Sample records for wind generation change

  1. Effect of wind turbine generator model and siting on wind power changes out of large WECS arrays

    NASA Technical Reports Server (NTRS)

    Schleuter, R. A.; Park, G. L.; Lotfalian, M.; Dorsey, J.; Shayanfar, H.

    1981-01-01

    Methods of reducing the WECS generation change through selection of the wind turbine model for each site, selection of an appropriate siting configuration, and wind array controls are discussed. An analysis of wind generation change from an echelon and a farm for passage of a thunderstorm is presented. Reduction of the wind generation change over ten minutes is shown to reduce the increase in spinning reserve, unloadable generation and load following requirements on unit commitment when significant WECS generation is present and the farm penetration constraint is satisfied. Controls on the blade pitch angle of all wind turbines in an array or a battery control are shown to reduce both the wind generation change out of an array and the effective farm penetration in anticipation of a storm so that the farm penetration constraint may be satisfied.

  2. Smart pitch control strategy for wind generation system using doubly fed induction generator

    NASA Astrophysics Data System (ADS)

    Raza, Syed Ahmed

    A smart pitch control strategy for a variable speed doubly fed wind generation system is presented in this thesis. A complete dynamic model of DFIG system is developed. The model consists of the generator, wind turbine, aerodynamic and the converter system. The strategy proposed includes the use of adaptive neural network to generate optimized controller gains for pitch control. This involves the generation of controller parameters of pitch controller making use of differential evolution intelligent technique. Training of the back propagation neural network has been carried out for the development of an adaptive neural network. This tunes the weights of the network according to the system states in a variable wind speed environment. Four cases have been taken to test the pitch controller which includes step and sinusoidal changes in wind speeds. The step change is composed of both step up and step down changes in wind speeds. The last case makes use of scaled wind data collected from the wind turbine installed at King Fahd University beach front. Simulation studies show that the differential evolution based adaptive neural network is capable of generating the appropriate control to deliver the maximum possible aerodynamic power available from wind to the generator in an efficient manner by minimizing the transients.

  3. Two methods for estimating limits to large-scale wind power generation

    PubMed Central

    Miller, Lee M.; Brunsell, Nathaniel A.; Mechem, David B.; Gans, Fabian; Monaghan, Andrew J.; Vautard, Robert; Keith, David W.; Kleidon, Axel

    2015-01-01

    Wind turbines remove kinetic energy from the atmospheric flow, which reduces wind speeds and limits generation rates of large wind farms. These interactions can be approximated using a vertical kinetic energy (VKE) flux method, which predicts that the maximum power generation potential is 26% of the instantaneous downward transport of kinetic energy using the preturbine climatology. We compare the energy flux method to the Weather Research and Forecasting (WRF) regional atmospheric model equipped with a wind turbine parameterization over a 105 km2 region in the central United States. The WRF simulations yield a maximum generation of 1.1 We⋅m−2, whereas the VKE method predicts the time series while underestimating the maximum generation rate by about 50%. Because VKE derives the generation limit from the preturbine climatology, potential changes in the vertical kinetic energy flux from the free atmosphere are not considered. Such changes are important at night when WRF estimates are about twice the VKE value because wind turbines interact with the decoupled nocturnal low-level jet in this region. Daytime estimates agree better to 20% because the wind turbines induce comparatively small changes to the downward kinetic energy flux. This combination of downward transport limits and wind speed reductions explains why large-scale wind power generation in windy regions is limited to about 1 We⋅m−2, with VKE capturing this combination in a comparatively simple way. PMID:26305925

  4. National-Scale Wind Resource Assessment for Power Generation (Presentation)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baring-Gould, E. I.

    2013-08-01

    This presentation describes the current standards for conducting a national-scale wind resource assessment for power generation, along with the risk/benefit considerations to be considered when beginning a wind resource assessment. The presentation describes changes in turbine technology and viable wind deployment due to more modern turbine technology and taller towers and shows how the Philippines national wind resource assessment evolved over time to reflect changes that arise from updated technologies and taller towers.

  5. Tropospheric Wind Monitoring During Day-of-Launch Operations for National Aeronautics and Space Administration's Space Shuttle Program

    NASA Technical Reports Server (NTRS)

    Decker, Ryan K.; Leach, Richard

    2004-01-01

    The Environments Group at the National Aeronautics and Space Administration's Marshall Space Flight Center (NASA/MSFC) monitors the winds aloft at Kennedy Space Center (KSC) during the countdown for all Space Shuttle launches. Assessment of tropospheric winds is used to support the ascent phase of launch. Three systems at KSC are used to generate independent tropospheric wind profiles prior to launch; 1) high resolution Jimsphere balloon system, 2) 50-MHz Doppler Radar Wind Profiler (DRWP) and 3) low resolution radiosonde system. Data generated by the systems are used to assess spatial and temporal wind variability during launch countdown to ensure wind change observed does not violate wind change criteria constraints.

  6. Effects of increased wind power generation on Mid-Norway's energy balance under climate change: A market based approach

    NASA Astrophysics Data System (ADS)

    Francois, Baptiste; Martino, Sara; Tofte, Lena; Hingray, Benoit; Mo, Birger; Creutin, Jean-Dominique

    2017-04-01

    Thanks to its huge water storage capacity, Norway has an excess of energy generation at annual scale, although significant regional disparity exists. On average, the Mid-Norway region has an energy deficit and needs to import more electricity than it exports. We show that this energy deficit can be reduced with an increase in wind generation and transmission line capacity, even in future climate scenarios where both mean annual temperature and precipitation are changed. For the considered scenarios, the deficit observed in winter disappears, i.e. when electricity consumption and prices are high. At the annual scale, the deficit behavior depends more on future changes in precipitation. Another consequence of changes in wind production and transmission capacity is the modification of electricity exchanges with neighboring regions which are also modified both in terms of average, variability and seasonality. Keywords: Variable renewable energy, Wind, Hydro, Energy balance, Energy market

  7. Introduction to Voigt's wind power plant. [energy conversion efficiency

    NASA Technical Reports Server (NTRS)

    Tompkin, J.

    1973-01-01

    The design and operation of a 100 kilowatt wind driven generator are reported. Its high speed three-bladed turbine operates at a height of 50 meters. Blades are rigidly connected to the hub and turbine revolutions change linearly with wind velocity, maintaining a constant speed ratio of blade tip velocity to wind velocity over the full predetermined wind range. Three generators installed in the gondola generate either dc or ac current. Based on local wind conditions, the device has a maximum output of 720 kilowatts at a wind velocity of 16 meters per second. Total electrical capacity is 750 kilowatts, and power output per year is 2,135,000 kilowatt/hours.

  8. Effect of Dimension and Shape of Magnet on the Performance AC Generator with Translation Motion

    NASA Astrophysics Data System (ADS)

    Indriani, A.; Dimas, S.; Hendra

    2018-02-01

    The development of power plants using the renewable energy sources is very rapid. Renewable energy sources used solar energy, wind energy, ocean wave energy and other energy. All of these renewable energy sources require a processing device or a change of motion system to become electrical energy. One processing device is a generator which have work principle of converting motion (mechanical) energy into electrical energy with rotary shaft, blade and other motion components. Generator consists of several types of rotation motion and linear motion (translational). The generator have components such as rotor, stator and anchor. In the rotor and stator having magnet and winding coil as an electric generating part of the electric motion force. Working principle of AC generator with linear motion (translation) also apply the principle of Faraday that is using magnetic induction which change iron magnet to produce magnetic flux. Magnetic flux is captured by the stator to be converted into electrical energy. Linear motion generators consist of linear induction machine, wound synchronous machine field, and permanent magnet synchronous [1]. Performance of synchronous generator of translation motion is influenced by magnet type, magnetic shape, coil winding, magnetic and coil spacing and others. In this paper focus on the neodymium magnet with varying shapes, number of coil windings and gap of magnetic distances. This generator work by using pneumatic mechanism (PLTGL) for power plants system. Result testing of performance AC generator translation motion obtained that maximum voltage, current and power are 63 Volt for diameter winding coil 0.15 mm, number of winding coil 13000 and distance of magnet 20 mm. For effect shape of magnet, maximum voltage happen on rectangle magnet 30x20x5 mm with 4.64 Volt. Voltage and power on effect of diameter winding coil is 14.63 V and 17.82 W at the diameter winding coil 0.7 and number of winding coil is 1260 with the distance of magnet 25 mm.

  9. Tail Shape Design of Boat Wind Turbines

    NASA Astrophysics Data System (ADS)

    Singamsitty, Venkatesh

    Wind energy is a standout among the most generally utilized sustainable power source assets. A great deal of research and improvements have been happening in the wind energy field. Wind turbines are mechanical devices that convert kinetic energy into electrical power. Boat wind turbines are for the small-scale generation of electric power. In order to catch wind energy effectively, boat wind turbines need to face wind direction. Tails are used in boat wind turbines to alter the wind turbine direction and receive the variation of the incoming direction of wind. Tails are used to change the performance of boat wind turbines in an effective way. They are required to generate a quick and steady response as per change in wind direction. Tails can have various shapes, and their effects on boat wind turbines are different. However, the effects of tail shapes on the performance of boat wind turbines are not thoroughly studied yet. In this thesis, five tail shapes were studied. Their effects on boat wind turbines were investigated. The power extracted by the turbines from the air and the force acting on the boat wind turbine tail were analyzed. The results of this thesis provide a guideline of tail shape design for boat wind turbines.

  10. Matrix Converter Interface for a Wind Energy Conversion System: Issues and Limitations

    NASA Astrophysics Data System (ADS)

    Patki, Chetan; Agarwal, Vivek

    2009-08-01

    Variable speed grid connected wind energy systems sometimes involve AC-AC power electronic interface between the generator and the grid. Matrix converter is an attractive option for such applications. Variable speed of the wind generator demands variable voltage variable frequency at the generator terminal. Matrix converter is used in this work to generate such a supply. Also, matrix converter can be appropriately controlled to compensate the grid for non-linear, reactive loads. However, any change of power factor on the grid side reflects on the voltage magnitude on the wind generator side. It is highlighted that this may contradict the maximum power point tracking control requirements. All the results of this work are presented.

  11. Impact of strong climate change on balancing and storage needs in a fully renewable energy system

    NASA Astrophysics Data System (ADS)

    Weber, Juliane; Wohland, Jan; Witthaut, Dirk

    2017-04-01

    We investigate the impact of strong climate change on a European energy system dominated by wind power. No robust trend can be observed regarding the change of the wind power yield for most countries in Europe. However, intra-annual variabilities in wind power generation robustly increase in most of Central and Western Europe and decrease in Spain, Portugal and Greece by the end of this century. Thus, the generation of wind power tends to increase (decrease) in the winter months compared to the summer months. Due to higher (lower) intra-annual variations, the probability for extreme events with long periods of low power production increases (decreases) in summer. This implies that more (less) energy has to be provided by backup power plants. Our simulations are based on the results of five different Global Climate Models (GCMs) using the Representative Concentration Pathway scenario 8.5 (RCP8.5). These results are dynamically downscaled with the regional atmospheric model RCA4 by the EURO-CORDEX initiative (Coordinated Downscaling Experiment - European Domain). A comparison was made between historical data (1970-2000) and mid-century (2030-2060) and end-of-century (2070-2100) data, respectively. For all timeframes we made the assumption that a certain amount of energy is provided by wind power plants. This implies that changes in wind power potentials are neglected and only temporal effects are considered. Wind speed time series are converted to power generation time series using an extrapolation to hub height and a standardized power curve. Assuming a scenario for the future distribution of wind turbines, we obtain a wind power generation time series aggregated on a national level. The operation of backup power plants and storage facilities is simulated on coarse scales assuming an optimal storage strategy. Backup is required whenever the storage facilities are empty. The amount of change of the backup energy depends on the storage capacity - the higher the capacity, the higher the change as long as storage capacities do not allow for multi-year storage.

  12. Methods and apparatus for twist bend coupled (TCB) wind turbine blades

    DOEpatents

    Moroz, Emilian Mieczyslaw; LeMieux, David Lawrence; Pierce, Kirk Gee

    2006-10-10

    A method for controlling a wind turbine having twist bend coupled rotor blades on a rotor mechanically coupled to a generator includes determining a speed of a rotor blade tip of the wind turbine, measuring a current twist distribution and current blade loading, and adjusting a torque of a generator to change the speed of the rotor blade tip to thereby increase an energy capture power coefficient of the wind turbine.

  13. Changes in European wind energy generation potential within a 1.5 °C warmer world

    NASA Astrophysics Data System (ADS)

    Hosking, J. Scott; MacLeod, D.; Phillips, T.; Holmes, C. R.; Watson, P.; Shuckburgh, E. F.; Mitchell, D.

    2018-05-01

    Global climate model simulations from the ‘Half a degree Additional warming, Prognosis and Projected Impacts’ (HAPPI) project were used to assess how wind power generation over Europe would change in a future world where global temperatures reach 1.5 °C above pre-industrial levels. Comparing recent historical (2006–2015) and future 1.5 °C forcing experiments highlights that the climate models demonstrate a northward shift in the Atlantic jet, leading to a significant (p < 0.01) increase in surface winds over the UK and Northern Europe and a significant (p < 0.05) reduction over Southern Europe. We use a wind turbine power model to transform daily near-surface (10 m) wind speeds into daily wind power output, accounting for sub-daily variability, the height of the turbine, and power losses due to transmission and distribution of electricity. To reduce regional model biases we use bias-corrected 10 m wind speeds. We see an increase in power generation potential over much of Europe, with the greatest increase in load factor over the UK of around four percentage points. Increases in variability are seen over much of central and northern Europe with the largest seasonal change in summer. Focusing on the UK, we find that wind energy production during spring and autumn under 1.5 °C forcing would become as productive as it is currently during the peak winter season. Similarly, summer winds would increase driving up wind generation to resemble levels currently seen in spring and autumn. We conclude that the potential for wind energy in Northern Europe may be greater than has been previously assumed, with likely increases even in a 1.5 °C warmer world. While there is the potential for Southern Europe to see a reduction in their wind resource, these decreases are likely to be negligible.

  14. Renewable energy and sustainable communities: Alaska's wind generator experience.

    PubMed

    Konkel, R Steven

    2013-01-01

    In 1984, the Alaska Department of Commerce and Economic Development (DCED) issued the State's first inventory/economic assessment of wind generators, documenting installed wind generator capacity and the economics of replacing diesel-fuel-generated electricity. Alaska's wind generation capacity had grown from hundreds of installed kilowatts to over 15.3 megawatts (MW) by January 2012. This article reviews data and conclusions presented in "Alaska's Wind Energy Systems; Inventory and Economic Assessment" (1). (Alaska Department of Commerce and Economic Development, S. Konkel, 1984). It provides a foundation and baseline for understanding the development of this renewable energy source. Today's technologies have evolved at an astonishing pace; a typical generator in an Alaska wind farm now is likely rated at 1.5-MW capacity, compared to the single-kilowatt (kW) machines present in 1984. Installed capacity has mushroomed, illustrated by Unalakleet's 600-kW wind farm dwarfing the original three 10-kW machines included in the 1984 inventory. Kodiak Electric had three 1.5-MW turbines installed at Pillar Mountain in 2009, with three additional turbines of 4.5-MW capacity installed in 2012. Utilities now actively plan for wind generation and compete for state funding. State of Alaska energy policy provides the context for energy project decision-making. Substantial renewable energy fund (REF) awards--$202,000,000 to date for 227 REF projects in the first 5 cycles of funding--along with numerous energy conservation programs--are now in place. Increasing investment in wind is driven by multiple factors. Stakeholders have interests both in public policy and meeting private investment objectives. Wind generator investors should consider project economics and potential impacts of energy decisions on human health. Specifically this article considers: changing environmental conditions in remote Alaska villages, impacts associated with climate change on human health, progress in better understanding wind energy potential through resource assessments and new tools for detailed feasibility and project planning, need for comprehensive monitoring and data analysis, and state funding requirements and opportunity costs. The energy policy choices ahead for Alaska will have important implications for Arctic population health, especially for those villages whose relatively small size and remote locations make energy a key component of subsistence lifestyles and community sustainability. Wind generation can contribute to meeting renewable energy goals and is a particularly important resource for rural and remote Alaskan communities currently dependent on diesel fuel for generating electricity and heat.

  15. The resilience of Australian wind energy to climate change

    NASA Astrophysics Data System (ADS)

    Evans, Jason P.; Kay, Merlinde; Prasad, Abhnil; Pitman, Andy

    2018-02-01

    The Paris Agreement limits global average temperature rise to 2 °C and commits to pursuing efforts in limiting warming to 1.5 °C above pre-industrial levels. This will require rapid reductions in the emissions of greenhouse gases and the eventual decarbonisation of the global economy. Wind energy is an established technology to help achieve emissions reductions, with a cumulative global installed capacity of ~486 GW (2016). Focusing on Australia, we assess the future economic viability of wind energy using a 12-member ensemble of high-resolution regional climate simulations forced by Coupled Model Intercomparison Project (CMIP) output. We examine both near future (around 2030) and far future (around 2070) changes. Extractable wind power changes vary across the continent, though the most spatially coherent change is a small but significant decrease across southern regions. The cost of future wind energy generation, measured via the Levelised Cost of Energy (LCOE), increases negligibly in the future in regions with significant existing installed capacity. Technological developments in wind energy generation more than compensate for projected small reductions in wind, decreasing the LCOE by around 30%. These developments ensure viability for existing wind farms, and enhance the economic viability of proposed wind farms in Western Australian and Tasmania. Wind energy is therefore a resilient source of electricity over most of Australia and technological innovation entering the market will open new regions for energy production in the future.

  16. Speed and Torque Control Strategies for Loss Reduction of Vertical Axis Wind Turbines

    NASA Astrophysics Data System (ADS)

    Argent, Michael; McDonald, Alasdair; Leithead, Bill; Giles, Alexander

    2016-09-01

    This paper builds on the work into modelling the generator losses for Vertical Axis Wind Turbines from their intrinsic torque cycling to investigate the effects of aerodynamic inefficiencies caused by the varying rotational speed resulting from different torque control strategies to the cyclic torque. This is achieved by modelling the wake that builds up from the rotation of the VAWT rotor to investigate how the wake responds to a changing rotor speed and how this in turn affects the torque produced by the blades as well as the corresponding change in generator losses and any changes to the energy extracted by the wind turbine rotor.

  17. Design of a 3 kW wind turbine generator with thin airfoil blades

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ameku, Kazumasa; Nagai, Baku M.; Roy, Jitendro Nath

    2008-09-15

    Three blades of a 3 kW prototype wind turbine generator were designed with thin airfoil and a tip speed ratio of 3. The wind turbine has been controlled via two control methods: the variable pitch angle and by regulation of the field current of the generator and examined under real wind conditions. The characteristics of the thin airfoil, called ''Seven arcs thin airfoil'' named so because the airfoil is composed of seven circular arcs, are analyzed with the airfoil design and analysis program XFOIL. The thin airfoil blade is designed and calculated by blade element and momentum theory. The performancemore » characteristics of the machine such as rotational speed, generator output as well as stability for wind speed changes are described. In the case of average wind speeds of 10 m/s and a maximum of 19 m/s, the automatically controlled wind turbine ran safely through rough wind conditions and showed an average generator output of 1105 W and a power coefficient 0.14. (author)« less

  18. Electrostatic Solitary Waves in the Solar Wind: Evidence for Instability at Solar Wind Current Sheets

    NASA Technical Reports Server (NTRS)

    Malaspina, David M.; Newman, David L.; Wilson, Lynn Bruce; Goetz, Keith; Kellogg, Paul J.; Kerstin, Kris

    2013-01-01

    A strong spatial association between bipolar electrostatic solitary waves (ESWs) and magnetic current sheets (CSs) in the solar wind is reported here for the first time. This association requires that the plasma instabilities (e.g., Buneman, electron two stream) which generate ESWs are preferentially localized to solar wind CSs. Distributions of CS properties (including shear angle, thickness, solar wind speed, and vector magnetic field change) are examined for differences between CSs associated with ESWs and randomly chosen CSs. Possible mechanisms for producing ESW-generating instabilities at solar wind CSs are considered, including magnetic reconnection.

  19. Field-circuit analysis and measurements of a single-phase self-excited induction generator

    NASA Astrophysics Data System (ADS)

    Makowski, Krzysztof; Leicht, Aleksander

    2017-12-01

    The paper deals with a single-phase induction machine operating as a stand-alone self-excited single-phase induction generator for generation of electrical energy from renewable energy sources. By changing number of turns and size of wires in the auxiliary stator winding, an improvement of performance characteristics of the generator were obtained as regards no-load and load voltage of the stator windings as well as stator winding currents of the generator. Field-circuit simulation models of the generator were developed using Flux2D software package for the generator with shunt capacitor in the main stator winding. The obtained results have been validated experimentally at the laboratory setup using the single-phase capacitor induction motor of 1.1 kW rated power and 230 V voltage as a base model of the generator.

  20. Method for changing removable bearing for a wind turbine generator

    DOEpatents

    Bagepalli, Bharat Sampathkumaran [Niskayuna, NY; Jansen, Patrick Lee , Gadre; Dattatraya, Aniruddha [Rexford, NY

    2008-04-22

    A wind generator having removable change-out bearings includes a rotor and a stator, locking bolts configured to lock the rotor and stator, a removable bearing sub-assembly having at least one shrunk-on bearing installed, and removable mounting bolts configured to engage the bearing sub-assembly and to allow the removable bearing sub-assembly to be removed when the removable mounting bolts are removed.

  1. Power quality control of an autonomous wind-diesel power system based on hybrid intelligent controller.

    PubMed

    Ko, Hee-Sang; Lee, Kwang Y; Kang, Min-Jae; Kim, Ho-Chan

    2008-12-01

    Wind power generation is gaining popularity as the power industry in the world is moving toward more liberalized trade of energy along with public concerns of more environmentally friendly mode of electricity generation. The weakness of wind power generation is its dependence on nature-the power output varies in quite a wide range due to the change of wind speed, which is difficult to model and predict. The excess fluctuation of power output and voltages can influence negatively the quality of electricity in the distribution system connected to the wind power generation plant. In this paper, the authors propose an intelligent adaptive system to control the output of a wind power generation plant to maintain the quality of electricity in the distribution system. The target wind generator is a cost-effective induction generator, while the plant is equipped with a small capacity energy storage based on conventional batteries, heater load for co-generation and braking, and a voltage smoothing device such as a static Var compensator (SVC). Fuzzy logic controller provides a flexible controller covering a wide range of energy/voltage compensation. A neural network inverse model is designed to provide compensating control amount for a system. The system can be optimized to cope with the fluctuating market-based electricity price conditions to lower the cost of electricity consumption or to maximize the power sales opportunities from the wind generation plant.

  2. Dynamics of a Flywheel Energy Storage System Supporting a Wind Turbine Generator in a Microgrid

    NASA Astrophysics Data System (ADS)

    Nair S, Gayathri; Senroy, Nilanjan

    2016-02-01

    Integration of an induction machine based flywheel energy storage system with a wind energy conversion system is implemented in this paper. The nonlinear and linearized models of the flywheel are studied, compared and a reduced order model of the same simulated to analyze the influence of the flywheel inertia and control in system response during a wind power change. A quantification of the relation between the inertia of the flywheel and the controller gain is obtained which allows the system to be considered as a reduced order model that is more controllable in nature. A microgrid setup comprising of the flywheel energy storage system, a two mass model of a DFIG based wind turbine generator and a reduced order model of a diesel generator is utilized to analyse the microgrid dynamics accurately in the event of frequency variations arising due to wind power change. The response of the microgrid with and without the flywheel is studied.

  3. Renewable energy and sustainable communities: Alaska's wind generator experience†

    PubMed Central

    Konkel, R. Steven

    2013-01-01

    Background In 1984, the Alaska Department of Commerce and Economic Development (DCED) issued the State's first inventory/economic assessment of wind generators, documenting installed wind generator capacity and the economics of replacing diesel-fuel-generated electricity. Alaska's wind generation capacity had grown from hundreds of installed kilowatts to over 15.3 megawatts (MW) by January 2012. Method This article reviews data and conclusions presented in “Alaska's Wind Energy Systems; Inventory and Economic Assessment” (1). (Alaska Department of Commerce and Economic Development, S. Konkel, 1984). It provides a foundation and baseline for understanding the development of this renewable energy source. Results Today's technologies have evolved at an astonishing pace; a typical generator in an Alaska wind farm now is likely rated at 1.5-MW capacity, compared to the single-kilowatt (kW) machines present in 1984. Installed capacity has mushroomed, illustrated by Unalakleet's 600-kW wind farm dwarfing the original three 10-kW machines included in the 1984 inventory. Kodiak Electric had three 1.5-MW turbines installed at Pillar Mountain in 2009, with three additional turbines of 4.5-MW capacity installed in 2012. Utilities now actively plan for wind generation and compete for state funding. Discussion State of Alaska energy policy provides the context for energy project decision-making. Substantial renewable energy fund (REF) awards – $202,000,000 to date for 227 REF projects in the first 5 cycles of funding – along with numerous energy conservation programs – are now in place. Increasing investment in wind is driven by multiple factors. Stakeholders have interests both in public policy and meeting private investment objectives. Wind generator investors should consider project economics and potential impacts of energy decisions on human health. Specifically this article considers:changing environmental conditions in remote Alaska villages,impacts associated with climate change on human health,progress in better understanding wind energy potential through resource assessments and new tools for detailed feasibility and project planning,need for comprehensive monitoring and data analysis, andstate funding requirements and opportunity costs. Conclusion The energy policy choices ahead for Alaska will have important implications for Arctic population health, especially for those villages whose relatively small size and remote locations make energy a key component of subsistence lifestyles and community sustainability. Wind generation can contribute to meeting renewable energy goals and is a particularly important resource for rural and remote Alaskan communities currently dependent on diesel fuel for generating electricity and heat. PMID:23971014

  4. The value of improved wind power forecasting: Grid flexibility quantification, ramp capability analysis, and impacts of electricity market operation timescales

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Qin; Wu, Hongyu; Florita, Anthony R.

    The value of improving wind power forecasting accuracy at different electricity market operation timescales was analyzed by simulating the IEEE 118-bus test system as modified to emulate the generation mixes of the Midcontinent, California, and New England independent system operator balancing authority areas. The wind power forecasting improvement methodology and error analysis for the data set were elaborated. Production cost simulation was conducted on the three emulated systems with a total of 480 scenarios, considering the impacts of different generation technologies, wind penetration levels, and wind power forecasting improvement timescales. The static operational flexibility of the three systems was comparedmore » through the diversity of generation mix, the percentage of must-run baseload generators, as well as the available ramp rate and the minimum generation levels. The dynamic operational flexibility was evaluated by the real-time upward and downward ramp capacity. Simulation results show that the generation resource mix plays a crucial role in evaluating the value of improved wind power forecasting at different timescales. In addition, the changes in annual operational electricity generation costs were mostly influenced by the dominant resource in the system. Lastly, the impacts of pumped-storage resources, generation ramp rates, and system minimum generation level requirements on the value of improved wind power forecasting were also analyzed.« less

  5. The value of improved wind power forecasting: Grid flexibility quantification, ramp capability analysis, and impacts of electricity market operation timescales

    DOE PAGES

    Wang, Qin; Wu, Hongyu; Florita, Anthony R.; ...

    2016-11-11

    The value of improving wind power forecasting accuracy at different electricity market operation timescales was analyzed by simulating the IEEE 118-bus test system as modified to emulate the generation mixes of the Midcontinent, California, and New England independent system operator balancing authority areas. The wind power forecasting improvement methodology and error analysis for the data set were elaborated. Production cost simulation was conducted on the three emulated systems with a total of 480 scenarios, considering the impacts of different generation technologies, wind penetration levels, and wind power forecasting improvement timescales. The static operational flexibility of the three systems was comparedmore » through the diversity of generation mix, the percentage of must-run baseload generators, as well as the available ramp rate and the minimum generation levels. The dynamic operational flexibility was evaluated by the real-time upward and downward ramp capacity. Simulation results show that the generation resource mix plays a crucial role in evaluating the value of improved wind power forecasting at different timescales. In addition, the changes in annual operational electricity generation costs were mostly influenced by the dominant resource in the system. Lastly, the impacts of pumped-storage resources, generation ramp rates, and system minimum generation level requirements on the value of improved wind power forecasting were also analyzed.« less

  6. 78 FR 5172 - Combined Notice of Filings #1

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-01-24

    .... Applicants: Caney River Wind Project, LLC, Rocky Ridge Wind Project, LLC, Smoky Hills Wind Farm, LLC, Smoky.... Description: Notice of Change in Status of Smokey Hills Wind Farm, LLC, et al. Filed Date: 1/14/13. Accession... Commission received the following exempt wholesale generator filings: Docket Numbers: EG13-11-000. Applicants...

  7. Local inertial oscillations in the surface ocean generated by time-varying winds

    NASA Astrophysics Data System (ADS)

    Chen, Shengli; Polton, Jeff A.; Hu, Jianyu; Xing, Jiuxing

    2015-12-01

    A new relationship is presented to give a review study on the evolution of inertial oscillations in the surface ocean locally generated by time-varying wind stress. The inertial oscillation is expressed as the superposition of a previous oscillation and a newly generated oscillation, which depends upon the time-varying wind stress. This relationship is employed to investigate some idealized wind change events. For a wind series varying temporally with different rates, the induced inertial oscillation is dominated by the wind with the greatest variation. The resonant wind, which rotates anti-cyclonically at the local inertial frequency with time, produces maximal amplitude of inertial oscillations, which grows monotonically. For the wind rotating at non-inertial frequencies, the responses vary periodically, with wind injecting inertial energy when it is in phase with the currents, but removing inertial energy when it is out of phase. The wind rotating anti-cyclonically with time is much more favorable to generate inertial oscillations than the cyclonic rotating wind. The wind with a frequency closer to the inertial frequency generates stronger inertial oscillations. For a diurnal wind, the induced inertial oscillation is dependent on latitude and is most significant at 30 °. This relationship is also applied to examine idealized moving cyclones. The inertial oscillation is much stronger on the right-hand side of the cyclone path than on the left-hand side (in the northern hemisphere). This is due to the wind being anti-cyclonic with time on the right-hand side, but cyclonic on the other side. The inertial oscillation varies with the cyclone translation speed. The optimal translation speed generating the greatest inertial oscillations is 2 m/s at the latitude of 10 ° and gradually increases to 6 m/s at the latitude of 30 °.

  8. Tropospheric Wind Monitoring During Day-of-Launch Operations for NASA's Space Shuttle Program

    NASA Technical Reports Server (NTRS)

    Decker, Ryan; Leach, Richard

    2004-01-01

    The Environments Group at the National Aeronautics and Space Administration's Marshall Space Flight Center monitors the winds aloft above Kennedy Space Center (KSC) in support of the Space Shuttle Program day-of-launch operations. Assessment of tropospheric winds is used to support the ascent phase of launch. Three systems at KSC are used to generate independent tropospheric wind profiles prior to launch; 1) high resolution jimsphere balloon system, 2) 50-MHz Doppler Radar Wind Profiler (DRWP) and 3) low resolution radiosonde system. All independent sources are compared against each other for accuracy. To assess spatial and temporal wind variability during launch countdown each jimsphere profile is compared against a design wind database to ensure wind change does not violate wind change criteria.

  9. Optimizing Wind And Hydropower Generation Within Realistic Reservoir Operating Policy

    NASA Astrophysics Data System (ADS)

    Magee, T. M.; Clement, M. A.; Zagona, E. A.

    2012-12-01

    Previous studies have evaluated the benefits of utilizing the flexibility of hydropower systems to balance the variability and uncertainty of wind generation. However, previous hydropower and wind coordination studies have simplified non-power constraints on reservoir systems. For example, some studies have only included hydropower constraints on minimum and maximum storage volumes and minimum and maximum plant discharges. The methodology presented here utilizes the pre-emptive linear goal programming optimization solver in RiverWare to model hydropower operations with a set of prioritized policy constraints and objectives based on realistic policies that govern the operation of actual hydropower systems, including licensing constraints, environmental constraints, water management and power objectives. This approach accounts for the fact that not all policy constraints are of equal importance. For example target environmental flow levels may not be satisfied if it would require violating license minimum or maximum storages (pool elevations), but environmental flow constraints will be satisfied before optimizing power generation. Additionally, this work not only models the economic value of energy from the combined hydropower and wind system, it also captures the economic value of ancillary services provided by the hydropower resources. It is recognized that the increased variability and uncertainty inherent with increased wind penetration levels requires an increase in ancillary services. In regions with liberalized markets for ancillary services, a significant portion of hydropower revenue can result from providing ancillary services. Thus, ancillary services should be accounted for when determining the total value of a hydropower system integrated with wind generation. This research shows that the end value of integrated hydropower and wind generation is dependent on a number of factors that can vary by location. Wind factors include wind penetration level, variability due to geographic distribution of wind resources, and forecast error. Electric power system factors include the mix of thermal generation resources, available transmission, demand patterns, and market structures. Hydropower factors include relative storage capacity, reservoir operating policies and hydrologic conditions. In addition, the wind, power system, and hydropower factors are often interrelated because stochastic weather patterns can simultaneously influence wind generation, power demand, and hydrologic inflows. One of the central findings is that the sensitivity of the model to changes cannot be performed one factor at a time because the impact of the factors is highly interdependent. For example, the net value of wind generation may be very sensitive to changes in transmission capacity under some hydrologic conditions, but not at all under others.

  10. Long-term variability of wind patterns at hub-height over Texas

    NASA Astrophysics Data System (ADS)

    Jung, J.; Jeon, W.; Choi, Y.; Souri, A.

    2017-12-01

    Wind energy is getting more attention because of its environmentally friendly attributes. Texas is a state with significant capacity and number of wind turbines. Wind power generation is significantly affected by wind patterns, and it is important to understand this seasonal and decadal variability for long-term power generation from wind turbines. This study focused on the trends of changes in wind pattern and its strength at two hub-heights (80 m and 110 m) over 30-years (1986 to 2015). We only analyzed summer data(June to September) because of concentrated electricity usage in Texas. We extracted hub-height wind data (U and V components) from the three-hourly National Centers for Environmental Prediction-North American Regional Reanalysis (NCEP-NARR) and classified wind patterns properly by using nonhierarchical K-means method. Hub-height wind patterns in summer seasons of 1986 to 2015 were classified in six classes at day and seven classes at night. Mean wind speed was 4.6 ms-1 at day and 5.4 ms-1 at night, but showed large variability in time and space. We combined each cluster's frequencies and wind speed tendencies with large scale atmospheric circulation features and quantified the amount of wind power generation.

  11. Wind-Driven Ecological Flow Regimes Downstream from Hydropower Dams

    NASA Astrophysics Data System (ADS)

    Kern, J.; Characklis, G. W.

    2012-12-01

    Conventional hydropower can be turned on and off quicker and less expensively than thermal generation (coal, nuclear, or natural gas). These advantages enable hydropower utilities to respond to rapid fluctuations in energy supply and demand. More recently, a growing renewable energy sector has underlined the need for flexible generation capacity that can complement intermittent renewable resources such as wind power. While wind power entails lower variable costs than other types of generation, incorporating it into electric power systems can be problematic. Due to variable and unpredictable wind speeds, wind power is difficult to schedule and must be used when available. As a result, integrating large amounts of wind power into the grid may result in atypical, swiftly changing demand patterns for other forms of generation, placing a premium on sources that can be rapidly ramped up and down. Moreover, uncertainty in wind power forecasts will stipulate increased levels of 'reserve' generation capacity that can respond quickly if real-time wind supply is less than expected. These changes could create new hourly price dynamics for energy and reserves, altering the short-term financial signals that hydroelectric dam operators use to schedule water releases. Traditionally, hourly stream flow patterns below hydropower dams have corresponded in a very predictable manner to electricity demand, whose primary factors are weather (hourly temperature) and economic activity (workday hours). Wind power integration has the potential to yield more variable, less predictable flows at hydro dams, flows that at times could resemble reciprocal wind patterns. An existing body of research explores the impacts of standard, demand-following hydroelectric dams on downstream ecological flows; but weighing the benefits of increased reliance on wind power against further impacts to ecological flows may be a novel challenge for the environmental community. As a preliminary step in meeting this challenge, the following study was designed to investigate the potential for wind power integration to alter riparian flow regimes below hydroelectric dams. A hydrological model of a three-dam cascade in the Roanoke River basin (Virginia, USA) is interfaced with a simulated electricity market (i.e. a unit commitment problem) representing the Dominion Zone of PJM Interconnection. Incorporating forecasts of electricity demand, hydro capacity and wind availability, a mixed-integer optimization program minimizes the system cost of meeting hourly demand and reserve requirements by means of a diverse generation portfolio (e.g. nuclear, fossil, hydro, and biomass). A secondary 'balancing' energy market is executed if real-time wind generation is less than the day-ahead forecast, calling upon reserved generation resources to meet the supply shortfall. Hydropower release schedules are determined across a range of wind development scenarios (varying wind's fraction of total installed generating capacity, as well as its geographical source region). Flow regimes for each wind development scenario are compared against both historical and simulated flows under current operations (negligible wind power), as well as simulated natural flows (dam removal), in terms of ecologically relevant flow metrics. Results quantify the ability of wind power development to alter within-week stream flows downstream from hydropower dams.

  12. Climate change impact on wave energy in the Persian Gulf

    NASA Astrophysics Data System (ADS)

    Kamranzad, Bahareh; Etemad-Shahidi, Amir; Chegini, Vahid; Yeganeh-Bakhtiary, Abbas

    2015-06-01

    Excessive usage of fossil fuels and high emission of greenhouse gases have increased the earth's temperature, and consequently have changed the patterns of natural phenomena such as wind speed, wave height, etc. Renewable energy resources are ideal alternatives to reduce the negative effects of increasing greenhouse gases emission and climate change. However, these energy sources are also sensitive to changing climate. In this study, the effect of climate change on wave energy in the Persian Gulf is investigated. For this purpose, future wind data obtained from CGCM3.1 model were downscaled using a hybrid approach and modification factors were computed based on local wind data (ECMWF) and applied to control and future CGCM3.1 wind data. Downscaled wind data was used to generate the wave characteristics in the future based on A2, B1, and A1B scenarios, while ECMWF wind field was used to generate the wave characteristics in the control period. The results of these two 30-yearly wave modelings using SWAN model showed that the average wave power changes slightly in the future. Assessment of wave power spatial distribution showed that the reduction of the average wave power is more in the middle parts of the Persian Gulf. Investigation of wave power distribution in two coastal stations (Boushehr and Assalouyeh ports) indicated that the annual wave energy will decrease in both stations while the wave power distribution for different intervals of significant wave height and peak period will also change in Assalouyeh according to all scenarios.

  13. Review of Variable Generation Integration Charges

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Porter, K.; Fink, S.; Buckley, M.

    2013-03-01

    The growth of wind and solar generation in the United States, and the expectation of continued growth of these technologies, dictates that the future power system will be operated in a somewhat different manner because of increased variability and uncertainty. A small number of balancing authorities have attempted to determine an 'integration cost' to account for these changes to their current operating practices. Some balancing authorities directly charge wind and solar generators for integration charges, whereas others add integration charges to projected costs of wind and solar in integrated resource plans or in competitive solicitations for generation. This report reviewsmore » the balancing authorities that have calculated variable generation integration charges and broadly compares and contrasts the methodologies they used to determine their specific integration charges. The report also profiles each balancing authority and how they derived wind and solar integration charges.« less

  14. Compensated intruder-detection systems

    DOEpatents

    McNeilly, David R.; Miller, William R.

    1984-01-01

    Intruder-detection systems in which intruder-induced signals are transmitted through a medium also receive spurious signals induced by changes in a climatic condition affecting the medium. To combat this, signals received from the detection medium are converted to a first signal. The system also provides a reference signal proportional to climate-induced changes in the medium. The first signal and the reference signal are combined for generating therefrom an output signal which is insensitive to the climatic changes in the medium. An alarm is energized if the output signal exceeds a preselected value. In one embodiment, an acoustic cable is coupled to a fence to generate a first electrical signal proportional to movements thereof. False alarms resulting from wind-induced movements of the fence (detection medium) are eliminated by providing an anemometer-driven voltage generator to provide a reference voltage proportional to the velocity of wind incident on the fence. An analog divider receives the first electrical signal and the reference signal as its numerator and denominator inputs, respectively, and generates therefrom an output signal which is insensitive to the wind-induced movements in the fence.

  15. PIV study of the wake of a model wind turbine transitioning between operating set points

    NASA Astrophysics Data System (ADS)

    Houck, Dan; Cowen, Edwin (Todd)

    2016-11-01

    Wind turbines are ideally operated at their most efficient tip speed ratio for a given wind speed. There is increasing interest, however, in operating turbines at other set points to increase the overall power production of a wind farm. Specifically, Goit and Meyers (2015) used LES to examine a wind farm optimized by unsteady operation of its turbines. In this study, the wake of a model wind turbine is measured in a water channel using PIV. We measure the wake response to a change in operational set point of the model turbine, e.g., from low to high tip speed ratio or vice versa, to examine how it might influence a downwind turbine. A modified torque transducer after Kang et al. (2010) is used to calibrate in situ voltage measurements of the model turbine's generator operating across a resistance to the torque on the generator. Changes in operational set point are made by changing the resistance or the flow speed, which change the rotation rate measured by an encoder. Single camera PIV on vertical planes reveals statistics of the wake at various distances downstream as the turbine transitions from one set point to another. From these measurements, we infer how the unsteady operation of a turbine may affect the performance of a downwind turbine as its incoming flow. National Science Foundation and the Atkinson Center for a Sustainable Future.

  16. Generation and Validation of Spatial Distribution of Hourly Wind Speed Time-Series using Machine Learning

    NASA Astrophysics Data System (ADS)

    Veronesi, F.; Grassi, S.

    2016-09-01

    Wind resource assessment is a key aspect of wind farm planning since it allows to estimate the long term electricity production. Moreover, wind speed time-series at high resolution are helpful to estimate the temporal changes of the electricity generation and indispensable to design stand-alone systems, which are affected by the mismatch of supply and demand. In this work, we present a new generalized statistical methodology to generate the spatial distribution of wind speed time-series, using Switzerland as a case study. This research is based upon a machine learning model and demonstrates that statistical wind resource assessment can successfully be used for estimating wind speed time-series. In fact, this method is able to obtain reliable wind speed estimates and propagate all the sources of uncertainty (from the measurements to the mapping process) in an efficient way, i.e. minimizing computational time and load. This allows not only an accurate estimation, but the creation of precise confidence intervals to map the stochasticity of the wind resource for a particular site. The validation shows that machine learning can minimize the bias of the wind speed hourly estimates. Moreover, for each mapped location this method delivers not only the mean wind speed, but also its confidence interval, which are crucial data for planners.

  17. Variability of stratification according to operation of the tidal power plant in Lake Sihwa, South Korea.

    NASA Astrophysics Data System (ADS)

    Woo, S. B.; Song, J. I.; Jang, T. H.; Park, C. J.; Kwon, H. K.

    2017-12-01

    Artificial forcing according to operation of the tidal power plant (TPP) affects the physical environmental changes near the power plant. Strong turbulence by generation is expected to change the stratification structure of the Lake Sihwa inside. In order to examine the stratification changes by the power plant operation, ship bottom mounted observation were performed for 13 hours using an acoustic Doppler current profiler (ADCP) and Conductivity-Temperature-Depth (CTD) in Lake Sihwa at near TPP. The strong stratification in Sihwa Lake is maintained before TPP operation. The absence of external forces and freshwater inflow from the land forms the stratification in the Lake. Strong winds in a stratification statement lead to two-layer circulation. After wind event, multi-layer velocity structure is formed which lasted for approximately 4 h. After TPP operation, the jet flow was observed in entire water column at the beginning of the power generation. Vortex is formed by strong jet flow and maintained throughout during power generation period. Strong turbulence flow is generated by the turbine blades, enhancing vertical mixing. External forces, which dominantly affect Lake Sihwa, have changed from the wind to the turbulent flow. The stratification was extinguished by strong turbulent flow and becomes fully-mixed state. Changes in stratification structure are expected to affect material transport and ecological environment change continuously.

  18. Wind resource quality affected by high levels of renewables

    DOE PAGES

    Diakov, Victor

    2015-06-17

    For solar photovoltaic (PV) and wind resources, the capacity factor is an important parameter describing the quality of the resource. As the share of variable renewable resources (such as PV and wind) on the electric system is increasing, so does curtailment (and the fraction of time when it cannot be avoided). At high levels of renewable generation, curtailments effectively change the practical measure of resource quality from capacity factor to the incremental capacity factor. The latter accounts only for generation during hours of no curtailment and is directly connected with the marginal capital cost of renewable generators for a givenmore » level of renewable generation during the year. The Western U.S. wind generation is analyzed hourly for a system with 75% of annual generation from wind, and it is found that the value for the system of resources with equal capacity factors can vary by a factor of 2, which highlights the importance of using the incremental capacity factor instead. Finally, the effect is expected to be more pronounced in smaller geographic areas (or when transmission limitations imposed) and less pronounced at lower levels of renewable energy in the system with less curtailment.« less

  19. Environmental and internal controls of tropical cyclone intensity change

    NASA Astrophysics Data System (ADS)

    Desflots, Melicie

    Tropical cyclone (TC) intensity change is governed by internal dynamics and environmental conditions. This study aims to gain a better understanding of the physical mechanisms responsible for TC intensity changes with a particular focus to those related to the vertical wind shear and the impact of sea spray on the hurricane boundary layer, by using high resolution, full physics numerical simulations. The coupled model consists of three components: the non-hydrostatic, 5th generation Pennsylvania State University-NCAR mesoscale model (MM5), the NOAA/NCEP WAVEWATCH III (WW3) ocean surface wave model, and the WHOI three-dimensional upper ocean circulation model (3DPWP). Sea spray parameterizations (SSP) were developed at NOAA/ESRL, modified by the author and introduced in uncoupled and coupled simulations. The 0.5 km grid resolution MM5 simulation of Hurricane Lili showed a rapid intensification associated with a contracting eyewall. Hurricane Lili weakened in a 5-10 m s-1 vertical wind shear environment. The simulated storm experienced wind shear direction normal to the storm motion, which produced a strong wavenumber one rainfall asymmetry in the downshear-left quadrant of the storm. The increasing vertical wind shear induced a vertical tilt of the vortex with a time lag of 5-6 hours after the wavenumber one rainfall asymmetry was first observed in the model simulation. Other factors controlling intensity and intensity change in tropical cyclones are the air-sea fluxes. Recent studies have shown that the momentum exchange coefficient levels off at high wind speed. However, the behavior of the exchange coefficient for enthalpy flux in high wind and the potential impact of sea spray on it is still uncertain. The current SSP are closely tied to wind speed and overestimate the mediated heat fluxes by sea spray in the hurricane boundary layer. As the sea spray generation depends on wind speed and the variable wave state, a new SSP based on the surface wave energy dissipation (WED) is introduced in the coupled model. In the coupled simulations, the WED is used to quantify the amount of wave breaking related to the generation of spray. The SSP coupled to the waves offers an improvement compared to the wind dependent SSP.

  20. Adaptive pitch control for variable speed wind turbines

    DOEpatents

    Johnson, Kathryn E [Boulder, CO; Fingersh, Lee Jay [Westminster, CO

    2012-05-08

    An adaptive method for adjusting blade pitch angle, and controllers implementing such a method, for achieving higher power coefficients. Average power coefficients are determined for first and second periods of operation for the wind turbine. When the average power coefficient for the second time period is larger than for the first, a pitch increment, which may be generated based on the power coefficients, is added (or the sign is retained) to the nominal pitch angle value for the wind turbine. When the average power coefficient for the second time period is less than for the first, the pitch increment is subtracted (or the sign is changed). A control signal is generated based on the adapted pitch angle value and sent to blade pitch actuators that act to change the pitch angle of the wind turbine to the new or modified pitch angle setting, and this process is iteratively performed.

  1. Wind Turbine Contingency Control Through Generator De-Rating

    NASA Technical Reports Server (NTRS)

    Frost, Susan; Goebel, Kai; Balas, Mark

    2013-01-01

    Maximizing turbine up-time and reducing maintenance costs are key technology drivers for wind turbine operators. Components within wind turbines are subject to considerable stresses due to unpredictable environmental conditions resulting from rapidly changing local dynamics. In that context, systems health management has the aim to assess the state-of-health of components within a wind turbine, to estimate remaining life, and to aid in autonomous decision-making to minimize damage to the turbine. Advanced contingency control is one way to enable autonomous decision-making by providing the mechanism to enable safe and efficient turbine operation. The work reported herein explores the integration of condition monitoring of wind turbines with contingency control to balance the trade-offs between maintaining system health and energy capture. The contingency control involves de-rating the generator operating point to achieve reduced loads on the wind turbine. Results are demonstrated using a high fidelity simulator of a utility-scale wind turbine.

  2. Strategies for Voltage Control and Transient Stability Assessment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hiskens, Ian A.

    As wind generation grows, its influence on power system performance will becoming increasingly noticeable. Wind generation di ffers from traditional forms of generation in numerous ways though, motivating the need to reconsider the usual approaches to power system assessment and performance enhancement. The project has investigated the impact of wind generation on transient stability and voltage control, identifying and addressing issues at three distinct levels of the power system: 1) at the device level, the physical characteristics of wind turbine generators (WTGs) are quite unlike those of synchronous machines, 2) at the wind-farm level, the provision of reactive support ismore » achieved through coordination of numerous dissimilar devices, rather than straightforward generator control, and 3) from a systems perspective, the location of wind-farms on the sub-transmission network, coupled with the variability inherent in their power output, can cause complex voltage control issues. The project has sought to develop a thorough understanding of the dynamic behaviour of type-3 WTGs, and in particular the WECC generic model. The behaviour of such models is governed by interactions between the continuous dynamics of state variables and discrete events associated with limits. It was shown that these interactions can be quite complex, and may lead to switching deadlock that prevents continuation of the trajectory. Switching hysteresis was proposed for eliminating deadlock situations. Various type-3 WTG models include control blocks that duplicate integrators. It was shown that this leads to non-uniqueness in the conditions governing steady-state, and may result in pre- and post-disturbance equilibria not coinciding. It also gives rise to a zero eigenvalue in the linearized WTG model. In order to eliminate the anomalous behaviour revealed through this investigation, WECC has now released a new generic model for type-3 WTGs. Wind-farms typically incorporate a variety of voltage control equipment including tapchanging transformers, switched capacitors, SVCs, STATCOMs and the WTGs themselves. The project has considered the coordinated control of this equipment, and has addressed a range of issues that arise in wind-farm operation. The first concerns the ability of WTGs to meet reactive power requirements when voltage saturation in the collector network restricts the reactive power availability of individual generators. Secondly, dynamic interactions between voltage regulating devices have been investigated. It was found that under certain realistic conditions, tap-changing transformers may exhibit instability. In order to meet cost, maintenance, fault tolerance and other requirements, it is desirable for voltage control equipment to be treated as an integrated system rather than as independent devices. The resulting high-level scheduling of wind-farm reactive support has been investigated. In addressing this control problem, several forms of future information were considered, including exact future knowledge and stochastic predictions. Deterministic and Stochastic Dynamic Programming techniques were used in the development of control algorithms. The results demonstrated that while exact future knowledge is very useful, simple prediction methods yield little bene fit. The integration of inherently variable wind generation into weak grids, particularly subtransmission networks that are characterized by low X=R ratios, aff ects bus voltages, regulating devices and line flows. The meshed structure of these networks adds to the complexity, especially when wind generation is distributed across multiple nodes. A range of techniques have been considered for analyzing the impact of wind variability on weak grids. Sensitivity analysis, based on the power-flow Jacobian, was used to highlight sections of a system that are most severely a ffected by wind-power variations. A continuation power flow was used to determine parameter changes that reduce the impact of wind-power variability. It was also used to explore interactions between multiple wind-farms. Furthermore, these tools have been used to examine the impact of wind injection on transformer tap operation in subtransmission networks. The results of a tap operation simulation study show that voltage regulation at wind injection nodes increases tap change operations. The tradeo ff between local voltage regulation and tap change frequency is fundamentally important in optimizing the size of reactive compensation used for voltage regulation at wind injection nodes. Line congestion arising as a consequence of variable patterns of wind-power production has also been investigated. Two optimization problems have been formulated, based respectively on the DC and AC power flow models, for identifying vulnerable line segments. The DC optimization is computationally more e fficient, whereas the AC sensitivity-based optimization provides greater accuracy.« less

  3. Code Description for Generation of Meteorological Height and Pressure Level and Layer Profiles

    DTIC Science & Technology

    2016-06-01

    defined by user input height or pressure levels. It can process input profiles from sensing systems such as radiosonde, lidar, or wind profiling radar...nearly the same way, but the split between wind and temperature/humidity (TH) special levels leads to some changes to one other routine. If changes are...top of the sounding, sometimes the moisture, the thermal, both thermal and moisture, and/or the wind data are missing. Missing data items in the

  4. Energy Storage on the Grid and the Short-term Variability of Wind

    NASA Astrophysics Data System (ADS)

    Hittinger, Eric Stephen

    Wind generation presents variability on every time scale, which must be accommodated by the electric grid. Limited quantities of wind power can be successfully integrated by the current generation and demand-side response mix but, as deployment of variable resources increases, the resulting variability becomes increasingly difficult and costly to mitigate. In Chapter 2, we model a co-located power generation/energy storage block composed of wind generation, a gas turbine, and fast-ramping energy storage. A scenario analysis identifies system configurations that can generate power with 30% of energy from wind, a variability of less than 0.5% of the desired power level, and an average cost around $70/MWh. While energy storage technologies have existed for decades, fast-ramping grid-level storage is still an immature industry and is experiencing relatively rapid improvements in performance and cost across a variety of technologies. Decreased capital cost, increased power capability, and increased efficiency all would improve the value of an energy storage technology and each has cost implications that vary by application, but there has not yet been an investigation of the marginal rate of technical substitution between storage properties. The analysis in chapter 3 uses engineering-economic models of four emerging fast-ramping energy storage technologies to determine which storage properties have the greatest effect on cost-of-service. We find that capital cost of storage is consistently important, and identify applications for which power/energy limitations are important. In some systems with a large amount of wind power, the costs of wind integration have become significant and market rules have been slowly changing in order to internalize or control the variability of wind generation. Chapter 4 examines several potential market strategies for mitigating the effects of wind variability and estimate the effect that each strategy would have on the operation and profitability of wind farms. We find that market scenarios using existing price signals to motivate wind to reduce variability allow wind generators to participate in variability reduction when the market conditions are favorable, and can reduce short-term (30-minute) fluctuations while having little effect on wind farm revenue.

  5. Model-OA wind turbine generator - Failure modes and effects analysis

    NASA Technical Reports Server (NTRS)

    Klein, William E.; Lali, Vincent R.

    1990-01-01

    The results failure modes and effects analysis (FMEA) conducted for wind-turbine generators are presented. The FMEA was performed for the functional modes of each system, subsystem, or component. The single-point failures were eliminated for most of the systems. The blade system was the only exception. The qualitative probability of a blade separating was estimated at level D-remote. Many changes were made to the hardware as a result of this analysis. The most significant change was the addition of the safety system. Operational experience and need to improve machine availability have resulted in subsequent changes to the various systems, which are also reflected in this FMEA.

  6. Model 0A wind turbine generator FMEA

    NASA Technical Reports Server (NTRS)

    Klein, William E.; Lalli, Vincent R.

    1989-01-01

    The results of Failure Modes and Effects Analysis (FMEA) conducted for the Wind Turbine Generators are presented. The FMEA was performed for the functional modes of each system, subsystem, or component. The single-point failures were eliminated for most of the systems. The blade system was the only exception. The qualitative probability of a blade separating was estimated at level D-remote. Many changes were made to the hardware as a result of this analysis. The most significant change was the addition of the safety system. Operational experience and need to improve machine availability have resulted in subsequent changes to the various systems which are also reflected in this FMEA.

  7. Atmospheric stability effects on wind farm performance using large-eddy simulation

    NASA Astrophysics Data System (ADS)

    Archer, C. L.; Ghaisas, N.; Xie, S.

    2014-12-01

    Atmospheric stability has been recently found to have significant impacts on wind farm performance, especially since offshore and onshore wind farms are known to operate often under non-neutral conditions. Recent field observations have revealed that changes in stability are accompanied by changes in wind speed, direction, and turbulent kinetic energy (TKE). In order to isolate the effects of stability, large-eddy simulations (LES) are performed under neutral, stable, and unstable conditions, keeping the wind speed and direction unchanged at a fixed height. The Lillgrund wind farm, comprising of 48 turbines, is studied in this research with the Simulator for Offshore/Onshore Wind Farm Applications (SOWFA) developed by the National Renewable Energy Laboratory. Unlike most previous numerical simulations, this study does not impose periodic boundary conditions and therefore is ideal for evaluating the effects of stability in large, but finite, wind farms. Changes in power generation, velocity deficit, rate of wake recovery, TKE, and surface temperature are quantified as a function of atmospheric stability. The sensitivity of these results to wind direction is also discussed.

  8. Removable bearing arrangement for a wind turbine generator

    DOEpatents

    Bagepalli, Bharat Sampathkumaran; Jansen, Patrick Lee; Gadre, Aniruddha Dattatraya

    2010-06-15

    A wind generator having removable change-out bearings includes a rotor and a stator, locking bolts configured to lock the rotor and stator, a removable bearing sub-assembly having at least one shrunk-on bearing installed, and removable mounting bolts configured to engage the bearing sub-assembly and to allow the removable bearing sub-assembly to be removed when the removable mounting bolts are removed.

  9. Vulnerabilities and resilience of European power generation to 1.5 °C, 2 °C and 3 °C warming

    NASA Astrophysics Data System (ADS)

    Tobin, I.; Greuell, W.; Jerez, S.; Ludwig, F.; Vautard, R.; van Vliet, M. T. H.; Bréon, F.-M.

    2018-04-01

    The electricity sector is currently considered mainly on the emission side of the climate change equation. In order to limit climate warming to below 2 °C, or even 1.5 °C, it must undergo a rapid transition towards carbon neutral production by the mid-century. Simultaneously, electricity generating technologies will be vulnerable to climate change. Here, we assess the impacts of climate change on wind, solar photovoltaic, hydro and thermoelectric power generation in Europe using a consistent modelling approach across the different technologies. We compare the impacts for different global warming scenarios: +1.5 °C, +2 °C and +3 °C. Results show that climate change has negative impacts on electricity production in most countries and for most technologies. Such impacts remain limited for a 1.5 °C warming, and roughly double for a 3 °C warming. Impacts are relatively limited for solar photovoltaic and wind power potential which may reduce up to 10%, while hydropower and thermoelectric generation may decrease by up to 20%. Generally, impacts are more severe in southern Europe than in northern Europe, inducing inequity between EU countries. We show that a higher share of renewables could reduce the vulnerability of power generation to climate change, although the variability of wind and solar PV production remains a significant challenge.

  10. Reduction of Cogging Torque in Dual Rotor Permanent Magnet Generator for Direct Coupled Wind Energy Systems

    PubMed Central

    Paulsamy, Sivachandran

    2014-01-01

    In wind energy systems employing permanent magnet generator, there is an imperative need to reduce the cogging torque for smooth and reliable cut in operation. In a permanent magnet generator, cogging torque is produced due to interaction of the rotor magnets with slots and teeth of the stator. This paper is a result of an ongoing research work that deals with various methods to reduce cogging torque in dual rotor radial flux permanent magnet generator (DRFPMG) for direct coupled stand alone wind energy systems (SAWES). Three methods were applied to reduce the cogging torque in DRFPMG. The methods were changing slot opening width, changing magnet pole arc width and shifting of slot openings. A combination of these three methods was applied to reduce the cogging torque to a level suitable for direct coupled SAWES. Both determination and reduction of cogging torque were carried out by finite element analysis (FEA) using MagNet Software. The cogging torque of DRFPMG has been reduced without major change in induced emf. A prototype of 1 kW, 120 rpm DRFPMG was fabricated and tested to validate the simulation results. The test results have good agreement with the simulation predictions. PMID:25202746

  11. Reduction of cogging torque in dual rotor permanent magnet generator for direct coupled wind energy systems.

    PubMed

    Paulsamy, Sivachandran

    2014-01-01

    In wind energy systems employing permanent magnet generator, there is an imperative need to reduce the cogging torque for smooth and reliable cut in operation. In a permanent magnet generator, cogging torque is produced due to interaction of the rotor magnets with slots and teeth of the stator. This paper is a result of an ongoing research work that deals with various methods to reduce cogging torque in dual rotor radial flux permanent magnet generator (DRFPMG) for direct coupled stand alone wind energy systems (SAWES). Three methods were applied to reduce the cogging torque in DRFPMG. The methods were changing slot opening width, changing magnet pole arc width and shifting of slot openings. A combination of these three methods was applied to reduce the cogging torque to a level suitable for direct coupled SAWES. Both determination and reduction of cogging torque were carried out by finite element analysis (FEA) using MagNet Software. The cogging torque of DRFPMG has been reduced without major change in induced emf. A prototype of 1 kW, 120 rpm DRFPMG was fabricated and tested to validate the simulation results. The test results have good agreement with the simulation predictions.

  12. Size Reduction Techniques for Large Scale Permanent Magnet Generators in Wind Turbines

    NASA Astrophysics Data System (ADS)

    Khazdozian, Helena; Hadimani, Ravi; Jiles, David

    2015-03-01

    Increased wind penetration is necessary to reduce U.S. dependence on fossil fuels, combat climate change and increase national energy security. The U.S Department of Energy has recommended large scale and offshore wind turbines to achieve 20% wind electricity generation by 2030. Currently, geared doubly-fed induction generators (DFIGs) are typically employed in the drivetrain for conversion of mechanical to electrical energy. Yet, gearboxes account for the greatest downtime of wind turbines, decreasing reliability and contributing to loss of profit. Direct drive permanent magnet generators (PMGs) offer a reliable alternative to DFIGs by eliminating the gearbox. However, PMGs scale up in size and weight much more rapidly than DFIGs as rated power is increased, presenting significant challenges for large scale wind turbine application. Thus, size reduction techniques are needed for viability of PMGs in large scale wind turbines. Two size reduction techniques are presented. It is demonstrated that 25% size reduction of a 10MW PMG is possible with a high remanence theoretical permanent magnet. Additionally, the use of a Halbach cylinder in an outer rotor PMG is investigated to focus magnetic flux over the rotor surface in order to increase torque. This work was supported by the National Science Foundation under Grant No. 1069283 and a Barbara and James Palmer Endowment at Iowa State University.

  13. Studies of Sub-Synchronous Oscillations in Large-Scale Wind Farm Integrated System

    NASA Astrophysics Data System (ADS)

    Yue, Liu; Hang, Mend

    2018-01-01

    With the rapid development and construction of large-scale wind farms and grid-connected operation, the series compensation wind power AC transmission is gradually becoming the main way of power usage and improvement of wind power availability and grid stability, but the integration of wind farm will change the SSO (Sub-Synchronous oscillation) damping characteristics of synchronous generator system. Regarding the above SSO problem caused by integration of large-scale wind farms, this paper focusing on doubly fed induction generator (DFIG) based wind farms, aim to summarize the SSO mechanism in large-scale wind power integrated system with series compensation, which can be classified as three types: sub-synchronous control interaction (SSCI), sub-synchronous torsional interaction (SSTI), sub-synchronous resonance (SSR). Then, SSO modelling and analysis methods are categorized and compared by its applicable areas. Furthermore, this paper summarizes the suppression measures of actual SSO projects based on different control objectives. Finally, the research prospect on this field is explored.

  14. Dynamic Droop–Based Inertial Control of a Doubly-Fed Induction Generator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hwang, Min; Muljadi, Eduard; Park, Jung-Wook

    2016-07-01

    If a large disturbance occurs in a power grid, two auxiliary loops for the inertial control of a wind turbine generator have been used: droop loop and rate of change of frequency (ROCOF) loop. Because their gains are fixed, difficulties arise in determining them suitable for all grid and wind conditions. This paper proposes a dynamic droop-based inertial control scheme of a doubly-fed induction generator (DFIG). The scheme aims to improve the frequency nadir (FN) and ensure stable operation of a DFIG. To achieve the first goal, the scheme uses a droop loop, but it dynamically changes its gain basedmore » on the ROCOF to release a large amount of kinetic energy during the initial stage of a disturbance. To do this, a shaping function that relates the droop to the ROCOF is used. To achieve the second goal, different shaping functions, which depend on rotor speeds, are used to give a large contribution in high wind conditions and prevent over-deceleration in low wind conditions during inertial control. The performance of the proposed scheme was investigated under various wind conditions using an EMTP-RV simulator. The results indicate that the scheme improves the FN and ensures stable operation of a DFIG.« less

  15. Control strategies for wind farm power optimization: LES study

    NASA Astrophysics Data System (ADS)

    Ciri, Umberto; Rotea, Mario; Leonardi, Stefano

    2017-11-01

    Turbines in wind farms operate in off-design conditions as wake interactions occur for particular wind directions. Advanced wind farm control strategies aim at coordinating and adjusting turbine operations to mitigate power losses in such conditions. Coordination is achieved by controlling on upstream turbines either the wake intensity, through the blade pitch angle or the generator torque, or the wake direction, through yaw misalignment. Downstream turbines can be adapted to work in waked conditions and limit power losses, using the blade pitch angle or the generator torque. As wind conditions in wind farm operations may change significantly, it is difficult to determine and parameterize the variations of the coordinated optimal settings. An alternative is model-free control and optimization of wind farms, which does not require any parameterization and can track the optimal settings as conditions vary. In this work, we employ a model-free optimization algorithm, extremum-seeking control, to find the optimal set-points of generator torque, blade pitch and yaw angle for a three-turbine configuration. Large-Eddy Simulations are used to provide a virtual environment to evaluate the performance of the control strategies under realistic, unsteady incoming wind. This work was supported by the National Science Foundation, Grants No. 1243482 (the WINDINSPIRE project) and IIP 1362033 (I/UCRC WindSTAR). TACC is acknowledged for providing computational time.

  16. Wind power generation and dispatch in competitive power markets

    NASA Astrophysics Data System (ADS)

    Abreu, Lisias

    Wind energy is currently the fastest growing type of renewable energy. The main motivation is led by more strict emission constraints and higher fuel prices. In addition, recent developments in wind turbine technology and financial incentives have made wind energy technically and economically viable almost anywhere. In restructured power systems, reliable and economical operation of power systems are the two main objectives for the ISO. The ability to control the output of wind turbines is limited and the capacity of a wind farm changes according to wind speeds. Since this type of generation has no production costs, all production is taken by the system. Although, insufficient operational planning of power systems considering wind generation could result in higher system operation costs and off-peak transmission congestions. In addition, a GENCO can participate in short-term power markets in restructured power systems. The goal of a GENCO is to sell energy in such a way that would maximize its profitability. However, due to market price fluctuations and wind forecasting errors, it is essential for the wind GENCO to keep its financial risk at an acceptable level when constituting market bidding strategies. This dissertation discusses assumptions, functions, and methodologies that optimize short-term operations of power systems considering wind energy, and that optimize bidding strategies for wind producers in short-term markets. This dissertation also discusses uncertainties associated with electricity market environment and wind power forecasting that can expose market participants to a significant risk level when managing the tradeoff between profitability and risk.

  17. The changing sensitivity of power systems to meteorological drivers: a case study of Great Britain

    NASA Astrophysics Data System (ADS)

    Bloomfield, H. C.; Brayshaw, D. J.; Shaffrey, L. C.; Coker, P. J.; Thornton, H. E.

    2018-05-01

    The increasing use of intermittent renewable generation (such as wind) is increasing the exposure of national power systems to meteorological variability. This study identifies how the integration of wind power in one particular country (Great Britain, GB) is affecting the overall sensitivity of the power system to weather using three key metrics: total annual energy requirement, peak residual load (from sources other than wind) and wind power curtailment. The present-day level of wind power capacity (approximately 15 GW) is shown to have already changed the power system’s overall sensitivity to weather in terms of the total annual energy requirement, from a temperature- to a wind-dominated regime (which occurred with 6GW of installed wind power capacity). Peak residual load from sources other than wind also shows a similar shift. The associated changes in the synoptic- and large-scale meteorological drivers associated with each metric are identified and discussed. In a period where power systems are changing rapidly, it is therefore argued that past experience of the weather impacts on the GB power system may not be a good guide for the impact on the present or near-future power system.

  18. Design evolution of large wind turbine generators

    NASA Technical Reports Server (NTRS)

    Spera, D. A.

    1979-01-01

    During the past five years, the goals of economy and reliability have led to a significant evolution in the basic design--both external and internal--of large wind turbine systems. To show the scope and nature of recent changes in wind turbine designs, development of three types are described: (1) system configuration developments; (2) computer code developments; and (3) blade technology developments.

  19. Analysis of axial-induction-based wind plant control using an engineering and a high-order wind plant model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Annoni, Jennifer; Gebraad, Pieter M. O.; Scholbrock, Andrew K.

    2015-08-14

    Wind turbines are typically operated to maximize their performance without considering the impact of wake effects on nearby turbines. Wind plant control concepts aim to increase overall wind plant performance by coordinating the operation of the turbines. This paper focuses on axial-induction-based wind plant control techniques, in which the generator torque or blade pitch degrees of freedom of the wind turbines are adjusted. The paper addresses discrepancies between a high-order wind plant model and an engineering wind plant model. Changes in the engineering model are proposed to better capture the effects of axial-induction-based control shown in the high-order model.

  20. Electric power from offshore wind via synoptic-scale interconnection

    PubMed Central

    Kempton, Willett; Pimenta, Felipe M.; Veron, Dana E.; Colle, Brian A.

    2010-01-01

    World wind power resources are abundant, but their utilization could be limited because wind fluctuates rather than providing steady power. We hypothesize that wind power output could be stabilized if wind generators were located in a meteorologically designed configuration and electrically connected. Based on 5 yr of wind data from 11 meteorological stations, distributed over a 2,500 km extent along the U.S. East Coast, power output for each hour at each site is calculated. Each individual wind power generation site exhibits the expected power ups and downs. But when we simulate a power line connecting them, called here the Atlantic Transmission Grid, the output from the entire set of generators rarely reaches either low or full power, and power changes slowly. Notably, during the 5-yr study period, the amount of power shifted up and down but never stopped. This finding is explained by examining in detail the high and low output periods, using reanalysis data to show the weather phenomena responsible for steady production and for the occasional periods of low power. We conclude with suggested institutions appropriate to create and manage the power system analyzed here. PMID:20368464

  1. Piezoelectric transformers for low-voltage generation of gas discharges and ionic winds in atmospheric air

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, Michael J.; Go, David B., E-mail: dgo@nd.edu; Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, Indianapolis 46556

    To generate a gas discharge (plasma) in atmospheric air requires an electric field that exceeds the breakdown threshold of ∼30 kV/cm. Because of safety, size, or cost constraints, the large applied voltages required to generate such fields are often prohibitive for portable applications. In this work, piezoelectric transformers are used to amplify a low input applied voltage (<30 V) to generate breakdown in air without the need for conventional high-voltage electrical equipment. Piezoelectric transformers (PTs) use their inherent electromechanical resonance to produce a voltage amplification, such that the surface of the piezoelectric exhibits a large surface voltage that can generate corona-like dischargesmore » on its corners or on adjacent electrodes. In the proper configuration, these discharges can be used to generate a bulk air flow called an ionic wind. In this work, PT-driven discharges are characterized by measuring the discharge current and the velocity of the induced ionic wind with ionic winds generated using input voltages as low as 7 V. The characteristics of the discharge change as the input voltage increases; this modifies the resonance of the system and subsequent required operating parameters.« less

  2. Optimized Generator Designs for the DTU 10-MW Offshore Wind Turbine using GeneratorSE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sethuraman, Latha; Maness, Michael; Dykes, Katherine

    Compared to land-based applications, offshore wind imposes challenges for the development of next generation wind turbine generator technology. Direct-drive generators are believed to offer high availability, efficiency, and reduced operation and maintenance requirements; however, previous research suggests difficulties in scaling to several megawatts or more in size. The resulting designs are excessively large and/or massive, which are major impediments to transportation logistics, especially for offshore applications. At the same time, geared wind turbines continue to sustain offshore market growth through relatively cheaper and lightweight generators. However, reliability issues associated with mechanical components in a geared system create significant operation andmore » maintenance costs, and these costs make up a large portion of overall system costs offshore. Thus, direct-drive turbines are likely to outnumber their gear-driven counterparts for this market, and there is a need to review the costs or opportunities of building machines with different types of generators and examining their competitiveness at the sizes necessary for the next generation of offshore wind turbines. In this paper, we use GeneratorSE, the National Renewable Energy Laboratory's newly developed systems engineering generator sizing tool to estimate mass, efficiency, and the costs of different generator technologies satisfying the electromagnetic, structural, and basic thermal design requirements for application in a very large-scale offshore wind turbine such as the Technical University of Denmark's (DTU) 10-MW reference wind turbine. For the DTU reference wind turbine, we use the previously mentioned criteria to optimize a direct-drive, radial flux, permanent-magnet synchronous generator; a direct-drive electrically excited synchronous generator; a medium-speed permanent-magnet generator; and a high-speed, doubly-fed induction generator. Preliminary analysis of leveled costs of energy indicate that for large turbines, the cost of permanent magnets and reliability issues associated with brushes in electrically excited machines are the biggest deterrents for building direct-drive systems. The advantage of medium-speed permanent-magnet machines over doubly-fed induction generators is evident, yet, variability in magnet prices and solutions to address reliability issues associated with gearing and brushes can change this outlook. This suggests the need to potentially pursue fundamentally new innovations in generator designs that help avoid high capital costs but still have significant reliability related to performance.« less

  3. Optimized Generator Designs for the DTU 10-MW Offshore Wind Turbine using GeneratorSE: Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sethuraman, Latha; Maness, Michael; Dykes, Katherine

    Compared to land-based applications, offshore wind imposes challenges for the development of next generation wind turbine generator technology. Direct-drive generators are believed to offer high availability, efficiency, and reduced operation and maintenance requirements; however, previous research suggests difficulties in scaling to several megawatts or more in size. The resulting designs are excessively large and/or massive, which are major impediments to transportation logistics, especially for offshore applications. At the same time, geared wind turbines continue to sustain offshore market growth through relatively cheaper and lightweight generators. However, reliability issues associated with mechanical components in a geared system create significant operation andmore » maintenance costs, and these costs make up a large portion of overall system costs offshore. Thus, direct-drive turbines are likely to outnumber their gear-driven counterparts for this market, and there is a need to review the costs or opportunities of building machines with different types of generators and examining their competitiveness at the sizes necessary for the next generation of offshore wind turbines. In this paper, we use GeneratorSE, the National Renewable Energy Laboratory's newly developed systems engineering generator sizing tool to estimate mass, efficiency, and the costs of different generator technologies satisfying the electromagnetic, structural, and basic thermal design requirements for application in a very large-scale offshore wind turbine such as the Technical University of Denmark's (DTU) 10-MW reference wind turbine. For the DTU reference wind turbine, we use the previously mentioned criteria to optimize a direct-drive, radial flux, permanent-magnet synchronous generator; a direct-drive electrically excited synchronous generator; a medium-speed permanent-magnet generator; and a high-speed, doubly-fed induction generator. Preliminary analysis of leveled costs of energy indicate that for large turbines, the cost of permanent magnets and reliability issues associated with brushes in electrically excited machines are the biggest deterrents for building direct-drive systems. The advantage of medium-speed permanent-magnet machines over doubly-fed induction generators is evident, yet, variability in magnet prices and solutions to address reliability issues associated with gearing and brushes can change this outlook. This suggests the need to potentially pursue fundamentally new innovations in generator designs that help avoid high capital costs but still have significant reliability related to performance.« less

  4. Assessing the Impacts of Wind Integration in the Western Provinces

    NASA Astrophysics Data System (ADS)

    Sopinka, Amy

    Increasing carbon dioxide levels and the fear of irreversible climate change has prompted policy makers to implement renewable portfolio standards. These renewable portfolio standards are meant to encourage the adoption of renewable energy technologies thereby reducing carbon emissions associated with fossil fuel-fired electricity generation. The ability to efficiently adopt and utilize high levels of renewable energy technology, such as wind power, depends upon the composition of the extant generation within the grid. Western Canadian electric grids are poised to integrate high levels of wind and although Alberta has sufficient and, at times, an excess supply of electricity, it does not have the inherent generator flexibility required to mirror the variability of its wind generation. British Columbia, with its large reservoir storage capacities and rapid ramping hydroelectric generation could easily provide the firming services required by Alberta; however, the two grids are connected only by a small, constrained intertie. We use a simulation model to assess the economic impacts of high wind penetrations in the Alberta grid under various balancing protocols. We find that adding wind capacity to the system impacts grid reliability, increasing the frequency of system imbalances and unscheduled intertie flow. In order for British Columbia to be viable firming resource, it must have sufficient generation capability to meet and exceed the province's electricity self-sufficiency requirements. We use a linear programming model to evaluate the province's ability to meet domestic load under various water and trade conditions. We then examine the effects of drought and wind penetration on the interconnected Alberta -- British Columbia system given differing interconnection sizes.

  5. Study on the glaze ice accretion of wind turbine with various chord lengths

    NASA Astrophysics Data System (ADS)

    Liang, Jian; Liu, Maolian; Wang, Ruiqi; Wang, Yuhang

    2018-02-01

    Wind turbine icing often occurs in winter, which changes the aerodynamic characteristics of the blades and reduces the work efficiency of the wind turbine. In this paper, the glaze ice model is established for horizontal-axis wind turbine in 3-D. The model contains the grid generation, two-phase simulation, heat and mass transfer. Results show that smaller wind turbine suffers from more serious icing problem, which reflects on a larger ice thickness. Both the collision efficiency and heat transfer coefficient increase under smaller size condition.

  6. Western Wind and Solar Integration Study Phase 3A: Low Levels of Synchronous Generation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miller, Nicholas W.; Leonardi, Bruno; D'Aquila, Robert

    The stability of the North American electric power grids under conditions of high penetrations of wind and solar is a significant concern and possible impediment to reaching renewable energy goals. The 33% wind and solar annual energy penetration considered in this study results in substantial changes to the characteristics of the bulk power system. This includes different power flow patterns, different commitment and dispatch of existing synchronous generation, and different dynamic behavior from wind and solar generation. The Western Wind and Solar Integration Study (WWSIS), sponsored by the U.S. Department of Energy, is one of the largest regional solar andmore » wind integration studies to date. In multiple phases, it has explored different aspects of the question: Can we integrate large amounts of wind and solar energy into the electric power system of the West? The work reported here focused on the impact of low levels of synchronous generation on the transient stability performance in one part of the region in which wind generation has displaced synchronous thermal generation under highly stressed, weak system conditions. It is essentially an extension of WWSIS-3. Transient stability, the ability of the power system to maintain synchronism among all elements following disturbances, is a major constraint on operations in many grids, including the western U.S. and Texas systems. These constraints primarily concern the performance of the large-scale bulk power system. But grid-wide stability concerns with high penetrations of wind and solar are still not thoroughly understood. This work focuses on 'traditional' fundamental frequency stability issues, such as maintaining synchronism, frequency, and voltage. The objectives of this study are to better understand the implications of low levels of synchronous generation and a weak grid on overall system performance by: 1) Investigating the Western Interconnection under conditions of both high renewable generation (e.g., wind and solar) and low synchronous generation (e.g., significant coal power plant decommitment or retirement); and 2) Analyzing both the large-scale stability of the Western Interconnection and regional stability issues driven by more geographically dispersed renewable generation interacting with a transmission grid that evolved with large, central station plants at key nodes. As noted above, the work reported here is an extension of the research performed in WWSIS-3.« less

  7. Reminiscences on the study of wind waves

    PubMed Central

    MITSUYASU, Hisashi

    2015-01-01

    The wind blowing over sea surface generates tiny wind waves. They develop with time and space absorbing wind energy, and become huge wind waves usually referred to ocean surface waves. The wind waves cause not only serious sea disasters but also take important roles in the local and global climate changes by affecting the fluxes of momentum, heat and gases (e.g. CO2) through the air-sea boundary. The present paper reviews the selected studies on wind waves conducted by our group in the Research Institute for Applied Mechanics (RIAM), Kyushu University. The themes discussed are interactions between water waves and winds, the energy spectrum of wind waves, nonlinear properties of wind waves, and the effects of surfactant on some air-sea interaction phenomena. PMID:25864467

  8. Reminiscences on the study of wind waves.

    PubMed

    Mitsuyasu, Hisashi

    2015-01-01

    The wind blowing over sea surface generates tiny wind waves. They develop with time and space absorbing wind energy, and become huge wind waves usually referred to ocean surface waves. The wind waves cause not only serious sea disasters but also take important roles in the local and global climate changes by affecting the fluxes of momentum, heat and gases (e.g. CO2) through the air-sea boundary. The present paper reviews the selected studies on wind waves conducted by our group in the Research Institute for Applied Mechanics (RIAM), Kyushu University. The themes discussed are interactions between water waves and winds, the energy spectrum of wind waves, nonlinear properties of wind waves, and the effects of surfactant on some air-sea interaction phenomena.

  9. 76 FR 6775 - Combined Notice of Filings #1

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-02-08

    ... Services Corporation; Fowler Ridge II Wind Farm LLC. Description: Notice of Non-Material Change in Status... Open Access Transmission Tariff, a Small Generator Interconnection Agreement Facilities Maintenance..., Inc.; Atlantic Renewable Projects II LLC; Barton Windpower LLC; Big Horn Wind Project LLC; Big Horn II...

  10. Conceptual design of the 7 megawatt Mod-5B wind turbine generator

    NASA Technical Reports Server (NTRS)

    Douglas, R. R.

    1982-01-01

    Similar to MOD-2, the MOD-5B wind turbine generator system is designed for the sole purpose of providing electrical power for distribution by a major utility network. The objectives of the MOD-2 and MOD-5B programs are essentially identical with one important exception; the cost-of-electricity (COE) target is reduced from 4 cent/Kwhr on MOD-2 to 3 cent/Kwhr on MOD-5B, based on mid 1977 dollars and large quantity production. The MOD-5B concept studies and eventual concept selection confirmed that the program COE targets could not only be achieved but substantially bettered. Starting from the established MOD-2 technology as a base, this achievement resulted from a combination of concept changes, size changes, and design refinements. The result of this effort is a wind turbine system that can compete with conventional power generation over significant geographical areas, increasing commercial market potential by an order of magnitude.

  11. Effect of vortex generators on the power conversion performance and structural dynamic loads of the Mod-2 wind turbine

    NASA Technical Reports Server (NTRS)

    Sullivan, T. L.

    1984-01-01

    Applying vortex generators from 20 to 100 percent span of the Mod-2 rotor resulted in a projected increase in annual energy capture of 20 percent and reduced the wind speed at which rated power is reached by nearly 3 m/sec. Application of vortex generators from 20 to 70 percent span, the fixed portion of the Mod-2 rotor, resulted in a projected increase in annual energy capture of about half this. This improved performance came at the cost of a small increase in cyclic blade loads in below rated power conditions. Cyclic blade loads were found to correlate well with the change in wind speed during one rotor revolution.

  12. Eastern Renewable Generation Integration Study: Flexibility and High Penetrations of Wind and Solar; NREL (National Renewable Energy Laboratory)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bloom, Aaron; Townsend, Aaron; Palchak, David

    Balancing wind and solar in a model is relatively easy. All you need to do is assume a very large system with infinite flexibility! But what if you don't have an infinitely flexible system? What if there are thousands of generators nestled in a handful of regions that are unlikely to change their operational practices? Would you still have enough flexibility to balance hundreds of gigawatts of wind and solar at a 5 minute level? At NREL, we think we can, and our industry partners agree. This presentation was presented at the IEEE Power and Energy Society General Meeting bymore » Aaron Bloom, highlighting results of the Eastern Renewable Generation Integration Study.« less

  13. Spatio-temporal analysis of gyres in oriented lakes on the Arctic Coastal Plain of northern Alaska based on remotely sensed images

    USGS Publications Warehouse

    Zhan, Shengan; Beck, Richard A.; Hinkel, Kenneth M.; Liu, Hongxing; Jones, Benjamin M.

    2014-01-01

    The formation of oriented thermokarst lakes on the Arctic Coastal Plain of northern Alaska has been the subject of debate for more than half a century. The striking elongation of the lakes perpendicular to the prevailing wind direction has led to the development of a preferred wind-generated gyre hypothesis, while other hypotheses include a combination of sun angle, topographic aspect, and/or antecedent conditions. A spatio-temporal analysis of oriented thermokarst lake gyres with recent (Landsat 8) and historical (Landsat 4, 5, 7 and ASTER) satellite imagery of the Arctic Coastal Plain of northern Alaska indicates that wind-generated gyres are both frequent and regionally extensive. Gyres are most common in lakes located near the Arctic coast after several days of sustained winds from a single direction, typically the northeast, and decrease in number landward with decreasing wind energy. This analysis indicates that the conditions necessary for the Carson and Hussey (1962) wind-generated gyre for oriented thermokarst lake formation are common temporally and regionally and correspond spatially with the geographic distribution of oriented lakes on the Arctic Coastal Plain. Given an increase in the ice-free season for lakes as well as strengthening of the wind regime, the frequency and distribution of lake gyres may increase. This increase has implications for changes in northern high latitude aquatic ecosystems, particularly if wind-generated gyres promote permafrost degradation and thermokarst lake expansion.

  14. German-Korean cooperation for erection and test of industrialized solar technologies

    NASA Astrophysics Data System (ADS)

    Pfeiffer, H.

    1986-01-01

    A combined small solar-wind power station and a solar-thermal experimental plant were built. The plants are designed to demonstrate the effective exploitation of solar energy and wind energy and enhanced availability achievable through combination of these two energy sources. A 14 kW wind energy converter and a 2.5 kW solar-cell generator were operated in parallel. The biaxial tracking system used on the solar generator leads to increased and constant generation of electricity throughout the day. A consumer control system switches the energy generators and the consumers in autonomous mode according to changing supply and demand. The solar powered air conditioning unit operates with an absorption type refrigerating unit, high-output flat collectors and an automatic control system. All design values are achieved on start-up of the plant.

  15. Using Computational Fluid Dynamics-Rigid Body Dynamic (CFD-RBD) Results to Generate Aerodynamic Models for Projectile Flight Simulation

    DTIC Science & Technology

    2007-09-01

    also relatively easy to change the wind tunnel model to allow detailed parametric effects to be investigated. The main disadvantage of wind tunnel...as Magnus force and moment coefficients are difficult to obtain in a wind tunnel and require a complex physical wind tunnel model. Over the past...7) The terms containing YPAC constitute the Magnus air load acting at the Magnus center of pressure while the terms containing 0 2, ,X X NAC C C

  16. Use of a magnetic force exciter to vibrate a piezocomposite generating element in a small-scale windmill

    NASA Astrophysics Data System (ADS)

    Truyen Luong, Hung; Goo, Nam Seo

    2012-02-01

    A piezocomposite generating element (PCGE) can be used to convert ambient vibrations into electrical energy that can be stored and used to power other devices. This paper introduces a design of a magnetic force exciter for a small-scale windmill that vibrates a PCGE to convert wind energy into electrical energy. A small-scale windmill was designed to be sensitive to low-speed wind in urban regions for the purpose of collecting wind energy. The magnetic force exciter consists of exciting magnets attached to the device’s input rotor and a secondary magnet fixed at the tip of the PCGE. The PCGE is fixed to a clamp that can be adjusted to slide on the windmill’s frame in order to change the gap between exciting and secondary magnets. Under an applied wind force, the input rotor rotates to create a magnetic force interaction that excites the PCGE. The deformation of the PCGE enables it to generate electric power. Experiments were performed with different numbers of exciting magnets and different gaps between the exciting and secondary magnets to determine the optimal configuration for generating the peak voltage and harvesting the maximum wind energy for the same range of wind speeds. In a battery-charging test, the charging time for a 40 mA h battery was approximately 3 h for natural wind in an urban region. The experimental results show that the prototype can harvest energy in urban regions with low wind speeds and convert the wasted wind energy into electricity for city use.

  17. Developing a framework for integrating turbulence measurements and modeling of ecosystem-atmosphere interactions

    NASA Astrophysics Data System (ADS)

    Markfort, C. D.

    2017-12-01

    Aquatic ecosystems are integrators of nutrient and carbon from their watersheds. The effects of climate change in many cases will enhance the rate of these inputs and change the thermodynamics within aquatic environments. It is unclear the extent these changes will have on water quality and carbon assimilation, but the drivers of these processes will be determined by the complex interactions at the land-water and air-water interfaces. For example, flow over and beneath wind-driven surface waves generate turbulence that plays an important role in aquatic ecology and biogeochemistry, exchange of gases such as oxygen and carbon dioxide, and it is important for the transfer of energy and controlling evaporation. Energy transferred from the atmosphere promotes the generation and maintenance of waves. A fraction of the energy is transferred to the surface mixed layer through the generation of turbulence. Energy is also transferred back to the atmosphere by waves. There is a need to quantify the details of the coupled boundary layers of the air-water system to better understand how turbulence plays a role in the interactions. We have developed capabilities to conduct field and laboratory experiments using eddy covariance on tall-towers and rafts, UAS platforms integrated with remote sensing, and detailed wind-wave measurements with time-resolved PIV in a new boundary layer wind-wave tunnel. We will show measurements of the detailed structure of the air and water boundary layers under varying wind and wave conditions in the newly developed IIHR Boundary-Layer Wind-Wave Tunnel. The facility combines a 30-m long recirculating water channel with an open-return boundary layer wind tunnel. A thick turbulent boundary layer is developed in the 1 m high air channel, over the water surface, allowing for the study of boundary layer turbulence interacting with a wind-driven wave field. Results will help interpret remote sensing, energy budget measurements, and turbulence transport models for sheltered lakes influenced by terrain and tall trees.

  18. Assessing climate change impacts on the near-term stability of the wind energy resource over the United States

    PubMed Central

    Pryor, S. C.; Barthelmie, R. J.

    2011-01-01

    The energy sector comprises approximately two-thirds of global total greenhouse gas emissions. For this and other reasons, renewable energy resources including wind power are being increasingly harnessed to provide electricity generation potential with negligible emissions of carbon dioxide. The wind energy resource is naturally a function of the climate system because the “fuel” is the incident wind speed and thus is determined by the atmospheric circulation. Some recent articles have reported historical declines in measured near-surface wind speeds, leading some to question the continued viability of the wind energy industry. Here we briefly articulate the challenges inherent in accurately quantifying and attributing historical tendencies and making robust projections of likely future wind resources. We then analyze simulations from the current generation of regional climate models and show, at least for the next 50 years, the wind resource in the regions of greatest wind energy penetration will not move beyond the historical envelope of variability. Thus this work suggests that the wind energy industry can, and will, continue to make a contribution to electricity provision in these regions for at least the next several decades. PMID:21536905

  19. A New Non-gaussian Turbulent Wind Field Generator to Estimate Design-Loads of Wind-Turbines

    NASA Astrophysics Data System (ADS)

    Schaffarczyk, A. P.; Gontier, H.; Kleinhans, D.; Friedrich, R.

    Climate change and finite fossil fuel resources make it urgent to turn into electricity generation from mostly renewable energies. One major part will play wind-energy supplied by wind-turbines of rated power up to 10 MW. For their design and development wind field models have to be used. The standard models are based on the empirical spectra, for example by von Karman or Kaimal. From investigation of measured data it is clear that gusts are underrepresented in such models. Based on some fundamental discoveries of the nature of turbulence by Friedrich [1] derived from the Navier-Stokes equation directly, we used the concept of Continuous Time Random Walks to construct three dimensional wind fields obeying non-Gaussian statistics. These wind fields were used to estimate critical fatigue loads necessary within the certification process. Calculations are carried out with an implementation of a beam-model (FLEX5) for two types of state-of-the-art wind turbines The authors considered the edgewise and flapwise blade-root bending moments as well as tilt moment at tower top due to the standard wind field models and our new non-Gaussian wind field model. Clear differences in the loads were found.

  20. Assessing climate change impacts on the near-term stability of the wind energy resource over the United States.

    PubMed

    Pryor, S C; Barthelmie, R J

    2011-05-17

    The energy sector comprises approximately two-thirds of global total greenhouse gas emissions. For this and other reasons, renewable energy resources including wind power are being increasingly harnessed to provide electricity generation potential with negligible emissions of carbon dioxide. The wind energy resource is naturally a function of the climate system because the "fuel" is the incident wind speed and thus is determined by the atmospheric circulation. Some recent articles have reported historical declines in measured near-surface wind speeds, leading some to question the continued viability of the wind energy industry. Here we briefly articulate the challenges inherent in accurately quantifying and attributing historical tendencies and making robust projections of likely future wind resources. We then analyze simulations from the current generation of regional climate models and show, at least for the next 50 years, the wind resource in the regions of greatest wind energy penetration will not move beyond the historical envelope of variability. Thus this work suggests that the wind energy industry can, and will, continue to make a contribution to electricity provision in these regions for at least the next several decades.

  1. Variability in large-scale wind power generation: Variability in large-scale wind power generation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kiviluoma, Juha; Holttinen, Hannele; Weir, David

    2015-10-25

    The paper demonstrates the characteristics of wind power variability and net load variability in multiple power systems based on real data from multiple years. Demonstrated characteristics include probability distribution for different ramp durations, seasonal and diurnal variability and low net load events. The comparison shows regions with low variability (Sweden, Spain and Germany), medium variability (Portugal, Ireland, Finland and Denmark) and regions with higher variability (Quebec, Bonneville Power Administration and Electric Reliability Council of Texas in North America; Gansu, Jilin and Liaoning in China; and Norway and offshore wind power in Denmark). For regions with low variability, the maximum 1more » h wind ramps are below 10% of nominal capacity, and for regions with high variability, they may be close to 30%. Wind power variability is mainly explained by the extent of geographical spread, but also higher capacity factor causes higher variability. It was also shown how wind power ramps are autocorrelated and dependent on the operating output level. When wind power was concentrated in smaller area, there were outliers with high changes in wind output, which were not present in large areas with well-dispersed wind power.« less

  2. Global warming and climate forcing by recent albedo changes on Mars

    USGS Publications Warehouse

    Fenton, L.K.; Geissler, P.E.; Haberle, R.M.

    2007-01-01

    For hundreds of years, scientists have tracked the changing appearance of Mars, first by hand drawings and later by photographs. Because of this historical record, many classical albedo patterns have long been known to shift in appearance over time. Decadal variations of the martian surface albedo are generally attributed to removal and deposition of small amounts of relatively bright dust on the surface. Large swaths of the surface (up to 56 million km2) have been observed to darken or brighten by 10 per cent or more. It is unknown, however, how these albedo changes affect wind circulation, dust transport and the feedback between these processes and the martian climate. Here we present predictions from a Mars general circulation model, indicating that the observed interannual albedo alterations strongly influence the martian environment. Results indicate enhanced wind stress in recently darkened areas and decreased wind stress in brightened areas, producing a positive feedback system in which the albedo changes strengthen the winds that generate the changes. The simulations also predict a net annual global warming of surface air temperatures by ???0.65 K, enhancing dust lifting by increasing the likelihood of dust devil generation. The increase in global dust lifting by both wind stress and dust devils may affect the mechanisms that trigger large dust storm initiation, a poorly understood phenomenon, unique to Mars. In addition, predicted increases in summertime air temperatures at high southern latitudes would contribute to the rapid and steady scarp retreat that has been observed in the south polar residual ice for the past four Mars years. Our results suggest that documented albedo changes affect recent climate change and large-scale weather patterns on Mars, and thus albedo variations are a necessary component of future atmospheric and climate studies. ??2007 Nature Publishing Group.

  3. Global warming and climate forcing by recent albedo changes on Mars.

    PubMed

    Fenton, Lori K; Geissler, Paul E; Haberle, Robert M

    2007-04-05

    For hundreds of years, scientists have tracked the changing appearance of Mars, first by hand drawings and later by photographs. Because of this historical record, many classical albedo patterns have long been known to shift in appearance over time. Decadal variations of the martian surface albedo are generally attributed to removal and deposition of small amounts of relatively bright dust on the surface. Large swaths of the surface (up to 56 million km2) have been observed to darken or brighten by 10 per cent or more. It is unknown, however, how these albedo changes affect wind circulation, dust transport and the feedback between these processes and the martian climate. Here we present predictions from a Mars general circulation model, indicating that the observed interannual albedo alterations strongly influence the martian environment. Results indicate enhanced wind stress in recently darkened areas and decreased wind stress in brightened areas, producing a positive feedback system in which the albedo changes strengthen the winds that generate the changes. The simulations also predict a net annual global warming of surface air temperatures by approximately 0.65 K, enhancing dust lifting by increasing the likelihood of dust devil generation. The increase in global dust lifting by both wind stress and dust devils may affect the mechanisms that trigger large dust storm initiation, a poorly understood phenomenon, unique to Mars. In addition, predicted increases in summertime air temperatures at high southern latitudes would contribute to the rapid and steady scarp retreat that has been observed in the south polar residual ice for the past four Mars years. Our results suggest that documented albedo changes affect recent climate change and large-scale weather patterns on Mars, and thus albedo variations are a necessary component of future atmospheric and climate studies.

  4. Profiler Support for Operations at Space Launch Ranges

    NASA Technical Reports Server (NTRS)

    Merceret, Francis; Wilfong, Timothy; Lambert, Winifred; Short, David; Decker, Ryan; Ward, Jennifer

    2006-01-01

    Accurate vertical wind profiles are essential to successful launch or landing. Wind changes can make it impossible to fly a desired trajectory or avoid dangerous vehicle loads, possibly resulting in loss of mission. Balloons take an hour to generate a profile up to 20 km, but major wind changes can occur in 20 minutes. Wind profilers have the temporal response to detect such last minute hazards. They also measure the winds directly overhead while balloons blow downwind. At the Eastern Range (ER), altitudes from 2 to 20 km are sampled by a 50-MHz profiler every 4 minutes. The surface to 3 km is sampled by five 915-MHz profilers every 15 minutes. The Range Safety office assesses the risk of potential toxic chemical dispersion. They use observational data and model output to estimate the spatial extent and concentration of substances dispersed within the boundary layer. The ER uses 915-MHz profilers as both a real time observation system and as input to dispersion models. The WR has similar plans. Wind profilers support engineering analyses for the Space Shuttle. The 50-IVl11z profiler was used recently to analyze changes in the low frequency wind and low vertical wavenumber content of wind profiles in the 3 to 15 km region of the atmosphere. The 915-MHz profiler network was used to study temporal wind change within the boundary layer.

  5. Evaluating potentials for future generation off-shore wind-power outside Norway

    NASA Astrophysics Data System (ADS)

    Benestad, R. E.; Haugen, J.; Haakenstad, H.

    2012-12-01

    With todays critical need of renewable energy sources, it is naturally to look towards wind power. With the long coast of Norway, there is a large potential for wind farms offshore Norway. Although there are more challenges with offshore wind energy installations compared to wind farms on land, the offshore wind is generally higher, and there is also higher persistence of wind speed values in the power generating classes. I planning offshore wind farms, there is a need of evaluation of the wind resources, the wind climatology and possible future changes. In this aspect, we use data from regional climate model runs performed in the European ENSEMBLE-project (van der Linden and J.F.B. Mitchell, 2009). In spite of increased reliability in RCMs in the recent years, the simulations still suffer from systematic model errors, therefore the data has to be corrected before using them in wind resource analyses. In correcting the wind speeds from the RCMs, we will use wind speeds from a Norwegian high resolution wind- and wave- archive, NORA10 (Reistad et al 2010), to do quantile mapping (Themeβl et. al. 2012). The quantile mapping is performed individually for each regional simulation driven by ERA40-reanalysis from the ENSEMBLE-project corrected against NORA10. The same calibration is then used to the belonging regional climate scenario. The calibration is done for each grid cell in the domain and for each day of the year centered in a +/-15 day window to make an empirical cumulative density function for each day of the year. The quantile mapping of the scenarios provide us with a new wind speed data set for the future, more correct compared to the raw ENSEMBLE scenarios. References: Reistad M., Ø. Breivik, H. Haakenstad, O. J. Aarnes, B. R. Furevik and J-R Bidlo, 2010, A high-resolution hindcast of wind and waves for The North Sea, The Norwegian Sea and The Barents Sea. J. Geophys. Res., 116. doi:10.1029/2010JC006402. Themessl M. J., A. Gobiet and A. Leuprecht, 2012, Empirical-statistical downscaling and error correction of regional climate models and its imipact on the climate change signal. Climatic Change 112: 449-468, DOI 10.1007/s10584-011-0224-4. Van der Linden P. and J.F.B. Mitchell, 2009, ENSEMBLES: Climate Change and its Impacts_ Summary and results from the ENSEMBLES project. Met Office Hadley Centre, FitzRoy Road, Exeter EX1 3PB, UK.

  6. Optimal Control of Distributed Energy Resources using Model Predictive Control

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mayhorn, Ebony T.; Kalsi, Karanjit; Elizondo, Marcelo A.

    2012-07-22

    In an isolated power system (rural microgrid), Distributed Energy Resources (DERs) such as renewable energy resources (wind, solar), energy storage and demand response can be used to complement fossil fueled generators. The uncertainty and variability due to high penetration of wind makes reliable system operations and controls challenging. In this paper, an optimal control strategy is proposed to coordinate energy storage and diesel generators to maximize wind penetration while maintaining system economics and normal operation. The problem is formulated as a multi-objective optimization problem with the goals of minimizing fuel costs and changes in power output of diesel generators, minimizingmore » costs associated with low battery life of energy storage and maintaining system frequency at the nominal operating value. Two control modes are considered for controlling the energy storage to compensate either net load variability or wind variability. Model predictive control (MPC) is used to solve the aforementioned problem and the performance is compared to an open-loop look-ahead dispatch problem. Simulation studies using high and low wind profiles, as well as, different MPC prediction horizons demonstrate the efficacy of the closed-loop MPC in compensating for uncertainties in wind and demand.« less

  7. Western Wind and Solar Integration Study Phase 2 (Presentation)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lew, D.; Brinkman, G.; Ibanez, E.

    This presentation accompanies Phase 2 of the Western Wind and Solar Integration Study, a follow-on to Phase 1, which examined the operational impacts of high penetrations of variable renewable generation on the electric power system in the West and was one of the largest variable generation studies to date. High penetrations of variable generation can induce cycling of fossil-fueled generators. Cycling leads to wear-and-tear costs and changes in emissions. Phase 2 calculated these costs and emissions, and simulated grid operations for a year to investigate the detailed impact of variable generation on the fossil-fueled fleet. The presentation highlights the scopemore » of the study and results.« less

  8. Impacts of wind farms on surface air temperatures

    PubMed Central

    Baidya Roy, Somnath; Traiteur, Justin J.

    2010-01-01

    Utility-scale large wind farms are rapidly growing in size and numbers all over the world. Data from a meteorological field campaign show that such wind farms can significantly affect near-surface air temperatures. These effects result from enhanced vertical mixing due to turbulence generated by wind turbine rotors. The impacts of wind farms on local weather can be minimized by changing rotor design or by siting wind farms in regions with high natural turbulence. Using a 25-y-long climate dataset, we identified such regions in the world. Many of these regions, such as the Midwest and Great Plains in the United States, are also rich in wind resources, making them ideal candidates for low-impact wind farms. PMID:20921371

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lantz, Eric; Mai, Trieu; Wiser, Ryan H.

    This paper evaluates potential changes in the power system associated with sustained growth in wind generation in the United States to 35% of end-use demand by 2050; Wiser et al. (2016) evaluate societal benefits and other impacts for this same scenario. Under reference or central conditions, the analysis finds cumulative wind capacity of 404 gigawatts (GW) would be required to reach this level and drive 2050 incremental electricity rate and cumulative electric sector savings of 2% and 3% respectively, relative to a scenario with no new wind capacity additions. Greater savings are estimated under higher fossil fuel costs or withmore » greater advancements in wind technologies. Conversely, incremental costs are found when fossil fuel costs are lower than central assumptions or wind technology improvements are more-limited. Through 2030, the primary generation sources displaced by new wind capacity include natural gas and coal-fired generation. By 2050, wind could displace other renewables. Incremental new transmission infrastructure totaling 29 million megawatt-miles is estimated to be needed by 2050. In conjunction with related societal benefits, this work demonstrates that 35% wind energy by 2050 is plausible, could support enduring benefits, and could result in long-term consumer savings, if nearer-term (pre-2030) cost barriers are overcome; at the same time, these opportunities are not anticipated to be realized in their full form under 'business-as-usual' conditions.« less

  10. Interaction of the plasma tail of comet Bradfield 1979L on 1980 February 6 with a possibly flare-generated solar-wind disturbance

    NASA Technical Reports Server (NTRS)

    Niedner, M. B., Jr.; Brandt, J. C.; Zwickl, R. D.; Bame, S. J.

    1983-01-01

    Solar-wind plasma data from the ISEE-3 and Helios 2 spacecraft were examined in order to explain a uniquely rapid 10 deg turning of the plasma tail of comet Bradfield 1979l on 1980 February 6. An earlier study conducted before the availability of in situ solar-wind data (Brandt et al., 1980) suggested that the tail position angle change occurred in response to a solar-wind velocity shear across the polar component changed by approximately 50 km/s. The present contribution confirms this result and further suggests that the comet-tail activity was caused by non-corotating, disturbed plasma flows probably associated with an Importance 1B solar flare.

  11. Optimization of rotating equipment in offshore wind farm

    NASA Astrophysics Data System (ADS)

    Okunade, O. A.

    2014-07-01

    The paper considered the improvement of rotating equipment in a wind farm, and how these could maximise the farm power capacity. It aimed to increase capacity of electricity generation through a renewable source in UK and contribute to 15 per cent energy- consumption target, set by EU on electricity through renewable sources by 2020. With reference to a case study in UK offshore wind farm, the paper analysed the critique of the farm, as a design basis for its optimization. It considered power production as design situation, load cases and constraints, in order to reflect characteristics and behaviour of a standard design. The scope, which considered parts that were directly involved in power generation, covered rotor blades and the impacts of gearbox and generator to power generation. The scope did not however cover support structures like tower design. The approaches of detail data analysis of the blade at typical wind load conditions, were supported by data from acceptable design standards, relevant authorities and professional bodies. The findings in proposed model design showed at least over 3 per cent improvement on the existing electricity generation. It also indicated overall effects on climate change.

  12. Improved inertial control for permanent magnet synchronous generator wind turbine generators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Ziping; Gao, Wenzhong; Wang, Xiao

    With increasing integrations of large-scale systems based on permanent magnet synchronous generator wind turbine generators (PMSG-WTGs), the overall inertial response of a power system will tend to deteriorate as a result of the decoupling of rotor speed and grid frequency through the power converter as well as the scheduled retirement of conventional synchronous generators. Thus, PMSG-WTGs can provide value to an electric grid by contributing to the system's inertial response through the inherent kinetic energy stored in their rotating masses and fast power converter control. In this study, an improved inertial control method based on the maximum power point trackingmore » operation curve is introduced to enhance the overall frequency support capability of PMSG-WTGs in the case of large supply-demand imbalances. Moreover, this method is implemented in the CART2-PMSG integrated model in MATLAB/Simulink to investigate its impact on the wind turbine's structural loads during the inertial response process. Simulation results indicate that the proposed method can effectively reduce the frequency nadir, arrest the rate of change of frequency, and alleviate the secondary frequency dip while imposing no negative impact on the major mechanical components of the wind turbine.« less

  13. Long-term implications of sustained wind power growth in the United States: Direct electric system impacts and costs

    DOE PAGES

    Lantz, Eric; Mai, Trieu; Wiser, Ryan H.; ...

    2016-07-22

    This paper evaluates potential changes in the power system associated with sustained growth in wind generation in the United States to 35% of end-use demand by 2050; Wiser et al. (forthcoming) evaluates societal benefits and other impacts for this same scenario. Under reference or central conditions, the analysis finds cumulative wind capacity of 404 GW would be required to reach this level and drive 2050 incremental electricity rate and cumulative electric sector savings of 2% and 3%, respectively, relative to a scenario with no new wind capacity additions. Greater savings are estimated under higher fossil fuel costs or with greatermore » advancements in wind technologies. Conversely, incremental costs are found when fossil fuel costs are lower than central assumptions or wind technology improvements are more-limited. Through 2030 the primary generation sources displaced by new wind capacity include natural gas and coal-fired generation. By 2050 wind could displace other renewables. Incremental new transmission infrastructure totaling 29 million MW-miles is estimated to be needed by 2050. In conjunction with related societal benefits, this work demonstrates that 35% wind energy by 2050 is plausible, could support enduring benefits, and could result in long-term consumer savings, if nearer-term (pre-2030) cost barriers are overcome; at the same time, these opportunities are not anticipated to be realized in their full form under “business-as-usual” conditions.« less

  14. The Eastern Renewable Generation Integration Study: Insights on System Stress: Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bloom, Aaron; Novacheck, Josh

    The Eastern Renewable Generation Integration Study (ERGIS) explores the operational impacts of the wide spread adoption of wind and solar photovoltaics (PV) resources in North America's Eastern and Quebec Interconnections. We explore the impact of large scale adoption of wind and solar generation on the unit commitment and economic dispatch of the largest coordinated power system in the world by simulating hourly and five-minute operations. Using NREL's high-performance computing capabilities and new methodologies to model operations, we found that the modeled system, as simulated with evolutionary change in 2026, could balance the variability and uncertainty of wind and solar PVmore » at a five-minute level under a variety of conditions. Our simulations achieve instantaneous penetrations that exceed 50% of load while meeting an annual penetration of 30% on an energy basis. The system meets balanced load and supply in all intervals, with modest curtailment, using technologies and practices that are widely available today. However, a variety of the conditions present in these simulations deviate substantially from historical practice. In this work, we analyze potentially stressful system conditions that occur in the simulations and identify opportunities for innovation, regulatory reform, and changes in operating practices that require further analysis to enable the transition to a system with more wind and solar PV.« less

  15. Wind turbine wake measurement in complex terrain

    NASA Astrophysics Data System (ADS)

    Hansen, KS; Larsen, GC; Menke, R.; Vasiljevic, N.; Angelou, N.; Feng, J.; Zhu, WJ; Vignaroli, A.; W, W. Liu; Xu, C.; Shen, WZ

    2016-09-01

    SCADA data from a wind farm and high frequency time series measurements obtained with remote scanning systems have been analysed with focus on identification of wind turbine wake properties in complex terrain. The analysis indicates that within the flow regime characterized by medium to large downstream distances (more than 5 diameters) from the wake generating turbine, the wake changes according to local atmospheric conditions e.g. vertical wind speed. In very complex terrain the wake effects are often “overruled” by distortion effects due to the terrain complexity or topology.

  16. Eddy-current system for the vibration-testing of blades

    DOEpatents

    Jacobs, Martin E.

    1977-01-01

    This invention is an improved system for the vibration-testing of cantilevered non-ferrous articles by inducing eddy currents therein. The principal advantage of the system is that relatively little heat is generated in the article being vibrated. Thus, a more accurate measurement of the fatigue characteristics of the article is obtained. Furthermore, the generation of relatively little heat in the blade permits tests to be conducted in low-pressure atmospheres simulating certain actual processes environments. Heat-generation in the vibrated article is minimized by utilizing eddy currents which are generated by an electromagnet whose magnetic field varies but does not change polarity. The typical winding for the electromagnet is excited with pulsating d.c. That is, the winding is alternately charged by connecting it across a d.c. power supply and then discharged by connecting it across a circuit for receiving current generated in the winding by self-induction. Preferably, the discharge circuit is designed so that the waveform of the discharging current approximates that of the charging current.

  17. Research and analysis on response characteristics of bracket-line coupling system under wind load

    NASA Astrophysics Data System (ADS)

    Jiayu, Zhao; Qing, Sun

    2018-01-01

    In this paper, a three-dimensional finite element model of bracket-line coupling system is established based on ANSYS software. Using the wind velocity time series which is generated by MATLAB as a power input, by comparing and analyzing the influence of different wind speeds and different wind attack angles, it is found that when 0 degree wind acts on the structure, wires have a certain damping effect in the bracket-line coupling system and at the same wind speed, the 90 degree direction is the most unfavorable wind direction for the whole structure according to the three kinds of angle wind calculated at present. In the bracket-line coupling system, the bracket structure is more sensitive to the increase of wind speed while the conductors are more sensitive to the change of wind attack angle.

  18. Downscaling wind and wavefields for 21st century coastal flood hazard projections in a region of complex terrain

    USGS Publications Warehouse

    O'Neill, Andrea; Erikson, Li; Barnard, Patrick

    2017-01-01

    While global climate models (GCMs) provide useful projections of near-surface wind vectors into the 21st century, resolution is not sufficient enough for use in regional wave modeling. Statistically downscaled GCM projections from Multivariate Adaptive Constructed Analogues provide daily averaged near-surface winds at an appropriate spatial resolution for wave modeling within the orographically complex region of San Francisco Bay, but greater resolution in time is needed to capture the peak of storm events. Short-duration high wind speeds, on the order of hours, are usually excluded in statistically downscaled climate models and are of key importance in wave and subsequent coastal flood modeling. Here we present a temporal downscaling approach, similar to constructed analogues, for near-surface winds suitable for use in local wave models and evaluate changes in wind and wave conditions for the 21st century. Reconstructed hindcast winds (1975–2004) recreate important extreme wind values within San Francisco Bay. A computationally efficient method for simulating wave heights over long time periods was used to screen for extreme events. Wave hindcasts show resultant maximum wave heights of 2.2 m possible within the Bay. Changes in extreme over-water wind speeds suggest contrasting trends within the different regions of San Francisco Bay, but 21th century projections show little change in the overall magnitude of extreme winds and locally generated waves.

  19. Small wind turbine performance evaluation using field test data and a coupled aero-electro-mechanical model

    NASA Astrophysics Data System (ADS)

    Wallace, Brian D.

    A series of field tests and theoretical analyses were performed on various wind turbine rotor designs at two Penn State residential-scale wind-electric facilities. This work involved the prediction and experimental measurement of the electrical and aerodynamic performance of three wind turbines; a 3 kW rated Whisper 175, 2.4 kW rated Skystream 3.7, and the Penn State designed Carolus wind turbine. Both the Skystream and Whisper 175 wind turbines are OEM blades which were originally installed at the facilities. The Carolus rotor is a carbon-fiber composite 2-bladed machine, designed and assembled at Penn State, with the intent of replacing the Whisper 175 rotor at the off-grid system. Rotor aerodynamic performance is modeled using WT_Perf, a National Renewable Energy Laboratory developed Blade Element Momentum theory based performance prediction code. Steady-state power curves are predicted by coupling experimentally determined electrical characteristics with the aerodynamic performance of the rotor simulated with WT_Perf. A dynamometer test stand is used to establish the electromechanical efficiencies of the wind-electric system generator. Through the coupling of WT_Perf and dynamometer test results, an aero-electro-mechanical analysis procedure is developed and provides accurate predictions of wind system performance. The analysis of three different wind turbines gives a comprehensive assessment of the capability of the field test facilities and the accuracy of aero-electro-mechanical analysis procedures. Results from this study show that the Carolus and Whisper 175 rotors are running at higher tip-speed ratios than are optimum for power production. The aero-electro-mechanical analysis predicted the high operating tip-speed ratios of the rotors and was accurate at predicting output power for the systems. It is shown that the wind turbines operate at high tip-speeds because of a miss-match between the aerodynamic drive torque and the operating torque of the wind-system generator. Through the change of load impedance on the wind generator, the research facility has the ability to modify the rotational speed of the wind turbines, allowing the rotors to perform closer to their optimum tip-speed. Comparisons between field test data and performance predictions show that the aero-electro-mechanical analysis was able to predict differences in power production and rotational speed which result from changes in the system load impedance.

  20. Wind and solar energy curtailment: A review of international experience

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bird, Lori; Lew, Debra; Milligan, Michael

    2016-11-01

    Greater penetrations of variable renewable generation on some electric grids have resulted in increased levels of curtailment in recent years. Studies of renewable energy grid integration have found that curtailment levels may grow as the penetration of wind and solar energy generation increases. This paper reviews international experience with curtailment of wind and solar energy on bulk power systems in recent years, with a focus on eleven countries in Europe, North America, and Asia. It examines levels of curtailment, the causes of curtailment, curtailment methods and use of market-based dispatch, as well as operational, institutional, and other changes that aremore » being made to reduce renewable energy curtailment.« less

  1. On the Effect of Offshore Wind Parks on Ocean Dynamics

    NASA Astrophysics Data System (ADS)

    Ludewig, E.; Pohlmann, T.

    2012-12-01

    Nowadays renewable energy resources play a key role in the energy supply discussion and especially an increasingly interest in wind energy induces intensified installations of wind parks. At this offshore wind energy gains in popularity in the course of higher and more consistent energy availability than over land. For example Germany's government adopted a national interurban offshore wind energy program comprising the construction of hundreds of wind turbines within Germany's Exclusive Economic Zone to ensure up to 50% of Germany's renewable energy supply. The large number of installation in coastal regions asks for analyzing the impact of offshore wind parks (OWPs) on the atmosphere and the ocean. As known from literature such wind parks excite also-called wake-effect and such an influence on the wind field in turn affects ocean circulation. To cover OWP's impact on ocean dynamics we evaluate model simulations using the Hamburg Shelf-Ocean-Model (HAMSOM). All simulations were driven with a wind forcing produced by the Mesoscale Atmosphere Model of the Hamburg University (METRAS) which has implemented wind turbines. Wind forcing data were generated in collaboration with and by courtesy of the Meteorological Institute of the University of Hamburg, Department Technical Meteorology, Numeric Modeling-METRAS. To evaluate dynamical changes forced by the OWP's wind wake-effect we did a sensitivity study with a theoretical setup of a virtual ocean of 60m depth with a flat bottom and a temperature and salinity stratification according to common North Sea's conditions. Here our results show that already a small OWP of 12 wind turbines, placed in an area of 4 km^2, lead to a complex change in ocean dynamics. Due to the wake-effect zones of upwelling and downwelling are formed within a minute after turning-on wind turbines. The evolving vertical cells have a size of around 15x15 kilometers with a vertical velocity in order of 10^-2 mm/sec influencing the dynamic of an area being hundred times bigger than the wind park itself. The emerged vertical structure is generated due to a newly created geostrophic balance resulting in a redistribution of the ocean mass field. A number of additional upwelling and downwelling cells around the wind park support an intensified vertical dispersion through all layers and incline the thermocline which also influences the lower levels. The disturbances of mass show a dipole structure across the main wind direction with a maximum change in thermocline depth of some meters close to the OWP. Diffusion, mostly driven by direct wind induced surface shear is also modified by the wind turbines and supports a further modification of the vertical patterns. Considering that wind turbines operate only in a special window of wind speed, i.e. wind turbines will stop in case of too weak or too strong wind speeds as well as in case of technical issues, the averaged dimension and intensity of occurring vertical cells depend on the number of rotors and expected wind speeds. Finally we will focus on scenario runs for the North Sea under fully realistic conditions to estimate possible changes in ocean dynamics due to OWPs in future and these results will be further used for process analyzes of the ecosystem. If we assume a continuous operation of North Sea's OWPs in future we expect a fundamental constant change in ocean dynamics and moreover in the ecosystem in its vicinity.

  2. Analysis of dynamic behavior of multiple-stage planetary gear train used in wind driven generator.

    PubMed

    Wang, Jungang; Wang, Yong; Huo, Zhipu

    2014-01-01

    A dynamic model of multiple-stage planetary gear train composed of a two-stage planetary gear train and a one-stage parallel axis gear is proposed to be used in wind driven generator to analyze the influence of revolution speed and mesh error on dynamic load sharing characteristic based on the lumped parameter theory. Dynamic equation of the model is solved using numerical method to analyze the uniform load distribution of the system. It is shown that the load sharing property of the system is significantly affected by mesh error and rotational speed; load sharing coefficient and change rate of internal and external meshing of the system are of obvious difference from each other. The study provides useful theoretical guideline for the design of the multiple-stage planetary gear train of wind driven generator.

  3. Analysis of Dynamic Behavior of Multiple-Stage Planetary Gear Train Used in Wind Driven Generator

    PubMed Central

    Wang, Jungang; Wang, Yong; Huo, Zhipu

    2014-01-01

    A dynamic model of multiple-stage planetary gear train composed of a two-stage planetary gear train and a one-stage parallel axis gear is proposed to be used in wind driven generator to analyze the influence of revolution speed and mesh error on dynamic load sharing characteristic based on the lumped parameter theory. Dynamic equation of the model is solved using numerical method to analyze the uniform load distribution of the system. It is shown that the load sharing property of the system is significantly affected by mesh error and rotational speed; load sharing coefficient and change rate of internal and external meshing of the system are of obvious difference from each other. The study provides useful theoretical guideline for the design of the multiple-stage planetary gear train of wind driven generator. PMID:24511295

  4. The probable source of certain spurious frequencies found in the output of a variable speed generating system using slip recovery

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carlin, P W

    1989-06-01

    As part of US Department of Energy-sponsored research on wind energy, a Mod-O wind turbine was used to drive a variable-speed, wound-rotor, induction generator. Energy resulting from the slip frequency voltage in the generator rotor was rectified to dc, inverted back to utility frequency ac, and injected into the power line. Spurious changing frequencies displayed in the generator output by a spectrum analyzer are caused by ripple on the dc link. No resonances of any of these moving frequencies were seen in spite of the presence of a bank of power factor correcting capacitors. 5 figs.

  5. Numerical Analysis of the Effect of Active Wind Speed and Direction on Circulation of Sea of Azov Water with and without Allowance for the Water Exchange through the Kerch Strait

    NASA Astrophysics Data System (ADS)

    Cherkesov, L. V.; Shul'ga, T. Ya.

    2018-01-01

    The effect of seawater movement through the Kerch Strait for extreme deviations in the level and speed of currents in the Sea of Azov caused by the action of climate wind fields has been studied using the Princeton ocean model (POM), a general three-dimensional nonlinear model of ocean circulation. Formation of the water flow through the strait is caused by the long-term action of the same type of atmospheric processes. The features of the water dynamics under conditions of changing intensity and active wind direction have been studied. Numerical experiments were carried out for two versions of model Sea of Azov basins: closed (without the Kerch Strait) and with a fluid boundary located in the Black Sea. The simulation results have shown that allowance for the strait leads to a significant change in the velocities of steady currents and level deviations at wind speeds greater than 5 m/s. The most significant effect on the parameters of steady-state movements is exerted by the speed of the wind that generates them; allowance for water exchange through the strait is less important. Analysis of the directions of atmospheric circulation has revealed that the response generated by the movement of water through the strait is most pronounced when a southeast wind is acting.

  6. Increased Efficiency of a Permanent Magnet Synchronous Generator through Optimization of NdFeB Magnet Arrays

    NASA Astrophysics Data System (ADS)

    Khazdozian, Helena; Hadimani, Ravi; Jiles, David

    2014-03-01

    The United States is currently dependent on fossil fuels for the majority of its energy needs, which has many negative consequences such as climate change. Wind turbines present a viable alternative, with the highest energy return on investment among even fossil fuel generation. Traditional commercial wind turbines use an induction generator for energy conversion. However, induction generators require a gearbox to increase the rotational speed of the drive shaft. These gearboxes increase the overall cost of the wind turbine and account for about 35 percent of reported wind turbine failures. Direct drive permanent magnet synchronous generators (PMSGs) offer an alternative to induction generators which eliminate the need for a gearbox. Yet, PMSGs can be more expensive than induction generators at large power output due to their size and weight. To increase the efficiency of PMSGs, the geometry and configuration of NdFeB permanent magnets were investigated using finite element techniques. The optimized design of the PMSG increases flux density and minimizes cogging torque with NdFeB permanent magnets of a reduced volume. These factors serve to increase the efficiency and reduce the overall cost of the PMSG. This work is supported by a National Science Foundation IGERT fellowship and the Barbara and James Palmer Endowment at the Department of Electrical and Computer Engineering of Iowa State University.

  7. Feasibility study of wind-generated electricity for rural applications in southwestern Ohio

    NASA Astrophysics Data System (ADS)

    Kohring, G. W.

    The parameters associated with domestic production of wind generated electricity for direct use by small farms and rural homes in the southwestern Ohio region are discussed. The project involves direct utility interfaced electricity generation from a horizontal axis, down-wind, fixed pitch, wind powered induction generator system. Goals of the project are to determine: the ability to produce useful amounts of domestic wind generated electricity in the southwestern Ohio region; economic justification for domestic wind generated electrical production; and the potential of domestic wind generated electricity for reducing dependence on non-renewable energy resources in the southwestern Ohio region.

  8. MOD-OA 200 kW wind turbine generator engineeringing

    NASA Technical Reports Server (NTRS)

    Andersen, T. S.; Bodenschatz, C. A.; Eggers, A. G.; Hughes, P. S.; Lampe, R. F.

    1980-01-01

    Engineering drawings and the detailed mechanical and electrical design of a horizontal-axis wind turbine designed for DOE at the NASA Lewis Research Center and installed in Clayton, New Mexico are discussed. The drawings show the hub, pitch change mechanism, drive train, nacelle equipment, yaw drive system, tower, foundation, electrical power systems, and the control and safety systems.

  9. Power Smoothing and MPPT for Grid-connected Wind Power Generation with Doubly Fed Induction Generator

    NASA Astrophysics Data System (ADS)

    Kai, Takaaki; Tanaka, Yuji; Kaneda, Hirotoshi; Kobayashi, Daichi; Tanaka, Akio

    Recently, doubly fed induction generator (DFIG) and synchronous generator are mostly applied for wind power generation, and variable speed control and power factor control are executed for high efficiently for wind energy capture and high quality for power system voltage. In variable speed control, a wind speed or a generator speed is used for maximum power point tracking. However, performances of a wind generation power fluctuation due to wind speed variation have not yet investigated for those controls. The authors discuss power smoothing by those controls for the DFIG inter-connected to 6.6kV distribution line. The performances are verified using power system simulation software PSCAD/EMTDC for actual wind speed data and are examined from an approximate equation of wind generation power fluctuation for wind speed variation.

  10. 77 FR 22569 - Interconnection of the Grande Prairie Wind Farm, Holt County, NE

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-16

    ... operations and maintenance building. Grande Prairie Wind would site wind turbine generators and supporting... wind turbines. Permanent disturbance for each wind turbine generator location would be approximately 0.25 acres. Grande Prairie Wind is considering a variety of wind turbine generator types, with...

  11. MOD-0A 200 kW wind turbine generator design and analysis report

    NASA Astrophysics Data System (ADS)

    Anderson, T. S.; Bodenschatz, C. A.; Eggers, A. G.; Hughes, P. S.; Lampe, R. F.; Lipner, M. H.; Schornhorst, J. R.

    1980-08-01

    The design, analysis, and initial performance of the MOD-OA 200 kW wind turbine generator at Clayton, NM is documented. The MOD-OA was designed and built to obtain operation and performance data and experience in utility environments. The project requirements, approach, system description, design requirements, design, analysis, system tests, installation, safety considerations, failure modes and effects analysis, data acquisition, and initial performance for the wind turbine are discussed. The design and analysis of the rotor, drive train, nacelle equipment, yaw drive mechanism and brake, tower, foundation, electricl system, and control systems are presented. The rotor includes the blades, hub, and pitch change mechanism. The drive train includes the low speed shaft, speed increaser, high speed shaft, and rotor brake. The electrical system includes the generator, switchgear, transformer, and utility connection. The control systems are the blade pitch, yaw, and generator control, and the safety system. Manual, automatic, and remote control are discussed. Systems analyses on dynamic loads and fatigue are presented.

  12. MOD-0A 200 kW wind turbine generator design and analysis report

    NASA Technical Reports Server (NTRS)

    Anderson, T. S.; Bodenschatz, C. A.; Eggers, A. G.; Hughes, P. S.; Lampe, R. F.; Lipner, M. H.; Schornhorst, J. R.

    1980-01-01

    The design, analysis, and initial performance of the MOD-OA 200 kW wind turbine generator at Clayton, NM is documented. The MOD-OA was designed and built to obtain operation and performance data and experience in utility environments. The project requirements, approach, system description, design requirements, design, analysis, system tests, installation, safety considerations, failure modes and effects analysis, data acquisition, and initial performance for the wind turbine are discussed. The design and analysis of the rotor, drive train, nacelle equipment, yaw drive mechanism and brake, tower, foundation, electricl system, and control systems are presented. The rotor includes the blades, hub, and pitch change mechanism. The drive train includes the low speed shaft, speed increaser, high speed shaft, and rotor brake. The electrical system includes the generator, switchgear, transformer, and utility connection. The control systems are the blade pitch, yaw, and generator control, and the safety system. Manual, automatic, and remote control are discussed. Systems analyses on dynamic loads and fatigue are presented.

  13. A Global Look at Future Trends in the Renewable Energy Resource

    NASA Astrophysics Data System (ADS)

    Chen, S.; Freedman, J. M.; Kirk-Davidoff, D. B.; Brower, M.

    2017-12-01

    With the aggressive deployment of utility-scale and distributed generation of wind and solar energy systems, an accurate estimate of the uncertainty associated with future resource trends and plant performance is crucial in maintaining financial integrity in the renewable energy markets. With continuing concerns regarding climate change, the move towards energy resiliency, and the cost-competitiveness of renewables, a rapidly expanding fleet of utility-scale wind and solar power facilities and distributed generation of both resources is now being incorporated into the electric distribution grid. Although solar and wind account for about 3% of global power production, renewable energy is now and will continue to be the world's fastest-growing energy source. With deeper penetration of renewables, confidence in future power production output on a spectrum of temporal and spatial scales is crucial to grid stability for long-term planning and achieving national and international targets in the reduction of greenhouse gas emissions. Here, we use output from a diverse subset of Earth System Models (Climate Model Inter-comparison Project-Phase 5 members) to produce projected trends and uncertainties in regional and global seasonal and inter-annual wind and solar power production and respective capacity factors through the end of the 21st century. Our trends and uncertainty analysis focuses on the Representative Concentration Pathways (RCP) 4.5 and RCP 8.5 scenarios. For wind and solar energy production estimates, we extract surface layer wind (extrapolated to hub height), irradiance, cloud fraction, and temperature (air temperature affects density [hence wind power production] and the efficiency of photovoltaic [PV] systems), output from the CMIP5 ensemble mean fields for the period 2020 - 2099 and an historical baseline for POR of 1986 - 2005 (compared with long-term observations and the ERA-Interim Reanalysis). Results include representative statistics such as the standard deviation (as determined from the slopes of the trend lines for individual CMIP5 members), means, medians (e.g. P50 values) and percent change, trends analysis on time series for each variable, and creation of global maps of trends (% change per year) and changes in capacity factors for both estimated solar and wind power production.

  14. Projecting Wind Energy Potential Under Climate Change with Ensemble of Climate Model Simulations

    NASA Astrophysics Data System (ADS)

    Jain, A.; Shashikanth, K.; Ghosh, S.; Mukherjee, P. P.

    2013-12-01

    Recent years have witnessed an increasing global concern over energy sustainability and security, triggered by a number of issues, such as (though not limited to): fossil fuel depletion, energy resource geopolitics, economic efficiency versus population growth debate, environmental concerns and climate change. Wind energy is a renewable and sustainable form of energy in which wind turbines convert the kinetic energy of wind into electrical energy. Global warming and differential surface heating may significantly impact the wind velocity and hence the wind energy potential. Sustainable design of wind mills requires understanding the impacts of climate change on wind energy potential, which we evaluate here with multiple General Circulation Models (GCMs). GCMs simulate the climate variables globally considering the greenhouse emission scenarios provided as Representation Concentration path ways (RCPs). Here we use new generation climate model outputs obtained from Coupled model Intercomparison Project 5(CMIP5). We first compute the wind energy potential with reanalysis data (NCEP/ NCAR), at a spatial resolution of 2.50, where the gridded data is fitted to Weibull distribution and with the Weibull parameters, the wind energy densities are computed at different grids. The same methodology is then used, to CMIP5 outputs (resultant of U-wind and V-wind) of MRI, CMCC, BCC, CanESM, and INMCM4 for historical runs. This is performed separately for four seasons globally, MAM, JJA, SON and DJF. We observe the muti-model average of wind energy density for historic period has significant bias with respect to that of reanalysis product. Here we develop a quantile based superensemble approach where GCM quantiles corresponding to selected CDF values are regressed to reanalysis data. It is observed that this regression approach takes care of both, bias in GCMs and combination of GCMs. With superensemble, we observe that the historical wind energy density resembles quite well with reanalysis/ observed output. We apply the same for future under RCP scenarios. We observe spatially and temporally varying global change of wind energy density. The underlying assumption is that the regression relationship will also hold good for future. The results highlight the needs to change the design standards of wind mills at different locations, considering climate change and at the same time the requirement of height modifications for existing mills to produce same energy in future.

  15. Europe looks to wind

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gipe, P.

    1989-09-01

    The European Economic Community (EEC) sees a guaranteed market for 4,000 MW of wind energy through the year 2000, according to Komninos Diamantaras, wind program manager for the EEC in Brussels. Diamantaras says the European political climate for wind energy has changed for the better because of increased attention to air pollution's effect on global weather. He added that during the past year several common market members have announced plans to develop substantial amounts of wind energy. The United Kingdom, Denmark and the Netherlands have each stated their intent to build 1,000 MW of wind generation by the turn ofmore » the century, and Italy recently announced plans to add from 300-600 MW. Germany has also made plans to promote wind generation. The decision to include firms from non-EEC countries is left to the utility. Whether a U.S. firm will be permitted to bid on a EEC-member tender may be determined by its relation to European manufacturers. Regardless of the EEC's policy towards U.S. firms, member states may still exclude bidding by foreign firms for state subsidized projects when they are experimental. Just what is meant by experimental is has yet to be determined.« less

  16. Cherokee Wind Energy Development - Feasibility and Pre-Construction Studies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McMillan, Andy

    Cherokee Nation Businesses (CNB) received a grant from the US Department of Energy to explore feasibility and pursue development of a wind power generation facility on Cherokee land in north-central Oklahoma. This project followed several years of initial study exploring the possibility of commercial-scale wind power generation on primarily agricultural land owned by the Cherokee Nation. This project produced detailed analysis of the legal, financial and market viability of such generation facilities, and encompassed a full technical evaluation of the engineering, environmental, and geotechnical aspects of installing this capacity. During the course of this project, information gleaned from this explorationmore » changed CNB’s thinking about the best course of action for Cherokee participation in the development, eventually moving away from an equity-owner model and towards utilization of the land asset as a resource while mitigating Cherokee financial and operational risk.« less

  17. Gear-box fault detection using time-frequency based methods

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Odgaard, Peter Fogh; Stoustrup, Jakob

    2015-01-01

    Gear-box fault monitoring and detection is important for optimization of power generation and availability of wind turbines. The current industrial approach is to use condition monitoring systems, which runs in parallel with the wind turbine control system, using expensive additional sensors. An alternative would be to use the existing measurements which are normally available for the wind turbine control system. The usage of these sensors instead would cut down the cost of the wind turbine by not using additional sensors. One of these available measurements is the generator speed, in which changes in the gear-box resonance frequency can be detected.more » Two different time-frequency based approaches are presented in this paper. One is a filter based approach and the other is based on a Karhunen-Loeve basis. Both of them detects the gear-box fault with an acceptable detection delay.« less

  18. Design of a nonlinear backstepping control strategy of grid interconnected wind power system based PMSG

    NASA Astrophysics Data System (ADS)

    Errami, Y.; Obbadi, A.; Sahnoun, S.; Benhmida, M.; Ouassaid, M.; Maaroufi, M.

    2016-07-01

    This paper presents nonlinear backstepping control for Wind Power Generation System (WPGS) based Permanent Magnet Synchronous Generator (PMSG) and connected to utility grid. The block diagram of the WPGS with PMSG and the grid side back-to-back converter is established with the dq frame of axes. This control scheme emphasises the regulation of the dc-link voltage and the control of the power factor at changing wind speed. Besides, in the proposed control strategy of WPGS, Maximum Power Point Tracking (MPPT) technique and pitch control are provided. The stability of the regulators is assured by employing Lyapunov analysis. The proposed control strategy for the system has been validated by MATLAB simulations under varying wind velocity and the grid fault condition. In addition, a comparison of simulation results based on the proposed Backstepping strategy and conventional Vector Control is provided.

  19. More homogeneous wind conditions under strong climate change decrease the potential for inter-state balancing of electricity in Europe

    NASA Astrophysics Data System (ADS)

    Wohland, Jan; Reyers, Mark; Weber, Juliane; Witthaut, Dirk

    2017-11-01

    Limiting anthropogenic climate change requires the fast decarbonization of the electricity system. Renewable electricity generation is determined by the weather and is hence subject to climate change. We simulate the operation of a coarse-scale fully renewable European electricity system based on downscaled high-resolution climate data from EURO-CORDEX. Following a high-emission pathway (RCP8.5), we find a robust but modest increase (up to 7 %) of backup energy in Europe through the end of the 21st century. The absolute increase in the backup energy is almost independent of potential grid expansion, leading to the paradoxical effect that relative impacts of climate change increase in a highly interconnected European system. The increase is rooted in more homogeneous wind conditions over Europe resulting in intensified simultaneous generation shortfalls. Individual country contributions to European generation shortfall increase by up to 9 TWh yr-1, reflecting an increase of up to 4 %. Our results are strengthened by comparison with a large CMIP5 ensemble using an approach based on circulation weather types.

  20. Cascading of Fluctuations in Interdependent Energy Infrastructures. Gas-Grid Coupling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chertkov, Michael; Lebedev, Vladimir; Backhaus, Scott N.

    2014-09-05

    The revolution of hydraulic fracturing has dramatically increased the supply and lowered the cost of natural gas in the United States driving an expansion of natural gas-fired generation capacity in many electrical grids. Unrelated to the natural gas expansion, lower capital costs and renewable portfolio standards are driving an expansion of intermittent renewable generation capacity such as wind and photovoltaic generation. These two changes may potentially combine to create new threats to the reliability of these interdependent energy infrastructures. Natural gas-fired generators are often used to balance the fluctuating output of wind generation. However, the time-varying output of these generatorsmore » results in time-varying natural gas burn rates that impact the pressure in interstate transmission pipelines. Fluctuating pressure impacts the reliability of natural gas deliveries to those same generators and the safety of pipeline operations. We adopt a partial differential equation model of natural gas pipelines and use this model to explore the effect of intermittent wind generation on the fluctuations of pressure in natural gas pipelines. The mean square pressure fluctuations are found to grow linearly in time with points of maximum deviation occurring at the locations of flow reversals.« less

  1. Use of DFIWG for Improvement of Voltage Stability Condition of a Power System

    NASA Astrophysics Data System (ADS)

    Hazarika, Durlav; Das, Ranjay

    2017-12-01

    This paper describes a method for improvement of voltage stability condition of a multi-bus power system by regulating reactive power generation at a Doubly Fed Induction Wind Generator (DFIWG). For this purpose, sensitivity relation between changes in voltage stability index at a bus with respect to change in reactive power generation of the DFIWG is derived. This relation is used to determine the required amount of change in rotor current of the DFIWG to improve the voltage stability index of the bus.

  2. The MOD-OA 200 kilowatt wind turbine generator design and analysis report

    NASA Astrophysics Data System (ADS)

    Andersen, T. S.; Bodenschatz, C. A.; Eggers, A. G.; Hughes, P. S.; Lampe, R. F.; Lipner, M. H.; Schornhorst, J. R.

    1980-08-01

    The project requirements, approach, system description, design requirements, design, analysis, system tests, installation safety considerations, failure modes and effects analysis, data acquisition, and initial performance for the MOD-OA 200 kw wind turbine generator are discussed. The components, the rotor, driven train, nacelle equipment, yaw drive mechanism and brake, tower, foundation, electrical system, and control systems are presented. The rotor includes the blades, hub and pitch change mechanism. The drive train includes the low speed shaft, speed increaser, high speed shaft, and rotor brake. The electrical system includes the generator, switchgear, transformer, and utility connection. The control systems are the blade pitch, yaw, and generator control, and the safety system. Manual, automatic, and remote control and Dynamic loads and fatigue are analyzed.

  3. The MOD-OA 200 kilowatt wind turbine generator design and analysis report

    NASA Technical Reports Server (NTRS)

    Andersen, T. S.; Bodenschatz, C. A.; Eggers, A. G.; Hughes, P. S.; Lampe, R. F.; Lipner, M. H.; Schornhorst, J. R.

    1980-01-01

    The project requirements, approach, system description, design requirements, design, analysis, system tests, installation safety considerations, failure modes and effects analysis, data acquisition, and initial performance for the MOD-OA 200 kw wind turbine generator are discussed. The components, the rotor, driven train, nacelle equipment, yaw drive mechanism and brake, tower, foundation, electrical system, and control systems are presented. The rotor includes the blades, hub and pitch change mechanism. The drive train includes the low speed shaft, speed increaser, high speed shaft, and rotor brake. The electrical system includes the generator, switchgear, transformer, and utility connection. The control systems are the blade pitch, yaw, and generator control, and the safety system. Manual, automatic, and remote control and Dynamic loads and fatigue are analyzed.

  4. Climate information for the wind energy industry in the Mediterranean Region

    NASA Astrophysics Data System (ADS)

    Calmanti, Sandro; Davis, Melanie; Schmidt, Peter; Dell'Aquila, Alessandro

    2013-04-01

    According to the World Wind Energy Association the total wind generation capacity worldwide has come close to cover 3% of the world's electricity demand in 2011. Thanks to the enormous resource potential and the relatively low costs of construction and maintenance of wind power plants, the wind energy sector will remain one of the most attractive renewable energy investment options. Studies reveal that climate variability and change pose a new challenge to the entire renewable energy sector, and in particular for wind energy. Stakeholders in the wind energy sector mainly use, if available, site-specific historical climate information to assess wind resources at a given project site. So far, this is the only source of information that investors (e.g., banks) are keen to accept for decisions concerning the financing of wind energy projects. However, one possible wind energy risk at the seasonal scale is the volatility of earnings from year to year investment. The most significant risk is therefore that not enough units of energy (or megawatt hours) can be generated from the project to capture energy sales to pay down debt in any given quarter or year. On the longer time scale the risk is that a project's energy yields fall short of their estimated levels, resulting in revenues that consistently come in below their projection, over the life of the project. The nature of the risk exposure determines considerable interest in wind scenarios, as a potential component of both the planning and operational phase of a renewable energy project. Fundamentally, by using climate projections, the assumption of stationary wind regimes can be compared to other scenarios where large scale changes in atmospheric circulation patterns may affect local wind regimes. In the framework of CLIM-RUN EU FP7 project, climate experts are exploring the potential of seasonal to decadal climate forecast techniques (time-frame 2012-2040) and regional climate scenarios (time horizon 2040+) over the Mediterranean Region as a tool for assessing the impact of changes in climate patterns on the energy output of wind power plants. Subsequently, we will give here a brief overview of these techniques as well as first results related to wind projections for different sites across the Mediterranean Region. We will highlight that regional climate models have a large potential for enhancing the quality of climate projections in the presence of complex orography and in the proximity of coastal areas.

  5. Cumulative and Synergistic Effects of Physical, biological, and Acoustic Signals on Marine Mammal Habitat Use

    DTIC Science & Technology

    2013-04-01

    a simultaneous time series of marine mammal vocalizations and changing soundscapes (sound levels and spectral shapes) related to surface conditions...mooring (Figures 4, 6, and 7). 1 Figure 4. Seasoanl soundscapes generated... soundscapes in fall (a) and summer (d) show a linear pattern indicating an environment dominated by wind. Sound levels increase linearly as wind

  6. Spatial Pattern Classification for More Accurate Forecasting of Variable Energy Resources

    NASA Astrophysics Data System (ADS)

    Novakovskaia, E.; Hayes, C.; Collier, C.

    2014-12-01

    The accuracy of solar and wind forecasts is becoming increasingly essential as grid operators continue to integrate additional renewable generation onto the electric grid. Forecast errors affect rate payers, grid operators, wind and solar plant maintenance crews and energy traders through increases in prices, project down time or lost revenue. While extensive and beneficial efforts were undertaken in recent years to improve physical weather models for a broad spectrum of applications these improvements have generally not been sufficient to meet the accuracy demands of system planners. For renewables, these models are often used in conjunction with additional statistical models utilizing both meteorological observations and the power generation data. Forecast accuracy can be dependent on specific weather regimes for a given location. To account for these dependencies it is important that parameterizations used in statistical models change as the regime changes. An automated tool, based on an artificial neural network model, has been developed to identify different weather regimes as they impact power output forecast accuracy at wind or solar farms. In this study, improvements in forecast accuracy were analyzed for varying time horizons for wind farms and utility-scale PV plants located in different geographical regions.

  7. Methods and apparatus for cooling wind turbine generators

    DOEpatents

    Salamah, Samir A [Niskayuna, NY; Gadre, Aniruddha Dattatraya [Rexford, NY; Garg, Jivtesh [Schenectady, NY; Bagepalli, Bharat Sampathkumaran [Niskayuna, NY; Jansen, Patrick Lee [Alplaus, NY; Carl, Jr., Ralph James

    2008-10-28

    A wind turbine generator includes a stator having a core and a plurality of stator windings circumferentially spaced about a generator longitudinal axis. A rotor is rotatable about the generator longitudinal axis, and the rotor includes a plurality of magnetic elements coupled to the rotor and cooperating with the stator windings. The magnetic elements are configured to generate a magnetic field and the stator windings are configured to interact with the magnetic field to generate a voltage in the stator windings. A heat pipe assembly thermally engaging one of the stator and the rotor to dissipate heat generated in the stator or rotor.

  8. Development of flow separation control system to reduce the vibration of wind turbine blades

    NASA Astrophysics Data System (ADS)

    Kim, Ho-Young; Kim, Ho-Hyun; Han, Jong-Seob; Han, Jae-Hung

    2017-04-01

    The size of wind turbine blade has been continuously increased. Large-scale wind turbine blades induce loud noise, vibration; and maintenance difficulty is also increased. It causes the eventual increases of the cost of energy. The vibration of wind turbine blade is caused by several reasons such as a blade rotation, tower shadow, wind shear, and flow separation of a wind turbine blade. This wind speed variation changes in local angle of attack of the blades and create the vibration. The variation of local angle of attack influences the lift coefficient and causes the large change of the lift. In this study, we focus on the lift coefficient control using a flow control device to reduce the vibration. DU35-A15 airfoil was employed as baseline model. A plasma actuator was installed to generate the upwind jet in order to control the lift coefficient. Wind tunnel experiment was performed to demonstrate of the performance of the plasma actuator. The results show the plasma actuator can induce the flow separation compared with the baseline model. In addition, the actuator can delay the flow separation depending on the input AC frequency with the same actuator configuration.

  9. Analysis of wind energy generation possibilities with various rotor types at disadvantageous wind condition zones

    NASA Astrophysics Data System (ADS)

    Bieniek, Andrzej

    2017-10-01

    The paper describe possibilities of energy generation using various rotor types but especially with multi-blade wind engine operates in the areas with unfavourable wind condition. The paper presents also wind energy conversion estimation results presented based on proposed solution of multi-blade wind turbine of outer diameter of 4 m. Based on the wind distribution histogram from the disadvantage wind condition zones (city of Basel) and taking into account design and estimated operating indexes of the considered wind engine rotor an annual energy generation was estimated. Also theoretical energy generation using various types of wind turbines operates at disadvantage wind conditions zones were estimated and compared. The conducted analysis shows that introduction of multi-blade wind rotor instead of the most popular 3- blades or vertical axis rotors results of about 5% better energy generation. Simultaneously there are energy production also at very disadvantages wind condition at wind speed lower then 4 m s-1. Based on considered construction of multi-blade wind engine the rise of rotor mounting height from 10 to 30 m results with more then 300 % better results in terms of electric energy generation.

  10. Wind farm and solar park effects on plant–soil carbon cycling: uncertain impacts of changes in ground-level microclimate

    PubMed Central

    Armstrong, Alona; Waldron, Susan; Whitaker, Jeanette; Ostle, Nicholas J

    2014-01-01

    Global energy demand is increasing as greenhouse gas driven climate change progresses, making renewable energy sources critical to future sustainable power provision. Land-based wind and solar electricity generation technologies are rapidly expanding, yet our understanding of their operational effects on biological carbon cycling in hosting ecosystems is limited. Wind turbines and photovoltaic panels can significantly change local ground-level climate by a magnitude that could affect the fundamental plant–soil processes that govern carbon dynamics. We believe that understanding the possible effects of changes in ground-level microclimates on these phenomena is crucial to reducing uncertainty of the true renewable energy carbon cost and to maximize beneficial effects. In this Opinions article, we examine the potential for the microclimatic effects of these land-based renewable energy sources to alter plant–soil carbon cycling, hypothesize likely effects and identify critical knowledge gaps for future carbon research. PMID:24132939

  11. Poynting Vector in High-Temperature Superconducting Transformers with a Separate Excitation Winding

    NASA Astrophysics Data System (ADS)

    Volkov, E. P.; Dzhafarov, E. A.

    2017-12-01

    The HTSC transformer with a separate winding for excitation of the mutual magnetic flux is considered; the windings of the transformer are performed of first- or second-generation HTSC wires. The article presents the design and the electrical circuit of the transformer, the equations of electromagnetic balance, and the total resistance of the primary and secondary power windings and the separate excitation winding. The transfer of the electromagnetic field energy is considered in a single-phase HTSC transformer with the separate excitation winding using the Poynting vector. The temporal change in the reactive and active components of the Poynting vector and the decrease in the leakage energy flux of the separate excitation winding are shown, which causes an increase in the critical current density of the HTSC power windings, a decrease in the energy losses in the latter, and an increase the in the specific power of the HTSC transformer.

  12. Outlooks for Wind Power in the United States: Drivers and Trends under a 2016 Policy Environment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mai, Trieu; Lantz, Eric; Ho, Jonathan

    Over the past decade, wind power has become one of the fastest growing electricity generation sources in the United States. Despite this growth, the U.S. wind industry continues to experience year-to-year fluctuations across the manufacturing and supply chain as a result of dynamic market conditions and changing policy landscapes. Moreover, with advancing wind technologies, ever-changing fossil fuel prices, and evolving energy policies, the long-term future for wind power is highly uncertain. In this report, we present multiple outlooks for wind power in the United States, to explore the possibilities of future wind deployment. The future wind power outlooks presented relymore » on high-resolution wind resource data and advanced electric sector modeling capabilities to evaluate an array of potential scenarios of the U.S. electricity system. Scenario analysis is used to explore drivers, trends, and implications for wind power deployment over multiple periods through 2050. Specifically, we model 16 scenarios of wind deployment in the contiguous United States. These scenarios span a wide range of wind technology costs, natural gas prices, and future transmission expansion. We identify conditions with more consistent wind deployment after the production tax credit expires as well as drivers for more robust wind growth in the long run. Conversely, we highlight challenges to future wind deployment. We find that the degree to which wind technology costs decline can play an important role in future wind deployment, electric sector CO 2 emissions, and lowering allowance prices for the Clean Power Plan.« less

  13. Increased Surface Wind Speeds Follow Diminishing Arctic Sea Ice

    NASA Astrophysics Data System (ADS)

    Mioduszewski, J.; Vavrus, S. J.; Wang, M.; Holland, M. M.; Landrum, L.

    2017-12-01

    Projections of Arctic sea ice through the end of the 21st century indicate the likelihood of a strong reduction in ice area and thickness in all seasons, leading to a substantial thermodynamic influence on the overlying atmosphere. This is likely to have an effect on winds over the Arctic Basin, due to changes in atmospheric stability and/or baroclinicity. Prior research on future Arctic wind changes is limited and has focused mainly on the practical impacts on wave heights in certain seasons. Here we attempt to identify patterns and likely mechanisms responsible for surface wind changes in all seasons across the Arctic, particularly those associated with sea ice loss in the marginal ice zone. Sea level pressure, near-surface (10 m) and upper-air (850 hPa) wind speeds, and lower-level dynamic and thermodynamic variables from the Community Earth System Model Large Ensemble Project (CESM-LE) were analyzed for the periods 1971-2000 and 2071-2100 to facilitate comparison between a present-day and future climate. Mean near-surface wind speeds over the Arctic Ocean are projected to increase by late century in all seasons but especially during autumn and winter, when they strengthen by up to 50% locally. The most extreme wind speeds in the 90th percentile change even more, increasing in frequency by over 100%. The strengthened winds are closely linked to decreasing lower-tropospheric stability resulting from the loss of sea ice cover and consequent surface warming (locally over 20 ºC warmer in autumn and winter). A muted pattern of these future changes is simulated in CESM-LE historical runs from 1920-2005. The enhanced winds near the surface are mostly collocated with weaker winds above the boundary layer during autumn and winter, implying more vigorous vertical mixing and a drawdown of high-momentum air.The implications of stronger future winds include increased coastal hazards and the potential for a positive feedback with sea ice by generating higher winds and greater wave activity. Our findings suggest that increasing winds, along with retreating sea ice and thawing permafrost, represent another important contributor to the growing problem of Arctic coastal erosion.

  14. Great Lakes O shore Wind Project: Utility and Regional Integration Study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sajadi, Amirhossein; Loparo, Kenneth A.; D'Aquila, Robert

    This project aims to identify transmission system upgrades needed to facilitate offshore wind projects as well as operational impacts of offshore generation on operation of the regional transmission system in the Great Lakes region. A simulation model of the US Eastern Interconnection was used as the test system as a case study for investigating the impact of the integration of a 1000MW offshore wind farm operating in Lake Erie into FirstEnergy/PJM service territory. The findings of this research provide recommendations on offshore wind integration scenarios, the locations of points of interconnection, wind profile modeling and simulation, and computational methods tomore » quantify performance, along with operating changes and equipment upgrades needed to mitigate system performance issues introduced by an offshore wind project.« less

  15. Applications of wind generation for power system frequency control, inter-area oscillations damping and parameter identification

    NASA Astrophysics Data System (ADS)

    Wilches-Bernal, Felipe

    Power systems around the world are experiencing a continued increase in wind generation as part of their energy mix. Because of its power electronics interface, wind energy conversion systems interact differently with the grid than conventional generation. These facts are changing the traditional dynamics that regulate power system behavior and call for a re-examination of traditional problems encountered in power systems like frequency response, inter-area oscillations and parameter identification. To address this need, realistic models for wind generation are necessary. The dissertation implements such models in a MATLAB-based flexible environment suited for power system research. The dissertation continues with an analysis of the frequency response of a test power system dependent mainly on a mode referred to as the frequency regulation mode. Using this test system it is shown that its frequency regulation capability is reduced with wind penetration levels of 25% and above. A controller for wind generation to restore the frequency response of the system is then presented. The proposed controller requires the WTG to operate in a deloaded mode, a condition that is obtained through pitching the wind turbine blades. Time simulations at wind penetration levels of 25% and 50% are performed to demonstrate the effectiveness of the proposed controller. Next, the dissertation evaluates how the inter-area oscillation of a two-machine power system is affected by wind integration. The assessment is performed based on the positioning of the WTG, the level of wind penetration, and the loading condition of the system. It is determined that integrating wind reduces the damping of the inter-area mode of the system when performed in an area that imports power. For this worst-case scenario, the dissertation proposes two controllers for wind generation to improve the damping of the inter-area mode. The first controller uses frequency as feedback signal for the active power control of the WTG while the second controller manipulates the reactive power control of the WTG using the current magnitude as the feedback signal. Finally, the dissertation proposes a parameter identification method for identifying and verifying the reactive power control parameters of WTGs. Using voltage and current measurements of a wind unit as an input, the proposed method estimates an optimal set of parameters such that the output current of a standalone WTG model better approximates the measured signal. Because WTG are nonlinear systems, the identification method is solved by a Gauss-Newton iteration used to calculate the solution of a nonlinear least-squares problem. The effectiveness of the proposed method is illustrated using a set of simulated data and actual PMU recordings.

  16. Grid-connected wind and photovoltaic system

    NASA Astrophysics Data System (ADS)

    Devabakthuni, Sindhuja

    The objective of this thesis is to design a grid connected wind and photovoltaic system. A new model of converter control was designed which maintains the voltage of the bus to grid as constant when combined system of solar and wind is connected to AC bus. The model is designed to track maximum power at each point irrespective of changes in irradiance, temperature and wind speed which affects the power supplied to grid. Solar power from the sun is not constant as it is affected by changes in irradiances and temperature. Even the wind power is affected by wind speed. A MPPT controller was designed for both systems. A boost converter is designed which uses the pulses from MPPT controller to boost the output. Wind system consists of wind turbine block from the MATLAB with a pitch angle controller to maintain optimum pitch angle. The output from wind turbine is connected to a permanent magnet synchronous generator. The unregulated DC output from the photovoltaic system is directly given to boost converter. The AC output from the wind system is given to an uncontrolled rectifier to get a unregulated DC output. The unregulated DC output goes to the boost converter. A voltage source inverter was designed which converts the rectified DC output from the boost converter to AC power. The inverter is designed to maintain constant AC bus voltage irrespective of the disturbances in the power supply. Photovoltaic and wind systems are individually designed for 5KW each in MATLAB-Simulink environment. In this thesis, the models were subjected to changes in irradiance, temperature and wind speed and the results were interpreted. The model was successful in tracking maximum at every instant and the AC bus voltage was maintained constant throughout the simulation.

  17. ARE660 Wind Generator: Low Wind Speed Technology for Small Turbine Development

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Robert W. Preus; DOE Project Officer - Keith Bennett

    2008-04-23

    This project is for the design of a wind turbine that can generate most or all of the net energy required for homes and small businesses in moderately windy areas. The purpose is to expand the current market for residential wind generators by providing cost effective power in a lower wind regime than current technology has made available, as well as reduce noise and improve reliability and safety. Robert W. Preus’ experience designing and/or maintaining residential wind generators of many configurations helped identify the need for an improved experience of safety for the consumer. Current small wind products have unreliablemore » or no method of stopping the wind generator in fault or high wind conditions. Consumers and their neighbors do not want to hear their wind generators. In addition, with current technology, only sites with unusually high wind speeds provide payback times that are acceptable for the on-grid user. Abundant Renewable Energy’s (ARE) basic original concept for the ARE660 was a combination of a stall controlled variable speed small wind generator and automatic fail safe furling for shutdown. The stall control for a small wind generator is not novel, but has not been developed for a variable speed application with a permanent magnet alternator (PMA). The fail safe furling approach for shutdown has not been used to our knowledge.« less

  18. Simulation for Grid Connected Wind Turbines with Fluctuating

    NASA Astrophysics Data System (ADS)

    Ye, Ying; Fu, Yang; Wei, Shurong

    This paper establishes the whole dynamic model of wind turbine generator system which contains the wind speed model and DFIG wind turbines model .A simulation sample based on the mathematical models is built by using MATLAB in this paper. Research are did on the performance characteristics of doubly-fed wind generators (DFIG) which connected to power grid with three-phase ground fault and the disturbance by gust and mixed wind. The capacity of the wind farm is 9MW which consists of doubly-fed wind generators (DFIG). Simulation results demonstrate that the three-phase ground fault occurs on grid side runs less affected on the stability of doubly-fed wind generators. However, as a power source, fluctuations of the wind speed will run a large impact on stability of double-fed wind generators. The results also show that if the two disturbances occur in the meantime, the situation will be very serious.

  19. Wind energy conversion system

    DOEpatents

    Longrigg, Paul

    1987-01-01

    The wind energy conversion system includes a wind machine having a propeller connected to a generator of electric power, the propeller rotating the generator in response to force of an incident wind. The generator converts the power of the wind to electric power for use by an electric load. Circuitry for varying the duty factor of the generator output power is connected between the generator and the load to thereby alter a loading of the generator and the propeller by the electric load. Wind speed is sensed electro-optically to provide data of wind speed upwind of the propeller, to thereby permit tip speed ratio circuitry to operate the power control circuitry and thereby optimize the tip speed ratio by varying the loading of the propeller. Accordingly, the efficiency of the wind energy conversion system is maximized.

  20. Doubly fed induction generator wind turbines with fuzzy controller: a survey.

    PubMed

    Sathiyanarayanan, J S; Kumar, A Senthil

    2014-01-01

    Wind energy is one of the extraordinary sources of renewable energy due to its clean character and free availability. With the increasing wind power penetration, the wind farms are directly influencing the power systems. The majority of wind farms are using variable speed wind turbines equipped with doubly fed induction generators (DFIG) due to their advantages over other wind turbine generators (WTGs). Therefore, the analysis of wind power dynamics with the DFIG wind turbines has become a very important research issue, especially during transient faults. This paper presents fuzzy logic control of doubly fed induction generator (DFIG) wind turbine in a sample power system. Fuzzy logic controller is applied to rotor side converter for active power control and voltage regulation of wind turbine.

  1. LES-based generation of high-frequency fluctuation in wind turbulence obtained by meteorological model

    NASA Astrophysics Data System (ADS)

    Tamura, Tetsuro; Kawaguchi, Masaharu; Kawai, Hidenori; Tao, Tao

    2017-11-01

    The connection between a meso-scale model and a micro-scale large eddy simulation (LES) is significant to simulate the micro-scale meteorological problem such as strong convective events due to the typhoon or the tornado using LES. In these problems the mean velocity profiles and the mean wind directions change with time according to the movement of the typhoons or tornadoes. Although, a fine grid micro-scale LES could not be connected to a coarse grid meso-scale WRF directly. In LES when the grid is suddenly refined at the interface of nested grids which is normal to the mean advection the resolved shear stresses decrease due to the interpolation errors and the delay of the generation of smaller scale turbulence that can be resolved on the finer mesh. For the estimation of wind gust disaster the peak wind acting on buildings and structures has to be correctly predicted. In the case of meteorological model the velocity fluctuations have a tendency of diffusive variation without the high frequency component due to the numerically filtering effects. In order to predict the peak value of wind velocity with good accuracy, this paper proposes a LES-based method for generating the higher frequency components of velocity and temperature fields obtained by meteorological model.

  2. Impact-generated winds on Venus: Causes and effects

    NASA Technical Reports Server (NTRS)

    Schultz, Pater H.

    1992-01-01

    The pressure of the dense atmosphere of Venus significantly changes the appearance of ejecta deposits relative to craters on the Moon and Mercury. Conversely, specific styles and sequences of ejecta emplacement can be inferred to represent different intensities of atmospheric response winds acting over different timescales. Three characteristic timescales can be inferred from the geologic record: surface scouring and impactor-controlled (angle and direction) initiation of the long fluidized run-out flows; nonballistic emplacement of inner, radar-bright ejecta facies and radar-dark outer facies; and very late reworking of surface materials. These three timescales roughly correspond to processes observed in laboratory experiments that can be scaled to conditions on Venus (with appropriate assumptions): coupling between the atmosphere and earlytime vapor/melt (target and impactor) that produces an intense shock that subsequently evolves into blast/response winds; less energetic dynamic response of the atmosphere to the outward-moving ballistic ejecta curtain that generates nonthermal turbulent eddies; and late recovery of the atmosphere to impact-generated thermal and pressure gradients expressed as low-energy but long-lived winds. These different timescales and processes can be viewed as the atmosphere equivalent of shock melting, material motion, and far-field seismic response in the target. The three processes (early Processes, Atmospheric Processes, and Late Recovery Winds) are discussed at length.

  3. TSA - A Two Scale Approximation for Wind-Generated Ocean Surface Waves

    DTIC Science & Technology

    2012-09-30

    broad-scale version of TSA, or ‘ dTSA ’. In this manner dTSA is able to respond to changing wind situations. Results were shown to compare well with ‘exact...We also implemented the revised version of TSA, denoted ‘ dTSA ’, in WW3 for tests with a storm case, hurricane Juan, which made landfall as a...manner in which the broad-scale of TSA was defined, developing ‘ dTSA ’ as described above, so that in complicated rapidly changing wave spectra cases, a

  4. Observations of Near-Surface Relative Humidity in a Wind Turbine Array Boundary Layer Using an Instrumented Unmanned Aerial System

    NASA Astrophysics Data System (ADS)

    Adkins, K. A.; Sescu, A.

    2016-12-01

    Simulation and modeling have shown that wind farms have an impact on the near-surface atmospheric boundary layer (ABL) as turbulent wakes generated by the turbines enhance vertical mixing. These changes alter downstream atmospheric properties. With a large portion of wind farms hosted within an agricultural context, changes to the environment can potentially have secondary impacts such as to the productivity of crops. With the exception of a few observational data sets that focus on the impact to near-surface temperature, little to no observational evidence exists. These few studies also lack high spatial resolution due to their use of a limited number of meteorological towers or remote sensing techniques. This study utilizes an instrumented small unmanned aerial system (sUAS) to gather in-situ field measurements from two Midwest wind farms, focusing on the impact that large utility-scale wind turbines have on relative humidity. Wind turbines are found to differentially alter the relative humidity in the downstream, spanwise and vertical directions under a variety of atmospheric stability conditions.

  5. The climate and air-quality benefits of wind and solar power in the United States

    NASA Astrophysics Data System (ADS)

    Millstein, Dev; Wiser, Ryan; Bolinger, Mark; Barbose, Galen

    2017-09-01

    Wind and solar energy reduce combustion-based electricity generation and provide air-quality and greenhouse gas emission benefits. These benefits vary dramatically by region and over time. From 2007 to 2015, solar and wind power deployment increased rapidly while regulatory changes and fossil fuel price changes led to steep cuts in overall power-sector emissions. Here we evaluate how wind and solar climate and air-quality benefits evolved during this time period. We find cumulative wind and solar air-quality benefits of 2015 US$29.7-112.8 billion mostly from 3,000 to 12,700 avoided premature mortalities, and cumulative climate benefits of 2015 US$5.3-106.8 billion. The ranges span results across a suite of air-quality and health impact models and social cost of carbon estimates. We find that binding cap-and-trade pollutant markets may reduce these cumulative benefits by up to 16%. In 2015, based on central estimates, combined marginal benefits equal 7.3 ¢ kWh-1 (wind) and 4.0 ¢ kWh-1 (solar).

  6. 76 FR 74072 - Endangered and Threatened Wildlife and Plants; Incidental Take Permit Application; Habitat...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-30

    ... operating the Kaheawa Pastures Wind Energy Generation Facility (KWPI wind farm) for generating electricity... the Kaheawa Pastures Wind Energy Generation Facility (KWPI wind farm) for generating electricity on... generates electricity on Maui. The Service listed the Hawaiian petrel as endangered on March 11, 1967 (32 FR...

  7. An optimal design of coreless direct-drive axial flux permanent magnet generator for wind turbine

    NASA Astrophysics Data System (ADS)

    Ahmed, D.; Ahmad, A.

    2013-06-01

    Different types of generators are currently being used in wind power technology. The commonly used are induction generator (IG), doubly-fed induction generator (DFIG), electrically excited synchronous generator (EESG) and permanent magnet synchronous generator (PMSG). However, the use of PMSG is rapidly increasing because of advantages such as higher power density, better controllability and higher reliability. This paper presents an innovative design of a low-speed modular, direct-drive axial flux permanent magnet (AFPM) generator with coreless stator and rotor for a wind turbine power generation system that is developed using mathematical and analytical methods. This innovative design is implemented in MATLAB / Simulink environment using dynamic modelling techniques. The main focus of this research is to improve efficiency of the wind power generation system by investigating electromagnetic and structural features of AFPM generator during its operation in wind turbine. The design is validated by comparing its performance with standard models of existing wind power generators. The comparison results demonstrate that the proposed model for the wind power generator exhibits number of advantages such as improved efficiency with variable speed operation, higher energy yield, lighter weight and better wind power utilization.

  8. Renewable Energy for the Next Generation

    ERIC Educational Resources Information Center

    Barton, Leslie

    2005-01-01

    Renewable energy is harnessed from natural and sustainable sources, like wind, sun and water. They offer a pollution-free, endless source of electricity that is crucial in the fight against climate change. Every unit of this "green" electricity directly replaces electricity normally generated from conventional polluting sources such as coal or…

  9. Impact of sound production by wind instruments on the temporomandibular system of male instrumentalists.

    PubMed

    Pampel, Michael; Jakstat, Holger A; Ahlers, Oliver M

    2014-01-01

    Playing a wind instrument can be either a reason for overuse or a protecting factor against certain diseases. Some individuals have many findings but low morbidity while others have few findings but high morbidity. This contradictory phenomenon should be researched. The temporomandibular system (TMS) is a functional unit which comprises the mandible, associated muscles and bilateral joints with the temporal bone. The TMS is responsible for the generation of sound when wind instruments are played. Over the long-term and with intensive usage, this causes changes in the musculature and in the temporomandibular joint (TMJ) of wind musicians, often resulting in temporomandibular disorders (TMD). The aim of this study is to examine evidence that TMD constitute an occupational disease in wind musicians. TMD patients and wind musicians were examined by dental clinical functional analysis. 102 male subjects were divided into three groups: "healthy" individuals, wind musicians, and patients with TMD. Dental Examination was carried out based on focused inclusion of the research diagnostic criteria - TMD [1,7]. Findings were evaluated for statistical significance by first transferring data into a digital database [2,15], then generating T-Test und Wilcoxon-Test when non-Gaussian distribution appears and applying the Mann-Whitney rank sum test using Sigmaplot Version 1.1 software (Systat Software Inc, Washington, USA). The evaluation revealed that wind instrument musicians show a high incidence of developing TMD as the researchers found almost 100% morbidity regarding parafunctional habits and preauricular muscle pain of each adult and highly active musician. The result is highly significant (p< 0.001) for protrusion distance of the mandible. A higher prevalence of functional disorders of the musculoskeletal system has previously been demonstrated in wind musicians. New research results and the typical functions of various wind instruments provide evidence that playing a wind instrument generates occupational risks to the TMS.

  10. Natural wind variability triggered drop in German redispatch volume and costs from 2015 to 2016.

    PubMed

    Wohland, Jan; Reyers, Mark; Märker, Carolin; Witthaut, Dirk

    2018-01-01

    Avoiding dangerous climate change necessitates the decarbonization of electricity systems within the next few decades. In Germany, this decarbonization is based on an increased exploitation of variable renewable electricity sources such as wind and solar power. While system security has remained constantly high, the integration of renewables causes additional costs. In 2015, the costs of grid management saw an all time high of about € 1 billion. Despite the addition of renewable capacity, these costs dropped substantially in 2016. We thus investigate the effect of natural climate variability on grid management costs in this study. We show that the decline is triggered by natural wind variability focusing on redispatch as a main cost driver. In particular, we find that 2016 was a weak year in terms of wind generation averages and the occurrence of westerly circulation weather types. Moreover, we show that a simple model based on the wind generation time series is skillful in detecting redispatch events on timescales of weeks and beyond. As a consequence, alterations in annual redispatch costs in the order of hundreds of millions of euros need to be understood and communicated as a normal feature of the current system due to natural wind variability.

  11. Overlooked Role of Mesoscale Winds in Powering Ocean Diapycnal Mixing.

    PubMed

    Jing, Zhao; Wu, Lixin; Ma, Xiaohui; Chang, Ping

    2016-11-16

    Diapycnal mixing affects the uptake of heat and carbon by the ocean as well as plays an important role in global ocean circulations and climate. In the thermocline, winds provide an important energy source for furnishing diapycnal mixing primarily through the generation of near-inertial internal waves. However, this contribution is largely missing in the current generation of climate models. In this study, it is found that mesoscale winds at scales of a few hundred kilometers account for more than 65% of near-inertial energy flux into the North Pacific basin and 55% of turbulent kinetic dissipation rate in the thermocline, suggesting their dominance in powering diapycnal mixing in the thermocline. Furthermore, a new parameterization of wind-driven diapycnal mixing in the ocean interior for climate models is proposed, which, for the first time, successfully captures both temporal and spatial variations of wind-driven diapycnal mixing in the thermocline. It is suggested that as mesoscale winds are not resolved by the climate models participated in the Coupled Model Intercomparison Project Phase 5 (CMIP5) due to insufficient resolutions, the diapycnal mixing is likely poorly represented, raising concerns about the accuracy and robustness of climate change simulations and projections.

  12. Overlooked Role of Mesoscale Winds in Powering Ocean Diapycnal Mixing

    PubMed Central

    Jing, Zhao; Wu, Lixin; Ma, Xiaohui; Chang, Ping

    2016-01-01

    Diapycnal mixing affects the uptake of heat and carbon by the ocean as well as plays an important role in global ocean circulations and climate. In the thermocline, winds provide an important energy source for furnishing diapycnal mixing primarily through the generation of near-inertial internal waves. However, this contribution is largely missing in the current generation of climate models. In this study, it is found that mesoscale winds at scales of a few hundred kilometers account for more than 65% of near-inertial energy flux into the North Pacific basin and 55% of turbulent kinetic dissipation rate in the thermocline, suggesting their dominance in powering diapycnal mixing in the thermocline. Furthermore, a new parameterization of wind-driven diapycnal mixing in the ocean interior for climate models is proposed, which, for the first time, successfully captures both temporal and spatial variations of wind-driven diapycnal mixing in the thermocline. It is suggested that as mesoscale winds are not resolved by the climate models participated in the Coupled Model Intercomparison Project Phase 5 (CMIP5) due to insufficient resolutions, the diapycnal mixing is likely poorly represented, raising concerns about the accuracy and robustness of climate change simulations and projections. PMID:27849059

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Greg Retzlaff

    In January 2006 the Smith River Rancheria (SRR), located in Smith River, California, contracted with the team of Strategic Energy Solutions (SES) and Evergreen NRG to conduct a study for the community. The objective of the study was to identify renewable generation opportunities that would facilitate Rancheria energy independence through SRR owned and operated power projects. These generation facilities were to be located either on or near the reservation. Specifically, the Rancheria was interested in the viability of generating electric power using biomass and wind fuel resources. Initial research identified that a very small portion of the community's energy couldmore » be offset by renewable energy generation due to the low solar resource in this area, and the lack of significant wind or biomass resources on or near reservation land. Some larger projects were identified which offered little or no benefit to the Rancheria. As a result, the scope of this study was changed in October 2006 to focus on energy efficiency opportunities for key reservation facilities, with a continued analysis of smaller renewable energy opportunities within reservation boundaries. The consulting team initially performed a resource analysis for biomass and solar generation opportunities in the region of the Rancheria. It was quickly concluded that none of these options would yield renewable power for the Rancheria at costs competitive with current utility sources, and that any larger installations would require substantial funding that may not be available. Having made these conclusions early on, the study effort was redirected and the team investigated each of the major Rancheria buildings to look for solar, wind and conservation opportunities. The buildings were audited for energy use and the roof areas were examined for exposure of solar radiation. Wind resources were also investigated to determine if smaller wind turbines would offer power generation at a reasonable cost.« less

  14. Modeling long correlation times using additive binary Markov chains: Applications to wind generation time series.

    PubMed

    Weber, Juliane; Zachow, Christopher; Witthaut, Dirk

    2018-03-01

    Wind power generation exhibits a strong temporal variability, which is crucial for system integration in highly renewable power systems. Different methods exist to simulate wind power generation but they often cannot represent the crucial temporal fluctuations properly. We apply the concept of additive binary Markov chains to model a wind generation time series consisting of two states: periods of high and low wind generation. The only input parameter for this model is the empirical autocorrelation function. The two-state model is readily extended to stochastically reproduce the actual generation per period. To evaluate the additive binary Markov chain method, we introduce a coarse model of the electric power system to derive backup and storage needs. We find that the temporal correlations of wind power generation, the backup need as a function of the storage capacity, and the resting time distribution of high and low wind events for different shares of wind generation can be reconstructed.

  15. Modeling long correlation times using additive binary Markov chains: Applications to wind generation time series

    NASA Astrophysics Data System (ADS)

    Weber, Juliane; Zachow, Christopher; Witthaut, Dirk

    2018-03-01

    Wind power generation exhibits a strong temporal variability, which is crucial for system integration in highly renewable power systems. Different methods exist to simulate wind power generation but they often cannot represent the crucial temporal fluctuations properly. We apply the concept of additive binary Markov chains to model a wind generation time series consisting of two states: periods of high and low wind generation. The only input parameter for this model is the empirical autocorrelation function. The two-state model is readily extended to stochastically reproduce the actual generation per period. To evaluate the additive binary Markov chain method, we introduce a coarse model of the electric power system to derive backup and storage needs. We find that the temporal correlations of wind power generation, the backup need as a function of the storage capacity, and the resting time distribution of high and low wind events for different shares of wind generation can be reconstructed.

  16. Consistent modelling of wind turbine noise propagation from source to receiver.

    PubMed

    Barlas, Emre; Zhu, Wei Jun; Shen, Wen Zhong; Dag, Kaya O; Moriarty, Patrick

    2017-11-01

    The unsteady nature of wind turbine noise is a major reason for annoyance. The variation of far-field sound pressure levels is not only caused by the continuous change in wind turbine noise source levels but also by the unsteady flow field and the ground characteristics between the turbine and receiver. To take these phenomena into account, a consistent numerical technique that models the sound propagation from the source to receiver is developed. Large eddy simulation with an actuator line technique is employed for the flow modelling and the corresponding flow fields are used to simulate sound generation and propagation. The local blade relative velocity, angle of attack, and turbulence characteristics are input to the sound generation model. Time-dependent blade locations and the velocity between the noise source and receiver are considered within a quasi-3D propagation model. Long-range noise propagation of a 5 MW wind turbine is investigated. Sound pressure level time series evaluated at the source time are studied for varying wind speeds, surface roughness, and ground impedances within a 2000 m radius from the turbine.

  17. Consistent modelling of wind turbine noise propagation from source to receiver

    DOE PAGES

    Barlas, Emre; Zhu, Wei Jun; Shen, Wen Zhong; ...

    2017-11-28

    The unsteady nature of wind turbine noise is a major reason for annoyance. The variation of far-field sound pressure levels is not only caused by the continuous change in wind turbine noise source levels but also by the unsteady flow field and the ground characteristics between the turbine and receiver. To take these phenomena into account, a consistent numerical technique that models the sound propagation from the source to receiver is developed. Large eddy simulation with an actuator line technique is employed for the flow modelling and the corresponding flow fields are used to simulate sound generation and propagation. Themore » local blade relative velocity, angle of attack, and turbulence characteristics are input to the sound generation model. Time-dependent blade locations and the velocity between the noise source and receiver are considered within a quasi-3D propagation model. Long-range noise propagation of a 5 MW wind turbine is investigated. Sound pressure level time series evaluated at the source time are studied for varying wind speeds, surface roughness, and ground impedances within a 2000 m radius from the turbine.« less

  18. Consistent modelling of wind turbine noise propagation from source to receiver

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barlas, Emre; Zhu, Wei Jun; Shen, Wen Zhong

    The unsteady nature of wind turbine noise is a major reason for annoyance. The variation of far-field sound pressure levels is not only caused by the continuous change in wind turbine noise source levels but also by the unsteady flow field and the ground characteristics between the turbine and receiver. To take these phenomena into account, a consistent numerical technique that models the sound propagation from the source to receiver is developed. Large eddy simulation with an actuator line technique is employed for the flow modelling and the corresponding flow fields are used to simulate sound generation and propagation. Themore » local blade relative velocity, angle of attack, and turbulence characteristics are input to the sound generation model. Time-dependent blade locations and the velocity between the noise source and receiver are considered within a quasi-3D propagation model. Long-range noise propagation of a 5 MW wind turbine is investigated. Sound pressure level time series evaluated at the source time are studied for varying wind speeds, surface roughness, and ground impedances within a 2000 m radius from the turbine.« less

  19. Doubly Fed Induction Generator Wind Turbines with Fuzzy Controller: A Survey

    PubMed Central

    Sathiyanarayanan, J. S.; Senthil Kumar, A.

    2014-01-01

    Wind energy is one of the extraordinary sources of renewable energy due to its clean character and free availability. With the increasing wind power penetration, the wind farms are directly influencing the power systems. The majority of wind farms are using variable speed wind turbines equipped with doubly fed induction generators (DFIG) due to their advantages over other wind turbine generators (WTGs). Therefore, the analysis of wind power dynamics with the DFIG wind turbines has become a very important research issue, especially during transient faults. This paper presents fuzzy logic control of doubly fed induction generator (DFIG) wind turbine in a sample power system. Fuzzy logic controller is applied to rotor side converter for active power control and voltage regulation of wind turbine. PMID:25028677

  20. Operation of a wind turbine-flywheel energy storage system under conditions of stochastic change of wind energy.

    PubMed

    Tomczewski, Andrzej

    2014-01-01

    The paper presents the issues of a wind turbine-flywheel energy storage system (WT-FESS) operation under real conditions. Stochastic changes of wind energy in time cause significant fluctuations of the system output power and as a result have a negative impact on the quality of the generated electrical energy. In the author's opinion it is possible to reduce the aforementioned effects by using an energy storage of an appropriate type and capacity. It was assumed that based on the technical parameters of a wind turbine-energy storage system and its geographical location one can determine the boundary capacity of the storage, which helps prevent power cuts to the grid at the assumed probability. Flywheel energy storage was selected due to its characteristics and technical parameters. The storage capacity was determined based on an empirical relationship using the results of the proposed statistical and energetic analysis of the measured wind velocity courses. A detailed algorithm of the WT-FESS with the power grid system was developed, eliminating short-term breaks in the turbine operation and periods when the wind turbine power was below the assumed level.

  1. Operation of a Wind Turbine-Flywheel Energy Storage System under Conditions of Stochastic Change of Wind Energy

    PubMed Central

    2014-01-01

    The paper presents the issues of a wind turbine-flywheel energy storage system (WT-FESS) operation under real conditions. Stochastic changes of wind energy in time cause significant fluctuations of the system output power and as a result have a negative impact on the quality of the generated electrical energy. In the author's opinion it is possible to reduce the aforementioned effects by using an energy storage of an appropriate type and capacity. It was assumed that based on the technical parameters of a wind turbine-energy storage system and its geographical location one can determine the boundary capacity of the storage, which helps prevent power cuts to the grid at the assumed probability. Flywheel energy storage was selected due to its characteristics and technical parameters. The storage capacity was determined based on an empirical relationship using the results of the proposed statistical and energetic analysis of the measured wind velocity courses. A detailed algorithm of the WT-FESS with the power grid system was developed, eliminating short-term breaks in the turbine operation and periods when the wind turbine power was below the assumed level. PMID:25215326

  2. Wind energy in the United States and materials required for the land-based wind turbine industry from 2010 through 2030

    USGS Publications Warehouse

    Wilburn, David R.

    2011-01-01

    The generation of electricity in the United States from wind-powered turbines is increasing. An understanding of the sources and abundance of raw materials required by the wind turbine industry and the many uses for these materials is necessary to assess the effect of this industry's growth on future demand for selected raw materials relative to the historical demand for these materials. The U.S. Geological Survey developed estimates of future requirements for raw (and some recycled) materials based on the assumption that wind energy will supply 20 percent of the electricity consumed in the United States by 2030. Economic, environmental, political, and technological considerations and trends reported for 2009 were used as a baseline. Estimates for the quantity of materials in typical "current generation" and "next generation" wind turbines were developed. In addition, estimates for the annual and total material requirements were developed based on the growth necessary for wind energy when converted in a wind powerplant to generate 20 percent of the U.S. supply of electricity by 2030. The results of the study suggest that achieving the market goal of 20 percent by 2030 would require an average annual consumption of about 6.8 million metric tons of concrete, 1.5 million metric tons of steel, 310,000 metric tons of cast iron, 40,000 metric tons of copper, and 380 metric tons of the rare-earth element neodymium. With the exception of neodymium, these material requirements represent less than 3 percent of the U.S. apparent consumption for 2008. Recycled material could supply about 3 percent of the total steel required for wind turbine production from 2010 through 2030, 4 percent of the aluminum required, and 3 percent of the copper required. The data suggest that, with the possible exception of rare-earth elements, there should not be a shortage of the principal materials required for electricity generation from wind energy. There may, however, be selective manufacturing shortages if the total demand for raw materials from all markets is greater than the available supply of these materials or the capacity of industry to manufacture components. Changing economic conditions could also affect the development schedule of anticipated capacity.

  3. Laboratory investigation of spray generation mechanism in wind-wave interaction under strong wind conditions

    NASA Astrophysics Data System (ADS)

    Kandaurov, Alexander; Troitskaya, Yuliya; Sergeev, Daniil; Ermakova, Olga; Kazakov, Vassily

    2015-04-01

    The sea spray is considered as a possible mechanism of the reduction of sea surface aerodynamic drag coefficient at hurricane conditions [1]. In this paper the mechanism of generation of spray in the near-surface layer of the atmosphere in a strong wind through the mechanism of «bag-breakup instability» was investigated in laboratory conditions with the help of high-speed video shooting. The laboratory experiments were performed on the Thermostratified Wind-Wave Channel of the IAP RAS (length 10 m, cross section of air channel 0.4 x 0.4 m, wind velocity up to 24 m/s) [2]. Experiments were carried out for the wind speeds from 14 to 22 m/s. In this range spray generation characteristics change dramatically from almost no spray generation to so called catastrophic regime with multiple cascade breakups on each crest. Shooting was performed with High-speed digital camera NAC Memrecam HX-3 in two different setups to obtain both statistical data and detailed spray generation mechanism overview. In first setup bright LED spotlight with mate screen the side of a channel was used for horizontal shadow-method shooting. Camera was placed in semi-submerged box on the opposite side of the channel. Shooting was performed at the distance of 7.5 m from the beginning of the working section. Series of short records of the surface evolution were made at 10 000 fps with 55 to 119 µm/px scale revealed the dominant mechanism of spray generation - bag-breakup instability. Sequences of high resolution images allowed investigating the details of this "bags" evolution. Shadow method provided better image quality for such conditions than side illumination and fluorescence methods. To obtain statistical data on "bags" sizes and densities vertical shadow method was used. Submerged light box was created with two 300 W underwater lamps and mate screen places at the fetch of 6.5 m. Long records (up to 8 seconds) were made with 4500 fps at 124-256 µm/px scales. Specially developed software allowed finding "bags" of the records and analyzing its geometrical characteristics. Significant increase of the number of bags was observed at equivalent wind velocities exceeding 25 m/s corresponding to change of regime of surface drag dependency on wind speed. Distributions of sizes, velocities and time of life of "bags" found were obtained for wind speeds up to 22 m/s. This work was supported by the RFBR grants (13-05-00865, 14-05-91767, 13-05-12093, 14-05-31415, 15-35-20953), RSF grant 14-17-00667 and by President grant for young scientists MK-3550.2014.5. References: 1. Andreas, E. L. and K. A. Emanuel, (2001): Effects of sea spray on tropical cyclone intensity. J. Atmos. Sci., Vol. 58, No 24, p. 3741-3751. 2. Yu. I. Troitskaya, D.A. Sergeev, A.A. Kandaurov, G.A Baidakov, M.A. Vdovin, V.I. Kazakov Laboratory and theoretical modeling of air-sea momentum transfer under severe wind conditions // JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 117, C00J21, 13 PP., 2012 doi:10.1029/2011JC007778

  4. Consumptive Water Use from Electricity Generation in the Southwest under Alternative Climate, Technology, and Policy Futures.

    PubMed

    Talati, Shuchi; Zhai, Haibo; Kyle, G Page; Morgan, M Granger; Patel, Pralit; Liu, Lu

    2016-11-15

    This research assesses climate, technological, and policy impacts on consumptive water use from electricity generation in the Southwest over a planning horizon of nearly a century. We employed an integrated modeling framework taking into account feedbacks between climate change, air temperature and humidity, and consequent power plant water requirements. These direct impacts of climate change on water consumption by 2095 differ with technology improvements, cooling systems, and policy constraints, ranging from a 3-7% increase over scenarios that do not incorporate ambient air impacts. Upon additional factors being changed that alter electricity generation, water consumption increases by up to 8% over the reference scenario by 2095. With high penetration of wet recirculating cooling, consumptive water required for low-carbon electricity generation via fossil fuels will likely exacerbate regional water pressure as droughts become more common and population increases. Adaptation strategies to lower water use include the use of advanced cooling technologies and greater dependence on solar and wind. Water consumption may be reduced by 50% in 2095 from the reference, requiring an increase in dry cooling shares to 35-40%. Alternatively, the same reduction could be achieved through photovoltaic and wind power generation constituting 60% of the grid, consistent with an increase of over 250% in technology learning rates.

  5. Twistact techno-economic analysis for wind turbine applications.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Naughton, Brian Thomas; Koplow, Jeffrey P.; Vanness, Justin William

    This report is the final deliverable for a techno-economic analysis of the Sandia National Laboratories-developed Twistact rotary electrical conductor. The U.S. Department of Energy Wind Energy Technologies Office supported a team of researchers at Sandia National Laboratories and the National Renewable Energy Laboratory to evaluate the potential of the Twistact technology to serve as a viable replacement to rare-earth materials used in permanent-magnet direct-drive wind turbine generators. This report compares three detailed generator models, two as baseline technologies and a third incorporating the Twistact technology. These models are then used to calculate the levelized cost of energy (LCOE) for threemore » comparable offshore wind plants using the three generator topologies. The National Renewable Energy Laboratorys techno-economic analysis indicates that Twistact technology can be used to design low-maintenance, brush-free, and wire-wound (instead of rare-earth-element (REE) permanent-magnet), direct-drive wind turbine generators without a significant change in LCOE and generation efficiency. Twistact technology acts as a hedge against sources of uncertain costs for direct-drive generators. On the one hand, for permanent-magnet direct-drive (PMDD) generators, the long-term price of REEs may increase due to increases in future demand, from electric vehicles and other technologies, whereas the supply remains limited and geographically concentrated. The potential higher prices in the future adversely affect the cost competitiveness of PMDD generators and may thwart industry investment in the development of the technology for wind turbine applications. Twistact technology can eliminate industry risk around the uncertainty of REE price and availability. Traditional wire-wound direct-drive generators experience reliability issues and higher maintenance costs because of the wear on the contact brushes necessary for field excitation. The brushes experience significant wear and require regular replacement over the lifetime of operation (on the order of a year or potentially less time). For offshore wind applications, the focus of this study, maintenance costs are higher than typical land-based systems due to the added time it often requires to access the site for repairs. Thus, eliminating the need for regular brush replacements reduces the uncertain costs and energy production losses associated with maintenance and replacement of contact brushes. Further, Twistact has a relatively negligible impact on LCOE but hedges risks associated with the current dominant designs for direct-drive generators for PMDD REE price volatility and wire-wound generator contact brush reliability. A final section looks at the overall supply chain of REEs considering the supply-side and demand-side drivers that encourage the risk of depending on these materials to support future deployment of not only wind energy but other industries as well.« less

  6. Impact of wind farms with energy storage on transient stability

    NASA Astrophysics Data System (ADS)

    Bowman, Douglas Allen

    Today's energy infrastructure will need to rapidly expand in terms of reliability and flexibility due to aging infrastructure, changing energy market conditions, projected load increases, and system reliability requirements. Over the few decades, several states in the U.S. are now requiring an increase in wind penetration. These requirements will have impacts on grid reliability given the inherent intermittency of wind generation and much research has been completed on the impact of wind on grid reliability. Energy storage has been proposed as a tool to provide greater levels of reliability; however, little research has occurred in the area of wind with storage and its impact on stability given different possible scenarios. This thesis addresses the impact of wind farm penetration on transient stability when energy storage is added. The results show that battery energy storage located at the wind energy site can improve the stability response of the system.

  7. Motion performance and mooring system of a floating offshore wind turbine

    NASA Astrophysics Data System (ADS)

    Zhao, Jing; Zhang, Liang; Wu, Haitao

    2012-09-01

    The development of offshore wind farms was originally carried out in shallow water areas with fixed (seabed mounted) structures. However, countries with limited shallow water areas require innovative floating platforms to deploy wind turbines offshore in order to harness wind energy to generate electricity in deep seas. The performances of motion and mooring system dynamics are vital to designing a cost effective and durable floating platform. This paper describes a numerical model to simulate dynamic behavior of a new semi-submersible type floating offshore wind turbine (FOWT) system. The wind turbine was modeled as a wind block with a certain thrust coefficient, and the hydrodynamics and mooring system dynamics of the platform were calculated by SESAM software. The effect of change in environmental conditions on the dynamic response of the system under wave and wind loading was examined. The results indicate that the semi-submersible concept has excellent performance and SESAM could be an effective tool for floating wind turbine design and analysis.

  8. Suitability Analyses of Wind Power Generation Complex in South Korea by Using Environmental & Social Criterias

    NASA Astrophysics Data System (ADS)

    Zhu, Y.; Jeon, S. W.; Seong, M.

    2017-12-01

    In case of wind-power, one of the most economical renewable energy resources, it is highly emerged owing to the strategic aspect of the response of environmental restriction and strong energy security as well as the upcoming motivation for huge industrial growth in the future. According to the fourth Fundamental Renewable Energy Plan, declared in Sep. 2014, the government instituted the scheme to minimize the proportion of previous RDF(Refused Derived Fuel) till 2035, promoting the solar power and wind power as the core energy for the next generation. Especially in South Korea, it is somewhat desperate to suggest the standard for environmentally optimal locations of wind power setup accompanied with the prevention of disasters from the climate changes. This is because that in case of South Korea, most of suitable places for Wind power complex are in the ridge of the mountains, where is highly invaluable sites as the pool of bio-resources and ecosystem conservations. In this research, we are to focus on the analysis of suitable locations for wind farm site which is relevant to the meteorological and geological factors, by utilizing GIS techniques through the whole South Korea. Ultimately, this analyses are to minimize the adverse effect derived from the current development of wind power in mountain ridges and the time for negotiation for wind power advance.

  9. Plans and status of the NASA-Lewis Research Center wind energy project

    NASA Technical Reports Server (NTRS)

    Thomas, R.; Puthoff, R.; Savino, J.; Johnson, W.

    1975-01-01

    Wind energy is investigated as a source of energy. The wind energy program that is managed by the NASA-Lewis Research Center is described. The Lewis Research Center's Wind Power Office, its organization, plans, and status are discussed. Major elements of the wind power project included are: an experimental 100 kW wind-turbine generator; first generation industry-built and user-operated wind turbine generators; and supporting research and technology tasks.

  10. Non-steady wind turbine response to daytime atmospheric turbulence.

    PubMed

    Nandi, Tarak N; Herrig, Andreas; Brasseur, James G

    2017-04-13

    Relevant to drivetrain bearing fatigue failures, we analyse non-steady wind turbine responses from interactions between energy-dominant daytime atmospheric turbulence eddies and the rotating blades of a GE 1.5 MW wind turbine using a unique dataset from a GE field experiment and computer simulation. Time-resolved local velocity data were collected at the leading and trailing edges of an instrumented blade together with generator power, revolutions per minute, pitch and yaw. Wind velocity and temperature were measured upwind on a meteorological tower. The stability state and other atmospheric conditions during the field experiment were replicated with a large-eddy simulation in which was embedded a GE 1.5 MW wind turbine rotor modelled with an advanced actuator line method. Both datasets identify three important response time scales: advective passage of energy-dominant eddies (≈25-50 s), blade rotation (once per revolution (1P), ≈3 s) and sub-1P scale (<1 s) response to internal eddy structure. Large-amplitude short-time ramp-like and oscillatory load fluctuations result in response to temporal changes in velocity vector inclination in the aerofoil plane, modulated by eddy passage at longer time scales. Generator power responds strongly to large-eddy wind modulations. We show that internal dynamics of the blade boundary layer near the trailing edge is temporally modulated by the non-steady external flow that was measured at the leading edge, as well as blade-generated turbulence motions.This article is part of the themed issue 'Wind energy in complex terrains'. © 2017 The Author(s).

  11. Non-steady wind turbine response to daytime atmospheric turbulence

    PubMed Central

    Nandi, Tarak N.; Herrig, Andreas

    2017-01-01

    Relevant to drivetrain bearing fatigue failures, we analyse non-steady wind turbine responses from interactions between energy-dominant daytime atmospheric turbulence eddies and the rotating blades of a GE 1.5 MW wind turbine using a unique dataset from a GE field experiment and computer simulation. Time-resolved local velocity data were collected at the leading and trailing edges of an instrumented blade together with generator power, revolutions per minute, pitch and yaw. Wind velocity and temperature were measured upwind on a meteorological tower. The stability state and other atmospheric conditions during the field experiment were replicated with a large-eddy simulation in which was embedded a GE 1.5 MW wind turbine rotor modelled with an advanced actuator line method. Both datasets identify three important response time scales: advective passage of energy-dominant eddies (≈25–50 s), blade rotation (once per revolution (1P), ≈3 s) and sub-1P scale (<1 s) response to internal eddy structure. Large-amplitude short-time ramp-like and oscillatory load fluctuations result in response to temporal changes in velocity vector inclination in the aerofoil plane, modulated by eddy passage at longer time scales. Generator power responds strongly to large-eddy wind modulations. We show that internal dynamics of the blade boundary layer near the trailing edge is temporally modulated by the non-steady external flow that was measured at the leading edge, as well as blade-generated turbulence motions. This article is part of the themed issue ‘Wind energy in complex terrains’. PMID:28265026

  12. Power Maximization Control of Variable Speed Wind Generation System Using Permanent Magnet Synchronous Generator

    NASA Astrophysics Data System (ADS)

    Morimoto, Shigeo; Nakamura, Tomohiko; Takeda, Yoji

    This paper proposes the sensorless output power maximization control of the wind generation system. A permanent magnet synchronous generator (PMSG) is used as a variable speed generator in the proposed system. The generator torque is suitably controlled according to the generator speed and thus the power from a wind turbine settles down on the maximum power point by the proposed MPPT control method, where the information of wind velocity is not required. Moreover, the maximum available generated power is obtained by the optimum current vector control. The current vector of PMSG is optimally controlled according to the generator speed and the required torque in order to minimize the losses of PMSG considering the voltage and current constraints. The proposed wind power generation system can be achieved without mechanical sensors such as a wind velocity detector and a position sensor. Several experimental results show the effectiveness of the proposed control method.

  13. Engineering handbook on the atmospheric environmental guidelines for use in wind turbine generator development

    NASA Technical Reports Server (NTRS)

    Frost, W.; Long, B. H.; Turner, R. E.

    1978-01-01

    The guidelines are given in the form of design criteria relative to wind speed, wind shear, turbulence, wind direction, ice and snow loading, and other climatological parameters which include rain, hail, thermal effects, abrasive and corrosive effects, and humidity. This report is a presentation of design criteria in an engineering format which can be directly input to wind turbine generator design computations. Guidelines are also provided for developing specialized wind turbine generators or for designing wind turbine generators which are to be used in a special region of the United States.

  14. Effect of accuracy of wind power prediction on power system operator

    NASA Technical Reports Server (NTRS)

    Schlueter, R. A.; Sigari, G.; Costi, T.

    1985-01-01

    This research project proposed a modified unit commitment that schedules connection and disconnection of generating units in response to load. A modified generation control is also proposed that controls steam units under automatic generation control, fast responding diesels, gas turbines and hydro units under a feedforward control, and wind turbine array output under a closed loop array control. This modified generation control and unit commitment require prediction of trend wind power variation one hour ahead and the prediction of error in this trend wind power prediction one half hour ahead. An improved meter for predicting trend wind speed variation is developed. Methods for accurately simulating the wind array power from a limited number of wind speed prediction records was developed. Finally, two methods for predicting the error in the trend wind power prediction were developed. This research provides a foundation for testing and evaluating the modified unit commitment and generation control that was developed to maintain operating reliability at a greatly reduced overall production cost for utilities with wind generation capacity.

  15. Real-time simulation of a Doubly-Fed Induction Generator based wind power system on eMEGASimRTM Real-Time Digital Simulator

    NASA Astrophysics Data System (ADS)

    Boakye-Boateng, Nasir Abdulai

    The growing demand for wind power integration into the generation mix prompts the need to subject these systems to stringent performance requirements. This study sought to identify the required tools and procedures needed to perform real-time simulation studies of Doubly-Fed Induction Generator (DFIG) based wind generation systems as basis for performing more practical tests of reliability and performance for both grid-connected and islanded wind generation systems. The author focused on developing a platform for wind generation studies and in addition, the author tested the performance of two DFIG models on the platform real-time simulation model; an average SimpowerSystemsRTM DFIG wind turbine, and a detailed DFIG based wind turbine using ARTEMiSRTM components. The platform model implemented here consists of a high voltage transmission system with four integrated wind farm models consisting in total of 65 DFIG based wind turbines and it was developed and tested on OPAL-RT's eMEGASimRTM Real-Time Digital Simulator.

  16. On the Role of Solar Wind Discontinuities in the ULF Power Spectral Density at the Earth's Outer Radiation Belt: a Case Study

    NASA Astrophysics Data System (ADS)

    Lago, A.; Alves, L. R.; Braga, C. R.; Mendonca, R. R. S.; Jauer, P. R.; Medeiros, C.; Souza, V. M. C. E. S.; Mendes, O., Jr.; Marchezi, J.; da Silva, L.; Vieira, L.; Rockenbach, M.; Sibeck, D. G.; Kanekal, S. G.; Baker, D. N.; Wygant, J. R.; Kletzing, C.

    2016-12-01

    The solar wind incident upon the Earth's magnetosphere can produce either enhancement, depletion or no change in the flux of relativistic electrons at the outer radiation belt. During geomagnetic storms progress, solar wind parameters may change significantly, and occasionally relativistic electron fluxes at the outer radiation belt show dropouts in a range of energy and L-shells. Wave-particle interactions observed within the Van Allen belts have been claimed to play a significant role in energetic particle flux changes. The relation between changes on the solar wind parameters and the radiation belt is still a hot topic nowadays, particularly the role played by the solar wind on sudden electron flux decreases. The twin satellite Van Allen Probes measured a relativistic electron flux dropout concurrent to broad band Ultra-low frequency (ULF) waves, i.e. from 1 mHz to 10 Hz, on October 2, 2013. Magnetic field and plasma data from both ACE and WIND satellites allowed the characterization of this event as being an interplanetary coronal mass ejection in conjunction with shock. The interaction of this event with the Earth's magnetosphere was modeled using a global magnetohydrodynamic simulation and the magnetic field perturbation deep in magnetosphere could be analyzed from the model outputs. Results show the contribution of time-varying solar wind parameters to the generation of ULF waves. The power spectral densities, as a function of L-shell, were evaluated considering changes in the input parameters, e.g. magnitude and duration of dynamic pressure and magnetic field. The modeled power spectral densities are compared with Van Allen Probes data. The results provide us a clue on the solar wind characteristics that might be able to drive ULF waves in the inner magnetosphere, and also which wave modes are expected to be excited under a specific solar wind driving.

  17. Optical Flow for Flight and Wind Tunnel Background Oriented Schlieren Imaging

    NASA Technical Reports Server (NTRS)

    Smith, Nathanial T.; Heineck, James T.; Schairer, Edward T.

    2017-01-01

    Background oriented Schlieren images have historically been generated by calculating the observed pixel displacement between a wind-on and wind-o image pair using normalized cross-correlation. This work uses optical flow to solve the displacement fields which generate the Schlieren images. A well established method used in the computer vision community, optical flow is the apparent motion in an image sequence due to brightness changes. The regularization method of Horn and Schunck is used to create Schlieren images using two data sets: a supersonic jet plume shock interaction from the NASA Ames Unitary Plan Wind Tunnel, and a transonic flight test of a T-38 aircraft using a naturally occurring background, performed in conjunction with NASA Ames and Armstrong Research Centers. Results are presented and contrasted with those using normalized cross-correlation. The optical flow Schlieren images are found to provided significantly more detail. We apply the method to historical data sets to demonstrate the broad applicability and limitations of the technique.

  18. Vortex, ULF wave and Aurora Observation after Solar Wind Dynamic Pressure Change

    NASA Astrophysics Data System (ADS)

    Shi, Q.

    2017-12-01

    Here we will summarize our recent study and show some new results on the Magnetosphere and Ionosphere Response to Dynamic Pressure Change/disturbances in the Solar Wind and foreshock regions. We study the step function type solar wind dynamic pressure change (increase/decrease) interaction with the magnetosphere using THEMIS satellites at both dayside and nightside in different geocentric distances. Vortices generated by the dynamic pressure change passing along the magnetopause are found and compared with model predictions. ULF waves and vortices are excited in the dayside and nightside plasma sheet when dynamic pressure change hit the magnetotail. The related ionospheric responses, such as aurora and TCVs, are also investigated. We compare Global MHD simulations with the observations. We will also show some new results that dayside magnetospheric FLRs might be caused by foreshock structures.Shi, Q. Q. et al. (2013), THEMIS observations of ULF wave excitation in the nightside plasma sheet during sudden impulse events, J. Geophys. Res. Space Physics, 118, doi:10.1029/2012JA017984. Shi, Q. Q. et al. (2014), Solar wind pressure pulse-driven magnetospheric vortices and their global consequences, J. Geophys. Res. Space Physics, 119, doi:10.1002/2013JA019551. Tian, A.M. et al.(2016), Dayside magnetospheric and ionospheric responses to solar wind pressure increase: Multispacecraft and ground observations, J. Geophys. Res., 121, doi:10.1002/2016JA022459. Shen, X.C. et al.(2015), Magnetospheric ULF waves with increasing amplitude related to solar wind dynamic pressure changes: THEMIS observations, J. Geophys. Res., 120, doi:10.1002/2014JA020913Zhao, H. Y. et al. (2016), Magnetospheric vortices and their global effect after a solar wind dynamic pressure decrease, J. Geophys. Res. Space Physics, 121, doi:10.1002/2015JA021646. Shen, X. C., et al. (2017), Dayside magnetospheric ULF wave frequency modulated by a solar wind dynamic pressure negative impulse, J. Geophys. Res., 122, doi:10.1002/2016JA023351.

  19. Market protocols in ERCOT and their effect on wind generation

    DOE PAGES

    Sioshansi, Ramteen; Hurlbut, David

    2009-08-22

    Integrating wind generation into power systems and wholesale electricity markets presents unique challenges due to the characteristics of wind power, including its limited dispatchability, variability in generation, difficulty in forecasting resource availability, and the geographic location of wind resources. Texas has had to deal with many of these issues beginning in 2002 when it restructured its electricity industry and introduced aggressive renewable portfolio standards that helped spur major investments in wind generation. In this paper we discuss the issues that have arisen in designing market protocols that take account of these special characteristics of wind generation and survey the regulatorymore » and market rules that have been developed in Texas. We discuss the perverse incentives some of the rules gave wind generators to overschedule generation in order to receive balancing energy payments, and steps that have been taken to mitigate those incentive effects. Lastly, we discuss more recent steps taken by the market operator and regulators to ensure transmission capacity is available for new wind generators that are expected to come online in the future.« less

  20. Evaluating the impacts of real-time pricing on the usage of wind generation

    DOE PAGES

    Sioshansi, Ramteen; Short, Walter

    2009-02-13

    One of the impediments to large-scale use of wind generation within power systems is its nondispatchability and variable and uncertain real-time availability. Operating constraints on conventional generators such as minimum generation points, forbidden zones, and ramping limits as well as system constraints such as power flow limits and ancillary service requirements may force a system operator to curtail wind generation in order to ensure feasibility. Furthermore, the pattern of wind availability and electricity demand may not allow wind generation to be fully utilized in all hours. One solution to these issues, which could reduce these inflexibilities, is the use ofmore » real-time pricing (RTP) tariffs which can both smooth-out the diurnal load pattern in order to reduce the impact of binding unit operating and system constraints on wind utilization, and allow demand to increase in response to the availability of costless wind generation. As a result, we use and analyze a detailed unit commitment model of the Texas power system with different estimates of demand elasticities to demonstrate the potential increases in wind generation from implementing RTP.« less

  1. Solar wind proton temperature-velocity relationship

    NASA Technical Reports Server (NTRS)

    Lopez, R. E.; Freeman, J. W.

    1986-01-01

    Helios 1 data are analyzed to find an experimental fit for the temperature-velocity relationship at 1 AU. It is shown that the proton temperature-velocity changes at a velocity of approximately 500 km/s. Interplanetary dynamic processes, i.e., stream interactions, are shown to affect the temperature-velocity relationships less than 22 percent; the functional form of these relationships appears to be preserved throughout the solar cycle. It is pointed out that any comprehensive model of the solar wind will have to address the difference in the temperature-velocity relationship between the low- and high-speed wind, since this is a product of the acceleration and subsequent heating process generating the solar wind.

  2. Methods and apparatus for rotor load control in wind turbines

    DOEpatents

    Moroz, Emilian Mieczyslaw

    2006-08-22

    A wind turbine having a rotor, at least one rotor blade, and a plurality of generators, of which a first generator is configured to provide power to an electric grid and a second generator is configured to provide power to the wind turbine during times of grid loss. The wind turbine is configured to utilize power provided by the second generator to reduce loads on the wind turbine during times of grid loss.

  3. Wind Energy Conference, Boulder, Colo., April 9-11, 1980, Technical Papers

    NASA Astrophysics Data System (ADS)

    1980-03-01

    Papers are presented concerning the technology, and economics of wind energy conversion systems. Specific topics include the aerodynamic analysis of the Darrieus rotor, the numerical calculation of the flow near horizontal-axis wind turbine rotors, the calculation of dynamic wind turbine rotor loads, markets for wind energy systems, an oscillating-wing windmill, wind tunnel tests of wind rotors, wind turbine generator wakes, the application of a multi-speed electrical generator to wind turbines, the feasibility of wind-powered systems for dairy farms, and wind characteristics over uniform and complex terrain. Attention is also given to performance tests of the DOE/NASA MOD-1 2000-kW wind turbine generator, the assessment of utility-related test data, offshore wind energy conversion systems, and the optimization of wind energy utilization economics through load management.

  4. Observations of vertical winds and the origin of thermospheric gravity waves launched by auroral substorms and westward travelling surges

    NASA Technical Reports Server (NTRS)

    Rees, D.

    1986-01-01

    Several sequences of observations of strong vertical winds in the upper thermosphere are discussed, in conjunction with models of the generation of such winds. In the auroral oval, the strongest upward winds are observed in or close to regions of intense auroral precipitation and strong ionospheric currents. The strongest winds, of the order of 100 to 200 m/sec are usually upward, and are both localized and of relatively short duration (10 to 20 min). In regions adjacent to those displaying strong upward winds, and following periods of upward winds, downward winds of rather lower magnitude (40 to about 80 m/sec) may be observed. Strong and rapid changes of horizontal winds are correlated with these rapid vertical wind variations. Considered from a large scale viewpoint, this class of strongly time dependent winds propagate globally, and may be considered to be gravity waves launched from an auroral source. During periods of very disturbed geomagnetic activity, there may be regions within and close to the auroral oval where systematic vertical winds of the order of 50 m/sec will occur for periods of several hours. Such persistent winds are part of a very strong large scale horizontal wind circulation set up in the polar regions during a major geomagnetic disturbance. This second class of strong horizontal and vertical winds corresponds more to a standing wave than to a gravity wave, and it is not as effective as the first class in generating large scale propagating gravity waves and correlated horizontal and vertical oscillations. A third class of significant (10 to 30 m/sec) vertical winds can be associated with systematic features of the average geomagnetic energy and momentum input to the polar thermosphere, and appear in statistical studies of the average vertical wind as a function of Universal Time at a given location.

  5. Probability density function characterization for aggregated large-scale wind power based on Weibull mixtures

    DOE PAGES

    Gomez-Lazaro, Emilio; Bueso, Maria C.; Kessler, Mathieu; ...

    2016-02-02

    Here, the Weibull probability distribution has been widely applied to characterize wind speeds for wind energy resources. Wind power generation modeling is different, however, due in particular to power curve limitations, wind turbine control methods, and transmission system operation requirements. These differences are even greater for aggregated wind power generation in power systems with high wind penetration. Consequently, models based on one-Weibull component can provide poor characterizations for aggregated wind power generation. With this aim, the present paper focuses on discussing Weibull mixtures to characterize the probability density function (PDF) for aggregated wind power generation. PDFs of wind power datamore » are firstly classified attending to hourly and seasonal patterns. The selection of the number of components in the mixture is analyzed through two well-known different criteria: the Akaike information criterion (AIC) and the Bayesian information criterion (BIC). Finally, the optimal number of Weibull components for maximum likelihood is explored for the defined patterns, including the estimated weight, scale, and shape parameters. Results show that multi-Weibull models are more suitable to characterize aggregated wind power data due to the impact of distributed generation, variety of wind speed values and wind power curtailment.« less

  6. Wind Vision. A New Era for Wind Power in the United States (Executive Summary, Full Report, and Appendices); U.S. Department of Energy (DOE), NREL (National Renewable Energy Laboratory)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None, None

    The Wind Vision analysis demonstrates the economic value that wind power can bring to the nation, a value exceeding the costs of deployment. Wind’s environmental benefits can address key societal challenges such as climate change, air quality and public health, and water scarcity. Wind deployment can provide U.S. jobs, U.S. manufacturing, and lease and tax revenues in local communities to strengthen and support a transition of the nation’s electricity sector towards a low-carbon U.S. economy. The path needed to achieve 10% wind by 2020, 20% by 2030, and 35% by 2050 requires new tools, priorities, and emphases beyond those forgedmore » by the wind industry in growing to 4.5% of current U.S. electricity demand. Consideration of new strategies and updated priorities as identified in the Wind Vision could provide substantial positive outcomes for future generations.« less

  7. Maximum wind energy extraction strategies using power electronic converters

    NASA Astrophysics Data System (ADS)

    Wang, Quincy Qing

    2003-10-01

    This thesis focuses on maximum wind energy extraction strategies for achieving the highest energy output of variable speed wind turbine power generation systems. Power electronic converters and controls provide the basic platform to accomplish the research of this thesis in both hardware and software aspects. In order to send wind energy to a utility grid, a variable speed wind turbine requires a power electronic converter to convert a variable voltage variable frequency source into a fixed voltage fixed frequency supply. Generic single-phase and three-phase converter topologies, converter control methods for wind power generation, as well as the developed direct drive generator, are introduced in the thesis for establishing variable-speed wind energy conversion systems. Variable speed wind power generation system modeling and simulation are essential methods both for understanding the system behavior and for developing advanced system control strategies. Wind generation system components, including wind turbine, 1-phase IGBT inverter, 3-phase IGBT inverter, synchronous generator, and rectifier, are modeled in this thesis using MATLAB/SIMULINK. The simulation results have been verified by a commercial simulation software package, PSIM, and confirmed by field test results. Since the dynamic time constants for these individual models are much different, a creative approach has also been developed in this thesis to combine these models for entire wind power generation system simulation. An advanced maximum wind energy extraction strategy relies not only on proper system hardware design, but also on sophisticated software control algorithms. Based on literature review and computer simulation on wind turbine control algorithms, an intelligent maximum wind energy extraction control algorithm is proposed in this thesis. This algorithm has a unique on-line adaptation and optimization capability, which is able to achieve maximum wind energy conversion efficiency through continuously improving the performance of wind power generation systems. This algorithm is independent of wind power generation system characteristics, and does not need wind speed and turbine speed measurements. Therefore, it can be easily implemented into various wind energy generation systems with different turbine inertia and diverse system hardware environments. In addition to the detailed description of the proposed algorithm, computer simulation results are presented in the thesis to demonstrate the advantage of this algorithm. As a final confirmation of the algorithm feasibility, the algorithm has been implemented inside a single-phase IGBT inverter, and tested with a wind simulator system in research laboratory. Test results were found consistent with the simulation results. (Abstract shortened by UMI.)

  8. 76 FR 82294 - Combined Notice of Filings #1

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-30

    ... Nuclear Power Plant, LLC. Description: Change in Category Status to be effective 1/1/2012. Filed Date: 12... Numbers: ER12-658-000. Applicants: R.E. Ginna Nuclear Power Plant, LLC. Description: Change in Category... Ridge Wind Energy LLC. Description: Notice of Self-Certification of Exempt Wholesale Generator Status of...

  9. A study on the power generation potential of mini wind turbine in east coast of Peninsular Malaysia

    NASA Astrophysics Data System (ADS)

    Basrawi, Firdaus; Ismail, Izwan; Ibrahim, Thamir Khalil; Idris, Daing Mohamad Nafiz Daing; Anuar, Shahrani

    2017-03-01

    A small-scale wind turbine is an attractive renewable energy source, but its economic viability depends on wind speed. The aim of this study is to determine economic viability of small-scale wind turbine in East Coast of Peninsular Malaysia. The potential energy generated has been determined by wind speed data and power curved of. Hourly wind speed data of Kuantan throughout 2015 was collected as the input. Then, a model of wind turbine was developed based on a commercial a 300W mini wind turbine. It was found that power generation is 3 times higher during northeast monsoon season at 15 m elevation. This proved that the northeast monsoon season has higher potential in generating power by wind turbine in East Coast of Peninsular Malaysia. However, only a total of 153.4 kWh/year of power can be generated at this condition. The power generator utilization factor PGUI or capacity ratio was merely 0.06 and it is not technically viable. By increasing the height of wind turbine to 60 m elevation, power generation amount drastically increased to 344 kWh/year, with PGUI of 0.13. This is about two-thirds of PGUI for photovoltaic technology which is 0.21 at this site. If offshore condition was considered, power generation amount further increased to 1,328 kWh/year with PGUI of 0.51. Thus, for a common use of mini wind turbine that is usually installed on-site at low elevation, it has low power generation potential. But, if high elevation as what large wind turbine needed is implemented, it is technically viable option in East Coast of Peninsular Malaysia.

  10. Wind farm and solar park effects on plant-soil carbon cycling: uncertain impacts of changes in ground-level microclimate.

    PubMed

    Armstrong, Alona; Waldron, Susan; Whitaker, Jeanette; Ostle, Nicholas J

    2014-06-01

    Global energy demand is increasing as greenhouse gas driven climate change progresses, making renewable energy sources critical to future sustainable power provision. Land-based wind and solar electricity generation technologies are rapidly expanding, yet our understanding of their operational effects on biological carbon cycling in hosting ecosystems is limited. Wind turbines and photovoltaic panels can significantly change local ground-level climate by a magnitude that could affect the fundamental plant-soil processes that govern carbon dynamics. We believe that understanding the possible effects of changes in ground-level microclimates on these phenomena is crucial to reducing uncertainty of the true renewable energy carbon cost and to maximize beneficial effects. In this Opinions article, we examine the potential for the microclimatic effects of these land-based renewable energy sources to alter plant-soil carbon cycling, hypothesize likely effects and identify critical knowledge gaps for future carbon research. © 2013 John Wiley & Sons Ltd.

  11. Geomagnetic activity: Dependence on solar wind parameters

    NASA Technical Reports Server (NTRS)

    Svalgaard, L.

    1977-01-01

    Current ideas about the interaction between the solar wind and the earth's magnetosphere are reviewed. The solar wind dynamic pressure as well as the influx of interplanetary magnetic field lines are both important for the generation of geomagnetic activity. The influence of the geometry of the situation as well as the variability of the interplanetary magnetic field are both found to be important factors. Semi-annual and universal time variations are discussed as well as the 22-year cycle in geomagnetic activity. All three are found to be explainable by the varying geometry of the interaction. Long term changes in geomagnetic activity are examined.

  12. On the Stator Slot Geometry of a Cable Wound Generator for Hydrokinetic Energy Conversion

    PubMed Central

    Grabbe, Mårten; Leijon, Mats

    2015-01-01

    The stator slot geometry of a cable wound permanent magnet synchronous generator for hydrokinetic energy conversion is evaluated. Practical experience from winding two cable wound generators is used to propose optimized dimensions of different parts in the stator slot geometry. A thorough investigation is performed through simulations of how small geometrical changes alter the generator performance. The finite element method (FEM) is used to model the generator and the simulations show that small changes in the geometry can have large effect on the performance of the generator. Furthermore, it is concluded that the load angle is especially sensitive to small geometrical changes. A new generator design is proposed which shows improved efficiency, reduced weight, and a possibility to decrease the expensive permanent magnet material by almost one-fifth. PMID:25879072

  13. Three essays on the effect of wind generation on power system planning and operations

    NASA Astrophysics Data System (ADS)

    Davis, Clay Duane

    While the benefits of wind generation are well known, some drawbacks are still being understood as wind power is integrated into the power grid at increasing levels. The primary difference between wind generation and other forms of generation is the intermittent, and somewhat unpredictable, aspect of this resource. The somewhat uncontrollable aspect of wind generation makes it important to consider the relationship between this resource and load, and also how the operation of other non-wind generation resources may be affected. The three essays that comprise this dissertation focus on these and other important issues related to wind generation; leading to an improved understanding of how to better plan for and utilize this resource. The first essay addresses the cost of increased levels of installed wind capacity from both a capacity planning and economic dispatch perspective to arrive at the total system cost of installing a unit of wind capacity. This total includes not only the cost of the wind turbine and associated infrastructure, but also the cost impact an additional unit of wind capacity has on the optimal mix and operation of other generating units in the electricity supply portfolio. The results of the model showed that for all wind expansion scenarios, wind capacity is not cost-effective regardless of the level of the wind production tax credit and carbon prices that were considered. Larger levels of installed wind capacity result in reduced variable cost, but this reduction is not able to offset increases in capital cost, as a unit of installed wind capacity does not result in an equal reduction in other non-wind capacity needs. The second essay develops a methodology to better handle unexpected short term fluctuations in wind generation within the existing power system. The methodology developed in this essay leads to lower expected costs by anticipating and planning for fluctuations in wind generation by focusing on key constraints in the system. The modified methodology achieves expected costs for the UC-ED problem that are as low as the full stochastic model and markedly lower than the deterministic model. The final essay focuses on valuing energy storage located at a wind site through multiple revenue streams, where energy storage is valued from the perspective of a profit maximizing investor. Given the current state of battery storage technology, a battery capacity of zero is optimal in the setting considered in this essay. The results presented in this essay are dependent on a technological breakthrough that substantially reduces battery cost and conclude that allowing battery storage to simultaneously participate in multiple wholesale markets is optimal relative to participating in any one market alone. Also, co-locating battery storage and wind provides value by altering the optimal transmission line capacity to the battery and wind site. This dissertation considers problems of wind integration from an economic perspective and builds on existing work in this area. The economics of wind integration and utilization are important because wind generation levels are already significant and will likely become more so in the future. While this dissertation adds to the existing literature, additional work is needed in this area to ensure wind generation adds as much value to the overall system as possible.

  14. Evaluating wind extremes in CMIP5 climate models

    NASA Astrophysics Data System (ADS)

    Kumar, Devashish; Mishra, Vimal; Ganguly, Auroop R.

    2015-07-01

    Wind extremes have consequences for renewable energy sectors, critical infrastructures, coastal ecosystems, and insurance industry. Considerable debates remain regarding the impacts of climate change on wind extremes. While climate models have occasionally shown increases in regional wind extremes, a decline in the magnitude of mean and extreme near-surface wind speeds has been recently reported over most regions of the Northern Hemisphere using observed data. Previous studies of wind extremes under climate change have focused on selected regions and employed outputs from the regional climate models (RCMs). However, RCMs ultimately rely on the outputs of global circulation models (GCMs), and the value-addition from the former over the latter has been questioned. Regional model runs rarely employ the full suite of GCM ensembles, and hence may not be able to encapsulate the most likely projections or their variability. Here we evaluate the performance of the latest generation of GCMs, the Coupled Model Intercomparison Project phase 5 (CMIP5), in simulating extreme winds. We find that the multimodel ensemble (MME) mean captures the spatial variability of annual maximum wind speeds over most regions except over the mountainous terrains. However, the historical temporal trends in annual maximum wind speeds for the reanalysis data, ERA-Interim, are not well represented in the GCMs. The historical trends in extreme winds from GCMs are statistically not significant over most regions. The MME model simulates the spatial patterns of extreme winds for 25-100 year return periods. The projected extreme winds from GCMs exhibit statistically less significant trends compared to the historical reference period.

  15. Neural network based control of Doubly Fed Induction Generator in wind power generation

    NASA Astrophysics Data System (ADS)

    Barbade, Swati A.; Kasliwal, Prabha

    2012-07-01

    To complement the other types of pollution-free generation wind energy is a viable option. Previously wind turbines were operated at constant speed. The evolution of technology related to wind systems industry leaded to the development of a generation of variable speed wind turbines that present many advantages compared to the fixed speed wind turbines. In this paper the phasor model of DFIG is used. This paper presents a study of a doubly fed induction generator driven by a wind turbine connected to the grid, and controlled by artificial neural network ANN controller. The behaviour of the system is shown with PI control, and then as controlled by ANN. The effectiveness of the artificial neural network controller is compared to that of a PI controller. The SIMULINK/MATLAB simulation for Doubly Fed Induction Generator and corresponding results and waveforms are displayed.

  16. Analysis of near-surface relative humidity in a wind turbine array boundary layer using an instrumented unmanned aerial system and large-eddy simulation

    NASA Astrophysics Data System (ADS)

    Adkins, Kevin; Elfajri, Oumnia; Sescu, Adrian

    2016-11-01

    Simulation and modeling have shown that wind farms have an impact on the near-surface atmospheric boundary layer (ABL) as turbulent wakes generated by the turbines enhance vertical mixing. These changes alter downstream atmospheric properties. With a large portion of wind farms hosted within an agricultural context, changes to the environment can potentially have secondary impacts such as to the productivity of crops. With the exception of a few observational data sets that focus on the impact to near-surface temperature, little to no observational evidence exists. These few studies also lack high spatial resolution due to their use of a limited number of meteorological towers or remote sensing techniques. This study utilizes an instrumented small unmanned aerial system (sUAS) to gather in-situ field measurements from two Midwest wind farms, focusing on the impact that large utility-scale wind turbines have on relative humidity. Results are also compared to numerical experiments conducted using large eddy simulation (LES). Wind turbines are found to differentially alter the relative humidity in the downstream, spanwise and vertical directions under a variety of atmospheric stability conditions.

  17. Hardware-in-the-Loop Testing of Utility-Scale Wind Turbine Generators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schkoda, Ryan; Fox, Curtiss; Hadidi, Ramtin

    2016-01-26

    Historically, wind turbine prototypes were tested in the field, which was--and continues to be--a slow and expensive process. As a result, wind turbine dynamometer facilities were developed to provide a more cost-effective alternative to field testing. New turbine designs were tested and the design models were validated using dynamometers to drive the turbines in a controlled environment. Over the years, both wind turbine dynamometer testing and computer technology have matured and improved, and the two are now being joined to provide hardware-in-the-loop (HIL) testing. This type of testing uses a computer to simulate the items that are missing from amore » dynamometer test, such as grid stiffness, voltage, frequency, rotor, and hub. Furthermore, wind input and changing electric grid conditions can now be simulated in real time. This recent advance has greatly increased the utility of dynamometer testing for the development of wind turbine systems.« less

  18. Generating an Aerodynamic Model for Projectile Flight Simulation Using Unsteady, Time Accurate Computational Fluid Dynamic Results

    DTIC Science & Technology

    2006-09-01

    Figure 17. Station line center of Magnus force vs. Mach number for spin-stabilized projectile...forces and moments on the projectile. It is also relatively easy to change the wind tunnel model to allow detailed parametric effects to be...such as pitch and roll damping, as well as, Magnus force and moment coefficients, are difficult to obtain in a wind tunnel and require a complex

  19. Natural wind variability triggered drop in German redispatch volume and costs from 2015 to 2016

    PubMed Central

    Reyers, Mark; Märker, Carolin; Witthaut, Dirk

    2018-01-01

    Avoiding dangerous climate change necessitates the decarbonization of electricity systems within the next few decades. In Germany, this decarbonization is based on an increased exploitation of variable renewable electricity sources such as wind and solar power. While system security has remained constantly high, the integration of renewables causes additional costs. In 2015, the costs of grid management saw an all time high of about € 1 billion. Despite the addition of renewable capacity, these costs dropped substantially in 2016. We thus investigate the effect of natural climate variability on grid management costs in this study. We show that the decline is triggered by natural wind variability focusing on redispatch as a main cost driver. In particular, we find that 2016 was a weak year in terms of wind generation averages and the occurrence of westerly circulation weather types. Moreover, we show that a simple model based on the wind generation time series is skillful in detecting redispatch events on timescales of weeks and beyond. As a consequence, alterations in annual redispatch costs in the order of hundreds of millions of euros need to be understood and communicated as a normal feature of the current system due to natural wind variability. PMID:29329349

  20. Visualization of the Eastern Renewable Generation Integration Study: Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gruchalla, Kenny; Novacheck, Joshua; Bloom, Aaron

    The Eastern Renewable Generation Integration Study (ERGIS), explores the operational impacts of the wide spread adoption of wind and solar photovoltaics (PV) resources in the U.S. Eastern Interconnection and Quebec Interconnection (collectively, EI). In order to understand some of the economic and reliability challenges of managing hundreds of gigawatts of wind and PV generation, we developed state of the art tools, data, and models for simulating power system operations using hourly unit commitment and 5-minute economic dispatch over an entire year. Using NREL's high-performance computing capabilities and new methodologies to model operations, we found that the EI, as simulated withmore » evolutionary change in 2026, could balance the variability and uncertainty of wind and PV at a 5-minute level under a variety of conditions. A large-scale display and a combination of multiple coordinated views and small multiples were used to visually analyze the four large highly multivariate scenarios with high spatial and temporal resolutions. state of the art tools, data, and models for simulating power system operations using hourly unit commitment and 5-minute economic dispatch over an entire year. Using NRELs high-performance computing capabilities and new methodologies to model operations, we found that the EI, as simulated with evolutionary change in 2026, could balance the variability and uncertainty of wind and PV at a 5-minute level under a variety of conditions. A large-scale display and a combination of multiple coordinated views and small multiples were used to visually analyze the four large highly multivariate scenarios with high spatial and temporal resolutions.« less

  1. Careers in Wind Energy

    ERIC Educational Resources Information Center

    Liming, Drew; Hamilton, James

    2011-01-01

    As a common form of renewable energy, wind power is generating more than just electricity. It is increasingly generating jobs for workers in many different occupations. Many workers are employed on wind farms: areas where groups of wind turbines produce electricity from wind power. Wind farms are frequently located in the midwestern, western, and…

  2. Analyzing Effects of Turbulence on Power Generation Using Wind Plant Monitoring Data: Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, J.; Chowdhury, S.; Hodge, B. M.

    2014-01-01

    In this paper, a methodology is developed to analyze how ambient and wake turbulence affects the power generation of a single wind turbine within an array of turbines. Using monitoring data from a wind power plant, we selected two sets of wind and power data for turbines on the edge of the wind plant that resemble (i) an out-of-wake scenario (i.e., when the turbine directly faces incoming winds) and (ii) an in-wake scenario (i.e., when the turbine is under the wake of other turbines). For each set of data, two surrogate models were then developed to represent the turbine powermore » generation (i) as a function of the wind speed; and (ii) as a function of the wind speed and turbulence intensity. Support vector regression was adopted for the development of the surrogate models. Three types of uncertainties in the turbine power generation were also investigated: (i) the uncertainty in power generation with respect to the published/reported power curve, (ii) the uncertainty in power generation with respect to the estimated power response that accounts for only mean wind speed; and (iii) the uncertainty in power generation with respect to the estimated power response that accounts for both mean wind speed and turbulence intensity. Results show that (i) under the same wind conditions, the turbine generates different power between the in-wake and out-of-wake scenarios, (ii) a turbine generally produces more power under the in-wake scenario than under the out-of-wake scenario, (iii) the power generation is sensitive to turbulence intensity even when the wind speed is greater than the turbine rated speed, and (iv) there is relatively more uncertainty in the power generation under the in-wake scenario than under the out-of-wake scenario.« less

  3. Wind noise under a pine tree canopy.

    PubMed

    Raspet, Richard; Webster, Jeremy

    2015-02-01

    It is well known that infrasonic wind noise levels are lower for arrays placed in forests and under vegetation than for those in open areas. In this research, the wind noise levels, turbulence spectra, and wind velocity profiles are measured in a pine forest. A prediction of the wind noise spectra from the measured meteorological parameters is developed based on recent research on wind noise above a flat plane. The resulting wind noise spectrum is the sum of the low frequency wind noise generated by the turbulence-shear interaction near and above the tops of the trees and higher frequency wind noise generated by the turbulence-turbulence interaction near the ground within the tree layer. The convection velocity of the low frequency wind noise corresponds to the wind speed above the trees while the measurements showed that the wind noise generated by the turbulence-turbulence interaction is near stationary and is generated by the slow moving turbulence adjacent to the ground. Comparison of the predicted wind noise spectrum with the measured wind noise spectrum shows good agreement for four measurement sets. The prediction can be applied to meteorological estimates to predict the wind noise under other pine forests.

  4. Consumptive Water Use from Electricity Generation in the Southwest under Alternative Climate, Technology, and Policy Futures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Talati, Shuchi; Zhai, Haibo; Kyle, G. Page

    This research assesses climate, technological, and policy impacts on consumptive water use from electricity generation in the Southwest over a planning horizon of nearly a century. We employed an integrated modeling framework taking into account feedbacks between climate change, air temperature and humidity, and consequent power plant water requirements. These direct impacts of climate change on water consumption by 2095 differ with technology improvements, cooling systems, and policy constraints, ranging from a 3–7% increase over scenarios that do not incorporate ambient air impacts. Upon additional factors being changed that alter electricity generation, water consumption increases by up to 8% overmore » the reference scenario by 2095. With high penetration of wet recirculating cooling, consumptive water required for low-carbon electricity generation via fossil fuels will likely exacerbate regional water pressure as droughts become more common and population increases. Adaptation strategies to lower water use include the use of advanced cooling technologies and greater dependence on solar and wind. Water consumption may be reduced by 50% in 2095 from the reference, requiring an increase in dry cooling shares to 35–40%. Alternatively, the same reduction could be achieved through photovoltaic and wind power generation constituting 60% of the grid, consistent with an increase of over 250% in technology learning rates.« less

  5. Model for the techno-economic analysis of common work of wind power and CCGT power plant to offer constant level of power in the electricity market

    NASA Astrophysics Data System (ADS)

    Tomsic, Z.; Rajsl, I.; Filipovic, M.

    2017-11-01

    Wind power varies over time, mainly under the influence of meteorological fluctuations. The variations occur on all time scales. Understanding these variations and their predictability is of key importance for the integration and optimal utilization of wind in the power system. There are two major attributes of variable generation that notably impact the participation on power exchanges: Variability (the output of variable generation changes and resulting in fluctuations in the plant output on all time scales) and Uncertainty (the magnitude and timing of variable generation output is less predictable, wind power output has low levels of predictability). Because of these variability and uncertainty wind plants cannot participate to electricity market, especially to power exchanges. For this purpose, the paper presents techno-economic analysis of work of wind plants together with combined cycle gas turbine (CCGT) plant as support for offering continues power to electricity market. A model of wind farms and CCGT plant was developed in program PLEXOS based on real hourly input data and all characteristics of CCGT with especial analysis of techno-economic characteristics of different types of starts and stops of the plant. The Model analyzes the followings: costs of different start-stop characteristics (hot, warm, cold start-ups and shutdowns) and part load performance of CCGT. Besides the costs, the technical restrictions were considered such as start-up time depending on outage duration, minimum operation time, and minimum load or peaking capability. For calculation purposes, the following parameters are necessary to know in order to be able to economically evaluate changes in the start-up process: ramp up and down rate, time of start time reduction, fuel mass flow during start, electricity production during start, variable cost of start-up process, cost and charges for life time consumption for each start and start type, remuneration during start up time regarding expected or unexpected starts, the cost and revenues for balancing energy (important when participating in electricity market), and the cost or revenues for CO2-certificates. Main motivation for this analysis is to investigate possibilities to participate on power exchanges by offering continues guarantied power from wind plants by backing-up them with CCGT power plant.

  6. Kansas Wind Energy Consortium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gruenbacher, Don

    2015-12-31

    This project addresses both fundamental and applied research problems that will help with problems defined by the DOE “20% Wind by 2030 Report”. In particular, this work focuses on increasing the capacity of small or community wind generation capabilities that would be operated in a distributed generation approach. A consortium (KWEC – Kansas Wind Energy Consortium) of researchers from Kansas State University and Wichita State University aims to dramatically increase the penetration of wind energy via distributed wind power generation. We believe distributed generation through wind power will play a critical role in the ability to reach and extend themore » renewable energy production targets set by the Department of Energy. KWEC aims to find technical and economic solutions to enable widespread implementation of distributed renewable energy resources that would apply to wind.« less

  7. Remote forcing at the Last Glacial Maximum in the Tropical Pacific Ocean

    NASA Astrophysics Data System (ADS)

    Andreasen, Dyke H.; Ravelo, A. Christina; Broccoli, Anthony J.

    2001-01-01

    We present results of a Last Glacial Maximum (LGM) wind stress sensitivity experiment using a high-resolution ocean general circulation model of the tropical Pacific Ocean. LGM wind stress, used to drive the ocean model, was generated using an atmospheric general circulation model simulation forced by LGM boundary conditions as part of the Paleoclimate Modeling Intercomparison Project (PMIP) [Broccoli, 2000]. LGM wind stress anomalies were large in the western half of the basin, yet there was a significant hydrographic response in the eastern half. This ocean model experiment hind casts changes that are in close agreement with paleoceanographic data from the entire region, even without the explicit modeling of the air-sea interactions. Data and model both predict that the annual average thermocline tilt across the basin was enhanced. Data and model are consistent with a stronger equatorial undercurrent which shoaled to the west of where it does today, and stronger advection of water from the Peru Current into the east equatorial Pacific and across the equator. Paleoproductivity and sea surface temperature (SST) data are interpreted in light of the modeling results, indicating that paleoproductivity changes were related to wind-forced dynamical changes resulting from LGM boundary conditions, while SST changes were related to independent, possibly radiative, forcing. Overall, our results imply that much of the dynamic response of the tropical Pacific during the LGM can be explained by wind field changes resulting from global LGM boundary conditions.

  8. Flapping wing applied to wind generators

    NASA Astrophysics Data System (ADS)

    Colidiuc, Alexandra; Galetuse, Stelian; Suatean, Bogdan

    2012-11-01

    The new conditions at the international level for energy source distributions and the continuous increasing of energy consumption must lead to a new alternative resource with the condition of keeping the environment clean. This paper offers a new approach for a wind generator and is based on the theoretical aerodynamic model. This new model of wind generator helped me to test what influences would be if there will be a bird airfoil instead of a normal wind generator airfoil. The aim is to calculate the efficiency for the new model of wind generator. A representative direction for using the renewable energy is referred to the transformation of wind energy into electrical energy, with the help of wind turbines; the development of such systems lead to new solutions based on high efficiency, reduced costs and suitable to the implementation conditions.

  9. Quantifying the hurricane risk to offshore wind turbines.

    PubMed

    Rose, Stephen; Jaramillo, Paulina; Small, Mitchell J; Grossmann, Iris; Apt, Jay

    2012-02-28

    The U.S. Department of Energy has estimated that if the United States is to generate 20% of its electricity from wind, over 50 GW will be required from shallow offshore turbines. Hurricanes are a potential risk to these turbines. Turbine tower buckling has been observed in typhoons, but no offshore wind turbines have yet been built in the United States. We present a probabilistic model to estimate the number of turbines that would be destroyed by hurricanes in an offshore wind farm. We apply this model to estimate the risk to offshore wind farms in four representative locations in the Atlantic and Gulf Coastal waters of the United States. In the most vulnerable areas now being actively considered by developers, nearly half the turbines in a farm are likely to be destroyed in a 20-y period. Reasonable mitigation measures--increasing the design reference wind load, ensuring that the nacelle can be turned into rapidly changing winds, and building most wind plants in the areas with lower risk--can greatly enhance the probability that offshore wind can help to meet the United States' electricity needs.

  10. Quantifying the hurricane risk to offshore wind turbines

    PubMed Central

    Rose, Stephen; Jaramillo, Paulina; Small, Mitchell J.; Grossmann, Iris; Apt, Jay

    2012-01-01

    The U.S. Department of Energy has estimated that if the United States is to generate 20% of its electricity from wind, over 50 GW will be required from shallow offshore turbines. Hurricanes are a potential risk to these turbines. Turbine tower buckling has been observed in typhoons, but no offshore wind turbines have yet been built in the United States. We present a probabilistic model to estimate the number of turbines that would be destroyed by hurricanes in an offshore wind farm. We apply this model to estimate the risk to offshore wind farms in four representative locations in the Atlantic and Gulf Coastal waters of the United States. In the most vulnerable areas now being actively considered by developers, nearly half the turbines in a farm are likely to be destroyed in a 20-y period. Reasonable mitigation measures—increasing the design reference wind load, ensuring that the nacelle can be turned into rapidly changing winds, and building most wind plants in the areas with lower risk—can greatly enhance the probability that offshore wind can help to meet the United States’ electricity needs. PMID:22331894

  11. Long-Term Declining Trends in Historical Wind Measurements at the Blue Hill Meteorological Observatory, 1885-2013

    NASA Astrophysics Data System (ADS)

    Azorin-Molina, C.; Iacono, M. J.

    2014-12-01

    The Blue Hill Meteorological Observatory, located on the 635-foot summit of Great Blue Hill ten miles south of Boston, Massachusetts, has been the site of continuous monitoring of the local weather and climate since its founding in 1885. The meticulous, extensive and high-quality climate record maintained at this location has included the measurement of wind among many other parameters since its earliest days, and this provides a unique opportunity to examine wind speed trends at this site over nearly 130 years. Although multiple wind sensors have been in use during this time and the height of the anemometers was raised in 1908, the wind records have been made as consistent as possible through careful analysis of these changes and the application of adjustments to ensure consistency. The 30-year mean wind speed at this location has decreased from 6.8 m s-1 in the middle 20th century to its present value of 6.0 m s-1 with an increase in the rate of the decline beginning around 1980. The wind speed time series shows a significant (p < 0.05) downward trend over the entire period from 1885-2013 (-0.085 m s-1 decade-1) that is stronger and also significant for the sub-periods from 1961-2013 (-0.266 m s-1 decade-1) and 1979-2008 (-0.342 m s-1 decade-1). This declining trend persists in all seasons and has significant implications for the efficiency of wind power generation in the area, if it reflects a regional change in the near-surface wind regime. The wind instruments in use since the 19th century will be described, and the official long-term record will be compared with measurements from other wind sensors at the Observatory and surrounding locations. In addition, initial investigations of the possible causes of the wind speed decline will be presented in the context of global stilling (i.e. the theory of a widespread decline in measured near-surface wind speed), including an analysis of the wind speed change as a function of wind direction.

  12. Capacity expansion model of wind power generation based on ELCC

    NASA Astrophysics Data System (ADS)

    Yuan, Bo; Zong, Jin; Wu, Shengyu

    2018-02-01

    Capacity expansion is an indispensable prerequisite for power system planning and construction. A reasonable, efficient and accurate capacity expansion model (CEM) is crucial to power system planning. In most current CEMs, the capacity of wind power generation is considered as boundary conditions instead of decision variables, which may lead to curtailment or over construction of flexible resource, especially at a high renewable energy penetration scenario. This paper proposed a wind power generation capacity value(CV) calculation method based on effective load-carrying capability, and a CEM that co-optimizes wind power generation and conventional power sources. Wind power generation is considered as decision variable in this model, and the model can accurately reflect the uncertainty nature of wind power.

  13. Ramping and Uncertainty Prediction Tool - Analysis and Visualization of Wind Generation Impact on Electrical Grid

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Etingov, Pavel; Makarov, PNNL Yuri; Subbarao, PNNL Kris

    RUT software is designed for use by the Balancing Authorities to predict and display additional requirements caused by the variability and uncertainty in load and generation. The prediction is made for the next operating hours as well as for the next day. The tool predicts possible deficiencies in generation capability and ramping capability. This deficiency of balancing resources can cause serious risks to power system stability and also impact real-time market energy prices. The tool dynamically and adaptively correlates changing system conditions with the additional balancing needs triggered by the interplay between forecasted and actual load and output of variablemore » resources. The assessment is performed using a specially developed probabilistic algorithm incorporating multiple sources of uncertainty including wind, solar and load forecast errors. The tool evaluates required generation for a worst case scenario, with a user-specified confidence level.« less

  14. Particle transport patterns of short-distance soil erosion by wind-driven rain, rain and wind

    NASA Astrophysics Data System (ADS)

    Marzen, Miriam; Iserloh, Thomas; de Lima, João L. M. P.; Ries, Johannes B.

    2015-04-01

    Short distance erosion of soil surface material is one of the big question marks in soil erosion studies. The exact measurement of short-distance transported soil particles, prior to the occurrence of overland flow, is a challenge to soil erosion science due to the particular requirements of the experimental setup and test procedure. To approach a quantification of amount and distance of each type of transport, we applied an especially developed multiple-gutter system installed inside the Trier Portable Wind and Rainfall Simulator (PWRS). We measured the amount and travel distance of soil particles detached and transported by raindrops (splash), wind-driven rain (splash-saltation and splash-drift) and wind (saltation). The test setup included three different erosion agents (rain/ wind-driven rain/ wind), two substrates (sandy/ loamy), three surface structures (grain roughness/ rills lengthwise/ rills transversal) and three slope angles (0°/+7°/-7°). The results present detailed transport patterns of the three erosion agents under the varying soil and surface conditions up to a distance of 1.6 m. Under the applied rain intensity and wind velocity, wind-driven rain splash generates the highest erosion. The erodibility and travel distance of the two substrates depend on the erosion agent. The total erosion is slightly higher for the slope angle -7° (downslope), but for wind-driven rain splash, the inclination is not a relevant factor. The effect of surface structures (rills) changes with traveling distance. The wind driven rain splash generates a much higher amount of erosion and a further travel distance of the particles due to the combined action of wind and rain. The wind-driven rain factor appears to be much more significant than the other factors. The study highlights the effects of different erosion agents and surface parameters on short-distance particle transport and the powerful impact of wind-driven rain on soil erosion.

  15. Design and analysis of a flux intensifying permanent magnet embedded salient pole wind generator

    NASA Astrophysics Data System (ADS)

    Guo, Yujing; Jin, Ping; Lin, Heyun; Yang, Hui; Lyu, Shukang

    2018-05-01

    This paper presents an improved flux intensifying permanent magnet embedded salient pole wind generator (FI-PMESPWG) with mirror symmetrical magnetizing directions permanent magnet (PM) for improving generator's performances. The air-gap flux densities, the output voltage, the cogging torque and the d- and q-axis inductances of FI-PMESPWG are all calculated and analyzed by using the finite element method (FEM). To highlight the advantages of the proposed FI-PMESPWG, an original permanent magnet embedded salient pole wind generator (PMESPWG) model is adopted for comparison under the same operating conditions. The calculating results show that the air-gap flux densities of FI-PMESPWG are intensified with the same magnet amounts because the PMs are set in a form of V shape in each pole. The difference between d-axis inductance and q-axis inductance of the proposed FI-PMESPWG is reduced. Thus, the output power of the proposed FI-PMESPWG reaches a higher value than that of the original PMESPWG at the same current phase angle. The cogging torque is diminished because the flux path is changed. All the analysis results indicate that the electromagnetic characteristics of the proposed FI-PMESPWG are significantly better than that of the original PMESPWG.

  16. 76 FR 52966 - Kawailoa Wind Energy Generation Facility, Oahu, HI; Draft Habitat Conservation Plan and Draft...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-24

    .... The proposed facility will consist of 30 wind turbine generators (WTGs), a maintenance building, an... sandvicensis), and Hawaiian hoary bat, which have collided with the wind turbine structures at this existing 30... (collisions with wind turbine generators). In addition to the anticipated take by the project, predator...

  17. Wind energy resource modelling in Portugal and its future large-scale alteration due to anthropogenic induced climate changes =

    NASA Astrophysics Data System (ADS)

    Carvalho, David Joao da Silva

    The high dependence of Portugal from foreign energy sources (mainly fossil fuels), together with the international commitments assumed by Portugal and the national strategy in terms of energy policy, as well as resources sustainability and climate change issues, inevitably force Portugal to invest in its energetic self-sufficiency. The 20/20/20 Strategy defined by the European Union defines that in 2020 60% of the total electricity consumption must come from renewable energy sources. Wind energy is currently a major source of electricity generation in Portugal, producing about 23% of the national total electricity consumption in 2013. The National Energy Strategy 2020 (ENE2020), which aims to ensure the national compliance of the European Strategy 20/20/20, states that about half of this 60% target will be provided by wind energy. This work aims to implement and optimise a numerical weather prediction model in the simulation and modelling of the wind energy resource in Portugal, both in offshore and onshore areas. The numerical model optimisation consisted in the determination of which initial and boundary conditions and planetary boundary layer physical parameterizations options provide wind power flux (or energy density), wind speed and direction simulations closest to in situ measured wind data. Specifically for offshore areas, it is also intended to evaluate if the numerical model, once optimised, is able to produce power flux, wind speed and direction simulations more consistent with in situ measured data than wind measurements collected by satellites. This work also aims to study and analyse possible impacts that anthropogenic climate changes may have on the future wind energetic resource in Europe. The results show that the ECMWF reanalysis ERA-Interim are those that, among all the forcing databases currently available to drive numerical weather prediction models, allow wind power flux, wind speed and direction simulations more consistent with in situ wind measurements. It was also found that the Pleim-Xiu and ACM2 planetary boundary layer parameterizations are the ones that showed the best performance in terms of wind power flux, wind speed and direction simulations. This model optimisation allowed a significant reduction of the wind power flux, wind speed and direction simulations errors and, specifically for offshore areas, wind power flux, wind speed and direction simulations more consistent with in situ wind measurements than data obtained from satellites, which is a very valuable and interesting achievement. This work also revealed that future anthropogenic climate changes can negatively impact future European wind energy resource, due to tendencies towards a reduction in future wind speeds especially by the end of the current century and under stronger radiative forcing conditions.

  18. Widespread land surface wind decline in the Northern Hemisphere partly attributed to land surface changes

    NASA Astrophysics Data System (ADS)

    Thepaut, J.; Vautard, R.; Cattiaux, J.; Yiou, P.; Ciais, P.

    2010-12-01

    The decline of surface wind observed in many regions of the world is a potential source of concern for wind power electricity generation. It is also suggested as the main cause of decreasing pan evaporation. In China, a persistent and significant decrease of monsoon winds was observed in all seasons. Surface wind declines were also evidenced in several regions of the world (U.S., Australia, several European countries). Except over China, no clear explanation was given for the wind decrease in the regions studied. Whether surface winds decrease is due to changes in the global atmospheric circulation or its variability, in surface processes or to observational trends has therefore not been elucidated. The identification of the drivers of such a decline requires a global investigation of available surface and upper-air wind data, which has not been conducted so far. Here we use global datasets of in-situ wind measurements that contain surface weather stations wind data (hourly or three-hourly data acquisition time step) and rawinsonde vertical wind data profiles (monthly time step) prepared by the NCAR. A set of 822 worldwide surface stations with continuous wind records was selected after a careful elimination of stations with obvious breaks and large gaps. This dataset mostly covers the Northern mid latitudes over the period 1979-2008. Using this data set, we found that annual mean wind speeds have declined at 73% of the surface stations over the past 30 years. In the Northern Hemisphere, positive wind trends are found only in a few places. In Europe, Central Asia, Eastern Asia and in North America the annual mean surface wind speed has decreased on average at a rate of -2.9, -5.9, -4.2, and -1.8 %/decade respectively, i.e. a decrease of about 10% in 30 years and up to about 20% in Central Asia. These results are robust to changes in the station selection method and parameters. By contrast, upper-air winds observed from rawinsondes, geostrophic winds deduced from pressure gradients, and modeled winds from weather re-analyses do not exhibit any comparable stilling trends than at surface stations. For instance, large-scale circulation changes captured in the most recent European Centre for Medium Range Weather Forecast re-analysis (ERA-interim) can only explain only up to 10-50% of the wind stilling, depending on the region. In addition, a significant amount of the slow-down could originate from a generalized increase in surface roughness, due for instance to forest growth and expansion, and urbanization. This hypothesis, which could explain up to 60% of the decline, is supported by remote sensing observations and theoretical calculations combined with meso-scale model simulations. For future wind power energy resource, the part of wind decline due to land cover changes is easier to cope with than that due to global atmospheric circulation slow down.

  19. 75 FR 60102 - South Dakota PrairieWinds Project (DOE/EIS-0418)

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-29

    ... feature 101 wind turbine generators; 6,000 square-foot operations and maintenance building and fence... generation facility that would feature 101 wind turbine generators; 6,000 square-foot operations and... turbine generators, operations and maintenance building and fence perimeter, underground communication...

  20. Changes in the extremes of the climate simulated by CCC GCM2 under CO{sub 2} doubling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zwiers, F.W.; Kharin, V.V.

    Changes due to CO{sub 2} doubling in the extremes of the surface climate as simulated by the second-generation circulation model of the Canadian Centre for Climate Modelling and Analysis are studied in two 20-yr equilibrium simulations. Extreme values of screen temperature, precipitation, and near-surface wind in the control climate are compared to those estimated from 17 yr of the NCEP-NCAR reanalysis data and from some Canadian station data. The extremes of screen temperature are reasonably well reproduced in the control climate. Their changes under CO{sub 2} doubling can be connected with other physical changes such as surface albedo changes duemore » to the reduction of snow and sea ice cover as well as a decrease of soil moisture in the warmer world. The signal in the extremes of daily precipitation and near-surface wind speed due to CO{sub 2} doubling is less obvious. The precipitation extremes increase almost everywhere over the globe. The strongest change, over northwest India, is related to the intensification of the summer monsoon in this region in the warmer world. The modest reduction of wind extremes in the Tropics and middle latitudes is consistent with the reduction of the meridional temperature gradient in the 2{times}CO{sub 2} climate. The larger wind extremes occur in the areas where sea ice has retreated.« less

  1. The application of hydraulics in the 2,000 kW wind turbine generator

    NASA Technical Reports Server (NTRS)

    Onufreiczuk, S.

    1978-01-01

    A 2000 kW turbine generator using hydraulic power in two of its control systems is being built under the management of NASA Lewis Research Center. The hydraulic systems providing the control torques and forces for the yaw and blade pitch control systems are discussed. The yaw-drive-system hydraulic supply provides the power for positioning the nacelle so that the rotary axis is kept in line with the direction of the prevailing wind, as well as pressure to the yaw and high speed shaft brakes. The pitch-change-mechanism hydraulic system provides the actuation to the pitch change mechanism and permits feathering of the blades during an emergency situation. It operates in conjunction with the overall windmill computer system, with the feather control permitting slewing control flow to pass from the servo valve to the actuators without restriction.

  2. Practical Applications of a Building Method to Construct Aerodynamic Database of Guided Missile Using Wind Tunnel Test Data

    NASA Astrophysics Data System (ADS)

    Kim, Duk-hyun; Lee, Hyoung-Jin

    2018-04-01

    A study of efficient aerodynamic database modeling method was conducted. A creation of database using periodicity and symmetry characteristic of missile aerodynamic coefficient was investigated to minimize the number of wind tunnel test cases. In addition, studies of how to generate the aerodynamic database when the periodicity changes due to installation of protuberance and how to conduct a zero calibration were carried out. Depending on missile configurations, the required number of test cases changes and there exist tests that can be omitted. A database of aerodynamic on deflection angle of control surface can be constituted using phase shift. A validity of modeling method was demonstrated by confirming that the result which the aerodynamic coefficient calculated by using the modeling method was in agreement with wind tunnel test results.

  3. Emissions impacts of wind and energy storage in a market environment.

    PubMed

    Sioshansi, Ramteen

    2011-12-15

    This study examines the emissions impacts of adding wind and energy storage to a market-based electric power system. Using Texas as a case study, we demonstrate that market power can greatly effect the emissions benefits of wind, due to most of the coal-fired generation being owned by the two dominant firms. Wind tends to have less emissions benefits when generators exercise market power, since coal-fired generation is withheld from the market and wind displaces natural gas-fired generators. We also show that storage can have greater negative emissions impacts in the presence of wind than if only storage is added to the system. This is due to wind increasing on- and off-peak electricity price differences, which increases the amount that storage and coal-fired generation are used. We demonstrate that this effect is exacerbated by market power.

  4. Widespread land surface wind decline in the Northern Hemisphere

    NASA Astrophysics Data System (ADS)

    Vautard, R.; Cattiaux, J.; Yiou, P.; Thépaut, J.-N.; Ciais, P.

    2010-09-01

    The decline of surface wind observed in many regions of the world is a potential source of concern for wind power electricity generation. It is also suggested as the main cause of decreasing pan evaporation. In China, a persistent and significant decrease of monsoon winds was observed in all seasons. Surface wind declines were also evidenced in several regions of the world (U.S., Australia, several European countries). Except over China, no clear explanation was given for the wind decrease in the regions studied. Whether surface winds decrease is due to changes in the global atmospheric circulation or its variability, in surface processes or to observational trends has therefore not been elucidated. The identification of the drivers of such a decline requires a global investigation of available surface and upper-air wind data, which has not been conducted so far. Here we use global datasets of in-situ wind measurements that contain surface weather stations wind data (hourly or three-hourly data acquisition time step) and rawinsonde vertical wind data profiles (monthly time step) prepared by the NCAR. A set of 822 worldwide surface stations with continuous wind records was selected after a careful elimination of stations with obvious breaks and large gaps. This dataset mostly covers the Northern mid latitudes over the period 1979-2008. Using this data set, we found that annual mean wind speeds have declined at 73% of the surface stations over the past 30 years. In the Northern Hemisphere, positive wind trends are found only in a few places. In Europe, Central Asia, Eastern Asia and in North America the annual mean surface wind speed has decreased on average at a rate of -2.9, -5.9, -4.2, and -1.8 %/decade respectively, i.e. a decrease of about 10% in 30 years and up to about 20% in Central Asia. These results are robust to changes in the station selection method and parameters. By contrast, upper-air winds observed from rawinsondes, geostrophic winds deduced from pressure gradients, and modeled winds from weather re-analyses do not exhibit any comparable stilling trends than at surface stations. For instance, large-scale circulation changes captured in the most recent European Centre for Medium Range Weather Forecast re-analysis (ERA-interim) can only explain only up to 30% of the Eurasian wind stilling. In addition, a significant amount of the slow-down could originate from a generalized increase in surface roughness, due for instance to forest growth and expansion, and urbanization. This hypothesis is supported by theoretical calculations combined with meso-scale model simulations. For future wind power energy resource, the part of wind decline due to land cover changes is easier to cope with than that due to global atmospheric circulation slow down.

  5. Modelling storm development and the impact when introducing waves, sea spray and heat fluxes

    NASA Astrophysics Data System (ADS)

    Wu, Lichuan; Rutgersson, Anna; Sahlée, Erik

    2015-04-01

    In high wind speed conditions, sea spray generated due to intensity breaking waves have big influence on the wind stress and heat fluxes. Measurements show that drag coefficient will decrease in high wind speed. Sea spray generation function (SSGF), an important term of wind stress parameterization in high wind speed, usually treated as a function of wind speed/friction velocity. In this study, we introduce a wave state depended SSGG and wave age depended Charnock number into a high wind speed wind stress parameterization (Kudryavtsev et al., 2011; 2012). The proposed wind stress parameterization and sea spray heat fluxes parameterization from Andreas et al., (2014) were applied to an atmosphere-wave coupled model to test on four storm cases. Compared with measurements from the FINO1 platform in the North Sea, the new wind stress parameterization can reduce the forecast errors of wind in high wind speed range, but not in low wind speed. Only sea spray impacted on wind stress, it will intensify the storms (minimum sea level pressure and maximum wind speed) and lower the air temperature (increase the errors). Only the sea spray impacted on the heat fluxes, it can improve the model performance on storm tracks and the air temperature, but not change much in the storm intensity. If both of sea spray impacted on the wind stress and heat fluxes are taken into account, it has the best performance in all the experiment for minimum sea level pressure and maximum wind speed and air temperature. Andreas, E. L., Mahrt, L., and Vickers, D. (2014). An improved bulk air-sea surface flux algorithm, including spray-mediated transfer. Quarterly Journal of the Royal Meteorological Society. Kudryavtsev, V. and Makin, V. (2011). Impact of ocean spray on the dynamics of the marine atmospheric boundary layer. Boundary-layer meteorology, 140(3):383-410. Kudryavtsev, V., Makin, V., and S, Z. (2012). On the sea-surface drag and heat/mass transfer at strong winds. Technical report, Royal Netherlands Meteorological Institute.

  6. 78 FR 6316 - Big Blue Wind Farm, LLC, et al.; Notice of Effectiveness of Exempt Wholesale Generator Status

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-01-30

    ... Wind Farm, LLC, et al.; Notice of Effectiveness of Exempt Wholesale Generator Status Docket Nos. Big Blue Wind Farm, LLC EG13-1-000 Calpine Bosque Energy Center, LLC EG13-2-000 Homer City Generation, L.P EG13-3-000 Texas Dispatchable Wind 1, LLC EG13-4-000 Blue Creek Wind Farm LLC EG13-5-000 Take notice...

  7. Large wind turbines: A utility option for the generation of electricity

    NASA Technical Reports Server (NTRS)

    Robbins, W. H.; Thomas, R. L.; Baldwin, D. H.

    1980-01-01

    The wind resource is such that wind energy generation has the potential to save 6-7 quads of energy nationally. Thus, the Federal Government is sponsoring and encouraging the development of cost effective and reliable wind turbines. One element of the Federal Wind Energy Programs, Large Horizontal Axis Wind Turbine Development, is managed by the NASA Lewis Research Center for the Department of Energy. There are several ongoing wind system development projects oriented primarily toward utility application within this program element. In addition, a comprehensive technology program supporting the wind turbine development projects is being conducted. An overview is presented of the NASA activities with emphasis on application of large wind turbines for generation of electricity by utility systems.

  8. Technology Performance Report: Duke Energy Notrees Wind Storage Demonstration Project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wehner, Jeff; Mohler, David; Gibson, Stuart

    2015-11-01

    Duke Energy Renewables owns and operates the Notrees Wind Farm in west Texas’s Ector and Winkler counties. The wind farm, which was commissioned in April 2009, has a total capacity of 152.6 MW generated by 55 Vestas V82 turbines, one Vestas 1-V90 experimental turbine, and 40 GE 1.5-MW turbines. The Vestas V82 turbines have a generating capacity of 1.65 MW each, the Vestas V90 turbine has a generating capacity of 1.86 MW, and the GE turbines have a generating capacity of 1.5 MW each. The objective of the Notrees Wind Storage Demonstration Project is to validate that energy storage increasesmore » the value and practical application of intermittent wind generation and is commercially viable at utility scale. The project incorporates both new and existing technologies and techniques to evaluate the performance and potential of wind energy storage. In addition, it could serve as a model for others to adopt and replicate. Wind power resources are expected to play a significant part in reducing greenhouse gas emissions from electric power generation by 2030. However, the large variability and intermittent nature of wind presents a barrier to integrating it within electric markets, particularly when competing against conventional generation that is more reliable. In addition, wind power production often peaks at night or other times when demand and electricity prices are lowest. Energy storage systems can overcome those barriers and enable wind to become a valuable asset and equal competitor to conventional fossil fuel generation.« less

  9. Maximum power point tracking techniques for wind energy systems using three levels boost converter

    NASA Astrophysics Data System (ADS)

    Tran, Cuong Hung; Nollet, Frédéric; Essounbouli, Najib; Hamzaoui, Abdelaziz

    2018-05-01

    This paper presents modeling and simulation of three level Boost DC-DC converter in Wind Energy Conversion System (WECS). Three-level Boost converter has significant advantage compared to conventional Boost. A maximum power point tracking (MPPT) method for a variable speed wind turbine using permanent magnet synchronous generator (PMSG) is also presented. Simulation of three-level Boost converter topology with Perturb and Observe algorithm and Fuzzy Logic Control is implemented in MATLAB/SIMULINK. Results of this simulation show that the system with MPPT using fuzzy logic controller has better performance to the Perturb and Observe algorithm: fast response under changing conditions and small oscillation.

  10. 40 CFR 53.42 - Generation of test atmospheres for wind tunnel tests.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 5 2010-07-01 2010-07-01 false Generation of test atmospheres for wind... Testing Performance Characteristics of Methods for PM10 § 53.42 Generation of test atmospheres for wind... particle delivery system shall consist of a blower system and a wind tunnel having a test section of...

  11. 40 CFR 53.42 - Generation of test atmospheres for wind tunnel tests.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 5 2011-07-01 2011-07-01 false Generation of test atmospheres for wind... Testing Performance Characteristics of Methods for PM10 § 53.42 Generation of test atmospheres for wind... particle delivery system shall consist of a blower system and a wind tunnel having a test section of...

  12. Synchronous Generators with Superconductive Excitation Windings,

    DTIC Science & Technology

    1983-07-27

    AD-Al3i 832 SYNCHRONOUS GENERATORS WITH SUPERCONDUCTIVE EXCITATION i/i WINDINGS(U) FOREIGN TECHNOLOGY DIV WRIGHT-PATTERSON AFB OH W PASZEK ET AL. 27...1.1 FTD-ID(RS)T-1087-83 FOREIGN TECHNOLOGY DIVISION SYNCHRONOUS GENERATORS WITH SUPERCONDUCTIVE EXCITATION WINDINGS by W. Paszek and A. Rozycki DTIC...MICROFICHE NR: FTD-83-C-000906 j.r.voiFor SYNCHRONOUS GENERATORS WITH SUPERCONDUCTIVE T EXCITATION WINDINGS 0;~f~on~ SJustification By: W./Paszek and A

  13. Plans and status of the NASA-Lewis Research Center wind energy project

    NASA Technical Reports Server (NTRS)

    Thomas, R.; Puthoff, R.; Savino, J.; Johnson, W.

    1975-01-01

    This report describes that portion of the national five-year wind energy program that is being managed by the NASA-Lewis Research Center for the ERDA. The Lewis Research Center's Wind Power Office, its organization and plans and status are briefly described. The three major elements of the wind energy project at Lewis are the experimental 100 kW wind-turbine generator; the first generation industry-built and user-operated wind turbine generators; and the supporting research and technology tasks which are each briefly described.

  14. Maintaining Balance: The Increasing Role of Energy Storage for Renewable Integration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stenclik, Derek; Denholm, Paul; Chalamala, Babu

    For nearly a century, global power systems have focused on three key functions: generating, transmitting, and distributing electricity as a real-time commodity. Physics requires that electricity generation always be in real-time balance with load-despite variability in load on time scales ranging from subsecond disturbances to multiyear trends. With the increasing role of variable generation from wind and solar, the retirement of fossil-fuel-based generation, and a changing consumer demand profile, grid operators are using new methods to maintain this balance.

  15. The Impact of Strong Climate Change on Inter-state Balancing in a Fully-renewable Simplified European Electricity System

    NASA Astrophysics Data System (ADS)

    Wohland, Jan; Witthaut, Dirk

    2017-04-01

    Electricity systems with a high penetration of renewables are strongly affected by weather patterns. Due to the variability of the climate system, a substantial fraction of energy supply needs to be provided by dispatchable power plants even if the consumption is on average balanced by renewables (e.g. Rodriguez et al. [2014]). In an interconnected system like the European electricity grid, benefits can arise from balancing generation mismatches spatially as long as overproduction in one region coincides with lack of generation in another region. These benefits might change as the climate changes and we thus investigate alterations of correlations between wind timeseries and Backup energy requirements. Our analysis is based on a five member model-ensemble from the EUROCORDEX initiative and we focus on onshore wind energy. We use the highest temporal (3h) and spatial (0.11°) resolution available to capture the intermittent and spatially diverse nature of renewable generation. In view of inter-model spread and other uncertainties, we use the strong climate change scenario rcp8.5 in order to obtain a high signal-to-noise ratio. We argue that rcp8.5 is best suited to reveal interesting interactions between climate change and renewable electricity system despite the fact that is in contradiction to the UNFCCC temperature goals (e.g. Schleussner et al. [2016]). We report spatially inhomogeneous alterations of correlations. In particular, we find increasing correlations between central and northern European states and decreasing correlations at the south-western and south-eastern margins of Europe. This hints to a lowering of balancing potentials within central and northern Europe due to climate change. A possible explanation might be associated to polar amplification and increasing frequencies of blocking events (Coumou [2015]). Moreover, we compute wind energy generation using a single-turbine model and a semi-random deployment procedure as developed in Monforti et al. [2016]. In combination with ENTSO-E load data and validated solar generation timeseries from Renewable Ninja (Pfenninger and Staffell [2016]), we calculate backup energy needs in Europe and analyze the potential of cooperation between countries to lower them. We find increases in European backup energy needs throughout the 21st century which are robust across the 5 climate models considered.

  16. 77 FR 55829 - Western Area Power Administration; Grapevine Canyon Wind Project Record of Decision (DOE/EIS-0427)

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-09-11

    ... megawatts of electricity from wind turbine generators (WTGs). The proposed project includes a wind energy... about the installation of red flashing lights on wind turbine generators per Federal Aviation... DEPARTMENT OF ENERGY Western Area Power Administration; Grapevine Canyon Wind Project Record of...

  17. Ground-level climate at a peatland wind farm in Scotland is affected by wind turbine operation

    NASA Astrophysics Data System (ADS)

    Armstrong, Alona; Burton, Ralph R.; Lee, Susan E.; Mobbs, Stephen; Ostle, Nicholas; Smith, Victoria; Waldron, Susan; Whitaker, Jeanette

    2016-04-01

    The global drive to produce low-carbon energy has resulted in an unprecedented deployment of onshore wind turbines, representing a significant land use change for wind energy generation with uncertain consequences for local climatic conditions and the regulation of ecosystem processes. Here, we present high-resolution data from a wind farm collected during operational and idle periods that shows the wind farm affected several measures of ground-level climate. Specifically, we discovered that operational wind turbines raised air temperature by 0.18 °C and absolute humidity (AH) by 0.03 g m-3 during the night, and increased the variability in air, surface and soil temperature throughout the diurnal cycle. Further, the microclimatic influence of turbines on air temperature and AH decreased logarithmically with distance from the nearest turbine. These effects on ground-level microclimate, including soil temperature, have uncertain implications for biogeochemical processes and ecosystem carbon cycling, including soil carbon stocks. Consequently, understanding needs to be improved to determine the overall carbon balance of wind energy.

  18. Onshore wind energy potential over Iberia: present and future projections

    NASA Astrophysics Data System (ADS)

    Rochinha, Carlos A.; Santos, João A.; Liberato, Margarida L. R.; Pinto, Joaquim G.

    2014-05-01

    Onshore grid-connected wind power generation has been explored for more than three decades in the Iberian Peninsula. Further, increasing attention has been devoted to renewable energy sources in a climate change context. While advantages of wind energy are widely recognized, its distribution is not spatially homogeneous and not uniform throughout the year. Hence, understanding these spatial-temporal distributions is critical in power system planning. The present study aims at assessing the potential power output estimated from 10 m wind components simulated by a regional climate model (CCLM), driven by ERA40 reanalysis. Datasets are available on a grid with a high spatial resolution (approximately 20 km) and over a 40-yr period (1961-2000). Furthermore, several target sites, located in areas with high installed wind generation capacity, are selected for local-to-regional scale assessments. The results show that potential wind power is higher over northern Iberia, mostly in Cantabria and Galicia, while Andalucía and Cataluña record the lowest values. With respect to the intra-annual variability, summer is by far the season with the lowest potential energy outputs. Furthermore, the inter-annual variability reveals an overall downward long-term trend over the 40-yr period, particularly in the winter time series. A CCLM transient experiment, forced by the SRES A1B emission scenario, is also discussed for a future period (2041-2070), after a model validation/calibration process (bias corrections). Significant changes in the wind power potential are projected for the future throughout Iberia, but their magnitude largely depends on the locations. This work was partially supported by FEDER (Fundo Europeu de Desenvolvimento Regional) funds through the COMPETE (Programa Operacional Factores de Competitividade) and by national funds through FCT (Fundação para a Ciência e a Tecnologia, Portugal) under project STORMEx FCOMP-01-0124-FEDER- 019524 (PTDC/AAC-CLI/121339/2010).

  19. Stabilization of Wind Energy Conversion System with Hydrogen Generator by Using EDLC Energy Storage System

    NASA Astrophysics Data System (ADS)

    Shishido, Seiji; Takahashi, Rion; Murata, Toshiaki; Tamura, Junji; Sugimasa, Masatoshi; Komura, Akiyoshi; Futami, Motoo; Ichinose, Masaya; Ide, Kazumasa

    The spread of wind power generation is progressed hugely in recent years from a viewpoint of environmental problems including global warming. Though wind power is considered as a very prospective energy source, wind power fluctuation due to the random fluctuation of wind speed has still created some problems. Therefore, research has been performed how to smooth the wind power fluctuation. This paper proposes Energy Capacitor System (ECS) for the smoothing of wind power which consists of Electric Double-Layer Capacitor (EDLC) and power electronics devices and works as an electric power storage system. Moreover, hydrogen has received much attention in recent years from a viewpoint of exhaustion problem of fossil fuel. Therefore it is also proposed that a hydrogen generator is installed at the wind farm to generate hydrogen. In this paper, the effectiveness of the proposed system is verified by the simulation analyses using PSCAD/EMTDC.

  20. Power Control for Direct-Driven Permanent Magnet Wind Generator System with Battery Storage

    PubMed Central

    Guang, Chu Xiao; Ying, Kong

    2014-01-01

    The objective of this paper is to construct a wind generator system (WGS) loss model that addresses the loss of the wind turbine and the generator. It aims to optimize the maximum effective output power and turbine speed. Given that the wind generator system has inertia and is nonlinear, the dynamic model of the wind generator system takes the advantage of the duty of the Buck converter and employs feedback linearization to design the optimized turbine speed tracking controller and the load power controller. According to that, this paper proposes a dual-mode dynamic coordination strategy based on the auxiliary load to reduce the influence of mode conversion on the lifetime of the battery. Optimized speed and power rapid tracking as well as the reduction of redundant power during mode conversion have gone through the test based on a 5 kW wind generator system test platform. The generator output power as the capture target has also been proved to be efficient. PMID:25050405

  1. Power control for direct-driven permanent magnet wind generator system with battery storage.

    PubMed

    Guang, Chu Xiao; Ying, Kong

    2014-01-01

    The objective of this paper is to construct a wind generator system (WGS) loss model that addresses the loss of the wind turbine and the generator. It aims to optimize the maximum effective output power and turbine speed. Given that the wind generator system has inertia and is nonlinear, the dynamic model of the wind generator system takes the advantage of the duty of the Buck converter and employs feedback linearization to design the optimized turbine speed tracking controller and the load power controller. According to that, this paper proposes a dual-mode dynamic coordination strategy based on the auxiliary load to reduce the influence of mode conversion on the lifetime of the battery. Optimized speed and power rapid tracking as well as the reduction of redundant power during mode conversion have gone through the test based on a 5 kW wind generator system test platform. The generator output power as the capture target has also been proved to be efficient.

  2. Regional Wave Climates along Eastern Boundary Currents

    NASA Astrophysics Data System (ADS)

    Semedo, Alvaro; Soares, Pedro

    2016-04-01

    Two types of wind-generated gravity waves coexist at the ocean surface: wind sea and swell. Wind sea waves are waves under growing process. These young growing waves receive energy from the overlaying wind and are strongly coupled to the local wind field. Waves that propagate away from their generation area and no longer receive energy input from the local wind are called swell. Swell waves can travel long distances across entire ocean basins. A qualitative study of the ocean waves from a locally vs. remotely generation perspective is important, since the air sea interaction processes is strongly modulated by waves and vary accordingly to the prevalence of wind sea or swell waves in the area. A detailed climatology of wind sea and swell waves along eastern boundary currents (EBC; California Current, Canary Current, in the Northern Hemisphere, and Humboldt Current, Benguela Current, and Western Australia Current, in the Southern Hemisphere), based on the ECMWF (European Centre for Medium-Range Weather Forecasts) ERA-Interim reanalysis will be presented. The wind regime along EBC varies significantly from winter to summer. The high summer wind speeds along EBC generate higher locally generated wind sea waves, whereas lower winter wind speeds in these areas, along with stronger winter extratropical storms far away, lead to a predominance of swell waves there. In summer, the coast parallel winds also interact with coastal headlands, increasing the wind speed through a process called "expansion fan", which leads to an increase in the height of locally generated waves downwind of capes and points. Hence the spatial patterns of the wind sea or swell regional wave fields are shown to be different from the open ocean along EBC, due to coastal geometry and fetch dimensions. Swell waves will be shown to be considerably more prevalent and to carry more energy in winter along EBC, while in summer locally generated wind sea waves are either more comparable to swell waves or, particularly in the lee of headlands, or even more prevalent and more energized than swell. This study is part of the WRCP-JCOMM COWCLIP (Coordinated Ocean Wave Climate Project) effort.

  3. Performance ‘S’ Type Savonius Wind Turbine with Variation of Fin Addition on Blade

    NASA Astrophysics Data System (ADS)

    Pamungkas, S. F.; Wijayanto, D. S.; Saputro, H.; Widiastuti, I.

    2018-01-01

    Wind power has been receiving attention as the new energy resource in addressing the ecological problems of burning fossil fuels. Savonius wind rotor is a vertical axis wind turbines (VAWT) which has relatively simple structure and low operating speed. These characteristics make it suitable for areas with low average wind speed as in Indonesia. To identify the performance of Savonius rotor in generating electrical energy, this research experimentally studied the effect of fin addition for the ‘S’ shape of Savonius VAWT. The fin is added to fill the space in the blade in directing the wind flow. This rotor has two turbine blades, a rotor diameter of 1.1 m and rotor height of 1.4 m, used pulley transmission system with 1:4.2 multiplication ratio, and used a generator type PMG 200 W. The research was conducted during dry season by measuring the wind speed in the afternoon. The average wind speed in the area is 2.3 m/s with the maximum of 4.5 m/s. It was found that additional fin significantly increase the ability of Savonius rotor VAWT to generate electrical energy shown by increasing of electrical power. The highest power generated is 13.40 Watt at a wind speed of 4.5 m/s by adding 1 (one) fin in the blade. It increased by 22.71% from the rotor blade with no additional fin. However, increasing number of fins in the blade was not linearly increase the electrical power generated. The wind rotor blade with 4 additional fins is indicated has the lowest performance, generating only 10.80 Watt electrical power, accounted lower than the one generated by no fin-rotor blade. By knowing the effect of the rotor shape, the rotor dimension, the addition of fin, transmission, and generator used, it is possible to determine alternative geometry design in increasing the electrical power generated by Savonius wind turbine.

  4. Wind extremes in the North Sea basin under climate change: an ensemble study of 12 CMIP5 GCMs

    NASA Astrophysics Data System (ADS)

    de Winter, R.; Ruessink, G.; Sterl, A.

    2012-12-01

    Coastal safety may be influenced by climate change, as changes in extreme surge levels and wave extremes may increase the vulnerability of dunes and other coastal defenses. In the North Sea, an area already prone to severe flooding, these high surge levels and waves are generated by severe wind speeds during storm events. As a result of the geometry of the North Sea, not only the maximum wind speed is relevant, but also wind direction. Analyzing changes in a changing climate implies that several uncertainties need to be taken into account. First, there is the uncertainty in climate experiments, which represents the possible development of the emission of greenhouse gases. Second, there is uncertainty between the climate models that are used to analyze the effect of different climate experiments. The third uncertainty is the natural variability of the climate. When this system variability is large, small trends will be difficult to detect. The natural variability results in statistical uncertainty, especially for events with high return values. We addressed the first two types of uncertainties for extreme wind conditions in the North Sea using 12 CMIP5 GCMs. To evaluate the differences between the climate experiments, two climate experiments (rcp4.5 and rcp8.5) from 2050-2100 are compared with historical runs, running from 1950-2000. Rcp4.5 is considered to be a middle climate experiment and rcp8.5 represents high-end climate scenarios. The projections of the 12 GCMs for a given scenario illustrate model uncertainty. We focus on the North Sea basin, because changes in wind conditions could have a large impact on safety of the densely populated North Sea coast, an area that has already a high exposure to flooding. Our results show that, consistent with ERA-Interim results, the annual maximum wind speed in the historical run demonstrates large interannual variability. For the North Sea, the annual maximum wind speed is not projected to change in either rcp4.5 or rcp8.5. In fact, the differences in the 12 GCMs are larger than the difference between the three experiments. Furthermore, our results show that, the variation in direction of annual maximum wind speed is large and this precludes a firm statement on climate-change induced changes in these directions. Nonetheless, most models indicate a decrease in annual maximum wind speed from south-eastern directions and an increase from south-western and western directions. This might be caused by a poleward shift of the storm track. The amount of wind from north-west and north-north-west, wind directions that are responsible for the development of extreme storm surges in the southern part of the North Sea, are not projected to change. However, North Sea coasts that have the longest fetch for western direction, e.g. the German Bight, may encounter more often high storm surge levels and extreme waves when the annual maximum wind will indeed be more often from western direction.

  5. Design and comparative analysis of 10 MW class superconducting wind power generators according to different types of superconducting wires

    NASA Astrophysics Data System (ADS)

    Sung, Hae-Jin; Kim, Gyeong-Hun; Kim, Kwangmin; Park, Minwon; Yu, In-Keun; Kim, Jong-Yul

    2013-11-01

    Wind turbine concepts can be classified into the geared type and the gearless type. The gearless type wind turbine is more attractive due to advantages of simplified drive train and increased energy yield, and higher reliability because the gearbox is omitted. In addition, this type resolves the weight issue of the wind turbine with the light weight of gearbox. However, because of the low speed operation, this type has disadvantage such as the large diameter and heavy weight of generator. Super-Conducting (SC) wind power generator can reduce the weight and volume of a wind power system. Properties of superconducting wire are very different from each company. This paper considers the design and comparative analysis of 10 MW class SC wind power generators according to different types of SC wires. Super-Conducting Synchronous Generators (SCSGs) using YBCO and Bi-2223 wires are optimized by an optimal method. The magnetic characteristics of the SCSGs are investigated using the finite elements method program. The optimized specifications of the SCSGs are discussed in detail, and the optimization processes can be used effectively to develop large scale wind power generation systems.

  6. Novel Design for a Wind Tunnel Vertical Gust Generator

    NASA Astrophysics Data System (ADS)

    Smith, Zachary; Jones, Anya; Hrynuk, John

    2017-11-01

    Gust response of MAVs is a fundamental problem for flight stability and control of such aircraft. Current knowledge about the gust response of these vehicles is limited and gust interaction often results in damage to vehicles. Studying isolated gust effects on simple airfoil models in a controlled environment is a necessity for the further development of MAV control laws. Gusts have typically been generated by oscillating an airfoil causing the shedding of vortices to propagate through the system. While effective, this method provides only a transient up and downdraft behavior with small changes in angle of attack, not suitable for studying MAV scale gust interactions. To study these interactions, a gust that creates a change in flow angle larger than the static stall angle of typical airfoils was developed. This work was done in a low speed, low turbulence wind tunnel at base operating speed of 1.5 m/s, generating a Reynolds number of 12,000 on a NACA 0012 wing. It describes the fundamental mechanisms of how this gust was generated and the results obtained from the gust generator. The gust, which can alter the flow field in less than 1 second, was characterized using PIV and the interactions with a stationary airfoil at several angles of attack are evaluated.

  7. Impact of wind generator infed on dynamic performance of a power system

    NASA Astrophysics Data System (ADS)

    Alam, Md. Ahsanul

    Wind energy is one of the most prominent sources of electrical energy in the years to come. A tendency to increase the amount of electricity generation from wind turbine can be observed in many countries. One of the major concerns related to the high penetration level of the wind energy into the existing power grid is its influence on power system dynamic performance. In this thesis, the impact of wind generation system on power system dynamic performance is investigated through detailed dynamic modeling of the entire wind generator system considering all the relevant components. Nonlinear and linear models of a single machine as well as multimachine wind-AC system have been derived. For the dynamic model of integrated wind-AC system, a general transformation matrix is determined for the transformation of machine and network quantities to a common reference frame. Both time-domain and frequency domain analyses on single machine and multimachine systems have been carried out. The considered multimachine systems are---A 4 machine 12 bus system, and 10 machine 39 bus New England system. Through eigenvalue analysis, impact of asynchronous wind system on overall network damping has been quantified and modes responsible for the instability have been identified. Over with a number of simulation studies it is observed that for a induction generator based wind generation system, the fixed capacitor located at the generator terminal cannot normally cater for the reactive power demand during the transient disturbances like wind gust and fault on the system. For weak network connection, system instability may be initiated because of induction generator terminal voltage collapse under certain disturbance conditions. Incorporation of dynamic reactive power compensation scheme through either variable susceptance control or static compensator (STATCOM) is found to improve the dynamic performance significantly. Further improvement in transient profile has been brought in by supporting STATCOM with bulk energy storage devices. Two types of energy storage system (ESS) have been considered---battery energy storage system, and supercapacitor based energy storage system. A decoupled P -- Q control strategy has been implemented on STATCOM/ESS. It is observed that wind generators when supported by STATCOM/ESS can achieve significant withstand capability in the presence of grid fault of reasonable duration. It experiences almost negligible rotor speed variation, maintains constant terminal voltage, and resumes delivery of smoothed (almost transient free) power to the grid immediately after the fault is cleared. Keywords: Wind energy, induction generator, dynamic performance of wind generators, energy storage system, decoupled P -- Q control, multimachine system.

  8. Characteristics of Helicopter-Generated and Volcano-Related Seismic Tremor Signals

    NASA Astrophysics Data System (ADS)

    Eibl, Eva P. S.; Lokmer, Ivan; Bean, Christopher J.; Akerlie, Eggert; Vogfjörd, Kristin S.

    2017-04-01

    In volcanic environments it is crucial to distinguish between man-made seismic signals and signals created by the volcano. We compare volcanic, seismic signals with helicopter generated, seismic signals recorded in the last 2.5 years in Iceland. In both cases a long-lasting, emergent seismic signal, that can be referred to as seismic tremor, was generated. In the case of a helicopter, the rotating blades generate pressure pulses that travel through the air and excite Rayleigh waves at up to 40 km distance depending on wind speed, wind direction and topographic features. The longest helicopter related seismic signal we recorded was at the order of 40 minutes long. The tremor usually has a fundamental frequency of more than 10 Hz and overtones at integers of the fundamental frequency. Changes in distance lead to either increases or decreases of the frequency due to the Doppler Effect and are strongest for small source-receiver distances. The volcanic tremor signal was recorded during the Bardarbunga eruption at Holuhraun in 2014/15. For volcano-related seismic signals it is usually more difficult to determine the source process that generated the tremor. The pre-eruptive tremor persists for 2 weeks, while the co-eruptive tremor lasted for 6 months. We observed no frequency changes, most energy between 1 and 2 Hz and no or very little energy above 5 Hz. We compare the different characteristics of helicopter-related and volcano-related seismic signals and discuss how they can be distinguished. In addition we discuss how we can determine if a frequency change is related to a moving source or change in repeat time or a change in the geometry of the resonating body.

  9. Statistical fault diagnosis of wind turbine drivetrain applied to a 5MW floating wind turbine

    NASA Astrophysics Data System (ADS)

    Ghane, Mahdi; Nejad, Amir R.; Blanke, Mogens; Gao, Zhen; Moan, Torgeir

    2016-09-01

    Deployment of large scale wind turbine parks, in particular offshore, requires well organized operation and maintenance strategies to make it as competitive as the classical electric power stations. It is important to ensure systems are safe, profitable, and cost-effective. In this regards, the ability to detect, isolate, estimate, and prognose faults plays an important role. One of the critical wind turbine components is the gearbox. Failures in the gearbox are costly both due to the cost of the gearbox itself and also due to high repair downtime. In order to detect faults as fast as possible to prevent them to develop into failure, statistical change detection is used in this paper. The Cumulative Sum Method (CUSUM) is employed to detect possible defects in the downwind main bearing. A high fidelity gearbox model on a 5-MW spar-type wind turbine is used to generate data for fault-free and faulty conditions of the bearing at the rated wind speed and the associated wave condition. Acceleration measurements are utilized to find residuals used to indirectly detect damages in the bearing. Residuals are found to be nonGaussian, following a t-distribution with multivariable characteristic parameters. The results in this paper show how the diagnostic scheme can detect change with desired false alarm and detection probabilities.

  10. The Coordinated Ocean Wave Climate Project

    NASA Astrophysics Data System (ADS)

    Hemer, Mark; Dobrynin, Mikhail; Erikson, Li; Lionello, Piero; Mori, Nobuhito; Semedo, Alvaro; Wang, Xiaolan

    2016-04-01

    Future 21st Century changes in wind-wave climate have broad implications for marine and coastal infrastructure and ecosystems. Atmosphere-ocean general circulation models (GCM) are now routinely used for assessing and providing future projections of climatological parameters such as temperature and precipitation, but generally these provide no information on ocean wind-waves. To fill this information gap a growing number of studies are using GCM outputs and independently producing global and regional scale wind-wave climate projections. Furthermore, additional studies are actively coupling wind-wave dependent atmosphere-ocean exchanges into GCMs, to improve physical representation and quantify the impact of waves in the coupled climate system, and can also deliver wave characteristics as another variable in the climate system. To consolidate these efforts, understand the sources of variance between projections generated by different methodologies and International groups, and ultimately provide a robust picture of the role of wind-waves in the climate system and their projected changes, we present outcomes of the JCOMM supported Coordinated Ocean Wave Climate Project (COWCLIP). The objective of COWCLIP is twofold: to make community based ensembles of wave climate projections openly accessible, to provide the necessary information to support diligent marine and coastal impacts of climate change studies; and to understand the effects and feedback influences of wind-waves in the coupled ocean-atmosphere climate system. We will present the current status of COWCLIP, providing an overview of the objectives, analysis and results of the initial phase - now complete - and the progress of ongoing phases of the project.

  11. Surprises from the field: Novel aspects of aeolian saltation observed under natural turbulence

    NASA Astrophysics Data System (ADS)

    Martin, R. L.; Kok, J. F.; Chamecki, M.

    2015-12-01

    The mass flux of aeolian (wind-blown) sediment transport - critical for understanding earth and planetary geomorphology, dust generation, and soil stability - is difficult to predict. Recent work suggests that competing models for saltation (the characteristic hopping of aeolian sediment) fail because they do not adequately account for wind turbulence. To address this issue, we performed field deployments measuring high-frequency co-variations of aeolian saltation and near-surface winds at multiple sites under a range of conditions. Our observations yield several novel findings not currently captured by saltation models: (1) Saltation flux displays no significant lag relative to horizontal wind velocity; (2) Characteristic height of the saltation layer remains constant with changes in shear velocity; and (3) During saltation, the vertical profile of mean horizontal wind velocity is steeper than expected from the Reynolds stress. We examine how the interactions between saltation and turbulence in field settings could explain some of these surprising observations.

  12. Redundant speed control for brushless Hall effect motor

    NASA Technical Reports Server (NTRS)

    Nola, F. J. (Inventor)

    1973-01-01

    A speed control system for a brushless Hall effect device equipped direct current (D.C.) motor is described. Separate windings of the motor are powered by separate speed responsive power sources. A change in speed, upward or downward, because of the failure of a component of one of the power sources results in a corrective signal being generated in the other power source to supply an appropriate power level and polarity to one winding to cause the motor to be corrected in speed.

  13. Why pollen-atmosphere interplay matters to forest gene conservation

    Treesearch

    Claire G. Williams

    2017-01-01

    Forests are thought to adapt too slowly to anthropogenic climate change, making them highly vulnerable to large-scale loss. Losses can accrue swiftly because generations are lengthy, particularly at higher latitudes (>23⁰ to 73⁰) where wind-pollinated forest species are commonly found to mature slowly. Losses incurred during adaptation to climate change...

  14. Magnetic field adjustment structure and method for a tapered wiggler

    DOEpatents

    Halbach, Klaus

    1988-03-01

    An improved method and structure is disclosed for adjusting the magnetic field generated by a group of electromagnet poles spaced along the path of a charged particle beam to compensate for energy losses in the charged particles which comprises providing more than one winding on at least some of the electromagnet poles; connecting one respective winding on each of several consecutive adjacent electromagnet poles to a first power supply, and the other respective winding on the electromagnet pole to a different power supply in staggered order; and independently adjusting one power supply to independently vary the current in one winding on each electromagnet pole in a group whereby the magnetic field strength of each of a group of electromagnet poles may be changed in smaller increments.

  15. Magnetic field adjustment structure and method for a tapered wiggler

    DOEpatents

    Halbach, Klaus

    1988-01-01

    An improved method and structure is disclosed for adjusting the magnetic field generated by a group of electromagnet poles spaced along the path of a charged particle beam to compensate for energy losses in the charged particles which comprises providing more than one winding on at least some of the electromagnet poles; connecting one respective winding on each of several consecutive adjacent electromagnet poles to a first power supply, and the other respective winding on the electromagnet pole to a different power supply in staggered order; and independently adjusting one power supply to independently vary the current in one winding on each electromagnet pole in a group whereby the magnetic field strength of each of a group of electromagnet poles may be changed in smaller increments.

  16. Latitude-Dependent Effects in the Stellar Wind of Eta Carinae

    NASA Technical Reports Server (NTRS)

    Smith, Nathan; Davidson, Kris; Gull, Theodore R.; Ishibashi, Kazunori; Hillier, D. John

    2002-01-01

    The Homunculus reflection nebula around eta Carinae provides the rare opportunity to observe the spectrum of a star from more than one direction. In the case of eta Car, the nebula's geometry is known well enough to infer how wind profiles vary with latitude. We present STIS spectra of several positions in the Homunculus, showing directly that eta Car has an aspherical and axisymmetric stellar wind. P Cygni absorption in Balmer lines depends on latitude, with relatively high velocities and strong absorption near the polar axis. Stronger absorption at high latitudes is surprising, and it suggests higher mass flux toward the poles, perhaps resulting from equatorial gravity darkening on a rotating star. Reflected profiles of He I lines are more puzzling, and offer clues to eta Car's wind geometry and ionization structure. During eta Car's high-excitation state in March 2000, the wind had a fast, dense polar wind, with higher ionization at low latitudes. Older STIS data obtained since 1998 reveal that this global stellar-wind geometry changes during eta Car's 5.5 year cycle, and may suggest that this star s spectroscopic events are shell ejections. Whether or not a companion star triggers these outbursts remains ambiguous. The most dramatic changes in the wind occur at low latitudes, while the dense polar wind remains relatively undisturbed during an event. The apparent stability of the polar wind also supports the inferred bipolar geometry. The wind geometry and its variability have critical implications for understanding the 5.5 year cycle and long-term variability, but do not provide a clear alternative to the binary hypothesis for generating eta Car s X-rays.

  17. Summary of atmospheric wind design criteria for wind energy conversion system development

    NASA Technical Reports Server (NTRS)

    Frost, W.; Turner, R. E.

    1979-01-01

    Basic design values are presented of significant wind criteria, in graphical format, for use in the design and development of wind turbine generators for energy research. It is a condensed version of portions of the Engineering Handbook on the Atmospheric Environmental Guidelines for Use in Wind Turbine Generator Development.

  18. Novel design configurations for permanent magnet wind generators

    NASA Astrophysics Data System (ADS)

    Chen, Yicheng

    2004-12-01

    The aim of this research is to search for optimal designs of permanent magnet (PM) wind generators of different topologies. The dissertation deals with the development of analytical design equations and formulas for PM wind generators of different topologies, including equivalent magnetic circuit model for magnets, calculation of leakage flux, influence of d-q axis armature reaction, flux waveform analysis, as well as performance verification. 3-D and simplified 2-D finite element analysis is used to enhance the design precision, by which analytical formulas are modified. A new and improved formula is proposed for lamination loss calculations, based on a large experimental data set provided by steel manufacturers. The temperature stability of NdFeB magnets is analyzed and some proposals for eliminating irreversible demagnetization are presented. Two existing experimental machines are used to validate the design equations. The genetic algorithms are used to investigate the multi-objective design optimization of PM wind generators for a high efficiency and light-weight design. The reasoning behind the selection of the objective functions, design variables and constraints are given as guidance for the PM wind generator optimum design. The implementation of the genetic algorithm is also given. A comparison of PM wind generators of different topologies is presented. Conclusions are drawn for topology selections of PM wind generators. The group of soft magnetic composites (SMC) has recently been expanded by the introduction of new materials with significantly improved frequency properties. This has made SMC a viable alternative to steel laminations for a range of new applications, especially axial-flux wind generators. The isotropic nature of the SMC combined with the unique shaping possibilities opens up new design solutions for axial-flux wind generators. Through careful design, an axial-flux PM wind generator with SMC core is built and tested, demonstrating the advantages of better performance, reduced size and weight, fewer parts and lower cost.

  19. Turbulent Extreme Event Simulations for Lidar-Assisted Wind Turbine Control

    NASA Astrophysics Data System (ADS)

    Schlipf, David; Raach, Steffen

    2016-09-01

    This work presents a wind field generator which allows to shape wind fields in the time domain while maintaining the spectral properties. This is done by an iterative generation of wind fields and by minimizing the error between wind characteristics of the generated wind fields and desired values. The method leads towards realistic ultimate load calculations for lidar-assisted control. This is demonstrated by fitting a turbulent wind field to an Extreme Operating Gust. The wind field is then used to compare a baseline feedback controller alone against a combined feedback and feedforward controller using simulated lidar measurements. The comparison confirms that the lidar-assisted controller is still able to significantly reduce the ultimate loads on the tower base under this more realistic conditions.

  20. Beach characteristics mitigate effects of onshore wind on horseshoe crab spawning: Implications for matching with shorebird migration in Delaware Bay

    USGS Publications Warehouse

    Smith, D.R.; Jackson, N.L.; Nordstrom, K.F.; Weber, R.G.

    2011-01-01

    Disruption of food availability by unfavorable physical processes at energetically demanding times can limit recruitment of migratory species as predicted by the match-mismatch hypothesis. Identification and protection of disruption-resistant habitat could contribute to system resilience. For example, horseshoe crab Limulus polyphemus spawning and shorebird stopover must match temporally in Delaware Bay for eggs to be available to shorebirds. Onshore winds that generate waves can create a mismatch by delaying horseshoe crab spawning. We examined effects of beach characteristics and onshore winds on spawning activity at five beaches when water temperatures were otherwise consistent with early spawning activity. Onshore winds resulted in reduced spawning activity during the shorebird stopover, when spawning typically peaks in late May. During the period with high onshore wind, egg density was highest on the foreshore exposed to the lowest wave heights. Onshore wind was low in early June, and spawning and egg densities were high at all sites, but shorebirds had departed. Beaches that can serve as a refuge from wind and waves can be identified by physical characteristics and orientation to prevailing winds and should receive special conservation status, especially in light of predicted increases in climate change-induced storm frequency. These results point to a potential conservation strategy that includes coastal management for adapting to climate change-induced mismatch of migrations. ?? 2011 The Authors. Animal Conservation ?? 2011 The Zoological Society of London.

  1. Development of large wind energy power generation system

    NASA Technical Reports Server (NTRS)

    1985-01-01

    The background and development of an experimental 100 kW wind-energy generation system are described, and the results of current field tests are presented. The experimental wind turbine is a two-bladed down-wind horizontal axis propeller type with a 29.4 m diameter rotor and a tower 28 m in height. The plant was completed in March, 1983, and has been undergoing trouble-free tests since then. The present program calls for field tests during two years from fiscal 1983 to 1984. The development of technologies relating to the linkage and operation of wind-energy power generation system networks is planned along with the acquisition of basic data for the development of a large-scale wind energy power generation system.

  2. Use of wind turbines to generate electricity for highway buildings.

    DOT National Transportation Integrated Search

    1983-01-01

    To determine the feasibility of using wind turbines to generate electrical power, measurements of wind speeds were made for a period of one year at three installations of the Virginia Department of Highways and Transportation. Unfortunately, the wind...

  3. On the cyclonic eddy generation in Panay Strait, Philippines

    NASA Astrophysics Data System (ADS)

    Flament, P. J.; Repollo, C. L. A.; Flores-vidal, X.; Villanoy, C.

    2016-12-01

    High Frequency Doppler Radar (HFDR), shallow pressure gauges and Acoustic Doppler Current Profiler (ADCP) time-series observations during the Philippine Straits Dynamics Experiment (PhilEx) were analyzed to describe the mesoscale currents in Panay Strait, Philippines. Low frequency surface currents inferred from three HFDR (July 2008 { July 2009), revealed a clear seasonal signal in concurrent with the reversal of the Asian monsoon. The mesoscale cyclonic eddy west of Panay Island is generated during the winter northeast (NE) monsoon. This causes changes in the strength, depth and width of the intra-seasonal Panay coastal jet as its eastern limb. Winds from QuikSCAT satellite and from a nearby airport indicate that these flow structures correlate with the strength and direction of the prevailing local wind. An intensive survey of the cyclonic eddy in February 8-9, 2009, obtaining a 24-hour successive cross-shore Conductivity-Temperature- Depth (CTD) sections in conjunction with shipboard ADCP measurements showed a well- developed cyclonic eddy characterized by near-surface velocities reaching 50 cm/s. This observation coincides with the intensification of the wind in between Mindoro and Panay islands generating a positive wind stress curl in the lee of Panay, which in turn induces divergent surface currents. Water column response from the mean transects showed a pronounced signal of upwelling, indicated by the doming of isotherms and isopycnals. A pressure gradient then was sets up, resulting in the spin-up of a cyclonic eddy in geostrophic balance. Evaluation of the surface vorticity balance equation suggests that the wind stress curl via Ekman pumping mechanism provides the necessary input in the formation and evolution of the cyclonic eddy. In particular, the cumulative effect of the wind stress curl plays a key role on the generation of the eddy. The Beta-effect on the other hand may led to propagation of the eddy westward.

  4. Wind power. [electricity generation

    NASA Technical Reports Server (NTRS)

    Savino, J. M.

    1975-01-01

    A historical background on windmill use, the nature of wind, wind conversion system technology and requirements, the economics of wind power and comparisons with alternative systems, data needs, technology development needs, and an implementation plan for wind energy are presented. Considerable progress took place during the 1950's. Most of the modern windmills feature a wind turbine electricity generator located directly at the top of their rotor towers.

  5. Monitoring Wind Turbine Loading Using Power Converter Signals

    NASA Astrophysics Data System (ADS)

    Rieg, C. A.; Smith, C. J.; Crabtree, C. J.

    2016-09-01

    The ability to detect faults and predict loads on a wind turbine drivetrain's mechanical components cost-effectively is critical to making the cost of wind energy competitive. In order to investigate whether this is possible using the readily available power converter current signals, an existing permanent magnet synchronous generator based wind energy conversion system computer model was modified to include a grid-side converter (GSC) for an improved converter model and a gearbox. The GSC maintains a constant DC link voltage via vector control. The gearbox was modelled as a 3-mass model to allow faults to be included. Gusts and gearbox faults were introduced to investigate the ability of the machine side converter (MSC) current (I q) to detect and quantify loads on the mechanical components. In this model, gearbox faults were not detectable in the I q signal due to shaft stiffness and damping interaction. However, a model that predicts the load change on mechanical wind turbine components using I q was developed and verified using synthetic and real wind data.

  6. The Use of a Code-generating System for the Derivation of the Equations for Wind Turbine Dynamics

    NASA Astrophysics Data System (ADS)

    Ganander, Hans

    2003-10-01

    For many reasons the size of wind turbines on the rapidly growing wind energy market is increasing. Relations between aeroelastic properties of these new large turbines change. Modifications of turbine designs and control concepts are also influenced by growing size. All these trends require development of computer codes for design and certification. Moreover, there is a strong desire for design optimization procedures, which require fast codes. General codes, e.g. finite element codes, normally allow such modifications and improvements of existing wind turbine models. This is done relatively easy. However, the calculation times of such codes are unfavourably long, certainly for optimization use. The use of an automatic code generating system is an alternative for relevance of the two key issues, the code and the design optimization. This technique can be used for rapid generation of codes of particular wind turbine simulation models. These ideas have been followed in the development of new versions of the wind turbine simulation code VIDYN. The equations of the simulation model were derived according to the Lagrange equation and using Mathematica®, which was directed to output the results in Fortran code format. In this way the simulation code is automatically adapted to an actual turbine model, in terms of subroutines containing the equations of motion, definitions of parameters and degrees of freedom. Since the start in 1997, these methods, constituting a systematic way of working, have been used to develop specific efficient calculation codes. The experience with this technique has been very encouraging, inspiring the continued development of new versions of the simulation code as the need has arisen, and the interest for design optimization is growing.

  7. The influence of wave-, wind- and tide-forced currents on headland sand bypassing - Study case: Santa Catarina Island north shore, Brazil

    NASA Astrophysics Data System (ADS)

    Vieira da Silva, Guilherme; Toldo, Elírio E., Jr.; Klein, Antonio H. da F.; Short, Andrew D.

    2018-07-01

    Investigations of headland sand bypassing are still an under-reported subject in the literature. This paper aims to understand the contribution of currents forced by different mechanisms such as tides, winds (i.e. local wind acting over the ocean surface generating currents, without considering wave generation) and waves (as they approach/break on the coast) to headland sand bypassing. The study was carried out in an area comprising a series of seven headlands with varying wave exposure due to changes in shoreline orientation and increasing tidal influence close to a relatively large bay. This paper uses a calibrated and validated process-based model (Delft3D) to simulate a series of scenarios including spring and neap tides during flood and ebb conditions and a range of wind and wave scenarios that encompass both average and extreme conditions. The results indicate that waves are the main driving force for the headland bypassing as they transport sand at rates two orders of magnitude higher than tide- or wind-driven sediment transport. The tide-driven currents can only transport sediment during spring tides in locations where the currents are intensified. It is also demonstrated that the wave direction plays an important role in sediment transport. In exposed areas with larger headlands a combination of wave directions is required to first transport sediment offshore (out of the beach) and secondly to transport sediment alongshore and back to the next beach. Whereas in areas with little variation in wave direction exposure, the same oblique wave direction is responsible for the entire headland bypassing process. This is the first time the contribution of tide-, winds- and wave-generated sediment transport to headland bypassing have been studied.

  8. Wind Generators

    NASA Technical Reports Server (NTRS)

    1989-01-01

    When Enerpro, Inc. president, Frank J. Bourbeau, attempted to file a patent on a system for synchronizing a wind generator to the electric utility grid, he discovered Marshall Space Flight Center's Frank Nola's power factor controller. Bourbeau advanced the technology and received a NASA license and a patent for his Auto Synchronous Controller (ASC). The ASC reduces generator "inrush current," which occurs when large generators are abruptly brought on line. It controls voltage so the generator is smoothly connected to the utility grid when it reaches its synchronous speed, protecting the components from inrush current damage. Generator efficiency is also increased in light winds by applying lower than rated voltage. Wind energy is utilized to drive turbines to generate electricity for utility companies.

  9. Net Influence of an Internally Generated Guasi-biennial Oscillation on Modelled Stratospheric Climate and Chemistry

    NASA Technical Reports Server (NTRS)

    Hurwitz, Margaret M.; Oman, Luke David; Newman, Paul A.; Song, InSun

    2013-01-01

    A Goddard Earth Observing System Chemistry- Climate Model (GEOSCCM) simulation with strong tropical non-orographic gravity wave drag (GWD) is compared to an otherwise identical simulation with near-zero tropical non-orographic GWD. The GEOSCCM generates a quasibiennial oscillation (QBO) zonal wind signal in response to a tropical peak in GWD that resembles the zonal and climatological mean precipitation field. The modelled QBO has a frequency and amplitude that closely resembles observations. As expected, the modelled QBO improves the simulation of tropical zonal winds and enhances tropical and subtropical stratospheric variability. Also, inclusion of the QBO slows the meridional overturning circulation, resulting in a generally older stratospheric mean age of air. Slowing of the overturning circulation, changes in stratospheric temperature and enhanced subtropical mixing all affect the annual mean distributions of ozone, methane and nitrous oxide. Furthermore, the modelled QBO enhances polar stratospheric variability in winter. Because tropical zonal winds are easterly in the simulation without a QBO, there is a relative increase in tropical zonal winds in the simulation with a QBO. Extratropical differences between the simulations with and without a QBO thus reflect the westerly shift in tropical zonal winds: a relative strengthening of the polar stratospheric jet, polar stratospheric cooling and a weak reduction in Arctic lower stratospheric ozone.

  10. Effects of government incentives on wind innovation in the United States

    NASA Astrophysics Data System (ADS)

    Horner, Nathaniel; Azevedo, Inês; Hounshell, David

    2013-12-01

    In the United States, as elsewhere, state and federal governments have considered or implemented a range of policies to create more sustainable energy generation systems in response to concerns over climate change, security of fuel supply, and environmental impacts. These policies include both regulatory instruments such as renewable portfolio standards (RPSs) and market incentives such as tax credits. While these policies are primarily geared towards increasing renewable generation capacity, they can indirectly affect innovation in associated technologies through a ‘demand-pull’ dynamic. Other policies, such as public research and development (R&D) funding, directly incentivize innovation through ‘technology-push’ means. In this letter, we examine these effects on innovation in the United States wind energy industry. We estimate a set of econometric models relating a set of US federal and state policies to patenting activity in wind technologies over the period 1974-2009. We find that RPS policies have had significant positive effects on wind innovation, whereas tax-based incentives have not been particularly effective. We also find evidence that the effects of RPS incentives differ between states. Finally, we find that public R&D funding can be a significant driver of wind innovation, though its effect in the US has been modest.

  11. Wind turbine/generator set and method of making same

    DOEpatents

    Bevington, Christopher M.; Bywaters, Garrett L.; Coleman, Clint C.; Costin, Daniel P.; Danforth, William L.; Lynch, Jonathan A.; Rolland, Robert H.

    2013-06-04

    A wind turbine comprising an electrical generator that includes a rotor assembly. A wind rotor that includes a wind rotor hub is directly coupled to the rotor assembly via a simplified connection. The wind rotor and generator rotor assembly are rotatably mounted on a central spindle via a bearing assembly. The wind rotor hub includes an opening having a diameter larger than the outside diameter of the central spindle adjacent the bearing assembly so as to allow access to the bearing assembly from a cavity inside the wind rotor hub. The spindle is attached to a turret supported by a tower. Each of the spindle, turret and tower has an interior cavity that permits personnel to traverse therethrough to the cavity of the wind rotor hub. The wind turbine further includes a frictional braking system for slowing, stopping or keeping stopped the rotation of the wind rotor and rotor assembly.

  12. Wind turbine/generator set having a stator cooling system located between stator frame and active coils

    DOEpatents

    Bevington, Christopher M.; Bywaters, Garrett L.; Coleman, Clint C.; Costin, Daniel P.; Danforth, William L.; Lynch, Jonathan A.; Rolland, Robert H.

    2012-11-13

    A wind turbine comprising an electrical generator that includes a rotor assembly. A wind rotor that includes a wind rotor hub is directly coupled to the rotor assembly via a simplified connection. The wind rotor and generator rotor assembly are rotatably mounted on a central spindle via a bearing assembly. The wind rotor hub includes an opening having a diameter larger than the outside diameter of the central spindle adjacent the bearing assembly so as to allow access to the bearing assembly from a cavity inside the wind rotor hub. The spindle is attached to a turret supported by a tower. Each of the spindle, turret and tower has an interior cavity that permits personnel to traverse therethrough to the cavity of the wind rotor hub. The wind turbine further includes a frictional braking system for slowing, stopping or keeping stopped the rotation of the wind rotor and rotor assembly.

  13. Wind energy: A renewable energy option

    NASA Technical Reports Server (NTRS)

    Zimmerman, J. S.

    1977-01-01

    Wind turbine generator research programs administered by the Energy Research and Development Administration are examined. The design and operation of turbine demonstration models are described. Wind assessments were made to determine the feasibility of using wind generated power for various parts of the country.

  14. Projected wave conditions in the Eastern North Pacific under the influence of two CMIP5 climate scenarios

    USGS Publications Warehouse

    Erikson, Li H.; Hegermiller, Christie; Barnard, Patrick; Ruggiero, Peter; van Ormondt, Martin

    2015-01-01

    Hindcast and 21st century winds, simulated by General Circulation Models (GCMs), were used to drive global- and regional-scale spectral wind-wave generation models in the Pacific Ocean Basin to assess future wave conditions along the margins of the North American west coast and Hawaiian Islands. Three-hourly winds simulated by four separate GCMs were used to generate an ensemble of wave conditions for a recent historical time-period (1976–2005) and projections for the mid and latter parts of the 21st century under two radiative forcing scenarios (RCP 4.5 and RCP 8.5), as defined by the fifth phase of the Coupled Model Inter-comparison Project (CMIP5) experiments. Comparisons of results from historical simulations with wave buoy and ERA-Interim wave reanalysis data indicate acceptable model performance of wave heights, periods, and directions, giving credence to generating projections. Mean and extreme wave heights are projected to decrease along much of the North American west coast. Extreme wave heights are projected to decrease south of ∼50°N and increase to the north, whereas extreme wave periods are projected to mostly increase. Incident wave directions associated with extreme wave heights are projected to rotate clockwise at the eastern end of the Aleutian Islands and counterclockwise offshore of Southern California. Local spatial patterns of the changing wave climate are similar under the RCP 4.5 and RCP 8.5 scenarios, but stronger magnitudes of change are projected under RCP 8.5. Findings of this study are similar to previous work using CMIP3 GCMs that indicates decreasing mean and extreme wave conditions in the Eastern North Pacific, but differ from other studies with respect to magnitude and local patterns of change. This study contributes toward a larger ensemble of global and regional climate projections needed to better assess uncertainty of potential future wave climate change, and provides model boundary conditions for assessing the impacts of climate change on coastal systems.

  15. Method and apparatus for wind turbine air gap control

    DOEpatents

    Grant, James Jonathan; Bagepalli, Bharat Sampathkumaran; Jansen, Patrick Lee; DiMascio, Paul Stephen; Gadre, Aniruddha Dattatraya; Qu, Ronghai

    2007-02-20

    Methods and apparatus for assembling a wind turbine generator are provided. The wind turbine generator includes a core and a plurality of stator windings circumferentially spaced about a generator longitudinal axis, a rotor rotatable about the generator longitudinal axis wherein the rotor includes a plurality of magnetic elements coupled to a radially outer periphery of the rotor such that an airgap is defined between the stator windings and the magnetic elements and the plurality of magnetic elements including a radially inner periphery having a first diameter. The wind turbine generator also includes a bearing including a first member in rotatable engagement with a radially inner second member, the first member including a radially outer periphery, a diameter of the radially outer periphery of the first member being substantially equal to the first diameter, the rotor coupled to the stator through the bearing such that a substantially uniform airgap is maintained.

  16. Wind and solar powered turbine

    NASA Technical Reports Server (NTRS)

    Wells, I. D.; Koh, J. L.; Holmes, M. (Inventor)

    1984-01-01

    A power generating station having a generator driven by solar heat assisted ambient wind is described. A first plurality of radially extendng air passages direct ambient wind to a radial flow wind turbine disposed in a centrally located opening in a substantially disc-shaped structure. A solar radiation collecting surface having black bodies is disposed above the fist plurality of air passages and in communication with a second plurality of radial air passages. A cover plate enclosing the second plurality of radial air passages is transparent so as to permit solar radiation to effectively reach the black bodies. The second plurality of air passages direct ambient wind and thermal updrafts generated by the black bodies to an axial flow turbine. The rotating shaft of the turbines drive the generator. The solar and wind drien power generating system operates in electrical cogeneration mode with a fuel powered prime mover.

  17. Wind Velocity and Position Sensor-less Operation for PMSG Wind Generator

    NASA Astrophysics Data System (ADS)

    Senjyu, Tomonobu; Tamaki, Satoshi; Urasaki, Naomitsu; Uezato, Katsumi; Funabashi, Toshihisa; Fujita, Hideki

    Electric power generation using non-conventional sources is receiving considerable attention throughout the world. Wind energy is one of the available non-conventional energy sources. Electrical power generation using wind energy is possible in two ways, viz. constant speed operation and variable speed operation using power electronic converters. Variable speed power generation is attractive, because maximum electric power can be generated at all wind velocities. However, this system requires a rotor speed sensor, for vector control purpose, which increases the cost of the system. To alleviate the need of rotor speed sensor in vector control, we propose a new sensor-less control of PMSG (Permanent Magnet Synchronous Generator) based on the flux linkage. We can estimate the rotor position using the estimated flux linkage. We use a first-order lag compensator to obtain the flux linkage. Furthermore‚we estimate wind velocity and rotation speed using a observer. The effectiveness of the proposed method is demonstrated thorough simulation results.

  18. Wind speed reductions by large-scale wind turbine deployments lower turbine efficiencies and set low generation limits.

    PubMed

    Miller, Lee M; Kleidon, Axel

    2016-11-29

    Wind turbines generate electricity by removing kinetic energy from the atmosphere. Large numbers of wind turbines are likely to reduce wind speeds, which lowers estimates of electricity generation from what would be presumed from unaffected conditions. Here, we test how well wind power limits that account for this effect can be estimated without explicitly simulating atmospheric dynamics. We first use simulations with an atmospheric general circulation model (GCM) that explicitly simulates the effects of wind turbines to derive wind power limits (GCM estimate), and compare them to a simple approach derived from the climatological conditions without turbines [vertical kinetic energy (VKE) estimate]. On land, we find strong agreement between the VKE and GCM estimates with respect to electricity generation rates (0.32 and 0.37 W e m -2 ) and wind speed reductions by 42 and 44%. Over ocean, the GCM estimate is about twice the VKE estimate (0.59 and 0.29 W e m -2 ) and yet with comparable wind speed reductions (50 and 42%). We then show that this bias can be corrected by modifying the downward momentum flux to the surface. Thus, large-scale limits to wind power use can be derived from climatological conditions without explicitly simulating atmospheric dynamics. Consistent with the GCM simulations, the approach estimates that only comparatively few land areas are suitable to generate more than 1 W e m -2 of electricity and that larger deployment scales are likely to reduce the expected electricity generation rate of each turbine. We conclude that these atmospheric effects are relevant for planning the future expansion of wind power.

  19. Wind speed reductions by large-scale wind turbine deployments lower turbine efficiencies and set low generation limits

    PubMed Central

    Miller, Lee M.; Kleidon, Axel

    2016-01-01

    Wind turbines generate electricity by removing kinetic energy from the atmosphere. Large numbers of wind turbines are likely to reduce wind speeds, which lowers estimates of electricity generation from what would be presumed from unaffected conditions. Here, we test how well wind power limits that account for this effect can be estimated without explicitly simulating atmospheric dynamics. We first use simulations with an atmospheric general circulation model (GCM) that explicitly simulates the effects of wind turbines to derive wind power limits (GCM estimate), and compare them to a simple approach derived from the climatological conditions without turbines [vertical kinetic energy (VKE) estimate]. On land, we find strong agreement between the VKE and GCM estimates with respect to electricity generation rates (0.32 and 0.37 We m−2) and wind speed reductions by 42 and 44%. Over ocean, the GCM estimate is about twice the VKE estimate (0.59 and 0.29 We m−2) and yet with comparable wind speed reductions (50 and 42%). We then show that this bias can be corrected by modifying the downward momentum flux to the surface. Thus, large-scale limits to wind power use can be derived from climatological conditions without explicitly simulating atmospheric dynamics. Consistent with the GCM simulations, the approach estimates that only comparatively few land areas are suitable to generate more than 1 We m−2 of electricity and that larger deployment scales are likely to reduce the expected electricity generation rate of each turbine. We conclude that these atmospheric effects are relevant for planning the future expansion of wind power. PMID:27849587

  20. 76 FR 76153 - Notice of Effectiveness of Exempt Wholesale Generator Status; Caney River Wind Project, LLC...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-06

    ...] Notice of Effectiveness of Exempt Wholesale Generator Status; Caney River Wind Project, LLC, Mesquite Solar 1, LLC, Copper Crossing Solar LLC, Copper Mountain Solar 1, LLC, Pinnacle Wind, LLC, Bellevue Solar, LLC, Yamhill Solar, LLC, Osage Wind, LLC, Minco Wind II, LLC Take notice that during the month of...

  1. Wind Power predictability a risk factor in the design, construction and operation of Wind Generation Turbines

    NASA Astrophysics Data System (ADS)

    Thiesen, J.; Gulstad, L.; Ristic, I.; Maric, T.

    2010-09-01

    Summit: The wind power predictability is often a forgotten decision and planning factor for most major wind parks, both onshore and offshore. The results of the predictability are presented after having examined a number of European offshore and offshore parks power predictability by using three(3) mesoscale model IRIE_GFS and IRIE_EC and WRF. Full description: It is well known that the potential wind production is changing with latitude and complexity in terrain, but how big are the changes in the predictability and the economic impacts on a project? The concept of meteorological predictability has hitherto to some degree been neglected as a risk factor in the design, construction and operation of wind power plants. Wind power plants are generally built in places where the wind resources are high, but these are often also sites where the predictability of the wind and other weather parameters is comparatively low. This presentation addresses the question of whether higher predictability can outweigh lower average wind speeds with regard to the overall economy of a wind power project. Low predictability also tends to reduce the value of the energy produced. If it is difficult to forecast the wind on a site, it will also be difficult to predict the power production. This, in turn, leads to increased balance costs and a less reduced carbon emission from the renewable source. By investigating the output from three(3) mesoscale models IRIE and WRF, using ECMWF and GFS as boundary data over a forecasting period of 3 months for 25 offshore and onshore wind parks in Europe, the predictability are mapped. Three operational mesoscale models with two different boundary data have been chosen in order to eliminate the uncertainty with one mesoscale model. All mesoscale models are running in a 10 km horizontal resolution. The model output are converted into "day a head" wind turbine generation forecasts by using a well proven advanced physical wind power model. The power models are using a number of weather parameters like wind speed in different heights, friction velocity and DTHV. The 25 wind sites are scattered around in Europe and contains 4 offshore parks and 21 onshore parks in various terrain complexity. The "day a head" forecasts are compared with production data and predictability for the period February 2010-April 2010 are given in Mean Absolute Errors (MAE) and Root Mean Squared Errors (RMSE). The power predictability results are mapped for each turbine giving a clear picture of the predictability in Europe. . Finally a economic analysis are shown for each wind parks in different regimes of predictability will be compared with regard to the balance costs that result from errors in the wind power prediction. Analysis shows that it may very well be profitable to place wind parks in regions of lower, but more predictable wind ressource. Authors: Ivan Ristic, CTO Weather2Umberlla D.O.O Tomislav Maric, Meteorologist at Global Flow Solutions Vestas Wind Technology R&D Line Gulstad, Manager Global Flow Solutions Vestas Wind Technology R&D Jesper Thiesen, CEO ConWx ApS

  2. Wind Generation Feasibility Study in Bethel, AK

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tom Humphrey, YKHC; Lance Kincaid, EMCOR Energy & Technologies

    2004-07-31

    This report studies the wind resources in the Yukon-Kuskokwim Health Corporation (YKHC) region, located in southwestern Alaska, and the applicability of wind generation technologies to YKHC facilities.

  3. Wind Power Generation Design Considerations.

    DTIC Science & Technology

    1984-12-01

    DISTRIBUTION 4 I o ....................................... . . . e . * * TABLES Number Page I Wind Turbine Characteristics II 0- 2 Maximum Economic Life II 3...Ratio of Blade Tip Speed to Wind Speed 10 4 Interference with Microwave and TV Reception by Wind Turbines 13 5 Typical Flow Patterns Over Two...18 * 12 Annual Mean Wind Power Density 21 5 FIGURES (Cont’d) Number Page 13 Wind - Turbine /Generator Types Currently Being Tested on Utility Sites 22 14

  4. Kaman 40 kW wind turbine generator - control system dynamics

    NASA Technical Reports Server (NTRS)

    Perley, R.

    1981-01-01

    The generator design incorporates an induction generator for application where a utility line is present and a synchronous generator for standalone applications. A combination of feed forward and feedback control is used to achieve synchronous speed prior to connecting the generator to the load, and to control the power level once the generator is connected. The dynamics of the drive train affect several aspects of the system operation. These were analyzed to arrive at the required shaft stiffness. The rotor parameters that affect the stability of the feedback control loop vary considerably over the wind speed range encountered. Therefore, the controller gain was made a function of wind speed in order to maintain consistent operation over the whole wind speed range. The velocity requirement for the pitch control mechanism is related to the nature of the wind gusts to be encountered, the dynamics of the system, and the acceptable power fluctuations and generator dropout rate. A model was developed that allows the probable dropout rate to be determined from a statistical model of wind gusts and the various system parameters, including the acceptable power fluctuation.

  5. Utility experience with two demonstration wind turbine generators

    NASA Astrophysics Data System (ADS)

    Wehrey, M. C.

    Edison has committed 360 MW of nameplate generating capacity to wind energy by year 1990 in its long-range generation plan. To reach this goal the Company's wind energy program focuses on three areas: the continuous evaluation of the wind resource, the hands-on demonstration of wind turbine generators (WTG) and an association with wind park developers. Two demonstration WTGs have been installed and operated at Edison's Wind Energy Center near Palm Springs, California: a 3 MW horizontal axis Bendix/Schachle WTG and a 500 kW vertical axis Alcoa WTG. They are part of a one to two year test program during which the performance of the WTGs will be evaluated, their system operation and environmental impact will be assessed and the design criteria of future WTGs will be identified. Edison's experience with these two WTGs is summarized and the problems encountered with the operation of the two machines are discussed.

  6. Stability Augmentation of Wind Farm using Variable Speed Permanent Magnet Synchronous Generator

    NASA Astrophysics Data System (ADS)

    Rosyadi, Marwan; Muyeen, S. M.; Takahashi, Rion; Tamura, Junji

    This paper presents a new control strategy of variable speed permanent magnet wind generator for stability augmentation of wind farm including fixed speed wind turbine with Induction Generator (IG). A new control scheme is developed for two levels back-to-back converters of Permanent Magnet Synchronous Generator (PMSG), by which both active and reactive powers delivered to the grid can be controlled easily. To avoid the converter damage, the DC link protection controller is also proposed in order to protect the dc link circuit during fault condition. To evaluate the control capability of the proposed controllers, simulations are performed on two model systems composed of wind farms connected to an infinite bus. From transient and steady state analyses by using PSCAD/EMTDC, it is concluded that the proposed control scheme is very effective to improve the stability of wind farm for severe network disturbance and randomly fluctuating wind speed.

  7. Utility experience with two demonstration wind turbine generators

    NASA Technical Reports Server (NTRS)

    Wehrey, M. C.

    1982-01-01

    Edison has committed 360 MW of nameplate generating capacity to wind energy by year 1990 in its long-range generation plan. To reach this goal the Company's wind energy program focuses on three areas: the continuous evaluation of the wind resource, the hands-on demonstration of wind turbine generators (WTG) and an association with wind park developers. Two demonstration WTGs have been installed and operated at Edison's Wind Energy Center near Palm Springs, California: a 3 MW horizontal axis Bendix/Schachle WTG and a 500 kW vertical axis Alcoa WTG. They are part of a one to two year test program during which the performance of the WTGs will be evaluated, their system operation and environmental impact will be assessed and the design criteria of future WTGs will be identified. Edison's experience with these two WTGs is summarized and the problems encountered with the operation of the two machines are discussed.

  8. Asynchrony of wind and hydropower resources in Australia.

    PubMed

    Gunturu, Udaya Bhaskar; Hallgren, Willow

    2017-08-18

    Wind and hydropower together constitute nearly 80% of the renewable capacity in Australia and their resources are collocated. We show that wind and hydro generation capacity factors covary negatively at the interannual time scales. Thus, the technology diversity mitigates the variability of renewable power generation at the interannual scales. The asynchrony of wind and hydropower resources is explained by the differential impact of the two modes of the El Ni˜no Southern Oscillation - canonical and Modoki - on the wind and hydro resources. Also, the Modoki El Ni˜no and the Modoki La Ni˜na phases have greater impact. The seasonal impact patterns corroborate these results. As the proportion of wind power increases in Australia's energy mix, this negative covariation has implications for storage capacity of excess wind generation at short time scales and for generation system adequacy at the longer time scales.

  9. Generating Variable Wind Profiles and Modeling Their Effects on Small-Arms Trajectories

    DTIC Science & Technology

    2016-04-01

    ARL-TR-7642 ● APR 2016 US Army Research Laboratory Generating Variable Wind Profiles and Modeling Their Effects on Small-Arms... Wind Profiles and Modeling Their Effects on Small-Arms Trajectories by Timothy A Fargus Weapons and Materials Research Directorate, ARL...Generating Variable Wind Profiles and Modeling Their Effects on Small-Arms Trajectories 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Jie; Jain, Rishabh; Hodge, Bri-Mathias

    A data-driven methodology is developed to analyze how ambient and wake turbulence affect the power generation of wind turbine(s). Using supervisory control and data acquisition (SCADA) data from a wind plant, we select two sets of wind velocity and power data for turbines on the edge of the plant that resemble (i) an out-of-wake scenario and (ii) an in-wake scenario. For each set of data, two surrogate models are developed to represent the turbine(s) power generation as a function of (i) the wind speed and (ii) the wind speed and turbulence intensity. Three types of uncertainties in turbine(s) power generationmore » are investigated: (i) the uncertainty in power generation with respect to the reported power curve; (ii) the uncertainty in power generation with respect to the estimated power response that accounts for only mean wind speed; and (iii) the uncertainty in power generation with respect to the estimated power response that accounts for both mean wind speed and turbulence intensity. Results show that (i) the turbine(s) generally produce more power under the in-wake scenario than under the out-of-wake scenario with the same wind speed; and (ii) there is relatively more uncertainty in the power generation under the in-wake scenario than under the out-of-wake scenario.« less

  11. Climatology of Global Swell-Atmosphere Interaction

    NASA Astrophysics Data System (ADS)

    Semedo, Alvaro

    2016-04-01

    At the ocean surface wind sea and swell waves coexist. Wind sea waves are locally generated growing waves strongly linked to the overlaying wind field. Waves that propagate away from their generation area, throughout entire ocean basins, are called swell. Swell waves do not receive energy from local wind. Ocean wind waves can be seen as the "gearbox" between the atmosphere and the ocean, and are of critical importance to the coupled atmosphere-ocean system, since they modulate most of the air-sea interaction processes and exchanges, particularly the exchange of momentum. This modulation is most of the times sea-state dependent, i.e., it is a function of the prevalence of one type of waves over the other. The wave age parameter, defined as the relative speed between the peak wave and the wind (c_p⁄U_10), has been largely used in different aspects of the air-sea interaction theory and in practical modeling solutions of wave-atmosphere coupled model systems. The wave age can be used to assess the development of the sea state but also the prevalence (domination) of wind sea or swell waves at the ocean surface. The presence of fast-running waves (swell) during light winds (at high wave age regimes) induces an upward momentum flux, directed from the water surface to the atmosphere. This upward directed momentum has an impact in the lower marine atmospheric boundary layer (MABL): on the one hand it changes the vertical wind speed profile by accelerating the flow at the first few meters (inducing the so called "wave-driven wind"), and on the other hand it changes the overall MABL turbulence structure by limiting the wind shear - in some observed and modeled situations the turbulence is said to have "collapse". The swell interaction with the lower MABL is a function of the wave age but also of the swell steepness, since steeper waves loose more energy into the atmosphere as their energy attenuates. This interaction can be seen as highest in areas where swells are steepest, but also where the wind speed is lowest and consequently the wave age is high. A detailed global climatology of the wave age and swell steepness parameters, based on the ECMWF (European Centre for Medium-Range Weather Forecasts) ERA-Interim reanalysis is presented. It will be shown, in line with previous studies, that the global climatological patterns of the wave age confirm the global dominance of the World Ocean by swell waves. The areas of the ocean where the highest interaction of swell waves and the lower atmosphere can be expected are also presented.

  12. Simulation studies of multiple large wind turbine generators on a utility network

    NASA Technical Reports Server (NTRS)

    Gilbert, L. J.; Triezenberg, D. M.

    1979-01-01

    The potential electrical problems that may be inherent in the inertia of clusters of wind turbine generators and an electric utility network were investigated. Preliminary and limited results of an analog simulation of two MOD-2 wind generators tied to an infinite bus indicate little interaction between the generators and between the generators and the bus. The system demonstrated transient stability for the conditions considered.

  13. Smoothing Control of Wind Farm Output by Using Kinetic Energy of Variable Speed Wind Power Generators

    NASA Astrophysics Data System (ADS)

    Sato, Daiki; Saitoh, Hiroumi

    This paper proposes a new control method for reducing fluctuation of power system frequency through smoothing active power output of wind farm. The proposal is based on the modulation of rotaional kinetic energy of variable speed wind power generators through power converters between permanent magnet synchronous generators (PMSG) and transmission lines. In this paper, the proposed control is called Fluctuation Absorption by Flywheel Characteristics control (FAFC). The FAFC can be easily implemented by adding wind farm output signal to Maximum Power Point Tracking control signal through a feedback control loop. In order to verify the effectiveness of the FAFC control, a simulation study was carried out. In the study, it was assumed that the wind farm consisting of PMSG type wind power generator and induction machine type wind power generaotors is connected with a power sysem. The results of the study show that the FAFC control is a useful method for reducing the impacts of wind farm output fluctuation on system frequency without additional devices such as secondary battery.

  14. Assessment of Wind Resource in the Palk Strait using Different Methods

    NASA Astrophysics Data System (ADS)

    Gupta, T.; Khan, F.; Baidya Roy, S.; Miller, L.

    2017-12-01

    The Government of India has proposed a target of 60 GW in grid power from the wind by the year 2022. The Palk Strait is one of the potential offshore wind power generation sites in India. It is a 65-135 km wide and 135 km long channel lying between the south eastern tip of India and northern Sri Lanka. The complex terrain bounding the two sides of the strait leads to enhanced wind speed and reduced variability in the wind direction. Here, we compare 3 distinct methodologies for estimating the generation rates for a hypothetical offshore wind farm array located in the strait. The methodologies include: 1) traditional wind power density model that ignores the effect of turbine interactions on generation rates; 2) the PARK wake model; and 3) a high resolution weather model (WRF) with a wind turbine parameterization. Using the WRF model as our baseline, we find that the simple model overestimates generation by an order-of-magnitude, while the wake model underestimates generation rates by about 5%. The reason for these differences relates to the influence of wind turbines on the atmospheric flow, wherein, the WRF model is able to capture the effect of both the complex terrain and wind turbine atmospheric boundary layer interactions. Lastly, a model evaluation is conducted which shows that 10m wind speeds and directions from WRF are comparable with the satellite data. Hence, we conclude from the study that each of these methodologies may have merit, but should a wind farm is deployed in such a complex terrain, we expect the WRF method to give better estimates of wind resource assessment capturing the physical processes emerging due to the interactions between offshore wind farm and the surrounding terrain.

  15. Design and aero-acoustic analysis of a counter-rotating wind turbine

    NASA Astrophysics Data System (ADS)

    Agrawal, Vineesh V.

    Wind turbines have become an integral part of the energy business because they are one of the most economical and reliable sources of renewable energy. Conventional wind turbines are capable of capturing less than half of the energy present in the wind. Hence, to make the wind turbines more efficient, it is important to increase their performance. A horizontal axis wind turbine with multiple rotors is one concept that can achieve a higher power conversion rate. Also, a concern for wind energy is the noise generated by wind turbines. Hence, an investigation into the acoustic behavior of a multi-rotor horizontal axis wind turbine is required. In response to the need of a wind turbine design with higher power coefficient, a unique design of a counter-rotating horizontal axis wind turbine (CR-HAWT) is proposed. The Blade Element Momentum (BEM) theory is used to aerodynamically design the blades of the two rotors. Modifications are made to the BEM theory to accommodate the interaction of the two rotors. The tower effect on the noise generation of the downwind rotor is investigated. Predictions are made for the total noise generated by the wind turbine at its design operating conditions. A total power coefficient of 65.2% is predicted for the proposed CR-HAWT design. A low tip speed ratio is chosen to minimize the noise generation. The aeroacoustic analysis of the CR-HAWT shows that the noise generated at its design operating conditions is within an acceptable range. Thus, the CR-HAWT is predicted to be a quiet wind turbine with a high power coefficient, making it highly desirable for small wind turbine applications.

  16. Empirical Analysis of the Variability of Wind Generation in India: Implications for Grid Integration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Phadke, Amol; Abhyankar, NIkit; Rao, Poorvi

    We analyze variability in load and wind generation in India to assess its implications for grid integration of large scale wind projects using actual wind generation and load data from two states in India, Karnataka and Tamil Nadu. We compare the largest variations in load and net load (load ?wind, i.e., load after integrating wind) that the generation fleet has to meet. In Tamil Nadu, where wind capacity is about 53percent of the peak demand, we find that the additional variation added due to wind over the current variation in load is modest; if wind penetration reaches 15percent and 30percentmore » by energy, the additional hourly variation is less than 0.5percent and 4.5percent of the peak demand respectively for 99percent of the time. For wind penetration of 15percent by energy, Tamil Nadu system is found to be capable of meeting the additional ramping requirement for 98.8percent of the time. Potential higher uncertainty in net load compared to load is found to have limited impact on ramping capability requirements of the system if coal plants can me ramped down to 50percent of their capacity. Load and wind aggregation in Tamil Nadu and Karnataka is found to lower the variation by at least 20percent indicating the benefits geographic diversification. These findings suggest modest additional flexible capacity requirements and costs for absorbing variation in wind power and indicate that the potential capacity support (if wind does not generate enough during peak periods) may be the issue that has more bearing on the economics of integrating wind« less

  17. Lessons from wind policy in Portugal

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peña, Ivonne; L. Azevedo, Inês; Marcelino Ferreira, Luís António Fialho

    Wind capacity and generation grew rapidly in several European countries, such as Portugal. Wind power adoption in Portugal began in the early 2000s, incentivized by a continuous feed-in tariff policy mechanism, coupled with public tenders for connection licenses in 2001, 2002, and 2005. These policies led to an enormous success in terms of having a large share of renewables providing electricity services: wind alone accounts today for ~23.5% of electricity demand in Portugal. We explain the reasons wind power became a key part of Portugal's strategy to comply with European Commission climate and energy goals, and provide a detailed reviewmore » of the wind feed-in tariff mechanism. We describe the actors involved in wind power production growth. We estimate the environmental and energy dependency gains achieved through wind power generation, and highlight the correlation between wind electricity generation and electricity exports. Finally, we compare the Portuguese wind policies with others countries' policy designs and discuss the relevance of a feed-in tariff reform for subsequent wind power additions.« less

  18. Discussion on mass concrete construction of wind turbine generator foundation

    NASA Astrophysics Data System (ADS)

    Shang, Liang; Wu, Chaoxiang; Yin, Xiaoyong

    2018-04-01

    Wind power is one of the main power sources currently. China has rich wind power resources, wind power plants are developed faster and faster. However, China wind power construction started late, which is lack of relevant experience technology. It is easy to produce quality problems. The key to the construction quality of wind power plant is the construction quality of mass concrete construction. Therefore, construction technology and quality control of wind turbine generator foundation mass concrete are discussed and analyzed in the paper.

  19. Wind Energy Resource Atlas of the Dominican Republic

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Elliott, D.; Schwartz, M.; George, R.

    2001-10-01

    The Wind Energy Resource Atlas of the Dominican Republic identifies the wind characteristics and the distribution of the wind resource in this country. This major project is the first of its kind undertaken for the Dominican Republic. The information contained in the atlas is necessary to facilitate the use of wind energy technologies, both for utility-scale power generation and off-grid wind energy applications. A computerized wind mapping system developed by NREL generated detailed wind resource maps for the entire country. This technique uses Geographic Information Systems (GIS) to produce high-resolution (1-square kilometer) annual average wind resource maps.

  20. Economically Feasible Potentials for Wind Power in China and the US

    NASA Astrophysics Data System (ADS)

    Lu, X.; McElroy, M. B.; Chris, N. P.; Tchou, J.

    2011-12-01

    The present study is intended to explore the economic feasible potentials for wind energy in China and the U.S. subject to their policy systems for renewable energy. These two countries were chosen as subject locales for three reasons: first, they are the two largest countries responsible for energy consumption and CO2 emissions; second, these two countries have the largest installed capacities and the fastest annual growth of wind power in the world; third, China and the U.S. have adopted two distinct but representative incentive policies to accelerate exploitation of the renewable energy source from wind. Investments in large-scale wind farms in China gain privileges from the concession policy established under China's Renewable Energy Law. The electricity generated from wind can be sold at a guaranteed price for a concession period (typically the first ten operational years of a wind farm) to ensure the profitability of the wind farm development. The effectiveness of this policy has been evidenced by the swift growth of total installed capacities for wind power over the past five years in China. A spatial financial model was developed to evaluate the bus-bar prices of wind-generated electricity in China following this wind concession policy. The results indicated that wind could accommodate all of the demand for electricity projected for 2030 assuming a guaranteed bus-bar price of 7.6 U.S. Cents per kWh over the concession period. It is noteworthy that the prices of wind-generated electricity could be as cheap as conventional power generation in the years following the concession period. The power market in the U.S. is more deregulated and electricity is normally traded in a bidding process an hour to a day ahead of real time. Accordingly, the market-oriented policy instrument of PTC subsidies was instituted in the U.S. to ensure the competitiveness of wind power compared to the conventional power generation in the regional power markets. The spatial financial model developed for previous analysis of wind energy in China was tailored to simulate the relevant investment environments for U.S. wind projects. A particular problem was investigated as to how the profitability and competitiveness of onshore wind power in the U.S. would be influenced by PTC subsidy levels varying from 0 to 4 cents per kWh. The results suggested that the current PTC level (2.1 cent per kWh) is at a critical point in determining the competitiveness of wind-generated electricity under normal costs. Setting system integration challenges aside, the potential for profitable wind-generated electricity could accommodate more than seven times U.S. electricity demand at the current PTC subsidy. Similar to the concession policy adopted in China, PTC subsidies are only available for the first ten years following the initiation of wind farms; wind power would still offer a renewable energy source for profitable electricity generation during the post-PTC period.

  1. Health and climate benefits of offshore wind facilities in the Mid-Atlantic United States

    DOE PAGES

    Buonocore, Jonathan J.; Luckow, Patrick; Fisher, Jeremy; ...

    2016-07-14

    Electricity from fossil fuels contributes substantially to both climate change and the health burden of air pollution. Renewable energy sources are capable of displacing electricity from fossil fuels, but the quantity of health and climate benefits depend on site-specific attributes that are not often included in quantitative models. Here, we link an electrical grid simulation model to an air pollution health impact assessment model and US regulatory estimates of the impacts of carbon to estimate the health and climate benefits of offshore wind facilities of different sizes in two different locations. We find that offshore wind in the Mid-Atlantic ismore » capable of producing health and climate benefits of between $54 and $120 per MWh of generation, with the largest simulated facility (3000 MW off the coast of New Jersey) producing approximately $690 million in benefits in 2017. The variability in benefits per unit generation is a function of differences in locations (Maryland versus New Jersey), simulated years (2012 versus 2017), and facility generation capacity, given complexities of the electrical grid and differences in which power plants are offset. In the end, this work demonstrates health and climate benefits of off shore wind, provides further evidence of the utility of geographically-refined modeling frameworks, and yields quantitative insights that would allow for inclusion of both climate and public health in benefits assessments of renewable energy.« less

  2. Health and climate benefits of offshore wind facilities in the Mid-Atlantic United States

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Buonocore, Jonathan J.; Luckow, Patrick; Fisher, Jeremy

    Electricity from fossil fuels contributes substantially to both climate change and the health burden of air pollution. Renewable energy sources are capable of displacing electricity from fossil fuels, but the quantity of health and climate benefits depend on site-specific attributes that are not often included in quantitative models. Here, we link an electrical grid simulation model to an air pollution health impact assessment model and US regulatory estimates of the impacts of carbon to estimate the health and climate benefits of offshore wind facilities of different sizes in two different locations. We find that offshore wind in the Mid-Atlantic ismore » capable of producing health and climate benefits of between $54 and $120 per MWh of generation, with the largest simulated facility (3000 MW off the coast of New Jersey) producing approximately $690 million in benefits in 2017. The variability in benefits per unit generation is a function of differences in locations (Maryland versus New Jersey), simulated years (2012 versus 2017), and facility generation capacity, given complexities of the electrical grid and differences in which power plants are offset. In the end, this work demonstrates health and climate benefits of off shore wind, provides further evidence of the utility of geographically-refined modeling frameworks, and yields quantitative insights that would allow for inclusion of both climate and public health in benefits assessments of renewable energy.« less

  3. Health and climate benefits of offshore wind facilities in the Mid-Atlantic United States

    NASA Astrophysics Data System (ADS)

    Buonocore, Jonathan J.; Luckow, Patrick; Fisher, Jeremy; Kempton, Willett; Levy, Jonathan I.

    2016-07-01

    Electricity from fossil fuels contributes substantially to both climate change and the health burden of air pollution. Renewable energy sources are capable of displacing electricity from fossil fuels, but the quantity of health and climate benefits depend on site-specific attributes that are not often included in quantitative models. Here, we link an electrical grid simulation model to an air pollution health impact assessment model and US regulatory estimates of the impacts of carbon to estimate the health and climate benefits of offshore wind facilities of different sizes in two different locations. We find that offshore wind in the Mid-Atlantic is capable of producing health and climate benefits of between 54 and 120 per MWh of generation, with the largest simulated facility (3000 MW off the coast of New Jersey) producing approximately 690 million in benefits in 2017. The variability in benefits per unit generation is a function of differences in locations (Maryland versus New Jersey), simulated years (2012 versus 2017), and facility generation capacity, given complexities of the electrical grid and differences in which power plants are offset. This work demonstrates health and climate benefits of offshore wind, provides further evidence of the utility of geographically-refined modeling frameworks, and yields quantitative insights that would allow for inclusion of both climate and public health in benefits assessments of renewable energy.

  4. Influence of Wind Model Performance on Wave Forecasts of the Naval Oceanographic Office

    NASA Astrophysics Data System (ADS)

    Gay, P. S.; Edwards, K. L.

    2017-12-01

    Significant discrepancies between the Naval Oceanographic Office's significant wave height (SWH) predictions and observations have been noted in some model domains. The goal of this study is to evaluate these discrepancies and identify to what extent inaccuracies in the wind predictions may explain inaccuracies in SWH predictions. A one-year time series of data is evaluated at various locations in Southern California and eastern Florida. Correlations are generally quite good, ranging from 73% at Pendleton to 88% at both Santa Barbara, California, and Cape Canaveral, Florida. Correlations for month-long periods off Southern California drop off significantly in late spring through early autumn - less so off eastern Florida - likely due to weaker local wind seas and generally smaller SWH in addition to the influence of remotely-generated swell, which may not propagate accurately into and through the wave models. The results of this study suggest that it is likely that a change in meteorological and/or oceanographic conditions explains the change in model performance, partially as a result of a seasonal reduction in wind model performance in the summer months.

  5. Spatiotemporal structure of wind farm-atmospheric boundary layer interactions

    NASA Astrophysics Data System (ADS)

    Cervarich, Matthew; Baidya Roy, Somnath; Zhou, Liming

    2013-04-01

    Wind power is currently one of the fastest growing energy sources in the world. Most of the growth is in the utility sector consisting of large wind farms with numerous industrial-scale wind turbines. Wind turbines act as a sink of mean kinetic energy and a source of turbulent kinetic energy in the atmospheric boundary layer (ABL). In doing so, they modify the ABL profiles and land-atmosphere exchanges of energy, momentum, mass and moisture. This project explores theses interactions using remote sensing data and numerical model simulations. The domain is central Texas where 4 of the world's largest wind farms are located. A companion study of seasonally-averaged Land Surface Temperature data from the Moderate Resolution Imaging Spectroradiometer (MODIS) on TERRA and AQUA satellites shows a warming signal at night and a mixed cooling/warming signal during the daytime within the wind farms. In the present study, wind farm-ABL interactions are simulated with the Weather Research and Forecasting (WRF) model. The simulations show that the model is capable of replicating the observed signal in land surface temperature. Moreover, similar warming/cooling effect, up to 1C, was observed in seasonal mean 2m air temperature as well. Further analysis show that enhanced turbulent mixing in the rotor wakes is responsible for the impacts on 2m and surface air temperatures. The mixing is due to 2 reasons: (i) turbulent momentum transport to compensate the momentum deficit in the wakes of the turbines and (ii) turbulence generated due to motion of turbine rotors. Turbulent mixing also alters vertical profiles of moisture. Changes in land-atmosphere temperature and moisture gradient and increase in turbulent mixing leads to more than 10% change in seasonal mean surface sensible and latent heat flux. Given the current installed capacity and the projected installation across the world, wind farms are likely becoming a major driver of anthropogenic land use change on Earth. Hence, understanding WF-ABL interactions and its effects is of significant scientific and societal importance.

  6. Dynamics and stability of wind turbine generators

    NASA Technical Reports Server (NTRS)

    Hinrichsen, E. N.; Nolan, P. J.

    1981-01-01

    Synchronous and induction generators are considered. A comparison is made between wind turbines, steam, and hydro units. The unusual phenomena associated with wind turbines are emphasized. The general control requirements are discussed, as well as various schemes for torsional damping such as speed sensitive stabilizer and blade pitch control. Integration between adjacent wind turbines in a wind farm is also considered.

  7. 75 FR 11530 - Crystal Lake Wind III, LLC, et al.; Notice of Effectiveness of Exempt Wholesale Generator Status

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-11

    ... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission Crystal Lake Wind III, LLC, et al.; Notice of Effectiveness of Exempt Wholesale Generator Status March 4, 2010. Docket Nos. Crystal Lake Wind III, LLC EG10-6-000 GardenGarden Wind, LLC EG10-7-000 Star Point Wind Project LLC EG10-8-000...

  8. 77 FR 20378 - Combined Notice of Filings #2

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-04

    ... Generator Status of Ensign Wind, LLC. Filed Date: 3/27/12. Accession Number: 20120327-5056. Comments Due: 5... of Self-Certification of Exempt Wholesale Generator Status of Tuscola Bay Wind, LLC. Filed Date: 3/27.... Applicants: Minco Wind III, LLC. Description: Notice of Self-Certification of Exempt Wholesale Generator...

  9. Assessing the Structural, Driver and Economic Impacts of Traffic Pole Mounted Wind Power Generator and Solar Panel Hybrid System

    DOT National Transportation Integrated Search

    2012-06-01

    This project evaluates the physical and economic feasibility of using existing traffic infrastructure to mount wind power : generators. Some possible places to mount a light weight wind generator and solar panel hybrid system are: i) Traffic : signal...

  10. 75 FR 74042 - Intent To Prepare an Environmental Impact Statement and To Conduct Scoping Meetings...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-30

    ... proposed Project would consist of up to 100 wind turbine generators with a combined total generating... its wind generation turbines and related facilities. Available overview information indicates this... process for the wind turbine strings and associated facilities considered sensitive resources, and the...

  11. Simulation and study of power quality issues in a fixed speed wind farm substation.

    PubMed

    Magesh, T; Chellamuthu, C

    2015-01-01

    Power quality issues associated with the fixed speed wind farm substation located at Coimbatore district are investigated as the wind generators are tripping frequently. The investigations are carried out using two power quality analyzers, Fluke 435 and Dranetz PX5.8, with one of them connected at group control breaker of the 110 kV feeder and the other at the selected 0.69 kV generator busbar during the period of maximum power generation. From the analysis of the recorded data it is found that sag, swell, and transients are the major events which are responsible for the tripping of the generators. In the present study, simulation models for wind, turbine, shaft, pitch mechanism, induction generator, and grid are developed using DIgSILENT. Using the turbine characteristics, a two-dimensional lookup table is designed to generate a reference pitch angle necessary to simulate the power curve of the passive stall controlled wind turbine. Various scenarios and their effects on the performance of the wind farm are studied and validated with the recorded data and waveforms. The simulation model will be useful for the designers for planning and development of the wind farm before implementation.

  12. Simulation and Study of Power Quality Issues in a Fixed Speed Wind Farm Substation

    PubMed Central

    Magesh, T.; Chellamuthu, C.

    2015-01-01

    Power quality issues associated with the fixed speed wind farm substation located at Coimbatore district are investigated as the wind generators are tripping frequently. The investigations are carried out using two power quality analyzers, Fluke 435 and Dranetz PX5.8, with one of them connected at group control breaker of the 110 kV feeder and the other at the selected 0.69 kV generator busbar during the period of maximum power generation. From the analysis of the recorded data it is found that sag, swell, and transients are the major events which are responsible for the tripping of the generators. In the present study, simulation models for wind, turbine, shaft, pitch mechanism, induction generator, and grid are developed using DIgSILENT. Using the turbine characteristics, a two-dimensional lookup table is designed to generate a reference pitch angle necessary to simulate the power curve of the passive stall controlled wind turbine. Various scenarios and their effects on the performance of the wind farm are studied and validated with the recorded data and waveforms. The simulation model will be useful for the designers for planning and development of the wind farm before implementation. PMID:25950016

  13. On the Role of Interchange Reconnection in the Generation of the Slow Solar Wind

    NASA Astrophysics Data System (ADS)

    Edmondson, J. K.

    2012-11-01

    The heating of the solar corona and therefore the generation of the solar wind, remain an active area of solar and heliophysics research. Several decades of in situ solar wind plasma observations have revealed a rich bimodal solar wind structure, well correlated with coronal magnetic field activity. Therefore, the reconnection processes associated with the large-scale dynamics of the corona likely play a major role in the generation of the slow solar wind flow regime. In order to elucidate the relationship between reconnection-driven coronal magnetic field structure and dynamics and the generation of the slow solar wind, this paper reviews the observations and phenomenology of the solar wind and coronal magnetic field structure. The geometry and topology of nested flux systems, and the (interchange) reconnection process, in the context of coronal physics is then explained. Once these foundations are laid out, the paper summarizes several fully dynamic, 3D MHD calculations of the global coronal system. Finally, the results of these calculations justify a number of important implications and conclusions on the role of reconnection in the structural dynamics of the coronal magnetic field and the generation of the solar wind.

  14. Power control and management of the grid containing largescale wind power systems

    NASA Astrophysics Data System (ADS)

    Aula, Fadhil Toufick

    The ever increasing demand for electricity has driven many countries toward the installation of new generation facilities. However, concerns such as environmental pollution and global warming issues, clean energy sources, high costs associated with installation of new conventional power plants, and fossil fuels depletion have created many interests in finding alternatives to conventional fossil fuels for generating electricity. Wind energy is one of the most rapidly growing renewable power sources and wind power generations have been increasingly demanded as an alternative to the conventional fossil fuels. However, wind power fluctuates due to variation of wind speed. Therefore, large-scale integration of wind energy conversion systems is a threat to the stability and reliability of utility grids containing these systems. They disturb the balance between power generation and consumption, affect the quality of the electricity, and complicate load sharing and load distribution managing and planning. Overall, wind power systems do not help in providing any services such as operating and regulating reserves to the power grid. In order to resolve these issues, research has been conducted in utilizing weather forecasting data to improve the performance of the wind power system, reduce the influence of the fluctuations, and plan power management of the grid containing large-scale wind power systems which consist of doubly-fed induction generator based energy conversion system. The aims of this research, my dissertation, are to provide new methods for: smoothing the output power of the wind power systems and reducing the influence of their fluctuations, power managing and planning of a grid containing these systems and other conventional power plants, and providing a new structure of implementing of latest microprocessor technology for controlling and managing the operation of the wind power system. In this research, in order to reduce and smooth the fluctuations, two methods are presented. The first method is based on a de-loaded technique while the other method is based on utilizing multiple storage facilities. The de-loaded technique is based on characteristics of the power of a wind turbine and estimation of the generated power according to weather forecasting data. The technique provides a reference power by which the wind power system will operate and generate a smooth power. In contrast, utilizing storage facilities will allow the wind power system to operate at its maximum tracking power points' strategy. Two types of energy storages are considered in this research, battery energy storage system (BESS) and pumped-hydropower storage system (PHSS), to suppress the output fluctuations and to support the wind power system to follow the system load demands. Furthermore, this method provides the ability to store energy when there is a surplus of the generated power and to reuse it when there is a shortage of power generation from wind power systems. Both methods are new in terms of utilizing of the techniques and wind speed data. A microprocessor embedded system using an IntelRTM Atom(TM) processor is presented for controlling the wind power system and for providing the remote communication for enhancing the operation of the individual wind power system in a wind farm. The embedded system helps the wind power system to respond and to follow the commands of the central control of the power system. Moreover, it enhances the performance of the wind power system through self-managing, self-functioning, and self-correcting. Finally, a method of system power management and planning is modeled and studied for a grid containing large-scale wind power systems. The method is based on a new technique through constructing a new load demand curve (NLDC) from merging the estimation of generated power from wind power systems and forecasting of the load. To summarize, the methods and their results presented in this dissertation, enhance the operation of the large-scale wind power systems and reduce their drawbacks on the operation of the power grid.

  15. Dual stator winding variable speed asynchronous generator: optimal design and experiments

    NASA Astrophysics Data System (ADS)

    Tutelea, L. N.; Deaconu, S. I.; Popa, G. N.

    2015-06-01

    In the present paper is carried out a theoretical and experimental study of dual stator winding squirrel cage asynchronous generator (DSWA) behavior in the presence of saturation regime (non-sinusoidal) due to the variable speed operation. The main aims are the determination of the relations of calculating the equivalent parameters of the machine windings to optimal design using a Matlab code. Issue is limited to three phase range of double stator winding cage-induction generator of small sized powers, the most currently used in the small adjustable speed wind or hydro power plants. The tests were carried out using three-phase asynchronous generator having rated power of 6 [kVA].

  16. Design, manufacturing and tests of first cryogen-free MgB2 prototype coils for offshore wind generators

    NASA Astrophysics Data System (ADS)

    Sarmiento, G.; Sanz, S.; Pujana, A.; Merino, J. M.; Iturbe, R.; Apiñaniz, S.; Nardelli, D.; Marino, I.

    2014-05-01

    Although renewable sector has started to take advantage of the offshore wind energy recently, the development is very intense. Turbines reliability, size, and cost are key aspects for the wind industry, especially in marine locations. A superconducting generator will allow a significant reduction in terms of weight and size, but cost and reliability are two aspects to deal with. MgB2 wire is presented as one promising option to be used in superconducting coils for wind generators. This work shows the experimental results in first cryogen-free MgB2 prototype coils, designed according to specific requirements of TECNALIA's wind generator concept.

  17. How are recent changes in Southern Hemisphere Westerly Winds affecting East Antarctic terrestrial plants?

    NASA Astrophysics Data System (ADS)

    Robinson, S. A.; Waterman, M. J.; Bramley-Alves, J.; Clarke, L. J.; Hua, Q.

    2017-12-01

    Antarctica has experienced major changes in temperature, wind speed, stratospheric ozone levels and ultraviolet-B radiation over the last century. However, because East Antarctica has shown little climate warming, biological changes were predicted to be relatively slow, compared to the rapid changes observed on the warmer Antarctic Peninsula. Detecting the biological effects of Antarctic climate change has been hindered by the paucity of long-term data sets, particularly for organisms that have been exposed to these changes throughout their lives. Recent studies using radiocarbon signals preserved along the shoots of individual mosses, as well as peat cores, enables accurate determination of the growth rates of the dominant Antarctic moss flora over the last century. This allows us to explore the influence of environmental variables on growth providing a dramatic demonstration of the effects of climate change on Antarctic biodiversity. We generated detailed 50-year growth records for four Antarctic moss species, Ceratodon purpureus, Bryum pseudotriquetrum, Schistidium antarctici and Bryoerythrophyllum recurvirostre using the 1960s radiocarbon bomb spike. Ceratodon purpureus' growth rates are positively correlated with ozone depth and temperature and negatively correlated with wind speed. Carbon stable isotopic measurements (∂13C) suggest that the observed effects of climate variation on growth are mediated through changes in water availability and mostly likely linked to the more positive phase of the Southern Annular Mode (SAM) and changing westerly wind patterns. For cold remote locations like Antarctica, where climate records are limited and of relatively short duration, this illustrates that mosses can act as microclimate proxies and have the potential to increase our knowledge of coastal Antarctic climate change.

  18. Smart Aquarium as Physics Learning Media for Renewable Energy

    NASA Astrophysics Data System (ADS)

    Desnita, D.; Raihanati, R.; Susanti, D.

    2018-04-01

    Smart aquarium has been developed as a learning media to visualize Micro Hydro Power Generator (MHPG). Its used aquarium water circulation system and Wind Power Generation (WPG) which generated through a wheel as a source. Its also used to teach about energy changes, circular motion and wheel connection, electromagnetic impact, and AC power circuit. The output power and system efficiency was adjusted through the adjustment of water level and wind speed. Specific targets in this research are: to achieved: (i) develop green aquarium technology that’s suitable to used as a medium of physics learning, (ii) improving quality of process and learning result at a senior high school student. Research method used development research by Borg and Gall, which includes preliminary studies, design, product development, expert validation, and product feasibility test, and vinalisation. The validation test by the expert states that props feasible to use. Limited trials conducted prove that this tool can improve students science process skills.

  19. Variable Frequency Operations of an Offshore Wind Power Plant with HVDC-VSC: Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gevorgian, V.; Singh, M.; Muljadi, E.

    2011-12-01

    In this paper, a constant Volt/Hz operation applied to the Type 1 wind turbine generator. Various control aspects of Type 1 generators at the plant level and at the turbine level will be investigated. Based on DOE study, wind power generation may reach 330 GW by 2030 at the level of penetration of 20% of the total energy production. From this amount of wind power, 54 GW of wind power will be generated at offshore wind power plants. The deployment of offshore wind power plants requires power transmission from the plant to the load center inland. Since this power transmissionmore » requires submarine cable, there is a need to use High-Voltage Direct Current (HVDC) transmission. Otherwise, if the power is transmitted via alternating current, the reactive power generated by the cable capacitance may cause an excessive over voltage in the middle of the transmission distance which requires unnecessary oversized cable voltage breakdown capability. The use of HVDC is usually required for transmission distance longer than 50 kilometers of submarine cables to be economical. The use of HVDC brings another advantage; it is capable of operating at variable frequency. The inland substation will be operated to 60 Hz synched with the grid, the offshore substation can be operated at variable frequency, thus allowing the wind power plant to be operated at constant Volt/Hz. In this paper, a constant Volt/Hz operation applied to the Type 1 wind turbine generator. Various control aspects of Type 1 generators at the plant level and at the turbine level will be investigated.« less

  20. Maintaining Balance: The Increasing Role of Energy Storage for Renewable Integration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stenclik, Derek; Denholm, Paul; Chalamala, Babu

    For nearly a century, global power systems have focused on three key functions: to generate, transmit, and distribute electricity as a real-time commodity. Physics requires that electricity generation always be in real-time balance with load, despite variability in load on timescales ranging from sub-second disturbances to multi-year trends. With the increasing role of variable generation from wind and solar, retirements of fossil fuel-based generation, and a changing consumer demand profile, grid operators are using new methods to maintain this balance.

  1. Maintaining Balance: The Increasing Role of Energy Storage for Renewable Integration

    DOE PAGES

    Stenclik, Derek; Denholm, Paul; Chalamala, Babu

    2017-10-17

    For nearly a century, global power systems have focused on three key functions: to generate, transmit, and distribute electricity as a real-time commodity. Physics requires that electricity generation always be in real-time balance with load, despite variability in load on timescales ranging from sub-second disturbances to multi-year trends. With the increasing role of variable generation from wind and solar, retirements of fossil fuel-based generation, and a changing consumer demand profile, grid operators are using new methods to maintain this balance.

  2. Design and development of nautilus whorl-wind turbine

    NASA Astrophysics Data System (ADS)

    R, Pramod; Kumar, G. B. Veeresh; Harsha, P. Sai Sri; Kumar, K. A. Udaya

    2017-07-01

    Our life is directly related to energy and its consumption, and the issues of energy research are extremely important and highly sensitive. Scientists and researchers attempt to accelerate solutions for wind energy generation, design parameters under the influence of novel policies adopted for energy management and the concerns for global warming and climate change. The objective of this study is to design a small wind turbine that is optimized for the constraints that come with residential use. The study is aimed at designing a wind turbine for tapping the low speed wind in urban locations. The design process includes the selection of the wind turbine type and the determination of the blade airfoil, finding the maximum drag model and manufacturing of the turbine economically. In this study, the Nautilus turbine is modeled, simulated and the characteristic curves are plotted. The cutting in wind speed for the turbine is around 1m/s. The turbine rotates in a range of 20 rpm to 500 rpm at wind speeds 1m/s to 10m/s On a below average day at noon where the wind speed are usually low the turbine recorded an rpm of 120 (average value) at 4m/s wind speeds. This study focuses on a computational fluid dynamics analysis of compressible radially outward flow.

  3. The effect of wind waves on spring-neap variations in sediment transport in two meso-tidal estuarine basins with contrasting fetch

    NASA Astrophysics Data System (ADS)

    Hunt, Stephen; Bryan, Karin R.; Mullarney, Julia C.

    2017-03-01

    Higher-energy episodic wind-waves can substantially modify estuarine morphology over short timescales which are superimposed on lower-energy but long-term tidal asymmetry effects. Theoretically, wind waves and tidal currents change the morphology through their combined influence on the asymmetry between bed shear stress, τmax, on the flood and ebb tide, although the relative contribution of such wind-wave events in shaping the long-term morphological evolution in real estuaries is not well known. If the rising tide reaches sufficiently high water depths, τmax decreases as water depth increases because of the depth attenuation of wave orbital velocities. However, this effect is opposed by the increase in τmax associated with the longer fetch occurring at high tide, which allows the generation of larger waves. Additionally, these effects are superimposed on the spring-neap variations in current associated with changes to tidal range. By comparing two mesotidal basins in the same dendritic estuary, one with a large fetch aligned with the prevailing wind direction and one with only a small fetch, we show that for a sufficiently large fetch even the small and frequently occurring wind events are able to create waves that are capable of changing the morphology ('morphologically significant'). Conversely, in the basin with reduced fetch, these waves are generated less frequently and therefore are of reduced morphological significance. Here, we find that although tidal current should be stronger during spring tides and alter morphology more, on average the reduced fetch and increased water depth during spring tides mean that the basin-averaged intertidal τmax is similar during both spring and neap tides. Moreover, in the presence of wind waves, the duration of slack water is reduced during neap tides relative to spring tides, resulting in a reduced chance for accretion during neap tides. Finally, τmax is lower in the subtidal channels during neaps than springs but of a similar magnitude over the intertidal areas, and so sediment is more likely to be advected from the intertidal regions during neap tides rather than springs. This spring-neap cycle in sediment transport potential is in sharp contrast to that found previously in microtidal wave-dominated environments, where spring tides are expected to enhance erosion.

  4. A study on the required performance of a 2G HTS wire for HTS wind power generators

    NASA Astrophysics Data System (ADS)

    Sung, Hae-Jin; Park, Minwon; Go, Byeong-Soo; Yu, In-Keun

    2016-05-01

    YBCO or REBCO coated conductor (2G) materials are developed for their superior performance at high magnetic field and temperature. Power system applications based on high temperature superconducting (HTS) 2G wire technology are attracting attention, including large-scale wind power generators. In particular, to solve problems associated with the foundations and mechanical structure of offshore wind turbines, due to the large diameter and heavy weight of the generator, an HTS generator is suggested as one of the key technologies. Many researchers have tried to develop feasible large-scale HTS wind power generator technologies. In this paper, a study on the required performance of a 2G HTS wire for large-scale wind power generators is discussed. A 12 MW class large-scale wind turbine and an HTS generator are designed using 2G HTS wire. The total length of the 2G HTS wire for the 12 MW HTS generator is estimated, and the essential prerequisites of the 2G HTS wire based generator are described. The magnetic field distributions of a pole module are illustrated, and the mechanical stress and strain of the pole module are analysed. Finally, a reasonable price for 2G HTS wire for commercialization of the HTS generator is suggested, reflecting the results of electromagnetic and mechanical analyses of the generator.

  5. Transient Stability of the US Western Interconnection with High Wind and Solar Generation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Clark, Kara; Miller, Nicholas W.; Shao, Miaolei

    The addition of large amounts of wind and solar generation to bulk power systems that are traditionally subject to operating constraints set by transient limitations is the subject of considerable concern in the industry. The US Western Interconnection (WI) is expected to experience substantial additional growth in both wind and solar generation. These plants will, to some extent, displace large central station thermal generation, both coal and gas-fired, which have traditionally helped maintain stability. This paper reports the results of a study that investigated the transient stability of the WI with high penetrations of wind and solar generation. The mainmore » goals of this work were to (1) create a realistic, baseline model of the WI, (2) test selected transient stability events, (3) investigate the impact of large amounts of wind and solar generation, and (4) examine means to improve performance.« less

  6. 77 FR 46428 - Combined Notice of Filings #2

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-03

    ... Generator Status of Spinning Spur Wind LLC. Filed Date: 7/27/12. Accession Number: 20120727-5038. Comments... II Wind Farm LLC, Fowler Ridge III Wind Farm LLC, Fowler Ridge Wind Farm LLC, Goshen Phase II, LLC... that the Commission received the following exempt wholesale generator filings: Docket Numbers: EG12-93...

  7. 78 FR 9682 - Combined Notice of Filings #2

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-11

    ... Wholesale Generator Status of Niagara Wind Power, LLC. Filed Date: 1/31/13. Accession Number: 20130131-5139... Bay Wind, LLC, Vasco Winds, LLC, Victory Garden Phase IV, LLC, Waymart Wind Farm, L.P., Wessington... that the Commission received the following exempt wholesale generator filings: Docket Numbers: EG13-15...

  8. Wind farm optimization using evolutionary algorithms

    NASA Astrophysics Data System (ADS)

    Ituarte-Villarreal, Carlos M.

    In recent years, the wind power industry has focused its efforts on solving the Wind Farm Layout Optimization (WFLO) problem. Wind resource assessment is a pivotal step in optimizing the wind-farm design and siting and, in determining whether a project is economically feasible or not. In the present work, three (3) different optimization methods are proposed for the solution of the WFLO: (i) A modified Viral System Algorithm applied to the optimization of the proper location of the components in a wind-farm to maximize the energy output given a stated wind environment of the site. The optimization problem is formulated as the minimization of energy cost per unit produced and applies a penalization for the lack of system reliability. The viral system algorithm utilized in this research solves three (3) well-known problems in the wind-energy literature; (ii) a new multiple objective evolutionary algorithm to obtain optimal placement of wind turbines while considering the power output, cost, and reliability of the system. The algorithm presented is based on evolutionary computation and the objective functions considered are the maximization of power output, the minimization of wind farm cost and the maximization of system reliability. The final solution to this multiple objective problem is presented as a set of Pareto solutions and, (iii) A hybrid viral-based optimization algorithm adapted to find the proper component configuration for a wind farm with the introduction of the universal generating function (UGF) analytical approach to discretize the different operating or mechanical levels of the wind turbines in addition to the various wind speed states. The proposed methodology considers the specific probability functions of the wind resource to describe their proper behaviors to account for the stochastic comportment of the renewable energy components, aiming to increase their power output and the reliability of these systems. The developed heuristic considers a variable number of system components and wind turbines with different operating characteristics and sizes, to have a more heterogeneous model that can deal with changes in the layout and in the power generation requirements over the time. Moreover, the approach evaluates the impact of the wind-wake effect of the wind turbines upon one another to describe and evaluate the power production capacity reduction of the system depending on the layout distribution of the wind turbines.

  9. Benefit-cost methodology study with example application of the use of wind generators

    NASA Technical Reports Server (NTRS)

    Zimmer, R. P.; Justus, C. G.; Mason, R. M.; Robinette, S. L.; Sassone, P. G.; Schaffer, W. A.

    1975-01-01

    An example application for cost-benefit methodology is presented for the use of wind generators. The approach adopted for the example application consisted of the following activities: (1) surveying of the available wind data and wind power system information, (2) developing models which quantitatively described wind distributions, wind power systems, and cost-benefit differences between conventional systems and wind power systems, and (3) applying the cost-benefit methodology to compare a conventional electrical energy generation system with systems which included wind power generators. Wind speed distribution data were obtained from sites throughout the contiguous United States and were used to compute plant factor contours shown on an annual and seasonal basis. Plant factor values (ratio of average output power to rated power) are found to be as high as 0.6 (on an annual average basis) in portions of the central U. S. and in sections of the New England coastal area. Two types of wind power systems were selected for the application of the cost-benefit methodology. A cost-benefit model was designed and implemented on a computer to establish a practical tool for studying the relative costs and benefits of wind power systems under a variety of conditions and to efficiently and effectively perform associated sensitivity analyses.

  10. Wind, Wave, and Tidal Energy Without Power Conditioning

    NASA Technical Reports Server (NTRS)

    Jones, Jack A.

    2013-01-01

    Most present wind, wave, and tidal energy systems require expensive power conditioning systems that reduce overall efficiency. This new design eliminates power conditioning all, or nearly all, of the time. Wind, wave, and tidal energy systems can transmit their energy to pumps that send high-pressure fluid to a central power production area. The central power production area can consist of a series of hydraulic generators. The hydraulic generators can be variable displacement generators such that the RPM, and thus the voltage, remains constant, eliminating the need for further power conditioning. A series of wind blades is attached to a series of radial piston pumps, which pump fluid to a series of axial piston motors attached to generators. As the wind is reduced, the amount of energy is reduced, and the number of active hydraulic generators can be reduced to maintain a nearly constant RPM. If the axial piston motors have variable displacement, an exact RPM can be maintained for all, or nearly all, wind speeds. Analyses have been performed that show over 20% performance improvements with this technique over conventional wind turbines

  11. Effects of voltage unbalance and system harmonics on the performance of doubly fed induction wind generators

    NASA Astrophysics Data System (ADS)

    Kiani, Morgan Mozhgan

    Inherent difficulties in management of electric power in the presence of an increasing demand for more energy, non-conventional loads such as digital appliances, and non-sustainable imported fossil fuels has initiated a multi-folded effort by many countries to restructure the way electric energy is generated, dispatched, and consumed. Smart power grid is the manifestation of many technologies that would eventually transforms the existing power grid into a more flexible, fault resilient, and intelligent system. Integration of distributed renewable energy sources plays a central role in successful implementation of this transformation. Among the renewable options, wind energy harvesting offers superior engineering and economical incentives with minimal environmental impacts. Doubly fed induction generators (DFIG) have turned into a serious contender for wind energy generators due to their flexibility in control of active and reactive power with minimal silicon loss. Significant presence of voltage unbalance and system harmonics in finite inertia transmission lines can potentially undermine the reliability of these wind generators. The present dissertation has investigated the impacts of system unbalances and harmonics on the performance of the DFIG. Our investigation indicates that these effects can result in an undesirable undulation in the rotor shaft which can potentially invoke mechanical resonance, thereby causing catastrophic damages to the installations and the power grid. In order to remedy the above issue, a control solution for real time monitoring of the system unbalance and optimal excitation of the three phase rotor currents in a DFIG is offered. The optimal rotor currents will create appropriate components of the magneto-motive force in the airgap that will actively compensate the undesirable magnetic field originated by the stator windings. Due to the iterative nature of the optimization procedure, field reconstruction method has been incorporated. Field reconstruction method provides high precision results at a considerably faster pace as compared to finite element method. Our results indicate that by just-in-time detection of the system unbalance and employment of the optimal rotor currents damaging torque pulsation can be effectively eliminated. The side effects of the proposed method in changing the core, copper, and silicon losses are minor and well justified when reliability of the wind generation units are considered.

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Jie; Cui, Mingjian; Hodge, Bri-Mathias

    The large variability and uncertainty in wind power generation present a concern to power system operators, especially given the increasing amounts of wind power being integrated into the electric power system. Large ramps, one of the biggest concerns, can significantly influence system economics and reliability. The Wind Forecast Improvement Project (WFIP) was to improve the accuracy of forecasts and to evaluate the economic benefits of these improvements to grid operators. This paper evaluates the ramp forecasting accuracy gained by improving the performance of short-term wind power forecasting. This study focuses on the WFIP southern study region, which encompasses most ofmore » the Electric Reliability Council of Texas (ERCOT) territory, to compare the experimental WFIP forecasts to the existing short-term wind power forecasts (used at ERCOT) at multiple spatial and temporal scales. The study employs four significant wind power ramping definitions according to the power change magnitude, direction, and duration. The optimized swinging door algorithm is adopted to extract ramp events from actual and forecasted wind power time series. The results show that the experimental WFIP forecasts improve the accuracy of the wind power ramp forecasting. This improvement can result in substantial costs savings and power system reliability enhancements.« less

  13. Frequency Support of PMSG-WTG Based on Improved Inertial Control: Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Z.; Wang, X.; Gao, W.

    2016-03-15

    With increasing integrations of large-scale systems based on permanent magnet synchronous generator wind turbine generators (PMSG-WTGs), the overall inertial response of a power system will tend to deteriorate as a result of the decoupling of rotor speed and grid frequency through the power converter as well as the scheduled retirement of conventional synchronous generators. Thus, PMSG-WTGs can provide value to an electric grid by contributing to the system's inertial response by utilizing the inherent kinetic energy stored in their rotating masses and fast power control. In this work, an improved inertial control method based on the maximum power point trackingmore » operation curve is introduced to enhance the overall frequency support capability of PMSG-WTGs in the case of large supply-demand imbalances. Moreover, this method is implemented in the CART2-PMSG integrated model in MATLAB/Simulink to investigate its impact on the wind turbine's structural loads during the inertial response process. Simulation results indicate that the proposed method can effectively reduce the frequency nadir, arrest the rate of change of frequency, and mitigate the secondary frequency drop while imposing no negative impact on the major mechanical components of the wind turbine.« less

  14. Frequency Support of PMSG-WTG Based on Improved Inertial Control

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Z.; Wang, X.; Gao, W.

    2016-11-14

    With increasing integrations of large-scale systems based on permanent magnet synchronous generator wind turbine generators (PMSG-WTGs), the overall inertial response of a power system will tend to deteriorate as a result of the decoupling of rotor speed and grid frequency through the power converter as well as the scheduled retirement of conventional synchronous generators. Thus, PMSG-WTGs can provide value to an electric grid by contributing to the system's inertial response by utilizing the inherent kinetic energy stored in their rotating masses and fast power control. In this work, an improved inertial control method based on the maximum power point trackingmore » operation curve is introduced to enhance the overall frequency support capability of PMSG-WTGs in the case of large supply-demand imbalances. Moreover, this method is implemented in the CART2-PMSG integrated model in MATLAB/Simulink to investigate its impact on the wind turbine's structural loads during the inertial response process. Simulation results indicate that the proposed method can effectively reduce the frequency nadir, arrest the rate of change of frequency, and mitigate the secondary frequency drop while imposing no negative impact on the major mechanical components of the wind turbine.« less

  15. Integrated life-cycle assessment of electricity-supply scenarios confirms global environmental benefit of low-carbon technologies.

    PubMed

    Hertwich, Edgar G; Gibon, Thomas; Bouman, Evert A; Arvesen, Anders; Suh, Sangwon; Heath, Garvin A; Bergesen, Joseph D; Ramirez, Andrea; Vega, Mabel I; Shi, Lei

    2015-05-19

    Decarbonization of electricity generation can support climate-change mitigation and presents an opportunity to address pollution resulting from fossil-fuel combustion. Generally, renewable technologies require higher initial investments in infrastructure than fossil-based power systems. To assess the tradeoffs of increased up-front emissions and reduced operational emissions, we present, to our knowledge, the first global, integrated life-cycle assessment (LCA) of long-term, wide-scale implementation of electricity generation from renewable sources (i.e., photovoltaic and solar thermal, wind, and hydropower) and of carbon dioxide capture and storage for fossil power generation. We compare emissions causing particulate matter exposure, freshwater ecotoxicity, freshwater eutrophication, and climate change for the climate-change-mitigation (BLUE Map) and business-as-usual (Baseline) scenarios of the International Energy Agency up to 2050. We use a vintage stock model to conduct an LCA of newly installed capacity year-by-year for each region, thus accounting for changes in the energy mix used to manufacture future power plants. Under the Baseline scenario, emissions of air and water pollutants more than double whereas the low-carbon technologies introduced in the BLUE Map scenario allow a doubling of electricity supply while stabilizing or even reducing pollution. Material requirements per unit generation for low-carbon technologies can be higher than for conventional fossil generation: 11-40 times more copper for photovoltaic systems and 6-14 times more iron for wind power plants. However, only two years of current global copper and one year of iron production will suffice to build a low-carbon energy system capable of supplying the world's electricity needs in 2050.

  16. Integrated life-cycle assessment of electricity-supply scenarios confirms global environmental benefit of low-carbon technologies

    PubMed Central

    Hertwich, Edgar G.; Gibon, Thomas; Bouman, Evert A.; Arvesen, Anders; Heath, Garvin A.; Bergesen, Joseph D.; Ramirez, Andrea; Vega, Mabel I.; Shi, Lei

    2015-01-01

    Decarbonization of electricity generation can support climate-change mitigation and presents an opportunity to address pollution resulting from fossil-fuel combustion. Generally, renewable technologies require higher initial investments in infrastructure than fossil-based power systems. To assess the tradeoffs of increased up-front emissions and reduced operational emissions, we present, to our knowledge, the first global, integrated life-cycle assessment (LCA) of long-term, wide-scale implementation of electricity generation from renewable sources (i.e., photovoltaic and solar thermal, wind, and hydropower) and of carbon dioxide capture and storage for fossil power generation. We compare emissions causing particulate matter exposure, freshwater ecotoxicity, freshwater eutrophication, and climate change for the climate-change-mitigation (BLUE Map) and business-as-usual (Baseline) scenarios of the International Energy Agency up to 2050. We use a vintage stock model to conduct an LCA of newly installed capacity year-by-year for each region, thus accounting for changes in the energy mix used to manufacture future power plants. Under the Baseline scenario, emissions of air and water pollutants more than double whereas the low-carbon technologies introduced in the BLUE Map scenario allow a doubling of electricity supply while stabilizing or even reducing pollution. Material requirements per unit generation for low-carbon technologies can be higher than for conventional fossil generation: 11–40 times more copper for photovoltaic systems and 6–14 times more iron for wind power plants. However, only two years of current global copper and one year of iron production will suffice to build a low-carbon energy system capable of supplying the world's electricity needs in 2050. PMID:25288741

  17. Weathering a Dynamic Seascape: Influences of Wind and Rain on a Seabird’s Year-Round Activity Budgets

    PubMed Central

    Pistorius, Pierre A.; Hindell, Mark A.; Tremblay, Yann; Rishworth, Gavin M.

    2015-01-01

    How animals respond to varying environmental conditions is fundamental to ecology and is a question that has gained impetus due to mounting evidence indicating negative effects of global change on biodiversity. Behavioural plasticity is one mechanism that enables individuals and species to deal with environmental changes, yet for many taxa information on behavioural parameters and their capacity to change are lacking or restricted to certain periods within the annual cycle. This is particularly true for seabirds where year-round behavioural information is intrinsically challenging to acquire due to their reliance on the marine environment where they are difficult to study. Using data from over 13,000 foraging trips throughout the annual cycle, acquired using new-generation automated VHF technology, we described sex-specific, year-round activity budgets in Cape gannets. Using these data we investigated the role of weather (wind and rain) on foraging activity and time allocated to nest attendance. Foraging activity was clearly influenced by wind speed, wind direction and rainfall during and outside the breeding season. Generally, strong wind conditions throughout the year resulted in relatively short foraging trips. Birds spent longer periods foraging when rainfall was moderate. Nest attendance, which was sex-specific outside of the breeding season, was also influenced by meteorological conditions. Large amounts of rainfall (> 2.5 mm per hour) and strong winds (> 13 m s-1) resulted in gannets spending shorter amounts of time at their nests. We discuss these findings in terms of life history strategies and implications for the use of seabirds as bio-indicators. PMID:26581108

  18. Wind energy developments in the 20th century

    NASA Technical Reports Server (NTRS)

    Vargo, D. J.

    1974-01-01

    Wind turbine systems for generating electrical power have been tested in many countries. Representative examples of turbines which have produced from 100 to 1250 kW are described. The advantages of wind energy consist of its being a nondepleting, nonpolluting, and free fuel source. Its disadvantages relate to the variability of wind and the high installation cost per kilowatt of capacity of wind turbines when compared to other methods of electric-power generation. High fuel costs and potential resource scarcity have led to a five-year joint NASA-NSF program to study wind energy. The program will study wind energy conversion and storage systems with respect to cost effectiveness, and will attempt to estimate national wind-energy potential and develop techniques for generator site selection. The studies concern a small-systems (50-250 kW) project, a megawatt-systems (500-3000 kW) project, supporting research and technology, and energy storage. Preliminary economic analyses indicate that wind-energy conversion can be competitive in high-average-wind areas.

  19. Evaluation of the Impact of Wind Generation on the Electricity Market Prices and on the Profitability of New Wind Investments

    NASA Astrophysics Data System (ADS)

    Pereira, A. J.; Saraiva, J. T.

    2012-10-01

    This paper describes a Dynamic Model of the electricity sector that can be used to simulate the evolution of some key variables on the long term, namely the evolution of the electricity price, of the demand and of the capacity factors of the technologies in the generation mix. This model can be used in different ways and by several agents, for instance to estimate the impact on the electricity price of the increasing presence of renewable power stations, namely using wind power and PV systems. In several countries these stations are paid feed-in tariffs with a fixed price but in some cases this scheme is under discussion and there are opinions that payments determined by the market price are more adequate and would bring fewer costs to final consumers. Such a change has to be carefully evaluated given that the presence of renewable stations bidding at an infra marginal price will affect the price itself. The model described in this paper can be used in a profitable way both by governmental agencies when preparing or studying alternative remuneration schemes to renewable stations or by promoters themselves to get more insight to the profitability of their investments, namely if the fixed feed-in tariffs in force in several countries are changed.

  20. Wind energy utilization: A bibliography with abstracts - Cumulative volume 1944/1974

    NASA Technical Reports Server (NTRS)

    1975-01-01

    Bibliography, up to 1974 inclusive, of articles and books on utilization of wind power in energy generation. Worldwide literature is surveyed, and short abstracts are provided in many cases. The citations are grouped by subject: (1) general; (2) utilization; (3) wind power plants; (4) wind power generators (rural, synchronous, remote station); (5) wind machines (motors, pumps, turbines, windmills, home-built); (6) wind data and properties; (7) energy storage; and (8) related topics (control and regulation devices, wind measuring devices, blade design and rotors, wind tunnel simulation, aerodynamics). Gross-referencing is aided by indexes of authors, corporate sources, titles, and keywords.

  1. Motion picture history of the erection and operation of the Smith-Putnam wind generator

    NASA Technical Reports Server (NTRS)

    Wilcox, C.

    1973-01-01

    A color movie presentation is discussed that presents the various stages in assemblying the major subsystems of a synchronous wind generator, such as installing the rotor blades and the rotating platform at the top of the tower. In addition scenes are shown of the wind generator in operation.

  2. 76 FR 23198 - Segregation of Lands-Renewable Energy

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-26

    ... could be used to carry the power generated from a specific wind or solar energy ROW project, and the... included in a pending or future wind or solar energy generation right- of-way (ROW) application, or public lands identified by the BLM for a potential future wind or solar energy generation ROW authorization...

  3. Exploring the Effect of Climate Perturbations on Water Availability for Renewable Energy Development in the Indian Wells Valley, California

    NASA Astrophysics Data System (ADS)

    Rey, David M.

    Energy and water are connected through the water-use cycle (e.g. obtaining, transporting, and treating water) and thermoelectric energy generation, which converts heat to electricity via steam-driven turbines. As the United States implements more renewable energy technologies, quantifying the relationships between energy, water, and land-surface impacts of these implementations will provide policy makers the strengths and weaknesses of different renewable energy options. In this study, a MODFLOW model of the Indian Wells Valley (IWV), in California, was developed to capture the water, energy, and land-surface impacts of potential proposed 1) solar, 2) wind, and 3) biofuel implementations. The model was calibrated to pre-existing groundwater head data from 1985 to present to develop a baseline model before running two-year predictive scenarios for photovoltaic (PV), concentrating solar power (CSP), wind, and biofuel implementations. Additionally, the baseline model was perturbed by decreasing mountain front recharge values by 5%, 10%, and 15%, simulating potential future system perturbations under a changing climate. These potential future conditions were used to re-run each implementation scenario. Implementation scenarios were developed based on population, typical energy use per person, existing land-use and land-cover type within the IWV, and previously published values for water use, surface-area use, and energy-generation potential for each renewable fuel type. The results indicate that the quantity of water needed, localized drawdown from pumping water to meet implementation demands, and generation efficiency are strongly controlled by the fuel type, as well as the energy generating technology and thermoelectric technologies implemented. Specifically, PV and wind-turbine (WT) implementations required less than 1% of the estimated annual aquifer recharge, while technologies such as biofuels and CSP, which rely on thermoelectric generation, ranged from 3% to 20%. As modeled groundwater elevations declined in the IWV, the net generation (i.e. energy produced - energy used) of each renewable energy implementation decreased due a higher energy cost for pumping groundwater. The loss in efficiency was minimal for PV and wind solutions, with maximum changes in the drawdown being less than 10 m; however, for CSP and biofuel implementations drawdowns over 50 m were observed at the pumping well, resulting in electrical generation efficiency losses between 4% and 50% over a two-year period. It was concluded that PV would be the best balance between water and land-use for the IWV, or other groundwater dependent Basin and Range settings. In areas with limited water resources but abundant available land for implementation, WT solutions would have the smallest hydrologic impact. The impact of renewable scenarios was highly variable across and within differing fuel types, with the potential for larger negative impacts under a changing climate in areas with no perennial surface water.

  4. Serially-Connected Compensator for Eliminating the Unbalanced Three-Phase Voltage Impact on Wind Turbine Generators: Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Z.; Hsu, P.; Muljadi, E.

    2015-04-06

    Untransposed transmission lines, unbalanced tap changer operations, and unbalanced loading in weak distribution lines can cause unbalanced-voltage conditions. The resulting unbalanced voltage at the point of interconnection affects proper gird integration and reduces the lifetime of wind turbines due to power oscillations, torque pulsations, mechanical stresses, energy losses, and uneven and overheating of the generator stator winding. This work investigates the dynamic impact of unbalanced voltage on the mechanical and electrical components of integrated Fatigue, Aerodynamics, Structures, and Turbulence (FAST) wind turbine generation systems (WTGs) of Type 1 (squirrel-cage induction generator) and Type 3 (doubly-fed induction generator). To alleviate thismore » impact, a serially-connected compensator for a three-phase power line is proposed to balance the wind turbine-side voltage. Dynamic simulation studies are conducted in MATLAB/Simulink to compare the responses of these two types of wind turbine models under normal and unbalanced-voltage operation conditions and demonstrate the effectiveness of the proposed compensator.« less

  5. A Serially-Connected Compensator for Eliminating the Unbalanced Three-Phase Voltage Impact on Wind Turbine Generators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Ziping; Hsu, Ping; Muljadi, Eduard

    2015-10-05

    Untransposed transmission lines, unbalanced tap changer operations, and unbalanced loading in weak distribution lines can cause unbalanced-voltage conditions. The resulting unbalanced voltage at the point of interconnection affects proper gird integration and reduces the lifetime of wind turbines due to power oscillations, torque pulsations, mechanical stresses, energy losses, and uneven and overheating of the generator stator winding. This work investigates the dynamic impact of unbalanced voltage on the mechanical and electrical components of integrated Fatigue, Aerodynamics, Structures, and Turbulence (FAST) wind turbine generation systems (WTGs) of Type 1 (squirrel-cage induction generator) and Type 3 (doubly-fed induction generator). To alleviate thismore » impact, a serially-connected compensator for a three-phase power line is proposed to balance the wind turbine-side voltage. Dynamic simulation studies are conducted in MATLAB/Simulink to compare the responses of these two types of wind turbine models under normal and unbalanced-voltage operation conditions and demonstrate the effectiveness of the proposed compensator.« less

  6. Energy optimization for a wind DFIG with flywheel energy storage

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hamzaoui, Ihssen, E-mail: hamzaoui-ihssen2000@yahoo.fr; Laboratory of Instrumentation, Faculty of Electronics and Computer, University of Khemis Miliana, Ain Defla; Bouchafaa, Farid, E-mail: fbouchafa@gmail.com

    2016-07-25

    The type of distributed generation unit that is the subject of this paper relates to renewable energy sources, especially wind power. The wind generator used is based on a double fed induction Generator (DFIG). The stator of the DFIG is connected directly to the network and the rotor is connected to the network through the power converter with three levels. The objective of this work is to study the association a Flywheel Energy Storage System (FESS) in wind generator. This system is used to improve the quality of electricity provided by wind generator. It is composed of a flywheel; anmore » induction machine (IM) and a power electronic converter. A maximum power tracking technique « Maximum Power Point Tracking » (MPPT) and a strategy for controlling the pitch angle is presented. The model of the complete system is developed in Matlab/Simulink environment / to analyze the results from simulation the integration of wind chain to networks.« less

  7. Research on Operation Strategy for Bundled Wind-thermal Generation Power Systems Based on Two-Stage Optimization Model

    NASA Astrophysics Data System (ADS)

    Sun, Congcong; Wang, Zhijie; Liu, Sanming; Jiang, Xiuchen; Sheng, Gehao; Liu, Tianyu

    2017-05-01

    Wind power has the advantages of being clean and non-polluting and the development of bundled wind-thermal generation power systems (BWTGSs) is one of the important means to improve wind power accommodation rate and implement “clean alternative” on generation side. A two-stage optimization strategy for BWTGSs considering wind speed forecasting results and load characteristics is proposed. By taking short-term wind speed forecasting results of generation side and load characteristics of demand side into account, a two-stage optimization model for BWTGSs is formulated. By using the environmental benefit index of BWTGSs as the objective function, supply-demand balance and generator operation as the constraints, the first-stage optimization model is developed with the chance-constrained programming theory. By using the operation cost for BWTGSs as the objective function, the second-stage optimization model is developed with the greedy algorithm. The improved PSO algorithm is employed to solve the model and numerical test verifies the effectiveness of the proposed strategy.

  8. Control of large wind turbine generators connected to utility networks

    NASA Technical Reports Server (NTRS)

    Hinrichsen, E. N.

    1983-01-01

    This is an investigation of the control requirements for variable pitch wind turbine generators connected to electric power systems. The requirements include operation in very small as well as very large power systems. Control systems are developed for wind turbines with synchronous, induction, and doubly fed generators. Simulation results are presented. It is shown how wind turbines and power system controls can be integrated. A clear distinction is made between fast control of turbine torque, which is a peculiarity of wind turbines, and slow control of electric power, which is a traditional power system requirement.

  9. Lewis Research Center studies of multiple large wind turbine generators on a utility network

    NASA Technical Reports Server (NTRS)

    Gilbert, L. J.; Triezenberg, D. M.

    1979-01-01

    A NASA-Lewis program to study the anticipated performance of a wind turbine generator farm on an electric utility network is surveyed. The paper describes the approach of the Lewis Wind Energy Project Office to developing analysis capabilities in the area of wind turbine generator-utility network computer simulations. Attention is given to areas such as, the Lewis Purdue hybrid simulation, an independent stability study, DOE multiunit plant study, and the WEST simulator. Also covered are the Lewis mod-2 simulation including analog simulation of a two wind turbine system and comparison with Boeing simulation results, and gust response of a two machine model. Finally future work to be done is noted and it is concluded that the study shows little interaction between the generators and between the generators and the bus.

  10. High-resolution stochastic downscaling of climate models: simulating wind advection, cloud cover and precipitation

    NASA Astrophysics Data System (ADS)

    Peleg, Nadav; Fatichi, Simone; Burlando, Paolo

    2015-04-01

    A new stochastic approach to generate wind advection, cloud cover and precipitation fields is presented with the aim of formulating a space-time weather generator characterized by fields with high spatial and temporal resolution (e.g., 1 km x 1 km and 5 min). Its use is suitable for stochastic downscaling of climate scenarios in the context of hydrological, ecological and geomorphological applications. The approach is based on concepts from the Advanced WEather GENerator (AWE-GEN) presented by Fatichi et al. (2011, Adv. Water Resour.), the Space-Time Realizations of Areal Precipitation model (STREAP) introduced by Paschalis et al. (2013, Water Resour. Res.), and the High-Resolution Synoptically conditioned Weather Generator (HiReS-WG) presented by Peleg and Morin (2014, Water Resour. Res.). Advection fields are generated on the basis of the 500 hPa u and v wind direction variables derived from global or regional climate models. The advection velocity and direction are parameterized using Kappa and von Mises distributions respectively. A random Gaussian fields is generated using a fast Fourier transform to preserve the spatial correlation of advection. The cloud cover area, total precipitation area and mean advection of the field are coupled using a multi-autoregressive model. The approach is relatively parsimonious in terms of computational demand and, in the context of climate change, allows generating many stochastic realizations of current and projected climate in a fast and efficient way. A preliminary test of the approach is presented with reference to a case study in a complex orography terrain in the Swiss Alps.

  11. Potential climatic impacts and reliability of very large-scale wind farms

    NASA Astrophysics Data System (ADS)

    Wang, C.; Prinn, R. G.

    2010-02-01

    Meeting future world energy needs while addressing climate change requires large-scale deployment of low or zero greenhouse gas (GHG) emission technologies such as wind energy. The widespread availability of wind power has fueled substantial interest in this renewable energy source as one of the needed technologies. For very large-scale utilization of this resource, there are however potential environmental impacts, and also problems arising from its inherent intermittency, in addition to the present need to lower unit costs. To explore some of these issues, we use a three-dimensional climate model to simulate the potential climate effects associated with installation of wind-powered generators over vast areas of land or coastal ocean. Using wind turbines to meet 10% or more of global energy demand in 2100, could cause surface warming exceeding 1 °C over land installations. In contrast, surface cooling exceeding 1 °C is computed over ocean installations, but the validity of simulating the impacts of wind turbines by simply increasing the ocean surface drag needs further study. Significant warming or cooling remote from both the land and ocean installations, and alterations of the global distributions of rainfall and clouds also occur. These results are influenced by the competing effects of increases in roughness and decreases in wind speed on near-surface turbulent heat fluxes, the differing nature of land and ocean surface friction, and the dimensions of the installations parallel and perpendicular to the prevailing winds. These results are also dependent on the accuracy of the model used, and the realism of the methods applied to simulate wind turbines. Additional theory and new field observations will be required for their ultimate validation. Intermittency of wind power on daily, monthly and longer time scales as computed in these simulations and inferred from meteorological observations, poses a demand for one or more options to ensure reliability, including backup generation capacity, very long distance power transmission lines, and onsite energy storage, each with specific economic and/or technological challenges.

  12. Potential climatic impacts and reliability of very large-scale wind farms

    NASA Astrophysics Data System (ADS)

    Wang, C.; Prinn, R. G.

    2009-09-01

    Meeting future world energy needs while addressing climate change requires large-scale deployment of low or zero greenhouse gas (GHG) emission technologies such as wind energy. The widespread availability of wind power has fueled legitimate interest in this renewable energy source as one of the needed technologies. For very large-scale utilization of this resource, there are however potential environmental impacts, and also problems arising from its inherent intermittency, in addition to the present need to lower unit costs. To explore some of these issues, we use a three-dimensional climate model to simulate the potential climate effects associated with installation of wind-powered generators over vast areas of land or coastal ocean. Using wind turbines to meet 10% or more of global energy demand in 2100, could cause surface warming exceeding 1°C over land installations. In contrast, surface cooling exceeding 1°C is computed over ocean installations, but the validity of simulating the impacts of wind turbines by simply increasing the ocean surface drag needs further study. Significant warming or cooling remote from both the land and ocean installations, and alterations of the global distributions of rainfall and clouds also occur. These results are influenced by the competing effects of increases in roughness and decreases in wind speed on near-surface turbulent heat fluxes, the differing nature of land and ocean surface friction, and the dimensions of the installations parallel and perpendicular to the prevailing winds. These results are also dependent on the accuracy of the model used, and the realism of the methods applied to simulate wind turbines. Additional theory and new field observations will be required for their ultimate validation. Intermittency of wind power on daily, monthly and longer time scales as computed in these simulations and inferred from meteorological observations, poses a demand for one or more options to ensure reliability, including backup generation capacity, very long distance power transmission lines, and onsite energy storage, each with specific economic and/or technological challenges.

  13. Nuclear Power as a Basis for Future Electricity Generation

    NASA Astrophysics Data System (ADS)

    Pioro, Igor; Buruchenko, Sergey

    2017-12-01

    It is well known that electrical-power generation is the key factor for advances in industry, agriculture, technology and the level of living. Also, strong power industry with diverse energy sources is very important for country independence. In general, electrical energy can be generated from: 1) burning mined and refined energy sources such as coal, natural gas, oil, and nuclear; and 2) harnessing energy sources such as hydro, biomass, wind, geothermal, solar, and wave power. Today, the main sources for electrical-energy generation are: 1) thermal power - primarily using coal and secondarily - natural gas; 2) “large” hydro power from dams and rivers and 3) nuclear power from various reactor designs. The balance of the energy sources is from using oil, biomass, wind, geothermal and solar, and have visible impact just in some countries. In spite of significant emphasis in the world on using renewables sources of energy, in particular, wind and solar, they have quite significant disadvantages compared to “traditional” sources for electricity generation such as thermal, hydro, and nuclear. These disadvantages include low density of energy, which requires large areas to be covered with wind turbines or photovoltaic panels or heliostats, and dependence of these sources on Mother Nature, i.e., to be unreliable ones and to have low (20 - 40%) or very low (5 - 15%) capacity factors. Fossil-fueled power plants represent concentrated and reliable source of energy. Also, they operate usually as “fast-response” plants to follow rapidly changing electrical-energy consumption during a day. However, due to combustion process they emit a lot of carbon dioxide, which contribute to the climate change in the world. Moreover, coal-fired power plants, as the most popular ones, create huge amount of slag and ash, and, eventually, emit other dangerous and harmful gases. Therefore, Nuclear Power Plants (NPPs), which are also concentrated and reliable source of energy, moreover, the energy source, which does not emit carbon dioxide into atmosphere, are considered as the energy source for basic loads in an electrical grid. Currently, the vast majority of NPPs are used only for electricity generation. However, there are possibilities to use NPPs also for district heating or for desalination of water. In spite of all current advances in nuclear power, NPPs have the following deficiencies: 1) Generate radioactive wastes; 2) Have relatively low thermal efficiencies, especially, watercooled NPPs; 3) Risk of radiation release during severe accidents; and 4) Production of nuclear fuel is not an environment-friendly process. Therefore, all these deficiencies should be addressed in the next generation or Generation-IV reactors. Generation-IV reactors will be hightemperature reactors and multipurpose ones, which include electricity generation, hydrogen cogeneration, process heat, district heating, desalination, etc.

  14. Development and bottlenecks of renewable electricity generation in China: a critical review.

    PubMed

    Hu, Yuanan; Cheng, Hefa

    2013-04-02

    This review provides an overview on the development and status of electricity generation from renewable energy sources, namely hydropower, wind power, solar power, biomass energy, and geothermal energy, and discusses the technology, policy, and finance bottlenecks limiting growth of the renewable energy industry in China. Renewable energy, dominated by hydropower, currently accounts for more than 25% of the total electricity generation capacity. China is the world's largest generator of both hydropower and wind power, and also the largest manufacturer and exporter of photovoltaic cells. Electricity production from solar and biomass energy is at the early stages of development in China, while geothermal power generation has received little attention recently. The spatial mismatch in renewable energy supply and electricity demand requires construction of long-distance transmission networks, while the intermittence of renewable energy poses significant technical problems for feeding the generated electricity into the power grid. Besides greater investment in research and technology development, effective policies and financial measures should also be developed and improved to better support the healthy and sustained growth of renewable electricity generation. Meanwhile, attention should be paid to the potential impacts on the local environment from renewable energy development, despite the wider benefits for climate change.

  15. Wind turbine generators having wind assisted cooling systems and cooling methods

    DOEpatents

    Bagepalli, Bharat [Niskayuna, NY; Barnes, Gary R [Delanson, NY; Gadre, Aniruddha D [Rexford, NY; Jansen, Patrick L [Scotia, NY; Bouchard, Jr., Charles G.; Jarczynski, Emil D [Scotia, NY; Garg, Jivtesh [Cambridge, MA

    2008-09-23

    A wind generator includes: a nacelle; a hub carried by the nacelle and including at least a pair of wind turbine blades; and an electricity producing generator including a stator and a rotor carried by the nacelle. The rotor is connected to the hub and rotatable in response to wind acting on the blades to rotate the rotor relative to the stator to generate electricity. A cooling system is carried by the nacelle and includes at least one ambient air inlet port opening through a surface of the nacelle downstream of the hub and blades, and a duct for flowing air from the inlet port in a generally upstream direction toward the hub and in cooling relation to the stator.

  16. Capacity Adequacy and Revenue Sufficiency in Electricity Markets With Wind Power

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Levin, Todd; Botterud, Audun

    2015-05-01

    We present a computationally efficient mixed-integer program (MIP) that determines optimal generator expansion decisions, as well as periodic unit commitment and dispatch. The model is applied to analyze the impact of increasing wind power capacity on the optimal generation mix and the profitability of thermal generators. In a case study, we find that increasing wind penetration reduces energy prices while the prices for operating reserves increase. Moreover, scarcity pricing for operating reserves through reserve shortfall penalties significantly impacts the prices and profitability of thermal generators. Without scarcity pricing, no thermal units are profitable, however scarcity pricing can ensure profitability formore » peaking units at high wind penetration levels. Capacity payments can also ensure profitability, but the payments required for baseload units to break even increase with the amount of wind power. The results indicate that baseload units are most likely to experience revenue sufficiency problems when wind penetration increases and new baseload units are only developed when natural gas prices are high and wind penetration is low.« less

  17. Generation of Kappa Distributions in Solar Wind at 1 au

    NASA Astrophysics Data System (ADS)

    Livadiotis, G.; Desai, M. I.; Wilson, L. B., III

    2018-02-01

    We examine the generation of kappa distributions in the solar wind plasma near 1 au. Several mechanisms are mentioned in the literature, each characterized by a specific relationship between the solar wind plasma features, the interplanetary magnetic field (IMF), and the kappa index—the parameter that governs the kappa distributions. This relationship serves as a signature condition that helps the identification of the mechanism in the plasma. In general, a mechanism that generates kappa distributions involves a single or a series of stochastic or physical processes that induces local correlations among particles. We identify three fundamental solar wind plasma conditions that can generate kappa distributions, noted as (i) Debye shielding, (ii) frozen IMF, and (iii) temperature fluctuations, each one prevailing in different scales of solar wind plasma and magnetic field properties. Moreover, our findings show that the kappa distributions, and thus, their generating mechanisms, vary significantly with solar wind features: (i) the kappa index has different dependence on the solar wind speed for slow and fast modes, i.e., slow wind is characterized by a quasi-constant kappa index, κ ≈ 4.3 ± 0.7, while fast wind exhibits kappa indices that increase with bulk speed; (ii) the dispersion of magnetosonic waves is more effective for lower kappa indices (i.e., further from thermal equilibrium); and (iii) the kappa and polytropic indices are positively correlated, as it was anticipated by the theory.

  18. 76 FR 2365 - Notice of Effectiveness of Exempt Wholesale Generator Status

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-13

    ... Wholesale Generator Status January 6, 2011. Docket No. Ashtabula Wind III, LLC EG11-1-000 Iberdrola Renewables, Inc EG11-2-000 Flat Water Wind Farm, LLC EG11-3-000 Wildorado Wind Two, LLC EG11-4-000 Sandy Ridge Wind, LLC EG11-5-000 AES ES Deepwater, LLC EG11-6-000 Elk City II Wind, LLC EG11-7-000 Take notice...

  19. Utility interconnection issues for wind power generation

    NASA Technical Reports Server (NTRS)

    Herrera, J. I.; Lawler, J. S.; Reddoch, T. W.; Sullivan, R. L.

    1986-01-01

    This document organizes the total range of utility related issues, reviews wind turbine control and dynamic characteristics, identifies the interaction of wind turbines to electric utility systems, and identifies areas for future research. The material is organized at three levels: the wind turbine, its controls and characteristics; connection strategies as dispersed or WPSs; and the composite issue of planning and operating the electric power system with wind generated electricity.

  20. Status of Sundstrand research

    NASA Technical Reports Server (NTRS)

    Bateman, Don

    1991-01-01

    Wind shear detection status is presented in the form of view-graphs. The following subject areas are covered: second generation detection (Q-bias, gamma bias, temperature biases, maneuvering flight modulation, and altitude modulation); third generation wind shear detection (use wind shear computation to augment flight path and terrain alerts, modulation of alert thresholds based on wind/terrain data base, incorporate wind shear/terrain alert enhancements from predictive sensor data); and future research and development.

  1. LDV measurement of boundary layer on rotating blade surface in wind tunnel

    NASA Astrophysics Data System (ADS)

    Maeda, Takao; Kamada, Yasunari; Murata, Junsuke; Suzuki, Daiki; Kaga, Norimitsu; Kagisaki, Yosuke

    2014-12-01

    Wind turbines generate electricity due to extracting energy from the wind. The rotor aerodynamics strongly depends on the flow around blade. The surface flow on the rotating blade affects the sectional performance. The wind turbine surface flow has span-wise component due to span-wise change of airfoil section, chord length, twisted angle of blade and centrifugal force on the flow. These span-wise flow changes the boundary layer on the rotating blade and the sectional performance. Hence, the thorough understanding of blade surface flow is important to improve the rotor performance. For the purpose of clarification of the flow behaviour around the rotor blade, the velocity in the boundary layer on rotating blade surface of an experimental HAWT was measured in a wind tunnel. The velocity measurement on the blade surface was carried out by a laser Doppler velocimeter (LDV). As the results of the measurement, characteristics of surface flow are clarified. In optimum tip speed operation, the surface flow on leading edge and r/R=0.3 have large span-wise velocity which reaches 20% of sectional inflow velocity. The surface flow inboard have three dimensional flow patterns. On the other hand, the flow outboard is almost two dimensional in cross sectional plane.

  2. Seasonality, interannual variability, and linear tendency of wind speeds in the northeast Brazil from 1986 to 2011.

    PubMed

    Torres Silva dos Santos, Alexandre; Moisés Santos e Silva, Cláudio

    2013-01-01

    Wind speed analyses are currently being employed in several fields, especially in wind power generation. In this study, we used wind speed data from records of Universal Fuess anemographs at an altitude of 10 m from 47 weather stations of the National Institute of Meteorology (Instituto Nacional de Meteorologia-INMET) from January 1986 to December 2011. The objective of the study was to investigate climatological aspects and wind speed trends. To this end, the following methods were used: filling of missing data, descriptive statistical calculations, boxplots, cluster analysis, and trend analysis using the Mann-Kendall statistical method. The seasonal variability of the average wind speeds of each group presented higher values for winter and spring and lower values in the summer and fall. The groups G1, G2, and G5 showed higher annual averages in the interannual variability of wind speeds. These observed peaks were attributed to the El Niño and La Niña events, which change the behavior of global wind circulation and influence wind speeds over the region. Trend analysis showed more significant negative values for the G3, G4, and G5 groups for all seasons of the year and in the annual average for the period under study.

  3. Seasonality, Interannual Variability, and Linear Tendency of Wind Speeds in the Northeast Brazil from 1986 to 2011

    PubMed Central

    Santos e Silva, Cláudio Moisés

    2013-01-01

    Wind speed analyses are currently being employed in several fields, especially in wind power generation. In this study, we used wind speed data from records of Universal Fuess anemographs at an altitude of 10 m from 47 weather stations of the National Institute of Meteorology (Instituto Nacional de Meteorologia-INMET) from January 1986 to December 2011. The objective of the study was to investigate climatological aspects and wind speed trends. To this end, the following methods were used: filling of missing data, descriptive statistical calculations, boxplots, cluster analysis, and trend analysis using the Mann-Kendall statistical method. The seasonal variability of the average wind speeds of each group presented higher values for winter and spring and lower values in the summer and fall. The groups G1, G2, and G5 showed higher annual averages in the interannual variability of wind speeds. These observed peaks were attributed to the El Niño and La Niña events, which change the behavior of global wind circulation and influence wind speeds over the region. Trend analysis showed more significant negative values for the G3, G4, and G5 groups for all seasons of the year and in the annual average for the period under study. PMID:24250267

  4. Wind turbine wake visualization and characteristics analysis by Doppler lidar.

    PubMed

    Wu, Songhua; Liu, Bingyi; Liu, Jintao; Zhai, Xiaochun; Feng, Changzhong; Wang, Guining; Zhang, Hongwei; Yin, Jiaping; Wang, Xitao; Li, Rongzhong; Gallacher, Daniel

    2016-05-16

    Wind power generation is growing fast as one of the most promising renewable energy sources that can serve as an alternative to fossil fuel-generated electricity. When the wind turbine generator (WTG) extracts power from the wind, the wake evolves and leads to a considerable reduction in the efficiency of the actual power generation. Furthermore, the wake effect can lead to the increase of turbulence induced fatigue loads that reduce the life time of WTGs. In this work, a pulsed coherent Doppler lidar (PCDL) has been developed and deployed to visualize wind turbine wakes and to characterize the geometry and dynamics of wakes. As compared with the commercial off-the-shelf coherent lidars, the PCDL in this work has higher updating rate of 4 Hz and variable physical spatial resolution from 15 to 60 m, which improves its capability to observation the instantaneous turbulent wind field. The wind speed estimation method from the arc scan technique was evaluated in comparison with wind mast measurements. Field experiments were performed to study the turbulent wind field in the vicinity of operating WTGs in the onshore and offshore wind parks from 2013 to 2015. Techniques based on a single and a dual Doppler lidar were employed for elucidating main features of turbine wakes, including wind velocity deficit, wake dimension, velocity profile, 2D wind vector with resolution of 10 m, turbulence dissipation rate and turbulence intensity under different conditions of surface roughness. The paper shows that the PCDL is a practical tool for wind energy research and will provide a significant basis for wind farm site selection, design and optimization.

  5. Optimizing the Operation of Windfarms, Energy Storage and Flexible Loads in Modern Power Systems and Deregulated Electricity Markets

    NASA Astrophysics Data System (ADS)

    Dar, Zamiyad

    The amount of wind energy in power systems is increasing at a significant rate. With this increased penetration, there are certain problems associated with the operation of windfarms which need careful attention. In the operations side, the wake effects of upstream wind turbines on downstream wind turbines can cause a reduction in the total generated power of a windfarm. On the market side, the fluctuation of real-time prices can make the operation of windfarms less profitable. Similarly, the intermittent nature of wind power prevents the windfarms from participating in the day-ahead and forward markets. On the system side, the volatile nature of wind speeds is also an obstacle for windfarms to provide frequency regulation to the system. In this thesis, we address these issues and optimize the operation of windfarms in power systems and deregulated electricity markets. First, the total power generation in a windfarm is maximized by using yaw angle of wind turbines as a control variable. We extend the existing wake models to include the effects of yaw misalignment and wake deflection of wind turbines. A numerical study is performed to find the optimal values of induction factor and yaw misalignment angle of wind turbines in a single row of a windfarm for achieving the maximum total power with wake effects. The numerical study shows that the maximum power is achieved by keeping the induction factor close to 1/3 and only changing the yaw angle to deflect the wake. We then propose a Dynamic Programming Framework (DPF) to maximize the total power production of a windfarm using yaw angle as the control variable. We compare the windfarm efficiency achieved with our DPF with the efficiency values obtained through greedy control strategy and induction factor optimization. We also extend our expressions to a windfarm with multiple rows and columns of turbines and perform simulations on the 3x3 and 4x4 grid topologies. Our results show that the optimal induction factor for most turbines is quite close to 1/3 and yaw angle acts as the dominant optimization variable. In the next part of this dissertation, a system comprising of a windfarm and energy storage operating in real-time electricity markets is studied. An Energy-balancing Threshold Price (ETP) policy is proposed to maximize the revenue of a windfarm with on-site storage. We propose and analyze a scheme for a windfarm to store or sell energy based on a threshold price. The threshold price is calculated based on long-term distributions of the electricity price and wind power generation processes, and is chosen so as to balance the energy flows in and out of the storage-equipped windfarm. It is also shown mathematically that the proposed policy is optimal in terms of the long-term revenue generated. Comparing it with the optimal policy that has knowledge of the future, we observe that the revenue obtained by the proposed ETP policy is approximately 90% of the maximum attainable revenue at a storage capacity of 10-15 times the power rating of the windfarm. The intermittent nature of wind power is a hindrance to the efficient participation of windfarms in the day-ahead and forward electricity markets. In this regard, a flexible forward contract is proposed in this dissertation which allows the windfarms to enter into a forward contract with flexible load with an option to deviate from the contracted amount of power. Using such a flexible contract would allow the windfarms to supply more or less than the contracted amount of power in case of unexpected wind conditions or real-time prices. We also propose models for forecasting wind power and real-time electricity prices. The comparison between the proposed contracting framework and a simple fixed contract (currently existing in the market) for different levels of flexibility and load shows that there is a net gain in windfarm revenues, if the transaction price of the two contracts are set equal. Lastly, we present and analyze distributed control schemes for frequency regulation in a smart grid using energy storage, wind generators, demand response and conventional generators while having no communication or data sharing between them. We also propose a novel control scheme for frequency support by energy storage in which the power output of energy storage changes proportionally with the reduction in its available energy. The application of the proposed control schemes indicates an improvement in system frequency characteristics, when there is a sudden net loss of generation.

  6. Influence of the sea-ice edge on the Arctic nearshore environment

    NASA Astrophysics Data System (ADS)

    Barnhart, K. R.; Overeem, I.; Anderson, R. S.

    2013-12-01

    Coasts form the dynamic interface of the terrestrial and oceanic systems. In the Arctic, and in much of the world, the coast is a zone of relatively high population, infrastructure, biodiversity, and ecosystem services. A significant difference between Arctic and temperate coasts is the presence of sea ice. Sea ice influences Arctic coasts in two main ways: (1) the length of the sea ice-free season controls the length of time over which nearshore water can interact with the land, and (2) the sea ice edge controls the fetch over which storm winds can blow over open water, resulting in changes in nearshore water level and wave field. The resulting nearshore hydrodynamic environment impacts all aspects of the coastal system. Here, we use satellite records of sea ice along with a simple model for wind-driven storm surge and waves to document how changes in the length and character of the sea ice-free season have impacted the nearshore hydrodynamic environment. For our sea ice analysis we primarily use the Bootstrap Sea Ice Concentrations from Nimbus-7 SMMR and DMSP SSM/I-SSMIS. We make whole-Arctic maps of sea ice change in the coastal zone. In addition to evaluating changes in length of the sea ice-free season at the coast, we look at changes segmented by azimuth. This allows us to consider changes in the sea ice in the context of the wind field. For our storm surge and wave field analysis we focus on the Beaufort Sea region. This region has experienced some of the greatest changes in both sea ice cover and coastal erosion rates in the Arctic and is anticipated to experience significant change in the future. In addition, the NOAA ESRL GMD has observed the wind field at Barrow since extends to 1977. In our past work on the rapid and accelerating coastal erosion, we have shown that one may model storm surge with a 2D numerical bathystrophic model, and that waves are well represented by the Shore Protection Manual methods for shallow-water fetch-limited waves. We use these models to explore the effect of increasing fetch on water level set up and wave generation. As increasing the fetch is one of the main effects of the changing sea ice cover, this allows us to connect changes in the sea ice cover to changes in the nearshore hydrodynamic environment. The long wind record allows for us to investigate changes in extreme wind and associated storm events. Preliminary analysis of Barrow and Drew Point indicate that at Drew Point the sea ice-free season has expanded by ˜17 days/decade while at Barrow it has expanded by ˜22 days/decade. We find the increase in the number of days when the sea ice edge is far away from the coast makes up a large proportion of the total increase in the duration of the sea ice-free season. For these days the sea ice edge does not provide a limit on the fetch over which water level set up and waves are generated.

  7. Wind farms production: Control and prediction

    NASA Astrophysics Data System (ADS)

    El-Fouly, Tarek Hussein Mostafa

    Wind energy resources, unlike dispatchable central station generation, produce power dependable on external irregular source and that is the incident wind speed which does not always blow when electricity is needed. This results in the variability, unpredictability, and uncertainty of wind resources. Therefore, the integration of wind facilities to utility electrical grid presents a major challenge to power system operator. Such integration has significant impact on the optimum power flow, transmission congestion, power quality issues, system stability, load dispatch, and economic analysis. Due to the irregular nature of wind power production, accurate prediction represents the major challenge to power system operators. Therefore, in this thesis two novel models are proposed for wind speed and wind power prediction. One proposed model is dedicated to short-term prediction (one-hour ahead) and the other involves medium term prediction (one-day ahead). The accuracy of the proposed models is revealed by comparing their results with the corresponding values of a reference prediction model referred to as the persistent model. Utility grid operation is not only impacted by the uncertainty of the future production of wind farms, but also by the variability of their current production and how the active and reactive power exchange with the grid is controlled. To address this particular task, a control technique for wind turbines, driven by doubly-fed induction generators (DFIGs), is developed to regulate the terminal voltage by equally sharing the generated/absorbed reactive power between the rotor-side and the gridside converters. To highlight the impact of the new developed technique in reducing the power loss in the generator set, an economic analysis is carried out. Moreover, a new aggregated model for wind farms is proposed that accounts for the irregularity of the incident wind distribution throughout the farm layout. Specifically, this model includes the wake effect and the time delay of the incident wind speed of the different turbines on the farm, and to simulate the fluctuation in the generated power more accurately and more closer to real-time operation. Recently, wind farms with considerable output power ratings have been installed. Their integrating into the utility grid will substantially affect the electricity markets. This thesis investigates the possible impact of wind power variability, wind farm control strategy, wind energy penetration level, wind farm location, and wind power prediction accuracy on the total generation costs and close to real time electricity market prices. These issues are addressed by developing a single auction market model for determining the real-time electricity market prices.

  8. Percy Thomas wind generator designs

    NASA Technical Reports Server (NTRS)

    Lines, C. W.

    1973-01-01

    The technical and economic feasibilities of constructing a windpowered generator with a capacity of 2,000 to 4,000 kilowatt are considered. Possible benefits of an integrated wind generating electric energy source in an electric utility network are elaborated. Applications of a windpowered waterpump, including its use as a pumping source for hydroelectric pump storage operations, are also mentioned. It is concluded that the greatest potential of the wind generator is to generate heat directly and not conversion to electricity and then to heat.

  9. Analysis and discussion on anti-thunder scheme of wind power generation system

    NASA Astrophysics Data System (ADS)

    Sun, Shuguang

    2017-01-01

    Anti-thunder scheme of wind power generation system is discussed in this paper. Through the research and analysis on the harm of the thunder, division of lightning protection zone and lightning protection measures are put forward, which has a certain practical significance on the design and application of wind power generation system.

  10. Analysis of the value of battery storage with wind and photovoltaic generation to the Sacramento Municipal Utility District

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zaininger, H.W.

    1998-08-01

    This report describes the results of an analysis to determine the economic and operational value of battery storage to wind and photovoltaic (PV) generation technologies to the Sacramento Municipal Utility District (SMUD) system. The analysis approach consisted of performing a benefit-cost economic assessment using established SMUD financial parameters, system expansion plans, and current system operating procedures. This report presents the results of the analysis. Section 2 describes expected wind and PV plant performance. Section 3 describes expected benefits to SMUD associated with employing battery storage. Section 4 presents preliminary benefit-cost results for battery storage added at the Solano wind plantmore » and the Hedge PV plant. Section 5 presents conclusions and recommendations resulting from this analysis. The results of this analysis should be reviewed subject to the following caveat. The assumptions and data used in developing these results were based on reports available from and interaction with appropriate SMUD operating, planning, and design personnel in 1994 and early 1995 and are compatible with financial assumptions and system expansion plans as of that time. Assumptions and SMUD expansion plans have changed since then. In particular, SMUD did not install the additional 45 MW of wind that was planned for 1996. Current SMUD expansion plans and assumptions should be obtained from appropriate SMUD personnel.« less

  11. Analysis of severe atmospheric disturbances from airline flight records

    NASA Technical Reports Server (NTRS)

    Wingrove, R. C.; Bach, R. E., Jr.; Schultz, T. A.

    1989-01-01

    Advanced methods were developed to determine time varying winds and turbulence from digital flight data recorders carried aboard modern airliners. Analysis of several cases involving severe clear air turbulence encounters at cruise altitudes has shown that the aircraft encountered vortex arrays generated by destabilized wind shear layers above mountains or thunderstorms. A model was developed to identify the strength, size, and spacing of vortex arrays. This model is used to study the effects of severe wind hazards on operational safety for different types of aircraft. The study demonstrates that small remotely piloted vehicles and executive aircraft exhibit more violent behavior than do large airliners during encounters with high-altitude vortices. Analysis of digital flight data from the accident at Dallas/Ft. Worth in 1985 indicates that the aircraft encountered a microburst with rapidly changing winds embedded in a strong outflow near the ground. A multiple-vortex-ring model was developed to represent the microburst wind pattern. This model can be used in flight simulators to better understand the control problems in severe microburst encounters.

  12. The analysis and kinetic energy balance of an upper-level wind maximum during intense convection

    NASA Technical Reports Server (NTRS)

    Fuelberg, H. E.; Jedlovec, G. J.

    1982-01-01

    The purpose of this paper is to analyze the formation and maintenance of the upper-level wind maximum which formed between 1800 and 2100 GMT, April 10, 1979, during the AVE-SESAME I period, when intense storms and tornadoes were experienced (the Red River Valley tornado outbreak). Radiosonde stations participating in AVE-SESAME I are plotted (centered on Oklahoma). National Meteorological Center radar summaries near the times of maximum convective activity are mapped, and height and isotach plots are given, where the formation of an upper-level wind maximum over Oklahoma is the most significant feature at 300 mb. The energy balance of the storm region is seen to change dramatically as the wind maximum forms. During much of its lifetime, the upper-level wind maximum is maintained by ageostrophic flow that produces cross-contour generation of kinetic energy and by the upward transport of midtropospheric energy. Two possible mechanisms for the ageostrophic flow are considered.

  13. The effects of divergent and nondivergent winds on the kinetic energy budget of a mid-latitude cyclone - A case study

    NASA Technical Reports Server (NTRS)

    Chen, T.-C.; Alpert, J. C.; Schlatter, T. W.

    1978-01-01

    The magnitude of the divergent component of the wind is relatively small compared to that of the nondivergent component in large-scale atmospheric flows; nevertheless, it plays an important role in the case of explosive cyclogenesis examined here. The kinetic energy budget for the life cycle of an intense, developing cyclone over North America is calculated. The principal kinetic energy source is the net horizontal transport across the boundaries of the region enclosing the cyclone. By investigating the relative importance of the divergent and nondivergent wind components in the kinetic energy budget, it was found, as expected, that neglecting the divergent wind component in calculating the magnitude of the kinetic energy is of little consequence, but that the horizontal flux convergence and generation of kinetic energy depend crucially upon the divergent component. Modification of the divergent wind component can result in significant changes in the kinetic energy budget of the synoptic system.

  14. Ocean-Wave Dynamics Analysis during Hurricane Ida and Norida Using a Fully Coupled Modeling System

    NASA Astrophysics Data System (ADS)

    Olabarrieta, M.; Warner, J. C.; Armstrong, B. N.

    2010-12-01

    Extreme storms, such as hurricanes and extratropical storms play a dominant role in shaping the beaches of the East and Gulf Coasts of the United States. Future tropical depressions will be more intense than in the present climate (Assessment Report of IPCC, 2007) and therefore coastal areas are likely to become more susceptible to their effects. The major damage caused by these extreme events is associated with the duration of the storm, storm intensity, waves, and the total water levels reached during the storm. Numerical models provide a useful approach to study the spatial and temporal distribution of these parameters. However, the correct estimation of the total water levels and wind wave heights through numerical modeling requires accurate representation of the air-sea interface dynamics. These processes are highly complex due to the variable interactions between winds, ocean waves and currents near the sea surface. In the present research we use the COAWST (Coupled Ocean-Atmosphere-Wave-Sediment Transport) modeling system (Warner et al., 2010) to address the key role of the atmosphere-ocean-wave interactions during Hurricane Ida and its posterior evolution to NorIda, November 2009. This northeastern storm was one of the most costly in the past two decades and likely in the top five of the past century. One interesting aspect of the considered period is that it includes two very different atmospheric extreme conditions, a hurricane and a northeastern storm, developed in regions with very different oceanographic characteristics. By performing a suite of numerical runs we are able to isolate the effect of the interaction terms between the atmosphere (WRF model), the ocean (ROMS model) and the wave propagation and generation model (SWAN). Special attention is given to the role of the ocean surface roughness and high resolution SST fields on the atmospheric boundary layers dynamics and consequently these effects on the wind wave generation, surface currents and storm surge. The effects of ocean currents on wind wave generation and propagations are also analyzed. The model results are compared to different data sources, including GOES satellite infrared data, JASON-1 and JASON-2 altimeter data, CODAR measurements, and wave and tidal information from the NDBC and the National Tidal Database respectively. The results identified that the inclusion of the ocean roughness on the atmospheric module greatly improves the wind intensity estimation and therefore also the wind waves and the storm surge amplitude. For example, during the passage of Ida through the Gulf of Mexico the wind speeds are reduced due to the wave induced ocean roughness, resulting in better agreement with the measured winds. During NorIda, the effect of the surface roughness changed the form and dimension of the main low pressure cell, affecting the intensity and direction of the winds. Three different ocean roughness closure models are analyzed, with the wave-age based closure model providing the best results. Ocean currents are also shown to affect wave spectral characteristics through the generation and propagation processes. Changes within 15% on the significant wave height are detected in areas affected by the main oceanic currents: the Gulf Stream and the Loop Current.

  15. Power Control of New Wind Power Generation System with Induction Generator Excited by Voltage Source Converter

    NASA Astrophysics Data System (ADS)

    Morizane, Toshimitsu; Kimura, Noriyuki; Taniguchi, Katsunori

    This paper investigates advantages of new combination of the induction generator for wind power and the power electronic equipment. Induction generator is popularly used for the wind power generation. The disadvantage of it is impossible to generate power at the lower rotor speed than the synchronous speed. To compensate this disadvantage, expensive synchronous generator with the permanent magnets is sometimes used. In proposed scheme, the diode rectifier is used to convert the real power from the induction generator to the intermediate dc voltage, while only the reactive power necessary to excite the induction generator is supplied from the voltage source converter (VSC). This means that the rating of the expensive VSC is minimized and total cost of the wind power generation system is decreased compared to the system with synchronous generator. Simulation study to investigate the control strategy of proposed system is performed. The results show the reduction of the VSC rating is prospective.

  16. Diurnal Variations in Global Joule Heating Morphology and Magnitude Due To Neutral Winds

    NASA Astrophysics Data System (ADS)

    Billett, D. D.; Grocott, A.; Wild, J. A.; Walach, M.-T.; Kosch, M. J.

    2018-03-01

    In the polar ionosphere, variations in Joule heating are significantly controlled by changes in plasma convection, such as that brought about by changes in the interplanetary magnetic field. However, another important consideration when calculating Joule heating is the velocity difference between this plasma and the neutral thermosphere colocated with the ionosphere. Neutral wind data are often difficult to obtain on a global scale; thus, Joule heating has often previously been calculated assuming that neutral velocities are small and can therefore be neglected. Previous work has shown the effect of neutral winds on Joule heating estimations to be more significant than originally thought; however, the diurnal variations of the neutrals due to changes in solar pressure gradients and Coriolis forces have yet to have their impact on Joule heating assessed. We show this universal time effect to be significant in calculating Joule heating and thus can differ significantly from that calculated by neglecting the neutrals. In this study, we use empirical models for the neutral wind, conductivities, and magnetic field to create Northern Hemispheric patterns of Joule heating for approximately 800,000 individual plasma convection patterns generated using data from the Super Dual Auroral Radar Network. From this, a statistical analysis of how Joule heating varies in morphology and magnitude with universal time is shown for differing seasons and levels of geomagnetic activity. We find that neutral winds do play a significant role in the morphology and total energy output of Joule heating.

  17. 2017 Annual Technology Baseline

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cole, Wesley J; Hand, M. M; Eberle, Annika

    Consistent cost and performance data for various electricity generation technologies can be difficult to find and may change frequently for certain technologies. With the Annual Technology Baseline (ATB), the National Renewable Energy Laboratory annually provides an organized and centralized set of such cost and performance data. The ATB uses the best information from the Department of Energy national laboratories' renewable energy analysts as well as information from the Energy Information Administration for fuel-based technologies. The ATB has been reviewed by experts and it includes the following electricity generation technologies: land-based wind, offshore wind, utility-scale solar photovoltaics (PV), commercial-scale solar PV,more » residential-scale solar PV, concentrating solar power, geothermal power, hydropower, coal, natural gas, nuclear, and conventional biopower. This webinar presentation introduces the 2017 ATB.« less

  18. Measurements of Heat Flux Differences Within a Large Wind Farm During the 2013 Crop/Wind-Energy Experiment (CWEX-13)

    NASA Astrophysics Data System (ADS)

    Rajewski, D. A.

    2015-12-01

    Wind farms are an important resource for electrical generation in the Central U.S., however with each installation there are many poorly documented interactions with the local and surrounding environment. The impact of wind farms on surface microclimate is largely understood conceptually using numerical or wind tunnel models or ex situ satellite-detected changes. Measurements suitable for calibration of numerical simulations are few and of limited applicability but are urgently needed to improve parameterization of wind farm aerodynamics influenced by the diurnal evolution of the boundary layer. Among large eddy simulations of wind farm wakes in thermally stable stratification, there are discrepancies on the influence of turbine-induced mixing on the surface heat flux. We provide measurements from seven surface flux stations, vertical profiling LiDARs located upwind and downwind of turbines, and SCADA measurements from turbines during the 2013 Crop Wind Energy Experiment (CWEX-13) as the best evidence for the variability of turbine induced heat flux within a large wind farm. Examination of ambient conditions (wind direction, wind veer, and thermal stratification) and on turbine operation factors (hub-height wind speed, normalized power) reveal conditions that lead to the largest modification of heat flux. Our results demonstrate the highest flux change from the reference station to be where the leading few lines of turbines influence the surface. Under stably stratified conditions turbine-scale turbulence is highly efficient at bringing warmer air aloft to the surface, leading to an increase in downward heat flux. Conversely we see that the combination of wakes from several lines of turbines reduces the flux contrast from the reference station. In this regime of deep wind-farm flow, wake turbulence is similar in scale and intensity to the reference conditions. These analysis tools can be extended to other turbine SCADA and microclimate variables (e.g. temperature) to improve basic understanding of turbine-turbine and total wind farm wake interactions. Forthcoming tall-tower measurements will provide additional opportunities for comparison of simulated wind and thermal profiles in non-wake, and waked flow conditions.

  19. Global modeling of storm-time thermospheric dynamics and electrodynamics

    NASA Astrophysics Data System (ADS)

    Fuller-Rowell, T. J.; Richmond, A. D.; Maruyama, N.

    Understanding the neutral dynamic and electrodynamic response of the upper atmosphere to geomagnetic storms, and quantifying the balance between prompt penetration and disturbance dynamo effects, are two of the significant challenges facing us today. This paper reviews our understanding of the dynamical and electrodynamic response of the upper atmosphere to storms from a modeling perspective. After injection of momentum and energy at high latitude during a geomagnetic storm, the neutral winds begin to respond almost immediately. The high-latitude wind system evolves quickly by the action of ion drag and the injection of kinetic energy; however, Joule dissipation provides the bulk of the energy source to change the dynamics and electrodynamics globally. Impulsive energy injection at high latitudes drives large-scale gravity waves that propagate globally. The waves transmit pressure gradients initiating a change in the global circulation. Numerical simulations of the coupled thermosphere, ionosphere, plasmasphere, and electrodynamic response to storms indicate that although the wind and waves are dynamic, with significant apparent "sloshing" between the hemispheres, the net effect is for an increased equatorward wind. The dynamic changes during a storm provide the conduit for many of the physical processes that ensue in the upper atmosphere. For instance, the increased meridional winds at mid latitudes push plasma parallel to the magnetic field to regions of different composition. The global circulation carries molecular rich air from the lower thermosphere upward and equatorward, changing the ratio of atomic and molecular neutral species, and changing loss rates for the ionosphere. The storm wind system also drives the disturbance dynamo, which through plasma transport modifies the strength and location of the equatorial ionization anomaly peaks. On a global scale, the increased equatorward meridional winds, and the generation of zonal winds at mid latitudes via the Coriolis effects, produce a current system opposing the normal quiet-time Sq current system. At the equator, the storm-time zonal electric fields reduce or reverse the normal upward and downward plasma drift on the dayside and nightside, respectively. In the numerical simulations, on the dayside, the disturbance dynamo appears fairly uniform, whereas at night a stronger local time dependence is apparent with increased upward drift between midnight and dawn. The simulations also indicate the possibility for a rapid dynamo response at the equator, within 2 h of storm onset, before the arrival of the large-scale gravity waves. All these wind-driven processes can result in dramatic ionospheric changes during storms. The disturbance dynamo can combine and interact with the prompt penetration of magnetospheric electric fields to the equator.

  20. Increasing power generation in horizontal axis wind turbines using optimized flow control

    NASA Astrophysics Data System (ADS)

    Cooney, John A., Jr.

    In order to effectively realize future goals for wind energy, the efficiency of wind turbines must increase beyond existing technology. One direct method for achieving increased efficiency is by improving the individual power generation characteristics of horizontal axis wind turbines. The potential for additional improvement by traditional approaches is diminishing rapidly however. As a result, a research program was undertaken to assess the potential of using distributed flow control to increase power generation. The overall objective was the development of validated aerodynamic simulations and flow control approaches to improve wind turbine power generation characteristics. BEM analysis was conducted for a general set of wind turbine models encompassing last, current, and next generation designs. This analysis indicated that rotor lift control applied in Region II of the turbine power curve would produce a notable increase in annual power generated. This was achieved by optimizing induction factors along the rotor blade for maximum power generation. In order to demonstrate this approach and other advanced concepts, the University of Notre Dame established the Laboratory for Enhanced Wind Energy Design (eWiND). This initiative includes a fully instrumented meteorological tower and two pitch-controlled wind turbines. The wind turbines are representative in their design and operation to larger multi-megawatt turbines, but of a scale that allows rotors to be easily instrumented and replaced to explore new design concepts. Baseline data detailing typical site conditions and turbine operation is presented. To realize optimized performance, lift control systems were designed and evaluated in CFD simulations coupled with shape optimization tools. These were integrated into a systematic design methodology involving BEM simulations, CFD simulations and shape optimization, and selected experimental validation. To refine and illustrate the proposed design methodology, a complete design cycle was performed for the turbine model incorporated in the wind energy lab. Enhanced power generation was obtained through passive trailing edge shaping aimed at reaching lift and lift-to-drag goals predicted to optimize performance. These targets were determined by BEM analysis to improve power generation characteristics and annual energy production (AEP) for the wind turbine. A preliminary design was validated in wind tunnel experiments on a 2D rotor section in preparation for testing in the full atmospheric environment of the eWiND Laboratory. These tests were performed for the full-scale geometry and atmospheric conditions. Upon making additional improvements to the shape optimization tools, a series of trailing edge additions were designed to optimize power generation. The trailing edge additions were predicted to increase the AEP by up to 4.2% at the White Field site. The pieces were rapid-prototyped and installed on the wind turbine in March, 2014. Field tests are ongoing.

  1. A New Control Method to Mitigate Power Fluctuations for Grid Integrated PV/Wind Hybrid Power System Using Ultracapacitors

    NASA Astrophysics Data System (ADS)

    Jayalakshmi, N. S.; Gaonkar, D. N.

    2016-08-01

    The output power obtained from solar-wind hybrid system fluctuates with changes in weather conditions. These power fluctuations cause adverse effects on the voltage, frequency and transient stability of the utility grid. In this paper, a control method is presented for power smoothing of grid integrated PV/wind hybrid system using ultracapacitors in a DC coupled structure. The power fluctuations of hybrid system are mitigated and smoothed power is supplied to the utility grid. In this work both photovoltaic (PV) panels and the wind generator are controlled to operate at their maximum power point. The grid side inverter control strategy presented in this paper maintains DC link voltage constant while injecting power to the grid at unity power factor considering different operating conditions. Actual solar irradiation and wind speed data are used in this study to evaluate the performance of the developed system using MATLAB/Simulink software. The simulation results show that output power fluctuations of solar-wind hybrid system can be significantly mitigated using the ultracapacitor based storage system.

  2. Wind-invariant saltation heights imply linear scaling of aeolian saltation flux with shear stress.

    PubMed

    Martin, Raleigh L; Kok, Jasper F

    2017-06-01

    Wind-driven sand transport generates atmospheric dust, forms dunes, and sculpts landscapes. However, it remains unclear how the flux of particles in aeolian saltation-the wind-driven transport of sand in hopping trajectories-scales with wind speed, largely because models do not agree on how particle speeds and trajectories change with wind shear velocity. We present comprehensive measurements, from three new field sites and three published studies, showing that characteristic saltation layer heights remain approximately constant with shear velocity, in agreement with recent wind tunnel studies. These results support the assumption of constant particle speeds in recent models predicting linear scaling of saltation flux with shear stress. In contrast, our results refute widely used older models that assume that particle speed increases with shear velocity, thereby predicting nonlinear 3/2 stress-flux scaling. This conclusion is further supported by direct field measurements of saltation flux versus shear stress. Our results thus argue for adoption of linear saltation flux laws and constant saltation trajectories for modeling saltation-driven aeolian processes on Earth, Mars, and other planetary surfaces.

  3. Wind-invariant saltation heights imply linear scaling of aeolian saltation flux with shear stress

    PubMed Central

    Martin, Raleigh L.; Kok, Jasper F.

    2017-01-01

    Wind-driven sand transport generates atmospheric dust, forms dunes, and sculpts landscapes. However, it remains unclear how the flux of particles in aeolian saltation—the wind-driven transport of sand in hopping trajectories—scales with wind speed, largely because models do not agree on how particle speeds and trajectories change with wind shear velocity. We present comprehensive measurements, from three new field sites and three published studies, showing that characteristic saltation layer heights remain approximately constant with shear velocity, in agreement with recent wind tunnel studies. These results support the assumption of constant particle speeds in recent models predicting linear scaling of saltation flux with shear stress. In contrast, our results refute widely used older models that assume that particle speed increases with shear velocity, thereby predicting nonlinear 3/2 stress-flux scaling. This conclusion is further supported by direct field measurements of saltation flux versus shear stress. Our results thus argue for adoption of linear saltation flux laws and constant saltation trajectories for modeling saltation-driven aeolian processes on Earth, Mars, and other planetary surfaces. PMID:28630907

  4. 78 FR 760 - Potential Commercial Leasing for Wind Power on the Outer Continental Shelf (OCS) Offshore New...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-01-04

    ... Offshore Wind Collaborative,'' a public-private entity consisting of NYPA, the Long Island Power Authority... Island-New York City Offshore Wind Project'', is designed to generate at least 350 megawatts (MW) of electricity from offshore wind resources, with the ability to expand generation capacity to as much as 700 MW...

  5. 76 FR 61735 - Incidental Take Permit; Auwahi Wind Energy Generation Facility, Maui, HI; Draft Habitat...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-05

    .... The proposed facility will consist of eight wind turbine generators (WTGs), a maintenance building, an... indicates that the Hawaiian hoary bat flies in the area proposed for wind turbine development, and that the... Hawaiian hoary bat are known to have collided with the existing wind turbine structures at the 30- megawatt...

  6. Induction generators for Wind Energy Conversion Systems. Part I: review of induction generator with squirrel cage rotor. Part II: the Double Output Induction Generator (DOIG). Progress report, July-December 1975

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jayadev, T.S.

    1976-02-01

    The application of induction generators in Wind Energy Conversion Systems (WECS) is described. The conventional induction generator, which is an induction machine with a squirrel cage rotor, had been used in large wind power plants in Europe, but has not caught much attention until now by designers of large systems in this country. The induction generator with a squirrel cage rotor is described and useful design techniques to build induction generators for wind energy application are outlined. The Double Output Induction Generator (DOIG) - so called because power is fed into the grid from the stator, as well as themore » rotor is described. It is a wound rotor induction machine with power electronics to convert rotor slip frequency power to that of line frequency.« less

  7. Effect of pole number and slot number on performance of dual rotor permanent magnet wind power generator using ferrite magnets

    NASA Astrophysics Data System (ADS)

    Xu, Peifeng; Shi, Kai; Sun, Yuxin; Zhua, Huangqiu

    2017-05-01

    Dual rotor permanent magnet (DRPM) wind power generator using ferrite magnets has the advantages of low cost, high efficiency, and high torque density. How to further improve the performance and reduce the cost of the machine by proper choice of pole number and slot number is an important problem to be solved when performing preliminarily design a DRPM wind generator. This paper presents a comprehensive performance comparison of a DRPM wind generator using ferrite magnets with different slot and pole number combinations. The main winding factors are calculated by means of the star of slots. Under the same machine volume and ferrite consumption, the flux linkage, back-electromotive force (EMF), cogging torque, output torque, torque pulsation, and losses are investigated and compared using finite element analysis (FEA). The results show that the slot and pole number combinations have an important impact on the generator properties.

  8. ? stability of wind turbine switching control

    NASA Astrophysics Data System (ADS)

    Palejiya, Dushyant; Shaltout, Mohamed; Yan, Zeyu; Chen, Dongmei

    2015-01-01

    In order to maximise the wind energy capture, wind turbines are operated at variable speeds. Depending on the wind speed, a turbine switches between two operating modes: a low wind speed mode and a high wind speed mode. During the low wind speed mode, the control objective is to maximise wind energy capture by controlling both the blade pitch angle and the electrical generator torque. During the high wind speed mode, the control goal is to maintain the rated power generation by only adjusting the blade pitch angle. This paper establishes the stability criteria for the switching operation of wind turbines using ? gain under the nonlinear control framework. Also, the performance of the wind turbine system is analysed by using the step response, a well-known measure for second-order linear systems.

  9. NWTC Aerodynamics Studies Improve Energy Capture and Lower Costs of Wind-Generated Electricity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    2015-08-01

    Researchers at the National Wind Technology Center (NWTC) at the National Renewable Energy Laboratory (NREL) have expanded wind turbine aerodynamic research from blade and rotor aerodynamics to wind plant and atmospheric inflow effects. The energy capture from wind plants is dependent on all of these aerodynamic interactions. Research at the NWTC is crucial to understanding how wind turbines function in large, multiple-row wind plants. These conditions impact the cumulative fatigue damage of turbine structural components that ultimately effect the useful lifetime of wind turbines. This work also is essential for understanding and maximizing turbine and wind plant energy production. Bothmore » turbine lifetime and wind plant energy production are key determinants of the cost of wind-generated electricity.« less

  10. Potential of neuro-fuzzy methodology to estimate noise level of wind turbines

    NASA Astrophysics Data System (ADS)

    Nikolić, Vlastimir; Petković, Dalibor; Por, Lip Yee; Shamshirband, Shahaboddin; Zamani, Mazdak; Ćojbašić, Žarko; Motamedi, Shervin

    2016-01-01

    Wind turbines noise effect became large problem because of increasing of wind farms numbers since renewable energy becomes the most influential energy sources. However, wind turbine noise generation and propagation is not understandable in all aspects. Mechanical noise of wind turbines can be ignored since aerodynamic noise of wind turbine blades is the main source of the noise generation. Numerical simulations of the noise effects of the wind turbine can be very challenging task. Therefore in this article soft computing method is used to evaluate noise level of wind turbines. The main goal of the study is to estimate wind turbine noise in regard of wind speed at different heights and for different sound frequency. Adaptive neuro-fuzzy inference system (ANFIS) is used to estimate the wind turbine noise levels.

  11. Improving Energy Security for Air Force Installations

    DTIC Science & Technology

    2015-09-01

    Wind power is a mature technology, with wind turbines first being used for electricity in the late 19th century. The Air Force operates two wind ...company, and the military unit receives energy credits back on its bill. Two concepts are important when considering the turbine size for a wind ...generation and consumption must remain balanced for a grid, so wind turbines are rarely used as a sole energy source since power is only generated

  12. Impacts of Wind and Solar on Fossil-Fueled Generators: Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lew, D.; Brinkman, G.; Kumar, N.

    2012-08-01

    High penetrations of wind and solar power will impact the operations of the remaining generators on the power system. Regional integration studies have shown that wind and solar may cause fossil-fueled generators to cycle on and off and ramp down to part load more frequently and potentially more rapidly. Increased cycling, deeper load following, and rapid ramping may result in wear-and-tear impacts on fossil-fueled generators that lead to increased capital and maintenance costs, increased equivalent forced outage rates, and degraded performance over time. Heat rates and emissions from fossil-fueled generators may be higher during cycling and ramping than during steady-statemore » operation. Many wind and solar integration studies have not taken these increased cost and emissions impacts into account because data have not been available. This analysis considers the cost and emissions impacts of cycling and ramping of fossil-fueled generation to refine assessments of wind and solar impacts on the power system.« less

  13. Transient Stability and Frequency Response of the US Western Interconnection Under Conditions of High Wind and Solar Generation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miller, Nicholas W.; Shao, Miaolei; Pajic, Slobodan

    The addition of large amounts of wind and solar generation to bulk power systems that are traditionally subject to operating constraints set by transient stability and frequency response limitations is the subject of considerable concern in the industry. The US Western Interconnection (WI) is expected to experience substantial additional growth in both wind and solar generation. These plants will, to some extent, displace large central station thermal generation, both coal and gas-fired, which have traditionally helped maintain stability. This paper reports the results of a study that investigated the transient stability and frequency response of the WI with high penetrationsmore » of wind and solar generation. The main goals of this work were to (1) create a realistic, baseline model of the WI, (2) test selected transient stability and frequency events, (3) investigate the impact of large amounts of wind and solar generation, and (4) examine means to improve performance.« less

  14. Status of wind-energy conversion

    NASA Technical Reports Server (NTRS)

    Thomas, R. L.; Savino, J. M.

    1973-01-01

    The utilization of wind energy is technically feasible as evidenced by the many past demonstrations of wind generators. The cost of energy from the wind has been high compared to fossil fuel systems. A sustained development effort is needed to obtain economical systems. The variability of the wind makes it an unreliable source on a short-term basis. However, the effects of this variability can be reduced by storage systems or connecting wind generators to fossil fuel systems, hydroelectric systems, or dispersing them throughout a large grid network. The NSF and NASA-Lewis Research Center have sponsored programs for the utilization of wind energy.

  15. Simulation and optimum design of hybrid solar-wind and solar-wind-diesel power generation systems

    NASA Astrophysics Data System (ADS)

    Zhou, Wei

    Solar and wind energy systems are considered as promising power generating sources due to its availability and topological advantages in local power generations. However, a drawback, common to solar and wind options, is their unpredictable nature and dependence on weather changes, both of these energy systems would have to be oversized to make them completely reliable. Fortunately, the problems caused by variable nature of these resources can be partially overcome by integrating these two resources in a proper combination to form a hybrid system. However, with the increased complexity in comparison with single energy systems, optimum design of hybrid system becomes more complicated. In order to efficiently and economically utilize the renewable energy resources, one optimal sizing method is necessary. This thesis developed an optimal sizing method to find the global optimum configuration of stand-alone hybrid (both solar-wind and solar-wind-diesel) power generation systems. By using Genetic Algorithm (GA), the optimal sizing method was developed to calculate the system optimum configuration which offers to guarantee the lowest investment with full use of the PV array, wind turbine and battery bank. For the hybrid solar-wind system, the optimal sizing method is developed based on the Loss of Power Supply Probability (LPSP) and the Annualized Cost of System (ACS) concepts. The optimization procedure aims to find the configuration that yields the best compromise between the two considered objectives: LPSP and ACS. The decision variables, which need to be optimized in the optimization process, are the PV module capacity, wind turbine capacity, battery capacity, PV module slope angle and wind turbine installation height. For the hybrid solar-wind-diesel system, minimization of the system cost is achieved not only by selecting an appropriate system configuration, but also by finding a suitable control strategy (starting and stopping point) of the diesel generator. The optimal sizing method was developed to find the system optimum configuration and settings that can achieve the custom-required Renewable Energy Fraction (fRE) of the system with minimum Annualized Cost of System (ACS). Du to the need for optimum design of the hybrid systems, an analysis of local weather conditions (solar radiation and wind speed) was carried out for the potential installation site, and mathematical simulation of the hybrid systems' components was also carried out including PV array, wind turbine and battery bank. By statistically analyzing the long-term hourly solar and wind speed data, Hong Kong area is found to have favorite solar and wind power resources compared with other areas, which validates the practical applications in Hong Kong and Guangdong area. Simulation of PV array performance includes three main parts: modeling of the maximum power output of the PV array, calculation of the total solar radiation on any tilted surface with any orientations, and PV module temperature predictions. Five parameters are introduced to account for the complex dependence of PV array performance upon solar radiation intensities and PV module temperatures. The developed simulation model was validated by using the field-measured data from one existing building-integrated photovoltaic system (BIPV) in Hong Kong, and good simulation performance of the model was achieved. Lead-acid batteries used in hybrid systems operate under very specific conditions, which often cause difficulties to predict when energy will be extracted from or supplied to the battery. In this thesis, the lead-acid battery performance is simulated by three different characteristics: battery state of charge (SOC), battery floating charge voltage and the expected battery lifetime. Good agreements were found between the predicted values and the field-measured data of a hybrid solar-wind project. At last, one 19.8kW hybrid solar-wind power generation project, designed by the optimal sizing method and set up to supply power for a telecommunication relay station on a remote island of Guangdong province, was studied. Simulation and experimental results about the operating performances and characteristics of the hybrid solar-wind project have demonstrated the feasibility and accuracy of the recommended optimal sizing method developed in this thesis.

  16. Wind turbine generator interaction with conventional diesel generators on Block Island, Rhode Island. Volume 1: Executive summary

    NASA Technical Reports Server (NTRS)

    Wilreker, V. F.; Stiller, P. H.; Scott, G. W.; Kruse, V. J.; Smith, R. F.

    1984-01-01

    Primary results are summarized for a three-part study involving the effects of connecting a MOD-OA wind turbine generator to an isolated diesel power system. The MOD-OA installation considered was the third of four experimental nominal 200 kW wind turbines connected to various utilities under the Federal Wind Energy Program and was characterized by the highest wind energy penetration levels of four sites. The study analyses address: fuel displacement, dynamic interaction, and three modes of reactive power control. These analyses all have as their basis the results of the data acquisition program conducted on Block Island, Rhode Island.

  17. High speed radiation scanning technique for simultaneously determining the pitch and eccentricity of an encased oil

    DOEpatents

    Foster, Billy E.

    1976-01-01

    A method of determining the pitch and eccentricity of the winding of a coil unit is provided. It specifically relates to nondestructively examining completely encased heating coils used to simulate the heat generated from fuel rods in reactor studies. The method comprises (1) the use of an x-ray transmission technique through the axial centerline of the coil unit after the winding of the coil unit has been completely encased, (2) the use of a radiation detection instrument to monitor the transmitted radiation, and (3) the use of recording instrumentation calibrated as a function of the distance between windings. A change in the pitch of the winding is detected by a general increase or decrease in the distance between recorded peaks of the transmitted radiation. Eccentricity is detected by a consistent variation in distance between peaks occuring in alternate pairs.

  18. SASS wind forecast impact studies using the GLAS and NEPRF systems: Preliminary conclusions

    NASA Technical Reports Server (NTRS)

    Kalnay, E.; Atlas, R.; Baker, W. E.; Duffy, D.; Halem, M.; Helfand, M.

    1984-01-01

    For this project, a version of the GLAS Analysis/Forecast System was developed that includes an objective dealiasing scheme as an integral part of the analysis cycle. With this system the (100 sq km) binned SASS wind data generated by S. Peteherych of AER, Canada corresponding of the period 0000 GMT 7 September 1978 to 1200 GMT 13 September 1978 was objectively dealiased. The dealiased wind fields have been requested and received by JPL, NMC and the British Meteorological Office. The first 3.5 days of objectively dealiased fields were subjectively enhanced on the McIDAS system. Approximately 20% of the wind directions were modified, and of these, about 70% were changed by less than 90 deg. Two SASS forecast impact studies, were performed using the dealiased fields, with the GLAS and the NEPRF (Navy Environmental Prediction Research Facility) analysis/forecast systems.

  19. Dynamics of Monsoon-Induced Biennial Variability in ENSO

    NASA Technical Reports Server (NTRS)

    Kim, Kyu-Myong; Lau, K.-M.; Einaudi, Franco (Technical Monitor)

    2000-01-01

    The mechanism of the quasi-biennial tendency in El Nino Southern Oscillation (ENSO)-monsoon coupled system is investigated using an intermediate coupled model. The monsoon wind forcing is prescribed as a function of Sea Surface Temperature (SST) anomalies based on the relationship between zonal wind anomalies over the western Pacific to sea level change in the equatorial eastern Pacific. The key mechanism of quasi-biennial tendency in El Nino evolution is found to be in the strong coupling of ENSO to monsoon wind forcing over the western Pacific. Strong boreal summer monsoon wind forcing, which lags the maximum SST anomaly in the equatorial eastern Pacific approximately 6 months, tends to generate Kelvin waves of the opposite sign to anomalies in the eastern Pacific and initiates the turnabout in the eastern Pacific. Boreal winter monsoon forcing, which has zero lag with maximum SST in the equatorial eastern Pacific, tends to damp the ENSO oscillations.

  20. Efficiency of the DOMUS 750 vertical-axis wind turbine

    NASA Astrophysics Data System (ADS)

    Hallock, Kyle; Rasch, Tyler; Ju, Guoqiang; Alonso-Marroquin, Fernando

    2017-06-01

    The aim of this paper is to present some preliminary results on the efficiency of a wind turbine for an off-grid housing unit. To generate power, the unit uses a photovoltaic solar array and a vertical-axis wind turbine (VAWT). The existing VAWT was analysed to improve efficiency and increase power generation. There were found to be two main sources of inefficiency: 1. the 750W DC epicyclic generator performed poorly in low winds, and 2. the turbine blades wobbled, allowing for energy loss due to off-axis rotation. A 12V DC permanent magnet alternator was chosen that met the power requirements of the housing unit and would generate power at lower wind speeds. A support bracket was designed to prevent the turbine blades from wobbling.

  1. 1 MVA HTS-2G Generator for Wind Turbines

    NASA Astrophysics Data System (ADS)

    Kovalev, K. L.; Poltavets, V. N.; Ilyasov, R. I.; Verzhbitsky, L. G.; Kozub, S. S.

    2017-10-01

    The calculation, design simulations and design performance of 1 MVA HTS-2G (second-generation high-temperature superconductor) Generator for Wind Turbines were done in 2013-2014 [1]. The results of manufacturing and testing of 1 MVA generator are presented in the article. HTS-2G field coils for the rotor were redesigned, fabricated and tested. The tests have shown critical current of the coils, 41-45 A (self field within the ferromagnetic core, T = 77 K), which corresponds to the current of short samples at self field. Application of the copper inner frame on the pole has improved internal cooling conditions of HTS coil windings and reduced the magnetic field in the area, thereby increased the critical current value. The original construction of the rotor with a rotating cryostat was developed, which decreases the thermal in-flow to the rotor. The stator of 1 MW HTS-2G generator has been manufactured. In order to improve the specific weight of the generator, the wave (harmonic drive) multiplier was used, which provides increasing RPM from 15 RPM up to 600 RPM. The total mass of the multiplier and generator is significantly smaller compared to traditional direct-drive wind turbines generators [2-7]. Parameters of the multiplier and generator were chosen based on the actual parameters of wind turbines, namely: 15 RPM, power is 1 MVA. The final test of the assembled synchronous generator with HTS-2G field coils for Wind Turbines with output power 1 MVA was completed during 2015.

  2. Evaluation of the Wind Flow Variability Using Scanning Doppler Lidar Measurements

    NASA Astrophysics Data System (ADS)

    Sand, S. C.; Pichugina, Y. L.; Brewer, A.

    2016-12-01

    Better understanding of the wind flow variability at the heights of the modern turbines is essential to accurately assess of generated wind power and efficient turbine operations. Nowadays the wind energy industry often utilizes scanning Doppler lidar to measure wind-speed profiles at high spatial and temporal resolution.The study presents wind flow features captured by scanning Doppler lidars during the second Wind Forecast and Improvement Project (WFIP 2) sponsored by the Department of Energy (DOE) and National Oceanic and Atmospheric Administration (NOAA). This 18-month long experiment in the Columbia River Basin aims to improve model wind forecasts complicated by mountain terrain, coastal effects, and numerous wind farms.To provide a comprehensive dataset to use for characterizing and predicting meteorological phenomena important to Wind Energy, NOAA deployed scanning, pulsed Doppler lidars to two sites in Oregon, one at Wasco, located upstream of all wind farms relative to the predominant westerly flow in the region, and one at Arlington, located in the middle of several wind farms.In this presentation we will describe lidar scanning patterns capable of providing data in conical, or vertical-slice modes. These individual scans were processed to obtain 15-min averaged profiles of wind speed and direction in real time. Visualization of these profiles as time-height cross sections allows us to analyze variability of these parameters with height, time and location, and reveal periods of rapid changes (ramp events). Examples of wind flow variability between two sites of lidar measurements along with examples of reduced wind velocity downwind of operating turbines (wakes) will be presented.

  3. 78 FR 77343 - Small Business Size Standards: Utilities

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-23

    ... (such as solar, wind, biomass, geothermal) as well as other industries, where power generation is...: namely NAICS 221114 (Solar Electric Power Generation), NAICS 221115 (Wind Electric Power Generation... Electric Power 4 million 250 employees. Generation. megawatt hours. [[Page 77348

  4. Doppler Feature Based Classification of Wind Profiler Data

    NASA Astrophysics Data System (ADS)

    Sinha, Swati; Chandrasekhar Sarma, T. V.; Lourde. R, Mary

    2017-01-01

    Wind Profilers (WP) are coherent pulsed Doppler radars in UHF and VHF bands. They are used for vertical profiling of wind velocity and direction. This information is very useful for weather modeling, study of climatic patterns and weather prediction. Observations at different height and different wind velocities are possible by changing the operating parameters of WP. A set of Doppler power spectra is the standard form of WP data. Wind velocity, direction and wind velocity turbulence at different heights can be derived from it. Modern wind profilers operate for long duration and generate approximately 4 megabytes of data per hour. The radar data stream contains Doppler power spectra from different radar configurations with echoes from different atmospheric targets. In order to facilitate systematic study, this data needs to be segregated according the type of target. A reliable automated target classification technique is required to do this job. Classical techniques of radar target identification use pattern matching and minimization of mean squared error, Euclidean distance etc. These techniques are not effective for the classification of WP echoes, as these targets do not have well-defined signature in Doppler power spectra. This paper presents an effective target classification technique based on range-Doppler features.

  5. Mod-5A wind turbine generator program design report. Volume 3: Final design and system description, book 1

    NASA Technical Reports Server (NTRS)

    1984-01-01

    The design, development and analysis of the 7.3 MW MOD-5A wind turbine generator is documented. Volume 3, book 1 describes the performance and characteristics of the MOD-5A wind turbine generator in its final configuration. Each subsystem - the rotor, drivetrain, nacelle, tower and foundation is described in detail.

  6. Design, economic and system considerations of large wind-driven generators

    NASA Technical Reports Server (NTRS)

    Jorgensen, G. E.; Lotker, M.; Meier, R. C.; Brierley, D.

    1976-01-01

    The increased search for alternative energy sources has lead to renewed interest and studies of large wind-driven generators. This paper presents the results and considerations of such an investigation. The paper emphasizes the concept selection of wind-driven generators, system optimization, control system design, safety aspects, economic viability on electric utility systems and potential electric system interfacing problems.

  7. Cumulative and Synergistic Effects of Physical, Biological, and Acoustic Signals on Marine Mammal Habitat Use

    DTIC Science & Technology

    2009-09-30

    soundbite time series, 3) determination of daily species presence, 4) generation of seasonal soundscapes , and 5) generation of geophysical (wind...m and 55 m (Figure 2b). RESULTS Passive Acoustics Spectral data from M5 highlighted the change in seasonal soundscapes related to bowhead...whale migration in January and the ice seal breeding season in March-May. The soundscapes of the summer and fall revealed an acoustic environment

  8. Meteotsunami Detection with ASOS data

    NASA Astrophysics Data System (ADS)

    Kim, Y. Y.; Angove, M.

    2017-12-01

    A meteotsunami can strike almost any coast. Recent researches have shown that meteotsunamis are more common than previously thought and suggest that some past events may have been mistaken for other types of coastal floods, such as storm surges or seiches. In the United States, conditions for destructive meteotsunamis are most favorable along the East Coast, Gulf of Mexico, and in the Great Lakes, where they may pose a greater threat than earthquake-generated tsunamis. It is evident that meteotsunamis are strongly related to a mesoscale convective system or derecho of sufficient intensity and translational speed. Meteotsunamis are generated by pressure and wind disturbances related to the convective system above continental shelf area of the ocean. In this study it is noted that air pressure, wind gust speed, and air temperature display specific simultaneous changes favorable for meteotsunami development. Sudden wind gust rise, air pressure rise, and air temperature drop occur due to gust front related to cloud downdrafts. Therefore, we suggest that such a consistent tendency of wind gust speed, air pressure, and air temperature associated with mesoscale convective system capable of generating meteotsunami can be used for meteotsunami detection about one or two days before the event in the ocean. It was applied for the June 13, 2013 meteotsunami with automated surface observing systems (ASOS) meteorological data. For operational use of the detection of potential for meteotsunami development at U.S. East or Gulf of Mexico coasts in waters, detection threshold values for the three variables are also discussed.

  9. Design and Analysis of Windmill Simulation and Pole by Solidwork Program

    NASA Astrophysics Data System (ADS)

    Mulyana, Tatang; Sebayang, Darwin; R, Akmal Muamar. D.; A, Jauharah H. D.; Yahya Shomit, M.

    2018-03-01

    The Indonesian state of archipelago has great wind energy potential. For micro-scale power generation, the energy obtained from the windmill can be connected directly to the electrical load and can be used without problems. However, for macro-scale power generation, problems will arise such as the design of vane shapes, there should be a simulation and an accurate experiment to produce blades with a special shape that can capture wind energy. In addition, daily and yearly wind and wind rate calculations are also required to ensure the best latitude and longitude positions for building windmills. This paper presents a solution to solve the problem of how to produce a windmill which in the builder is very practical and very mobile can be moved its location. Before a windmill prototype is built it should have obtained the best windmill design result. Therefore, the simulation of the designed windmill is of crucial importance. Solid simulation express is a tool that serves to generate simulation of a design. Some factors that can affect a design result include the power part and the rest part of the part, material selection, the load is given, the security of the design power made, and changes in shape due to treat the load given to the design made. In this paper, static and thermal simulations of windmills have been designed. Based on the simulation result on the designed windmill, it shows that the design has been made very satisfactory so that it can be done prototyping fabrication process.

  10. Costs of solar and wind power variability for reducing CO2 emissions.

    PubMed

    Lueken, Colleen; Cohen, Gilbert E; Apt, Jay

    2012-09-04

    We compare the power output from a year of electricity generation data from one solar thermal plant, two solar photovoltaic (PV) arrays, and twenty Electric Reliability Council of Texas (ERCOT) wind farms. The analysis shows that solar PV electricity generation is approximately one hundred times more variable at frequencies on the order of 10(-3) Hz than solar thermal electricity generation, and the variability of wind generation lies between that of solar PV and solar thermal. We calculate the cost of variability of the different solar power sources and wind by using the costs of ancillary services and the energy required to compensate for its variability and intermittency, and the cost of variability per unit of displaced CO(2) emissions. We show the costs of variability are highly dependent on both technology type and capacity factor. California emissions data were used to calculate the cost of variability per unit of displaced CO(2) emissions. Variability cost is greatest for solar PV generation at $8-11 per MWh. The cost of variability for solar thermal generation is $5 per MWh, while that of wind generation in ERCOT was found to be on average $4 per MWh. Variability adds ~$15/tonne CO(2) to the cost of abatement for solar thermal power, $25 for wind, and $33-$40 for PV.

  11. Assessment of wind energy potential and cost estimation of wind-generated electricity at hilltops surrounding the city of Maroua in Cameroon

    NASA Astrophysics Data System (ADS)

    Kaoga, Dieudonné Kidmo; Bogno, Bachirou; Aillerie, Michel; Raidandi, Danwe; Yamigno, Serge Doka; Hamandjoda, Oumarou; Tibi, Beda

    2016-07-01

    In this work, 28 years of wind data, measured at 10m above ground level (AGL), from Maroua meteorological station is utilized to assess the potential of wind energy at exposed ridges tops of mountains surrounding the city of Maroua. The aim of this study is to estimate the cost of wind-generated electricity using six types of wind turbines (50 to 2000 kW). The Weibull distribution function is employed to estimate Weibull shape and scale parameters using the energy pattern factor method. The considered wind shear model to extrapolate Weibull parameters and wind profiles is the empirical power law correlation. The results show that hilltops in the range of 150-350m AGL in increments of 50, fall under Class 3 or greater of the international system of wind classification and are deemed suitable to outstanding for wind turbine applications. A performance of the selected wind turbines is examined as well as the costs of wind-generated electricity at the considered hilltops. The results establish that the lowest costs per kWh are obtained using YDF-1500-87 (1500 kW) turbine while the highest costs are delivered by P-25-100 (90 kW). The lowest costs (US) per kWh of electricity generated are found to vary between a minimum of 0.0294 at hilltops 350m AGL and a maximum of 0.0366 at hilltops 150m AGL, with corresponding energy outputs that are 6,125 and 4,932 MWh, respectively. Additionally, the matching capacity factors values are 38.05% at hilltops 150m AGL and 47.26% at hilltops 350m AGL. Furthermore, YDF-1500-87 followed by Enercon E82-2000 (2000 kW) wind turbines provide the lowest cost of wind generated electricity and are recommended for use for large communities. Medium wind turbine P-15-50 (50 kW), despite showing the best coefficients factors (39.29% and 48.85% at hilltops 150 and 350m AGL, in that order), generates electricity at an average higher cost/kWh of US0.0547 and 0.0440 at hilltops 150 and 350m AGL, respectively. P-15-50 is deemed a more advantageous option for off-grid electrification of small and remote communities.

  12. Scope of wind energy in Bangladesh and simulation analysis of three different horizontal axis wind turbine blade shapes

    NASA Astrophysics Data System (ADS)

    Khan, Md. Arif-Ul Islam; Das, Swapnil; Dey, Saikat

    2017-12-01

    : Economic growth and energy demand are intertwined. Therefore, one of the most important concerns of the government and in the world is the need for energy security. Currently, the world relies on coal, crude oil and natural gas for energy generati on. However, the energy crisis together with climate change and depletion of oil have become major concerns to all countries. Therefore, alternative energy resources such as wind energy attracted interest from both public and private sectors to invest in energy generation from this source extensively. Both Vertical and Horizontal axis wind turbine can be used for this purpose. But, Horizontal axis is the most promising between them due to its efficiency and low expense. Bangladesh being a tropical country does have a lot of wind flow at different seasons of the year. However, there are some windy locations in which wind energy projects could be feasible. In this project a detailed review of the current st ate-of-art for wind turbine blade design is presented including theoretical maximum efficiency, Horizontal Axis Wind Turbine (HAWT) blade design, simulation power and COP values for different blade material. By studying previously collected data on the wind resources available in B angladesh at present and by analyzing this data, this paper will discuss the scope of wind energy in Bangladesh.

  13. Design and testing of the navigation model for three axis stabilized earth oriented satellites applied to the ATS-6 satellite image data base

    NASA Technical Reports Server (NTRS)

    Kuhlow, W. W.; Chatters, G. C.

    1977-01-01

    An earth edge methodology has been developed to account for the relative attitude changes between successive ATS-6 images which allows reasonable high quality wind sets to be produced. The method consists of measuring the displacements of the right and left infrared earth edges between successive ATS-6 images as a function of scan line; from these measurements the attitude changes can be deduced and used to correct the apparent cloud displacement measurements. The wind data sets generated from ATS-6 using the earth-edge methodology were compared with those derived from the SMS-1 images (and model) covering the same time period. Quantitative comparisons for low level trade cumuli were made at interpolated uniformly spaced grid points and for selected individual comparison clouds. Selected individual comparison clouds, the root-mean-square differences for the U and V components were 1.0 and 1.2 meters per second with a maximum wind direction difference of 15 deg.

  14. 77 FR 69449 - Combined Notice of Filings #2

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-11-19

    .... Applicants: Calvert Cliffs Nuclear Power Plant, LLC, Nine Mile Point Nuclear Station, LLC, R.E. Ginna Nuclear Power Plant, LLC. Description: Notice of Non-Material Change in Status of Calvert Cliffs Nuclear Power...., Constellation Power Source Generation, Inc., Cow Branch Wind Power, L.L.C., CR Clearing, LLC, Criterion Power...

  15. Impact of active and break wind spells on the demand-supply balance in wind energy in India

    NASA Astrophysics Data System (ADS)

    Kulkarni, Sumeet; Deo, M. C.; Ghosh, Subimal

    2018-02-01

    With an installed capacity of over 19,000 MW, the wind power currently accounts for almost 70% of the total installed capacity among the renewable energy sector in India. The extraction of wind power mainly depends on prevailing meteorology which is strongly influenced by monsoon variability. The monsoon season is characterized by significant fluctuations in between periods of wet and dry spells. During the dry spells, the demand for power from agriculture and cooling equipment increases, whereas during the wet periods, such demand reduces, although, at the same time, the power supply increases because of strong westerly winds contributing to an enhanced production of wind energy. At this backdrop, we aim to assess the impact of intra-seasonal wind variability on the balance of energy supply and demand during monsoon seasons in India. Further, we explore the probable cause of wind variability by relating it to El Nino events. It is observed that the active and break phases in wind significantly impact the overall wind potential output. Although the dry spells are generally found to reduce the overall wind potential, their impact on the potential seems to have declined after the year 2000. The impact of meteorological changes on variations in wind power studied in this work should find applications typically in taking investment decisions on conventional generation facilities, like thermal, which are currently used to maintain the balance of power supply and demand.

  16. Control Strategies for Smoothing of Output Power of Wind Energy Conversion Systems

    NASA Astrophysics Data System (ADS)

    Pratap, Alok; Urasaki, Naomitsu; Senju, Tomonobu

    2013-10-01

    This article presents a control method for output power smoothing of a wind energy conversion system (WECS) with a permanent magnet synchronous generator (PMSG) using the inertia of wind turbine and the pitch control. The WECS used in this article adopts an AC-DC-AC converter system. The generator-side converter controls the torque of the PMSG, while the grid-side inverter controls the DC-link and grid voltages. For the generator-side converter, the torque command is determined by using the fuzzy logic. The inputs of the fuzzy logic are the operating point of the rotational speed of the PMSG and the difference between the wind turbine torque and the generator torque. By means of the proposed method, the generator torque is smoothed, and the kinetic energy stored by the inertia of the wind turbine can be utilized to smooth the output power fluctuations of the PMSG. In addition, the wind turbines shaft stress is mitigated compared to a conventional maximum power point tracking control. Effectiveness of the proposed method is verified by the numerical simulations.

  17. Effects of wind energy generation and white-nose syndrome on the viability of the Indiana bat

    USGS Publications Warehouse

    Erickson, Richard A.; Thogmartin, Wayne E.; Diffendorfer, James E.; Russell, Robin E.; Szymanski, Jennifer A.

    2016-01-01

    Wind energy generation holds the potential to adversely affect wildlife populations. Species-wide effects are difficult to study and few, if any, studies examine effects of wind energy generation on any species across its entire range. One species that may be affected by wind energy generation is the endangered Indiana bat (Myotis sodalis), which is found in the eastern and midwestern United States. In addition to mortality from wind energy generation, the species also faces range-wide threats from the emerging infectious fungal disease, white-nose syndrome (WNS). White-nose syndrome, caused by Pseudogymnoascus destructans, disturbs hibernating bats leading to high levels of mortality. We used a spatially explicit full-annual-cycle model to investigate how wind turbine mortality and WNS may singly and then together affect population dynamics of this species. In the simulation, wind turbine mortality impacted the metapopulation dynamics of the species by causing extirpation of some of the smaller winter colonies. In general, effects of wind turbines were localized and focused on specific spatial subpopulations. Conversely, WNS had a depressive effect on the species across its range. Wind turbine mortality interacted with WNS and together these stressors had a larger impact than would be expected from either alone, principally because these stressors together act to reduce species abundance across the spectrum of population sizes. Our findings illustrate the importance of not only prioritizing the protection of large winter colonies as is currently done, but also of protecting metapopulation dynamics and migratory connectivity.

  18. Effects of wind energy generation and white-nose syndrome on the viability of the Indiana bat.

    PubMed

    Erickson, Richard A; Thogmartin, Wayne E; Diffendorfer, Jay E; Russell, Robin E; Szymanski, Jennifer A

    2016-01-01

    Wind energy generation holds the potential to adversely affect wildlife populations. Species-wide effects are difficult to study and few, if any, studies examine effects of wind energy generation on any species across its entire range. One species that may be affected by wind energy generation is the endangered Indiana bat ( Myotis sodalis ), which is found in the eastern and midwestern United States. In addition to mortality from wind energy generation, the species also faces range-wide threats from the emerging infectious fungal disease, white-nose syndrome (WNS). White-nose syndrome, caused by Pseudogymnoascus destructans , disturbs hibernating bats leading to high levels of mortality. We used a spatially explicit full-annual-cycle model to investigate how wind turbine mortality and WNS may singly and then together affect population dynamics of this species. In the simulation, wind turbine mortality impacted the metapopulation dynamics of the species by causing extirpation of some of the smaller winter colonies. In general, effects of wind turbines were localized and focused on specific spatial subpopulations. Conversely, WNS had a depressive effect on the species across its range. Wind turbine mortality interacted with WNS and together these stressors had a larger impact than would be expected from either alone, principally because these stressors together act to reduce species abundance across the spectrum of population sizes. Our findings illustrate the importance of not only prioritizing the protection of large winter colonies as is currently done, but also of protecting metapopulation dynamics and migratory connectivity.

  19. Investigating the effect of increased wind generation capacity on investment in transmission infrastructure

    NASA Astrophysics Data System (ADS)

    Braswell, Michael G.

    The transmission network that connects electricity generators with consumers is a critical yet often-overlooked component of the nation's electrical power infrastructure. However, the transmission grid has suffered from chronic underinvestment in recent decades due to various economic and regulatory factors that impede timely and efficient investments in transmission. One factor that might help offset these obstacles to transmission is the growth in wind power generation. The assumption among many in the electrical power industry is that wind power investments necessarily require greater investment in transmission due to the fact that wind power is a geographically-restricted resource and cannot always be situated close to areas of high electricity demand. However, to date there have been few, if any, empirical studies to verify this connection. This paper discusses a state-by-state empirical study exploring the relationship between increased wind generation capacity and the level of investment in transmission infrastructure. This study begins with the hypothesis that increases in installed wind generation capacity, in combination with other policies that promote wind energy more generally, should result in higher levels of transmission investment. Using data from the Federal Energy Regulatory Commission (FERC) and the American Wind Energy Association (AWEA), this paper develops regression models suggesting that wind investment has a small but distinct positive impact on transmission investment. This paper then explores the effects of other state renewable energy promotion policies, and discusses the policy implications of these findings.

  20. Is There a Future for Nuclear Power? Wind and Emission Reduction Targets in Fossil-Fuel Alberta

    PubMed Central

    Duan, Jun; Lynch, Rachel

    2016-01-01

    This paper explores the viability of relying on wind power to replace upwards of 60% of electricity generation in Alberta that would be lost if coal-fired generation is phased out. Using hourly wind data from 17 locations across Alberta, we are able to simulate the potential wind power output available to the Alberta grid when modern, 3.5 MW-capacity wind turbines are spread across the province. Using wind regimes for the years 2006 through 2015, we find that available wind power is less than 60% of installed capacity 98% of the time, and below 30% of capacity 74% of the time. There is only a small amount of correlation between wind speeds at different locations, but yet it remains necessary to rely on fossil fuel generation. Then, based on the results from a grid allocation model, we find that CO2 emissions can be reduced by about 30%, but only through a combination of investment in wind energy and reliance on purchases of hydropower from British Columbia. Only if nuclear energy is permitted into the generation mix would Alberta be able to meet its CO2-emissions reduction target in the electricity sector. With nuclear power, emissions can be reduced by upwards of 85%. PMID:27902712

  1. Is There a Future for Nuclear Power? Wind and Emission Reduction Targets in Fossil-Fuel Alberta.

    PubMed

    van Kooten, G Cornelis; Duan, Jun; Lynch, Rachel

    2016-01-01

    This paper explores the viability of relying on wind power to replace upwards of 60% of electricity generation in Alberta that would be lost if coal-fired generation is phased out. Using hourly wind data from 17 locations across Alberta, we are able to simulate the potential wind power output available to the Alberta grid when modern, 3.5 MW-capacity wind turbines are spread across the province. Using wind regimes for the years 2006 through 2015, we find that available wind power is less than 60% of installed capacity 98% of the time, and below 30% of capacity 74% of the time. There is only a small amount of correlation between wind speeds at different locations, but yet it remains necessary to rely on fossil fuel generation. Then, based on the results from a grid allocation model, we find that CO2 emissions can be reduced by about 30%, but only through a combination of investment in wind energy and reliance on purchases of hydropower from British Columbia. Only if nuclear energy is permitted into the generation mix would Alberta be able to meet its CO2-emissions reduction target in the electricity sector. With nuclear power, emissions can be reduced by upwards of 85%.

  2. 77 FR 9225 - Notice of Effectiveness of Exempt Wholesale Generator Status

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-16

    ... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission Notice of Effectiveness of Exempt Wholesale Generator Status Docket Nos. Fire Island Wind, LLC EG12-9-000 Kaheawa Wind Power II, LLC EG12-12-000 Broken Bow Wind, LLC EG12-13-000 Crofton Bluffs Wind, LLC EG12-14-000 NRG Texas Power LLC EG12-15...

  3. Systems Engineering Publications | Wind | NREL

    Science.gov Websites

    Different Turbine Heights. AIAA SciTech Forum: 35th Wind Energy Symposium, Grapevine, Texas, doi:10.2514 Tool for Variable-Speed Wind Turbine Generators. NREL/TP-5000-66462, doi:10.2514/6.2017-1619. Seturaman Turbine using GeneratorSE. AIAA SciTech Forum: 35th Wind Energy Symposium, Grapevine, Texas, doi:10.2172

  4. Long term evolution of wind at the German coasts using newly digitzed data of signal stations

    NASA Astrophysics Data System (ADS)

    Tinz, Birger; Wagner, Dörte; Feser, Frauke; Storch, Hans v.

    2017-04-01

    A long overseen source of synoptic data collected along the coast of Germany has been detected, and is presently digitized. The data stem from warning posts in harbors along the coast, so called "Signalstationen", which recorded estimated wind speed and direction, wave conditions, air pressure and precipitation. The first post began operating in 1877 and the last ceased operation in 1999. Signal Stations were positioned close to the shore to convey severe weather warning of the German Marine Observatory in Hamburg to ships and the coastal population. This was done by raising optical signals. Reports were prepared 3 to 9 times per day. These observations did not enter the regular weather analysis process of the weather service, but were later archived: Now, about 800 handwritten journals are archived at the German Meteorological Service in Hamburg, and some are now available for further analysis. A first inspection of these data indicates a wealth of data, which are well suited for high-resolution description of historical coastal events such as the storm surges in the southern Baltic Sea on 31 January 1913 or in the German Bight on 12 March 1906. The temporal homogeneity is sometimes compromised and homogenization is required. Estimated wind conditions, available so far at the two stations Travemünde and Schleimünde for more than 100 years, allow for the first time an assessment of changing wind and storm conditions based on wind data (instead of proxies such as annual percentiles of geostrophic wind distributions). The pressure data may be used to generating fine-scale synoptic analysis but also for generating geostrophic wind statistics on spatial scales much shorter than what was possible so far.

  5. Winds of Change Blowing for Wind Farm Research with NREL's SOWFA Tool |

    Science.gov Websites

    News | NREL Winds of Change Blowing for Wind Farm Research with NREL's SOWFA Tool Winds of Change Blowing for Wind Farm Research with NREL's SOWFA Tool April 1, 2016 Before the Energy Department's that researchers all over the world could embrace. Now, the winds of change are blowing. SOWFA is a

  6. Analysis of the electrical harmonic characteristics of a slip recovery variable speed generating system for wind turbine applications

    NASA Astrophysics Data System (ADS)

    Herrera, J. I.; Reddoch, T. W.

    1988-02-01

    Variable speed electric generating technology can enhance the general use of wind energy in electric utility applications. This enhancement results from two characteristic properties of variable speed wind turbine generators: an improvement in drive train damping characteristics, which results in reduced structural loading on the entire wind turbine system, and an improvement in the overall efficiency by using a more sophisticated electrical generator. Electronic converter systems are the focus of this investigation -- in particular, the properties of a wound-rotor induction generator with the slip recovery system and direct-current link converter. Experience with solid-state converter systems in large wind turbines is extremely limited. This report presents measurements of electrical performances of the slip recovery system and is limited to the terminal characteristics of the system. Variable speed generating systems working effectively in utility applications will require a satisfactory interface between the turbine/generator pair and the utility network. The electrical testing described herein focuses largely on the interface characteristics of the generating system. A MOD-O wind turbine was connected to a very strong system; thus, the voltage distortion was low and the total harmonic distortion in the utility voltage was less than 3 percent (within the 5 percent limit required by most utilities). The largest voltage component of a frequency below 60 Hz was 40 dB down from the 60-Hz less than component.

  7. Development of large, horizontal-axis wind turbines

    NASA Technical Reports Server (NTRS)

    Baldwin, D. H.; Kennard, J.

    1985-01-01

    A program to develop large, horizontal-axis wind turbines is discussed. The program is directed toward developing the technology for safe, reliable, environmentally acceptable large wind turbines that can generate a significant amount of electricity at costs competitive with those of conventional electricity-generating systems. In addition, these large wind turbines must be fully compatible with electric utility operations and interface requirements. Several ongoing projects in large-wind-turbine development are directed toward meeting the technology requirements for utility applications. The machines based on first-generation technology (Mod-OA and Mod-1) successfully completed their planned periods of experimental operation in June, 1982. The second-generation machines (Mod-2) are in operation at selected utility sites. A third-generation machine (Mod-5) is under contract. Erection and initial operation of the Mod-5 in Hawaii should take place in 1986. Each successive generation of technology increased reliability and energy capture while reducing the cost of electricity. These advances are being made by gaining a better understanding of the system-design drivers, improving the analytical design tools, verifying design methods with operating field data, and incorporating new technology and innovative designs. Information is given on the results from the first- and second-generation machines (Mod-OA, - 1, and -2), the status of the Department of Interior, and the status of the third-generation wind turbine (Mod-5).

  8. An Analysis of Effect of Water Resources Constraint on Energy Production in Turkey

    DTIC Science & Technology

    2012-12-01

    wind turbines usually have two or three blades and, because winds above the ground tend to be faster and less turbulent than those near the surface... turbines are mounted on tall towers to capture the most energy. As the blades turn, the central shaft spins a generator to make electricity. Wind ... turbines a placed at sites with strong and steady winds (about 20 km/hour) can economically generate electricity without producing pollutants. Wind

  9. Impacts of climate changes on ocean surface gravity waves over the eastern Canadian shelf

    NASA Astrophysics Data System (ADS)

    Guo, Lanli; Sheng, Jinyu

    2017-05-01

    A numerical study is conducted to investigate the impact of climate changes on ocean surface gravity waves over the eastern Canadian shelf (ECS). The "business-as-usual" climate scenario known as Representative Concentration Pathway RCP8.5 is considered in this study. Changes in the ocean surface gravity waves over the study region for the period 1979-2100 are examined based on 3 hourly ocean waves simulated by the third-generation ocean wave model known as WAVEWATCHIII. The wave model is driven by surface winds and ice conditions produced by the Canadian Regional Climate Model (CanRCM4). The whole study period is divided into the present (1979-2008), near future (2021-2050) and far future (2071-2100) periods to quantify possible future changes of ocean waves over the ECS. In comparison with the present ocean wave conditions, the time-mean significant wave heights ( H s ) are expected to increase over most of the ECS in the near future and decrease over this region in the far future period. The time-means of the annual 5% largest H s are projected to increase over the ECS in both near and far future periods due mainly to the changes in surface winds. The future changes in the time-means of the annual 5% largest H s and 10-m wind speeds are projected to be twice as strong as the changes in annual means. An analysis of inverse wave ages suggests that the occurrence of wind seas is projected to increase over the southern Labrador and central Newfoundland Shelves in the near future period, and occurrence of swells is projected to increase over other areas of the ECS in both the near and far future periods.

  10. Simulation of an offshore wind farm using fluid power for centralized electricity generation

    NASA Astrophysics Data System (ADS)

    Jarquin-Laguna, A.

    2016-09-01

    A centralized approach for electricity generation within a wind farm is explored through the use of fluid power technology. This concept considers a new way of generation, collection and transmission of wind energy inside a wind farm, in which electrical conversion does not occur during any intermediate conversion step before the energy has reached the offshore central platform. A numerical model was developed to capture the relevant physics from the dynamic interaction between different turbines coupled to a common hydraulic network and controller. This paper presents two examples of the time-domain simulation results for an hypothetical hydraulic wind farm subject to turbulent wind conditions. The performance and operational parameters of individual turbines are compared with those of a reference wind farm with conventional technology turbines, using the same wind farm layout and environmental conditions. For the presented case study, results indicate that the individual wind turbines are able to operate within operational limits with the current pressure control concept. Despite the stochastic turbulent wind input and wake effects, the hydraulic wind farm is able to produce electricity with reasonable performance in both below and above rated conditions.

  11. Evaluating the Impacts of Real-Time Pricing on the Cost and Value of Wind Generation

    DOE PAGES

    Siohansi, Ramteen

    2010-05-01

    One of the costs associated with integrating wind generation into a power system is the cost of redispatching the system in real-time due to day-ahead wind resource forecast errors. One possible way of reducing these redispatch costs is to introduce demand response in the form of real-time pricing (RTP), which could allow electricity demand to respond to actual real-time wind resource availability using price signals. A day-ahead unit commitment model with day-ahead wind forecasts and a real-time dispatch model with actual wind resource availability is used to estimate system operations in a high wind penetration scenario. System operations are comparedmore » to a perfect foresight benchmark, in which actual wind resource availability is known day-ahead. The results show that wind integration costs with fixed demands can be high, both due to real-time redispatch costs and lost load. It is demonstrated that introducing RTP can reduce redispatch costs and eliminate loss of load events. Finally, social surplus with wind generation and RTP is compared to a system with neither and the results demonstrate that introducing wind and RTP into a market can result in superadditive surplus gains.« less

  12. Models for the transient stability of conventional power generating stations connected to low inertia systems

    NASA Astrophysics Data System (ADS)

    Zarifakis, Marios; Coffey, William T.; Kalmykov, Yuri P.; Titov, Sergei V.

    2017-06-01

    An ever-increasing requirement to integrate greater amounts of electrical energy from renewable sources especially from wind turbines and solar photo-voltaic installations exists and recent experience in the island of Ireland demonstrates that this requirement influences the behaviour of conventional generating stations. One observation is the change in the electrical power output of synchronous generators following a transient disturbance especially their oscillatory behaviour accompanied by similar oscillatory behaviour of the grid frequency, both becoming more pronounced with reducing grid inertia. This behaviour cannot be reproduced with existing mathematical models indicating that an understanding of the behaviour of synchronous generators, subjected to various disturbances especially in a system with low inertia requires a new modelling technique. Thus two models of a generating station based on a double pendulum described by a system of coupled nonlinear differential equations and suitable for analysis of its stability corresponding to infinite or finite grid inertia are presented. Formal analytic solutions of the equations of motion are given and compared with numerical solutions. In particular the new finite grid model will allow one to identify limitations to the operational range of the synchronous generators used in conventional power generation and also to identify limits, such as the allowable Rate of Change of Frequency which is currently set to ± 0.5 Hz/s and is a major factor in describing the volatility of a grid as well as identifying requirements to the total inertia necessary, which is currently provided by conventional power generators only, thus allowing one to maximise the usage of grid connected non-synchronous generators, e.g., wind turbines and solar photo-voltaic installations.

  13. NREL Triples Previous Estimates of U.S. Wind Power Potential (Fact Sheet)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    The National Renewable Energy Laboratory (NREL) recently released new estimates of the U.S. potential for wind-generated electricity, using advanced wind mapping and validation techniques to triple previous estimates of the size of the nation's wind resources. The new study, conducted by NREL and AWS TruePower, finds that the contiguous 48 states have the potential to generate up to 37 million gigawatt-hours annually. In comparison, the total U.S. electricity generation from all sources was roughly 4 million gigawatt-hours in 2009.

  14. Frequency Regulation and Oscillation Damping Contributions of Variable-Speed Wind Generators in the U.S. Eastern Interconnection (EI)

    DOE PAGES

    Liu, Yong; Gracia, Jose R,; King, Jr, Thomas J.; ...

    2014-05-16

    The U.S. Eastern Interconnection (EI) is one of the largest electric power grids in the world and is expected to have difficulties in dealing with frequency regulation and oscillation damping issues caused by the increasing wind power. On the other side, variable-speed wind generators can actively engage in frequency regulation or oscillation damping with supplementary control loops. This paper creates a 5% wind power penetration simulation scenario based on the 16 000-bus EI system dynamic model and developed the user-defined wind electrical control model in PSS (R) E that incorporates additional frequency regulation and oscillation damping control loops. We evaluatedmore » the potential contributions of variable-speed wind generations to the EI system frequency regulation and oscillation damping, and simulation results demonstrate that current and future penetrations of wind power are promising in the EI system frequency regulation and oscillation damping.« less

  15. Anisotropic Solar Wind Sputtering of the Lunar Surface Induced by Crustal Magnetic Anomalies

    NASA Technical Reports Server (NTRS)

    Poppe, A. R.; Sarantos, M.; Halekas, J. S.; Delory, G. T.; Saito, Y.; Nishino, M.

    2014-01-01

    The lunar exosphere is generated by several processes each of which generates neutral distributions with different spatial and temporal variability. Solar wind sputtering of the lunar surface is a major process for many regolith-derived species and typically generates neutral distributions with a cosine dependence on solar zenith angle. Complicating this picture are remanent crustal magnetic anomalies on the lunar surface, which decelerate and partially reflect the solar wind before it strikes the surface. We use Kaguya maps of solar wind reflection efficiencies, Lunar Prospector maps of crustal field strengths, and published neutral sputtering yields to calculate anisotropic solar wind sputtering maps. We feed these maps to a Monte Carlo neutral exospheric model to explore three-dimensional exospheric anisotropies and find that significant anisotropies should be present in the neutral exosphere depending on selenographic location and solar wind conditions. Better understanding of solar wind/crustal anomaly interactions could potentially improve our results.

  16. Maximum capacity model of grid-connected multi-wind farms considering static security constraints in electrical grids

    NASA Astrophysics Data System (ADS)

    Zhou, W.; Qiu, G. Y.; Oodo, S. O.; He, H.

    2013-03-01

    An increasing interest in wind energy and the advance of related technologies have increased the connection of wind power generation into electrical grids. This paper proposes an optimization model for determining the maximum capacity of wind farms in a power system. In this model, generator power output limits, voltage limits and thermal limits of branches in the grid system were considered in order to limit the steady-state security influence of wind generators on the power system. The optimization model was solved by a nonlinear primal-dual interior-point method. An IEEE-30 bus system with two wind farms was tested through simulation studies, plus an analysis conducted to verify the effectiveness of the proposed model. The results indicated that the model is efficient and reasonable.

  17. Integration of permanent magnet synchronous generator wind turbines into power grid

    NASA Astrophysics Data System (ADS)

    Abedini, Asghar

    The world is seeing an ever-increasing demand for electrical energy. The future growth of electrical power generation needs to be a mix of technologies including fossil fuels, hydro, nuclear, wind, and solar. The federal and state energy agencies have taken several proactive steps to increase the share of renewable energy in the total generated electrical power. In 2005, 11.1% of the total 1060 GW electricity generation capacity was from Renewable Energy Sources (RES) in the US. The power capacity portfolio included 9.2% from hydroelectric, 0.87% from wind, and 0.7% from biomass. Other renewable power capacity included 2.8 GW of geothermal, 0.4 GW of solar thermal, and 0.2 GW of solar PV. Although the share of renewable energy sources is small compared with the total power capacity, they are experiencing a high and steady growth. The US is leading the world in wind energy growth with a 27% increase in 2006 and a projected 26% increase in 2007, according to the American Wind Energy Association (AWEA). The US Department of Energy benchmarked a goal to meet 5% of the nation's energy need by launching the Wind Powering America (WPA) program. Although renewable energy sources have many benefits, their utilization in the electrical grid does not come without cost. The higher penetration of RES has introduced many technical and non-technical challenges, including power quality, reliability, safety and protection, load management, grid interconnections and control, new regulations, and grid operation economics. RES such as wind and PV are also intermittent in nature. The energy from these sources is available as long as there is wind or sunlight. However, these are energies that are abundant in the world and the power generated from these sources is pollution free. Due to high price of foundation of wind farms, employing variable speed wind turbines to maximize the extracted energy from blowing wind is more beneficial. On the other hand, since wind power is intermittent, integrating energy storage systems with wind farms has attracted a lot of attention. These two subjects are addressed in this dissertation in detail. Permanent Magnet Synchronous Generators (PMSG) are used in variable speed wind turbines. In this thesis, the dynamic of the PMSG is investigated and a power electronic converter is designed to integrate the wind turbine to the grid. The risks of PMSG wind turbines such as low voltage ride through and short circuits, are assessed and the methods of mitigating the risks are discussed. In the second section of the thesis, various methods of smoothing wind turbine output power are explained and compared. Two novel methods of output power smoothing are analyzed: Rotor inertia and Super capacitors. The advantages and disadvantages of each method are explained and the dynamic model of each method is developed. The performance of the system is evaluated by simulating the wind turbine system in each method. The concepts of the methods of smoothing wind power can be implemented in other types of wind turbines such as Doubly Fed Induction Generator (DFIG) wind turbines.

  18. Retrospective and prospective analysis of policy incentives for wind power in Portugal

    NASA Astrophysics Data System (ADS)

    Pena Cabra, Ivonne A.

    Concerns over climate change impacts, goals to increase environmental sustainability, and questions about the reliability of fuel supply have led several countries to pursue the goal of increasing the share of renewable energy sources in their electricity grid. Portugal is one of the leading countries for wind electricity generation. Wind diffusion in Portugal started in the early 2000's and in 2013 wind electricity generation accounted for more than 24% (REN 2013b). The large share of wind in Portuguese electricity production is a consequence of European Union (E.U.) mandates and national policies, mainly feed-in tariffs. Discussions on the appropriate policy design and level of incentive to promote renewable energy adoption and meet further renewable capacity goals are ongoing in Portugal, namely in what concerns the level and duration of feed-in tariffs that should be provided to independent power producers. This, in turn, raises the question of whether the past feed-in tariff levels were well designed to achieve the goals of a larger penetration of renewables in the Portuguese grid. The policies to induce wind adoption have led to a growth in wind installed capacity and share of electricity generated by wind in Portugal from less than 1% in 2000 to approximately 24% in 2013, but questions arise on their cost-effectiveness and whether alternative policy designs would have led to the same goal. The Portuguese wind feed-in tariffs are a guaranteed incentive which has varied between 85- 180/MWh over the last 20 years (ERSE 2011), and remained approximately constant since 2001 at $101/MWh. They are currently guaranteed for 20 years of production or 44GWh of electricity generation per MW installed (Diario da Republica 2013) - the longest period among countries with high wind electricity share. They do not incorporate any digression rate besides inflation, and are guaranteed for every unit of electricity fed to the grid. There are no power plants that have already been decommissioned despite being in operation for more than 20 years, favoring from new, detailed and hard-to-follow agreements in the legislation. All wind parks that are currently in operation have received feed-in tariffs since they connected to the grid, and are expected to keep receiving them at least until December 2019, and up to December 2036 - depending on year of connection and agreement under the most recent legislation (Diario da Republica 2013). The 2020 renewable energy goals in Portugal include having 6.8 GW of installed wind capacity, which implies the connection of 2 GW in the next years. If no further grid investments are made and wind capacity increases up to 100 MW to the connection point that we analyze, total annual electricity spill is likely to range the 20% to 40%. If the connection grid policy is designed to allow for wind spill, already 'occupied' connection points will be available to new entrants, lowering the total investment costs for new wind parks and increasing their profitability. This thesis is divided in three main parts: a first introductory section, a retrospective study of wind power in Portugal and a prospective analysis of the Portuguese wind power sector. The introductory section is a brief overview of the global renewable status, described in Chapter 1. Chapter 2 and Chapter 3 compile a retrospective study of wind power and the policies that have incentivized wind diffusion. We include in the discussion some references to the future wind power goals, but the results and policy recommendations are directed towards the existing connected wind power capacity. (Abstract shortened by UMI.).

  19. Characterisation of recirculation zones in complex terrain using multi-lidar measurements

    NASA Astrophysics Data System (ADS)

    Menke, R.; Mann, J.; Vasiljevic, N.

    2017-12-01

    Wind fields in complex terrain show a higher complexity compared to sites with simpler geometries. It is imperative to understand well the characteristics of complex flows to account for them during the site validation to ensure the wind turbines can withstand the local flow conditions. This study focuses on the description of recirculation zones occurring on lee sides of hills. The flow recirculation can have a significant impact on the success of wind energy projects since it represents one of the main contributors to the turbulence generation. An extensive dataset of observation of flow over complex terrain is available from the Perdigão 2017 field campaign (https://www.nature.com/news/world-s-largest-wind-mapping-project-spins-up-in-portugal-1.21481). A setup of 8 long-range WindScanners (Vasiljević et al., 2016), scanning lidars deployed by DTU performed RHI scans at several positions along two parallel ridges probing the flow field in two vertical planes, in addition data from several meteorological masts is available. With the above-mentioned lidar setup we achieved simultaneous dual-Doppler scans of the recirculation zone at three positions and simultaneous observations of recirculation behind two parallel ridges. Methods are developed to identify and define the extent of recirculation bubbles. Different parameters are defined to characterise the dimensions of the recirculation zone. The change of these parameters along the ridges is studied. In particular, the impact of atmospheric stability and the changes of the wind field at the position of the downwind ridge are investigated. Furthermore, the geometry of the recirculation zone for different wind directions and in connection to the upstream wind conditions is investigated.

  20. Influence of Complex Terrain on Wind Fields in the Mojave Desert, Southwestern US

    NASA Astrophysics Data System (ADS)

    Clow, G. D.; Reynolds, R. L.; Urban, F. E.; Bogle, R.; Vogel, J. M.

    2009-12-01

    The complex terrain of southern California has important effects on the winds in this dust-producing region. We use the Weather Research and Forecasting Model (WRF) to investigate the influences of rugged topography on the wind field in the Mojave Desert at a variety of scales. For this study, the WRF model was used in a retrospective mode over the time period 2000-to-present, with horizontal resolutions as fine as 1-km in specific areas of interest (i.e., known dust-source areas). At a regional scale, the juxtaposition of California's Central Valley with the Sierra Nevada Mountain Range often generates a band of strong winds extending eastward from the southern end of the Sierra Nevada and Tehachapi Mountains across the Mojave Desert and into Arizona. At finer scales, WRF-derived winds within this band reveal terrain deflection, focusing, channeling, and rapid direction change over short distances. These effects are important for assessing the capacity of wind to produce dust at potential dust-source areas during specific events, and for determining dust-transport pathways. Comparison of the WRF results during strong wind events with data from meteorological stations having dust emission instruments (saltation sensors and/or wind-triggered time-lapse cameras) help elucidate landscape conditions that influence dust emission and patterns of dust transport.

  1. Towards integrated assessment of the northern Adriatic Sea sediment budget using remote sensing

    NASA Astrophysics Data System (ADS)

    Taramelli, A.; Filipponi, F.; Valentini, E.; Zucca, F.; Gutierrez, O. Q.; Liberti, L.; Cordella, M.

    2014-12-01

    Understanding the factors influencing sediment fluxes is a key issue to interpret the evolution of coastal sedimentation under natural and human impact and relevant for the natural resources management. Despite river plumes represent one of the major gain in sedimentary budget of littoral cells, knowledge of factors influencing complex behavior of coastal plumes, like river discharge characteristics, wind stress and hydro-climatic variables, has not been yet fully investigated. Use of Earth Observation data allows the identification of spatial and temporal variations of suspended sediments related to river runoff, seafloor erosion, sediment transport and deposition processes. Objective of the study is to investigate sediment fluxes in northern Adriatic Sea by linking suspended sediment patterns of coastal plumes to hydrologic and climatic forcing regulating the sedimentary cell budget and geomorphological evolution in coastal systems and continental shelf waters. Analysis of Total Suspended Matter (TSM) product, derived from 2002-2012 MERIS time series, was done to map changes in spatial and temporal dimension of suspended sediments, focusing on turbid plume waters and intense wind stress conditions. From the generated multi temporal TSM maps, dispersal patterns of major freshwater runoff plumes in northern Adriatic Sea were evaluated through spatial variability of coastal plumes shape and extent. Additionally, sediment supply from river distributary mouths was estimated from TSM and correlated with river discharge rates, wind field and wave field through time. Spatial based methodology has been developed to identify events of wave-generated resuspension of sediments, which cause variation in water column turbidity, occurring during intense wind stress and extreme metocean conditions, especially in the winter period. The identified resuspension events were qualitatively described and compared with to hydro-climatic variables. The identification of spatial and temporal pattern variability highlighted the presence of seasonal sediment dynamics linked to the seasonal cycle in river discharge and wind stress. Results suggest that sediment fluxes generate geomorphological variations in northern Adriatic Sea, which are mainly controlled by river discharge rates and modulated by the winds.

  2. 76 FR 47573 - Notice of Effectiveness of Exempt Wholesale Generator Status

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-05

    ...-000 Sherbino II Wind Farm LLC EG11-87-000 Tanner Street Generation, LLC EG11-88-000 Inversiones E... Wholesale Generator Status Docket Nos. Bayonne Energy Center, LLC EG11-80-000 Long Island Solar Farm, LLC EG11-81-000 Evergreen Gen Lead, LLC EG11-82-000 Alta Wind IV Owner Lessor A EG11-83-000 Alta Wind IV...

  3. FEM Simulation of Small Wind Power Generating System Using PMSG

    NASA Astrophysics Data System (ADS)

    Kesamaru, Katsumi; Ohno, Yoshihiro; Sonoda, Daisuke

    The paper describes a new approach to simulate the small wind power generating systems using PMSG, in which the output is connected to constant resistive load, such as heaters, through the rectifier and the dc chopper. The dynamics of the wind power generating system is presented, and it is shown by simulation results that this approach is useful for system dynamics, such as starting phenomena.

  4. Mod-5A wind turbine generator program design report. Volume 2: Conceptual and preliminary design, book 2

    NASA Technical Reports Server (NTRS)

    1984-01-01

    The design, development and analysis of the 7.3 MW MOD-5A wind tunnel generator is documented. There are four volumes. In Volume 2, book 2 the requirements and criteria for the design are presented. The development tests, which determined or characterized many of the materials and components of the wind turbine generator, are described.

  5. Coordinated observations of postmidnight irregularities and thermospheric neutral winds and temperatures at low latitudes

    NASA Astrophysics Data System (ADS)

    Dao, Tam; Otsuka, Yuichi; Shiokawa, Kazuo; Nishioka, Michi; Yamamoto, Mamoru; Buhari, Suhaila M.; Abdullah, Mardina; Husin, Asnawi

    2017-07-01

    We investigated a postmidnight field-aligned irregularity (FAI) event observed with the Equatorial Atmosphere Radar at Kototabang (0.2°S, 100.3°E, dip latitude 10.4°S) in Indonesia on the night of 9 July 2010 using a comprehensive data set of both neutral and plasma parameters. We examined the rate of total electron content change index (ROTI) obtained from GPS receivers in Southeast Asia, airglow images detected by an all-sky imager, and thermospheric neutral winds and temperatures obtained by a Fabry-Perot interferometer at Kototabang. Altitudes of the F layer (h'F) observed by ionosondes at Kototabang, Chiang Mai, and Chumphon were also surveyed. We found that the postmidnight FAIs occurred within plasma bubbles and coincided with kilometer-scale plasma density irregularities. We also observed an enhancement of the magnetically equatorward thermospheric neutral wind at the same time as the increase of h'F at low-latitude stations, but h'F at a station near the magnetic equator remained invariant. Simultaneously, a magnetically equatorward gradient of thermospheric temperature was identified at Kototabang. The convergence of equatorward neutral winds from the Northern and Southern Hemispheres could be associated with a midnight temperature maximum occurring around the magnetic equator. Equatorward neutral winds can uplift the F layer at low latitudes and increase the growth rate of Rayleigh-Taylor instabilities, causing more rapid extension of plasma bubbles. The equatorward winds in both hemispheres also intensify the eastward Pedersen current, so a large polarization electric field generated in the plasma bubble might play an important role in the generation of postmidnight FAIs.

  6. 77 FR 48138 - Topaz Solar Farms LLC; High Plains Ranch II, LLC; Bethel Wind Energy LLC; Rippey Wind Energy LLC...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-13

    ... Ranch II, LLC; Bethel Wind Energy LLC; Rippey Wind Energy LLC; Pacific Wind, LLC; Colorado Highlands Wind, LLC; Shooting Star Wind Project, LLC; Notice of Effectiveness of Exempt Wholesale Generator or...

  7. Background and system description of the Mod 1 wind turbine generator

    NASA Technical Reports Server (NTRS)

    Ernst, E. H.

    1978-01-01

    The Mod-1 wind turbine considered is a large utility-class machine, operating in the high wind regime, which has the potential for generation of utility grade power at costs competitive with other alternative energy sources. A Mod-1 wind turbine generator (WTG) description is presented, taking into account the two variable-pitch steel blades of the rotor, the drive train, power generation/control, the Nacelle structure, and the yaw drive. The major surface elements of the WTG are the ground enclosure, the back-up battery system, the step-up transformer, elements of the data system, cabling, area lighting, and tower foundation. The final system weight (rotor, Nacelle, and tower) is expected to be about 650,000 pounds. The WTG will be capable of delivering 1800 kW to the utility grid in a wind-speed above 25 mph.

  8. Status of wind-energy conversion

    NASA Technical Reports Server (NTRS)

    Thomas, R. L.; Savino, J. M.

    1973-01-01

    The utilization of wind energy is technically feasible as evidenced by the many past demonstrations of wind generators. The cost of energy from the wind has been high compared to fossil fuel systems; a sustained development effort is needed to obtain economical systems. The variability of the wind makes it an unreliable source on a short term basis. However, the effects of this variability can be reduced by storage systems or connecting wind generators to: (1) fossil fuel systems; (2) hydroelectric systems; or (3) dispersing them throughout a large grid network. Wind energy appears to have the potential to meet a significant amount of our energy needs.

  9. A solid-state controller for a wind-driven slip-ring induction generator

    NASA Astrophysics Data System (ADS)

    Velayudhan, C.; Bundell, J. H.; Leary, B. G.

    1984-08-01

    The three-phase induction generator appears to become the preferred choice for wind-powered systems operated in parallel with existing power systems. A problem arises in connection with the useful operating speed range of the squirrel-cage machine, which is relatively narrow, as, for instance, in the range from 1 to 1.15. Efficient extraction of energy from a wind turbine, on the other hand, requires a speed range, perhaps as large as 1 to 3. One approach for 'matching' the generator to the turbine for the extraction of maximum power at any usable wind speed involves the use of a slip-ring induction machine. The power demand of the slip-ring machine can be matched to the available output from the wind turbine by modifying the speed-torque characteristics of the generator. A description is presented of a simple electronic rotor resistance controller which can optimize the power taken from a wind turbine over the full speed range.

  10. Level-crossing statistics of the horizontal wind speed in the planetary surface boundary layer

    NASA Astrophysics Data System (ADS)

    Edwards, Paul J.; Hurst, Robert B.

    2001-09-01

    The probability density of the times for which the horizontal wind remains above or below a given threshold speed is of some interest in the fields of renewable energy generation and pollutant dispersal. However there appear to be no analytic or conceptual models which account for the observed power law form of the distribution of these episode lengths over a range of over three decades, from a few tens of seconds to a day or more. We reanalyze high resolution wind data and demonstrate the fractal character of the point process generated by the wind speed level crossings. We simulate the fluctuating wind speed by a Markov process which approximates the characteristics of the real (non-Markovian) wind and successfully generates a power law distribution of episode lengths. However, fundamental questions concerning the physical basis for this behavior and the connection between the properties of a continuous-time stochastic process and the fractal statistics of the point process generated by its level crossings remain unanswered.

  11. Characteristics of Wind Velocity and Temperature Change Near an Escarpment-Shaped Road Embankment

    PubMed Central

    Kim, Young-Moon; You, Ki-Pyo; You, Jang-Youl

    2014-01-01

    Artificial structures such as embankments built during the construction of highways influence the surrounding airflow. Various types of damage can occur due to changes in the wind velocity and temperature around highway embankments. However, no study has accurately measured micrometeorological changes (wind velocity and temperature) due to embankments. This study conducted a wind tunnel test and field measurement to identify changes in wind velocity and temperature before and after the construction of embankments around roads. Changes in wind velocity around an embankment after its construction were found to be influenced by the surrounding wind velocity, wind angle, and the level difference and distance from the embankment. When the level difference from the embankment was large and the distance was up to 3H, the degree of wind velocity declines was found to be large. In changes in reference wind velocities around the embankment, wind velocity increases were not proportional to the rate at which wind velocities declined. The construction of the embankment influenced surrounding temperatures. The degree of temperature change was large in locations with large level differences from the embankment at daybreak and during evening hours when wind velocity changes were small. PMID:25136681

  12. Characteristics of wind velocity and temperature change near an escarpment-shaped road embankment.

    PubMed

    Kim, Young-Moon; You, Ki-Pyo; You, Jang-Youl

    2014-01-01

    Artificial structures such as embankments built during the construction of highways influence the surrounding airflow. Various types of damage can occur due to changes in the wind velocity and temperature around highway embankments. However, no study has accurately measured micrometeorological changes (wind velocity and temperature) due to embankments. This study conducted a wind tunnel test and field measurement to identify changes in wind velocity and temperature before and after the construction of embankments around roads. Changes in wind velocity around an embankment after its construction were found to be influenced by the surrounding wind velocity, wind angle, and the level difference and distance from the embankment. When the level difference from the embankment was large and the distance was up to 3H, the degree of wind velocity declines was found to be large. In changes in reference wind velocities around the embankment, wind velocity increases were not proportional to the rate at which wind velocities declined. The construction of the embankment influenced surrounding temperatures. The degree of temperature change was large in locations with large level differences from the embankment at daybreak and during evening hours when wind velocity changes were small.

  13. 76 FR 76397 - Combined Notice of Filings #1

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-07

    ..., Dry Lake Wind Power, LLC, Dry Lake Wind Power II LLC, Elk River Windfarm, LLC, Elm Creek Wind, LLC..., Flying Cloud Power Partners, LLC, Hardscrabble Wind Power LLC, Hay Canyon Wind LLC, Juniper Canyon Wind Power LLC, Klamath Energy LLC, Klamath Generation LLC, Klondike Wind Power LLC, Klondike Wind Power II...

  14. Roadmap of retail electricity market reform in China: assisting in mitigating wind energy curtailment

    NASA Astrophysics Data System (ADS)

    Yu, Dezhao; Qiu, Huadong; Yuan, Xiang; Li, Yuan; Shao, Changzheng; Lin, You; Ding, Yi

    2017-01-01

    Among the renewable energies, wind energy has gained the rapidest development in China. Moreover wind power generation has been penetrated into power system in a large scale. However, the high level wind curtailment also indicates a low efficiency of wind energy utilization over the last decade in China. One of the primary constraints on the utilization of wind energy is the lack of an electricity market, in which renewable energies can compete equally with traditional fossil fuel generation. Thus the new round electric power industry reform is essential in China. The reform involves implementing new pricing mechanism, introducing retail-side competition, promoting the consumption of renewable energy. The new round reform can be a promising solution for promoting the development and consumption of wind energy generation in China. Based on proposed reform policies of electric power industry, this paper suggests a roadmap for retail electricity market reform of China, which consists of three stages. Barriers to the efficient utilization of wind energy are also analysed. Finally, this paper introduces several efficient measures for mitigating wind curtailment in each stage of reform.

  15. A 20-KW Wind Energy Conversion System (WECS) at the Marine Corps Air Station, Kaneohe, Hawaii.

    DTIC Science & Technology

    1983-01-01

    of propellers and that vertical-axis wind turbines would be more efficient. Several turbines such as the Darrieus and gyro-mill, of this type are... wind turbines , wind systems siting, alternate energy systems, remote site power generation. 20 ABSTRACT (Con!,,u,. - r r... .. do I(3 lI - d #,d e...Corps Air Station (MCAS) Kaneohe Bay, Hawaii. The wind turbine generator chosen for the evaluation was a horizontal-axis-propeller- downwind rotor

  16. Influence of winding construction on starter-generator thermal processes

    NASA Astrophysics Data System (ADS)

    Grachev, P. Yu; Bazarov, A. A.; Tabachinskiy, A. S.

    2018-01-01

    Dynamic processes in starter-generators features high winding are overcurrent. It can lead to insulation overheating and fault operation mode. For hybrid and electric vehicles, new high efficiency construction of induction machines windings is proposed. Stator thermal processes need be considered in the most difficult operation modes. The article describes construction features of new compact stator windings, electromagnetic and thermal models of processes in stator windings and explains the influence of innovative construction on thermal processes. Models are based on finite element method.

  17. 76 FR 65716 - Notice of Effectiveness of Exempt Wholesale Generator Status

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-24

    ... South, LLC EG11-104-000 Gratiot County Wind LLC EG11-105-000 Invenergy Wind Development Michigan LLC EG11-106-000 Trinity Hills Wind Farm LLC EG11-107-000 High Plains Ranch II, LLC EG11-108-000 Double ``C... Wholesale Generator Status Docket No. Michigan Wind 2, LLC EG11-100-000 Bishop Hill Energy LLC EG11-101-000...

  18. 78 FR 57173 - Notice of Availability of the Record of Decision for the Mohave County Wind Farm Project, Mohave...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-09-17

    ... generated by the Project. The approved Project includes up to 243 wind turbine generators and associated..., operation, maintenance, and decommissioning of the Project to BP Wind Energy; and for the BLM to issue a ROW...; AZA32315AA] Notice of Availability of the Record of Decision for the Mohave County Wind Farm Project, Mohave...

  19. 77 FR 35423 - Notice of Availability of the Record of Decision for the Ocotillo Express LLC's Ocotillo Wind...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-13

    ... as originally proposed would have consisted of 155 wind turbines (1.6 to 3.0 MW each) on 12,436 acres... the Refined Project, which involves the construction and operation of 112 wind turbines at the project... of the wind generation facility consisting of: up to 112 turbines with a generating capacity of 315...

  20. Quantifying the Hurricane Risk to Offshore Wind Power (Invited)

    NASA Astrophysics Data System (ADS)

    Apt, J.; Rose, S.; Jaramillo, P.; Small, M.

    2013-12-01

    The U.S. Department of Energy has estimated that over 50 GW of offshore wind power will be required for the United States to generate 20% of its electricity from wind. Developers are actively planning offshore wind farms along the U.S. Atlantic and Gulf coasts and several leases have been signed for offshore sites. These planned projects are in areas that are sometimes struck by hurricanes. Whether that risk will grow as a result of climate change is uncertain. Recent years have seen an increase in hurricane activity in the Atlantic basin (1) and, all else being equal, warmer sea surface temperatures can be expected to lead to increased storm intensity. We have developed a method to estimate the catastrophe risk to offshore wind power using simulated hurricanes (2). In Texas, the most vulnerable region we studied, 10% of offshore wind power could be offline simultaneously due to hurricane damage with a 100-year return period and 6% could be destroyed in any 10-year period. Much of the hurricane risk to offshore wind turbines can be mitigated by designing turbines for higher maximum wind speeds, ensuring that turbine nacelles can turn quickly to track the wind direction even when grid power is lost, and building in areas with lower risk. 1. Iris Grossmann and M. Granger Morgan, "Tropical Cyclones, Climate Change, and Scientific Uncertainty: What do we know, what does it mean, and what should be done?," Climatic Change, 108, pp 543-579, 2011. 2. Carnegie Mellon Electricity Industry Center Working Paper CEIC-13-07, http://wpweb2.tepper.cmu.edu/electricity/papers/ceic-13-07.asp This work was supported in part by the EPA STAR fellowship program, a grant from the Alfred P. Sloan Foundation and EPRI to the Carnegie Mellon Electricity Industry Center, and by the Doris Duke Charitable Foundation, the R.K. Mellon Foundation and the Heinz Endowments for support of the RenewElec program at Carnegie Mellon University. This research was also supported in part by the Climate and Energy Decision Making (CEDM) center created through a cooperative agreement between the National Science Foundation (SES-0949710) and Carnegie Mellon University.

  1. 'Part of the solution': Developing sustainable energy through co-operatives and learning

    NASA Astrophysics Data System (ADS)

    Duguid, Fiona C. B.

    After five years of development, WindShare Co-operative in Toronto, Ontario became the first urban wind turbine in North America and the first co-operatively owned and operated wind turbine in Canada. The development of WindShare Co-operative has spurred the growth of a green energy co-operative sector in Ontario. This study, which included 27 interviews and a focus group with members of WindShare Co-operative, focuses on the roles of community-based green energy co-operatives in advancing sustainable energy development and energy literacy. Sustainable energy development is firmly rooted in the triple bottom line of environmental, social and economic success, and green energy co-operatives can be a way to help achieve those successes. Green energy co-operatives are structures for providing renewable energy generation or energy conservation practices, both of which have important environmental impacts regarding climate change and pollution levels. Co-operative structures are supported by processes that include local ownership, democracy, participation, community organizing, learning and social change. These processes have a significant social impact by creating a venue for people to be directly involved in the energy industry, by involving learning through participation in a community-based organization, and by advancing energy literacy within the membership and the general public. In regards to the economic impacts, green energy co-operatives foster a local economy and local investment opportunities, which have repercussions regarding building expertise within Ontario's green energy and co-operative development future, and more generally, captures members' interest because they have a direct stake in the co-operative. This thesis shows that green energy co-operatives, like WindShare, play an important role in advancing sustainable energy development, energy literacy and the triple bottom line. Members of WindShare expressed resounding feelings of pride, efficacy and understanding of WindShare's role in sustainable energy. WindShare Co-operative provided the structure whereby members felt a part of the solution in terms of sustainable energy development. Policies and practices at all levels of government should encourage the advancement of green energy co-operatives to support Canada's efforts at public involvement in combating climate change and pollution.

  2. The General Electric MOD-1 wind turbine generator program

    NASA Technical Reports Server (NTRS)

    Poor, R. H.; Hobbs, R. B.

    1979-01-01

    The design, fabrication, installation and checkout of MOD-1, a megawatt class wind turbine generator which generates utility grade electrical power, is described. A MOD-1/MOD-1A tradeoff study is discussed.

  3. Superconducting light generator for large offshore wind turbines

    NASA Astrophysics Data System (ADS)

    Sanz, S.; Arlaban, T.; Manzanas, R.; Tropeano, M.; Funke, R.; Kováč, P.; Yang, Y.; Neumann, H.; Mondesert, B.

    2014-05-01

    Offshore wind market demands higher power rate and reliable turbines in order to optimize capital and operational cost. These requests are difficult to overcome with conventional generator technologies due to a significant weight and cost increase with the scaling up. Thus superconducting materials appears as a prominent solution for wind generators, based on their capacity to held high current densities with very small losses, which permits to efficiently replace copper conductors mainly in the rotor field coils. However the state-of-the-art superconducting generator concepts still seem to be expensive and technically challenging for the marine environment. This paper describes a 10 MW class novel direct drive superconducting generator, based on MgB2 wires and a modular cryogen free cooling system, which has been specifically designed for the offshore wind industry needs.

  4. 76 FR 72402 - Combined Notice of Filings #1

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-23

    ...-772-003. Applicants: ExxonMobil Baton Rouge Complex. Description: ExxonMobil Entities submits their... Bethlehem, LLC, Calpine Mid-Atlantic Generation, LLC, Calpine Mid Merit, LLC, Calpine New Jersey Generation... City Generation, L.P., Forward WindPower, LLC, Lookout WindPower, LLC, Midwest Generation, LLC...

  5. Indexed semi-Markov process for wind speed modeling.

    NASA Astrophysics Data System (ADS)

    Petroni, F.; D'Amico, G.; Prattico, F.

    2012-04-01

    The increasing interest in renewable energy leads scientific research to find a better way to recover most of the available energy. Particularly, the maximum energy recoverable from wind is equal to 59.3% of that available (Betz law) at a specific pitch angle and when the ratio between the wind speed in output and in input is equal to 1/3. The pitch angle is the angle formed between the airfoil of the blade of the wind turbine and the wind direction. Old turbine and a lot of that actually marketed, in fact, have always the same invariant geometry of the airfoil. This causes that wind turbines will work with an efficiency that is lower than 59.3%. New generation wind turbines, instead, have a system to variate the pitch angle by rotating the blades. This system able the wind turbines to recover, at different wind speed, always the maximum energy, working in Betz limit at different speed ratios. A powerful system control of the pitch angle allows the wind turbine to recover better the energy in transient regime. A good stochastic model for wind speed is then needed to help both the optimization of turbine design and to assist the system control to predict the value of the wind speed to positioning the blades quickly and correctly. The possibility to have synthetic data of wind speed is a powerful instrument to assist designer to verify the structures of the wind turbines or to estimate the energy recoverable from a specific site. To generate synthetic data, Markov chains of first or higher order are often used [1,2,3]. In particular in [1] is presented a comparison between a first-order Markov chain and a second-order Markov chain. A similar work, but only for the first-order Markov chain, is conduced by [2], presenting the probability transition matrix and comparing the energy spectral density and autocorrelation of real and synthetic wind speed data. A tentative to modeling and to join speed and direction of wind is presented in [3], by using two models, first-order Markov chain with different number of states, and Weibull distribution. All this model use Markov chains to generate synthetic wind speed time series but the search for a better model is still open. Approaching this issue, we applied new models which are generalization of Markov models. More precisely we applied semi-Markov models to generate synthetic wind speed time series. In a previous work we proposed different semi-Markov models, showing their ability to reproduce the autocorrelation structures of wind speed data. In that paper we showed also that the autocorrelation is higher with respect to the Markov model. Unfortunately this autocorrelation was still too small compared to the empirical one. In order to overcome the problem of low autocorrelation, in this paper we propose an indexed semi-Markov model. More precisely we assume that wind speed is described by a discrete time homogeneous semi-Markov process. We introduce a memory index which takes into account the periods of different wind activities. With this model the statistical characteristics of wind speed are faithfully reproduced. The wind is a very unstable phenomenon characterized by a sequence of lulls and sustained speeds, and a good wind generator must be able to reproduce such sequences. To check the validity of the predictive semi-Markovian model, the persistence of synthetic winds were calculated, then averaged and computed. The model is used to generate synthetic time series for wind speed by means of Monte Carlo simulations and the time lagged autocorrelation is used to compare statistical properties of the proposed models with those of real data and also with a time series generated though a simple Markov chain. [1] A. Shamshad, M.A. Bawadi, W.M.W. Wan Hussin, T.A. Majid, S.A.M. Sanusi, First and second order Markov chain models for synthetic generation of wind speed time series, Energy 30 (2005) 693-708. [2] H. Nfaoui, H. Essiarab, A.A.M. Sayigh, A stochastic Markov chain model for simulating wind speed time series at Tangiers, Morocco, Renewable Energy 29 (2004) 1407-1418. [3] F. Youcef Ettoumi, H. Sauvageot, A.-E.-H. Adane, Statistical bivariate modeling of wind using first-order Markov chain and Weibull distribution, Renewable Energy 28 (2003) 1787-1802.

  6. Generation of Wind Waves in the Persian Gulf: A Numerical Investigation

    NASA Astrophysics Data System (ADS)

    Liao, Y.; Kaihatu, J. M.

    2010-12-01

    The Persian Gulf is a long shallow basin located between the Arabian Peninsula and Iran. Wind-wave generation processes in the region are often affected by the shamal, a strong wind caused by the passage of cold fronts over the mountains of Turkey and Kurdistan. This can set up sudden energetic wind seas, hampering marine traffic. It is not immediately clear whether present wind-wave models can predict this intense, short-term growth and evolution under these conditions. Furthermore, few wave measurements or models studies have been performed in this area. In advance of a wind-wave generation experiment to be conducted off the Qatar coast, we performed a climatological study of the wind wave environment in the Persian Gulf. Using the SWAN wave model as a baseline of the state of the art, five years (2004-2008)of wind field model hindcasts from COAMPS are used as forcing.To investigate the sensitivity of the results to bathymetry, the climatological analysis was run twice more, with refraction or wave breaking deactivated, in turn. The results do not show significant differences with and without refraction, which implies the wind-wave process in Persian Gulf is less dominated by the variation of bathymetry. However the results show that a large amount of wave is dissipated by wave breaking. Wide, flat and shallow bathymetry in Persian Gulf results in a long-fetch scenario, particularly for waves arriving from the northwest. It implies that long period wind-generated waves can be fully generated in this region. Wave height is therefore fully grown by the long-fetch condition, so as to lead in higher possibility of wave breaking and energy dissipation.

  7. Wind power: The new energy policy 1

    NASA Astrophysics Data System (ADS)

    1991-10-01

    Increasing use of renewable energy sources is an important aspect of the new energy policy of the State government of Schleswig-Holstein. Technical and industrial innovation are involved. By expanding and developing these regionally available inexhaustible energy sources to generate electricity and heat, we are contributing to environmental protection and helping to reduce adverse affects on the climate. We are also taking our limited resources into account and expanding energy generation in a logical manner. Wind energy is the most attractive renewable energy source for Schleswig-Holstein because our State is well known for its strong winds and constant fresh breeze. For this reason the State government has made expansion of wind energy one of its primary areas of emphasis. The goals of our promotion measures includes ongoing technical and engineering development of wind energy facilities, increasing the level of use of the wind, and increasing the percentage of wind energy used for power generation. This brochure is intended to demonstrate the significance and possibilities of wind energy for our State, to outline the legal requirements for erecting wind energy facilities, and to explain the many promotion measures. It represents a favorable breeze for wind.

  8. Electric Grid Expansion Planning with High Levels of Variable Generation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hadley, Stanton W.; You, Shutang; Shankar, Mallikarjun

    2016-02-01

    Renewables are taking a large proportion of generation capacity in U.S. power grids. As their randomness has increasing influence on power system operation, it is necessary to consider their impact on system expansion planning. To this end, this project studies the generation and transmission expansion co-optimization problem of the US Eastern Interconnection (EI) power grid with a high wind power penetration rate. In this project, the generation and transmission expansion problem for the EI system is modeled as a mixed-integer programming (MIP) problem. This study analyzed a time series creation method to capture the diversity of load and wind powermore » across balancing regions in the EI system. The obtained time series can be easily introduced into the MIP co-optimization problem and then solved robustly through available MIP solvers. Simulation results show that the proposed time series generation method and the expansion co-optimization model and can improve the expansion result significantly after considering the diversity of wind and load across EI regions. The improved expansion plan that combines generation and transmission will aid system planners and policy makers to maximize the social welfare. This study shows that modelling load and wind variations and diversities across balancing regions will produce significantly different expansion result compared with former studies. For example, if wind is modeled in more details (by increasing the number of wind output levels) so that more wind blocks are considered in expansion planning, transmission expansion will be larger and the expansion timing will be earlier. Regarding generation expansion, more wind scenarios will slightly reduce wind generation expansion in the EI system and increase the expansion of other generation such as gas. Also, adopting detailed wind scenarios will reveal that it may be uneconomic to expand transmission networks for transmitting a large amount of wind power through a long distance in the EI system. Incorporating more details of renewables in expansion planning will inevitably increase the computational burden. Therefore, high performance computing (HPC) techniques are urgently needed for power system operation and planning optimization. As a scoping study task, this project tested some preliminary parallel computation techniques such as breaking down the simulation task into several sub-tasks based on chronology splitting or sample splitting, and then assigning these sub-tasks to different cores. Testing results show significant time reduction when a simulation task is split into several sub-tasks for parallel execution.« less

  9. Variable geometry Darrieus wind machine

    NASA Astrophysics Data System (ADS)

    Pytlinski, J. T.; Serrano, D.

    1983-08-01

    A variable geometry Darrieus wind machine is proposed. The lower attachment of the blades to the rotor can move freely up and down the axle allowing the blades of change shape during rotation. Experimental data for a 17 m. diameter Darrieus rotor and a theoretical model for multiple streamtube performance prediction were used to develop a computer simulation program for studying parameters that affect the machine's performance. This new variable geometry concept is described and interrelated with multiple streamtube theory through aerodynamic parameters. The computer simulation study shows that governor behavior of a Darrieus turbine can not be attained by a standard turbine operating within normally occurring rotational velocity limits. A second generation variable geometry Darrieus wind turbine which uses a telescopic blade is proposed as a potential improvement on the studied concept.

  10. Mod-5A wind turbine generator program design report. Volume 4: Drawings and specifications, book 5

    NASA Technical Reports Server (NTRS)

    1984-01-01

    The design, development and analysis of the 7.3 MW MOD-5A wind turbine generator is documented. There are four volumes. This volume contains the drawings and specifications that were developed in preparation for building the MOD-5A wind turbine generator. Detail drawings of several assemblies and subassemblies are given. This is the fifth book of volume 4.

  11. Effects of wind energy generation and white-nose syndrome on the viability of the Indiana bat

    PubMed Central

    Thogmartin, Wayne E.; Diffendorfer, Jay E.; Russell, Robin E.; Szymanski, Jennifer A.

    2016-01-01

    Wind energy generation holds the potential to adversely affect wildlife populations. Species-wide effects are difficult to study and few, if any, studies examine effects of wind energy generation on any species across its entire range. One species that may be affected by wind energy generation is the endangered Indiana bat (Myotis sodalis), which is found in the eastern and midwestern United States. In addition to mortality from wind energy generation, the species also faces range-wide threats from the emerging infectious fungal disease, white-nose syndrome (WNS). White-nose syndrome, caused by Pseudogymnoascus destructans, disturbs hibernating bats leading to high levels of mortality. We used a spatially explicit full-annual-cycle model to investigate how wind turbine mortality and WNS may singly and then together affect population dynamics of this species. In the simulation, wind turbine mortality impacted the metapopulation dynamics of the species by causing extirpation of some of the smaller winter colonies. In general, effects of wind turbines were localized and focused on specific spatial subpopulations. Conversely, WNS had a depressive effect on the species across its range. Wind turbine mortality interacted with WNS and together these stressors had a larger impact than would be expected from either alone, principally because these stressors together act to reduce species abundance across the spectrum of population sizes. Our findings illustrate the importance of not only prioritizing the protection of large winter colonies as is currently done, but also of protecting metapopulation dynamics and migratory connectivity. PMID:28028486

  12. Effect of wave-current interactions on sediment resuspension in large shallow Lake Taihu, China.

    PubMed

    Li, Yiping; Tang, Chunyan; Wang, Jianwei; Acharya, Kumud; Du, Wei; Gao, Xiaomeng; Luo, Liancong; Li, Huiyun; Dai, Shujun; Mercy, Jepkirui; Yu, Zhongbo; Pan, Baozhu

    2017-02-01

    The disturbance of the water-sediment interface by wind-driven currents and waves plays a critical role in sediment resuspension and internal nutrient release in large, shallow lakes. This study analyzed the effects of the interactions between wind-induced currents an1d waves on the driving mechanism of sediment resuspension in Lake Taihu, the third largest freshwater lake in China, using acoustic and optic techniques to collect long-term, high-frequency, synchronous in situ measurements of wind, currents, waves, and suspended solid concentrations (SSCs). The results suggested that water turbidity started to increase at wind speeds of approximately 4 m/s and significantly increased when wind speeds exceeded 6 m/s. In most cases, wind-induced waves were the main energy source for changes in turbidity. Wave-generated shear stress contributed more than 95% to sediment resuspension and that only in weak wind conditions (<4 m/s) did the lake bottom shear stresses generated by currents and waves contributed equally. The relationship between SSC and bottom shear stress generated by wave was established by fitting the observed results. The processes of sediment dynamics were divided into four stages (A through D) according to three shear-stress thresholds. In stage A, SSC remained stable (about 45 mg/L) and τ w was less than 0.02 N/m 2 . In stage B, the sediment bed was starting to be activated (SSC 45∼60 mg/L) and τ w was in the range of 0.02∼0.07 N/m 2 . In stage C, a medium amount of sediment was suspended (SSC 60∼150 mg/L) and τ w ranged from 0.07 to 0.3 N/m 2 . In stage D, large amount of sediment was suspended (SSC 150∼300 mg/L) and τ w was larger than 0.3 N/m 2 . The findings of this paper reveal the driving mechanism of sediment resuspension, which may further help to evaluate internal nutrient release in large shallow Lake Taihu.

  13. An integrated modeling method for wind turbines

    NASA Astrophysics Data System (ADS)

    Fadaeinedjad, Roohollah

    To study the interaction of the electrical, mechanical, and aerodynamic aspects of a wind turbine, a detailed model that considers all these aspects must be used. A drawback of many studies in the area of wind turbine simulation is that either a very simple mechanical model is used with a detailed electrical model, or vice versa. Hence the interactions between electrical and mechanical aspects of wind turbine operation are not accurately taken into account. In this research, it will be shown that a combination of different simulation packages, namely TurbSim, FAST, and Simulink can be used to model the aerodynamic, mechanical, and electrical aspects of a wind turbine in detail. In this thesis, after a review of some wind turbine concepts and software tools, a simulation structure is proposed for studying wind turbines that integrates the mechanical and electrical components of a wind energy conversion device. Based on the simulation structure, a comprehensive model for a three-bladed variable speed wind turbine with doubly-fed induction generator is developed. Using the model, the impact of a voltage sag on the wind turbine tower vibration is investigated under various operating conditions such as power system short circuit level, mechanical parameters, and wind turbine operating conditions. It is shown how an electrical disturbance can cause more sustainable tower vibrations under high speed and turbulent wind conditions, which may disrupt the operation of pitch control system. A similar simulation structure is used to model a two-bladed fixed speed wind turbine with an induction generator. An extension of the concept is introduced by adding a diesel generator system. The model is utilized to study the impact of the aeroelastic aspects of wind turbine (i.e. tower shadow, wind shears, yaw error, turbulence, and mechanical vibrations) on the power quality of a stand-alone wind-diesel system. Furthermore, an IEEE standard flickermeter model is implemented in a Simulink environment to study the flicker contribution of the wind turbine in the wind-diesel system. By using a new wind power plant representation method, a large wind farm (consisting of 96 fixed speed wind turbines) is modelled to study the power quality of wind power system. The flicker contribution of wind farm is also studied with different wind turbine numbers, using the flickermeter model. Keywords. Simulink, FAST, TurbSim, AreoDyn, wind energy, doubly-fed induction generator, variable speed wind turbine, voltage sag, tower vibration, power quality, flicker, fixed speed wind turbine, wind shear, tower shadow, and yaw error.

  14. Performance characteristics of aerodynamically optimum turbines for wind energy generators

    NASA Technical Reports Server (NTRS)

    Rohrbach, C.; Worobel, R.

    1975-01-01

    This paper presents a brief discussion of the aerodynamic methodology for wind energy generator turbines, an approach to the design of aerodynamically optimum wind turbines covering a broad range of design parameters, some insight on the effect on performance of nonoptimum blade shapes which may represent lower fabrication costs, the annual wind turbine energy for a family of optimum wind turbines, and areas of needed research. On the basis of the investigation, it is concluded that optimum wind turbines show high performance over a wide range of design velocity ratios; that structural requirements impose constraints on blade geometry; that variable pitch wind turbines provide excellent power regulation and that annual energy output is insensitive to design rpm and solidity of optimum wind turbines.

  15. Investigation of a generator system for generating electrical power, to supply directly to the public network, using a windmill

    NASA Technical Reports Server (NTRS)

    Tromp, C.

    1979-01-01

    A windpowered generator system is described which uses a windmill to convert mechanical energy to electrical energy for a three phase (network) voltage of constant amplitude and frequency. The generator system controls the windmill by the number of revolutions so that the power drawn from the wind for a given wind velocity is maximum. A generator revolution which is proportional to wind velocity is achieved. The stator of the generator is linked directly to the network and a feed converter at the rotor takes care of constant voltage and frequency at the stator.

  16. Brushless DC motor control system responsive to control signals generated by a computer or the like

    NASA Technical Reports Server (NTRS)

    Packard, D. T. (Inventor)

    1985-01-01

    A control system for a brushless DC motor responsive to digital control signals is disclosed. The motor includes a multiphase wound stator and a permanent magnet rotor. The motor is arranged so that each phase winding, when energized from a DC source, will drive the rotor through a predetermined angular position or step. A commutation signal generator responsive to the shaft position provides a commutation signal for each winding. A programmable control signal generator such as a computer or microprocessor produces individual digital control signals for each phase winding. The control signals and commutation signals associated with each winding are applied to an AND gate for that phase winding. Each gate controls a switch connected in series with the associated phase winding and the DC source so that each phase winding is energized only when the commutation signal and the control signal associated with that phase winding are present. The motor shaft may be advanced one step at a time to a desired position by applying a predetermined number of control signals in the proper sequence to the AND gates and the torque generated by the motor be regulated by applying a separate control signal and each AND gate which is pulse width modulated to control the total time that each switch connects its associated winding to the DC source during each commutation period.

  17. Brushless DC motor control system responsive to control signals generated by a computer or the like

    NASA Technical Reports Server (NTRS)

    Packard, Douglas T. (Inventor); Schmitt, Donald E. (Inventor)

    1987-01-01

    A control system for a brushless DC motor responsive to digital control signals is disclosed. The motor includes a multiphase wound stator and a permanent magnet rotor. The rotor is arranged so that each phase winding, when energized from a DC source, will drive the rotor through a predetermined angular position or step. A commutation signal generator responsive to the shaft position provides a commutation signal for each winding. A programmable control signal generator such as a computer or microprocessor produces individual digital control signals for each phase winding. The control signals and commutation signals associated with each winding are applied to an AND gate for that phase winding. Each gate controls a switch connected in series with the associated phase winding and the DC source so that each phase winding is energized only when the commutation signal and the control signal associated with that phase winding are present. The motor shaft may be advanced one step at a time to a desired position by applying a predetermined number of control signals in the proper sequence to the AND gates and the torque generated by the motor may be regulated by applying a separate control signal to each AND gate which is pulse width modulated to control the total time that each switch connects its associated winding to the DC source during each commutation period.

  18. Compensation for Harmonic Currents and Reactive Power in Wind Power Generation System using PWM Inverter

    NASA Astrophysics Data System (ADS)

    Shinohara, Katsuji; Shinhatsubo, Kurato; Iimori, Kenichi; Yamamoto, Kichiro; Saruban, Takamichi; Yamaemori, Takahiro

    In recent year, consciousness of environmental problems is enhancing, and the price of the electric power purchased by an electric power company is established expensive for the power plant utilizing the natural energy. So, the introduction of the wind power generation is promoted in Japan. Generally, squirrel-cage induction machines are widely used as a generator in wind power generation system because of its small size, lightweight and low-cost. However, the induction machines do not have a source of excitation. Thus, it causes the inrush currents and the instantaneous voltage drop when the generator is directly connected to a power grid. To reduce the inrush currents, an AC power regulator is used. Wind power generations are frequently connected to and disconnected from the power grid. However, when the inrush currents are reduced, harmonic currents are caused by phase control of the AC power regulator. And the phase control of AC power regulator cannot control the power factor. Therefore, we propose the use of the AC power regulator to compensate for the harmonic currents and reactive power in the wind power generation system, and demonstrate the validity of its system by simulated and experimental results.

  19. Analysis of the electrical harmonic characteristics of a slip recovery variable speed generating system for wind turbine applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Herrera, J.I.; Reddoch, T.W.

    1988-02-01

    Variable speed electric generating technology can enhance the general use of wind energy in electric utility applications. This enhancement results from two characteristic properties of variable speed wind turbine generators: an improvement in drive train damping characteristics, which results in reduced structural loading on the entire wind turbine system, and an improvement in the overall efficiency by using a more sophisticated electrical generator. Electronic converter systems are the focus of this investigation -- in particular, the properties of a wound-rotor induction generator with the slip recovery system and direct-current link converter. Experience with solid-state converter systems in large wind turbinesmore » is extremely limited. This report presents measurements of electrical performances of the slip recovery system and is limited to the terminal characteristics of the system. Variable speed generating systems working effectively in utility applications will require a satisfactory interface between the turbine/generator pair and the utility network. The electrical testing described herein focuses largely on the interface characteristics of the generating system. A MOD-O wind turbine was connected to a very strong system; thus, the voltage distortion was low and the total harmonic distortion in the utility voltage was less than 3% (within the 5% limit required by most utilities). The largest voltage component of a frequency below 60 Hz was 40 dB down from the 60-Hz< component. 8 refs., 14 figs., 8 tabs.« less

  20. Colorado Public Utility Commission's Xcel Wind Decision

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lehr, R. L.; Nielsen, J.; Andrews, S.

    2001-09-20

    In early 2001 the Colorado Public Utility Commission ordered Xcel Energy to undertake good faith negotiations for a wind plant as part of the utility's integrated resource plan. This paper summarizes the key points of the PUC decision, which addressed the wind plant's projected impact on generation cost and ancillary services. The PUC concluded that the wind plant would cost less than new gas-fired generation under reasonable gas cost projections.

  1. 76 FR 81926 - Notice of Effectiveness of Exempt Wholesale Generator Status

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-29

    ... Renewables, LLC EG11-126-000 Invenergy Illinois Solar I LLC EG11-127-000 Record Hill Wind LLC EG11-128-000 Vasco Winds, LLC EG11-129-000 NexEra Energy Montezuma II Wind, LLC EG11-130-000 Richard-Stryker Generation LLC EG11-131-000 Pioneer Trail Wind Farm, LLC EG11-132-000 GSG 6, LLC EG11-133-000 Take notice...

  2. The Effects of Wind and Surfactants on Mechanically Generated Spilling Breakers

    NASA Astrophysics Data System (ADS)

    Liu, X.; Diorio, J. D.; Duncan, J. H.

    2007-11-01

    The effects of both wind and surfactants on mechanically generated weakly spilling breakers are explored in a wind wave tank that is 11.8 m long, 1.15 m wide and 1.8 m high (1.0 m of water). A wave maker, which resides at the upwind end of the tank, is used to generate the breakers via a dispersive focusing method with a central wave packet frequency of 1.15 Hz. Low wind speeds (less than 3.0 m/s) are used to minimize the effect of short-wavelength wind-generated waves on the breakers. The profiles of the spilling breakers along the center plane of the tank are measured with an LIF technique that utilizes a high-speed digital movie camera. Measurements are performed with clean water and water mixed with various concentrations of Triton X-100, a soluble surfactant. It is found that the capillary waves/bulge patterns found in the initial stages of spilling breakers are dramatically affected by wind and surfactants. The size of bulge increases with the wind speed while the capillary waves are kept nearly the same. In the presence of surfactants and wind, both the amplitude and number of capillary waves are reduced and the slope of the front face of the wave increases.

  3. 75 FR 27549 - Combined Notice of Filings #1

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-17

    ... Numbers: EG10-33-000. Applicants: Meadow Lake Wind Farm III LLC. Description: Self-Certification of exempt wholesale generator status of Meadow Lake Wind Farm III LLC. Filed Date: 04/20/2010. Accession Number.... Applicants: Meadow Lake Wind Farm IV LLC. Description: Self-Certification of exempt wholesale generator...

  4. NEW VERSATILE AEROSOL GENERATION SYSTEM DEVELOPED FOR USE IN A LARGE WIND TUNNEL

    EPA Science Inventory

    A new aerosol generation system was developed to accommodate a variety of research activities performed within a large wind tunnel. Because many of the velocity measurements are taken in the wind tunnel with a laser Doppler anemometer (LDA), it is necessary to maintain an aero...

  5. 78 FR 61942 - Combined Notice of Filings #1

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-10-07

    ... filings: Docket Numbers: EG13-63-000. Applicants: Mountain Wind Power, LLC. Description: Notice Of Self-Certification Of Exempt Wholesale Generator Status Of Mountain Wind Power, LLC. Filed Date: 9/26/13. Accession...: Mountain Wind Power, LLC. Description: Notice Of Self-Certification Of Exempt Wholesale Generator Status Of...

  6. The Oregon State University wind studies. [economic feasibility of windpowered generators

    NASA Technical Reports Server (NTRS)

    Wilson, R. E.

    1973-01-01

    The economic feasibility of commercial use of wind generated power in selected areas of Oregon is assessed. A number of machines for generating power have been examined. These include the Savonius rotor, translators, conventional wind turbines, the circulation controlled rotor and the vertical axis winged turbine. Of these machines, the conventional wind turbine and the vertical axis winged turbine show the greatest promise on the basis of the power developed per unit of rotor blade area. Attention has been focused on the structural and fatigue analysis of rotors since the economics of rotary winged, wind generated power depends upon low cost, long lifetime rotors. Analysis of energy storage systems and tower design has also been undertaken. An economic means of energy storage has not been found to date. Tower design studies have produced cost estimates that are in general agreement with the cost of the updated Putnam 110-foot tower.

  7. Should future wind speed changes be taken into account in wind farm development?

    NASA Astrophysics Data System (ADS)

    Devis, Annemarie; Van Lipzig, Nicole P. M.; Demuzere, Matthias

    2018-06-01

    Accurate wind resource assessments are crucial in the development of wind farm projects. However, it is common practice to estimate the wind yield over the next 20 years from short-term measurements and reanalysis data of the past 20 years, even though wind climatology is expected to change under the future climate. The present work examines future changes in wind power output over Europe using an ensemble of ESMs. The power output is calculated using the entire wind speed PDF and a non-constant power conversion coefficient. Based on this method, the ESM ensemble projects changes in near-future power outputs with a spatially varying magnitude between ‑12% and 8%. The most extreme changes occur over the Mediterranean region. For the first time, the sensitivity of these future change in power output to the type of wind turbine is also investigated. The analysis reveals that the projected wind power changes may vary in up to half of their magnitude, depending on the type of turbine and region of interest. As such, we recommend that wind industries fully account for projected near-future changes in wind power output by taking them into account as a well-defined loss/gain and uncertainty when estimating the yield of a future wind farm.

  8. Grid Integration Research | Wind | NREL

    Science.gov Websites

    -generated simulation of a wind turbine. Wind Power Plant Modeling and Simulation Engineers at the National computer-aided engineering tool, FAST, as well as their wind power plant simulation tool, Wind-Plant

  9. The Dependence of Heat and Gas Transfer Velocities on Wind-Generated and Mechanically Generated Aqueous-Phase Turbulence

    NASA Astrophysics Data System (ADS)

    Liang, H.; Mukto, M.; Loewen, M.; Zappa, C.; Litchendorf, T.; Asher, W.; Jessup, A.

    2006-12-01

    The air-sea flux, F, of a sparingly soluble nonreactive gas can be expressed as F = kG( CS-CW), where kG is the gas transfer velocity, CS is the concentration of gas that would be expected in the water if the system were in Henry`s Gas Law equilibrium, and CW is the actual concentration of the gas in the water. An analogous relationship for the net heat flux can also be written using the heat transfer velocity, kH, and the bulk-skin temperature difference in the aqueous phase. Hydrodynamical models of gas and heat exchange based on surface renewal theory predict that kG and kH will scale as the square root of the inverse of a timescale of the turbulence. Furthermore, if surface renewal provides an accurate conceptual model for both transfer processes, then both kG and kH should behave identically as turbulence conditions change. Here we report on recent laboratory experiments in which we measured turbulence, heat fluxes, kG, and kH in a 0.5 m by 0.5 m by 1 m deep tank in the presence of turbulence generated mechanically using a random synthetic jet array. The turbulence tank was embedded in a small wind tunnel so that kG and kH could be studied as a function of the mechanically generated turbulence but also turbulence generated by wind stress. Net heat transfer velocities were measured using Active Controlled Flux Technique and estimated from measurements of the latent and sensible heat fluxes combined with direct measurements of the bulk-skin temperature difference. Gas transfer velocities were determined by measuring the evasion rates of sulfur hexafluoride and helium. The length and velocity scales of the aqueous-phase turbulence were measured using a Digital Particle-Image Velocimetry system. These combined data sets are used to study how kG and kH depend on system turbulence, whether this dependence is consonant with that predicted using surface renewal, and whether there is a quantitative difference between mechanically generated turbulence and turbulence generated by the wind stress insofar as air-water exchange is concerned.

  10. 76 FR 46284 - Combined Notice of Filings #1

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-02

    ... Holdings LLC, Dillon Wind LLC, Dry Lake Wind Power, LLC, Dry Lake Wind Power II LLC, Elk River Windfarm... Rock Windpower II LLC, Flying Cloud Power Partners, LLC, Hardscrabble Wind Power LLC, Hay Canyon Wind LLC, Juniper Canyon Wind Power LLC, Klamath Energy LLC, Klamath Generation LLC, Klondike Wind Power...

  11. Operational results for the experimental DOE/NASA Mod-OA wind turbine project

    NASA Astrophysics Data System (ADS)

    Shaltens, R. K.; Birchenough, A. G.

    The Mod-OA wind turbine project which was to gain early experience in the operation of large wind turbines in a utility environment is discussed. The Mod-OA wind turbines were a first generation design, and even though not cost effective, the operating experience and performance characteristics had a significant effect on the design and development of the second and third generation machines. The Mod-OA machines were modified as a result of the operational experience, particularly the blade development and control system strategy. The results of study to investigate the interaction of a Mod-OA wind turbine with an isolated diesel generation system are discussed. The machine configuration, its advantages and disadvantages and the machine performance and availability are discussed.

  12. Operational results for the experimental DOE/NASA Mod-OA wind turbine project

    NASA Technical Reports Server (NTRS)

    Shaltens, R. K.; Birchenough, A. G.

    1983-01-01

    The Mod-OA wind turbine project which was to gain early experience in the operation of large wind turbines in a utility environment is discussed. The Mod-OA wind turbines were a first generation design, and even though not cost effective, the operating experience and performance characteristics had a significant effect on the design and development of the second and third generation machines. The Mod-OA machines were modified as a result of the operational experience, particularly the blade development and control system strategy. The results of study to investigate the interaction of a Mod-OA wind turbine with an isolated diesel generation system are discussed. The machine configuration, its advantages and disadvantages and the machine performance and availability are discussed.

  13. Flexible reserve markets for wind integration

    NASA Astrophysics Data System (ADS)

    Fernandez, Alisha R.

    The increased interconnection of variable generation has motivated the use of improved forecasting to more accurately predict future production with the purpose to lower total system costs for balancing when the expected output exceeds or falls short of the actual output. Forecasts are imperfect, and the forecast errors associated with utility-scale generation from variable generators need new balancing capabilities that cannot be handled by existing ancillary services. Our work focuses on strategies for integrating large amounts of wind generation under the flex reserve market, a market that would called upon for short-term energy services during an under or oversupply of wind generation to maintain electric grid reliability. The flex reserve market would be utilized for time intervals that fall in-between the current ancillary services markets that would be longer than second-to-second energy services for maintaining system frequency and shorter than reserve capacity services that are called upon for several minutes up to an hour during an unexpected contingency on the grid. In our work, the wind operator would access the flex reserve market as an energy service to correct for unanticipated forecast errors, akin to paying the generators participating in the market to increase generation during a shortfall or paying the other generators to decrease generation during an excess of wind generation. Such a market does not currently exist in the Mid-Atlantic United States. The Pennsylvania-New Jersey-Maryland Interconnection (PJM) is the Mid-Atlantic electric grid case study that was used to examine if a flex reserve market can be utilized for integrating large capacities of wind generation in a lowcost manner for those providing, purchasing and dispatching these short-term balancing services. The following work consists of three studies. The first examines the ability of a hydroelectric facility to provide short-term forecast error balancing services via a flex reserve market, identifying the operational constraints that inhibit a multi-purpose dam facility to meet the desired flexible energy demand. The second study transitions from the hydroelectric facility as the decision maker providing flex reserve services to the wind plant as the decision maker purchasing these services. In this second study, methods for allocating the costs of flex reserve services under different wind policy scenarios are explored that aggregate farms into different groupings to identify the least-cost strategy for balancing the costs of hourly day-ahead forecast errors. The least-cost strategy may be different for an individual wind plant and for the system operator, noting that the least-cost strategy is highly sensitive to cost allocation and aggregation schemes. The latter may also cause cross-subsidies in the cost for balancing wind forecast errors among the different wind farms. The third study builds from the second, with the objective to quantify the amount of flex reserves needed for balancing future forecast errors using a probabilistic approach (quantile regression) to estimating future forecast errors. The results further examine the usefulness of separate flexible markets PJM could use for balancing oversupply and undersupply events, similar to the regulation up and down markets used in Europe. These three studies provide the following results and insights to large-scale wind integration using actual PJM wind farm data that describe the markets and generators within PJM. • Chapter 2 provides an in-depth analysis of the valuable, yet highly-constrained, energy services multi-purpose hydroelectric facilities can provide, though the opportunity cost for providing these services can result in large deviations from the reservoir policies with minimal revenue gain in comparison to dedicating the whole of dam capacity to providing day-ahead, baseload generation. • Chapter 3 quantifies the system-wide efficiency gains and the distributive effects of PJM's decision to act as a single balancing authority, which means that it procures ancillary services across its entire footprint simultaneously. This can be contrasted to Midwest Independent System Operator (MISO), which has several balancing authorities operating under its footprint. • Chapter 4 uses probabilistic methods to estimate the uncertainty in the forecast errors and the quantity of energy needed to balance these forecast errors at a certain percentile. Current practice is to use a point forecast that describes the conditional expectation of the dependent variable at each time step. The approach here uses quantile regression to describe the relationship between independent variable and the conditional quantiles (equivalently the percentiles) of the dependent variable. An estimate of the conditional density is performed, which contains information about the covariate relationship of the sign of the forecast errors (negative for too much wind generation and positive for too little wind generation) and the wind power forecast. This additional knowledge may be implemented in the decision process to more accurately schedule day-ahead wind generation bids and provide an example for using separate markets for balancing an oversupply and undersupply of generation. Such methods are currently used for coordinating large footprints of wind generation in Europe.

  14. Optimal current waveforms for brushless permanent magnet motors

    NASA Astrophysics Data System (ADS)

    Moehle, Nicholas; Boyd, Stephen

    2015-07-01

    In this paper, we give energy-optimal current waveforms for a permanent magnet synchronous motor that result in a desired average torque. Our formulation generalises previous work by including a general back-electromotive force (EMF) wave shape, voltage and current limits, an arbitrary phase winding connection, a simple eddy current loss model, and a trade-off between power loss and torque ripple. Determining the optimal current waveforms requires solving a small convex optimisation problem. We show how to use the alternating direction method of multipliers to find the optimal current in milliseconds or hundreds of microseconds, depending on the processor used, which allows the possibility of generating optimal waveforms in real time. This allows us to adapt in real time to changes in the operating requirements or in the model, such as a change in resistance with winding temperature, or even gross changes like the failure of one winding. Suboptimal waveforms are available in tens or hundreds of microseconds, allowing for quick response after abrupt changes in the desired torque. We demonstrate our approach on a simple numerical example, in which we give the optimal waveforms for a motor with a sinusoidal back-EMF, and for a motor with a more complicated, nonsinusoidal waveform, in both the constant-torque region and constant-power region.

  15. Late-glacial elevated dust deposition linked to westerly wind shifts in southern South America

    PubMed Central

    Vanneste, Heleen; De Vleeschouwer, François; Martínez-Cortizas, Antonio; von Scheffer, Clemens; Piotrowska, Natalia; Coronato, Andrea; Le Roux, Gaël

    2015-01-01

    Atmospheric dust loadings play a crucial role in the global climate system. Southern South America is a key dust source, however, dust deposition rates remain poorly quantified since the last glacial termination (~17 kyr ago), an important timeframe to anticipate future climate changes. Here we use isotope and element geochemistry in a peat archive from Tierra del Fuego, to reconstruct atmospheric dust fluxes and associated environmental and westerly wind changes for the past 16.2 kyr. Dust depositions were elevated during the Antarctic Cold Reversal (ACR) and second half of the Younger Dryas (YD) stadial, originating from the glacial Beagle Channel valley. This increase was most probably associated with a strengthening of the westerlies during both periods as dust source areas were already available before the onset of the dust peaks and remained present throughout. Congruent with glacier advances across Patagonia, this dust record indicates an overall strengthening of the wind belt during the ACR. On the other hand, we argue that the YD dust peak is linked to strong and poleward shifted westerlies. The close interplay between dust fluxes and climatic changes demonstrates that atmospheric circulation was essential in generating and sustaining present-day interglacial conditions. PMID:26126739

  16. Variable speed generator technology options for wind turbine generators

    NASA Technical Reports Server (NTRS)

    Lipo, T. A.

    1995-01-01

    The electrical system options for variable speed operation of a wind turbine generator are treated in this paper. The key operating characteristics of each system are discussed and the major advantages and disadvantages of each are identified

  17. Analysis of vector wind change with respect to time for Cape Kennedy, Florida: Wind aloft profile change vs. time, phase 1

    NASA Technical Reports Server (NTRS)

    Adelfang, S. I.

    1977-01-01

    Wind vector change with respect to time at Cape Kennedy, Florida, is examined according to the theory of multivariate normality. The joint distribution of the four variables represented by the components of the wind vector at an initial time and after a specified elapsed time is hypothesized to be quadravariate normal; the fourteen statistics of this distribution, calculated from fifteen years of twice daily Rawinsonde data are presented by monthly reference periods for each month from 0 to 27 km. The hypotheses that the wind component changes with respect to time is univariate normal, the joint distribution of wind component changes is bivariate normal, and the modulus of vector wind change is Rayleigh, has been tested by comparison with observed distributions. Statistics of the conditional bivariate normal distributions of vector wind at a future time given the vector wind at an initial time are derived. Wind changes over time periods from one to five hours, calculated from Jimsphere data, are presented.

  18. Strategic Response to Energy-Related Security Threats in the US Department of Defense

    DTIC Science & Technology

    2014-10-15

    generation in the United States are fossil fuels . These include coal, natural gas, and oil . In some cases solar, wind, geothermal, and hydroelectric...and findings. The research addressed engagement on climate change and energy security issues by DoD across various tiers and sectors of the...on climate change and energy security issues by DoD across various tiers and sectors of the organization. Specifically, a tripartite analysis

  19. Multi-time scale energy management of wind farms based on comprehensive evaluation technology

    NASA Astrophysics Data System (ADS)

    Xu, Y. P.; Huang, Y. H.; Liu, Z. J.; Wang, Y. F.; Li, Z. Y.; Guo, L.

    2017-11-01

    A novel energy management of wind farms is proposed in this paper. Firstly, a novel comprehensive evaluation system is proposed to quantify economic properties of each wind farm to make the energy management more economical and reasonable. Then, a combination of multi time-scale schedule method is proposed to develop a novel energy management. The day-ahead schedule optimizes unit commitment of thermal power generators. The intraday schedule is established to optimize power generation plan for all thermal power generating units, hydroelectric generating sets and wind power plants. At last, the power generation plan can be timely revised in the process of on-line schedule. The paper concludes with simulations conducted on a real provincial integrated energy system in northeast China. Simulation results have validated the proposed model and corresponding solving algorithms.

  20. Multiple and variable speed electrical generator systems for large wind turbines

    NASA Technical Reports Server (NTRS)

    Andersen, T. S.; Hughes, P. S.; Kirschbaum, H. S.; Mutone, G. A.

    1982-01-01

    A cost effective method to achieve increased wind turbine generator energy conversion and other operational benefits through variable speed operation is presented. Earlier studies of multiple and variable speed generators in wind turbines were extended for evaluation in the context of a specific large sized conceptual design. System design and simulation have defined the costs and performance benefits which can be expected from both two speed and variable speed configurations.

Top