days (˜60 times faster than Venus itself). The solar-antisolar circulation is driven by the day-night contrast in solar heating, and occurs above 110 km altitude with speeds of 120 m s-1 . The processes responsible for maintain-ing the zonal super-rotation in the lower atmosphere and its transition to the solar-antisolar circulation in the upper atmosphere are still poorly understood (Schubert et al.,2007). Different techniques have been used to obtain direct observations of wind at various altitudes: tracking of clouds in ultraviolet (UV) and near infrared (NIR) images give information on wind speeds at the cloud top (Moissl et al., 2009; Sanchez-Lavega et al., 2008) and within the clouds (˜47 km, ˜61 km) (Sanchez-Lavega et al., 2008) while ground-based measurements of Doppler shifts in the CO2 band at 10 µm (Sornig et al., 2008) and in several CO millimiter lines (Rengel et al., 2008) provide wind speeds above the clouds up to ˜110 km altitude. The deep atmosphere from the surface up to the cloud top has been investigated through the Doppler tracking of descent probes and balloons (Counselman et al., 1980; Kerzhanovich and Limaye, 1985). In the mesosphere, between 45-85 km of altitude, where direct observations of wind are not possible, the zonal wind field can be derived from the vertical temperature structure using a special approximation of the thermal wind equation: based on cyclostrophic balance. Previous studies (Leovy, 1973; Newman et al., 1984) showed that on a slowly rotating planet, like Venus, strong zonal winds at the cloud top can be described by a cyclostrophic balance in which the equatorward component of centrifugal force is balanced by the meridional pressure gradient. This equation gives a possibility to reconstruct the zonal wind if the temperature field is known, together with a suitable boundary condition on u. Two experiments onboard Venus Express are sounding the temperature structure of the Venus mesosphere: VIRTIS sounds the Venus Southern hemisphere in the altitude range 65-90 km with a very good spatial and temporal coverage (Grassi et al., 2008) and the Northern hemi-sphere but with more limited coverage; VeRa observes both northern and southern hemispheres between 40-90 km altitude with a vertical resolution of ˜500 m (Tellmann et al., 2008). Here we present zonal thermal winds derived applying cyclostrophic balance from VIRTIS and VeRa temperature retrievals. The main features of the retrieved winds are: (1) a midlatitude jet with a maximum speed up to 140 ± 15 m s-1 which occurs around 50° S latitude at 70 km altitude; (2) the fast decrease of the wind speed from 60° S toward the pole; (3) the decrease of the wind speed with increasing height above the jet (Piccialli et al., 2008). Cyclostrophic winds show satisfactory agreement with the cloud-tracked winds derived from the Venus Monitoring Camera (VMC/VEx) UV images, although a disagreement is observed at the equator and near the pole due to the breakdown of the cyclostrophic approximation. From zonal thermal winds the Richardson number has been evaluated. In good agreement with previous studies (Allison et al., 1994), we have found that the atmosphere is dominated by convection from ˜45 km altitude up to the cloud top. A high value of Richardson number has been determined, cor-responding to the midlatitude jet and indicating a highly stable atmosphere. Verification of the necessary condition for barotropic instability implies that barotropic instability may occur on the poleward side of the midlatitude jet where planetary waves are expected to play an important role in the maintenance of the circulation.
NASA Technical Reports Server (NTRS)
Brendt. Emily; Zavodsky, Bradley; Jedlovec, Gary; Elmer, Nicholas
2014-01-01
Tropopause folds are identified by warm, dry, high-potential vorticity, ozone-rich air and are one explanation for damaging non-convective wind events. Could improved model representation of stratospheric air and associated tropopause folding improve non-convective wind forecasts and high wind warnings? The goal of this study is to assess the impact of assimilating Hyperspectral Infrared (IR) profiles on forecasting stratospheric air, tropopause folds, and associated non-convective winds: (1) AIRS: Atmospheric Infrared Sounder (2) IASI: Infrared Atmospheric Sounding Interferometer (3) CrIMSS: Cross-track Infrared and Microwave Sounding Suite
Early meteorological records from Latin-America and the Caribbean during the 18th and 19th centuries
Domínguez-Castro, Fernando; Vaquero, José Manuel; Gallego, María Cruz; Farrona, Ana María Marín; Antuña-Marrero, Juan Carlos; Cevallos, Erika Elizabeth; Herrera, Ricardo García; de la Guía, Cristina; Mejía, Raúl David; Naranjo, José Manuel; del Rosario Prieto, María; Ramos Guadalupe, Luis Enrique; Seiner, Lizardo; Trigo, Ricardo Machado; Villacís, Marcos
2017-01-01
This paper provides early instrumental data recovered for 20 countries of Latin-America and the Caribbean (Argentina, Bahamas, Belize, Brazil, British Guiana, Chile, Colombia, Costa Rica, Cuba, Ecuador, France (Martinique and Guadalupe), Guatemala, Jamaica, Mexico, Nicaragua, Panama, Peru, Puerto Rico, El Salvador and Suriname) during the 18th and 19th centuries. The main meteorological variables retrieved were air temperature, atmospheric pressure, and precipitation, but other variables, such as humidity, wind direction, and state of the sky were retrieved when possible. In total, more than 300,000 early instrumental data were rescued (96% with daily resolution). Especial effort was made to document all the available metadata in order to allow further post-processing. The compilation is far from being exhaustive, but the dataset will contribute to a better understanding of climate variability in the region, and to enlarging the period of overlap between instrumental data and natural/documentary proxies. PMID:29135974
NASA Technical Reports Server (NTRS)
Miller, Timothy L.; James, M. W.; Roberts, J. B.; Jones, W. L.; May, C.; Ruf, C. S.; Uhlhorn, E. W.; Atlas, R.; Black, P.
2012-01-01
HIRAD flew on the WB-57 over Earl and Karl during NASA s GRIP (Genesis and Rapid Intensification Processes) campaign in August - September of 2010. HIRAD is a new Cband radiometer using a synthetic thinned array radiometer (STAR) technology to obtain cross-track resolution of approximately 3 degrees, out to approximately 60 degrees to each side of nadir. (The resulting swath width for a platform at 60,000 feet is roughly 60 km, and resolution for most of the swath is around 2 km.) By obtaining measurements of emissions at 4, 5, 6, and 6.6 GHz, observations of ocean surface wind speed and rain rate can be retrieved. This technique has been used for many years by precursor instruments, including the Stepped Frequency Microwave Radiometer (SFMR), which has been flying on the NOAA and USAF hurricane reconnaissance aircraft for several years to obtain observations within a single footprint at nadir angle. Results from the flights during the GRIP campaign will be shown, including images of brightness temperatures, wind speed, and rain rate. Comparisons will be made with observations from other instruments on the GRIP campaign, for which HIRAD observations are either directly comparable or are complementary. Features such as storm eye and eyewall, location of storm wind and rain maxima, and indications of dynamical features such as the merging of a weaker outer wind/rain maximum with the main vortex may be seen in the data. Potential impacts on operational ocean surface wind analyses and on numerical weather forecasts will also be discussed.
Cloud fraction and cloud base measurements from scanning Doppler lidar during WFIP-2
NASA Astrophysics Data System (ADS)
Bonin, T.; Long, C.; Lantz, K. O.; Choukulkar, A.; Pichugina, Y. L.; McCarty, B.; Banta, R. M.; Brewer, A.; Marquis, M.
2017-12-01
The second Wind Forecast Improvement Project (WFIP-2) consisted of an 18-month field deployment of a variety of instrumentation with the principle objective of validating and improving NWP forecasts for wind energy applications in complex terrain. As a part of the set of instrumentation, several scanning Doppler lidars were installed across the study domain to primarily measure profiles of the mean wind and turbulence at high-resolution within the planetary boundary layer. In addition to these measurements, Doppler lidar observations can be used to directly quantify the cloud fraction and cloud base, since clouds appear as a high backscatter return. These supplementary measurements of clouds can then be used to validate cloud cover and other properties in NWP output. Herein, statistics of the cloud fraction and cloud base height from the duration of WFIP-2 are presented. Additionally, these cloud fraction estimates from Doppler lidar are compared with similar measurements from a Total Sky Imager and Radiative Flux Analysis (RadFlux) retrievals at the Wasco site. During mostly cloudy to overcast conditions, estimates of the cloud radiating temperature from the RadFlux methodology are also compared with Doppler lidar measured cloud base height.
NASA Astrophysics Data System (ADS)
Garcia-Melendo, E.; Legarreta, J.; Sanchez-Lavega, A.
2012-12-01
Direct measurements of the structure of the zonal winds of Jupiter and Saturn below the upper cloud layer are very difficult to retrieve. Except from the vertical profile at a Jupiter hot spot obtained from the Galileo probe in 1995 and measurements from cloud tracking by Cassini instruments just below the upper cloud, no other data are available. We present here our inferences of the vertical structure of Jupiter and Saturn zonal wind across the upper troposphere (deep down to about 10 bar level) obtained from nonlinear simulations using the EPIC code of the stability and interactions of large-scale vortices and planetary-scale disturbances in both planets. Acknowledgements: This work has been funded by Spanish MICIIN AYA2009-10701 with FEDER support, Grupos Gobierno Vasco IT-464-07 and UPV/EHU UFI11/55. [1] García-Melendo E., Sánchez-Lavega A., Dowling T.., Icarus, 176, 272-282 (2005). [2] García-Melendo E., Sánchez-Lavega A., Hueso R., Icarus, 191, 665-677 (2007). [3] Sánchez-Lavega A., et al., Nature, 451, 437- 440 (2008). [4] Sánchez-Lavega A., et al., Nature, 475, 71-74 (2011).
What water isotopes tell us about water cycle responses to climate change
NASA Astrophysics Data System (ADS)
Raudzens Bailey, A.; Singh, H. A.; Nusbaumer, J. M.; Dee, S.; Blossey, P. N.; Posmentier, E. S.
2017-12-01
The water cycle is expected to respond strongly to rising global temperatures. Models predict regional imbalances in evaporation and precipitation will intensify, resulting in a slowing of the large-scale circulation. This slowing will extend the moisture length scale by increasing the amount of time water resides in the atmosphere. However, verifying these changes observationally is challenging. Isotope ratios in water vapor and precipitation represent an integrated record of moisture's journey from evaporative source to precipitation sink. Consequently, they provide a unique opportunity to identify changes in moisture length scale associated with shifts in regional hydrologic balance. Leveraging satellite retrievals, box models, climate simulations, and in situ data, this presentation demonstrates how water isotope ratios can be used to estimate water cycle changes over the historical period and into the future. These changes are closely linked to variations in the divergence of atmospheric moisture fluxes, which result from variations in specific humidity, wind direction, and wind speed. This presentation highlights the extent to which isotopic measurements allow us to track changes in the dynamic, or wind-driven, component of moisture transport and to investigate whether remote moisture contributions are becoming increasingly important in augmenting local precipitation.
NASA Astrophysics Data System (ADS)
Meissner, Thomas; Hilburn, Kyle; Wentz, Frank; Gentemann, Chelle
2013-04-01
The Aquarius L-band radiometer/scatterometer system is designed to provide monthly salinity maps at 150 km spatial scale to an accuracy of 0.2 psu. The sensor was launched on June 10, 2011, aboard the Argentine CONAE SAC-D spacecraft. The L-band radiometers and the scatterometer have been taking science data observations since August 25, 2011. This first part of the presentation gives an overview over the major features of the Version 2.1 Aquarius Level 2 salinity retrieval algorithm: 1. Antenna pattern correction: spillover and cross polarization contamination. 2. Correction for the drift of the Aquarius internal calibration system. 3. Correction for intruding celestial radiation, foremost from the galaxy. 4. Correction for effects of the wind roughened ocean surface. We then present a thorough validation study for the salinity product, which consists in a 3-way intercomparison between Aquarius, SMOS and in-situ buoy salinity measurements. The Aquarius - buy comparison shows that that the Aquarius Version 2.1 salinity product is very close to meet the aforementioned mission requirement of 0.2 psu. We demonstrate that in order to meet this accuracy it is crucial to use the L-band scatterometer for correcting effects from the wind roughened ocean surface, which turns out to be the major driver in the salinity retrieval uncertainty budget. A surface roughness correction algorithm that is based solely on auxiliary input of wind fields from numerical weather prediction models (e.g. NCEP, ECMWF) is not sufficient to meet the stringent Aquarius mission requirement, especially at wind speeds above 10 m/s. We show that presence of the Aquarius L-band scatterometer together with the L-band radiometer allows the retrieval of an Aquarius wind speed product whose accuracy matches or exceeds that of other common ocean wind speeds (WindSat, SSMIS). By comparing SMOS and Aquarius salinity fields with the in-situ observations we assess the importance of the roughness correction and the presence of the L-band scatterometer, which is a major difference between the two missions.
Routes to the past: neural substrates of direct and generative autobiographical memory retrieval.
Addis, Donna Rose; Knapp, Katie; Roberts, Reece P; Schacter, Daniel L
2012-02-01
Models of autobiographical memory propose two routes to retrieval depending on cue specificity. When available cues are specific and personally-relevant, a memory can be directly accessed. However, when available cues are generic, one must engage a generative retrieval process to produce more specific cues to successfully access a relevant memory. The current study sought to characterize the neural bases of these retrieval processes. During functional magnetic resonance imaging (fMRI), participants were shown personally-relevant cues to elicit direct retrieval, or generic cues (nouns) to elicit generative retrieval. We used spatiotemporal partial least squares to characterize the spatial and temporal characteristics of the networks associated with direct and generative retrieval. Both retrieval tasks engaged regions comprising the autobiographical retrieval network, including hippocampus, and medial prefrontal and parietal cortices. However, some key neural differences emerged. Generative retrieval differentially recruited lateral prefrontal and temporal regions early on during the retrieval process, likely supporting the strategic search operations and initial recovery of generic autobiographical information. However, many regions were activated more strongly during direct versus generative retrieval, even when we time-locked the analysis to the successful recovery of events in both conditions. This result suggests that there may be fundamental differences between memories that are accessed directly and those that are recovered via the iterative search and retrieval process that characterizes generative retrieval. Copyright © 2011 Elsevier Inc. All rights reserved.
Routes to the past: Neural substrates of direct and generative autobiographical memory retrieval
Addis, Donna Rose; Knapp, Katie; Roberts, Reece P.; Schacter, Daniel L.
2011-01-01
Models of autobiographical memory propose two routes to retrieval depending on cue specificity. When available cues are specific and personally-relevant, a memory can be directly accessed. However, when available cues are generic, one must engage a generative retrieval process to produce more specific cues to successfully access a relevant memory. The current study sought to characterize the neural bases of these retrieval processes. During functional magnetic resonance imaging (fMRI), participants were shown personally-relevant cues to elicit direct retrieval, or generic cues (nouns) to elicit generative retrieval. We used spatiotemporal partial least squares to characterize the spatial and temporal characteristics of the networks associated with direct and generative retrieval. Both retrieval tasks engaged regions comprising the autobiographical retrieval network, including hippocampus, and medial prefrontal and parietal cortices. However, some key neural differences emerged. Generative retrieval differentially recruited lateral prefrontal and temporal regions early on during the retrieval process, likely supporting the strategic search operations and initial recovery of generic autobiographical information. However, many regions were activated more strongly during direct versus generative retrieval, even when we time-locked the analysis to the successful recovery of events in both conditions. This result suggests that there may be fundamental differences between memories that are accessed directly and those that are recovered via the iterative search and retrieval process that characterizes generative retrieval. PMID:22001264
Latent Heating Retrieval from TRMM Observations Using a Simplified Thermodynamic Model
NASA Technical Reports Server (NTRS)
Grecu, Mircea; Olson, William S.
2003-01-01
A procedure for the retrieval of hydrometeor latent heating from TRMM active and passive observations is presented. The procedure is based on current methods for estimating multiple-species hydrometeor profiles from TRMM observations. The species include: cloud water, cloud ice, rain, and graupel (or snow). A three-dimensional wind field is prescribed based on the retrieved hydrometeor profiles, and, assuming a steady-state, the sources and sinks in the hydrometeor conservation equations are determined. Then, the momentum and thermodynamic equations, in which the heating and cooling are derived from the hydrometeor sources and sinks, are integrated one step forward in time. The hydrometeor sources and sinks are reevaluated based on the new wind field, and the momentum and thermodynamic equations are integrated one more step. The reevalution-integration process is repeated until a steady state is reached. The procedure is tested using cloud model simulations. Cloud-model derived fields are used to synthesize TRMM observations, from which hydrometeor profiles are derived. The procedure is applied to the retrieved hydrometeor profiles, and the latent heating estimates are compared to the actual latent heating produced by the cloud model. Examples of procedure's applications to real TRMM data are also provided.
Validation Campaigns of a new 1.5μm Doppler Wind Lidar for PBL Continuous Profiling
NASA Astrophysics Data System (ADS)
Sauvage, Laurent; Boquet, Matthieu; Cariou, Jean-Pierre; Lolli, Simone
2010-05-01
To fully understand atmospheric dynamics, climate studies, energy transfer and weather prediction, the wind field is one of the most important atmospheric state variables. Studies indicate that a global determination of the tropospheric wind field to an accuracy of 0.5 m/s is critical for improved numerical weather forecasting. LEOSPHERE recently developed a long range compact, eye safe and transportable wind Lidar capable to fully determine locally the wind field in real time in the planetary boundary layer (PBL). The WLS70 is a new generation wind Lidar developed for meteorological applications. The Lidar is derived from the commercial Windcube™ widely used by the wind industry and has been modified increasing the range up to 2 km. In this paper are presented results of the inter comparison measurement campaigns EUCAARI, LUAMI and WAVES in which the WLS70 participated together with both up-to-date active and passive ground-based remote-sensing systems for providing high-quality meteorological parameters reference or ground-truth e.g. to satellite sensors. In May 2008, the first WLS70 prototype started retrieving vertical wind speed profiles during the EUCAARI campaign at Cabauw, the Netherlands. First results were very promising with vertical profiles up to 2km showing high frequency updrafts and downdrafts in the boundary layer. From November 2008 to January 2009, a WLS70 was deployed in Germany, together with an EZ Lidar™ ALS450, in the frame of the Lindenberg Upper Air Methods Intercomparison (LUAMI) campaign. During 62 days, the WLS70 Lidar retrieved 24/24 hours vertical profiles of the 3 wind components, putting in evidence wind shears and veers, as well as gusts and high frequency convective effects with the raise of the mixing layer or with incoming rain fronts. In-cloud and multilayer measurements are also available allowing a large range of additional investigations such as cloud-aerosol interactions or cloud droplet activation. From March to May 2009, LEOSPHERE deployed a WLS70 prototype unit at the Howard University Research Campus in Beltsville, Maryland, for the Water Vapor Validation Experiments (WAVES) from the initiative of the NOAA. The presence of numerous wind profilers, lidars and radio soundings was a perfect opportunity to test and improve this new compact and autonomous long range wind Lidar. The WLS70 showed Low Level Jet phenomena which have strong impact on air quality. In July 2009, the WLS70 took its definitive configuration with a new optical device installed on it allowing enhanced measurement range. New measurements were done at PNNL in Richland, Washington, and NASA Langley in Hampton, Virginia. These results are now processed and will bring a further proof on reliability and accuracy. During these intensive inter comparison campaigns the WLS70 Wind Lidar was validated against Lidars, Radars, Sodars and anemometers. The results show mostly a very good agreement between the instruments. Moreover, the measurements put in evidence both horizontal and vertical wind speed and wind direction vertical profiles and atmosphere structure (PBL height , clouds base) derived from Lidar data with good time resolution (10s/profile), good range resolution (50m from 100m to 2000m), and good velocity accuracy (<0.2m/s).
Doppler Navigation System with a Non-Stabilized Antenna as a Sea-Surface Wind Sensor.
Nekrasov, Alexey; Khachaturian, Alena; Veremyev, Vladimir; Bogachev, Mikhail
2017-06-09
We propose a concept of the utilization of an aircraft Doppler Navigation System (DNS) as a sea-surface wind sensor complementary to its normal functionality. The DNS with an antenna, which is non-stabilized physically to the local horizontal with x -configured beams, is considered. We consider the wind measurements by the DNS configured in the multi-beam scatterometer mode for a rectilinear flight scenario. The system feasibility and the efficiency of the proposed wind algorithm retrieval are supported by computer simulations. Finally, the associated limitations of the proposed approach are considered.
Doppler Navigation System with a Non-Stabilized Antenna as a Sea-Surface Wind Sensor
Nekrasov, Alexey; Khachaturian, Alena; Veremyev, Vladimir; Bogachev, Mikhail
2017-01-01
We propose a concept of the utilization of an aircraft Doppler Navigation System (DNS) as a sea-surface wind sensor complementary to its normal functionality. The DNS with an antenna, which is non-stabilized physically to the local horizontal with x-configured beams, is considered. We consider the wind measurements by the DNS configured in the multi-beam scatterometer mode for a rectilinear flight scenario. The system feasibility and the efficiency of the proposed wind algorithm retrieval are supported by computer simulations. Finally, the associated limitations of the proposed approach are considered. PMID:28598374
Validation of Rain Rate Retrievals for the Airborne Hurricane Imaging Radiometer (HIRAD)
NASA Technical Reports Server (NTRS)
Jacob, Maria Marta; Salemirad, Matin; Jones, W. Linwood; Biswas, Sayak; Cecil, Daniel
2015-01-01
The NASA Hurricane and Severe Storm Sentinel (HS3) mission is an aircraft field measurements program using NASA's unmanned Global Hawk aircraft system for remote sensing and in situ observations of Atlantic and Caribbean Sea hurricanes. One of the principal microwave instruments is the Hurricane Imaging Radiometer (HIRAD), which measures surface wind speeds and rain rates. For validation of the HIRAD wind speed measurement in hurricanes, there exists a comprehensive set of comparisons with the Stepped Frequency Microwave Radiometer (SFMR) with in situ GPS dropwindsondes [1]. However, for rain rate measurements, there are only indirect correlations with rain imagery from other HS3 remote sensors (e.g., the dual-frequency Ka- & Ku-band doppler radar, HIWRAP), which is only qualitative in nature. However, this paper presents results from an unplanned rain rate measurement validation opportunity that occurred in 2013, when HIRAD flew over an intense tropical squall line that was simultaneously observed by the Tampa NEXRAD meteorological radar (Fig. 1). During this experiment, Global Hawk flying at an altitude of 18 km made 3 passes over the rapidly propagating thunderstorm, while the TAMPA NEXRAD perform volume scans on a 5-minute interval. Using the well-documented NEXRAD Z-R relationship, 2D images of rain rate (mm/hr) were obtained at two altitudes (3 km & 6 km), which serve as surface truth for the HIRAD rain rate retrievals. A preliminary comparison of HIRAD rain rate retrievals (image) for the first pass and the corresponding closest NEXRAD rain image is presented in Fig. 2 & 3. This paper describes the HIRAD instrument, which 1D synthetic-aperture thinned array radiometer (STAR) developed by NASA Marshall Space Flight Center [2]. The rain rate retrieval algorithm, developed by Amarin et al. [3], is based on the maximum likelihood estimation (MLE) technique, which compares the observed Tb's at the HIRAD operating frequencies of 4, 5, 6 and 6.6 GHz with corresponding theoretical Tb values from a forward radiative transfer model (RTM). The optimum solution is the integrated rain rate that minimizes the difference between RTM and observed values. Because the excess Tb from rain comes from the direct upwelling and the indirect reflected downwelling paths through the atmosphere, there are several assumptions made for the 2D rain distribution in the antenna incident plane (crosstrack to flight direction). The opportunity to knowing 2D rain surface truth from NEXRAD at two different altitudes will enable a comprehensive evaluation to be preformed and reported in this paper.
NASA Technical Reports Server (NTRS)
Ottaviani, Matteo; Cairns, Brian; Chowdhary, Jacek; Van Diedenhoven, Bastiaan; Knobelspiesse, Kirk; Hostetler, Chris; Ferrare, Rich; Burton, Sharon; Hair, John; Obland, Michael D.;
2012-01-01
In 2010, the Goddard Institute for Space Studies (GISS) Research Scanning Polarimeter (RSP) performed several aerial surveys over the region affected by the oil spill caused by the explosion of the Deepwater Horizon offshore platform. The instrument was deployed on the NASA Langley B200 aircraft together with the High Spectral Resolution Lidar (HSRL), which provides information on the distribution of the aerosol layers beneath the aircraft, including an accurate estimate of aerosol optical depth. This work illustrates the merits of polarization measurements in detecting variations of ocean surface properties linked to the presence of an oil slick. In particular, we make use of the degree of linear polarization in the glint region, which is severely affected by variations in the refractive index but insensitive to the waviness of the water surface. Alterations in the surface optical properties are therefore expected to directly affect the polarization response of the RSP channel at 2264 nm, where both molecular and aerosol scattering are negligible and virtually all of the observed signal is generated via Fresnel reflection at the surface. The glint profile at this wavelength is fitted with a model which can optimally estimate refractive index, wind speed and direction, together with aircraft attitude variations affecting the viewing geometry. The retrieved refractive index markedly increases over oil-contaminated waters, while the apparent wind speed is significantly lower than in adjacent uncontaminated areas, suggesting that the slick dampens high-frequency components of the ocean wave spectrum. The constraint on surface reflectance provided by the short-wave infrared channels is a cornerstone of established procedures to retrieve atmospheric aerosol microphysical parameters based on the inversion of the RSP multispectral measurements. This retrieval, which benefits from the ancillary information provided by the HSRL, was in this specific case hampered by prohibitive variability in atmospheric conditions (very inhomogeneous aerosol distribution and cloud cover). Although the results presented for the surface are essentially unaffected, we discuss the results obtained by typing algorithms in sorting the complex mix of aerosol types, and show evidence of oriented ice in cirrus clouds present in the area. In this context, polarization measurements at 1880 nm were used to infer ice habit and cirrus optical depth, which was found in the subvisual/threshold-visible regime, confirming the utility of the aforementioned RSP channel for the remote sensing of even thin cold clouds.
Sampling Of SAR Imagery For Wind Resource Assesment
NASA Astrophysics Data System (ADS)
Badger, Merete; Badger, Jake; Hasager, Charlotte; Nielsen, Morten
2010-04-01
Wind resources over the sea can be assessed from a series of wind fields retrieved from Envisat ASAR imagery, or other SAR data. Previous wind resource maps have been produced through random sampling of 70 or more satellite scenes over a given area of interest followed by fitting of a Weibull function to the data. Here we introduce a more advanced sampling strategy based on wind class methodology that is normally applied in Risø DTU’s numerical modeling of wind resources. The aim is to obtain a more representative data set using fewer satellite SAR scenes. The new sampling strategy has been applied within a wind and solar resource assessment study for the United Arab Emirates (UAE) and also for wind resource mapping over a domain in the North Sea, as part of the EU- NORSEWInD project (2008-2012).
Wind Speed Measurement from Bistatically Scattered GPS Signals
NASA Technical Reports Server (NTRS)
Garrison, James L.; Komjathy, Attila; Zavorotny, Valery U.; Katzberg, Stephen J.
1999-01-01
Instrumentation and retrieval algorithms are described which use the forward, or bistatically scattered range-coded signals from the Global Positioning System (GPS) radio navigation system for the measurement of sea surface roughness. This roughness is known to be related directly to the surface wind speed. Experiments were conducted from aircraft along the TOPEX ground track, and over experimental surface truth buoys. These flights used a receiver capable of recording the cross correlation power in the reflected signal. The shape of this power distribution was then compared against analytical models derived from geometric optics. Two techniques for matching these functions were studied. The first recognized the most significant information content in the reflected signal is contained in the trailing edge slope of the waveform. The second attempted to match the complete shape of the waveform by approximating it as a series expansion and obtaining the nonlinear least squares estimate. Discussion is also presented on anomalies in the receiver operation and their identification and correction.
Wang, Yujuan; Mao, Xinrui; Li, Bingbing; Wang, Wei; Guo, Chunyan
2016-01-01
Although many behavioral studies have reported associative memory was different from item memory, evidence coming from ERP researches has been in debate. In addition, directed forgetting effect for items has been fully discussed, but whether association between items can be directed-forgotten was unclear. The directed forgetting effect was important for dissociating the item retrieval and associative retrieval because of the one-to-one mapping relationship both between item retrieval and familiarity and between associative retrieval and recollection. Thus, the aim of this study was to investigate the dissociation between item retrieval and associative retrieval and test directed forgetting effect for associative information. Associative recognition paradigm combined with directed forgetting paradigm by ERP recording was employed. Old/rearranged effect in to-be-remembered condition, which was associated with associative memory, was significant at 500-800 ms (LPC) but not at 300-500 ms interval (FN400), indicating that item information was retrieved prior to associative information. The ERP wave calculated by subtracting the to-be-forgotten old pairs with "old" response from those with "rearranged" response, which reflected associative retrieval in the to-be-forgotten condition, was negative from 500 to 800 ms (reversed old/new effect), indicating that association between items can be directed-forgotten. Similar evidence was obtained by contrasting "rearranged" responses aimed to the to-be-forgotten old pairs with those aimed to the to-be-remembered rearranged pairs, which actually represented the complete failure of associative retrieval. Therefore, item retrieval and associative retrieval were indexed by FN400 and LPC respectively, with associative retrieval more inhibited than item retrieval.
Satellite Remote Sensing of Ocean Winds, Surface Waves and Surface Currents during the Hurricanes
NASA Astrophysics Data System (ADS)
Zhang, G.; Perrie, W. A.; Liu, G.; Zhang, L.
2017-12-01
Hurricanes over the ocean have been observed by spaceborne aperture radar (SAR) since the first SAR images were available in 1978. SAR has high spatial resolution (about 1 km), relatively large coverage and capability for observations during almost all-weather, day-and-night conditions. In this study, seven C-band RADARSAT-2 dual-polarized (VV and VH) ScanSAR wide images from the Canadian Space Agency (CSA) Hurricane Watch Program in 2017 are collected over five hurricanes: Harvey, Irma, Maria, Nate, and Ophelia. We retrieve the ocean winds by applying our C-band Cross-Polarization Coupled-Parameters Ocean (C-3PO) wind retrieval model [Zhang et al., 2017, IEEE TGRS] to the SAR images. Ocean waves are estimated by applying a relationship based on the fetch- and duration-limited nature of wave growth inside hurricanes [Hwang et al., 2016; 2017, J. Phys. Ocean.]. We estimate the ocean surface currents using the Doppler Shift extracted from VV-polarized SAR images [Kang et al., 2016, IEEE TGRS]. C-3PO model is based on theoretical analysis of ocean surface waves and SAR microwave backscatter. Based on the retrieved ocean winds, we estimate the hurricane center locations, maxima wind speeds, and radii of the five hurricanes by adopting the SHEW model (Symmetric Hurricane Estimates for Wind) by Zhang et al. [2017, IEEE TGRS]. Thus, we investigate possible relations between hurricane structures and intensities, and especially some possible effects of the asymmetrical characteristics on changes in the hurricane intensities, such as the eyewall replacement cycle. The three SAR images of Ophelia include the north coast of Ireland and east coast of Scotland allowing study of ocean surface currents respond to the hurricane. A system of methods capable of observing marine winds, surface waves, and surface currents from satellites is of value, even if these data are only available in near real-time or from SAR-related satellite images. Insight into high resolution ocean winds, waves and currents in hurricanes can be useful for intensity prediction, which has had relatively few improvements in the past 25 years. In 2018 RADARSAT Constellation Mission will be launched, increasing SAR coverage by 10×, allowing increased observations during the next hurricane season.
NASA CYGNSS Tropical Cyclone Mission
NASA Astrophysics Data System (ADS)
Ruf, Chris; Atlas, Robert; Majumdar, Sharan; Ettammal, Suhas; Waliser, Duane
2017-04-01
The NASA Cyclone Global Navigation Satellite System (CYGNSS) mission consists of a constellation of eight microsatellites that were launched into low-Earth orbit on 15 December 2016. Each observatory carries a four-channel bistatic scatterometer receiver to measure near surface wind speed over the ocean. The transmitter half of the scatterometer is the constellation of GPS satellites. CYGNSS is designed to address the inadequacy in observations of the inner core of tropical cyclones (TCs) that result from two causes: 1) much of the TC inner core is obscured from conventional remote sensing instruments by intense precipitation in the eye wall and inner rain bands; and 2) the rapidly evolving (genesis and intensification) stages of the TC life cycle are poorly sampled in time by conventional polar-orbiting, wide-swath surface wind imagers. The retrieval of wind speed by CYGNSS in the presence of heavy precipitation is possible due to the long operating wavelength used by GPS (19 cm), at which scattering and attenuation by rain are negligible. Improved temporal sampling by CYGNSS is possible due to the use of eight spacecraft with 4 scatterometer channels on each one. Median and mean revisit times everywhere in the tropics are 3 and 7 hours, respectively. Wind speed referenced to 10m height above the ocean surface is retrieved from CYGNSS measurements of bistatic radar cross section in a manner roughly analogous to that of conventional ocean wind scatterometers. The technique has been demonstrated previously from space by the UK-DMC and UK-TDS missions. Wind speed is retrieved with 25 km spatial resolution and an uncertainty of 2 m/s at low wind speeds and 10% at wind speeds above 20 m/s. Extensive simulation studies conducted prior to launch indicate that there will be a significant positive impact on TC forecast skill for both track and intensity with CYGNSS measurements assimilated into HWRF numerical forecasts. Simulations of CYGNSS spatial and temporal sampling properties for observing the Madden-Julian Oscillation (MJO) and Convectively Coupled Equatorial Waves (CCEW) indicate that it will allow for improved characterization of MJO temporal variability and of the major CCEW modes. The EGU 2017 presentation will include an overview of the CYGNSS mission, a report on current mission status, and summaries of the simulation studies performed regarding TC forecasts and MJO and CCEW characterization.
NASA Technical Reports Server (NTRS)
Elliott, R. D.; Werner, N. M.; Baker, W. M.
1975-01-01
The Aerodynamic Data Analysis and Integration System (ADAIS), developed as a highly interactive computer graphics program capable of manipulating large quantities of data such that addressable elements of a data base can be called up for graphic display, compared, curve fit, stored, retrieved, differenced, etc., was described. The general nature of the system is evidenced by the fact that limited usage has already occurred with data bases consisting of thermodynamic, basic loads, and flight dynamics data. Productivity using ADAIS of five times that for conventional manual methods of wind tunnel data analysis is routinely achieved. In wind tunnel data analysis, data from one or more runs of a particular test may be called up and displayed along with data from one or more runs of a different test. Curves may be faired through the data points by any of four methods, including cubic spline and least squares polynomial fit up to seventh order.
NASA Technical Reports Server (NTRS)
Voo, Justin K.; Garrison, James L.; Yueh, Simon H.; Grant, Michael S.; Fore, Alexander G.; Haase, Jennifer S.; Clauss, Bryan
2010-01-01
In February-March 2009 NASA JPL conducted an airborne field campaign using the Passive Active L-band System (PALS) and the Ku-band Polarimetric Scatterometer (PolSCAT) collecting measurements of brightness temperature and near surface wind speeds. Flights were conducted over a region of expected high-speed winds in the Atlantic Ocean, for the purposes of algorithm development for salinity retrievals. Wind speeds encountered were in the range of 5 to 25 m/s during the two weeks deployment. The NASA-Langley GPS delay-mapping receiver (DMR) was also flown to collect GPS signals reflected from the ocean surface and generate post-correlation power vs. delay measurements. This data was used to estimate ocean surface roughness and a strong correlation with brightness temperature was found. Initial results suggest that reflected GPS signals, using small low-power instruments, will provide an additional source of data for correcting brightness temperature measurements for the purpose of sea surface salinity retrievals.
NASA Technical Reports Server (NTRS)
Anderson, J. C.; Wang, J.; Zeng, J.; Petrenko, M.; Leptoukh, G. G.; Ichoku, C.
2012-01-01
Coastal regions around the globe are a major source for anthropogenic aerosols in the atmosphere, but the underlying surface characteristics are not favorable for the Moderate Resolution Imaging Spectroradiometer (MODIS) algorithms designed for retrieval of aerosols over dark land or open-ocean surfaces. Using data collected from 62 coastal stations worldwide from the Aerosol Robotic Network (AERONET) from approximately 2002-2010, accuracy assessments are made for coastal aerosol optical depth (AOD) retrieved from MODIS aboard Aqua satellite. It is found that coastal AODs (at 550 nm) characterized respectively by the MODIS Dark Land (hereafter Land) surface algorithm, the Open-Ocean (hereafter Ocean) algorithm, and AERONET all exhibit a log-normal distribution. After filtering by quality flags, the MODIS AODs respectively retrieved from the Land and Ocean algorithms are highly correlated with AERONET (with R(sup 2) is approximately equal to 0.8), but only the Land algorithm AODs fall within the expected error envelope greater than 66% of the time. Furthermore, the MODIS AODs from the Land algorithm, Ocean algorithm, and combined Land and Ocean product show statistically significant discrepancies from their respective counterparts from AERONET in terms of mean, probability density function, and cumulative density function, which suggest a need for future improvement in retrieval algorithms. Without filtering with quality flag, the MODIS Land and Ocean AOD dataset can be degraded by 30-50% in terms of mean bias. Overall, the MODIS Ocean algorithm overestimates the AERONET coastal AOD by 0.021 for AOD less than 0.25 and underestimates it by 0.029 for AOD greater than 0.25. This dichotomy is shown to be related to the ocean surface wind speed and cloud contamination effects on the satellite aerosol retrieval. The Modern Era Retrospective-Analysis for Research and Applications (MERRA) reveals that wind speeds over the global coastal region 25 (with a mean and median value of 2.94 meters per second and 2.66 meters per second, respectively) are often slower than 6 meters per second assumed in the MODIS Ocean algorithm. As a result of high correlation (R(sup 2) greater than 0.98) between the bias in binned MODIS AOD and the corresponding binned wind speed over the coastal sea surface, an empirical scheme for correcting the bias of AOD retrieved from the MODIS Ocean algorithm is formulated and is shown to be effective over the majority of the coastal AERONET stations, and hence can be used in future analysis of AOD trend and MODIS AOD data assimilation.
Potential for wind extraction from 4D-Var assimilation of aerosols and moisture
NASA Astrophysics Data System (ADS)
Zaplotnik, Žiga; Žagar, Nedjeljka
2017-04-01
We discuss the potential of the four-dimensional variational data assimilation (4D-Var) to retrieve the unobserved wind field from observations of atmospheric tracers and the mass field through internal model dynamics and the multivariate relationships in the background-error term for 4D-Var. The presence of non-linear moist dynamics makes the wind retrieval from tracers very difficult. On the other hand, it has been shown that moisture observations strongly influence both tropical and mid-latitude wind field in 4D-Var. We present an intermediate complexity model that describes nonlinear interactions between the wind, temperature, aerosols and moisture including their sinks and sources in the framework of the so-called first baroclinic mode atmosphere envisaged by A. Gill. Aerosol physical processes, which are included in the model, are the non-linear advection, diffusion and sources and sinks that exist as dry and wet deposition and diffusion. Precipitation is parametrized according to the Betts-Miller scheme. The control vector for 4D-Var includes aerosols, moisture and the three dynamical variables. The former is analysed univariately whereas wind field and mass field are analysed in a multivariate fashion taking into account quasi-geostrophic and unbalanced dynamics. The OSSE type of studies are performed for the tropical region to assess the ability of 4D-Var to extract wind-field information from the time series of observations of tracers as a function of the flow nonlinearity, the observations density and the length of the assimilation window (12 hours and 24 hours), in dry and moist environment. Results show that the 4D-Var assimilation of aerosols and temperature data is beneficial for the wind analysis with analysis errors strongly dependent on the moist processes and reliable background-error covariances.
The Aquarius Salinity Retrieval Algorithm: Early Results
NASA Technical Reports Server (NTRS)
Meissner, Thomas; Wentz, Frank J.; Lagerloef, Gary; LeVine, David
2012-01-01
The Aquarius L-band radiometer/scatterometer system is designed to provide monthly salinity maps at 150 km spatial scale to a 0.2 psu accuracy. The sensor was launched on June 10, 2011, aboard the Argentine CONAE SAC-D spacecraft. The L-band radiometers and the scatterometer have been taking science data observations since August 25, 2011. The first part of this presentation gives an overview over the Aquarius salinity retrieval algorithm. The instrument calibration converts Aquarius radiometer counts into antenna temperatures (TA). The salinity retrieval algorithm converts those TA into brightness temperatures (TB) at a flat ocean surface. As a first step, contributions arising from the intrusion of solar, lunar and galactic radiation are subtracted. The antenna pattern correction (APC) removes the effects of cross-polarization contamination and spillover. The Aquarius radiometer measures the 3rd Stokes parameter in addition to vertical (v) and horizontal (h) polarizations, which allows for an easy removal of ionospheric Faraday rotation. The atmospheric absorption at L-band is almost entirely due to O2, which can be calculated based on auxiliary input fields from numerical weather prediction models and then successively removed from the TB. The final step in the TA to TB conversion is the correction for the roughness of the sea surface due to wind. This is based on the radar backscatter measurements by the scatterometer. The TB of the flat ocean surface can now be matched to a salinity value using a surface emission model that is based on a model for the dielectric constant of sea water and an auxiliary field for the sea surface temperature. In the current processing (as of writing this abstract) only v-pol TB are used for this last process and NCEP winds are used for the roughness correction. Before the salinity algorithm can be operationally implemented and its accuracy assessed by comparing versus in situ measurements, an extensive calibration and validation (cal/val) activity needs to be completed. This is necessary in order to tune the inputs to the algorithm and remove biases that arise due to the instrument calibration, foremost the values of the noise diode injection temperatures and the losses that occur in the feedhorns. This is the subject of the second part of our presentation. The basic tool is to analyze the observed difference between the Aquarius measured TA and an expected TA that is computed from a reference salinity field. It is also necessary to derive a relation between the scatterometer backscatter measurements and the radiometer emissivity that is induced by surface winds. In order to do this we collocate Aquarius radiometer and scatterometer measurements with wind speed retrievals from the WindSat and SSMIS F17 microwave radiometers. Both of these satellites fly in orbits that have the same equatorial ascending crossing time (6 pm) as the Aquarius/SAC-D observatory. Rain retrievals from WindSat and SSMIS F 17 can be used to remove Aquarius observations that are rain contaminated. A byproduct of this analysis is a prediction for the wind-induced sea surface emissivity at L-band.
NASA Astrophysics Data System (ADS)
Rüfenacht, R.; Kämpfer, N.; Murk, A.
2012-12-01
Today, the wind data for the upper stratosphere and lower mesosphere are commonly extrapolated using models or calculated from measurements of the temperature field, but are not measured directly. Still, such measurements would allow direct observations of dynamic processes and thus provide a better understanding of the circulation in this altitude region where the zonal wind speed reaches a maximum. Observations of middle-atmospheric winds are also expected to provide deeper insight in the coupling between the upper and the lower atmosphere, especially in the case of sudden stratospheric warming events. Furthermore, as the local chemical composition of the middle atmosphere can be measured with high accuracy, wind data could be beneficial for the interpretation of the associated transport processes. In future, middle-atmospheric wind measurements could help to improve atmospheric circulation models. Aiming to contribute to the closing of this data gap the Institute of Applied Physics of the University of Bern built a new ground-based 142 GHz Doppler-spectro-radiometer with the acronym WIRA (WInd RAdiometer) specifically designed for the measurement of middle-atmospheric wind. Currently wind speeds in five levels between 30 and 79 km can be retrieved what makes WIRA the first instrument continuously measuring profiles of horizontal wind in this altitude range. On the altitude levels where our measurement can be compared to ECMWF very good agreement has been found in the long-term statistics, with WIRA = (0.98±0.02) × ECMWF + (0.44±0.91) m/s on average, as well as in short time structures with a duration of a few days. WIRA uses a passive double sideband heterodyne receiver together with a digital Fourier transform spectrometer for the data acquisition. A big advantage of the radiometric approach is that such instruments can also operate under adverse weather conditions and thus provide a continuous time series for the given location. The optics enables the instrument to scan a wide range of azimuth angles including the directions east, west, north, and south for zonal and meridional wind measurements. The design of the radiometer is fairly compact and its calibration does not rely on liquid nitrogen what makes it transportable and suitable for campaign use. WIRA is conceived in a way that it can be operated remotely and does hardly require any maintenance. A first time series of 11 months of zonal wind data was obtained for Bern (46°57' N, 7°26' E) before the instrument was moved to Sodankylä (67°22' N, 26°38' E) in September 2011 to measure at polar latitudes during a period of 10 months. After a technical upgrade (integration of a pre-amplifier and a sideband filter) aiming to increase the instruments sensitivity a new measurement campaign at the site of the Observatoire de Haute-Provence for data intercomparison with the NDACC Rayleigh-Mie Doppler wind lidar is planned during the winter 2011/2012. At the conference, the main results from these campaigns will be presented along with the measurement technique and the instrument properties.
NASA Astrophysics Data System (ADS)
Rüfenacht, Rolf; Kämpfer, Niklaus; Murk, Axel
2013-04-01
Today, the wind data for the upper stratosphere and lower mesosphere are commonly extrapolated using models or calculated from measurements of the temperature field, but are not measured directly. Still, such measurements would allow direct observations of dynamic processes and thus provide a better understanding of the circulation in this altitude region where the zonal wind speed reaches a maximum. Observations of middle-atmospheric winds are also expected to provide deeper insight in the coupling between the upper and the lower atmosphere, especially in the case of sudden stratospheric warming events. Furthermore, as the local chemical composition of the middle atmosphere can be measured with high accuracy, wind data could be beneficial for the interpretation of the associated transport processes. In future, middle-atmospheric wind measurements could help to improve atmospheric circulation models. Aiming to contribute to the closing of this data gap the Institute of Applied Physics of the University of Bern built a new ground-based 142 GHz Doppler-spectro-radiometer with the acronym WIRA (WInd RAdiometer) specifically designed for the measurement of middle-atmospheric wind. Until now wind speeds in five levels between 30 and 79 km can be retrieved what made WIRA the first instrument continuously measuring profiles of horizontal wind in this altitude range. On the altitude levels where our measurement can be compared to ECMWF very good agreement has been found in the long-term statistics, with WIRA = (0.98±0.02) × ECMWF + (0.44±0.91) m/s on average, as well as in short time structures with a duration of a few days. WIRA uses a passive heterodyne receiver together with a digital Fourier transform spectrometer for the data acquisition. A big advantage of the radiometric approach is that such instruments can also operate under adverse weather conditions and thus provide a continuous time series for the given location. The optics enables the instrument to scan a wide range of azimuth angles including the directions east, west, north, and south for zonal and meridional wind measurements. The design of the radiometer is fairly compact and its calibration does not rely on liquid nitrogen what makes it transportable and suitable for campaign use. WIRA is conceived in a way that it can be operated remotely and does hardly require any maintenance. A first time series of 11 months of zonal wind data was obtained for Bern (46° 57' N, 7° 26' E) before the instrument was moved to Sodankylä (67° 22' N, 26° 38' E) in September 2011 to measure at polar latitudes during a period of 10 months. After a substantial technical upgrade (integration of a pre-amplifier and sideband filter) increasing the instruments signal to noise ratio by a factor of 2.4 the measurement campaign of the ARISE project at the site of the Observatoire de Haute-Provence was joined where among others data intercomparison with a newly operational Rayleigh-Mie Doppler wind lidar is planned. At the conference, the main results from these campaigns will be presented along with the measurement technique and the instrument properties.
DOE Office of Scientific and Technical Information (OSTI.GOV)
North, Kirk W.; Oue, Mariko; Kollias, Pavlos
The US Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) program's Southern Great Plains (SGP) site includes a heterogeneous distributed scanning Doppler radar network suitable for collecting coordinated Doppler velocity measurements in deep convective clouds. The surrounding National Weather Service (NWS) Next Generation Weather Surveillance Radar 1988 Doppler (NEXRAD WSR-88D) further supplements this network. Radar velocity measurements are assimilated in a three-dimensional variational (3DVAR) algorithm that retrieves horizontal and vertical air motions over a large analysis domain (100 km × 100 km) at storm-scale resolutions (250 m). For the first time, direct evaluation of retrieved vertical air velocities with thosemore » from collocated 915 MHz radar wind profilers is performed. Mean absolute and root-mean-square differences between the two sources are of the order of 1 and 2 m s -1, respectively, and time–height correlations are of the order of 0.5. An empirical sensitivity analysis is done to determine a range of 3DVAR constraint weights that adequately satisfy the velocity observations and anelastic mass continuity. It is shown that the vertical velocity spread over this range is of the order of 1 m s -1. The 3DVAR retrievals are also compared to those obtained from an iterative upwards integration technique. Lastly, the results suggest that the 3DVAR technique provides a robust, stable solution for cases in which integration techniques have difficulty satisfying velocity observations and mass continuity simultaneously.« less
North, Kirk W.; Oue, Mariko; Kollias, Pavlos; ...
2017-08-04
The US Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) program's Southern Great Plains (SGP) site includes a heterogeneous distributed scanning Doppler radar network suitable for collecting coordinated Doppler velocity measurements in deep convective clouds. The surrounding National Weather Service (NWS) Next Generation Weather Surveillance Radar 1988 Doppler (NEXRAD WSR-88D) further supplements this network. Radar velocity measurements are assimilated in a three-dimensional variational (3DVAR) algorithm that retrieves horizontal and vertical air motions over a large analysis domain (100 km × 100 km) at storm-scale resolutions (250 m). For the first time, direct evaluation of retrieved vertical air velocities with thosemore » from collocated 915 MHz radar wind profilers is performed. Mean absolute and root-mean-square differences between the two sources are of the order of 1 and 2 m s -1, respectively, and time–height correlations are of the order of 0.5. An empirical sensitivity analysis is done to determine a range of 3DVAR constraint weights that adequately satisfy the velocity observations and anelastic mass continuity. It is shown that the vertical velocity spread over this range is of the order of 1 m s -1. The 3DVAR retrievals are also compared to those obtained from an iterative upwards integration technique. Lastly, the results suggest that the 3DVAR technique provides a robust, stable solution for cases in which integration techniques have difficulty satisfying velocity observations and mass continuity simultaneously.« less
An evaluation of the accuracy of some radar wind profiling techniques
NASA Technical Reports Server (NTRS)
Koscielny, A. J.; Doviak, R. J.
1983-01-01
Major advances in Doppler radar measurement in optically clear air have made it feasible to monitor radial velocities in the troposphere and lower stratosphere. For most applications the three dimensional wind vector is monitored rather than the radial velocity. Measurement of the wind vector with a single radar can be made assuming a spatially linear, time invariant wind field. The components and derivatives of the wind are estimated by the parameters of a linear regression of the radial velocities on functions of their spatial locations. The accuracy of the wind measurement thus depends on the locations of the radial velocities. The suitability is evaluated of some of the common retrieval techniques for simultaneous measurement of both the vertical and horizontal wind components. The techniques considered for study are fixed beam, azimuthal scanning (VAD) and elevation scanning (VED).
Planetary Wind Determination by Doppler Tracking of a Small Entry Probe Network
NASA Astrophysics Data System (ADS)
Atkinson, D. H.; Asmar, S.; Lazio, J.; Preston, R. A.
2017-12-01
To understand the origin and chemical/dynamical evolution of planetary atmospheres, measurements of atmospheric chemistries and processes including dynamics are needed. In situ measurements of planetary winds have been demonstrated on multiple occasions, including the Pioneer multiprobe and Venera missions to Venus, and the Galileo/Jupiter and Huygens/Titan probes. However, with the exception of Pioneer Venus, the retrieval of the zonal (east-west) wind profile has been limited to a single atmospheric slice. significantly improved understanding of the global dynamics requires sampling of multiple latitudes, times of day, and seasons. Simultaneous tracking of a small network of probes would enable measurements of spatially distributed winds providing a substantially improved characterization of a planet's global atmospheric circulation. Careful selection of descent locations would provide wind measurements at latitudes receiving different solar insolations, longitudes reflecting different times of day, and different seasons if both hemispheres are targeted. Doppler wind retrievals are limited by the stability of the probe and carrier spacecraft clocks, and must be equipped with an ultrastable oscillator, accelerometers for reconstructing the probe entry trajectory, and pressure / temperature sensors for determination of descent speed. A probe were equipped with both absolute and dynamic pressure sensors can measure planet center-relative and atmosphere-relative descent speeds, enabling the measurement of vertical winds from convection or atmospheric waves. Possible ambiguities arising from the assumption of no north-south winds could be removed if the probe were simultaneously tracked from the carrier spacecraft as well as from the Earth or a second spacecraft. The global circulation of an atmosphere comprising waves and flows that vary with location and depth is inherently tied to the thermal, chemical, and energy structure of the atmosphere. Wind measurements along a single vertical atmospheric slice cannot adequately represent the overall dynamical properties of the atmosphere. To more completely characterize the dynamical structure of a planetary atmosphere, it is proposed that future in situ planetary missions include a network of small probes dedicated to wind measurements.
Barzykowski, Krystian; Staugaard, Søren Risløv
2016-08-01
Theories of autobiographical memory distinguish between involuntary and voluntary retrieval as a consequence of conscious intention (i.e., wanting to remember). Another distinction can be made between direct and generative retrieval, which reflects the effort involved (i.e., trying to remember). However, it is unclear how intention and effort interacts. For example, involuntary memories and directly retrieved memories have been used interchangeably in the literature to refer to the same phenomenon of effortless, non-strategic retrieval. More recent theoretical advances suggest that they are separate types of retrieval, one unintentional (involuntary), another intentional and effortless (direct voluntary retrieval), and a third intentional and effortful (generative voluntary retrieval). Whether this also entails differing phenomenological characteristics, such as vividness, rehearsal, or emotional valence, has not been previously investigated. In the current study, participants reported memories in an experimental paradigm designed to elicit voluntary and involuntary memories and rated them on a number of characteristics. If intention affects the retrieval process, then we should expect differences between the characteristics of involuntary and directly retrieved memories. The results imply that retrieval intention seems to differentiate how a memory appears in a person's mind. Furthermore, we argue that these differences in part could result from differences in encoding and consolidation. © 2015 The British Psychological Society.
A comparison of Argo nominal surface and near-surface temperature for validation of AMSR-E SST
NASA Astrophysics Data System (ADS)
Liu, Zenghong; Chen, Xingrong; Sun, Chaohui; Wu, Xiaofen; Lu, Shaolei
2017-05-01
Satellite SST (sea surface temperature) from the Advanced Microwave Scanning Radiometer for the Earth Observing System (AMSR-E) is compared with in situ temperature observations from Argo profiling floats over the global oceans to evaluate the advantages of Argo NST (near-surface temperature: water temperature less than 1 m from the surface). By comparing Argo nominal surface temperature ( 5 m) with its NST, a diurnal cycle caused by daytime warming and nighttime cooling was found, along with a maximum warming of 0.08±0.36°C during 14:00-15:00 local time. Further comparisons between Argo 5-m temperature/Argo NST and AMSR-E SST retrievals related to wind speed, columnar water vapor, and columnar cloud water indicate warming biases at low wind speed (<5 m/s) and columnar water vapor >28 mm during daytime. The warming tendency is more remarkable for AMSR-E SST/Argo 5-m temperature compared with AMSR-E SST/Argo NST, owing to the effect of diurnal warming. This effect of diurnal warming events should be excluded before validation for microwave SST retrievals. Both AMSR-E nighttime SST/Argo 5-m temperature and nighttime SST/Argo NST show generally good agreement, independent of wind speed and columnar water vapor. From our analysis, Argo NST data demonstrated their advantages for validation of satellite-retrieved SST.
NASA Technical Reports Server (NTRS)
Miller, Timothy L.; James, M. W.; Roberts, J. B.; Jones, W. L.; Biswas, S.; Ruf, C. S.; Uhlhorn, E. W.; Atlas, R.; Black, P.; Albers, C.
2013-01-01
HIRAD flew on high-altitude aircraft over Earl and Karl during NASA s GRIP (Genesis and Rapid Intensification Processes) campaign in August - September of 2010, and at the time of this writing plans to fly over Atlantic tropical cyclones in September of 2012 as part of the Hurricane and Severe Storm Sentinel (HS3) mission. HIRAD is a new C-band radiometer using a synthetic thinned array radiometer (STAR) technology to obtain cross-track resolution of approximately 3 degrees, out to approximately 60 degrees to each side of nadir. By obtaining measurements of emissions at 4, 5, 6, and 6.6 GHz, observations of ocean surface wind speed and rain rate can be retrieved. This technique has been used for many years by precursor instruments, including the Stepped Frequency Microwave Radiometer (SFMR), which has been flying on the NOAA and USAF hurricane reconnaissance aircraft for several years to obtain observations within a single footprint at nadir angle. Results from the flights during the GRIP and HS3 campaigns will be shown, including images of brightness temperatures, wind speed, and rain rate. Comparisons will be made with observations from other instruments on the campaigns, for which HIRAD observations are either directly comparable or are complementary. Features such as storm eye and eye-wall, location of storm wind and rain maxima, and indications of dynamical features such as the merging of a weaker outer wind/rain maximum with the main vortex may be seen in the data. Potential impacts on operational ocean surface wind analyses and on numerical weather forecasts will also be discussed.
A 7.5-Year Dataset of SSM/I-Derived Surface Turbulent Fluxes Over Global Oceans
NASA Technical Reports Server (NTRS)
Chou, Shu-Hsien; Shie, Chung-Lin; Atlas, Robert M.; Ardizzone, Joe; Nelkin, Eric; Einaudi, Franco (Technical Monitor)
2001-01-01
The surface turbulent fluxes of momentum, latent heat, and sensible heat over global oceans are essential to weather, climate and ocean problems. Wind stress is the major forcing for driving the oceanic circulation, while Evaporation is a key component of hydrological cycle and surface heat budget. We have produced a 7.5-year (July 1987-December 1994) dataset of daily, individual monthly-mean and climatological (1988-94) monthly-mean surface turbulent fluxes over the global oceans from measurements of the Special Sensor Microwave/Imager (SSM/I) on board the US Defense Meteorological Satellite Program F8, F10, and F11 satellites. It has a spatial resolution of 2.0x2.5 latitude-longitude. Daily turbulent fluxes are derived from daily data of SSM/I surface winds and specific humidity, National Centers for Environmental Prediction (NCEP) sea surface temperatures, and European Centre for Medium-Range Weather Forecasts (ECMWF) air-sea temperature differences, using a stability-dependent bulk scheme. The retrieved instantaneous surface air humidity (with a 25-km resolution) IS found to be generally accurate as compared to the collocated radiosonde observations over global oceans. The surface wind speed and specific humidity (latent heat flux) derived from the F10 SSM/I are found to be -encrally smaller (larger) than those retrieved from the F11 SSM/I. The F11 SSM/I appears to have slightly better retrieval accuracy for surface wind speed and humidity as compared to the F10 SSM/I. This difference may be due to the orbital drift of the F10 satellite. The daily wind stresses and latent heat fluxes retrieved from F10 and F11 SSM/Is show useful accuracy as verified against the research quality in si -neasurerrients (IMET buoy, RV Moana Wave, and RV Wecoma) in the western Pacific warm pool during the TOGA COARE Intensive observing period (November 1992-February 1993). The 1988-94 seasonal-mean turbulent fluxes and input variables derived from FS and F11 SSM/Is show reasonable patterns related to seasonal variations of atmospheric general circulation. This dataset of SSM/I-derived turbulent fluxes is useful for climate studies, forcing of ocean models, and validation of coupled ocean-atmosphere global models and can be accessed through the NASA/GSFC Distributed Active Archive Center.
Signature of Arctic first-year ice melt pond fraction in X-band SAR imagery
NASA Astrophysics Data System (ADS)
Fors, Ane S.; Divine, Dmitry V.; Doulgeris, Anthony P.; Renner, Angelika H. H.; Gerland, Sebastian
2017-03-01
In this paper we investigate the potential of melt pond fraction retrieval from X-band polarimetric synthetic aperture radar (SAR) on drifting first-year sea ice. Melt pond fractions retrieved from a helicopter-borne camera system were compared to polarimetric features extracted from four dual-polarimetric X-band SAR scenes, revealing significant relationships. The correlations were strongly dependent on wind speed and SAR incidence angle. Co-polarisation ratio was found to be the most promising SAR feature for melt pond fraction estimation at intermediate wind speeds (6. 2 m s-1), with a Spearman's correlation coefficient of 0. 46. At low wind speeds (0. 6 m s-1), this relation disappeared due to low backscatter from the melt ponds, and backscatter VV-polarisation intensity had the strongest relationship to melt pond fraction with a correlation coefficient of -0. 53. To further investigate these relations, regression fits were made both for the intermediate (R2fit = 0. 21) and low (R2fit = 0. 26) wind case, and the fits were tested on the satellite scenes in the study. The regression fits gave good estimates of mean melt pond fraction for the full satellite scenes, with less than 4 % from a similar statistics derived from analysis of low-altitude imagery captured during helicopter ice-survey flights in the study area. A smoothing window of 51 × 51 pixels gave the best reproduction of the width of the melt pond fraction distribution. A considerable part of the backscatter signal was below the noise floor at SAR incidence angles above ˜ 40°, restricting the information gain from polarimetric features above this threshold. Compared to previous studies in C-band, limitations concerning wind speed and noise floor set stricter constraints on melt pond fraction retrieval in X-band. Despite this, our findings suggest new possibilities in melt pond fraction estimation from X-band SAR, opening for expanded monitoring of melt ponds during melt season in the future.
Improved measurements of mean sea surface velocity in the Nordic Seas from synthetic aperture radar
NASA Astrophysics Data System (ADS)
Wergeland Hansen, Morten; Johnsen, Harald; Engen, Geir; Øie Nilsen, Jan Even
2017-04-01
The warm and saline surface Atlantic Water (AW) flowing into the Nordic Seas across the Greenland-Scotland ridge transports heat into the Arctic, maintaining the ice-free oceans and regulating sea-ice extent. The AW influences the region's relatively mild climate and is the northern branch of the global thermohaline overturning circulation. Heat loss in the Norwegian Sea is key for both heat transport and deep water formation. In general, the ocean currents in the Nordic Seas and the North Atlantic Ocean is a complex system of topographically steered barotropic and baroclinic currents of which the wind stress and its variability is a driver of major importance. The synthetic aperture radar (SAR) Doppler centroid shift has been demonstrated to contain geophysical information about sea surface wind, waves and current at an accuracy of 5 Hz and pixel spacing of 3.5 - 9 × 8 km2. This corresponds to a horizontal surface velocity of about 20 cm/s at 35° incidence angle. The ESA Prodex ISAR project aims to implement new and improved SAR Doppler shift processing routines to enable reprocessing of the wide swath acquisitions available from the Envisat ASAR archive (2002-2012) at higher resolution and better accuracy than previously obtained, allowing combined use with Sentinel-1 and Radarsat-2 retrievals to build timeseries of the sea surface velocity in the Nordic Seas. Estimation of the geophysical Doppler shift from new SAR Doppler centroid shift retrievals will be demonstrated, addressing key issues relating to geometric (satellite orbit and attitude) and electronic (antenna mis-pointing) contributions and corrections. Geophysical Doppler shift retrievals from one month of data in January 2010 and the inverted surface velocity in the Nordic Seas are then addressed and compared to other direct and indirect estimates of the upper ocean current, in particular those obtained in the ESA GlobCurrent project.
Langley Atmospheric Information Retrieval System (LAIRS): System description and user's guide
NASA Technical Reports Server (NTRS)
Boland, D. E., Jr.; Lee, T.
1982-01-01
This document presents the user's guide, system description, and mathematical specifications for the Langley Atmospheric Information Retrieval System (LAIRS). It also includes a description of an optimal procedure for operational use of LAIRS. The primary objective of the LAIRS Program is to make it possible to obtain accurate estimates of atmospheric pressure, density, temperature, and winds along Shuttle reentry trajectories for use in postflight data reduction.
NASA Astrophysics Data System (ADS)
Eide, H.; Stamnes, K.; Ottaviani, M.
2004-12-01
The specular reflection of the Sun off the ocean, or sun glint, is of major concern for ocean remote sensing. Typically, data from in and around the sunglint region are discarded because of the unknown contribution to the measured radiances or because of sensor saturation. On the other hand, accurate knowledge of the sunglint properties enables retrievals of atmospheric parameters. The challenge of the ocean retrieval problem is to get the ``water leaving radiance'', Lw, by subtracting the Rayleigh scattering, aerosol scattering, water vapor, ozone, and sun glint from the measured radiances at the top of the atmosphere (TOA). Thus, the task is to correct for both the atmospheric contribution and for surface effects. Two simplifying assumptions that are frequently employed in ocean remote sensing are that the ocean BRDF is isotropic and that one can de-couple the radiative properties of the atmosphere from those of the surface. Our previous studies have shown that neglecting the inherit coupling between the atmosphere and surface can lead to large errors in the retrievals. In order to do retrievals over bright, as well as darker surfaces, it is necessary to account for this coupling between the surface and the atmosphere. In the present study we use models for the reflection of light off the ocean surface to calculate the ocean BRDF. The differences between the various models are investigated as is the effect of using different types of wave statistics (e.g. Cox Munk). We present results from calculations where we vary the wind speed and direction as well as other parameters affecting the ocean surface. The error introduced in ocean retrievals by assuming an isotropic BRDF is assessed, and methods for improved treatment of sunglint are suggested.
Infrasonic interferometry of stratospherically refracted microbaroms--a numerical study.
Fricke, Julius T; El Allouche, Nihed; Simons, Dick G; Ruigrok, Elmer N; Wapenaar, Kees; Evers, Läslo G
2013-10-01
The atmospheric wind and temperature can be estimated through the traveltimes of infrasound between pairs of receivers. The traveltimes can be obtained by infrasonic interferometry. In this study, the theory of infrasonic interferometry is verified and applied to modeled stratospherically refracted waves. Synthetic barograms are generated using a raytracing model and taking into account atmospheric attenuation, geometrical spreading, and phase shifts due to caustics. Two types of source wavelets are implemented for the experiments: blast waves and microbaroms. In both numerical experiments, the traveltimes between the receivers are accurately retrieved by applying interferometry to the synthetic barograms. It is shown that microbaroms can be used in practice to obtain the traveltimes of infrasound through the stratosphere, which forms the basis for retrieving the wind and temperature profiles.
Optimizing a remote sensing instrument to measure atmospheric surface pressure
NASA Technical Reports Server (NTRS)
Peckham, G. E.; Gatley, C.; Flower, D. A.
1983-01-01
Atmospheric surface pressure can be remotely sensed from a satellite by an active instrument which measures return echoes from the ocean at frequencies near the 60 GHz oxygen absorption band. The instrument is optimized by selecting its frequencies of operation, transmitter powers and antenna size through a new procedure baesd on numerical simulation which maximizes the retrieval accuracy. The predicted standard deviation error in the retrieved surface pressure is 1 mb. In addition the measurements can be used to retrieve water vapor, cloud liquid water and sea state, which is related to wind speed.
Expertise effects in cutaneous wind perception.
Pluijms, Joost P; Cañal-Bruland, Rouwen; Bergmann Tiest, Wouter M; Mulder, Fabian A; Savelsbergh, Geert J P
2015-08-01
We examined whether expertise effects are present in cutaneous wind perception. To this end, we presented wind stimuli consisting of different wind directions and speeds in a wind simulator. The wind simulator generated wind stimuli from 16 directions and with three speeds by means of eight automotive wind fans. Participants were asked to judge cutaneously perceived wind directions and speeds without having access to any visual or auditory information. Expert sailors (n = 6), trained to make the most effective use of wind characteristics, were compared to less-skilled sailors (n = 6) and to a group of nonsailors (n = 6). The results indicated that expert sailors outperformed nonsailors in perceiving wind direction (i.e., smaller mean signed errors) when presented with low wind speeds. This suggests that expert sailors are more sensitive in picking up differences in wind direction, particularly when confronted with low wind speeds that demand higher sensitivity.
Gordon, H R; Wang, M
1992-07-20
In the algorithm for the atmospheric correction of coastal zone color scanner (CZCS) imagery, it is assumed that the sea surface is flat. Simulations are carried out to assess the error incurred when the CZCS-type algorithm is applied to a realistic ocean in which the surface is roughened by the wind. In situations where there is no direct Sun glitter (either a large solar zenith angle or the sensor tilted away from the specular image of the Sun), the following conclusions appear justified: (1) the error induced by ignoring the surface roughness is less, similar1 CZCS digital count for wind speeds up to approximately 17 m/s, and therefore can be ignored for this sensor; (2) the roughness-induced error is much more strongly dependent on the wind speed than on the wave shadowing, suggesting that surface effects can be adequately dealt with without precise knowledge of the shadowing; and (3) the error induced by ignoring the Rayleigh-aerosol interaction is usually larger than that caused by ignoring the surface roughness, suggesting that in refining algorithms for future sensors more effort should be placed on dealing with the Rayleigh-aerosol interaction than on the roughness of the sea surface.
NASA Technical Reports Server (NTRS)
Cecil, Daniel J.; Biswas, Sayak K.; James, Mark W.; Roberts, J. Brent; Jones, W. Linwood; Johnson, James; Farrar, Spencer; Sahawneh, Saleem; Ruf, Christopher S.; Morris, Mary;
2014-01-01
The Hurricane Imaging Radiometer (HIRAD) is a synthetic thinned array passive microwave radiometer designed to allow retrieval of surface wind speed in hurricanes, up through category five intensity. The retrieval technology follows the Stepped Frequency Microwave Radiometer (SFMR), which measures surface wind speed in hurricanes along a narrow strip beneath the aircraft. HIRAD maps wind speeds in a swath below the aircraft, about 50-60 km wide when flown in the lower stratosphere. HIRAD has flown in the NASA Genesis and Rapid Intensification Processes (GRIP) experiment in 2010 on a WB-57 aircraft, and on a Global Hawk unmanned aircraft system (UAS) in 2012 and 2013 as part of NASA's Hurricane and Severe Storms Sentinel (HS3) program. The GRIP program included flights over Hurricanes Earl and Karl (2010). The 2012 HS3 deployment did not include any hurricane flights for the UAS carrying HIRAD. The 2013 HS3 flights included one flight over the predecessor to TS Gabrielle, and one flight over Hurricane Ingrid. This presentation will describe the HIRAD instrument, its results from the 2010 and 2013 flights, and potential future developments.
14 CFR 139.323 - Traffic and wind direction indicators.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 14 Aeronautics and Space 3 2014-01-01 2014-01-01 false Traffic and wind direction indicators. 139... CERTIFICATION OF AIRPORTS Operations § 139.323 Traffic and wind direction indicators. In a manner authorized by...) A wind cone that visually provides surface wind direction information to pilots. For each runway...
14 CFR 139.323 - Traffic and wind direction indicators.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 14 Aeronautics and Space 3 2013-01-01 2013-01-01 false Traffic and wind direction indicators. 139... CERTIFICATION OF AIRPORTS Operations § 139.323 Traffic and wind direction indicators. In a manner authorized by...) A wind cone that visually provides surface wind direction information to pilots. For each runway...
14 CFR 139.323 - Traffic and wind direction indicators.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 14 Aeronautics and Space 3 2012-01-01 2012-01-01 false Traffic and wind direction indicators. 139... CERTIFICATION OF AIRPORTS Operations § 139.323 Traffic and wind direction indicators. In a manner authorized by...) A wind cone that visually provides surface wind direction information to pilots. For each runway...
14 CFR 139.323 - Traffic and wind direction indicators.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 14 Aeronautics and Space 3 2011-01-01 2011-01-01 false Traffic and wind direction indicators. 139... CERTIFICATION OF AIRPORTS Operations § 139.323 Traffic and wind direction indicators. In a manner authorized by...) A wind cone that visually provides surface wind direction information to pilots. For each runway...
14 CFR 139.323 - Traffic and wind direction indicators.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Traffic and wind direction indicators. 139... CERTIFICATION OF AIRPORTS Operations § 139.323 Traffic and wind direction indicators. In a manner authorized by...) A wind cone that visually provides surface wind direction information to pilots. For each runway...
Recent Improvements in AMSR2 Ground-Based RFI Filtering
NASA Astrophysics Data System (ADS)
Scott, J. P.; Gentemann, C. L.; Wentz, F. J.
2015-12-01
Passive satellite radiometer measurements in the microwave frequencies (6-89 GHz) are useful in providing geophysical retrievals of sea surface temperature (SST), atmospheric water vapor, wind speed, rain rate, and more. However, radio frequency interference (RFI) is one of the fastest growing sources of error in these retrievals. RFI can originate from broadcasting satellites, as well as from ground-based instrumentation that makes use of the microwave range. The microwave channel bandwidths used by passive satellite radiometers are often wider than the protected bands allocated for this type of remote sensing, a common practice in microwave radiometer design used to reduce the effect of instrument noise in the observed signal. However, broad channel bandwidths allow greater opportunity for RFI to affect these observations and retrievals. For ground-based RFI, a signal is broadcast directly into the atmosphere which may interfere with the radiometer - its antenna, cold mirror, hot load or the internal workings of the radiometer itself. It is relatively easy to identify and flag RFI from large sources, but more difficult to do so from small, sporadic sources. Ground-based RFI has high spatial and temporal variability, requiring constant, automated detection and removal to avoid spurious trends leaching into the geophysical retrievals. Ascension Island in the South Atlantic Ocean has been one of these notorious ground-based RFI sources, affecting many microwave radiometers, including the AMSR2 radiometer onboard JAXA's GCOM-W1 satellite. Ascension Island RFI mainly affects AMSR2's lower frequency channels (6.9, 7.3, and 10.65 GHz) over a broad spatial region in the South Atlantic Ocean, which makes it challenging to detect and flag this RFI using conventional channel and geophysical retrieval differencing techniques. The authors have developed a new method of using the radiometer's earth counts and hot counts, for the affected channels, to detect an Ascension Island RFI event and flag the data efficiently and accurately, thereby reducing false detections and optimizing retrieval quality and data preservation.
Coastal and rain-induced wind variability depicted by scatterometers
NASA Astrophysics Data System (ADS)
Portabella, M.; Lin, W.; Stoffelen, A.; Turiel, A.; Verhoef, A.; Verspeek, J.; Ballabrera, J.; Vogelzang, J.
2012-04-01
A detailed knowledge of local wind variability near the shore is very important since it strongly affects the weather and microclimate in coastal regions. Since coastal areas are densely populated and most activity at sea occurs near the shore, sea-surface wind field information is important for a number of applications. In the vicinity of land sea-breeze, wave fetch, katabatic and current effects are more likely than in the open ocean, thus enhancing air-sea interaction. Also very relevant for air-sea interaction are the rain-induced phenomena, such as downbursts and convergence. Relatively cold and dry air is effectively transported to the ocean surface and surface winds are enhanced. In general, both coastal and rain-induced wind variability are poorly resolved by Numerical Weather Prediction (NWP) models. Satellite real aperture radars (i.e., scatterometers) are known to provide accurate mesoscale (25-50 km resolution) sea surface wind field information used in a wide variety of applications. Nowadays, there are two operating scatterometers in orbit, i.e., the C-band Advanced Scatterometer (ASCAT) onboard Metop-A and the Ku-band scatterometer (OSCAT) onboard Oceansat-2. The EUMETSAT Ocean and Sea Ice Satellite Application Facility (OSI SAF) delivers several ASCAT level 2 wind products with 25 km and 12.5 km Wind Vector Cell (WVC) spacing, including a pre-operational coastal wind product as well as an OSCAT level 2 wind product with 50 km spacing in development status. Rain is known to both attenuate and scatter the microwave signal. In addition, there is a "splashing" effect. The roughness of the sea surface is increased because of splashing due to rain drops. The so-called "rain contamination" is larger for Ku-band scatterometer systems than for C-band systems. Moreover, the associated downdrafts lead to variable wind speeds and directions, further complicating the wind retrieval. The C-band ASCAT high resolution wind processing is validated under rainy conditions, using collocations with the Tropical Rainfall Measuring Mission's (TRMM) Microwave Imager (TMI) rain data, and the tropical moored buoy wind and precipitation data. It turns out that the effect of low and moderate rain appears mainly in increasing the wind variability near the surface and, unlike for Ku-band scatterometers, the rain rate itself does not appear clearly as a limiting factor in ASCAT wind quality. Moreover, the downburst patterns as observed by ASCAT are unique and have large implications for air-sea exchange. At the conference, the main progress in scatterometer wind data processing will be shown.
Selective memory retrieval can impair and improve retrieval of other memories.
Bäuml, Karl-Heinz T; Samenieh, Anuscheh
2012-03-01
Research from the past decades has shown that retrieval of a specific memory (e.g., retrieving part of a previous vacation) typically attenuates retrieval of other memories (e.g., memories for other details of the event), causing retrieval-induced forgetting. More recently, however, it has been shown that retrieval can both attenuate and aid recall of other memories (K.-H. T. Bäuml & A. Samenieh, 2010). To identify the circumstances under which retrieval aids recall, the authors examined retrieval dynamics in listwise directed forgetting, context-dependent forgetting, proactive interference, and in the absence of any induced memory impairment. They found beneficial effects of selective retrieval in listwise directed forgetting and context-dependent forgetting but detrimental effects in all the other conditions. Because context-dependent forgetting and listwise directed forgetting arguably reflect impaired context access, the results suggest that memory retrieval aids recall of memories that are subject to impaired context access but attenuates recall in the absence of such circumstances. The findings are consistent with a 2-factor account of memory retrieval and suggest the existence of 2 faces of memory retrieval. 2012 APA, all rights reserved
The effect of cue content on retrieval from autobiographical memory.
Uzer, Tugba; Brown, Norman R
2017-01-01
It has long been argued that personal memories are usually generated in an effortful search process in word-cueing studies. However, recent research (Uzer, Lee, & Brown, 2012) shows that direct retrieval of autobiographical memories, in response to word cues, is common. This invites the question of whether direct retrieval phenomenon is generalizable beyond the standard laboratory paradigm. Here we investigated prevalence of direct retrieval of autobiographical memories cued by specific and individuated cues versus generic cues. In Experiment 1, participants retrieved memories in response to cues from their own life (e.g., the names of friends) and generic words (e.g., chair). In Experiment 2, participants provided their personal cues two or three months prior to coming to the lab (min: 75days; max: 100days). In each experiment, RT was measured and participants reported whether memories were directly retrieved or generated on each trial. Results showed that personal cues elicited a high rate of direct retrieval. Personal cues were more likely to elicit direct retrieval than generic word cues, and as a consequence, participants responded faster, on average, to the former than to the latter. These results challenge the constructive view of autobiographical memory and suggest that autobiographical memories consist of pre-stored event representations, which are largely governed by associative mechanisms. These demonstrations offer theoretically interesting questions such as why are we not overwhelmed with directly retrieved memories cued by everyday familiar surroundings? Copyright © 2016 Elsevier B.V. All rights reserved.
Jupiter's Atmospheric Temperatures: From Voyager IRIS to Cassini CIRS
NASA Technical Reports Server (NTRS)
Simon-Miller, Amy A.; Conrath, Barney J.; Gierasch, Peter J.; Orton, Glenn S.; Achterberg, Richard K.; Flasar, F. Michael; Fisher, Brendan
2004-01-01
Retrievals run on Cassini Composite Infrared Spectrometer data obtained during the distant Jupiter flyby have been used to generate global temperature maps of the planet in the troposphere and stratosphere. Similar retrievals were performed on Voyager 1 IRIS data and have provided the first detailed IRIS map of the stratosphere. In both data sets, high latitude troposphere temperatures are presented for the first time, and the meridional gradients indicate the presence of circumpolar jets. Thermal winds were calculated for each data set and show strong vertical shears in the zonal winds at low latitudes. The temperatures retrieved from the two spacecraft were also compared with yearly ground-based data obtained over the intervening two decades. Tropospheric temperatures reveal gradual changes at low latitudes, with little obvious seasonal or short-term variation (Orton et al. 1994). Stratospheric temperatures show much more complicated behavior over short timescales, consistent with quasi-quadrennial oscillations at low latitudes, as suggested in prior analyses of shorter intervals of ground- based data (Orton et al. 1991, Friedson 1999). A scaling analysis indicates that meridional motions, mechanically forced by wave or eddy convergence, play an important role in modulating the temperatures and winds in the upper troposphere and stratosphere on seasonal and shorter time scales. At latitudes away from the equator, the mechanical forcing can be derived simply from a temporal record of temperature and its vertical derivative. Ground-based observations with improved vertical resolution and/or long-term monitoring from spacecraft are required for this purpose.
Improved Estimates of Moments and Winds from Radar Wind Profiler
DOE Office of Scientific and Technical Information (OSTI.GOV)
Helmus, Jonathan; Ghate, Virendra P.
2017-01-02
The U.S. Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) Climate Research Facility (ACRF) operates nine radar wind profilers (RWP) across its sites. These RWPs operate at 915 MHz or 1290 MHz frequency and report the first three moments of the Doppler spectrum. The operational settings of the RWP were modified in summer, 2015 to have single pulse length setting for the wind mode and two pulse length settings for the precipitation mode. The moments data collected during the wind mode are used to retrieve horizontal winds. The vendor-reported winds are available at variable time resolution (10 mins, 60 mins,more » etc.) and contain a significant amount of contamination due to noise and clutter. In this data product we have recalculated the moments and the winds from the raw radar Doppler spectrum and have made efforts to mitigate the contamination due to instrument noise in the wind estimates. Additionally, the moments and wind data has been reported in a harmonized layout identical for all locations and sites.« less
NASA Technical Reports Server (NTRS)
Kostiuk, T.; Deming, Drake; Mumma, M.
1988-01-01
This task supports the application of infrared heterodyne and Fourier transform spectroscopy to ultra-high resolution studies of molecular constituents of planetary astomspheres and cometary comae. High spectral and spatial resolutions are especially useful for detection and study of localized, non-thermal phenomena in low temperature and low density regions, for detection of trace constituents and for measurement of winds and dynamical phenomena such as thermal tides. Measurement and analysis of individual spectial lines permits retrieval of atmospheric molecular abundances and temperatures and thus, information on local photochemical processes. Determination of absolute line positions to better than 10 to the minus eighth power permits direct measurements of gas velocity to a few meters/sec. Observations are made from ground based heterodyne spectrometers at the Kitt Peak McMath solar telescope and from the NASA infrared Telescope Facility on Mauna Kea, Hawaii. Wind velocities at 110km altitude on Venus were extracted approximately 1 m/sec from measurements of non-thermal emission cores of 10.3 micron CO2 lines. Results indicate a subsolar to antisolar circulationwith a small zonal retrograde component.
NASA Technical Reports Server (NTRS)
Roos-Serote, M.; Drossart, P.; Encrenaz, TH.; Lellouch, E.; Carlson, R. W.; Baines, K. H.; Taylor, F. W.; Calcutt, S. B.
1995-01-01
An analysis of thermal profiles and dynamics over a wide range of latitudes for the venusian atmosphere between 70 and 90 km is presented based on high spatial resolution infrared spectra of the night side obtained by the near infrared mapping spectrometer (NIMS) experiment during the Galileo-Venus encounter in February 1990. Using the 4.3-micrometer CO2 absorption band, the temperature profile is retrieved in the 75- to 91-km altitude region over a latitudinal range of -59 deg to +64 deg. Compared to earlier observations from the Pioneer Venus mission, the temperature at 91 km is about 10 K higher and between 74 and 83 km about 3.6 K colder. An equator to pole warming at constant pressure levels is found and implications for the zonal wind profiles are drawn under the assumption that the atmosphere is in cyclostrophic balance in the region of 70 to 90 km. The results are in correspondence with direct wind measurements from ground-based observations at 95 km and 105 km altitude.
Measurements of Wind Velocity and Direction Using Acoustic Reflection against Wall
NASA Astrophysics Data System (ADS)
Saito, Ikumi; Wakatsuki, Naoto; Mizutani, Koichi; Ishii, Masahisa; Okushima, Limi; Sase, Sadanori
2008-05-01
The measurements of wind velocity and direction using an acoustic reflection against a wall are described. We aim to measure the spatial mean wind velocity and direction to be used for an air-conditioning system. The proposed anemometer consists of a single wall and two pairs of loudspeakers (SP) and microphones (MIC) that form a triangular shape. Two sound paths of direct and reflected waves are available. One is that of the direct wave and the other is that of the wave reflected on the wall. The times of flights (TOFs) of the direct and reflected waves can be measured using a single MIC because there is a difference in the TOF between direct and reflected waves. By using these TOFs, wind velocity and direction can be calculated. In the experiments, the wind velocities and directions were measured in a wind tunnel by changing the wind velocity. The wind direction was examined by changing the setup of the transducers. The measured values using the proposed and conventional anemometers agreed with each other. By using the wave reflected against a wall, wind velocities and directions can be measured using only two pairs of transducers, while four pairs are required in the case of conventional anemometers.
NASA Technical Reports Server (NTRS)
Xi, Baike; Dong, Xiquan; Minnis, Patrick; Sun-Mack, Sunny
2014-01-01
Marine boundary layer (MBL) cloud properties derived from the NASA Clouds and the Earth's Radiant Energy System (CERES) project using Terra and Aqua Moderate Resolution Imaging Spectroradiometer (MODIS) data are compared with observations taken at the Department of Energy Atmospheric Radiation Measurement (ARM) Mobile Facility at the Azores (AMF-Azores) site from June 2009 through December 2010. Cloud properties derived from ARM ground-based observations were averaged over a 1 h interval centered at the satellite overpass time, while the CERES-MODIS (CM) results were averaged within a 30 km×30 km grid box centered over the Azores site. A total of 63 daytime and 92 nighttime single-layered overcast MBL cloud cases were selected from 19 months of ARM radar-lidar and satellite observations. The CM cloud top/base heights (Htop/Hbase) were determined from cloud top/base temperatures (Ttop/Tbase) using a regional boundary layer lapse rate method. For daytime comparisons, the CM-derived Htop (Hbase), on average, is 0.063 km (0.068 km) higher (lower) than its ARM radar-lidar-observed counterpart, and the CM-derived Ttop and Tbase are 0.9 K less and 2.5 K greater than the surface values with high correlations (R(sup 2) = 0.82 and 0.84, respectively). In general, the cloud top comparisons agree better than the cloud base comparisons, because the CM cloud base temperatures and heights are secondary products determined from cloud top temperatures and heights. No significant day-night difference was found in the analyses. The comparisons of MBL cloud microphysical properties reveal that when averaged over a 30 km× 30 km area, the CM-retrieved cloud droplet effective radius (re) at 3.7 micrometers is 1.3 micrometers larger than that from the ARM retrievals (12.8 micrometers), while the CM-retrieved cloud liquid water path (LWP) is 13.5 gm( exp -2) less than its ARM counterpart (114.2 gm( exp-2) due to its small optical depth (9.6 versus 13.7). The differences are reduced by 50% when the CM averages are computed only using the MODIS pixel nearest the AMF site. Using the effective radius retrieved using 2.1 micrometers channel to calculate LWP can reduce the difference between the CM and ARM microwave radiometer retrievals from 13.7 to 2.1 gm2. The 10% differences between the ARM and CERES-MODIS LWP and r(sub e) retrievals are within the uncertainties of the ARM LWP (approximately 20gm( exp -2)) and r(sub e) (approximately 10%) retrievals; however, the 30% difference in optical depth is significant. Possible reasons contributing to this discrepancy are increased sensitivities in optical depth from both surface retrievals when t is approximately 10 and topography. The t differences vary with wind direction and are consistent with the island orography.Much better agreement in t is obtained when using only those data taken when the wind is from the northeast, where topographical effects on the sampled clouds are minimal.
NASA Astrophysics Data System (ADS)
Xi, Baike; Dong, Xiquan; Minnis, Patrick; Sun-Mack, Sunny
2014-08-01
Marine boundary layer (MBL) cloud properties derived from the NASA Clouds and the Earth's Radiant Energy System (CERES) project using Terra and Aqua Moderate Resolution Imaging Spectroradiometer (MODIS) data are compared with observations taken at the Department of Energy Atmospheric Radiation Measurement (ARM) Mobile Facility at the Azores (AMF-Azores) site from June 2009 through December 2010. Cloud properties derived from ARM ground-based observations were averaged over a 1 h interval centered at the satellite overpass time, while the CERES-MODIS (CM) results were averaged within a 30 km × 30 km grid box centered over the Azores site. A total of 63 daytime and 92 nighttime single-layered overcast MBL cloud cases were selected from 19 months of ARM radar-lidar and satellite observations. The CM cloud top/base heights (Htop/Hbase) were determined from cloud top/base temperatures (Ttop/Tbase) using a regional boundary layer lapse rate method. For daytime comparisons, the CM-derived Htop (Hbase), on average, is 0.063 km (0.068 km) higher (lower) than its ARM radar-lidar-observed counterpart, and the CM-derived Ttop and Tbase are 0.9 K less and 2.5 K greater than the surface values with high correlations (R2 = 0.82 and 0.84, respectively). In general, the cloud top comparisons agree better than the cloud base comparisons, because the CM cloud base temperatures and heights are secondary products determined from cloud top temperatures and heights. No significant day-night difference was found in the analyses. The comparisons of MBL cloud microphysical properties reveal that when averaged over a 30 km × 30 km area, the CM-retrieved cloud droplet effective radius (re) at 3.7 µm is 1.3 µm larger than that from the ARM retrievals (12.8 µm), while the CM-retrieved cloud liquid water path (LWP) is 13.5 gm-2 less than its ARM counterpart (114.2 gm-2) due to its small optical depth (9.6 versus 13.7). The differences are reduced by 50% when the CM averages are computed only using the MODIS pixel nearest the AMF site. Using the effective radius retrieved using 2.1 µm channel to calculate LWP can reduce the difference between the CM and ARM microwave radiometer retrievals from -13.7 to 2.1 gm-2. The 10% differences between the ARM and CERES-MODIS LWP and re retrievals are within the uncertainties of the ARM LWP ( 20 gm-2) and re ( 10%) retrievals; however, the 30% difference in optical depth is significant. Possible reasons contributing to this discrepancy are increased sensitivities in optical depth from both surface retrievals when τ 10 and topography. The τ differences vary with wind direction and are consistent with the island orography. Much better agreement in τ is obtained when using only those data taken when the wind is from the northeast, where topographical effects on the sampled clouds are minimal.
The necessity for a new parameterization of an empirical model for wind/ocean scatterometry
NASA Technical Reports Server (NTRS)
Woiceshyn, P. M.; Wurtele, M. G.; Boggs, D. H.; Mcgoldrick, L. F.; Peteherych, S.
1986-01-01
Difficulties related to the paucity of weather observation data regarding oceans were potentially alleviated for three summer months in 1978 when NASA's Seasat telemetered data from three wind-measuring instruments. The present study is concerned with one of these instruments, the Seasat A Scatterometer System (SASS). Attention is given to an internal consistency check of the SASS 1 model, comparisons of SASS 1 and other model-predicted winds with in situ winds, and a brief summary of the principal findings. It is found that a new wind retrieval system is required if SASS wind data are to be globally applicable and, at the same time, are to meet the required performance specifications. The sum-of-squares (SOS) technique for inverting SASS NRCS (normalized radar cross section) measurements results in the discarding of valuable data in low-speed areas and for higher incidence angles.
Analysis of Wind and Sea State in SAR data of Hurricanes
NASA Astrophysics Data System (ADS)
Hoja, D.; Schulz-Stellenfleth, J.; Lehner, S.; Horstmann, J.
2003-04-01
Spaceborne synthetic aperture radar (SAR) is still the only instrument providing directional ocean wave and in addition surface wind information on a global and continuous basis. Operating in ASAR wave mode ENVISAT, launched in 2002, provides 10 km x 5 km SAR images every 100 km along the orbit. These SAR data continue and expand the SAR era of the European Remote Sensing satellites ERS-1 and ERS-2, which have acquired similar SAR data since 1991 on a global basis. To not only use the official ERS SAR wave mode product, which consists only of the SAR image power spectrum, but also the full SAR image information a subset of 27 days globally distributed ERS-2 SAR raw data were processed to single look complex SAR imagettes using the BSAR processor developed at the German Aerospace Center. These data have the same format as the official ESA product for ENVISAT ASAR wave mode data. This subset of 34,000 ERS-2 SAR imagettes was used to develop and validate algorithms for wind and wave retrieval, which are also applicable to ENVISAT ASAR wave mode data. The time frame of the dataset covers several tropical cyclones in the Atlantic Ocean of which hurricane Fran has been investigated in detail together with additional data available from scatterometers, buoys and weather centers. Hurricane Fran was active from August 23 to September 8, 1996. During this time, hurricane Fran developed near the African coast and progressed over the North Atlantic Ocean. Landfall occurred on September 5, 1996 at the coast of North Carolina, USA. Fran was part of a whole series of tropical cyclones travelling about the same course in a short time. The wind is extracted from SAR imagery and compared to results of the numerical model output provided by the European Center for Medium-Range Weather Forecast (ECMWF) and co-located ERS-2 scatterometer measurements. The Swell and wind sea systems generated by the tropical cyclones are measured using SAR cross spectra and a newly developed partitioning technique. For each component wave system (partition) spectral parameters like wavelength and wave propagation direction are calculated and compared to numerical model output provided by ECMWF. The progression of the tropical cyclones is presented and it is described, how the hurricanes are portrayed in the SAR data. The response of waves to fast turning winds is analyzed. Conclusions are drawn about the wave model forecast in hurricane situations using satellite wave mode data. Keywords: Hurricanes, SAR, ocean winds, ocean waves, wind sea and swell
A multiple-fan active control wind tunnel for outdoor wind speed and direction simulation
NASA Astrophysics Data System (ADS)
Wang, Jia-Ying; Meng, Qing-Hao; Luo, Bing; Zeng, Ming
2018-03-01
This article presents a new type of active controlled multiple-fan wind tunnel. The wind tunnel consists of swivel plates and arrays of direct current fans, and the rotation speed of each fan and the shaft angle of each swivel plate can be controlled independently for simulating different kinds of outdoor wind fields. To measure the similarity between the simulated wind field and the outdoor wind field, wind speed and direction time series of two kinds of wind fields are recorded by nine two-dimensional ultrasonic anemometers, and then statistical properties of the wind signals in different time scales are analyzed based on the empirical mode decomposition. In addition, the complexity of wind speed and direction time series is also investigated using multiscale entropy and multivariate multiscale entropy. Results suggest that the simulated wind field in the multiple-fan wind tunnel has a high degree of similarity with the outdoor wind field.
Test-Potentiated Learning: Distinguishing Between Direct and Indirect Effects of Tests
Arnold, Kathleen M.; McDermott, Kathleen B.
2013-01-01
The facilitative effect of retrieval practice, or testing, on the probability of later retrieval has been the focus of much recent empirical research. A lesser-known benefit of retrieval practice is that it may also enhance the ability of a learner to benefit from a subsequent restudy opportunity. This facilitative effect of retrieval practice on subsequent encoding is known as test-potentiated learning. Thus far, however, the literature has not isolated the indirect effect of retrieval practice on subsequent memory (via enhancing the effectiveness of restudy) from the direct effects of retrieval on subsequent memory. The experiment presented here uses conditional probability to disentangle test-potentiated learning from the direct effects of retrieval practice. The results indicate that unsuccessful retrieval attempts enhance the effectiveness of subsequent restudy, demonstrating that tests do potentiate subsequent learning. PMID:22774852
NASA Astrophysics Data System (ADS)
Ruf, C. S.; Clarizia, M. P.; Ridley, A. J.; Gleason, S.; O'Brien, A.
2014-12-01
The Cyclone Global Navigation Satellite System (CYGNSS) is the first NASA Earth Ventures spaceborne mission. CYGNSS consists of a constellation of eight small observatories carried into orbit on a single launch vehicle. The eight satellites comprise a constellation that flies closely together to measure the ocean surface wind field with unprecedented temporal resolution and spatial coverage, under all precipitating conditions, and over the full dynamic range of wind speeds experienced in a TC. The 8 CYGNSS observatories will fly in 500 km circular orbits at a common inclination of ~35°. Each observatory includes a Delay Doppler Mapping Instrument (DDMI) consisting of a modified GPS receiver capable of measuring surface scattering, a low gain zenith antenna for measurement of the direct GPS signal, and two high gain nadir antennas for measurement of the weaker scattered signal. Each DDMI is capable of measuring 4 simultaneous bi-static reflections, resulting in a total of 32 wind measurements per second across the globe by the full constellation. Simulation studies will be presented which examine the sampling as functions of various orbit parameters of the constellation. For comparison purposes, a similar analysis is conducted using the sampling of several past and present conventional spaceborne ocean wind scatterometers. Differences in the ability of the sensors to resolve the evolution of the TC inner core will be examined. The CYGNSS observatories are currently in Phase C development. An update on the current status of the mission will be presented, including the expected precision, accuracy and spatial and temporal sampling properties of the retrieved winds.
NASA Astrophysics Data System (ADS)
Masseran, Nurulkamal; Razali, Ahmad Mahir; Ibrahim, Kamarulzaman; Zaharim, Azami; Sopian, Kamaruzzaman
2015-02-01
Wind direction has a substantial effect on the environment and human lives. As examples, the wind direction influences the dispersion of particulate matter in the air and affects the construction of engineering structures, such as towers, bridges, and tall buildings. Therefore, a statistical analysis of the wind direction provides important information about the wind regime at a particular location. In addition, knowledge of the wind direction and wind speed can be used to derive information about the energy potential. This study investigated the characteristics of the wind regime of Mersing, Malaysia. A circular distribution based on Nonnegative Trigonometric Sums (NNTS) was fitted to a histogram of the average hourly wind direction data. The Newton-like manifold algorithm was used to estimate the parameter of each component of the NNTS model. Next, the suitability of each NNTS model was judged based on a graphical representation and Akaike's Information Criteria. The study found that the NNTS model with six or more components was able to fit the wind directional data for the Mersing station.
NASA Astrophysics Data System (ADS)
Jethva, H. T.; Torres, O.; Waquet, F.; Chand, D.
2013-12-01
Atmospheric aerosols are known to produce a net cooling effect in the cloud-free conditions. However, when present over the reflective cloud decks, absorbing aerosols such as biomass burning generated smoke and wind-blown dust can potentially exert a large positive forcing through enhanced atmospheric heating resulting from cloud-aerosol radiative interactions. The interest on this aspect of aerosol science has grown significantly in the recent years. Particularly, development of the satellite-based retrieval techniques and unprecedented knowledge on the above-cloud aerosol optical depth (ACAOD) is of great relevance. A direct validation of satellite ACAOD is a difficult task primarily due to lack of ample in situ and/or remote sensing measurements of aerosols above cloud. In these circumstances, a comparative analysis on the inter-satellite ACAOD retrievals can be performed for the sack of consistency check. Here, we inter-compare the ACAOD of biomass burning plumes observed from different A-train sensors, i.e., MODIS [Jethva et al., 2013], CALIOP [Chand et al., 2008], POLDER [Waquet et al., 2009], and OMI [Torres et al., 2012]. These sensors have been shown to acquire sensitivity and independent capabilities to detect and retrieve aerosol loading above marine stratocumulus clouds--a kind of situation often found over the southeastern Atlantic Ocean during dry burning season. A systematic one-to-one comparison reveals that, in general, all passive sensors and CALIOP-based research methods retrieve comparable ACAOD over homogeneous cloud fields. The high-resolution sensors (MODIS and CALIOP) are able to retrieve aerosols over thin clouds but with larger discrepancies. Given the different types of sensor measurements processed with different algorithms, a reasonable agreement between them is encouraging. A direct validation of satellite-based ACAOD remains an open challenge for which dedicated field measurements over the region of frequent aerosol/cloud overlap are a prime requirement. Jethva, H., O. Torres, L. A. Remer, P. K. Bhartia (2013), A Color Ratio Method for Simultaneous Retrieval of Aerosol and Cloud Optical Thickness of Above-Cloud Absorbing Aerosols From Passive Sensors: Application to MODIS Measurements, Geoscience and Remote Sensing, IEEE Transactions on, 51(7), pp. 3862-3870, doi: 10.1109/TGRS.2012.2230008. Chand, D., T. L. Anderson, R. Wood, R. J. Charlson, Y. Hu, Z. Liu, and M. Vaughan (2008), Quantifying above-cloud aerosol using spaceborne lidar for improved understanding of cloudy-sky direct climate forcing, J. Geophys. Res., 113, D13206, doi:10.1029/2007JD009433. Waquet, F., J. Riedi, L. C. Labonnote, P. Goloub, B. Cairns, J.-L. Deuzeand, and D. Tanre (2009), Aerosol remote sensing over clouds using a-train observations, J. Atmos. Sci., 66(8), 2468-2480, doi: http://dx.doi.org/10.1175/2009JAS3026.1 Torres, O., H. Jethva, and P. K. Bhartia (2012), Retrieval of aerosol optical depth above clouds from OMI observations: Sensitivity analysis and case studies, J. Atmos. Sci., 69(3), 1037-1053, doi: http://dx.doi.org/10.1175/JAS-D-11-0130.
New algorithms for microwave measurements of ocean winds
NASA Technical Reports Server (NTRS)
Wentz, F. J.; Peteherych, S.
1984-01-01
Improved second generation wind algorithms are used to process the three month SEASAT SMMR and SASS data sets. The new algorithms are derived without using in situ anemometer measurements. All known biases in the sensors prime measurements are removed, and the algorithms prime model functions are internally self-consistent. The computed SMMR and SASS winds are collocated and compared on a 150 km cell-by-cell basis, giving a total of 115444 wind comparisons. The comparisons are done using three different sets of SMMR channels. When the 6.6H SMMR channel is used for wind retrieval, the SMMR and SASS winds agree to within 1.3 m/s over the SASS primary swath. At nadir where the radar cross section is less sensitive to wind, the agreement degrades to 1.9 m/s. The agreement is very good for winds from 0 to 15 m/s. Above 15 m/s, the off-nadir SASS winds are consistently lower than the SMMR winds, while at nadir the high SASS winds are greater than SMMR's. When 10.7H is used for the SMMR wind channel, the SMMR/SASS wind comparisons are not quite as good. When the frequency of the wind channel is increased to 18 GHz, the SMMR/SASS agreement substantially degrades to about 5 m/s.
Continuous Water Vapor Profiles from Operational Ground-Based Active and Passive Remote Sensors
NASA Technical Reports Server (NTRS)
Turner, D. D.; Feltz, W. F.; Ferrare, R. A.
2000-01-01
The Atmospheric Radiation Measurement program's Southern Great Plains Cloud and Radiation Testbed site central facility near Lamont, Oklahoma, offers unique operational water vapor profiling capabilities, including active and passive remote sensors as well as traditional in situ radiosonde measurements. Remote sensing technologies include an automated Raman lidar and an automated Atmospheric Emitted Radiance Interferometer (AERI), which are able to retrieve water vapor profiles operationally through the lower troposphere throughout the diurnal cycle. Comparisons of these two water vapor remote sensing methods to each other and to radiosondes over an 8-month period are presented and discussed, highlighting the accuracy and limitations of each method. Additionally, the AERI is able to retrieve profiles of temperature while the Raman lidar is able to retrieve aerosol extinction profiles operationally. These data, coupled with hourly wind profiles from a 915-MHz wind profiler, provide complete specification of the state of the atmosphere in noncloudy skies. Several case studies illustrate the utility of these high temporal resolution measurements in the characterization of mesoscale features within a 3-day time period in which passage of a dryline, warm air advection, and cold front occurred.
NASA Astrophysics Data System (ADS)
May, J. C.; Rowley, C. D.; Meyer, H.
2017-12-01
The Naval Research Laboratory (NRL) Ocean Surface Flux System (NFLUX) is an end-to-end data processing and assimilation system used to provide near-real-time satellite-based surface heat flux fields over the global ocean. The first component of NFLUX produces near-real-time swath-level estimates of surface state parameters and downwelling radiative fluxes. The focus here will be on the satellite swath-level state parameter retrievals, namely surface air temperature, surface specific humidity, and surface scalar wind speed over the ocean. Swath-level state parameter retrievals are produced from satellite sensor data records (SDRs) from four passive microwave sensors onboard 10 platforms: the Special Sensor Microwave Imager/Sounder (SSMIS) sensor onboard the DMSP F16, F17, and F18 platforms; the Advanced Microwave Sounding Unit-A (AMSU-A) sensor onboard the NOAA-15, NOAA-18, NOAA-19, Metop-A, and Metop-B platforms; the Advanced Technology Microwave Sounder (ATMS) sensor onboard the S-NPP platform; and the Advanced Microwave Scannin Radiometer 2 (AMSR2) sensor onboard the GCOM-W1 platform. The satellite SDRs are translated into state parameter estimates using multiple polynomial regression algorithms. The coefficients to the algorithms are obtained using a bootstrapping technique with all available brightness temperature channels for a given sensor, in addition to a SST field. For each retrieved parameter for each sensor-platform combination, unique algorithms are developed for ascending and descending orbits, as well as clear vs cloudy conditions. Each of the sensors produces surface air temperature and surface specific humidity retrievals. The SSMIS and AMSR2 sensors also produce surface scalar wind speed retrievals. Improvement is seen in the SSMIS retrievals when separate algorithms are used for the even and odd scans, with the odd scans performing better than the even scans. Currently, NFLUX treats all SSMIS scans as even scans. Additional improvement in all of the surface retrievals comes from using a 3-hourly SST field, as opposed to a daily SST field.
NASA Astrophysics Data System (ADS)
Delbarre, H.; Augustin, P.; Saïd, F.; Campistron, B.; Bénech, B.; Lohou, F.; Puygrenier, V.; Moppert, C.; Cousin, F.; Fréville, P.; Fréjafon, E.
2005-03-01
Ground-based remote sensing systems have been used during the ESCOMPTE campaign, to continuously characterize the boundary-layer behaviour through many atmospheric parameters (wind, extinction and ozone concentration distribution, reflectivity, turbulence). This analysis is focused on the comparison of the atmospheric stratification retrieved from a UV angular ozone lidar, an Ultra High Frequency wind profiler and a sodar, above the area of Marseille, on June 26th 2001 (Intensive Observation Period 2b). The atmospheric stratification is shown to be very complex including two superimposed sea breezes, with an important contribution of advection. The temporal and spatial evolution of the stratification observed by the UV lidar and by the UHF radar are in good agreement although the origin of the echoes of these systems is quite different. The complexity of the dynamic situation has only partially been retrieved by a non-hydrostatic mesoscale model used with a 3 km resolution.
NASA Technical Reports Server (NTRS)
Cecil, Daniel J.; James, Mark W.; Roberts, J. Brent; Bisawas, Sayak K.; Jones, W. Linwood; Johnson, James; Farrar, Spencer; Sahawneh, Saleem; Ruf, Christopher S.; Morris, Mary;
2014-01-01
The Hurricane Imaging Radiometer (HIRAD) is a synthetic thinned array passive microwave radiometer designed to allow retrieval of surface wind speed in hurricanes, up through category five intensity. The retrieval technology follows the Stepped Frequency Microwave Radiometer (SFMR), which measures surface wind speed in hurricanes along a narrow strip beneath the aircraft. HIRAD has flown in the NASA Genesis and Rapid Intensification Processes (GRIP) experiement in 2010 on a WB-57 aircraft, and on a Global Hawk unmanned aircraft system (UAS) in 2012 and 2013 as part of NASA's Hurricane and Severe Storms Sentinel (HS3) program. The GRIP program included flights over Hurricanes Earl and Karl (2010). The 2012 HS3 deployment did not include any hurricane flights for the UAS carrying HIRAD. Hurricane flights are expected for HIRAD in 2013 during HS3. This presentation will describe the HIRAD instrument, its results from the 2010 hurricane flights, and hopefully results from hurricane flights in August and September 2013.
Small-Scale Gravity Waves in ER-2 MMS/MTP Wind and Temperature Measurements during CRYSTAL-FACE
NASA Technical Reports Server (NTRS)
Wang, L.; Alexander, M. J.; Bui, T. P.; Mahoney, M. J.
2006-01-01
Lower stratospheric wind and temperature measurements made from NASA's high-altitude ER-2 research aircraft during the CRYSTAL-FACE campaign in July 2002 were analyzed to retrieve information on small scale gravity waves (GWs) at the aircraft's flight level (typically approximately 20 km altitude). For a given flight segment, the S-transform (a Gaussian wavelet transform) was used to search for and identify small horizontal scale GW events, and to estimate their apparent horizontal wavelengths. The horizontal propagation directions of the events were determined using the Stokes parameter method combined with the cross S-transform analysis. The vertical temperature gradient was used to determine the vertical wavelengths of the events. GW momentum fluxes were calculated from the cross S-transform. Other wave parameters such as intrinsic frequencies were calculated using the GW dispersion relation. More than 100GW events were identified. They were generally high frequency waves with vertical wavelength of approximately 5 km and horizontal wavelength generally shorter than 20 km. Their intrinsic propagation directions were predominantly toward the east, whereas their ground-based propagation directions were primarily toward the west. Among the events, approximately 20% of them had very short horizontal wavelength, very high intrinsic frequency, and relatively small momentum fluxes, and thus they were likely trapped in the lower stratosphere. Using the estimated GW parameters and the background winds and stabilities from the NCAR/NCEP reanalysis data, we were able to trace the sources of the events using a simple reverse ray-tracing. More than 70% of the events were traced back to convective sources in the troposphere, and the sources were generally located upstream of the locations of the events observed at the aircraft level. Finally, a probability density function of the reversible cooling rate due to GWs was obtained in this study, which may be useful for cirrus cloud models.
NASA Astrophysics Data System (ADS)
Zhang, X.; Stone, G. W.; Gibson, W. J.; Braud, D.
2005-05-01
WAVCIS is a regional ocean observing and forecasting system. It was designed to measure, process, forecast, and distribute oceanographic and meteorological information. WAVCIS was developed and is maintained by the Coastal Studies Institute at Louisiana State University. The in-situ observing stations are distributed along the central Louisiana and Mississippi coast. The forecast region covers the entire Gulf of Mexico with emphasis on offshore Louisiana. By using state-of-the-art instrumentation, WAVCIS measures directional waves, currents, temperature, water level, conductivity, turbidity, salinity, dissolved oxygen, chlorophyll, Meteorological parameters include wind speed and direction, air pressure and temperature visibility and humidity. Through satellite communication links, the measured data are transmitted to the WAVCIS laboratory. After processing, they are available to the public via the internet on a near real-time basis. WAVCIS also includes a forecasting capability. Waves, tides, currents, and winds are forecast daily for up to 80 hours in advance. There are a number of numerical wave and surge models that can be used for forecasts. WAM and SWAN are used for operational purposes to forecast sea state. Tides at each station are predicted based on the harmonic constants calculated from past in-situ observations at respective sites. Interpolated winds from the ETA model are used as input forcing for waves. Both in-situ and forecast information are available online to the users through WWW. Interactive GIS web mapping is implemented on the WAVCIS webpage to visualize the model output and in-situ observational data. WAVCIS data can be queried, retrieved, downloaded, and analyzed through the web page. Near real-time numerical model skill assessment can also be performed by using the data from in-situ observing stations.
Observations of the directional distribution of the wind energy input function over swell waves
NASA Astrophysics Data System (ADS)
Shabani, Behnam; Babanin, Alex V.; Baldock, Tom E.
2016-02-01
Field measurements of wind stress over shallow water swell traveling in different directions relative to the wind are presented. The directional distribution of the measured stresses is used to confirm the previously proposed but unverified directional distribution of the wind energy input function. The observed wind energy input function is found to follow a much narrower distribution (β∝cos3.6θ) than the Plant (1982) cosine distribution. The observation of negative stress angles at large wind-wave angles, however, indicates that the onset of negative wind shearing occurs at about θ≈ 50°, and supports the use of the Snyder et al. (1981) directional distribution. Taking into account the reverse momentum transfer from swell to the wind, Snyder's proposed parameterization is found to perform exceptionally well in explaining the observed narrow directional distribution of the wind energy input function, and predicting the wind drag coefficients. The empirical coefficient (ɛ) in Snyder's parameterization is hypothesised to be a function of the wave shape parameter, with ɛ value increasing as the wave shape changes between sinusoidal, sawtooth, and sharp-crested shoaling waves.
Water Vapor Winds and Their Application to Climate Change Studies
NASA Technical Reports Server (NTRS)
Jedlovec, Gary J.; Lerner, Jeffrey A.
2000-01-01
The retrieval of satellite-derived winds and moisture from geostationary water vapor imagery has matured to the point where it may be applied to better understanding longer term climate changes that were previously not possible using conventional measurements or model analysis in data-sparse regions. In this paper, upper-tropospheric circulation features and moisture transport covering ENSO periods are presented and discussed. Precursors and other detectable interannual climate change signals are analyzed and compared to model diagnosed features. Estimates of winds and humidity over data-rich regions are used to show the robustness of the data and its value over regions that have previously eluded measurement.
Analysis and modeling of tropical convection observed by CYGNSS
NASA Astrophysics Data System (ADS)
Lang, T. J.; Li, X.; Roberts, J. B.; Mecikalski, J. R.
2017-12-01
The Cyclone Global Navigation Satellite System (CYGNSS) is a multi-satellite constellation that utilizes Global Positioning System (GPS) reflectometry to retrieve near-surface wind speeds over the ocean. While CYGNSS is primarily aimed at measuring wind speeds in tropical cyclones, our research has established that the mission may also provide valuable insight into the relationships between wind-driven surface fluxes and general tropical oceanic convection. Currently, we are examining organized tropical convection using a mixture of CYGNSS level 1 through level 3 data, IMERG (Integrated Multi-satellite Retrievals for Global Precipitation Measurement), and other ancillary datasets (including buoys, GPM level 1 and 2 data, as well as ground-based radar). In addition, observing system experiments (OSEs) are being performed using hybrid three-dimensional variational assimilation to ingest CYGNSS observations into a limited-domain, convection-resolving model. Our focus for now is on case studies of convective evolution, but we will also report on progress toward statistical analysis of convection sampled by CYGNSS. Our working hypothesis is that the typical mature phase of organized tropical convection is marked by the development of a sharp gust-front boundary from an originally spatially broader but weaker wind speed change associated with precipitation. This increase in the wind gradient, which we demonstrate is observable by CYGNSS, likely helps to focus enhanced turbulent fluxes of convection-sustaining heat and moisture near the leading edge of the convective system where they are more easily ingested by the updraft. Progress on the testing and refinement of this hypothesis, using a mixture of observations and modeling, will be reported.
Tail Shape Design of Boat Wind Turbines
NASA Astrophysics Data System (ADS)
Singamsitty, Venkatesh
Wind energy is a standout among the most generally utilized sustainable power source assets. A great deal of research and improvements have been happening in the wind energy field. Wind turbines are mechanical devices that convert kinetic energy into electrical power. Boat wind turbines are for the small-scale generation of electric power. In order to catch wind energy effectively, boat wind turbines need to face wind direction. Tails are used in boat wind turbines to alter the wind turbine direction and receive the variation of the incoming direction of wind. Tails are used to change the performance of boat wind turbines in an effective way. They are required to generate a quick and steady response as per change in wind direction. Tails can have various shapes, and their effects on boat wind turbines are different. However, the effects of tail shapes on the performance of boat wind turbines are not thoroughly studied yet. In this thesis, five tail shapes were studied. Their effects on boat wind turbines were investigated. The power extracted by the turbines from the air and the force acting on the boat wind turbine tail were analyzed. The results of this thesis provide a guideline of tail shape design for boat wind turbines.
SAR Observation and Modeling of Gap Winds in the Prince William Sound of Alaska.
Liu, Haibo; Olsson, Peter Q; Volz, Karl
2008-08-22
Alaska's Prince William Sound (PWS) is a unique locale tending to have strong gap winds, especially in the winter season. To characterize and understand these strong surface winds, which have great impacts on the local marine and aviation activities, the surface wind retrieval from the Synthetic Aperture Radar data (SAR-wind) is combined with a numerical mesoscale model. Helped with the SAR-wind observations, the mesoscale model is used to study cases of strong winds and relatively weak winds to depict the nature of these winds, including the area of extent and possible causes of the wind regimes. The gap winds from the Wells Passage and the Valdez Arm are the most dominant gap winds in PWS. Though the Valdez Arm is north-south trending and Wells Passage is east-west oriented, gap winds often develop simultaneously in these two places when a low pressure system is present in the Northern Gulf of Alaska. These two gap winds often converge at the center of PWS and extend further out of the Sound through the Hinchinbrook Entrance. The pressure gradients imposed over these areas are the main driving forces for these gap winds. Additionally, the drainage from the upper stream glaciers and the blocking effect of the banks of the Valdez Arm probably play an important role in enhancing the gap wind.
First Spaceborne GNSS-Reflectometry Observations of Hurricanes From the UK TechDemoSat-1 Mission
NASA Astrophysics Data System (ADS)
Foti, Giuseppe; Gommenginger, Christine; Srokosz, Meric
2017-12-01
We present the first examples of Global Navigation Satellite Systems-Reflectometry (GNSS-R) observations of hurricanes using spaceborne data from the UK TechDemoSat-1 (TDS-1) mission. We confirm that GNSS-R signals can detect ocean condition changes in very high near-surface ocean wind associated with hurricanes. TDS-1 GNSS-R reflections were collocated with International Best Track Archive for Climate Stewardship (IBTrACS) hurricane data, MetOp ASCAT A/B scatterometer winds, and two reanalysis products. Clear variations of GNSS-R reflected power (σ0) are observed as reflections travel through hurricanes, in some cases up to and through the eye wall. The GNSS-R reflected power is tentatively inverted to estimate wind speed using the TDS-1 baseline wind retrieval algorithm developed for low to moderate winds. Despite this, TDS-1 GNSS-R winds through the hurricanes show closer agreement with IBTrACS estimates than winds provided by scatterometers and reanalyses. GNSS-R wind profiles show realistic spatial patterns and sharp gradients that are consistent with expected structures around the eye of tropical cyclones.
Planetary Atmosphere Dynamics and Radiative Transfer
NASA Technical Reports Server (NTRS)
Atkinson, David H.
1996-01-01
This research program has dealt with two projects in the field of planetary atmosphere dynamics and radiative energy transfer, one theoretical and one experimental. The first project, in radiative energy transfer, incorporated the capability to isolate and quantify the contribution of individual atmospheric components to the Venus radiative balance and thermal structure to greatly improve the current understanding of the radiative processes occurring within the Venus atmosphere. This is possible by varying the mixing ratios of each gas species, and the location, number density and aerosol size distributions of the clouds. This project was a continuation of the work initiated under a 1992 University Consortium Agreement. Under the just completed grant, work has continued on the use of a convolution-based algorithm that provided the capability to calculate the k coefficients of a gas mixture at different temperatures, pressures and spectral intervals from the separate k-distributions of the individual gas species. The second primary goal of this research dealt with the Doppler wind retrieval for the Successful Galileo Jupiter probe mission in December, 1995. In anticipation of the arrival of Galileo at Jupiter, software development continued to read the radioscience and probe/orbiter trajectory data provided by the Galileo project and required for Jupiter zonal wind measurements. Sample experiment radioscience data records and probe/orbiter trajectory data files provided by the Galileo Radioscience and Navigation teams at the Jet Propulsion Laboratory, respectively, were used for the first phase of the software development. The software to read the necessary data records was completed in 1995. The procedure by which the wind retrieval takes place begins with initial consistency checks of the raw data, preliminary data reductions, wind recoveries, iterative reconstruction of the probe descent profile, and refined wind recoveries. At each stage of the wind recovery consistency is checked and maintained between the orbiter navigational data, the radioscience data, and the probe descent profile derived by the Atmospheric Instrument Team. Preliminary results show that the zonal winds at Jupiter increase with depth to approximately 150 m/s.
Safi, Kamran; Kranstauber, Bart; Weinzierl, Rolf P.; Griffin, Larry; Reese, Eileen C.; Cabot, David; Cruz, Sebastian; Proaño, Carolina; Takekawa, John Y.; Newman, Scott H.; Waldenström, Jonas; Bengtsson, Daniel; Kays, Roland; Wikelski, Martin; Bohrer, Gil
2013-01-01
Background: Understanding how environmental conditions, especially wind, influence birds' flight speeds is a prerequisite for understanding many important aspects of bird flight, including optimal migration strategies, navigation, and compensation for wind drift. Recent developments in tracking technology and the increased availability of data on large-scale weather patterns have made it possible to use path annotation to link the location of animals to environmental conditions such as wind speed and direction. However, there are various measures available for describing not only wind conditions but also the bird's flight direction and ground speed, and it is unclear which is best for determining the amount of wind support (the length of the wind vector in a bird’s flight direction) and the influence of cross-winds (the length of the wind vector perpendicular to a bird’s direction) throughout a bird's journey.Results: We compared relationships between cross-wind, wind support and bird movements, using path annotation derived from two different global weather reanalysis datasets and three different measures of direction and speed calculation for 288 individuals of nine bird species. Wind was a strong predictor of bird ground speed, explaining 10-66% of the variance, depending on species. Models using data from different weather sources gave qualitatively similar results; however, determining flight direction and speed from successive locations, even at short (15 min intervals), was inferior to using instantaneous GPS-based measures of speed and direction. Use of successive location data significantly underestimated the birds' ground and airspeed, and also resulted in mistaken associations between cross-winds, wind support, and their interactive effects, in relation to the birds' onward flight.Conclusions: Wind has strong effects on bird flight, and combining GPS technology with path annotation of weather variables allows us to quantify these effects for understanding flight behaviour. The potentially strong influence of scaling effects must be considered and implemented in developing sampling regimes and data analysis.
Safi, Kamran; Kranstauber, Bart; Weinzierl, Rolf; Griffin, Larry; Rees, Eileen C; Cabot, David; Cruz, Sebastian; Proaño, Carolina; Takekawa, John Y; Newman, Scott H; Waldenström, Jonas; Bengtsson, Daniel; Kays, Roland; Wikelski, Martin; Bohrer, Gil
2013-01-01
Understanding how environmental conditions, especially wind, influence birds' flight speeds is a prerequisite for understanding many important aspects of bird flight, including optimal migration strategies, navigation, and compensation for wind drift. Recent developments in tracking technology and the increased availability of data on large-scale weather patterns have made it possible to use path annotation to link the location of animals to environmental conditions such as wind speed and direction. However, there are various measures available for describing not only wind conditions but also the bird's flight direction and ground speed, and it is unclear which is best for determining the amount of wind support (the length of the wind vector in a bird's flight direction) and the influence of cross-winds (the length of the wind vector perpendicular to a bird's direction) throughout a bird's journey. We compared relationships between cross-wind, wind support and bird movements, using path annotation derived from two different global weather reanalysis datasets and three different measures of direction and speed calculation for 288 individuals of nine bird species. Wind was a strong predictor of bird ground speed, explaining 10-66% of the variance, depending on species. Models using data from different weather sources gave qualitatively similar results; however, determining flight direction and speed from successive locations, even at short (15 min intervals), was inferior to using instantaneous GPS-based measures of speed and direction. Use of successive location data significantly underestimated the birds' ground and airspeed, and also resulted in mistaken associations between cross-winds, wind support, and their interactive effects, in relation to the birds' onward flight. Wind has strong effects on bird flight, and combining GPS technology with path annotation of weather variables allows us to quantify these effects for understanding flight behaviour. The potentially strong influence of scaling effects must be considered and implemented in developing sampling regimes and data analysis.
Relating Convective System Durability with Vertical Wind Profile extracted from NCEP/NCAR Reanalysis
NASA Astrophysics Data System (ADS)
Bergès, Jean-Claude; Beltrando, Gérard; Cacault, Philippe
2014-05-01
Various theoretical models focus on the relationship between wind characteristic and convective system durability. Yet in 1988, Rotuno, Klemp and Weisman state that an optimal live length result from a balance between cold pool thickness and low level wind shear. However these models require a knowledge of local upper air environment and these data are scarcely available for climatological studies. Our presentation address the issue of relating the wind vertical profile extracted from reanalysis fields with a convective system type index. Whereas getting wind data from the NCEP/NCAR database is a straightforward task, assessing convective system extension from geostationary satellite data raise both methodological and practical issues. In a climatological view of convective systems, the initiating steps can be be neglected and a tropopause temperature threshold could be sufficient to delineate systems area. Thus the dynamic parameters between two consecutive would be obtained by a maximum recovery algorithm. But this simple method has to be enhanced to avoid two drawbacks: a rough system area overestimation due to the trailing cirrus and an over-segmentation of active systems. To mitigate the first bias a watershed image segmentation is carry out and the patches with a negative growing rate are eliminated. In order to properly join different parts of the same system, a 3D labeling algorithm has been implemented. Moreover, as motion retrieval methods are based on overlapping area, spatial and temporal resolution imports and full data processing require optimized computation procedures. Based on these methods, we have produced a base of convective systems trajectory based on MSG and Meteosat data. To avoid parallax effects only the central part of the acquisition disk has been considered. System extension and duration has been compared with wind shear in amplitude and direction. The preliminary results shows a global effect consistent with simulation models, but statistical data significance has yet to be investigated.
Plants and ventifacts delineate late Holocene wind vectors in the Coachella Valley, USA
Griffiths, P.G.; Webb, R.H.; Fisher, M.; Muth, Allan
2009-01-01
Strong westerly winds that emanate from San Gorgonio Pass, the lowest point between Palm Springs and Los Angeles, California, dominate aeolian transport in the Coachella Valley of the western Sonoran Desert. These winds deposit sand in coppice dunes that are critical habitat for several species, including the state and federally listed threatened species Uma inornata, a lizard. Although wind directions are generally defined in this valley, the wind field has complex interactions with local topography and becomes more variable with distance from the pass. Local, dominant wind directions are preserved by growth patterns of Larrea tridentata (creosote bush), a shrub characteristic of the hot North American deserts, and ventifacts. Exceptionally long-lived, Larrea has the potential to preserve wind direction over centuries to millennia, shaped by the abrasive pruning of windward branches and the persistent training of leeward branches. Wind direction preserved in Larrea individuals and clones was mapped at 192 locations. Compared with wind data from three weather stations, Larrea vectors effectively reflect annual prevailing winds. Ventifacts measured at 24 locations record winds 10° more westerly than Larrea and appear to reflect the direction of the most erosive winds. Based on detailed mapping of local wind directions as preserved in Larrea, only the northern half of the Mission-Morongo Creek floodplain is likely to supply sand to protected U. inornata habitat in the Willow Hole ecological reserve.
NASA Astrophysics Data System (ADS)
Xing, Chengzhi; Liu, Cheng; Wang, Shanshan; Chan, Ka Lok; Gao, Yang; Huang, Xin; Su, Wenjing; Zhang, Chengxin; Dong, Yunsheng; Fan, Guangqiang; Zhang, Tianshu; Chen, Zhenyi; Hu, Qihou; Su, Hang; Xie, Zhouqing; Liu, Jianguo
2017-12-01
Ground-based multi-axis differential optical absorption spectroscopy (MAX-DOAS) and lidar measurements were performed in Shanghai, China, during May 2016 to investigate the vertical distribution of summertime atmospheric pollutants. In this study, vertical profiles of aerosol extinction coefficient, nitrogen dioxide (NO2) and formaldehyde (HCHO) concentrations were retrieved from MAX-DOAS measurements using the Heidelberg Profile (HEIPRO) algorithm, while vertical distribution of ozone (O3) was obtained from an ozone lidar. Sensitivity study of the MAX-DOAS aerosol profile retrieval shows that the a priori aerosol profile shape has significant influences on the aerosol profile retrieval. Aerosol profiles retrieved from MAX-DOAS measurements with Gaussian a priori profile demonstrate the best agreements with simultaneous lidar measurements and vehicle-based tethered-balloon observations among all a priori aerosol profiles. Tropospheric NO2 vertical column densities (VCDs) measured with MAX-DOAS show a good agreement with OMI satellite observations with a Pearson correlation coefficient (R) of 0.95. In addition, measurements of the O3 vertical distribution indicate that the ozone productions do not only occur at surface level but also at higher altitudes (about 1.1 km). Planetary boundary layer (PBL) height and horizontal and vertical wind field information were integrated to discuss the ozone formation at upper altitudes. The results reveal that enhanced ozone concentrations at ground level and upper altitudes are not directly related to horizontal and vertical transportation. Similar patterns of O3 and HCHO vertical distributions were observed during this campaign, which implies that the ozone productions near the surface and at higher altitudes are mainly influenced by the abundance of volatile organic compounds (VOCs) in the lower troposphere.
Vector Sky Glint Corrections for Above Surface Retrieval of the Subsurface Polarized Light Field
NASA Astrophysics Data System (ADS)
Gilerson, A.; Foster, R.; McGilloway, A.; Ibrahim, A.; El-habashi, A.; Carrizo, C.; Ahmed, S.
2016-02-01
Knowledge of the underwater light field is fundamental to determining the health of the world's oceans and coastal regions. For decades, traditional remote sensing retrieval methods that rely solely on the spectral intensity of the water-leaving light have provided indicators of marine ecosystem health. As the demand for retrieval accuracy rises, use of the polarized nature of light as an additional remote sensing tool is becoming necessary. In order to observe the underwater polarized light field from above the surface (for ship, shore, or satellite applications), a method of correcting the above water signal for the effects of polarized surface-reflected skylight is needed. For three weeks in July-August 2014, the NASA Ship Aircraft Bio-Optical Research (SABOR) cruise continuously observed the polarized radiance of the ocean and the sky using a HyperSAS-POL system. The system autonomously tracks the Sun position and the heading of the research vessel in order to maintain a fixed relative solar azimuth angle (i.e. ±90°) and therefore avoid the specular reflection of the sunlight. Additionally, in-situ inherent optical properties (IOPs) were continuously acquired using a set of instrument packages modified for underway measurement, hyperspectral radiometric measurements were taken manually at all stations, and an underwater polarimeter was deployed when conditions permitted. All measurements, above and below the sea surface, were combined and compared in an effort to first develop a glint (sky + Sun) correction scheme for the upwelling polarized signal from a wind-driven ocean surface and compare with one assuming that the ocean surface is flat. Accurate retrieval of the subsurface vector light field is demonstrated through comparisons with polarized radiative transfer codes and direct measurements made by the underwater polarimeter.
Experimental study of dual polarized radar return from the sea surface
NASA Astrophysics Data System (ADS)
Ermakov, S. A.; Kapustin, I. A.; Lavrova, O. Yu.; Molkov, A. A.; Sergievskaya, I. A.; Shomina, O. V.
2017-10-01
Dual-polarized microwave radars are of particular interest nowadays as perspective tool of ocean remote sensing. Microwave radar backscattering at moderate and large incidence angles according to conventional models is determined by resonance (Bragg) surface waves typically of cm-scale wavelength range. Some recent experiments have indicated, however, that an additional, non Bragg component (NBC) contributes to the radar return. The latter is considered to occur due to wave breaking. At present our understanding of the nature of different components of radar return is still poor. This paper presents results of field experiment using an X-/C-/S-band Doppler radar operating at HH- and VVpolarizations. The intensity and radar Doppler shifts for Bragg and non Bragg components are retrieved from measurements of VV and HH radar returns. Analysis of a ratio of VV and HH radar backscatter - polarization ratio (PR) has demonstrated a significant role of a non Bragg component. NBC contributes significantly to the total radar backscatter, in particular, at moderate incidence angles (about 50-70 deg.) it is 2-3 times smaller than VV Bragg component and several times larger that HH Bragg component. Both NBC and BC depend on azimuth angle, being minimal for cross wind direction, but NBC is more isotropic than BC. It is obtained that velocities of scatterers retrieved from radar Doppler shifts are different for Bragg waves and for non Bragg component; NBC structures are "faster" than Bragg waves particularly for upwind radar observations. Bragg components propagate approximately with phase velocities of linear gravity-capillary waves (when accounting for wind drift). Velocities of NBC scatterers depend on radar band, being the largest for S-band and the smallest at X-band, this means that different structures on the water surface are responsible for non Bragg scattering in a given radar band.
1994-06-01
S.C. 1992. Simulated Retrieval of Atmospheric Ozone from Aircraft ,A Interferometer Observations. Masters 7.5 thesis . University of Wisconsin...laser-based sensor system for long-path ab- presented. (p. 72) sorption measurements of atmospheric concentration and near-ir molecular spectral...performance of satellite- borne lidar-based wind sensors. (p. 247) 2:30 pm-3:00 pm COFFEE BREAK 11:20 am WB5 Simulation of space-based Doppler lidar wind SALON
2013-09-30
analyze the MCR drifter, in situ mini-catamaran, pressure, and USGS tripod observations; • describe the tidal chocking behavior at New River Inlet (NRI...i.e. waves , wind and potentially stratification) APPROACH Our approach is to collect field observations to evaluate the sensitivity of Delft3D at...forecast model using the predicted tides, wind, wave and river discharge conditions to optimize spatial coverage and drifter retrieval operations. On
Cloud Motion Vectors from MISR using Sub-pixel Enhancements
NASA Technical Reports Server (NTRS)
Davies, Roger; Horvath, Akos; Moroney, Catherine; Zhang, Banglin; Zhu, Yanqiu
2007-01-01
The operational retrieval of height-resolved cloud motion vectors by the Multiangle Imaging SpectroRadiometer on the Terra satellite has been significantly improved by using sub-pixel approaches to co-registration and disparity assessment, and by imposing stronger quality control based on the agreement between independent forward and aft triplet retrievals. Analysis of the fore-aft differences indicates that CMVs pass the basic operational quality control 67% of the time, with rms differences - in speed of 2.4 m/s, in direction of 17 deg, and in height assignment of 290 m. The use of enhanced quality control thresholds reduces these rms values to 1.5 m/s, 17 deg and 165 m, respectively, at the cost of reduced coverage to 45%. Use of the enhanced thresholds also eliminates a tendency for the rms differences to increase with height. Comparison of CMVs from an earlier operational version that had slightly weaker quality control, with 6-hour forecast winds from the Global Modeling and Assimilation Office yielded very low bias values and an rms vector difference that ranged from 5 m/s for low clouds to 10 m/s for high clouds.
Widespread morning drizzle on Titan.
Adámkovics, Máté; Wong, Michael H; Laver, Conor; de Pater, Imke
2007-11-09
Precipitation is expected in Titan's atmosphere, yet it has not been directly observed, and the geographical regions where rain occurs are unknown. Here we present near-infrared spectra from the Very Large Telescope and W. M. Keck Observatories that reveal an enhancement of opacity in Titan's troposphere on the morning side of the leading hemisphere. Retrieved extinction profiles are consistent with condensed methane in clouds at an altitude near 30 kilometers and concomitant methane drizzle below. The moisture encompasses the equatorial region over Titan's brightest continent, Xanadu. Diurnal temperature gradients that cause variations in methane relative humidity, winds, and topography may each be a contributing factor to the condensation mechanism. The clouds and precipitation are optically thin at 2.0 micrometers, and models of "subvisible" clouds suggest that the droplets are 0.1 millimeter or larger.
Retrieval-Induced Inhibition in Short-Term Memory.
Kang, Min-Suk; Choi, Joongrul
2015-07-01
We used a visual illusion called motion repulsion as a model system for investigating competition between two mental representations. Subjects were asked to remember two random-dot-motion displays presented in sequence and then to report the motion directions for each. Remembered motion directions were shifted away from the actual motion directions, an effect similar to the motion repulsion observed during perception. More important, the item retrieved second showed greater repulsion than the item retrieved first. This suggests that earlier retrieval exerted greater inhibition on the other item being held in short-term memory. This retrieval-induced motion repulsion could be explained neither by reduced cognitive resources for maintaining short-term memory nor by continued inhibition between short-term memory representations. These results indicate that retrieval of memory representations inhibits other representations in short-term memory. We discuss mechanisms of retrieval-induced inhibition and their implications for the structure of memory. © The Author(s) 2015.
Poor readers' retrieval mechanism: efficient access is not dependent on reading skill
Johns, Clinton L.; Matsuki, Kazunaga; Van Dyke, Julie A.
2015-01-01
A substantial body of evidence points to a cue-based direct-access retrieval mechanism as a crucial component of skilled adult reading. We report two experiments aimed at examining whether poor readers are able to make use of the same retrieval mechanism. This is significant in light of findings that poor readers have difficulty retrieving linguistic information (e.g., Perfetti, 1985). Our experiments are based on a previous demonstration of direct-access retrieval in language processing, presented in McElree et al. (2003). Experiment 1 replicates the original result using an auditory implementation of the Speed-Accuracy Tradeoff (SAT) method. This finding represents a significant methodological advance, as it opens up the possibility of exploring retrieval speeds in non-reading populations. Experiment 2 provides evidence that poor readers do use a direct-access retrieval mechanism during listening comprehension, despite overall poorer accuracy and slower retrieval speeds relative to skilled readers. The findings are discussed with respect to hypotheses about the source of poor reading comprehension. PMID:26528212
Winds at the Phoenix Landing Site
NASA Astrophysics Data System (ADS)
Holstein-Rathlou, C.; Gunnlaugsson, H. P.; Taylor, P.; Lange, C.; Moores, J.; Lemmon, M.
2008-12-01
Local wind speeds and directions have been measured at the Phoenix landing site using the Telltale wind indicator. The Telltale is mounted on top of the meteorological mast at roughly 2 meters height above the surface. The Telltale is a mechanical anemometer consisting of a lightweight cylinder suspended by Kevlar fibers that are deflected under the action of wind. Images taken with the Surface Stereo Imager (SSI) of the Telltale deflection allows the wind speed and direction to be quantified. Winds aloft have been estimated using image series (10 images ~ 50 s apart) taken of the Zenith (Zenith Movies). In contrast enhanced images cloud like features are seen to move through the image field and give indication of directions and angular speed. Wind speeds depend on the height of where these features originate while directions are unambiguously determined. The wind data shows dominant wind directions and diurnal variations, likely caused by slope winds. Recent night time measurements show frost formation on the Telltale mirror. The results will be discussed in terms of global and slope wind modeling and the current calibration of the data is discussed. It will also be illustrated how wind data can aid in interpreting temperature fluctuations seen on the lander.
Laboratory modeling of air-sea interaction under severe wind conditions
NASA Astrophysics Data System (ADS)
Troitskaya, Yuliya; Vasiliy, Kazakov; Nicolay, Bogatov; Olga, Ermakova; Mikhail, Salin; Daniil, Sergeev; Maxim, Vdovin
2010-05-01
Wind-wave interaction at extreme wind speed is of special interest now in connection with the problem of explanation of the sea surface drag saturation at the wind speed exceeding 30 m/s. The idea on saturation (and even reduction) of the coefficient of aerodynamic resistance of the sea surface at hurricane wind speed was first suggested by Emanuel (1995) on the basis of theoretical analysis of sensitivity of maximum wind speed in a hurricane to the ratio of the enthalpy and momentum exchange coefficients. Both field (Powell, Vickery, Reinhold, 2003, French et al, 2007, Black, et al, 2007) and laboratory (Donelan et al, 2004) experiments confirmed that at hurricane wind speed the sea surface drag coefficient is significantly reduced in comparison with the parameterization obtained at moderate to strong wind conditions. Two groups of possible theoretical mechanisms for explanation of the effect of the sea surface drag reduction can be specified. In the first group of models developed by Kudryavtsev & Makin (2007) and Kukulka,Hara Belcher (2007), the sea surface drag reduction is explained by peculiarities of the air flow over breaking waves. Another approach more appropriate for the conditions of developed sea exploits the effect of sea drops and sprays on the wind-wave momentum exchange (Andreas, 2004; Makin, 2005; Kudryavtsev, 2006). The main objective of this work is investigation of factors determining momentum exchange under high wind speeds basing on the laboratory experiment in a well controlled environment. The experiments were carried out in the Thermo-Stratified WInd-WAve Tank (TSWIWAT) of the Institute of Applied Physics. The parameters of the facility are as follows: airflow 0 - 25 m/s (equivalent 10-m neutral wind speed U10 up to 60 m/s), dimensions 10m x 0.4m x 0.7 m, temperature stratification of the water layer. Simultaneous measurements of the airflow velocity profiles and wind waves were carried out in the wide range of wind velocities. Airflow velocity profile was measured by WindSonic ultrasonic wind sensor. The water elevation was measured by the three-channel wave-gauge. Top and side views of the water surface were fixed by CCD-camera. Wind friction velocity and surface drag coefficients were retrieved from the measurements by the profile method. Obtained values are in good agreement with the data of measurements by Donelan et al (2004). The directional frequency-wave-number spectra of surface waves were retrieved by the wavelet directional method (Donelan et al, 1996). The obtained dependencies of parameters of the wind waves indicate existing of two regimes of the waves with the critical wind speed Ucr about 30 m/s. For U10
NASA Astrophysics Data System (ADS)
Valldecabres, L.; Friedrichs, W.; von Bremen, L.; Kühn, M.
2016-09-01
An analysis of the spatial and temporal power fluctuations of a simplified wind farm model is conducted on four offshore wind fields data sets, two from lidar measurements and two from LES under unstable and neutral atmospheric conditions. The integral length scales of the horizontal wind speed computed in the streamwise and the cross-stream direction revealed the elongation of the structures in the direction of the mean flow. To analyse the effect of the structures on the power output of a wind turbine, the aggregated equivalent power of two wind turbines with different turbine spacing in the streamwise and cross-stream direction is analysed at different time scales under 10 minutes. The fact of considering the summation of the power of two wind turbines smooths out the fluctuations of the power output of a single wind turbine. This effect, which is stronger with increasing spacing between turbines, can be seen in the aggregation of the power of two wind turbines in the streamwise direction. Due to the anti-correlation of the coherent structures in the cross-stream direction, this smoothing effect is stronger when the aggregated power is computed with two wind turbines aligned orthogonally to the mean flow direction.
NASA Astrophysics Data System (ADS)
de Jong, Arie N.; van Eijk, Alexander M. J.; Cohen, Leo H.; Fritz, Peter J.; Gunter, Willem H.; Vrahimis, George; October, Faith J.
2011-09-01
The FATMOSE trial (False Bay Atmospheric Experiment) is a continuation of the cooperative work between TNO and IMT on atmospheric propagation and point target detection and identification in a maritime environment, South Africa). The atmospheric transmission, being of major importance for target detection, was measured with the MSRT multiband optical/IR transmissometer over a path of 15.7 km over sea. Simultaneously a set of instruments was installed on a midpath lighthouse for collection of local meteorological data, including turbulence, scintillation, sea surface temperature and visibility. The multiband transmission data allow the retrieval of the size distribution (PSD) of the particles (aerosols) in the transmission path. The retrieved PSD's can be correlated with the weather data such as windspeed, wind direction, relative humidity and visibility. This knowledge will lead to better atmospheric propagation models. The measurement period covered nearly a full year, starting in November 2009 and ending in October 2010. The False Bay site is ideal for studies on propagation effects over sea because of the large variety of weather conditions, including high windspeed, expected from the South East with maritime air masses, as well as Northerly winds, expected to bring warm and dry air from the continent. From an operational point of view the False Bay area is interesting, being representative for the scenery around the African coast with warships in an active protecting role in the battle against piracy. The yearround transmission data are an important input for range performance calculations of electro-optical sensors against maritime targets. The data support the choice of the proper spectral band and contain statistical information about the detection ranges to be expected. In this paper details on the instrumentation will be explained as well as the methods of calibration and PSD retrieval. Data are presented for various weather conditions, showing correlations between different parameters and including statistical behaviour over the year. Examples will be shown of special conditions such as refractive gain, gravity waves and showers.
Polar Applications of Spaceborne Scatterometers.
Long, David G
2017-05-01
Wind scatterometers were originally developed for observation of near-surface winds over the ocean. They retrieve wind indirectly by measuring the normalized radar cross section ( σ o ) of the surface, and estimating the wind via a geophysical model function relating σ o to the vector wind. The σ o measurements have proven to be remarkably capable in studies of the polar regions where they can map snow cover; detect the freeze/thaw state of forest, tundra, and ice; map and classify sea ice; and track icebergs. Further, a long time series of scatterometer σ o observations is available to support climate studies. In addition to fundamental scientific research, scatterometer data are operationally used for sea-ice mapping to support navigation. Scatterometers are, thus, invaluable tools for monitoring the polar regions. In this paper, a brief review of some of the polar applications of spaceborne wind scatterometer data is provided. The paper considers both C-band and Ku-band scatterometers, and the relative merits of fan-beam and pencil-beam scatterometers in polar remote sensing are discussed.
A New Look at Titan's Zonal Winds from Cassini Radio Occultations
NASA Technical Reports Server (NTRS)
Flasar, F. M.; Schinder, P. J.
2012-01-01
We use the existing thirteen Cassini radio'occultation soundings to construct a meridional cross section of geopotential height vs. pressure and latitude. The assumption of balanced flow permits the construction of a similar cross section of zonal winds, from near the surface to the 0.1'mbar level. In the lower troposphere, the winds are approx.10 m/s, except within 20deg of the equator, where they are much smaller. The winds increase higher up in the troposphere to nearly 40 m/s in the tropopause region, but then decay rapidly in the lower stratosphere to near'zero values at 20 mbar (approx.80 km), reminiscent of the Huygens Doppler Wind Experiment result. This null zone extends over most latitudes, except for limited bands at mid'latitudes. Higher up in the stratosphere, the winds become larger. They are highest in the northern (winter) hemisphere. We compare the occultation results with the DWE and CIRS retrievals and discuss the similarities and differences among the data sets.
NASA Technical Reports Server (NTRS)
Miller, Timothy; James, Mark; Roberts, Brent J.; Biswax, Sayak; Uhlhorn, Eric; Black, Peter; Linwood Jones, W.; Johnson, Jimmy; Farrar, Spencer; Sahawneh, Saleem
2012-01-01
Ocean surface emission is affected by: a) Sea surface temperature. b) Wind speed (foam fraction). c) Salinity After production of calibrated Tb fields, geophysical fields wind speed and rain rate (or column) are retrieved. HIRAD utilizes NASA Instrument Incubator Technology: a) Provides unique observations of sea surface wind, temp and rain b) Advances understanding & prediction of hurricane intensity c) Expands Stepped Frequency Microwave Radiometer capabilities d) Uses synthetic thinned array and RFI mitigation technology of Lightweight Rain Radiometer (NASA Instrument Incubator) Passive Microwave C-Band Radiometer with Freq: 4, 5, 6 & 6.6 GHz: a) Version 1: H-pol for ocean wind speed, b) Version 2: dual ]pol for ocean wind vectors. Performance Characteristics: a) Earth Incidence angle: 0deg - 60deg, b) Spatial Resolution: 2-5 km, c) Swath: approx.70 km for 20 km altitude. Observational Goals: WS 10 - >85 m/s RR 5 - > 100 mm/hr.
Polar Applications of Spaceborne Scatterometers
Long, David G.
2017-01-01
Wind scatterometers were originally developed for observation of near-surface winds over the ocean. They retrieve wind indirectly by measuring the normalized radar cross section (σo) of the surface, and estimating the wind via a geophysical model function relating σo to the vector wind. The σo measurements have proven to be remarkably capable in studies of the polar regions where they can map snow cover; detect the freeze/thaw state of forest, tundra, and ice; map and classify sea ice; and track icebergs. Further, a long time series of scatterometer σo observations is available to support climate studies. In addition to fundamental scientific research, scatterometer data are operationally used for sea-ice mapping to support navigation. Scatterometers are, thus, invaluable tools for monitoring the polar regions. In this paper, a brief review of some of the polar applications of spaceborne wind scatterometer data is provided. The paper considers both C-band and Ku-band scatterometers, and the relative merits of fan-beam and pencil-beam scatterometers in polar remote sensing are discussed. PMID:28919936
Wagner, Barry T; Jackson, Heather M
2006-02-01
This study examined the cognitive demands of 2 selection techniques in augmentative and alternative communication (AAC), direct selection, and visual linear scanning, by determining the memory retrieval abilities of typically developing children when presented with fixed communication displays. One hundred twenty typical children from kindergarten, 1st, and 3rd grades were randomly assigned to either a direct selection or visual linear scanning group. Memory retrieval was assessed through word span using Picture Communication Symbols (PCSs). Participants were presented various numbers and arrays of PCSs and asked to retrieve them by placing identical graphic symbols on fixed communication displays with grid layouts. The results revealed that participants were able to retrieve more PCSs during direct selection than scanning. Additionally, 3rd-grade children retrieved more PCSs than kindergarten and 1st-grade children. An analysis on the type of errors during retrieval indicated that children were more successful at retrieving the correct PCSs than the designated location of those symbols on fixed communication displays. AAC practitioners should consider using direct selection over scanning whenever possible and account for anticipatory monitoring and pulses when scanning is used in the service delivery of children with little or no functional speech. Also, researchers should continue to investigate AAC selection techniques in relationship to working memory resources.
NASA Astrophysics Data System (ADS)
Damialis, Athanasios; Gioulekas, Dimitrios; Lazopoulou, Chariklia; Balafoutis, Christos; Vokou, Despina
2005-01-01
We examined the effect of the wind vector analyzed into its three components (direction, speed and persistence), on the circulation of pollen from differe nt plant taxa prominent in the Thessaloniki area for a 4-year period (1996- 1999). These plant taxa were Ambrosia spp., Artemisia spp., Chenopodiaceae, spp., Cupressaceae, Olea europaea, Pinaceae, Platanus spp., Poaceae, Populus spp., Quercus spp., and Urticaceae. Airborne pollen of Cupressaceae, Urticaceae, Quercus spp. and O. europaea make up approximately 70% of the total average annual pollen counts. The set of data that we worked with represented days without precipitation and time intervals during which winds blew from the same direction for at least 4 consecutive hours. We did this in order to study the effect of the different wind components independently of precipitation, and to avoid secondary effects produced by pollen resuspension phenomena. Factorial regression analysis among the summed bi-hourly pollen counts for each taxon and the values of wind speed and persistence per wind direction gave significant results in 22 cases (combinations of plant taxa and wind directions). The pollen concentrations of all taxa correlated significantly with at least one of the three wind components. In seven out of the 22 taxon-wind direction combinations, the pollen counts correlated positively with wind persistence, whereas this was the case for only two of the taxon-wind speed combinations. In seven cases, pollen counts correlated with the interaction effect of wind speed and persistence. This shows the importance of wind persistence in pollen transport, particularly when weak winds prevail for a considerable part of the year, as is the case for Thessaloniki. Medium/long-distance pollen transport was evidenced for Olea (NW, SW directions), Corylus (NW, SW), Poaceae (SW) and Populus (NW).
Wind direction change criteria for wind turbine design
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cliff, W.C.
1979-01-01
A method is presented for estimating the root mean square (rms) value of the wind direction change, ..delta..theta(tau) = theta(tau + tau) - theta(tau), that occurs over the swept area of wind turbine rotor systems. An equation is also given for the rms value of the wind direction change that occurs at a single point in space, i.e., a direcion change that a wind vane would measure. Assuming a normal probability density function for the lateral wind velocity change and relating this to angular changes, equations are given for calculating the expected number of wind direction changes, larger than anmore » arbitrary value, that will occur in 1 hr as well as the expected number that will occur during the design life of a wind turbine. The equations presented are developed using a small angle approximation and are, therefore, considered appropriate for wind direction changes of less than 30/sup 0/. The equations presented are based upon neutral atmospheric boundary-layer conditions and do not include information regarding events such as tornados, hurricanes, etc.« less
The effects of wind and altitude in the 400-m sprint.
Quinn, Mike D
2004-01-01
In this paper I use a mathematical model to simulate the effect of wind and altitude on men's and women's 4400-m race performances. Both wind speed and direction were altered to calculate the effect on the velocity profile and the final time of the sprinter. The simulation shows that for a constant wind velocity, changing the wind direction can produce a large variation in the race time and velocity profile. A wind of velocity 2 m x s(-1) is generally a disadvantage to the 400-m runner but this is not so for all wind directions. Constant winds blowing from some directions can provide favourable conditions for the one-lap runner. Differences between the running lanes can be reduced or exaggerated depending on the wind direction. For example, a wind blowing behind the runner in the back straight increases the advantage of lane 8 over lane 1. Wind conditions can change the velocity profile and in some circumstances produce a maximum velocity much later than is evident in windless conditions. Lower air density at altitude produces a time advantage of around 0.06 s for men (0.07 s for women) for each 500-m increase in elevation.
NASA Astrophysics Data System (ADS)
Shang, H.; Chen, L.; Bréon, F.-M.; Letu, H.; Li, S.; Wang, Z.; Su, L.
2015-07-01
The principles of the Polarization and Directionality of the Earth's Reflectance (POLDER) cloud droplet size retrieval requires that clouds are horizontally homogeneous. Nevertheless, the retrieval is applied by combining all measurements from an area of 150 km × 150 km to compensate for POLDER's insufficient directional sampling. Using the POLDER-like data simulated with the RT3 model, we investigate the impact of cloud horizontal inhomogeneity and directional sampling on the retrieval, and then analyze which spatial resolution is potentially accessible from the measurements. Case studies show that the sub-scale variability in droplet effective radius (CDR) can mislead both the CDR and effective variance (EV) retrievals. Nevertheless, the sub-scale variations in EV and cloud optical thickness (COT) only influence the EV retrievals and not the CDR estimate. In the directional sampling cases studied, the retrieval is accurate using limited observations and is largely independent of random noise. Several improvements have been made to the original POLDER droplet size retrieval. For example, the measurements in the primary rainbow region (137-145°) are used to ensure accurate large droplet (> 15 μm) retrievals and reduce the uncertainties caused by cloud heterogeneity. We apply the improved method using the POLDER global L1B data for June 2008, the new CDR results are compared with the operational CDRs. The comparison show that the operational CDRs tend to be underestimated for large droplets. The reason is that the cloudbow oscillations in the scattering angle region of 145-165° are weak for cloud fields with CDR > 15 μm. Lastly, a sub-scale retrieval case is analyzed, illustrating that a higher resolution, e.g., 42 km × 42 km, can be used when inverting cloud droplet size parameters from POLDER measurements.
Statistical analysis and use of the VAS radiance data
NASA Technical Reports Server (NTRS)
Fuelberg, H. E.
1984-01-01
Special radiosonde soundings at 75 km spacings and 3 hour intervals provided an opportunity to learn more about mesoscale data and storm-environment interactions. Relatively small areas of intense convection produce major changes in surrounding fields of thermodynamic, kinematic, and energy variables. The Red River Valley tornado outbreak was studied. Satellite imagery and surface data were used to specify cloud information needed in the radiative heating/cooling calculations. A feasibility study for computing boundary layer winds from satellite-derived thermal data was completed. Winds obtained from TIROS-N retrievals compared very favorably with corresponding values from concurrent rawisonde thermal data, and both sets of thermally-derived winds showed good agreements with observed values.
Objective scatterometer wind ambiguity removal using smoothness and dynamical constraints
NASA Technical Reports Server (NTRS)
Hoffman, R. N.
1984-01-01
In the present investigation, a variational analysis method (VAM) is used to remove the ambiguity of the Seasat-A Satellite Scatterometer (SASS) winds. At each SASS data point, two, three, or four wind vectors (termed ambiguities) are retrieved. It is pointed out that the VAM is basically a least squares method for fitting data. The problem may be nonlinear. The best fit to the data and constraints is obtained on the basis of a minimization of the objective function. The VAM was tested and tuned at 12 h GMT Sept. 10, 1978. Attention is given to a case study involving an intense cyclone centered south of Japan at 138 deg E.
NASA Technical Reports Server (NTRS)
Platnick, Steven; Wind, Galina; Meyer, Kerry; Amarasinghe, Nandana; Arnold, G. Thomas; Zhang, Zhibo; King, Michael D.
2013-01-01
The optical and microphysical structure of clouds is of fundamental importance for understanding a variety of cloud radiation and precipitation processes. With the advent of MODIS on the NASA EOS Terra and Aqua platforms, simultaneous global-daily 1 km retrievals of cloud optical thickness (COT) and effective particle radius (CER) are provided, as well as the derived water path (WP). The cloud product (MOD06/MYD06 for MODIS Terra and Aqua, respectively) provides separate retrieval datasets for various two-channel retrievals, typically a VISNIR channel paired with a 1.6, 2.1, and 3.7 m spectral channel. The MOD06 forward model is derived from on a homogeneous plane-parallel cloud. In Collection 5 processing (completed in 2007 with a modified Collection 5.1 completed in 2010), pixel-level retrieval uncertainties were calculated for the following non-3-D error sources: radiometry, surface spectral albedo, and atmospheric corrections associated with model analysis uncertainties (water vapor only). The latter error source includes error correlation across the retrieval spectral channels. Estimates of uncertainty in 1 aggregated (Level-3) means were also provided assuming unity correlation between error sources for all pixels in a grid for a single day, and zero correlation of error sources from one day to the next. I n Collection 6 (expected to begin in late summer 2013) we expanded the uncertainty analysis to include: (a) scene-dependent calibration uncertainty that depends on new band and detector-specific Level 1B uncertainties, (b) new model error sources derived from the look-up tables which includes sensitivities associated with wind direction over the ocean and uncertainties in liquid water and ice effective variance, (c) thermal emission uncertainties in the 3.7 m band associated with cloud and surface temperatures that are needed to extract reflected solar radiation from the total radiance signal, (d) uncertainty in the solar spectral irradiance at 3.7 m, and (e) addition of stratospheric ozone uncertainty in visible atmospheric corrections. A summary of the approach and example Collection 6 results will be shown.
NASA Astrophysics Data System (ADS)
Platnick, S.; Wind, G.; Amarasinghe, N.; Arnold, G. T.; Zhang, Z.; Meyer, K.; King, M. D.
2013-12-01
The optical and microphysical structure of clouds is of fundamental importance for understanding a variety of cloud radiation and precipitation processes. With the advent of MODIS on the NASA EOS Terra and Aqua platforms, simultaneous global/daily 1km retrievals of cloud optical thickness (COT) and effective particle radius (CER) are provided, as well as the derived water path (WP). The cloud product (MOD06/MYD06 for MODIS Terra and Aqua, respectively) provides separate retrieval datasets for various two-channel retrievals, typically a VIS/NIR channel paired with a 1.6, 2.1, and 3.7 μm spectral channel. The MOD06 forward model is derived from a homogeneous plane-parallel cloud. In Collection 5 processing (completed in 2007 with a modified Collection 5.1 completed in 2010), pixel-level retrieval uncertainties were calculated for the following non-3-D error sources: radiometry, surface spectral albedo, and atmospheric corrections associated with model analysis uncertainties (water vapor only). The latter error source includes error correlation across the retrieval spectral channels. Estimates of uncertainty in 1° aggregated (Level-3) means were also provided assuming unity correlation between error sources for all pixels in a grid for a single day, and zero correlation of error sources from one day to the next. In Collection 6 (expected to begin in late summer 2013) we expanded the uncertainty analysis to include: (a) scene-dependent calibration uncertainty that depends on new band and detector-specific Level 1B uncertainties, (b) new model error sources derived from the look-up tables which includes sensitivities associated with wind direction over the ocean and uncertainties in liquid water and ice effective variance, (c) thermal emission uncertainties in the 3.7 μm band associated with cloud and surface temperatures that are needed to extract reflected solar radiation from the total radiance signal, (d) uncertainty in the solar spectral irradiance at 3.7 μm, and (e) addition of stratospheric ozone uncertainty in visible atmospheric corrections. A summary of the approach and example Collection 6 results will be shown.
Uzer, Tugba
2016-02-01
Previous research has shown that memories cued by concrete concepts, such as objects, are retrieved faster than those cued by more abstract concepts, such as emotions. This effect has been explained by the fact that more memories are directly retrieved from object versus emotion cues. In the present study, we tested whether RT differences between memories cued by emotion versus object terms occur not only because object cues elicit direct retrieval of more memories (Uzer, Lee, & Brown, 2012), but also because of differences in memory generation in response to emotions versus objects. One hundred university students retrieved memories in response to basic-level (e.g. orange), superordinate-level (e.g. plant), and emotion (e.g. surprised) cues. Retrieval speed was measured and participants reported whether memories were directly retrieved or generated on each trial. Results showed that memories were retrieved faster in response to basic-level versus superordinate-level and emotion cues because a) basic-level cues elicited more directly retrieved memories, and b) generating memories was more difficult when cues were abstract versus concrete. These results suggest that generative retrieval is a cue generation process in which additional cues that provide contextual information including the target event are produced. Memories are retrieved more slowly in response to emotion cues in part because emotion labels are less effective cues of appropriate contextual information. This particular finding is inconsistent with the idea that emotion is a primary organizational unit for autobiographical memories. In contrast, the difficulty of emotional memory generation implies that emotions represent low-level event information in the organization of autobiographical memory. Copyright © 2016 Elsevier B.V. All rights reserved.
Short-term solar irradiance forecasting via satellite/model coupling
Miller, Steven D.; Rogers, Matthew A.; Haynes, John M.; ...
2017-12-01
The short-term (0-3 h) prediction of solar insolation for renewable energy production is a problem well-suited to satellite-based techniques. The spatial, spectral, temporal and radiometric resolution of instrumentation hosted on the geostationary platform allows these satellites to describe the current cloud spatial distribution and optical properties. These properties relate directly to the transient properties of the downwelling solar irradiance at the surface, which come in the form of 'ramps' that pose a central challenge to energy load balancing in a spatially distributed network of solar farms. The short-term evolution of the cloud field may be approximated to first order simplymore » as translational, but care must be taken in how the advection is handled and where the impacts are assigned. In this research, we describe how geostationary satellite observations are used with operational cloud masking and retrieval algorithms, wind field data from Numerical Weather Prediction (NWP), and radiative transfer calculations to produce short-term forecasts of solar insolation for applications in solar power generation. The scheme utilizes retrieved cloud properties to group pixels into contiguous cloud objects whose future positions are predicted using four-dimensional (space + time) model wind fields, selecting steering levels corresponding to the cloud height properties of each cloud group. The shadows associated with these clouds are adjusted for sensor viewing parallax displacement and combined with solar geometry and terrain height to determine the actual location of cloud shadows. For mid/high-level clouds at mid-latitudes and high solar zenith angles, the combined displacements from these geometric considerations are non-negligible. The cloud information is used to initialize a radiative transfer model that computes the direct and diffuse-sky solar insolation at both shadow locations and intervening clear-sky regions. Here, we describe the formulation of the algorithm and validate its performance against Surface Radiation (SURFRAD; Augustine et al., 2000, 2005) network observations. Typical errors range from 8.5% to 17.2% depending on the complexity of cloud regimes, and an operational demonstration outperformed persistence-based forecasting of Global Horizontal Irradiance (GHI) under all conditions by ~10 W/m2.« less
Short-term solar irradiance forecasting via satellite/model coupling
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miller, Steven D.; Rogers, Matthew A.; Haynes, John M.
The short-term (0-3 h) prediction of solar insolation for renewable energy production is a problem well-suited to satellite-based techniques. The spatial, spectral, temporal and radiometric resolution of instrumentation hosted on the geostationary platform allows these satellites to describe the current cloud spatial distribution and optical properties. These properties relate directly to the transient properties of the downwelling solar irradiance at the surface, which come in the form of 'ramps' that pose a central challenge to energy load balancing in a spatially distributed network of solar farms. The short-term evolution of the cloud field may be approximated to first order simplymore » as translational, but care must be taken in how the advection is handled and where the impacts are assigned. In this research, we describe how geostationary satellite observations are used with operational cloud masking and retrieval algorithms, wind field data from Numerical Weather Prediction (NWP), and radiative transfer calculations to produce short-term forecasts of solar insolation for applications in solar power generation. The scheme utilizes retrieved cloud properties to group pixels into contiguous cloud objects whose future positions are predicted using four-dimensional (space + time) model wind fields, selecting steering levels corresponding to the cloud height properties of each cloud group. The shadows associated with these clouds are adjusted for sensor viewing parallax displacement and combined with solar geometry and terrain height to determine the actual location of cloud shadows. For mid/high-level clouds at mid-latitudes and high solar zenith angles, the combined displacements from these geometric considerations are non-negligible. The cloud information is used to initialize a radiative transfer model that computes the direct and diffuse-sky solar insolation at both shadow locations and intervening clear-sky regions. Here, we describe the formulation of the algorithm and validate its performance against Surface Radiation (SURFRAD; Augustine et al., 2000, 2005) network observations. Typical errors range from 8.5% to 17.2% depending on the complexity of cloud regimes, and an operational demonstration outperformed persistence-based forecasting of Global Horizontal Irradiance (GHI) under all conditions by ~10 W/m2.« less
NASA Technical Reports Server (NTRS)
Dome, G. J.; Fung, A. K.; Moore, R. K.
1977-01-01
Several regression models were tested to explain the wind direction dependence of the 1975 JONSWAP (Joint North Sea Wave Project) scatterometer data. The models consider the radar backscatter as a harmonic function of wind direction. The constant term accounts for the major effect of wind speed and the sinusoidal terms for the effects of direction. The fundamental accounts for the difference in upwind and downwind returns, while the second harmonic explains the upwind-crosswind difference. It is shown that a second harmonic model appears to adequately explain the angular variation. A simple inversion technique, which uses two orthogonal scattering measurements, is also described which eliminates the effect of wind speed and direction. Vertical polarization was shown to be more effective in determining both wind speed and direction than horizontal polarization.
NASA Technical Reports Server (NTRS)
Bauman, William H., III; Flinn, Clay
2013-01-01
On the day-of-launch, the 45th Weather Squadron (45 WS) Launch Weather Officers (LWOs) monitor the upper-level winds for their launch customers to include NASA's Launch Services Program and NASA's Ground Systems Development and Operations Program. They currently do not have the capability to display and overlay profiles of upper-level observations and numerical weather prediction model forecasts. The LWOs requested the Applied Meteorology Unit (AMU) develop a tool in the form of a graphical user interface (GUI) that will allow them to plot upper-level wind speed and direction observations from the Kennedy Space Center (KSC) 50 MHz tropospheric wind profiling radar, KSC Shuttle Landing Facility 915 MHz boundary layer wind profiling radar and Cape Canaveral Air Force Station (CCAFS) Automated Meteorological Processing System (AMPS) radiosondes, and then overlay forecast wind profiles from the model point data including the North American Mesoscale (NAM) model, Rapid Refresh (RAP) model and Global Forecast System (GFS) model to assess the performance of these models. The AMU developed an Excel-based tool that provides an objective method for the LWOs to compare the model-forecast upper-level winds to the KSC wind profiling radars and CCAFS AMPS observations to assess the model potential to accurately forecast changes in the upperlevel profile through the launch count. The AMU wrote Excel Visual Basic for Applications (VBA) scripts to automatically retrieve model point data for CCAFS (XMR) from the Iowa State University Archive Data Server (http://mtarchive.qeol.iastate.edu) and the 50 MHz, 915 MHz and AMPS observations from the NASA/KSC Spaceport Weather Data Archive web site (http://trmm.ksc.nasa.gov). The AMU then developed code in Excel VBA to automatically ingest and format the observations and model point data in Excel to ready the data for generating Excel charts for the LWO's. The resulting charts allow the LWOs to independently initialize the three models 0-hour forecasts against the observations to determine which is the best performing model and then overlay the model forecasts on time-matched observations during the launch countdown to further assess the model performance and forecasts. This paper will demonstrate integration of observed and predicted atmospheric conditions into a decision support tool and demonstrate how the GUI is implemented in operations.
Titan's Atmospheric Dynamics and Meteorology
NASA Technical Reports Server (NTRS)
Flasar, F. M.; Baines, K. H.; Bird, M. K.; Tokano, T.; West, R. A.
2008-01-01
Titan, after Venus, is the second example of an atmosphere with a global cyclostrophic circulation in the solar system, but a circulation that has a strong seasonal modulation in the middle atmosphere. Direct measurement of Titan's winds, particularly observations tracking the Huygens probe at 10degS, indicate that the zonal winds are generally in the sense of the satellites rotation. They become cyclostrophic approx. 35 km above the surface and generally increase with altitude, with the exception of a sharp minimum centered near 75 km, where the wind velocity decreases to nearly zero. Zonal winds derived from the temperature field retrieved from Cassini measurements, using the thermal wind equation, indicate a strong winter circumpolar vortex, with maximum winds at mid northern latitudes of 190 ms-' near 300 km. Above this level, the vortex decays. Curiously, the zonal winds and temperatures are symmetric about a pole that is offset from the surface pole by approx.4 degrees. The cause of this is not well understood, but it may reflect the response of a cyclostrophic circulation to the offset between the equator, where the distance to the rotation axis is greatest, and the solar equator. The mean meridional circulation can be inferred from the temperature field and the meridional distribution of organic molecules and condensates and hazes. Both the warm temperatures in the north polar region near 400 km and the enhanced concentration of several organic molecules suggests subsidence there during winter and early spring. Stratospheric condensates are localized at high northern latitudes, with a sharp cut-off near 50degN. Titan's winter polar vortex appears to share many of the same characteristics of winter vortices on Earth-the ozone holes. Global mapping of temperatures, winds, and composition in he troposphere, by contrast, is incomplete. The few suitable discrete clouds that have bee found for tracking indicate smaller velocities than aloft, consistent with the Huygens measurements. At low latitudes the zonal winds near the surface appear not to be westward as on Earth, but eastward. Because the net zonal-mean time-averaged torq exerted by the surface on the atmosphere should vanish, this implies westward flow o part of the surface; the question is where. The latitude contrast in tropospheric temperatures, deduced from radio occultations at low, mid, and high latitudes, is small approx.5 K at the tropopause and approx.3 K at the surface.
Numerical simulations of Asian dust storms using a coupled climate-aerosol microphysical model
NASA Astrophysics Data System (ADS)
Su, Lin; Toon, Owen B.
2009-07-01
We have developed a three-dimensional coupled microphysical/climate model based on the National Center for Atmospheric Research Community Atmospheres Model and the University of Colorado/NASA Community Aerosol and Radiation Model for Atmospheres. We have used the model to investigate the sources, removal processes, transport, and optical properties of Asian dust aerosol and its impact on downwind regions. The model simulations are conducted primarily during the time frame of the Aerosol Characterization Experiment-Asia field experiment (March-May 2001) since considerable in situ data are available at that time. Our dust source function follows Ginoux et al. (2001). We modified the dust source function by using the friction velocity instead of the 10-m wind based on wind erosion theory, by adding a size-dependent threshold friction velocity following Marticorena and Bergametti (1995) and by adding a soil moisture correction. A Weibull distribution is implemented to estimate the subgrid-scale wind speed variability. We use eight size bins for mineral dust ranging from 0.1 to 10 μm radius. Generally, the model reproduced the aerosol optical depth retrieved by the ground-based Aerosol Robotic Network (AERONET) Sun photometers at six study sites ranging in location from near the Asian dust sources to the Eastern Pacific region. By constraining the dust complex refractive index from AERONET retrievals near the dust source, we also find the single-scattering albedo to be consistent with AERONET retrievals. However, large regional variations are observed due to local pollution. The timing of dust events is comparable to the National Institute for Environmental Studies (NIES) lidar data in Beijing and Nagasaki. However, the simulated dust aerosols are at higher altitudes than those observed by the NIES lidar.
Venus upper atmosphere winds from ground-based heterodyne spectroscopy of CO2 at 10μm wavelength
NASA Astrophysics Data System (ADS)
Sornig, M.; Sonnabend, G.; Krötz, P.; Stupar, D.; Livengood, T.; Schieder, R.; Kostiuk, T.
2008-09-01
We present wind measurements in the Venusian upper mesosphere / lower thermosphere (at an altitude of 100-120km) by means of infrared heterodyne spectroscopy of CO2 P(2) features at 959.3917 cm-1. Provided high spectral resolution winds can be retrieved from Doppler-shifts of CO2 non-thermal emission lines.The mesosphere is the not very well understood transitions zone form the superrotating zonal circulation (RSZ) dominated troposphere and the subsolar to anti-solar flow (SS-AS flow) dominated thermosphere [1,2] hence the addressed altitude region is of special interest. Observations are carried out systematically on the day-side of the planet using the Cologne Tuneable Heterodyne Infrared Spectrometer (THIS). Measurements were gathered during two observing runs: a) May 25 to June 6 2007 at the McMath-Pierce solar telescope on KittPeak/Arizona; b) November 21-28 2007 at the McMath-Pierce solar telescope on KittPeak/Arizona; Both times Venus illumination was about 50%. Run a) took place shortly before Venus superior conjunction and b) shortly after Venus superior conjunction. Several positions on the planet with a diameter of approx. 20" were measured during each observing run. The telescope with a 1.5m main mirror provided a beamsize of 1.7". Zonal wind velocities as well as values for the SS-AS flow were retrieved and will be presented. The data analyzed so far show weak zonal wind velocities (from 3±7m/s to 32 ±4m/s ) with minimum values at the equator and maximum values at mid latitudes. Also the retrieved speed of the SS-AS flow was significantly lower than found by previous observations [3,4,5]. Together with results from space missions [6,7] and complementary ground based observing methods [8,3,4,5] probing wind velocities at different altitudes in the atmosphere of Venus, these measurements can provide global information about dynamical properties and increase the understanding about our neighbor planet. [1] Gierasch, P.J. et al. (1997) University of Arizona Press, 459. [2] Bougher, S.W. et al. (1986) Icarus, 68, 284-312. [3] Lellouch, E. et al. (1994) Icarus, 110, 315-339. [4] Shah, K et al. (1991) Icarus, 93, 96-121. [5] Goldstein, J. et al. (1991) Icarus, 94, 45-63. [6] Drossart, P. et al. (2007) Nature, 450(7170), 641- 645. [7] Markiewicz, W.J. et al. (2007) Nature, 450(7170), 633-636. [8] Widemann, T. et al. (2007) Planetary and Space Science, 55, 1741-1756.
Accessing Wind Tunnels From NASA's Information Power Grid
NASA Technical Reports Server (NTRS)
Becker, Jeff; Biegel, Bryan (Technical Monitor)
2002-01-01
The NASA Ames wind tunnel customers are one of the first users of the Information Power Grid (IPG) storage system at the NASA Advanced Supercomputing Division. We wanted to be able to store their data on the IPG so that it could be accessed remotely in a secure but timely fashion. In addition, incorporation into the IPG allows future use of grid computational resources, e.g., for post-processing of data, or to do side-by-side CFD validation. In this paper, we describe the integration of grid data access mechanisms with the existing DARWIN web-based system that is used to access wind tunnel test data. We also show that the combined system has reasonable performance: wind tunnel data may be retrieved at 50Mbits/s over a 100 base T network connected to the IPG storage server.
NASA Astrophysics Data System (ADS)
Baidourela, Aliya; Jing, Zhen; Zhayimu, Kahaer; Abulaiti, Adili; Ubuli, Hakezi
2018-04-01
Wind erosion and sandstorms occur in the neighborhood of exposed dust sources. Wind erosion and desertification increase the frequency of dust storms, deteriorate air quality, and damage the ecological environment and agricultural production. The Xinjiang region has a relatively fragile ecological environment. Therefore, the study of the characteristics of maximum wind speed and wind direction in this region is of great significance to disaster prevention and mitigation, the management of activated dunes, and the sustainable development of the region. Based on the latest data of 71 sites in Xinjiang, this study explores the temporal evolution and spatial distribution of maximum wind speed in Xinjiang from 1993 to 2013, and highlights the distribution of annual and monthly maximum wind speed and the characteristics of wind direction in Xinjiang. Between 1993 and 2013, Ulugchat County exhibited the highest number of days with the maximum wind speed (> 17 m/s), while Wutian exhibited the lowest number. In Xinjiang, 1999 showed the highest number of maximum wind speed days (257 days), while 2013 showed the lowest number (69 days). Spring and summer wind speeds were greater than those in autumn and winter. There were obvious differences in the direction of maximum wind speed in major cities and counties of Xinjiang. East of the Tianshan Mountains, maximum wind speeds are mainly directed southeast and northeast. North and south of the Tianshan Mountains, they are mainly directed northwest and northeast, while west of the Tianshan Mountains, they are mainly directed southeast and northwest.
Methods and apparatus for reducing peak wind turbine loads
Moroz, Emilian Mieczyslaw
2007-02-13
A method for reducing peak loads of wind turbines in a changing wind environment includes measuring or estimating an instantaneous wind speed and direction at the wind turbine and determining a yaw error of the wind turbine relative to the measured instantaneous wind direction. The method further includes comparing the yaw error to a yaw error trigger that has different values at different wind speeds and shutting down the wind turbine when the yaw error exceeds the yaw error trigger corresponding to the measured or estimated instantaneous wind speed.
Two-component wind fields over ocean waves using atmospheric lidar and motion estimation algorithms
NASA Astrophysics Data System (ADS)
Mayor, S. D.
2016-02-01
Numerical models, such as large eddy simulations, are capable of providing stunning visualizations of the air-sea interface. One reason for this is the inherent spatial nature of such models. As compute power grows, models are able to provide higher resolution visualizations over larger domains revealing intricate details of the interactions of ocean waves and the airflow over them. Spatial observations on the other hand, which are necessary to validate the simulations, appear to lag behind models. The rough ocean environment of the real world is an additional challenge. One method of providing spatial observations of fluid flow is that of particle image velocimetry (PIV). PIV has been successfully applied to many problems in engineering and the geosciences. This presentation will show recent research results that demonstate that a PIV-style approach using pulsed-fiber atmospheric elastic backscatter lidar hardware and wavelet-based optical flow motion estimation software can reveal two-component wind fields over rough ocean surfaces. Namely, a recently-developed compact lidar was deployed for 10 days in March of 2015 in the Eureka, California area. It scanned over the ocean. Imagery reveal that breaking ocean waves provide copius amounts of particulate matter for the lidar to detect and for the motion estimation algorithms to retrieve wind vectors from. The image below shows two examples of results from the experiment. The left panel shows the elastic backscatter intensity (copper shades) under a field of vectors that was retrieved by the wavelet-based optical flow algorithm from two scans that took about 15 s each to acquire. The vectors, that reveal offshore flow toward the NW, were decimated for clarity. The bright aerosol features along the right edge of the sector scan were caused by ocean waves breaking on the beach. The right panel is the result of scanning over the ocean on a day when wave amplitudes ranged from 8-12 feet and whitecaps offshore beyond the surf zone appeared to be rare and fleeting. Nonetheless, faint coherent aerosol structures are observable in the backscatter field as long, streaky, wind-parallel filaments and a wind field was retrieved. During the 10-day deployment, the seas were not as rough as expected. A current goal is to find collaborators and return to map airflow in rougher conditions.
Energy for agriculture: a computerized information retrieval system
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stout, B A; Myers, C A
1979-12-01
This bibliography contains 2613 citations to the literature for 1973 through May 1979. Some of the subjects covered include: accounting, agriculture, animal production, conservation, drying, fertilizer, food processing, greenhouses, home, international, irrigation, organic, solar, storage, tillage, and wind. Author and keyword indexes are included. (MHR)
Light-Flash Wind-Direction Indicator
NASA Technical Reports Server (NTRS)
Zysko, Jan A.
1993-01-01
Proposed wind-direction indicator read easily by distant observers. Indicator emits bright flashes of light separated by interval of time proportional to angle between true north and direction from which wind blowing. Timing of flashes indicates direction of wind. Flashes, from high-intensity stroboscopic lights seen by viewers at distances up to 5 miles or more. Also seen more easily through rain and fog. Indicator self-contained, requiring no connections to other equipment. Power demand satisfied by battery or solar power or both. Set up quickly to provide local surface-wind data for aircraft pilots during landing or hovering, for safety officers establishing hazard zones and safety corridors during handling of toxic materials, for foresters and firefighters conducting controlled burns, and for real-time wind observations during any of variety of wind-sensitive operations.
Salter, Phia S; Kelley, Nicholas J; Molina, Ludwin E; Thai, Luyen T
2017-09-01
Photographs provide critical retrieval cues for personal remembering, but few studies have considered this phenomenon at the collective level. In this research, we examined the psychological consequences of visual attention to the presence (or absence) of racially charged retrieval cues within American racial segregation photographs. We hypothesised that attention to racial retrieval cues embedded in historical photographs would increase social justice concept accessibility. In Study 1, we recorded gaze patterns with an eye-tracker among participants viewing images that contained racial retrieval cues or were digitally manipulated to remove them. In Study 2, we manipulated participants' gaze behaviour by either directing visual attention toward racial retrieval cues, away from racial retrieval cues, or directing attention within photographs where racial retrieval cues were missing. Across Studies 1 and 2, visual attention to racial retrieval cues in photographs documenting historical segregation predicted social justice concept accessibility.
NASA Astrophysics Data System (ADS)
Archer, Cristina; Ghaisas, Niranjan
2015-04-01
The energy generation at a wind farm is controlled primarily by the average wind speed at hub height. However, two other factors impact wind farm performance: 1) the layout of the wind turbines, in terms of spacing between turbines along and across the prevailing wind direction; staggering or aligning consecutive rows; angles between rows, columns, and prevailing wind direction); and 2) atmospheric stability, which is a measure of whether vertical motion is enhanced (unstable), suppressed (stable), or neither (neutral). Studying both factors and their complex interplay with Large-Eddy Simulation (LES) is a valid approach because it produces high-resolution, 3D, turbulent fields, such as wind velocity, temperature, and momentum and heat fluxes, and it properly accounts for the interactions between wind turbine blades and the surrounding atmospheric and near-surface properties. However, LES are computationally expensive and simulating all the possible combinations of wind directions, atmospheric stabilities, and turbine layouts to identify the optimal wind farm configuration is practically unfeasible today. A new, geometry-based method is proposed that is computationally inexpensive and that combines simple geometric quantities with a minimal number of LES simulations to identify the optimal wind turbine layout, taking into account not only the actual frequency distribution of wind directions (i.e., wind rose) at the site of interest, but also atmospheric stability. The geometry-based method is calibrated with LES of the Lillgrund wind farm conducted with the Software for Offshore/onshore Wind Farm Applications (SOWFA), based on the open-access OpenFOAM libraries. The geometric quantities that offer the best correlations (>0.93) with the LES results are the blockage ratio, defined as the fraction of the swept area of a wind turbine that is blocked by an upstream turbine, and the blockage distance, the weighted distance from a given turbine to all upstream turbines that can potentially block it. Based on blockage ratio and distance, an optimization procedure is proposed that explores many different layout variables and identifies, given actual wind direction and stability distributions, the optimal wind farm layout, i.e., the one with the highest wind energy production. The optimization procedure is applied to both the calibration wind farm (Lillgrund) and a test wind farm (Horns Rev) and a number of layouts more efficient than the existing ones are identified. The optimization procedure based on geometric models proposed here can be applied very quickly (within a few hours) to any proposed wind farm, once enough information on wind direction frequency and, if available, atmospheric stability frequency has been gathered and once the number of turbines and/or the areal extent of the wind farm have been identified.
Analysis of Doppler Lidar Data Acquired During the Pentagon Shield Field Campaign
DOE Office of Scientific and Technical Information (OSTI.GOV)
Newsom, Rob K.
2011-04-14
Observations from two coherent Doppler lidars deployed during the Pentagon Shield field campaign are analyzed in conjunction with other sensors to characterize the overall boundary-layer structure, and identify the dominant flow characteristics during the entire two-week field campaign. Convective boundary layer (CBL) heights and cloud base heights (CBH) are estimated from an analysis of the lidar signal-to-noise-ratio (SNR), and mean wind profiles are computed using a modified velocity-azimuth-display (VAD) algorithm. Three-dimensional wind field retrievals are computed from coordinated overlapping volume scans, and the results are analyzed by visualizing the flow in horizontal and vertical cross sections. The VAD winds showmore » that southerly flows dominate during the two-week field campaign. Low-level jets (LLJ) were evident on all but two of the nights during the field campaign. The LLJs tended to form a couple hours after sunset and reach maximum strength between 03 and 07 UTC. The surface friction velocities show distinct local maxima during four nights when strong LLJs formed. Estimates of the convective boundary layer height and residual layer height are obtained through an analysis of the vertical gradient of the lidar signal-to-noise-ratio (SNR). Strong minimum in the SNR gradient often develops just above the surface after sunrise. This minimum is associated with the developing CBL, and increases rapidly during the early portion of the daytime period. On several days, this minimum continues to increase until about sunset. Secondary minima in the SNR gradient were also observed at higher altitudes, and are believed to be remnants of the CBL height from previous days, i.e. the residual layer height. The dual-Doppler analysis technique used in this study makes use of hourly averaged radial velocity data to produce three-dimensional grids of the horizontal velocity components, and the horizontal velocity variance. Visualization of horizontal and vertical cross sections of the dual-Doppler wind retrievals often indicated a jet-like flow feature over the Potomac River under southerly flow conditions. This linear flow feature is roughly aligned with the Potomac River corridor to the south of the confluence with the Anatostia River, and is most apparent at low levels (i.e. below ~150 m MSL). It is believed that this flow arises due to reduced drag over the water surface and when the large scale flow aligns with the Potomac River corridor. A so-called area-constrained VAD analysis generally confirmed the observations from the dual-Doppler analysis. When the large scale flow is southerly, wind speeds over the Potomac River are consistently larger than the at a site just to the west of the river for altitudes less than 100 m MSL. Above this level, the trend is somewhat less obvious. The data suggest that the depth of the wind speed maximum may be reduced by strong directional shear aloft.« less
Improvements for retrieval of cloud droplet size by the POLDER instrument
NASA Astrophysics Data System (ADS)
Shang, H.; Husi, L.; Bréon, F. M.; Ma, R.; Chen, L.; Wang, Z.
2017-12-01
The principles of cloud droplet size retrieval via Polarization and Directionality of the Earth's Reflectance (POLDER) requires that clouds be horizontally homogeneous. The retrieval is performed by combining all measurements from an area of 150 km × 150 km to compensate for POLDER's insufficient directional sampling. Using POLDER-like data simulated with the RT3 model, we investigate the impact of cloud horizontal inhomogeneity and directional sampling on the retrieval and analyze which spatial resolution is potentially accessible from the measurements. Case studies show that the sub-grid-scale variability in droplet effective radius (CDR) can significantly reduce valid retrievals and introduce small biases to the CDR ( 1.5µm) and effective variance (EV) estimates. Nevertheless, the sub-grid-scale variations in EV and cloud optical thickness (COT) only influence the EV retrievals and not the CDR estimate. In the directional sampling cases studied, the retrieval using limited observations is accurate and is largely free of random noise. Several improvements have been made to the original POLDER droplet size retrieval. For example, measurements in the primary rainbow region (137-145°) are used to ensure retrievals of large droplet (>15 µm) and to reduce the uncertainties caused by cloud heterogeneity. A premium resoltion of 0.8° is determined by considering successful retrievals and cloud horizontal homogeneity. The improved algorithm is applied to measurements of POLDER in 2008, and we further compared our retrievals with cloud effective radii estimations of Moderate Resolution Imaging Spectroradiometer (MODIS). The results indicate that in global scale, the cloud effective radii and effective variance is larger in the central ocean than inland and coast areas. Over heavy polluted regions, the cloud droplets has small effective radii and narraw distribution due to the influence of aerosol particles.
NASA Technical Reports Server (NTRS)
Joseph, A.T.; Lang, R.; O'Neill, P.E.; van der Velde, R.; Gish, T.
2008-01-01
A representative soil surface roughness parameterization needed for the retrieval of soil moisture from active microwave satellite observation is difficult to obtain through either in-situ measurements or remote sensing-based inversion techniques. Typically, for the retrieval of soil moisture, temporal variations in surface roughness are assumed to be negligible. Although previous investigations have suggested that this assumption might be reasonable for natural vegetation covers (Moran et al. 2002, Thoma et al. 2006), insitu measurements over plowed agricultural fields (Callens et al. 2006) have shown that the soil surface roughness can change considerably over time. This paper reports on the temporal stability of surface roughness effects on radar observations and soil moisture retrieved from these radar observations collected once a week during a corn growth cycle (May 10th - October 2002). The data set employed was collected during the Optimizing Production Inputs for Economic and Environmental Enhancement (OPE3) field campaign covering this 2002 corn growth cycle and consists of dual-polarized (HH and VV) L-band (1.6 GHz) acquired at view angles of 15, 35, and 55 degrees. Cross-polarized L baud radar data were also collected as part of this experiment, but are not used in the analysis reported on here. After accounting for vegetation effects on radar observations, time-invariant optimum roughness parameters were determined using the Integral Equation Method (IEM) and radar observations acquired over bare soil and cropped conditions (the complete radar data set includes entire corn growth cycle). The optimum roughness parameters, soil moisture retrieval uncertainty, temporal distribution of retrieval errors and its relationship with the weather conditions (e.g. rainfall and wind speed) have been analyzed. It is shown that over the corn growth cycle, temporal roughness variations due to weathering by rain are responsible for almost 50% of soil moisture retrieval uncertainty depending on the sensing configuration. The effects of surface roughness variations are found to be smallest for observations acquired at a view angle of 55 degrees and HH polarization. A possible explanation for this result is that at 55 degrees and HH polarization the effect of vertical surface height changes on the observed radar response are limited because the microwaves travel parallel to the incident plane and as a result will not interact directly with vertically oriented soil structures.
NASA Astrophysics Data System (ADS)
Song, I.-S.; Lee, C.; Kim, J.-H.; Jee, G.; Kim, Y.-H.; Choi, H.-J.; Chun, H.-Y.; Kim, Y. H.
2017-04-01
Vertically propagating low-frequency inertia-gravity waves (IGWs) are retrieved from meteor radar winds observed at King Sejong Station (KSS: 62.22°S, 58.78°W), Antarctica. IGW horizontal winds extracted from temporal band-pass filtering in regular time-height bins show the frequent occurrence of IGWs with the downward phase progression and the counterclockwise rotation of their horizontal wind vectors with time (i.e., upward energy propagation) near the mesopause region throughout the whole year of 2014. The vertical wavelengths of the observed IGWs roughly range from 14 km to more than 20 km, which is consistent with previous observational studies on the mesospheric IGWs over Antarctica. Stokes parameters and rotary spectra computed from the hodographs of the IGW horizontal wind components reveal that the intrinsic frequencies of the upward propagating IGWs are |f|-3|f| with seasonal variations of the relative predominance between |f|-2|f| and 2|f|-3|f|, where f is the Coriolis parameter at KSS. The hodograph analysis also indicates that the N-S propagation is dominant in austral summer, while the NE-SW propagation is pronounced in austral winter. The propagation direction is discussed in relation to the generation of IGWs due to dynamical imbalances occurring in the tropospheric and stratospheric jet flow systems. Ray tracing results indicate that the N-S propagation in summer may be due to the jet flow systems roughly north of KSS and the NE-SW propagation in winter may be either the SW propagation from the jet flow systems northeast of KSS or the NE propagation (around the South Pole) from the south of Australia and Southern Indian and Pacific Oceans.
An Analysis of Wintertime Winds in Washington, D.C.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Berg, Larry K.; Allwine, K Jerry
This report consists of a description of the wintertime climatology of wind speed and wind direction around the National Mall in Washington, D.C. Meteorological data for this study were collected at Ronald Reagan Washington National Airport (Reagan National), Dulles International Airport (Dulles), and a set of surface meteorological stations that are located on a number of building tops around the National Mall. A five-year wintertime climatology of wind speed and wind direction measured at Reagan National and Dulles are presented. A more detailed analysis was completed for the period December 2003 through February 2004 using data gathered from stations locatedmore » around the National Mall, Reagan National, and Dulles. Key findings of our study include the following: * There are systematic differences between the wind speed and wind direction observed at Reagan National and the wind speed and wind direction measured by building top weather stations located in the National Mall. Although Dulles is located much further from the National Mall than Reagan National, there is better agreement between the wind speed and wind direction measured at Dulles and the weather stations in the National Mall. * When the winds are light (less than 3 ms-1 or 7 mph), there are significant differences in the wind directions reported at the various weather stations within the Mall. * Although the mean characteristics of the wind are similar at the various locations, significant, short-term differences are found when the time series are compared. These differences have important implications for the dispersion of airborne contaminants. In support of wintertime special events in the area of the National Mall, we recommend placing four additional meteorological instruments: three additional surface stations, one on the east bank of the Potomac River, one south of the Reflecting Pool (to better define the flow within the Mall), and a surface station near the Herbert C. Hoover Building; and wind-profiling instrument located along the southern edge of the National Mall to give measurements of the wind speed and direction as a function of height.« less
Khezri, Seyed Mostafa; Biati, Aida; Erfani, Zeynab
2012-01-01
In the present study, a pilot-scale sedimentation tank was used to determine the effect of wind velocity and direction on the removal efficiency of particles. For this purpose, a 1:20 scale pilot simulated according to Frude law. First, the actual efficiency of total suspended solids (TSS) removal was calculated in no wind condition. Then, the wind was blown in the same and the opposite directions of water flow. At each direction TSS removal was calculated at three different velocities from 2.5 to 7 m/s. Results showed that when the wind was in the opposite direction of water flow, TSS removal efficiency initially increased with the increase of wind velocity from 0 to 2.5 m/s, then it decreased with the increase of velocity to 5 m/s. This mainly might happen because the opposite direction of wind can increase particles' retention time in the sedimentation tank. However, higher wind velocities (i.e. 3.5 and 5.5 m/s) could not increase TSS removal efficiency. Thus, if sedimentation tanks are appropriately exposed to the wind, TSS removal efficiency increases by approximately 6%. Therefore, energy consumption will be reduced by a proper site selection for sedimentation tank unit in water and waste water treatment plants.
Lin, Chun; Solera Garcia, Maria Angeles; Timmis, Roger; Jones, Kevin C
2011-03-01
A new type of directional passive air sampler (DPAS) is described for collecting particulate matter (PM) in ambient air. The prototype sampler has a non-rotating circular sampling tray that is divided into covered angular channels, whose ends are open to winds from sectors covering the surrounding 360°. Wind-blown PM from different directions enters relevant wind-facing channels, and is retained there in collecting pools containing various sampling media. Information on source direction and type can be obtained by examining the distribution of PM between channels. Wind tunnel tests show that external wind velocities are at least halved over an extended area of the collecting pools, encouraging PM to settle from the air stream. Internal and external wind velocities are well-correlated over an external velocity range of 2.0-10.0 m s⁻¹, which suggests it may be possible to relate collected amounts of PM simply to ambient concentrations and wind velocities. Measurements of internal wind velocities in different channels show that velocities decrease from the upwind channel round to the downwind channel, so that the sampler effectively resolves wind directions. Computational fluid dynamics (CFD) analyses were performed on a computer-generated model of the sampler for a range of external wind velocities; the results of these analyses were consistent with those from the wind tunnel. Further wind tunnel tests were undertaken using different artificial particulates in order to assess the collection performance of the sampler in practice. These tests confirmed that the sampler can resolve the directions of sources, by collecting particulates preferentially in source-facing channels.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Peter, Justin R; May, Peter T; Potts, Rodney J
Statistics of radar-retrievals of precipitation are presented. A K-means clustering algorithm is applied to an historical record of radiosonde measurements which identified three major synoptic regimes; a dry, stable regime with mainly westerly winds prevalent during winter, a moist south easterly trade wind regime and a moist northerly regime both prevalent during summer. These are referred to as westerly, trade wind and northerly regimes, respectively. Cell statistics are calculated using an objective cell identification and tracking methodology on data obtained from a nearby S-band radar. Cell statistics are investigated for the entire radar observational period and also during sub-periods correspondingmore » to the three major synoptic regimes. The statistics investigated are cell initiation location, area, rainrate, volume, height, height of the maximum reflectivity, volume greater than 40 dBZ and storm speed and direction. Cells are found predominantly along the elevated topography. The cell statistics reveal that storms which form in the dry, stable westerly regime are of comparable size to the deep cells which form in the northerly regime, larger than those in the trade regime and, furthermore, have the largest rainrate. However, they occur less frequently and have shorter lifetimes than cells in the other regimes. Diurnal statistics of precipitation area and rainrate exhibit early morning and mid afternoon peaks, although the areal coverage lags the rainrate by several hours indicative of a transition from convective to stratiform precipitation. The probability distributions of cell area, rainrate, volume, height and height of the maximum re ectivity are found to follow lognormal distributions.« less
The influence of winding direction of two-layer HTS DC cable on the critical current
NASA Astrophysics Data System (ADS)
Vyatkin, V. S.; Kashiwagi, K.; Ivanov, Y. V.; Otabe, E. S.; Yamaguchi, S.
2017-09-01
The design of twist pitch and direction of winding in multilayer HTS coaxial cable is important. For HTS AC transmitting cables, the main condition of twist pitch is the balance of inductances of each layer for providing the current balance between layers. In this work, the finite element method analysis for the coaxial cables with both same and opposite directions winding is used to calculate magnetic field distribution, and critical current of the cable is estimated. It was found that the critical current of the cable with same direction winding is about 10 percent higher than that in the case of the cable with the opposite direction winding.
NASA Astrophysics Data System (ADS)
Bachtiar, V. S.; Purnawan, P.; Afrianita, R.; Dahlia, N.
2018-01-01
This study aims to analyze the relationship between CO concentration and wind direction. Wind direction in this context is the wind angle to the road on the traffic flow in Padang City. Sampling of CO concentration was conducted for 9 days at 3 monitoring points (each 3-day point) representing the wind angle to the road (a) i.e. at Jend. A. Yani road (0 degrees), Andalas road (30 degrees) and Prof. Dr. Hamka road (60 degrees), using impinger and analyzed by spectrophotometer. The results of the research in the three monitoring sites showed that the concentration of CO ranged between 137.217 and 600.525 μg/Nm3. The highest and lowest concentrations respectively on Prof. Dr. Hamka road and Jend. A. Yani road. The sampling showed that CO concentrations will be decreased if wind direction is changed from perpendicular wind direction (a 90°) to a 60°, 30°, and 0° respectively by 64.62%, 37.77% and 27.09%. It can be concluded that the wind angle direction to the road affects the CO concentrations in the roadside.
Post-processing method for wind speed ensemble forecast using wind speed and direction
NASA Astrophysics Data System (ADS)
Sofie Eide, Siri; Bjørnar Bremnes, John; Steinsland, Ingelin
2017-04-01
Statistical methods are widely applied to enhance the quality of both deterministic and ensemble NWP forecasts. In many situations, like wind speed forecasting, most of the predictive information is contained in one variable in the NWP models. However, in statistical calibration of deterministic forecasts it is often seen that including more variables can further improve forecast skill. For ensembles this is rarely taken advantage of, mainly due to that it is generally not straightforward how to include multiple variables. In this study, it is demonstrated how multiple variables can be included in Bayesian model averaging (BMA) by using a flexible regression method for estimating the conditional means. The method is applied to wind speed forecasting at 204 Norwegian stations based on wind speed and direction forecasts from the ECMWF ensemble system. At about 85 % of the sites the ensemble forecasts were improved in terms of CRPS by adding wind direction as predictor compared to only using wind speed. On average the improvements were about 5 %, but mainly for moderate to strong wind situations. For weak wind speeds adding wind direction had more or less neutral impact.
NASA Astrophysics Data System (ADS)
Hueso, R.; Sánchez-Lavega, A.; Iñurrigarro, P.; Rojas, J. F.; Pérez-Hoyos, S.; Mendikoa, I.; Gómez-Forrellad, J. M.; Go, C.; Peach, D.; Colas, F.; Vedovato, M.
2017-05-01
We analyze Jupiter observations between December 2015 and August 2016 in the 0.38-1.7 μm wavelength range from the PlanetCam instrument at the 2.2 m telescope at Calar Alto Observatory and in the optical range by amateur observers contributing to the Planetary Virtual Observatory Laboratory. Over this time Jupiter was in a quiescent state without notable disturbances. Analysis of ground-based images and Hubble Space Telescope observations in February 2016 allowed the retrieval of mean zonal winds from -74.5° to +73.2°. These winds did not change over 2016 or when compared with winds from previous years with the sole exception of intense zonal winds at the North Temperate Belt. We also present results concerning the major wave systems in the North Equatorial Belt and in the upper polar hazes visible in methane absorption bands, a description of the planet's overall cloud morphology and observations of Jupiter hours before Juno's orbit insertion.
Storminess at the Gulf of Biscay: classification and long term trends
NASA Astrophysics Data System (ADS)
Rasilla, D.; Garcia Codron, J. C.
2009-04-01
Widespread geomorphological evidences along the northern coast of the Iberian Peninsula, such as beach retreat or falling cliffs, show the remarkable activity of the Atlantic storm during the last decades. In the present communication we analyze some characteristics of those events and their temporal evolution over the area. Oceanographic information (significant wave height, wave direction and period) was retrieved from observed (buoys network from Puertos del Estado -PdE-) and hindcast (KNMI/ERA 40) databases. To explore the atmospheric mechanisms responsible, we combined local reports from coastal observatories, a regional Eulerian approach (a synoptic typing) and a larger-scale Lagrangian method, based on the analysis of storm-tracks. Surface meteorological variables (sea level pressure and wind speed and direction) were extracted from ISWHO (Integrated Surface Hourly Observations) CD Rom collection. Sea level pressure, surface 10m U and V wind components gridded data were obtained from ECMWF ERA40 Reanalysis. Storm tracks and cyclone statistics were obtained from the CDC Map Room Climate Products Storm Track Data (http://www.cdc.noaa.gov/map/clim/st_data.html). In other to accomplish the objectives of this contribution, first we validated the hindcast data with actual observations from buoys. Secondly, we identified the storm episodes, considering them as a period longer than 12 hours in which the wave height was higher than 6 m, and separated by at least 48. Long winds fetch and locally strong westerly and northwesterly winds expose the northern coast of Iberia to episodes of intense storminess, mainly during the winter months. Extratropical disturbances tracking between the 50-60°N parallel are the main driving force behind those episodes, many of them as a result of a cyclogenesis processes along the eastern coast of North America. In some cases, the deep cyclonic storms are product of a secondary cyclogenesis, crossing the area southward of the 50°N parallel; significant wave heights can be as high as the northernmost cyclones, but the wave period is slightly lower. Only in the western sector (Galicia and Asturias) storms following a SW-NE path induced episodes of high waves.
An Update to the Warm-Season Convective Wind Climatology of KSC/CCAFS
NASA Technical Reports Server (NTRS)
Lupo, Kevin
2012-01-01
Total of 1100 convective events in the 17-year warm-season climatology at KSC/CCAFS. July and August typically are the peak of convective events, May being the minimum. Warning and non-warning level convective winds are more likely to occur in the late afternoon (1900-2000Z). Southwesterly flow regimes and wind directions produce the strongest winds. Storms moving from southwesterly direction tend to produce more warning level winds than those moving from the northerly and easterly directions.
NASA Technical Reports Server (NTRS)
Fernandez, D. Esteban; Chang, P.; Carswel, J.; Contreras, R.; Chu, T.; Asuzu, P.; Black, P.; Marks, F.
2006-01-01
The Imaging Wind and Rain Arborne Profilers (IWRAP) is a dual-frequency, conically-scanning Doppler radar that measures high-resolution, dual-polarized, multi-beam C- and Ku-band reflectivity and Doppler velocity profiles of the atmospheric boundary layer (ABL) within the inner core of hurricanes.From the datasets acquired during the 2002 through 20O5 hurricane seasons as part of the ONR Coupled Boundary Layer Air-Sea Transfer (CBLAST) program and the NOAA/NESDIS Ocean Winds and Rain experiments, very high resolution radar observations of hurricanes have been acquired and made available to the CBLAST community. Of particular interest am the ABL wind fields and 3-D structures found within the inner core of hurricanes. As a result of these analysis, a limitation in the ability to retrieve the ABL wind field at very low altitudes was identified. This paper shows how this limitation has been removed and presents initial results demonstrating its new capabilities to derive the ABL wind field within the inner are of hurricanes to much lower altitudes than the ones the original system was capable of.
On the vertical wind shear of Saturn's Equatorial Jet at cloud level
NASA Astrophysics Data System (ADS)
Sánchez-Lavega, A.; Pérez-Hoyos, S.
2005-08-01
With the aim of retrieving the altitude of cloud features used as zonal wind tracers in Saturn's atmosphere, we have reanalyzed three different sets of photometric and calibrated data corresponding to the Voyager epoch 1979-1981 (ground-based in 1979, Voyager 2 PPS and ISS observations in 1981), and we have analyze a new set of Hubble Space Telescope images for 2004. This analysis is put in the perspective of our previous HST study for 1994-2003 (Pérez-Hoyos et al., Icarus, 176, 155. 2005). A common result is found that the individual cloud tracers are embedded within a variable tropospheric haze. According to our models, the Voyager 2 ISS images locate the cloud tracers moving with zonal velocities of 455 to 465 (± 2) m/s at a pressure level of 360 ± 140 mbar. For HST observations, the cloud tracers moving with zonal wind speeds of 280 ± 10 m/s, locate at a pressure level of about 50 ± 10 mbar. All these values are calculated in the latitude 3 deg North. The speed difference, if interpreted as a vertical wind shear (Porco et al., Science, 307, 1226. 2005), requires a change of 90 m/s per scale height, two times greater than that estimated from Cassini CIRS data (Flasar et al., Science, 307, 1247, 2005). We also perform an initial guess on Cassini ISS vertical sounding levels, retrieving values compatible with the HST ones but not with Voyager wind measurements. We conclude that the wind speed velocity differences measured between 1979-81 and 2004 in the upper troposphere cannot be solely explained as a wind shear effect and demand dynamical processes. We discuss the possible action of Rossby waves or an intrinsic circulation change in the ammonia cloud layer and above, following a large period of equatorial storm activity. Acknowledgments: This work was supported by MCYT AYA2003-03216, FEDER, and Grupos UPV 15946/2004. S.P.-H. acknowledges a PhD fellowship from the Spanish MEC and R. H. a post-doc contract from Gobierno Vasco.
A Meteorological Supersite for Aviation and Cold Weather Applications
NASA Astrophysics Data System (ADS)
Gultepe, Ismail; Agelin-Chaab, M.; Komar, J.; Elfstrom, G.; Boudala, F.; Zhou, B.
2018-05-01
The goal of this study is to better understand atmospheric boundary layer processes and parameters, and to evaluate physical processes for aviation applications using data from a supersite observing site. Various meteorological sensors, including a weather and environmental unmanned aerial vehicle (WE-UAV), and a fog and snow tower (FSOS) observations are part of the project. The PanAm University of Ontario Institute of Technology (UOIT) Meteorological Supersite (PUMS) observations are being collected from April 2015 to date. The FSOS tower gathers observations related to rain, snow, fog, and visibility, aerosols, solar radiation, and wind and turbulence, as well as surface and sky temperature. The FSOSs are located at three locations at about 450-800 m away from the PUMS supersite. The WE-UAV measurements representing aerosol, wind speed and direction, as well as temperature (T) and relative humidity (RH) are provided during clear weather conditions. Other measurements at the PUMS site include cloud backscattering profiles from CL51 ceilometer, MWR observations of liquid water content (LWC), T, and RH, and Microwave Rain Radar (MRR) reflectivity profile, as well as the present weather type, snow water depth, icing rate, 3D-ultrasonic wind and turbulence, and conventional meteorological observations from compact weather stations, e.g., WXTs. The results based on important weather event studies, representing fog, snow, rain, blowing snow, wind gust, planetary boundary layer (PBL) wind research for UAV, and icing conditions are given. The microphysical parameterizations and analysis processes for each event are provided, but the results should not be generalized for all weather events and be used cautiously. Results suggested that integrated observing systems based on data from a supersite as well as satellite sites can provide better information applicable to aviation meteorology, including PBL weather research, validation of numerical weather model predictions, and remote-sensing retrievals. Overall, the results from the five cases are provided and challenges related to observations applicable to aviation meteorology are discussed.
NASA Astrophysics Data System (ADS)
Shang, H.; Chen, L.; Bréon, F. M.; Letu, H.; Li, S.; Wang, Z.; Su, L.
2015-11-01
The principles of cloud droplet size retrieval via Polarization and Directionality of the Earth's Reflectance (POLDER) requires that clouds be horizontally homogeneous. The retrieval is performed by combining all measurements from an area of 150 km × 150 km to compensate for POLDER's insufficient directional sampling. Using POLDER-like data simulated with the RT3 model, we investigate the impact of cloud horizontal inhomogeneity and directional sampling on the retrieval and analyze which spatial resolution is potentially accessible from the measurements. Case studies show that the sub-grid-scale variability in droplet effective radius (CDR) can significantly reduce valid retrievals and introduce small biases to the CDR (~ 1.5 μm) and effective variance (EV) estimates. Nevertheless, the sub-grid-scale variations in EV and cloud optical thickness (COT) only influence the EV retrievals and not the CDR estimate. In the directional sampling cases studied, the retrieval using limited observations is accurate and is largely free of random noise. Several improvements have been made to the original POLDER droplet size retrieval. For example, measurements in the primary rainbow region (137-145°) are used to ensure retrievals of large droplet (> 15 μm) and to reduce the uncertainties caused by cloud heterogeneity. We apply the improved method using the POLDER global L1B data from June 2008, and the new CDR results are compared with the operational CDRs. The comparison shows that the operational CDRs tend to be underestimated for large droplets because the cloudbow oscillations in the scattering angle region of 145-165° are weak for cloud fields with CDR > 15 μm. Finally, a sub-grid-scale retrieval case demonstrates that a higher resolution, e.g., 42 km × 42 km, can be used when inverting cloud droplet size distribution parameters from POLDER measurements.
NASA Technical Reports Server (NTRS)
Macmillan, Daniel S.; Han, Daesoo
1989-01-01
The attitude of the Nimbus-7 spacecraft has varied significantly over its lifetime. A summary of the orbital and long-term behavior of the attitude angles and the effects of attitude variations on Scanning Multichannel Microwave Radiometer (SMMR) brightness temperatures is presented. One of the principal effects of these variations is to change the incident angle at which the SMMR views the Earth's surface. The brightness temperatures depend upon the incident angle sensitivities of both the ocean surface emissivity and the atmospheric path length. Ocean surface emissivity is quite sensitive to incident angle variation near the SMMR incident angle, which is about 50 degrees. This sensitivity was estimated theoretically for a smooth ocean surface and no atmosphere. A 1-degree increase in the angle of incidence produces a 2.9 C increase in the retrieved sea surface temperature and a 5.7 m/sec decrease in retrieved sea surface wind speed. An incident angle correction is applied to the SMMR radiances before using them in the geophysical parameter retrieval algorithms. The corrected retrieval data is compared with data obtained without applying the correction.
Directional Wave Spectra Observed During Intense Tropical Cyclones
NASA Astrophysics Data System (ADS)
Collins, C. O.; Potter, H.; Lund, B.; Tamura, H.; Graber, H. C.
2018-02-01
Two deep-sea moorings were deployed 780 km off the coast of southern Taiwan for 4-5 months during the 2010 typhoon season. Directional wave spectra, wind speed and direction, and momentum fluxes were recorded on two Extreme Air-Sea Interaction buoys during the close passage of Severe Tropical Storm Dianmu and three tropical cyclones (TCs): Typhoon Fanapi, Super Typhoon Megi, and Typhoon Chaba. Conditions sampled include significant wave heights up to 11 m and wind speeds up to 26 m s-1. Details varied for large-scale spectral structure in frequency and direction but were mostly bimodal. The modes were generally composed of a swell system emanating from the most intense storm region and local wind-seas. The peak systems were consistently young, meaning actively forced by winds, when the storms were close. During the peaks of the most intense passages—Chaba at the northern mooring and Megi at the southern—the bimodal seas coalesced. During Chaba, the swell and wind-sea coupling directed the high frequency waves and the wind stress away from the wind direction. A spectral wave model was able reproduce many of the macrofeatures of the directional spectra.
Barber, Sarah J.; Rajaram, Suparna
2011-01-01
When people are exposed to a subset of previously studied list items they recall fewer of the remaining items compared to a condition where none of the studied items are provided during recall. This occurs both when the subset of items is provided by the experimenter (i.e., the part-set cuing deficit in individual recall) and when they are provided during the course of a collaborative discussion (i.e., the collaborative inhibition effect in group recall). Previous research has identified retrieval disruption as a common mechanism underlying both effects; however, less is known about the factors that may make individuals susceptible to such retrieval disruption. In the current studies we tested one candidate factor, namely, executive control. Using an executive depletion paradigm we directly manipulated an individual’s level of executive control during retrieval. Results revealed no direct role of executive depletion in modulating retrieval disruption. In contrast, executive control abilities were indirectly related to retrieval disruption through their influence at encoding. Together, these results suggest that executive control does not directly affect retrieval disruption at the retrieval stage, and that the role of this putative mechanism may be limited to the encoding stage. PMID:21678155
Impact of Ocean Surface Waves on Air-Sea Momentum Flux
NASA Astrophysics Data System (ADS)
Tamura, H.; Drennan, W. M.; Collins, C. O., III; Graber, H. C.
2016-02-01
In this study, we investigated the structure of turbulent air flow over ocean waves. Observations of wind and waves were retrieved by air-sea interaction spar (ASIS) buoys during the shoaling waves experiment (SHOWEX) in Duck, NC in 1999. It is shown that the turbulent velocity spectra and co-spectra for pure wind sea conditions follow the universal forms estimated by Miyake et al [1970]. In the presence of strong swells, the wave boundary layer was extended and the universal spectral scaling of u'w' broke down [Drennan et al, 1999]. On the other hand, the use of the peak wave frequency (fp) to reproduce the "universal spectra" succeeded at explaining the spectral structure of turbulent flow field. The u'w' co-spectra become negative near the fp, which suggests the upward momentum transport (i.e., negative wind stress) induced by ocean waves. Finally, we propose three turbulent flow structures for different wind-wave regimes.
Weinman, J A
1988-10-01
A simulated analysis is presented that shows that returns from a single-frequency space-borne lidar can be combined with data from conventional visible satellite imagery to yield profiles of aerosol extinction coefficients and the wind speed at the ocean surface. The optical thickness of the aerosols in the atmosphere can be derived from visible imagery. That measurement of the total optical thickness can constrain the solution to the lidar equation to yield a robust estimate of the extinction profile. The specular reflection of the lidar beam from the ocean can be used to determine the wind speed at the sea surface once the transmission of the atmosphere is known. The impact on the retrieved aerosol profiles and surface wind speed produced by errors in the input parameters and noise in the lidar measurements is also considered.
Effects of wind direction on coarse and fine particulate matter concentrations in southeast Kansas.
Guerra, Sergio A; Lane, Dennis D; Marotz, Glen A; Carter, Ray E; Hohl, Carrie M; Baldauf, Richard W
2006-11-01
Field data for coarse particulate matter ([PM] PM10) and fine particulate matter (PM2.5) were collected at selected sites in Southeast Kansas from March 1999 to October 2000, using portable MiniVol particulate samplers. The purpose was to assess the influence on air quality of four industrial facilities that burn hazardous waste in the area located in the communities of Chanute, Independence, Fredonia, and Coffeyville. Both spatial and temporal variation were observed in the data. Variation because of sampling site was found to be statistically significant for PM10 but not for PM2.5. PM10 concentrations were typically slightly higher at sites located within the four study communities than at background sites. Sampling sites were located north and south of the four targeted sources to provide upwind and downwind monitoring pairs. No statistically significant differences were found between upwind and downwind samples for either PM10 or PM2.5, indicating that the targeted sources did not contribute significantly to PM concentrations. Wind direction can frequently contribute to temporal variation in air pollutant concentrations and was investigated in this study. Sampling days were divided into four classifications: predominantly south winds, predominantly north winds, calm/variable winds, and winds from other directions. The effect of wind direction was found to be statistically significant for both PM10 and PM2.5. For both size ranges, PM concentrations were typically highest on days with predominantly south winds; days with calm/variable winds generally produced higher concentrations than did those with predominantly north winds or those with winds from "other" directions. The significant effect of wind direction suggests that regional sources may exert a large influence on PM concentrations in the area.
Xia, Haiyun; Dou, Xiankang; Shangguan, Mingjia; Zhao, Ruocan; Sun, Dongsong; Wang, Chong; Qiu, Jiawei; Shu, Zhifeng; Xue, Xianghui; Han, Yuli; Han, Yan
2014-09-08
Temperature detection remains challenging in the low stratosphere, where the Rayleigh integration lidar is perturbed by aerosol contamination and ozone absorption while the rotational Raman lidar is suffered from its low scattering cross section. To correct the impacts of temperature on the Rayleigh Doppler lidar, a high spectral resolution lidar (HSRL) based on cavity scanning Fabry-Perot Interferometer (FPI) is developed. By considering the effect of the laser spectral width, Doppler broadening of the molecular backscatter, divergence of the light beam and mirror defects of the FPI, a well-behaved transmission function is proved to show the principle of HSRL in detail. Analysis of the statistical error of the HSRL is carried out in the data processing. A temperature lidar using both HSRL and Rayleigh integration techniques is incorporated into the Rayleigh Doppler wind lidar. Simultaneous wind and temperature detection is carried out based on the combined system at Delhi (37.371°N, 97.374°E; 2850 m above the sea level) in Qinghai province, China. Lower Stratosphere temperature has been measured using HSRL between 18 and 50 km with temporal resolution of 2000 seconds. The statistical error of the derived temperatures is between 0.2 and 9.2 K. The temperature profile retrieved from the HSRL and wind profile from the Rayleigh Doppler lidar show good agreement with the radiosonde data. Specifically, the max temperature deviation between the HSRL and radiosonde is 4.7 K from 18 km to 36 km, and it is 2.7 K between the HSRL and Rayleigh integration lidar from 27 km to 34 km.
Yassin, Mohamed F
2013-06-01
Due to heavy traffic emissions within an urban environment, air quality during the last decade becomes worse year by year and hazard to public health. In the present work, numerical modeling of flow and dispersion of gaseous emissions from vehicle exhaust in a street canyon were investigated under changes of the aspect ratio and wind direction. The three-dimensional flow and dispersion of gaseous pollutants were modeled using a computational fluid dynamics (CFD) model which was numerically solved using Reynolds-averaged Navier-Stokes (RANS) equations. The diffusion flow field in the atmospheric boundary layer within the street canyon was studied for different aspect ratios (W/H=1/2, 3/4, and 1) and wind directions (θ=90°, 112.5°, 135°, and 157.5°). The numerical models were validated against wind tunnel results to optimize the turbulence model. The numerical results agreed well with the wind tunnel results. The simulation demonstrated that the minimum concentration at the human respiration height within the street canyon was on the windward side for aspect ratios W/H=1/2 and 1 and wind directions θ=112.5°, 135°, and 157.5°. The pollutant concentration level decreases as the wind direction and aspect ratio increase. The wind velocity and turbulence intensity increase as the aspect ratio and wind direction increase.
NASA Astrophysics Data System (ADS)
Statella, T.; Pina, P.; Silva, E. A.; Nervis Frigeri, Ary Vinicius; Neto, Frederico Gallon
2016-10-01
We have calculated the prevailing dust devil tracks direction as a means of verifying the Mars Climate Database (MCD) predicted wind directions accuracy. For that purpose we have applied an automatic method based on morphological openings for inferring the prevailing tracks direction in a dataset comprising 200 Mars Orbiter Camera (MOC) Narrow Angle (NA) and High Resolution Imaging Science Experiment (HiRISE) images of the Martian surface, depicting regions in the Aeolis, Eridania, Noachis, Argyre and Hellas quadrangles. The prevailing local wind directions were calculated from the MCD predicted speeds for the WE and SN wind components. The results showed that the MCD may not be able to predict accurately the locally dominant wind direction near the surface. In adittion, we confirm that the surface wind stress alone cannot produce dust lifting in the studied sites, since it never exceeds the threshold value of 0.0225 Nm-2 in the MCD.
Assimilation of GMS-5 satellite winds using nudging method with MM5
NASA Astrophysics Data System (ADS)
Gao, Shanhong; Wu, Zengmao; Yang, Bo
2006-09-01
With the aid of Meteorological Information Composite and Processing System (MICAPS), satellite wind vectors derived from the Geostationary Meteorological Statellite-5 (GMS-5) and retrieved by National Satellite Meteorology Center of China (NSMC) can be obtained. Based on the nudging method built in the fifth-generation Mesoscale Model (MM5) of Pennsylvania State University and National Center for Atmospheric Research, a data preprocessor is developed to convert these satellite wind vectors to those with specified format required in MM5. To examine the data preprocessor and evaluate the impact of satellite winds from GMS-5 on MM5 simulations, a series of numerical experimental forecasts consisting of four typhoon cases in 2002 are designed and implemented. The results show that the preprocessor can process satellite winds smoothly and MM5 model runs successfully with a little extra computational load during ingesting these winds, and that assimilation of satellite winds by MM5 nudging method can obviously improve typhoon track forecast but contributes a little to typhoon intensity forecast. The impact of the satellite winds depends heavily upon whether the typhoon bogussing scheme in MM5 was turned on or not. The data preprocessor developed in this paper not only can treat GMS-5 satellite winds but also has capability with little modification to process derived winds from other geostationary satellites.
Flight directions of passerine migrants in daylight and darkness: A radar and direct visual study
NASA Technical Reports Server (NTRS)
Gauthreaux, S. A., Jr.
1972-01-01
The application of radar and visual techniques to determine the migratory habits of passerine birds during daylight and darkness is discussed. The effects of wind on the direction of migration are examined. Scatter diagrams of daytime and nocturnal migration track directions correlated with wind direction are presented. It is concluded that migratory birds will fly at altitudes where wind direction and migratory direction are nearly the same. The effects of cloud cover and solar obscuration are considered negligible.
Analysis of the Viking Lander 1 surface wind vector for sols 45 to 375
NASA Technical Reports Server (NTRS)
Leovy, C. B.
1984-01-01
The Viking Lander 1 wind sensor data during the period between sols 45 and 375 were corrected. During this period, the heating element of the quadrant sensor which provided the primary signal used for determining wind direction had failed, but both hot film wind sensors were functioning normally. The wind speed and direction corrections are explained.
Wind-waves interactions in the Gulf of Eilat
NASA Astrophysics Data System (ADS)
Shani-Zerbib, Almog; Liberzon, Dan; T-SAIL Team
2017-11-01
The Gulf of Eilat, at the southern tip of Israel, with its elongated rectangular shape and unique diurnal wind pattern is an appealing location for wind-waves interactions research. Results of experimental work will be reported analyzing a continuous, 50 hour long, data. Using a combined array of wind and waves sensing instruments, the wave field statistics and its response to variations of wind forcing were investigated. Correlations between diurnal fluctuations in wind magnitude and direction and the wave field response will be discussed. The directional spread of waves' energy, as estimated by the Wavelet Directional Method, showed a strong response to small variations in wind flow direction attributed to the unique topography of the gulf surroundings and its bathymetry. Influenced by relatively strong winds during the light hours, the wave field was dominated by a significant amount of breakings that are well pronounced in the saturation range of waves spectra. Temporal growth and decay behavior of the waves during the morning and evening wind transition periods was examined. Sea state induced roughness, as experienced by the wind flow turbulent boundary layer, is examined in view of the critical layer theory. Israel Science Foundation Grant # 1521/15.
Four-Dimensional Data Assimilation Using the Adjoint Method
NASA Astrophysics Data System (ADS)
Bao, Jian-Wen
The calculus of variations is used to confirm that variational four-dimensional data assimilation (FDDA) using the adjoint method can be implemented when the numerical model equations have a finite number of first-order discontinuous points. These points represent the on/off switches associated with physical processes, for which the Jacobian matrix of the model equation does not exist. Numerical evidence suggests that, in some situations when the adjoint method is used for FDDA, the temperature field retrieved using horizontal wind data is numerically not unique. A physical interpretation of this type of non-uniqueness of the retrieval is proposed in terms of energetics. The adjoint equations of a numerical model can also be used for model-parameter estimation. A general computational procedure is developed to determine the size and distribution of any internal model parameter. The procedure is then applied to a one-dimensional shallow -fluid model in the context of analysis-nudging FDDA: the weighting coefficients used by the Newtonian nudging technique are determined. The sensitivity of these nudging coefficients to the optimal objectives and constraints is investigated. Experiments of FDDA using the adjoint method are conducted using the dry version of the hydrostatic Penn State/NCAR mesoscale model (MM4) and its adjoint. The minimization procedure converges and the initialization experiment is successful. Temperature-retrieval experiments involving an assimilation of the horizontal wind are also carried out using the adjoint of MM4.
Prescribed burning weather in Minnesota.
Rodney W. Sando
1969-01-01
Describes the weather patterns in northern Minnesota as related to prescribed burning. The prevailing wind direction, average wind speed, most persistent wind direction, and average Buildup Index are considered in making recommendations.
Mathematics and Information Retrieval.
ERIC Educational Resources Information Center
Salton, Gerald
1979-01-01
Examines the main mathematical approaches to information retrieval, including both algebraic and probabilistic models, and describes difficulties which impede formalization of information retrieval processes. A number of developments are covered where new theoretical understandings have directly led to improved retrieval techniques and operations.…
Tethered Satellite System Contingency Investigation Board
NASA Technical Reports Server (NTRS)
1992-01-01
The Tethered Satellite System (TSS-1) was launched aboard the Space Shuttle Atlantis (STS-46) on July 31, 1992. During the attempted on-orbit operations, the Tethered Satellite System failed to deploy successfully beyond 256 meters. The satellite was retrieved successfully and was returned on August 6, 1992. The National Aeronautics and Space Administration (NASA) Associate Administrator for Space Flight formed the Tethered Satellite System (TSS-1) Contingency Investigation Board on August 12, 1992. The TSS-1 Contingency Investigation Board was asked to review the anomalies which occurred, to determine the probable cause, and to recommend corrective measures to prevent recurrence. The board was supported by the TSS Systems Working group as identified in MSFC-TSS-11-90, 'Tethered Satellite System (TSS) Contingency Plan'. The board identified five anomalies for investigation: initial failure to retract the U2 umbilical; initial failure to flyaway; unplanned tether deployment stop at 179 meters; unplanned tether deployment stop at 256 meters; and failure to move tether in either direction at 224 meters. Initial observations of the returned flight hardware revealed evidence of mechanical interference by a bolt with the level wind mechanism travel as well as a helical shaped wrap of tether which indicated that the tether had been unwound from the reel beyond the travel by the level wind mechanism. Examination of the detailed mission events from flight data and mission logs related to the initial failure to flyaway and the failure to move in either direction at 224 meters, together with known preflight concerns regarding slack tether, focused the assessment of these anomalies on the upper tether control mechanism. After the second meeting, the board requested the working group to complete and validate a detailed integrated mission sequence to focus the fault tree analysis on a stuck U2 umbilical, level wind mechanical interference, and slack tether in upper tether control mechanism and to prepare a detailed plan for hardware inspection, test, and analysis including any appropriate hardware disassembly.
Tethered Satellite System Contingency Investigation Board
NASA Astrophysics Data System (ADS)
1992-11-01
The Tethered Satellite System (TSS-1) was launched aboard the Space Shuttle Atlantis (STS-46) on July 31, 1992. During the attempted on-orbit operations, the Tethered Satellite System failed to deploy successfully beyond 256 meters. The satellite was retrieved successfully and was returned on August 6, 1992. The National Aeronautics and Space Administration (NASA) Associate Administrator for Space Flight formed the Tethered Satellite System (TSS-1) Contingency Investigation Board on August 12, 1992. The TSS-1 Contingency Investigation Board was asked to review the anomalies which occurred, to determine the probable cause, and to recommend corrective measures to prevent recurrence. The board was supported by the TSS Systems Working group as identified in MSFC-TSS-11-90, 'Tethered Satellite System (TSS) Contingency Plan'. The board identified five anomalies for investigation: initial failure to retract the U2 umbilical; initial failure to flyaway; unplanned tether deployment stop at 179 meters; unplanned tether deployment stop at 256 meters; and failure to move tether in either direction at 224 meters. Initial observations of the returned flight hardware revealed evidence of mechanical interference by a bolt with the level wind mechanism travel as well as a helical shaped wrap of tether which indicated that the tether had been unwound from the reel beyond the travel by the level wind mechanism. Examination of the detailed mission events from flight data and mission logs related to the initial failure to flyaway and the failure to move in either direction at 224 meters, together with known preflight concerns regarding slack tether, focused the assessment of these anomalies on the upper tether control mechanism. After the second meeting, the board requested the working group to complete and validate a detailed integrated mission sequence to focus the fault tree analysis on a stuck U2 umbilical, level wind mechanical interference, and slack tether in upper tether control mechanism and to prepare a detailed plan for hardware inspection, test, and analysis including any appropriate hardware disassembly.
Improved satellite observations in coastal areas from altimetry and SAR
NASA Astrophysics Data System (ADS)
Cipollini, Paolo; Martin, Adrien; Gommenginger, Christine; Calafat, Francisco
2017-04-01
The coastal environment is under constant pressure by natural forces and anthropogenic activities and is very sensitive to climate change. Observations of many physical and biological parameters are critical for its monitoring and management. Satellite observations constitute an efficient way to observe the global coastal environment, but ocean satellite observations have often been designed and optimised for the open ocean: algorithms and processing techniques need to be revisited and adapted for application in the coastal zone. A case in point is that of satellite altimetry, which over the oceans is regarded as one of the most successful remote sensing techniques, as it has allowed an unprecedented mapping of the ocean surface dynamics at the large- and meso-scale. With the improvements in orbit models, radar processing, atmospheric and geophysical effect corrections that have emerged over the years, altimetry gives today also a very accurate estimation of the rate of sea level rise and its geographical variability. However, altimetric data in the near-land strip (0 to 50 km from the coastline) are often flagged as bad and left unused, essentially owing to 1) difficulties with the corrections; and/or 2) the modification of the radar returns due to the presence of land in the footprint, which makes the fitting of the altimetric echoes with a waveform model (the so-called "retracking") problematic. Techniques to recover meaningful estimates of the altimeter-derived parameters (height, significant wave height and wind) in the coastal zone have been developed and lead to a number of new applications, which will be presented here. The new observation from coastal altimetry are highly synergistic with Synthetic Aperture Radar (SAR). SAR imagers measure the backscattered signal from the ocean surface at spatial resolution better than 100m. This backscattered signal gives knowledge on the sea surface roughness, which is related to wind and waves. The very high resolution enabled by this instrument makes it very promising for coastal application, but interpretation depends of information from numerical weather models that often lack accuracy and resolution in the coastal zone. A new technique, measuring the Doppler shift of the backscattered signal, permits to sense the motion of the ocean surface. Together with the water displacement associated with ocean currents, the SAR measurements are also affected by a Wind-wave induced Artefact Surface Velocity (WASV) caused by the velocity of Bragg scatterers and the orbital velocity of ocean surface gravity waves which can be of the order of 1m/s. By using the additional SAR Doppler information, it is possible either to improve wind retrieval by loosing the prior information on wind from numerical weather model, or to retrieve the surface current if the wind is well known. We will discuss how this information can be compared with the height and wind retrieval from coastal altimetry in the framework of the H2020 CEASELESS project.
NASA Astrophysics Data System (ADS)
Wicaksono, Yoga Arob; Tjahjana, Dominicus Danardono Dwi Prija; Hadi, Syamsul
2018-02-01
Vertical axis wind turbine like cross-flow rotor have some advantage there are, high self-starting torque, low noise, and high stability; so, it can be installed in the urban area to produce electricity. But, the urban area has poor wind condition, so the cross-flow rotor needs a guide vane to increase its performance. The aim of this study is to determine experimentally the effect of Omni-Directional Guide Vane (ODGV) on the performance of a cross-flow wind turbine. Wind tunnel experiment has been carried out for various configurations. The ODGV was placed around the cross-flow rotor in order to increase ambient wind environment of the wind turbine. The maximum power coefficient is obtained as Cpmax = 0.125 at 60° wind direction. It was 21.46% higher compared to cross-flow wind turbine without ODGV. This result showed that the ODGV able to increase the performance of the cross-flow wind turbine.
Retrievals of atmospheric variables on the gas giants from ground-based mid-infrared imaging
NASA Astrophysics Data System (ADS)
Fletcher, L. N.; Orton, G. S.; Yanamandra-Fisher, P.; Fisher, B. M.; Parrish, P. D.; Irwin, P. G. J.
2009-03-01
Thermal-infrared imaging of Jupiter and Saturn using the NASA/IRTF and Subaru observatories are quantitatively analyzed to assess the capabilities for reproducing and extending the zonal mean atmospheric results of the Cassini/CIRS experiment. We describe the development of a robust, systematic and reproducible approach to the acquisition and reduction of planetary images in the mid-infrared (7-25 μm), and perform an adaptation and validation of the optimal estimation, correlated- k retrieval algorithm described by Irwin et al. [Irwin, P., Teanby, N., de Kok, R., Fletcher, L., Howett, C., Tsang, C., Wilson, C., Calcutt, S., Nixon, C., Parrish, P., 2008. J. Quant. Spectrosc. Radiat. Trans. 109 (6), 1136-1150] for channel-integrated radiances. Synthetic spectral analyses and a comparison to Cassini results are used to verify our abilities to retrieve temperatures, haze opacities and gaseous abundances from filtered imaging. We find that ground-based imaging with a sufficiently high spatial resolution is able to reproduce the three-dimensional temperature and para-H 2 fields measured by spacecraft visiting Jupiter and Saturn, allowing us to investigate vertical wind shear, pressure and, with measured cloud-top winds, Ertel potential vorticity on potential temperature surfaces. Furthermore, by scaling vertical profiles of NH 3, PH 3, haze opacity and hydrocarbons as free parameters during thermal retrievals, we can produce meridional results comparable with CIRS spectroscopic investigations. This paper demonstrates that mid-IR imaging instruments operating at ground-based observatories have access to several dynamical and chemical diagnostics of the atmospheric state of the gas giants, offering the prospect for quantitative studies over much longer baselines and often covering much wider areas than is possible from spaceborne platforms.
High Resolution Wind Direction and Speed Information for Support of Fire Operations
B.W. Butler; J.M. Forthofer; M.A. Finney; L.S. Bradshaw; R. Stratton
2006-01-01
Computational Fluid Dynamics (CFD) technology has been used to model wind speed and direction in mountainous terrain at a relatively high resolution compared to other readily available technologies. The process termed âgridded windâ is not a forecast, but rather represents a method for calculating the influence of terrain on general wind flows. Gridded wind simulations...
NASA Astrophysics Data System (ADS)
Wang, Minzhong; Ming, Hu; Ruan, Zheng; Gao, Lianhui; Yang, Di
2018-02-01
With the aim to achieve quantitative monitoring of sand-dust storms in real time, wind-profiling radar is applied to monitor and study the process of four sand-dust storms in the Tazhong area of the Taklimakan Desert. Through evaluation and analysis of the spatial-temporal distribution of reflectivity factor, it is found that reflectivity factor ranges from 2 to 18 dBz under sand-dust storm weather. Using echo power spectrum of radar vertical beams, sand-dust particle spectrum and sand-dust mass concentration at the altitude of 600 ˜ 1500 m are retrieved. This study shows that sand-dust mass concentration reaches 700 μg/m3 under blowing sand weather, 2000 μg/m3 under sand-dust storm weather, and 400 μg/m3 under floating dust weather. The following equations are established to represent the relationship between the reflectivity factor and sand-dust mass concentration: Z = 20713.5 M 0.995 under floating dust weather, Z = 22988.3 M 1.006 under blowing sand weather, and Z = 24584.2 M 1.013 under sand-dust storm weather. The retrieval results from this paper are almost consistent with previous monitoring results achieved by former researchers; thus, it is implied that wind-profiling radar can be used as a new reference device to quantitatively monitor sand-dust storms.
Federico, Alejandro; Kaufmann, Guillermo H
2008-10-01
We evaluate a method based on the two-dimensional directional wavelet transform and the introduction of a spatial carrier to retrieve optical phase distributions in singular scalar light fields. The performance of the proposed phase-retrieval method is compared with an approach based on Fourier transform. The advantages and limitations of the proposed method are discussed.
NASA Technical Reports Server (NTRS)
Royer, A.; Picard, G.; Arnaud, L.; Brucker, L.; Fily, M..
2014-01-01
Space-borne microwave radiometers are among the most useful tools to study snow and to collect information on the Antarctic climate. They have several advantages over other remote sensing techniques: high sensitivity to snow properties of interest (temperature, grain size, density), subdaily coverage in the polar regions, and their observations are independent of cloud conditions and solar illumination. Thus, microwave radiometers are widely used to retrieve information over snow-covered regions. For the Antarctic Plateau, many studies presenting retrieval algorithms or numerical simulations have assumed, explicitly or not, that the subpixel-scale heterogeneity is negligible and that the retrieved properties were representative of whole pixels. In this presentation, we investigate the spatial variations of brightness temperature over arange of a few kilometers in the Dome C area (Antarctic Plateau).
Sensor Calibration and Ocean Products for TRMM Microwave Radiometer
NASA Technical Reports Server (NTRS)
Wentz, Frank J.; Lawrence, Richard J. (Technical Monitor)
2003-01-01
During the three years of finding, we have carefully corrected for two sensor/platform problems, developed a physically based retrieval algorithm to calculate SST, wind speed, water vapor, cloud liquid water and rain rates, validated these variables, and demonstrated that satellite microwave radiometers can provide very accurate SST retrievals through clouds. Prior to this, there was doubt by some scientists that the technique of microwave SST retrieval from satellites is a viable option. We think we have put these concerns to rest, and look forward to making microwave SSTs a standard component of the Earth science data sets. Our TMI SSTs were featured on several network news broadcasts and were reported in Science magazine. Additionally, we have developed a SST algorithm for VIRS to facilitate IR/MW inter-comparisons and completed research into diurnal cycles and air-sea interactions.
Sensor Calibration and Ocean Products for TRMM Microwave Radiometer
NASA Technical Reports Server (NTRS)
Lawrence, Richard J. (Technical Monitor); Wentz, Frank J.
2003-01-01
During the three years of fundin& we have carefully corrected for two sensor/platform problems, developed a physically based retrieval algorithm to calculate SST, wind speed, water vapor, cloud liquid water and rain rates, validated these variables, and demonstrated that satellite microwave radiometers can provide very accurate SST retrievals through clouds. Prior to this, there was doubt by some scientists that the technique of microwave SST retrieval from satellites is a viable option. We think we have put these concerns to rest, and look forward to making microwave SSTs a standard component of the Earth science data sets. Our TMI SSTs were featured on several network news broadcasts and were reported in Science magazine. Additionally, we have developed a SST algorithm for VIRS to facilitate IR/MW inter-comparisons and completed research into diurnal cycles and air-sea interactions.
Donnelly, Aoife; Misstear, Bruce; Broderick, Brian
2011-02-15
Background concentrations of nitrogen dioxide (NO(2)) are not constant but vary temporally and spatially. The current paper presents a powerful tool for the quantification of the effects of wind direction and wind speed on background NO(2) concentrations, particularly in cases where monitoring data are limited. In contrast to previous studies which applied similar methods to sites directly affected by local pollution sources, the current study focuses on background sites with the aim of improving methods for predicting background concentrations adopted in air quality modelling studies. The relationship between measured NO(2) concentration in air at three such sites in Ireland and locally measured wind direction has been quantified using nonparametric regression methods. The major aim was to analyse a method for quantifying the effects of local wind direction on background levels of NO(2) in Ireland. The method was expanded to include wind speed as an added predictor variable. A Gaussian kernel function is used in the analysis and circular statistics employed for the wind direction variable. Wind direction and wind speed were both found to have a statistically significant effect on background levels of NO(2) at all three sites. Frequently environmental impact assessments are based on short term baseline monitoring producing a limited dataset. The presented non-parametric regression methods, in contrast to the frequently used methods such as binning of the data, allow concentrations for missing data pairs to be estimated and distinction between spurious and true peaks in concentrations to be made. The methods were found to provide a realistic estimation of long term concentration variation with wind direction and speed, even for cases where the data set is limited. Accurate identification of the actual variation at each location and causative factors could be made, thus supporting the improved definition of background concentrations for use in air quality modelling studies. Copyright © 2010 Elsevier B.V. All rights reserved.
Yonehara, Yoshinari; Goto, Yusuke; Yoda, Ken; Watanuki, Yutaka; Young, Lindsay C; Weimerskirch, Henri; Bost, Charles-André; Sato, Katsufumi
2016-08-09
Ocean surface winds are an essential factor in understanding the physical interactions between the atmosphere and the ocean. Surface winds measured by satellite scatterometers and buoys cover most of the global ocean; however, there are still spatial and temporal gaps and finer-scale variations of wind that may be overlooked, particularly in coastal areas. Here, we show that flight paths of soaring seabirds can be used to estimate fine-scale (every 5 min, ∼5 km) ocean surface winds. Fine-scale global positioning system (GPS) positional data revealed that soaring seabirds flew tortuously and ground speed fluctuated presumably due to tail winds and head winds. Taking advantage of the ground speed difference in relation to flight direction, we reliably estimated wind speed and direction experienced by the birds. These bird-based wind velocities were significantly correlated with wind velocities estimated by satellite-borne scatterometers. Furthermore, extensive travel distances and flight duration of the seabirds enabled a wide range of high-resolution wind observations, especially in coastal areas. Our study suggests that seabirds provide a platform from which to measure ocean surface winds, potentially complementing conventional wind measurements by covering spatial and temporal measurement gaps.
Yonehara, Yoshinari; Goto, Yusuke; Yoda, Ken; Watanuki, Yutaka; Young, Lindsay C.; Weimerskirch, Henri; Bost, Charles-André; Sato, Katsufumi
2016-01-01
Ocean surface winds are an essential factor in understanding the physical interactions between the atmosphere and the ocean. Surface winds measured by satellite scatterometers and buoys cover most of the global ocean; however, there are still spatial and temporal gaps and finer-scale variations of wind that may be overlooked, particularly in coastal areas. Here, we show that flight paths of soaring seabirds can be used to estimate fine-scale (every 5 min, ∼5 km) ocean surface winds. Fine-scale global positioning system (GPS) positional data revealed that soaring seabirds flew tortuously and ground speed fluctuated presumably due to tail winds and head winds. Taking advantage of the ground speed difference in relation to flight direction, we reliably estimated wind speed and direction experienced by the birds. These bird-based wind velocities were significantly correlated with wind velocities estimated by satellite-borne scatterometers. Furthermore, extensive travel distances and flight duration of the seabirds enabled a wide range of high-resolution wind observations, especially in coastal areas. Our study suggests that seabirds provide a platform from which to measure ocean surface winds, potentially complementing conventional wind measurements by covering spatial and temporal measurement gaps. PMID:27457932
Dehnhard, Nina; Ludynia, Katrin; Poisbleau, Maud; Demongin, Laurent; Quillfeldt, Petra
2013-01-01
Due to their restricted foraging range, flightless seabirds are ideal models to study the short-term variability in foraging success in response to environmentally driven food availability. Wind can be a driver of upwelling and food abundance in marine ecosystems such as the Southern Ocean, where wind regime changes due to global warming may have important ecological consequences. Southern rockhopper penguins (Eudyptes chrysocome) have undergone a dramatic population decline in the past decades, potentially due to changing environmental conditions. We used a weighbridge system to record daily foraging mass gain (the difference in mean mass of adults leaving the colony in the morning and returning to the colony in the evening) of adult penguins during the chick rearing in two breeding seasons. We related the day-to-day variability in foraging mass gain to ocean wind conditions (wind direction and wind speed) and tested for a relationship between wind speed and sea surface temperature anomaly (SSTA). Foraging mass gain was highly variable among days, but did not differ between breeding seasons, chick rearing stages (guard and crèche) and sexes. It was strongly correlated between males and females, indicating synchronous changes among days. There was a significant interaction of wind direction and wind speed on daily foraging mass gain. Foraging mass gain was highest under moderate to strong winds from westerly directions and under weak winds from easterly directions, while decreasing under stronger easterly winds and storm conditions. Ocean wind speed showed a negative correlation with daily SSTA, suggesting that winds particularly from westerly directions might enhance upwelling and consequently the prey availability in the penguins' foraging areas. Our data emphasize the importance of small-scale, wind-induced patterns in prey availability on foraging success, a widely neglected aspect in seabird foraging studies, which might become more important with increasing changes in climatic variability. PMID:24236139
On Combining Thermal-Infrared and Radio-Occultation Data of Saturn's Atmosphere
NASA Technical Reports Server (NTRS)
Flasar, F. M.; Schinder, P. J.; Conrath, B. J.
2008-01-01
Radio-occultation and thermal-infrared measurements are complementary investigations for sounding planetary atmospheres. The vertical resolution afforded by radio occultations is typically approximately 1 km or better, whereas that from infrared sounding is often comparable to a scale height. On the other hand, an instrument like CIRS can easily generate global maps of temperature and composition, whereas occultation soundings are usually distributed more sparsely. The starting point for radio-occultation inversions is determining the residual Doppler-shifted frequency, that is the shift in frequency from what it would be in the absence of the atmosphere. Hence the positions and relative velocities of the spacecraft, target atmosphere, and DSN receiving station must be known to high accuracy. It is not surprising that the inversions can be susceptible to sources of systematic errors. Stratospheric temperature profiles on Titan retrieved from Cassini radio occultations were found to be very susceptible to errors in the reconstructed spacecraft velocities (approximately equal to 1 mm/s). Here the ability to adjust the spacecraft ephemeris so that the profiles matched those retrieved from CIRS limb sounding proved to be critical in mitigating this error. A similar procedure can be used for Saturn, although the sensitivity of its retrieved profiles to this type of error seems to be smaller. One issue that has appeared in inverting the Cassini occultations by Saturn is the uncertainty in its equatorial bulge, that is, the shape in its iso-density surfaces at low latitudes. Typically one approximates that surface as a geopotential surface by assuming a barotropic atmosphere. However, the recent controversy in the equatorial winds, i.e., whether they changed between the Voyager (1981) era and later (after 1996) epochs of Cassini and some Hubble observations, has made it difficult to know the exact shape of the surface, and it leads to uncertainties in the retrieved temperature profiles of one to a few kelvins. This propagates into errors in the retrieved helium abundance, which makes use of thermal-infrared spectra and synthetic spectra computed with retrieved radio-occultation temperature profiles. The highest abundances are retrieved with the faster Voyager-era winds, but even these abundances are somewhat smaller than those retrieved from the thermal-infrared data alone (albeit with larger formal errors). The helium abundance determination is most sensitive to temperatures in the upper troposphere. Further progress may include matching the radio-occultation profiles with those from CIRS limb sounding in the upper stratosphere.
The relationship of the concentration of air pollutants to wind direction has been determined by nonparametric regression using a Gaussian kernel. The results are smooth curves with error bars that allow for the accurate determination of the wind direction where the concentrat...
Using Rare Earth Elements (REE) to determine wind-driven soil dispersal from a point source
USDA-ARS?s Scientific Manuscript database
Although erosion of soil by water is a predictably directional process, the erosion of soil by wind is determined by wind direction on an event-wise basis. The wind-driven dispersal patterns of chemical constituents including natural soil components and anthropogenic contaminants are not well under...
On wind-wave-current interactions during the Shoaling Waves Experiment
NASA Astrophysics Data System (ADS)
Zhang, Fei W.; Drennan, William M.; Haus, Brian K.; Graber, Hans C.
2009-01-01
This paper presents a case study of wind-wave-current interaction during the Shoaling Waves Experiment (SHOWEX). Surface current fields off Duck, North Carolina, were measured by a high-frequency Ocean Surface Current Radar (OSCR). Wind, wind stress, and directional wave data were obtained from several Air Sea Interaction Spar (ASIS) buoys moored in the OSCR scanning domain. At several times during the experiment, significant coastal currents entered the experimental area. High horizontal shears at the current edge resulted in the waves at the peak of wind-sea spectra (but not those in the higher-frequency equilibrium range) being shifted away from the mean wind direction. This led to a significant turning of the wind stress vector away from the mean wind direction. The interactions presented here have important applications in radar remote sensing and are discussed in the context of recent radar imaging models of the ocean surface.
Sword, G A; Lorch, P D; Gwynne, D T
2008-08-01
During outbreaks, flightless Mormon crickets [Anabrus simplex Haldeman (Orthoptera: Tettigoniidae)] form large mobile groups known as migratory bands. These bands can contain millions of individuals that march en masse across the landscape. The role of environmental cues in influencing the movement direction of migratory bands is poorly understood and has been the subject of little empirical study. We examined the effect of wind direction on Mormon cricket migratory band movement direction by monitoring the local weather conditions and daily movement patterns of individual insects traveling in bands over the same time course at three close, but spatially distinct sites. Although weather conditions were relatively homogeneous across sites, wind directions tended to be more variable across sites during the morning hours, the period during which directional movement begins. Migratory bands at different sites traveled in distinctly different directions. However, we failed to find any evidence to suggest that the observed variation in migratory band movement direction was correlated with local wind direction at any time during the day. These results support the notion that the cues mediating migratory band directionality are likely to be group specific and that a role for landscape-scale environmental cues such as wind direction is unlikely.
In-situ and path-averaged measurements of aerosol optical properties
NASA Astrophysics Data System (ADS)
van Binsbergen, Sven A.; Grossmann, Peter; February, Faith J.; Cohen, Leo H.; van Eijk, Alexander M. J.; Stein, Karin U.
2017-09-01
This paper compares in-situ and path-averaged measurements of the electro-optical transmission, with emphasis on aerosol effects. The in-situ sensors consisted of optical particle counters (OPC), the path-averaged data was provided by a 7-wavelength transmissometer (MSRT) and scintillometers (BLS). Data were collected at two sites: a homogeneous test site in Northern Germany, and over the inhomogeneous False Bay near Cape Town, South Africa. A retrieval algorithm was developed to infer characteristics of the aerosol size distribution (Junge approximation) from the MSRT data. A comparison of the various sensors suggests that the optical particle counters are over optimistic in their estimate of the transmission. For the homogeneous test site, in-situ and path-averaged sensors yield similar results. For the inhomogeneous test site, sensors may react differently or temporally separated to meteorological events such as a change in wind speed and/or direction.
NASA Astrophysics Data System (ADS)
Carvalho, David Joao da Silva
The high dependence of Portugal from foreign energy sources (mainly fossil fuels), together with the international commitments assumed by Portugal and the national strategy in terms of energy policy, as well as resources sustainability and climate change issues, inevitably force Portugal to invest in its energetic self-sufficiency. The 20/20/20 Strategy defined by the European Union defines that in 2020 60% of the total electricity consumption must come from renewable energy sources. Wind energy is currently a major source of electricity generation in Portugal, producing about 23% of the national total electricity consumption in 2013. The National Energy Strategy 2020 (ENE2020), which aims to ensure the national compliance of the European Strategy 20/20/20, states that about half of this 60% target will be provided by wind energy. This work aims to implement and optimise a numerical weather prediction model in the simulation and modelling of the wind energy resource in Portugal, both in offshore and onshore areas. The numerical model optimisation consisted in the determination of which initial and boundary conditions and planetary boundary layer physical parameterizations options provide wind power flux (or energy density), wind speed and direction simulations closest to in situ measured wind data. Specifically for offshore areas, it is also intended to evaluate if the numerical model, once optimised, is able to produce power flux, wind speed and direction simulations more consistent with in situ measured data than wind measurements collected by satellites. This work also aims to study and analyse possible impacts that anthropogenic climate changes may have on the future wind energetic resource in Europe. The results show that the ECMWF reanalysis ERA-Interim are those that, among all the forcing databases currently available to drive numerical weather prediction models, allow wind power flux, wind speed and direction simulations more consistent with in situ wind measurements. It was also found that the Pleim-Xiu and ACM2 planetary boundary layer parameterizations are the ones that showed the best performance in terms of wind power flux, wind speed and direction simulations. This model optimisation allowed a significant reduction of the wind power flux, wind speed and direction simulations errors and, specifically for offshore areas, wind power flux, wind speed and direction simulations more consistent with in situ wind measurements than data obtained from satellites, which is a very valuable and interesting achievement. This work also revealed that future anthropogenic climate changes can negatively impact future European wind energy resource, due to tendencies towards a reduction in future wind speeds especially by the end of the current century and under stronger radiative forcing conditions.
NASA Technical Reports Server (NTRS)
Yueh, Simon H.; Chaubell, Mario J.
2011-01-01
Aquarius is a combined passive/active L-band microwave instrument developed to map the salinity field at the surface of the ocean from space. The data will support studies of the coupling between ocean circulation, the global water cycle, and climate. The primary science objective of this mission is to monitor the seasonal and interannual variation of the large scale features of the surface salinity field in the open ocean with a spatial resolution of 150 kilometers and a retrieval accuracy of 0.2 practical salinity units globally on a monthly basis. The measurement principle is based on the response of the L-band (1.413 gigahertz) sea surface brightness temperatures (T (sub B)) to sea surface salinity. To achieve the required 0.2 practical salinity units accuracy, the impact of sea surface roughness (e.g. wind-generated ripples and waves) along with several factors on the observed brightness temperature has to be corrected to better than a few tenths of a degree Kelvin. To the end, Aquarius includes a scatterometer to help correct for this surface roughness effect.
NASA Technical Reports Server (NTRS)
Johnson, Elsie V.; Petersen, W. A,
2009-01-01
Numerous case studies and recent modeling studies have found that various metrics of updraft intensity appear to be reasonably well correlated to lightning production in thunderstorms, particularly severe thunderstorms. Indeed, the relationship between updraft and lightning flash rate is hypothesized to be the physical connection between a lightning "jump" signature and manifestations of severe weather such as tornadic activity. This study further examines this connection using a combination of dual Doppler wind retrievals made with the UAH ARMOR dual polarimetric and KHTX WSR 88D Doppler radar pair, together with northern Alabama Lightning Mapping Array (LMA) data. The dual Doppler data were used to construct three dimensional wind fields and the retrieved vertical velocity fields were subsequently compared to collocated total lightning flash rates observed by the LMA. Particular attention was paid to the timing of updraft pulses relative to changes in the flash rate, with the goal of assessing impacts on warning decision lead time. Results from the analysis of severe and non severe thunderstorms in Northern Alabama will be presented including the EF 4 tornado producing supercell on 6 February 2008.
Thermodynamic and liquid profiling during the 2010 Winter Olympics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ware, R.; Cimini, D.; Campos, E.
2013-10-01
Tropospheric observations by a microwave profiling radiometer and six-hour radiosondes were obtained during the Alpine Venue of the 2010 Winter Olympic Games at Whistler, British Columbia, by Environment Canada. The radiometer provided continuous temperature, humidity and liquid (water) profiles during all weather conditions including rain, sleet and snow. Gridded analysis was provided by the U.S. National Oceanic and Atmospheric Administration. We compare more than two weeks of radiometer neural network and radiosonde temperature and humidity soundings including clear and precipitating conditions. Corresponding radiometer liquid and radiosonde wind soundings are shown. Close correlation is evident between radiometer and radiosonde temperature andmore » humidity profiles up to 10 km height and among southwest winds, liquid water and upper level thermodynamics, consistent with up-valley advection and condensation of moist maritime air. We compare brightness temperatures observed by the radiometer and forward-modeled from radiosonde and gridded analysis. Radiosonde-equivalent observation accuracy is demonstrated for radiometer neural network temperature and humidity retrievals up to 800 m height and for variational retrievals that combine radiometer and gridded analysis up to 10 km height« less
Wind direction variability in Afternoon and Sunset Turbulence
NASA Astrophysics Data System (ADS)
Nilsson, Erik; Lothon, Marie; Lohou, Fabienne; Mahrt, Larry
2014-05-01
Understanding wind direction (WD) variability better is important for several reasons. Air pollution models need information about how variable wind direction is in different conditions (Davies and Thomson 1999). Accurate predictions of dispersion are important for human health and safety and allow for adaptation planning (Nagle et al. 2011). Other applications include horizontal diffusion, efficiency and fatigue of wind machines and air-sea interaction (Mahrt 2011). Most studies of wind direction variability have focused on nocturnal conditions because of greater variability in light winds. Modelling WD variability in transition periods when both mean wind speed and variance of the wind components are in a state of change can, however, also be very challenging and has not been the focus of earlier studies. The evening transitioning to the nocturnal boundary layer can play an important role in the diffusion process of pollutants and scalars emitted at surface and transported within the atmosphere. The Boundary Layer Late Afternoon and Sunset Turbulence (BLLAST) field campaign that took place in southern France in June and July 2011 focused on the decaying turbulence of the late afternoon boundary layer and related issues (Lothon et al. 2012). We analyse field measurements from BLLAST to investigate WD variability in the evening transition period. Standard deviations of horizontal wind direction fluctuations in the lowest 60 m of the boundary layer have been examined for dependence on mean wind speed, higher order moments and averaging time. Measurement results are interpreted using measured and idealized probability density functions of horizontal wind vectors. These are also used to develop analytical functions describing how WD variability depends on wind speed, variance and other controlling factors in the atmospheric boundary layer. References: Davies B.M., Thomson D.J., 1999. Comparison of some parameterizations of wind direction variability with observations, Atmospheric Enviroment 33, 4909-4917. Lothon M. et al., 2012. The Boundary-Layer Late Afternoon and Sunset Turbulence field experiment, Proc. of the 20th Symposium on Boundary-Layers and Turbulence, 7-13 July, Boston, MA, USA. Mahrt L., 2011. Surface Wind Direction Variability, Journal of Applied Meteorology and Climatology 50. 144-152. Nagle J.C., 2011. Adapting to Pollution, Research Roundtable on Climate Change, Adaptation, and Enviromental Law, Northwestern Law Searle Center, Legal and Regulatory Studies 7-18 April, IL, USA.
NASA Technical Reports Server (NTRS)
Smith, Eric A.; Santos, Pablo; Einaudi, Franco (Technical Monitor)
2001-01-01
This study presents results from a multi-satellite/multi-sensor retrieval system designed to obtain the atmospheric water budget over the open ocean. A combination of hourly-sampled monthly datasets derived from the GOES-8 5 Imager and the DMSP 7-channel passive microwave radiometer (SSM/I) have been acquired for the Gulf of Mexico-Caribbean Sea basin. Whereas the methodology is being tested over this basin, the retrieval system is designed for portability to any open-ocean region. Algorithm modules using the different datasets to retrieve individual geophysical parameters needed in the water budget equation are designed in a manner that takes advantage of the high temporal resolution of the GOES-8 measurements, as well as the physical relationships inherent to the SSM/I passive microwave signals in conjunction with water vapor, cloud liquid water, and rainfall. The methodology consists of retrieving the precipitation, surface evaporation, and vapor-cloud water storage terms in the atmospheric water balance equation from satellite techniques, with the water vapor advection term being obtained as the residue needed for balance. Thus, we have sought to develop a purely satellite-based method for obtaining the full set of terms in the atmospheric water budget equation without requiring in situ sounding information on the wind profile. The algorithm is partly validated by first cross-checking all the algorithm components through multiple-algorithm retrieval intercomparisons. More fundamental validation is obtained by directly comparing water vapor transports into the targeted basin diagnosed from the satellite algorithm to those obtained observationally from a network of land-based upper air stations that nearly uniformly surround the basin. Total columnar atmospheric water budget results will be presented for an extended annual cycle consisting of the months of October-97, January-98, April-98, July-98, October-98, and January-1999. These results are used to emphasize the changing relationship in E-P, as well as in the varying roles of storage and advection in balancing E-P both on daily and monthly time scales and on localized and basin space scales. Results from the algorithm-to-algorithm intercomparisons will also be presented in the context of sensitivity testing to help understand the intrinsic uncertainties in the water budget terms.
NASA Astrophysics Data System (ADS)
Proschek, Veronika; Kirchengast, Gottfried; Schweitzer, Susanne; Fritzer, Johannes
2010-05-01
The new climate satellite concept ACCURATE (Atmospheric Climate and Chemistry in the UTLS Region And climate Trends Explorer) enables simultaneous measurement of profiles of greenhouse gases, isotopes, wind and thermodynamic variables from Low Earth Orbit (LEO) satellites. The measurement principle applied is a combination of the novel LEO-LEO infrared laser occultation (LIO) technique and the already better studied LEO-LEO microwave occultation (LMO) technique. Resulting occultation events are evenly distributed around the world, have high vertical resolution and accuracy and are stable over long time periods. The LIO uses near-monochromatic signals in the short-wave infrared range (~2-2.5 μm for ACCURATE). These signals are absorbed by various trace species in the Earth's atmosphere. Profiles of the concentration of the absorbing species can be derived from signal transmission measurements. Accurately known temperature, pressure and humidity profiles derived from simultaneously measured LMO signals are essential pre-information for the retrieval of the trace species profiles. These LMO signals lie in the microwave band region from 17-23 GHz and, optionally, 178-195 GHz. The current ACCURATE mission design is arranged for the measurement of six greenhouse gases (GHG) (H2O, CO2, CH4, N2O, O3, CO) and four isotopes (13CO2, C18OO, HDO, H218O), with focus on the upper troposphere/lower stratosphere region (UTLS, 5-35 km). Wind speed in line-of-sight can be derived from a line-symmetric transmission difference which is caused by wind-induced Doppler shift. By-products are information on cloud layering, aerosol extinction, and scintillation strength. We introduce the methodology to retrieve GHG profiles from quasi-realistic forward-simulated intensities of LIO signals and thermodynamic profiles retrieved in a preceding step from LMO signals. Key of the retrieval methodology is the differencing of two LIO transmission signals, one being GHG sensitive on a target absorption line and one being a close-by reference outside of any absorption lines. The reference signal is used to remove atmospheric broadband" effects by this differential absorption" approach. Refractivity and impact parameter of the LIO signals, needed for the retrieval, can be computed from the LMO-derived thermodynamic profiles. An Abel Transform converts the differential LIO log-transmission profile to the absorption coefficient. Based on the absorption coefficient and the absorption cross section of the GHG under investigation, that can as well be computed from the LMO-derived profiles, the number density profile or volume mixing ratio of the desired GHG can be finally derived. When using several LIO signals, best sensitive to the same GHG at different heights, a joint optimal GHG profile can be constructed by combining the individual profiles in an inverse-variance-weighted manner (practically used for H2O, obtained from 3-4 signals, and for CO2, obtained from 2 isotope signals). The thermodynamic parameters (temperature, pressure and humidity) derived from LMO as basis for the LIO retrieval are found to be accurate to better than 0.5 K for temperature, 0.2% for pressure, and 10% for humidity. The accuracy of retrieved trace species profiles is found better than 1% to 4% for single profiles in the UTLS region (outside clouds which block infrared) and the profiles are essentially unbiased (biases
Belu, Radian; Koracin, Darko
2013-01-01
The main objective of the study was to investigate spatial and temporal characteristics of the wind speed and direction in complex terrain that are relevant to wind energy assessment and development, as well as to wind energy system operation, management, and grid integration. Wind data from five tall meteorological towers located in Western Nevada, USA, operated from August 2003 to March 2008, used in the analysis. The multiannual average wind speeds did not show significant increased trend with increasing elevation, while the turbulence intensity slowly decreased with an increase were the average wind speed. The wind speed and direction weremore » modeled using the Weibull and the von Mises distribution functions. The correlations show a strong coherence between the wind speed and direction with slowly decreasing amplitude of the multiday periodicity with increasing lag periods. The spectral analysis shows significant annual periodicity with similar characteristics at all locations. The relatively high correlations between the towers and small range of the computed turbulence intensity indicate that wind variability is dominated by the regional synoptic processes. Knowledge and information about daily, seasonal, and annual wind periodicities are very important for wind energy resource assessment, wind power plant operation, management, and grid integration.« less
Representativeness of wind measurements in moderately complex terrain
NASA Astrophysics Data System (ADS)
van den Bossche, Michael; De Wekker, Stephan F. J.
2018-02-01
We investigated the representativeness of 10-m wind measurements in a 4 km × 2 km area of modest relief by comparing observations at a central site with those at four satellite sites located in the same area. Using a combination of established and new methods to quantify and visualize representativeness, we found significant differences in wind speed and direction between the four satellite sites and the central site. The representativeness of the central site wind measurements depended strongly on surface wind speed and direction, and atmospheric stability. Through closer inspection of the observations at one of the satellite sites, we concluded that terrain-forced flows combined with thermally driven downslope winds caused large biases in wind direction and speed. We used these biases to generate a basic model, showing that terrain-related differences in wind observations can to a large extent be predicted. Such a model is a cost-effective way to enhance an area's wind field determination and to improve the outcome of pollutant dispersion and weather forecasting models.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Belu, Radian; Koracin, Darko
The main objective of the study was to investigate spatial and temporal characteristics of the wind speed and direction in complex terrain that are relevant to wind energy assessment and development, as well as to wind energy system operation, management, and grid integration. Wind data from five tall meteorological towers located in Western Nevada, USA, operated from August 2003 to March 2008, used in the analysis. The multiannual average wind speeds did not show significant increased trend with increasing elevation, while the turbulence intensity slowly decreased with an increase were the average wind speed. The wind speed and direction weremore » modeled using the Weibull and the von Mises distribution functions. The correlations show a strong coherence between the wind speed and direction with slowly decreasing amplitude of the multiday periodicity with increasing lag periods. The spectral analysis shows significant annual periodicity with similar characteristics at all locations. The relatively high correlations between the towers and small range of the computed turbulence intensity indicate that wind variability is dominated by the regional synoptic processes. Knowledge and information about daily, seasonal, and annual wind periodicities are very important for wind energy resource assessment, wind power plant operation, management, and grid integration.« less
NASA Astrophysics Data System (ADS)
Gromke, Christof; Ruck, Bodo
2012-07-01
This study summarizes the effects of avenues of trees in urban street canyons on traffic pollutant dispersion. We describe various wind-tunnel experiments with different tree-avenue models in combination with variations in street-canyon aspect ratio W/ H (with W the street-canyon width and H the building height) and approaching wind direction. Compared to tree-free street canyons, in general, higher pollutant concentrations are found. Avenues of trees do not suppress canyon vortices, although the air ventilation in canyons is hindered significantly. For a perpendicular wind direction, increases in wall-average and wall-maximum concentrations at the leeward canyon wall and decreases in wall-average concentrations at the windward wall are found. For oblique and perpendicular wind directions, increases at both canyon walls are obtained. The strongest effects of avenues of trees on traffic pollutant dispersion are observed for oblique wind directions for which also the largest concentrations at the canyon walls are found. Thus, the prevailing assumption that attributes the most harmful dispersion conditions to a perpendicular wind direction does not hold for street canyons with avenues of trees. Furthermore, following dimensional analysis, an estimate of the normalized wall-maximum traffic pollutant concentration in street canyons with avenues of trees is derived.
NASA Astrophysics Data System (ADS)
Giangrande, S. E.; WANG, D.; Hardin, J. C.; Mitchell, J.
2017-12-01
As part of the 2 year Department of Energy Atmospheric Radiation Measurement (ARM) Observations and Modeling of the Green Ocean Amazon (GoAmazon2014/5) campaign, the ARM Mobile Facility (AMF) collected a unique set of observations in a region of strong climatic significance near Manacapuru, Brazil. An important example for the beneficial observational record obtained by ARM during this campaign was that of the Radar Wind Profiler (RWP). This dataset has been previously documented for providing critical convective cloud vertical air velocity retrievals and precipitation properties (e.g., calibrated reflectivity factor Z, rainfall rates) under a wide variety of atmospheric conditions. Vertical air motion estimates to within deep convective cores such as those available from this RWP system have been previously identified as critical constraints for ongoing global climate modeling activities and deep convective cloud process studies. As an extended deployment within this `green ocean' region, the RWP site and collocated AMF surface gauge instrumentation experienced a unique hybrid of tropical and continental precipitation conditions, including multiple wet and dry season precipitation regimes, convective and organized stratiform storm dynamics and contributions to rainfall accumulation, pristine aerosol conditions of the locale, as well as the effects of the Manaus, Brazil, mega city pollution plume. For hydrological applications and potential ARM products, machine learning methods developed using this dataset are explored to demonstrate advantages in geophysical retrievals when compared to traditional methods. Emphasis is on performance improvements when providing additional information on storm structure and regime or echo type classifications. Since deep convective cloud dynamic insights (core updraft/downdraft properties) are difficult to obtain directly by conventional radars that also observe radar reflectivity factor profiles similar to RWP systems, we also consider possible machine learning applications to inform on (statistical) proxy convective relationships between observed convective core dynamics and radar microphysical properties that are otherwise not easily related by clear physical process paths using existing radar networks.
NASA Astrophysics Data System (ADS)
Duncan, D.; Kummerow, C. D.; Meier, W.
2016-12-01
Over the lifetime of AMSR-E, operational retrieval algorithms were developed and run for precipitation, ocean suite (SST, wind speed, cloud liquid water path, and column water vapor over ocean), sea ice, snow water equivalent, and soil moisture. With a separate algorithm for each group, the retrievals were never interactive or integrated in any way despite many co-sensitivities. AMSR2, the follow-on mission to AMSR-E, retrieves the same parameters at a slightly higher spatial resolution. We have combined the operational algorithms for AMSR2 in a way that facilitates sharing information between the retrievals. Difficulties that arose were mainly related to calibration, spatial resolution, coastlines, and order of processing. The integration of all algorithms for AMSR2 has numerous benefits, including better detection of light precipitation and sea ice, fewer screened out pixels, and better quality flags. Integrating the algorithms opens up avenues for investigating the limits of detectability for precipitation from a passive microwave radiometer and the impact of spatial resolution on sea ice edge detection; these are investigated using CloudSat and MODIS coincident observations from the A-Train constellation.
Feasibility study of wind-generated electricity for rural applications in southwestern Ohio
NASA Astrophysics Data System (ADS)
Kohring, G. W.
The parameters associated with domestic production of wind generated electricity for direct use by small farms and rural homes in the southwestern Ohio region are discussed. The project involves direct utility interfaced electricity generation from a horizontal axis, down-wind, fixed pitch, wind powered induction generator system. Goals of the project are to determine: the ability to produce useful amounts of domestic wind generated electricity in the southwestern Ohio region; economic justification for domestic wind generated electrical production; and the potential of domestic wind generated electricity for reducing dependence on non-renewable energy resources in the southwestern Ohio region.
NASA Technical Reports Server (NTRS)
Frost, W.; Long, B. H.; Turner, R. E.
1978-01-01
The guidelines are given in the form of design criteria relative to wind speed, wind shear, turbulence, wind direction, ice and snow loading, and other climatological parameters which include rain, hail, thermal effects, abrasive and corrosive effects, and humidity. This report is a presentation of design criteria in an engineering format which can be directly input to wind turbine generator design computations. Guidelines are also provided for developing specialized wind turbine generators or for designing wind turbine generators which are to be used in a special region of the United States.
A joint method to retrieve directional ocean wave spectra from SAR and wave spectrometer data
NASA Astrophysics Data System (ADS)
Ren, Lin; Yang, Jingsong; Zheng, Gang; Wang, Juan
2016-07-01
This paper proposes a joint method to simultaneously retrieve wave spectra at different scales from spaceborne Synthetic Aperture Radar (SAR) and wave spectrometer data. The method combines the output from the two different sensors to overcome retrieval limitations that occur in some sea states. The wave spectrometer sensitivity coefficient is estimated using an effective significant wave height (SWH), which is an average of SAR-derived and wave spectrometer-derived SWH. This averaging extends the area of the sea surface sampled by the nadir beam of the wave spectrometer to improve the accuracy of the estimated sensitivity coefficient in inhomogeneous sea states. Wave spectra are then retrieved from SAR data using wave spectrometer-derived spectra as first guess spectra to complement the short waves lost in SAR data retrieval. In addition, the problem of 180° ambiguity in retrieved spectra is overcome using SAR imaginary cross spectra. Simulated data were used to validate the joint method. The simulations demonstrated that retrieved wave parameters, including SWH, peak wave length (PWL), and peak wave direction (PWD), agree well with reference parameters. Collocated data from ENVISAT advanced SAR (ASAR), the airborne wave spectrometer STORM, the PHAROS buoy, and the European Centre for Medium-Range Weather Forecasting (ECMWF) were then used to verify the proposed method. Wave parameters retrieved from STORM and two ASAR images were compared to buoy and ECMWF wave data. Most of the retrieved parameters were comparable to reference parameters. The results of this study show that the proposed joint retrieval method could be a valuable complement to traditional methods used to retrieve directional ocean wave spectra, particularly in inhomogeneous sea states.
Analysis of wind and wave events at the MIZ based on TerraSAR-X satellite images
NASA Astrophysics Data System (ADS)
Gebhardt, Claus; Bidlot, Jean-Raymond; Jacobsen, Sven; Lehner, Susanne; Pleskachevsky, Andrey; Singha, Suman
2017-04-01
The seasonal opening-up of large expanses of open water in the Beaufort/Chukchi Sea is a phenomenon observed in recent years. The diameter of the open-water area is on the order of 1000 km around the sea ice minimum in summer. Thus, wind events in the area are accompanied by the build-up of sea waves. Significant wave heights of few to several meters may be reached. Under low to moderate winds, the morphology of the MIZ is governed by oceanic forcing. As a result, the MIZ resembles ocean circulation features such as eddies, meanders, etc.. In the case of strong wind events, however, the wind forcing may gain control. We analyse effects related to wind and wave events at the MIZ using TerraSAR-X satellite imagery. Methods such as the retrieval of sea state and wind data by empirical algorithms and automatic sea ice classification are applied. This is facilitated by a series of TerraSAR-X images acquired in support of a cruise of the research vessel R/V Sikuliaq in the Beaufort/Chukchi Sea in autumn 2015. For selected images, the results are presented and compared to numerical model forecasts which were as well part of the cruise support.
Pattern recognition methods and air pollution source identification. [based on wind direction
NASA Technical Reports Server (NTRS)
Leibecki, H. F.; King, R. B.
1978-01-01
Directional air samplers, used for resolving suspended particulate matter on the basis of time and wind direction were used to assess the feasibility of characterizing and identifying emission source types in urban multisource environments. Filters were evaluated for 16 elements and X-ray fluorescence methods yielded elemental concentrations for direction, day, and the interaction of direction and day. Large numbers of samples are necessary to compensate for large day-to-day variations caused by wind perturbations and/or source changes.
Direct Retrieval of Exterior Orientation Parameters Using A 2-D Projective Transformation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Seedahmed, Gamal H.
2006-09-01
Direct solutions are very attractive because they obviate the need for initial approximations associated with non-linear solutions. The Direct Linear Transformation (DLT) establishes itself as a method of choice for direct solutions in photogrammetry and other fields. The use of the DLT with coplanar object space points leads to a rank deficient model. This rank deficient model leaves the DLT defined up to a 2-D projective transformation, which makes the direct retrieval of the exterior orientation parameters (EOPs) a non-trivial task. This paper presents a novel direct algorithm to retrieve the EOPs from the 2-D projective transformation. It is basedmore » on a direct relationship between the 2-D projective transformation and the collinearity model using homogeneous coordinates representation. This representation offers a direct matrix correspondence between the 2-D projective transformation parameters and the collinearity model parameters. This correspondence lends itself to a direct matrix factorization to retrieve the EOPs. An important step in the proposed algorithm is a normalization process that provides the actual link between the 2-D projective transformation and the collinearity model. This paper explains the theoretical basis of the proposed algorithm as well as the necessary steps for its practical implementation. In addition, numerical examples are provided to demonstrate its validity.« less
Yang, Qiulong; Yang, Kunde; Cao, Ran; Duan, Shunli
2018-01-23
Wind-driven and distant shipping noise sources contribute to the total noise field in the deep ocean direct-arrival zones. Wind-driven and distant shipping noise sources may significantly and simultaneously affect the spatial characteristics of the total noise field to some extent. In this work, a ray approach and parabolic equation solution method were jointly utilized to model the low-frequency ambient noise field in a range-dependent deep ocean environment by considering their calculation accuracy and efficiency in near-field wind-driven and far-field distant shipping noise fields. The reanalysis databases of National Center of Environment Prediction (NCEP) and Volunteer Observation System (VOS) were used to model the ambient noise source intensity and distribution. Spatial vertical directionality and correlation were analyzed in three scenarios that correspond to three wind speed conditions. The noise field was dominated by distant shipping noise sources when the wind speed was less than 3 m/s, and then the spatial vertical directionality and vertical correlation of the total noise field were nearly consistent with those of distant shipping noise field. The total noise field was completely dominated by near field wind generated noise sources when the wind speed was greater than 12 m/s at 150 Hz, and then the spatial vertical correlation coefficient and directionality pattern of the total noise field was approximately consistent with that of the wind-driven noise field. The spatial characteristics of the total noise field for wind speeds between 3 m/s and 12 m/s were the weighted results of wind-driven and distant shipping noise fields. Furthermore, the spatial characteristics of low-frequency ambient noise field were compared with the classical Cron/Sherman deep water noise field coherence function. Simulation results with the described modeling method showed good agreement with the experimental measurement results based on the vertical line array deployed near the bottom in deep ocean direct-arrival zones.
Yang, Qiulong; Yang, Kunde; Cao, Ran; Duan, Shunli
2018-01-01
Wind-driven and distant shipping noise sources contribute to the total noise field in the deep ocean direct-arrival zones. Wind-driven and distant shipping noise sources may significantly and simultaneously affect the spatial characteristics of the total noise field to some extent. In this work, a ray approach and parabolic equation solution method were jointly utilized to model the low-frequency ambient noise field in a range-dependent deep ocean environment by considering their calculation accuracy and efficiency in near-field wind-driven and far-field distant shipping noise fields. The reanalysis databases of National Center of Environment Prediction (NCEP) and Volunteer Observation System (VOS) were used to model the ambient noise source intensity and distribution. Spatial vertical directionality and correlation were analyzed in three scenarios that correspond to three wind speed conditions. The noise field was dominated by distant shipping noise sources when the wind speed was less than 3 m/s, and then the spatial vertical directionality and vertical correlation of the total noise field were nearly consistent with those of distant shipping noise field. The total noise field was completely dominated by near field wind generated noise sources when the wind speed was greater than 12 m/s at 150 Hz, and then the spatial vertical correlation coefficient and directionality pattern of the total noise field was approximately consistent with that of the wind-driven noise field. The spatial characteristics of the total noise field for wind speeds between 3 m/s and 12 m/s were the weighted results of wind-driven and distant shipping noise fields. Furthermore, the spatial characteristics of low-frequency ambient noise field were compared with the classical Cron/Sherman deep water noise field coherence function. Simulation results with the described modeling method showed good agreement with the experimental measurement results based on the vertical line array deployed near the bottom in deep ocean direct-arrival zones. PMID:29360793
NASA Astrophysics Data System (ADS)
Dong, X.; Xi, B.; Minnis, P.; Sun-Mack, S.
2014-12-01
Marine Boundary Layer (MBL) cloud properties derived for the NASA CERES Project using Terra and Aqua MODIS data are compared with observations taken at DOE ARM Mobile Facility at the Azores site from Jun. 2009 to Dec. 2010. Cloud properties derived from ARM ground-based observations were averaged over a 1-hour interval centered at the satellite overpass time, while the CERES-MODIS (CM) results were averaged within a 30×30 km2 grid box centered over the Azores site. A total of 63 daytime and 92 nighttime single-layered overcast MBL cloud cases were selected from 19 months of ARM radar-lidar and satellite observations. The CM cloud-top/base heights (Htop/Hbase) were determined from cloud-top/base temperatures (Ttop/Tbase) using a regional boundary-layer lapse rate method. For daytime comparisons, the CM-derived Htop (Hbase), on average, is 0.063 km (0.068 km) higher (lower) than its ARM radar-lidar observed counterpart, and the CM-derived Ttop and Tbase are 0.9 K less and 2.5 K greater than the surface values with high correlations (R2=0.82 and 0.84, respectively). In general, the cloud-top comparisons agree better than cloud-base comparisons because the CM Tbase and Hbase are secondary product determined from Ttop and Htop. No significant day-night difference was found in the analyses. The comparisons of microphysical properties reveal that, when averaged over a 30x30 km2 area, the CM-retrieved cloud-droplet effective radius (re) is 1.3 µm larger than that from the ARM retrievals (12.8 µm). While the CM-retrieved cloud liquid water path (LWP) is 13.5 gm-2 less than its ARM counterpart (114.2 gm-2) due to its small optical depth (τ, 9.6 vs. 13.7). The differences are reduced by 50% when the CM averages are computed only using the MODIS pixel nearest the AMF site. Using effective radius retrieved at 2.1-µm channel to calculate LWP can reduce the difference between the CM and ARM from -13.7 to 2.1 gm-2. The 10% differences between the ARM and CM LWP and re retrievals are within the uncertainties of the ARM LWP (~ 20 gm-2) and re (~ 10%) retrievals, however, the 30% difference in τ is significant. Possible reasons contributed to this discrepancy increased sensitivities in τ from both surface retrievals when τ ~ 10 and topography. The τ differences vary with wind direction and are consistent with the island orography.
NASA Astrophysics Data System (ADS)
Muschinski, A.; Hu, K.; Root, L. M.; Tichkule, S.; Wijesundara, S. N.
2010-12-01
Mean values and fluctuations of angles-of-arrival (AOAs) of light emitted from astronomical or terrestrial sources and observed through a telescope equipped with a CCD camera carry quantitative information about certain statistics of the wind and temperature field, integrated along the propagation path. While scintillometry (i.e., the retrieval of atmospheric quantities from light intensity fluctuations) has been a popular technique among micrometeorologists for many years, there have been relatively few attempts to utilize AOA observations to probe the atmospheric surface layer (ASL). Here we report results from a field experiment that we conducted at the Boulder Atmospheric Observatory (BAO) site near Erie, CO, in June 2010. During the night of 15/16 June, the ASL was characterized by intermittent turbulence and intermittent gravity-wave events. We measured temperature and wind with 12 sonics (R.M. Young, Model 81000, sampling rate 31 Hz) mounted on two portable towers at altitudes between 1.45 m and 4.84 m AGL; air pressure with two quartz-crystal barometers (Paroscientific, 10 Hz); and AOAs by means of a CCD camera (Lumenera, Model 075M, thirty 640x480 frames per second) attached to a 14-inch, Schmidt-Cassegrain telescope (Meade, Model LX200GPS) pointing at a rectangular array of four test lights (LEDs, vertical spacing 8 cm, horizontal spacing 10 cm) located at a distance of 182 m. The optical path was horizontal and 1.7 m above flat ground. The two towers were located 2 m away from the optical path. In our presentation, we focus on AOA retrievals of the following quantities: temporal fluctuations of the path-averaged, vertical temperature gradient; mean values and fluctuations of the path-averaged, lateral wind velocity; and mean values and fluctuations of the path-averaged temperature turbulence structure parameter. We compare the AOA retrievals with the collocated and simultaneous point measurements obtained with the sonics, and we analyze our observations in the framework of the Monin-Obukhov theory. The AOA techniques enable us to detect temporal fluctuations of the path-averaged vertical temperature gradient (estimated over a height increment defined by the telescope's aperture diameter) down to a few millikelvins per meter, which probably cannot be achieved with sonics. Extremely small wind velocities can also be resolved. Therefore, AOA techniques are well suited for observations of the nocturnal surface layer under quiet conditions. AOA retrieval techniques have major advantages over scintillometric techniques because AOAs can be understood within the framework of the weak-scattering theory or even geometrical optics (the eikonal-fluctuation theory), while the well-known "saturation effect" makes the weak-scattering theory invalid for intensity fluctuations in the majority of cases of practical relevance.
Retrieval of Urban Boundary Layer Structures from Doppler Lidar Data. Part I: Accuracy Assessment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xia, Quanxin; Lin, Ching Long; Calhoun, Ron
2008-01-01
Two coherent Doppler lidars from the US Army Research Laboratory (ARL) and Arizona State University (ASU) were deployed in the Joint Urban 2003 atmospheric dispersion field experiment (JU2003) held in Oklahoma City. The dual lidar data are used to evaluate the accuracy of the four-dimensional variational data assimilation (4DVAR) method and identify the coherent flow structures in the urban boundary layer. The objectives of the study are three-fold. The first objective is to examine the effect of eddy viscosity models on the quality of retrieved velocity data. The second objective is to determine the fidelity of single-lidar 4DVAR and evaluatemore » the difference between single- and dual-lidar retrievals. The third objective is to correlate the retrieved flow structures with the ground building data. It is found that the approach of treating eddy viscosity as part of control variables yields better results than the approach of prescribing viscosity. The ARL single-lidar 4DVAR is able to retrieve radial velocity fields with an accuracy of 98% in the along-beam direction and 80-90% in the cross-beam direction. For the dual-lidar 4DVAR, the accuracy of retrieved radial velocity in the ARL cross-beam direction improves to 90-94%. By using the dual-lidar retrieved data as a reference, the single-lidar 4DVAR is able to recover fluctuating velocity fields with 70-80% accuracy in the along-beam direction and 60-70% accuracy in the cross-beam direction. Large-scale convective roll structures are found in the vicinity of downtown airpark and parks. Vortical structures are identified near the business district. Strong updrafts and downdrafts are also found above a cluster of restaurants.« less
LIDAR wind speed measurements at a Taiwan onshore wind park
NASA Astrophysics Data System (ADS)
Wu, Yu-Ting; Lin, Ta-Hui; Hsuan, Chung-Yao; Li, Yu-Cheng; Yang, Ya-Fei; Tai, Tzy-Hwan; Huang, Chien-Cheng
2016-04-01
Measurements of wind speed and wind direction were carried out using a Leosphere Windcube LIDAR system at a Taiwan onshore wind park. The Lidar shot a total of five laser beams to the atmosphere to collect the light-of-sight (LOS) velocity. Four beams were sent successively in four cardinal directions along a 28° scanning cone angle, followed by a fifth, vertical beam. An unchangeable sampling rate of approximately 1.2 Hz was set in the LIDAR system to collect the LOS velocity. The supervisory control and data acquisition (SCADA) data from two GE 1.5 MW wind turbines near the LIDAR deployment site were acquired for the whole measuring period from February 4 to February 16 of 2015. The SCADA data include the blade angular velocity, the wind velocity measured at hub height from an anemometer mounted on the nacelle, the wind turbine yaw angle, and power production; each parameter was recorded as averages over 1-min periods. The data analysis involving the LIDAR measurements and the SCADA data were performed to obtain the turbulent flow statistics. The results show that the turbine power production has significant dependence to the wind speed, wind direction, turbulence intensity and wind shear.
THz limb sounder (TLS) for lower thermospheric wind, oxygen density, and temperature
NASA Astrophysics Data System (ADS)
Wu, Dong L.; Yee, Jeng-Hwa; Schlecht, Erich; Mehdi, Imran; Siles, Jose; Drouin, Brian J.
2016-07-01
Neutral winds are one of the most critical measurements in the lower thermosphere and E region ionosphere (LTEI) for understanding complex electrodynamic processes and ion-neutral interactions. We are developing a high-sensitivity, low-power, noncryogenic 2.06 THz Schottky receiver to measure wind profiles at 100-140 km. The new technique, THz limb sounder (TLS), aims to measure LTEI winds by resolving the wind-induced Doppler shift of 2.06 THz atomic oxygen (OI) emissions. As a transition between fine structure levels in the ground electronic state, the OI emission is in local thermodynamic equilibrium (LTE) at altitudes up to 350 km. This LTE property, together with day-and-night capability and small line-of-sight gradient, makes the OI limb sounding a very attractive technique for neutral wind observations. In addition to the wind measurement, TLS can also retrieve [OI] density and neutral temperature in the LTEI region. TLS leverages rapid advances in THz receiver technologies including subharmonically pumped (SHP) mixers and Schottky-diode-based power multipliers. Current SHP Schottky receivers have produced good sensitivity for THz frequencies at ambient environment temperatures (120-150 K), which are achievable through passively cooling in spaceflight. As an emerging technique, TLS can fill the critical data gaps in the LTEI neutral wind observations to enable detailed studies on the coupling and dynamo processes between charged and neutral molecules.
THz Limb Sounder (TLS) for Lower Thermospheric Wind, Oxygen Density, and Temperature
NASA Technical Reports Server (NTRS)
Wu, Dong L.; Yee, Jeng-Hwa; Schlecht, Erich; Mehdi, Imran; Siles, Jose; Drouin, Brian J.
2016-01-01
Neutral winds are one of the most critical measurements in the lower thermosphere and E region ionosphere (LTEI) for understanding complex electrodynamic processes and ion-neutral interactions. We are developing a high-sensitivity, low-power, noncryogenic 2.06 THz Schottky receiver to measure wind profiles at 100-140 km. The new technique, THz limb sounder (TLS), aims to measure LTEI winds by resolving the wind-induced Doppler shift of 2.06 THz atomic oxygen (OI) emissions. As a transition between fine structure levels in the ground electronic state, the OI emission is in local thermodynamic equilibrium(LTE) at altitudes up to 350km. This LTE property, together with day-and-night capability and small line-of-sight gradient, makes the OI limb sounding a very attractive technique for neutral wind observations. In addition to the wind measurement, TLS can also retrieve [OI] density and neutral temperature in the LTEI region. TLS leverages rapid advances in THz receiver technologies including subharmonically pumped (SHP)mixers and Schottky-diode-based power multipliers. Current SHP Schottky receivers have produced good sensitivity for THz frequencies at ambient environment temperatures (120-150 K), which are achievable through passively cooling in spaceflight. As an emerging technique, TLS can fill the critical data gaps in the LTEI neutral wind observations to enable detailed studies on the coupling and dynamo processes between charged and neutral molecules.
Wireline system for multiple direct push tool usage
Bratton, Wesley L.; Farrington, Stephen P.; Shinn, II, James D.; Nolet, Darren C.
2003-11-11
A tool latching and retrieval system allows the deployment and retrieval of a variety of direct push subsurface characterization tools through an embedded rod string during a single penetration without requiring withdrawal of the string from the ground. This enables the in situ interchange of different tools, as well as the rapid retrieval of soil core samples from multiple depths during a single direct push penetration. The system includes specialized rods that make up the rod string, a tool housing which is integral to the rod string, a lock assembly, and several tools which mate to the lock assembly.
Quantifying array losses due to spacing and staggering in offshore wind farms (Invited)
NASA Astrophysics Data System (ADS)
Archer, C. L.; Mirzaeisefat, S.; Lee, S.; Xie, S.
2013-12-01
The layout of wind turbines can have an impact on the power production of a wind farm. Design variables that define the layout of wind turbines within a wind farm include: orientation of the rows with respect to the prevailing wind direction, size and shape of the wind farm, spacing between turbines, and alignment of the turbines (i.e., whether in-line or staggered with one another). There are no universal layout recommendations for offshore wind farms, partly because isolating the contribution of each individual design variable is impossible at existing offshore wind farms, where multiple effects overlap non-linearly on one another, and partly because analyzing the sensitivity to design variables requires sophisticated and computer-intensive numerical codes, such as large-eddy simulations (LES), that can simulate the small-scale turbulent features of turbine wakes. The National Renewable Energy Laboratory (NREL) developed the only publicly available and open-source LES code that is capable of resolving wind turbine blades as rotating actuator lines (not fixed disks), includes both neutral and unstable atmospheric conditions (stable case is currently under development), and does not rely on periodic boundary conditions. This code, named Simulator for Offshore/Onshore Wind Farm Applications (SOWFA), is based on OpenFOAM and has been used successfully in the past for turbulent wake simulations. Here we address the issue of quantifying two design variables: turbine spacing (both along and across the prevailing wind direction) and alignment (in-line or staggered for consecutive rows). SOWFA is used to simulate an existing offshore wind farm in Lillgrund (Sweden), consisting of 48 Siemens 2.3 MW turbines with spacing of 3.2D across and 4.3D along the prevailing wind direction and without staggering, where D is the turbine diameter (93 m). This spacing is exceptionally tight, to our knowledge the tightest of all modern wind farms. While keeping the area and the shape of the farm constant, we design several new Lillgrund farm layouts with and without staggering, with increased spacing in each direction individually and in both directions together, and with various wind directions and atmospheric stabilities. We found that the average wind power generated per turbine is increased by ~32% (from 696 kW to 922 kW) if both staggering and doubling of the across-spacing are implemented simultaneously in a neutral stability case. Wake losses are quantified in terms of average power in the first (upwind) row of wind turbines in the control case, representative of the power that could be generated if there were no wakes, over the average power of all the wind turbines in the farm. Wake losses at Lillgrund are relatively high due to the tight packing, of the order of 35%, but smart combinations of staggering and doubling of turbine spacing can reduce them to 15%-26%. In summary, we provide estimates of the losses/gains associated with individual and combined changes in two design variables, spacing and staggering, under various atmospheric stabilities, wind directions, and wind speeds. These estimates will be useful to the wind industry to optimize a wind project because the effects of alternative layouts can be quantified quickly with respect to total power, capacity factor, and number of wind turbines, all of which can ultimately be converted to actual costs or savings.
Quantifying array losses due to spacing and staggering in offshore wind farms (Invited)
NASA Astrophysics Data System (ADS)
Archer, C. L.; Mirzaeisefat, S.; Lee, S.; Xie, S.
2011-12-01
The layout of wind turbines can have an impact on the power production of a wind farm. Design variables that define the layout of wind turbines within a wind farm include: orientation of the rows with respect to the prevailing wind direction, size and shape of the wind farm, spacing between turbines, and alignment of the turbines (i.e., whether in-line or staggered with one another). There are no universal layout recommendations for offshore wind farms, partly because isolating the contribution of each individual design variable is impossible at existing offshore wind farms, where multiple effects overlap non-linearly on one another, and partly because analyzing the sensitivity to design variables requires sophisticated and computer-intensive numerical codes, such as large-eddy simulations (LES), that can simulate the small-scale turbulent features of turbine wakes. The National Renewable Energy Laboratory (NREL) developed the only publicly available and open-source LES code that is capable of resolving wind turbine blades as rotating actuator lines (not fixed disks), includes both neutral and unstable atmospheric conditions (stable case is currently under development), and does not rely on periodic boundary conditions. This code, named Simulator for Offshore/Onshore Wind Farm Applications (SOWFA), is based on OpenFOAM and has been used successfully in the past for turbulent wake simulations. Here we address the issue of quantifying two design variables: turbine spacing (both along and across the prevailing wind direction) and alignment (in-line or staggered for consecutive rows). SOWFA is used to simulate an existing offshore wind farm in Lillgrund (Sweden), consisting of 48 Siemens 2.3 MW turbines with spacing of 3.2D across and 4.3D along the prevailing wind direction and without staggering, where D is the turbine diameter (93 m). This spacing is exceptionally tight, to our knowledge the tightest of all modern wind farms. While keeping the area and the shape of the farm constant, we design several new Lillgrund farm layouts with and without staggering, with increased spacing in each direction individually and in both directions together, and with various wind directions and atmospheric stabilities. We found that the average wind power generated per turbine is increased by ~32% (from 696 kW to 922 kW) if both staggering and doubling of the across-spacing are implemented simultaneously in a neutral stability case. Wake losses are quantified in terms of average power in the first (upwind) row of wind turbines in the control case, representative of the power that could be generated if there were no wakes, over the average power of all the wind turbines in the farm. Wake losses at Lillgrund are relatively high due to the tight packing, of the order of 35%, but smart combinations of staggering and doubling of turbine spacing can reduce them to 15%-26%. In summary, we provide estimates of the losses/gains associated with individual and combined changes in two design variables, spacing and staggering, under various atmospheric stabilities, wind directions, and wind speeds. These estimates will be useful to the wind industry to optimize a wind project because the effects of alternative layouts can be quantified quickly with respect to total power, capacity factor, and number of wind turbines, all of which can ultimately be converted to actual costs or savings.
Osan AB, Korea. Revised Uniform Summary of Surface Weather Observations (RUSSWO). Parts A-F.
1982-06-14
USAFETAC SURFACE WINDS2 AIR WATHER SERVICE/MAC PERCENTAGE FREQUENCY OF WIND DIRECTION AND SPEED (FROM HOURLY OBSERVATIONS) 1471220 OSAN AS KO 73-S1 FED...BRANCHusAF’TAC SURFACE WINDS AIR WATHER SERVICE/MAC PERCENTAGE FREQUENCY OF WIND DIRECTION AND SPEED (FROM HOURLY OBSERVATIONS) 47122’ OSAN AS KO 73-81 NOV _RLL
Fires in the Australian Capital Territory
NASA Technical Reports Server (NTRS)
2003-01-01
The height and extent of billowing smoke plumes from bushfires near Canberra, the Australian capital, are illustrated by these views from the Multi-angle Imaging SpectroRadiometer (MISR). The images were acquired on January 18, 2003. Never before had fires of this magnitude come so close to Australia's capital. Four people lost their lives and over 500 homes were destroyed, mostly in the southwestern suburbs. Australia's famous Mount Stromlo Observatory, located immediately west of the city, was also incinerated by the fires.The top panel portrays a natural-color view from MISR's nadir camera, in which the eastern portion of the Australian Capital Territory is located south of a pale, ephemeral lake in the upper left-hand corner (Lake George). Several smoke plumes originate within the eastern part of the Australian Capital Territory, while the major plumes originate to the west of the image area. The Australian Capital Territory and much of New South Wales are completely obscured by the smoke, which is driven by fierce westerly winds and extends eastward to the coast and over the Pacific Ocean.The lower panel provides a stereoscopically retrieved height field of the clouds and smoke plumes. The greenish areas indicate where smoke plumes extend several kilometers above a bank of patchy stratus clouds below. A few high clouds appear near the bottom of the image. Wind retrievals were excluded from this image in order to generate a smooth and continuous field. Although relative height variations are well-represented here, the inclusion of wind retrievals for this scene reduces the actual cloud height results by 1 to 2 kilometers. Areas where heights could not be retrieved are shown as dark gray.The Multi-angle Imaging SpectroRadiometer observes the daylit Earth continuouslyand every 9 days views the entire globe between 82 degrees north and 82 degrees south latitude. This data product was generated from a portion of the imagery acquired during Terra orbit 16421. The panels cover an area of 380 kilometers x 253 kilometers, and utilize data from blocks 118 to 120 within World Reference System-2 path 89.MISR was built and is managed by NASA's Jet Propulsion Laboratory,Pasadena, CA, for NASA's Office of Earth Science, Washington, DC. The Terra satellite is managed by NASA's Goddard Space Flight Center, Greenbelt, MD. JPL is a division of the California Institute of Technology.Ocean Remote Sensing from Chinese Spaceborne Microwave Sensors
NASA Astrophysics Data System (ADS)
Yang, J.
2017-12-01
GF-3 (GF stands for GaoFen, which means High Resolution in Chinese) is the China's first C band multi-polarization high resolution microwave remote sensing satellite. It was successfully launched on Aug. 10, 2016 in Taiyuan satellite launch center. The synthetic aperture radar (SAR) on board GF-3 works at incidence angles ranging from 20 to 50 degree with several polarization modes including single-polarization, dual-polarization and quad-polarization. GF-3 SAR is also the world's most imaging modes SAR satellite, with 12 imaging modes consisting of some traditional ones like stripmap and scanSAR modes and some new ones like spotlight, wave and global modes. GF-3 SAR is thus a multi-functional satellite for both land and ocean observation by switching the different imaging modes. TG-2 (TG stands for TianGong, which means Heavenly Palace in Chinese) is a Chinese space laboratory which was launched on 15 Sep. 2016 from Jiuquan Satellite Launch Centre aboard a Long March 2F rocket. The onboard Interferometric Imaging Radar Altimeter (InIRA) is a new generation radar altimeter developed by China and also the first on orbit wide swath imaging radar altimeter, which integrates interferometry, synthetic aperture, and height tracking techniques at small incidence angles and a swath of 30 km. The InIRA was switch on to acquire data during this mission on 22 September. This paper gives some preliminary results for the quantitative remote sensing of ocean winds and waves from the GF-3 SAR and the TG-2 InIRA. The quantitative analysis and ocean wave spectra retrieval have been given from the SAR imagery. The image spectra which contain ocean wave information are first estimated from image's modulation using fast Fourier transform. Then, the wave spectra are retrieved from image spectra based on Hasselmann's classical quasi-linear SAR-ocean wave mapping model and the estimation of three modulation transfer functions (MTFs) including tilt, hydrodynamic and velocity bunching modulation. The wind speed is retrieved from InIRA data using a Ku-band low incidence backscatter model (KuLMOD), which relates the backscattering coefficients to the wind speeds and incidence angles. The ocean wave spectra are retrieved linearly from image spectra which extracted first from InIRA data, using a similar procedure for GF-3 SAR data.
The Offshore New European Wind Atlas
NASA Astrophysics Data System (ADS)
Karagali, I.; Hahmann, A. N.; Badger, M.; Hasager, C.; Mann, J.
2017-12-01
The New European Wind Atlas (NEWA) is a joint effort of research agencies from eight European countries, co-funded under the ERANET Plus Program. The project is structured around two areas of work: development of dynamical downscaling methodologies and measurement campaigns to validate these methodologies, leading to the creation and publication of a European wind atlas in electronic form. This atlas will contain an offshore component extending 100 km from the European coasts. To achieve this, mesoscale models along with various observational datasets are utilised. Scanning lidars located at the coastline were used to compare the coastal wind gradient reproduced by the meso-scale model. Currently, an experimental campaign is occurring in the Baltic Sea, with a lidar located in a commercial ship sailing from Germany to Lithuania, thus covering the entire span of the south Baltic basin. In addition, satellite wind retrievals from scatterometers and Synthetic Aperture Radar (SAR) instruments were used to generate mean wind field maps and validate offshore modelled wind fields and identify the optimal model set-up parameters.The aim of this study is to compare the initial outputs from the offshore wind atlas produced by the Weather & Research Forecasting (WRF) model, still in pre-operational phase, and the METOP-A/B Advanced Scatterometer (ASCAT) wind fields, reprocessed to stress equivalent winds at 10m. Different experiments were set-up to evaluate the model sensitivity for the various domains covered by the NEWA offshore atlas. ASCAT winds were utilised to assess the performance of the WRF offshore atlases. In addition, ASCAT winds were used to create an offshore atlas covering the years 2007 to 2016, capturing the signature of various spatial wind features, such as channelling and lee effects from complex coastal topographical elements.
Passive microwave algorithm development and evaluation
NASA Technical Reports Server (NTRS)
Petty, Grant W.
1995-01-01
The scientific objectives of this grant are: (1) thoroughly evaluate, both theoretically and empirically, all available Special Sensor Microwave Imager (SSM/I) retrieval algorithms for column water vapor, column liquid water, and surface wind speed; (2) where both appropriate and feasible, develop, validate, and document satellite passive microwave retrieval algorithms that offer significantly improved performance compared with currently available algorithms; and (3) refine and validate a novel physical inversion scheme for retrieving rain rate over the ocean. This report summarizes work accomplished or in progress during the first year of a three year grant. The emphasis during the first year has been on the validation and refinement of the rain rate algorithm published by Petty and on the analysis of independent data sets that can be used to help evaluate the performance of rain rate algorithms over remote areas of the ocean. Two articles in the area of global oceanic precipitation are attached.
Lee, Jeong Wan
2008-01-01
This paper proposes a field calibration technique for aligning a wind direction sensor to the true north. The proposed technique uses the synchronized measurements of captured images by a camera, and the output voltage of a wind direction sensor. The true wind direction was evaluated through image processing techniques using the captured picture of the sensor with the least square sense. Then, the evaluated true value was compared with the measured output voltage of the sensor. This technique solves the discordance problem of the wind direction sensor in the process of installing meteorological mast. For this proposed technique, some uncertainty analyses are presented and the calibration accuracy is discussed. Finally, the proposed technique was applied to the real meteorological mast at the Daegwanryung test site, and the statistical analysis of the experimental testing estimated the values of stable misalignment and uncertainty level. In a strict sense, it is confirmed that the error range of the misalignment from the exact north could be expected to decrease within the credibility level. PMID:27873957
Development and testing of a portable wind sensitive directional air sampler
NASA Technical Reports Server (NTRS)
Deyo, J.; Toma, J.; King, R. B.
1975-01-01
A portable wind sensitive directional air sampler was developed as part of an air pollution source identification system. The system is designed to identify sources of air pollution based on the directional collection of field air samples and their analysis for TSP and trace element characteristics. Sources can be identified by analyzing the data on the basis of pattern recognition concepts. The unit, designated Air Scout, receives wind direction signals from an associated wind vane. Air samples are collected on filter slides using a standard high volume air sampler drawing air through a porting arrangement which tracks the wind direction and permits collection of discrete samples. A preset timer controls the length of time each filter is in the sampling position. At the conclusion of the sampling period a new filter is automatically moved into sampling position displacing the previous filter to a storage compartment. Thus the Air Scout may be set up at a field location, loaded with up to 12 filter slides, and left to acquire air samples automatically, according to the wind, at any timer interval desired from 1 to 30 hours.
NASA Technical Reports Server (NTRS)
Nelson, David L.; Kahn, Ralph A.
2014-01-01
Airborne particles desert dust, wildfire smoke, volcanic effluent, urban pollution affect Earth's climate as well as air quality and health. They are found in the atmosphere all over the planet, but vary immensely in amount and properties with season and location. Most aerosol particles are injected into the near-surface boundary layer, but some, especially wildfire smoke, desert dust and volcanic ash, can be injected higher into the atmosphere, where they can stay aloft longer, travel farther, produce larger climate effects, and possibly affect human and ecosystem health far downwind. So monitoring aerosol injection height globally can make important contributions to climate science and air quality studies. The Multi-angle Imaging Spectro-Radiometer (MISR) is a space borne instrument designed to study Earths clouds, aerosols, and surface. Since late February 2000 it has been retrieving aerosol particle amount and properties, as well as cloud height and wind data, globally, about once per week. The MINX visualization and analysis tool complements the operational MISR data products, enabling users to retrieve heights and winds locally for detailed studies of smoke plumes, at higher spatial resolution and with greater precision than the operational product and other space-based, passive remote sensing techniques. MINX software is being used to provide plume height statistics for climatological studies as well as to investigate the dynamics of individual plumes, and to provide parameterizations for climate modeling.
Gusts and shear within hurricane eyewalls can exceed offshore wind turbine design standards
NASA Astrophysics Data System (ADS)
Worsnop, Rochelle P.; Lundquist, Julie K.; Bryan, George H.; Damiani, Rick; Musial, Walt
2017-06-01
Offshore wind energy development is underway in the U.S., with proposed sites located in hurricane-prone regions. Turbine design criteria outlined by the International Electrotechnical Commission do not encompass the extreme wind speeds and directional shifts of hurricanes stronger than category 2. We examine a hurricane's turbulent eyewall using large-eddy simulations with Cloud Model 1. Gusts and mean wind speeds near the eyewall of a category 5 hurricane exceed the current Class I turbine design threshold of 50 m s-1 mean wind and 70 m s-1 gusts. Largest gust factors occur at the eye-eyewall interface. Further, shifts in wind direction suggest that turbines must rotate or yaw faster than current practice. Although current design standards omit mention of wind direction change across the rotor layer, large values (15-50°) suggest that veer should be considered.
Gusts and shear within hurricane eyewalls can exceed offshore wind turbine design standards
Worsnop, Rochelle P.; Lundquist, Julie K.; Bryan, George H.; ...
2017-05-30
Here, offshore wind energy development is underway in the U.S., with proposed sites located in hurricane-prone regions. Turbine design criteria outlined by the International Electrotechnical Commission do not encompass the extreme wind speeds and directional shifts of hurricanes stronger than category 2. We examine a hurricane's turbulent eyewall using large-eddy simulations with Cloud Model 1. Gusts and mean wind speeds near the eyewall of a category 5 hurricane exceed the current Class I turbine design threshold of 50 m s –1 mean wind and 70 m s –1 gusts. Largest gust factors occur at the eye-eyewall interface. Further, shifts inmore » wind direction suggest that turbines must rotate or yaw faster than current practice. Although current design standards omit mention of wind direction change across the rotor layer, large values (15–50°) suggest that veer should be considered.« less
Gusts and shear within hurricane eyewalls can exceed offshore wind turbine design standards
DOE Office of Scientific and Technical Information (OSTI.GOV)
Worsnop, Rochelle P.; Lundquist, Julie K.; Bryan, George H.
Here, offshore wind energy development is underway in the U.S., with proposed sites located in hurricane-prone regions. Turbine design criteria outlined by the International Electrotechnical Commission do not encompass the extreme wind speeds and directional shifts of hurricanes stronger than category 2. We examine a hurricane's turbulent eyewall using large-eddy simulations with Cloud Model 1. Gusts and mean wind speeds near the eyewall of a category 5 hurricane exceed the current Class I turbine design threshold of 50 m s –1 mean wind and 70 m s –1 gusts. Largest gust factors occur at the eye-eyewall interface. Further, shifts inmore » wind direction suggest that turbines must rotate or yaw faster than current practice. Although current design standards omit mention of wind direction change across the rotor layer, large values (15–50°) suggest that veer should be considered.« less
The effect of wind direction and building surroundings on a marina bay in the Black Sea
NASA Astrophysics Data System (ADS)
Katona, Cosmin; Safta, Carmen Anca
2017-01-01
The wind effect has usually a major importance in the marina bay. These environmental sites are an interplay between tourist and commercial activities, requiring a high-detailed and definition studies of the dynamic fluid in the harbor. Computational Fluid Dynamics (CFD) has been used elaborately in urban surroundings research. However, most CFD studies were performed for harbors for only a confined number of wind directions and/or without considering the building surroundings effects. This paper presents the results of different simulations based on various wind flows and the CFD simulation of coupled urban wind flow and general wind directions upon a semi-closed area. Thus the importance of wind effects on the evaluation of the marina bay will be pointed out to achieve a safe and secure mooring at the berth and eventually a good potential of renewable energy for an impending green harbor.
Bridge, Donna J.; Cohen, Neal J.; Voss, Joel L.
2017-01-01
Memory can profoundly influence new learning, presumably because memory optimizes exploration of to-be-learned material. Although hippocampus and frontoparietal networks have been implicated in memory-guided exploration, their specific and interactive roles have not been identified. We examined eye movements during fMRI scanning to identify neural correlates of the influences of memory retrieval on exploration and learning. Following retrieval of one object in a multi-object array, viewing was strategically directed away from the retrieved object toward non-retrieved objects, such that exploration was directed towards to-be-learned content. Retrieved objects later served as optimal reminder cues, indicating that exploration caused memory to become structured around the retrieved content. Hippocampal activity was associated with memory retrieval whereas frontoparietal activity varied with strategic viewing patterns deployed following retrieval, thus providing spatiotemporal dissociation of memory retrieval from memory-guided learning strategies. Time-lagged fMRI connectivity analyses indicated that hippocampal activity predicted frontoparietal activity to a greater extent for a condition in which retrieval guided exploration than for a passive control condition in which exploration was not influenced by retrieval. This demonstrates network-level interaction effects specific to influences of memory on strategic exploration. These findings show how memory guides behavior during learning and demonstrate distinct yet interactive hippocampal-frontoparietal roles in implementing strategic exploration behaviors that determine the fate of evolving memory representations. PMID:28471729
Mesoscale variations in acoustic signals induced by atmospheric gravity waves.
Chunchuzov, Igor; Kulichkov, Sergey; Perepelkin, Vitaly; Ziemann, Astrid; Arnold, Klaus; Kniffka, Anke
2009-02-01
The results of acoustic tomographic monitoring of the coherent structures in the lower atmosphere and the effects of these structures on acoustic signal parameters are analyzed in the present study. From the measurements of acoustic travel time fluctuations (periods 1 min-1 h) with distant receivers, the temporal fluctuations of the effective sound speed and wind speed are retrieved along different ray paths connecting an acoustic pulse source and several receivers. By using a coherence analysis of the fluctuations near spatially distanced ray turning points, the internal wave-associated fluctuations are filtered and their spatial characteristics (coherences, horizontal phase velocities, and spatial scales) are estimated. The capability of acoustic tomography in estimating wind shear near ground is shown. A possible mechanism describing the temporal modulation of the near-ground wind field by ducted internal waves in the troposphere is proposed.
A Full Body Steerable Wind Display for a Locomotion Interface.
Kulkarni, Sandip D; Fisher, Charles J; Lefler, Price; Desai, Aditya; Chakravarthy, Shanthanu; Pardyjak, Eric R; Minor, Mark A; Hollerbach, John M
2015-10-01
This paper presents the Treadport Active Wind Tunnel (TPAWT)-a full-body immersive virtual environment for the Treadport locomotion interface designed for generating wind on a user from any frontal direction at speeds up to 20 kph. The goal is to simulate the experience of realistic wind while walking in an outdoor virtual environment. A recirculating-type wind tunnel was created around the pre-existing Treadport installation by adding a large fan, ducting, and enclosure walls. Two sheets of air in a non-intrusive design flow along the side screens of the back-projection CAVE-like visual display, where they impinge and mix at the front screen to redirect towards the user in a full-body cross-section. By varying the flow conditions of the air sheets, the direction and speed of wind at the user are controlled. Design challenges to fit the wind tunnel in the pre-existing facility, and to manage turbulence to achieve stable and steerable flow, were overcome. The controller performance for wind speed and direction is demonstrated experimentally.
Niedzielski, Tomasz; Skjøth, Carsten; Werner, Małgorzata; Spallek, Waldemar; Witek, Matylda; Sawiński, Tymoteusz; Drzeniecka-Osiadacz, Anetta; Korzystka-Muskała, Magdalena; Muskała, Piotr; Modzel, Piotr; Guzikowski, Jakub; Kryza, Maciej
2017-09-01
The objective of this paper is to empirically show that estimates of wind speed and wind direction based on measurements carried out using the Pitot tubes and GNSS receivers, mounted on consumer-grade unmanned aerial vehicles (UAVs), may accurately approximate true wind parameters. The motivation for the study is that a growing number of commercial and scientific UAV operations may soon become a new source of data on wind speed and wind direction, with unprecedented spatial and temporal resolution. The feasibility study was carried out within an isolated mountain meadow of Polana Izerska located in the Izera Mountains (SW Poland) during an experiment which aimed to compare wind characteristics measured by several instruments: three UAVs (swinglet CAM, eBee, Maja) equipped with the Pitot tubes and GNSS receivers, wind speed and direction meters mounted at 2.5 and 10 m (mast), conventional weather station and vertical sodar. The three UAVs performed seven missions along spiral-like trajectories, most reaching 130 m above take-off location. The estimates of wind speed and wind direction were found to agree between UAVs. The time series of wind speed measured at 10 m were extrapolated to flight altitudes recorded at a given time so that a comparison was made feasible. It was found that the wind speed estimates provided by the UAVs on a basis of the Pitot tube/GNSS data are in agreement with measurements carried out using dedicated meteorological instruments. The discrepancies were recorded in the first and last phases of UAV flights.
Hogge, Michaël; Adam, Stéphane; Collette, Fabienne
2008-07-01
The directed forgetting effect obtained with the item method is supposed to depend on both selective rehearsal of to-be-remembered (TBR) items and attentional inhibition of to-be-forgotten (TBF) items. In this study, we investigated the locus of the directed forgetting deficit in older adults by exploring the influence of recollection and familiarity-based retrieval processes on age-related differences in directed forgetting. Moreover, we explored the influence of processing speed, short-term memory capacity, thought suppression tendencies, and sensitivity to proactive interference on performance. The results indicated that older adults' directed forgetting difficulties are due to decreased recollection of TBR items, associated with increased automatic retrieval of TBF items. Moreover, processing speed and proactive interference appeared to be responsible for the decreased recall of TBR items.
NASA Technical Reports Server (NTRS)
Yeager, W. T., Jr.; Young, W. H., Jr.; Mantay, W. R.
1974-01-01
An investigation was conducted in the Langley full-scale tunnel to measure the performance of several helicopter tail-rotor/fin configurations with regard to directional control problems encountered at low speeds in ground effect. Tests were conducted at wind azimuths of 0 deg to 360 deg in increments of 30 deg and 60 deg and at wind speeds from 0 to 35 knots. The results indicate that at certain combinations of wind speed and wind azimuth, large increases in adverse fin force require correspondingly large increases in the tail-rotor thrust, collective pitch, and power required to maintain yaw trim. Changing the tail-rotor direction of rotation to top blade aft for either a pusher tail rotor (tail-rotor wake blowing away from fin) or a tractor tail rotor (tail-rotor wake blowing against fin) will alleviate this problem. For a pusher tail rotor at 180 deg wind azimuth, increases in the fin/tail-rotor gap were not found to have any significant influence on the overall vehicle directional control capability. Changing the tail rotor to a higher position was found to improve tail-rotor performance for a fin-off configuration at a wind azimuth of 180 deg. A V-tail configuration with a pusher tail rotor with top blade aft direction of rotation was found to be the best configuration with regard to overall directional control capability.
Impact of wind direction on near-road pollutant concentrations
NASA Astrophysics Data System (ADS)
Venkatram, Akula; Snyder, Michelle; Isakov, Vlad; Kimbrough, Sue
2013-12-01
Exposure to roadway emissions is an emerging area of research because of recent epidemiological studies reporting association between living within a few hundred meters of high-traffic roadways and adverse health effects. The air quality impact of roadway emissions has been studied in a number of field experiments, most of which have not fully considered the impact of wind direction on near-road concentrations. This paper examines the role of wind direction by using a dispersion model to analyze data from three field studies that include measurements under varying wind directions: 1) a tracer study conducted adjacent to highway 99 in Sacramento, CA in 1981-82, 2) a field study next to a highway in Raleigh, North Carolina in 2006, and 3) a field study conducted next to a depressed highway in Las Vegas, Nevada in 2010. We find that wind direction is an important variable in characterizing exposure to roadway emissions. Under stable conditions, the near-surface concentrations at receptors up to 100 m from the road increase with wind angle before dropping off at angles close to parallel to the road. It is only for pollutants with short life times does the maximum concentration occur when the wind direction is normal to the road. We also show that current dispersion models are reliable tools for interpreting observations and for formulating plans for field studies.
Program to determine space vehicle response to wind turbulence
NASA Technical Reports Server (NTRS)
Wilkening, H. D.
1972-01-01
Computer program was developed as prelaunch wind monitoring tool for Saturn 5 vehicle. Program accounts for characteristic wind changes including turbulence power spectral density, wind shear, peak wind velocity, altitude, and wind direction using stored variational statistics.
Direct retrieval of ocean surface evaporation and latent heat flux from the spacebased observations
NASA Technical Reports Server (NTRS)
Liu, W. T.; Tang, W.
2000-01-01
The Tropical Rain Measuring Mission (TRMM) provides the opportunity to improve the spacebased estimation of evaporation. An algorithm for retrieving evaporation directly from the radiances observed by the TRMM Microwave Imager and its validation results are described.
Wave Tank Studies of Phase Velocities of Short Wind Waves
NASA Astrophysics Data System (ADS)
Ermakov, S.; Sergievskaya, I.; Shchegolkov, Yu.
Wave tank studies of phase velocities of short wind waves have been carried out using Ka-band radar and an Optical Spectrum Analyser. The phase velocities were retrieved from measured radar and optical Doppler shifts, taking into account measurements of surface drift velocities. The dispersion relationship was studied in centimetre (cm)- and millimetre(mm)-scale wavelength ranges at different fetches and wind speeds, both for a clean water surface and for water covered with surfactant films. It is ob- tained that the phase velocities do not follow the dispersion relation of linear capillary- gravity waves, increasing with fetch and, therefore, depending on phase velocities of dominant decimetre (dm)-centimetre-scale wind waves. One thus can conclude that nonlinear cm-mm-scale harmonics bound to the dominant wind waves and propagat- ing with the phase velocities of the decimetric waves are present in the wind wave spectrum. The resulting phase velocities of short wind waves are determined by re- lation between free and bound waves. The relative intensity of the bound waves in the spectrum of short wind waves is estimated. It is shown that this relation depends strongly on the surfactant concentration, because the damping effect due to films is different for free and bound waves; this results to changes of phase velocities of wind waves in the presence of surfactant films. This work was supported by MOD, UK via DERA Winfrith (Project ISTC 1774P) and by RFBR (Project 02-05-65102).
Atmospheric stability effects on wind farm performance using large-eddy simulation
NASA Astrophysics Data System (ADS)
Archer, C. L.; Ghaisas, N.; Xie, S.
2014-12-01
Atmospheric stability has been recently found to have significant impacts on wind farm performance, especially since offshore and onshore wind farms are known to operate often under non-neutral conditions. Recent field observations have revealed that changes in stability are accompanied by changes in wind speed, direction, and turbulent kinetic energy (TKE). In order to isolate the effects of stability, large-eddy simulations (LES) are performed under neutral, stable, and unstable conditions, keeping the wind speed and direction unchanged at a fixed height. The Lillgrund wind farm, comprising of 48 turbines, is studied in this research with the Simulator for Offshore/Onshore Wind Farm Applications (SOWFA) developed by the National Renewable Energy Laboratory. Unlike most previous numerical simulations, this study does not impose periodic boundary conditions and therefore is ideal for evaluating the effects of stability in large, but finite, wind farms. Changes in power generation, velocity deficit, rate of wake recovery, TKE, and surface temperature are quantified as a function of atmospheric stability. The sensitivity of these results to wind direction is also discussed.
NASA Astrophysics Data System (ADS)
Waquet, F.; Cairns, B.; Chowdhary, J.; Knobelspiesse, K.; Mishchenko, M. I.; Travis, L. D.
2006-12-01
Aerosols affect the climate directly by means of reflecting and absorbing sunlight, and indirectly by means of changing the formation and evolution of clouds. The uncertainties associated with these forcing are however highly uncertain, and may add up to be equal in magnitude but opposite in sign to the climate forcing caused by greenhouse gasses. To reduce these uncertainties, accurate retrievals of the effective size of the particles, their complex refractive index and the column number density are required. Intensity-based techniques for aerosol remote sensing from space only partially meet these requirements because they provide reasonable estimates of only the aerosol size distribution and optical thickness, and only over ocean. Laboratory and theoretical studies, on the other hand, show that the multi-angle, multi-spectral behavior of polarization of light scattered by aerosol particles contains sufficient information to provide all the relevant properties of these particles. The Research Scanning Polarimeter (RSP) instrument provides an opportunity to extend such studies to the polarimetric retrieval of aerosol properties from actual remote sensing data. This instrument provides photo-polarimetric measurements of a scene in 152 viewing angles covering an angular range of 120 degrees, and in 9 spectral bands covering a spectral range of 0.41 to 2.25 micrometers. It was recently deployed in the ALIVE field experiment in Oklahoma and the MILAGRO field experiment near Mexico City, in conjunction with many other space-, air-, and ground-based sensors, to study aerosols over land and ocean. The purpose of this study is to use data acquired during these field experiments by the RSP instrument and various other sensors to evaluate a new method for aerosol polarimetry over land. Our approach follows one of the so-called optimal methods described by Rodger (2004) with a few modifications. We describe the optimal method selected and modified for RSP-type data sets, and also how to include the noise and accuracy (including relative angular and relative spectral accuracy) of RSP measurements in the optimal estimate. This approach has been used for aerosol retrievals over ocean, and is now being extended to aerosol retrievals over land since multi-spectral polarized measurements allow the surface and aerosol properties to be retrieved simultaneously, as recently shown in Waquet et al. (2006). We present results of our RSP-based aerosol retrievals and compare them with independent retrievals for various atmospheric conditions that span from low aerosols loads dominated by spherical particles to high aerosol loads dominated by wind blown non-spherical soil particles. This study constitutes an important step in the validation of new algorithms for aerosol remote sensing using polarization measurements in preparation for the GLORY mission.
Radionuclide counting technique for measuring wind velocity and direction
NASA Technical Reports Server (NTRS)
Singh, J. J. (Inventor)
1984-01-01
An anemometer utilizing a radionuclide counting technique for measuring both the velocity and the direction of wind is described. A pendulum consisting of a wire and a ball with a source of radiation on the lower surface of the ball is positioned by the wind. Detectors and are located in a plane perpendicular to pendulum (no wind). The detectors are located on the circumferene of a circle and are equidistant from each other as well as the undisturbed (no wind) source ball position.
2015-07-02
Long term winds have etched the surface in Memnonia Sulci. Partial cemented surface materials are easily eroded by the wind, forming linear ridges called yardangs. The multiple direction of yardangs in this VIS image indicate that there were at least two different wind directions in this area. Orbit Number: 59217 Latitude: -8.33112 Longitude: 186.506 Instrument: VIS Captured: 2015-04-20 15:12 http://photojournal.jpl.nasa.gov/catalog/PIA19502
A sea surface reflectance model for (A)ATSR, and application to aerosol retrievals
NASA Astrophysics Data System (ADS)
Sayer, A. M.; Thomas, G. E.; Grainger, R. G.
2010-07-01
A model of the sea surface bidirectional reflectance distribution function (BRDF) is presented for the visible and near-IR channels (over the spectral range 550 nm to 1.6 μm) of the dual-viewing Along-Track Scanning Radiometers (ATSRs). The intended application is as part of the Oxford-RAL Aerosols and Clouds (ORAC) retrieval scheme. The model accounts for contributions to the observed reflectance from whitecaps, sun-glint and underlight. Uncertainties in the parametrisations used in the BRDF model are propagated through into the forward model and retrieved state. The new BRDF model offers improved coverage over previous methods, as retrievals are possible into the sun-glint region, through the ATSR dual-viewing system. The new model has been applied in the ORAC aerosol retrieval algorithm to process Advanced ATSR (AATSR) data from September 2004 over the south-eastern Pacific. The assumed error budget is shown to be generally appropriate, meaning the retrieved states are consistent with the measurements and a priori assumptions. The resulting field of aerosol optical depth (AOD) is compared with colocated MODIS-Terra observations, AERONET observations at Tahiti, and cruises over the oceanic region. MODIS and AATSR show similar spatial distributions of AOD, although MODIS reports values which are larger and more variable. It is suggested that assumptions in the MODIS aerosol retrieval algorithm may lead to a positive bias in MODIS AOD of order 0.01 at 550 nm over ocean regions where the wind speed is high.
A sea surface reflectance model for (A)ATSR, and application to aerosol retrievals
NASA Astrophysics Data System (ADS)
Sayer, A. M.; Thomas, G. E.; Grainger, R. G.
2010-03-01
A model of the sea surface bidirectional reflectance distribution function (BRDF) is presented for the visible and near-IR channels (over the spectral range 550 nm to 1.6 μm) of the dual-viewing Along-Track Scanning Radiometers (ATSRs). The intended application is as part of the Oxford-RAL Aerosols and Clouds (ORAC) retrieval scheme. The model accounts for contributions to the observed reflectance from whitecaps, sun-glint and underlight. Uncertainties in the parametrisations used in the BRDF model are propagated through into the forward model and retrieved state. The new BRDF model offers improved coverage over previous methods, as retrievals are possible into the sun-glint region, through the ATSR dual-viewing system. The new model has been applied in the ORAC aerosol retrieval algorithm to process Advanced ATSR (AATSR) data from September 2004 over the south-eastern Pacific. The assumed error budget is shown to be generally appropriate, meaning the retrieved states are consistent with the measurements and a priori assumptions. The resulting field of aerosol optical depth (AOD) is compared with colocated MODIS-Terra observations, AERONET observations at Tahiti, and cruises over the oceanic region. MODIS and AATSR show similar spatial distributions of AOD, although MODIS reports values which are larger and more variable. It is suggested that assumptions in the MODIS aerosol retrieval algorithm may lead to a positive bias in MODIS AOD of order 0.01 at 550 nm over ocean regions where the wind speed is high.
NASA Technical Reports Server (NTRS)
Moore, R. K.; Fung, A. K.; Dome, G. J.; Birrer, I. J.
1978-01-01
The wind direction properties of radar backscatter from the sea were empirically modelled using a cosine Fourier series through the 4th harmonic in wind direction (referenced to upwind). A comparison with 1975 JONSWAP (Joint North Sea Wave Project) scatterometer data, at incidence angles of 40 and 65, indicates that effects to third and fourth harmonics are negligible. Another important result is that the Fourier coefficients through the second harmonic are related to wind speed by a power law expression. A technique is also proposed to estimate the wind speed and direction over the ocean from two orthogonal scattering measurements. A comparison between two different types of sea scatter theories, one type presented by the work of Wright and the other by that of Chan and Fung, was made with recent scatterometer measurements. It demonstrates that a complete scattering model must include some provisions for the anisotropic characteristics of the sea scatter, and use a sea spectrum which depends upon wind speed.
Research and analysis on response characteristics of bracket-line coupling system under wind load
NASA Astrophysics Data System (ADS)
Jiayu, Zhao; Qing, Sun
2018-01-01
In this paper, a three-dimensional finite element model of bracket-line coupling system is established based on ANSYS software. Using the wind velocity time series which is generated by MATLAB as a power input, by comparing and analyzing the influence of different wind speeds and different wind attack angles, it is found that when 0 degree wind acts on the structure, wires have a certain damping effect in the bracket-line coupling system and at the same wind speed, the 90 degree direction is the most unfavorable wind direction for the whole structure according to the three kinds of angle wind calculated at present. In the bracket-line coupling system, the bracket structure is more sensitive to the increase of wind speed while the conductors are more sensitive to the change of wind attack angle.
Airborne Doppler Wind Lidar Post Data Processing Software DAPS-LV
NASA Technical Reports Server (NTRS)
Kavaya, Michael J. (Inventor); Beyon, Jeffrey Y. (Inventor); Koch, Grady J. (Inventor)
2015-01-01
Systems, methods, and devices of the present invention enable post processing of airborne Doppler wind LIDAR data. In an embodiment, airborne Doppler wind LIDAR data software written in LabVIEW may be provided and may run two versions of different airborne wind profiling algorithms. A first algorithm may be the Airborne Wind Profiling Algorithm for Doppler Wind LIDAR ("APOLO") using airborne wind LIDAR data from two orthogonal directions to estimate wind parameters, and a second algorithm may be a five direction based method using pseudo inverse functions to estimate wind parameters. The various embodiments may enable wind profiles to be compared using different algorithms, may enable wind profile data for long haul color displays to be generated, may display long haul color displays, and/or may enable archiving of data at user-selectable altitudes over a long observation period for data distribution and population.
Investigation and classification of spume droplets production mechanisms at hurricane winds
NASA Astrophysics Data System (ADS)
Troitskaya, Yuliya; Kandaurov, Alexander; Ermakova, Olga; Kozlov, Dmitry; Sergeev, Daniil; Zilitinkevich, Sergey
2016-04-01
Sea sprays are typical element of the marine atmospheric boundary layer of important environmental effect. There are still significant uncertainties in estimations of these effects due to insufficient knowledge on the sea spray generation function. The reason for that are difficulties of direct measurements and insufficient knowledge about the mechanisms of the spume droplet's formation. This study is concerned with the laboratory experiments for identification of mechanisms due to which a strong wind tears off water from the crest of the waves made at the high-speed wind-wave flume of IAP RAS. In order to obtain statistical data for the events on the surface, leading to the spray generation a high-speed video-filming was made using a horizontal and vertical shadow methods at rates of up to 10,000 fps in a wide range of wind speeds (20 - 35 m/s). Classification of phenomena responsible for generation of spume droplets was made. It was observed for the friction velocities from 0.8 to 1.5 m/s that the generation of the spume droplets is caused by 3 types of local phenomena: breaking of "projections" see e.g.[1], bursting of submerged bubbles [2,3] and bag breakup - it begins with increase of small-scale elevation of the surface, transforming to small "sails" then inflated to a water film bordered by a thicker rim and at last blows up, so the droplets are produced from rupture of the water film and fragmentation of the rim (the first report on the observation of a new mechanism of spume droplets', similar to bag-breakup regime was made in [4]). Statistical analysis of number of these phenomena at different winds showed that the "bag-breakup" is the major mechanism of spume droplets generation at strong and hurricane winds. Statistical distributions of observed "bags" geometrical parameters at different airflow velocities were retrieved from video-filming using specially developed software which allowed semi-automatic registering of image features. Acknowledgements: The work was supported by RFBR (Project No. 16-05-00839, 15-35-20953, 14-05-91767), Yu. Troitskaya, D. Sergeev, A. Kandaurov were partially supported by FP7 collaborative project No. 612610, experimental studies of spray generation mechanisms were supported by Russian Science Foundation (Grant No. 15-17-20009), post-processing was supported by Russian Science Foundation (Grant No. 14-17-00667). References: 1. Koga M. Direct production of droplets from breaking wind-waves - its observation by a multi-colored overlapping exposure photographing technique // Tellus. 1981. V.33. Issue 6. P. 552-563 2. Blanchard, D.C., The electrification of the atmosphere by particles from bubbles in the sea, Progr. Oceanogr., 1963. V. 1. P. 71-202. 3. Spiel D.E. On the birth of jet drops from bubbles bursting on water surfaces // J. Geophys. Res. 1995. V.100. P. 4995-5006 4. Villermaux, E. Fragmentation // Annu. Rev. Fluid Mech., 2007. V.39. P.419-446
The Aquarius Level 2 Algorithm
NASA Astrophysics Data System (ADS)
Meissner, T.; Wentz, F. J.; Hilburn, K. A.; Lagerloef, G. S.; Le Vine, D. M.
2012-12-01
The Aquarius L-band radiometer/scatterometer system is designed to provide monthly salinity maps at 150 km spatial scale to an accuracy of 0.2 psu. The sensor was launched on June 10, 2011, aboard the Argentine CONAE SAC-D spacecraft. The L-band radiometers and the scatterometer have been taking science data observations since August 25, 2011. This presentation discusses the current state of the Aquarius Level processing algorithm, which transforms radiometer counts ultimately into sea surface salinity (SSS). We focus on several topics that we have investigated since launch: 1. Updated Pointing A detailed check of the Aquarius pointing angles was performed, which consists in making adjustments of the two pointing angles, azimuth angle and off-nadir angle, for each horn. It has been found that the necessary adjustments for all 3 horns can be explained by a single offset for the antenna pointing if we introduce a constant offset in the roll angle by - 0.51 deg and the pitch angle by + 0.16 deg. 2. Antenna Patterns and Instrument Calibration In March 2012 JPL has produced a set of new antenna patterns using the GRASP software. Compared with the various pre-launch patterns those new patterns lead to an increase in the spillover coefficient by about 1%. We discuss its impact on several components of the Level 2 processing: the antenna pattern correction (APC), the correction for intrusion of galactic and solar radiation that is reflected from the ocean surface into the Aquarius field of view, and the correction of contamination from land surface radiation entering into the sidelobes. We show that the new antenna patterns result in a consistent calibration of all 3 Stokes parameters, which can be best demonstrated during spacecraft pitch maneuvers. 3. Cross Polarization Couplings of the 3rd Stokes Parameter Using the APC values for the cross polarization coupling of the 3rd Stokes parameter into the 1st and 2nd Stokes parameter lead to a spurious image of the 3rd Stokes parameter into the SSS and an unwanted bias of the SSS between the ascending and descending part of the swath. We show that in order to remove this effect it is necessary to fine tune the cross polarization coupling of the 3rd Stokes parameter. 4. Aquarius Wind Speed Retrievals and Impact on Surface Roughness Correction Backscatter measurements form the Aquarius scatterometer can be combined with radiometer observations to derive an Aquarius wind speed product. We show that if the weights for the various scatterometer and radiometer channels are chosen appropriately, this Aquarius wind speed matches the high performance of the WindSat and SSM/I retrieved wind speed. This results in an RMS accuracy of about 0.7 m/s when comparing with ground truth observations. This is a significant improvement over wind speeds from NCEP which are currently used in the Aquarius L2vel 2 processing and which have an RMS accuracy of about only 1.2 m/s. We discuss the impact of using this improved wind speed product on the Level 2 surface roughness correction and ultimately on the retrieved SSS.
Imaging the Top of the Solar Corona and the Young Solar Wind
NASA Astrophysics Data System (ADS)
DeForest, C. E.; Matthaeus, W. H.; Viall, N. M.; Cranmer, S. R.
2016-12-01
We present the first direct visual evidence of the quasi-stationary breakup of solar coronal structure and the rise of turbulence in the young solar wind, directly in the future flight path of Solar Probe. Although the corona and, more recently, the solar wind have both been observed directly with Thomson scattered light, the transition from the corona to the solar wind has remained a mystery. The corona itself is highly structured by the magnetic field and the outflowing solar wind, giving rise to radial "striae" - which comprise the familiar streamers, pseudostreamers, and rays. These striae are not visible in wide-field heliospheric images, nor are they clearly delineated with in-situ measurements of the solar wind. Using careful photometric analysis of the images from STEREO/HI-1, we have, for the first time, directly observed the breakup of radial coronal structure and the rise of nearly-isotropic turbulent structure in the outflowing slow solar wind plasma between 10° (40 Rs) and 20° (80 Rs) from the Sun. These observations are important not only for their direct science value, but for predicting and understanding the conditions expected near SPP as it flies through - and beyond - this final frontier of the heliosphere, the outer limits of the solar corona.
ERIC Educational Resources Information Center
Van Hooff, Johanna C.; Whitaker, T. Aisling; Ford, Ruth M.
2009-01-01
We investigated whether directed forgetting as elicited by the item-cueing method results solely from "differential rehearsal" of to-be-remembered vs. to-be-forgotten words or, additionally, from "inhibitory" processes that actively impair retrieval of to-be-forgotten words. During study, participants (N = 24) were instructed to remember half of a…
NASA Astrophysics Data System (ADS)
Torres, O.; Jethva, H. T.; Ahn, C.
2016-12-01
Aerosol-cloud interaction continues to be one of the leading uncertain components of climate models, primarily due to the lack of an adequate knowledge of the complex microphysical and radiative processes of the aerosol-cloud system. The situations when aerosols and clouds are found in the same atmospheric column, for instance, when light-absorbing aerosols such as biomass burning generated carbonaceous particles or wind-blown dust overlay low-level cloud decks, are commonly found over several regions of the world. Contrary to the known cooling effects of these aerosols in cloud-free scenario over dark surface, the overlapping situation of absorbing aerosols over cloud can potentially exert a significant level of atmospheric absorption and produces a positive radiative forcing (warming) at top-of-atmosphere. The magnitude of direct radiative effects of aerosols above cloud directly depends on the aerosol loading, microphysical and optical properties of the aerosol layer and the underlying cloud deck, and geometric cloud fraction. We help in addressing this problem by introducing a novel product of above-cloud aerosol optical depth (ACAOD) of absorbing aerosols retrieved from near-UV observations made by the Ozone Monitoring Instrument (OMI) on board NASA's Aura platform. Physically based on the strong `color ratio' effect in the near-UV caused by the spectral absorption of aerosols above cloud, the algorithm, formally named as OMACA, retrieves the optical depths of aerosols and clouds simultaneously under a prescribed state of atmosphere. Here, we present the algorithm architecture and results from an 11-year global record (2005-2015) including global climatology of frequency of occurrence and ACAOD. The theoretical uncertainty analysis and planned validation activities using measurements from upcoming field campaigns are also discussed.
A Ten-Year Global Record of Absorbing Aerosols Above Clouds from OMI's Near-UV Observations
NASA Technical Reports Server (NTRS)
Jethva, Hiren; Torres, Omar; Ahn, Changwoo
2016-01-01
Aerosol-cloud interaction continues to be one of the leading uncertain components of climate models, primarily due to the lack of an adequate knowledge of the complex microphysical and radiative processes associated with the aerosol-cloud system. The situations when aerosols and clouds are found in the same atmospheric column, for instance, when light-absorbing aerosols such as biomass burning generated carbonaceous particles or wind-blown dust overlay low-level cloud decks, are commonly found over several regional of the world. Contrary to the cloud-free scenario over dark surface, for which aerosols are known to produce a net cooling effect (negative radiative forcing) on climate, the overlapping situation of absorbing aerosols over cloud can potentially exert a significant level of atmospheric absorption and produces a positive radiative forcing at top-of-atmosphere. The magnitude of direct radiative effects of aerosols above cloud depends directly on the aerosol loading, microphysical-optical properties of the aerosol layer and the underlying cloud deck, and geometric cloud fraction. We help in addressing this problem by introducing a novel product of optical depth of absorbing aerosols above clouds retrieved from near-UV observations made by the Ozone Monitoring Instrument (OMI) on board NASA's Aura platform. The presence of absorbing aerosols above cloud reduces the upwelling radiation reflected by cloud and produces a strong 'color ratio' effect in the near-UV region, which can be unambiguously detected in the OMI measurements. Physically based on this effect, the OMACA algorithm retrieves the optical depths of aerosols and clouds simultaneously under a prescribed state of atmosphere. The algorithm architecture and results from a ten-year global record including global climatology of frequency of occurrence and above-cloud aerosol optical depth, and a discussion on related future field campaigns are presented.
Martian Dune Ripples as Indicators of Recent Surface Wind Patterns
NASA Astrophysics Data System (ADS)
Johnson, M.; Zimbelman, J. R.
2015-12-01
Sand dunes have been shown to preserve the most recent wind patterns in their ripple formations. This investigation continues the manual documentation of ripples on Martian dunes in order to assess surface wind flow. Study sites investigated must have clear HiRISE frames and be able to represent diverse locations across the surface, decided primarily by their spread of latitude and longitude values. Additionally, frames with stereo pairs are preferred because of their ability to create digital terrain models. This will assist in efforts to relate dune slopes and obstacles to ripple patterns. The search and analysis period resulted in 40 study sites with mapped ripples. Lines were drawn perpendicular to ripple crests across three adjacent ripples in order to document both ripple wavelength from line length and inferred wind direction from azimuth. It is not possible to infer a unique wind direction from ripple orientation alone and therefore these inferred directions have a 180 degree ambiguity. Initial results from all study sites support previous observations that the Martian surface has many dune types in areas with adequate sand supply. The complexity of ripple patterns varies greatly across sites as well as within individual sites. Some areas of uniform directionality for hundreds of kilometers suggest a unimodal wind regime while overlapping patterns suggest multiple dominant winds or seasonally varying winds. In most areas, form flow related to dune shape seems to have a large effect on orientation and must be considered along with the dune type. As long as the few steep slip faces on these small dunes are avoided, form flow can be considered the dominant cause of deviation from the regional wind direction. Regional results, wind roses, and comparisons to previous work will be presented for individual sites.
Barchan asymmetry as a proxy for wind conditions on Earth and Mars
NASA Astrophysics Data System (ADS)
Dwyer, Diarmuid; Bourke, Mary
2014-05-01
The absence of weather stations in many remote arid regions on Earth and Mars introduces a difficulty in testing atmospheric circulation models. While several proxies have been recommended for the reconstruction of wind regimes, they remain to be tested in a wide range of terrains. We examine the relationship between instrumented wind data and barchan asymmetric shape in order to ascertain if this dune attribute can be used to reliably infer aspects of a wind regime. The two study areas are located in La Joya, Peru and the Namib Desert, Namibia. Dune observations were made using high resolution satellite images available on Google Earth. The wind data was sourced from Wunderground and the National Peruvian Meteorological Service. Asymmetric barchans are reported to form in bimodal wind regimes (Tsoar, 1984). The barchan dune is oriented parallel to the strong wind regime and is modified by oblique gentler winds. Our analysis of wind data and dune form supports the Tsoar model for barchan asymmetry. Numerical simulations have shown that the duration of winds in bi-directional regimes also influences asymmetry (Parteli, 2014). Our analysis finds good agreement between the model simulations of Parteli et al (2014) and the instrument data for Namibia and Peru. We use our findings on Earth to infer formative wind direction and duration at five sites on Mars. These are the first maps of wind direction and relative duration for Mars. Our findings do not concur with previous estimates of wind direction derived either from the NASA Ames General Circulation Model or dune slipface orientation. We propose that the Parteli et al (2014) approach can be usefully applied to remote areas on Earth and Mars to extract data on relative wind duration and direction. Parteli, E.J.R., Duran, O., Bourke, M.C., Tsoar, H., Poschel, T., Herrmann, H.J., (in press). Origins of barchan dune asymmetry: Insights from numerical simulations. Aeolian Research. Tsoar, H., (1984). The formation of seif dunes from barchans - a discussion. Zeitschrift fur Geomorphologie, 28, 99-103.
NASA Astrophysics Data System (ADS)
Lanka, K.; Pan, M.; Wanders, N.; Kumar, D. N.; Wood, E. F.
2017-12-01
The satellite based passive and active microwave sensors enhanced our ability to retrieve soil moisture at global scales. It has been almost four decades since the first passive microwave satellite sensor was launched in 1978. Since then soil moisture has gained considerable attention in hydro-meteorological, climate, and agricultural research resulting in the deployment of two dedicated missions in the last decade, SMOS and SMAP. Signifying the four decades of microwave remote sensing of soil moisture, this work aims to present an overview of how our knowledge in this field has improved in terms of the design of sensors and their accuracy of retrieving soil moisture. We considered daily coverage, temporal performance, and spatial performance to assess the accuracy of products corresponding to eight passive sensors (SMMR, SSM/I, TMI, AMSR-E, WindSAT, AMSR2, SMOS and SMAP), two active sensors (ERS-Scatterometer, MetOp-ASCAT), and one active/passive merged soil moisture product (ESA-CCI combined product), using 1058 ISMN in-situ stations and the VIC LSM soil moisture simulations (VICSM) over the CONUS. Our analysis indicated that the daily coverage has increased from 30 % during 1980s to 85 % (during non-winter months) with the launch of dedicated soil moisture missions SMOS and SMAP. The temporal validation of passive and active soil moisture products with the ISMN data place the range of median RMSE as 0.06-0.10 m3/m3 and median correlation as 0.20-0.68. When TMI, AMSR-E and WindSAT are evaluated, the AMSR-E sensor is found to have produced the brightness temperatures with better quality, given that these sensors are paired with same retrieval algorithm (LPRM). The ASCAT product shows a significant improvement during the temporal validation of retrievals compared to its predecessor ERS, thanks to enhanced sensor configuration. The SMAP mission, through its improved sensor design and RFI handling, shows a high retrieval accuracy under all-topography conditions. Although the retrievals from the SMOS mission are affected by issues such as RFI, the accuracy is still comparable to or better than that of AMSR-E and ASCAT sensors. All soil moisture products have indicated better agreement with the ISMN data than the VICSM, which indicate that they produce soil moisture with better accuracy than the VICSM over the CONUS.
Sensitivity of Spacebased Microwave Radiometer Observations to Ocean Surface Evaporation
NASA Technical Reports Server (NTRS)
Liu, Timothy W.; Li, Li
2000-01-01
Ocean surface evaporation and the latent heat it carries are the major components of the hydrologic and thermal forcing on the global oceans. However, there is practically no direct in situ measurements. Evaporation estimated from bulk parameterization methods depends on the quality and distribution of volunteer-ship reports which are far less than satisfactory. The only way to monitor evaporation with sufficient temporal and spatial resolutions to study global environment changes is by spaceborne sensors. The estimation of seasonal-to-interannual variation of ocean evaporation, using spacebased measurements of wind speed, sea surface temperature (SST), and integrated water vapor, through bulk parameterization method,s was achieved with reasonable success over most of the global ocean, in the past decade. Because all the three geophysical parameters can be retrieved from the radiance at the frequencies measured by the Scanning Multichannel Microwave Radiometer (SMMR) on Nimbus-7, the feasibility of retrieving evaporation directly from the measured radiance was suggested and demonstrated using coincident brightness temperatures observed by SMMR and latent heat flux computed from ship data, in the monthly time scale. However, the operational microwave radiometers that followed SMMR, the Special Sensor Microwave/Imager (SSM/I), lack the low frequency channels which are sensitive to SST. This low frequency channels are again included in the microwave imager (TMI) of the recently launched Tropical Rain Measuring Mission (TRMM). The radiance at the frequencies observed by both TMI and SSM/I were simulated through an atmospheric radiative transfer model using ocean surface parameters and atmospheric temperature and humidity profiles produced by the reanalysis of the European Center for Medium Range Weather Forecast (ECMWF). From the same ECMWF data set, coincident evaporation is computed using a surface layer turbulent transfer model. The sensitivity of the radiance to evaporation over various seasons and geographic locations are examined. The microwave frequencies with radiance that are significant correlated with evaporation are identify and capability of estimating evaporation directly from TMI will be discussed.
Dulas, Michael R; Duarte, Audrey
2013-03-15
Neuroimaging evidence suggests that older adults exhibit deficits in frontally-mediated strategic retrieval processes, such as post-retrieval monitoring. Behavioral research suggests that explicitly directing attention toward source features during encoding may improve source memory for both young and older adults and alleviate age-related source memory impairments, in part, by reducing demands on post-retrieval monitoring. We investigated this hypothesis in the present event-related potential (ERP) study. Young and older adults attended to either objects and their presented color (source) or to the object alone during study and made color source memory decisions at test. We attempted to match performance between groups by halving the memory load for older adults. Behavioral results showed that, while direction of attention to object and color improved source memory for both groups, older adults benefited less than the young. ERPs revealed that demands on late right frontal effects, indicative of post-retrieval monitoring, were similarly reduced by directed attention at encoding for both groups. However, older adults showed reduced ERP correlates of recollection (parietal old-new effect), as well as a sustained widespread negativity, potentially indicative of memory searches for perceptual details in the face of impaired recollection. These results suggest that older adults, like the young, can engage in post-retrieval monitoring when source details are difficult to recover. However, impaired recollection may underlie persistent age-related source memory deficits, even when encoding is supported via directed attention. Copyright © 2013 Elsevier B.V. All rights reserved.
Dynamical Studies of the Middle Atmosphere Using High Resolution Doppler Imager Observations
NASA Technical Reports Server (NTRS)
Skinner, Wilbert
2002-01-01
This report summarizes the activities of NASA grant NAG5-11068, "Dynamicai Studies of the Middle Atmosphere Using High Resolution Doppler Imager Observations." The High Resolution Doppler Imager (HRDI) on the Upper Atmosphere Research Satellite (UARS) has been providing direct measurements of the Earth's horizontal wind field in the stratosphere, mesosphere and lower thermosphere. Mesospheric temperatures, ozone, and O((sup 1) D) densities, and stratospheric aerosol extinctions coefficients, are also retrieved. The goal of HRDI is to measure the vector winds in the stratosphere (10-40 km), mesosphere, and lower thermosphere (approximately 50-120 km) during the day, and the lower thermosphere at night (approximately 95 km) to an accuracy of 5 m/s. The horizontal wind vector is measured by observing the Doppler shift of rotational lines of molecular oxygen along two lines of sight. In addition to winds, temperatures and volume emission rates are determined in the mesosphere and lower thermosphere, from which ozone and O((sup 1) D) concentrations can be derived, and aerosol scattering coefficients are determined in the stratosphere. UARS was launched on September 12, 1991, into a 585-km circular orbit inclined 57 degrees to the equator HRDI was activated September 28, 1991 and following a period of checkout and adjustment of the instrument parameters, scientific observations began November 2, 199 1. HRDI operated nearly continuously from launch until April 1995. At that time the UARS solar array drive failed, forcing the instruments to time-share the available power. From July 1995 to July 1996 HRDI operated approximately 50% of the time. At that point, one of the three spacecraft batteries failed and from then until September 1998 the duty cycle was less than 20% per month, At that time it was determined that HRDI could operate during each daytime pass, which increased the daytime duty cycle to close to l00%, while nighttime operations were limited to about a week per month. In the fall of 1999, the second tape recorder failed requiring a real time contact with a TRDSS satellite to retrieve that data. This resulted in about 60% data collection efficiency. Finally, in the summer of 2000, the second star sensor failed requiring the spacecraft attitude to be controlled by a three axis magnetometer and sun sensor. This resulted in a loss of attitude knowledge but operations continue with the anticipation of correcting the attitude. A new method for determining the tide and mean structure from satellite data in conjunction with a new tidal model has been devised. For brevity, it shall be referred to as the TMAT or Tide-Mean Assimilation Technique. Most previous methods of tidal analysis are based on various ways of slicing the data set.
Hurricane Debby and the Appalachians Highlight New MISR Data Products
NASA Technical Reports Server (NTRS)
2000-01-01
The MISR team has developed new methods for retrieving information about clouds, airborne particles, and surface properties that capitalize on the instrument's unique, multi-angle imaging approach. This illustration, based upon results contained in sample products that have just been publicly released at the Atmospheric Sciences Data Center (ASDC), highlights some of these new capabilities. The ASDC, located at NASA's Langley Research Center, is the primary processing and archive center for MISR data (http://eosweb.larc.nasa.gov/).On August 21, 2000, during Terra orbit 3600, MISR imaged Hurricane Debby in the Atlantic Ocean. The first panel on the left is the MISR downward-looking (nadir) view of the storm's eastern edge. The next two panels show the results of a new approach that uses MISR's stereoscopic observations to retrieve cloud heights and winds. In the middle panel of this set, gradations from low to high cloud are depicted in shades ranging from blue to red. Since it takes seven minutes for all nine MISR cameras to view any location on Earth, and the clouds moved during this time, the data also contain information about wind speed and direction. Derived wind vectors, shown in the third panel, reveal Hurricane Debby's cyclonic motion. The highest wind speed measured is nearly 100 kilometers/hour. MISR obtains this type of information on a global basis, which will help scientists study the relationship between climate change and the three-dimensional characteristics of clouds.MISR imaged the eastern United States on March 6, 2000, during Terra orbit 1155. The first panel in the righthand set is the downward-looking (nadir) view, covering the region from Lake Ontario to northern Georgia, and spanning the Appalachian Mountains. The middle panel is the image taken by the forward-viewing 70.5-degree camera. At this increased slant angle, the line-of-sight through the atmosphere is three times longer, and a thin haze over the Appalachians is significantly more apparent. MISR uses this enhanced sensitivity along with the variation of brightness with angle to monitor particulate pollution and to measure haze properties. The third panel shows the airborne particle (aerosol) amount, derived using new methods that take advantage of MISR's moderately high spatial resolution at very oblique angles. The aerosol results are obtained at coarser resolution than the underlying images; gradations from blue to red indicate increasing aerosol abundance. These data indicate how airborne particles are interacting with sunlight, a measure of their impact on Earth's climate.MISR was built and is managed by NASA's Jet Propulsion Laboratory, Pasadena, CA, for NASA's Office of Earth Science, Washington, DC. The Terra satellite is managed by NASA's Goddard Space Flight Center, Greenbelt, MD. JPL is a division of the California Institute of Technology.The Development of Automatic and Controlled Inhibitory Retrieval Processes in True and False Recall
ERIC Educational Resources Information Center
Knott, Lauren M.; Howe, Mark L.; Wimmer, Marina C.; Dewhurst, Stephen A.
2011-01-01
In three experiments, we investigated the role of automatic and controlled inhibitory retrieval processes in true and false memory development in children and adults. Experiment 1 incorporated a directed forgetting task to examine controlled retrieval inhibition. Experiments 2 and 3 used a part-set cue and retrieval practice task to examine…
Bridge, Donna J; Cohen, Neal J; Voss, Joel L
2017-08-01
Memory can profoundly influence new learning, presumably because memory optimizes exploration of to-be-learned material. Although hippocampus and frontoparietal networks have been implicated in memory-guided exploration, their specific and interactive roles have not been identified. We examined eye movements during fMRI scanning to identify neural correlates of the influences of memory retrieval on exploration and learning. After retrieval of one object in a multiobject array, viewing was strategically directed away from the retrieved object toward nonretrieved objects, such that exploration was directed toward to-be-learned content. Retrieved objects later served as optimal reminder cues, indicating that exploration caused memory to become structured around the retrieved content. Hippocampal activity was associated with memory retrieval, whereas frontoparietal activity varied with strategic viewing patterns deployed after retrieval, thus providing spatiotemporal dissociation of memory retrieval from memory-guided learning strategies. Time-lagged fMRI connectivity analyses indicated that hippocampal activity predicted frontoparietal activity to a greater extent for a condition in which retrieval guided exploration occurred than for a passive control condition in which exploration was not influenced by retrieval. This demonstrates network-level interaction effects specific to influences of memory on strategic exploration. These findings show how memory guides behavior during learning and demonstrate distinct yet interactive hippocampal-frontoparietal roles in implementing strategic exploration behaviors that determine the fate of evolving memory representations.
Direct Torque Control of a Small Wind Turbine with a Sliding-Mode Speed Controller
NASA Astrophysics Data System (ADS)
Sri Lal Senanayaka, Jagath; Karimi, Hamid Reza; Robbersmyr, Kjell G.
2016-09-01
In this paper. the method of direct torque control in the presence of a sliding-mode speed controller is proposed for a small wind turbine being used in water heating applications. This concept and control system design can be expanded to grid connected or off-grid applications. Direct torque control of electrical machines has shown several advantages including very fast dynamics torque control over field-oriented control. Moreover. the torque and flux controllers in the direct torque control algorithms are based on hvsteretic controllers which are nonlinear. In the presence of a sliding-mode speed control. a nonlinear control system can be constructed which is matched for AC/DC conversion of the converter that gives fast responses with low overshoots. The main control objectives of the proposed small wind turbine can be maximum power point tracking and soft-stall power control. This small wind turbine consists of permanent magnet synchronous generator and external wind speed. and rotor speed measurements are not required for the system. However. a sensor is needed to detect the rated wind speed overpass events to activate proper speed references for the wind turbine. Based on the low-cost design requirement of small wind turbines. an available wind speed sensor can be modified. or a new sensor can be designed to get the required measurement. The simulation results will be provided to illustrate the excellent performance of the closed-loop control system in entire wind speed range (4-25 m/s).
Direct experimental determination of the topological winding number of skyrmions in Cu2OSeO3
NASA Astrophysics Data System (ADS)
Zhang, S. L.; van der Laan, G.; Hesjedal, T.
2017-02-01
The mathematical concept of topology has brought about significant advantages that allow for a fundamental understanding of the underlying physics of a system. In magnetism, the topology of spin order manifests itself in the topological winding number which plays a pivotal role for the determination of the emergent properties of a system. However, the direct experimental determination of the topological winding number of a magnetically ordered system remains elusive. Here, we present a direct relationship between the topological winding number of the spin texture and the polarized resonant X-ray scattering process. This relationship provides a one-to-one correspondence between the measured scattering signal and the winding number. We demonstrate that the exact topological quantities of the skyrmion material Cu2OSeO3 can be directly experimentally determined this way. This technique has the potential to be applicable to a wide range of materials, allowing for a direct determination of their topological properties.
European shags optimize their flight behavior according to wind conditions.
Kogure, Yukihisa; Sato, Katsufumi; Watanuki, Yutaka; Wanless, Sarah; Daunt, Francis
2016-02-01
Aerodynamics results in two characteristic speeds of flying birds: the minimum power speed and the maximum range speed. The minimum power speed requires the lowest rate of energy expenditure per unit time to stay airborne and the maximum range speed maximizes air distance traveled per unit of energy consumed. Therefore, if birds aim to minimize the cost of transport under a range of wind conditions, they are predicted to fly at the maximum range speed. Furthermore, take-off is predicted to be strongly affected by wind speed and direction. To investigate the effect of wind conditions on take-off and cruising flight behavior, we equipped 14 European shags Phalacrocorax aristotelis with a back-mounted GPS logger to measure position and hence ground speed, and a neck-mounted accelerometer to record wing beat frequency and strength. Local wind conditions were recorded during the deployment period. Shags always took off into the wind regardless of their intended destination and take-off duration was correlated negatively with wind speed. We combined ground speed and direction during the cruising phase with wind speed and direction to estimate air speed and direction. Whilst ground speed was highly variable, air speed was comparatively stable, although it increased significantly during strong head winds, because of stronger wing beats. The increased air speeds in head winds suggest that birds fly at the maximum range speed, not at the minimum power speed. Our study demonstrates that European shags actively adjust their flight behavior to utilize wind power to minimize the costs of take-off and cruising flight. © 2016. Published by The Company of Biologists Ltd.
NASA Astrophysics Data System (ADS)
Zhou, Yipin; Brunner, Dominik; Hueglin, Christoph; Henne, Stephan; Staehelin, Johannes
2012-01-01
This study analyzes the changes of NO 2 vertical tropospheric columns (VTCs) over Europe during the period 2004-2009 using a statistical model, based on a homogeneous high-quality data set of observations of the Ozone Monitoring Instrument OMI. At each point of a regular grid, a Generalized Additive regression Model (GAM) with non-parametric model terms was fitted to the observed columns to describe the most relevant factors contributing to the observed variability in NO 2 VTCs. These factors include annual cycle, day of week, wind, precipitation, retrieved cloud radiance fraction, and trend. Significant negative changes are found in areas with large anthropogenic sources over Western Europe (mostly from -4 to -8% year -1). The overall negative changes are consistent with EMEP/CEIP (European Monitoring and Evaluation Programme/Center on Emission Inventories and Projections) emission estimations and previous trend studies. However, we found remarkably large spatial variations in NO 2 column changes within individual regions. Our analysis shows that in particular the NO x emissions from Spanish power plants (from -10 to approx. -20% year -1) and over the center of England (up to approx. -12% year -1) have been strongly reduced in the past few years, at a rate exceeding the reported emission changes averaged over the individual country. A number of other features of the temporal behavior of the time series of tropospheric NO 2 distributions over Europe were quantified, including clear annual and weekly cycles. Modeling the influence of wind considering both wind direction and wind speed not only improves the accuracy of the trend results, but can be particularly interesting for identifying the sources of the NO 2 VTCs and the transport pathways of air pollutants. The effects of precipitation are observed to vary obviously during warm and cold months, due to the strong seasonal dependence of soil NO x emissions.
NASA Technical Reports Server (NTRS)
Smith, O. E.
1976-01-01
The techniques are presented to derive several statistical wind models. The techniques are from the properties of the multivariate normal probability function. Assuming that the winds can be considered as bivariate normally distributed, then (1) the wind components and conditional wind components are univariate normally distributed, (2) the wind speed is Rayleigh distributed, (3) the conditional distribution of wind speed given a wind direction is Rayleigh distributed, and (4) the frequency of wind direction can be derived. All of these distributions are derived from the 5-sample parameter of wind for the bivariate normal distribution. By further assuming that the winds at two altitudes are quadravariate normally distributed, then the vector wind shear is bivariate normally distributed and the modulus of the vector wind shear is Rayleigh distributed. The conditional probability of wind component shears given a wind component is normally distributed. Examples of these and other properties of the multivariate normal probability distribution function as applied to Cape Kennedy, Florida, and Vandenberg AFB, California, wind data samples are given. A technique to develop a synthetic vector wind profile model of interest to aerospace vehicle applications is presented.
Cho, Hyoun-Myoung; Zhang, Zhibo; Meyer, Kerry; Lebsock, Matthew; Platnick, Steven; Ackerman, Andrew S; Di Girolamo, Larry; C-Labonnote, Laurent; Cornet, Céline; Riedi, Jerome; Holz, Robert E
2015-05-16
Moderate Resolution Imaging Spectroradiometer (MODIS) retrieves cloud droplet effective radius ( r e ) and optical thickness ( τ ) by projecting observed cloud reflectances onto a precomputed look-up table (LUT). When observations fall outside of the LUT, the retrieval is considered "failed" because no combination of τ and r e within the LUT can explain the observed cloud reflectances. In this study, the frequency and potential causes of failed MODIS retrievals for marine liquid phase (MLP) clouds are analyzed based on 1 year of Aqua MODIS Collection 6 products and collocated CALIOP and CloudSat observations. The retrieval based on the 0.86 µm and 2.1 µm MODIS channel combination has an overall failure rate of about 16% (10% for the 0.86 µm and 3.7 µm combination). The failure rates are lower over stratocumulus regimes and higher over the broken trade wind cumulus regimes. The leading type of failure is the " r e too large" failure accounting for 60%-85% of all failed retrievals. The rest is mostly due to the " r e too small" or τ retrieval failures. Enhanced retrieval failure rates are found when MLP cloud pixels are partially cloudy or have high subpixel inhomogeneity, are located at special Sun-satellite viewing geometries such as sunglint, large viewing or solar zenith angles, or cloudbow and glory angles, or are subject to cloud masking, cloud overlapping, and/or cloud phase retrieval issues. The majority (more than 84%) of failed retrievals along the CALIPSO track can be attributed to at least one or more of these potential reasons. The collocated CloudSat radar reflectivity observations reveal that the remaining failed retrievals are often precipitating. It remains an open question whether the extremely large r e values observed in these clouds are the consequence of true cloud microphysics or still due to artifacts not included in this study.
Cho, Hyoun‐Myoung; Meyer, Kerry; Lebsock, Matthew; Platnick, Steven; Ackerman, Andrew S.; Di Girolamo, Larry; C.‐Labonnote, Laurent; Cornet, Céline; Riedi, Jerome; Holz, Robert E.
2015-01-01
Abstract Moderate Resolution Imaging Spectroradiometer (MODIS) retrieves cloud droplet effective radius (r e) and optical thickness (τ) by projecting observed cloud reflectances onto a precomputed look‐up table (LUT). When observations fall outside of the LUT, the retrieval is considered “failed” because no combination of τ and r e within the LUT can explain the observed cloud reflectances. In this study, the frequency and potential causes of failed MODIS retrievals for marine liquid phase (MLP) clouds are analyzed based on 1 year of Aqua MODIS Collection 6 products and collocated CALIOP and CloudSat observations. The retrieval based on the 0.86 µm and 2.1 µm MODIS channel combination has an overall failure rate of about 16% (10% for the 0.86 µm and 3.7 µm combination). The failure rates are lower over stratocumulus regimes and higher over the broken trade wind cumulus regimes. The leading type of failure is the “r e too large” failure accounting for 60%–85% of all failed retrievals. The rest is mostly due to the “r e too small” or τ retrieval failures. Enhanced retrieval failure rates are found when MLP cloud pixels are partially cloudy or have high subpixel inhomogeneity, are located at special Sun‐satellite viewing geometries such as sunglint, large viewing or solar zenith angles, or cloudbow and glory angles, or are subject to cloud masking, cloud overlapping, and/or cloud phase retrieval issues. The majority (more than 84%) of failed retrievals along the CALIPSO track can be attributed to at least one or more of these potential reasons. The collocated CloudSat radar reflectivity observations reveal that the remaining failed retrievals are often precipitating. It remains an open question whether the extremely large r e values observed in these clouds are the consequence of true cloud microphysics or still due to artifacts not included in this study. PMID:27656330
Wang, Jiyu; Ding, Wenbo; Pan, Lun; Wu, Changsheng; Yu, Hua; Yang, Lijun; Liao, Ruijin; Wang, Zhong Lin
2018-04-24
The development of the Internet of Things has brought new challenges to the corresponding distributed sensor systems. Self-powered sensors that can perceive and respond to environmental stimuli without an external power supply are highly desirable. In this paper, a self-powered wind sensor system based on an anemometer triboelectric nanogenerator (a-TENG, free-standing mode) and a wind vane triboelectric nanogenerator (v-TENG, single-electrode mode) is proposed for simultaneously detecting wind speed and direction. A soft friction mode is adopted instead of a typical rigid friction for largely enhancing the output performance of the TENG. The design parameters including size, unit central angle, and applied materials are optimized to enhance sensitivity, resolution, and wide measurement scale. The optimized a-TENG could deliver an open-circuit voltage of 88 V and short-circuit current of 6.3 μA, corresponding to a maximum power output of 0.47 mW (wind speed of 6.0 m/s), which is capable of driving electronics for data transmission and storage. The current peak value of the a-TENG signal is used for analyzing wind speed for less energy consumption. Moreover, the output characteristics of a v-TENG are further explored, with six actual operation situations, and the v-TENG delivers fast response to the incoming wind and accurately outputs the wind direction data. As a wind sensor system, wind speed ranging from 2.7 to 8.0 m/s can be well detected (consistent with a commercial sensor) and eight regular directions can be monitored. Therefore, the fabricated wind sensor system has great potential in wireless environmental monitoring applications.
Initializing a Mesoscale Boundary-Layer Model with Radiosonde Observations
NASA Astrophysics Data System (ADS)
Berri, Guillermo J.; Bertossa, Germán
2018-01-01
A mesoscale boundary-layer model is used to simulate low-level regional wind fields over the La Plata River of South America, a region characterized by a strong daily cycle of land-river surface-temperature contrast and low-level circulations of sea-land breeze type. The initial and boundary conditions are defined from a limited number of local observations and the upper boundary condition is taken from the only radiosonde observations available in the region. The study considers 14 different upper boundary conditions defined from the radiosonde data at standard levels, significant levels, level of the inversion base and interpolated levels at fixed heights, all of them within the first 1500 m. The period of analysis is 1994-2008 during which eight daily observations from 13 weather stations of the region are used to validate the 24-h surface-wind forecast. The model errors are defined as the root-mean-square of relative error in wind-direction frequency distribution and mean wind speed per wind sector. Wind-direction errors are greater than wind-speed errors and show significant dispersion among the different upper boundary conditions, not present in wind speed, revealing a sensitivity to the initialization method. The wind-direction errors show a well-defined daily cycle, not evident in wind speed, with the minimum at noon and the maximum at dusk, but no systematic deterioration with time. The errors grow with the height of the upper boundary condition level, in particular wind direction, and double the errors obtained when the upper boundary condition is defined from the lower levels. The conclusion is that defining the model upper boundary condition from radiosonde data closer to the ground minimizes the low-level wind-field errors throughout the region.
Factors associated with NO2 and NOX concentration gradients near a highway
NASA Astrophysics Data System (ADS)
Richmond-Bryant, J.; Snyder, M. G.; Owen, R. C.; Kimbrough, S.
2018-02-01
The objective of this research is to learn how the near-road gradient, in which NO2 and NOX (NO + NO2) concentrations are elevated, varies with changes in meteorological and traffic variables. Measurements of NO2 and NOX were obtained east of I-15 in Las Vegas and fit to functions whose slopes (dCNO2/dx and dCNOX/dx, respectively) characterize the size of the near-road zone where NO2 and NOX concentrations from mobile sources on the highway are elevated. These metrics were used to learn about the near-road gradient by modeling dCNO2/dx and dCNOX/dx as functions of meteorological variables (e.g., wind direction, wind speed), traffic (vehicle count), NOX concentration upwind of the road, and O3 concentration at two fixed-site ambient monitors. Generalized additive models (GAM) were used to model dCNO2/dx and dCNOX/dx versus the independent variables because they allowed for nonlinearity of the variables being compared. When data from all wind directions were included in the analysis, variability in O3 concentration comprised the largest proportion of variability in dCNO2/dx, followed by variability in wind direction. In a second analysis constrained to winds from the west, variability in O3 concentration remained the largest contributor to variability in dCNO2/dx, but the relative contribution of variability in wind speed to variability in dCNO2/dx increased relative to its contribution for the all-wind analysis. When data from all wind directions were analyzed, variability in wind direction was by far the largest contributor to variability in dCNOX/dx, with smaller contributions from hour of day and upwind NOX concentration. When only winds from the west were analyzed, variability in upwind NOX concentration, wind speed, hour of day, and traffic count all were associated with variability in dCNOX/dx. Increases in O3 concentration were associated with increased magnitude near-road dCNO2/dx, possibly shrinking the zone of elevated concentrations occurring near roads. Wind direction parallel to the highway was also related to an increased magnitude of both dCNO2/dx and dCNOX/dx, again likely shrinking the zone of elevated concentrations occurring near roads. Wind direction perpendicular to the road decreased the magnitude of dCNO2/dx and dCNOX/dx and likely contributed to growth of the zone of elevated concentrations occurring near roads. Thus, variability in near-road concentrations is influenced by local meteorology and ambient O3 concentration.
40 CFR 69.41 - New exemptions.
Code of Federal Regulations, 2010 CFR
2010-07-01
... operating specifications. At a minimum, the wind direction data will be monitored, collected and reported as 1-hour averages, starting on the hour. If the average wind direction for a given hour is from within the designated sector, the wind will be deemed to have flowed from within the sector for that hour...
40 CFR 69.41 - New exemptions.
Code of Federal Regulations, 2011 CFR
2011-07-01
... operating specifications. At a minimum, the wind direction data will be monitored, collected and reported as 1-hour averages, starting on the hour. If the average wind direction for a given hour is from within the designated sector, the wind will be deemed to have flowed from within the sector for that hour...
Microphone directionality, pre-emphasis filter, and wind noise in cochlear implants.
Chung, King; McKibben, Nicholas
2011-10-01
Wind noise can be a nuisance or a debilitating masker for cochlear implant users in outdoor environments. Previous studies indicated that wind noise at the microphone/hearing aid output had high levels of low-frequency energy and the amount of noise generated is related to the microphone directionality. Currently, cochlear implants only offer either directional microphones or omnidirectional microphones for users at-large. As all cochlear implants utilize pre-emphasis filters to reduce low-frequency energy before the signal is encoded, effective wind noise reduction algorithms for hearing aids might not be applicable for cochlear implants. The purposes of this study were to investigate the effect of microphone directionality on speech recognition and perceived sound quality of cochlear implant users in wind noise and to derive effective wind noise reduction strategies for cochlear implants. A repeated-measure design was used to examine the effects of spectral and temporal masking created by wind noise recorded through directional and omnidirectional microphones and the effects of pre-emphasis filters on cochlear implant performance. A digital hearing aid was programmed to have linear amplification and relatively flat in-situ frequency responses for the directional and omnidirectional modes. The hearing aid output was then recorded from 0 to 360° at flow velocities of 4.5 and 13.5 m/sec in a quiet wind tunnel. Sixteen postlingually deafened adult cochlear implant listeners who reported to be able to communicate on the phone with friends and family without text messages participated in the study. Cochlear implant users listened to speech in wind noise recorded at locations that the directional and omnidirectional microphones yielded the lowest noise levels. Cochlear implant listeners repeated the sentences and rated the sound quality of the testing materials. Spectral and temporal characteristics of flow noise, as well as speech and/or noise characteristics before and after the pre-emphasis filter, were analyzed. Correlation coefficients between speech recognition scores and crest factors of wind noise before and after pre-emphasis filtering were also calculated. Listeners obtained higher scores using the omnidirectional than the directional microphone mode at 13.5 m/sec, but they obtained similar speech recognition scores for the two microphone modes at 4.5 m/sec. Higher correlation coefficients were obtained between speech recognition scores and crest factors of wind noise after pre-emphasis filtering rather than before filtering. Cochlear implant users would benefit from both directional and omnidirectional microphones to reduce far-field background noise and near-field wind noise. Automatic microphone switching algorithms can be more effective if the incoming signal were analyzed after pre-emphasis filters for microphone switching decisions. American Academy of Audiology.
SeaWinds Global Coverage with Detail of Hurricane Floyd
2000-05-07
The distribution of ocean surface winds over the Atlantic Ocean, based on September 1999 data from NASA SeaWinds instrument on the QuikScat satellite, shows wind direction, superimposed on the color image indicating wind speed.
Wind turbine having a direct-drive drivetrain
Bevington, Christopher M.; Bywaters, Garrett L.; Coleman, Clint C.; Costin, Daniel P.; Danforth, William L.; Lynch, Jonathan A.; Rolland, Robert H.
2011-02-22
A wind turbine comprising an electrical generator that includes a rotor assembly. A wind rotor that includes a wind rotor hub is directly coupled to the rotor assembly via a simplified connection. The wind rotor and generator rotor assembly are rotatably mounted on a central spindle via a bearing assembly. The wind rotor hub includes an opening having a diameter larger than the outside diameter of the central spindle adjacent the bearing assembly so as to allow access to the bearing assembly from a cavity inside the wind rotor hub. The spindle is attached to a turret supported by a tower. Each of the spindle, turret and tower has an interior cavity that permits personnel to traverse therethrough to the cavity of the wind rotor hub. The wind turbine further includes a frictional braking system for slowing, stopping or keeping stopped the rotation of the wind rotor and rotor assembly.
The dune effect on sand-transporting winds on Mars.
Jackson, Derek W T; Bourke, Mary C; Smyth, Thomas A G
2015-11-05
Wind on Mars is a significant agent of contemporary surface change, yet the absence of in situ meteorological data hampers the understanding of surface-atmospheric interactions. Airflow models at length scales relevant to landform size now enable examination of conditions that might activate even small-scale bedforms (ripples) under certain contemporary wind regimes. Ripples have the potential to be used as modern 'wind vanes' on Mars. Here we use 3D airflow modelling to demonstrate that local dune topography exerts a strong influence on wind speed and direction and that ripple movement likely reflects steered wind direction for certain dune ridge shapes. The poor correlation of dune orientation with effective sand-transporting winds suggests that large dunes may not be mobile under modelled wind scenarios. This work highlights the need to first model winds at high resolution before inferring regional wind patterns from ripple movement or dune orientations on the surface of Mars today.
The dune effect on sand-transporting winds on Mars
Jackson, Derek W. T.; Bourke, Mary C; Smyth, Thomas A. G.
2015-01-01
Wind on Mars is a significant agent of contemporary surface change, yet the absence of in situ meteorological data hampers the understanding of surface–atmospheric interactions. Airflow models at length scales relevant to landform size now enable examination of conditions that might activate even small-scale bedforms (ripples) under certain contemporary wind regimes. Ripples have the potential to be used as modern ‘wind vanes' on Mars. Here we use 3D airflow modelling to demonstrate that local dune topography exerts a strong influence on wind speed and direction and that ripple movement likely reflects steered wind direction for certain dune ridge shapes. The poor correlation of dune orientation with effective sand-transporting winds suggests that large dunes may not be mobile under modelled wind scenarios. This work highlights the need to first model winds at high resolution before inferring regional wind patterns from ripple movement or dune orientations on the surface of Mars today. PMID:26537669
NASA Technical Reports Server (NTRS)
Brucks, J. T.; Leming, T. D.; Jones, W. L.
1980-01-01
Sea surface wind stress measurements recorded by a sonic anemometer are correlated with airborne scatterometer measurements of ocean roughness (cross section of radar backscatter) to establish the accuracy of remotely sensed data and assist in the definition of geophysical algorithms for the scatterometer sensor aboard Seasat A. Results of this investigation are as follows: Comparison of scatterometer and sonic anemometer wind stress measurements are good for the majority of cases; however, a tendency exists for scatterometer wind stress to be somewhat high for higher wind conditions experienced in this experiment (6-9 m/s). The scatterometer wind speed algorithm tends to overcompute the higher wind speeds by approximately 0.5 m/s. This is a direct result of the scatterometer overestimate of wind stress from which wind speeds are derived. Algorithmic derivations of wind speed and direction are, in most comparisons, within accuracies defined by Seasat A scatterometer sensor specifications.
2016-06-29
These dark dunes are influenced by local topography. The shape and orientation of dunes can usually tell us about wind direction, but in this image, the dune-forms are very complex, so it's difficult to know the wind direction. However, a circular depression (probably an old and infilled impact crater) has limited the amount of sand available for dune formation and influenced local winds. As a result, the dunes here form distinct dots and dashes. The "dashes" are linear dunes formed by bi-directional winds, which are not traveling parallel to the dune. Instead, the combined effect of winds from two directions at right angles to the dunes, funnels material into a linear shape. The smaller "dots" (called "barchanoid dunes") occur where there is some interruption to the process forming those linear dunes. This process is not well understood at present and is one motivation for HiRISE to image this area. http://photojournal.jpl.nasa.gov/catalog/PIA20735
Calibration of a Direct Detection Doppler Wind Lidar System using a Wind Tunnel
NASA Astrophysics Data System (ADS)
Rees, David
2012-07-01
As a critical stage of a Project to develop an airborne Direct-Detection Doppler Wind Lidar System, it was possible to exploit a Wind Tunnel of the VZLU, Prague, Czech Republic for a comprehensive series of tests against calibrated Air Speed generated by the Wind Tunnel. The initial results from these test sequences will be presented. The rms wind speed errors were of order 0.25 m/sec - very satisfactory for this class of Doppler Wind Lidar measurements. The next stage of this Project will exploit a more highly-developed laser and detection system for measurements of wind shear, wake vortex and other potentially hazardous meteorological phenomena at Airports. Following the end of this Project, key parts of the instrumentation will be used for routine ground-based Doppler Wind Lidar measurements of the troposphere and stratosphere.
NASA Astrophysics Data System (ADS)
Liu, Xinjie; Liu, Liangyun
2017-04-01
The Fraunhofer Line Discrimination (FLD) principle is the main approach used for the retrieval of solar-induced chlorophyll fluorescence (SIF). The basic assumption of the FLD principle is that the apparent reflectance spectra without SIF in-filling are smooth in the region of the absorption bands. However, in fact, this assumption is not valid due to the so-called "direct radiation in-filling" effect caused by the non-linear contribution of direct and diffuse radiation at the oxygen absorption bands, which are widely used for ground-based SIF retrieval. In this study, we first analyzed the physical mechanism of the direct radiation in-filling effect on the oxygen absorption bands and found that the bias in the SIF retrieval caused by the direct radiation in-filling effect at the O2-A band was less than 20% based on the use of a simulated dataset. Secondly, we established a simple correction model of the direct radiation in-filling effect. We found that the direct radiation in-filling effect at the O2-A band was directly proportional to the difference between the reflectance of the direct and diffuse radiation, and that the coefficient of proportionality was well correlated with the diffuse-to-global radiation ratio in the form of a quadratic function. The coefficient of determination (R-squared) for this correlation was 0.97. Finally, the model was validated using both simulated and field datasets. The validation results show that the bias in the SIF retrieval caused by the direct radiation in-filling effect can be efficiently corrected using the model proposed in this paper. This study thus provides a possible approach to estimating and correcting for the direct radiation-infilling effect using prior knowledge of the BRDF characteristics of direct and diffuse radiation for specific targets.
Janus: Graphical Software for Analyzing In-Situ Measurements of Solar-Wind Ions
NASA Astrophysics Data System (ADS)
Maruca, B.; Stevens, M. L.; Kasper, J. C.; Korreck, K. E.
2016-12-01
In-situ observations of solar-wind ions provide tremendous insights into the physics of space plasmas. Instrument on spacecraft measure distributions of ion energies, which can be processed into scientifically useful data (e.g., values for ion densities and temperatures). This analysis requires a strong, technical understanding of the instrument, so it has traditionally been carried out by the instrument teams using automated software that they had developed for that purpose. The automated routines are optimized for typical solar-wind conditions, so they can fail to capture the complex (and scientifically interesting) microphysics of transient solar-wind - such as coronal mass ejections (CME's) and co-rotating interaction regions (CIR's) - which are often better analyzed manually.This presentation reports on the ongoing development of Janus, a new software package for processing in-situ measurement of solar-wind ions. Janus will provide user with an easy-to-use graphical user interface (GUI) for carrying out highly customized analyses. Transparent to the user, Janus will automatically handle the most technical tasks (e.g., the retrieval and calibration of measurements). For the first time, users with only limited knowledge about the instruments (e.g., non-instrumentalists and students) will be able to easily process measurements of solar-wind ions. Version 1 of Janus focuses specifically on such measurements from the Wind spacecraft's Faraday Cups and is slated for public release in time for this presentation.
Retrieval System for Calcined Waste for the Idaho Cleanup Project - 12104
DOE Office of Scientific and Technical Information (OSTI.GOV)
Eastman, Randy L.; Johnston, Beau A.; Lower, Danielle E.
This paper describes the conceptual approach to retrieve radioactive calcine waste, hereafter called calcine, from stainless steel storage bins contained within concrete vaults. The retrieval system will allow evacuation of the granular solids (calcine) from the storage bins through the use of stationary vacuum nozzles. The nozzles will use air jets for calcine fluidization and will be able to rotate and direct the fluidization or displacement of the calcine within the bin. Each bin will have a single retrieval system installed prior to operation to prevent worker exposure to the high radiation fields. The addition of an articulated camera armmore » will allow for operations monitoring and will be equipped with contingency tools to aid in calcine removal. Possible challenges (calcine bridging and rat-holing) associated with calcine retrieval and transport, including potential solutions for bin pressurization, calcine fluidization and waste confinement, are also addressed. The Calcine Disposition Project has the responsibility to retrieve, treat, and package HLW calcine. The calcine retrieval system has been designed to incorporate the functions and technical characteristics as established by the retrieval system functional analysis. By adequately implementing the highest ranking technical characteristics into the design of the retrieval system, the system will be able to satisfy the functional requirements. The retrieval system conceptual design provides the means for removing bulk calcine from the bins of the CSSF vaults. Top-down vacuum retrieval coupled with an articulating camera arm will allow for a robust, contained process capable of evacuating bulk calcine from bins and transporting it to the processing facility. The system is designed to fluidize, vacuum, transport and direct the calcine from its current location to the CSSF roof-top transport lines. An articulating camera arm, deployed through an adjacent access riser, will work in conjunction with the retrieval nozzle to aid in calcine fluidization, remote viewing, clumped calcine breaking and recovery from off-normal conditions. As the design of the retrieval system progresses from conceptual to preliminary, increasing attention will be directed toward detailed design and proof-of- concept testing. (authors)« less
NASA Technical Reports Server (NTRS)
Loeb, N. G.; Kato, S.
2002-01-01
Nine months of CERES/TRMM broadband fluxes combined with VIRS high-resolution imager measurements are used to estimate the daily average direct radiative effect of aerosols for clear-sky conditions over the tropical oceans. On average, aerosols have a cooling effect over the tropics of 4.6 +/- 1 W/sq m. The magnitude is approx.2 W/sq m smaller over the southern tropical oceans than it is over northern tropical oceans. The direct effect derived from CERES is highly correlated with coincident aerosol optical depth retrievals inferred from 0.63 microns VIRS radiances (correlation coefficient of 0.96). The slope of the regression line is approx. -32 W/sq m/t over the equatorial Pacific Ocean, but changes both regionally and seasonally, depending on the aerosol characteristics. Near sources of biomass burning and desert dust, the aerosol direct effect reaches -25 W sq m to -30 W/sq m. The direct effect from CERES also shows a dependence on wind speed. The reason for this dependence is unclear-it may be due to increased aerosol (e.g. sea-salt or aerosol transport) or increased surface reflection (e.g. due to whitecaps). The uncertainty in the tropical average direct effect from CERES is approx. 1 W/sq m (approx. 20%) due mainly to cloud contamination, the radiance-to-flux conversion, and instrument calibration. By comparison, uncertainties in the direct effect from the ERBE and CERES "ERBE-Like" products are a factor of 3 to 5 larger.
Analysis of environmental dispersion in a wetland flow under the effect of wind: Extended solution
NASA Astrophysics Data System (ADS)
Wang, Huilin; Huai, Wenxin
2018-02-01
The accurate analysis of the contaminant transport process in wetland flows is essential for environmental assessment. However, dispersivity assessment becomes complicated when the wind strength and direction are taken into consideration. Prior studies illustrating the wind effect on environmental dispersion in wetland flows simply focused on the mean longitudinal concentration distribution. Moreover, the results obtained by these analyses are not accurate when done on a smaller scale, namely, the initial stage of the contaminant transport process. By combining the concentration moments method (the Aris' method) and Gill's expansion theory, the previous researches on environmental dispersion in wetland flows with effect of wind have been extended. By adopting up to 4th-order moments, the wind effect-as illustrated by dimensionless parameters Er (wind force) and ω (wind direction)-on kurtosis and skewness is discussed, the up to 4th-order vertical concentration distribution is obtained, and the two-dimensional concentration distribution is illustrated. This work demonstrates that wind intensity and direction can significantly affect the contaminant dispersion. Moreover, the study presents a more accurate analytical solution of environmental dispersion in wetland flows under various wind conditions.
Schemel, Laurence E.
2002-01-01
Meteorological data were collected during 1998-2001 at the Port of Redwood City, California, to support hydrologic studies in South San Francisco Bay. The measured meteorological variables were air temperature, atmospheric pressure, quantum flux (insolation), and four parameters of wind speed and direction: scalar mean horizontal wind speed, (vector) resultant horizontal wind speed, resultant wind direction, and standard deviation of the wind direction. Hourly mean values based on measurements at five-minute intervals were logged at the site. Daily mean values were computed for temperature, infolation, pressure, and scalar wind speed. Daily mean values for 1998-2001 are described in this report, and a short record of hourly mean values is compared to data from another near-by station. Data (hourly and daily mean) from the entire period of record (starting in April 1992) and reports describing data prior to 1998 are provided.
A Numerical Model Study of Nocturnal Drainage Flows with Strong Wind and Temperature Gradients.
NASA Astrophysics Data System (ADS)
Yamada, T.; Bunker, S.
1989-07-01
A second-moment turbulence-closure model described in Yamada and Bunker is used to simulate nocturnal drainage flows observed during the 1984 ASCOT field expedition in Brush Creek, Colorado. In order to simulate the observed strong wind directional shear and temperature gradients, two modifications are added to the model. The strong wind directional shear was maintained by introducing a `nudging' term in the equation of motion to guide the modeled winds in the layers above the ridge top toward the observed wind direction. The second modification was accomplished by reformulating the conservation equation for the potential temperature in such a way that only the deviation from the horizontally averaged value was prognostically computed.The vegetation distribution used in this study is undoubtedly crude. Nevertheless, the present simulation suggests that tall tree canopy can play an important role in producing inhomogeneous wind distribution, particularly in the levels below the canopy top.
Information retrieval from wide-band meteorological data - An example
NASA Technical Reports Server (NTRS)
Adelfang, S. I.; Smith, O. E.
1983-01-01
The methods proposed by Smith and Adelfang (1981) and Smith et al. (1982) are used to calculate probabilities over rectangles and sectors of the gust magnitude-gust length plane; probabilities over the same regions are also calculated from the observed distributions and a comparison is also presented to demonstrate the accuracy of the statistical model. These and other statistical results are calculated from samples of Jimsphere wind profiles at Cape Canaveral. The results are presented for a variety of wavelength bands, altitudes, and seasons. It is shown that wind perturbations observed in Jimsphere wind profiles in various wavelength bands can be analyzed by using digital filters. The relationship between gust magnitude and gust length is modeled with the bivariate gamma distribution. It is pointed out that application of the model to calculate probabilities over specific areas of the gust magnitude-gust length plane can be useful in aerospace design.
USDA-ARS?s Scientific Manuscript database
Aquarius is a combined passive/active L-band microwave instrument developed to map the ocean surface salinity field from space. The primary science objective of this mission is to monitor the seasonal and interannual variation of the large scale features of the surface salinity field in the open oc...
Sea Surface Scattering of Radar Signals in Ku- and C-Bands: the Role of Breaking Waves
NASA Astrophysics Data System (ADS)
Voronovich, A.; Zavorotny, V.
2001-05-01
A small-slope approximation (SSA) is used for numerical calculations of a radar backscattering cross section of the ocean surface for both Ku- and C-bands for wind speeds ranging from 5 m/s to 15 m/s as a function of an incident angle. Both the lowest order of the SSA and the one that includes the next-order correction to it are considered. The initial calculations were made assuming Gaussian statistics of sea surface and the Elfouhaily et al. surface-height spectrum for fully developed seas (T. Elfouhaily et al., J. Geophys. Res., vol.102, pp.15,781-15,796 (1997)). Empirical scattering models CMOD2-I3 and SASS-II are used for comparison. Theoretical calculations are in good overall agreement with the experiment, being within a 2 dB accuracy on average with a 3 dB maximal discrepancy. The only exception is HH-polarization in the upwind direction where discrepancies reach 5.7 dB for an incidence angle of 60{° }. Note that the SSA allows controlling the accuracy of calculations by comparing the results of the lowest order approximation with corrections originated from higher order terms. The discrepancy between our calculations and empirical data for HH polarization appears to be significantly larger then accuracy of the calculations. Hence, the reason for it should be attributed to the inadequate sea-roughness model. We have checked a hypothesis that steep waves are responsible for this effect. We assumed that the contribution from steep waves could be evaluated in the geometric optics approximation. This allowed us to retrieve the probability density function of large slopes based on comparison of theoretical calculations and experimental data for Ku-band at HH polarization. It was found that in the upwind direction this function could be approximated by a simple relationship: \\[ \\text{Log}_{10}P(a_{x},0) = -2.84 + 0.097ṡ U + 1.33ṡ a_{x}, \\] where U is wind speed in m/s and ax>0.8 is the appropriate slope. Note that such large slopes cannot belong to steady waves and rather correspond to breaking ones. Calculations were performed again for both bands and polarizations with the contribution from breakers included. Corrections to VV-polarization appeared to be relatively small, since the level of backscattering from the background roughness (without breakers) is large as compared to the case of HH-polarization. With the contribution from steep waves included, the backscattering cross section corresponds to experimental results within a 1-2 dB accuracy for winds ranging between 5 m/s and 15 m/s, for both polarizations in both wave bands. Another conclusion drawn from this research is that the Elfouhaily et al. spectrum seems to overestimate the spectral density by 2-4 dB in the case of short, centimeter-range, waves in the cross-wind direction for low winds.
An Electronic Weather Vane for Field Science
ERIC Educational Resources Information Center
Burman, J.; Talbert, R.; Carlton, K.
2014-01-01
This paper details the construction of a weather vane for the measurement of wind direction in field situations. The purpose of its construction was to analyse how wind direction affected the attractiveness of an insect pheromone in a dynamic outdoor environment, where wind could be a significant contributor to odour movement. The apparatus…
Assessment of Wind Parameter Sensitivity on Ultimate and Fatigue Wind Turbine Loads: Preprint
DOE Office of Scientific and Technical Information (OSTI.GOV)
Robertson, Amy N; Sethuraman, Latha; Jonkman, Jason
Wind turbines are designed using a set of simulations to ascertain the structural loads that the turbine could encounter. While mean hub-height wind speed is considered to vary, other wind parameters such as turbulence spectra, sheer, veer, spatial coherence, and component correlation are fixed or conditional values that, in reality, could have different characteristics at different sites and have a significant effect on the resulting loads. This paper therefore seeks to assess the sensitivity of different wind parameters on the resulting ultimate and fatigue loads on the turbine during normal operational conditions. Eighteen different wind parameters are screened using anmore » Elementary Effects approach with radial points. As expected, the results show a high sensitivity of the loads to the turbulence standard deviation in the primary wind direction, but the sensitivity to wind shear is often much greater. To a lesser extent, other wind parameters that drive loads include the coherence in the primary wind direction and veer.« less
Assessment of Wind Parameter Sensitivity on Extreme and Fatigue Wind Turbine Loads
DOE Office of Scientific and Technical Information (OSTI.GOV)
Robertson, Amy N; Sethuraman, Latha; Jonkman, Jason
Wind turbines are designed using a set of simulations to ascertain the structural loads that the turbine could encounter. While mean hub-height wind speed is considered to vary, other wind parameters such as turbulence spectra, sheer, veer, spatial coherence, and component correlation are fixed or conditional values that, in reality, could have different characteristics at different sites and have a significant effect on the resulting loads. This paper therefore seeks to assess the sensitivity of different wind parameters on the resulting ultimate and fatigue loads on the turbine during normal operational conditions. Eighteen different wind parameters are screened using anmore » Elementary Effects approach with radial points. As expected, the results show a high sensitivity of the loads to the turbulence standard deviation in the primary wind direction, but the sensitivity to wind shear is often much greater. To a lesser extent, other wind parameters that drive loads include the coherence in the primary wind direction and veer.« less
Biogeochemical Response to Mesoscale Physical Forcing in the California Current System
NASA Technical Reports Server (NTRS)
Niiler, Pearn P.; Letelier, Ricardo; Moisan, John R.; Marra, John A. (Technical Monitor)
2001-01-01
In the first part of the project, we investigated the local response of the coastal ocean ecosystems (changes in chlorophyll, concentration and chlorophyll, fluorescence quantum yield) to physical forcing by developing and deploying Autonomous Drifting Ocean Stations (ADOS) within several mesoscale features along the U.S. west coast. Also, we compared the temporal and spatial variability registered by sensors mounted in the drifters to that registered by the sensors mounted in the satellites in order to assess the scales of variability that are not resolved by the ocean color satellite. The second part of the project used the existing WOCE SVP Surface Lagrangian drifters to track individual water parcels through time. The individual drifter tracks were used to generate multivariate time series by interpolating/extracting the biological and physical data fields retrieved by remote sensors (ocean color, SST, wind speed and direction, wind stress curl, and sea level topography). The individual time series of the physical data (AVHRR, TOPEX, NCEP) were analyzed against the ocean color (SeaWiFS) time-series to determine the time scale of biological response to the physical forcing. The results from this part of the research is being used to compare the decorrelation scales of chlorophyll from a Lagrangian and Eulerian framework. The results from both parts of this research augmented the necessary time series data needed to investigate the interactions between the ocean mesoscale features, wind, and the biogeochemical processes. Using the historical Lagrangian data sets, we have completed a comparison of the decorrelation scales in both the Eulerian and Lagrangian reference frame for the SeaWiFS data set. We are continuing to investigate how these results might be used in objective mapping efforts.
NASA Astrophysics Data System (ADS)
Founda, Dimitra; Kazadzis, Stelios; Mihalopoulos, Nikolaos; Gerasopoulos, Evangelos; Lianou, Maria; Raptis, Panagiotis I.
2016-09-01
This study explores the interdecadal variability and trends of surface horizontal visibility at the urban area of Athens from 1931 to 2013, using the historical archives of the National Observatory of Athens (NOA). A prominent deterioration of visibility in the city was detected, with the long-term linear trend amounting to -2.8 km decade-1 (p < 0.001), over the entire study period. This was not accompanied by any significant trend in relative humidity or precipitation over the same period. A slight recovery of visibility levels seems to be established in the recent decade (2004-2013). It was found that very good visibility (> 20 km) occurred at a frequency of 34 % before the 1950s, while this percentage drops to just 2 % during the decade 2004-2013. The rapid impairment of the visual air quality in Athens around the 1950s points to the increased levels of air pollution on a local and/or regional scale, related to high urbanization rates and/or increased anthropogenic emissions on a global scale at that period. Visibility was found to be negatively/positively correlated with relative humidity/wind speed, the correlation being statistically valid at certain periods. Wind regime and mainly wind direction and corresponding air mass origin were found to highly control visibility levels in Athens. The comparison of visibility variation in Athens and at a non-urban reference site on Crete island revealed similar negative trends over the common period of observations. This suggests that apart local sources, visibility in Athens is highly determined by aerosol load of regional origin. AVHRR and MODIS satellite-derived aerosol optical depth (AOD) retrievals over Athens and surface measurements of PM10 confirmed the relation of visibility to aerosol load.
Sauer, Uta; Borsdorf, H; Dietrich, P; Liebscher, A; Möller, I; Martens, S; Möller, F; Schlömer, S; Schütze, C
2018-02-03
During a controlled "back-production experiment" in October 2014 at the Ketzin pilot site, formerly injected CO 2 was retrieved from the storage formation and directly released to the atmosphere via a vent-off stack. Open-path Fourier transform infrared (OP FTIR) spectrometers, on-site meteorological parameter acquisition systems, and distributed CO 2 point sensors monitored gas dispersion processes in the near-surface part of the atmospheric boundary layer. The test site provides a complex and challenging mosaic-like surface setting for atmospheric monitoring which can also be found at other storage sites. The main aims of the atmospheric monitoring of this experiment were (1) to quantify temporal and spatial variations in atmospheric CO 2 concentrations around the emitting vent-off stack and (2) to test if and how atmospheric monitoring can cope with typical environmental and operational challenges. A low environmental risk was encountered during the whole CO 2 back-production experiment. The study confirms that turbulent wind conditions favor atmospheric mixing processes and are responsible for rapid dilution of the released CO 2 leading to decreased detectability at all sensors. In contrast, calm and extremely stable wind conditions (especially occurring during the night) caused an accumulation of gases in the near-ground atmospheric layer with the highest amplitudes in measured gas concentration. As an important benefit of OP FTIR spectroscopic measurements and their ability to detect multiple gas species simultaneously, emission sources could be identified to a much higher certainty. Moreover, even simulation models using simplified assumptions help to find suitable monitoring network designs and support data analysis for certain wind conditions in such a complex environment.
Influence of wind on daily airborne pollen counts in Catalonia (NE Iberian Peninsula)
NASA Astrophysics Data System (ADS)
tareq Majeed, Husam; Periago, Cristina; Alarcón, Marta; De Linares, Concepción; Belmonte, Jordina
2016-04-01
The aim of this study is to analize the influence of wind (speed and direction) on the daily airborne pollen counts recorded in Catalonia (NE Iberian Peninsula) of 21 pollen taxa recorded at 6 aerobiological stations: Barcelona, Bellaterra, Girona, Lleida Manresa, and Tarragona for the period 2004-2014. The taxa studied are Alnus, Betula, Castanea, Cupressaceae, Fagus, Fraxinus, Olea, Pinus, Platanus, total Quercus, Quercus deciduous type, Quercus evergreen type, Ulmus, Corylus, Pistacia, Artemisia, Chenopodiaceae/Amaranthaceae, Plantago, Poaceae, Polygonaceae, and Urticaceae. The mean daily wind direction was divided into 8 sectors: N, NE, E, SE, S, SW, W and NW. For each sector, the correlation between the daily pollen concentrations and wind speed using Spearman's rank correlation coefficient was computed and compared with the wind rose charts. The results showed that Tarragona was the station with more significant correlations followed by Bellaterra, Lleida and Manresa. On the other hand, Artemisia was the most correlated taxon with mainly negative values, and Fagus was the least. The W wind direction showed the largest number of significant correlations, mostly positive, while the N direction was the least and negatively correlated.
Advection from the North Atlantic as the Forcing of Winter Greenhouse Effect Over Europe
NASA Technical Reports Server (NTRS)
Otterman, J.; Angell, J.; Atlas, R.; Bungato, D.; Shubert, S.; Starr, David OC.; Susskind, J.; Wu, M.-L. C.
2002-01-01
In winter, large interannual fluctuations in the surface temperature are observed over central Europe. Comparing warm February 1990 with cold February 1996, a satellite-retrieved surface (skin) temperature difference of 9.8 K is observed for the region 50-60 degrees N; 5-35 degrees E. Previous studies show that advection from the North Atlantic constitutes the forcing to such fluctuations. The advection is quantified by Index I(sub na), the average of the ocean-surface wind speed over the eastern North Atlantic when the direction is from the southwest (when the wind is from another direction, it counts as a zero speed to the average). Average I(sub na) for February 1990 was 10.6 m/s, but for February 1996 I(sub na) was only 2.4 m/s. A large value of I(sub na) means a strong southwesterly flow which brings warm and moist air into central Europe at low level, producing a steeper tropospheric lapse rate. Strong ascending motions at 700 mb are observed in association with the occurrence of enhanced warm, moist advection from the ocean in February 1990 producing clouds and precipitation. Total precipitable water and cloud-cover fraction have larger values in February 1990 than in 1996. The difference in the greenhouse effect between these two scenarios, this reduction in heat loss to space, can be translated into a virtual radiative heating of 2.6 W/square m above the February 1990 surface/atmosphere system, which contributes to a warming of the surface on the order of 2.6 K. Accepting this estimate as quantitatively meaningful, we evaluate the direct effect, the rise in the surface temperature in Europe as a result of maritime-air inflow, as 7.2 K (9.8 K-2.6 K). Thus, fractional reinforcement by the greenhouse effect is 2.6/7.2, or 36%, a substantial positive feedback.
NASA Astrophysics Data System (ADS)
Rahmat, R. F.; Nasution, F. R.; Seniman; Syahputra, M. F.; Sitompul, O. S.
2018-02-01
Weather is condition of air in a certain region at a relatively short period of time, measured with various parameters such as; temperature, air preasure, wind velocity, humidity and another phenomenons in the atmosphere. In fact, extreme weather due to global warming would lead to drought, flood, hurricane and other forms of weather occasion, which directly affects social andeconomic activities. Hence, a forecasting technique is to predict weather with distinctive output, particullary mapping process based on GIS with information about current weather status in certain cordinates of each region with capability to forecast for seven days afterward. Data used in this research are retrieved in real time from the server openweathermap and BMKG. In order to obtain a low error rate and high accuracy of forecasting, the authors use Bayesian Model Averaging (BMA) method. The result shows that the BMA method has good accuracy. Forecasting error value is calculated by mean square error shows (MSE). The error value emerges at minumum temperature rated at 0.28 and maximum temperature rated at 0.15. Meanwhile, the error value of minimum humidity rates at 0.38 and the error value of maximum humidity rates at 0.04. Afterall, the forecasting error rate of wind speed is at 0.076. The lower the forecasting error rate, the more optimized the accuracy is.
ARM - Midlatitude Continental Convective Clouds (jensen-sonde)
Jensen, Mike; Comstock, Jennifer; Genio, Anthony Del; Giangrande, Scott; Kollias, Pavlos
2012-01-19
A major component of the Mid-latitude Continental Convective Clouds Experiment (MC3E) field campaign was the deployment of an enhanced radiosonde array designed to capture the vertical profile of atmospheric state variables (pressure, temperature, humidity wind speed and wind direction) for the purpose of deriving the large-scale forcing for use in modeling studies. The radiosonde array included six sites (enhanced Central Facility [CF-1] plus five new sites) launching radiosondes at 3-6 hour sampling intervals. The network will cover an area of approximately (300)2 km2 with five outer sounding launch sites and one central launch location. The five outer sounding launch sites are: S01 Pratt, KS [ 37.7oN, 98.75oW]; S02 Chanute, KS [37.674, 95.488]; S03 Vici, Oklahoma [36.071, -99.204]; S04 Morris, Oklahoma [35.687, -95.856]; and S05 Purcell, Oklahoma [34.985, -97.522]. Soundings from the SGP Central Facility during MC3E can be retrieved from the regular ARM archive. During routine MC3E operations 4 radiosondes were launched from each of these sites (approx. 0130, 0730, 1330 and 1930 UTC). On days that were forecast to be convective up to four additional launches were launched at each site (approx. 0430, 1030, 1630, 2230 UTC). There were a total of approximately 14 of these high frequency launch days over the course of the experiment.
Mode selection in swirling jet experiments: a linear stability analysis
NASA Astrophysics Data System (ADS)
Gallaire, François; Chomaz, Jean-Marc
2003-11-01
The primary goal of the study is to identify the selection mechanism responsible for the appearance of a double-helix structure in the pre-breakdown stage of so-called screened swirling jets for which the circulation vanishes away from the jet. The family of basic flows under consideration combines the azimuthal velocity profiles of Carton & McWilliams (1989) and the axial velocity profiles of Monkewitz (1988). This model satisfactorily represents the nozzle exit velocity distributions measured in the swirling jet experiment of Billant et al. (1998). Temporal and absolute/convective instability properties are directly retrieved from numerical simulations of the linear impulse response for different swirl parameter settings. A large range of negative helical modes, winding with the basic flow, are destabilized as swirl is increased, and their characteristics for large azimuthal wavenumbers are shown to agree with the asymptotic analysis of Leibovich & Stewartson (1983). However, the temporal study fails to yield a clear selection principle. The absolute/convective instability regions are mapped out in the plane of the external axial flow and swirl parameters. The absolutely unstable domain is enhanced by rotation and it remains open for arbitrarily large swirl. The swirling jet with zero external axial flow is found to first become absolutely unstable to a mode of azimuthal wavenumber m {=} {-}2, winding with the jet. It is suggested that this selection mechanism accounts for the experimental observation of a double-helix structure.
Wind reconstruction algorithm for Viking Lander 1
NASA Astrophysics Data System (ADS)
Kynkäänniemi, Tuomas; Kemppinen, Osku; Harri, Ari-Matti; Schmidt, Walter
2017-06-01
The wind measurement sensors of Viking Lander 1 (VL1) were only fully operational for the first 45 sols of the mission. We have developed an algorithm for reconstructing the wind measurement data after the wind measurement sensor failures. The algorithm for wind reconstruction enables the processing of wind data during the complete VL1 mission. The heater element of the quadrant sensor, which provided auxiliary measurement for wind direction, failed during the 45th sol of the VL1 mission. Additionally, one of the wind sensors of VL1 broke down during sol 378. Regardless of the failures, it was still possible to reconstruct the wind measurement data, because the failed components of the sensors did not prevent the determination of the wind direction and speed, as some of the components of the wind measurement setup remained intact for the complete mission. This article concentrates on presenting the wind reconstruction algorithm and methods for validating the operation of the algorithm. The algorithm enables the reconstruction of wind measurements for the complete VL1 mission. The amount of available sols is extended from 350 to 2245 sols.
Wind and fairness in ski jumping: A computer modelling analysis.
Jung, Alexander; Müller, Wolfram; Staat, Manfred
2018-06-25
Wind is closely associated with the discussion of fairness in ski jumping. To counter-act its influence on the jump length, the International Ski Federation (FIS) has introduced a wind compensation approach. We applied three differently accurate computer models of the flight phase with wind (M1, M2, and M3) to study the jump length effects of various wind scenarios. The previously used model M1 is accurate for wind blowing in direction of the flight path, but inaccuracies are to be expected for wind directions deviating from the tangent to the flight path. M2 considers the change of airflow direction, but it does not consider the associated change in the angle of attack of the skis which additionally modifies drag and lift area time functions. M3 predicts the length effect for all wind directions within the plane of the flight trajectory without any mathematical simplification. Prediction errors of M3 are determined only by the quality of the input data: wind velocity, drag and lift area functions, take-off velocity, and weight. For comparing the three models, drag and lift area functions of an optimized reference jump were used. Results obtained with M2, which is much easier to handle than M3, did not deviate noticeably when compared to predictions of the reference model M3. Therefore, we suggest to use M2 in future applications. A comparison of M2 predictions with the FIS wind compensation system showed substantial discrepancies, for instance: in the first flight phase, tailwind can increase jump length, and headwind can decrease it; this is opposite of what had been anticipated before and is not considered in the current wind compensation system in ski jumping. Copyright © 2018 Elsevier Ltd. All rights reserved.
Markó, K; Schulz, S; Hahn, U
2005-01-01
We propose an interlingua-based indexing approach to account for the particular challenges that arise in the design and implementation of cross-language document retrieval systems for the medical domain. Documents, as well as queries, are mapped to a language-independent conceptual layer on which retrieval operations are performed. We contrast this approach with the direct translation of German queries to English ones which, subsequently, are matched against English documents. We evaluate both approaches, interlingua-based and direct translation, on a large medical document collection, the OHSUMED corpus. A substantial benefit for interlingua-based document retrieval using German queries on English texts is found, which amounts to 93% of the (monolingual) English baseline. Most state-of-the-art cross-language information retrieval systems translate user queries to the language(s) of the target documents. In contra-distinction to this approach, translating both documents and user queries into a language-independent, concept-like representation format is more beneficial to enhance cross-language retrieval performance.
NASA Astrophysics Data System (ADS)
Kishore Kumar, G.; Nesse Tyssøy, H.; Williams, Bifford P.
2018-03-01
We investigate the possibility that sufficiently large electric fields and/or ionization during geomagnetic disturbed conditions may invalidate the assumptions applied in the retrieval of neutral horizontal winds from meteor and/or lidar measurements. As per our knowledge, the possible errors in the wind estimation have never been reported. In the present case study, we have been using co-located meteor radar and sodium resonance lidar zonal wind measurements over Andenes (69.27°N, 16.04°E) during intense substorms in the declining phase of the January 2005 solar proton event (21-22 January 2005). In total, 14 h of measurements are available for the comparison, which covers both quiet and disturbed conditions. For comparison, the lidar zonal wind measurements are averaged over the same time and altitude as the meteor radar wind measurements. High cross correlations (∼0.8) are found in all height regions. The discrepancies can be explained in light of differences in the observational volumes of the two instruments. Further, we extended the comparison to address the electric field and/or ionization impact on the neutral wind estimation. For the periods of low ionization, the neutral winds estimated with both instruments are quite consistent with each other. During periods of elevated ionization, comparatively large differences are noticed at the highermost altitude, which might be due to the electric field and/or ionization impact on the wind estimation. At present, one event is not sufficient to make any firm conclusion. Further study with more co-located measurements are needed to test the statistical significance of the result.
Revised ocean backscatter models at C and Ku band under high-wind conditions
NASA Astrophysics Data System (ADS)
Donnelly, William J.; Carswell, James R.; McIntosh, Robert E.; Chang, Paul S.; Wilkerson, John; Marks, Frank; Black, Peter G.
1999-05-01
A series of airborne scatterometer experiments designed to collect C and Ku band ocean backscatter data in regions of high ocean surface winds has recently been completed. More than 100 hours of data were collected using the University of Massachusetts C and Ku band scatterometers, CSCAT and KUSCAT. These instruments measure the full azimuthal normalized radar cross section (NRCS) of a common surface area of the ocean simultaneously at four incidence angles. Our results demonstrate limitations of the current empirical models, C band geophysical model function 4 (CMOD4), SeaSat scatterometer 2 (SASS 2), and NASA scatterometer 1 (NSCAT) 1, that relate ocean backscatter to the near-surface wind at high wind speeds. The discussion focuses on winds in excess of 15 m s-1 in clear atmospheric conditions. The scatterometer data are collocated with measurements from ocean data buoys and Global Positioning System dropsondes, and a Fourier analysis is performed as a function of wind regime. A three-term Fourier series is fit to the backscatter data, and a revised set of coefficients is tabulated. These revised models, CMOD4HW and KUSCAT 1, are the basis for a discussion of the NRCS at high wind speeds. Our scatterometer data show a clear overprediction of the derived NRCS response to high winds based on the CMOD4, SASS 2, and NSCAT 1 models. Furthermore, saturation of the NRCS response begins to occur above 15 m s-1. Sensitivity of the upwind and crosswind response is discussed with implications toward high wind speed retrieval.
Direct mechanical torque sensor for model wind turbines
NASA Astrophysics Data System (ADS)
Kang, Hyung Suk; Meneveau, Charles
2010-10-01
A torque sensor is developed to measure the mechanical power extracted by model wind turbines. The torque is measured by mounting the model generator (a small dc motor) through ball bearings to the hub and by preventing its rotation by the deflection of a strain-gauge-instrumented plate. By multiplying the measured torque and rotor angular velocity, a direct measurement of the fluid mechanical power extracted from the flow is obtained. Such a measurement is more advantageous compared to measuring the electrical power generated by the model generator (dc motor), since the electrical power is largely affected by internal frictional, electric and magnetic losses. Calibration experiments are performed, and during testing, the torque sensor is mounted on a model wind turbine in a 3 rows × 3 columns array of wind turbines in a wind tunnel experiment. The resulting electrical and mechanical powers are quantified and compared over a range of applied loads, for three different incoming wind velocities. Also, the power coefficients are obtained as a function of the tip speed ratio. Significant differences between the electrical and mechanical powers are observed, which highlights the importance of using the direct mechanical power measurement for fluid dynamically meaningful results. A direct calibration with the measured current is also explored. The new torque sensor is expected to contribute to more accurate model wind tunnel tests which should provide added flexibility in model studies of the power that can be harvested from wind turbines and wind-turbine farms.