Sample records for wind speed model

  1. Modeling wind adjustment factor and midflame wind speed for Rothermel's surface fire spread model

    Treesearch

    Patricia L. Andrews

    2012-01-01

    Rothermel's surface fire spread model was developed to use a value for the wind speed that affects surface fire, called midflame wind speed. Models have been developed to adjust 20-ft wind speed to midflame wind speed for sheltered and unsheltered surface fuel. In this report, Wind Adjustment Factor (WAF) model equations are given, and the BehavePlus fire modeling...

  2. Spatio-temporal modelling of wind speed variations and extremes in the Caribbean and the Gulf of Mexico

    NASA Astrophysics Data System (ADS)

    Rychlik, Igor; Mao, Wengang

    2018-02-01

    The wind speed variability in the North Atlantic has been successfully modelled using a spatio-temporal transformed Gaussian field. However, this type of model does not correctly describe the extreme wind speeds attributed to tropical storms and hurricanes. In this study, the transformed Gaussian model is further developed to include the occurrence of severe storms. In this new model, random components are added to the transformed Gaussian field to model rare events with extreme wind speeds. The resulting random field is locally stationary and homogeneous. The localized dependence structure is described by time- and space-dependent parameters. The parameters have a natural physical interpretation. To exemplify its application, the model is fitted to the ECMWF ERA-Interim reanalysis data set. The model is applied to compute long-term wind speed distributions and return values, e.g., 100- or 1000-year extreme wind speeds, and to simulate random wind speed time series at a fixed location or spatio-temporal wind fields around that location.

  3. A Novel Wind Speed Forecasting Model for Wind Farms of Northwest China

    NASA Astrophysics Data System (ADS)

    Wang, Jian-Zhou; Wang, Yun

    2017-01-01

    Wind resources are becoming increasingly significant due to their clean and renewable characteristics, and the integration of wind power into existing electricity systems is imminent. To maintain a stable power supply system that takes into account the stochastic nature of wind speed, accurate wind speed forecasting is pivotal. However, no single model can be applied to all cases. Recent studies show that wind speed forecasting errors are approximately 25% to 40% in Chinese wind farms. Presently, hybrid wind speed forecasting models are widely used and have been verified to perform better than conventional single forecasting models, not only in short-term wind speed forecasting but also in long-term forecasting. In this paper, a hybrid forecasting model is developed, the Similar Coefficient Sum (SCS) and Hermite Interpolation are exploited to process the original wind speed data, and the SVM model whose parameters are tuned by an artificial intelligence model is built to make forecast. The results of case studies show that the MAPE value of the hybrid model varies from 22.96% to 28.87 %, and the MAE value varies from 0.47 m/s to 1.30 m/s. Generally, Sign test, Wilcoxon's Signed-Rank test, and Morgan-Granger-Newbold test tell us that the proposed model is different from the compared models.

  4. Effective wind speed estimation: Comparison between Kalman Filter and Takagi-Sugeno observer techniques.

    PubMed

    Gauterin, Eckhard; Kammerer, Philipp; Kühn, Martin; Schulte, Horst

    2016-05-01

    Advanced model-based control of wind turbines requires knowledge of the states and the wind speed. This paper benchmarks a nonlinear Takagi-Sugeno observer for wind speed estimation with enhanced Kalman Filter techniques: The performance and robustness towards model-structure uncertainties of the Takagi-Sugeno observer, a Linear, Extended and Unscented Kalman Filter are assessed. Hence the Takagi-Sugeno observer and enhanced Kalman Filter techniques are compared based on reduced-order models of a reference wind turbine with different modelling details. The objective is the systematic comparison with different design assumptions and requirements and the numerical evaluation of the reconstruction quality of the wind speed. Exemplified by a feedforward loop employing the reconstructed wind speed, the benefit of wind speed estimation within wind turbine control is illustrated. Copyright © 2015 ISA. Published by Elsevier Ltd. All rights reserved.

  5. Indexed semi-Markov process for wind speed modeling.

    NASA Astrophysics Data System (ADS)

    Petroni, F.; D'Amico, G.; Prattico, F.

    2012-04-01

    The increasing interest in renewable energy leads scientific research to find a better way to recover most of the available energy. Particularly, the maximum energy recoverable from wind is equal to 59.3% of that available (Betz law) at a specific pitch angle and when the ratio between the wind speed in output and in input is equal to 1/3. The pitch angle is the angle formed between the airfoil of the blade of the wind turbine and the wind direction. Old turbine and a lot of that actually marketed, in fact, have always the same invariant geometry of the airfoil. This causes that wind turbines will work with an efficiency that is lower than 59.3%. New generation wind turbines, instead, have a system to variate the pitch angle by rotating the blades. This system able the wind turbines to recover, at different wind speed, always the maximum energy, working in Betz limit at different speed ratios. A powerful system control of the pitch angle allows the wind turbine to recover better the energy in transient regime. A good stochastic model for wind speed is then needed to help both the optimization of turbine design and to assist the system control to predict the value of the wind speed to positioning the blades quickly and correctly. The possibility to have synthetic data of wind speed is a powerful instrument to assist designer to verify the structures of the wind turbines or to estimate the energy recoverable from a specific site. To generate synthetic data, Markov chains of first or higher order are often used [1,2,3]. In particular in [1] is presented a comparison between a first-order Markov chain and a second-order Markov chain. A similar work, but only for the first-order Markov chain, is conduced by [2], presenting the probability transition matrix and comparing the energy spectral density and autocorrelation of real and synthetic wind speed data. A tentative to modeling and to join speed and direction of wind is presented in [3], by using two models, first-order Markov chain with different number of states, and Weibull distribution. All this model use Markov chains to generate synthetic wind speed time series but the search for a better model is still open. Approaching this issue, we applied new models which are generalization of Markov models. More precisely we applied semi-Markov models to generate synthetic wind speed time series. In a previous work we proposed different semi-Markov models, showing their ability to reproduce the autocorrelation structures of wind speed data. In that paper we showed also that the autocorrelation is higher with respect to the Markov model. Unfortunately this autocorrelation was still too small compared to the empirical one. In order to overcome the problem of low autocorrelation, in this paper we propose an indexed semi-Markov model. More precisely we assume that wind speed is described by a discrete time homogeneous semi-Markov process. We introduce a memory index which takes into account the periods of different wind activities. With this model the statistical characteristics of wind speed are faithfully reproduced. The wind is a very unstable phenomenon characterized by a sequence of lulls and sustained speeds, and a good wind generator must be able to reproduce such sequences. To check the validity of the predictive semi-Markovian model, the persistence of synthetic winds were calculated, then averaged and computed. The model is used to generate synthetic time series for wind speed by means of Monte Carlo simulations and the time lagged autocorrelation is used to compare statistical properties of the proposed models with those of real data and also with a time series generated though a simple Markov chain. [1] A. Shamshad, M.A. Bawadi, W.M.W. Wan Hussin, T.A. Majid, S.A.M. Sanusi, First and second order Markov chain models for synthetic generation of wind speed time series, Energy 30 (2005) 693-708. [2] H. Nfaoui, H. Essiarab, A.A.M. Sayigh, A stochastic Markov chain model for simulating wind speed time series at Tangiers, Morocco, Renewable Energy 29 (2004) 1407-1418. [3] F. Youcef Ettoumi, H. Sauvageot, A.-E.-H. Adane, Statistical bivariate modeling of wind using first-order Markov chain and Weibull distribution, Renewable Energy 28 (2003) 1787-1802.

  6. Nonparametric Stochastic Model for Uncertainty Quantifi cation of Short-term Wind Speed Forecasts

    NASA Astrophysics Data System (ADS)

    AL-Shehhi, A. M.; Chaouch, M.; Ouarda, T.

    2014-12-01

    Wind energy is increasing in importance as a renewable energy source due to its potential role in reducing carbon emissions. It is a safe, clean, and inexhaustible source of energy. The amount of wind energy generated by wind turbines is closely related to the wind speed. Wind speed forecasting plays a vital role in the wind energy sector in terms of wind turbine optimal operation, wind energy dispatch and scheduling, efficient energy harvesting etc. It is also considered during planning, design, and assessment of any proposed wind project. Therefore, accurate prediction of wind speed carries a particular importance and plays significant roles in the wind industry. Many methods have been proposed in the literature for short-term wind speed forecasting. These methods are usually based on modeling historical fixed time intervals of the wind speed data and using it for future prediction. The methods mainly include statistical models such as ARMA, ARIMA model, physical models for instance numerical weather prediction and artificial Intelligence techniques for example support vector machine and neural networks. In this paper, we are interested in estimating hourly wind speed measures in United Arab Emirates (UAE). More precisely, we predict hourly wind speed using a nonparametric kernel estimation of the regression and volatility functions pertaining to nonlinear autoregressive model with ARCH model, which includes unknown nonlinear regression function and volatility function already discussed in the literature. The unknown nonlinear regression function describe the dependence between the value of the wind speed at time t and its historical data at time t -1, t - 2, … , t - d. This function plays a key role to predict hourly wind speed process. The volatility function, i.e., the conditional variance given the past, measures the risk associated to this prediction. Since the regression and the volatility functions are supposed to be unknown, they are estimated using nonparametric kernel methods. In addition, to the pointwise hourly wind speed forecasts, a confidence interval is also provided which allows to quantify the uncertainty around the forecasts.

  7. Multi-step-ahead Method for Wind Speed Prediction Correction Based on Numerical Weather Prediction and Historical Measurement Data

    NASA Astrophysics Data System (ADS)

    Wang, Han; Yan, Jie; Liu, Yongqian; Han, Shuang; Li, Li; Zhao, Jing

    2017-11-01

    Increasing the accuracy of wind speed prediction lays solid foundation to the reliability of wind power forecasting. Most traditional correction methods for wind speed prediction establish the mapping relationship between wind speed of the numerical weather prediction (NWP) and the historical measurement data (HMD) at the corresponding time slot, which is free of time-dependent impacts of wind speed time series. In this paper, a multi-step-ahead wind speed prediction correction method is proposed with consideration of the passing effects from wind speed at the previous time slot. To this end, the proposed method employs both NWP and HMD as model inputs and the training labels. First, the probabilistic analysis of the NWP deviation for different wind speed bins is calculated to illustrate the inadequacy of the traditional time-independent mapping strategy. Then, support vector machine (SVM) is utilized as example to implement the proposed mapping strategy and to establish the correction model for all the wind speed bins. One Chinese wind farm in northern part of China is taken as example to validate the proposed method. Three benchmark methods of wind speed prediction are used to compare the performance. The results show that the proposed model has the best performance under different time horizons.

  8. A novel application of artificial neural network for wind speed estimation

    NASA Astrophysics Data System (ADS)

    Fang, Da; Wang, Jianzhou

    2017-05-01

    Providing accurate multi-steps wind speed estimation models has increasing significance, because of the important technical and economic impacts of wind speed on power grid security and environment benefits. In this study, the combined strategies for wind speed forecasting are proposed based on an intelligent data processing system using artificial neural network (ANN). Generalized regression neural network and Elman neural network are employed to form two hybrid models. The approach employs one of ANN to model the samples achieving data denoising and assimilation and apply the other to predict wind speed using the pre-processed samples. The proposed method is demonstrated in terms of the predicting improvements of the hybrid models compared with single ANN and the typical forecasting method. To give sufficient cases for the study, four observation sites with monthly average wind speed of four given years in Western China were used to test the models. Multiple evaluation methods demonstrated that the proposed method provides a promising alternative technique in monthly average wind speed estimation.

  9. Forest impact estimated with NOAA AVHRR and landsat TM data related to an empirical hurricane wind-field distribution

    USGS Publications Warehouse

    Ramsey, Elijah W.; Hodgson, M.E.; Sapkota, S.K.; Nelson, G.A.

    2001-01-01

    An empirical model was used to relate forest type and hurricane-impact distribution with wind speed and duration to explain the variation of hurricane damage among forest types along the Atchafalaya River basin of coastal Louisiana. Forest-type distribution was derived from Landsat Thematic Mapper image data, hurricane-impact distribution from a suite of transformed advanced very high resolution radiometer images, and wind speed and duration from a wind-field model. The empirical model explained 73%, 84%, and 87% of the impact variances for open, hardwood, and cypress-tupelo forests, respectively. These results showed that the estimated impact for each forest type was highly related to the duration and speed of extreme winds associated with Hurricane Andrew in 1992. The wind-field model projected that the highest wind speeds were in the southern basin, dominated by cypress-tupelo and open forests, while lower wind speeds were in the northern basin, dominated by hardwood forests. This evidence could explain why, on average, the impact to cypress-tupelos was more severe than to hardwoods, even though cypress-tupelos are less susceptible to wind damage. Further, examination of the relative importance of wind speed in explaining the impact severity to each forest type showed that the impact to hardwood forests was mainly related to tropical-depression to tropical-storm force wind speeds. Impacts to cypress-tupelo and open forests (a mixture of willows and cypress-tupelo) were broadly related to tropical-storm force wind speeds and by wind speeds near and somewhat in excess of hurricane force. Decoupling the importance of duration from speed in explaining the impact severity to the forests could not be fully realized. Most evidence, however, hinted that impact severity was positively related to higher durations at critical wind speeds. Wind-speed intervals, which were important in explaining the impact severity on hardwoods, showed that higher durations, but not the highest wind speeds, were concentrated in the northern basin, dominated by hardwoods. The extreme impacts associated with the cypress-tupelo forests in the southeast corner of the basin intersected the highest durations as well as the highest wind speeds. ?? 2001 Published by Elsevier Science Inc.

  10. A reward semi-Markov process with memory for wind speed modeling

    NASA Astrophysics Data System (ADS)

    Petroni, F.; D'Amico, G.; Prattico, F.

    2012-04-01

    The increasing interest in renewable energy leads scientific research to find a better way to recover most of the available energy. Particularly, the maximum energy recoverable from wind is equal to 59.3% of that available (Betz law) at a specific pitch angle and when the ratio between the wind speed in output and in input is equal to 1/3. The pitch angle is the angle formed between the airfoil of the blade of the wind turbine and the wind direction. Old turbine and a lot of that actually marketed, in fact, have always the same invariant geometry of the airfoil. This causes that wind turbines will work with an efficiency that is lower than 59.3%. New generation wind turbines, instead, have a system to variate the pitch angle by rotating the blades. This system able the wind turbines to recover, at different wind speed, always the maximum energy, working in Betz limit at different speed ratios. A powerful system control of the pitch angle allows the wind turbine to recover better the energy in transient regime. A good stochastic model for wind speed is then needed to help both the optimization of turbine design and to assist the system control to predict the value of the wind speed to positioning the blades quickly and correctly. The possibility to have synthetic data of wind speed is a powerful instrument to assist designer to verify the structures of the wind turbines or to estimate the energy recoverable from a specific site. To generate synthetic data, Markov chains of first or higher order are often used [1,2,3]. In particular in [1] is presented a comparison between a first-order Markov chain and a second-order Markov chain. A similar work, but only for the first-order Markov chain, is conduced by [2], presenting the probability transition matrix and comparing the energy spectral density and autocorrelation of real and synthetic wind speed data. A tentative to modeling and to join speed and direction of wind is presented in [3], by using two models, first-order Markov chain with different number of states, and Weibull distribution. All this model use Markov chains to generate synthetic wind speed time series but the search for a better model is still open. Approaching this issue, we applied new models which are generalization of Markov models. More precisely we applied semi-Markov models to generate synthetic wind speed time series. The primary goal of this analysis is the study of the time history of the wind in order to assess its reliability as a source of power and to determine the associated storage levels required. In order to assess this issue we use a probabilistic model based on indexed semi-Markov process [4] to which a reward structure is attached. Our model is used to calculate the expected energy produced by a given turbine and its variability expressed by the variance of the process. Our results can be used to compare different wind farms based on their reward and also on the risk of missed production due to the intrinsic variability of the wind speed process. The model is used to generate synthetic time series for wind speed by means of Monte Carlo simulations and backtesting procedure is used to compare results on first and second oder moments of rewards between real and synthetic data. [1] A. Shamshad, M.A. Bawadi, W.M.W. Wan Hussin, T.A. Majid, S.A.M. Sanusi, First and second order Markov chain models for synthetic gen- eration of wind speed time series, Energy 30 (2005) 693-708. [2] H. Nfaoui, H. Essiarab, A.A.M. Sayigh, A stochastic Markov chain model for simulating wind speed time series at Tangiers, Morocco, Re- newable Energy 29 (2004) 1407-1418. [3] F. Youcef Ettoumi, H. Sauvageot, A.-E.-H. Adane, Statistical bivariate modeling of wind using first-order Markov chain and Weibull distribu- tion, Renewable Energy 28 (2003) 1787-1802. [4]F. Petroni, G. D'Amico, F. Prattico, Indexed semi-Markov process for wind speed modeling. To be submitted.

  11. Wind Resource Assessment in Complex Terrain with a High-Resolution Numerical Weather Prediction Model

    NASA Astrophysics Data System (ADS)

    Gruber, Karin; Serafin, Stefano; Grubišić, Vanda; Dorninger, Manfred; Zauner, Rudolf; Fink, Martin

    2014-05-01

    A crucial step in planning new wind farms is the estimation of the amount of wind energy that can be harvested in possible target sites. Wind resource assessment traditionally entails deployment of masts equipped for wind speed measurements at several heights for a reasonably long period of time. Simplified linear models of atmospheric flow are then used for a spatial extrapolation of point measurements to a wide area. While linear models have been successfully applied in the wind resource assessment in plains and offshore, their reliability in complex terrain is generally poor. This represents a major limitation to wind resource assessment in Austria, where high-altitude locations are being considered for new plant sites, given the higher frequency of sustained winds at such sites. The limitations of linear models stem from two key assumptions in their formulation, the neutral stratification and attached boundary-layer flow, both of which often break down in complex terrain. Consequently, an accurate modeling of near-surface flow over mountains requires the adoption of a NWP model with high horizontal and vertical resolution. This study explores the wind potential of a site in Styria in the North-Eastern Alps. The WRF model is used for simulations with a maximum horizontal resolution of 800 m. Three nested computational domains are defined, with the innermost one encompassing a stretch of the relatively broad Enns Valley, flanked by the main crest of the Alps in the south and the Nördliche Kalkalpen of similar height in the north. In addition to the simulation results, we use data from fourteen 10-m wind measurement sites (of which 7 are located within valleys and 5 near mountain tops) and from 2 masts with anemometers at several heights (at hillside locations) in an area of 1600 km2 around the target site. The potential for wind energy production is assessed using the mean wind speed and turbulence intensity at hub height. The capacity factor is also evaluated, considering the frequency of wind speed between cut-in and cut-out speed and of winds with a low vertical velocity component only. Wind turbines do not turn on at wind speeds below cut-in speed. Wind turbines are taken off from the generator in the case of wind speeds higher than cut-out speed and inclination angles of the wind vector greater than 8o. All of these parameters were computed at each model grid point in the innermost domain in order to map their spatial variability. The results show that in complex terrain the annual mean wind speed at hub height is not sufficient to predict the capacity factor of a turbine; vertical wind speed and the frequency of horizontal wind speed out of the range of cut-in and cut-out speed contribute substantially to a reduction of the energy harvest and locally high turbulence may considerably raise the building costs.

  12. An improved canopy wind model for predicting wind adjustment factors and wildland fire behavior

    Treesearch

    W. J. Massman; J. M. Forthofer; M. A. Finney

    2017-01-01

    The ability to rapidly estimate wind speed beneath a forest canopy or near the ground surface in any vegetation is critical to practical wildland fire behavior models. The common metric of this wind speed is the "mid-flame" wind speed, UMF. However, the existing approach for estimating UMF has some significant shortcomings. These include the assumptions that...

  13. Evaluation of NOAA's High Resolution Rapid Refresh (HRRR), 12 km North America Model (NAM12) and 4km North America Model (NAM 4) hub-height wind speed forecasts

    NASA Astrophysics Data System (ADS)

    Pendergrass, W.; Vogel, C. A.

    2013-12-01

    As an outcome of discussions between Duke Energy Generation and NOAA/ARL following the 2009 AMS Summer Community Meeting, in Norman Oklahoma, ARL and Duke Energy Generation (Duke) signed a Cooperative Research and Development Agreement (CRADA) which allows NOAA to conduct atmospheric boundary layer (ABL) research using Duke renewable energy sites as research testbeds. One aspect of this research has been the evaluation of forecast hub-height winds from three NOAA atmospheric models. Forecasts of 10m (surface) and 80m (hub-height) wind speeds from (1) NOAA/GSD's High Resolution Rapid Refresh (HRRR) model, (2) NOAA/NCEP's 12 km North America Model (NAM12) and (3) NOAA/NCEP's 4k high resolution North America Model (NAM4) were evaluated against 18 months of surface-layer wind observations collected at the joint NOAA/Duke Energy research station located at Duke Energy's West Texas Ocotillo wind farm over the period April 2011 through October 2012. HRRR, NAM12 and NAM4 10m wind speed forecasts were compared with 10m level wind speed observations measured on the NOAA/ATDD flux-tower. Hub-height (80m) HRRR , NAM12 and NAM4 forecast wind speeds were evaluated against the 80m operational PMM27-28 meteorological tower supporting the Ocotillo wind farm. For each HRRR update, eight forecast hours (hour 01, 02, 03, 05, 07, 10, 12, 15) plus the initialization hour (hour 00), evaluated. For the NAM12 and NAM4 models forecast hours 00-24 from the 06z initialization were evaluated. Performance measures or skill score based on absolute error 50% cumulative probability were calculated for each forecast hour. HRRR forecast hour 01 provided the best skill score with an absolute wind speed error within 0.8 m/s of observed 10m wind speed and 1.25 m/s for hub-height wind speed at the designated 50% cumulative probability. For both NAM4 and NAM12 models, skill scores were diurnal with comparable best scores observed during the day of 0.7 m/s of observed 10m wind speed and 1.1 m/s for hub-height wind speed at the designated 50% cumulative probability level.

  14. Impacts of Wake Effect and Time Delay on the Dynamic Analysis of Wind Farms Models

    ERIC Educational Resources Information Center

    El-Fouly, Tarek H. M.; El-Saadany, Ehab F.; Salama, Magdy M. A.

    2008-01-01

    This article investigates the impacts of proper modeling of the wake effects and wind speed delays, between different wind turbines' rows, on the dynamic performance accuracy of the wind farms models. Three different modeling scenarios were compared to highlight the impacts of wake effects and wind speed time-delay models. In the first scenario,…

  15. Statistical distribution of wind speeds and directions globally observed by NSCAT

    NASA Astrophysics Data System (ADS)

    Ebuchi, Naoto

    1999-05-01

    In order to validate wind vectors derived from the NASA scatterometer (NSCAT), statistical distributions of wind speeds and directions over the global oceans are investigated by comparing with European Centre for Medium-Range Weather Forecasts (ECMWF) wind data. Histograms of wind speeds and directions are calculated from the preliminary and reprocessed NSCAT data products for a period of 8 weeks. For wind speed of the preliminary data products, excessive low wind distribution is pointed out through comparison with ECMWF winds. A hump at the lower wind speed side of the peak in the wind speed histogram is discernible. The shape of the hump varies with incidence angle. Incompleteness of the prelaunch geophysical model function, SASS 2, tentatively used to retrieve wind vectors of the preliminary data products, is considered to cause the skew of the wind speed distribution. On the contrary, histograms of wind speeds of the reprocessed data products show consistent features over the whole range of incidence angles. Frequency distribution of wind directions relative to spacecraft flight direction is calculated to assess self-consistency of the wind directions. It is found that wind vectors of the preliminary data products exhibit systematic directional preference relative to antenna beams. This artificial directivity is also considered to be caused by imperfections in the geophysical model function. The directional distributions of the reprocessed wind vectors show less directivity and consistent features, except for very low wind cases.

  16. Mixed H2/H∞ pitch control of wind turbine with a Markovian jump model

    NASA Astrophysics Data System (ADS)

    Lin, Zhongwei; Liu, Jizhen; Wu, Qiuwei; Niu, Yuguang

    2018-01-01

    This paper proposes a Markovian jump model and the corresponding H2/H∞ control strategy for the wind turbine driven by the stochastic switching wind speed, which can be used to regulate the generator speed in order to harvest the rated power while reducing the fatigue loads on the mechanical side of wind turbine. Through sampling the low-frequency wind speed data into separate intervals, the stochastic characteristic of the steady wind speed can be represented as a Markov process, while the high-frequency wind speed in the each interval is regarded as the disturbance input. Then, the traditional operating points of wind turbine can be divided into separate subregions correspondingly, where the model parameters and the control mode can be fixed in each mode. Then, the mixed H2/H∞ control problem is discussed for such a class of Markovian jump wind turbine working above the rated wind speed to guarantee both the disturbance rejection and the mechanical loads objectives, which can reduce the power volatility and the generator torque fluctuation of the whole transmission mechanism efficiently. Simulation results for a 2 MW wind turbine show the effectiveness of the proposed method.

  17. Flight speed and performance of the wandering albatross with respect to wind.

    PubMed

    Richardson, Philip L; Wakefield, Ewan D; Phillips, Richard A

    2018-01-01

    Albatrosses and other large seabirds use dynamic soaring to gain sufficient energy from the wind to travel large distances rapidly and with little apparent effort. The recent development of miniature bird-borne tracking devices now makes it possible to explore the physical and biological implications of this means of locomotion in detail. Here we use GPS tracking and concurrent reanalyzed wind speed data to model the flight performance of wandering albatrosses Diomedea exulans soaring over the Southern Ocean. We investigate the extent to which flight speed and performance of albatrosses is facilitated or constrained by wind conditions encountered during foraging trips. We derived simple equations to model observed albatross ground speed as a function of wind speed and relative wind direction. Ground speeds of the tracked birds in the along-wind direction varied primarily by wind-induced leeway, which averaged 0.51 (± 0.02) times the wind speed at a reference height of 5 m. By subtracting leeway velocity from ground velocity, we were able to estimate airspeed (the magnitude of the bird's velocity through the air). As wind speeds increased from 3 to 18 m/s, the airspeed of wandering albatrosses flying in an across-wind direction increased by 0.42 (± 0.04) times the wind speed (i.e. ~ 6 m/s). At low wind speeds, tracked birds increased their airspeed in upwind flight relative to that in downwind flight. At higher wind speeds they apparently limited their airspeeds to a maximum of around 20 m/s, probably to keep the forces on their wings in dynamic soaring well within tolerable limits. Upwind airspeeds were nearly constant and downwind leeway increased with wind speed. Birds therefore achieved their fastest upwind ground speeds (~ 9 m/s) at low wind speeds (~ 3 m/s). This study provides insights into which flight strategies are optimal for dynamic soaring. Our results are consistent with the prediction that the optimal range speed of albatrosses is higher in headwind than tailwind flight but only in wind speeds of up to ~ 7 m/s. Our models predict that wandering albatrosses have oval-shaped airspeed polars, with the fastest airspeeds ~ 20 m/s centered in the across-wind direction. This suggests that in upwind flight in high winds, albatrosses can increase their ground speed by tacking like sailboats.

  18. Post-processing method for wind speed ensemble forecast using wind speed and direction

    NASA Astrophysics Data System (ADS)

    Sofie Eide, Siri; Bjørnar Bremnes, John; Steinsland, Ingelin

    2017-04-01

    Statistical methods are widely applied to enhance the quality of both deterministic and ensemble NWP forecasts. In many situations, like wind speed forecasting, most of the predictive information is contained in one variable in the NWP models. However, in statistical calibration of deterministic forecasts it is often seen that including more variables can further improve forecast skill. For ensembles this is rarely taken advantage of, mainly due to that it is generally not straightforward how to include multiple variables. In this study, it is demonstrated how multiple variables can be included in Bayesian model averaging (BMA) by using a flexible regression method for estimating the conditional means. The method is applied to wind speed forecasting at 204 Norwegian stations based on wind speed and direction forecasts from the ECMWF ensemble system. At about 85 % of the sites the ensemble forecasts were improved in terms of CRPS by adding wind direction as predictor compared to only using wind speed. On average the improvements were about 5 %, but mainly for moderate to strong wind situations. For weak wind speeds adding wind direction had more or less neutral impact.

  19. An integrated modeling method for wind turbines

    NASA Astrophysics Data System (ADS)

    Fadaeinedjad, Roohollah

    To study the interaction of the electrical, mechanical, and aerodynamic aspects of a wind turbine, a detailed model that considers all these aspects must be used. A drawback of many studies in the area of wind turbine simulation is that either a very simple mechanical model is used with a detailed electrical model, or vice versa. Hence the interactions between electrical and mechanical aspects of wind turbine operation are not accurately taken into account. In this research, it will be shown that a combination of different simulation packages, namely TurbSim, FAST, and Simulink can be used to model the aerodynamic, mechanical, and electrical aspects of a wind turbine in detail. In this thesis, after a review of some wind turbine concepts and software tools, a simulation structure is proposed for studying wind turbines that integrates the mechanical and electrical components of a wind energy conversion device. Based on the simulation structure, a comprehensive model for a three-bladed variable speed wind turbine with doubly-fed induction generator is developed. Using the model, the impact of a voltage sag on the wind turbine tower vibration is investigated under various operating conditions such as power system short circuit level, mechanical parameters, and wind turbine operating conditions. It is shown how an electrical disturbance can cause more sustainable tower vibrations under high speed and turbulent wind conditions, which may disrupt the operation of pitch control system. A similar simulation structure is used to model a two-bladed fixed speed wind turbine with an induction generator. An extension of the concept is introduced by adding a diesel generator system. The model is utilized to study the impact of the aeroelastic aspects of wind turbine (i.e. tower shadow, wind shears, yaw error, turbulence, and mechanical vibrations) on the power quality of a stand-alone wind-diesel system. Furthermore, an IEEE standard flickermeter model is implemented in a Simulink environment to study the flicker contribution of the wind turbine in the wind-diesel system. By using a new wind power plant representation method, a large wind farm (consisting of 96 fixed speed wind turbines) is modelled to study the power quality of wind power system. The flicker contribution of wind farm is also studied with different wind turbine numbers, using the flickermeter model. Keywords. Simulink, FAST, TurbSim, AreoDyn, wind energy, doubly-fed induction generator, variable speed wind turbine, voltage sag, tower vibration, power quality, flicker, fixed speed wind turbine, wind shear, tower shadow, and yaw error.

  20. First and second order semi-Markov chains for wind speed modeling

    NASA Astrophysics Data System (ADS)

    Prattico, F.; Petroni, F.; D'Amico, G.

    2012-04-01

    The increasing interest in renewable energy leads scientific research to find a better way to recover most of the available energy. Particularly, the maximum energy recoverable from wind is equal to 59.3% of that available (Betz law) at a specific pitch angle and when the ratio between the wind speed in output and in input is equal to 1/3. The pitch angle is the angle formed between the airfoil of the blade of the wind turbine and the wind direction. Old turbine and a lot of that actually marketed, in fact, have always the same invariant geometry of the airfoil. This causes that wind turbines will work with an efficiency that is lower than 59.3%. New generation wind turbines, instead, have a system to variate the pitch angle by rotating the blades. This system able the wind turbines to recover, at different wind speed, always the maximum energy, working in Betz limit at different speed ratios. A powerful system control of the pitch angle allows the wind turbine to recover better the energy in transient regime. A good stochastic model for wind speed is then needed to help both the optimization of turbine design and to assist the system control to predict the value of the wind speed to positioning the blades quickly and correctly. The possibility to have synthetic data of wind speed is a powerful instrument to assist designer to verify the structures of the wind turbines or to estimate the energy recoverable from a specific site. To generate synthetic data, Markov chains of first or higher order are often used [1,2,3]. In particular in [3] is presented a comparison between a first-order Markov chain and a second-order Markov chain. A similar work, but only for the first-order Markov chain, is conduced by [2], presenting the probability transition matrix and comparing the energy spectral density and autocorrelation of real and synthetic wind speed data. A tentative to modeling and to join speed and direction of wind is presented in [1], by using two models, first-order Markov chain with different number of states, and Weibull distribution. All this model use Markov chains to generate synthetic wind speed time series but the search for a better model is still open. Approaching this issue, we applied new models which are generalization of Markov models. More precisely we applied semi-Markov models to generate synthetic wind speed time series. Semi-Markov processes (SMP) are a wide class of stochastic processes which generalize at the same time both Markov chains and renewal processes. Their main advantage is that of using whatever type of waiting time distribution for modeling the time to have a transition from one state to another one. This major flexibility has a price to pay: availability of data to estimate the parameters of the model which are more numerous. Data availability is not an issue in wind speed studies, therefore, semi-Markov models can be used in a statistical efficient way. In this work we present three different semi-Markov chain models: the first one is a first-order SMP where the transition probabilities from two speed states (at time Tn and Tn-1) depend on the initial state (the state at Tn-1), final state (the state at Tn) and on the waiting time (given by t=Tn-Tn-1), the second model is a second order SMP where we consider the transition probabilities as depending also on the state the wind speed was before the initial state (which is the state at Tn-2) and the last one is still a second order SMP where the transition probabilities depends on the three states at Tn-2,Tn-1 and Tn and on the waiting times t_1=Tn-1-Tn-2 and t_2=Tn-Tn-1. The three models are used to generate synthetic time series for wind speed by means of Monte Carlo simulations and the time lagged autocorrelation is used to compare statistical properties of the proposed models with those of real data and also with a time series generated though a simple Markov chain. [1] F. Youcef Ettoumi, H. Sauvageot, A.-E.-H. Adane, Statistical bivariate modeling of wind using first-order Markov chain and Weibull distribution, Renewable Energy, 28/2003 1787-1802. [2] A. Shamshad, M.A. Bawadi, W.M.W. Wan Hussin, T.A. Majid, S.A.M. Sanusi, First and second order Markov chain models for synthetic generation of wind speed time series, Energy 30/2005 693-708. [3] H. Nfaoui, H. Essiarab, A.A.M. Sayigh, A stochastic Markov chain model for simulating wind speed time series at Tangiers, Morocco, Renewable Energy 29/2004, 1407-1418.

  1. Mixture distributions of wind speed in the UAE

    NASA Astrophysics Data System (ADS)

    Shin, J.; Ouarda, T.; Lee, T. S.

    2013-12-01

    Wind speed probability distribution is commonly used to estimate potential wind energy. The 2-parameter Weibull distribution has been most widely used to characterize the distribution of wind speed. However, it is unable to properly model wind speed regimes when wind speed distribution presents bimodal and kurtotic shapes. Several studies have concluded that the Weibull distribution should not be used for frequency analysis of wind speed without investigation of wind speed distribution. Due to these mixture distributional characteristics of wind speed data, the application of mixture distributions should be further investigated in the frequency analysis of wind speed. A number of studies have investigated the potential wind energy in different parts of the Arabian Peninsula. Mixture distributional characteristics of wind speed were detected from some of these studies. Nevertheless, mixture distributions have not been employed for wind speed modeling in the Arabian Peninsula. In order to improve our understanding of wind energy potential in Arabian Peninsula, mixture distributions should be tested for the frequency analysis of wind speed. The aim of the current study is to assess the suitability of mixture distributions for the frequency analysis of wind speed in the UAE. Hourly mean wind speed data at 10-m height from 7 stations were used in the current study. The Weibull and Kappa distributions were employed as representatives of the conventional non-mixture distributions. 10 mixture distributions are used and constructed by mixing four probability distributions such as Normal, Gamma, Weibull and Extreme value type-one (EV-1) distributions. Three parameter estimation methods such as Expectation Maximization algorithm, Least Squares method and Meta-Heuristic Maximum Likelihood (MHML) method were employed to estimate the parameters of the mixture distributions. In order to compare the goodness-of-fit of tested distributions and parameter estimation methods for sample wind data, the adjusted coefficient of determination, Bayesian Information Criterion (BIC) and Chi-squared statistics were computed. Results indicate that MHML presents the best performance of parameter estimation for the used mixture distributions. In most of the employed 7 stations, mixture distributions give the best fit. When the wind speed regime shows mixture distributional characteristics, most of these regimes present the kurtotic statistical characteristic. Particularly, applications of mixture distributions for these stations show a significant improvement in explaining the whole wind speed regime. In addition, the Weibull-Weibull mixture distribution presents the best fit for the wind speed data in the UAE.

  2. An empirical model for ocean radar backscatter and its application in inversion routine to eliminate wind speed and direction effects

    NASA Technical Reports Server (NTRS)

    Dome, G. J.; Fung, A. K.; Moore, R. K.

    1977-01-01

    Several regression models were tested to explain the wind direction dependence of the 1975 JONSWAP (Joint North Sea Wave Project) scatterometer data. The models consider the radar backscatter as a harmonic function of wind direction. The constant term accounts for the major effect of wind speed and the sinusoidal terms for the effects of direction. The fundamental accounts for the difference in upwind and downwind returns, while the second harmonic explains the upwind-crosswind difference. It is shown that a second harmonic model appears to adequately explain the angular variation. A simple inversion technique, which uses two orthogonal scattering measurements, is also described which eliminates the effect of wind speed and direction. Vertical polarization was shown to be more effective in determining both wind speed and direction than horizontal polarization.

  3. Hourly Wind Speed Interval Prediction in Arid Regions

    NASA Astrophysics Data System (ADS)

    Chaouch, M.; Ouarda, T.

    2013-12-01

    The long and extended warm and dry summers, the low rate of rain and humidity are the main factors that explain the increase of electricity consumption in hot arid regions. In such regions, the ventilating and air-conditioning installations, that are typically the most energy-intensive among energy consumption activities, are essential for securing healthy, safe and suitable indoor thermal conditions for building occupants and stored materials. The use of renewable energy resources such as solar and wind represents one of the most relevant solutions to overcome the increase of the electricity demand challenge. In the recent years, wind energy is gaining more importance among the researchers worldwide. Wind energy is intermittent in nature and hence the power system scheduling and dynamic control of wind turbine requires an estimate of wind energy. Accurate forecast of wind speed is a challenging task for the wind energy research field. In fact, due to the large variability of wind speed caused by the unpredictable and dynamic nature of the earth's atmosphere, there are many fluctuations in wind power production. This inherent variability of wind speed is the main cause of the uncertainty observed in wind power generation. Furthermore, producing wind power forecasts might be obtained indirectly by modeling the wind speed series and then transforming the forecasts through a power curve. Wind speed forecasting techniques have received substantial attention recently and several models have been developed. Basically two main approaches have been proposed in the literature: (1) physical models such as Numerical Weather Forecast and (2) statistical models such as Autoregressive integrated moving average (ARIMA) models, Neural Networks. While the initial focus in the literature has been on point forecasts, the need to quantify forecast uncertainty and communicate the risk of extreme ramp events has led to an interest in producing probabilistic forecasts. In short term context, probabilistic forecasts might be more relevant than point forecasts for the planner to build scenarios In this paper, we are interested in estimating predictive intervals of the hourly wind speed measures in few cities in United Arab emirates (UAE). More precisely, given a wind speed time series, our target is to forecast the wind speed at any specific hour during the day and provide in addition an interval with the coverage probability 0

  4. Estimation of effective wind speed

    NASA Astrophysics Data System (ADS)

    Østergaard, K. Z.; Brath, P.; Stoustrup, J.

    2007-07-01

    The wind speed has a huge impact on the dynamic response of wind turbine. Because of this, many control algorithms use a measure of the wind speed to increase performance, e.g. by gain scheduling and feed forward. Unfortunately, no accurate measurement of the effective wind speed is online available from direct measurements, which means that it must be estimated in order to make such control methods applicable in practice. In this paper a new method is presented for the estimation of the effective wind speed. First, the rotor speed and aerodynamic torque are estimated by a combined state and input observer. These two variables combined with the measured pitch angle is then used to calculate the effective wind speed by an inversion of a static aerodynamic model.

  5. Wind speed perception and risk.

    PubMed

    Agdas, Duzgun; Webster, Gregory D; Masters, Forrest J

    2012-01-01

    How accurately do people perceive extreme wind speeds and how does that perception affect the perceived risk? Prior research on human-wind interaction has focused on comfort levels in urban settings or knock-down thresholds. No systematic experimental research has attempted to assess people's ability to estimate extreme wind speeds and perceptions of their associated risks. We exposed 76 people to 10, 20, 30, 40, 50, and 60 mph (4.5, 8.9, 13.4, 17.9, 22.3, and 26.8 m/s) winds in randomized orders and asked them to estimate wind speed and the corresponding risk they felt. Multilevel modeling showed that people were accurate at lower wind speeds but overestimated wind speeds at higher levels. Wind speed perceptions mediated the direct relationship between actual wind speeds and perceptions of risk (i.e., the greater the perceived wind speed, the greater the perceived risk). The number of tropical cyclones people had experienced moderated the strength of the actual-perceived wind speed relationship; consequently, mediation was stronger for people who had experienced fewer storms. These findings provide a clearer understanding of wind and risk perception, which can aid development of public policy solutions toward communicating the severity and risks associated with natural disasters.

  6. An oilspill trajectory analysis model with a variable wind deflection angle

    USGS Publications Warehouse

    Samuels, W.B.; Huang, N.E.; Amstutz, D.E.

    1982-01-01

    The oilspill trajectory movement algorithm consists of a vector sum of the surface drift component due to wind and the surface current component. In the U.S. Geological Survey oilspill trajectory analysis model, the surface drift component is assumed to be 3.5% of the wind speed and is rotated 20 degrees clockwise to account for Coriolis effects in the Northern Hemisphere. Field and laboratory data suggest, however, that the deflection angle of the surface drift current can be highly variable. An empirical formula, based on field observations and theoretical arguments relating wind speed to deflection angle, was used to calculate a new deflection angle at each time step in the model. Comparisons of oilspill contact probabilities to coastal areas calculated for constant and variable deflection angles showed that the model is insensitive to this changing angle at low wind speeds. At high wind speeds, some statistically significant differences in contact probabilities did appear. ?? 1982.

  7. Evaluation of reanalysis near-surface winds over northern Africa in Boreal summer

    NASA Astrophysics Data System (ADS)

    Engelstaedter, Sebastian; Washington, Richard

    2014-05-01

    The emission of dust from desert surfaces depends on the combined effects of surface properties such as surface roughness, soil moisture, soil texture and particle size (erodibility) and wind speed (erosivity). In order for dust cycle models to realistically simulate dust emissions for the right reasons, it is essential that erosivity and erodibility controlling factors are represented correctly. There has been a focus on improving dust emission schemes or input fields of soil distribution and texture even though it has been shown that the use of wind fields from different reanalysis datasets to drive the same model can result in significant differences in the dust emissions. Here we evaluate the representation of near-surface wind speed from three different reanalysis datasets (ERA-Interim, CFSR and MERRA) over the North African domain. Reanalysis 10m wind speeds are compared with observations from SYNOP and METAR reports available from the UK Meteorological Office Integrated Data Archive System (MIDAS) Land and Marine Surface Stations Dataset. We compare 6-hourly observations of 10m wind speed between 1 January 1989 and 31 December 2009 from more the 500 surface stations with the corresponding reanalysis values. A station data based mean wind speed climatology for North Africa is presented. Overall, the representation of 10m winds is relatively poor in all three reanalysis datasets with stations in the northern parts of the Sahara still being better simulated (correlation coefficients ~ 0.5) than stations in the Sahel (correlation coefficients < 0.3) which points at the reanalyses not being able to realistically capture the Sahel dynamics systems. All three reanalyses have a systematic bias towards overestimating wind speed below 3-4 m/s and underestimating wind speed above 4 m/s. This bias becomes larger with increasing wind speed but is independent of the time of day. For instance, 14 m/s observed wind speeds are underestimated on average by 6 m/s in the ERA-Interim reanalysis. Given the cubic relationship between wind speed and dust emission this large underestimation is expected to significantly impact the simulation of dust emissions. A negative relationship between observed and ERA-Interim wind speed is found for winds above 14 m/s indicating that high wind speed generating processes are not well (if at all) represented in the model.

  8. Modelling storm development and the impact when introducing waves, sea spray and heat fluxes

    NASA Astrophysics Data System (ADS)

    Wu, Lichuan; Rutgersson, Anna; Sahlée, Erik

    2015-04-01

    In high wind speed conditions, sea spray generated due to intensity breaking waves have big influence on the wind stress and heat fluxes. Measurements show that drag coefficient will decrease in high wind speed. Sea spray generation function (SSGF), an important term of wind stress parameterization in high wind speed, usually treated as a function of wind speed/friction velocity. In this study, we introduce a wave state depended SSGG and wave age depended Charnock number into a high wind speed wind stress parameterization (Kudryavtsev et al., 2011; 2012). The proposed wind stress parameterization and sea spray heat fluxes parameterization from Andreas et al., (2014) were applied to an atmosphere-wave coupled model to test on four storm cases. Compared with measurements from the FINO1 platform in the North Sea, the new wind stress parameterization can reduce the forecast errors of wind in high wind speed range, but not in low wind speed. Only sea spray impacted on wind stress, it will intensify the storms (minimum sea level pressure and maximum wind speed) and lower the air temperature (increase the errors). Only the sea spray impacted on the heat fluxes, it can improve the model performance on storm tracks and the air temperature, but not change much in the storm intensity. If both of sea spray impacted on the wind stress and heat fluxes are taken into account, it has the best performance in all the experiment for minimum sea level pressure and maximum wind speed and air temperature. Andreas, E. L., Mahrt, L., and Vickers, D. (2014). An improved bulk air-sea surface flux algorithm, including spray-mediated transfer. Quarterly Journal of the Royal Meteorological Society. Kudryavtsev, V. and Makin, V. (2011). Impact of ocean spray on the dynamics of the marine atmospheric boundary layer. Boundary-layer meteorology, 140(3):383-410. Kudryavtsev, V., Makin, V., and S, Z. (2012). On the sea-surface drag and heat/mass transfer at strong winds. Technical report, Royal Netherlands Meteorological Institute.

  9. A short-term ensemble wind speed forecasting system for wind power applications

    NASA Astrophysics Data System (ADS)

    Baidya Roy, S.; Traiteur, J. J.; Callicutt, D.; Smith, M.

    2011-12-01

    This study develops an adaptive, blended forecasting system to provide accurate wind speed forecasts 1 hour ahead of time for wind power applications. The system consists of an ensemble of 21 forecasts with different configurations of the Weather Research and Forecasting Single Column Model (WRFSCM) and a persistence model. The ensemble is calibrated against observations for a 2 month period (June-July, 2008) at a potential wind farm site in Illinois using the Bayesian Model Averaging (BMA) technique. The forecasting system is evaluated against observations for August 2008 at the same site. The calibrated ensemble forecasts significantly outperform the forecasts from the uncalibrated ensemble while significantly reducing forecast uncertainty under all environmental stability conditions. The system also generates significantly better forecasts than persistence, autoregressive (AR) and autoregressive moving average (ARMA) models during the morning transition and the diurnal convective regimes. This forecasting system is computationally more efficient than traditional numerical weather prediction models and can generate a calibrated forecast, including model runs and calibration, in approximately 1 minute. Currently, hour-ahead wind speed forecasts are almost exclusively produced using statistical models. However, numerical models have several distinct advantages over statistical models including the potential to provide turbulence forecasts. Hence, there is an urgent need to explore the role of numerical models in short-term wind speed forecasting. This work is a step in that direction and is likely to trigger a debate within the wind speed forecasting community.

  10. Comparison of Artificial Neural Networks and ARIMA statistical models in simulations of target wind time series

    NASA Astrophysics Data System (ADS)

    Kolokythas, Kostantinos; Vasileios, Salamalikis; Athanassios, Argiriou; Kazantzidis, Andreas

    2015-04-01

    The wind is a result of complex interactions of numerous mechanisms taking place in small or large scales, so, the better knowledge of its behavior is essential in a variety of applications, especially in the field of power production coming from wind turbines. In the literature there is a considerable number of models, either physical or statistical ones, dealing with the problem of simulation and prediction of wind speed. Among others, Artificial Neural Networks (ANNs) are widely used for the purpose of wind forecasting and, in the great majority of cases, outperform other conventional statistical models. In this study, a number of ANNs with different architectures, which have been created and applied in a dataset of wind time series, are compared to Auto Regressive Integrated Moving Average (ARIMA) statistical models. The data consist of mean hourly wind speeds coming from a wind farm on a hilly Greek region and cover a period of one year (2013). The main goal is to evaluate the models ability to simulate successfully the wind speed at a significant point (target). Goodness-of-fit statistics are performed for the comparison of the different methods. In general, the ANN showed the best performance in the estimation of wind speed prevailing over the ARIMA models.

  11. Short-term wind speed prediction based on the wavelet transformation and Adaboost neural network

    NASA Astrophysics Data System (ADS)

    Hai, Zhou; Xiang, Zhu; Haijian, Shao; Ji, Wu

    2018-03-01

    The operation of the power grid will be affected inevitably with the increasing scale of wind farm due to the inherent randomness and uncertainty, so the accurate wind speed forecasting is critical for the stability of the grid operation. Typically, the traditional forecasting method does not take into account the frequency characteristics of wind speed, which cannot reflect the nature of the wind speed signal changes result from the low generality ability of the model structure. AdaBoost neural network in combination with the multi-resolution and multi-scale decomposition of wind speed is proposed to design the model structure in order to improve the forecasting accuracy and generality ability. The experimental evaluation using the data from a real wind farm in Jiangsu province is given to demonstrate the proposed strategy can improve the robust and accuracy of the forecasted variable.

  12. European extra-tropical storm damage risk from a multi-model ensemble of dynamically-downscaled global climate models

    NASA Astrophysics Data System (ADS)

    Haylock, M. R.

    2011-10-01

    Uncertainty in the return levels of insured loss from European wind storms was quantified using storms derived from twenty-two 25 km regional climate model runs driven by either the ERA40 reanalyses or one of four coupled atmosphere-ocean global climate models. Storms were identified using a model-dependent storm severity index based on daily maximum 10 m wind speed. The wind speed from each model was calibrated to a set of 7 km historical storm wind fields using the 70 storms with the highest severity index in the period 1961-2000, employing a two stage calibration methodology. First, the 25 km daily maximum wind speed was downscaled to the 7 km historical model grid using the 7 km surface roughness length and orography, also adopting an empirical gust parameterisation. Secondly, downscaled wind gusts were statistically scaled to the historical storms to match the geographically-dependent cumulative distribution function of wind gust speed. The calibrated wind fields were run through an operational catastrophe reinsurance risk model to determine the return level of loss to a European population density-derived property portfolio. The risk model produced a 50-yr return level of loss of between 0.025% and 0.056% of the total insured value of the portfolio.

  13. Impacts of past and future climate change on wind energy resources in the United States

    NASA Astrophysics Data System (ADS)

    McCaa, J. R.; Wood, A.; Eichelberger, S.; Westrick, K.

    2009-12-01

    The links between climate change and trends in wind energy resources have important potential implications for the wind energy industry, and have received significant attention in recent studies. We have conducted two studies that provide insights into the potential for climate change to affect future wind power production. In one experiment, we projected changes in power capacity for a hypothetical wind farm located near Kennewick, Washington, due to greenhouse gas-induced climate change, estimated using a set of regional climate model simulations. Our results show that the annual wind farm power capacity is projected to decrease 1.3% by 2050. In a wider study focusing on wind speed instead of power, we analyzed projected changes in wind speed from 14 different climate simulations that were performed in support of the Fourth Assessment Report of the Intergovernmental Panel on Climate Change (IPCC AR4). Our results show that the predicted ensemble mean changes in annual mean wind speeds are expected to be modest. However, seasonal changes and changes predicted by individual models are large enough to affect the profitability of existing and future wind projects. The majority of the model simulations reveal that near-surface wind speed values are expected to shift poleward in response to the IPCC A2 emission scenario, particularly during the winter season. In the United States, most models agree that the mean annual wind speed values will increase in a region extending from the Great Lakes southward across the Midwest and into Texas. Decreased values, though, are predicted across most of the western United States. However, these predicted changes have a strong seasonal dependence, with wind speed increases over most of the United States during the winter and decreases over the northern United States during the summer.

  14. Adaptive Disturbance Tracking Theory with State Estimation and State Feedback for Region II Control of Large Wind Turbines

    NASA Technical Reports Server (NTRS)

    Balas, Mark J.; Thapa Magar, Kaman S.; Frost, Susan A.

    2013-01-01

    A theory called Adaptive Disturbance Tracking Control (ADTC) is introduced and used to track the Tip Speed Ratio (TSR) of 5 MW Horizontal Axis Wind Turbine (HAWT). Since ADTC theory requires wind speed information, a wind disturbance generator model is combined with lower order plant model to estimate the wind speed as well as partial states of the wind turbine. In this paper, we present a proof of stability and convergence of ADTC theory with lower order estimator and show that the state feedback can be adaptive.

  15. Wind speed vector restoration algorithm

    NASA Astrophysics Data System (ADS)

    Baranov, Nikolay; Petrov, Gleb; Shiriaev, Ilia

    2018-04-01

    Impulse wind lidar (IWL) signal processing software developed by JSC «BANS» recovers full wind speed vector by radial projections and provides wind parameters information up to 2 km distance. Increasing accuracy and speed of wind parameters calculation signal processing technics have been studied in this research. Measurements results of IWL and continuous scanning lidar were compared. Also, IWL data processing modeling results have been analyzed.

  16. A parabolic model of drag coefficient for storm surge simulation in the South China Sea

    PubMed Central

    Peng, Shiqiu; Li, Yineng

    2015-01-01

    Drag coefficient (Cd) is an essential metric in the calculation of momentum exchange over the air-sea interface and thus has large impacts on the simulation or forecast of the upper ocean state associated with sea surface winds such as storm surges. Generally, Cd is a function of wind speed. However, the exact relationship between Cd and wind speed is still in dispute, and the widely-used formula that is a linear function of wind speed in an ocean model could lead to large bias at high wind speed. Here we establish a parabolic model of Cd based on storm surge observations and simulation in the South China Sea (SCS) through a number of tropical cyclone cases. Simulation of storm surges for independent Tropical cyclones (TCs) cases indicates that the new parabolic model of Cd outperforms traditional linear models. PMID:26499262

  17. A parabolic model of drag coefficient for storm surge simulation in the South China Sea.

    PubMed

    Peng, Shiqiu; Li, Yineng

    2015-10-26

    Drag coefficient (Cd) is an essential metric in the calculation of momentum exchange over the air-sea interface and thus has large impacts on the simulation or forecast of the upper ocean state associated with sea surface winds such as storm surges. Generally, Cd is a function of wind speed. However, the exact relationship between Cd and wind speed is still in dispute, and the widely-used formula that is a linear function of wind speed in an ocean model could lead to large bias at high wind speed. Here we establish a parabolic model of Cd based on storm surge observations and simulation in the South China Sea (SCS) through a number of tropical cyclone cases. Simulation of storm surges for independent Tropical cyclones (TCs) cases indicates that the new parabolic model of Cd outperforms traditional linear models.

  18. A parabolic model of drag coefficient for storm surge simulation in the South China Sea

    NASA Astrophysics Data System (ADS)

    Peng, Shiqiu; Li, Yineng

    2015-10-01

    Drag coefficient (Cd) is an essential metric in the calculation of momentum exchange over the air-sea interface and thus has large impacts on the simulation or forecast of the upper ocean state associated with sea surface winds such as storm surges. Generally, Cd is a function of wind speed. However, the exact relationship between Cd and wind speed is still in dispute, and the widely-used formula that is a linear function of wind speed in an ocean model could lead to large bias at high wind speed. Here we establish a parabolic model of Cd based on storm surge observations and simulation in the South China Sea (SCS) through a number of tropical cyclone cases. Simulation of storm surges for independent Tropical cyclones (TCs) cases indicates that the new parabolic model of Cd outperforms traditional linear models.

  19. Idealized models of the joint probability distribution of wind speeds

    NASA Astrophysics Data System (ADS)

    Monahan, Adam H.

    2018-05-01

    The joint probability distribution of wind speeds at two separate locations in space or points in time completely characterizes the statistical dependence of these two quantities, providing more information than linear measures such as correlation. In this study, we consider two models of the joint distribution of wind speeds obtained from idealized models of the dependence structure of the horizontal wind velocity components. The bivariate Rice distribution follows from assuming that the wind components have Gaussian and isotropic fluctuations. The bivariate Weibull distribution arises from power law transformations of wind speeds corresponding to vector components with Gaussian, isotropic, mean-zero variability. Maximum likelihood estimates of these distributions are compared using wind speed data from the mid-troposphere, from different altitudes at the Cabauw tower in the Netherlands, and from scatterometer observations over the sea surface. While the bivariate Rice distribution is more flexible and can represent a broader class of dependence structures, the bivariate Weibull distribution is mathematically simpler and may be more convenient in many applications. The complexity of the mathematical expressions obtained for the joint distributions suggests that the development of explicit functional forms for multivariate speed distributions from distributions of the components will not be practical for more complicated dependence structure or more than two speed variables.

  20. Wind Speed Perception and Risk

    PubMed Central

    Agdas, Duzgun; Webster, Gregory D.; Masters, Forrest J.

    2012-01-01

    Background How accurately do people perceive extreme wind speeds and how does that perception affect the perceived risk? Prior research on human–wind interaction has focused on comfort levels in urban settings or knock-down thresholds. No systematic experimental research has attempted to assess people's ability to estimate extreme wind speeds and perceptions of their associated risks. Method We exposed 76 people to 10, 20, 30, 40, 50, and 60 mph (4.5, 8.9, 13.4, 17.9, 22.3, and 26.8 m/s) winds in randomized orders and asked them to estimate wind speed and the corresponding risk they felt. Results Multilevel modeling showed that people were accurate at lower wind speeds but overestimated wind speeds at higher levels. Wind speed perceptions mediated the direct relationship between actual wind speeds and perceptions of risk (i.e., the greater the perceived wind speed, the greater the perceived risk). The number of tropical cyclones people had experienced moderated the strength of the actual–perceived wind speed relationship; consequently, mediation was stronger for people who had experienced fewer storms. Conclusion These findings provide a clearer understanding of wind and risk perception, which can aid development of public policy solutions toward communicating the severity and risks associated with natural disasters. PMID:23226230

  1. Sensitivity of turbine-height wind speeds to parameters in planetary boundary-layer and surface-layer schemes in the weather research and forecasting model

    DOE PAGES

    Yang, Ben; Qian, Yun; Berg, Larry K.; ...

    2016-07-21

    We evaluate the sensitivity of simulated turbine-height wind speeds to 26 parameters within the Mellor–Yamada–Nakanishi–Niino (MYNN) planetary boundary-layer scheme and MM5 surface-layer scheme of the Weather Research and Forecasting model over an area of complex terrain. An efficient sampling algorithm and generalized linear model are used to explore the multiple-dimensional parameter space and quantify the parametric sensitivity of simulated turbine-height wind speeds. The results indicate that most of the variability in the ensemble simulations is due to parameters related to the dissipation of turbulent kinetic energy (TKE), Prandtl number, turbulent length scales, surface roughness, and the von Kármán constant. Themore » parameter associated with the TKE dissipation rate is found to be most important, and a larger dissipation rate produces larger hub-height wind speeds. A larger Prandtl number results in smaller nighttime wind speeds. Increasing surface roughness reduces the frequencies of both extremely weak and strong airflows, implying a reduction in the variability of wind speed. All of the above parameters significantly affect the vertical profiles of wind speed and the magnitude of wind shear. Lastly, the relative contributions of individual parameters are found to be dependent on both the terrain slope and atmospheric stability.« less

  2. Sensitivity of turbine-height wind speeds to parameters in planetary boundary-layer and surface-layer schemes in the weather research and forecasting model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Ben; Qian, Yun; Berg, Larry K.

    We evaluate the sensitivity of simulated turbine-height wind speeds to 26 parameters within the Mellor–Yamada–Nakanishi–Niino (MYNN) planetary boundary-layer scheme and MM5 surface-layer scheme of the Weather Research and Forecasting model over an area of complex terrain. An efficient sampling algorithm and generalized linear model are used to explore the multiple-dimensional parameter space and quantify the parametric sensitivity of simulated turbine-height wind speeds. The results indicate that most of the variability in the ensemble simulations is due to parameters related to the dissipation of turbulent kinetic energy (TKE), Prandtl number, turbulent length scales, surface roughness, and the von Kármán constant. Themore » parameter associated with the TKE dissipation rate is found to be most important, and a larger dissipation rate produces larger hub-height wind speeds. A larger Prandtl number results in smaller nighttime wind speeds. Increasing surface roughness reduces the frequencies of both extremely weak and strong airflows, implying a reduction in the variability of wind speed. All of the above parameters significantly affect the vertical profiles of wind speed and the magnitude of wind shear. Lastly, the relative contributions of individual parameters are found to be dependent on both the terrain slope and atmospheric stability.« less

  3. Stochastic simulation of predictive space–time scenarios of wind speed using observations and physical model outputs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bessac, Julie; Constantinescu, Emil; Anitescu, Mihai

    We propose a statistical space-time model for predicting atmospheric wind speed based on deterministic numerical weather predictions and historical measurements. We consider a Gaussian multivariate space-time framework that combines multiple sources of past physical model outputs and measurements in order to produce a probabilistic wind speed forecast within the prediction window. We illustrate this strategy on wind speed forecasts during several months in 2012 for a region near the Great Lakes in the United States. The results show that the prediction is improved in the mean-squared sense relative to the numerical forecasts as well as in probabilistic scores. Moreover, themore » samples are shown to produce realistic wind scenarios based on sample spectra and space-time correlation structure.« less

  4. Stochastic simulation of predictive space–time scenarios of wind speed using observations and physical model outputs

    DOE PAGES

    Bessac, Julie; Constantinescu, Emil; Anitescu, Mihai

    2018-03-01

    We propose a statistical space-time model for predicting atmospheric wind speed based on deterministic numerical weather predictions and historical measurements. We consider a Gaussian multivariate space-time framework that combines multiple sources of past physical model outputs and measurements in order to produce a probabilistic wind speed forecast within the prediction window. We illustrate this strategy on wind speed forecasts during several months in 2012 for a region near the Great Lakes in the United States. The results show that the prediction is improved in the mean-squared sense relative to the numerical forecasts as well as in probabilistic scores. Moreover, themore » samples are shown to produce realistic wind scenarios based on sample spectra and space-time correlation structure.« less

  5. Effects of Sea-Surface Waves and Ocean Spray on Air-Sea Momentum Fluxes

    NASA Astrophysics Data System (ADS)

    Zhang, Ting; Song, Jinbao

    2018-04-01

    The effects of sea-surface waves and ocean spray on the marine atmospheric boundary layer (MABL) at different wind speeds and wave ages were investigated. An MABL model was developed that introduces a wave-induced component and spray force to the total surface stress. The theoretical model solution was determined assuming the eddy viscosity coefficient varied linearly with height above the sea surface. The wave-induced component was evaluated using a directional wave spectrum and growth rate. Spray force was described using interactions between ocean-spray droplets and wind-velocity shear. Wind profiles and sea-surface drag coefficients were calculated for low to high wind speeds for wind-generated sea at different wave ages to examine surface-wave and ocean-spray effects on MABL momentum distribution. The theoretical solutions were compared with model solutions neglecting wave-induced stress and/or spray stress. Surface waves strongly affected near-surface wind profiles and sea-surface drag coefficients at low to moderate wind speeds. Drag coefficients and near-surface wind speeds were lower for young than for old waves. At high wind speeds, ocean-spray droplets produced by wind-tearing breaking-wave crests affected the MABL strongly in comparison with surface waves, implying that wave age affects the MABL only negligibly. Low drag coefficients at high wind caused by ocean-spray production increased turbulent stress in the sea-spray generation layer, accelerating near-sea-surface wind. Comparing the analytical drag coefficient values with laboratory measurements and field observations indicated that surface waves and ocean spray significantly affect the MABL at different wind speeds and wave ages.

  6. Wind tunnel test of Teledyne Geotech model 1564B cup anemometer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Parker, M.J.; Addis, R.P.

    1991-04-04

    The Department of Energy (DOE) Environment, Safety and Health Compliance Assessment (Tiger Team) of the Savannah River Site (SRS) questioned the method by which wind speed sensors (cup anemometers) are calibrated by the Environmental Technology Section (ETS). The Tiger Team member was concerned that calibration data was generated by running the wind tunnel to only 26 miles per hour (mph) when speeds exceeding 50 mph are readily obtainable. A wind tunnel experiment was conducted and confirmed the validity of the practice. Wind speeds common to SRS (6 mph) were predicted more accurately by 0--25 mph regression equations than 0--50 mphmore » regression equations. Higher wind speeds were slightly overpredicted by the 0--25 mph regression equations when compared to 0--50 mph regression equations. However, the greater benefit of more accurate lower wind speed predictions accuracy outweight the benefit of slightly better high (extreme) wind speed predictions. Therefore, it is concluded that 0--25 mph regression equations should continue to be utilized by ETS at SRS. During the Department of Energy Tiger Team audit, concerns were raised about the calibration of SRS cup anemometers. Wind speed is measured by ETS with Teledyne Geotech model 1564B cup anemometers, which are calibrated in the ETS wind tunnel. Linear regression lines are fitted to data points of tunnel speed versus anemometer output voltages up to 25 mph. The regression coefficients are then implemented into the data acquisition computer software when an instrument is installed in the field. The concern raised was that since the wind tunnel at SRS is able to generate a maximum wind speed higher than 25 mph, errors may be introduced in not using the full range of the wind tunnel.« less

  7. Wind tunnel test of Teledyne Geotech model 1564B cup anemometer

    NASA Astrophysics Data System (ADS)

    Parker, M. J.; Addis, R. P.

    1991-04-01

    The Department of Energy (DOE) Environment, Safety, and Health Compliance Assessment (Tiger Team) of the Savannah River Site (SRS) questioned the method by which wind speed sensors (cup anemometers) are calibrated by the Environmental Technology Section (ETS). The Tiger Team member was concerned that calibration data was generated by running the wind tunnel to only 26 miles per hour (mph) when speeds exceeding 50 mph are readily obtainable. A wind tunnel experiment was conducted and confirmed the validity of the practice. Wind speeds common to SRS (6 mph) were predicted more accurately by 0-25 mph regression equations than 0-50 mph regression equations. Higher wind speeds were slightly overpredicted by the 0-25 mph regression equations when compared to 0-50 mph regression equations. However, the greater benefit of more accurate lower wind speed predictions accuracy outweigh the benefit of slightly better high (extreme) wind speed predictions. Therefore, it is concluded that 0-25 mph regression equations should continue to be utilized by ETS at SRS. During the Department of Energy Tiger Team audit, concerns were raised about the calibration of SRS cup anemometers. Wind speed is measured by ETS with Teledyne Geotech model 1564B cup anemometers, which are calibrated in the ETS wind tunnel. Linear regression lines are fitted to data points of tunnel speed versus anemometer output voltages up to 25 mph. The regression coefficients are then implemented into the data acquisition computer software when an instrument is installed in the field. The concern raised was that since the wind tunnel at SRS is able to generate a maximum wind speed higher than 25 mph, errors may be introduced in not using the full range of the wind tunnel.

  8. Wind energy resource modelling in Portugal and its future large-scale alteration due to anthropogenic induced climate changes =

    NASA Astrophysics Data System (ADS)

    Carvalho, David Joao da Silva

    The high dependence of Portugal from foreign energy sources (mainly fossil fuels), together with the international commitments assumed by Portugal and the national strategy in terms of energy policy, as well as resources sustainability and climate change issues, inevitably force Portugal to invest in its energetic self-sufficiency. The 20/20/20 Strategy defined by the European Union defines that in 2020 60% of the total electricity consumption must come from renewable energy sources. Wind energy is currently a major source of electricity generation in Portugal, producing about 23% of the national total electricity consumption in 2013. The National Energy Strategy 2020 (ENE2020), which aims to ensure the national compliance of the European Strategy 20/20/20, states that about half of this 60% target will be provided by wind energy. This work aims to implement and optimise a numerical weather prediction model in the simulation and modelling of the wind energy resource in Portugal, both in offshore and onshore areas. The numerical model optimisation consisted in the determination of which initial and boundary conditions and planetary boundary layer physical parameterizations options provide wind power flux (or energy density), wind speed and direction simulations closest to in situ measured wind data. Specifically for offshore areas, it is also intended to evaluate if the numerical model, once optimised, is able to produce power flux, wind speed and direction simulations more consistent with in situ measured data than wind measurements collected by satellites. This work also aims to study and analyse possible impacts that anthropogenic climate changes may have on the future wind energetic resource in Europe. The results show that the ECMWF reanalysis ERA-Interim are those that, among all the forcing databases currently available to drive numerical weather prediction models, allow wind power flux, wind speed and direction simulations more consistent with in situ wind measurements. It was also found that the Pleim-Xiu and ACM2 planetary boundary layer parameterizations are the ones that showed the best performance in terms of wind power flux, wind speed and direction simulations. This model optimisation allowed a significant reduction of the wind power flux, wind speed and direction simulations errors and, specifically for offshore areas, wind power flux, wind speed and direction simulations more consistent with in situ wind measurements than data obtained from satellites, which is a very valuable and interesting achievement. This work also revealed that future anthropogenic climate changes can negatively impact future European wind energy resource, due to tendencies towards a reduction in future wind speeds especially by the end of the current century and under stronger radiative forcing conditions.

  9. Examination of the wind speed limit function in the Rothermel surface fire spread model

    Treesearch

    Patricia L. Andrews; Miguel G. Cruz; Richard C. Rothermel

    2013-01-01

    The Rothermel surface fire spread model includes a wind speed limit, above which predicted rate of spread is constant. Complete derivation of the wind limit as a function of reaction intensity is given, along with an alternate result based on a changed assumption. Evidence indicates that both the original and the revised wind limits are too restrictive. Wind limit is...

  10. Tornado damage risk assessment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reinhold, T.A.; Ellingwood, B.

    1982-09-01

    Several proposed models were evaluated for predicting tornado wind speed probabilities at nuclear plant sites as part of a program to develop statistical data on tornadoes needed for probability-based load combination analysis. A unified model was developed which synthesized the desired aspects of tornado occurrence and damage potential. The sensitivity of wind speed probability estimates to various tornado modeling assumptions are examined, and the probability distributions of tornado wind speed that are needed for load combination studies are presented.

  11. The combined risk of extreme tropical cyclone winds and storm surges along the U.S. Gulf of Mexico Coast

    NASA Astrophysics Data System (ADS)

    Trepanier, J. C.; Yuan, J.; Jagger, T. H.

    2017-03-01

    Tropical cyclones, with their nearshore high wind speeds and deep storm surges, frequently strike the United States Gulf of Mexico coastline influencing millions of people and disrupting offshore economic activities. The combined risk of occurrence of tropical cyclone nearshore wind speeds and storm surges is assessed at 22 coastal cities throughout the United States Gulf of Mexico. The models used are extreme value copulas fitted with margins defined by the generalized Pareto distribution or combinations of Weibull, gamma, lognormal, or normal distributions. The statistical relationships between the nearshore wind speed and storm surge are provided for each coastal city prior to the copula model runs using Spearman's rank correlations. The strongest significant relationship between the nearshore wind speed and storm surge exists at Shell Beach, LA (ρ = 0.67), followed by South Padre Island, TX (ρ = 0.64). The extreme value Archimedean copula models for each city then provide return periods for specific nearshore wind speed and storm surge pairs. Of the 22 cities considered, Bay St. Louis, MS, has the shortest return period for a tropical cyclone with at least a 50 ms-1 nearshore wind speed and a 3 m surge (19.5 years, 17.1-23.5). The 90% confidence intervals are created by recalculating the return periods for a fixed set of wind speeds and surge levels using 100 samples of the model parameters. The results of this study can be utilized by policy managers and government officials concerned with coastal populations and economic activity in the Gulf of Mexico.

  12. Atmospheric forcing of sea ice anomalies in the Ross Sea polynya region

    NASA Astrophysics Data System (ADS)

    Dale, Ethan R.; McDonald, Adrian J.; Coggins, Jack H. J.; Rack, Wolfgang

    2017-01-01

    We investigate the impacts of strong wind events on the sea ice concentration within the Ross Sea polynya (RSP), which may have consequences on sea ice formation. Bootstrap sea ice concentration (SIC) measurements derived from satellite SSM/I brightness temperatures are correlated with surface winds and temperatures from Ross Ice Shelf automatic weather stations (AWSs) and weather models (ERA-Interim). Daily data in the austral winter period were used to classify characteristic weather regimes based on the percentiles of wind speed. For each regime a composite of a SIC anomaly was formed for the entire Ross Sea region and we found that persistent weak winds near the edge of the Ross Ice Shelf are generally associated with positive SIC anomalies in the Ross Sea polynya and vice versa. By analyzing sea ice motion vectors derived from the SSM/I brightness temperatures we find significant sea ice motion anomalies throughout the Ross Sea during strong wind events, which persist for several days after a strong wind event has ended. Strong, negative correlations are found between SIC and AWS wind speed within the RSP indicating that strong winds cause significant advection of sea ice in the region. We were able to partially recreate these correlations using colocated, modeled ERA-Interim wind speeds. However, large AWS and model differences are observed in the vicinity of Ross Island, where ERA-Interim underestimates wind speeds by a factor of 1.7 resulting in a significant misrepresentation of RSP processes in this area based on model data. Thus, the cross-correlation functions produced by compositing based on ERA-Interim wind speeds differed significantly from those produced with AWS wind speeds. In general the rapid decrease in SIC during a strong wind event is followed by a more gradual recovery in SIC. The SIC recovery continues over a time period greater than the average persistence of strong wind events and sea ice motion anomalies. This suggests that sea ice recovery occurs through thermodynamic rather than dynamic processes.

  13. Scaling Characteristics of Mesoscale Wind Fields in the Lower Atmospheric Boundary Layer: Implications for Wind Energy

    NASA Astrophysics Data System (ADS)

    Kiliyanpilakkil, Velayudhan Praju

    Atmospheric motions take place in spatial scales of sub-millimeters to few thousands of kilometers with temporal changes in the atmospheric variables occur in fractions of seconds to several years. Consequently, the variations in atmospheric kinetic energy associated with these atmospheric motions span over a broad spectrum of space and time. The mesoscale region acts as an energy transferring regime between the energy generating synoptic scale and the energy dissipating microscale. Therefore, the scaling characterizations of mesoscale wind fields are significant in the accurate estimation of the atmospheric energy budget. Moreover, the precise knowledge of the scaling characteristics of atmospheric mesoscale wind fields is important for the validation of the numerical models those focus on wind forecasting, dispersion, diffusion, horizontal transport, and optical turbulence. For these reasons, extensive studies have been conducted in the past to characterize the mesoscale wind fields. Nevertheless, the majority of these studies focused on near-surface and upper atmosphere mesoscale regimes. The present study attempt to identify the existence and to quantify the scaling of mesoscale wind fields in the lower atmospheric boundary layer (ABL; in the wind turbine layer) using wind observations from various research-grade instruments (e.g., sodars, anemometers). The scaling characteristics of the mesoscale wind speeds over diverse homogeneous flat terrains, conducted using structure function based analysis, revealed an altitudinal dependence of the scaling exponents. This altitudinal dependence of the wind speed scaling may be attributed to the buoyancy forcing. Subsequently, we use the framework of extended self-similarity (ESS) to characterize the observed scaling behavior. In the ESS framework, the relative scaling exponents of the mesoscale atmospheric boundary layer wind speed exhibit quasi-universal behavior; even far beyond the inertial range of turbulence (Delta t within 10 minutes to 6 hours range). The ESS framework based study is extended further to enquire its validity over complex terrain. This study, based on multiyear wind observations, demonstrate that the ESS holds for the lower ABL wind speed over the complex terrain as well. Another important inference from this study is that the ESS relative scaling exponents corresponding to the mesoscale wind speed closely matches the scaling characteristics of the inertial range turbulence, albeit not exactly identical. The current study proposes benchmark using ESS-based quasi-universal wind speed scaling characteristics in the ABL for the mesoscale modeling community. Using a state-of-the-art atmospheric mesoscale model in conjunction with different planetary boundary layer (PBL) parameterization schemes, multiple wind speed simulations have been conducted. This study reveals that the ESS scaling characteristics of the model simulated wind speed time series in the lower ABL vary significantly from their observational counterparts. The study demonstrate that the model simulated wind speed time series for the time intervals Delta t < 2 hours do not capture the ESS-based scaling characteristics. The detailed analysis of model simulations using different PBL schemes lead to the conclusion that there is a need for significant improvements in the turbulent closure parameterizations adapted in the new-generation atmospheric models. This study is unique as the ESS framework has never been reported or examined for the validation of PBL parameterizations.

  14. On the Development of Models for Height Profiles of the Wind Speed in the Atmospheric Surface Layer

    NASA Astrophysics Data System (ADS)

    Nikolaev, V. G.; Ganaga, S. V.; Kudryashov, Yu. I.; Nikolaev, V. V.

    2018-03-01

    The reliability of the known models of a height profile of the wind speed V( h) in the atmospheric boundary layer (ABL) and near-surface layer (NSL) is analyzed using the data of long-term ABL measurements accumulated in Russia in the state network of meteorological and aerological stations and the data of multilevel measurements at mast wind-measuring complexes. A new multilayer semiempirical model of V( h) is proposed which is based on aerodynamic and physical representations of the ABL vertical structure and relies on the hypothesis that wind-speed profiles providing the minimum wind friction on the ground and satisfying the conditions of profile smoothness are feasible in the ABL. This model ensures the best agreement with the data of meteorological, aerological, and mast wind measurements.

  15. Relationship between wind speed and gas exchange over the ocean

    NASA Technical Reports Server (NTRS)

    Wanninkhof, Rik

    1992-01-01

    A quadratic dependence of gas exchange on wind speed is employed to analyze the relationship between gas transfer and wind speed with particular emphasizing variable and/or low wind speeds. The quadratic dependence is fit through gas-transfer velocities over the ocean determined by methods based on the natural C-14 disequilibrium and the bomb C-14 inventory. The variation in the CO2 levels is related to these mechanisms, but the results show that other causes play significant roles. A weaker dependence of gas transfer on wind is suggested for steady winds, and long-term averaged winds demonstrate a stronger dependence in the present model. The chemical enhancement of CO2 exchange is also shown to play a role by increasing CO2 fluxes at low wind speeds.

  16. Computational studies of horizontal axis wind turbines in high wind speed condition using advanced turbulence models

    NASA Astrophysics Data System (ADS)

    Benjanirat, Sarun

    Next generation horizontal-axis wind turbines (HAWTs) will operate at very high wind speeds. Existing engineering approaches for modeling the flow phenomena are based on blade element theory, and cannot adequately account for 3-D separated, unsteady flow effects. Therefore, researchers around the world are beginning to model these flows using first principles-based computational fluid dynamics (CFD) approaches. In this study, an existing first principles-based Navier-Stokes approach is being enhanced to model HAWTs at high wind speeds. The enhancements include improved grid topology, implicit time-marching algorithms, and advanced turbulence models. The advanced turbulence models include the Spalart-Allmaras one-equation model, k-epsilon, k-o and Shear Stress Transport (k-o-SST) models. These models are also integrated with detached eddy simulation (DES) models. Results are presented for a range of wind speeds, for a configuration termed National Renewable Energy Laboratory Phase VI rotor, tested at NASA Ames Research Center. Grid sensitivity studies are also presented. Additionally, effects of existing transition models on the predictions are assessed. Data presented include power/torque production, radial distribution of normal and tangential pressure forces, root bending moments, and surface pressure fields. Good agreement was obtained between the predictions and experiments for most of the conditions, particularly with the Spalart-Allmaras-DES model.

  17. Study of the effect of wind speed on evaporation from soil through integrated modeling of the atmospheric boundary layer and shallow subsurface.

    PubMed

    Davarzani, Hossein; Smits, Kathleen; Tolene, Ryan M; Illangasekare, Tissa

    2014-01-01

    In an effort to develop methods based on integrating the subsurface to the atmospheric boundary layer to estimate evaporation, we developed a model based on the coupling of Navier-Stokes free flow and Darcy flow in porous medium. The model was tested using experimental data to study the effect of wind speed on evaporation. The model consists of the coupled equations of mass conservation for two-phase flow in porous medium with single-phase flow in the free-flow domain under nonisothermal, nonequilibrium phase change conditions. In this model, the evaporation rate and soil surface temperature and relative humidity at the interface come directly from the integrated model output. To experimentally validate numerical results, we developed a unique test system consisting of a wind tunnel interfaced with a soil tank instrumented with a network of sensors to measure soil-water variables. Results demonstrated that, by using this coupling approach, it is possible to predict the different stages of the drying process with good accuracy. Increasing the wind speed increases the first stage evaporation rate and decreases the transition time between two evaporative stages (soil water flow to vapor diffusion controlled) at low velocity values; then, at high wind speeds the evaporation rate becomes less dependent on the wind speed. On the contrary, the impact of wind speed on second stage evaporation (diffusion-dominant stage) is not significant. We found that the thermal and solute dispersion in free-flow systems has a significant influence on drying processes from porous media and should be taken into account.

  18. Study of the effect of wind speed on evaporation from soil through integrated modeling of the atmospheric boundary layer and shallow subsurface

    PubMed Central

    Davarzani, Hossein; Smits, Kathleen; Tolene, Ryan M; Illangasekare, Tissa

    2014-01-01

    In an effort to develop methods based on integrating the subsurface to the atmospheric boundary layer to estimate evaporation, we developed a model based on the coupling of Navier-Stokes free flow and Darcy flow in porous medium. The model was tested using experimental data to study the effect of wind speed on evaporation. The model consists of the coupled equations of mass conservation for two-phase flow in porous medium with single-phase flow in the free-flow domain under nonisothermal, nonequilibrium phase change conditions. In this model, the evaporation rate and soil surface temperature and relative humidity at the interface come directly from the integrated model output. To experimentally validate numerical results, we developed a unique test system consisting of a wind tunnel interfaced with a soil tank instrumented with a network of sensors to measure soil-water variables. Results demonstrated that, by using this coupling approach, it is possible to predict the different stages of the drying process with good accuracy. Increasing the wind speed increases the first stage evaporation rate and decreases the transition time between two evaporative stages (soil water flow to vapor diffusion controlled) at low velocity values; then, at high wind speeds the evaporation rate becomes less dependent on the wind speed. On the contrary, the impact of wind speed on second stage evaporation (diffusion-dominant stage) is not significant. We found that the thermal and solute dispersion in free-flow systems has a significant influence on drying processes from porous media and should be taken into account. PMID:25309005

  19. A generalized model for the air-sea transfer of dimethyl sulfide at high wind speeds

    NASA Astrophysics Data System (ADS)

    Vlahos, Penny; Monahan, Edward C.

    2009-11-01

    The air-sea exchange of dimethyl sulfide (DMS) is an important component of ocean biogeochemistry and global climate models. Both laboratory experiments and field measurements of DMS transfer rates have shown that the air-sea flux of DMS is analogous to that of other significant greenhouse gases such as CO2 at low wind speeds (<10 m/s) but that these DMS transfer rates may diverge from other gases as wind speeds increase. Herein we provide a mechanism that predicts the attenuation of DMS transfer rates at high wind speeds. The model is based on the amphiphilic nature of DMS that leads to transfer delay at the water-bubble interface and becomes significant at wind speeds above >10 m/s. The result is an attenuation of the dimensionless Henry's Law constant (H) where (Heff = H/(1 + (Cmix/Cw) ΦB) by a solubility enhancement Cmix/Cw, and the fraction of bubble surface area per m2 surface ocean.

  20. Flying with the wind: Scale dependency of speed and direction measurements in modelling wind support in avian flight

    USGS Publications Warehouse

    Safi, Kamran; Kranstauber, Bart; Weinzierl, Rolf P.; Griffin, Larry; Reese, Eileen C.; Cabot, David; Cruz, Sebastian; Proaño, Carolina; Takekawa, John Y.; Newman, Scott H.; Waldenström, Jonas; Bengtsson, Daniel; Kays, Roland; Wikelski, Martin; Bohrer, Gil

    2013-01-01

    Background: Understanding how environmental conditions, especially wind, influence birds' flight speeds is a prerequisite for understanding many important aspects of bird flight, including optimal migration strategies, navigation, and compensation for wind drift. Recent developments in tracking technology and the increased availability of data on large-scale weather patterns have made it possible to use path annotation to link the location of animals to environmental conditions such as wind speed and direction. However, there are various measures available for describing not only wind conditions but also the bird's flight direction and ground speed, and it is unclear which is best for determining the amount of wind support (the length of the wind vector in a bird’s flight direction) and the influence of cross-winds (the length of the wind vector perpendicular to a bird’s direction) throughout a bird's journey.Results: We compared relationships between cross-wind, wind support and bird movements, using path annotation derived from two different global weather reanalysis datasets and three different measures of direction and speed calculation for 288 individuals of nine bird species. Wind was a strong predictor of bird ground speed, explaining 10-66% of the variance, depending on species. Models using data from different weather sources gave qualitatively similar results; however, determining flight direction and speed from successive locations, even at short (15 min intervals), was inferior to using instantaneous GPS-based measures of speed and direction. Use of successive location data significantly underestimated the birds' ground and airspeed, and also resulted in mistaken associations between cross-winds, wind support, and their interactive effects, in relation to the birds' onward flight.Conclusions: Wind has strong effects on bird flight, and combining GPS technology with path annotation of weather variables allows us to quantify these effects for understanding flight behaviour. The potentially strong influence of scaling effects must be considered and implemented in developing sampling regimes and data analysis.

  1. Flying with the wind: scale dependency of speed and direction measurements in modelling wind support in avian flight.

    PubMed

    Safi, Kamran; Kranstauber, Bart; Weinzierl, Rolf; Griffin, Larry; Rees, Eileen C; Cabot, David; Cruz, Sebastian; Proaño, Carolina; Takekawa, John Y; Newman, Scott H; Waldenström, Jonas; Bengtsson, Daniel; Kays, Roland; Wikelski, Martin; Bohrer, Gil

    2013-01-01

    Understanding how environmental conditions, especially wind, influence birds' flight speeds is a prerequisite for understanding many important aspects of bird flight, including optimal migration strategies, navigation, and compensation for wind drift. Recent developments in tracking technology and the increased availability of data on large-scale weather patterns have made it possible to use path annotation to link the location of animals to environmental conditions such as wind speed and direction. However, there are various measures available for describing not only wind conditions but also the bird's flight direction and ground speed, and it is unclear which is best for determining the amount of wind support (the length of the wind vector in a bird's flight direction) and the influence of cross-winds (the length of the wind vector perpendicular to a bird's direction) throughout a bird's journey. We compared relationships between cross-wind, wind support and bird movements, using path annotation derived from two different global weather reanalysis datasets and three different measures of direction and speed calculation for 288 individuals of nine bird species. Wind was a strong predictor of bird ground speed, explaining 10-66% of the variance, depending on species. Models using data from different weather sources gave qualitatively similar results; however, determining flight direction and speed from successive locations, even at short (15 min intervals), was inferior to using instantaneous GPS-based measures of speed and direction. Use of successive location data significantly underestimated the birds' ground and airspeed, and also resulted in mistaken associations between cross-winds, wind support, and their interactive effects, in relation to the birds' onward flight. Wind has strong effects on bird flight, and combining GPS technology with path annotation of weather variables allows us to quantify these effects for understanding flight behaviour. The potentially strong influence of scaling effects must be considered and implemented in developing sampling regimes and data analysis.

  2. Maximization of the annual energy production of wind power plants by optimization of layout and yaw-based wake control: Maximization of wind plant AEP by optimization of layout and wake control

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gebraad, Pieter; Thomas, Jared J.; Ning, Andrew

    This paper presents a wind plant modeling and optimization tool that enables the maximization of wind plant annual energy production (AEP) using yaw-based wake steering control and layout changes. The tool is an extension of a wake engineering model describing the steady-state effects of yaw on wake velocity profiles and power productions of wind turbines in a wind plant. To make predictions of a wind plant's AEP, necessary extensions of the original wake model include coupling it with a detailed rotor model and a control policy for turbine blade pitch and rotor speed. This enables the prediction of power productionmore » with wake effects throughout a range of wind speeds. We use the tool to perform an example optimization study on a wind plant based on the Princess Amalia Wind Park. In this case study, combined optimization of layout and wake steering control increases AEP by 5%. The power gains from wake steering control are highest for region 1.5 inflow wind speeds, and they continue to be present to some extent for the above-rated inflow wind speeds. The results show that layout optimization and wake steering are complementary because significant AEP improvements can be achieved with wake steering in a wind plant layout that is already optimized to reduce wake losses.« less

  3. Enhancement of wind stress evaluation method under storm conditions

    NASA Astrophysics Data System (ADS)

    Chen, Yingjian; Yu, Xiping

    2016-12-01

    Wind stress is an important driving force for many meteorological and oceanographical processes. However, most of the existing methods for evaluation of the wind stress, including various bulk formulas in terms of the wind speed at a given height and formulas relating the roughness height of the sea surface with wind conditions, predict an ever-increasing tendency of the wind stress coefficient as the wind speed increases, which is inconsistent with the field observations under storm conditions. The wave boundary layer model, which is based on the momentum and energy conservation, has the advantage to take into account the physical details of the air-sea interaction process, but is still invalid under storm conditions without a modification. By including the energy dissipation due to the presence of sea spray, which is speculated to be an important aspect of the air-sea interaction under storm conditions, the wave boundary layer model is improved in this study. The improved model is employed to estimate the wind stress caused by an idealized tropical cyclone motion. The computational results show that the wind stress coefficient reaches its maximal value at a wind speed of about 40 m/s and decreases as the wind speed further increases. This is in fairly good agreement with the field data.

  4. Gaussian and Lognormal Models of Hurricane Gust Factors

    NASA Technical Reports Server (NTRS)

    Merceret, Frank

    2009-01-01

    A document describes a tool that predicts the likelihood of land-falling tropical storms and hurricanes exceeding specified peak speeds, given the mean wind speed at various heights of up to 500 feet (150 meters) above ground level. Empirical models to calculate mean and standard deviation of the gust factor as a function of height and mean wind speed were developed in Excel based on data from previous hurricanes. Separate models were developed for Gaussian and offset lognormal distributions for the gust factor. Rather than forecasting a single, specific peak wind speed, this tool provides a probability of exceeding a specified value. This probability is provided as a function of height, allowing it to be applied at a height appropriate for tall structures. The user inputs the mean wind speed, height, and operational threshold. The tool produces the probability from each model that the given threshold will be exceeded. This application does have its limits. They were tested only in tropical storm conditions associated with the periphery of hurricanes. Winds of similar speed produced by non-tropical system may have different turbulence dynamics and stability, which may change those winds statistical characteristics. These models were developed along the Central Florida seacoast, and their results may not accurately extrapolate to inland areas, or even to coastal sites that are different from those used to build the models. Although this tool cannot be generalized for use in different environments, its methodology could be applied to those locations to develop a similar tool tuned to local conditions.

  5. Estimating Variances of Horizontal Wind Fluctuations in Stable Conditions

    NASA Astrophysics Data System (ADS)

    Luhar, Ashok K.

    2010-05-01

    Information concerning the average wind speed and the variances of lateral and longitudinal wind velocity fluctuations is required by dispersion models to characterise turbulence in the atmospheric boundary layer. When the winds are weak, the scalar average wind speed and the vector average wind speed need to be clearly distinguished and both lateral and longitudinal wind velocity fluctuations assume equal importance in dispersion calculations. We examine commonly-used methods of estimating these variances from wind-speed and wind-direction statistics measured separately, for example, by a cup anemometer and a wind vane, and evaluate the implied relationship between the scalar and vector wind speeds, using measurements taken under low-wind stable conditions. We highlight several inconsistencies inherent in the existing formulations and show that the widely-used assumption that the lateral velocity variance is equal to the longitudinal velocity variance is not necessarily true. We derive improved relations for the two variances, and although data under stable stratification are considered for comparison, our analysis is applicable more generally.

  6. Evaluation of Simulated Marine Aerosol Production Using the WaveWatchIII Prognostic Wave Model Coupled to the Community Atmosphere Model within the Community Earth System Model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Long, M. S.; Keene, William C.; Zhang, J.

    2016-11-08

    Primary marine aerosol (PMA) is emitted into the atmosphere via breaking wind waves on the ocean surface. Most parameterizations of PMA emissions use 10-meter wind speed as a proxy for wave action. This investigation coupled the 3 rd generation prognostic WAVEWATCH-III wind-wave model within a coupled Earth system model (ESM) to drive PMA production using wave energy dissipation rate – analogous to whitecapping – in place of 10-meter wind speed. The wind speed parameterization did not capture basin-scale variability in relations between wind and wave fields. Overall, the wave parameterization did not improve comparison between simulated versus measured AOD ormore » Na +, thus highlighting large remaining uncertainties in model physics. Results confirm the efficacy of prognostic wind-wave models for air-sea exchange studies coupled with laboratory- and field-based characterizations of the primary physical drivers of PMA production. No discernible correlations were evident between simulated PMA fields and observed chlorophyll or sea surface temperature.« less

  7. Wind Power Curve Modeling in Simple and Complex Terrain

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bulaevskaya, V.; Wharton, S.; Irons, Z.

    2015-02-09

    Our previous work on wind power curve modeling using statistical models focused on a location with a moderately complex terrain in the Altamont Pass region in northern California (CA). The work described here is the follow-up to that work, but at a location with a simple terrain in northern Oklahoma (OK). The goal of the present analysis was to determine the gain in predictive ability afforded by adding information beyond the hub-height wind speed, such as wind speeds at other heights, as well as other atmospheric variables, to the power prediction model at this new location and compare the resultsmore » to those obtained at the CA site in the previous study. While we reach some of the same conclusions at both sites, many results reported for the CA site do not hold at the OK site. In particular, using the entire vertical profile of wind speeds improves the accuracy of wind power prediction relative to using the hub-height wind speed alone at both sites. However, in contrast to the CA site, the rotor equivalent wind speed (REWS) performs almost as well as the entire profile at the OK site. Another difference is that at the CA site, adding wind veer as a predictor significantly improved the power prediction accuracy. The same was true for that site when air density was added to the model separately instead of using the standard air density adjustment. At the OK site, these additional variables result in no significant benefit for the prediction accuracy.« less

  8. System Identification for the Clipper Liberty C96 Wind Turbine

    NASA Astrophysics Data System (ADS)

    Showers, Daniel

    System identification techniques are powerful tools that help improve modeling capabilities of real world dynamic systems. These techniques are well established and have been successfully used on countless systems in many areas. However, wind turbines provide a unique challenge for system identification because of the difficulty in measuring its primary input: wind. This thesis first motivates the problem by demonstrating the challenges with wind turbine system identification using both simulations and real data. It then suggests techniques toward successfully identifying a dynamic wind turbine model including the notion of an effective wind speed and how it might be measured. Various levels of simulation complexity are explored for insights into calculating an effective wind speed. In addition, measurements taken from the University of Minnesota's Clipper Liberty C96 research wind turbine are used for a preliminary investigation into the effective wind speed calculation and system identification of a real world wind turbine.

  9. Analysis of the Flicker Level Produced by a Fixed-Speed Wind Turbine

    NASA Astrophysics Data System (ADS)

    Suppioni, Vinicius; P. Grilo, Ahda

    2013-10-01

    In this article, the analysis of the flicker emission during continuous operation of a mid-scale fixed-speed wind turbine connected to a distribution system is presented. Flicker emission is investigated based on simulation results, and the dependence of flicker emission on short-circuit capacity, grid impedance angle, mean wind speed, and wind turbulence is analyzed. The simulations were conducted in different programs in order to provide a more realistic wind emulation and detailed model of mechanical and electrical components of the wind turbine. Such aim is accomplished by using FAST (Fatigue, Aerodynamics, Structures, and Turbulence) to simulate the mechanical parts of the wind turbine, Simulink/MatLab to simulate the electrical system, and TurbSim to obtain the wind model. The results show that, even for a small wind generator, the flicker level can limit the wind power capacity installed in a distribution system.

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Yang; Russell, Lynn M.; Lou, Sijia

    The aerosol optical depth (AOD) has been shown to correlate with precipitation rate (R) in recent studies. The relationships between R and AOD are examined in this study using 150-year simulations in preindustrial conditions with the CESM model. Through partial correlation analysis, with the impact from 10-m wind speed removed, relationships between modeled AOD and R exert a significant change from positive to negative over the mid-latitude oceans, indicating that the wind speed has the largest contribution to the relationships over the mid-latitude oceans. Sensitivity simulation shows that variations in wind speed lead to increasing R by +0.99 mm day-1more » averaged globally, offsetting 64% of the wet scavenging induced decrease in precipitation between polluted and clean conditions. These demonstrate that wind speed is one of the major drivers of R-AOD relationships. Relative humidity can also result in the positive relationships; however, its role is smaller than that of wind speed.« less

  11. Representativeness of wind measurements in moderately complex terrain

    NASA Astrophysics Data System (ADS)

    van den Bossche, Michael; De Wekker, Stephan F. J.

    2018-02-01

    We investigated the representativeness of 10-m wind measurements in a 4 km × 2 km area of modest relief by comparing observations at a central site with those at four satellite sites located in the same area. Using a combination of established and new methods to quantify and visualize representativeness, we found significant differences in wind speed and direction between the four satellite sites and the central site. The representativeness of the central site wind measurements depended strongly on surface wind speed and direction, and atmospheric stability. Through closer inspection of the observations at one of the satellite sites, we concluded that terrain-forced flows combined with thermally driven downslope winds caused large biases in wind direction and speed. We used these biases to generate a basic model, showing that terrain-related differences in wind observations can to a large extent be predicted. Such a model is a cost-effective way to enhance an area's wind field determination and to improve the outcome of pollutant dispersion and weather forecasting models.

  12. Wind-invariant saltation heights imply linear scaling of aeolian saltation flux with shear stress.

    PubMed

    Martin, Raleigh L; Kok, Jasper F

    2017-06-01

    Wind-driven sand transport generates atmospheric dust, forms dunes, and sculpts landscapes. However, it remains unclear how the flux of particles in aeolian saltation-the wind-driven transport of sand in hopping trajectories-scales with wind speed, largely because models do not agree on how particle speeds and trajectories change with wind shear velocity. We present comprehensive measurements, from three new field sites and three published studies, showing that characteristic saltation layer heights remain approximately constant with shear velocity, in agreement with recent wind tunnel studies. These results support the assumption of constant particle speeds in recent models predicting linear scaling of saltation flux with shear stress. In contrast, our results refute widely used older models that assume that particle speed increases with shear velocity, thereby predicting nonlinear 3/2 stress-flux scaling. This conclusion is further supported by direct field measurements of saltation flux versus shear stress. Our results thus argue for adoption of linear saltation flux laws and constant saltation trajectories for modeling saltation-driven aeolian processes on Earth, Mars, and other planetary surfaces.

  13. Wind-invariant saltation heights imply linear scaling of aeolian saltation flux with shear stress

    PubMed Central

    Martin, Raleigh L.; Kok, Jasper F.

    2017-01-01

    Wind-driven sand transport generates atmospheric dust, forms dunes, and sculpts landscapes. However, it remains unclear how the flux of particles in aeolian saltation—the wind-driven transport of sand in hopping trajectories—scales with wind speed, largely because models do not agree on how particle speeds and trajectories change with wind shear velocity. We present comprehensive measurements, from three new field sites and three published studies, showing that characteristic saltation layer heights remain approximately constant with shear velocity, in agreement with recent wind tunnel studies. These results support the assumption of constant particle speeds in recent models predicting linear scaling of saltation flux with shear stress. In contrast, our results refute widely used older models that assume that particle speed increases with shear velocity, thereby predicting nonlinear 3/2 stress-flux scaling. This conclusion is further supported by direct field measurements of saltation flux versus shear stress. Our results thus argue for adoption of linear saltation flux laws and constant saltation trajectories for modeling saltation-driven aeolian processes on Earth, Mars, and other planetary surfaces. PMID:28630907

  14. An Intelligent Ensemble Neural Network Model for Wind Speed Prediction in Renewable Energy Systems.

    PubMed

    Ranganayaki, V; Deepa, S N

    2016-01-01

    Various criteria are proposed to select the number of hidden neurons in artificial neural network (ANN) models and based on the criterion evolved an intelligent ensemble neural network model is proposed to predict wind speed in renewable energy applications. The intelligent ensemble neural model based wind speed forecasting is designed by averaging the forecasted values from multiple neural network models which includes multilayer perceptron (MLP), multilayer adaptive linear neuron (Madaline), back propagation neural network (BPN), and probabilistic neural network (PNN) so as to obtain better accuracy in wind speed prediction with minimum error. The random selection of hidden neurons numbers in artificial neural network results in overfitting or underfitting problem. This paper aims to avoid the occurrence of overfitting and underfitting problems. The selection of number of hidden neurons is done in this paper employing 102 criteria; these evolved criteria are verified by the computed various error values. The proposed criteria for fixing hidden neurons are validated employing the convergence theorem. The proposed intelligent ensemble neural model is applied for wind speed prediction application considering the real time wind data collected from the nearby locations. The obtained simulation results substantiate that the proposed ensemble model reduces the error value to minimum and enhances the accuracy. The computed results prove the effectiveness of the proposed ensemble neural network (ENN) model with respect to the considered error factors in comparison with that of the earlier models available in the literature.

  15. An Intelligent Ensemble Neural Network Model for Wind Speed Prediction in Renewable Energy Systems

    PubMed Central

    Ranganayaki, V.; Deepa, S. N.

    2016-01-01

    Various criteria are proposed to select the number of hidden neurons in artificial neural network (ANN) models and based on the criterion evolved an intelligent ensemble neural network model is proposed to predict wind speed in renewable energy applications. The intelligent ensemble neural model based wind speed forecasting is designed by averaging the forecasted values from multiple neural network models which includes multilayer perceptron (MLP), multilayer adaptive linear neuron (Madaline), back propagation neural network (BPN), and probabilistic neural network (PNN) so as to obtain better accuracy in wind speed prediction with minimum error. The random selection of hidden neurons numbers in artificial neural network results in overfitting or underfitting problem. This paper aims to avoid the occurrence of overfitting and underfitting problems. The selection of number of hidden neurons is done in this paper employing 102 criteria; these evolved criteria are verified by the computed various error values. The proposed criteria for fixing hidden neurons are validated employing the convergence theorem. The proposed intelligent ensemble neural model is applied for wind speed prediction application considering the real time wind data collected from the nearby locations. The obtained simulation results substantiate that the proposed ensemble model reduces the error value to minimum and enhances the accuracy. The computed results prove the effectiveness of the proposed ensemble neural network (ENN) model with respect to the considered error factors in comparison with that of the earlier models available in the literature. PMID:27034973

  16. Field measurements of horizontal forward motion velocities of terrestrial dust devils: Towards a proxy for ambient winds on Mars and Earth

    NASA Astrophysics Data System (ADS)

    Balme, M. R.; Pathare, A.; Metzger, S. M.; Towner, M. C.; Lewis, S. R.; Spiga, A.; Fenton, L. K.; Renno, N. O.; Elliott, H. M.; Saca, F. A.; Michaels, T. I.; Russell, P.; Verdasca, J.

    2012-11-01

    Dust devils - convective vortices made visible by the dust and debris they entrain - are common in arid environments and have been observed on Earth and Mars. Martian dust devils have been identified both in images taken at the surface and in remote sensing observations from orbiting spacecraft. Observations from landing craft and orbiting instruments have allowed the dust devil translational forward motion (ground velocity) to be calculated, but it is unclear how these velocities relate to the local ambient wind conditions, for (i) only model wind speeds are generally available for Mars, and (ii) on Earth only anecdotal evidence exists that compares dust devil ground velocity with ambient wind velocity. If dust devil ground velocity can be reliably correlated to the ambient wind regime, observations of dust devils could provide a proxy for wind speed and direction measurements on Mars. Hence, dust devil ground velocities could be used to probe the circulation of the martian boundary layer and help constrain climate models or assess the safety of future landing sites. We present results from a field study of terrestrial dust devils performed in the southwest USA in which we measured dust devil horizontal velocity as a function of ambient wind velocity. We acquired stereo images of more than a 100 active dust devils and recorded multiple size and position measurements for each dust devil. We used these data to calculate dust devil translational velocity. The dust devils were within a study area bounded by 10 m high meteorology towers such that dust devil speed and direction could be correlated with the local ambient wind speed and direction measurements. Daily (10:00-16:00 local time) and 2-h averaged dust devil ground speeds correlate well with ambient wind speeds averaged over the same period. Unsurprisingly, individual measurements of dust devil ground speed match instantaneous measurements of ambient wind speed more poorly; a 20-min smoothing window applied to the ambient wind speed data improves the correlation. In general, dust devils travel 10-20% faster than ambient wind speed measured at 10 m height, suggesting that their ground speeds are representative of the boundary layer winds a few tens of meters above ground level. Dust devil ground motion direction closely matches the measured ambient wind direction. The link between ambient winds and dust devil ground velocity demonstrated here suggests that a similar one should apply on Mars. Determining the details of the martian relationship between dust devil ground velocity and ambient wind velocity might require new in situ or modelling studies but, if completed successfully, would provide a quantitative means of measuring wind velocities on Mars that would otherwise be impossible to obtain.

  17. Bernoulli-Langevin Wind Speed Model for Simulation of Storm Events

    NASA Astrophysics Data System (ADS)

    Fürstenau, Norbert; Mittendorf, Monika

    2016-12-01

    We present a simple nonlinear dynamics Langevin model for predicting the instationary wind speed profile during storm events typically accompanying extreme low-pressure situations. It is based on a second-degree Bernoulli equation with δ-correlated Gaussian noise and may complement stationary stochastic wind models. Transition between increasing and decreasing wind speed and (quasi) stationary normal wind and storm states are induced by the sign change of the controlling time-dependent rate parameter k(t). This approach corresponds to the simplified nonlinear laser dynamics for the incoherent to coherent transition of light emission that can be understood by a phase transition analogy within equilibrium thermodynamics [H. Haken, Synergetics, 3rd ed., Springer, Berlin, Heidelberg, New York 1983/2004.]. Evidence for the nonlinear dynamics two-state approach is generated by fitting of two historical wind speed profiles (low-pressure situations "Xaver" and "Christian", 2013) taken from Meteorological Terminal Air Report weather data, with a logistic approximation (i.e. constant rate coefficients k) to the solution of our dynamical model using a sum of sigmoid functions. The analytical solution of our dynamical two-state Bernoulli equation as obtained with a sinusoidal rate ansatz k(t) of period T (=storm duration) exhibits reasonable agreement with the logistic fit to the empirical data. Noise parameter estimates of speed fluctuations are derived from empirical fit residuals and by means of a stationary solution of the corresponding Fokker-Planck equation. Numerical simulations with the Bernoulli-Langevin equation demonstrate the potential for stochastic wind speed profile modeling and predictive filtering under extreme storm events that is suggested for applications in anticipative air traffic management.

  18. CONSTRAINING HIGH-SPEED WINDS IN EXOPLANET ATMOSPHERES THROUGH OBSERVATIONS OF ANOMALOUS DOPPLER SHIFTS DURING TRANSIT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miller-Ricci Kempton, Eliza; Rauscher, Emily, E-mail: ekempton@ucolick.org

    2012-06-01

    Three-dimensional (3D) dynamical models of hot Jupiter atmospheres predict very strong wind speeds. For tidally locked hot Jupiters, winds at high altitude in the planet's atmosphere advect heat from the day side to the cooler night side of the planet. Net wind speeds on the order of 1-10 km s{sup -1} directed towards the night side of the planet are predicted at mbar pressures, which is the approximate pressure level probed by transmission spectroscopy. These winds should result in an observed blueshift of spectral lines in transmission on the order of the wind speed. Indeed, Snellen et al. recently observedmore » a 2 {+-} 1 km s{sup -1} blueshift of CO transmission features for HD 209458b, which has been interpreted as a detection of the day-to-night (substellar to anti-stellar) winds that have been predicted by 3D atmospheric dynamics modeling. Here, we present the results of a coupled 3D atmospheric dynamics and transmission spectrum model, which predicts the Doppler-shifted spectrum of a hot Jupiter during transit resulting from winds in the planet's atmosphere. We explore four different models for the hot Jupiter atmosphere using different prescriptions for atmospheric drag via interaction with planetary magnetic fields. We find that models with no magnetic drag produce net Doppler blueshifts in the transmission spectrum of {approx}2 km s{sup -1} and that lower Doppler shifts of {approx}1 km s{sup -1} are found for the higher drag cases, results consistent with-but not yet strongly constrained by-the Snellen et al. measurement. We additionally explore the possibility of recovering the average terminator wind speed as a function of altitude by measuring Doppler shifts of individual spectral lines and spatially resolving wind speeds across the leading and trailing terminators during ingress and egress.« less

  19. Simulated wind-generated inertial oscillations compared to current measurements in the northern North Sea

    NASA Astrophysics Data System (ADS)

    Bruserud, Kjersti; Haver, Sverre; Myrhaug, Dag

    2018-06-01

    Measured current speed data show that episodes of wind-generated inertial oscillations dominate the current conditions in parts of the northern North Sea. In order to acquire current data of sufficient duration for robust estimation of joint metocean design conditions, such as wind, waves, and currents, a simple model for episodes of wind-generated inertial oscillations is adapted for the northern North Sea. The model is validated with and compared against measured current data at one location in the northern North Sea and found to reproduce the measured maximum current speed in each episode with considerable accuracy. The comparison is further improved when a small general background current is added to the simulated maximum current speeds. Extreme values of measured and simulated current speed are estimated and found to compare well. To assess the robustness of the model and the sensitivity of current conditions from location to location, the validated model is applied at three other locations in the northern North Sea. In general, the simulated maximum current speeds are smaller than the measured, suggesting that wind-generated inertial oscillations are not as prominent at these locations and that other current conditions may be governing. Further analysis of the simulated current speed and joint distribution of wind, waves, and currents for design of offshore structures will be presented in a separate paper.

  20. Simulated wind-generated inertial oscillations compared to current measurements in the northern North Sea

    NASA Astrophysics Data System (ADS)

    Bruserud, Kjersti; Haver, Sverre; Myrhaug, Dag

    2018-04-01

    Measured current speed data show that episodes of wind-generated inertial oscillations dominate the current conditions in parts of the northern North Sea. In order to acquire current data of sufficient duration for robust estimation of joint metocean design conditions, such as wind, waves, and currents, a simple model for episodes of wind-generated inertial oscillations is adapted for the northern North Sea. The model is validated with and compared against measured current data at one location in the northern North Sea and found to reproduce the measured maximum current speed in each episode with considerable accuracy. The comparison is further improved when a small general background current is added to the simulated maximum current speeds. Extreme values of measured and simulated current speed are estimated and found to compare well. To assess the robustness of the model and the sensitivity of current conditions from location to location, the validated model is applied at three other locations in the northern North Sea. In general, the simulated maximum current speeds are smaller than the measured, suggesting that wind-generated inertial oscillations are not as prominent at these locations and that other current conditions may be governing. Further analysis of the simulated current speed and joint distribution of wind, waves, and currents for design of offshore structures will be presented in a separate paper.

  1. Design and development of nautilus whorl-wind turbine

    NASA Astrophysics Data System (ADS)

    R, Pramod; Kumar, G. B. Veeresh; Harsha, P. Sai Sri; Kumar, K. A. Udaya

    2017-07-01

    Our life is directly related to energy and its consumption, and the issues of energy research are extremely important and highly sensitive. Scientists and researchers attempt to accelerate solutions for wind energy generation, design parameters under the influence of novel policies adopted for energy management and the concerns for global warming and climate change. The objective of this study is to design a small wind turbine that is optimized for the constraints that come with residential use. The study is aimed at designing a wind turbine for tapping the low speed wind in urban locations. The design process includes the selection of the wind turbine type and the determination of the blade airfoil, finding the maximum drag model and manufacturing of the turbine economically. In this study, the Nautilus turbine is modeled, simulated and the characteristic curves are plotted. The cutting in wind speed for the turbine is around 1m/s. The turbine rotates in a range of 20 rpm to 500 rpm at wind speeds 1m/s to 10m/s On a below average day at noon where the wind speed are usually low the turbine recorded an rpm of 120 (average value) at 4m/s wind speeds. This study focuses on a computational fluid dynamics analysis of compressible radially outward flow.

  2. Transient response of sap flow to wind speed.

    PubMed

    Chu, Chia R; Hsieh, Cheng-I; Wu, Shen-Yuang; Phillips, Nathan G

    2009-01-01

    Transient responses of sap flow to step changes in wind speed were experimentally investigated in a wind tunnel. A Granier-type sap flow sensor was calibrated and tested in a cylindrical tube for analysis of its transient time response. Then the sensor was used to measure the transient response of a well-watered Pachira macrocarpa plant to wind speed variations. The transient response of sap flow was described using the resistance-capacitance model. The steady sap flow rate increased as the wind speed increased at low wind speeds. Once the wind speed exceeded 8.0 m s(-1), the steady sap flow rate did not increase further. The transpiration rate, measured gravimetrically, showed a similar trend. The response of nocturnal sap flow to wind speed variation was also measured and compared with the results in the daytime. Under the same wind speed, the steady sap flow rate was smaller than that in the daytime, indicating differences between diurnal and nocturnal hydraulic function, and incomplete stomatal closure at night. In addition, it was found that the temporal response of the Granier sensor is fast enough to resolve the transient behaviour of water flux in plant tissue.

  3. How important is getting the land surface energy exchange correct in WRF for wind energy forecasting?

    NASA Astrophysics Data System (ADS)

    Wharton, S.; Simpson, M.; Osuna, J. L.; Newman, J. F.; Biraud, S.

    2013-12-01

    Wind power forecasting is plagued with difficulties in accurately predicting the occurrence and intensity of atmospheric conditions at the heights spanned by industrial-scale turbines (~ 40 to 200 m above ground level). Better simulation of the relevant physics would enable operational practices such as integration of large fractions of wind power into power grids, scheduling maintenance on wind energy facilities, and deciding design criteria based on complex loads for next-generation turbines and siting. Accurately simulating the surface energy processes in numerical models may be critically important for wind energy forecasting as energy exchange at the surface strongly drives atmospheric mixing (i.e., stability) in the lower layers of the planetary boundary layer (PBL), which in turn largely determines wind shear and turbulence at heights found in the turbine rotor-disk. We hypothesize that simulating accurate a surface-atmosphere energy coupling should lead to more accurate predictions of wind speed and turbulence at heights within the turbine rotor-disk. Here, we tested 10 different land surface model configurations in the Weather Research and Forecasting (WRF) model including Noah, Noah-MP, SSiB, Pleim-Xiu, RUC, and others to evaluate (1) the accuracy of simulated surface energy fluxes to flux tower measurements, (2) the accuracy of forecasted wind speeds to observations at rotor-disk heights, and (3) the sensitivity of forecasting hub-height rotor disk wind speed to the choice of land surface model. WRF was run for four, two-week periods covering both summer and winter periods over the Southern Great Plains ARM site in Oklahoma. Continuous measurements of surface energy fluxes and lidar-based wind speed, direction and turbulence were also available. The SGP ARM site provided an ideal location for this evaluation as it centrally located in the wind-rich Great Plains and multi-MW wind farms are rapidly expanding in the area. We found significant differences in simulated wind speeds at rotor-disk heights from WRF which indicated, in part, the sensitivity of lower PBL winds to surface energy exchange. We also found significant differences in energy partitioning between sensible heat and latent energy depending on choice of land surface model. Overall, the most consistent, accurate model results were produced using Noah-MP. Noah-MP was most accurate at simulating energy fluxes and wind shear. Hub-height wind speed, however, was predicted with most accuracy with Pleim-Xiu. This suggests that simulating wind shear in the surface layer is consistent with accurately simulating surface energy exchange while the exact magnitudes of wind speed may be more strongly influenced by the PBL dynamics. As the nation is working towards a 20% wind energy goal by 2030, increasing the accuracy of wind forecasting at rotor-disk heights becomes more important considering that utilities require wind farms to estimate their power generation 24 to 36 hours ahead and face penalties for inaccuracies in those forecasts.

  4. Analysis and characterization of the vertical wind profile in UAE

    NASA Astrophysics Data System (ADS)

    Lee, W.; Ghedira, H.; Ouarda, T.; Gherboudj, I.

    2011-12-01

    In this study, temporal and spatial analysis of the vertical wind profiles in the UAE has been performed to estimate wind resource potential. Due to the very limited number of wind masts (only two wind masts in the UAE, operational for less than three years), the wind potential analysis will be mainly derived from numerical-based models. Additional wind data will be derived from the UAE met stations network (at 10 m elevation) managed by the UAE National Center of Meteorology and Seismology. However, since wind turbines are generally installed at elevations higher than 80 m, it is vital to extrapolate wind speed correctly from low heights to wind turbine hub heights to predict potential wind energy properly. To do so, firstly two boundary layer based models, power law and logarithmic law, were tested to find the best fitting model. Power law is expressed as v/v0 =(H/H0)^α and logarithmic law is represented as v/v0 =[ln(H/Z0))/(ln(H0/Z0)], where V is the wind speed [m/s] at height H [m] and V0 is the known wind speed at a reference height H0. The exponent (α) coefficient is an empirically derived value depending on the atmospheric stability and z0 is the roughness coefficient length [m] that depends on topography, land roughness and spacing. After testing the two models, spatial and temporal analysis for wind profile was performed. Many studies about wind in different regions have shown that wind profile parameters have hourly, monthly and seasonal variations. Therefore, it can be examined whether UAE wind characteristics follow general wind characteristics observed in other regions or have specific wind features due to its regional condition. About 3 years data from August 2008 to February 2011 with 10-minutes resolution were used to derive monthly variation. The preliminary results(Fig.1) show that during that period, wind profile parameters like alpha from power law and roughness length from logarithmic law have monthly variation. Both alpha and roughness have low values during summer and high values during winter. This variation is mainly explained by the direct effect of air temperature on atmospheric stability. When the surface temperature becomes high, air is mixed well in atmospheric boundary layer. This phenomenon leads to vertically low wind speed change indicating low wind profile parameter. On the contrary, cold surface temperature prevents air from being mixed well in the boundary layer. This analysis is applied to different regions to see the spatial characteristics of wind in UAE. As a next step, a mesoscale model coupled with UAE roughness maps will be used to predict elevated wind speed. A micro-scale modeling approach will be also used to capture small-scale wind speed variability. This data will be combined with the NCMS data and tailored to the UAE by modeling the effects due to local changes in terrain elevation and local surface roughness changes and obstacles.

  5. Influence of wind speed averaging on estimates of dimethylsulfide emission fluxes

    DOE PAGES

    Chapman, E. G.; Shaw, W. J.; Easter, R. C.; ...

    2002-12-03

    The effect of various wind-speed-averaging periods on calculated DMS emission fluxes is quantitatively assessed. Here, a global climate model and an emission flux module were run in stand-alone mode for a full year. Twenty-minute instantaneous surface wind speeds and related variables generated by the climate model were archived, and corresponding 1-hour-, 6-hour-, daily-, and monthly-averaged quantities calculated. These various time-averaged, model-derived quantities were used as inputs in the emission flux module, and DMS emissions were calculated using two expressions for the mass transfer velocity commonly used in atmospheric models. Results indicate that the time period selected for averaging wind speedsmore » can affect the magnitude of calculated DMS emission fluxes. A number of individual marine cells within the global grid show DMS emissions fluxes that are 10-60% higher when emissions are calculated using 20-minute instantaneous model time step winds rather than monthly-averaged wind speeds, and at some locations the differences exceed 200%. Many of these cells are located in the southern hemisphere where anthropogenic sulfur emissions are low and changes in oceanic DMS emissions may significantly affect calculated aerosol concentrations and aerosol radiative forcing.« less

  6. On the Decrease of the Oceanic Drag Coefficient in High Winds

    NASA Astrophysics Data System (ADS)

    Donelan, Mark A.

    2018-02-01

    The sheltering coefficient - prefixing Jeffreys' concept of the exponential wave growth rate at a gas-liquid interface - is shown to be Reynolds number dependent from laboratory measurements of waves and Reynolds stresses. There are two turbulent flow regimes: wind speed range of 2.5 to 30 m/s where the drag coefficients increase with wind speed, and wind speed range of 30 to 50 m/s where sheltering/drag coefficients decrease/saturate with wind speed. By comparing model calculations of drag coefficients - using a fixed sheltering coefficient - with ocean observations over a wind speed range of 1 to 50 m/s a similar Reynolds number dependence of the oceanic sheltering coefficient is revealed. In consequence the drag coefficient is a function of Reynolds number and wave age, and not just wind speed as frequently assumed. The resulting decreasing drag coefficient above 30 m/s is shown to be critical in explaining the rapid intensification so prominent in the climatology of Atlantic hurricanes. The Reynolds number dependence of the sheltering coefficient, when employed in coupled models, should lead to significant improvements in the prediction of intensification and decay of tropical cyclones. A calculation of curvature at the wave crest suggests that at wind speeds above 56.15 m/s all waves-breaking or not-induce steady flow separation leading to a minimum in the drag coefficient. This is further evidence of the veracity of the observations of the oceanic drag coefficient at high winds.

  7. Wind Retrievals under Rain for Passive Satellite Microwave Radiometers and its Applications to Hurricane Tracking

    NASA Technical Reports Server (NTRS)

    Meissner, Thomas; Wentz, Frank J.

    2008-01-01

    We have developed an algorithm that retrieves wind speed under rain using C-hand and X-band channels of passive microwave satellite radiometers. The spectral difference of the brightness temperature signals due to wind or rain allows to find channel combinations that are sufficiently sensitive to wind speed but little or not sensitive to rain. We &ve trained a statistical algorithm that applies under hurricane conditions and is able to measure wind speeds in hurricanes to an estimated accuracy of about 2 m/s. We have also developed a global algorithm, that is less accurate but can be applied under all conditions. Its estimated accuracy is between 2 and 5 mls, depending on wind speed and rain rate. We also extend the wind speed region in our model for the wind induced sea surface emissivity from currently 20 m/s to 40 mls. The data indicate that the signal starts to saturate above 30 mls. Finally, we make an assessment of the performance of wind direction retrievals from polarimetric radiometers as function of wind speed and rain rate

  8. Gap Winds in a Fjord: Howe Sound, British Columbia.

    NASA Astrophysics Data System (ADS)

    Jackson, Peter L.

    1993-01-01

    Gap, outflow, or Squamish wind, is the cold low level seaward flow of air through fjords which dissect the coastal mountain barrier of northwestern North America. These flows, occurring mainly during winter, can be strong, threatening safety, economic activity and comfort. Howe Sound gap winds were studied using a combination of observations and several types of models. Observations of winds in Howe Sound showed that gap wind strength varied considerably along the channel, across the channel and vertically. Generally, winds increase down the channel, are strongest along the eastern side, and are below 1000 m depth. Observations were unable to answer all questions about gap winds due to data sparseness, particularly in the vertical direction. Therefore, several modelling approaches were used. The modelling began with a complete 3-dimensional quasi-Boussinesq model (CSU RAMS) and ended with the creation and testing of models which are conceptually simpler, and more easily interpreted and manipulated. A gap wind simulation made using RAMS was shown to be mostly successful by statistical evaluation compared to other mesoscale simulations, and by visual inspection of the fields. The RAMS output, which has very high temporal and spatial resolution, provided much additional information about the details of gap flow. In particular, RAMS results suggested a close analogy between gap wind and hydraulic channel flow, with hydraulic features such as supercritical flow and hydraulic jumps apparent. These findings imply gap wind flow could potentially be represented by much simpler models. The simplest possible models containing pressure gradient, advection and friction but not incorporating hydraulic effects, were created, tested, and found lacking. A hydraulic model, which in addition incorporates varying gap wind height and channel geometry, was created and shown to successfully simulate gap winds. Force balance analysis from RAMS and the hydraulic model showed that pressure gradient and advection are the most important forces, followed by friction which becomes an important force in fast supercritical flow. The sensitivity of gap wind speed to various parameters was found from sensitivity tests using the hydraulic model. Results indicated that gap wind speed increases with increasing boundary layer height and speed at the head of channel, and increasing synoptic pressure gradient. Gap wind speed decreases with increasing friction, and increasing boundary layer height at the seaward channel end. Increasing temperature differences between the cold gap wind air and the warmer air aloft was found to increase the variability of the flow--higher maximum but lower mean wind speeds.

  9. Development of Wind Speed Retrieval from Cross-Polarization Chinese Gaofen-3 Synthetic Aperture Radar in Typhoons

    PubMed Central

    Yuan, Xinzhe; Sun, Jian; Zhou, Wei; Zhang, Qingjun

    2018-01-01

    The purpose of our work is to determine the feasibility and effectiveness of retrieving sea surface wind speeds from C-band cross-polarization (herein vertical-horizontal, VH) Chinese Gaofen-3 (GF-3) SAR images in typhoons. In this study, we have collected three GF-3 SAR images acquired in Global Observation (GLO) and Wide ScanSAR (WSC) mode during the summer of 2017 from the China Sea, which includes the typhoons Noru, Doksuri and Talim. These images were collocated with wind simulations at 0.12° grids from a numeric model, called the Regional Assimilation and Prediction System-Typhoon model (GRAPES-TYM). Recent research shows that GRAPES-TYM has a good performance for typhoon simulation in the China Sea. Based on the dataset, the dependence of wind speed and of radar incidence angle on normalized radar cross (NRCS) of VH-polarization GF-3 SAR have been investigated, after which an empirical algorithm for wind speed retrieval from VH-polarization GF-3 SAR was tuned. An additional four VH-polarization GF-3 SAR images in three typhoons, Noru, Hato and Talim, were investigated in order to validate the proposed algorithm. SAR-derived winds were compared with measurements from Windsat winds at 0.25° grids with wind speeds up to 40 m/s, showing a 5.5 m/s root mean square error (RMSE) of wind speed and an improved RMSE of 5.1 m/s wind speed was achieved compared with the retrieval results validated against GRAPES-TYM winds. It is concluded that the proposed algorithm is a promising potential technique for strong wind retrieval from cross-polarization GF-3 SAR images without encountering a signal saturation problem. PMID:29385068

  10. Experimental study and finite element analysis of wind-induced vibration of modal car based on fluid-structure interaction

    NASA Astrophysics Data System (ADS)

    Tao, Li-li; Du, Guang-sheng; Liu, Li-ping; Liu, Yong-hui; Shao, Zhu-feng

    2013-02-01

    The wind-induced vibration of the front windshield concerns the traffic safety and the aerodynamic characteristics of cars. In this paper, the numerical simulation and the experiment are combined to study the wind-induced vibrations of the front windshield at different speeds of a van-body model bus. The Fluid-Structure Interaction (FSI) model is used for the finite element analysis of the vibration characteristics of the front windshield glass in the travelling process, and the wind-induced vibration response characteristics of the glass is obtained. A wind-tunnel experiment with an eddy current displacement sensor is carried out to study the deformation of the windshield at different wind speeds, and to verify the numerical simulation results. It is shown that the windshield of the model bus windshield undergoes a noticeable deformation as the speed changes, and from the deformation curve obtained, it is seen that in the accelerating process, the deformation of the glass increases as the speed increases, and with the speed being stablized, it also tends to a certain value. The results of this study can provide a scientific basis for the safety design of the windshield and the body.

  11. Wind turbine power tracking using an improved multimodel quadratic approach.

    PubMed

    Khezami, Nadhira; Benhadj Braiek, Naceur; Guillaud, Xavier

    2010-07-01

    In this paper, an improved multimodel optimal quadratic control structure for variable speed, pitch regulated wind turbines (operating at high wind speeds) is proposed in order to integrate high levels of wind power to actively provide a primary reserve for frequency control. On the basis of the nonlinear model of the studied plant, and taking into account the wind speed fluctuations, and the electrical power variation, a multimodel linear description is derived for the wind turbine, and is used for the synthesis of an optimal control law involving a state feedback, an integral action and an output reference model. This new control structure allows a rapid transition of the wind turbine generated power between different desired set values. This electrical power tracking is ensured with a high-performance behavior for all other state variables: turbine and generator rotational speeds and mechanical shaft torque; and smooth and adequate evolution of the control variables. 2010 ISA. Published by Elsevier Ltd. All rights reserved.

  12. Flight measurement and analysis of AAFE RADSCAT wind speed signature of the ocean

    NASA Technical Reports Server (NTRS)

    Schroeder, L. C.; Jones, W. L.; Schaffner, P. R.; Mitchell, J. L.

    1984-01-01

    The advanced aerospace flight experiment radiometer scatterometer (AAFE RADSCAT) which was developed as a research tool to evaluate the use of microwave frequency remote sensors to provide wind speed information at the ocean surface is discussed. The AAFE RADSCAT helped establish the feasibility of the satellite scatterometer for measuring both wind speed and direction. The most important function of the AAFE RADSCAT was to provide a data base of ocean normalized radar cross section (NRCS) measurements as a function of surface wind vector at 13.9 GHz. The NRCS measurements over a wide parametric range of incidence angles, azimuth angles, and winds were obtained in a series of RADSCAT aircraft missions. The obtained data base was used to model the relationship between k sub u band radar signature and ocean surface wind vector. The models developed therefrom are compared with those used for inversion of the SEASAT-A satellite scatterometer (SASS) radar measurements to wind speeds.

  13. A Comparison of Tropical Storm (TS) and Non-TS Gust Factors for Assessing Peak Wind Probabilities at the Eastern Range

    NASA Technical Reports Server (NTRS)

    Merceret, Francis J.; Crawford, Winifred C.

    2010-01-01

    Knowledge of peak wind speeds is important to the safety of personnel and flight hardware at Kennedy Space Center (KSC) and the Cape Canaveral Air Force Station (CCAFS), but they are more difficult to forecast than mean wind speeds. Development of a reliable model for the gust factor (GF) relating the peak to the mean wind speed motivated a previous study of GF in tropical storms. The same motivation inspired a climatological study of non-TS peak wind speed statistics without the use of GF. Both studies presented their respective statistics as functions of mean wind speed and height. The few comparisons of IS and non-TS GF in the literature suggest that the non-TS GF at a given height and mean wind speed are smaller than the corresponding TS GF. The investigation reported here converted the non-TS peak wind statistics mentioned above to the equivalent GF statistics and compared the results with the previous TS GF results. The advantage of this effort over all previously reported studies of its kind is that the TS and non-TS data are taken from the same towers in the same locations. That eliminates differing surface attributes, including roughness length and thermal properties, as a major source of variance in the comparison. The results are consistent with the literature, but include much more detailed, quantitative information on the nature of the relationship between TS and non-TS GF as a function of height and mean wind speed. In addition, the data suggest the possibility of providing an operational model for non-TS GF as a function of height and wind speed in a manner similar to the one previously developed for TS GF.

  14. Simulation for Grid Connected Wind Turbines with Fluctuating

    NASA Astrophysics Data System (ADS)

    Ye, Ying; Fu, Yang; Wei, Shurong

    This paper establishes the whole dynamic model of wind turbine generator system which contains the wind speed model and DFIG wind turbines model .A simulation sample based on the mathematical models is built by using MATLAB in this paper. Research are did on the performance characteristics of doubly-fed wind generators (DFIG) which connected to power grid with three-phase ground fault and the disturbance by gust and mixed wind. The capacity of the wind farm is 9MW which consists of doubly-fed wind generators (DFIG). Simulation results demonstrate that the three-phase ground fault occurs on grid side runs less affected on the stability of doubly-fed wind generators. However, as a power source, fluctuations of the wind speed will run a large impact on stability of double-fed wind generators. The results also show that if the two disturbances occur in the meantime, the situation will be very serious.

  15. Ship-borne measurements of aerosol optical depth over remote oceans and its dependence on wind speed

    NASA Astrophysics Data System (ADS)

    Smirnov, A.; Sayer, A. M.; Holben, B. N.; Hsu, N. C.; Sakerin, S. M.; Macke, A.; Nelson, N. B.; Courcoux, Y.; Smyth, T. J.; Croot, P. L.; Quinn, P.; Sciare, J.; Gulev, S. K.; Piketh, S.; Losno, R.; Kinne, S. A.; Radionov, V. F.

    2011-12-01

    Aerosol production sources over the World Ocean and various factors determining aerosol spatial and temporal distribution are important for understanding the Earth's radiation budget and aerosol-cloud interactions. Sea-salt aerosol production, being a major source of aerosol over remote oceans, depends on surface wind speed. Recently in a number of publications the effect of wind speed on aerosol optical depth (AOD) has been presented utilizing coastal, island-based and satellite-based AOD measurements. However, the influence of wind speed on the columnar optical depth is still poorly understood, because not all factors and precursors influencing AOD dependence can be accounted for. The Maritime Aerosol Network (a component of AERONET) data archive provides an excellent opportunity to analyze in depth a relationship between ship-based AOD measurements and wind speed. We considered only data presumably not influenced by urban/industrial continental sources, dust outbreaks, biomass burning, or glaciers and pack ice. Additional restrictions imposed on the data set were acceptance of only points taken not closer than two degrees from the nearest landmass. We present analyses on the effect of surface (deck-level) wind speed (acquired onboard, modeled by NCEP, measured from satellite) on AOD and its spectral dependence. Latitudinal comparison of measured onboard and modeled wind speeds showed relatively small bias, which was higher at high latitudes. Instantaneous AOD measurements and daily means yielded similar relationships with various wind speed subsets (instantaneous ship-based and NCEP, averaged over previous 24 hours, steady, satellite retrieved). We compared regression statistics of optical parameters versus wind speed presented in various papers and based on various satellite and sunphotometer measurements. Overall, despite certain scatter, the current work and a majority of publications showed consistent patterns, with the AOD versus wind speed (range 2-16 m/s) dependence close to linear.

  16. The Influence of Spatial Resolutions on the Retrieval Accuracy of Sea Surface Wind Speed with Cross-polarized C-band SAR images

    NASA Astrophysics Data System (ADS)

    Zhang, K.; Han, B.; Mansaray, L. R.; Xu, X.; Guo, Q.; Jingfeng, H.

    2017-12-01

    Synthetic aperture radar (SAR) instruments on board satellites are valuable for high-resolution wind field mapping, especially for coastal studies. Since the launch of Sentinel-1A on April 3, 2014, followed by Sentinel-1B on April 25, 2016, large amount of C-band SAR data have been added to a growing accumulation of SAR datasets (ERS-1/2, RADARSAT-1/2, ENVISAT). These new developments are of great significance for a wide range of applications in coastal sea areas, especially for high spatial resolution wind resource assessment, in which the accuracy of retrieved wind fields is extremely crucial. Recently, it is reported that wind speeds can also be retrieved from C-band cross-polarized SAR images, which is an important complement to wind speed retrieval from co-polarization. However, there is no consensus on the optimal resolution for wind speed retrieval from cross-polarized SAR images. This paper presents a comparison strategy for investigating the influence of spatial resolutions on sea surface wind speed retrieval accuracy with cross-polarized SAR images. Firstly, for wind speeds retrieved from VV-polarized images, the optimal geophysical C-band model (CMOD) function was selected among four CMOD functions. Secondly, the most suitable C-band cross-polarized ocean (C-2PO) model was selected between two C-2POs for the VH-polarized image dataset. Then, the VH-wind speeds retrieved by the selected C-2PO were compared with the VV-polarized sea surface wind speeds retrieved using the optimal CMOD, which served as reference, at different spatial resolutions. Results show that the VH-polarized wind speed retrieval accuracy increases rapidly with the decrease in spatial resolutions from 100 m to 1000 m, with a drop in RMSE of 42%. However, the improvement in wind speed retrieval accuracy levels off with spatial resolutions decreasing from 1000 m to 5000 m. This demonstrates that the pixel spacing of 1 km may be the compromising choice for the tradeoff between the spatial resolution and wind speed retrieval accuracy with cross-polarized images obtained from RADASAT-2 fine quad polarization mode. Figs. 1 illustrate the variation of the following statistical parameters: Bias, Corr, R2, RMSE and STD as a function of spatial resolution.

  17. Short-term landfill methane emissions dependency on wind.

    PubMed

    Delkash, Madjid; Zhou, Bowen; Han, Byunghyun; Chow, Fotini K; Rella, Chris W; Imhoff, Paul T

    2016-09-01

    Short-term (2-10h) variations of whole-landfill methane emissions have been observed in recent field studies using the tracer dilution method for emissions measurement. To investigate the cause of these variations, the tracer dilution method is applied using 1-min emissions measurements at Sandtown Landfill (Delaware, USA) for a 2-h measurement period. An atmospheric dispersion model is developed for this field test site, which is the first application of such modeling to evaluate atmospheric effects on gas plume transport from landfills. The model is used to examine three possible causes of observed temporal emissions variability: temporal variability of surface wind speed affecting whole landfill emissions, spatial variability of emissions due to local wind speed variations, and misaligned tracer gas release and methane emissions locations. At this site, atmospheric modeling indicates that variation in tracer dilution method emissions measurements may be caused by whole-landfill emissions variation with wind speed. Field data collected over the time period of the atmospheric model simulations corroborate this result: methane emissions are correlated with wind speed on the landfill surface with R(2)=0.51 for data 2.5m above ground, or R(2)=0.55 using data 85m above ground, with emissions increasing by up to a factor of 2 for an approximately 30% increase in wind speed. Although the atmospheric modeling and field test are conducted at a single landfill, the results suggest that wind-induced emissions may affect tracer dilution method emissions measurements at other landfills. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Generation and Validation of Spatial Distribution of Hourly Wind Speed Time-Series using Machine Learning

    NASA Astrophysics Data System (ADS)

    Veronesi, F.; Grassi, S.

    2016-09-01

    Wind resource assessment is a key aspect of wind farm planning since it allows to estimate the long term electricity production. Moreover, wind speed time-series at high resolution are helpful to estimate the temporal changes of the electricity generation and indispensable to design stand-alone systems, which are affected by the mismatch of supply and demand. In this work, we present a new generalized statistical methodology to generate the spatial distribution of wind speed time-series, using Switzerland as a case study. This research is based upon a machine learning model and demonstrates that statistical wind resource assessment can successfully be used for estimating wind speed time-series. In fact, this method is able to obtain reliable wind speed estimates and propagate all the sources of uncertainty (from the measurements to the mapping process) in an efficient way, i.e. minimizing computational time and load. This allows not only an accurate estimation, but the creation of precise confidence intervals to map the stochasticity of the wind resource for a particular site. The validation shows that machine learning can minimize the bias of the wind speed hourly estimates. Moreover, for each mapped location this method delivers not only the mean wind speed, but also its confidence interval, which are crucial data for planners.

  19. Effect of Wind Speed on Aerosol Optical Depth over Remote Oceans, Based on Data from the Maritime Aerosol Network

    NASA Technical Reports Server (NTRS)

    Smirnov, A.; Sayer, A. M.; Holben, B. N.; Hsu, N. C.; Sakerin, S. M.; Macke, A.; Nelson, N. B.; Courcoux, Y.; Smyth, T. J.; Croot, P.; hide

    2012-01-01

    The Maritime Aerosol Network (MAN) has been collecting data over the oceans since November 2006. The MAN archive provides a valuable resource for aerosol studies in maritime environments. In the current paper we investigate correlations between ship-borne aerosol optical depth (AOD) and near-surface wind speed, either measured (onboard or from satellite) or modeled (NCEP). According to our analysis, wind speed influences columnar aerosol optical depth, although the slope of the linear regression between AOD and wind speed is not steep (approx. 0.004 - 0.005), even for strong winds over 10m/s. The relationships show significant scatter (correlation coefficients typically in the range 0.3 - 0.5); the majority of this scatter can be explained by the uncertainty on the input data. The various wind speed sources considered yield similar patterns. Results are in good agreement with the majority of previously published relationships between surface wind speed and ship-based or satellite-based AOD measurements. The basic relationships are similar for all the wind speed sources considered; however, the gradient of the relationship varies by around a factor of two depending on the wind data used

  20. A hybrid wavelet transform based short-term wind speed forecasting approach.

    PubMed

    Wang, Jujie

    2014-01-01

    It is important to improve the accuracy of wind speed forecasting for wind parks management and wind power utilization. In this paper, a novel hybrid approach known as WTT-TNN is proposed for wind speed forecasting. In the first step of the approach, a wavelet transform technique (WTT) is used to decompose wind speed into an approximate scale and several detailed scales. In the second step, a two-hidden-layer neural network (TNN) is used to predict both approximated scale and detailed scales, respectively. In order to find the optimal network architecture, the partial autocorrelation function is adopted to determine the number of neurons in the input layer, and an experimental simulation is made to determine the number of neurons within each hidden layer in the modeling process of TNN. Afterwards, the final prediction value can be obtained by the sum of these prediction results. In this study, a WTT is employed to extract these different patterns of the wind speed and make it easier for forecasting. To evaluate the performance of the proposed approach, it is applied to forecast Hexi Corridor of China's wind speed. Simulation results in four different cases show that the proposed method increases wind speed forecasting accuracy.

  1. Effect of wind speed on aerosol optical depth over remote oceans, based on data from the Maritime Aerosol Network

    NASA Astrophysics Data System (ADS)

    Smirnov, A.; Sayer, A. M.; Holben, B. N.; Hsu, N. C.; Sakerin, S. M.; Macke, A.; Nelson, N. B.; Courcoux, Y.; Smyth, T. J.; Croot, P.; Quinn, P. K.; Sciare, J.; Gulev, S. K.; Piketh, S.; Losno, R.; Kinne, S.; Radionov, V. F.

    2011-12-01

    The Maritime Aerosol Network (MAN) has been collecting data over the oceans since November 2006. The MAN archive provides a valuable resource for aerosol studies in maritime environments. In the current paper we investigate correlations between ship-borne aerosol optical depth (AOD) and near-surface wind speed, either measured (onboard or from satellite) or modeled (NCEP). According to our analysis, wind speed influences columnar aerosol optical depth, although the slope of the linear regression between AOD and wind speed is not steep (∼0.004-0.005), even for strong winds over 10 m s-1. The relationships show significant scatter (correlation coefficients typically in the range 0.3-0.5); the majority of this scatter can be explained by the uncertainty on the input data. The various wind speed sources considered yield similar patterns. Results are in good agreement with the majority of previously published relationships between surface wind speed and ship-based or satellite-based AOD measurements. The basic relationships are similar for all the wind speed sources considered; however, the gradient of the relationship varies by around a factor of two depending on the wind data used.

  2. Effect of wind speed on aerosol optical depth over remote oceans, based on data from the Maritime Aerosol Network

    NASA Astrophysics Data System (ADS)

    Smirnov, A.; Sayer, A. M.; Holben, B. N.; Hsu, N. C.; Sakerin, S. M.; Macke, A.; Nelson, N. B.; Courcoux, Y.; Smyth, T. J.; Croot, P.; Quinn, P. K.; Sciare, J.; Gulev, S. K.; Piketh, S.; Losno, R.; Kinne, S.; Radionov, V. F.

    2012-02-01

    The Maritime Aerosol Network (MAN) has been collecting data over the oceans since November 2006. The MAN archive provides a valuable resource for aerosol studies in maritime environments. In the current paper we investigate correlations between ship-borne aerosol optical depth (AOD) and near-surface wind speed, either measured (onboard or from satellite) or modeled (NCEP). According to our analysis, wind speed influences columnar aerosol optical depth, although the slope of the linear regression between AOD and wind speed is not steep (~0.004-0.005), even for strong winds over 10 m s-1. The relationships show significant scatter (correlation coefficients typically in the range 0.3-0.5); the majority of this scatter can be explained by the uncertainty on the input data. The various wind speed sources considered yield similar patterns. Results are in good agreement with the majority of previously published relationships between surface wind speed and ship-based or satellite-based AOD measurements. The basic relationships are similar for all the wind speed sources considered; however, the gradient of the relationship varies by around a factor of two depending on the wind data used.

  3. A Hybrid Wavelet Transform Based Short-Term Wind Speed Forecasting Approach

    PubMed Central

    Wang, Jujie

    2014-01-01

    It is important to improve the accuracy of wind speed forecasting for wind parks management and wind power utilization. In this paper, a novel hybrid approach known as WTT-TNN is proposed for wind speed forecasting. In the first step of the approach, a wavelet transform technique (WTT) is used to decompose wind speed into an approximate scale and several detailed scales. In the second step, a two-hidden-layer neural network (TNN) is used to predict both approximated scale and detailed scales, respectively. In order to find the optimal network architecture, the partial autocorrelation function is adopted to determine the number of neurons in the input layer, and an experimental simulation is made to determine the number of neurons within each hidden layer in the modeling process of TNN. Afterwards, the final prediction value can be obtained by the sum of these prediction results. In this study, a WTT is employed to extract these different patterns of the wind speed and make it easier for forecasting. To evaluate the performance of the proposed approach, it is applied to forecast Hexi Corridor of China's wind speed. Simulation results in four different cases show that the proposed method increases wind speed forecasting accuracy. PMID:25136699

  4. MEASUREMENT OF WIND SPEED FROM COOLING LAKE THERMAL IMAGERY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Garrett, A; Robert Kurzeja, R; Eliel Villa-Aleman, E

    2009-01-20

    The Savannah River National Laboratory (SRNL) collected thermal imagery and ground truth data at two commercial power plant cooling lakes to investigate the applicability of laboratory empirical correlations between surface heat flux and wind speed, and statistics derived from thermal imagery. SRNL demonstrated in a previous paper [1] that a linear relationship exists between the standard deviation of image temperature and surface heat flux. In this paper, SRNL will show that the skewness of the temperature distribution derived from cooling lake thermal images correlates with instantaneous wind speed measured at the same location. SRNL collected thermal imagery, surface meteorology andmore » water temperatures from helicopters and boats at the Comanche Peak and H. B. Robinson nuclear power plant cooling lakes. SRNL found that decreasing skewness correlated with increasing wind speed, as was the case for the laboratory experiments. Simple linear and orthogonal regression models both explained about 50% of the variance in the skewness - wind speed plots. A nonlinear (logistic) regression model produced a better fit to the data, apparently because the thermal convection and resulting skewness are related to wind speed in a highly nonlinear way in nearly calm and in windy conditions.« less

  5. Abe Silverstein 10- by 10-Foot Supersonic Wind Tunnel Validated for Low-Speed (Subsonic) Operation

    NASA Technical Reports Server (NTRS)

    Hoffman, Thomas R.

    2001-01-01

    The NASA Glenn Research Center and Lockheed Martin Corporation tested an aircraft model in two wind tunnels to compare low-speed (subsonic) flow characteristics. Objectives of the test were to determine and document the similarities and uniqueness of the tunnels and to validate that Glenn's 10- by 10-Foot Supersonic Wind Tunnel (10x10 SWT) is a viable low-speed test facility. Results from two of Glenn's wind tunnels compare very favorably and show that the 10x10 SWT is a viable low-speed wind tunnel. The Subsonic Comparison Test was a joint effort by NASA and Lockheed Martin using the Lockheed Martin's Joint Strike Fighter Concept Demonstration Aircraft model. Although Glenn's 10310 and 836 SWT's have many similarities, they also have unique characteristics. Therefore, test data were collected for multiple model configurations at various vertical locations in the test section, starting at the test section centerline and extending into the ceiling and floor boundary layers.

  6. Gust wind tunnel study on ballast pick-up by high-speed trains

    NASA Astrophysics Data System (ADS)

    Navarro-Medina, F.; Sanz-Andres, A.; Perez-Grande, I.

    2012-01-01

    This paper describes the experimental setup, procedure, and results obtained, concerning the dynamics of a body lying on a floor, attached to a hinge, and exposed to an unsteady flow, which is a model of the initiation of rotational motion of ballast stones due to the wind generated by the passing of a high-speed train. The idea is to obtain experimental data to support the theoretical model developed in Sanz-Andres and Navarro-Medina (J Wind Eng Ind Aerodyn 98, 772-783, (2010), aimed at analyzing the initial phase of the ballast train-induced-wind erosion (BATIWE) phenomenon. The experimental setup is based on an open circuit, closed test section, low-speed wind tunnel, with a new sinusoidal gust generator mechanism concept, designed and built at the IDR/UPM. The tunnel's main characteristic is the ability to generate a flow with a uniform velocity profile and sinusoidal time fluctuation of the speed. Experimental results and theoretical model predictions are in good agreement.

  7. MiniSODAR(TradeMark) Evaluation

    NASA Technical Reports Server (NTRS)

    Short, David A.; Wheeler, Mark M.

    2003-01-01

    This report describes results of the AMU's Instrumentation and Measurement task for evaluation of the Doppler miniSODAR(TradeMark) System (DmSS). The DmSS is an acoustic wind profiler providing high resolution data to a height of approx. 410 ft. The Boeing Company installed a DmSS near Space Launch Complex 37 in mid-2002 as a substitute for a tall wind tower and plans to use DmSS data for the analysis and forecasting of winds during ground and launch operations. Peak wind speed data are of particular importance to Launch Weather Officers of the 45th Weather Squadron for evaluating user Launch Commit Criteria. The AMU performed a comparative analysis of wind data between the DmSS and nearby wind towers from August 2002 to July 2003. The DmSS vertical profile of average wind speed showed good agreement with the wind towers. However, the DMSS peak wind speeds were higher, on average, than the wind tower peak wind speeds by about 25%. A statistical model of an idealized Doppler profiler was developed and it predicted that average wind speeds would be well determined but peak wind speeds would be over-estimated due to an under-specification of vertical velocity variations in the atmosphere over the Profiler.

  8. Evaluating anemometer drift: A statistical approach to correct biases in wind speed measurement

    NASA Astrophysics Data System (ADS)

    Azorin-Molina, Cesar; Asin, Jesus; McVicar, Tim R.; Minola, Lorenzo; Lopez-Moreno, Juan I.; Vicente-Serrano, Sergio M.; Chen, Deliang

    2018-05-01

    Recent studies on observed wind variability have revealed a decline (termed "stilling") of near-surface wind speed during the last 30-50 years over many mid-latitude terrestrial regions, particularly in the Northern Hemisphere. The well-known impact of cup anemometer drift (i.e., wear on the bearings) on the observed weakening of wind speed has been mentioned as a potential contributor to the declining trend. However, to date, no research has quantified its contribution to stilling based on measurements, which is most likely due to lack of quantification of the ageing effect. In this study, a 3-year field experiment (2014-2016) with 10-minute paired wind speed measurements from one new and one malfunctioned (i.e., old bearings) SEAC SV5 cup anemometer which has been used by the Spanish Meteorological Agency in automatic weather stations since mid-1980s, was developed for assessing for the first time the role of anemometer drift on wind speed measurement. The results showed a statistical significant impact of anemometer drift on wind speed measurements, with the old anemometer measuring lower wind speeds than the new one. Biases show a marked temporal pattern and clear dependency on wind speed, with both weak and strong winds causing significant biases. This pioneering quantification of biases has allowed us to define two regression models that correct up to 37% of the artificial bias in wind speed due to measurement with an old anemometer.

  9. Estimation of turbulence intensity and shear factor for diurnal and nocturnal periods with an URANS flow solver coupled with WRF

    NASA Astrophysics Data System (ADS)

    Veiga Rodrigues, C.; Palma, J. M. L. M.

    2014-06-01

    Mesoscale results using the WRF model were downscaled from 3 km to 250 m resolution in a one-way coupling with VENTOS®/M. The results were compared against field measurements at one site comprising 4 meteorological masts, each with two sets of cup anemometers and wind vanes. The results showed that the addition of VENTOS®/M to the model chain improved the wind speed RMSE. Regarding the prediction of wind direction ambivalent results were obtained. Special attention was given to the prediction of turbulence intensity, particularly in reproducing its inverse proportionality with increasing wind speed (cf. IEC 61400-1 standard). The typical use of computational models in wind resource assessment, i.e., relying on decoupled methodologies and neutrally-stratified regimes, does not allow the representation of turbulence intensity for all wind speeds. The results obtained with VENTOS®/M were in agreement with the measured turbulence characteristics at both high and low wind speeds. Such was achieved without the coupling of any turbulence related field, relying solely on the turbulence model embedded in VENTOS®/M and its respective wall boundary conditions, based on Monin-Obukhov similarity theory. The behaviour under different stratification regimes was verified by analysing diurnal and nocturnal events separately.

  10. Lidar arc scan uncertainty reduction through scanning geometry optimization

    NASA Astrophysics Data System (ADS)

    Wang, H.; Barthelmie, R. J.; Pryor, S. C.; Brown, G.

    2015-10-01

    Doppler lidars are frequently operated in a mode referred to as arc scans, wherein the lidar beam scans across a sector with a fixed elevation angle and the resulting measurements are used to derive an estimate of the n minute horizontal mean wind velocity (speed and direction). Previous studies have shown that the uncertainty in the measured wind speed originates from turbulent wind fluctuations and depends on the scan geometry (the arc span and the arc orientation). This paper is designed to provide guidance on optimal scan geometries for two key applications in the wind energy industry: wind turbine power performance analysis and annual energy production. We present a quantitative analysis of the retrieved wind speed uncertainty derived using a theoretical model with the assumption of isotropic and frozen turbulence, and observations from three sites that are onshore with flat terrain, onshore with complex terrain and offshore, respectively. The results from both the theoretical model and observations show that the uncertainty is scaled with the turbulence intensity such that the relative standard error on the 10 min mean wind speed is about 30 % of the turbulence intensity. The uncertainty in both retrieved wind speeds and derived wind energy production estimates can be reduced by aligning lidar beams with the dominant wind direction, increasing the arc span and lowering the number of beams per arc scan. Large arc spans should be used at sites with high turbulence intensity and/or large wind direction variation when arc scans are used for wind resource assessment.

  11. Online Bayesian Learning with Natural Sequential Prior Distribution Used for Wind Speed Prediction

    NASA Astrophysics Data System (ADS)

    Cheggaga, Nawal

    2017-11-01

    Predicting wind speed is one of the most important and critic tasks in a wind farm. All approaches, which directly describe the stochastic dynamics of the meteorological data are facing problems related to the nature of its non-Gaussian statistics and the presence of seasonal effects .In this paper, Online Bayesian learning has been successfully applied to online learning for three-layer perceptron's used for wind speed prediction. First a conventional transition model based on the squared norm of the difference between the current parameter vector and the previous parameter vector has been used. We noticed that the transition model does not adequately consider the difference between the current and the previous wind speed measurement. To adequately consider this difference, we use a natural sequential prior. The proposed transition model uses a Fisher information matrix to consider the difference between the observation models more naturally. The obtained results showed a good agreement between both series, measured and predicted. The mean relative error over the whole data set is not exceeding 5 %.

  12. Determination of the geophysical model function of NSCAT and its corresponding variance by the use of neural networks

    NASA Astrophysics Data System (ADS)

    Mejia, C.; Badran, F.; Bentamy, A.; Crepon, M.; Thiria, S.; Tran, N.

    1999-05-01

    We have computed two geophysical model functions (one for the vertical and one for the horizontal polarization) for the NASA scatterometer (NSCAT) by using neural networks. These neural network geophysical model functions (NNGMFs) were estimated with NSCAT scatterometer σO measurements collocated with European Centre for Medium-Range Weather Forecasts analyzed wind vectors during the period January 15 to April 15, 1997. We performed a student t test showing that the NNGMFs estimate the NSCAT σO with a confidence level of 95%. Analysis of the results shows that the mean NSCAT signal depends on the incidence angle and the wind speed and presents the classical biharmonic modulation with respect to the wind azimuth. NSCAT σO increases with respect to the wind speed and presents a well-marked change at around 7 m s-1. The upwind-downwind amplitude is higher for the horizontal polarization signal than for vertical polarization, indicating that the use of horizontal polarization can give additional information for wind retrieval. Comparison of the σO computed by the NNGMFs against the NSCAT-measured σO show a quite low rms, except at low wind speeds. We also computed two specific neural networks for estimating the variance associated to these GMFs. The variances are analyzed with respect to geophysical parameters. This led us to compute the geophysical signal-to-noise ratio, i.e., Kp. The Kp values are quite high at low wind speed and decrease at high wind speed. At constant wind speed the highest Kp are at crosswind directions, showing that the crosswind values are the most difficult to estimate. These neural networks can be expressed as analytical functions, and FORTRAN subroutines can be provided.

  13. The effects of the variations in sea surface temperature and atmospheric stability in the estimation of average wind speed by SEASAT-SASS

    NASA Technical Reports Server (NTRS)

    Liu, W. T.

    1984-01-01

    The average wind speeds from the scatterometer (SASS) on the ocean observing satellite SEASAT are found to be generally higher than the average wind speeds from ship reports. In this study, two factors, sea surface temperature and atmospheric stability, are identified which affect microwave scatter and, therefore, wave development. The problem of relating satellite observations to a fictitious quantity, such as the neutral wind, that has to be derived from in situ observations with models is examined. The study also demonstrates the dependence of SASS winds on sea surface temperature at low wind speeds, possibly due to temperature-dependent factors, such as water viscosity, which affect wave development.

  14. Comparison of the 10x10 and the 8x6 Supersonic Wind Tunnels at the NASA Glenn Research Center for Low-Speed (Subsonic) Operation

    NASA Technical Reports Server (NTRS)

    Hoffman, Thomas R.; Johns, Albert L.; Bury, Mark E.

    2002-01-01

    NASA Glenn Research Center and Lockheed Martin tested an aircraft model in two wind tunnels to compare low-speed (subsonic) flow characteristics. Test objectives were to determine and document similarities and uniqueness of the tunnels and to verify that the 10- by 10-Foot Supersonic Wind Tunnel (10x10 SWT) is a viable low-speed test facility when compared to the 8- by 6-Foot Supersonic Wind Tunnel (8x6 SWT). Conclusions are that the data from the two facilities compares very favorably and that the 10-by 10-Foot Supersonic Wind Tunnel at NASA Glenn Research Center is a viable low-speed wind tunnel.

  15. Short time ahead wind power production forecast

    NASA Astrophysics Data System (ADS)

    Sapronova, Alla; Meissner, Catherine; Mana, Matteo

    2016-09-01

    An accurate prediction of wind power output is crucial for efficient coordination of cooperative energy production from different sources. Long-time ahead prediction (from 6 to 24 hours) of wind power for onshore parks can be achieved by using a coupled model that would bridge the mesoscale weather prediction data and computational fluid dynamics. When a forecast for shorter time horizon (less than one hour ahead) is anticipated, an accuracy of a predictive model that utilizes hourly weather data is decreasing. That is because the higher frequency fluctuations of the wind speed are lost when data is averaged over an hour. Since the wind speed can vary up to 50% in magnitude over a period of 5 minutes, the higher frequency variations of wind speed and direction have to be taken into account for an accurate short-term ahead energy production forecast. In this work a new model for wind power production forecast 5- to 30-minutes ahead is presented. The model is based on machine learning techniques and categorization approach and using the historical park production time series and hourly numerical weather forecast.

  16. Higher-than-predicted saltation threshold wind speeds on Titan.

    PubMed

    Burr, Devon M; Bridges, Nathan T; Marshall, John R; Smith, James K; White, Bruce R; Emery, Joshua P

    2015-01-01

    Titan, the largest satellite of Saturn, exhibits extensive aeolian, that is, wind-formed, dunes, features previously identified exclusively on Earth, Mars and Venus. Wind tunnel data collected under ambient and planetary-analogue conditions inform our models of aeolian processes on the terrestrial planets. However, the accuracy of these widely used formulations in predicting the threshold wind speeds required to move sand by saltation, or by short bounces, has not been tested under conditions relevant for non-terrestrial planets. Here we derive saltation threshold wind speeds under the thick-atmosphere, low-gravity and low-sediment-density conditions on Titan, using a high-pressure wind tunnel refurbished to simulate the appropriate kinematic viscosity for the near-surface atmosphere of Titan. The experimentally derived saltation threshold wind speeds are higher than those predicted by models based on terrestrial-analogue experiments, indicating the limitations of these models for such extreme conditions. The models can be reconciled with the experimental results by inclusion of the extremely low ratio of particle density to fluid density on Titan. Whereas the density ratio term enables accurate modelling of aeolian entrainment in thick atmospheres, such as those inferred for some extrasolar planets, our results also indicate that for environments with high density ratios, such as in jets on icy satellites or in tenuous atmospheres or exospheres, the correction for low-density-ratio conditions is not required.

  17. Latitudinal variation of speed and mass flux in the acceleration region of the solar wind inferred from spectral broadening measurements

    NASA Technical Reports Server (NTRS)

    Woo, Richard; Goldstein, Richard M.

    1994-01-01

    Spectral broadening measurements conducted at S-band (13-cm wavelength) during solar minimum conditions in the heliocentric distance range of 3-8 R(sub O) by Mariner 4, Pioneer 10, Mariner 10, Helios 1, Helios 2, and Viking have been combined to reveal a factor of 2.6 reduction in bandwidth from equator to pole. Since spectral broadening bandwidth depends on electron density fluctuation and solar wind speed, and latitudinal variation of the former is available from coherence bandwidth measurements, the remote sensing spectral broadening measurements provide the first determination of the latitudinal variation of solar wind speed in the acceleration region. When combined with electron density measurements deduced from white-light coronagraphs, this result also leads to the first determination of the latitudinal variation of mass flux in the acceleration region. From equator to pole, solar wind speed increases by a factor of 2.2, while mass flux decreases by a factor of 2.3. These results are consistent with measurements of solar wind speed by multi-station intensity scintillation measurements, as well as measurements of mass flux inferred from Lyman alpha observations, both of which pertain to the solar wind beyond 0.5 AU. The spectral broadening observations, therefore, strengthen earlier conclusions about the latitudinal variation of solar wind speed and mass flux, and reinforce current solar coronal models and their implications for solar wind acceleration and solar wind modeling.

  18. Maximum wind energy extraction strategies using power electronic converters

    NASA Astrophysics Data System (ADS)

    Wang, Quincy Qing

    2003-10-01

    This thesis focuses on maximum wind energy extraction strategies for achieving the highest energy output of variable speed wind turbine power generation systems. Power electronic converters and controls provide the basic platform to accomplish the research of this thesis in both hardware and software aspects. In order to send wind energy to a utility grid, a variable speed wind turbine requires a power electronic converter to convert a variable voltage variable frequency source into a fixed voltage fixed frequency supply. Generic single-phase and three-phase converter topologies, converter control methods for wind power generation, as well as the developed direct drive generator, are introduced in the thesis for establishing variable-speed wind energy conversion systems. Variable speed wind power generation system modeling and simulation are essential methods both for understanding the system behavior and for developing advanced system control strategies. Wind generation system components, including wind turbine, 1-phase IGBT inverter, 3-phase IGBT inverter, synchronous generator, and rectifier, are modeled in this thesis using MATLAB/SIMULINK. The simulation results have been verified by a commercial simulation software package, PSIM, and confirmed by field test results. Since the dynamic time constants for these individual models are much different, a creative approach has also been developed in this thesis to combine these models for entire wind power generation system simulation. An advanced maximum wind energy extraction strategy relies not only on proper system hardware design, but also on sophisticated software control algorithms. Based on literature review and computer simulation on wind turbine control algorithms, an intelligent maximum wind energy extraction control algorithm is proposed in this thesis. This algorithm has a unique on-line adaptation and optimization capability, which is able to achieve maximum wind energy conversion efficiency through continuously improving the performance of wind power generation systems. This algorithm is independent of wind power generation system characteristics, and does not need wind speed and turbine speed measurements. Therefore, it can be easily implemented into various wind energy generation systems with different turbine inertia and diverse system hardware environments. In addition to the detailed description of the proposed algorithm, computer simulation results are presented in the thesis to demonstrate the advantage of this algorithm. As a final confirmation of the algorithm feasibility, the algorithm has been implemented inside a single-phase IGBT inverter, and tested with a wind simulator system in research laboratory. Test results were found consistent with the simulation results. (Abstract shortened by UMI.)

  19. An experimental study of several wind tunnel wall configurations using two V/STOL model configurations. [low speed wind tunnels

    NASA Technical Reports Server (NTRS)

    Binion, T. W., Jr.

    1975-01-01

    Experiments were conducted in the low speed wind tunnel using two V/STOL models, a jet-flap and a jet-in-fuselage configuration, to search for a wind tunnel wall configuration to minimize wall interference on V/STOL models. Data were also obtained on the jet-flap model with a uniform slotted wall configuration to provide comparisons between theoretical and experimental wall interference. A test section configuration was found which provided some data in reasonable agreement with interference-free results over a wide range of momentum coefficients.

  20. High Resolution Wind Direction and Speed Information for Support of Fire Operations

    Treesearch

    B.W. Butler; J.M. Forthofer; M.A. Finney; L.S. Bradshaw; R. Stratton

    2006-01-01

    Computational Fluid Dynamics (CFD) technology has been used to model wind speed and direction in mountainous terrain at a relatively high resolution compared to other readily available technologies. The process termed “gridded wind” is not a forecast, but rather represents a method for calculating the influence of terrain on general wind flows. Gridded wind simulations...

  1. Drivers and seasonal predictability of extreme wind speeds in the ECMWF System 4 and a statistical model

    NASA Astrophysics Data System (ADS)

    Walz, M. A.; Donat, M.; Leckebusch, G. C.

    2017-12-01

    As extreme wind speeds are responsible for large socio-economic losses in Europe, a skillful prediction would be of great benefit for disaster prevention as well as for the actuarial community. Here we evaluate patterns of large-scale atmospheric variability and the seasonal predictability of extreme wind speeds (e.g. >95th percentile) in the European domain in the dynamical seasonal forecast system ECMWF System 4, and compare to the predictability based on a statistical prediction model. The dominant patterns of atmospheric variability show distinct differences between reanalysis and ECMWF System 4, with most patterns in System 4 extended downstream in comparison to ERA-Interim. The dissimilar manifestations of the patterns within the two models lead to substantially different drivers associated with the occurrence of extreme winds in the respective model. While the ECMWF System 4 is shown to provide some predictive power over Scandinavia and the eastern Atlantic, only very few grid cells in the European domain have significant correlations for extreme wind speeds in System 4 compared to ERA-Interim. In contrast, a statistical model predicts extreme wind speeds during boreal winter in better agreement with the observations. Our results suggest that System 4 does not seem to capture the potential predictability of extreme winds that exists in the real world, and therefore fails to provide reliable seasonal predictions for lead months 2-4. This is likely related to the unrealistic representation of large-scale patterns of atmospheric variability. Hence our study points to potential improvements of dynamical prediction skill by improving the simulation of large-scale atmospheric dynamics.

  2. Estimates of oceanic surface wind speed and direction using orthogonal beam scatterometer measurements and comparison of recent sea scattering theories

    NASA Technical Reports Server (NTRS)

    Moore, R. K.; Fung, A. K.; Dome, G. J.; Birrer, I. J.

    1978-01-01

    The wind direction properties of radar backscatter from the sea were empirically modelled using a cosine Fourier series through the 4th harmonic in wind direction (referenced to upwind). A comparison with 1975 JONSWAP (Joint North Sea Wave Project) scatterometer data, at incidence angles of 40 and 65, indicates that effects to third and fourth harmonics are negligible. Another important result is that the Fourier coefficients through the second harmonic are related to wind speed by a power law expression. A technique is also proposed to estimate the wind speed and direction over the ocean from two orthogonal scattering measurements. A comparison between two different types of sea scatter theories, one type presented by the work of Wright and the other by that of Chan and Fung, was made with recent scatterometer measurements. It demonstrates that a complete scattering model must include some provisions for the anisotropic characteristics of the sea scatter, and use a sea spectrum which depends upon wind speed.

  3. A new parameterization of an empirical model for wind/ocean scatterometry

    NASA Technical Reports Server (NTRS)

    Woiceshyn, P. M.; Wurtele, M. G.; Boggs, D. H.; Mcgoldrick, L. F.; Peteherych, S.

    1984-01-01

    The power law form of the SEASAT A Scatterometer System (SASS) empirical backscatter-to-wind model function does not uniformly meet the instrument performance over the range 4 to 24 /ms. Analysis indicates that the horizontal polarization (H-Pol) and vertical polarization (V-Pol) components of the benchmark SASS1 model function yield self-consistent results only for a small mid-range of speeds at larger incidence angles, and for a somewhat larger range of speeds at smaller incidence angles. Comparison of SASS1 to in situ data over the Gulf of Alaska region further underscores the shortcomings of the power law form. Finally, a physically based empirical SASS model is proposed which corrects some of the deficiencies of power law models like SASS1. The new model allows the mutual determination of sea surface wind stress and wind speed in a consistent manner from SASS backscatter measurements.

  4. Comparison of Speed-Up Over Hills Derived from Wind-Tunnel Experiments, Wind-Loading Standards, and Numerical Modelling

    NASA Astrophysics Data System (ADS)

    Safaei Pirooz, Amir A.; Flay, Richard G. J.

    2018-03-01

    We evaluate the accuracy of the speed-up provided in several wind-loading standards by comparison with wind-tunnel measurements and numerical predictions, which are carried out at a nominal scale of 1:500 and full-scale, respectively. Airflow over two- and three-dimensional bell-shaped hills is numerically modelled using the Reynolds-averaged Navier-Stokes method with a pressure-driven atmospheric boundary layer and three different turbulence models. Investigated in detail are the effects of grid size on the speed-up and flow separation, as well as the resulting uncertainties in the numerical simulations. Good agreement is obtained between the numerical prediction of speed-up, as well as the wake region size and location, with that according to large-eddy simulations and the wind-tunnel results. The numerical results demonstrate the ability to predict the airflow over a hill with good accuracy with considerably less computational time than for large-eddy simulation. Numerical simulations for a three-dimensional hill show that the speed-up and the wake region decrease significantly when compared with the flow over two-dimensional hills due to the secondary flow around three-dimensional hills. Different hill slopes and shapes are simulated numerically to investigate the effect of hill profile on the speed-up. In comparison with more peaked hill crests, flat-topped hills have a lower speed-up at the crest up to heights of about half the hill height, for which none of the standards gives entirely satisfactory values of speed-up. Overall, the latest versions of the National Building Code of Canada and the Australian and New Zealand Standard give the best predictions of wind speed over isolated hills.

  5. Tool for Forecasting Cool-Season Peak Winds Across Kennedy Space Center and Cape Canaveral Air Force Station (CCAFS)

    NASA Technical Reports Server (NTRS)

    Barrett, Joe H., III; Roeder, William P.

    2010-01-01

    Peak wind speed is important element in 24-Hour and Weekly Planning Forecasts issued by 45th Weather Squadron (45 WS). Forecasts issued for planning operations at KSC/CCAFS. 45 WS wind advisories issued for wind gusts greater than or equal to 25 kt. 35 kt and 50 kt from surface to 300 ft. AMU developed cool-season (Oct - Apr) tool to help 45 WS forecast: daily peak wind speed, 5-minute average speed at time of peak wind, and probability peak speed greater than or equal to 25 kt, 35 kt, 50 kt. AMU tool also forecasts daily average wind speed from 30 ft to 60 ft. Phase I and II tools delivered as a Microsoft Excel graphical user interface (GUI). Phase II tool also delivered as Meteorological Interactive Data Display System (MIDDS) GUI. Phase I and II forecast methods were compared to climatology, 45 WS wind advisories and North American Mesoscale model (MesoNAM) forecasts in a verification data set.

  6. Frequency Regulation and Oscillation Damping Contributions of Variable-Speed Wind Generators in the U.S. Eastern Interconnection (EI)

    DOE PAGES

    Liu, Yong; Gracia, Jose R,; King, Jr, Thomas J.; ...

    2014-05-16

    The U.S. Eastern Interconnection (EI) is one of the largest electric power grids in the world and is expected to have difficulties in dealing with frequency regulation and oscillation damping issues caused by the increasing wind power. On the other side, variable-speed wind generators can actively engage in frequency regulation or oscillation damping with supplementary control loops. This paper creates a 5% wind power penetration simulation scenario based on the 16 000-bus EI system dynamic model and developed the user-defined wind electrical control model in PSS (R) E that incorporates additional frequency regulation and oscillation damping control loops. We evaluatedmore » the potential contributions of variable-speed wind generations to the EI system frequency regulation and oscillation damping, and simulation results demonstrate that current and future penetrations of wind power are promising in the EI system frequency regulation and oscillation damping.« less

  7. SASS wind ambiguity removal by direct minimization. [Seasat-A satellite scatterometer

    NASA Technical Reports Server (NTRS)

    Hoffman, R. N.

    1982-01-01

    An objective analysis procedure is presented which combines Seasat-A satellite scatterometer (SASS) data with other available data on wind speeds by minimizing an objective function of gridded wind speed values. The functions are defined as the loss functions for the SASS velocity data, the forecast, the SASS velocity magnitude data, and conventional wind speed data. Only aliases closest to the analysis were included, and a method for improving the first guess while using a minimization technique and slowly changing the parameters of the problem is introduced. The model is employed to predict the wind field for the North Atlantic on Sept. 10, 1978. Dealiased SASS data is compared with available ship readings, showing good agreement between the SASS dealiased winds and the winds measured at the surface. Expansion of the model to take in low-level cloud measurements, pressure data, and convergence and cloud level data correlations is discussed.

  8. Development of a validation model for the defense meteorological satellite program's special sensor microwave imager

    NASA Technical Reports Server (NTRS)

    Swift, C. T.; Goodberlet, M. A.; Wilkerson, J. C.

    1990-01-01

    The Defence Meteorological Space Program's (DMSP) Special Sensor Microwave/Imager (SSM/I), an operational wind speed algorithm was developed. The algorithm is based on the D-matrix approach which seeks a linear relationship between measured SSM/I brightness temperatures and environmental parameters. D-matrix performance was validated by comparing algorithm derived wind speeds with near-simultaneous and co-located measurements made by off-shore ocean buoys. Other topics include error budget modeling, alternate wind speed algorithms, and D-matrix performance with one or more inoperative SSM/I channels.

  9. Slotted-wall research with disk and parachute models in a low-speed wind tunnel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Macha, J.M.; Buffington, R.J.; Henfling, J.L.

    1990-01-01

    An experimental investigation of slotted-wall blockage interference has been conducted using disk and parachute models in a low speed wind tunnel. Test section open area ratio, model geometric blockage ratio, and model location along the length of the test section were systematically varied. Resulting drag coefficients were compared to each other and to interference-free measurements obtained in a much larger wind tunnel where the geometric blockage ratio was less than 0.0025. 9 refs., 10 figs.

  10. Lidar arc scan uncertainty reduction through scanning geometry optimization

    NASA Astrophysics Data System (ADS)

    Wang, Hui; Barthelmie, Rebecca J.; Pryor, Sara C.; Brown, Gareth.

    2016-04-01

    Doppler lidars are frequently operated in a mode referred to as arc scans, wherein the lidar beam scans across a sector with a fixed elevation angle and the resulting measurements are used to derive an estimate of the n minute horizontal mean wind velocity (speed and direction). Previous studies have shown that the uncertainty in the measured wind speed originates from turbulent wind fluctuations and depends on the scan geometry (the arc span and the arc orientation). This paper is designed to provide guidance on optimal scan geometries for two key applications in the wind energy industry: wind turbine power performance analysis and annual energy production prediction. We present a quantitative analysis of the retrieved wind speed uncertainty derived using a theoretical model with the assumption of isotropic and frozen turbulence, and observations from three sites that are onshore with flat terrain, onshore with complex terrain and offshore, respectively. The results from both the theoretical model and observations show that the uncertainty is scaled with the turbulence intensity such that the relative standard error on the 10 min mean wind speed is about 30 % of the turbulence intensity. The uncertainty in both retrieved wind speeds and derived wind energy production estimates can be reduced by aligning lidar beams with the dominant wind direction, increasing the arc span and lowering the number of beams per arc scan. Large arc spans should be used at sites with high turbulence intensity and/or large wind direction variation.

  11. Numerical simulations of flow fields through conventionally controlled wind turbines & wind farms

    NASA Astrophysics Data System (ADS)

    Emre Yilmaz, Ali; Meyers, Johan

    2014-06-01

    In the current study, an Actuator-Line Model (ALM) is implemented in our in-house pseudo-spectral LES solver SP-WIND, including a turbine controller. Below rated wind speed, turbines are controlled by a standard-torque-controller aiming at maximum power extraction from the wind. Above rated wind speed, the extracted power is limited by a blade pitch controller which is based on a proportional-integral type control algorithm. This model is used to perform a series of single turbine and wind farm simulations using the NREL 5MW turbine. First of all, we focus on below-rated wind speed, and investigate the effect of the farm layout on the controller calibration curves. These calibration curves are expressed in terms of nondimensional torque and rotational speed, using the mean turbine-disk velocity as reference. We show that this normalization leads to calibration curves that are independent of wind speed, but the calibration curves do depend on the farm layout, in particular for tightly spaced farms. Compared to turbines in a lone-standing set-up, turbines in a farm experience a different wind distribution over the rotor due to the farm boundary-layer interaction. We demonstrate this for fully developed wind-farm boundary layers with aligned turbine arrangements at different spacings (5D, 7D, 9D). Further we also compare calibration curves obtained from full farm simulations with calibration curves that can be obtained at a much lower cost using a minimal flow unit.

  12. Airloads Correlation of the UH-60A Rotor Inside the 40- by 80-Foot Wind Tunnel

    NASA Technical Reports Server (NTRS)

    Chang, I-Chung; Norman, Thomas R.; Romander, Ethan A.

    2013-01-01

    The presented research validates the capability of a loosely-coupled computational fluid dynamics (CFD) and comprehensive rotorcraft analysis (CRA) code to calculate the flowfield around a rotor and test stand mounted inside a wind tunnel. The CFD/CRA predictions for the full-scale UH-60A Airloads Rotor inside the National Full-Scale Aerodynamics Complex (NFAC) 40- by 80-Foot Wind Tunnel at NASA Ames Research Center are compared with the latest measured airloads and performance data. The studied conditions include a speed sweep at constant lift up to an advance ratio of 0.4 and a thrust sweep at constant speed up to and including stall. For the speed sweep, wind tunnel modeling becomes important at advance ratios greater than 0.37 and test stand modeling becomes increasingly important as the advance ratio increases. For the thrust sweep, both the wind tunnel and test stand modeling become important as the rotor approaches stall. Despite the beneficial effects of modeling the wind tunnel and test stand, the new models do not completely resolve the current airload discrepancies between prediction and experiment.

  13. Robust multi-model control of an autonomous wind power system

    NASA Astrophysics Data System (ADS)

    Cutululis, Nicolas Antonio; Ceanga, Emil; Hansen, Anca Daniela; Sørensen, Poul

    2006-09-01

    This article presents a robust multi-model control structure for a wind power system that uses a variable speed wind turbine (VSWT) driving a permanent magnet synchronous generator (PMSG) connected to a local grid. The control problem consists in maximizing the energy captured from the wind for varying wind speeds. The VSWT-PMSG linearized model analysis reveals the resonant nature of its dynamic at points on the optimal regimes characteristic (ORC). The natural frequency of the system and the damping factor are strongly dependent on the operating point on the ORC. Under these circumstances a robust multi-model control structure is designed. The simulation results prove the viability of the proposed control structure. Copyright

  14. Evaluating wind extremes in CMIP5 climate models

    NASA Astrophysics Data System (ADS)

    Kumar, Devashish; Mishra, Vimal; Ganguly, Auroop R.

    2015-07-01

    Wind extremes have consequences for renewable energy sectors, critical infrastructures, coastal ecosystems, and insurance industry. Considerable debates remain regarding the impacts of climate change on wind extremes. While climate models have occasionally shown increases in regional wind extremes, a decline in the magnitude of mean and extreme near-surface wind speeds has been recently reported over most regions of the Northern Hemisphere using observed data. Previous studies of wind extremes under climate change have focused on selected regions and employed outputs from the regional climate models (RCMs). However, RCMs ultimately rely on the outputs of global circulation models (GCMs), and the value-addition from the former over the latter has been questioned. Regional model runs rarely employ the full suite of GCM ensembles, and hence may not be able to encapsulate the most likely projections or their variability. Here we evaluate the performance of the latest generation of GCMs, the Coupled Model Intercomparison Project phase 5 (CMIP5), in simulating extreme winds. We find that the multimodel ensemble (MME) mean captures the spatial variability of annual maximum wind speeds over most regions except over the mountainous terrains. However, the historical temporal trends in annual maximum wind speeds for the reanalysis data, ERA-Interim, are not well represented in the GCMs. The historical trends in extreme winds from GCMs are statistically not significant over most regions. The MME model simulates the spatial patterns of extreme winds for 25-100 year return periods. The projected extreme winds from GCMs exhibit statistically less significant trends compared to the historical reference period.

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Belu, Radian; Koracin, Darko

    The main objective of the study was to investigate spatial and temporal characteristics of the wind speed and direction in complex terrain that are relevant to wind energy assessment and development, as well as to wind energy system operation, management, and grid integration. Wind data from five tall meteorological towers located in Western Nevada, USA, operated from August 2003 to March 2008, used in the analysis. The multiannual average wind speeds did not show significant increased trend with increasing elevation, while the turbulence intensity slowly decreased with an increase were the average wind speed. The wind speed and direction weremore » modeled using the Weibull and the von Mises distribution functions. The correlations show a strong coherence between the wind speed and direction with slowly decreasing amplitude of the multiday periodicity with increasing lag periods. The spectral analysis shows significant annual periodicity with similar characteristics at all locations. The relatively high correlations between the towers and small range of the computed turbulence intensity indicate that wind variability is dominated by the regional synoptic processes. Knowledge and information about daily, seasonal, and annual wind periodicities are very important for wind energy resource assessment, wind power plant operation, management, and grid integration.« less

  16. Initializing a Mesoscale Boundary-Layer Model with Radiosonde Observations

    NASA Astrophysics Data System (ADS)

    Berri, Guillermo J.; Bertossa, Germán

    2018-01-01

    A mesoscale boundary-layer model is used to simulate low-level regional wind fields over the La Plata River of South America, a region characterized by a strong daily cycle of land-river surface-temperature contrast and low-level circulations of sea-land breeze type. The initial and boundary conditions are defined from a limited number of local observations and the upper boundary condition is taken from the only radiosonde observations available in the region. The study considers 14 different upper boundary conditions defined from the radiosonde data at standard levels, significant levels, level of the inversion base and interpolated levels at fixed heights, all of them within the first 1500 m. The period of analysis is 1994-2008 during which eight daily observations from 13 weather stations of the region are used to validate the 24-h surface-wind forecast. The model errors are defined as the root-mean-square of relative error in wind-direction frequency distribution and mean wind speed per wind sector. Wind-direction errors are greater than wind-speed errors and show significant dispersion among the different upper boundary conditions, not present in wind speed, revealing a sensitivity to the initialization method. The wind-direction errors show a well-defined daily cycle, not evident in wind speed, with the minimum at noon and the maximum at dusk, but no systematic deterioration with time. The errors grow with the height of the upper boundary condition level, in particular wind direction, and double the errors obtained when the upper boundary condition is defined from the lower levels. The conclusion is that defining the model upper boundary condition from radiosonde data closer to the ground minimizes the low-level wind-field errors throughout the region.

  17. A Lyapunov based approach to energy maximization in renewable energy technologies

    NASA Astrophysics Data System (ADS)

    Iyasere, Erhun

    This dissertation describes the design and implementation of Lyapunov-based control strategies for the maximization of the power captured by renewable energy harnessing technologies such as (i) a variable speed, variable pitch wind turbine, (ii) a variable speed wind turbine coupled to a doubly fed induction generator, and (iii) a solar power generating system charging a constant voltage battery. First, a torque control strategy is presented to maximize wind energy captured in variable speed, variable pitch wind turbines at low to medium wind speeds. The proposed strategy applies control torque to the wind turbine pitch and rotor subsystems to simultaneously control the blade pitch and tip speed ratio, via the rotor angular speed, to an optimum point at which the capture efficiency is maximum. The control method allows for aerodynamic rotor power maximization without exact knowledge of the wind turbine model. A series of numerical results show that the wind turbine can be controlled to achieve maximum energy capture. Next, a control strategy is proposed to maximize the wind energy captured in a variable speed wind turbine, with an internal induction generator, at low to medium wind speeds. The proposed strategy controls the tip speed ratio, via the rotor angular speed, to an optimum point at which the efficiency constant (or power coefficient) is maximal for a particular blade pitch angle and wind speed by using the generator rotor voltage as a control input. This control method allows for aerodynamic rotor power maximization without exact wind turbine model knowledge. Representative numerical results demonstrate that the wind turbine can be controlled to achieve near maximum energy capture. Finally, a power system consisting of a photovoltaic (PV) array panel, dc-to-dc switching converter, charging a battery is considered wherein the environmental conditions are time-varying. A backstepping PWM controller is developed to maximize the power of the solar generating system. The controller tracks a desired array voltage, designed online using an incremental conductance extremum-seeking algorithm, by varying the duty cycle of the switching converter. The stability of the control algorithm is demonstrated by means of Lyapunov analysis. Representative numerical results demonstrate that the grid power system can be controlled to track the maximum power point of the photovoltaic array panel in varying atmospheric conditions. Additionally, the performance of the proposed strategy is compared to the typical maximum power point tracking (MPPT) method of perturb and observe (P&O), where the converter dynamics are ignored, and is shown to yield better results.

  18. Modelling soil dust aerosol in the Bodélé depression during the BoDEx campaign

    NASA Astrophysics Data System (ADS)

    Tegen, I.; Heinold, B.; Todd, M.; Helmert, J.; Washington, R.; Dubovik, O.

    2006-05-01

    We present regional model simulations of the dust emission events during the Bodélé Dust Experiment (BoDEx) that was carried out in February and March 2005 in Chad. A box model version of the dust emission model is used to test different input parameters for the emission model, and to compare the dust emissions computed with observed wind speeds to those calculated with wind speeds from the regional model simulation. While field observations indicate that dust production occurs via self-abrasion of saltating diatomite flakes in the Bodélé, the emission model based on the assumption of dust production by saltation and using observed surface wind speeds as input parameters reproduces observed dust optical thicknesses well. Although the peak wind speeds in the regional model underestimate the highest wind speeds occurring on 10-12 March 2005, the spatio-temporal evolution of the dust cloud can be reasonably well reproduced by this model. Dust aerosol interacts with solar and thermal radiation in the regional model; it is responsible for a decrease in maximum daytime temperatures by about 5 K at the beginning the dust storm on 10 March 2005. This direct radiative effect of dust aerosol accounts for about half of the measured temperature decrease compared to conditions on 8 March. Results from a global dust model suggest that the dust from the Bodélé is an important contributor to dust crossing the African Savannah region towards the Gulf of Guinea and the equatorial Atlantic, where it can contribute up to 40% to the dust optical thickness.

  19. Modelling soil dust aerosol in the Bodélé depression during the BoDEx campaign

    NASA Astrophysics Data System (ADS)

    Tegen, I.; Heinold, B.; Todd, M.; Helmert, J.; Washington, R.; Dubovik, O.

    2006-09-01

    We present regional model simulations of the dust emission events during the Bodélé Dust Experiment (BoDEx) that was carried out in February and March 2005 in Chad. A box model version of the dust emission model is used to test different input parameters for the emission model, and to compare the dust emissions computed with observed wind speeds to those calculated with wind speeds from the regional model simulation. While field observations indicate that dust production occurs via self-abrasion of saltating diatomite flakes in the Bodélé, the emission model based on the assumption of dust production by saltation and using observed surface wind speeds as input parameters reproduces observed dust optical thicknesses well. Although the peak wind speeds in the regional model underestimate the highest wind speeds occurring on 10-12 March 2005, the spatio-temporal evolution of the dust cloud can be reasonably well reproduced by this model. Dust aerosol interacts with solar and thermal radiation in the regional model; it is responsible for a decrease in maximum daytime temperatures by about 5 K at the beginning the dust storm on 10 March 2005. This direct radiative effect of dust aerosol accounts for about half of the measured temperature decrease compared to conditions on 8 March. Results from a global dust model suggest that the dust from the Bodélé is an important contributor to dust crossing the African Savannah region towards the Gulf of Guinea and the equatorial Atlantic, where it can contribute up to 40% to the dust optical thickness.

  20. Estimation of wind stress using dual-frequency TOPEX data

    NASA Astrophysics Data System (ADS)

    Elfouhaily, Tanos; Vandemark, Douglas; Gourrion, Jéro‸me; Chapron, Bertrand

    1998-10-01

    The TOPEX/POSEIDON satellite carries the first dual-frequency radar altimeter. Monofrequency (Ku-band) algorithms are presently used to retrieve surface wind speed from the altimeter's radar cross-section measurement (σ0Ku). These algorithms work reasonably well, but it is also known that altimeter wind estimates can be contaminated by residual effects, such as sea state, embedded in the σ0Ku measurement. Investigating the potential benefit of using two frequencies for wind retrieval, it is shown that a simple evaluation of TOPEX data yields previously unavailable information, particularly for high and low wind speeds. As the wind speed increases, the dual-frequency data provides a measurement more directly linked to the short-scale surface roughness, which in turn is associated with the local surface wind stress. Using a global TOPEX σ0° data set and TOPEX's significant wave height (Hs) estimate as a surrogate for the sea state's degree of development, it is also shown that differences between the two TOPEX σ0 measurements strongly evidence nonlocal sea state signature. A composite scattering theory is used to show how the dual-frequency data can provide an improved friction velocity model, especially for winds above 7 m/s. A wind speed conversion is included using a sea state dependent drag coefficient fed with TOPEX Hs data. Two colocated TOPEX-buoy data sets (from the National Data Buoy Center (NDBC) and the Structure des Echanges Mer-Atmosphre, Proprietes des Heterogeneites Oceaniques: Recherche Expérimentale (SEMAPHORE) campaign) are employed to test the new wind speed algorithm. A measurable improvement in wind speed estimation is obtained when compared to the monofrequency Witter and Chelton [1991] model.

  1. Process model for ammonia volatilization from anaerobic swine lagoons incorporating varying wind speeds and biogas bubbling

    USDA-ARS?s Scientific Manuscript database

    Ammonia volatilization from treatment lagoons varies widely with the total ammonia concentration, pH, temperature, suspended solids, atmospheric ammonia concentration above the water surface, and wind speed. Ammonia emissions were estimated with a process-based mechanistic model integrating ammonia ...

  2. Use of the Azimuth Wavelength Cut-Off to Retrieve the Sea Surface Wind Speed from Sentinel 1 and COSMO-SkyMed SAR Data

    NASA Astrophysics Data System (ADS)

    Grieco, G.; Nirchio, F.; Montuori, A.; Migliaccio, M.; Lin, W.; Portabella, M.

    2016-08-01

    The dependency of the azimuth wavelength cut-off on the wind speed has been studied through a dataset of Sentinel-1 multi look SAR images co-located with wind speed measurements, significant wave height and mean wave direction from ECMWF operational output.A Geophysical Model Function (GMF) has been fitted and a retrieval exercise has been done comparing the results to a set of independent wind speed scatterometer measurements of the Chinese mission HY-2A. The preliminary results show that the dependency of the azimuth cut-off on the wind speed is linear only for fully developed sea states and that the agreement between the retrieved values and the measurements is good especially for high wind speed.A similar approach has been used to assess the dependency of the azimuth cut-off also for X-band COSMO-SkyMed data. The dataset is still incomplete but the preliminary results show a similar trend.

  3. Modeling wind energy potential in a data-poor region: A geographic information systems model for Iraq

    NASA Astrophysics Data System (ADS)

    Khayyat, Abdulkareem Hawta Abdullah Kak Ahmed

    Scope and Method of Study: Most developing countries, including Iraq, have very poor wind data. Existing wind speed measurements of poor quality may therefore be a poor guide to where to look for the best wind resources. The main focus of this study is to examine how effectively a GIS spatial model estimates wind power potential in regions where high-quality wind data are very scarce, such as Iraq. The research used a mixture of monthly and hourly wind data from 39 meteorological stations. The study applied spatial analysis statistics and GIS techniques in modeling wind power potential. The model weighted important human, environmental and geographic factors that impact wind turbine siting, such as roughness length, land use⪉nd cover type, airport locations, road access, transmission lines, slope and aspect. Findings and Conclusions: The GIS model provided estimations for wind speed and wind power density and identified suitable areas for wind power projects. Using a high resolution (30*30m) digital elevation model DEM improved the GIS wind suitability model. The model identified areas suitable for wind farm development on different scales. The model showed that there are many locations available for large-scale wind turbines in the southern part of Iraq. Additionally, there are many places in central and northern parts (Kurdistan Region) for smaller scale wind turbine placement.

  4. Statistical and Spectral Analysis of Wind Characteristics Relevant to Wind Energy Assessment Using Tower Measurements in Complex Terrain

    DOE PAGES

    Belu, Radian; Koracin, Darko

    2013-01-01

    The main objective of the study was to investigate spatial and temporal characteristics of the wind speed and direction in complex terrain that are relevant to wind energy assessment and development, as well as to wind energy system operation, management, and grid integration. Wind data from five tall meteorological towers located in Western Nevada, USA, operated from August 2003 to March 2008, used in the analysis. The multiannual average wind speeds did not show significant increased trend with increasing elevation, while the turbulence intensity slowly decreased with an increase were the average wind speed. The wind speed and direction weremore » modeled using the Weibull and the von Mises distribution functions. The correlations show a strong coherence between the wind speed and direction with slowly decreasing amplitude of the multiday periodicity with increasing lag periods. The spectral analysis shows significant annual periodicity with similar characteristics at all locations. The relatively high correlations between the towers and small range of the computed turbulence intensity indicate that wind variability is dominated by the regional synoptic processes. Knowledge and information about daily, seasonal, and annual wind periodicities are very important for wind energy resource assessment, wind power plant operation, management, and grid integration.« less

  5. Influence of Wind Speed on RGB-D Images in Tree Plantations

    PubMed Central

    Andújar, Dionisio; Dorado, José; Bengochea-Guevara, José María; Conesa-Muñoz, Jesús; Fernández-Quintanilla, César; Ribeiro, Ángela

    2017-01-01

    Weather conditions can affect sensors’ readings when sampling outdoors. Although sensors are usually set up covering a wide range of conditions, their operational range must be established. In recent years, depth cameras have been shown as a promising tool for plant phenotyping and other related uses. However, the use of these devices is still challenged by prevailing field conditions. Although the influence of lighting conditions on the performance of these cameras has already been established, the effect of wind is still unknown. This study establishes the associated errors when modeling some tree characteristics at different wind speeds. A system using a Kinect v2 sensor and a custom software was tested from null wind speed up to 10 m·s−1. Two tree species with contrasting architecture, poplars and plums, were used as model plants. The results showed different responses depending on tree species and wind speed. Estimations of Leaf Area (LA) and tree volume were generally more consistent at high wind speeds in plum trees. Poplars were particularly affected by wind speeds higher than 5 m·s−1. On the contrary, height measurements were more consistent for poplars than for plum trees. These results show that the use of depth cameras for tree characterization must take into consideration wind conditions in the field. In general, 5 m·s−1 (18 km·h−1) could be established as a conservative limit for good estimations. PMID:28430119

  6. Coronal hole evolution from multi-viewpoint data as input for a STEREO solar wind speed persistence model

    NASA Astrophysics Data System (ADS)

    Temmer, Manuela; Hinterreiter, Jürgen; Reiss, Martin A.

    2018-03-01

    We present a concept study of a solar wind forecasting method for Earth, based on persistence modeling from STEREO in situ measurements combined with multi-viewpoint EUV observational data. By comparing the fractional areas of coronal holes (CHs) extracted from EUV data of STEREO and SoHO/SDO, we perform an uncertainty assessment derived from changes in the CHs and apply those changes to the predicted solar wind speed profile at 1 AU. We evaluate the method for the time period 2008-2012, and compare the results to a persistence model based on ACE in situ measurements and to the STEREO persistence model without implementing the information on CH evolution. Compared to an ACE based persistence model, the performance of the STEREO persistence model which takes into account the evolution of CHs, is able to increase the number of correctly predicted high-speed streams by about 12%, and to decrease the number of missed streams by about 23%, and the number of false alarms by about 19%. However, the added information on CH evolution is not able to deliver more accurate speed values for the forecast than using the STEREO persistence model without CH information which performs better than an ACE based persistence model. Investigating the CH evolution between STEREO and Earth view for varying separation angles over ˜25-140° East of Earth, we derive some relation between expanding CHs and increasing solar wind speed, but a less clear relation for decaying CHs and decreasing solar wind speed. This fact most likely prevents the method from making more precise forecasts. The obtained results support a future L5 mission and show the importance and valuable contribution using multi-viewpoint data.

  7. Evaluation of different inertial control methods for variable-speed wind turbines simulated by fatigue, aerodynamic, structures and turbulence (FAST)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Xiao; Gao, Wenzhong; Scholbrock, Andrew

    To mitigate the degraded power system inertia and undesirable primary frequency response caused by large-scale wind power integration, the frequency support capabilities of variable-speed wind turbines is studied in this work. This is made possible by controlled inertial response, which is demonstrated on a research turbine - controls advanced research turbine, 3-bladed (CART3). Two distinct inertial control (IC) methods are analysed in terms of their impacts on the grids and the response of the turbine itself. The released kinetic energy in the IC methods are determined by the frequency measurement or shaped active power reference in the turbine speed-power plane.more » The wind turbine model is based on the high-fidelity turbine simulator fatigue, aerodynamic, structures and turbulence, which constitutes the aggregated wind power plant model with the simplified power converter model. The IC methods are implemented over the baseline CART3 controller, evaluated in the modified 9-bus and 14-bus testing power grids considering different wind speeds and different wind power penetration levels. The simulation results provide various insights on designing such kinds of ICs. The authors calculate the short-term dynamic equivalent loads and give a discussion about the turbine structural loadings related to the inertial response.« less

  8. Control of variable speed variable pitch wind turbine based on a disturbance observer

    NASA Astrophysics Data System (ADS)

    Ren, Haijun; Lei, Xin

    2017-11-01

    In this paper, a novel sliding mode controller based on disturbance observer (DOB) to optimize the efficiency of variable speed variable pitch (VSVP) wind turbine is developed and analyzed. Due to the highly nonlinearity of the VSVP system, the model is linearly processed to obtain the state space model of the system. Then, a conventional sliding mode controller is designed and a DOB is added to estimate wind speed. The proposed control strategy can successfully deal with the random nature of wind speed, the nonlinearity of VSVP system, the uncertainty of parameters and external disturbance. Via adding the observer to the sliding mode controller, it can greatly reduce the chattering produced by the sliding mode switching gain. The simulation results show that the proposed control system has the effectiveness and robustness.

  9. Power maximization of variable-speed variable-pitch wind turbines using passive adaptive neural fault tolerant control

    NASA Astrophysics Data System (ADS)

    Habibi, Hamed; Rahimi Nohooji, Hamed; Howard, Ian

    2017-09-01

    Power maximization has always been a practical consideration in wind turbines. The question of how to address optimal power capture, especially when the system dynamics are nonlinear and the actuators are subject to unknown faults, is significant. This paper studies the control methodology for variable-speed variable-pitch wind turbines including the effects of uncertain nonlinear dynamics, system fault uncertainties, and unknown external disturbances. The nonlinear model of the wind turbine is presented, and the problem of maximizing extracted energy is formulated by designing the optimal desired states. With the known system, a model-based nonlinear controller is designed; then, to handle uncertainties, the unknown nonlinearities of the wind turbine are estimated by utilizing radial basis function neural networks. The adaptive neural fault tolerant control is designed passively to be robust on model uncertainties, disturbances including wind speed and model noises, and completely unknown actuator faults including generator torque and pitch actuator torque. The Lyapunov direct method is employed to prove that the closed-loop system is uniformly bounded. Simulation studies are performed to verify the effectiveness of the proposed method.

  10. Wind Resource Assessment of Gujarat (India)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Draxl, C.; Purkayastha, A.; Parker, Z.

    India is one of the largest wind energy markets in the world. In 1986 Gujarat was the first Indian state to install a wind power project. In February 2013, the installed wind capacity in Gujarat was 3,093 MW. Due to the uncertainty around existing wind energy assessments in India, this analysis uses the Weather Research and Forecasting (WRF) model to simulate the wind at current hub heights for one year to provide more precise estimates of wind resources in Gujarat. The WRF model allows for accurate simulations of winds near the surface and at heights important for wind energy purposes.more » While previous resource assessments published wind power density, we focus on average wind speeds, which can be converted to wind power densities by the user with methods of their choice. The wind resource estimates in this study show regions with average annual wind speeds of more than 8 m/s.« less

  11. CFD modelling of nocturnal low-level jet effects on wind energy related variables

    NASA Astrophysics Data System (ADS)

    Sogachev, Andrey; Mann, Jakob; Dellwik, Ebba; Ejsing Jørgensen, Hans

    2010-05-01

    The development of a wind speed maximum in the nocturnal boundary layer, referred to as a low-level jet (LLJ), is a common feature of the vertical structure of the atmospheric boundary layer (ABL). Characterizing and understanding LLJ streams is growing in importance as wind turbines are being built larger and taller to take advantage of higher wind speeds at increased heights. We used a computational fluid dynamics (CFD) model to explore LLJs effect on wind speed, wind directional and speed shear inside the surface layer 40 - 130 m, where their physical measurements are not trivial and still rare today. We used the one-dimensional version of the ABL model SCADIS (Sogachev et al. 2002: Tellus 54:784-819). The unique feature of the model, based on a two-equation closure approach, is the treatment of buoyancy effects in a universal way, which overcomes the uncertainties with model coefficients for non-shear source/sink terms (Sogachev, 2009: Boundary Layer Meteor. 130:423-435). From a variety of mechanisms suggested for formation of LLJs, such as inertial oscillations, baroclinicity over sloping terrain, and land-sea breeze effects, the one-dimensional ABL model is capable of simulating only the first one. However, that mechanism, which is caused by the diurnal oscillation of eddy viscosity, is often responsible for jet formation. Sensitivity tests carried out showed that SCADIS captures the most prominent features of the LLJ, including its vertical structure as well as its diurnal phase and amplitude. We simulated ABL pattern under conditions typical for LLJ formation (a fair day on July 1, a flat low-roughness underlying surface) at 30 and 50o latitudes. Diurnal variability of wind speed and turbulence intensity at four levels of 40, 70, 100 and 130 m above ground and of wind and directional shear between those levels were analysed. Despite of small differences in LLJ structure the properties of LLJ important for wind energy production are still common for two latitudes. Along with the wind speed increase in night time the turbulence intensity decreases and, as it was confirmed by many experiments, are insignificant in comparison with midday values (both factors are favourable for wind production). However, wind and directional shear across the entire layer occupied by hypothetical wind turbine rotors (between 40 - 130 m) provide different wind conditions above and below the turbine hub. For example, the shear exponent was higher than 0.65 during most part of night (below 0.08 at midday) and direction shear was sometimes higher than 0.3 degree per meter (about 0 at midday). Most extreme values of both parameters occurred at dawn when turbulence starts to develop. This creates large amounts of stress on the turbines, causing difficulties in their operation and fatigue issues over time. The model will have to be coupled to an aeroelastic model to be able to predict quantatively the consequences for power production and dynamic loads on wind turbines.

  12. Statistical Compression of Wind Speed Data

    NASA Astrophysics Data System (ADS)

    Tagle, F.; Castruccio, S.; Crippa, P.; Genton, M.

    2017-12-01

    In this work we introduce a lossy compression approach that utilizes a stochastic wind generator based on a non-Gaussian distribution to reproduce the internal climate variability of daily wind speed as represented by the CESM Large Ensemble over Saudi Arabia. Stochastic wind generators, and stochastic weather generators more generally, are statistical models that aim to match certain statistical properties of the data on which they are trained. They have been used extensively in applications ranging from agricultural models to climate impact studies. In this novel context, the parameters of the fitted model can be interpreted as encoding the information contained in the original uncompressed data. The statistical model is fit to only 3 of the 30 ensemble members and it adequately captures the variability of the ensemble in terms of seasonal internannual variability of daily wind speed. To deal with such a large spatial domain, it is partitioned into 9 region, and the model is fit independently to each of these. We further discuss a recent refinement of the model, which relaxes this assumption of regional independence, by introducing a large-scale component that interacts with the fine-scale regional effects.

  13. Application of computational fluid dynamics (CFD) simulation in a vertical axis wind turbine (VAWT) system

    NASA Astrophysics Data System (ADS)

    Kao, Jui-Hsiang; Tseng, Po-Yuan

    2018-01-01

    The objective of this paper is to describe the application of CFD (Computational fluid dynamics) technology in the matching of turbine blades and generator to increase the efficiency of a vertical axis wind turbine (VAWT). A VAWT is treated as the study case here. The SST (Shear-Stress Transport) k-ω turbulence model with SIMPLE algorithm method in transient state is applied to solve the T (torque)-N (r/min) curves of the turbine blades at different wind speed. The T-N curves of the generator at different CV (constant voltage) model are measured. Thus, the T-N curves of the turbine blades at different wind speed can be matched by the T-N curves of the generator at different CV model to find the optimal CV model. As the optimal CV mode is selected, the characteristics of the operating points, such as tip speed ratio, revolutions per minute, blade torque, and efficiency, can be identified. The results show that, if the two systems are matched well, the final output power at a high wind speed of 9-10 m/s will be increased by 15%.

  14. Research and analysis on response characteristics of bracket-line coupling system under wind load

    NASA Astrophysics Data System (ADS)

    Jiayu, Zhao; Qing, Sun

    2018-01-01

    In this paper, a three-dimensional finite element model of bracket-line coupling system is established based on ANSYS software. Using the wind velocity time series which is generated by MATLAB as a power input, by comparing and analyzing the influence of different wind speeds and different wind attack angles, it is found that when 0 degree wind acts on the structure, wires have a certain damping effect in the bracket-line coupling system and at the same wind speed, the 90 degree direction is the most unfavorable wind direction for the whole structure according to the three kinds of angle wind calculated at present. In the bracket-line coupling system, the bracket structure is more sensitive to the increase of wind speed while the conductors are more sensitive to the change of wind attack angle.

  15. Lidar arc scan uncertainty reduction through scanning geometry optimization

    DOE PAGES

    Wang, Hui; Barthelmie, Rebecca J.; Pryor, Sara C.; ...

    2016-04-13

    Doppler lidars are frequently operated in a mode referred to as arc scans, wherein the lidar beam scans across a sector with a fixed elevation angle and the resulting measurements are used to derive an estimate of the n minute horizontal mean wind velocity (speed and direction). Previous studies have shown that the uncertainty in the measured wind speed originates from turbulent wind fluctuations and depends on the scan geometry (the arc span and the arc orientation). This paper is designed to provide guidance on optimal scan geometries for two key applications in the wind energy industry: wind turbine power performance analysis and annualmore » energy production prediction. We present a quantitative analysis of the retrieved wind speed uncertainty derived using a theoretical model with the assumption of isotropic and frozen turbulence, and observations from three sites that are onshore with flat terrain, onshore with complex terrain and offshore, respectively. The results from both the theoretical model and observations show that the uncertainty is scaled with the turbulence intensity such that the relative standard error on the 10 min mean wind speed is about 30% of the turbulence intensity. The uncertainty in both retrieved wind speeds and derived wind energy production estimates can be reduced by aligning lidar beams with the dominant wind direction, increasing the arc span and lowering the number of beams per arc scan. As a result, large arc spans should be used at sites with high turbulence intensity and/or large wind direction variation.« less

  16. Lidar arc scan uncertainty reduction through scanning geometry optimization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Hui; Barthelmie, Rebecca J.; Pryor, Sara C.

    Doppler lidars are frequently operated in a mode referred to as arc scans, wherein the lidar beam scans across a sector with a fixed elevation angle and the resulting measurements are used to derive an estimate of the n minute horizontal mean wind velocity (speed and direction). Previous studies have shown that the uncertainty in the measured wind speed originates from turbulent wind fluctuations and depends on the scan geometry (the arc span and the arc orientation). This paper is designed to provide guidance on optimal scan geometries for two key applications in the wind energy industry: wind turbine power performance analysis and annualmore » energy production prediction. We present a quantitative analysis of the retrieved wind speed uncertainty derived using a theoretical model with the assumption of isotropic and frozen turbulence, and observations from three sites that are onshore with flat terrain, onshore with complex terrain and offshore, respectively. The results from both the theoretical model and observations show that the uncertainty is scaled with the turbulence intensity such that the relative standard error on the 10 min mean wind speed is about 30% of the turbulence intensity. The uncertainty in both retrieved wind speeds and derived wind energy production estimates can be reduced by aligning lidar beams with the dominant wind direction, increasing the arc span and lowering the number of beams per arc scan. As a result, large arc spans should be used at sites with high turbulence intensity and/or large wind direction variation.« less

  17. Smart pitch control strategy for wind generation system using doubly fed induction generator

    NASA Astrophysics Data System (ADS)

    Raza, Syed Ahmed

    A smart pitch control strategy for a variable speed doubly fed wind generation system is presented in this thesis. A complete dynamic model of DFIG system is developed. The model consists of the generator, wind turbine, aerodynamic and the converter system. The strategy proposed includes the use of adaptive neural network to generate optimized controller gains for pitch control. This involves the generation of controller parameters of pitch controller making use of differential evolution intelligent technique. Training of the back propagation neural network has been carried out for the development of an adaptive neural network. This tunes the weights of the network according to the system states in a variable wind speed environment. Four cases have been taken to test the pitch controller which includes step and sinusoidal changes in wind speeds. The step change is composed of both step up and step down changes in wind speeds. The last case makes use of scaled wind data collected from the wind turbine installed at King Fahd University beach front. Simulation studies show that the differential evolution based adaptive neural network is capable of generating the appropriate control to deliver the maximum possible aerodynamic power available from wind to the generator in an efficient manner by minimizing the transients.

  18. Stability Augmentation of Wind Farm using Variable Speed Permanent Magnet Synchronous Generator

    NASA Astrophysics Data System (ADS)

    Rosyadi, Marwan; Muyeen, S. M.; Takahashi, Rion; Tamura, Junji

    This paper presents a new control strategy of variable speed permanent magnet wind generator for stability augmentation of wind farm including fixed speed wind turbine with Induction Generator (IG). A new control scheme is developed for two levels back-to-back converters of Permanent Magnet Synchronous Generator (PMSG), by which both active and reactive powers delivered to the grid can be controlled easily. To avoid the converter damage, the DC link protection controller is also proposed in order to protect the dc link circuit during fault condition. To evaluate the control capability of the proposed controllers, simulations are performed on two model systems composed of wind farms connected to an infinite bus. From transient and steady state analyses by using PSCAD/EMTDC, it is concluded that the proposed control scheme is very effective to improve the stability of wind farm for severe network disturbance and randomly fluctuating wind speed.

  19. Effect of rain on Ku-band scatterometer wind measurements

    NASA Technical Reports Server (NTRS)

    Spencer, Michael; Shimada, Masanobu

    1991-01-01

    The impact of precipitation on scatterometer wind measurements is investigated. A model is developed which includes the effects of rain attenuation, rain backscatter, and storm horizontal structure. Rain attenuation is found to be the dominant error source at low radar incidence angles and high wind speeds. Volume backscatter from the rain-loaded atmosphere, however, is found to dominate for high incidence angles and low wind speeds.

  20. Mathematical Model to estimate the wind power using four-parameter Burr distribution

    NASA Astrophysics Data System (ADS)

    Liu, Sanming; Wang, Zhijie; Pan, Zhaoxu

    2018-03-01

    When the real probability of wind speed in the same position needs to be described, the four-parameter Burr distribution is more suitable than other distributions. This paper introduces its important properties and characteristics. Also, the application of the four-parameter Burr distribution in wind speed prediction is discussed, and the expression of probability distribution of output power of wind turbine is deduced.

  1. Wavelet analysis for wind fields estimation.

    PubMed

    Leite, Gladeston C; Ushizima, Daniela M; Medeiros, Fátima N S; de Lima, Gilson G

    2010-01-01

    Wind field analysis from synthetic aperture radar images allows the estimation of wind direction and speed based on image descriptors. In this paper, we propose a framework to automate wind direction retrieval based on wavelet decomposition associated with spectral processing. We extend existing undecimated wavelet transform approaches, by including à trous with B(3) spline scaling function, in addition to other wavelet bases as Gabor and Mexican-hat. The purpose is to extract more reliable directional information, when wind speed values range from 5 to 10 ms(-1). Using C-band empirical models, associated with the estimated directional information, we calculate local wind speed values and compare our results with QuikSCAT scatterometer data. The proposed approach has potential application in the evaluation of oil spills and wind farms.

  2. Winds Measured by the Rover Environmental Monitoring Station (REMS) During the Mars Science Laboratory (MSL) Rover's Bagnold Dunes Campaign and Comparison with Numerical Modeling Using MarsWRF

    NASA Technical Reports Server (NTRS)

    Newman, Claire E.; Gomez-Elvira, Javier; Marin, Mercedes; Navarro, Sara; Torres, Josefina; Richardson, Mark I.; Battalio, J. Michael; Guzewich, Scott D.; Sullivan, Robert; de la Torre, Manuel; hide

    2016-01-01

    A high density of REMS wind measurements were collected in three science investigations during MSL's Bagnold Dunes Campaign, which took place over approx. 80 sols around southern winter solstice (Ls approx. 90deg) and constituted the first in situ analysis of the environmental conditions, morphology, structure, and composition of an active dune field on Mars. The Wind Characterization Investigation was designed to fully characterize the near-surface wind field just outside the dunes and confirmed the primarily upslope/downslope flow expected from theory and modeling of the circulation on the slopes of Aeolis Mons in this season. The basic pattern of winds is 'upslope' (from the northwest, heading up Aeolis Mons) during the daytime (approx. 09:00-17:00 or 18:00) and 'downslope' (from the southeast, heading down Aeolis Mons) at night (approx. 20:00 to some time before 08:00). Between these times the wind rotates largely clockwise, giving generally westerly winds mid-morning and easterly winds in the early evening. The timings of these direction changes are relatively consistent from sol to sol; however, the wind direction and speed at any given time shows considerable intersol variability. This pattern and timing is similar to predictions from the MarsWRF numerical model, run at a resolution of approx. 490 m in this region, although the model predicts the upslope winds to have a stronger component from the E than the W, misses a wind speed peak at approx. 09:00, and under-predicts the strength of daytime wind speeds by approx. 2-4 m/s. The Namib Dune Lee Investigation reveals 'blocking' of northerly winds by the dune, leaving primarily a westerly component to the daytime winds, and also shows a broadening of the 1 Hz wind speed distribution likely associated with lee turbulence. The Namib Dune Side Investigation measured primarily daytime winds at the side of the same dune, in support of aeolian change detection experiments designed to put limits on the saltation threshold, and also appears to show the influence of the dune body on the local flow, though less clearly than in the lee. Using a vertical grid with lower resolution near the surface reduces the relative strength of nighttime winds predicted by MarsWRF and produces a peak in wind speed at approx. 09:00, improving the match to the observed diurnal variation of wind speed, albeit with an offset in magnitude. The annual wind field predicted using this grid also provides a far better match to observations of aeolian dune morphology and motion in the Bagnold Dunes. However, the lower overall wind speeds than observed and disagreement with the observed wind direction at approx. 09:00 suggest that the problem has not been solved and that alternative boundary layer mixing schemes should be explored which may result in more mixing of momentum down to the near-surface from higher layers. These results demonstrate a strong need for in situ wind data to constrain the setup and assumptions used in numerical models, so that they may be used with more confidence to predict the circulation at other times and locations on Mars.

  3. The steady-state flow quality in a model of a non-return wind tunnel

    NASA Technical Reports Server (NTRS)

    Mort, K. W.; Eckert, W. T.; Kelly, M. W.

    1972-01-01

    The structural cost of non-return wind tunnels is significantly less than that of the more conventional closed-circuit wind tunnels. However, because of the effects of external winds, the flow quality of non-return wind tunnels is an area of concern at the low test speeds required for V/STOL testing. The flow quality required at these low speeds is discussed and alternatives to the traditional manner of specifying the flow quality requirements in terms of dynamic pressure and angularity are suggested. The development of a non-return wind tunnel configuration which has good flow quality at low as well as at high test speeds is described.

  4. Kaman 40 kW wind turbine generator - control system dynamics

    NASA Technical Reports Server (NTRS)

    Perley, R.

    1981-01-01

    The generator design incorporates an induction generator for application where a utility line is present and a synchronous generator for standalone applications. A combination of feed forward and feedback control is used to achieve synchronous speed prior to connecting the generator to the load, and to control the power level once the generator is connected. The dynamics of the drive train affect several aspects of the system operation. These were analyzed to arrive at the required shaft stiffness. The rotor parameters that affect the stability of the feedback control loop vary considerably over the wind speed range encountered. Therefore, the controller gain was made a function of wind speed in order to maintain consistent operation over the whole wind speed range. The velocity requirement for the pitch control mechanism is related to the nature of the wind gusts to be encountered, the dynamics of the system, and the acceptable power fluctuations and generator dropout rate. A model was developed that allows the probable dropout rate to be determined from a statistical model of wind gusts and the various system parameters, including the acceptable power fluctuation.

  5. The Distribution of Solar Wind Speeds During Solar Minimum: Calibration for Numerical Solar Wind Modeling Constraints on the Source of the Slow Solar Wind (Postprint)

    DTIC Science & Technology

    2012-03-05

    subsonic corona below the critical point, resulting in an increased scale height and mass flux, while keeping the kinetic energy of the flow fairly...Approved for public release; distribution is unlimited. tubes with small expansion factors the heating occurs in the supersonic corona, where the energy ...goes into the kinetic energy of the solar wind, increasing the flow speed [Leer and Holzer, 1980; Pneuman, 1980]. Using this model and a sim- plified

  6. Cloud motion in relation to the ambient wind field

    NASA Technical Reports Server (NTRS)

    Fuelberg, H. E.; Scoggins, J. R.

    1975-01-01

    Trajectories of convective clouds were computed from a mathematical model and compared with trajectories observed by radar. The ambient wind field was determined from the AVE IIP data. The model includes gradient, coriolis, drag, lift, and lateral forces. The results show that rotational effects may account for large differences between the computed and observed trajectories and that convective clouds may move 10 to 20 degrees to the right or left of the average wind vector and at speeds 5 to 10 m/sec faster or slower than the average ambient wind speed.

  7. Advanced Modeling System for Optimization of Wind Farm Layout and Wind Turbine Sizing Using a Multi-Level Extended Pattern Search Algorithm

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    DuPont, Bryony; Cagan, Jonathan; Moriarty, Patrick

    This paper presents a system of modeling advances that can be applied in the computational optimization of wind plants. These modeling advances include accurate cost and power modeling, partial wake interaction, and the effects of varying atmospheric stability. To validate the use of this advanced modeling system, it is employed within an Extended Pattern Search (EPS)-Multi-Agent System (MAS) optimization approach for multiple wind scenarios. The wind farm layout optimization problem involves optimizing the position and size of wind turbines such that the aerodynamic effects of upstream turbines are reduced, which increases the effective wind speed and resultant power at eachmore » turbine. The EPS-MAS optimization algorithm employs a profit objective, and an overarching search determines individual turbine positions, with a concurrent EPS-MAS determining the optimal hub height and rotor diameter for each turbine. Two wind cases are considered: (1) constant, unidirectional wind, and (2) three discrete wind speeds and varying wind directions, each of which have a probability of occurrence. Results show the advantages of applying the series of advanced models compared to previous application of an EPS with less advanced models to wind farm layout optimization, and imply best practices for computational optimization of wind farms with improved accuracy.« less

  8. Effectiveness enhancement of a cycloidal wind turbine by individual active control of blade motion

    NASA Astrophysics Data System (ADS)

    Hwang, In Seong; Lee, Yun Han; Kim, Seung Jo

    2007-04-01

    In this paper, a research for the effectiveness enhancement of a Cycloidal Wind Turbine by individual active control of blade motion is described. To improve the performance of the power generation system, which consists of several straight blades rotating about axis in parallel direction, the cycloidal blade system and the individual active blade control method are adopted. It has advantages comparing with horizontal axis wind turbine or conventional vertical axis wind turbine because it maintains optimal blade pitch angles according to wind speed, wind direction and rotor rotating speed to produce high electric power at any conditions. It can do self-starting and shows good efficiency at low wind speed and complex wind condition. Optimal blade pitch angle paths are obtained through CFD analysis according to rotor rotating speed and wind speed. The individual rotor blade control system consists of sensors, actuators and microcontroller. To realize the actuating device, servo motors are installed to each rotor blade. Actuating speed and actuating force are calculated to compare with the capacities of servo motor, and some delays of blade pitch angles are corrected experimentally. Performance experiment is carried out by the wind blowing equipment and Labview system, and the rotor rotates from 50 to 100 rpm according to the electric load. From this research, it is concluded that developing new vertical axis wind turbine, Cycloidal Wind Turbine which is adopting individual active blade pitch control method can be a good model for small wind turbine in urban environment.

  9. Dependence of the Normalized Radar Cross Section of Water Waves on Bragg Wavelength-Wind Speed Sensitivity

    NASA Technical Reports Server (NTRS)

    Long, David G.; Collyer, R. Scott; Reed, Ryan; Arnold, David V.

    1996-01-01

    Measurements of the normalized radar cross section (sigma(sup o)) made by the YSCAT ultrawideband scatterometer during an extended deployment on the Canada Centre for Inland Waters(CCIW) Research Tower located at Lake Ontario are analyzed and compared with anemometer wind measurements to study the sensitivity of (sigma(sup o)) to the wind speed as a function of the Bragg wavelength. This paper concentrates on upwind and downwind azimuth angles in the wind speed range of 4.5-12 m/s. While YSCAT collected measurements of sigma(sup o) at a variety of frequencies and incidence angles, this paper focuses on frequencies of 2.0, 3.05, 5.30, 10.02, and 14.0 GHz and incidence angles within the Bragg regime, 30-50 deg. Adopting a power law model to describe the relationship between sigma(sup o) and wind speed, both wind speed exponents and upwind/downwind (u/d) ratios of sigma(sup o) are found using least squares linear regression. The analysis of the wind speed exponents and u/d ratios show that shorter Bragg wavelengths (Lambda less than 4 cm) are the most sensitive to wind speed and direction. Additionally, vertical polarization (V-pol) sigma(sup o) is shown to be more sensitive to wind speed than horizontal polarization (H-pol) sigma(sup o), while the H-pol u/d ratio is larger than the V-pol u/d ratio.

  10. EU-Norsewind Using Envisat ASAR And Other Data For Offshore Wind Atlas

    NASA Astrophysics Data System (ADS)

    Hasager, Charlotte B.; Mouche, Alexis; Badger, Merete

    2010-04-01

    The EU project NORSEWIND - short for Northern Seas Wind Index Database - www.norsewind.eu has the aim to produce state-of-the-art wind atlas for the Baltic, Irish and North Seas using ground-based lidar, meteorological masts, satellite data and mesoscale modelling. So far CLS and Risø DTU have collected Envisat ASAR images for the area of interest and the first results: maps of wind statistics, Weibull scale and shape parameters, mean and energy density are presented. The results will be compared to a distributed network of high-quality in-situ observations and mesoscale model results during 2009-2011 as the in-situ data and model results become available. Wind energy is proportional with wind speed to the third power, thus even small improvements on wind speed mapping are important in this project. One challenge is to arrive at hub-height winds ~100 m above sea level.

  11. Validating the WRF-Chem model for wind energy applications using High Resolution Doppler Lidar data from a Utah 2012 field campaign

    NASA Astrophysics Data System (ADS)

    Mitchell, M. J.; Pichugina, Y. L.; Banta, R. M.

    2015-12-01

    Models are important tools for assessing potential of wind energy sites, but the accuracy of these projections has not been properly validated. In this study, High Resolution Doppler Lidar (HRDL) data obtained with high temporal and spatial resolution at heights of modern turbine rotors were compared to output from the WRF-chem model in order to help improve the performance of the model in producing accurate wind forecasts for the industry. HRDL data were collected from January 23-March 1, 2012 during the Uintah Basin Winter Ozone Study (UBWOS) field campaign. A model validation method was based on the qualitative comparison of the wind field images, time-series analysis and statistical analysis of the observed and modeled wind speed and direction, both for case studies and for the whole experiment. To compare the WRF-chem model output to the HRDL observations, the model heights and forecast times were interpolated to match the observed times and heights. Then, time-height cross-sections of the HRDL and WRF-Chem wind speed and directions were plotted to select case studies. Cross-sections of the differences between the observed and forecasted wind speed and directions were also plotted to visually analyze the model performance in different wind flow conditions. A statistical analysis includes the calculation of vertical profiles and time series of bias, correlation coefficient, root mean squared error, and coefficient of determination between two datasets. The results from this analysis reveals where and when the model typically struggles in forecasting winds at heights of modern turbine rotors so that in the future the model can be improved for the industry.

  12. Analyzing Effects of Turbulence on Power Generation Using Wind Plant Monitoring Data: Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, J.; Chowdhury, S.; Hodge, B. M.

    2014-01-01

    In this paper, a methodology is developed to analyze how ambient and wake turbulence affects the power generation of a single wind turbine within an array of turbines. Using monitoring data from a wind power plant, we selected two sets of wind and power data for turbines on the edge of the wind plant that resemble (i) an out-of-wake scenario (i.e., when the turbine directly faces incoming winds) and (ii) an in-wake scenario (i.e., when the turbine is under the wake of other turbines). For each set of data, two surrogate models were then developed to represent the turbine powermore » generation (i) as a function of the wind speed; and (ii) as a function of the wind speed and turbulence intensity. Support vector regression was adopted for the development of the surrogate models. Three types of uncertainties in the turbine power generation were also investigated: (i) the uncertainty in power generation with respect to the published/reported power curve, (ii) the uncertainty in power generation with respect to the estimated power response that accounts for only mean wind speed; and (iii) the uncertainty in power generation with respect to the estimated power response that accounts for both mean wind speed and turbulence intensity. Results show that (i) under the same wind conditions, the turbine generates different power between the in-wake and out-of-wake scenarios, (ii) a turbine generally produces more power under the in-wake scenario than under the out-of-wake scenario, (iii) the power generation is sensitive to turbulence intensity even when the wind speed is greater than the turbine rated speed, and (iv) there is relatively more uncertainty in the power generation under the in-wake scenario than under the out-of-wake scenario.« less

  13. Are Tornadoes Getting Stronger?

    NASA Astrophysics Data System (ADS)

    Elsner, J.; Jagger, T.

    2013-12-01

    A cumulative logistic model for tornado damage category is developed and examined. Damage path length and width are significantly correlated to the odds of a tornado receiving the next highest damage category. Given values for the cube root of path length and square root of path width, the model predicts a probability for each category. The length and width coefficients are insensitive to the switch to the Enhanced Fujita (EF) scale and to distance from nearest city although these variables are statistically significant in the model. The width coefficient is sensitive to whether or not the tornado caused at least one fatality. This is likely due to the fact that the dimensions and characteristics of the damage path for such events are always based on ground surveys. The model predicted probabilities across the categories are then multiplied by the center wind speed from the categorical EF scale to obtain an estimate of the highest tornado wind speed on a continuous scale in units of meters per second. The estimated wind speeds correlate at a level of .82 (.46, .95) [95% confidence interval] to wind speeds estimated independently from a doppler radar calibration. The estimated wind speeds allow analyses to be done on the tornado database that are not possible with the categorical scale. The modeled intensities can be used in climatology and in environmental and engineering applications. More work needs to be done to understand the upward trends in path length and width. The increases lead to an apparent increase in tornado intensity across all EF categories.

  14. Wind Speed and Sea State Dependencies of Air-Sea Gas Transfer: Results From the High Wind Speed Gas Exchange Study (HiWinGS)

    NASA Astrophysics Data System (ADS)

    Blomquist, B. W.; Brumer, S. E.; Fairall, C. W.; Huebert, B. J.; Zappa, C. J.; Brooks, I. M.; Yang, M.; Bariteau, L.; Prytherch, J.; Hare, J. E.; Czerski, H.; Matei, A.; Pascal, R. W.

    2017-10-01

    A variety of physical mechanisms are jointly responsible for facilitating air-sea gas transfer through turbulent processes at the atmosphere-ocean interface. The nature and relative importance of these mechanisms evolves with increasing wind speed. Theoretical and modeling approaches are advancing, but the limited quantity of observational data at high wind speeds hinders the assessment of these efforts. The HiWinGS project successfully measured gas transfer coefficients (k660) with coincident wave statistics under conditions with hourly mean wind speeds up to 24 m s-1 and significant wave heights to 8 m. Measurements of k660 for carbon dioxide (CO2) and dimethylsulfide (DMS) show an increasing trend with respect to 10 m neutral wind speed (U10N), following a power law relationship of the form: k660 CO2˜U10N1.68 and k660 dms˜U10N1.33. Among seven high wind speed events, CO2 transfer responded to the intensity of wave breaking, which depended on both wind speed and sea state in a complex manner, with k660 CO2 increasing as the wind sea approaches full development. A similar response is not observed for DMS. These results confirm the importance of breaking waves and bubble injection mechanisms in facilitating CO2 transfer. A modified version of the Coupled Ocean-Atmosphere Response Experiment Gas transfer algorithm (COAREG ver. 3.5), incorporating a sea state-dependent calculation of bubble-mediated transfer, successfully reproduces the mean trend in observed k660 with wind speed for both gases. Significant suppression of gas transfer by large waves was not observed during HiWinGS, in contrast to results from two prior field programs.

  15. The Potential of Wetlands in Reducing Storm Surge

    DTIC Science & Technology

    2010-01-01

    threatened by erosion and damage due to storm waves, wind, and surge. The risk of damage and loss of life is exacerbated by many factors, including coastal...obtained when attempting to correlate hurricane translation speed, surge hydrograph at the coast, and surge elevations inland. However, a trend was...greater surface roughness. In addition to reducing wind speeds, the models eliminate the wind stress in forested wetlands which inhibit wind from

  16. Performance analysis of air-water quantum key distribution with an irregular sea surface

    NASA Astrophysics Data System (ADS)

    Xu, Hua-bin; Zhou, Yuan-yuan; Zhou, Xue-jun; Wang, Lian

    2018-05-01

    In the air-water quantum key distribution (QKD), the irregular sea surface has some influence on the photon polarization state. The wind is considered as the main factor causing the irregularity, so the model of irregular sea surface based on the wind speed is adopted. The relationships of the quantum bit error rate with the wind speed and the initial incident angle are simulated. Therefore, the maximum secure transmission depth of QKD is confirmed, and the limitation of the wind speed and the initial incident angle is determined. The simulation results show that when the wind speed and the initial incident angle increase, the performance of QKD will fall down. Under the intercept-resend attack condition, the maximum safe transmission depth of QKD is up to 105 m. To realize safe communications in the safe diving depth of submarines (100 m), the initial incident angle is requested to be not exceeding 26°, and with the initial incident angle increased, the limitation of wind speed is decreased.

  17. Forecast of solar wind parameters according to STOP magnetograph observations

    NASA Astrophysics Data System (ADS)

    Tlatov, A. G.; Pashchenko, M. P.; Ponyavin, D. I.; Svidskii, P. M.; Peshcherov, V. S.; Demidov, M. L.

    2016-12-01

    The paper discusses the results of the forecast of solar wind parameters at a distance of 1 AU made according to observations made by the STOP telescope magnetograph during 2014-2015. The Wang-Sheeley-Arge (WSA) empirical model is used to reconstruct the magnetic field topology in the solar corona and estimate the solar wind speed in the interplanetary medium. The proposed model is adapted to STOP magnetograph observations. The results of the calculation of solar wind parameters are compared with ACE satellite measurements. It is shown that the use of STOP observations provides a significant correlation of predicted solar wind speed values with the observed ones.

  18. Non-linear vehicle-bridge-wind interaction model for running safety assessment of high-speed trains over a high-pier viaduct

    NASA Astrophysics Data System (ADS)

    Olmos, José M.; Astiz, Miguel Á.

    2018-04-01

    In order to properly study the high-speed traffic safety on a high-pier viaduct subject to episodes of lateral turbulent winds, an efficient dynamic interaction train-bridge-wind model has been developed and experimentally validated. This model considers the full wheel and rail profiles, the friction between these two bodies in contact, and the piers P-Delta effect. The model has been used to determine the critical train and wind velocities from which the trains cannot travel safely over the O'Eixo Bridge. The dynamic simulations carried out and the results obtained in the time domain show that traffic safety rates exceed the allowed limits for turbulent winds with mean velocities at the deck higher than 25 m/s.

  19. Empirical wind retrieval model based on SAR spectrum measurements

    NASA Astrophysics Data System (ADS)

    Panfilova, Maria; Karaev, Vladimir; Balandina, Galina; Kanevsky, Mikhail; Portabella, Marcos; Stoffelen, Ad

    The present paper considers polarimetric SAR wind vector applications. Remote-sensing measurements of the near-surface wind over the ocean are of great importance for the understanding of atmosphere-ocean interaction. In recent years investigations for wind vector retrieval using Synthetic Aperture Radar (SAR) data have been performed. In contrast with scatterometers, a SAR has a finer spatial resolution that makes it a more suitable microwave instrument to explore wind conditions in the marginal ice zones, coastal regions and lakes. The wind speed retrieval procedure from scatterometer data matches the measured radar backscattering signal with the geophysical model function (GMF). The GMF determines the radar cross section dependence on the wind speed and direction with respect to the azimuthal angle of the radar beam. Scatterometers provide information on wind speed and direction simultaneously due to the fact that each wind vector cell (WVC) is observed at several azimuth angles. However, SAR is not designed to be used as a high resolution scatterometer. In this case, each WVC is observed at only one single azimuth angle. That is why for wind vector determination additional information such as wind streak orientation over the sea surface is required. It is shown that the wind vector can be obtained using polarimetric SAR without additional information. The main idea is to analyze the spectrum of a homogeneous SAR image area instead of the backscattering normalized radar cross section. Preliminary numerical simulations revealed that SAR image spectral maxima positions depend on the wind vector. Thus the following method for wind speed retrieval is proposed. In the first stage of the algorithm, the SAR spectrum maxima are determined. This procedure is carried out to estimate the wind speed and direction with ambiguities separated by 180 degrees due to the SAR spectrum symmetry. The second stage of the algorithm allows us to select the correct wind direction ambiguity from polarimetric SAR. A criterion based on the complex correlation coefficient between the VV and VH signals sign is applied to select the wind direction. An additional quality control on the wind speed value retrieved with the spectral method is applied. Here, we use the direction obtained with the spectral method and the backscattered signal for CMOD wind speed estimate. The algorithm described above may be refined by the use of numerous SAR data and wind measurements. In the present preliminary work the first results of SAR images combined with in situ data processing are presented. Our results are compared to the results obtained using previously developed models CMOD, C-2PO for VH polarization and statistical wind retrieval approaches [1]. Acknowledgments. This work is supported by the Russian Foundation of Basic Research (grants 13-05-00852-a). [1] M. Portabella, A. Stoffelen, J. A. Johannessen, Toward an optimal inversion method for synthetic aperture radar wind retrieval, Journal of geophysical research, V. 107, N C8, 2002

  20. Implementation of a Particle Image Velocimetry System for Wind Tunnel Flowfield Measurements

    DTIC Science & Technology

    2014-12-01

    Instrumentation Wind tunnel speed was measured by two pitot probes mounted on opposite tunnel walls upstream of the model and above the ground...board. The pitot probes were connected differentially to Scanivalve 1-psi transducers. A secondary measurement of wind tunnel speed was made with the...Manf. Model Range 1 Tunnel Vel (south pitot ) Transducer Scanivalve CR24D 1 psi 2 Tunnel Vel (north pitot ) Transducer Scanivalve CR24D 1 psi 3

  1. PIV study of the wake of a model wind turbine transitioning between operating set points

    NASA Astrophysics Data System (ADS)

    Houck, Dan; Cowen, Edwin (Todd)

    2016-11-01

    Wind turbines are ideally operated at their most efficient tip speed ratio for a given wind speed. There is increasing interest, however, in operating turbines at other set points to increase the overall power production of a wind farm. Specifically, Goit and Meyers (2015) used LES to examine a wind farm optimized by unsteady operation of its turbines. In this study, the wake of a model wind turbine is measured in a water channel using PIV. We measure the wake response to a change in operational set point of the model turbine, e.g., from low to high tip speed ratio or vice versa, to examine how it might influence a downwind turbine. A modified torque transducer after Kang et al. (2010) is used to calibrate in situ voltage measurements of the model turbine's generator operating across a resistance to the torque on the generator. Changes in operational set point are made by changing the resistance or the flow speed, which change the rotation rate measured by an encoder. Single camera PIV on vertical planes reveals statistics of the wake at various distances downstream as the turbine transitions from one set point to another. From these measurements, we infer how the unsteady operation of a turbine may affect the performance of a downwind turbine as its incoming flow. National Science Foundation and the Atkinson Center for a Sustainable Future.

  2. Estimation of the CO2 fluxes between the ocean and atmosphere for the hurricane wind forces using remote sensing data.

    NASA Astrophysics Data System (ADS)

    Sergeev, Daniil; Soustova, Irina; Balandina, Galina

    2017-04-01

    CO2 transfer between the hydrosphere and atmosphere in the boundary layer is an important part of the global cycle of the main greenhouse gas. Gas flux is determined by the difference of the partial pressures of the gas between the atmosphere and hydrosphere, near the border, as well as to a large extent processes involving turbulent boundary layer. The last is usually characterized by power dependence on the equivalent wind speed (10-m height). Hurricane-force winds lead to intensive wave breaking, with formation of spray in the air, and bubbles in the water. Such multiphase turbulent processes at the interface strongly intensify gas transfer. Currently, data characterizing the dependence of the gas exchange of the wind speed for the hurricane conditions demonstrate a strong variation. On the other hand there is an obvious problem of obtaining reliable data on the wind speed. Widely used reanalysis data typically underestimate wind speed, due to the low spatial and temporal resolution One of the most promising ways to measure near water wind speed is the use of the data of remote sensing. The present study used technique to obtain near water wind speed based on the processing of remote sensing of the ocean surface data obtained with C-band scattermeter of RADARSAT using geophysical model function, developed in a laboratory conditions for a wide range of wind speeds, including hurricanes (see [1]). This function binds wind speed with effective radar cross-section in cross-polarized mode. We used two different parameterizations of gas transfer velocity of the wind speed. Widely used in [2], and obtained by processing results of recent experiment in modeling winds up to hurricane on wind-wave facility [3]. The new method of calculating was tested by the example of hurricane Earl image (09.2010). Estimates showed 13-18 times excess CO2 fluxes rates in comparison with monitoring data NOAA (see. [4]). 1. Troitskaya Yu., Abramov V., Ermoshkin A., Zuikova E., Kazakov V., Sergeev D., Kandaurov A., Ermakova O. Laboratory study of cross-polarized radar return under gale-force wind conditions // Int. J. Remote Sens. 2016a. T. 37. № 9. C. 1981-1989. 2. Kanamitsu, M.,Ebisuzaki,W.,Woollen,J.,Yang,S.-K.,Hnilo,J.J.,Fiorino,M.,Potter, G.L.,.NCEP-DOEAMIP-IIreanalysis(R-2) // Bull. Am. Meteorol. Soc., 2002, 83, 1631-1643. 3. K. E. Krall and B. Jahne First laboratory study of air-sea gas exchange at hurricane wind speeds // Ocean Sci., 2014, 10, 257-265. 4. ERDDAP EXPERIMENTAL. AOML Monthly Global Carbon Fluxes dataset. - ИнTepнeT-pecypc. Peжin дocTyпa: http://cwcgom.aoml.noaa.gov/erddap/griddap/aomlcarbonfluxes.graph.

  3. A new approach to correct yaw misalignment in the spinning ultrasonic anemometer

    NASA Astrophysics Data System (ADS)

    Ghaemi-Nasab, M.; Davari, Ali R.; Franchini, S.

    2018-01-01

    Single-axis ultrasonic anemometers are the modern instruments for accurate wind speed measurements. Despite their widespread and ever increasing applications, little attention has been paid up to now to spinning ultrasonic anemometers that can accurately measure both the wind speed and its direction in a single and robust apparatus. In this study, intensive wind-tunnel tests were conducted on a spinning single-axis ultrasonic anemometer to investigate the yaw misalignment in ultrasonic wind speed measurements during the yaw rotation. The anemometer was rotating inside the test section with various angular velocities, and the experiments were performed at several combinations of wind speed and anemometer angular velocity. The instantaneous angular position of the ultrasonic signal path with wind direction was measured using an angular position sensor. For a spinning anemometer, the circulatory wake and the associated flow distortion, along with the Doppler effect, impart a phase shift in the signals measured by the anemometer, which should be added to the position data for correcting the yaw misalignment. In this paper, the experimental data are used to construct a theoretical model, based on a response surface method, to correct the phase shift for various wind speeds and anemometer rotational velocities. This model is shown to successfully correct the velocity indicated by the spinning anemometer for the phase shift due to the rotation, and can easily be used in the calibration process for such anemometers.

  4. First-order aerodynamic and aeroelastic behavior of a single-blade installation setup

    NASA Astrophysics Data System (ADS)

    Gaunaa, M.; Bergami, L.; Guntur, S.; Zahle, F.

    2014-06-01

    Limitations on the wind speed at which blade installation can be performed bears important financial consequences. The installation cost of a wind farm could be significantly reduced by increasing the wind speed at which blade mounting operations can be carried out. This work characterizes the first-order aerodynamic and aeroelastic behavior of a single blade installation system, where the blade is grabbed by a yoke, which is lifted by the crane and stabilized by two taglines. A simple engineering model is formulated to describe the aerodynamic forcing on the blade subject to turbulent wind of arbitrary direction. The model is coupled with a schematic aeroelastic representation of the taglines system, which returns the minimum line tension required to compensate for the aerodynamic forcing. The simplified models are in excellent agreement with the aeroelastic code HAWC2, and provide a solid basis for future design of an upgraded single blade installation system able to operate at higher wind speeds.

  5. Control of wind turbine generators connected to power systems

    NASA Technical Reports Server (NTRS)

    Hwang, H. H.; Mozeico, H. V.; Gilbert, L. J.

    1978-01-01

    A unique simulation model based on a Mode-O wind turbine is developed for simulating both speed and power control. An analytical representation for a wind turbine that employs blade pitch angle feedback control is presented, and a mathematical model is formulated. For Mode-O serving as a practical case study, results of a computer simulation of the model as applied to the problems of synchronization and dynamic stability are provided. It is shown that the speed and output of a wind turbine can be satisfactorily controlled within reasonable limits by employing the existing blade pitch control system under specified conditions. For power control, an additional excitation control is required so that the terminal voltage, output power factor, and armature current can be held within narrow limits. As a result, the variation of torque angle is limited even if speed control is not implemented simultaneously with power control. Design features of the ERDA/NASA 100-kW Mode-O wind turbine are included.

  6. Aerodynamic profiling of terminal building using computational fluid dynamics approach

    NASA Astrophysics Data System (ADS)

    Vidhya, S.; Pradeep Kumar, R.; Hareesh, M.; Sekar, S. K.

    2017-11-01

    A case study of isolated building is studied using ANSYS CFX and SAP2000. The plan idea of 30m by 60m is chosen for terminal building. The model is subjected to different wind incidence from 0° to 90° and 45° with 30° interval for 55m/s wind speed. By using tributary area method, the forces at the each mesh node are summed up to get corresponding wind force at that joint within that area. The best effective structural system is determined by designing the structure for each wind incidence. Wind analysis and design is carried out for increasing wind speed above 55m/s to identify the collapse pattern of structure. External supporting members are suggested to withstand that maximum wind speed.

  7. Wavelet Analysis for Wind Fields Estimation

    PubMed Central

    Leite, Gladeston C.; Ushizima, Daniela M.; Medeiros, Fátima N. S.; de Lima, Gilson G.

    2010-01-01

    Wind field analysis from synthetic aperture radar images allows the estimation of wind direction and speed based on image descriptors. In this paper, we propose a framework to automate wind direction retrieval based on wavelet decomposition associated with spectral processing. We extend existing undecimated wavelet transform approaches, by including à trous with B3 spline scaling function, in addition to other wavelet bases as Gabor and Mexican-hat. The purpose is to extract more reliable directional information, when wind speed values range from 5 to 10 ms−1. Using C-band empirical models, associated with the estimated directional information, we calculate local wind speed values and compare our results with QuikSCAT scatterometer data. The proposed approach has potential application in the evaluation of oil spills and wind farms. PMID:22219699

  8. Vector wind and vector wind shear models 0 to 27 km altitude for Cape Kennedy, Florida, and Vandenberg AFB, California

    NASA Technical Reports Server (NTRS)

    Smith, O. E.

    1976-01-01

    The techniques are presented to derive several statistical wind models. The techniques are from the properties of the multivariate normal probability function. Assuming that the winds can be considered as bivariate normally distributed, then (1) the wind components and conditional wind components are univariate normally distributed, (2) the wind speed is Rayleigh distributed, (3) the conditional distribution of wind speed given a wind direction is Rayleigh distributed, and (4) the frequency of wind direction can be derived. All of these distributions are derived from the 5-sample parameter of wind for the bivariate normal distribution. By further assuming that the winds at two altitudes are quadravariate normally distributed, then the vector wind shear is bivariate normally distributed and the modulus of the vector wind shear is Rayleigh distributed. The conditional probability of wind component shears given a wind component is normally distributed. Examples of these and other properties of the multivariate normal probability distribution function as applied to Cape Kennedy, Florida, and Vandenberg AFB, California, wind data samples are given. A technique to develop a synthetic vector wind profile model of interest to aerospace vehicle applications is presented.

  9. Typhoon air-sea drag coefficient in coastal regions

    NASA Astrophysics Data System (ADS)

    Zhao, Zhong-Kuo; Liu, Chun-Xia; Li, Qi; Dai, Guang-Feng; Song, Qing-Tao; Lv, Wei-Hua

    2015-02-01

    The air-sea drag during typhoon landfalls is investigated for a 10 m wind speed as high as U10 ≈ 42 m s-1, based on multilevel wind measurements from a coastal tower located in the South China Sea. The drag coefficient (CD) plotted against the typhoon wind speed is similar to that of open ocean conditions; however, the CD curve shifts toward a regime of lower winds, and CD increases by a factor of approximately 0.5 relative to the open ocean. Our results indicate that the critical wind speed at which CD peaks is approximately 24 m s-1, which is 5-15 m s-1 lower than that from deep water. Shoaling effects are invoked to explain the findings. Based on our results, the proposed CD formulation, which depends on both water depth and wind speed, is applied to a typhoon forecast model. The forecasts of typhoon track and surface wind speed are improved. Therefore, a water-depth-dependence formulation of CD may be particularly pertinent for parameterizing air-sea momentum exchanges over shallow water.

  10. Speed and Torque Control Strategies for Loss Reduction of Vertical Axis Wind Turbines

    NASA Astrophysics Data System (ADS)

    Argent, Michael; McDonald, Alasdair; Leithead, Bill; Giles, Alexander

    2016-09-01

    This paper builds on the work into modelling the generator losses for Vertical Axis Wind Turbines from their intrinsic torque cycling to investigate the effects of aerodynamic inefficiencies caused by the varying rotational speed resulting from different torque control strategies to the cyclic torque. This is achieved by modelling the wake that builds up from the rotation of the VAWT rotor to investigate how the wake responds to a changing rotor speed and how this in turn affects the torque produced by the blades as well as the corresponding change in generator losses and any changes to the energy extracted by the wind turbine rotor.

  11. An Initial Assessment of the Impact of CYGNSS Ocean Surface Wind Assimilation on Navy Global and Mesoscale Numerical Weather Prediction

    NASA Astrophysics Data System (ADS)

    Baker, N. L.; Tsu, J.; Swadley, S. D.

    2017-12-01

    We assess the impact of assimilation of CYclone Global Navigation Satellite System (CYGNSS) ocean surface winds observations into the NAVGEM[i] global and COAMPS®[ii] mesoscale numerical weather prediction (NWP) systems. Both NAVGEM and COAMPS® used the NRL 4DVar assimilation system NAVDAS-AR[iii]. Long term monitoring of the NAVGEM Forecast Sensitivity Observation Impact (FSOI) indicates that the forecast error reduction for ocean surface wind vectors (ASCAT and WindSat) are significantly larger than for SSMIS wind speed observations. These differences are larger than can be explained by simply two pieces of information (for wind vectors) versus one (wind speed). To help understand these results, we conducted a series of Observing System Experiments (OSEs) to compare the assimilation of ASCAT wind vectors with the equivalent (computed) ASCAT wind speed observations. We found that wind vector assimilation was typically 3 times more effective at reducing the NAVGEM forecast error, with a higher percentage of beneficial observations. These results suggested that 4DVar, in the absence of an additional nonlinear outer loop, has limited ability to modify the analysis wind direction. We examined several strategies for assimilating CYGNSS ocean surface wind speed observations. In the first approach, we assimilated CYGNSS as wind speed observations, following the same methodology used for SSMIS winds. The next two approaches converted CYGNSS wind speed to wind vectors, using NAVGEM sea level pressure fields (following Holton, 1979), and using NAVGEM 10-m wind fields with the AER Variational Analysis Method. Finally, we compared these methods to CYGNSS wind speed assimilation using multiple outer loops with NAVGEM Hybrid 4DVar. Results support the earlier studies suggesting that NAVDAS-AR wind speed assimilation is sub-optimal. We present detailed results from multi-month NAVGEM assimilation runs along with case studies using COAMPS®. Comparisons include the fit of analyses and forecasts with in-situ observations and analyses from other NWP centers (e.g. ECMWF and GFS). [i] NAVy Global Environmental Model [ii] COAMPS® is a registered trademark of the Naval Research Laboratory for the Navy's Coupled Ocean Atmosphere Mesoscale Prediction System. [iii] NRL Atmospheric Variational Data Assimilation System

  12. Winds at the Phoenix Landing Site

    NASA Astrophysics Data System (ADS)

    Holstein-Rathlou, C.; Gunnlaugsson, H. P.; Taylor, P.; Lange, C.; Moores, J.; Lemmon, M.

    2008-12-01

    Local wind speeds and directions have been measured at the Phoenix landing site using the Telltale wind indicator. The Telltale is mounted on top of the meteorological mast at roughly 2 meters height above the surface. The Telltale is a mechanical anemometer consisting of a lightweight cylinder suspended by Kevlar fibers that are deflected under the action of wind. Images taken with the Surface Stereo Imager (SSI) of the Telltale deflection allows the wind speed and direction to be quantified. Winds aloft have been estimated using image series (10 images ~ 50 s apart) taken of the Zenith (Zenith Movies). In contrast enhanced images cloud like features are seen to move through the image field and give indication of directions and angular speed. Wind speeds depend on the height of where these features originate while directions are unambiguously determined. The wind data shows dominant wind directions and diurnal variations, likely caused by slope winds. Recent night time measurements show frost formation on the Telltale mirror. The results will be discussed in terms of global and slope wind modeling and the current calibration of the data is discussed. It will also be illustrated how wind data can aid in interpreting temperature fluctuations seen on the lander.

  13. Height extrapolation of wind data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mikhail, A.S.

    1982-11-01

    Hourly average data for a period of 1 year from three tall meteorological towers - the Erie tower in Colorado, the Goodnoe Hills tower in Washington and the WKY-TV tower in Oklahoma - were used to analyze the wind shear exponent variabiilty with various parameters such as thermal stability, anemometer level wind speed, projection height and surface roughness. Different proposed models for prediction of height variability of short-term average wind speeds were discussed. Other models that predict the height dependence of Weilbull distribution parameters were tested. The observed power law exponent for all three towers showed strong dependence on themore » anemometer level wind speed and stability (nighttime and daytime). It also exhibited a high degree of dependence on extrapolation height with respect to anemometer height. These dependences became less severe as the anemometer level wind speeds were increased due to the turbulent mixing of the atmospheric boundary layer. The three models used for Weibull distribution parameter extrapolation were he velocity-dependent power law model (Justus), the velocity, surface roughness, and height-dependent model (Mikhail) and the velocity and surface roughness-dependent model (NASA). The models projected the scale parameter C fairly accurately for the Goodnoe Hills and WKY-TV towers and were less accurate for the Erie tower. However, all models overestimated the C value. The maximum error for the Mikhail model was less than 2% for Goodnoe Hills, 6% for WKY-TV and 28% for Erie. The error associated with the prediction of the shape factor (K) was similar for the NASA, Mikhail and Justus models. It ranged from 20 to 25%. The effect of the misestimation of hub-height distribution parameters (C and K) on average power output is briefly discussed.« less

  14. A Study of Spatio-Temporal Variability in Future Wind Energy over the Korean Peninsula Using Regional Climate Model Ensemble Projections

    NASA Astrophysics Data System (ADS)

    KIM, Y.; Lim, Y. J.; Kim, Y. H.; Kim, B. J.

    2015-12-01

    The impacts of climate change on wind speed, wind energy density (WED), and potential electronic production (PEP) over the Korean peninsula have been investigated by using five regional climate models (HadGEM3-RA, RegCM, WRF, GRIMs and MM5) ensemble projection data. HadGEM2-AO based two RCP scenarios (RCP4.5/8.5) data have been used for initial and boundary condition to all RCMs. Wind energy density and its annual and seasonal variability have been estimated based on monthly near-surface wind speeds, and the potential electronic production and its change have been also analyzed. As a result of comparison ensemble models based annual mean wind speed for 25-yr historical period (1981-2005) to the ERA-interim, it is shown that all RCMs overestimate near-surface wind speed compared to the reanalysis data but the results of HadGEM3-RA are most comparable. The changes annual and seasonal mean of WED and PEP for the historical period and comparison results to future projection (2021-2050) will be presented in this poster session. We also scrutinize the changes in mean sea level pressure and mean sea level pressure gradient in driving GCM/RCM as a factor inducing the variations. Our results can be used as a background data for devising a plan to develop and operate wind farm over the Korean Peninsula.

  15. Climate refugia: The physical, hydrologic and disturbance basis

    NASA Astrophysics Data System (ADS)

    Holden, Z. A.; Maneta, M. P.; Forthofer, J.

    2015-12-01

    Projected changes in global climate and associated shifts in vegetation have increased interest in understanding species persistence at local scales. We examine the climatic and physical factors that could mediate changes in the distribution of vegetation in regions of complex topography. Using massive networks of low-cost temperature and humidity sensors, we developed topographically-resolved daily historical gridded temperature data for the US Northern Rockies. We used the WindNinja model to create daily historical wind speed maps across the same domain. Using a spatially distributed ecohydrology model (ECH2O) we examine separately the sensitivity of modeled evapotranspiration and soil moisture to wind, radiation, soil properties, minimum temperature and humidity. A suite of physical factors including lower wind speeds, cold air drainage, solar shading and increased soil depth reduce evapotranspiration and increase late season moisture availability in valley bottoms. Evapotranspiration shows strong sensitivity to spatial variability in surface wind speed, suggesting that sheltering effects from winds may be an important factor contributing to mountain refugia. Fundamental to our understanding of patterns of vegetation change is the role of stand-replacing wildfires, which modify the physical environment and subsequent patterns of species persistence and recruitment. Using satellite-derived maps of burn severity for recent fires in the US Northern Rockies we examined relationships between wind speed, cold air drainage potential and soil depth and the occurrence of unburned and low severity fire. Severe fire is less likely to occur in areas with high cold air drainage potential and low wind speeds, suggesting that sheltered valley bottoms have mediated the severity of recent wildfires. Our finding highlight the complex physical mechanisms by which mountain weather and climate mediate fire-induced vegetation changes in the US Northern Rocky Mountains.

  16. Wind scatterometry with improved ambiguity selection and rain modeling

    NASA Astrophysics Data System (ADS)

    Draper, David Willis

    Although generally accurate, the quality of SeaWinds on QuikSCAT scatterometer ocean vector winds is compromised by certain natural phenomena and retrieval algorithm limitations. This dissertation addresses three main contributors to scatterometer estimate error: poor ambiguity selection, estimate uncertainty at low wind speeds, and rain corruption. A quality assurance (QA) analysis performed on SeaWinds data suggests that about 5% of SeaWinds data contain ambiguity selection errors and that scatterometer estimation error is correlated with low wind speeds and rain events. Ambiguity selection errors are partly due to the "nudging" step (initialization from outside data). A sophisticated new non-nudging ambiguity selection approach produces generally more consistent wind than the nudging method in moderate wind conditions. The non-nudging method selects 93% of the same ambiguities as the nudged data, validating both techniques, and indicating that ambiguity selection can be accomplished without nudging. Variability at low wind speeds is analyzed using tower-mounted scatterometer data. According to theory, below a threshold wind speed, the wind fails to generate the surface roughness necessary for wind measurement. A simple analysis suggests the existence of the threshold in much of the tower-mounted scatterometer data. However, the backscatter does not "go to zero" beneath the threshold in an uncontrolled environment as theory suggests, but rather has a mean drop and higher variability below the threshold. Rain is the largest weather-related contributor to scatterometer error, affecting approximately 4% to 10% of SeaWinds data. A simple model formed via comparison of co-located TRMM PR and SeaWinds measurements characterizes the average effect of rain on SeaWinds backscatter. The model is generally accurate to within 3 dB over the tropics. The rain/wind backscatter model is used to simultaneously retrieve wind and rain from SeaWinds measurements. The simultaneous wind/rain (SWR) estimation procedure can improve wind estimates during rain, while providing a scatterometer-based rain rate estimate. SWR also affords improved rain flagging for low to moderate rain rates. QuikSCAT-retrieved rain rates correlate well with TRMM PR instantaneous measurements and TMI monthly rain averages. SeaWinds rain measurements can be used to supplement data from other rain-measuring instruments, filling spatial and temporal gaps in coverage.

  17. Prediction of Flutter Boundary Using Flutter Margin for The Discrete-Time System

    NASA Astrophysics Data System (ADS)

    Dwi Saputra, Angga; Wibawa Purabaya, R.

    2018-04-01

    Flutter testing in a wind tunnel is generally conducted at subcritical speeds to avoid damages. Hence, The flutter speed has to be predicted from the behavior some of its stability criteria estimated against the dynamic pressure or flight speed. Therefore, it is quite important for a reliable flutter prediction method to estimates flutter boundary. This paper summarizes the flutter testing of a wing cantilever model in a wind tunnel. The model has two degree of freedom; they are bending and torsion modes. The flutter test was conducted in a subsonic wind tunnel. The dynamic data responses was measured by two accelerometers that were mounted on leading edge and center of wing tip. The measurement was repeated while the wind speed increased. The dynamic responses were used to determine the parameter flutter margin for the discrete-time system. The flutter boundary of the model was estimated using extrapolation of the parameter flutter margin against the dynamic pressure. The parameter flutter margin for the discrete-time system has a better performance for flutter prediction than the modal parameters. A model with two degree freedom and experiencing classical flutter, the parameter flutter margin for the discrete-time system gives a satisfying result in prediction of flutter boundary on subsonic wind tunnel test.

  18. Comparison Between Sea Surface Wind Speed Estimates From Reflected GPS Signals and Buoy Measurements

    NASA Technical Reports Server (NTRS)

    Garrison, James L.; Katzberg, Steven J.; Zavorotny, Valery U.

    2000-01-01

    Reflected signals from the Global Positioning System (GPS) have been collected from an aircraft at approximately 3.7 km altitude on 5 different days. Estimation of surface wind speed by matching the shape of the reflected signal correlation function against analytical models was demonstrated. Wind speed obtained from this method agreed with that recorded from buoys to with a bias of less than 0.1 m/s, and with a standard derivation of 1.3 meters per second.

  19. Radiosonde and satellite observations of topographic flow off the Norwegian coast

    NASA Astrophysics Data System (ADS)

    Rugaard Furevik, Birgitte; Dagestad, Knut-Frode; Olafsson, Haraldur

    2015-04-01

    Winds in Norway are strongly affected by the complex topography and in some areas the average wind speed in the fjords may exceed those on the coast. Such effects are revealed through a statistical analysis derived wind speed from ~8500 Synthetic Aperture Radar (SAR) scenes covering the Norwegian coast. We have compared the results with modelled winds from the operational atmosphere model at MET (horizontal grid spacing of 2.5km) and 3 years of measurements from "M/S Trollfjord", a ferry traversing a 2400km coastal route between the cities Bergen and Kirkenes. The analysis reveals many coastal details of the wind field not observed from the meteorological station network of Norway. The data set proves useful for verification of offshore winds in the model. High temporal resolution radiosonde winds from two locations are used to analyse the topographic effects.

  20. Variations of Strahl Properties with Fast and Slow Solar Wind

    NASA Technical Reports Server (NTRS)

    Figueroa-Vinas, Adolfo; Goldstein, Melvyn L.; Gurgiolo, Chris

    2008-01-01

    The interplanetary solar wind electron velocity distribution function generally shows three different populations. Two of the components, the core and halo, have been the most intensively analyzed and modeled populations using different theoretical models. The third component, the strahl, is usually seen at higher energies, is confined in pitch-angle, is highly field-aligned and skew. This population has been more difficult to identify and to model in the solar wind. In this work we make use of the high angular, energy and time resolution and three-dimensional data of the Cluster/PEACE electron spectrometer to identify and analyze this component in the ambient solar wind during high and slow speed solar wind. The moment density and fluid velocity have been computed by a semi-numerical integration method. The variations of solar wind density and drift velocity with the general build solar wind speed could provide some insight into the source, origin, and evolution of the strahl.

  1. Impacts of subgrid-scale orography parameterization on simulated atmospheric fields over Korea using a high-resolution atmospheric forecast model

    NASA Astrophysics Data System (ADS)

    Lim, Kyo-Sun Sunny; Lim, Jong-Myoung; Shin, Hyeyum Hailey; Hong, Jinkyu; Ji, Young-Yong; Lee, Wanno

    2018-06-01

    A substantial over-prediction bias at low-to-moderate wind speeds in the Weather Research and Forecasting (WRF) model has been reported in the previous studies. Low-level wind fields play an important role in dispersion of air pollutants, including radionuclides, in a high-resolution WRF framework. By implementing two subgrid-scale orography parameterizations (Jimenez and Dudhia in J Appl Meteorol Climatol 51:300-316, 2012; Mass and Ovens in WRF model physics: problems, solutions and a new paradigm for progress. Preprints, 2010 WRF Users' Workshop, NCAR, Boulder, Colo. http://www.mmm.ucar.edu/wrf/users/workshops/WS2010/presentations/session%204/4-1_WRFworkshop2010Final.pdf, 2010), we tried to compare the performance of parameterizations and to enhance the forecast skill of low-level wind fields over the central western part of South Korea. Even though both subgrid-scale orography parameterizations significantly alleviated the positive bias at 10-m wind speed, the parameterization by Jimenez and Dudhia revealed a better forecast skill in wind speed under our modeling configuration. Implementation of the subgrid-scale orography parameterizations in the model did not affect the forecast skills in other meteorological fields including 10-m wind direction. Our study also brought up the problem of discrepancy in the definition of "10-m" wind between model physics parameterizations and observations, which can cause overestimated winds in model simulations. The overestimation was larger in stable conditions than in unstable conditions, indicating that the weak diurnal cycle in the model could be attributed to the representation error.

  2. Simulation of wake effects between two wind farms

    NASA Astrophysics Data System (ADS)

    Hansen, K. S.; Réthoré, P.-E.; Palma, J.; Hevia, B. G.; Prospathopoulos, J.; Peña, A.; Ott, S.; Schepers, G.; Palomares, A.; van der Laan, M. P.; Volker, P.

    2015-06-01

    SCADA data, recorded on the downstream wind farm, has been used to identify flow cases with visible clustering effects. The inflow condition is derived from a partly undisturbed wind turbine, due to lack of mast measurements. The SCADA data analysis concludes that centre of the deficit for the downstream wind farm with disturbed inflow has a distinct visible maximum deficit zone located only 5-10D downstream from the entrance. This zone, representing 20-30% speed reduction, increases and moves downstream for increasing cluster effect and is not visible outside a flow sector of 20-30°. The eight flow models represented in this benchmark include both RANS models, mesoscale models and engineering models. The flow cases, identified according to the wind speed level and inflow sector, have been simulated and validated with the SCADA results. The model validation concludes that all models more or less are able to predict the location and size of the deficit zone inside the downwind wind farm.

  3. Development of a Probabilistic Tornado Wind Hazard Model for the Continental United States Volume I: Main Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boissonnade, A; Hossain, Q; Kimball, J

    Since the mid-l980's, assessment of the wind and tornado risks at the Department of Energy (DOE) high and moderate hazard facilities has been based on the straight wind/tornado hazard curves given in UCRL-53526 (Coats, 1985). These curves were developed using a methodology that utilized a model, developed by McDonald, for severe winds at sub-tornado wind speeds and a separate model, developed by Fujita, for tornado wind speeds. For DOE sites not covered in UCRL-53526, wind and tornado hazard assessments are based on the criteria outlined in DOE-STD-1023-95 (DOE, 1996), utilizing the methodology in UCRL-53526; Subsequent to the publication of UCRL53526,more » in a study sponsored by the Nuclear Regulatory Commission (NRC), the Pacific Northwest Laboratory developed tornado wind hazard curves for the contiguous United States, NUREG/CR-4461 (Ramsdell, 1986). Because of the different modeling assumptions and underlying data used to develop the tornado wind information, the wind speeds at specified exceedance levels, at a given location, based on the methodology in UCRL-53526, are different than those based on the methodology in NUREG/CR-4461. In 1997, Lawrence Livermore National Laboratory (LLNL) was funded by the DOE to review the current methodologies for characterizing tornado wind hazards and to develop a state-of-the-art wind/tornado characterization methodology based on probabilistic hazard assessment techniques and current historical wind data. This report describes the process of developing the methodology and the database of relevant tornado information needed to implement the methodology. It also presents the tornado wind hazard curves obtained from the application of the method to DOE sites throughout the contiguous United States.« less

  4. Power Control for Direct-Driven Permanent Magnet Wind Generator System with Battery Storage

    PubMed Central

    Guang, Chu Xiao; Ying, Kong

    2014-01-01

    The objective of this paper is to construct a wind generator system (WGS) loss model that addresses the loss of the wind turbine and the generator. It aims to optimize the maximum effective output power and turbine speed. Given that the wind generator system has inertia and is nonlinear, the dynamic model of the wind generator system takes the advantage of the duty of the Buck converter and employs feedback linearization to design the optimized turbine speed tracking controller and the load power controller. According to that, this paper proposes a dual-mode dynamic coordination strategy based on the auxiliary load to reduce the influence of mode conversion on the lifetime of the battery. Optimized speed and power rapid tracking as well as the reduction of redundant power during mode conversion have gone through the test based on a 5 kW wind generator system test platform. The generator output power as the capture target has also been proved to be efficient. PMID:25050405

  5. Power control for direct-driven permanent magnet wind generator system with battery storage.

    PubMed

    Guang, Chu Xiao; Ying, Kong

    2014-01-01

    The objective of this paper is to construct a wind generator system (WGS) loss model that addresses the loss of the wind turbine and the generator. It aims to optimize the maximum effective output power and turbine speed. Given that the wind generator system has inertia and is nonlinear, the dynamic model of the wind generator system takes the advantage of the duty of the Buck converter and employs feedback linearization to design the optimized turbine speed tracking controller and the load power controller. According to that, this paper proposes a dual-mode dynamic coordination strategy based on the auxiliary load to reduce the influence of mode conversion on the lifetime of the battery. Optimized speed and power rapid tracking as well as the reduction of redundant power during mode conversion have gone through the test based on a 5 kW wind generator system test platform. The generator output power as the capture target has also been proved to be efficient.

  6. Physical understanding of the tropical cyclone wind-pressure relationship.

    PubMed

    Chavas, Daniel R; Reed, Kevin A; Knaff, John A

    2017-11-08

    The relationship between the two common measures of tropical cyclone intensity, the central pressure deficit and the peak near-surface wind speed, is a long-standing problem in tropical meteorology that has been approximated empirically yet lacks physical understanding. Here we provide theoretical grounding for this relationship. We first demonstrate that the central pressure deficit is highly predictable from the low-level wind field via gradient wind balance. We then show that this relationship reduces to a dependence on two velocity scales: the maximum azimuthal-mean azimuthal wind speed and half the product of the Coriolis parameter and outer storm size. This simple theory is found to hold across a hierarchy of models spanning reduced-complexity and Earth-like global simulations and observations. Thus, the central pressure deficit is an intensity measure that combines maximum wind speed, storm size, and background rotation rate. This work has significant implications for both fundamental understanding and risk analysis, including why the central pressure better explains historical economic damages than does maximum wind speed.

  7. Wind-wave coupling in the atmospheric boundary layer over a reservoir: field measurements and verification of the model

    NASA Astrophysics Data System (ADS)

    Troitskaya, Yuliya; Papko, Vladislav; Baidakov, Georgy; Vdovin, Maxim; Kandaurov, Alexander; Sergeev, Daniil

    2013-04-01

    This paper presents the results of field experiments conducted at the Gorky Reservoir to test a quasi-linear model of the atmospheric boundary layer [1]. In the course of the experiment we simultaneously measured profiles of wind speed and surface wave spectra using instruments placed on the Froude buoy, which measures the following parameters: i) the module and the direction of the wind speed using ultrasonic wind sensor WindSonic Gill instruments, located on the 4 - levels from 0.1 x 5 m long; ii) profile of the surface waves with 3-channel string wave-gauge with a base of 5 cm, iii) the temperature of the water and air with a resistive sensor. From the measured profiles of wind speed, we calculated basic parameters of the atmospheric boundary layer: the friction velocity u*, the wind speed at the standard height of 10 m U10 and the drag coefficient CD. Data on CD(U10), obtained at the Gorky Reservoir, were compared with similar data obtained on Lake George in Australia during the Australian Shallow Water Experiment (AUSWEX) conducted in 1997 - 1999 [2,3]. A good agreement was obtained between measured data at two different on the parameters of inland waters: deep Gorky reservoir and shallow Lake George.To elucidate the reasons for this coincidence of the drag coefficients under strongly different conditions an analysis of surface waves was conducted.Measurements have shown that in both water bodies the surface wave spectra have almost the same asymptotics (spatial spectrum - k-3, the frequency spectrum -5), corresponding to the Phillips saturation spectrum.These spectra are typically observed for the steep surface waves, for which the basic dissipation mechanism is wave breaking. The similarity of the short-wave parts of the spectra can be regarded as a probable cause of coincidence of dependency of drag coefficient of the water surface on wind speed. Quantitative verification of this hypothesis was carried out in the framework of quasi-linear model of the wind over the waves [1]. In the calculations the input parameters are measured friction velocity of wind and surface wave spectrum. The appropriate wind speed at the standard height of 10 m and the resistance coefficient surface were calculated. It is shown that at a wind speed of 6 m/s, the model reproduces the measurements. Significant difference of model predictions and measurements at lower values may be due to large measurement error caused by the nonstationarity of weak winds. Authors are grateful to prof. A.Babanin for fruitful discussion and access to data of AUSWEX. This work was supported by RFBR (project 11-05-12047-ofi-m, 13-05-00865-a, 12-05-33070). References 1. Troitskaya, Y. I., D. A. Sergeev, A. A. Kandaurov, G. A.Baidakov, M A. Vdovin, and V. I. Kazakov Laboratory and theoretical modeling of air-sea momentum transfer under severe wind conditions J.Geophys. Res., 117, C00J21, doi:10.1029/2011JC007778 2. Donelan M.A., Babanin A.V., Young I.R., Banner M.L., McCormick C. Wave follower field measurements of the wind input spectral function. Part I: Measurements and calibrations // J. Atmos. Oceanic Technol., 2005. V. 22. P. 799-813. 3. Babanin, A.V., and V.K. Makin: Effects of wind trend and gustiness on the sea drag: Lake George study. Journal of Geophysical Research, 2008, 113, C02015, doi:10.1029/2007JC004233, 18p

  8. Towards a parameterization of convective wind gusts in Sahel

    NASA Astrophysics Data System (ADS)

    Largeron, Yann; Guichard, Françoise; Bouniol, Dominique; Couvreux, Fleur; Birch, Cathryn; Beucher, Florent

    2014-05-01

    West Africa is responsible for between 25 and 50 % of the global emissions of mineral dust (cf [Engelstaedter et al., 2006]) and these dust emissions have a huge impact on climate (cf [Carslaw et al., 2010]) and soil erosion. Numerous studies have focused on the quantification of the dust emission fluxes from knowledges of the soil surface characteristics, leading to the formulation of a threshold wind friction velocity (cf [Marticorena and Bergametti, 1995]) above which the dust can be uplifted. That flux varies with the cube of the surface wind speed above the threshold and is therefore particularly sensitive to the way the wind speed is modeled (cf [Menut, 2008]). Moreover, in the Sahelian belt, about half of the dust uplift happens during isolated events which generate violent cold pool outflows from moist deep convection, and associated high surface wind speeds. Therefore, the representation of convectively generated winds appears critical (cf [Marsham et al., 2011], [Knippertz and Todd, 2012]). The present study is motivated by these issues, and is carried out within the CAVIARS French Research National Agency (ANR) project. First, we examine the ERA interim reanalysis of the ECMWF, frequently used as an input wind field for off-line dust emission models (cf [Pierre et al., 2012]). The comparison with high-frequency local measurements shows that, not unexpectedly, the increase of the surface wind speed from deep convection is not represented in large-scale reanalysis. Therefore, following [Redelsperger et al., 2000], we propose a statistical approach to introduce a formulation of the surface wind gusts during deep convection, based on the analysis of convection-permitting high resolution simulations made with the UKMO atmospheric model (CASCADE project), the AROME operational model from Meteo-France, and the MesoNH Large Eddy Simulations model. High-frequency observations are also used to complement the analysis. However, unlike [Redelsperger et al., 2000] who focused on the wet tropical Pacific region, and linked wind gusts to convective precipitation rates alone, here, we also analyse the subgrid wind distribution during convective events, and quantify the statistical moments (variance, skewness and kurtosis) in terms of mean wind speed and convective indexes such as DCAPE. Next step of the work will be to formulate a parameterization of the cold pool convective gust from those probability density functions and analytical formulaes obtained from basic energy budget models. References : [Carslaw et al., 2010] A review of natural aerosol interactions and feedbacks within the earth system. Atmospheric Chemistry and Physics, 10(4):1701{1737. [Engelstaedter et al., 2006] North african dust emissions and transport. Earth-Science Reviews, 79(1):73{100. [Knippertz and Todd, 2012] Mineral dust aerosols over the sahara: Meteorological controls on emission and transport and implications for modeling. Reviews of Geophysics, 50(1). [Marsham et al., 2011] The importance of the representation of deep convection for modeled dust-generating winds over west africa during summer.Geophysical Research Letters, 38(16). [Marticorena and Bergametti, 1995] Modeling the atmospheric dust cycle: 1. design of a soil-derived dust emission scheme. Journal of Geophysical Research, 100(D8):16415{16. [Menut, 2008] Sensitivity of hourly saharan dust emissions to ncep and ecmwf modeled wind speed. Journal of Geophysical Research: Atmospheres (1984{2012), 113(D16). [Pierre et al., 2012] Impact of vegetation and soil moisture seasonal dynamics on dust emissions over the sahel. Journal of Geophysical Research: Atmospheres (1984{2012), 117(D6). [Redelsperger et al., 2000] A parameterization of mesoscale enhancement of surface fluxes for large-scale models. Journal of climate, 13(2):402{421.

  9. Wind loading analysis and strategy for deflection reduction on HET wide field upgrade

    NASA Astrophysics Data System (ADS)

    South, Brian J.; Soukup, Ian M.; Worthington, Michael S.; Zierer, Joseph J.; Booth, John A.; Good, John M.

    2010-07-01

    Wind loading can be a detrimental source of vibration and deflection for any large terrestrial optical telescope. The Hobby-Eberly Telescope* (HET) in the Davis Mountains of West Texas is undergoing a Wide Field Upgrade (WFU) in support of the Dark Energy Experiment (HETDEX) that will greatly increase the size of the instrumentation subjected to operating wind speeds of up to 20.1 m/s (45 mph). A non-trivial consideration for this telescope (or others) is to quantify the wind loads and resulting deflections of telescope structures induced under normal operating conditions so that appropriate design changes can be made. A quasi-static computational fluid dynamics (CFD) model was generated using wind speeds collected on-site as inputs to characterize dynamic wind forces on telescope structures under various conditions. The CFD model was refined until predicted wind speed and direction inside the dome agreed with experimental data. The dynamic wind forces were then used in static loading analysis to determine maximum deflections under typical operating conditions. This approach also allows for exploration of operating parameters without impact to the observation schedule of the telescope. With optimum combinations of parameters (i.e. dome orientation, tracker position, and louver deployment), deflections due to current wind conditions can be significantly reduced. Furthermore, the upper limit for operating wind speed could be increased, provided these parameters are monitored closely. This translates into increased image quality and observing time.

  10. Wind power application research on the fusion of the determination and ensemble prediction

    NASA Astrophysics Data System (ADS)

    Lan, Shi; Lina, Xu; Yuzhu, Hao

    2017-07-01

    The fused product of wind speed for the wind farm is designed through the use of wind speed products of ensemble prediction from the European Centre for Medium-Range Weather Forecasts (ECMWF) and professional numerical model products on wind power based on Mesoscale Model5 (MM5) and Beijing Rapid Update Cycle (BJ-RUC), which are suitable for short-term wind power forecasting and electric dispatch. The single-valued forecast is formed by calculating the different ensemble statistics of the Bayesian probabilistic forecasting representing the uncertainty of ECMWF ensemble prediction. Using autoregressive integrated moving average (ARIMA) model to improve the time resolution of the single-valued forecast, and based on the Bayesian model averaging (BMA) and the deterministic numerical model prediction, the optimal wind speed forecasting curve and the confidence interval are provided. The result shows that the fusion forecast has made obvious improvement to the accuracy relative to the existing numerical forecasting products. Compared with the 0-24 h existing deterministic forecast in the validation period, the mean absolute error (MAE) is decreased by 24.3 % and the correlation coefficient (R) is increased by 12.5 %. In comparison with the ECMWF ensemble forecast, the MAE is reduced by 11.7 %, and R is increased 14.5 %. Additionally, MAE did not increase with the prolongation of the forecast ahead.

  11. A Novel Degradation Identification Method for Wind Turbine Pitch System

    NASA Astrophysics Data System (ADS)

    Guo, Hui-Dong

    2018-04-01

    It’s difficult for traditional threshold value method to identify degradation of operating equipment accurately. An novel degradation evaluation method suitable for wind turbine condition maintenance strategy implementation was proposed in this paper. Based on the analysis of typical variable-speed pitch-to-feather control principle and monitoring parameters for pitch system, a multi input multi output (MIMO) regression model was applied to pitch system, where wind speed, power generation regarding as input parameters, wheel rotation speed, pitch angle and motor driving currency for three blades as output parameters. Then, the difference between the on-line measurement and the calculated value from the MIMO regression model applying least square support vector machines (LSSVM) method was defined as the Observed Vector of the system. The Gaussian mixture model (GMM) was applied to fitting the distribution of the multi dimension Observed Vectors. Applying the model established, the Degradation Index was calculated using the SCADA data of a wind turbine damaged its pitch bearing retainer and rolling body, which illustrated the feasibility of the provided method.

  12. Circular Conditional Autoregressive Modeling of Vector Fields.

    PubMed

    Modlin, Danny; Fuentes, Montse; Reich, Brian

    2012-02-01

    As hurricanes approach landfall, there are several hazards for which coastal populations must be prepared. Damaging winds, torrential rains, and tornadoes play havoc with both the coast and inland areas; but, the biggest seaside menace to life and property is the storm surge. Wind fields are used as the primary forcing for the numerical forecasts of the coastal ocean response to hurricane force winds, such as the height of the storm surge and the degree of coastal flooding. Unfortunately, developments in deterministic modeling of these forcings have been hindered by computational expenses. In this paper, we present a multivariate spatial model for vector fields, that we apply to hurricane winds. We parameterize the wind vector at each site in polar coordinates and specify a circular conditional autoregressive (CCAR) model for the vector direction, and a spatial CAR model for speed. We apply our framework for vector fields to hurricane surface wind fields for Hurricane Floyd of 1999 and compare our CCAR model to prior methods that decompose wind speed and direction into its N-S and W-E cardinal components.

  13. Circular Conditional Autoregressive Modeling of Vector Fields*

    PubMed Central

    Modlin, Danny; Fuentes, Montse; Reich, Brian

    2013-01-01

    As hurricanes approach landfall, there are several hazards for which coastal populations must be prepared. Damaging winds, torrential rains, and tornadoes play havoc with both the coast and inland areas; but, the biggest seaside menace to life and property is the storm surge. Wind fields are used as the primary forcing for the numerical forecasts of the coastal ocean response to hurricane force winds, such as the height of the storm surge and the degree of coastal flooding. Unfortunately, developments in deterministic modeling of these forcings have been hindered by computational expenses. In this paper, we present a multivariate spatial model for vector fields, that we apply to hurricane winds. We parameterize the wind vector at each site in polar coordinates and specify a circular conditional autoregressive (CCAR) model for the vector direction, and a spatial CAR model for speed. We apply our framework for vector fields to hurricane surface wind fields for Hurricane Floyd of 1999 and compare our CCAR model to prior methods that decompose wind speed and direction into its N-S and W-E cardinal components. PMID:24353452

  14. Sensitivity of Turbine-Height Wind Speeds to Parameters in Planetary Boundary-Layer and Surface-Layer Schemes in the Weather Research and Forecasting Model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Ben; Qian, Yun; Berg, Larry K.

    We evaluate the sensitivity of simulated turbine-height winds to 26 parameters applied in a planetary boundary layer (PBL) scheme and a surface layer scheme of the Weather Research and Forecasting (WRF) model over an area of complex terrain during the Columbia Basin Wind Energy Study. An efficient sampling algorithm and a generalized linear model are used to explore the multiple-dimensional parameter space and quantify the parametric sensitivity of modeled turbine-height winds. The results indicate that most of the variability in the ensemble simulations is contributed by parameters related to the dissipation of the turbulence kinetic energy (TKE), Prandtl number, turbulencemore » length scales, surface roughness, and the von Kármán constant. The relative contributions of individual parameters are found to be dependent on both the terrain slope and atmospheric stability. The parameter associated with the TKE dissipation rate is found to be the most important one, and a larger dissipation rate can produce larger hub-height winds. A larger Prandtl number results in weaker nighttime winds. Increasing surface roughness reduces the frequencies of both extremely weak and strong winds, implying a reduction in the variability of the wind speed. All of the above parameters can significantly affect the vertical profiles of wind speed, the altitude of the low-level jet and the magnitude of the wind shear strength. The wind direction is found to be modulated by the same subset of influential parameters. Remainder of abstract is in attachment.« less

  15. Will surface winds weaken in response to global warming?

    NASA Astrophysics Data System (ADS)

    Ma, Jian; Foltz, Gregory R.; Soden, Brian J.; Huang, Gang; He, Jie; Dong, Changming

    2016-12-01

    The surface Walker and tropical tropospheric circulations have been inferred to slow down from historical observations and model projections, yet analysis of large-scale surface wind predictions is lacking. Satellite measurements of surface wind speed indicate strengthening trends averaged over the global and tropical oceans that are supported by precipitation and evaporation changes. Here we use corrected anemometer-based observations to show that the surface wind speed has not decreased in the averaged tropical oceans, despite its reduction in the region of the Walker circulation. Historical simulations and future projections for climate change also suggest a near-zero wind speed trend averaged in space, regardless of the Walker cell change. In the tropics, the sea surface temperature pattern effect acts against the large-scale circulation slow-down. For higher latitudes, the surface winds shift poleward along with the eddy-driven mid-latitude westerlies, resulting in a very small contribution to the global change in surface wind speed. Despite its importance for surface wind speed change, the influence of the SST pattern change on global-mean rainfall is insignificant since it cannot substantially alter the global energy balance. As a result, the precipitation response to global warming remains ‘muted’ relative to atmospheric moisture increase. Our results therefore show consistency between projections and observations of surface winds and precipitation.

  16. Forecasting for a Remote Island: A Class Exercise.

    NASA Astrophysics Data System (ADS)

    Riordan, Allen J.

    2003-06-01

    Students enrolled in a satellite meteorology course at North Carolina State University, Raleigh, recently had an unusual opportunity to apply their forecast skills to predict wind and weather conditions for a remote site in the Southern Hemisphere. For about 40 days starting in early February 2001, students used satellite and model guidance to develop forecasts to support a research team stationed on Bouvet Island (54°26S, 3°24E). Internet products together with current output from NCEP's Aviation (AVN) model supported the activity. Wind forecasts were of particular interest to the Bouvet team because violent winds often developed unexpectedly and posed a safety hazard.Results were encouraging in that 24-h wind speed forecasts showed reasonable reliability over a wide range of wind speeds. Forecasts for 48 h showed only marginal skill, however. Two critical events were well forecasted-the major February storm with wind speeds of over 120 kt and a brief calm period following several days of strong winds in early March. The latter forecast proved instrumental in recovering the research team.

  17. Research on Operation Strategy for Bundled Wind-thermal Generation Power Systems Based on Two-Stage Optimization Model

    NASA Astrophysics Data System (ADS)

    Sun, Congcong; Wang, Zhijie; Liu, Sanming; Jiang, Xiuchen; Sheng, Gehao; Liu, Tianyu

    2017-05-01

    Wind power has the advantages of being clean and non-polluting and the development of bundled wind-thermal generation power systems (BWTGSs) is one of the important means to improve wind power accommodation rate and implement “clean alternative” on generation side. A two-stage optimization strategy for BWTGSs considering wind speed forecasting results and load characteristics is proposed. By taking short-term wind speed forecasting results of generation side and load characteristics of demand side into account, a two-stage optimization model for BWTGSs is formulated. By using the environmental benefit index of BWTGSs as the objective function, supply-demand balance and generator operation as the constraints, the first-stage optimization model is developed with the chance-constrained programming theory. By using the operation cost for BWTGSs as the objective function, the second-stage optimization model is developed with the greedy algorithm. The improved PSO algorithm is employed to solve the model and numerical test verifies the effectiveness of the proposed strategy.

  18. Implications of nonrandom seed abscission and global stilling for migration of wind-dispersed plant species.

    PubMed

    Thompson, Sally E; Katul, Gabriel G

    2013-06-01

    Migration of plant populations is a potential survival response to climate change that depends critically on seed dispersal. Biological and physical factors determine dispersal and migration of wind-dispersed species. Recent field and wind tunnel studies demonstrate biological adaptations that bias seed release toward conditions of higher wind velocity, promoting longer dispersal distances and faster migration. However, another suite of international studies also recently highlighted a global decrease in near-surface wind speeds, or 'global stilling'. This study assessed the implications of both factors on potential plant population migration rates, using a mechanistic modeling framework. Nonrandom abscission was investigated using models of three seed release mechanisms: (i) a simple drag model; (ii) a seed deflection model; and (iii) a 'wear and tear' model. The models generated a single functional relationship between the frequency of seed release and statistics of the near-surface wind environment, independent of the abscission mechanism. An Inertial-Particle, Coupled Eulerian-Lagrangian Closure model (IP-CELC) was used to investigate abscission effects on seed dispersal kernels and plant population migration rates under contemporary and potential future wind conditions (based on reported global stilling trends). The results confirm that nonrandom seed abscission increased dispersal distances, particularly for light seeds. The increases were mitigated by two physical feedbacks: (i) although nonrandom abscission increased the initial acceleration of seeds from rest, the sensitivity of the seed dispersal to this initial condition declined as the wind speed increased; and (ii) while nonrandom abscission increased the mean dispersal length, it reduced the kurtosis of seasonal dispersal kernels, and thus the chance of long-distance dispersal. Wind stilling greatly reduced the modeled migration rates under biased seed release conditions. Thus, species that require high wind velocities for seed abscission could experience threshold-like reductions in dispersal and migration potential if near-surface wind speeds continue to decline. © 2013 Blackwell Publishing Ltd.

  19. Validation of odor concentration from mechanical-biological treatment piles using static chamber and wind tunnel with different wind speed values.

    PubMed

    Szyłak-Szydłowski, Mirosław

    2017-09-01

    The basic principle of odor sampling from surface sources is based primarily on the amount of air obtained from a specific area of the ground, which acts as a source of malodorous compounds. Wind tunnels and flux chambers are often the only available, direct method of evaluating the odor fluxes from small area sources. There are currently no widely accepted chamber-based methods; thus, there is still a need for standardization of these methods to ensure accuracy and comparability. Previous research has established that there is a significant difference between the odor concentration values obtained using the Lindvall chamber and those obtained by a dynamic flow chamber. Thus, the present study compares sampling methods using a streaming chamber modeled on the Lindvall cover (using different wind speeds), a static chamber, and a direct sampling method without any screens. The volumes of chambers in the current work were similar, ~0.08 m 3 . This study was conducted at the mechanical-biological treatment plant in Poland. Samples were taken from a pile covered by the membrane. Measured odor concentration values were between 2 and 150 ou E /m 3 . Results of the study demonstrated that both chambers can be used interchangeably in the following conditions: odor concentration is below 60 ou E /m 3 , wind speed inside the Lindvall chamber is below 0.2 m/sec, and a flow value is below 0.011 m 3 /sec. Increasing the wind speed above the aforementioned value results in significant differences in the results obtained between those methods. In all experiments, the results of the concentration of odor in the samples using the static chamber were consistently higher than those from the samples measured in the Lindvall chamber. Lastly, the results of experiments were employed to determine a model function of the relationship between wind speed and odor concentration values. Several researchers wrote that there are no widely accepted chamber-based methods. Also, there is still a need for standardization to ensure full comparability of these methods. The present study compared the existing methods to improve the standardization of area source sampling. The practical usefulness of the results was proving that both examined chambers can be used interchangeably. Statistically similar results were achieved while odor concentration was below 60 ou E /m 3 and wind speed inside the Lindvall chamber was below 0.2 m/sec. Increasing wind speed over these values results in differences between these methods. A model function of relationship between wind speed and odor concentration value was determined.

  20. Revised ocean backscatter models at C and Ku band under high-wind conditions

    NASA Astrophysics Data System (ADS)

    Donnelly, William J.; Carswell, James R.; McIntosh, Robert E.; Chang, Paul S.; Wilkerson, John; Marks, Frank; Black, Peter G.

    1999-05-01

    A series of airborne scatterometer experiments designed to collect C and Ku band ocean backscatter data in regions of high ocean surface winds has recently been completed. More than 100 hours of data were collected using the University of Massachusetts C and Ku band scatterometers, CSCAT and KUSCAT. These instruments measure the full azimuthal normalized radar cross section (NRCS) of a common surface area of the ocean simultaneously at four incidence angles. Our results demonstrate limitations of the current empirical models, C band geophysical model function 4 (CMOD4), SeaSat scatterometer 2 (SASS 2), and NASA scatterometer 1 (NSCAT) 1, that relate ocean backscatter to the near-surface wind at high wind speeds. The discussion focuses on winds in excess of 15 m s-1 in clear atmospheric conditions. The scatterometer data are collocated with measurements from ocean data buoys and Global Positioning System dropsondes, and a Fourier analysis is performed as a function of wind regime. A three-term Fourier series is fit to the backscatter data, and a revised set of coefficients is tabulated. These revised models, CMOD4HW and KUSCAT 1, are the basis for a discussion of the NRCS at high wind speeds. Our scatterometer data show a clear overprediction of the derived NRCS response to high winds based on the CMOD4, SASS 2, and NSCAT 1 models. Furthermore, saturation of the NRCS response begins to occur above 15 m s-1. Sensitivity of the upwind and crosswind response is discussed with implications toward high wind speed retrieval.

  1. Numerical Analysis of the Effect of Active Wind Speed and Direction on Circulation of Sea of Azov Water with and without Allowance for the Water Exchange through the Kerch Strait

    NASA Astrophysics Data System (ADS)

    Cherkesov, L. V.; Shul'ga, T. Ya.

    2018-01-01

    The effect of seawater movement through the Kerch Strait for extreme deviations in the level and speed of currents in the Sea of Azov caused by the action of climate wind fields has been studied using the Princeton ocean model (POM), a general three-dimensional nonlinear model of ocean circulation. Formation of the water flow through the strait is caused by the long-term action of the same type of atmospheric processes. The features of the water dynamics under conditions of changing intensity and active wind direction have been studied. Numerical experiments were carried out for two versions of model Sea of Azov basins: closed (without the Kerch Strait) and with a fluid boundary located in the Black Sea. The simulation results have shown that allowance for the strait leads to a significant change in the velocities of steady currents and level deviations at wind speeds greater than 5 m/s. The most significant effect on the parameters of steady-state movements is exerted by the speed of the wind that generates them; allowance for water exchange through the strait is less important. Analysis of the directions of atmospheric circulation has revealed that the response generated by the movement of water through the strait is most pronounced when a southeast wind is acting.

  2. Effect of Wind Speed and Relative Humidity on Atmospheric Dust Concentrations in Semi-Arid Climates

    PubMed Central

    Csavina, Janae; Field, Jason; Félix, Omar; Corral-Avitia, Alba Y.; Sáez, A. Eduardo; Betterton, Eric A.

    2014-01-01

    Atmospheric particulate have deleterious impacts on human health. Predicting dust and aerosol emission and transport would be helpful to reduce harmful impacts but, despite numerous studies, prediction of dust events and contaminant transport in dust remains challenging. In this work, we show that relative humidity and wind speed are both determinants in atmospheric dust concentration. Observations of atmospheric dust concentrations in Green Valley, AZ, USA, and Juárez, Chihuahua, México, show that PM10 concentrations are not directly correlated with wind speed or relative humidity separately. However, selecting the data for high wind speeds (> 4 m/s at 10 m elevation), a definite trend is observed between dust concentration and relative humidity: dust concentration increases with relative humidity, reaching a maximum around 25% and it subsequently decreases with relative humidity. Models for dust storm forecasting may be improved by utilizing atmospheric humidity and wind speed as main drivers for dust generation and transport. PMID:24769193

  3. Wind tunnel testing of 5-bladed H-rotor wind turbine with the integration of the omni-direction-guide-vane

    NASA Astrophysics Data System (ADS)

    Fazlizan, A.; Chong, W. T.; Omar, W. Z. W.; Mansor, S.; Zain, Z. M.; Pan, K. C.; Oon, C. S.

    2012-06-01

    A novel omni-direction-guide-vane (ODGV) that surrounds a vertical axis wind turbine (VAWT) is designed to improve the wind turbine performance by increasing the oncoming wind speed and guiding the wind-stream through optimum flow angles before impinging onto the turbine blades. Wind tunnel testing was performed to measure the performance of a 5-bladed H-rotor wind turbine with Wortmann FX63-137 airfoil blades, with and without the integration of the ODGV. The test was conducted using a scaled model turbine which was constructed to simulate the VAWT enclosed by the ODGV on a building. The diameter and height of the ODGV are 2 times larger than the VAWT's. Torque, rotational speed and power measurements were performed by using torque transducer with hysteresis brake applied to the rotor shaft. The VAWT shows an improvement on its self-starting behavior where the cut-in speed reduced to 4 m/s with the ODGV (7.35 m/s without the ODGV). Since the VAWT is able to self-start at lower wind speed, the working hour of the wind turbine would increase. At the wind speed of 6 m/s and free-running condition (only rotor inertia and bearing friction were applied), the ODGV helps to increase the rotor RPM by 182%. At the same wind speed (6 m/s), the ODGV helps to increase the power output by 3.48 times at peak torque. With this innovative design, the size of VAWT can be reduced for a given power output and should generate interest in the market, even for regions with weaker winds.

  4. Evaluation of low wind modeling approaches for two tall-stack databases.

    PubMed

    Paine, Robert; Samani, Olga; Kaplan, Mary; Knipping, Eladio; Kumar, Naresh

    2015-11-01

    The performance of the AERMOD air dispersion model under low wind speed conditions, especially for applications with only one level of meteorological data and no direct turbulence measurements or vertical temperature gradient observations, is the focus of this study. The analysis documented in this paper addresses evaluations for low wind conditions involving tall stack releases for which multiple years of concurrent emissions, meteorological data, and monitoring data are available. AERMOD was tested on two field-study databases involving several SO2 monitors and hourly emissions data that had sub-hourly meteorological data (e.g., 10-min averages) available using several technical options: default mode, with various low wind speed beta options, and using the available sub-hourly meteorological data. These field study databases included (1) Mercer County, a North Dakota database featuring five SO2 monitors within 10 km of the Dakota Gasification Company's plant and the Antelope Valley Station power plant in an area of both flat and elevated terrain, and (2) a flat-terrain setting database with four SO2 monitors within 6 km of the Gibson Generating Station in southwest Indiana. Both sites featured regionally representative 10-m meteorological databases, with no significant terrain obstacles between the meteorological site and the emission sources. The low wind beta options show improvement in model performance helping to reduce some of the over-prediction biases currently present in AERMOD when run with regulatory default options. The overall findings with the low wind speed testing on these tall stack field-study databases indicate that AERMOD low wind speed options have a minor effect for flat terrain locations, but can have a significant effect for elevated terrain locations. The performance of AERMOD using low wind speed options leads to improved consistency of meteorological conditions associated with the highest observed and predicted concentration events. The available sub-hourly modeling results using the Sub-Hourly AERMOD Run Procedure (SHARP) are relatively unbiased and show that this alternative approach should be seriously considered to address situations dominated by low-wind meander conditions. AERMOD was evaluated with two tall stack databases (in North Dakota and Indiana) in areas of both flat and elevated terrain. AERMOD cases included the regulatory default mode, low wind speed beta options, and use of the Sub-Hourly AERMOD Run Procedure (SHARP). The low wind beta options show improvement in model performance (especially in higher terrain areas), helping to reduce some of the over-prediction biases currently present in regulatory default AERMOD. The SHARP results are relatively unbiased and show that this approach should be seriously considered to address situations dominated by low-wind meander conditions.

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Newsom, R. K.; Sivaraman, C.; Shippert, T. R.

    Wind speed and direction, together with pressure, temperature, and relative humidity, are the most fundamental atmospheric state parameters. Accurate measurement of these parameters is crucial for numerical weather prediction. Vertically resolved wind measurements in the atmospheric boundary layer are particularly important for modeling pollutant and aerosol transport. Raw data from a scanning coherent Doppler lidar system can be processed to generate accurate height-resolved measurements of wind speed and direction in the atmospheric boundary layer.

  6. Probability density function characterization for aggregated large-scale wind power based on Weibull mixtures

    DOE PAGES

    Gomez-Lazaro, Emilio; Bueso, Maria C.; Kessler, Mathieu; ...

    2016-02-02

    Here, the Weibull probability distribution has been widely applied to characterize wind speeds for wind energy resources. Wind power generation modeling is different, however, due in particular to power curve limitations, wind turbine control methods, and transmission system operation requirements. These differences are even greater for aggregated wind power generation in power systems with high wind penetration. Consequently, models based on one-Weibull component can provide poor characterizations for aggregated wind power generation. With this aim, the present paper focuses on discussing Weibull mixtures to characterize the probability density function (PDF) for aggregated wind power generation. PDFs of wind power datamore » are firstly classified attending to hourly and seasonal patterns. The selection of the number of components in the mixture is analyzed through two well-known different criteria: the Akaike information criterion (AIC) and the Bayesian information criterion (BIC). Finally, the optimal number of Weibull components for maximum likelihood is explored for the defined patterns, including the estimated weight, scale, and shape parameters. Results show that multi-Weibull models are more suitable to characterize aggregated wind power data due to the impact of distributed generation, variety of wind speed values and wind power curtailment.« less

  7. Grid-connected wind and photovoltaic system

    NASA Astrophysics Data System (ADS)

    Devabakthuni, Sindhuja

    The objective of this thesis is to design a grid connected wind and photovoltaic system. A new model of converter control was designed which maintains the voltage of the bus to grid as constant when combined system of solar and wind is connected to AC bus. The model is designed to track maximum power at each point irrespective of changes in irradiance, temperature and wind speed which affects the power supplied to grid. Solar power from the sun is not constant as it is affected by changes in irradiances and temperature. Even the wind power is affected by wind speed. A MPPT controller was designed for both systems. A boost converter is designed which uses the pulses from MPPT controller to boost the output. Wind system consists of wind turbine block from the MATLAB with a pitch angle controller to maintain optimum pitch angle. The output from wind turbine is connected to a permanent magnet synchronous generator. The unregulated DC output from the photovoltaic system is directly given to boost converter. The AC output from the wind system is given to an uncontrolled rectifier to get a unregulated DC output. The unregulated DC output goes to the boost converter. A voltage source inverter was designed which converts the rectified DC output from the boost converter to AC power. The inverter is designed to maintain constant AC bus voltage irrespective of the disturbances in the power supply. Photovoltaic and wind systems are individually designed for 5KW each in MATLAB-Simulink environment. In this thesis, the models were subjected to changes in irradiance, temperature and wind speed and the results were interpreted. The model was successful in tracking maximum at every instant and the AC bus voltage was maintained constant throughout the simulation.

  8. Solar wind speed and He I (1083 nm) absorption line intensity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hakamada, Kazuyuki; Kojima, Masayoshi; Kakinuma, Takakiyo

    1991-04-01

    Since the pattern of the solar wind was relatively steady during Carrington rotations 1,748 through 1,752 in 1984, an average distribution of the solar windspeed on a so-called source surface can be constructed by superposed epoch analysis of the wind values estimated by the interplanetary scintillation observations. The average distribution of the solar wind speed is then projected onto the photosphere along magnetic field lines computed by a so-called potential model with the line-of-sight components of the photospheric magnetic fields. The solar wind speeds projected onto the photosphere are compared with the intensities of the He I (1,083 nm) absorptionmore » line at the corresponding locations in the chromosphere. The authors found that there is a linear relation between the speeds and the intensities. Since the intensity of the He I (1,083 nm) absorption line is coupled with the temperature of the corona, this relation suggests that some physical mechanism in or above the photosphere accelerates coronal plasmas to the solar wind speed in regions where the temperature is low. Further, it is suggested that the efficiency of the solar wind acceleration decreases as the coronal temperature increases.« less

  9. Weather Research and Forecasting Model Wind Sensitivity Study at Edwards Air Force Base, CA

    NASA Technical Reports Server (NTRS)

    Watson, Leela R.; Bauman, William H., III

    2008-01-01

    NASA prefers to land the space shuttle at Kennedy Space Center (KSC). When weather conditions violate Flight Rules at KSC, NASA will usually divert the shuttle landing to Edwards Air Force Base (EAFB) in Southern California. But forecasting surface winds at EAFB is a challenge for the Spaceflight Meteorology Group (SMG) forecasters due to the complex terrain that surrounds EAFB, One particular phenomena identified by SMG is that makes it difficult to forecast the EAFB surface winds is called "wind cycling". This occurs when wind speeds and directions oscillate among towers near the EAFB runway leading to a challenging deorbit bum forecast for shuttle landings. The large-scale numerical weather prediction models cannot properly resolve the wind field due to their coarse horizontal resolutions, so a properly tuned high-resolution mesoscale model is needed. The Weather Research and Forecasting (WRF) model meets this requirement. The AMU assessed the different WRF model options to determine which configuration best predicted surface wind speed and direction at EAFB, To do so, the AMU compared the WRF model performance using two hot start initializations with the Advanced Research WRF and Non-hydrostatic Mesoscale Model dynamical cores and compared model performance while varying the physics options.

  10. Regional modeling of wind erosion in the North West and South West of Iran

    NASA Astrophysics Data System (ADS)

    Mirmousavi, S. H.

    2016-08-01

    About two-thirds of the Iran's area is located in the arid and semiarid region. Lack of soil moisture and vegetation is poor in most areas can lead to soil erosion caused by wind. So that the annual suffered severe damage to large areas of rich soils. Modeling studies of wind erosion in Iran is very low and incomplete. Therefore, this study aimed to wind erosion modeling, taking into three factors: wind speed, vegetation and soil types have been done. Wind erosion sensitivity was modeled using the key factors of soil sensitivity, vegetation cover and wind erodibility as proxies. These factors were first estimated separately by factor sensitivity maps and later combined by fuzzy logic into a regional-scale wind erosion sensitivity map. Large areas were evaluated by using publicly available datasets of remotely sensed vegetation information, soil maps and meteorological data on wind speed. The resulting estimates were verified by field studies and examining the economic losses from wind erosion as compensated by the state insurance company. The spatial resolution of the resulting sensitivity map is suitable for regional applications, as identifying sensitive areas is the foundation for diverse land development control measures and implementing management activities.

  11. Tropical cyclone induced asymmetry of sea level surge and fall and its presentation in a storm surge model with parametric wind fields

    NASA Astrophysics Data System (ADS)

    Peng, Machuan; Xie, Lian; Pietrafesa, Leonard J.

    The asymmetry of tropical cyclone induced maximum coastal sea level rise (positive surge) and fall (negative surge) is studied using a three-dimensional storm surge model. It is found that the negative surge induced by offshore winds is more sensitive to wind speed and direction changes than the positive surge by onshore winds. As a result, negative surge is inherently more difficult to forecast than positive surge since there is uncertainty in tropical storm wind forecasts. The asymmetry of negative and positive surge under parametric wind forcing is more apparent in shallow water regions. For tropical cyclones with fixed central pressure, the surge asymmetry increases with decreasing storm translation speed. For those with the same translation speed, a weaker tropical cyclone is expected to gain a higher AI (asymmetry index) value though its induced maximum surge and fall are smaller. With fixed RMW (radius of maximum wind), the relationship between central pressure and AI is heterogeneous and depends on the value of RMW. Tropical cyclone's wind inflow angle can also affect surge asymmetry. A set of idealized cases as well as two historic tropical cyclones are used to illustrate the surge asymmetry.

  12. Evaluation of the WRF-Urban Modeling System Coupled to Noah and Noah-MP Land Surface Models Over a Semiarid Urban Environment

    NASA Astrophysics Data System (ADS)

    Salamanca, Francisco; Zhang, Yizhou; Barlage, Michael; Chen, Fei; Mahalov, Alex; Miao, Shiguang

    2018-03-01

    We have augmented the existing capabilities of the integrated Weather Research and Forecasting (WRF)-urban modeling system by coupling three urban canopy models (UCMs) available in the WRF model with the new community Noah with multiparameterization options (Noah-MP) land surface model (LSM). The WRF-urban modeling system's performance has been evaluated by conducting six numerical experiments at high spatial resolution (1 km horizontal grid spacing) during a 15 day clear-sky summertime period for a semiarid urban environment. To assess the relative importance of representing urban surfaces, three different urban parameterizations are used with the Noah and Noah-MP LSMs, respectively, over the two major cities of Arizona: Phoenix and Tucson metropolitan areas. Our results demonstrate that Noah-MP reproduces somewhat better than Noah the daily evolution of surface skin temperature and near-surface air temperature (especially nighttime temperature) and wind speed. Concerning the urban areas, bulk urban parameterization overestimates nighttime 2 m air temperature compared to the single-layer and multilayer UCMs that reproduce more accurately the daily evolution of near-surface air temperature. Regarding near-surface wind speed, only the multilayer UCM was able to reproduce realistically the daily evolution of wind speed, although maximum winds were slightly overestimated, while both the single-layer and bulk urban parameterizations overestimated wind speed considerably. Based on these results, this paper demonstrates that the new community Noah-MP LSM coupled to an UCM is a promising physics-based predictive modeling tool for urban applications.

  13. Insuring wind energy production

    NASA Astrophysics Data System (ADS)

    D'Amico, Guglielmo; Petroni, Filippo; Prattico, Flavio

    2017-02-01

    This paper presents an insurance contract that the supplier of wind energy may subscribe in order to immunize the production of electricity against the volatility of the wind speed process. The other party of the contract may be any dispatchable energy producer, like gas turbine or hydroelectric generator, which can supply the required energy in case of little or no wind. The adoption of a stochastic wind speed model allows the computation of the fair premium that the wind power supplier has to pay in order to hedge the risk of inadequate output of electricity at any time. Recursive type equations are obtained for the prospective mathematical reserves of the insurance contract and for their higher order moments. The model and the validity of the results are illustrated through a numerical example.

  14. Solar wind and coronal structure near sunspot minimum - Pioneer and SMM observations from 1985-1987

    NASA Technical Reports Server (NTRS)

    Mihalov, J. D.; Barnes, A.; Hundhausen, A. J.; Smith, E. J.

    1990-01-01

    Changes in solar wind speed and magnetic polarity observed at the Pioneer spacecraft are discussed here in terms of the changing magnetic geometry implied by SMM coronagraph observations over the period 1985-1987. The pattern of recurrent solar wind streams, the long-term average speed, and the sector polarity of the interplanetary magnetic field all changed in a manner suggesting both a temporal variation, and a changing dependence on heliographic latitude. Coronal observations during this epoch show a systematic variation in coronal structure and the magnetic structure imposed on the expanding solar wind. These observations suggest interpretation of the solar wind speed variations in terms of the familiar model where the speed increases with distance from a nearly flat interplanetary current sheet, and where this current sheet becomes aligned with the solar equatorial plane as sunspot minimum approaches, but deviates rapidly from that orientation after minimum.

  15. Preliminary Assessment of Wind and Wave Retrieval from Chinese Gaofen-3 SAR Imagery

    PubMed Central

    Sun, Jian

    2017-01-01

    The Chinese Gaofen-3 (GF-3) synthetic aperture radar (SAR) launched by the China Academy of Space Technology (CAST) has operated at C-band since September 2016. To date, we have collected 16/42 images in vertical-vertical (VV)/horizontal-horizontal (HH) polarization, covering the National Data Buoy Center (NDBC) buoy measurements of the National Oceanic and Atmospheric Administration (NOAA) around U.S. western coastal waters. Wind speeds from NDBC in situ buoys are up to 15 m/s and buoy-measured significant wave height (SWH) has ranged from 0.5 m to 3 m. In this study, winds were retrieved using the geophysical model function (GMF) together with the polarization ratio (PR) model and waves were retrieved using a new empirical algorithm based on SAR cutoff wavelength in satellite flight direction, herein called CSAR_WAVE. Validation against buoy measurements shows a 1.4/1.9 m/s root mean square error (RMSE) of wind speed and a 24/23% scatter index (SI) of SWH for VV/HH polarization. In addition, wind and wave retrieval results from 166 GF-3 images were compared with the European Centre for Medium-Range Weather Forecasts (ECMWF) re-analysis winds, as well as the SWH from the WaveWatch-III model, respectively. Comparisons show a 2.0 m/s RMSE for wind speed with a 36% SI of SWH for VV-polarization and a 2.2 m/s RMSE for wind speed with a 37% SI of SWH for HH-polarization. Our work gives a preliminary assessment of the wind and wave retrieval results from GF-3 SAR images for the first time and will provide guidance for marine applications of GF-3 SAR. PMID:28757571

  16. Long-term forecasting of meteorological time series using Nonlinear Canonical Correlation Analysis (NLCCA)

    NASA Astrophysics Data System (ADS)

    Woldesellasse, H. T.; Marpu, P. R.; Ouarda, T.

    2016-12-01

    Wind is one of the crucial renewable energy sources which is expected to bring solutions to the challenges of clean energy and the global issue of climate change. A number of linear and nonlinear multivariate techniques has been used to predict the stochastic character of wind speed. A wind forecast with good accuracy has a positive impact on the reduction of electricity system cost and is essential for the effective grid management. Over the past years, few studies have been done on the assessment of teleconnections and its possible effects on the long-term wind speed variability in the UAE region. In this study Nonlinear Canonical Correlation Analysis (NLCCA) method is applied to study the relationship between global climate oscillation indices and meteorological variables, with a major emphasis on wind speed and wind direction, of Abu Dhabi, UAE. The wind dataset was obtained from six ground stations. The first mode of NLCCA is capable of capturing the nonlinear mode of the climate indices at different seasons, showing the symmetry between the warm states and the cool states. The strength of the nonlinear canonical correlation between the two sets of variables varies with the lead/lag time. The performance of the models is assessed by calculating error indices such as the root mean square error (RMSE) and Mean absolute error (MAE). The results indicated that NLCCA models provide more accurate information about the nonlinear intrinsic behaviour of the dataset of variables than linear CCA model in terms of the correlation and root mean square error. Key words: Nonlinear Canonical Correlation Analysis (NLCCA), Canonical Correlation Analysis, Neural Network, Climate Indices, wind speed, wind direction

  17. Aerodynamic design and analysis of small horizontal axis wind turbine blades

    NASA Astrophysics Data System (ADS)

    Tang, Xinzi

    This work investigates the aerodynamic design and analysis of small horizontal axis wind turbine blades via the blade element momentum (BEM) based approach and the computational fluid dynamics (CFD) based approach. From this research, it is possible to draw a series of detailed guidelines on small wind turbine blade design and analysis. The research also provides a platform for further comprehensive study using these two approaches. The wake induction corrections and stall corrections of the BEM method were examined through a case study of the NREL/NASA Phase VI wind turbine. A hybrid stall correction model was proposed to analyse wind turbine power performance. The proposed model shows improvement in power prediction for the validation case, compared with the existing stall correction models. The effects of the key rotor parameters of a small wind turbine as well as the blade chord and twist angle distributions on power performance were investigated through two typical wind turbines, i.e. a fixed-pitch variable-speed (FPVS) wind turbine and a fixed-pitch fixed-speed (FPFS) wind turbine. An engineering blade design and analysis code was developed in MATLAB to accommodate aerodynamic design and analysis of the blades.. The linearisation for radial profiles of blade chord and twist angle for the FPFS wind turbine blade design was discussed. Results show that, the proposed linearisation approach leads to reduced manufacturing cost and higher annual energy production (AEP), with minimal effects on the low wind speed performance. Comparative studies of mesh and turbulence models in 2D and 3D CFD modelling were conducted. The CFD predicted lift and drag coefficients of the airfoil S809 were compared with wind tunnel test data and the 3D CFD modelling method of the NREL/NASA Phase VI wind turbine were validated against measurements. Airfoil aerodynamic characterisation and wind turbine power performance as well as 3D flow details were studied. The detailed flow characteristics from the CFD modelling are quantitatively comparable to the measurements, such as blade surface pressure distribution and integrated forces and moments. It is confirmed that the CFD approach is able to provide a more detailed qualitative and quantitative analysis for wind turbine airfoils and rotors..

  18. The relationship between the microwave radar cross section and both wind speed and stress: Model function studies using Frontal Air-Sea Interaction Experiment data

    NASA Astrophysics Data System (ADS)

    Weissman, David E.; Davidson, Kenneth L.; Brown, Robert A.; Friehe, Carl A.; Li, Fuk

    1994-05-01

    The Frontal Air-Sea Interaction Experiment (FASINEX) provided a unique data set with coincident airborne scatterometer measurements of the ocean surface radar cross section (RCS) (at Ku band) and near-surface wind and wind stress. These data have been analyzed to study new model functions which relate wind speed and surface friction velocity (square root of the kinematic wind stress) to the radar cross section and to better understand the processes in the boundary layer that have a strong influence on the radar backscatter. Studies of data from FASINEX indicate that the RCS has a different relation to the friction velocity than to the wind speed. The difference between the RCS models using these two variables depends on the polarization and the incidence angle. The radar data have been acquired from the Jet Propulsion Laboratory airborne scatterometer. These data span 10 different flight days. Stress measurements were inferred from shipboard instruments and from aircraft flying at low altitudes, closely following the scatterometer. Wide ranges of radar incidence angles and environmental conditions needed to fully develop algorithms are available from this experiment.

  19. The relationship between the microwave radar cross section and both wind speed and stress: Model function studies using Frontal Air-Sea Interaction Experiment data

    NASA Technical Reports Server (NTRS)

    Weissman, David E.; Davidson, Kenneth L.; Brown, Robert A.; Friehe, Carl A.; Li, Fuk

    1994-01-01

    The Frontal Air-Sea Interaction Experiment (FASINEX) provided a unique data set with coincident airborne scatterometer measurements of the ocean surface radar cross section (RCS)(at Ku band) and near-surface wind and wind stress. These data have been analyzed to study new model functions which relate wind speed and surface friction velocity (square root of the kinematic wind stress) to the radar cross section and to better understand the processes in the boundary layer that have a strong influence on the radar backscatter. Studies of data from FASINEX indicate that the RCS has a different relation to the friction velocity than to the wind speed. The difference between the RCS models using these two variables depends on the polarization and the incidence angle. The radar data have been acquired from the Jet Propulsion Laboratory airborne scatterometer. These data span 10 different flight days. Stress measurements were inferred from shipboard instruments and from aircraft flying at low altitudes, closely following the scatterometer. Wide ranges of radar incidence angles and environmental conditions needed to fully develop algorithms are available from this experiment.

  20. Development of an analytical Lagrangian model for passive scalar dispersion in low-wind speed meandering conditions

    NASA Astrophysics Data System (ADS)

    Stefanello, M. B.; Degrazia, G. A.; Mortarini, L.; Buligon, L.; Maldaner, S.; Carvalho, J. C.; Acevedo, O. C.; Martins, L. G. N.; Anfossi, D.; Buriol, C.; Roberti, D.

    2018-02-01

    Describing the effects of wind meandering motions on the dispersion of scalars is a challenging task, since this type of flow represents a physical state characterized by multiple scales. In this study, a Lagrangian stochastic diffusion model is derived to describe scalar transport during the horizontal wind meandering phenomenon that occurs within a planetary boundary layer. The model is derived from the linearization of the Langevin equation, and it employs a heuristic functional form that represents the autocorrelation function of meandering motion. The new solutions, which describe the longitudinal and lateral wind components, were used to simulate tracer experiments that were performed in low-wind speed conditions. The results of the comparison indicate that the new model can effectively reproduce the observed concentrations of the contaminants, and therefore, it can satisfactorily describe enhanced dispersion effects due to the presence of meandering.

  1. Evaluation model of wind energy resources and utilization efficiency of wind farm

    NASA Astrophysics Data System (ADS)

    Ma, Jie

    2018-04-01

    Due to the large amount of abandoned winds in wind farms, the establishment of a wind farm evaluation model is particularly important for the future development of wind farms In this essay, consider the wind farm's wind energy situation, Wind Energy Resource Model (WERM) and Wind Energy Utilization Efficiency Model(WEUEM) are established to conduct a comprehensive assessment of the wind farm. Wind Energy Resource Model (WERM) contains average wind speed, average wind power density and turbulence intensity, which assessed wind energy resources together. Based on our model, combined with the actual measurement data of a wind farm, calculate the indicators using the model, and the results are in line with the actual situation. We can plan the future development of the wind farm based on this result. Thus, the proposed establishment approach of wind farm assessment model has application value.

  2. Level-crossing statistics of the horizontal wind speed in the planetary surface boundary layer

    NASA Astrophysics Data System (ADS)

    Edwards, Paul J.; Hurst, Robert B.

    2001-09-01

    The probability density of the times for which the horizontal wind remains above or below a given threshold speed is of some interest in the fields of renewable energy generation and pollutant dispersal. However there appear to be no analytic or conceptual models which account for the observed power law form of the distribution of these episode lengths over a range of over three decades, from a few tens of seconds to a day or more. We reanalyze high resolution wind data and demonstrate the fractal character of the point process generated by the wind speed level crossings. We simulate the fluctuating wind speed by a Markov process which approximates the characteristics of the real (non-Markovian) wind and successfully generates a power law distribution of episode lengths. However, fundamental questions concerning the physical basis for this behavior and the connection between the properties of a continuous-time stochastic process and the fractal statistics of the point process generated by its level crossings remain unanswered.

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Jie; Jain, Rishabh; Hodge, Bri-Mathias

    A data-driven methodology is developed to analyze how ambient and wake turbulence affect the power generation of wind turbine(s). Using supervisory control and data acquisition (SCADA) data from a wind plant, we select two sets of wind velocity and power data for turbines on the edge of the plant that resemble (i) an out-of-wake scenario and (ii) an in-wake scenario. For each set of data, two surrogate models are developed to represent the turbine(s) power generation as a function of (i) the wind speed and (ii) the wind speed and turbulence intensity. Three types of uncertainties in turbine(s) power generationmore » are investigated: (i) the uncertainty in power generation with respect to the reported power curve; (ii) the uncertainty in power generation with respect to the estimated power response that accounts for only mean wind speed; and (iii) the uncertainty in power generation with respect to the estimated power response that accounts for both mean wind speed and turbulence intensity. Results show that (i) the turbine(s) generally produce more power under the in-wake scenario than under the out-of-wake scenario with the same wind speed; and (ii) there is relatively more uncertainty in the power generation under the in-wake scenario than under the out-of-wake scenario.« less

  4. Neural network based control of Doubly Fed Induction Generator in wind power generation

    NASA Astrophysics Data System (ADS)

    Barbade, Swati A.; Kasliwal, Prabha

    2012-07-01

    To complement the other types of pollution-free generation wind energy is a viable option. Previously wind turbines were operated at constant speed. The evolution of technology related to wind systems industry leaded to the development of a generation of variable speed wind turbines that present many advantages compared to the fixed speed wind turbines. In this paper the phasor model of DFIG is used. This paper presents a study of a doubly fed induction generator driven by a wind turbine connected to the grid, and controlled by artificial neural network ANN controller. The behaviour of the system is shown with PI control, and then as controlled by ANN. The effectiveness of the artificial neural network controller is compared to that of a PI controller. The SIMULINK/MATLAB simulation for Doubly Fed Induction Generator and corresponding results and waveforms are displayed.

  5. Accuracy evaluation of ClimGen weather generator and daily to hourly disaggregation methods in tropical conditions

    NASA Astrophysics Data System (ADS)

    Safeeq, Mohammad; Fares, Ali

    2011-12-01

    Daily and sub-daily weather data are often required for hydrological and environmental modeling. Various weather generator programs have been used to generate synthetic climate data where observed climate data are limited. In this study, a weather data generator, ClimGen, was evaluated for generating information on daily precipitation, temperature, and wind speed at four tropical watersheds located in Hawai`i, USA. We also evaluated different daily to sub-daily weather data disaggregation methods for precipitation, air temperature, dew point temperature, and wind speed at Mākaha watershed. The hydrologic significance values of the different disaggregation methods were evaluated using Distributed Hydrology Soil Vegetation Model. MuDRain and diurnal method performed well over uniform distribution in disaggregating daily precipitation. However, the diurnal method is more consistent if accurate estimates of hourly precipitation intensities are desired. All of the air temperature disaggregation methods performed reasonably well, but goodness-of-fit statistics were slightly better for sine curve model with 2 h lag. Cosine model performed better than random model in disaggregating daily wind speed. The largest differences in annual water balance were related to wind speed followed by precipitation and dew point temperature. Simulated hourly streamflow, evapotranspiration, and groundwater recharge were less sensitive to the method of disaggregating daily air temperature. ClimGen performed well in generating the minimum and maximum temperature and wind speed. However, for precipitation, it clearly underestimated the number of extreme rainfall events with an intensity of >100 mm/day in all four locations. ClimGen was unable to replicate the distribution of observed precipitation at three locations (Honolulu, Kahului, and Hilo). ClimGen was able to reproduce the distributions of observed minimum temperature at Kahului and wind speed at Kahului and Hilo. Although the weather data generation and disaggregation methods were concentrated in a few Hawaiian watersheds, the results presented can be used to similar mountainous location settings, as well as any specific locations aimed at furthering the site-specific performance evaluation of these tested models.

  6. Statistical analysis of low frequency vibrations in variable speed wind turbines

    NASA Astrophysics Data System (ADS)

    Escaler, X.; Mebarki, T.

    2013-12-01

    The spectral content of the low frequency vibrations in the band from 0 to 10 Hz measured in full scale wind turbines has been statistically analyzed as a function of the whole range of steady operating conditions. Attention has been given to the amplitudes of the vibration peaks and their dependency on rotating speed and power output. Two different wind turbine models of 800 and 2000 kW have been compared. For each model, a sample of units located in the same wind farm and operating during a representative period of time have been considered. A condition monitoring system installed in each wind turbine has been used to register the axial acceleration on the gearbox casing between the intermediate and the high speed shafts. The average frequency spectrum has permitted to identify the vibration signature and the position of the first tower natural frequency in both models. The evolution of the vibration amplitudes at the rotor rotating frequency and its multiples has shown that the tower response is amplified by resonance conditions in one of the models. So, it is concluded that a continuous measurement and control of low frequency vibrations is required to protect the turbines against harmful vibrations of this nature.

  7. The NASA Langley 16-Foot Transonic Tunnel: Historical Overview, Facility Description, Calibration, Flow Characteristics, and Test Capabilities

    NASA Technical Reports Server (NTRS)

    Capone, Francis J.; Bangert, Linda S.; Asbury, Scott C.; Mills, Charles T. L.; Bare, E. Ann

    1995-01-01

    The Langley 16-Foot Transonic Tunnel is a closed-circuit single-return atmospheric wind tunnel that has a slotted octagonal test section with continuous air exchange. The wind tunnel speed can be varied continuously over a Mach number range from 0.1 to 1.3. Test-section plenum suction is used for speeds above a Mach number of 1.05. Over a period of some 40 years, the wind tunnel has undergone many modifications. During the modifications completed in 1990, a new model support system that increased blockage, new fan blades, a catcher screen for the first set of turning vanes, and process controllers for tunnel speed, model attitude, and jet flow for powered models were installed. This report presents a complete description of the Langley 16-Foot Transonic Tunnel and auxiliary equipment, the calibration procedures, and the results of the 1977 and the 1990 wind tunnel calibration with test section air removal. Comparisons with previous calibrations showed that the modifications made to the wind tunnel had little or no effect on the aerodynamic characteristics of the tunnel. Information required for planning experimental investigations and the use of test hardware and model support systems is also provided.

  8. System frequency support of permanent magnet synchronous generator-based wind power plant

    NASA Astrophysics Data System (ADS)

    Wu, Ziping

    With ever-increasing penetration of wind power into modern electric grids all over the world, a trending replacement of conventional synchronous generators by large wind power plants will likely result in the poor overall frequency regulation performance. On the other hand, permanent magnet synchronous generator wind Turbine System (PMSG-WTG) with full power back to back converters tends to become one of the most promising wind turbine technologies thanks to various advantages. It possesses a significant amount of kinetic energy stored in the rotating mass of turbine blades, which can be utilized to enhance the total inertia of power system. Additionally, the deloaded operation and decoupled control of active and reactive power make it possible for PMSG-WTG to provide a fast frequency regulation through full-power converter. First of all, a comprehensive and in-depth survey is conducted to analyze the motivations for incorporating the inertial response and frequency regulation of VSWT into the system frequency regulation. Besides, control classifications, fundamental control concepts and advanced control schemes implemented for auxiliary frequency support of individual WT or wind power plant are elaborated along with a comparison of the potential frequency regulation capabilities of four major types of WTs. Secondly, a Controls Advanced Research Turbine2-Permanent Magnet Synchronous Generator wind turbine (CART2-PMSG) integrated model representing the typical configuration and operation characteristics of PMSG-WT is established in Matlab/Simulink,. Meanwhile, two different rotor-side converter control schemes, including rotor speed-based control and active power-based control, are integrated into this CART2-PMSG integrated model to perform Maximum Power Point Tracking (MPPT) operation over a wide range of wind speeds, respectively. Thirdly, a novel comprehensive frequency regulation (CFR) control scheme is developed and implemented into the CART2-PMSG model based on rotor speed control. The proposed control scheme is achieved through the coordinated control between rotor speed and modified pitch angle in accordance with different specified wind speed modes. Fourth, an improved inertial control method based on the maximum power point tracking operation curve is introduced to boost the overall frequency support capability of PMSG-WTGs based on rotor speed control. Fifth, a novel control method based on the torque limit (TLC) is proposed for the purpose of maximizing the wind turbine (WT)'s inertial response. To avoid the SFD caused by the deloaded operation of WT, a small-scale battery energy storage system (BESS) model is established and implemented to eliminate this impact and meanwhile assist the restoration of wind turbine to MPPT mode by means of coordinated control strategy between BESS and PMSG-WTG. Last but not the least, all three types of control strategies are implemented in the CART2-PMSG integrated model based on rotor speed control or active power control respectively to evaluate their impacts on the wind turbine's structural loads during the frequency regulation process. Simulation results demonstrate that all the proposed methods can enhance the overall frequency regulation performance while imposing very slight negative impact on the major mechanical components of the wind turbine.

  9. Helium abundance and speed difference between helium ions and protons in the solar wind from coronal holes, active regions, and quiet Sun

    NASA Astrophysics Data System (ADS)

    Fu, Hui; Madjarska, M. S.; Li, Bo; Xia, LiDong; Huang, ZhengHua

    2018-05-01

    Two main models have been developed to explain the mechanisms of release, heating and acceleration of the nascent solar wind, the wave-turbulence-driven (WTD) models and reconnection-loop-opening (RLO) models, in which the plasma release processes are fundamentally different. Given that the statistical observational properties of helium ions produced in magnetically diverse solar regions could provide valuable information for the solar wind modelling, we examine the statistical properties of the helium abundance (AHe) and the speed difference between helium ions and protons (vαp) for coronal holes (CHs), active regions (ARs) and the quiet Sun (QS). We find bimodal distributions in the space of AHeand vαp/vA(where vA is the local Alfvén speed) for the solar wind as a whole. The CH wind measurements are concentrated at higher AHeand vαp/vAvalues with a smaller AHedistribution range, while the AR and QS wind is associated with lower AHeand vαp/vA, and a larger AHedistribution range. The magnetic diversity of the source regions and the physical processes related to it are possibly responsible for the different properties of AHeand vαp/vA. The statistical results suggest that the two solar wind generation mechanisms, WTD and RLO, work in parallel in all solar wind source regions. In CH regions WTD plays a major role, whereas the RLO mechanism is more important in AR and QS.

  10. The Role of Atmospheric Measurements in Wind Power Statistical Models

    NASA Astrophysics Data System (ADS)

    Wharton, S.; Bulaevskaya, V.; Irons, Z.; Newman, J. F.; Clifton, A.

    2015-12-01

    The simplest wind power generation curves model power only as a function of the wind speed at turbine hub-height. While the latter is an essential predictor of power output, it is widely accepted that wind speed information in other parts of the vertical profile, as well as additional atmospheric variables including atmospheric stability, wind veer, and hub-height turbulence are also important factors. The goal of this work is to determine the gain in predictive ability afforded by adding additional atmospheric measurements to the power prediction model. In particular, we are interested in quantifying any gain in predictive ability afforded by measurements taken from a laser detection and ranging (lidar) instrument, as lidar provides high spatial and temporal resolution measurements of wind speed and direction at 10 or more levels throughout the rotor-disk and at heights well above. Co-located lidar and meteorological tower data as well as SCADA power data from a wind farm in Northern Oklahoma will be used to train a set of statistical models. In practice, most wind farms continue to rely on atmospheric measurements taken from less expensive, in situ instruments mounted on meteorological towers to assess turbine power response to a changing atmospheric environment. Here, we compare a large suite of atmospheric variables derived from tower measurements to those taken from lidar to determine if remote sensing devices add any competitive advantage over tower measurements alone to predict turbine power response.

  11. Sediment flux and airflow on the stoss slope of a barchan dune

    NASA Astrophysics Data System (ADS)

    Lancaster, N.; Nickling, W. G.; Neuman, C. K. McKenna; Wyatt, V. E.

    1996-09-01

    Measurements of sediment flux on the windward slope of an isolated barchan using an array of 30 sand traps provide new data that can constrain models of dune dynamics. The data show that at low wind incident speeds, flux increases up the dune exponentially, whereas at higher wind speeds the increase with distance approaches linearity. Wind profile measurements, conducted at the same time as the flux measurements, indicate that, although wind speed at a given height increases by 1.2 times from dune toe to brinkline, wind shear velocity derived from the profile data decreases up the dune and is in many cases below transport threshold values. This demonstrates that conventional wind profiles, derived from anemometry on dunes, do not measure the part of the boundary layer that is significant for sediment transport.

  12. Lidar configurations for wind turbine control

    NASA Astrophysics Data System (ADS)

    Mirzaei, Mahmood; Mann, Jakob

    2016-09-01

    Lidar sensors have proved to be very beneficial in the wind energy industry. They can be used for yaw correction, feed-forward pitch control and load verification. However, the current lidars are expensive. One way to reduce the price is to use lidars with few measurement points. Finding the best configuration of an inexpensive lidar in terms of number of measurement points, the measurement distance and the opening angle is the subject of this study. In order to solve the problem, a lidar model is developed and used to measure wind speed in a turbulence box. The effective wind speed measured by the lidar is compared against the effective wind speed on a wind turbine rotor both theoretically and through simulations. The study provides some results to choose the best configuration of the lidar with few measurement points.

  13. Statistical Post-Processing of Wind Speed Forecasts to Estimate Relative Economic Value

    NASA Astrophysics Data System (ADS)

    Courtney, Jennifer; Lynch, Peter; Sweeney, Conor

    2013-04-01

    The objective of this research is to get the best possible wind speed forecasts for the wind energy industry by using an optimal combination of well-established forecasting and post-processing methods. We start with the ECMWF 51 member ensemble prediction system (EPS) which is underdispersive and hence uncalibrated. We aim to produce wind speed forecasts that are more accurate and calibrated than the EPS. The 51 members of the EPS are clustered to 8 weighted representative members (RMs), chosen to minimize the within-cluster spread, while maximizing the inter-cluster spread. The forecasts are then downscaled using two limited area models, WRF and COSMO, at two resolutions, 14km and 3km. This process creates four distinguishable ensembles which are used as input to statistical post-processes requiring multi-model forecasts. Two such processes are presented here. The first, Bayesian Model Averaging, has been proven to provide more calibrated and accurate wind speed forecasts than the ECMWF EPS using this multi-model input data. The second, heteroscedastic censored regression is indicating positive results also. We compare the two post-processing methods, applied to a year of hindcast wind speed data around Ireland, using an array of deterministic and probabilistic verification techniques, such as MAE, CRPS, probability transform integrals and verification rank histograms, to show which method provides the most accurate and calibrated forecasts. However, the value of a forecast to an end-user cannot be fully quantified by just the accuracy and calibration measurements mentioned, as the relationship between skill and value is complex. Capturing the full potential of the forecast benefits also requires detailed knowledge of the end-users' weather sensitive decision-making processes and most importantly the economic impact it will have on their income. Finally, we present the continuous relative economic value of both post-processing methods to identify which is more beneficial to the wind energy industry of Ireland.

  14. Intercomparison of state-of-the-art models for wind energy resources with mesoscale models:

    NASA Astrophysics Data System (ADS)

    Olsen, Bjarke Tobias; Hahmann, Andrea N.; Sempreviva, Anna Maria; Badger, Jake; Joergensen, Hans E.

    2016-04-01

    1. Introduction Mesoscale models are increasingly being used to estimate wind conditions to identify perspective areas and sites where to develop wind farm projects. Mesoscale models are functional for giving information over extensive areas with various terrain complexities where measurements are scarce and measurement campaigns costly. Several mesoscale models and families of models are being used, and each often contains thousands of setup options. Since long-term integrations are expensive and tedious to carry out, only limited comparisons exist. To remedy this problem and for evaluating the capabilities of mesoscale models to estimate site wind conditions, a tailored benchmarking study has been co-organized by the European Wind Energy Association (EWEA) and the European Energy Research Alliance Joint Programme Wind Energy (EERA JP WIND). EWEA hosted results and ensured that participants were anonymous. The blind evaluation was performed at the Wind Energy Department of the Technical University of Denmark (DTU) with the following objectives: (1) To highlight common issues on mesoscale modelling of wind conditions on sites with different characteristics, and (2) To identify gaps and strengths of models and understand the root conditions for further evaluating uncertainties. 2. Approach Three experimental sites were selected: FINO 3 (offshore, GE), Høvsore (coastal, DK), and Cabauw (land-based, NL), and three other sites without observations based on . The three mast sites were chosen because the availability of concurrent suitable time series of vertical profiles of winds speed and other surface parameters. The participants were asked to provide hourly time series of wind speed, wind direction, temperature, etc., at various vertical heights for a complete year. The methodology used to derive the time series was left to the choice of the participants, but they were asked for a brief description of their model and many other parameters (e.g., horizontal and vertical resolution, model parameterizations, surface roughness length) that could be used to group the various models and interpret the results of the intercomparison. 3. Main body abstract Twenty separate entries were received by the deadline of 31 March 2015. They included simulations done with various versions of the Weather Research and Forecast (WRF) model, but also of six other well-known mesoscale models. The various entries represent an excellent sample of the various models used in by the wind energy industry today. The analysis of the submitted time series included comparison to observations, summarized with well-known measures such as biases, RMSE, correlations, and of sector-wise statistics, e.g. frequency and Weibull A and k. The comparison also includes the observed and modeled temporal spectra. The various statistics were grouped as a function of the various models, their spatial resolution, forcing data, and the various integration methods. Many statistics have been computed and will be presented in addition to those shown in the Helsinki presentation. 4. Conclusions The analysis of the time series from twenty entries has shown to be an invaluable source of information about state of the art in wind modeling with mesoscale models. Biases between the simulated and observed wind speeds at hub heights (80-100 m AGL) from the various models are around ±1.0 m/s and fairly independent of the site and do not seem to be directly related to the model horizontal resolution used in the modeling. As probably expected, the wind speeds from the simulations using the various version of the WRF model cluster close to each other, especially in their description of the wind profile.

  15. Voltage oriented control of self-excited induction generator for wind energy system with MPPT

    NASA Astrophysics Data System (ADS)

    Amieur, Toufik; Taibi, Djamel; Amieur, Oualid

    2018-05-01

    This paper presents the study and simulation of the self-excited induction generator in the wind power production in isolated sites. With this intention, a model of the wind turbine was established. Extremum-seeking control algorithm method by using Maximum Power Point Tracking (MPPT) is proposed control solution aims at driving the average position of the operating point near to optimality. The reference of turbine rotor speed is adjusted such that the turbine operates around maximum power for the current wind speed value. After a brief review of the concepts of converting wind energy into electrical energy. The proposed modeling tools were developed to study the performance of standalone induction generators connected to capacitor bank. The purpose of this technique is to maintain a constant voltage at the output of the rectifier whatever the loads and speeds. The system studied in this work is developed and tested in MATLAB/Simulink environment. Simulation results validate the performance and effectiveness of the proposed control methods.

  16. Wind-sea surface temperature-sea ice relationship in the Chukchi-Beaufort Seas during autumn

    NASA Astrophysics Data System (ADS)

    Zhang, Jing; Stegall, Steve T.; Zhang, Xiangdong

    2018-03-01

    Dramatic climate changes, especially the largest sea ice retreat during September and October, in the Chukchi-Beaufort Seas could be a consequence of, and further enhance, complex air-ice-sea interactions. To detect these interaction signals, statistical relationships between surface wind speed, sea surface temperature (SST), and sea ice concentration (SIC) were analyzed. The results show a negative correlation between wind speed and SIC. The relationships between wind speed and SST are complicated by the presence of sea ice, with a negative correlation over open water but a positive correlation in sea ice dominated areas. The examination of spatial structures indicates that wind speed tends to increase when approaching the ice edge from open water and the area fully covered by sea ice. The anomalous downward radiation and thermal advection, as well as their regional distribution, play important roles in shaping these relationships, though wind-driven sub-grid scale boundary layer processes may also have contributions. Considering the feedback loop involved in the wind-SST-SIC relationships, climate model experiments would be required to further untangle the underlying complex physical processes.

  17. Using Bayes Model Averaging for Wind Power Forecasts

    NASA Astrophysics Data System (ADS)

    Preede Revheim, Pål; Beyer, Hans Georg

    2014-05-01

    For operational purposes predictions of the forecasts of the lumped output of groups of wind farms spread over larger geographic areas will often be of interest. A naive approach is to make forecasts for each individual site and sum them up to get the group forecast. It is however well documented that a better choice is to use a model that also takes advantage of spatial smoothing effects. It might however be the case that some sites tends to more accurately reflect the total output of the region, either in general or for certain wind directions. It will then be of interest giving these a greater influence over the group forecast. Bayesian model averaging (BMA) is a statistical post-processing method for producing probabilistic forecasts from ensembles. Raftery et al. [1] show how BMA can be used for statistical post processing of forecast ensembles, producing PDFs of future weather quantities. The BMA predictive PDF of a future weather quantity is a weighted average of the ensemble members' PDFs, where the weights can be interpreted as posterior probabilities and reflect the ensemble members' contribution to overall forecasting skill over a training period. In Revheim and Beyer [2] the BMA procedure used in Sloughter, Gneiting and Raftery [3] were found to produce fairly accurate PDFs for the future mean wind speed of a group of sites from the single sites wind speeds. However, when the procedure was attempted applied to wind power it resulted in either problems with the estimation of the parameters (mainly caused by longer consecutive periods of no power production) or severe underestimation (mainly caused by problems with reflecting the power curve). In this paper the problems that arose when applying BMA to wind power forecasting is met through two strategies. First, the BMA procedure is run with a combination of single site wind speeds and single site wind power production as input. This solves the problem with longer consecutive periods where the input data does not contain information, but it has the disadvantage of nearly doubling the number of model parameters to be estimated. Second, the BMA procedure is run with group mean wind power as the response variable instead of group mean wind speed. This also solves the problem with longer consecutive periods without information in the input data, but it leaves the power curve to also be estimated from the data. [1] Raftery, A. E., et al. (2005). Using Bayesian Model Averaging to Calibrate Forecast Ensembles. Monthly Weather Review, 133, 1155-1174. [2]Revheim, P. P. and H. G. Beyer (2013). Using Bayesian Model Averaging for wind farm group forecasts. EWEA Wind Power Forecasting Technology Workshop,Rotterdam, 4-5 December 2013. [3]Sloughter, J. M., T. Gneiting and A. E. Raftery (2010). Probabilistic Wind Speed Forecasting Using Ensembles and Bayesian Model Averaging. Journal of the American Statistical Association, Vol. 105, No. 489, 25-35

  18. UDE-based control of variable-speed wind turbine systems

    NASA Astrophysics Data System (ADS)

    Ren, Beibei; Wang, Yeqin; Zhong, Qing-Chang

    2017-01-01

    In this paper, the control of a PMSG (permanent magnet synchronous generator)-based variable-speed wind turbine system with a back-to-back converter is considered. The uncertainty and disturbance estimator (UDE)-based control approach is applied to the regulation of the DC-link voltage and the control of the RSC (rotor-side converter) and the GSC (grid-side converter). For the rotor-side controller, the UDE-based vector control is developed for the RSC with PMSG control to facilitate the application of the MPPT (maximum power point tracking) algorithm for the maximum wind energy capture. For the grid-side controller, the UDE-based vector control is developed to control the GSC with the power reference generated by a UDE-based DC-link voltage controller. Compared with the conventional vector control, the UDE-based vector control can achieve reliable current decoupling control with fast response. Moreover, the UDE-based DC-link voltage regulation can achieve stable DC-link voltage under model uncertainties and external disturbances, e.g. wind speed variations. The effectiveness of the proposed UDE-based control approach is demonstrated through extensive simulation studies in the presence of coupled dynamics, model uncertainties and external disturbances under varying wind speeds. The UDE-based control is able to generate more energy, e.g. by 5% for the wind profile tested.

  19. A Hurricane for Physics Students.

    ERIC Educational Resources Information Center

    Mayo, Ned

    1994-01-01

    Describes how the study of a hurricane can be used to provide integrated basic mechanics in a first-year college course in engineering mechanics. Presents models that predict wind speed given surface eye pressure and several radial dimensions of the storm and calculate total kinetic energy once the wind speed is determined. (ZWH)

  20. Improved reliability of wind turbine towers with active tuned mass dampers (ATMDs)

    NASA Astrophysics Data System (ADS)

    Fitzgerald, Breiffni; Sarkar, Saptarshi; Staino, Andrea

    2018-04-01

    Modern multi-megawatt wind turbines are composed of slender, flexible, and lightly damped blades and towers. These components exhibit high susceptibility to wind-induced vibrations. As the size, flexibility and cost of the towers have increased in recent years, the need to protect these structures against damage induced by turbulent aerodynamic loading has become apparent. This paper combines structural dynamic models and probabilistic assessment tools to demonstrate improvements in structural reliability when modern wind turbine towers are equipped with active tuned mass dampers (ATMDs). This study proposes a multi-modal wind turbine model for wind turbine control design and analysis. This study incorporates an ATMD into the tower of this model. The model is subjected to stochastically generated wind loads of varying speeds to develop wind-induced probabilistic demand models for towers of modern multi-megawatt wind turbines under structural uncertainty. Numerical simulations have been carried out to ascertain the effectiveness of the active control system to improve the structural performance of the wind turbine and its reliability. The study constructs fragility curves, which illustrate reductions in the vulnerability of towers to wind loading owing to the inclusion of the damper. Results show that the active controller is successful in increasing the reliability of the tower responses. According to the analysis carried out in this paper, a strong reduction of the probability of exceeding a given displacement at the rated wind speed has been observed.

  1. Objective Operational Utilization of Satellite Microwave Scatterometer Observations of Tropical Cyclones

    NASA Technical Reports Server (NTRS)

    Cardone, Vincent J.; Cox, Andrew T.

    2000-01-01

    This study has demonstrated that high-resolution scatterometer measurements in tropical cyclones and other high-marine surface wind regimes may be retrieved accurately for wind speeds up to about 35 mls (1-hour average at 10 m) when the scatterometer data are processed through a revised geophysical model function, and a spatial adaptive algorithm is applied which utilizes the fact that wind direction is so tightly constrained in tile inner core of severe marine storms that wind direction may be prescribed from conventional data. This potential is demonstrated through case studies with NSCAT data in a severe West Pacific Typhoon (Violet, 1996) and an intense North Atlantic hurricane (Lili, 1996). However, operational scatterometer winds from NSCAT and QuickScat in hurricanes and severe winter storms are biased low in winds above 25 m/s. We have developed an inverse model to specify the entire surface wind field about a tropical cyclone from operational QuickScat scatterometer measurements within 150 nm of a storm center with the restriction that only wind speeds up to 20 m/s are used until improved model function are introduced. The inverse model is used to specify the wind field over the entire life-cycle of Hurricane Floyd (1999) for use to drive an ocean wave model. The wind field compares very favorably with wind fields developed from the copious aircraft flight level winds obtained in this storm.

  2. Analysis and model on space-time characteristics of wind power output based on the measured wind speed data

    NASA Astrophysics Data System (ADS)

    Shi, Wenhui; Feng, Changyou; Qu, Jixian; Zha, Hao; Ke, Dan

    2018-02-01

    Most of the existing studies on wind power output focus on the fluctuation of wind farms and the spatial self-complementary of wind power output time series was ignored. Therefore the existing probability models can’t reflect the features of power system incorporating wind farms. This paper analyzed the spatial self-complementary of wind power and proposed a probability model which can reflect temporal characteristics of wind power on seasonal and diurnal timescales based on sufficient measured data and improved clustering method. This model could provide important reference for power system simulation incorporating wind farms.

  3. Flow Control of Flexible Structures

    DTIC Science & Technology

    2017-09-06

    energy systems (e.g. wind turbines or ocean energy devices), air vehicle aerodynamics and engines, or even medical flows (blood flow, respiration...stall model for wind turbine airfoils. Journal of Fluids and Structures, (23):959982, 2007. J. G. Leishman and T. S. Beddoes. A semi-empirical model for...Subsonic Wind Tunnel, USAFA . . . . . . . . . . . . . . . . . . . . . . . . . 4 3.2 Low-Speed Research Wind Tunnel, UCB

  4. A Free-flight Wind Tunnel for Aerodynamic Testing at Hypersonic Speeds

    NASA Technical Reports Server (NTRS)

    Seiff, Alvin

    1954-01-01

    The supersonic free-flight wind tunnel is a facility at the Ames Laboratory of the NACA in which aerodynamic test models are gun-launched at high speed and directed upstream through the test section of a supersonic wind tunnel. In this way, test Mach numbers up to 10 have been attained and indications are that still higher speeds will be realized. An advantage of this technique is that the air and model temperatures simulate those of flight through the atmosphere. Also the Reynolds numbers are high. Aerodynamic measurements are made from photographic observation of the model flight. Instruments and techniques have been developed for measuring the following aerodynamic properties: drag, initial lift-curve slope, initial pitching-moment-curve slope, center of pressure, skin friction, boundary-layer transition, damping in roll, and aileron effectiveness. (author)

  5. Numerical analysis of the wake of a 10kW HAWT

    NASA Astrophysics Data System (ADS)

    Gong, S. G.; Deng, Y. B.; Xie, G. L.; Zhang, J. P.

    2017-01-01

    With the rising of wind power industry and the ever-growing scale of wind farm, the research for the wake performance of wind turbine has an important guiding significance for the overall arrangement of wind turbines in the large wind farm. The wake simulation model of 10kW horizontal-axis wind turbine is presented on the basis of Averaged Navier-Stokes (RANS) equations and the RNG k-ε turbulence model for applying to the rotational fluid flow. The sliding mesh technique in ANSYS CFX software is used to solve the coupling equation of velocity and pressure. The characters of the average velocity in the wake zone under rated inlet wind speed and different rotor rotational speeds have been investigated. Based on the analysis results, it is proposed that the horizontal spacing between the wind turbines is less than two times radius of rotor, and its longitudinal spacing is less than five times of radius. And other results have also been obtained, which are of great importance for large wind farms.

  6. Estimation of the remote-sensing reflectance from above-surface measurements.

    PubMed

    Mobley, C D

    1999-12-20

    The remote-sensing reflectance R(rs) is not directly measurable, and various methodologies have been employed in its estimation. I review the radiative transfer foundations of several commonly used methods for estimating R(rs), and errors associated with estimating R(rs) by removal of surface-reflected sky radiance are evaluated using the Hydrolight radiative transfer numerical model. The dependence of the sea surface reflectance factor rho, which is not an inherent optical property of the surface, on sky conditions, wind speed, solar zenith angle, and viewing geometry is examined. If rho is not estimated accurately, significant errors can occur in the estimated R(rs) for near-zenith Sun positions and for high wind speeds, both of which can give considerable Sun glitter effects. The numerical simulations suggest that a viewing direction of 40 deg from the nadir and 135 deg from the Sun is a reasonable compromise among conflicting requirements. For this viewing direction, a value of rho approximately 0.028 is acceptable only for wind speeds less than 5 m s(-1). For higher wind speeds, curves are presented for the determination of rho as a function of solar zenith angle and wind speed. If the sky is overcast, a value of rho approximately 0.028 is used at all wind speeds.

  7. Static and wind tunnel near-field/far field jet noise measurements from model scale single-flow baseline and suppressor nozzles. Volume 2: Forward speed effects

    NASA Technical Reports Server (NTRS)

    Jaeck, C. L.

    1976-01-01

    A model scale flight effects test was conducted in the 40 by 80 foot wind tunnel to investigate the effect of aircraft forward speed on single flow jet noise characteristics. The models tested included a 15.24 cm baseline round convergent nozzle, a 20-lobe and annular nozzle with and without lined ejector shroud, and a 57-tube nozzle with a lined ejector shroud. Nozzle operating conditions covered jet velocities from 412 to 640 m/s at a total temperature of 844 K. Wind tunnel speeds were varied from near zero to 91.5 m/s. Measurements were analyzed to (1) determine apparent jet noise source location including effects of ambient velocity; (2) verify a technique for extrapolating near field jet noise measurements into the far field; (3) determine flight effects in the near and far field for baseline and suppressor nozzles; and (4) establish the wind tunnel as a means of accurately defining flight effects for model nozzles and full scale engines.

  8. Downscaling wind and wavefields for 21st century coastal flood hazard projections in a region of complex terrain

    USGS Publications Warehouse

    O'Neill, Andrea; Erikson, Li; Barnard, Patrick

    2017-01-01

    While global climate models (GCMs) provide useful projections of near-surface wind vectors into the 21st century, resolution is not sufficient enough for use in regional wave modeling. Statistically downscaled GCM projections from Multivariate Adaptive Constructed Analogues provide daily averaged near-surface winds at an appropriate spatial resolution for wave modeling within the orographically complex region of San Francisco Bay, but greater resolution in time is needed to capture the peak of storm events. Short-duration high wind speeds, on the order of hours, are usually excluded in statistically downscaled climate models and are of key importance in wave and subsequent coastal flood modeling. Here we present a temporal downscaling approach, similar to constructed analogues, for near-surface winds suitable for use in local wave models and evaluate changes in wind and wave conditions for the 21st century. Reconstructed hindcast winds (1975–2004) recreate important extreme wind values within San Francisco Bay. A computationally efficient method for simulating wave heights over long time periods was used to screen for extreme events. Wave hindcasts show resultant maximum wave heights of 2.2 m possible within the Bay. Changes in extreme over-water wind speeds suggest contrasting trends within the different regions of San Francisco Bay, but 21th century projections show little change in the overall magnitude of extreme winds and locally generated waves.

  9. Estimation of the high-spatial-resolution variability in extreme wind speeds for forestry applications

    NASA Astrophysics Data System (ADS)

    Venäläinen, Ari; Laapas, Mikko; Pirinen, Pentti; Horttanainen, Matti; Hyvönen, Reijo; Lehtonen, Ilari; Junila, Päivi; Hou, Meiting; Peltola, Heli M.

    2017-07-01

    The bioeconomy has an increasing role to play in climate change mitigation and the sustainable development of national economies. In Finland, a forested country, over 50 % of the current bioeconomy relies on the sustainable management and utilization of forest resources. Wind storms are a major risk that forests are exposed to and high-spatial-resolution analysis of the most vulnerable locations can produce risk assessment of forest management planning. In this paper, we examine the feasibility of the wind multiplier approach for downscaling of maximum wind speed, using 20 m spatial resolution CORINE land-use dataset and high-resolution digital elevation data. A coarse spatial resolution estimate of the 10-year return level of maximum wind speed was obtained from the ERA-Interim reanalyzed data. Using a geospatial re-mapping technique the data were downscaled to 26 meteorological station locations to represent very diverse environments. Applying a comparison, we find that the downscaled 10-year return levels represent 66 % of the observed variation among the stations examined. In addition, the spatial variation in wind-multiplier-downscaled 10-year return level wind was compared with the WAsP model-simulated wind. The heterogeneous test area was situated in northern Finland, and it was found that the major features of the spatial variation were similar, but in some locations, there were relatively large differences. The results indicate that the wind multiplier method offers a pragmatic and computationally feasible tool for identifying at a high spatial resolution those locations with the highest forest wind damage risks. It can also be used to provide the necessary wind climate information for wind damage risk model calculations, thus making it possible to estimate the probability of predicted threshold wind speeds for wind damage and consequently the probability (and amount) of wind damage for certain forest stand configurations.

  10. Assessments of Wind-Energy Potential in Selected Sites from Three Geopolitical Zones in Nigeria: Implications for Renewable/Sustainable Rural Electrification

    PubMed Central

    Okeniyi, Joshua Olusegun; Ohunakin, Olayinka Soledayo; Okeniyi, Elizabeth Toyin

    2015-01-01

    Electricity generation in rural communities is an acute problem militating against socioeconomic well-being of the populace in these communities in developing countries, including Nigeria. In this paper, assessments of wind-energy potential in selected sites from three major geopolitical zones of Nigeria were investigated. For this, daily wind-speed data from Katsina in northern, Warri in southwestern and Calabar in southeastern Nigeria were analysed using the Gumbel and the Weibull probability distributions for assessing wind-energy potential as a renewable/sustainable solution for the country's rural-electrification problems. Results showed that the wind-speed models identified Katsina with higher wind-speed class than both Warri and Calabar that were otherwise identified as low wind-speed sites. However, econometrics of electricity power simulation at different hub heights of low wind-speed turbine systems showed that the cost of electric-power generation in the three study sites was converging to affordable cost per kWh of electric energy from the wind resource at each site. These power simulations identified cost/kWh of electricity generation at Kaduna as €0.0507, at Warri as €0.0774, and at Calabar as €0.0819. These bare positive implications on renewable/sustainable rural electrification in the study sites even as requisite options for promoting utilization of this viable wind-resource energy in the remote communities in the environs of the study sites were suggested. PMID:25879063

  11. Assessments of wind-energy potential in selected sites from three geopolitical zones in Nigeria: implications for renewable/sustainable rural electrification.

    PubMed

    Okeniyi, Joshua Olusegun; Ohunakin, Olayinka Soledayo; Okeniyi, Elizabeth Toyin

    2015-01-01

    Electricity generation in rural communities is an acute problem militating against socioeconomic well-being of the populace in these communities in developing countries, including Nigeria. In this paper, assessments of wind-energy potential in selected sites from three major geopolitical zones of Nigeria were investigated. For this, daily wind-speed data from Katsina in northern, Warri in southwestern and Calabar in southeastern Nigeria were analysed using the Gumbel and the Weibull probability distributions for assessing wind-energy potential as a renewable/sustainable solution for the country's rural-electrification problems. Results showed that the wind-speed models identified Katsina with higher wind-speed class than both Warri and Calabar that were otherwise identified as low wind-speed sites. However, econometrics of electricity power simulation at different hub heights of low wind-speed turbine systems showed that the cost of electric-power generation in the three study sites was converging to affordable cost per kWh of electric energy from the wind resource at each site. These power simulations identified cost/kWh of electricity generation at Kaduna as €0.0507, at Warri as €0.0774, and at Calabar as €0.0819. These bare positive implications on renewable/sustainable rural electrification in the study sites even as requisite options for promoting utilization of this viable wind-resource energy in the remote communities in the environs of the study sites were suggested.

  12. Application of Rapid Prototyping Methods to High-Speed Wind Tunnel Testing

    NASA Technical Reports Server (NTRS)

    Springer, A. M.

    1998-01-01

    This study was undertaken in MSFC's 14-Inch Trisonic Wind Tunnel to determine if rapid prototyping methods could be used in the design and manufacturing of high speed wind tunnel models in direct testing applications, and if these methods would reduce model design/fabrication time and cost while providing models of high enough fidelity to provide adequate aerodynamic data, and of sufficient strength to survive the test environment. Rapid prototyping methods utilized to construct wind tunnel models in a wing-body-tail configuration were: fused deposition method using both ABS plastic and PEEK as building materials, stereolithography using the photopolymer SL-5170, selective laser sintering using glass reinforced nylon, and laminated object manufacturing using plastic reinforced with glass and 'paper'. This study revealed good agreement between the SLA model, the metal model with an FDM-ABS nose, an SLA nose, and the metal model for most operating conditions, while the FDM-ABS data diverged at higher loading conditions. Data from the initial SLS model showed poor agreement due to problems in post-processing, resulting in a different configuration. A second SLS model was tested and showed relatively good agreement. It can be concluded that rapid prototyping models show promise in preliminary aerodynamic development studies at subsonic, transonic, and supersonic speeds.

  13. Global Acceleration of Coronal Mass Ejections

    NASA Technical Reports Server (NTRS)

    Gopalswamy, Nat; Lara, Alejandro; Lepping, Ronald; Kaiser, Michael; Berdichevsky, Daniel; St. Cyr, O. Chris; Lazarus, Al

    1999-01-01

    Using the observed relation between speeds of coronal mass ejections (CMEs) near the Sun and in the solar wind, we estimate a global acceleration acting on the CMEs. Our study quantifies the qualitative results of Gosling [1997] and numerical simulations that CMEs at 1 AU with speeds closer to the solar wind. We found a linear relation between the global acceleration and the initial speed of the CMEs and the absolute value of the acceleration is similar to the slow solar wind acceleration. Our study naturally divides CMEs into fast and slow ones, the dividing line being the solar wind speed. Our results have important implications to space weather prediction models which need to incorporate this effect in estimating the CME arrival time at 1 AU. We show that the arrival times of CMEs at 1 AU are drastically different from the zero acceleration case.

  14. Small wind turbine performance evaluation using field test data and a coupled aero-electro-mechanical model

    NASA Astrophysics Data System (ADS)

    Wallace, Brian D.

    A series of field tests and theoretical analyses were performed on various wind turbine rotor designs at two Penn State residential-scale wind-electric facilities. This work involved the prediction and experimental measurement of the electrical and aerodynamic performance of three wind turbines; a 3 kW rated Whisper 175, 2.4 kW rated Skystream 3.7, and the Penn State designed Carolus wind turbine. Both the Skystream and Whisper 175 wind turbines are OEM blades which were originally installed at the facilities. The Carolus rotor is a carbon-fiber composite 2-bladed machine, designed and assembled at Penn State, with the intent of replacing the Whisper 175 rotor at the off-grid system. Rotor aerodynamic performance is modeled using WT_Perf, a National Renewable Energy Laboratory developed Blade Element Momentum theory based performance prediction code. Steady-state power curves are predicted by coupling experimentally determined electrical characteristics with the aerodynamic performance of the rotor simulated with WT_Perf. A dynamometer test stand is used to establish the electromechanical efficiencies of the wind-electric system generator. Through the coupling of WT_Perf and dynamometer test results, an aero-electro-mechanical analysis procedure is developed and provides accurate predictions of wind system performance. The analysis of three different wind turbines gives a comprehensive assessment of the capability of the field test facilities and the accuracy of aero-electro-mechanical analysis procedures. Results from this study show that the Carolus and Whisper 175 rotors are running at higher tip-speed ratios than are optimum for power production. The aero-electro-mechanical analysis predicted the high operating tip-speed ratios of the rotors and was accurate at predicting output power for the systems. It is shown that the wind turbines operate at high tip-speeds because of a miss-match between the aerodynamic drive torque and the operating torque of the wind-system generator. Through the change of load impedance on the wind generator, the research facility has the ability to modify the rotational speed of the wind turbines, allowing the rotors to perform closer to their optimum tip-speed. Comparisons between field test data and performance predictions show that the aero-electro-mechanical analysis was able to predict differences in power production and rotational speed which result from changes in the system load impedance.

  15. Air Modeling - Observational Meteorological Data

    EPA Pesticide Factsheets

    Observed meteorological data for use in air quality modeling consist of physical parameters that are measured directly by instrumentation, and include temperature, dew point, wind direction, wind speed, cloud cover, cloud layer(s), ceiling height,

  16. Computational Analyses of the LIMX TBCC Inlet High-Speed Flowpath

    NASA Technical Reports Server (NTRS)

    Dippold, Vance F., III

    2012-01-01

    Reynolds-Averaged Navier-Stokes (RANS) simulations were performed for the high-speed flowpath and isolator of a dual-flowpath Turbine-Based Combined-Cycle (TBCC) inlet using the Wind-US code. The RANS simulations were performed in preparation for the Large-scale Inlet for Mode Transition (LIMX) model tests in the NASA Glenn Research Center (GRC) 10- by 10-ft Supersonic Wind Tunnel. The LIMX inlet has a low-speed flowpath that is coupled to a turbine engine and a high-speed flowpath designed to be coupled to a Dual-Mode Scramjet (DMSJ) combustor. These RANS simulations were conducted at a simulated freestream Mach number of 4.0, which is the nominal Mach number for the planned wind tunnel testing with the LIMX model. For the simulation results presented in this paper, the back pressure, cowl angles, and freestream Mach number were each varied to assess the performance and robustness of the high-speed inlet and isolator. Under simulated wind tunnel conditions at maximum inlet mass flow rates, the high-speed flowpath pressure rise was found to be greater than a factor of four. Furthermore, at a simulated freestream Mach number of 4.0, the high-speed flowpath and isolator showed stability for freestream Mach number that drops 0.1 Mach below the design point. The RANS simulations indicate the yet-untested highspeed inlet and isolator flowpath should operate as designed. The RANS simulation results also provided important insight to researchers as they developed test plans for the LIMX experiment in GRC s 10- by 10-ft Supersonic Wind Tunnel.

  17. Thermoregulation and the determinants of heat transfer in Colias butterflies.

    PubMed

    Kingsolver, Joel G; Moffat, Robert J

    1982-04-01

    As a means of exploring behavioral and morphological adaptations for thermoregulation in Colias butterflies, convective heat transfer coefficients of real and model butterflies were measured in a wind tunnel as a function of wind speed and body orientation (yaw angle). Results are reported in terms of a dimensionless heat transfer coefficient (Nusselt number, Nu) and a dimensionless wind speed (Reynolds number, Re), for a wind speed range typical of that experienced by basking Colias in the field. The resultant Nusselt-Reynolds (Nu-Re) plots thus indicate the rates of heat transfer by forced convection as a function of wind speed for particular model geometries.For Reynolds numbers throughout the measured range, Nusselt numbers for C. eurytheme butterflies are consistently lower than those for long cylinders, and are independent of yaw angle. There is significant variation among individual butterflies in heat transfer coefficients throughout the Re range. Model butterflies without artificial fur have Nu-Re relations similar to those for cylinders. Heat transfer in these models depends upon yaw angle, with higher heat transfer at intermediate yaw angles (30-60°); these yaw effects increase with increasing Reynolds number. Models with artificial fur, like real Colias, have Nusselt numbers which are consistently lower than those for models without fur at given Reynolds numbers throughout the Re range. Unlike real Colias, however, the models with fur do show yaw angle effects similar to those for models without fur.The independence of heat loss from yaw angle for real Colias is consistent with field observations indicating no behavioral orientation to wind direction. The presence of fur on the models reduces heat loss but does not affect yaw dependence. The large individual variation in heat transfer coefficients among butterflies is probably due to differences in fur characteristics rather than to differences in wing morphology.Finally, a physical model of a butterfly was constructed which accurately simulates the body temperatures of basking Colias in the field for a variety of radiation and wind velocity conditions. The success of the butterfly simulator in mimicking Colias thermal characteristics confirms our preliminary understanding of the physical bases for and heat transfer mechanisms underlying thermoregulatory adaptations in these butterflies.

  18. Application of nonparametric regression methods to study the relationship between NO2 concentrations and local wind direction and speed at background sites.

    PubMed

    Donnelly, Aoife; Misstear, Bruce; Broderick, Brian

    2011-02-15

    Background concentrations of nitrogen dioxide (NO(2)) are not constant but vary temporally and spatially. The current paper presents a powerful tool for the quantification of the effects of wind direction and wind speed on background NO(2) concentrations, particularly in cases where monitoring data are limited. In contrast to previous studies which applied similar methods to sites directly affected by local pollution sources, the current study focuses on background sites with the aim of improving methods for predicting background concentrations adopted in air quality modelling studies. The relationship between measured NO(2) concentration in air at three such sites in Ireland and locally measured wind direction has been quantified using nonparametric regression methods. The major aim was to analyse a method for quantifying the effects of local wind direction on background levels of NO(2) in Ireland. The method was expanded to include wind speed as an added predictor variable. A Gaussian kernel function is used in the analysis and circular statistics employed for the wind direction variable. Wind direction and wind speed were both found to have a statistically significant effect on background levels of NO(2) at all three sites. Frequently environmental impact assessments are based on short term baseline monitoring producing a limited dataset. The presented non-parametric regression methods, in contrast to the frequently used methods such as binning of the data, allow concentrations for missing data pairs to be estimated and distinction between spurious and true peaks in concentrations to be made. The methods were found to provide a realistic estimation of long term concentration variation with wind direction and speed, even for cases where the data set is limited. Accurate identification of the actual variation at each location and causative factors could be made, thus supporting the improved definition of background concentrations for use in air quality modelling studies. Copyright © 2010 Elsevier B.V. All rights reserved.

  19. Microwave brightness temperature of a windblown sea

    NASA Technical Reports Server (NTRS)

    Hall, F. G.

    1972-01-01

    A mathematical model is developed for the apparent temperature of the sea at all microwave frequencies. The model is a numerical model in which both the clear water structure and white water are accounted for as a function of wind speed. The model produces results similar to Stogryn's model at 19.35 GHz for wind speeds less than 8 m/sec; it can use radiosonde data to calculate atmospheric effects and can incorporate an empirically determined antenna gain pattern. The corresponding computer program is of modular design and the logic of the main program is capable of treating a horizontally inhomogeneous surface or atmosphere. It is shown that a variation of microwave brightness temperature with zenith angle is necessary to produce the wind sensitivity of the horizontally polarized brightness temperature; the variation of sky temperature with frequency is sufficient to produce a frequency dependent wind sensitivity.

  20. Volumetric LiDAR scanning of a wind turbine wake and comparison with a 3D analytical wake model

    NASA Astrophysics Data System (ADS)

    Carbajo Fuertes, Fernando; Porté-Agel, Fernando

    2016-04-01

    A correct estimation of the future power production is of capital importance whenever the feasibility of a future wind farm is being studied. This power estimation relies mostly on three aspects: (1) a reliable measurement of the wind resource in the area, (2) a well-established power curve of the future wind turbines and, (3) an accurate characterization of the wake effects; the latter being arguably the most challenging one due to the complexity of the phenomenon and the lack of extensive full-scale data sets that could be used to validate analytical or numerical models. The current project addresses the problem of obtaining a volumetric description of a full-scale wake of a 2MW wind turbine in terms of velocity deficit and turbulence intensity using three scanning wind LiDARs and two sonic anemometers. The characterization of the upstream flow conditions is done by one scanning LiDAR and two sonic anemometers, which have been used to calculate incoming vertical profiles of horizontal wind speed, wind direction and an approximation to turbulence intensity, as well as the thermal stability of the atmospheric boundary layer. The characterization of the wake is done by two scanning LiDARs working simultaneously and pointing downstream from the base of the wind turbine. The direct LiDAR measurements in terms of radial wind speed can be corrected using the upstream conditions in order to provide good estimations of the horizontal wind speed at any point downstream of the wind turbine. All this data combined allow for the volumetric reconstruction of the wake in terms of velocity deficit as well as turbulence intensity. Finally, the predictions of a 3D analytical model [1] are compared to the 3D LiDAR measurements of the wind turbine. The model is derived by applying the laws of conservation of mass and momentum and assuming a Gaussian distribution for the velocity deficit in the wake. This model has already been validated using high resolution wind-tunnel measurements and large-eddy simulation (LES) data of miniature wind turbine wakes, as well as LES data of real-scale wind-turbine wakes, but not yet with full-scale wind turbine wake measurements. [1] M. Bastankhah and F. Porté-Agel. A New Analytical Model For Wind-Turbine Wakes, in Renewable Energy, vol. 70, p. 116-123, 2014.

  1. A Comparison of Tropical Storm (TS) and Non-TS Gust Factors for Assessing Peak Wind Probabilities at the Eastern Range

    NASA Technical Reports Server (NTRS)

    Merceret, Francis J.; Crawford, Winifred C.

    2010-01-01

    Peak wind speed is an important forecast element to ensure the safety of personnel and flight hardware at Kennedy Space Center (KSC) and the Cape Canaveral Air Force Station (CCAFS) in East-Central Florida. The 45th Weather Squadron (45 WS), the organization that issues forecasts for the KSC/CCAFS area, finds that peak winds are more difficult to forecast than mean winds. This difficulty motivated the 45 WS to request two independent studies. The first (Merceret 2009) was the development of a reliable model for gust factors (GF) relating the peak to the mean wind speed in tropical storms (TS). The second (Lambert et al. 2008) was a climatological study of non-TS cool season (October-April) mean and peak wind speeds by the Applied Meteorology Unit (AMU; Bauman et al. 2004) without the use of GF. Both studies presented their statistics as functions of mean wind speed and height. Most of the few comparisons of TS and non-TS GF in the literature suggest that non-TS GF at a given height and mean wind speed are smaller than the corresponding TS GF. The investigation reported here converted the non-TS peak wind statistics calculated by the AMU to the equivalent GF statistics and compared them with the previous TS GF results. The advantage of this effort over all previously reported studies of its kind is that the TS and non-TS data were taken from the same towers in the same locations. This eliminates differing surface attributes, including roughness length and thermal properties, as a major source of variance in the comparison. The goal of this study is two-fold: to determine the relationship between the non-TS and TS GF and their standard deviations (GFSD) and to determine if models similar to those developed for TS data in Merceret (2009) could be developed for the non-TS environment. The results are consistent with the literature, but include much more detailed, quantitative information on the nature of the relationship between TS and non-TS GF and GFSD as a function of height and mean wind speed.

  2. Spatial Vertical Directionality and Correlation of Low-Frequency Ambient Noise in Deep Ocean Direct-Arrival Zones.

    PubMed

    Yang, Qiulong; Yang, Kunde; Cao, Ran; Duan, Shunli

    2018-01-23

    Wind-driven and distant shipping noise sources contribute to the total noise field in the deep ocean direct-arrival zones. Wind-driven and distant shipping noise sources may significantly and simultaneously affect the spatial characteristics of the total noise field to some extent. In this work, a ray approach and parabolic equation solution method were jointly utilized to model the low-frequency ambient noise field in a range-dependent deep ocean environment by considering their calculation accuracy and efficiency in near-field wind-driven and far-field distant shipping noise fields. The reanalysis databases of National Center of Environment Prediction (NCEP) and Volunteer Observation System (VOS) were used to model the ambient noise source intensity and distribution. Spatial vertical directionality and correlation were analyzed in three scenarios that correspond to three wind speed conditions. The noise field was dominated by distant shipping noise sources when the wind speed was less than 3 m/s, and then the spatial vertical directionality and vertical correlation of the total noise field were nearly consistent with those of distant shipping noise field. The total noise field was completely dominated by near field wind generated noise sources when the wind speed was greater than 12 m/s at 150 Hz, and then the spatial vertical correlation coefficient and directionality pattern of the total noise field was approximately consistent with that of the wind-driven noise field. The spatial characteristics of the total noise field for wind speeds between 3 m/s and 12 m/s were the weighted results of wind-driven and distant shipping noise fields. Furthermore, the spatial characteristics of low-frequency ambient noise field were compared with the classical Cron/Sherman deep water noise field coherence function. Simulation results with the described modeling method showed good agreement with the experimental measurement results based on the vertical line array deployed near the bottom in deep ocean direct-arrival zones.

  3. Spatial Vertical Directionality and Correlation of Low-Frequency Ambient Noise in Deep Ocean Direct-Arrival Zones

    PubMed Central

    Yang, Qiulong; Yang, Kunde; Cao, Ran; Duan, Shunli

    2018-01-01

    Wind-driven and distant shipping noise sources contribute to the total noise field in the deep ocean direct-arrival zones. Wind-driven and distant shipping noise sources may significantly and simultaneously affect the spatial characteristics of the total noise field to some extent. In this work, a ray approach and parabolic equation solution method were jointly utilized to model the low-frequency ambient noise field in a range-dependent deep ocean environment by considering their calculation accuracy and efficiency in near-field wind-driven and far-field distant shipping noise fields. The reanalysis databases of National Center of Environment Prediction (NCEP) and Volunteer Observation System (VOS) were used to model the ambient noise source intensity and distribution. Spatial vertical directionality and correlation were analyzed in three scenarios that correspond to three wind speed conditions. The noise field was dominated by distant shipping noise sources when the wind speed was less than 3 m/s, and then the spatial vertical directionality and vertical correlation of the total noise field were nearly consistent with those of distant shipping noise field. The total noise field was completely dominated by near field wind generated noise sources when the wind speed was greater than 12 m/s at 150 Hz, and then the spatial vertical correlation coefficient and directionality pattern of the total noise field was approximately consistent with that of the wind-driven noise field. The spatial characteristics of the total noise field for wind speeds between 3 m/s and 12 m/s were the weighted results of wind-driven and distant shipping noise fields. Furthermore, the spatial characteristics of low-frequency ambient noise field were compared with the classical Cron/Sherman deep water noise field coherence function. Simulation results with the described modeling method showed good agreement with the experimental measurement results based on the vertical line array deployed near the bottom in deep ocean direct-arrival zones. PMID:29360793

  4. Assessment of Wind Resource in the Palk Strait using Different Methods

    NASA Astrophysics Data System (ADS)

    Gupta, T.; Khan, F.; Baidya Roy, S.; Miller, L.

    2017-12-01

    The Government of India has proposed a target of 60 GW in grid power from the wind by the year 2022. The Palk Strait is one of the potential offshore wind power generation sites in India. It is a 65-135 km wide and 135 km long channel lying between the south eastern tip of India and northern Sri Lanka. The complex terrain bounding the two sides of the strait leads to enhanced wind speed and reduced variability in the wind direction. Here, we compare 3 distinct methodologies for estimating the generation rates for a hypothetical offshore wind farm array located in the strait. The methodologies include: 1) traditional wind power density model that ignores the effect of turbine interactions on generation rates; 2) the PARK wake model; and 3) a high resolution weather model (WRF) with a wind turbine parameterization. Using the WRF model as our baseline, we find that the simple model overestimates generation by an order-of-magnitude, while the wake model underestimates generation rates by about 5%. The reason for these differences relates to the influence of wind turbines on the atmospheric flow, wherein, the WRF model is able to capture the effect of both the complex terrain and wind turbine atmospheric boundary layer interactions. Lastly, a model evaluation is conducted which shows that 10m wind speeds and directions from WRF are comparable with the satellite data. Hence, we conclude from the study that each of these methodologies may have merit, but should a wind farm is deployed in such a complex terrain, we expect the WRF method to give better estimates of wind resource assessment capturing the physical processes emerging due to the interactions between offshore wind farm and the surrounding terrain.

  5. Evaluation of spray drift using low speed wind tunnel measurements and dispersion modeling

    USDA-ARS?s Scientific Manuscript database

    The objective of this work was to evaluate the EPA’s proposed Test Plan for the validation testing of pesticide spray drift reduction technologies (DRTs) for row and field crops, focusing on the evaluation of ground application systems using the low-speed wind tunnel protocols and processing the dat...

  6. Solar wind structure out of the ecliptic plane over solar cycles

    NASA Astrophysics Data System (ADS)

    Sokol, J. M.; Bzowski, M.; Tokumaru, M.

    2017-12-01

    Sun constantly emits a stream of plasma known as solar wind. Ground-based observations of the solar wind speed through the interplanetary scintillations (IPS) of radio flux from distant point sources and in-situ measurements by Ulysses mission revealed that the solar wind flow has different characteristics depending on the latitude. This latitudinal structure evolves with the cycle of solar activity. The knowledge on the evolution of solar wind structure is important for understanding the interaction between the interstellar medium surrounding the Sun and the solar wind, which is responsible for creation of the heliosphere. The solar wind structure must be taken into account in interpretation of most of the observations of heliospheric energetic neutral atoms, interstellar neutral atoms, pickup ions, and heliospheric backscatter glow. The information on the solar wind structure is not any longer available from direct measurements after the termination of Ulysses mission and the only source of the solar wind out of the ecliptic plane is the IPS observations. However, the solar wind structure obtained from this method contains inevitable gaps in the time- and heliolatitude coverage. Sokół et al 2015 used the solar wind speed data out of the ecliptic plane retrieved from the IPS observations performed by Institute for Space-Earth Environmental Research (Nagoya University, Japan) and developed a methodology to construct a model of evolution of solar wind speed and density from 1985 to 2013 that fills the data gaps. In this paper we will present a refined model of the solar wind speed and density structure as a function of heliographic latitude updated by the most recent data from IPS observations. And we will discuss methods of extrapolation of the solar wind structure out of the ecliptic plane for the past solar cycles, when the data were not available, as well as forecasting for few years upward.

  7. Wind farms production: Control and prediction

    NASA Astrophysics Data System (ADS)

    El-Fouly, Tarek Hussein Mostafa

    Wind energy resources, unlike dispatchable central station generation, produce power dependable on external irregular source and that is the incident wind speed which does not always blow when electricity is needed. This results in the variability, unpredictability, and uncertainty of wind resources. Therefore, the integration of wind facilities to utility electrical grid presents a major challenge to power system operator. Such integration has significant impact on the optimum power flow, transmission congestion, power quality issues, system stability, load dispatch, and economic analysis. Due to the irregular nature of wind power production, accurate prediction represents the major challenge to power system operators. Therefore, in this thesis two novel models are proposed for wind speed and wind power prediction. One proposed model is dedicated to short-term prediction (one-hour ahead) and the other involves medium term prediction (one-day ahead). The accuracy of the proposed models is revealed by comparing their results with the corresponding values of a reference prediction model referred to as the persistent model. Utility grid operation is not only impacted by the uncertainty of the future production of wind farms, but also by the variability of their current production and how the active and reactive power exchange with the grid is controlled. To address this particular task, a control technique for wind turbines, driven by doubly-fed induction generators (DFIGs), is developed to regulate the terminal voltage by equally sharing the generated/absorbed reactive power between the rotor-side and the gridside converters. To highlight the impact of the new developed technique in reducing the power loss in the generator set, an economic analysis is carried out. Moreover, a new aggregated model for wind farms is proposed that accounts for the irregularity of the incident wind distribution throughout the farm layout. Specifically, this model includes the wake effect and the time delay of the incident wind speed of the different turbines on the farm, and to simulate the fluctuation in the generated power more accurately and more closer to real-time operation. Recently, wind farms with considerable output power ratings have been installed. Their integrating into the utility grid will substantially affect the electricity markets. This thesis investigates the possible impact of wind power variability, wind farm control strategy, wind energy penetration level, wind farm location, and wind power prediction accuracy on the total generation costs and close to real time electricity market prices. These issues are addressed by developing a single auction market model for determining the real-time electricity market prices.

  8. [Effects of wind speed on drying processes of fuelbeds composed of Mongolian oak broad-leaves.

    PubMed

    Zhang, Li Bin; Sun, Ping; Jin, Sen

    2016-11-18

    Water desorption processes of fuel beds with Mongolian oak broad-leaves were observed under conditions with various wind speeds but nearly constant air temperature and humidity. The effects of wind speed on drying coefficients of fuel beds with various moisture contents were analyzed. Three phases of drying process, namely high initial moisture content (>75%) of phase 1, transition state of phase 2, and equilibrium phase III could be identified. During phase 1, water loss rate under higher wind speed was higher than that under lower wind speed. Water loss rate under higher wind speed was lower than that under lower wind speed during phase 2. During phase 3, water loss rates under different wind speeds were similar. The wind effects decreased with the decrease of fuel moisture. The drying coefficient of the Mongolian oak broad-leaves fuel beds was affected by wind speed and fuel bed compactness, and the interaction between these two factors. The coefficient increased with wind speed roughly in a monotonic cubic polynomial form.

  9. Quantifying uncertainties in wind energy assessment

    NASA Astrophysics Data System (ADS)

    Patlakas, Platon; Galanis, George; Kallos, George

    2015-04-01

    The constant rise of wind energy production and the subsequent penetration in global energy markets during the last decades resulted in new sites selection with various types of problems. Such problems arise due to the variability and the uncertainty of wind speed. The study of the wind speed distribution lower and upper tail may support the quantification of these uncertainties. Such approaches focused on extreme wind conditions or periods below the energy production threshold are necessary for a better management of operations. Towards this direction, different methodologies are presented for the credible evaluation of potential non-frequent/extreme values for these environmental conditions. The approaches used, take into consideration the structural design of the wind turbines according to their lifespan, the turbine failures, the time needed for repairing as well as the energy production distribution. In this work, a multi-parametric approach for studying extreme wind speed values will be discussed based on tools of Extreme Value Theory. In particular, the study is focused on extreme wind speed return periods and the persistence of no energy production based on a weather modeling system/hind cast/10-year dataset. More specifically, two methods (Annual Maxima and Peaks Over Threshold) were used for the estimation of extreme wind speeds and their recurrence intervals. Additionally, two different methodologies (intensity given duration and duration given intensity, both based on Annual Maxima method) were implied to calculate the extreme events duration, combined with their intensity as well as the event frequency. The obtained results prove that the proposed approaches converge, at least on the main findings, for each case. It is also remarkable that, despite the moderate wind speed climate of the area, several consequent days of no energy production are observed.

  10. Metocean design parameter estimation for fixed platform based on copula functions

    NASA Astrophysics Data System (ADS)

    Zhai, Jinjin; Yin, Qilin; Dong, Sheng

    2017-08-01

    Considering the dependent relationship among wave height, wind speed, and current velocity, we construct novel trivariate joint probability distributions via Archimedean copula functions. Total 30-year data of wave height, wind speed, and current velocity in the Bohai Sea are hindcast and sampled for case study. Four kinds of distributions, namely, Gumbel distribution, lognormal distribution, Weibull distribution, and Pearson Type III distribution, are candidate models for marginal distributions of wave height, wind speed, and current velocity. The Pearson Type III distribution is selected as the optimal model. Bivariate and trivariate probability distributions of these environmental conditions are established based on four bivariate and trivariate Archimedean copulas, namely, Clayton, Frank, Gumbel-Hougaard, and Ali-Mikhail-Haq copulas. These joint probability models can maximize marginal information and the dependence among the three variables. The design return values of these three variables can be obtained by three methods: univariate probability, conditional probability, and joint probability. The joint return periods of different load combinations are estimated by the proposed models. Platform responses (including base shear, overturning moment, and deck displacement) are further calculated. For the same return period, the design values of wave height, wind speed, and current velocity obtained by the conditional and joint probability models are much smaller than those by univariate probability. Considering the dependence among variables, the multivariate probability distributions provide close design parameters to actual sea state for ocean platform design.

  11. A nonlinear dynamics approach for incorporating wind-speed patterns into wind-power project evaluation.

    PubMed

    Huffaker, Ray; Bittelli, Marco

    2015-01-01

    Wind-energy production may be expanded beyond regions with high-average wind speeds (such as the Midwest U.S.A.) to sites with lower-average speeds (such as the Southeast U.S.A.) by locating favorable regional matches between natural wind-speed and energy-demand patterns. A critical component of wind-power evaluation is to incorporate wind-speed dynamics reflecting documented diurnal and seasonal behavioral patterns. Conventional probabilistic approaches remove patterns from wind-speed data. These patterns must be restored synthetically before they can be matched with energy-demand patterns. How to accurately restore wind-speed patterns is a vexing problem spurring an expanding line of papers. We propose a paradigm shift in wind power evaluation that employs signal-detection and nonlinear-dynamics techniques to empirically diagnose whether synthetic pattern restoration can be avoided altogether. If the complex behavior of observed wind-speed records is due to nonlinear, low-dimensional, and deterministic system dynamics, then nonlinear dynamics techniques can reconstruct wind-speed dynamics from observed wind-speed data without recourse to conventional probabilistic approaches. In the first study of its kind, we test a nonlinear dynamics approach in an application to Sugarland Wind-the first utility-scale wind project proposed in Florida, USA. We find empirical evidence of a low-dimensional and nonlinear wind-speed attractor characterized by strong temporal patterns that match up well with regular daily and seasonal electricity demand patterns.

  12. The association between wind-related variables and stroke symptom onset: A case-crossover study on Jeju Island.

    PubMed

    Kim, Jayeun; Yoon, Khyuhyun; Choi, Jay Chol; Kim, Ho; Song, Jung-Kook

    2016-10-01

    Although several studies have investigated the effects of ambient temperature on the risk of stroke, few studies have examined the relationship between other meteorological conditions and stroke. Therefore, the aim of this study was to analyze the association between wind-related variables and stroke symptoms onset. Data regarding the onset of stroke symptoms occurring between January 1, 2006, and December 31, 2007 on Jeju Island were collected from the Jeju National University Hospital stroke registry. A fixed-strata case-crossover analysis based on time of onset and adjusted for ambient temperature, relative humidity, air pressure, and pollutants was used to analyze the effects of wind speed, the daily wind speed range (DWR), and the wind chill index on stroke symptom onset using varied lag terms. Models examining the modification effects by age, sex, smoking status, season, and type of stroke were also analyzed. A total of 409 stroke events (381 ischemic and 28 hemorrhagic) were registered between 2006 and 2007. The odds ratios (ORs) for wind speed, DWR, and wind chill among the total sample at lag 0-8 were 1.18 (95% confidence interval (CI): 1.06-1.31), 1.08 (95% CI: 1.02-1.14), and 1.22 (95% CI: 1.07-1.39) respectively. The ORs for wind speed, DWR, and wind chill for ischemic stroke patients were slightly greater than for patients in the total sample (OR=1.20, 95% CI: 1.08-1.34; OR=1.09, 95% CI: 1.03-1.15; and OR=1.22, 95% CI: 1.07-1.39, respectively). Statistically significant season-specific effects were found for spring and winter, and various delayed effects were observed. In addition, age, sex, and smoking status modified the effect size of wind speed, DWR, and wind chill. Our analyses showed that the risk of stroke symptoms onset was associated with wind speed, DWR, and wind chill on Jeju Island. Copyright © 2016 Elsevier Inc. All rights reserved.

  13. A Study on the Wind Environment and Effects of Wind Fences around the Jang-Bogo Antarctica Station

    NASA Astrophysics Data System (ADS)

    Wang, J. W.; Kim, J.; Choi, W.; Kwon, H.

    2017-12-01

    This study investigated the influence of Jang-Bogo Antarctic Research Station on detailed flow and the effectiveness of wind fences on the surrounding observation environment using a computational fluid dynamics (CFD) model. The data obtained from the computer aided design (CAD) drawing were used to construct the terrain and buildings around Jang-Bogo Antarctic Research Station. To investigate the flow characteristics altered by Jang-Bogo Antarctic Research Station, we conducted the simulations for 16 different inflow directions and, for each inflow direction, we compared the flow characteristics before and after the construction of Jang-Bogo Antarctic Research Station. The observation data of automatic weather system (AWS) were used for comparison. The wind rose analysis shows that the wind speed and direction after the construction of the Jang-Bogo Antarctic Research Station are quite different from those before the construction. We also investigated effects of wind fences on the reduction of wind speeds around Jang-Bogo Antarctic Research Station, as one of the studies to reduce potential damages caused by katabatic wind. For this, we changed systematically the distance between the fences and the Jang-Bogo Antarctic Research Station (2H 8H with the increment of 2H, H is fence of height) and porosity of fences (0%, 25%, 33%, 50%, 67% and 75%). In the affiliated westerly cases, the AWS was located at the downwind side of the Jang-Bogo Antarctic Research Station and the effect of the construction were maximized (in the west-north-westerly case, the maximum decrease in wind speed was 81% compared to the wind speeds before the construction). In the case that the distance between the wind fence and the Jang-Bogo Antarctic Research Station was shortest, the wind speed reduction was maximized. With the same distance, the fence with medium porosities (25 33%) maximized the wind speed reduction.

  14. Computational studies of the effects of active and passive circulation enhancement concepts on wind turbine performance

    NASA Astrophysics Data System (ADS)

    Tongchitpakdee, Chanin

    With the advantage of modern high speed computers, there has been an increased interest in the use of first-principles based computational approaches for the aerodynamic modeling of horizontal axis wind turbine (HAWT). Since these approaches are based on the laws of conservation (mass, momentum, and energy), they can capture much of the physics in great detail. The ability to accurately predict the airloads and power output can greatly aid the designers in tailoring the aerodynamic and aeroelastic features of the configuration. First-principles based analyses are also valuable for developing active means (e.g., circulation control), and passive means (e.g., Gurney flaps) of reducing unsteady blade loads, mitigating stall, and for efficient capture of wind energy leading to more electrical power generation. In this present study, the aerodynamic performance of a wind turbine rotor equipped with circulation enhancement technology (trailing edge blowing or Gurney flaps) is investigated using a three-dimensional unsteady viscous flow analysis. The National Renewable Energy Laboratory (NREL) Phase VI horizontal axis wind turbine is chosen as the baseline configuration. Prior to its use in exploring these concepts, the flow solver is validated with the experimental data for the baseline case under yawed flow conditions. Results presented include radial distribution of normal and tangential forces, shaft torque, root flap moment, surface pressure distributions at selected radial locations, and power output. Results show that good agreement has been for a range of wind speeds and yaw angles, where the flow is attached. At high wind speeds, however, where the flow is fully separated, it was found that the fundamental assumptions behind this present methodology breaks down for the baseline turbulence model (Spalart-Allmaras model), giving less accurate results. With the implementation of advanced turbulence model, Spalart-Allmaras Detached Eddy Simulation (SA-DES), the accuracy of the results at high wind speeds are improved. Results of circulation enhancement concepts show that, at low wind speed (attached flow) conditions, a Coanda jet at the trailing edge of the rotor blade is effective at increasing circulation resulting in an increase of lift and the chordwise thrust force. This leads to an increased amount of net power generation compared to the baseline configuration for moderate blowing coefficients. The effects of jet slot height and pulsed jet are also investigated in this study. A passive Gurney flap was found to increase the bound circulation and produce increased power in a manner similar to the Coanda jet. At high wind speed where the flow is separated, both the Coanda jet and Gurney flap become ineffective. Results of leading edge blowing indicate that a leading edge blowing jet is found to be beneficial in increasing power generation at high wind speeds. The effect of Gurney flap angle is also studied. Gurney flap angle has significant influence in power generation. Higher power output is obtained at higher flap angles.

  15. Simulation of the Impact of New Aircraft- and Satellite-based Ocean Surface Wind Measurements on Estimates of Hurricane Intensity

    NASA Technical Reports Server (NTRS)

    Uhlhorn, Eric; Atlas, Robert; Black, Peter; Buckley, Courtney; Chen, Shuyi; El-Nimri, Salem; Hood, Robbie; Johnson, James; Jones, Linwood; Miller, Timothy; hide

    2009-01-01

    The Hurricane Imaging Radiometer (HIRAD) is a new airborne microwave remote sensor currently under development to enhance real-time hurricane ocean surface wind observations. HIRAD builds on the capabilities of the Stepped Frequency Microwave Radiometer (SFMR), which now operates on NOAA P-3, G-4, and AFRC C-130 aircraft. Unlike the SFMR, which measures wind speed and rain rate along the ground track directly beneath the aircraft, HIRAD will provide images of the surface wind and rain field over a wide swath (approximately 3 times the aircraft altitude). To demonstrate potential improvement in the measurement of peak hurricane winds, we present a set of Observing System Simulation Experiments (OSSEs) in which measurements from the new instrument as well as those from existing platforms (air, surface, and space-based) are simulated from the output of a high-resolution (approximately 1.7 km) numerical model. Simulated retrieval errors due to both instrument noise as well as model function accuracy are considered over the expected range of incidence angles, wind speeds and rain rates. Based on numerous simulated flight patterns and data source combinations, statistics are developed to describe relationships between the observed and true (from the model s perspective) peak wind speed. These results have implications for improving the estimation of hurricane intensity (as defined by the peak sustained wind anywhere in the storm), which may often go un-observed due to sampling limitations.

  16. Adaptive Control of a Utility-Scale Wind Turbine Operating in Region 3

    NASA Technical Reports Server (NTRS)

    Frost, Susan A.; Balas, Mark J.; Wright, Alan D.

    2009-01-01

    Adaptive control techniques are well suited to nonlinear applications, such as wind turbines, which are difficult to accurately model and which have effects from poorly known operating environments. The turbulent and unpredictable conditions in which wind turbines operate create many challenges for their operation. In this paper, we design an adaptive collective pitch controller for a high-fidelity simulation of a utility scale, variable-speed horizontal axis wind turbine. The objective of the adaptive pitch controller in Region 3 is to regulate generator speed and reject step disturbances. The control objective is accomplished by collectively pitching the turbine blades. We use an extension of the Direct Model Reference Adaptive Control (DMRAC) approach to track a reference point and to reject persistent disturbances. The turbine simulation models the Controls Advanced Research Turbine (CART) of the National Renewable Energy Laboratory in Golden, Colorado. The CART is a utility-scale wind turbine which has a well-developed and extensively verified simulator. The adaptive collective pitch controller for Region 3 was compared in simulations with a bas celliansesical Proportional Integrator (PI) collective pitch controller. In the simulations, the adaptive pitch controller showed improved speed regulation in Region 3 when compared with the baseline PI pitch controller and it demonstrated robustness to modeling errors.

  17. Statistical downscaling of IPCC sea surface wind and wind energy predictions for U.S. east coastal ocean, Gulf of Mexico and Caribbean Sea

    NASA Astrophysics Data System (ADS)

    Yao, Zhigang; Xue, Zuo; He, Ruoying; Bao, Xianwen; Song, Jun

    2016-08-01

    A multivariate statistical downscaling method is developed to produce regional, high-resolution, coastal surface wind fields based on the IPCC global model predictions for the U.S. east coastal ocean, the Gulf of Mexico (GOM), and the Caribbean Sea. The statistical relationship is built upon linear regressions between the empirical orthogonal function (EOF) spaces of a cross- calibrated, multi-platform, multi-instrument ocean surface wind velocity dataset (predictand) and the global NCEP wind reanalysis (predictor) over a 10 year period from 2000 to 2009. The statistical relationship is validated before applications and its effectiveness is confirmed by the good agreement between downscaled wind fields based on the NCEP reanalysis and in-situ surface wind measured at 16 National Data Buoy Center (NDBC) buoys in the U.S. east coastal ocean and the GOM during 1992-1999. The predictand-predictor relationship is applied to IPCC GFDL model output (2.0°×2.5°) of downscaled coastal wind at 0.25°×0.25° resolution. The temporal and spatial variability of future predicted wind speeds and wind energy potential over the study region are further quantified. It is shown that wind speed and power would significantly be reduced in the high CO2 climate scenario offshore of the mid-Atlantic and northeast U.S., with the speed falling to one quarter of its original value.

  18. Definition of a 5-MW Reference Wind Turbine for Offshore System Development

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jonkman, J.; Butterfield, S.; Musial, W.

    2009-02-01

    This report describes a three-bladed, upwind, variable-speed, variable blade-pitch-to-feather-controlled multimegawatt wind turbine model developed by NREL to support concept studies aimed at assessing offshore wind technology.

  19. Assessing simulated summer 10-m wind speed over China: influencing processes and sensitivities to land surface schemes

    NASA Astrophysics Data System (ADS)

    Zeng, Xin-Min; Wang, Ming; Wang, Ning; Yi, Xiang; Chen, Chaohui; Zhou, Zugang; Wang, Guiling; Zheng, Yiqun

    2018-06-01

    We assessed the sensitivity of 10-m wind speed to land surface schemes (LSSs) and the processes affecting wind speed in China during the summer of 2003 using the ARWv3 mesoscale model. The derived hydrodynamic equation, which directly reflects the effects of the processes that drive changes in the full wind speed, shows that the convection term CON (the advection effect) plays the smallest role; thus, the summer 10-m wind speed is largely dominated by the pressure gradient (PRE) and the diffusion (DFN) terms, and the equation shows that both terms are highly sensitive to the choice of LSS within the studied subareas (i.e., Northwest China, East China, and the Tibetan Plateau). For example, Northwest China had the largest DFN, with a PRE four times that of CON and the highest sensitivity of PRE to the choice of LSS, as indicated by a difference index value of 63%. Moreover, we suggest that two types of mechanisms, direct and indirect effects, affect the 10-m wind speed. Through their simulated surface fluxes (mainly the sensible heat flux), the different LSSs directly provide different amounts of heat to the surface air at local scales, which influences atmospheric stratification and the characteristics of downward momentum transport. Meanwhile, through the indirect effect, the LSS-induced changes in surface fluxes can significantly modify the distributions of the temperature and pressure fields in the lower atmosphere over larger scales. These changes alter the thermal and geostrophic winds, respectively, as well as the 10-m wind speed. Due to the differences in land properties and climates, the indirect effect (e.g., PRE) can be greater than the direct effect (e.g., DFN).

  20. Some techniques for reducing the tower shadow of the DOE/NASA mod-0 wind turbine tower. [wind tunnel tests to measure effects of tower structure on wind velocity

    NASA Technical Reports Server (NTRS)

    Burley, R. R.; Savino, J. M.; Wagner, L. H.; Diedrich, J. H.

    1979-01-01

    Wind speed profile measurements to measure the effect of a wind turbine tower on the wind velocity are presented. Measurements were made in the wake of scale models of the tower and in the wake of certain full scale components to determine the magnitude of the speed reduction (tower shadow). Shadow abatement techniques tested on the towers included the removal of diagonals, replacement of diagonals and horizontals with round cross section members, installation of elliptical shapes on horizontal members, installation of airfoils on vertical members, and application of surface roughness to vertical members.

  1. Evaluation of the wind farm parameterization in the Weather Research and Forecasting model (version 3.8.1) with meteorological and turbine power data

    NASA Astrophysics Data System (ADS)

    Lee, Joseph C. Y.; Lundquist, Julie K.

    2017-11-01

    Forecasts of wind-power production are necessary to facilitate the integration of wind energy into power grids, and these forecasts should incorporate the impact of wind-turbine wakes. This paper focuses on a case study of four diurnal cycles with significant power production, and assesses the skill of the wind farm parameterization (WFP) distributed with the Weather Research and Forecasting (WRF) model version 3.8.1, as well as its sensitivity to model configuration. After validating the simulated ambient flow with observations, we quantify the value of the WFP as it accounts for wake impacts on power production of downwind turbines. We also illustrate with statistical significance that a vertical grid with approximately 12 m vertical resolution is necessary for reproducing the observed power production. Further, the WFP overestimates wake effects and hence underestimates downwind power production during high wind speed, highly stable, and low turbulence conditions. We also find the WFP performance is independent of the number of wind turbines per model grid cell and the upwind-downwind position of turbines. Rather, the ability of the WFP to predict power production is most dependent on the skill of the WRF model in simulating the ambient wind speed.

  2. Evaluation of the wind farm parameterization in the Weather Research and Forecasting model (version 3.8.1) with meteorological and turbine power data

    DOE PAGES

    Lee, Joseph C. Y.; Lundquist, Julie K.

    2017-11-23

    Forecasts of wind-power production are necessary to facilitate the integration of wind energy into power grids, and these forecasts should incorporate the impact of wind-turbine wakes. Our paper focuses on a case study of four diurnal cycles with significant power production, and assesses the skill of the wind farm parameterization (WFP) distributed with the Weather Research and Forecasting (WRF) model version 3.8.1, as well as its sensitivity to model configuration. After validating the simulated ambient flow with observations, we quantify the value of the WFP as it accounts for wake impacts on power production of downwind turbines. We also illustratemore » with statistical significance that a vertical grid with approximately 12 m vertical resolution is necessary for reproducing the observed power production. Further, the WFP overestimates wake effects and hence underestimates downwind power production during high wind speed, highly stable, and low turbulence conditions. We also find the WFP performance is independent of the number of wind turbines per model grid cell and the upwind–downwind position of turbines. Rather, the ability of the WFP to predict power production is most dependent on the skill of the WRF model in simulating the ambient wind speed.« less

  3. Evaluation of the wind farm parameterization in the Weather Research and Forecasting model (version 3.8.1) with meteorological and turbine power data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Joseph C. Y.; Lundquist, Julie K.

    Forecasts of wind-power production are necessary to facilitate the integration of wind energy into power grids, and these forecasts should incorporate the impact of wind-turbine wakes. Our paper focuses on a case study of four diurnal cycles with significant power production, and assesses the skill of the wind farm parameterization (WFP) distributed with the Weather Research and Forecasting (WRF) model version 3.8.1, as well as its sensitivity to model configuration. After validating the simulated ambient flow with observations, we quantify the value of the WFP as it accounts for wake impacts on power production of downwind turbines. We also illustratemore » with statistical significance that a vertical grid with approximately 12 m vertical resolution is necessary for reproducing the observed power production. Further, the WFP overestimates wake effects and hence underestimates downwind power production during high wind speed, highly stable, and low turbulence conditions. We also find the WFP performance is independent of the number of wind turbines per model grid cell and the upwind–downwind position of turbines. Rather, the ability of the WFP to predict power production is most dependent on the skill of the WRF model in simulating the ambient wind speed.« less

  4. Tornado Intensity Estimated from Damage Path Dimensions

    PubMed Central

    Elsner, James B.; Jagger, Thomas H.; Elsner, Ian J.

    2014-01-01

    The Newcastle/Moore and El Reno tornadoes of May 2013 are recent reminders of the destructive power of tornadoes. A direct estimate of a tornado's power is difficult and dangerous to get. An indirect estimate on a categorical scale is available from a post-storm survery of the damage. Wind speed bounds are attached to the scale, but the scale is not adequate for analyzing trends in tornado intensity separate from trends in tornado frequency. Here tornado intensity on a continuum is estimated from damage path length and width, which are measured on continuous scales and correlated to the EF rating. The wind speeds on the EF scale are treated as interval censored data and regressed onto the path dimensions and fatalities. The regression model indicates a 25% increase in expected intensity over a threshold intensity of 29 m s−1 for a 100 km increase in path length and a 17% increase in expected intensity for a one km increase in path width. The model shows a 43% increase in the expected intensity when fatalities are observed controlling for path dimensions. The estimated wind speeds correlate at a level of .77 (.34, .93) [95% confidence interval] with a small sample of wind speeds estimated independently from a doppler radar calibration. The estimated wind speeds allow analyses to be done on the tornado database that are not possible with the categorical scale. The modeled intensities can be used in climatology and in environmental and engineering applications. Research is needed to understand the upward trends in path length and width. PMID:25229242

  5. Tornado intensity estimated from damage path dimensions.

    PubMed

    Elsner, James B; Jagger, Thomas H; Elsner, Ian J

    2014-01-01

    The Newcastle/Moore and El Reno tornadoes of May 2013 are recent reminders of the destructive power of tornadoes. A direct estimate of a tornado's power is difficult and dangerous to get. An indirect estimate on a categorical scale is available from a post-storm survery of the damage. Wind speed bounds are attached to the scale, but the scale is not adequate for analyzing trends in tornado intensity separate from trends in tornado frequency. Here tornado intensity on a continuum is estimated from damage path length and width, which are measured on continuous scales and correlated to the EF rating. The wind speeds on the EF scale are treated as interval censored data and regressed onto the path dimensions and fatalities. The regression model indicates a 25% increase in expected intensity over a threshold intensity of 29 m s(-1) for a 100 km increase in path length and a 17% increase in expected intensity for a one km increase in path width. The model shows a 43% increase in the expected intensity when fatalities are observed controlling for path dimensions. The estimated wind speeds correlate at a level of .77 (.34, .93) [95% confidence interval] with a small sample of wind speeds estimated independently from a doppler radar calibration. The estimated wind speeds allow analyses to be done on the tornado database that are not possible with the categorical scale. The modeled intensities can be used in climatology and in environmental and engineering applications. Research is needed to understand the upward trends in path length and width.

  6. Wind dependence of ambient noise in a biologically rich coastal area.

    PubMed

    Mathias, Delphine; Gervaise, Cédric; Di Iorio, Lucia

    2016-02-01

    The wind dependence of acoustic spectrum between 100 Hz and 16 kHz is investigated for coastal biologically rich areas. The analysis of 5 months of continuous measurements run in a 10 m deep shallow water environment off Brittany (France) showed that wind dependence of spectral levels is subject to masking by biological sounds. When dealing with raw data, the wind dependence of spectral levels was not significant for frequencies where biological sounds were present (2 to 10 kHz). An algorithm developed by Kinda, Simard, Gervaise, Mars, and Fortier [J. Acoust. Soc. Am. 134(1), 77-87 (2013)] was used to automatically filter out the loud distinctive biological contribution and estimated the ambient noise spectrum. The wind dependence of ambient noise spectrum was always significant after application of this filter. A mixture model for ambient noise spectrum which accounts for the richness of the soundscape is proposed. This model revealed that wind dependence holds once the wind speed was strong enough to produce sounds higher in amplitude than the biological chorus (9 kn at 3 kHz, 11 kn at 8 kHz). For these higher wind speeds, a logarithmic affine law was adequate and its estimated parameters were compatible with previous studies (average slope 27.1 dB per decade of wind speed increase).

  7. Large-Eddy Simulation Sensitivities to Variations of Configuration and Forcing Parameters in Canonical Boundary-Layer Flows for Wind Energy Applications

    DOE PAGES

    Mirocha, Jeffrey D.; Churchfield, Matthew J.; Munoz-Esparza, Domingo; ...

    2017-08-28

    Here, the sensitivities of idealized Large-Eddy Simulations (LES) to variations of model configuration and forcing parameters on quantities of interest to wind power applications are examined. Simulated wind speed, turbulent fluxes, spectra and cospectra are assessed in relation to variations of two physical factors, geostrophic wind speed and surface roughness length, and several model configuration choices, including mesh size and grid aspect ratio, turbulence model, and numerical discretization schemes, in three different code bases. Two case studies representing nearly steady neutral and convective atmospheric boundary layer (ABL) flow conditions over nearly flat and homogeneous terrain were used to force andmore » assess idealized LES, using periodic lateral boundary conditions. Comparison with fast-response velocity measurements at five heights within the lowest 50 m indicates that most model configurations performed similarly overall, with differences between observed and predicted wind speed generally smaller than measurement variability. Simulations of convective conditions produced turbulence quantities and spectra that matched the observations well, while those of neutral simulations produced good predictions of stress, but smaller than observed magnitudes of turbulence kinetic energy, likely due to tower wakes influencing the measurements. While sensitivities to model configuration choices and variability in forcing can be considerable, idealized LES are shown to reliably reproduce quantities of interest to wind energy applications within the lower ABL during quasi-ideal, nearly steady neutral and convective conditions over nearly flat and homogeneous terrain.« less

  8. Large-Eddy Simulation Sensitivities to Variations of Configuration and Forcing Parameters in Canonical Boundary-Layer Flows for Wind Energy Applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mirocha, Jeffrey D.; Churchfield, Matthew J.; Munoz-Esparza, Domingo

    Here, the sensitivities of idealized Large-Eddy Simulations (LES) to variations of model configuration and forcing parameters on quantities of interest to wind power applications are examined. Simulated wind speed, turbulent fluxes, spectra and cospectra are assessed in relation to variations of two physical factors, geostrophic wind speed and surface roughness length, and several model configuration choices, including mesh size and grid aspect ratio, turbulence model, and numerical discretization schemes, in three different code bases. Two case studies representing nearly steady neutral and convective atmospheric boundary layer (ABL) flow conditions over nearly flat and homogeneous terrain were used to force andmore » assess idealized LES, using periodic lateral boundary conditions. Comparison with fast-response velocity measurements at five heights within the lowest 50 m indicates that most model configurations performed similarly overall, with differences between observed and predicted wind speed generally smaller than measurement variability. Simulations of convective conditions produced turbulence quantities and spectra that matched the observations well, while those of neutral simulations produced good predictions of stress, but smaller than observed magnitudes of turbulence kinetic energy, likely due to tower wakes influencing the measurements. While sensitivities to model configuration choices and variability in forcing can be considerable, idealized LES are shown to reliably reproduce quantities of interest to wind energy applications within the lower ABL during quasi-ideal, nearly steady neutral and convective conditions over nearly flat and homogeneous terrain.« less

  9. Characteristics of Wind Generated Waves in the Delaware Estuary

    NASA Astrophysics Data System (ADS)

    Chen, J. L.; Ralston, D. K.; Geyer, W. R.; Chant, R. J.; Sommerfield, C. K.

    2016-02-01

    Coastal marshes provide important services for human uses such as fishery industry, recreation, ports and marine operations. Bombay Hook Wildlife Refuge, located along the western shore of the Delaware Estuary, has experienced substantial loss of salt marsh in recent decades. To evaluate the importance of different mechanisms which cause observed shoreline retreat, wave gauges were deployed along the dredged navigation channel and shoreline in the Delaware Estuary. A coupled wave and circulation modeling system (SWAN/ROMS) based on the most recent bathymetry (last updated 2013) is validated with waves observed during both calm and energetic conditions in November 2015. Simulation results based on different model parameterizations of whitecapping, bottom friction and the wind input source are compared. The tendency of observed wave steepness is more similar to a revised whitecapping source term [Westhuysen, 2007] than the default in SWAN model. Both model results and field data show that the generation/dissipation of waves in the Delaware estuary is determined by the local wind speed and channel depth. Whitecapping-induced energy dissipation is dominant in the channel, while dissipation due to bottom friction and depth-induced breaking become important on lateral shoals. To characterize the effects of wind fetch on waves in estuaries more generally, simulations with an idealized domain and varying wind conditions are compared and the results are expressed in terms of non-dimensional parameters. The simulations based on a 10m-depth uniform idealized channel show that the dissipation of waves is mainly controlled by whitecapping in all wind conditions. Under strong wind conditions (wind speed >10m/s) the effect of bottom friction becomes important so the simulated wave heights are no longer linearly correlated with wind speed.

  10. Climate projection of synoptic patterns forming extremely high wind speed over the Barents Sea

    NASA Astrophysics Data System (ADS)

    Surkova, Galina; Krylov, Aleksey

    2017-04-01

    Frequency of extreme weather events is not very high, but their consequences for the human well-being may be hazardous. These seldom events are not always well simulated by climate models directly. Sometimes it is more effective to analyze numerical projection of large-scale synoptic event generating extreme weather. For example, in mid-latitude surface wind speed depends mainly on the sea level pressure (SLP) field - its configuration and horizontal pressure gradient. This idea was implemented for analysis of extreme wind speed events over the Barents Sea. The calendar of high surface wind speed V (10 m above the surface) was prepared for events with V exceeding 99th percentile value in the central part of the Barents Sea. Analysis of probability distribution function of V was carried out on the base of ERA-Interim reanalysis data (6-hours, 0.75x0.75 degrees of latitude and longitude) for the period 1981-2010. Storm wind events number was found to be 240 days. Sea level pressure field over the sea and surrounding area was selected for each storm wind event. For the climate of the future (scenario RCP8.5), projections of SLP from CMIP5 numerical experiments were used. More than 20 climate models results of projected SLP (2006-2100) over the Barents Sea were correlated with modern storm wind SLP fields. Our calculations showed the positive tendency of annual frequency of storm SLP patterns over the Barents Sea by the end of 21st century.

  11. Assessment of C-Type Darrieus Wind Turbine Under Low Wind Speed Condition

    NASA Astrophysics Data System (ADS)

    Misaran, M. S.; Rahman, Md. M.; Muzammil, W. K.; Ismail, M. A.

    2017-07-01

    Harvesting wind energy in in a low wind speed region is deem un-economical if not daunting task. Study shows that a minimum cut in speed of 3.5 m/s is required to extract a meaningful wind energy for electricity while a mean speed of 6 m/s is preferred. However, in Malaysia the mean speed is at 2 m/s with certain potential areas having 3 m/s mean speed. Thus, this work aims to develop a wind turbine that able to operate at lower cut-in speed and produce meaningful power for electricity generation. A C-type Darrieus blade is selected as it shows good potential to operate in arbitrary wind speed condition. The wind turbine is designed and fabricated in UMS labs while the performance of the wind turbine is evaluated in a simulated wind condition. Test result shows that the wind turbine started to rotate at 1 m/s compared to a NACA 0012 Darrieus turbine that started to rotate at 3 m/s. The performance of the turbine shows that it have good potential to be used in an intermittent arbitrary wind speed condition as well as low mean wind speed condition.

  12. Spatial distribution of threshold wind speeds for dust outbreaks in northeast Asia

    NASA Astrophysics Data System (ADS)

    Kimura, Reiji; Shinoda, Masato

    2010-01-01

    Asian windblown dust events cause human and animal health effects and agricultural damage in dust source areas such as China and Mongolia and cause "yellow sand" events in Japan and Korea. It is desirable to develop an early warning system to help prevent such damage. We used our observations at a Mongolian station together with data from previous studies to model the spatial distribution of threshold wind speeds for dust events in northeast Asia (35°-45°N and 100°-115°E). Using a map of Normalized Difference Vegetation Index (NDVI), we estimated spatial distributions of vegetation cover, roughness length, threshold friction velocity, and threshold wind speed. We also recognized a relationship between NDVI in the dust season and maximum NDVI in the previous year. Thus, it may be possible to predict the threshold wind speed in the next dust season using the maximum NDVI in the previous year.

  13. Energetics characteristics accounting for the explosive development of a twin extratropical cyclone over the Northwest Pacific Ocean

    NASA Astrophysics Data System (ADS)

    Fu, Shenming

    2017-04-01

    A twin extratropical cyclone that appeared over the Northwest Pacific Ocean during the winter of 2011 is reproduced reasonably well by the fifth-generation PSU-NCAR Mesoscale Model (MM5). One cyclone in this event has developed into an extreme explosive extratropical cyclone (EEC), with a maximum deepening rate up to 2.7 Bergeron, a minimum SLP of 933 hPa, and a maximum surface wind of 33 m s-1, which means its intensity is comparable with the intensity of a typhoon. The rotational and divergent wind kinetic energy (KE) budget equations are applied to this twin cyclone event so as to understand the rapid enhancement of the wind speed in this case. Preliminary results indicate that, overall, the rotational wind KE is much larger than the divergent wind KE, however, the latter can be of comparable intensity with the rotational wind KE around the regions where the wind speed strengthened most rapidly. Different quadrants of the twin cyclone show significant unevenness, overall, the southeastern quadrant of the EEC features the rapidest enhancement of wind speed, whereas the northwestern quadrant shows the slowest wind-speed acceleration. The vertical stretching of the EEC show consistent variation features with the rotational wind KE. The transport of KE by rotational wind, the conversion from divergent wind KE to rotational wind KE, and the work done by pressure gradient force all contributed to the enhancement of rotational wind KE. In contrast, the divergent wind KE is mainly produced by the baroclinic energy conversion.

  14. Preconditioning of Interplanetary Space Due to Transient CME Disturbances

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Temmer, M.; Reiss, M. A.; Hofmeister, S. J.

    Interplanetary space is characteristically structured mainly by high-speed solar wind streams emanating from coronal holes and transient disturbances such as coronal mass ejections (CMEs). While high-speed solar wind streams pose a continuous outflow, CMEs abruptly disrupt the rather steady structure, causing large deviations from the quiet solar wind conditions. For the first time, we give a quantification of the duration of disturbed conditions (preconditioning) for interplanetary space caused by CMEs. To this aim, we investigate the plasma speed component of the solar wind and the impact of in situ detected interplanetary CMEs (ICMEs), compared to different background solar wind modelsmore » (ESWF, WSA, persistence model) for the time range 2011–2015. We quantify in terms of standard error measures the deviations between modeled background solar wind speed and observed solar wind speed. Using the mean absolute error, we obtain an average deviation for quiet solar activity within a range of 75.1–83.1 km s{sup −1}. Compared to this baseline level, periods within the ICME interval showed an increase of 18%–32% above the expected background, and the period of two days after the ICME displayed an increase of 9%–24%. We obtain a total duration of enhanced deviations over about three and up to six days after the ICME start, which is much longer than the average duration of an ICME disturbance itself (∼1.3 days), concluding that interplanetary space needs ∼2–5 days to recover from the impact of ICMEs. The obtained results have strong implications for studying CME propagation behavior and also for space weather forecasting.« less

  15. Evaluation of solar Type II radio burst estimates of initial solar wind shock speed using a kinematic model of the solar wind on the April 2001 solar event swarm

    NASA Astrophysics Data System (ADS)

    Sun, W.; Dryer, M.; Fry, C. D.; Deehr, C. S.; Smith, Z.; Akasofu, S.-I.; Kartalev, M. D.; Grigorov, K. G.

    2002-04-01

    We compare simulation results of real time shock arrival time prediction with observations by the ACE satellite for a series of solar flares/coronal mass ejections which took place between 28 March and 18 April, 2001 on the basis of the Hakamada-Akasofu-Fry, version 2 (HAFv.2) model. It is found, via an ex post facto calculation, that the initial speed of shock waves as an input parameter of the modeling is crucial for the agreement between the observation and the simulation. The initial speed determined by metric Type II radio burst observations must be substantially reduced (30 percent in average) for most high-speed shock waves.

  16. Cross-polarization microwave radar return at severe wind conditions: laboratory model and geophysical model function.

    NASA Astrophysics Data System (ADS)

    Troitskaya, Yuliya; Abramov, Victor; Ermoshkin, Alexey; Zuikova, Emma; Kazakov, Vassily; Sergeev, Daniil; Kandaurov, Alexandr

    2014-05-01

    Satellite remote sensing is one of the main techniques of monitoring severe weather conditions over the ocean. The principal difficulty of the existing algorithms of retrieving wind based on dependence of microwave backscattering cross-section on wind speed (Geophysical Model Function, GMF) is due to its saturation at winds exceeding 25 - 30 m/s. Recently analysis of dual- and quad-polarization C-band radar return measured from satellite Radarsat-2 suggested that the cross-polarized radar return has much higher sensitivity to the wind speed than co-polarized back scattering [1] and conserved sensitivity to wind speed at hurricane conditions [2]. Since complete collocation of these data was not possible and time difference in flight legs and SAR images acquisition was up to 3 hours, these two sets of data were compared in [2] only statistically. The main purpose of this paper is investigation of the functional dependence of cross-polarized radar cross-section on the wind speed in laboratory experiment. Since cross-polarized radar return is formed due to scattering at small-scale structures of the air-sea interface (short-crested waves, foam, sprays, etc), which are well reproduced in laboratory conditions, then the approach based on laboratory experiment on radar scattering of microwaves at the water surface under hurricane wind looks feasible. The experiments were performed in the Wind-wave flume located on top of the Large Thermostratified Tank of the Institute of Applied Physics, where the airflow was produced in the flume with the straight working part of 10 m and operating cross section 0.40?0.40 sq. m, the axis velocity can be varied from 5 to 25 m/s. Microwave measurements were carried out by a coherent Doppler X-band (3.2 cm) scatterometer with the consequent receive of linear polarizations. Experiments confirmed higher sensitivity to the wind speed of the cross-polarized radar return. Simultaneously parameters of the air flow in the turbulent boundary layer (friction velocity and roughness height) were retrieved by velocity profiling and subsequent data processing based on self-similarity of the turbulent boundary layer and 10-m wind speed was calculated. The wind wave field parameters in the flume were measured by three wire gauges. The measured data on wind waves were used for estimation of the short wave spectra and slope probability density function for "long waves" within composite Bragg theory of microwave radar return. Estimations showed that for co-polarized radar returns the difference between measurements and the predictions of the model is about 1-2 dB and it can be explained by our poor knowledge about the short wave part of the spectrum. For cross-polarized return the difference exceeds 10 dB, and it indicates that some non-Bragg mechanisms (short-crested waves, foam, sprays, etc) are responsible for the depolarization of the returned signal. It seems reasonable then to suppose that the cross-polarized radar return in X- and C-bands will demonstrate similar dependence on wind speed. We compared the dependence of cross-polarized X-band radar cross-section on 10-m wind speed obtained in laboratory conditions with the similar dependence obtained in [2] from the field data for C-band radar cross-section and found out that the laboratory data follow the median of the field data with the constant bias -11 dB. Basing on laboratory data an empirical polynomial geophysical model function was suggested for retrieving wind speed up to 40 m/s from cross-polarized microwave return, which is in good agreement with the direct measurements. This work was carried out under financial support of the RFBR (project codes ¹ 13-05-00865, 12-05-12093) and by grant from the Government of the Russian Federation (project code 11.G34.31.0048). References [1] B. Zhang, W. Perrie Bull. Amer. Meteor. Soc., 93, 531-541, 2012. [2] G.-J. van Zadelhoff, et.al. Atmos. Meas. Tech. Discuss., 6, 7945-7984, doi:10.5194/amtd-6-7945-2013, 2013.

  17. Importance of air-sea interaction on wind waves, storm surge and hurricane simulations

    NASA Astrophysics Data System (ADS)

    Chen, Yingjian; Yu, Xiping

    2017-04-01

    It was reported from field observations that wind stress coefficient levels off and even decreases when the wind speed exceeds 30-40 m/s. We propose a wave boundary layer model (WBLM) based on the momentum and energy conservation equations. Taking into account the physical details of the air-sea interaction process as well as the energy dissipation due to the presence of sea spray, this model successfully predicts the decreasing tendency of wind stress coefficient. Then WBLM is embedded in the current-wave coupled model FVCOM-SWAVE to simulate surface waves and storm surge under the forcing of hurricane Katrina. Numerical results based on WBLM agree well with the observed data of NDBC buoys and tide gauges. Sensitivity analysis of different wind stress evaluation methods also shows that large anomalies of significant wave height and surge elevation are captured along the passage of hurricane core. The differences of the local wave height are up to 13 m, which is in accordance with the general knowledge that the ocean dynamic processes under storm conditions are very sensitive to the amount of momentum exchange at the air-sea interface. In the final part of the research, the reduced wind stress coefficient is tested in the numerical forecast of hurricane Katrina. A parabolic formula fitted to WBLM is employed in the atmosphere-ocean coupled model COAWST. Considering the joint effects of ocean cooling and reduced wind drag, the intensity metrics - the minimum sea level pressure and the maximum 10 m wind speed - are in good inconsistency with the best track result. Those methods, which predict the wind stress coefficient that increase or saturate in extreme wind condition, underestimate the hurricane intensity. As a whole, we unify the evaluation methods of wind stress in different numerical models and yield reasonable results. Although it is too early to conclude that WBLM is totally applicable or the drag coefficient does decrease for high wind speed, our current research is considered to be a significant step for the application of air-sea interaction on the ocean and atmosphere modelling.

  18. The spectrum of wind speed fluctuations encountered by a rotating blade of a wind energy conversion system

    NASA Astrophysics Data System (ADS)

    Connell, J. R.

    1982-01-01

    The results of anemometer, hot-wire anemometer, and laser anemometer array and crosswind sampling of wind speed and turbulence in an area swept by intermediate-to-large wind turbine blades are presented, with comparisons made with a theoretical model for the wind fluctuations. A rotating frame of reference was simulated by timing the anemometric readings at different points of the actuator disk area to coincide with the moment a turbine blade would pass through the point. The hot-wire sensors were mounted on an actual rotating boom, while the laser scanned the wind velocity field in a vertical crosswind circle. The midfrequency region of the turbulence spectrum was found to be depleted, with energy shifted to the high end of the spectrum, with an additional peak at the rotation frequency of the rotor. A model is developed, assuming homogeneous, isotropic turbulence, to reproduce the observed spectra and verify and extend scaling relations using turbine and atmospheric length and time scales. The model is regarded as useful for selecting wind turbine hub heights and rotor rotation rates.

  19. Two Empirical Models for Land-falling Hurricane Gust Factors

    NASA Technical Reports Server (NTRS)

    Merceret, Franics J.

    2008-01-01

    Gaussian and lognormal models for gust factors as a function of height and mean windspeed in land-falling hurricanes are presented. The models were empirically derived using data from 2004 hurricanes Frances and Jeanne and independently verified using data from 2005 hurricane Wilma. The data were collected from three wind towers at Kennedy Space Center and Cape Canaveral Air Force Station with instrumentation at multiple levels from 12 to 500 feet above ground level. An additional 200-foot tower was available for the verification. Mean wind speeds from 15 to 60 knots were included in the data. The models provide formulas for the mean and standard deviation of the gust factor given the mean windspeed and height above ground. These statistics may then be used to assess the probability of exceeding a specified peak wind threshold of operational significance given a specified mean wind speed.

  20. CFD Study of the Performance of an Operational Wind Farm and its Impact on the Local Climate: CFD sensitivity to forestry modelling

    NASA Astrophysics Data System (ADS)

    Wylie, Scott; Watson, Simon

    2013-04-01

    Any past, current or projected future wind farm developments are highly dependent on localised climatic conditions. For example the mean wind speed, one of the main factors in assessing the economic feasibility of a wind farm, can vary significantly over length scales no greater than the size of a typical wind farm. Any additional heterogeneity at a potential site, such as forestry, can affect the wind resource further not accounting for the additional difficulty of installation. If a wind farm is sited in an environmentally sensitive area then the ability to predict the wind farm performance and possible impacts on the important localised climatic conditions are of increased importance. Siting of wind farms in environmentally sensitive areas is not uncommon, such as areas of peat-land as in this example. Areas of peat-land are important sinks for carbon in the atmosphere but their ability to sequester carbon is highly dependent on the local climatic conditions. An operational wind farm's impact on such an area was investigated using CFD. Validation of the model outputs were carried out using field measurements from three automatic weather stations (AWS) located throughout the site. The study focuses on validation of both wind speed and turbulence measurement, whilst also assessing the models ability to predict wind farm performance. The use of CFD to model the variation in wind speed over heterogeneous terrain, including wind turbines effects, is increasing in popularity. Encouraging results have increased confidence in the ability of CFD performance in complex terrain with features such as steep slopes and forests, which are not well modelled by the widely used linear models such as WAsP and MS-Micro. Using concurrent measurements from three stationary AWS across the wind farm will allow detailed validation of the model predicted flow characteristics, whilst aggregated power output information will allow an assessment of how accurate the model setup can predict wind farm performance. Given the dependence of the local climatic conditions influence on the peat-land's ability to sequester carbon, accurate predictions of the local wind and turbulence features will allow us to quantify any possible wind farm influences. This work was carried out using the commercially available Reynolds Averaged Navier-Stokes (RANS) CFD package ANSYS CFX. Utilising the Windmodeller add-on in CFX, a series of simulations were carried out to assess wind flow interactions through and around the wind farm, incorporating features such as terrain, forestry and rotor wake interactions. Particular attention was paid to forestry effects, as the AWS are located close to the vicinity of forestry. Different Leaf Area Densities (LAD) were tested to assess how sensitive the models output was to this change.

  1. Air-sea fluxes of momentum and mass in the presence of wind waves

    NASA Astrophysics Data System (ADS)

    Zülicke, Christoph

    2010-05-01

    An air-sea interaction model (ASIM) is developed including the effect of wind waves on momentum and mass transfer. This includes the derivation of profiles of dissipation rate, flow speed and concentration from a certain height to a certain depth. Simplified assumptions on the turbulent closure, skin - bulk matching and the spectral wave model allow for an analytic treatment. Particular emphasis was put on the inclusion of primary (gravity) waves and secondary (capillary-gravity) waves. The model was tuned to match wall-flow theory and data on wave height and slope. Growing waves reduce the air-side turbulent stress and lead to an increasing drag coefficient. In the sea, breaking waves inject turbulent kinetic energy and accelerate the transfer. Cross-reference with data on wave-related momentum and energy flux, dissipation rate and transfer velocity was sufficient. The evaluation of ASIM allowed for the analytical calculation of bulk formulae for the wind-dependent gas transfer velocity including information on the air-side momentum transfer (drag coefficient) and the sea-side gas transfer (Dalton number). The following regimes have been identified: the smooth waveless regime with a transfer velocity proportional to (wind) × (diffusion)2-3, the primary wave regime with a wind speed dependence proportional to (wind)1-4 × (diffusion)1-2-(waveage)1-4 and the secondary wave regime including a more-than-linear wind speed dependence like (wind)15-8 × (diffusion)1-2 × (waveage)5-8. These findings complete the current understanding of air-sea interaction for medium winds between 2 and 20 m s^-1.

  2. Atmospheric turbulence affects wind turbine nacelle transferfunctions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    St. Martin, Clara M.; Lundquist, Julie K.; Clifton, Andrew

    Despite their potential as a valuable source of individual turbine power performance and turbine array energy production optimization information, nacelle-mounted anemometers have often been neglected because complex flows around the blades and nacelle interfere with their measurements. This work quantitatively explores the accuracy of and potential corrections to nacelle anemometer measurements to determine the degree to which they may be useful when corrected for these complex flows, particularly for calculating annual energy production (AEP) in the absence of other meteorological data. Using upwind meteorological tower measurements along with nacelle-based measurements from a General Electric (GE) 1.5sle model, we calculate empiricalmore » nacelle transfer functions (NTFs) and explore how they are impacted by different atmospheric and turbulence parameters. This work provides guidelines for the use of NTFs for deriving useful wind measurements from nacelle-mounted anemometers. Corrections to the nacelle anemometer wind speed measurements can be made with NTFs and used to calculate an AEP that comes within 1 % of an AEP calculated with upwind measurements. We also calculate unique NTFs for different atmospheric conditions defined by temperature stratification as well as turbulence intensity, turbulence kinetic energy, and wind shear. During periods of low stability as defined by the Bulk Richardson number ( RB), the nacelle-mounted anemometer underestimates the upwind wind speed more than during periods of high stability at some wind speed bins below rated speed, leading to a more steep NTF during periods of low stability. Similarly, during periods of high turbulence, the nacelle-mounted anemometer underestimates the upwind wind speed more than during periods of low turbulence at most wind bins between cut-in and rated wind speed. Based on these results, we suggest different NTFs be calculated for different regimes of atmospheric stability and turbulence for power performance validation purposes.« less

  3. Atmospheric turbulence affects wind turbine nacelle transferfunctions

    DOE PAGES

    St. Martin, Clara M.; Lundquist, Julie K.; Clifton, Andrew; ...

    2017-06-02

    Despite their potential as a valuable source of individual turbine power performance and turbine array energy production optimization information, nacelle-mounted anemometers have often been neglected because complex flows around the blades and nacelle interfere with their measurements. This work quantitatively explores the accuracy of and potential corrections to nacelle anemometer measurements to determine the degree to which they may be useful when corrected for these complex flows, particularly for calculating annual energy production (AEP) in the absence of other meteorological data. Using upwind meteorological tower measurements along with nacelle-based measurements from a General Electric (GE) 1.5sle model, we calculate empiricalmore » nacelle transfer functions (NTFs) and explore how they are impacted by different atmospheric and turbulence parameters. This work provides guidelines for the use of NTFs for deriving useful wind measurements from nacelle-mounted anemometers. Corrections to the nacelle anemometer wind speed measurements can be made with NTFs and used to calculate an AEP that comes within 1 % of an AEP calculated with upwind measurements. We also calculate unique NTFs for different atmospheric conditions defined by temperature stratification as well as turbulence intensity, turbulence kinetic energy, and wind shear. During periods of low stability as defined by the Bulk Richardson number ( RB), the nacelle-mounted anemometer underestimates the upwind wind speed more than during periods of high stability at some wind speed bins below rated speed, leading to a more steep NTF during periods of low stability. Similarly, during periods of high turbulence, the nacelle-mounted anemometer underestimates the upwind wind speed more than during periods of low turbulence at most wind bins between cut-in and rated wind speed. Based on these results, we suggest different NTFs be calculated for different regimes of atmospheric stability and turbulence for power performance validation purposes.« less

  4. Improved upper winds models for several astronomical observatories.

    PubMed

    Roberts, Lewis C; Bradford, L William

    2011-01-17

    An understanding of wind speed and direction as a function of height are critical to the proper modeling of atmospheric turbulence. We have used radiosonde data from launch sites near significant astronomical observatories and created averaged profiles of wind speed and direction and have also computed Richardson number profiles. Using data from the last 30 years, we confirm a 1977 Greenwood wind profile, and extend it to include parameters that show seasonal variations and differences in location. The added information from our models is useful for the design of adaptive optics systems and other imaging systems. Our analysis of the Richardson number suggests that persistent turbulent layers may be inferred when low values are present in our long term averaged data. Knowledge of the presence of these layers may help with planning for adaptive optics and laser communications.

  5. Seasat scatterometer versus scanning multichannel microwave radiometer wind speeds: A comparison on a global scale

    NASA Astrophysics Data System (ADS)

    Boutin, J.; Etcheto, J.

    1990-12-01

    The wind speeds obtained from the Seasat A scatterometer system (SASS) and scanning multichannel microwave radiometer (SMMR) using two different algorithms were compared on a global scale. The temperature dependence of the sea surface emissivity was shown to be incorrectly modelled. After correcting this effect, regional differences up to ± 3 m s-1 are still observed between both instruments, even though they balance in global averaging, resulting in no bias between the global data sets. Validation experiments of satellite wind speeds should take into account this possibility of regional biases and insure the validity of the measurements everywhere in the global ocean.

  6. Modeling the heliolatitudinal gradient of the solar wind parameters with exact MHD solutions

    NASA Technical Reports Server (NTRS)

    Lima, J. J. G.; Tsinganos, K.

    1995-01-01

    The heliolatitudinal dependence of observations of the solar wind macroscopic quantities such as the averaged proton speed, density and the mass and momentum flux are modeled. The published observations covering the last two and a half solar cycles, are obtained either via the technique of interplanetary scintillations for the last 2 solar cycles (1970-1990), or, from the plasma experiment aboard the ULYSSES spacecraft for the recent period 1990-1994. Exact, two dimensional solutions of the full set of the steady MHD equations are used which are obtained through a nonlinear separation of the variables in the MHD equations. The three parameters emerging from the solutions are fixed from these observations, as well as from observations of the solar rotation. It is found that near solar maximum the solar wind speed is uniformly low, around the 400 km/s over a wide range of latitudes. On the other hand, during solar minimum and the declining phase of the solar activity cycle, there is a strong heliolatitudinal gradient in proton speed between 400-800 from equator to pole. This modeling also agrees with previous findings that the gradient in wind speed with the latitude is offset by a gradient in density such that the mass and momentum flux vary relatively little.

  7. A Nonlinear Dynamics Approach for Incorporating Wind-Speed Patterns into Wind-Power Project Evaluation

    PubMed Central

    Huffaker, Ray; Bittelli, Marco

    2015-01-01

    Wind-energy production may be expanded beyond regions with high-average wind speeds (such as the Midwest U.S.A.) to sites with lower-average speeds (such as the Southeast U.S.A.) by locating favorable regional matches between natural wind-speed and energy-demand patterns. A critical component of wind-power evaluation is to incorporate wind-speed dynamics reflecting documented diurnal and seasonal behavioral patterns. Conventional probabilistic approaches remove patterns from wind-speed data. These patterns must be restored synthetically before they can be matched with energy-demand patterns. How to accurately restore wind-speed patterns is a vexing problem spurring an expanding line of papers. We propose a paradigm shift in wind power evaluation that employs signal-detection and nonlinear-dynamics techniques to empirically diagnose whether synthetic pattern restoration can be avoided altogether. If the complex behavior of observed wind-speed records is due to nonlinear, low-dimensional, and deterministic system dynamics, then nonlinear dynamics techniques can reconstruct wind-speed dynamics from observed wind-speed data without recourse to conventional probabilistic approaches. In the first study of its kind, we test a nonlinear dynamics approach in an application to Sugarland Wind—the first utility-scale wind project proposed in Florida, USA. We find empirical evidence of a low-dimensional and nonlinear wind-speed attractor characterized by strong temporal patterns that match up well with regular daily and seasonal electricity demand patterns. PMID:25617767

  8. Development, Analysis and Testing of the High Speed Research Flexible Semispan Model

    NASA Technical Reports Server (NTRS)

    Schuster, David M.; Spain, Charles V.; Turnock, David L.; Rausch, Russ D.; Hamouda, M-Nabil; Vogler, William A.; Stockwell, Alan E.

    1999-01-01

    This report presents the work performed by Lockheed Martin Engineering and Sciences (LMES) in support of the High Speed Research (HSR) Flexible Semispan Model (FSM) wind-tunnel test. The test was conducted in order to assess the aerodynamic and aeroelastic character of a flexible high speed civil transport wing. Data was acquired for the purpose of code validation and trend evaluation for this type of wing. The report describes a number of activities in preparing for and conducting the wind-tunnel test. These included coordination of the design and fabrication, development of analytical models, analysis/hardware correlation, performance of laboratory tests, monitoring of model safety issues, and wind-tunnel data acquisition and reduction. Descriptions and relevant evaluations associated with the pretest data are given in sections 1 through 6, followed by pre- and post-test flutter analysis in section 7, and the results of the aerodynamics/loads test in section 8. Finally, section 9 provides some recommendations based on lessons learned throughout the FSM program.

  9. An Integrated Approach To Offshore Wind Energy Assessment: Great Lakes 3D Wind Experiment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barthelmie, R. J.; Pryor, S. C.

    This grant supported fundamental research into the characterization of flow parameters of relevance to the wind energy industry focused on offshore and the coastal zone. A major focus of the project was application of the latest generation of remote sensing instrumentation and also integration of measurements and numerical modeling to optimize characterization of time-evolving atmospheric flow parameters in 3-D. Our research developed a new data-constrained Wind Atlas for the Great Lakes, and developed new insights into flow parameters in heterogeneous environments. Four experiments were conducted during the project: At a large operating onshore wind farm in May 2012; At themore » National Renewable Energy Laboratory National Wind Technology Center (NREL NWTC) during February 2013; At the shoreline of Lake Erie in May 2013; and At the Wind Energy Institute of Canada on Prince Edward Island in May 2015. The experiment we conducted in the coastal zone of Lake Erie indicated very complex flow fields and the frequent presence of upward momentum fluxes and resulting distortion of the wind speed profile at turbine relevant heights due to swells in the Great Lakes. Additionally, our data (and modeling) indicate the frequent presence of low level jets at 600 m height over the Lake and occasions when the wind speed profile across the rotor plane may be impacted by this phenomenon. Experimental data and modeling of the fourth experiment on Prince Edward Island showed that at 10-14 m escarpment adjacent to long-overseas fetch the zone of wind speed decrease before the terrain feature and the increase at (and slightly downwind of) the escarpment is ~3–5% at turbine hub-heights. Additionally, our measurements were used to improve methods to compute the uncertainty in lidar-derived flow properties and to optimize lidar-scanning strategies. For example, on the basis of the experimental data we collected plus those from one of our research partners we advanced a new methodology to estimate a priori the uncertainty in wind speed retrievals from arc scans based on site characteristics such as wind velocity, turbulence intensity and proposed scan geometry. Insights regarding use of remote sensing technologies deriving from project experiments were used to compile a best practice document http://doi.org/10.7298/X4QV3JGF for measuring wind speeds and turbulence offshore through in-situ and remote sensing technologies. A project-specific web-site was developed and is available at: http://www.geo.cornell.edu/eas/PeoplePlaces/Faculty/spryor/DoE_AIATOWEA/index.html« less

  10. Evaluation of the polyurethane foam (PUF) disk passive air sampler: Computational modeling and experimental measurements

    NASA Astrophysics Data System (ADS)

    May, Andrew A.; Ashman, Paul; Huang, Jiaoyan; Dhaniyala, Suresh; Holsen, Thomas M.

    2011-08-01

    Computational fluid dynamics (CFD) simulations coupled with wind tunnel-experiments were used to determine the sampling rate (SR) of the widely used polyurethane foam (PUF) disk passive sampler. In the wind-tunnel experiments, water evaporation rates from a water saturated PUF disk installed in the sampler housing were determined by measuring weight loss over time. In addition, a modified passive sampler designed to collect elemental mercury (Hg 0) with gold-coated filters was used. Experiments were carried out at different wind speeds and various sampler angles. The SRs obtained from wind-tunnel experiments were compared to those obtained from the field by scaling the values by the ratios of air diffusivities. Three-dimensional (3D) CFD simulations were also used to generate SRs for both polychlorinated biphenyls (PCBs) and Hg 0. Overall, the modeled and measured SRs agree well and are consistent with the values obtained from field studies. As previously observed, the SRs increased linearly with increasing wind speed. In addition, it was determined that the SR was strongly dependent on the angle of the ambient wind. The SRs increased when the base was tilted up pointing into the wind and when the base was tilted down (i.e., such that the top of the sampler was facing the wind) the SR decreased initially and then increased. The results suggest that there may be significant uncertainty in concentrations obtained from passive sampler measurements without knowledge of wind speed and wind angle relative to the sampler.

  11. Dissipation of turbulence in the wake of a wind turbine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lundquist, J. K.; Bariteau, L.

    The wake of a wind turbine is characterized by increased turbulence and decreased wind speed. Turbines are generally deployed in large groups in wind farms, and so the behaviour of an individual wake as it merges with other wakes and propagates downwind is critical in assessing wind-farm power production. This evolution depends on the rate of turbulence dissipation in the wind-turbine wake, which has not been previously quantified in field-scale measurements. In situ measurements of winds and turbulence dissipation from the wake region of a multi-MW turbine were collected using a tethered lifting system (TLS) carrying a payload of high-ratemore » turbulence probes. Ambient flow measurements were provided from sonic anemometers on a meteorological tower located near the turbine. Good agreement between the tower measurements and the TLS measurements was established for a case without a wind-turbine wake. When an operating wind turbine is located between the tower and the TLS so that the wake propagates to the TLS, the TLS measures dissipation rates one to two orders of magnitude higher in the wake than outside of the wake. These data, collected between two and three rotor diameters D downwind of the turbine, document the significant enhancement of turbulent kinetic energy dissipation rate within the wind-turbine wake. These wake measurements suggest that it may be useful to pursue modelling approaches that account for enhanced dissipation. Furthermore. comparisons of wake and non-wake dissipation rates to mean wind speed, wind-speed variance, and turbulence intensity are presented to facilitate the inclusion of these measurements in wake modelling schemes.« less

  12. Dissipation of Turbulence in the Wake of a Wind Turbine

    NASA Astrophysics Data System (ADS)

    Lundquist, J. K.; Bariteau, L.

    2015-02-01

    The wake of a wind turbine is characterized by increased turbulence and decreased wind speed. Turbines are generally deployed in large groups in wind farms, and so the behaviour of an individual wake as it merges with other wakes and propagates downwind is critical in assessing wind-farm power production. This evolution depends on the rate of turbulence dissipation in the wind-turbine wake, which has not been previously quantified in field-scale measurements. In situ measurements of winds and turbulence dissipation from the wake region of a multi-MW turbine were collected using a tethered lifting system (TLS) carrying a payload of high-rate turbulence probes. Ambient flow measurements were provided from sonic anemometers on a meteorological tower located near the turbine. Good agreement between the tower measurements and the TLS measurements was established for a case without a wind-turbine wake. When an operating wind turbine is located between the tower and the TLS so that the wake propagates to the TLS, the TLS measures dissipation rates one to two orders of magnitude higher in the wake than outside of the wake. These data, collected between two and three rotor diameters downwind of the turbine, document the significant enhancement of turbulent kinetic energy dissipation rate within the wind-turbine wake. These wake measurements suggest that it may be useful to pursue modelling approaches that account for enhanced dissipation. Comparisons of wake and non-wake dissipation rates to mean wind speed, wind-speed variance, and turbulence intensity are presented to facilitate the inclusion of these measurements in wake modelling schemes.

  13. Dissipation of turbulence in the wake of a wind turbine

    DOE PAGES

    Lundquist, J. K.; Bariteau, L.

    2014-11-06

    The wake of a wind turbine is characterized by increased turbulence and decreased wind speed. Turbines are generally deployed in large groups in wind farms, and so the behaviour of an individual wake as it merges with other wakes and propagates downwind is critical in assessing wind-farm power production. This evolution depends on the rate of turbulence dissipation in the wind-turbine wake, which has not been previously quantified in field-scale measurements. In situ measurements of winds and turbulence dissipation from the wake region of a multi-MW turbine were collected using a tethered lifting system (TLS) carrying a payload of high-ratemore » turbulence probes. Ambient flow measurements were provided from sonic anemometers on a meteorological tower located near the turbine. Good agreement between the tower measurements and the TLS measurements was established for a case without a wind-turbine wake. When an operating wind turbine is located between the tower and the TLS so that the wake propagates to the TLS, the TLS measures dissipation rates one to two orders of magnitude higher in the wake than outside of the wake. These data, collected between two and three rotor diameters D downwind of the turbine, document the significant enhancement of turbulent kinetic energy dissipation rate within the wind-turbine wake. These wake measurements suggest that it may be useful to pursue modelling approaches that account for enhanced dissipation. Furthermore. comparisons of wake and non-wake dissipation rates to mean wind speed, wind-speed variance, and turbulence intensity are presented to facilitate the inclusion of these measurements in wake modelling schemes.« less

  14. Bayesian Hierarchical Model Characterization of Model Error in Ocean Data Assimilation and Forecasts

    DTIC Science & Technology

    2013-09-30

    wind ensemble with the increments in the surface momentum flux control vector in a four-dimensional variational (4dvar) assimilation system. The...stability  effects?   surface  stress   Surface   Momentum  Flux  Ensembles  from  Summaries  of  BHM  Winds  (Mediterranean...surface wind speed given ensemble winds from a Bayesian Hierarchical Model to provide surface momentum flux ensembles. 3 Figure 2: Domain of

  15. Modifications to the 4x7 meter tunnel for acoustic research: Engineering feasibility study

    NASA Technical Reports Server (NTRS)

    1986-01-01

    The NASA-Langley Research Center 4 x 7 Meter Low Speed Wind Tunnel is currently being used for low speed aerodynamics, V/STOL aerodynamics and, to a limited extent, rotorcraft noise research. The deficiencies of this wind tunnel for both aerodynamics and aeroacoustics research have been recognized for some time. Modifications to the wind tunnel are being made to improve the test section flow quality and to update the model cart systems. A further modification of the 4 x 7 Meter Wind Tunnel to permit rotorcraft model acoustics research has been proposed. As a precursor to the design of the proposed modifications, NASA is conducted both in-house and contracted studies to define the acoustic environment within the wind tunnel and to provide recommendations or the reduction of the wind tunnel background noise to a level acceptable to acoustics researchers. One of these studies by an acoustics consultant, has produced the primary reference documents that define the wind tunnel noise sources and outline recommended solutions.

  16. Wind Field and Trajectory Models for Tornado-Propelled Objects

    NASA Technical Reports Server (NTRS)

    Redmann, G. H.; Radbill, J. R.; Marte, J. E.; Dergarabedian, P.; Fendell, F. E.

    1978-01-01

    A mathematical model to predict the trajectory of tornado born objects postulated to be in the vicinity of nuclear power plants is developed. An improved tornado wind field model satisfied the no slip ground boundary condition of fluid mechanics and includes the functional dependence of eddy viscosity with altitude. Subscale wind tunnel data are obtained for all of the missiles currently specified for nuclear plant design. Confirmatory full-scale data are obtained for a 12 inch pipe and automobile. The original six degree of freedom trajectory model is modified to include the improved wind field and increased capability as to body shapes and inertial characteristics that can be handled. The improved trajectory model is used to calculate maximum credible speeds, which for all of the heavy missiles are considerably less than those currently specified for design. Equivalent coefficients for use in three degree of freedom models are developed and the sensitivity of range and speed to various trajectory parameters for the 12 inch diameter pipe are examined.

  17. Mesoscale high-resolution modeling of extreme wind speeds over western water areas of the Russian Arctic

    NASA Astrophysics Data System (ADS)

    Platonov, Vladimir S.; Kislov, Alexander V.

    2016-11-01

    A statistical analysis of extreme weather events over coastal areas of the Russian Arctic based on observational data has revealed many interesting features of wind velocity distributions. It has been shown that the extremes contain data belonging to two different statistical populations. Each of them is reliably described by a Weibull distribution. According to the standard terminology, these sets of extremes are named ‘black swans’ and ‘dragons’. The ‘dragons’ are responsible for most extremes, surpassing the ‘black swans’ by 10 - 30 %. Since the data of the global climate model INM-CM4 do not contain ‘dragons’, the wind speed extremes are investigated on the mesoscale using the COSMO-CLM model. The modelling results reveal no differences between the ‘swans’ and ‘dragons’ situations. It could be associated with the poor sample data used. However, according to many case studies and modeling results we assume that it is caused by a rare superposition of large-scale synoptic factors and many local meso- and microscale factors (surface, coastline configuration, etc.). Further studies of extreme wind speeds in the Arctic, such as ‘black swans’ and ‘dragons’, are necessary to focus on non-hydrostatic high-resolution atmospheric modelling using downscaling techniques.

  18. Torsional vibration characteristic study of the grid-connected DFIG wind turbine

    NASA Astrophysics Data System (ADS)

    Yu, Songtao; Xie, Da; Wu, Wangping; Gu, Chenghong; Li, Furong

    2017-01-01

    This paper studies the torsional vibration characteristics of the grid-connected doubly-fed induction generator (DFIG) wind turbine by small signal analysis method. Firstly a detailed small-signal stability union model of the grid-connected DFIG wind turbine is developed, including the mechanical system and electrical system. To study the dynamic characteristic of the blade, gearbox, low speed and high speed shafts, a three mass shaft model for the mechanical system is adopted. At the same time, small signal models of DFIG, the voltage source converter (VSC) and the transmission line of the electrical system are developed respectively. Then, through calculating the eigenvalues of the state matrix A and the corresponding participation factors, the modal analysis is conducted in the shaft torsional vibration issues. And the impact of the system parameters including the series compensation capacitor, the flat-wave reactor, the PI parameters, especially the speed controller of generator rotor on shaft torsional vibration are discussed. The results show that the speed controller strengthens association between the mechanical system and the electrical system, and also produces a low-frequency oscillation mode.

  19. European shags optimize their flight behavior according to wind conditions.

    PubMed

    Kogure, Yukihisa; Sato, Katsufumi; Watanuki, Yutaka; Wanless, Sarah; Daunt, Francis

    2016-02-01

    Aerodynamics results in two characteristic speeds of flying birds: the minimum power speed and the maximum range speed. The minimum power speed requires the lowest rate of energy expenditure per unit time to stay airborne and the maximum range speed maximizes air distance traveled per unit of energy consumed. Therefore, if birds aim to minimize the cost of transport under a range of wind conditions, they are predicted to fly at the maximum range speed. Furthermore, take-off is predicted to be strongly affected by wind speed and direction. To investigate the effect of wind conditions on take-off and cruising flight behavior, we equipped 14 European shags Phalacrocorax aristotelis with a back-mounted GPS logger to measure position and hence ground speed, and a neck-mounted accelerometer to record wing beat frequency and strength. Local wind conditions were recorded during the deployment period. Shags always took off into the wind regardless of their intended destination and take-off duration was correlated negatively with wind speed. We combined ground speed and direction during the cruising phase with wind speed and direction to estimate air speed and direction. Whilst ground speed was highly variable, air speed was comparatively stable, although it increased significantly during strong head winds, because of stronger wing beats. The increased air speeds in head winds suggest that birds fly at the maximum range speed, not at the minimum power speed. Our study demonstrates that European shags actively adjust their flight behavior to utilize wind power to minimize the costs of take-off and cruising flight. © 2016. Published by The Company of Biologists Ltd.

  20. Does the magnetic expansion factor play a role in solar wind acceleration?

    NASA Astrophysics Data System (ADS)

    Wallace, S.; Arge, C. N.; Pihlstrom, Y.

    2017-12-01

    For the past 25+ years, the magnetic expansion factor (fs) has been a parameter used in the calculation of terminal solar wind speed (vsw) in the Wang-Sheeley-Arge (WSA) coronal and solar wind model. The magnetic expansion factor measures the rate of flux tube expansion in cross section between the photosphere out to 2.5 solar radii (i.e., source surface), and is inversely related to vsw (Wang & Sheeley, 1990). Since the discovery of this inverse relationship, the physical role that fs plays in solar wind acceleration has been debated. In this study, we investigate whether fs plays a causal role in determining terminal solar wind speed or merely serves as proxy. To do so, we study pseudostreamers, which occur when coronal holes of the same polarity are near enough to one another to limit field line expansion. Pseudostreamers are of particular interest because despite having low fs, spacecraft observations show that solar wind emerging from these regions have slow to intermediate speeds of 350-550 km/s (Wang et al., 2012). In this work, we develop a methodology to identify pseudostreamers that are magnetically connected to satellites using WSA output produced with ADAPT input maps. We utilize this methodology to obtain the spacecraft-observed solar wind speed from the exact parcel of solar wind that left the pseudostreamer. We then compare the pseudostreamer's magnetic expansion factor with the observed solar wind speed from multiple spacecraft (i.e., ACE, STEREO-A & B, Ulysses) magnetically connected to the region. We will use this methodology to identify several cases ( 20) where spacecraft are magnetically connected to pseudostreamers, and perform a statistical analysis to determine the correlation of fs within pseudostreamers and the terminal speed of the solar wind emerging from them. This work will help determine if fs plays a physical role in the speed of solar wind originating from regions that typically produce slow wind. This work compliments previous case studies of solar wind originating from pseudostreamers (Riley et al., 2015, Riley & Luhmann 2012) and will contribute to identifying the physical properties of solar wind from these regions. Future work will explore the role of fs in modulating the fast solar wind and will involve a similar analysis for cases where spacecraft are deep within coronal holes.

  1. Acquisition of Turbulence Data Using the DST Group Constant-Temperature Hot-Wire Anemometer System

    DTIC Science & Technology

    2015-10-01

    fluctuations in the low-speed wind tunnel at DST Group. The use of both single- wire and crossed- wire (2 wire ) probes is described. Areas covered include a...fluid-flow studies, including testing of models of aircraft, ships and submarines in wind and water tunnels. Hot- wire anemometers and associated hot...spectra of velocity fluctuations in the low-speed wind tunnel at DST Group. The use of both single- wire and crossed- wire (2 wires ) probes is

  2. Validation of the Dynamic Wake Meander model with focus on tower loads

    NASA Astrophysics Data System (ADS)

    Larsen, T. J.; Larsen, G. C.; Pedersen, M. M.; Enevoldsen, K.; Madsen, H. A.

    2017-05-01

    This paper presents a comparison between measured and simulated tower loads for the Danish offshore wind farm Nysted 2. Previously, only limited full scale experimental data containing tower load measurements have been published, and in many cases the measurements include only a limited range of wind speeds. In general, tower loads in wake conditions are very challenging to predict correctly in simulations. The Nysted project offers an improved insight to this field as six wind turbines located in the Nysted II wind farm have been instrumented to measure tower top and tower bottom moments. All recorded structural data have been organized in a database, which in addition contains relevant wind turbine SCADA data as well as relevant meteorological data - e.g. wind speed and wind direction - from an offshore mast located in the immediate vicinity of the wind farm. The database contains data from a period extending over a time span of more than 3 years. Based on the recorded data basic mechanisms driving the increased loading experienced by wind turbines operating in offshore wind farm conditions have been identified, characterized and modeled. The modeling is based on the Dynamic Wake Meandering (DWM) approach in combination with the state-of-the-art aeroelastic model HAWC2, and has previously as well as in this study shown good agreement with the measurements. The conclusions from the study have several parts. In general the tower bending and yaw loads show a good agreement between measurements and simulations. However, there are situations that are still difficult to match. One is tower loads of single-wake operation near rated ambient wind speed for single wake situations for spacing’s around 7-8D. A specific target of the study was to investigate whether the largest tower fatigue loads are associated with a certain downstream distance. This has been identified in both simulations and measurements, though a rather flat optimum is seen in the measurements.

  3. Turbulent Heating and Wave Pressure in Solar Wind Acceleration Modeling: New Insights to Empirical Forecasting of the Solar Wind

    NASA Astrophysics Data System (ADS)

    Woolsey, L. N.; Cranmer, S. R.

    2013-12-01

    The study of solar wind acceleration has made several important advances recently due to improvements in modeling techniques. Existing code and simulations test the competing theories for coronal heating, which include reconnection/loop-opening (RLO) models and wave/turbulence-driven (WTD) models. In order to compare and contrast the validity of these theories, we need flexible tools that predict the emergent solar wind properties from a wide range of coronal magnetic field structures such as coronal holes, pseudostreamers, and helmet streamers. ZEPHYR (Cranmer et al. 2007) is a one-dimensional magnetohydrodynamics code that includes Alfven wave generation and reflection and the resulting turbulent heating to accelerate solar wind in open flux tubes. We present the ZEPHYR output for a wide range of magnetic field geometries to show the effect of the magnetic field profiles on wind properties. We also investigate the competing acceleration mechanisms found in ZEPHYR to determine the relative importance of increased gas pressure from turbulent heating and the separate pressure source from the Alfven waves. To do so, we developed a code that will become publicly available for solar wind prediction. This code, TEMPEST, provides an outflow solution based on only one input: the magnetic field strength as a function of height above the photosphere. It uses correlations found in ZEPHYR between the magnetic field strength at the source surface and the temperature profile of the outflow solution to compute the wind speed profile based on the increased gas pressure from turbulent heating. With this initial solution, TEMPEST then adds in the Alfven wave pressure term to the modified Parker equation and iterates to find a stable solution for the wind speed. This code, therefore, can make predictions of the wind speeds that will be observed at 1 AU based on extrapolations from magnetogram data, providing a useful tool for empirical forecasting of the sol! ar wind.

  4. Evaluation of a Revised Interplanetary Shock Prediction Model: 1D CESE-HD-2 Solar-Wind Model

    NASA Astrophysics Data System (ADS)

    Zhang, Y.; Du, A. M.; Du, D.; Sun, W.

    2014-08-01

    We modified the one-dimensional conservation element and solution element (CESE) hydrodynamic (HD) model into a new version [ 1D CESE-HD-2], by considering the direction of the shock propagation. The real-time performance of the 1D CESE-HD-2 model during Solar Cycle 23 (February 1997 - December 2006) is investigated and compared with those of the Shock Time of Arrival Model ( STOA), the Interplanetary-Shock-Propagation Model ( ISPM), and the Hakamada-Akasofu-Fry version 2 ( HAFv.2). Of the total of 584 flare events, 173 occurred during the rising phase, 166 events during the maximum phase, and 245 events during the declining phase. The statistical results show that the success rates of the predictions by the 1D CESE-HD-2 model for the rising, maximum, declining, and composite periods are 64 %, 62 %, 57 %, and 61 %, respectively, with a hit window of ± 24 hours. The results demonstrate that the 1D CESE-HD-2 model shows the highest success rates when the background solar-wind speed is relatively fast. Thus, when the background solar-wind speed at the time of shock initiation is enhanced, the forecasts will provide potential values to the customers. A high value (27.08) of χ 2 and low p-value (< 0.0001) for the 1D CESE-HD-2 model give considerable confidence for real-time forecasts by using this new model. Furthermore, the effects of various shock characteristics (initial speed, shock duration, background solar wind, longitude, etc.) and background solar wind on the forecast are also investigated statistically.

  5. PROBABILISTIC HAZARD ASSESSMENT FOR TORNADOES, STRAIGHT-LINE WIND, AND EXTREME PRECIPITATION AT THE SAVANNAH RIVER SITE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Werth, D.; NOEMAIL), A.; Shine, G.

    Recent data sets for three meteorological phenomena with the potential to inflict damage on SRS facilities - tornadoes, straight winds, and heavy precipitation - are analyzed using appropriate statistical techniques to estimate occurrence probabilities for these events in the future. Summaries of the results for DOE-mandated return periods and comparisons to similar calculations performed in 1998 by Weber, et al., are given. Using tornado statistics for the states of Georgia and South Carolina, we calculated the probability per year of any location within a 2⁰ square area surrounding SRS being struck by a tornado (the ‘strike’ probability) and the probabilitymore » that any point will experience winds above set thresholds. The strike probability was calculated to be 1.15E-3 (1 chance in 870) per year and wind speeds for DOE mandated return periods of 50,000 years, 125,000 years, and 1E+7 years (USDOE, 2012) were estimated to be 136 mph, 151 mph and 221 mph, respectively. In 1998 the strike probability for SRS was estimated to be 3.53 E-4 and the return period wind speeds were 148 mph every 50,000 years and 180 mph every 125,000 years. A 1E+7 year tornado wind speed was not calculated in 1998; however a 3E+6 year wind speed was 260 mph. The lower wind speeds resulting from this most recent analysis are largely due to new data since 1998, and to a lesser degree differences in the models used. By contrast, default tornado wind speeds taken from ANSI/ANS-2.3-2011 are somewhat higher: 161 mph for return periods of 50,000 years, 173 mph every 125,000 years, and 230 mph every 1E+7 years (ANS, 2011). Although the ANS model and the SRS models are very similar, the region defined in ANS 2.3 that encompasses the SRS also includes areas of the Great Plains and lower Midwest, regions with much higher occurrence frequencies of strong tornadoes. The SRS straight wind values associated with various return periods were calculated by fitting existing wind data to a Gumbel distribution, and extrapolating the values for any return period from the tail of that function. For the DOE mandated return periods, we expect straight winds of 123 mph every 2500 years, and 132mph every 6250 years at any point within the SRS. These values are similar to those from the W98 report (which also used the Gumbel distribution for wind speeds) which gave wind speeds of 115mph and 122 mph for return periods of 2500 years and 6250 years, respectively. For extreme precipitation accumulation periods, we compared the fits of three different theoretical extreme-value distributions, and in the end decided to maintain the use of the Gumbel distribution for each period. The DOE mandated 6-hr accumulated rainfall for return periods of 2500 years and 6250 years was estimated as 7.8 inches and 8.4 inches, respectively. For the 24- hr rainfall return periods of 10,000 years and 25,000 years, total rainfall estimates were 10.4 inches and 11.1 inches, respectively. These values are substantially lower than comparable values provided in the W98 report. This is largely a consequence of the W98 use of a different extreme value distribution with its corresponding higher extreme probabilities.« less

  6. A Case Study of the Weather Research and Forecasting Model Applied to the Joint Urban 2003 Tracer Field Experiment. Part 1. Wind and Turbulence

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nelson, Matthew A.; Brown, Michael J.; Halverson, Scot A.

    We found that numerical-weather-prediction models are often used to supply the mean wind and turbulence fields for atmospheric transport and dispersion plume models as they provide dense horizontally- and vertically-resolved geographic coverage in comparison to typically sparse monitoring networks. Here, the Weather Research and Forecasting (WRF) model was run over the month-long period of the Joint Urban 2003 field campaign conducted in Oklahoma City and the simulated fields important to transport and dispersion models were compared to measurements from a number of sodars, tower-based sonic anemometers, and balloon soundings located in the greater metropolitan area. Time histories of computed windmore » speed, wind direction, turbulent kinetic energy (e), friction velocity (u* ), and reciprocal Obukhov length (1 / L) were compared to measurements over the 1-month field campaign. Vertical profiles of wind speed, potential temperature (θ ), and e were compared during short intensive operating periods. The WRF model was typically able to replicate the measured diurnal variation of the wind fields, but with an average absolute wind direction and speed difference of 35° and 1.9 m s -1 , respectively. Then, using the Mellor-Yamada-Janjic (MYJ) surface-layer scheme, the WRF model was found to generally underpredict surface-layer TKE but overpredict u* that was observed above a suburban region of Oklahoma City. The TKE-threshold method used by the WRF model’s MYJ surface-layer scheme to compute the boundary-layer height (h) consistently overestimated h derived from a θ gradient method whether using observed or modelled θ profiles.« less

  7. A Case Study of the Weather Research and Forecasting Model Applied to the Joint Urban 2003 Tracer Field Experiment. Part 1. Wind and Turbulence

    DOE PAGES

    Nelson, Matthew A.; Brown, Michael J.; Halverson, Scot A.; ...

    2015-09-25

    We found that numerical-weather-prediction models are often used to supply the mean wind and turbulence fields for atmospheric transport and dispersion plume models as they provide dense horizontally- and vertically-resolved geographic coverage in comparison to typically sparse monitoring networks. Here, the Weather Research and Forecasting (WRF) model was run over the month-long period of the Joint Urban 2003 field campaign conducted in Oklahoma City and the simulated fields important to transport and dispersion models were compared to measurements from a number of sodars, tower-based sonic anemometers, and balloon soundings located in the greater metropolitan area. Time histories of computed windmore » speed, wind direction, turbulent kinetic energy (e), friction velocity (u* ), and reciprocal Obukhov length (1 / L) were compared to measurements over the 1-month field campaign. Vertical profiles of wind speed, potential temperature (θ ), and e were compared during short intensive operating periods. The WRF model was typically able to replicate the measured diurnal variation of the wind fields, but with an average absolute wind direction and speed difference of 35° and 1.9 m s -1 , respectively. Then, using the Mellor-Yamada-Janjic (MYJ) surface-layer scheme, the WRF model was found to generally underpredict surface-layer TKE but overpredict u* that was observed above a suburban region of Oklahoma City. The TKE-threshold method used by the WRF model’s MYJ surface-layer scheme to compute the boundary-layer height (h) consistently overestimated h derived from a θ gradient method whether using observed or modelled θ profiles.« less

  8. Variability of Wind Speeds and Power over Europe

    NASA Astrophysics Data System (ADS)

    Tambke, J.; von Bremen, L.; de Decker, J.; Schmidt, M.; Steinfeld, G.; Wolff, J.-O.

    2010-09-01

    This study comprises two parts: First, we describe the vertical wind speed and turbulence profiles that result from our improved PBL scheme and compare it to observations and 1-dimensional approaches (Monin-Obukhov etc.). Second, we analyse the spatio-temporal correlations in our meso-scale simulations for the years 2004 to 2007 over entire Europe, with special focus on the Irish, North and Baltic Sea. 1.) Vertical Wind Speed Profiles The vertical wind profile above the sea has to be modelled with high accuracy for tip heights up to 160m in order to achieve precise wind resource assessments, to calculate loads and wakes of wind turbines as well as for reliable short-term wind power forecasts. We present an assessment of different models for wind profiles in unstable, neutral and stable thermal stratification. The meso-scale models comprise MM5, WRF and COSMO-EU (LME). Both COSMO-EU from the German Weather Service DWD and WRF use a turbulence closure of 2.5th order - and lead to similar results. Especially the limiting effect of low boundary layer heights on the wind shear in very stable stratification is well captured. In our new WRF-formulation for the mixing length in the Mellor-Yamada-Janjic (MYJ) parameterisation of the Planetary Boundary Layer (PBL-scheme), the master length scale itself depends on the Monin-Obukhov-Length as a parameter for the heat flux effects on the turbulent mixing. This new PBL-scheme shows a better performance for all weather conditions than the original MYJ-scheme. Apart from the low-boundary-layer-effect in very stable situations (which are seldom), standard Monin-Obukhov formulations in combination with the Charnock relation for the sea surface roughness show good agreement with the FINO1-data (German Bight). Interesting results were achieved with two more detailed micro-scale approaches: - the parameterization proposed by Pena, Gryning and Hasager [BLM 2008] that depends on the boundary layer height - our ICWP-model, were the flux of momentum through the air-sea interface is described by a common wave boundary layer with enhanced Charnock dynamics. 2.) Wind Field Variability Time series of wind speed and power from 400 potential offshore locations and 16,000 onshore sites in the 2020 and 2030 scenarios are part of the design basis of the EU-project www.OffshoreGrid.eu. This project investigates the grid integration of all planned offshore farms in Northern Europe and will serve as the basis for the "Blueprint for Offshore Grids" by the European Commission. The synchronous wind time series were calculated with the WRF-model. The simulation comprises four years and was validated with a number of wind measurements. We present detailed statistics of local, clustered and regional power production. The analysis quantifies spatial and temporal correlations, extreme events and ramps. Important results are the smoothing effects in a pan-European offshore grid. Key words: Offshore Wind Resource Assessment; Marine Meteorology; Wind Speed Profile; Marine Atmospheric Boundary Layer; Wind Variability, Spatio-temporal Correlation; Electricity Grid Integration

  9. Solar Wind Acceleration: Modeling Effects of Turbulent Heating in Open Flux Tubes

    NASA Astrophysics Data System (ADS)

    Woolsey, Lauren N.; Cranmer, Steven R.

    2014-06-01

    We present two self-consistent coronal heating models that determine the properties of the solar wind generated and accelerated in magnetic field geometries that are open to the heliosphere. These models require only the radial magnetic field profile as input. The first code, ZEPHYR (Cranmer et al. 2007) is a 1D MHD code that includes the effects of turbulent heating created by counter-propagating Alfven waves rather than relying on empirical heating functions. We present the analysis of a large grid of modeled flux tubes (> 400) and the resulting solar wind properties. From the models and results, we recreate the observed anti-correlation between wind speed at 1 AU and the so-called expansion factor, a parameterization of the magnetic field profile. We also find that our models follow the same observationally-derived relation between temperature at 1 AU and wind speed at 1 AU. We continue our analysis with a newly-developed code written in Python called TEMPEST (The Efficient Modified-Parker-Equation-Solving Tool) that runs an order of magnitude faster than ZEPHYR due to a set of simplifying relations between the input magnetic field profile and the temperature and wave reflection coefficient profiles. We present these simplifying relations as a useful result in themselves as well as the anti-correlation between wind speed and expansion factor also found with TEMPEST. Due to the nature of the algorithm TEMPEST utilizes to find solar wind solutions, we can effectively separate the two primary ways in which Alfven waves contribute to solar wind acceleration: 1) heating the surrounding gas through a turbulent cascade and 2) providing a separate source of wave pressure. We intend to make TEMPEST easily available to the public and suggest that TEMPEST can be used as a valuable tool in the forecasting of space weather, either as a stand-alone code or within an existing modeling framework.

  10. Low and high speed propellers for general aviation: Performance potential and recent wind tunnel test results

    NASA Technical Reports Server (NTRS)

    Jeracki, R. J.; Mitchell, G. A.

    1981-01-01

    The performance of lower speed, 5 foot diameter model general aviation propellers, was tested in the Lewis wind tunnel. Performance was evaluated for various levels of airfoil technology and activity factor. The difference was associated with inadequate modeling of blade and spinner losses for propellers round shank blade designs. Suggested concepts for improvement are: (1) advanced blade shapes (airfoils and sweep); (2) tip devices (proplets); (3) integrated propeller/nacelles; and (4) composites. Several advanced aerodynamic concepts were evaluated in the Lewis wind tunnel. Results show that high propeller performance can be obtained to at least Mach 0.8.

  11. An optimal design of coreless direct-drive axial flux permanent magnet generator for wind turbine

    NASA Astrophysics Data System (ADS)

    Ahmed, D.; Ahmad, A.

    2013-06-01

    Different types of generators are currently being used in wind power technology. The commonly used are induction generator (IG), doubly-fed induction generator (DFIG), electrically excited synchronous generator (EESG) and permanent magnet synchronous generator (PMSG). However, the use of PMSG is rapidly increasing because of advantages such as higher power density, better controllability and higher reliability. This paper presents an innovative design of a low-speed modular, direct-drive axial flux permanent magnet (AFPM) generator with coreless stator and rotor for a wind turbine power generation system that is developed using mathematical and analytical methods. This innovative design is implemented in MATLAB / Simulink environment using dynamic modelling techniques. The main focus of this research is to improve efficiency of the wind power generation system by investigating electromagnetic and structural features of AFPM generator during its operation in wind turbine. The design is validated by comparing its performance with standard models of existing wind power generators. The comparison results demonstrate that the proposed model for the wind power generator exhibits number of advantages such as improved efficiency with variable speed operation, higher energy yield, lighter weight and better wind power utilization.

  12. Microdunes and other aeolian bedforms on Venus - Wind Tunnel simulations

    NASA Technical Reports Server (NTRS)

    Greeley, R.; Marshall, J. R.; Leach, R. N.

    1984-01-01

    The development of aeolian bedforms in the simulated Venusian environment has been experimentally studied in the Venus Wind Tunnel. It is found that the development of specific bedforms, including ripples, dunes, and 'waves', as well as their geometry, are controlled by a combination of factors including particle size, wind speed, and atmospheric density. Microdunes are formed which are analogous to full-size terrestrial dunes and are characterized by the development of slip faces, internal cross-bedding, a low ratio of saltation path length to dune length, and a lack of particle-size sorting. They begin to develop at wind speeds just above saltation threshold and evolve into waves at higher velocities. At wind speeds of about 1.5 m/sec and higher, the bed is flat and featureless. This evolution is explained by a model based on the interaction of alternating zones of erosion and deposition and particle saltation distances.

  13. Microdunes and Other Aeolian Bedforms on Venus: Wind Tunnel Simulations

    NASA Technical Reports Server (NTRS)

    Greeley, R.; Marshall, J. R.; Leach, R. N.

    1985-01-01

    The development of aeolian bedforms in the simulated Venusian environment has been experimentally studied in the Venus Wind tunnel. It is found that the development of specific bedforms, including ripples, dunes, and waves, as well as their geometry, are controlled by a combination of factors including particle size, wind speed, and atmospheric density. Microdunes are formed which are analogous to full-size terrestrial dunes and are characterized by the development of slip faces, internal cross-bedding, a low ratio of saltation path length to dune length, and a lack of particle-size sorting. They begin to develop at wind speeds just above saltation threshold and evolve into waves at higher velocities. At wind speeds of about 1.5 m/sec and higher, the bed is flat and featureless. This evolution is explained by a model based on the interaction of alternating zones of erosion and deposition and particle saltation distances.

  14. Winds over the ocean as measured by the scatterometer on Seasat

    NASA Technical Reports Server (NTRS)

    Pierson, W. J.

    1981-01-01

    An analysis is presented of the relative accuracy of Seasat scatterometer measurements of the wind speeds and directions at 19.5 m altitude as compared to ground truth measurements taken by surface ships and instrumented buoys. Attention is given to the JASIN, QE II, and GOASEX surface data. The validity of 2-30 min averages taken from surface stations spread out over a wide area and serving as a basis for defining wind field averages over the 50 km resolution of SASS is examined. Satisfactory wind speeds were found to be available from SASS readings in the wind speed range 6-14 m/sec. The use of 25 SASS readings around a grid point was determined to reduce scatter to 0.25 m/sec when used in numerical weather prediction modeling. Improvements to the SASS techniques by the Seasat successor, NOSS, are discussed, and inclusion of momentum, heat, and water turbulent fluxes by NOSS is noted.

  15. Performance of twist-coupled blades on variable speed rotors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lobitz, D.W.; Veers, P.S.; Laino, D.J.

    1999-12-07

    The load mitigation and energy capture characteristics of twist-coupled HAWT blades that are mounted on a variable speed rotor are investigated in this paper. These blades are designed to twist toward feather as they bend with pretwist set to achieve a desirable twist distribution at rated power. For this investigation, the ADAMS-WT software has been modified to include blade models with bending-twist coupling. Using twist-coupled and uncoupled models, the ADAMS software is exercised for steady wind environments to generate C{sub p} curves at a number of operating speeds to compare the efficiencies of the two models. The ADAMS software ismore » also used to generate the response of a twist-coupled variable speed rotor to a spectrum of stochastic wind time series. This spectrum contains time series with two mean wind speeds at two turbulence levels. Power control is achieved by imposing a reactive torque on the low speed shaft proportional to the RPM squared with the coefficient specified so that the rotor operates at peak efficiency in the linear aerodynamic range, and by limiting the maximum RPM to take advantage of the stall controlled nature of the rotor. Fatigue calculations are done for the generated load histories using a range of material exponents that represent materials from welded steel to aluminum to composites, and results are compared with the damage computed for the rotor without twist-coupling. Results indicate that significant reductions in damage are achieved across the spectrum of applied wind loading without any degradation in power production.« less

  16. Modelling the 2013 Typhoon Haiyan storm surge: Effect of waves, offshore winds, tide phase, and translation speed

    NASA Astrophysics Data System (ADS)

    Bilgera, P. H. T.

    2015-12-01

    Super Typhoon Haiyan, with wind speeds exceeding 300 km h-1 (160 knots) generated a storm surge in San Pedro Bay reaching heights of more than 6m in Tacloban City. Delft Dashboard (DDB), an open-source standalone Matlab based graphical user interface linked to the FLOW and WAVE modeling software of Deltares, was used to develop a coupled flow and wave storm surge model to understand the Typhoon Haiyan storm surge development and propagation. Various experiments were designed to determine the effect of waves, the occurrence of offshore winds prior to the surge, tidal phase, and typhoon translation speed on the surge height. Wave coupling decreased the surge height by about 0.5m probably due to energy dissipation from white capping, bottom friction, and depth-induced breaking. Offshore-directed winds before the arrival of the storm eye resulted to receding of the water level in San Pedro and Cancabato Bay, corroborated by eyewitness and tide gauge data. The experiment wherein the offshore winds were removed resulted to no water receding and a surge with a smaller and gentler surge front, pointing to the importance of the initial water level drawdown in contributing to the destructive power of the wave front. With regard to tides, the effect in Tacloban was actually neither linear nor additive to the surge, with higher surge coincident to low tides and lower surge coincident to high tides. Lastly, the model run with typhoon having a slower translation speed than Haiyan was found to generate higher surges.

  17. Modelling the 2013 Typhoon Haiyan Storm Surge: Effect of Waves, Offshore Winds, Tide Phase, and Translation Speed

    NASA Astrophysics Data System (ADS)

    Bilgera, P. H. T.; Villanoy, C.; Cabrera, O.

    2016-02-01

    Super Typhoon Haiyan, with wind speeds exceeding 300 km h-1 (160 knots) generated a storm surge in San Pedro Bay reaching heights of more than 6m in Tacloban City. Delft Dashboard (DDB), an open-source standalone Matlab based graphical user interface linked to the FLOW and WAVE modeling software of Deltares, was used to develop a coupled flow and wave storm surge model to understand the Typhoon Haiyan storm surge development and propagation. Various experiments were designed to determine the effect of waves, the occurrence of offshore winds prior to the surge, tidal phase, and typhoon translation speed on the surge height. Wave coupling decreased the surge height by about 0.5m probably due to energy dissipation from white capping, bottom friction, and depth-induced breaking. Offshore-directed winds before the arrival of the storm eye resulted to receding of the water level in San Pedro and Cancabato Bay, corroborated by eyewitness and tide gauge data. The experiment wherein the offshore winds were removed resulted to no water receding and a surge with a smaller and gentler surge front, pointing to the importance of the initial water level drawdown in contributing to the destructive power of the wave front. With regard to tides, the effect in Tacloban was actually neither linear nor additive to the surge, with higher surge coincident to low tides and lower surge coincident to high tides. Lastly, the model run with typhoon having a slower translation speed than Haiyan was found to generate higher surges.

  18. ? stability of wind turbine switching control

    NASA Astrophysics Data System (ADS)

    Palejiya, Dushyant; Shaltout, Mohamed; Yan, Zeyu; Chen, Dongmei

    2015-01-01

    In order to maximise the wind energy capture, wind turbines are operated at variable speeds. Depending on the wind speed, a turbine switches between two operating modes: a low wind speed mode and a high wind speed mode. During the low wind speed mode, the control objective is to maximise wind energy capture by controlling both the blade pitch angle and the electrical generator torque. During the high wind speed mode, the control goal is to maintain the rated power generation by only adjusting the blade pitch angle. This paper establishes the stability criteria for the switching operation of wind turbines using ? gain under the nonlinear control framework. Also, the performance of the wind turbine system is analysed by using the step response, a well-known measure for second-order linear systems.

  19. Colliding Stellar Wind Models with Orbital Motion

    NASA Astrophysics Data System (ADS)

    Wilkin, Francis P.; O'Connor, Brendan

    2018-01-01

    We present thin-shell models for the collision between two ballistic stellar winds, including orbital motion.The stellar orbits are assumed circular, so that steady-state solutions exist in the rotating frame, where we include centrifugal and Coriolis forces. Exact solutions for the pre-shock winds are incorporated. Here we discuss 2-D model results for equal wind momentum-loss rates, although we allow for the winds to have distinct speeds and mass loss rates. For these unequal wind conditions, we obtain a clear violation of skew-symmetry, despite equal momentum loss rates, due to the Coriolis force.

  20. Mid-latitude thermospheric wind changes during the St. Patrick's Day storm of 2015 observed by two Fabry-Perot interferometers in China

    NASA Astrophysics Data System (ADS)

    Huang, Cong; Xu, Ji-Yao; Zhang, Xiao-Xin; Liu, Dan-Dan; Yuan, Wei; Jiang, Guo-Ying

    2018-04-01

    In this work, we utilize thermospheric wind observations by the Fabry-Perot interferometers (FPI) from the Kelan (KL) station (38.7°N, 111.6°E, Magnetic Latitude: 28.9°N) and the Xinglong (XL) station (40.2°N, 117.4°E, Magnetic Latitude: 30.5°N) in central China during the St. Patrick's Day storm (from Mar. 17 to Mar. 19) of 2015 to analyze thermospheric wind disturbances and compare observations with the Horizontal Wind Model 2007 (HWM07). The results reveal that the wind measurements at KL show very similar trends to those at XL. Large enhancements are seen in both the westward and equatorward winds after the severe geomagnetic storm occurred. The westward wind speed increased to a peak value of 75 m/s and the equatorward wind enhanced to a peak value of over 100 m/s. There also exist obvious poleward disturbances in the meridional winds during Mar. 17 to Mar. 19. According to the comparison with HWM07, there exist evident wind speed and temporal differences between FPI-winds and the model outputs in this severe geomagnetic storm. The discrepancies between the observations and HWM07 imply that the empirical model should be used carefully in wind disturbance forecast during large geomagnetic storms and more investigations between measurements and numerical models are necessary in future studies.

  1. Wind turbine model and loop shaping controller design

    NASA Astrophysics Data System (ADS)

    Gilev, Bogdan

    2017-12-01

    A model of a wind turbine is evaluated, consisting of: wind speed model, mechanical and electrical model of generator and tower oscillation model. Model of the whole system is linearized around of a nominal point. By using the linear model with uncertainties is synthesized a uncertain model. By using the uncertain model is developed a H∞ controller, which provide mode of stabilizing the rotor frequency and damping the tower oscillations. Finally is simulated work of nonlinear system and H∞ controller.

  2. A Comparison Of Primitive Model Results Of The Short Term Wind Energy Prediction System (Sweps): WRF vs MM5

    NASA Astrophysics Data System (ADS)

    Unal, E.; Tan, E.; Mentes, S. S.; Caglar, F.; Turkmen, M.; Unal, Y. S.; Onol, B.; Ozdemir, E. T.

    2012-04-01

    Although discontinuous behavior of wind field makes energy production more difficult, wind energy is the fastest growing renewable energy sector in Turkey which is the 6th largest electricity market in Europe. Short-term prediction systems, which capture the dynamical and statistical nature of the wind field in spatial and time scales, need to be advanced in order to increase the wind power prediction accuracy by using appropriate numerical weather forecast models. Therefore, in this study, performances of the next generation mesoscale Numerical Weather Forecasting model, WRF, and The Fifth-Generation NCAR/Penn State Mesoscale Model, MM5, have been compared for the Western Part of Turkey. MM5 has been widely used by Turkish State Meteorological Service from which MM5 results were also obtained. Two wind farms of the West Turkey have been analyzed for the model comparisons by using two different model domain structures. Each model domain has been constructed by 3 nested domains downscaling from 9km to 1km resolution by the ratio of 3. Since WRF and MM5 models have no exactly common boundary layer, cumulus, and microphysics schemes, the similar physics schemes have been chosen for these two models in order to have reasonable comparisons. The preliminary results show us that, depending on the location of the wind farms, MM5 wind speed RMSE values are 1 to 2 m/s greater than that of WRF values. Since 1 to 2 m/s errors can be amplified when wind speed is converted to wind power; it is decided that the WRF model results are going to be used for the rest of the project.

  3. Probabilistic Solar Wind Forecasting Using Large Ensembles of Near-Sun Conditions With a Simple One-Dimensional "Upwind" Scheme

    NASA Astrophysics Data System (ADS)

    Owens, Mathew J.; Riley, Pete

    2017-11-01

    Long lead-time space-weather forecasting requires accurate prediction of the near-Earth solar wind. The current state of the art uses a coronal model to extrapolate the observed photospheric magnetic field to the upper corona, where it is related to solar wind speed through empirical relations. These near-Sun solar wind and magnetic field conditions provide the inner boundary condition to three-dimensional numerical magnetohydrodynamic (MHD) models of the heliosphere out to 1 AU. This physics-based approach can capture dynamic processes within the solar wind, which affect the resulting conditions in near-Earth space. However, this deterministic approach lacks a quantification of forecast uncertainty. Here we describe a complementary method to exploit the near-Sun solar wind information produced by coronal models and provide a quantitative estimate of forecast uncertainty. By sampling the near-Sun solar wind speed at a range of latitudes about the sub-Earth point, we produce a large ensemble (N = 576) of time series at the base of the Sun-Earth line. Propagating these conditions to Earth by a three-dimensional MHD model would be computationally prohibitive; thus, a computationally efficient one-dimensional "upwind" scheme is used. The variance in the resulting near-Earth solar wind speed ensemble is shown to provide an accurate measure of the forecast uncertainty. Applying this technique over 1996-2016, the upwind ensemble is found to provide a more "actionable" forecast than a single deterministic forecast; potential economic value is increased for all operational scenarios, but particularly when false alarms are important (i.e., where the cost of taking mitigating action is relatively large).

  4. Probabilistic Solar Wind Forecasting Using Large Ensembles of Near-Sun Conditions With a Simple One-Dimensional "Upwind" Scheme.

    PubMed

    Owens, Mathew J; Riley, Pete

    2017-11-01

    Long lead-time space-weather forecasting requires accurate prediction of the near-Earth solar wind. The current state of the art uses a coronal model to extrapolate the observed photospheric magnetic field to the upper corona, where it is related to solar wind speed through empirical relations. These near-Sun solar wind and magnetic field conditions provide the inner boundary condition to three-dimensional numerical magnetohydrodynamic (MHD) models of the heliosphere out to 1 AU. This physics-based approach can capture dynamic processes within the solar wind, which affect the resulting conditions in near-Earth space. However, this deterministic approach lacks a quantification of forecast uncertainty. Here we describe a complementary method to exploit the near-Sun solar wind information produced by coronal models and provide a quantitative estimate of forecast uncertainty. By sampling the near-Sun solar wind speed at a range of latitudes about the sub-Earth point, we produce a large ensemble (N = 576) of time series at the base of the Sun-Earth line. Propagating these conditions to Earth by a three-dimensional MHD model would be computationally prohibitive; thus, a computationally efficient one-dimensional "upwind" scheme is used. The variance in the resulting near-Earth solar wind speed ensemble is shown to provide an accurate measure of the forecast uncertainty. Applying this technique over 1996-2016, the upwind ensemble is found to provide a more "actionable" forecast than a single deterministic forecast; potential economic value is increased for all operational scenarios, but particularly when false alarms are important (i.e., where the cost of taking mitigating action is relatively large).

  5. Probabilistic Solar Wind Forecasting Using Large Ensembles of Near‐Sun Conditions With a Simple One‐Dimensional “Upwind” Scheme

    PubMed Central

    Riley, Pete

    2017-01-01

    Abstract Long lead‐time space‐weather forecasting requires accurate prediction of the near‐Earth solar wind. The current state of the art uses a coronal model to extrapolate the observed photospheric magnetic field to the upper corona, where it is related to solar wind speed through empirical relations. These near‐Sun solar wind and magnetic field conditions provide the inner boundary condition to three‐dimensional numerical magnetohydrodynamic (MHD) models of the heliosphere out to 1 AU. This physics‐based approach can capture dynamic processes within the solar wind, which affect the resulting conditions in near‐Earth space. However, this deterministic approach lacks a quantification of forecast uncertainty. Here we describe a complementary method to exploit the near‐Sun solar wind information produced by coronal models and provide a quantitative estimate of forecast uncertainty. By sampling the near‐Sun solar wind speed at a range of latitudes about the sub‐Earth point, we produce a large ensemble (N = 576) of time series at the base of the Sun‐Earth line. Propagating these conditions to Earth by a three‐dimensional MHD model would be computationally prohibitive; thus, a computationally efficient one‐dimensional “upwind” scheme is used. The variance in the resulting near‐Earth solar wind speed ensemble is shown to provide an accurate measure of the forecast uncertainty. Applying this technique over 1996–2016, the upwind ensemble is found to provide a more “actionable” forecast than a single deterministic forecast; potential economic value is increased for all operational scenarios, but particularly when false alarms are important (i.e., where the cost of taking mitigating action is relatively large). PMID:29398982

  6. Sea spray contributions to the air-sea fluxes at moderate and hurricane wind speeds

    NASA Astrophysics Data System (ADS)

    Mueller, J. A.; Veron, F.

    2009-12-01

    At sufficiently high wind speed conditions, the surface of the ocean separates to form a substantial number of sea spray drops, which can account for a significant fraction of the total air-sea surface area and thus make important contributions to the aggregate air-sea momentum, heat and mass fluxes. Although consensus around the qualitative impacts of these drops has been building in recent years, the quantification of their impacts has remained elusive. Ultimately, the spray-mediated fluxes depend on three controlling factors: the number and size of drops formed at the surface, the duration of suspension within the atmospheric marine boundary layer, and the rate of momentum, heat and mass transfer between the drops and the atmosphere. While the latter factor can be estimated from an established, physically-based theory, the estimates for the former two are not well established. Using a recent, physically-based model of the sea spray source function along with the results from Lagrangian stochastic simulations of individual drops, we estimate the aggregate spray-mediated fluxes, finding reasonable agreement with existing models and estimates within the empirical range of wind speed conditions. At high wind speed conditions that are outside the empirical range, however, we find somewhat lower spray-mediated fluxes than previously reported in the literature, raising new questions about the relative air-sea fluxes at high wind speeds as well as the development and sustainment of hurricanes.

  7. Windward Cooling: An Overlooked Factor in the Calculation of Wind Chill.

    NASA Astrophysics Data System (ADS)

    Osczevski, Randall J.

    2000-12-01

    Wind chill equivalent temperatures calculated from a recent vertical cylinder model of wind chill are several degrees colder than those calculated from a facial cooling model. The latter was based on experiments with a heated model of a face in a wind tunnel. Wind chill has sometimes been modeled as the overall heat transfer from the surface of a cylinder in cross flow, but such models average the cooling over the whole surface and thus minimize the effect of local cooling on the upwind side, particularly at low wind speeds. In this paper, a vertical cylinder model of wind chill has been modified so that just the cooling of its windward side is considered. Wind chill equivalent temperatures calculated with this new model compare favorably with those calculated by the facial cooling model.

  8. Control model design to limit DC-link voltage during grid fault in a dfig variable speed wind turbine

    NASA Astrophysics Data System (ADS)

    Nwosu, Cajethan M.; Ogbuka, Cosmas U.; Oti, Stephen E.

    2017-08-01

    This paper presents a control model design capable of inhibiting the phenomenal rise in the DC-link voltage during grid- fault condition in a variable speed wind turbine. Against the use of power circuit protection strategies with inherent limitations in fault ride-through capability, a control circuit algorithm capable of limiting the DC-link voltage rise which in turn bears dynamics that has direct influence on the characteristics of the rotor voltage especially during grid faults is here proposed. The model results so obtained compare favorably with the simulation results as obtained in a MATLAB/SIMULINK environment. The generated model may therefore be used to predict near accurately the nature of DC-link voltage variations during fault given some factors which include speed and speed mode of operation, the value of damping resistor relative to half the product of inner loop current control bandwidth and the filter inductance.

  9. Comparison of interplanetary CME arrival times and solar wind parameters based on the WSA-ENLIL model with three cone types and observations

    NASA Astrophysics Data System (ADS)

    Jang, Soojeong; Moon, Y.-J.; Lee, Jae-Ok; Na, Hyeonock

    2014-09-01

    We have made a comparison between coronal mass ejection (CME)-associated shock propagations based on the Wang-Sheeley-Arge (WSA)-ENLIL model using three cone types and in situ observations. For this we use 28 full-halo CMEs, whose cone parameters are determined and their corresponding interplanetary shocks were observed at the Earth, from 2001 to 2002. We consider three different cone types (an asymmetric cone model, an ice cream cone model, and an elliptical cone model) to determine 3-D CME cone parameters (radial velocity, angular width, and source location), which are the input values of the WSA-ENLIL model. The mean absolute error of the CME-associated shock travel times for the WSA-ENLIL model using the ice-cream cone model is 9.9 h, which is about 1 h smaller than those of the other models. We compare the peak values and profiles of solar wind parameters (speed and density) with in situ observations. We find that the root-mean-square errors of solar wind peak speed and density for the ice cream and asymmetric cone model are about 190 km/s and 24/cm3, respectively. We estimate the cross correlations between the models and observations within the time lag of ± 2 days from the shock travel time. The correlation coefficients between the solar wind speeds from the WSA-ENLIL model using three cone types and in situ observations are approximately 0.7, which is larger than those of solar wind density (cc ˜0.6). Our preliminary investigations show that the ice cream cone model seems to be better than the other cone models in terms of the input parameters of the WSA-ENLIL model.

  10. Prediction and analysis of infra and low-frequency noise of upwind horizontal axis wind turbine using statistical wind speed model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Gwang-Se; Cheong, Cheolung, E-mail: ccheong@pusan.ac.kr

    Despite increasing concern about low-frequency noise of modern large horizontal-axis wind turbines (HAWTs), few studies have focused on its origin or its prediction methods. In this paper, infra- and low-frequency (the ILF) wind turbine noise are closely examined and an efficient method is developed for its prediction. Although most previous studies have assumed that the ILF noise consists primarily of blade passing frequency (BPF) noise components, these tonal noise components are seldom identified in the measured noise spectrum, except for the case of downwind wind turbines. In reality, since modern HAWTs are very large, during rotation, a single blade ofmore » the turbine experiences inflow with variation in wind speed in time as well as in space, breaking periodic perturbations of the BPF. Consequently, this transforms acoustic contributions at the BPF harmonics into broadband noise components. In this study, the ILF noise of wind turbines is predicted by combining Lowson’s acoustic analogy with the stochastic wind model, which is employed to reproduce realistic wind speed conditions. In order to predict the effects of these wind conditions on pressure variation on the blade surface, unsteadiness in the incident wind speed is incorporated into the XFOIL code by varying incident flow velocities on each blade section, which depend on the azimuthal locations of the rotating blade. The calculated surface pressure distribution is subsequently used to predict acoustic pressure at an observing location by using Lowson’s analogy. These predictions are compared with measured data, which ensures that the present method can reproduce the broadband characteristics of the measured low-frequency noise spectrum. Further investigations are carried out to characterize the IFL noise in terms of pressure loading on blade surface, narrow-band noise spectrum and noise maps around the turbine.« less

  11. Integrated optimization of unmanned aerial vehicle task allocation and path planning under steady wind.

    PubMed

    Luo, He; Liang, Zhengzheng; Zhu, Moning; Hu, Xiaoxuan; Wang, Guoqiang

    2018-01-01

    Wind has a significant effect on the control of fixed-wing unmanned aerial vehicles (UAVs), resulting in changes in their ground speed and direction, which has an important influence on the results of integrated optimization of UAV task allocation and path planning. The objective of this integrated optimization problem changes from minimizing flight distance to minimizing flight time. In this study, the Euclidean distance between any two targets is expanded to the Dubins path length, considering the minimum turning radius of fixed-wing UAVs. According to the vector relationship between wind speed, UAV airspeed, and UAV ground speed, a method is proposed to calculate the flight time of UAV between targets. On this basis, a variable-speed Dubins path vehicle routing problem (VS-DP-VRP) model is established with the purpose of minimizing the time required for UAVs to visit all the targets and return to the starting point. By designing a crossover operator and mutation operator, the genetic algorithm is used to solve the model, the results of which show that an effective UAV task allocation and path planning solution under steady wind can be provided.

  12. Integrated optimization of unmanned aerial vehicle task allocation and path planning under steady wind

    PubMed Central

    Liang, Zhengzheng; Zhu, Moning; Hu, Xiaoxuan; Wang, Guoqiang

    2018-01-01

    Wind has a significant effect on the control of fixed-wing unmanned aerial vehicles (UAVs), resulting in changes in their ground speed and direction, which has an important influence on the results of integrated optimization of UAV task allocation and path planning. The objective of this integrated optimization problem changes from minimizing flight distance to minimizing flight time. In this study, the Euclidean distance between any two targets is expanded to the Dubins path length, considering the minimum turning radius of fixed-wing UAVs. According to the vector relationship between wind speed, UAV airspeed, and UAV ground speed, a method is proposed to calculate the flight time of UAV between targets. On this basis, a variable-speed Dubins path vehicle routing problem (VS-DP-VRP) model is established with the purpose of minimizing the time required for UAVs to visit all the targets and return to the starting point. By designing a crossover operator and mutation operator, the genetic algorithm is used to solve the model, the results of which show that an effective UAV task allocation and path planning solution under steady wind can be provided. PMID:29561888

  13. Wind selectivity and partial compensation for wind drift among nocturnally migrating passerines

    PubMed Central

    McLaren, James D.

    2012-01-01

    A migrating bird’s response to wind can impact its timing, energy expenditure, and path taken. The extent to which nocturnal migrants select departure nights based on wind (wind selectivity) and compensate for wind drift remains unclear. In this paper, we determine the effect of wind selectivity and partial drift compensation on the probability of successfully arriving at a destination area and on overall migration speed. To do so, we developed an individual-based model (IBM) to simulate full drift and partial compensation migration of juvenile Willow Warblers (Phylloscopus trochilus) along the southwesterly (SW) European migration corridor to the Iberian coast. Various degrees of wind selectivity were tested according to how large a drift angle and transport cost (mechanical energy per unit distance) individuals were willing to tolerate on departure after dusk. In order to assess model results, we used radar measurements of nocturnal migration to estimate the wind selectivity and proportional drift among passerines flying in SW directions. Migration speeds in the IBM were highest for partial compensation populations tolerating at least 25% extra transport cost compared to windless conditions, which allowed more frequent departure opportunities. Drift tolerance affected migration speeds only weakly, whereas arrival probabilities were highest with drift tolerances below 20°. The radar measurements were indicative of low drift tolerance, 25% extra transport cost tolerance and partial compensation. We conclude that along migration corridors with generally nonsupportive winds, juvenile passerines should not strictly select supportive winds but partially compensate for drift to increase their chances for timely and accurate arrival. PMID:22936843

  14. Wind selectivity and partial compensation for wind drift among nocturnally migrating passerines.

    PubMed

    McLaren, James D; Shamoun-Baranes, Judy; Bouten, Willem

    2012-09-01

    A migrating bird's response to wind can impact its timing, energy expenditure, and path taken. The extent to which nocturnal migrants select departure nights based on wind (wind selectivity) and compensate for wind drift remains unclear. In this paper, we determine the effect of wind selectivity and partial drift compensation on the probability of successfully arriving at a destination area and on overall migration speed. To do so, we developed an individual-based model (IBM) to simulate full drift and partial compensation migration of juvenile Willow Warblers (Phylloscopus trochilus) along the southwesterly (SW) European migration corridor to the Iberian coast. Various degrees of wind selectivity were tested according to how large a drift angle and transport cost (mechanical energy per unit distance) individuals were willing to tolerate on departure after dusk. In order to assess model results, we used radar measurements of nocturnal migration to estimate the wind selectivity and proportional drift among passerines flying in SW directions. Migration speeds in the IBM were highest for partial compensation populations tolerating at least 25% extra transport cost compared to windless conditions, which allowed more frequent departure opportunities. Drift tolerance affected migration speeds only weakly, whereas arrival probabilities were highest with drift tolerances below 20°. The radar measurements were indicative of low drift tolerance, 25% extra transport cost tolerance and partial compensation. We conclude that along migration corridors with generally nonsupportive winds, juvenile passerines should not strictly select supportive winds but partially compensate for drift to increase their chances for timely and accurate arrival.

  15. Phase 2 and 3 wind tunnel tests of the J-97 powered, external augmentor V/STOL model. [at Ames 40 by 80 wind tunnel

    NASA Technical Reports Server (NTRS)

    Garland, D. B.; Harris, J. L.

    1980-01-01

    Static and forward speed tests were made in a 40 multiplied by 80 foot wind tunnel of a large-scale, ejector-powered V/STOL aircraft model. Modifications were made to the model following earlier tests primarily to improve longitudinal acceleration capability during transition from hovering to wingborne flight. A rearward deflection of the fuselage augmentor thrust vector was shown to be beneficial in this regard. Other augmentor modifications were tested, notably the removal of both endplates, which improved acceleration performance at the higher transition speeds. The model tests again demonstrated minimal interference of the fuselage augmentor on aerodynamic lift. A flapped canard surface also showed negligible influence on the performance of the wing and of the fuselage augmentor.

  16. Using Analog Ensemble to generate spatially downscaled probabilistic wind power forecasts

    NASA Astrophysics Data System (ADS)

    Delle Monache, L.; Shahriari, M.; Cervone, G.

    2017-12-01

    We use the Analog Ensemble (AnEn) method to generate probabilistic 80-m wind power forecasts. We use data from the NCEP GFS ( 28 km resolution) and NCEP NAM (12 km resolution). We use forecasts data from NAM and GFS, and analysis data from NAM which enables us to: 1) use a lower-resolution model to create higher-resolution forecasts, and 2) use a higher-resolution model to create higher-resolution forecasts. The former essentially increases computing speed and the latter increases forecast accuracy. An aggregated model of the former can be compared against the latter to measure the accuracy of the AnEn spatial downscaling. The AnEn works by taking a deterministic future forecast and comparing it with past forecasts. The model searches for the best matching estimates within the past forecasts and selects the predictand value corresponding to these past forecasts as the ensemble prediction for the future forecast. Our study is based on predicting wind speed and air density at more than 13,000 grid points in the continental US. We run the AnEn model twice: 1) estimating 80-m wind speed by using predictor variables such as temperature, pressure, geopotential height, U-component and V-component of wind, 2) estimating air density by using predictors such as temperature, pressure, and relative humidity. We use the air density values to correct the standard wind power curves for different values of air density. The standard deviation of the ensemble members (i.e. ensemble spread) will be used as the degree of difficulty to predict wind power at different locations. The value of the correlation coefficient between the ensemble spread and the forecast error determines the appropriateness of this measure. This measure is prominent for wind farm developers as building wind farms in regions with higher predictability will reduce the real-time risks of operating in the electricity markets.

  17. Weather Research and Forecasting Model Wind Sensitivity Study at Edwards Air Force Base, CA

    NASA Technical Reports Server (NTRS)

    Watson, Leela R.; Bauman, William H., III; Hoeth, Brian

    2009-01-01

    This abstract describes work that will be done by the Applied Meteorology Unit (AMU) in assessing the success of different model configurations in predicting "wind cycling" cases at Edwards Air Force Base, CA (EAFB), in which the wind speeds and directions oscillate among towers near the EAFB runway. The Weather Research and Forecasting (WRF) model allows users to choose among two dynamical cores - the Advanced Research WRF (ARW) and the Non-hydrostatic Mesoscale Model (NMM). There are also data assimilation analysis packages available for the initialization of the WRF model - the Local Analysis and Prediction System (LAPS) and the Advanced Regional Prediction System (ARPS) Data Analysis System (ADAS). Having a series of initialization options and WRF cores, as well as many options within each core, creates challenges for local forecasters, such as determining which configuration options are best to address specific forecast concerns. The goal of this project is to assess the different configurations available and determine which configuration will best predict surface wind speed and direction at EAFB.

  18. Fire control method and analytical model for large liquid hydrocarbon pool fires

    NASA Technical Reports Server (NTRS)

    Fenton, D. L.

    1986-01-01

    The dominate parameter governing the behavior of a liquid hydrocarbon (JP-5) pool fire is wind speed. The most effective method of controlling wind speed in the vicinity of a large circular (10 m dia.) pool fire is a set of concentric screens located outside the perimeter. Because detailed behavior of the pool fire structure within one pool fire diameter is unknown, an analytical model supported by careful experiments is under development. As a first step toward this development, a regional pool fire model was constructed for the no-wind condition consisting of three zones -- liquid fuel, combustion, and plume -- where the predicted variables are mass burning rate and characteristic temperatures of the combustion and plume zones. This zone pool fire model can be modified to incorporate plume bending by wind, radiation absorption by soot particles, and a different ambient air flow entrainment rate. Results from the zone model are given for a pool diameter of 1.3 m and are found to reproduce values in the literature.

  19. Measurement of Martian boundary layer winds by the displacement of jettisoned lander hardware

    NASA Astrophysics Data System (ADS)

    Paton, M. D.; Harri, A.-M.; Savijärvi, H.

    2018-07-01

    Martian boundary layer wind speed and direction measurements, from a variety of locations, seasons and times, are provided. For each lander sent to Mars over the last four decades a unique record of the winds blowing during their descent is preserved at each landing site. By comparing images acquired from orbiting spacecraft of the impact points of jettisoned hardware, such as heat shields and parachutes, to a trajectory model the winds can be measured. We start our investigations with the Viking lander 1 mission and end with Schiaparelli. In-between we extract wind measurements based on observations of the Beagle 2, Spirit, Opportunity, Phoenix and Curiosity landing sites. With one exception the wind at each site during the lander's descent were found to be < 8 m s-1. High speed winds were required to explain the displacement of jettisoned hardware at the Phoenix landing site. We found a tail wind ( > 20 m s-1), blowing from the north-west was required at a high altitude ( > 2 km) together with a gust close to the surface ( < 500 m altitude) originating from the north. All in all our investigations yielded a total of ten unique wind measurements in the PBL. One each from the Viking landers and one each from Beagle 2, Spirit, Opportunity and Schiaparelli. Two wind measurements, one above about 1 km altitude and one below, were possible from observations of the Curiosity and Phoenix landing site. Our findings are consistent with a turbulent PBL in the afternoon and calm PBL in the morning. When comparing our results to a GCM we found a good match in wind direction but not for wind speed. The information provided here makes available wind measurements previously unavailable to Mars atmosphere modellers and investigators.

  20. Comparing model-based predictions of a wind turbine wake to LiDAR measurements in complex terrain

    NASA Astrophysics Data System (ADS)

    Kay, Andrew; Jones, Paddy; Boyce, Dean; Bowman, Neil

    2013-04-01

    The application of remote sensing techniques to the measurement of wind characteristics offers great potential to accurately predict the atmospheric boundary layer flow (ABL) and its interactions with wind turbines. An understanding of these interactions is important for optimizing turbine siting in wind farms and improving the power performance and lifetime of individual machines. In particular, Doppler wind Light Detection and Ranging (LiDAR) can be used to remotely measure the wind characteristics (speed, direction and turbulence intensity) approaching a rotor. This information can be utilised to improve turbine lifetime (advanced detection of incoming wind shear, wind veer and extreme wind conditions, such as gusts) and optimise power production (improved yaw, pitch and speed control). LiDAR can also make detailed measurements of the disturbed wind profile in the wake, which can damage surrounding turbines and reduce efficiency. These observational techniques can help engineers better understand and model wakes to optimize turbine spacing in large wind farms, improving efficiency and reducing the cost of energy. NEL is currently undertaking research to measure the disturbed wind profile in the wake of a 950 kW wind turbine using a ZephIR Dual Mode LiDAR at its Myres Hill wind turbine test site located near Glasgow, Scotland. Myres Hill is moderately complex terrain comprising deep peat, low lying grass and heathers, localised slopes and nearby forest, approximately 2 km away. Measurements have been obtained by vertically scanning at 10 recorded heights across and above the rotor plane to determine the wind speed, wind direction and turbulence intensity profiles. Measurement stations located at various rotor diameters downstream of the turbine were selected in an attempt to capture the development of the wake and its recovery towards free stream conditions. Results of the measurement campaign will also highlight how the wake behaves as a result of sudden gusts or rapid changes in wind direction. NEL has carried out simulations to model the wake of the turbine using Computational Fluid Dynamics (CFD) software provided by ANSYS Inc. The model incorporates a simple actuator disk concept to model the turbine and its wake, typical of that used in many commercial wind farm optimization tools. The surrounding terrain, including the forestry is modelled allowing an investigation of the wake-terrain interactions occurring across the site. The overall aim is to compare the LiDAR measurements with simulated data to assess the quality of the model and its sensitivity to variables such as mesh size and turbulence/forestry modelling techniques. Knowledge acquired from the study will help to define techniques for combining LiDAR measurements with CFD modelling to improve predictions of wake losses in large wind farms and hence, energy production. In addition, the impact of transient wind conditions on the results of predictions based on idealised, steady state models has been examined.

  1. Comparative study of chaotic features in hourly wind speed using recurrence quantification analysis

    NASA Astrophysics Data System (ADS)

    Adeniji, A. E.; Olusola, O. I.; Njah, A. N.

    2018-02-01

    Due to the shortage in electricity supply in Nigeria, there is a need to improve the alternative power generation from wind energy by analysing the wind speed data available in some parts of the country, for a better understanding of its underlying dynamics for the purpose of good prediction and modelling. The wind speed data used in this study were collected over a period of two years by National Space Research and Development Agency (NASRDA) from five different stations in the tropics namely; Abuja (7050'02.09"N and 6004'29.97"E), Akungba (6059'05.40"N and 5035'52.23"E), Nsukka (6051'28.14"N and 7024'28.15"E), Port Harcourt (4047'05.41"N and 6059'30.62"E), and Yola (9017'33.58"N and 12023'26.69"E). In this paper, recurrence plot (RP) and recurrence quantification analysis (RQA) are applied to investigate a non-linear deterministic dynamical process and non-stationarity in hourly wind speed data from the study areas. Using RQA for each month of the two years, it is observed that wind speed data for the wet months exhibit higher chaoticity than that of the dry months for all the stations, due to strong and weak monsoonal effect during the wet and dry seasons respectively. The results show that recurrence techniques are able to identify areas and periods for which the harvest of wind energy for power generation is good (high predictability) and poor (low predictability) in the study areas. This work also validates the RQA measures (Lmax, DET and ENT) used and establishes that they are similar/related as they give similar results for the dynamical characterization of the wind speed data.

  2. Power Smoothing and MPPT for Grid-connected Wind Power Generation with Doubly Fed Induction Generator

    NASA Astrophysics Data System (ADS)

    Kai, Takaaki; Tanaka, Yuji; Kaneda, Hirotoshi; Kobayashi, Daichi; Tanaka, Akio

    Recently, doubly fed induction generator (DFIG) and synchronous generator are mostly applied for wind power generation, and variable speed control and power factor control are executed for high efficiently for wind energy capture and high quality for power system voltage. In variable speed control, a wind speed or a generator speed is used for maximum power point tracking. However, performances of a wind generation power fluctuation due to wind speed variation have not yet investigated for those controls. The authors discuss power smoothing by those controls for the DFIG inter-connected to 6.6kV distribution line. The performances are verified using power system simulation software PSCAD/EMTDC for actual wind speed data and are examined from an approximate equation of wind generation power fluctuation for wind speed variation.

  3. Geostrophic adjustment in a shallow-water numerical model as it relates to thermospheric dynamics

    NASA Technical Reports Server (NTRS)

    Larsen, M. F.; Mikkelsen, I. S.

    1986-01-01

    The theory of geostrophic adjustment and its application to the dynamics of the high latitude thermosphere have been discussed in previous papers based on a linearized treatment of the fluid dynamical equations. However, a linearized treatment is only valid for small Rossby numbers given by Ro = V/fL, where V is the wind speed, f is the local value of the Coriolis parameter, and L is a characteristic horizontal scale for the flow. For typical values in the auroral zone, the approximation is not reasonable for wind speeds greater than 25 m/s or so. A shallow-water (one layer) model was developed that includes the spherical geometry and full nonlinear dynamics in the momentum equations in order to isolate the effects of the nonlinearities on the adjustment process. A belt of accelerated winds between 60 deg and 70 deg latitude was used as the initial condition. The adjustment process was found to proceed as expected from the linear formulation, but that an asymmetry between the response for an eastward and westward flow results from the nonlineawr curvature (centrifugal) terms. In general, the amplitude of an eastward flowing wind will be less after adjustment than a westward wind. For instance, if the initial wind velocity is 300 m/s, the linearized theory predicts a final wind speed of 240 m/s, regardless of the flow direction. However, the nonlinear curvature terms modify the response and produce a final wind speed of only 200 m/s for an initial eastward wind and a final wind speed of almost 300 m/s for an initial westward flow direction. Also, less gravity wave energy is produced by the adjustment of the westward flow than by the adjustment of the eastward flow. The implications are that the response of the thermosphere should be significantly different on the dawn and dusk sides of the auroral oval. Larger flow velocities would be expected on the dusk side since the plasma will accelerate the flow in a westward direction in that sector.

  4. Wind speed and sediment transport recovery in the lee of a vegetated and denuded nebkha within a nebkha dune field

    NASA Astrophysics Data System (ADS)

    Gillies, John A.; Nield, Joanna M.; Nickling, William G.

    2014-03-01

    Field observations of scaled wind speed and sand transport recovery in the lee of a nebka within a field of nebkhas and then subsequently for the nebkha denuded of its vegetation cover were collected. The measurements of wind speed at 0.4 times the element height indicate that for both conditions wind speed recovery in the lee is exponential. The porous vegetation cover influences the rate of this recovery being more gradual for the vegetated form. The return to equilibrium wind speed occurs in both cases at approximately eight element heights. For either case the recovery of shear stress and the return to a constant value occurs much closer to the bluff body form than has been described for porous fences. The recovery of sand transport in the lee appears to be more rapid for the un-vegetated condition, which corresponds to the observed faster rate of wind speed increase. The observations did not show a continual increase in saltation flux with increasing downwind distance due to the increasing shear stress downwind and the increase that may be expected due to the fetch effect. The change in saltation flux with downwind distance was controlled by the sediment supply, which diminished with downwind distance. The interaction of a changing shear stress and the zone of influence created by the wind as it interacts with the roughness dimensions, along with the distribution of sediment available for transport bring increased complexity to modeling sand flux for this type of environment over different temporal scales.

  5. A comparison of three approaches for simulating fine-scale surface winds in support of wildland fire management. Part II. An exploratory study of the effect of simulated winds on fire growth simulations

    Treesearch

    Jason M. Forthofer; Bret W. Butler; Charles W. McHugh; Mark A. Finney; Larry S. Bradshaw; Richard D. Stratton; Kyle S. Shannon; Natalie S. Wagenbrenner

    2014-01-01

    The effect of fine-resolution wind simulations on fire growth simulations is explored. The wind models are (1) a wind field consisting of constant speed and direction applied everywhere over the area of interest; (2) a tool based on the solution of the conservation of mass only (termed mass-conserving model) and (3) a tool based on a solution of conservation of mass...

  6. Review of Recent Development of Dynamic Wind Farm Equivalent Models Based on Big Data Mining

    NASA Astrophysics Data System (ADS)

    Wang, Chenggen; Zhou, Qian; Han, Mingzhe; Lv, Zhan’ao; Hou, Xiao; Zhao, Haoran; Bu, Jing

    2018-04-01

    Recently, the big data mining method has been applied in dynamic wind farm equivalent modeling. In this paper, its recent development with present research both domestic and overseas is reviewed. Firstly, the studies of wind speed prediction, equivalence and its distribution in the wind farm are concluded. Secondly, two typical approaches used in the big data mining method is introduced, respectively. For single wind turbine equivalent modeling, it focuses on how to choose and identify equivalent parameters. For multiple wind turbine equivalent modeling, the following three aspects are concentrated, i.e. aggregation of different wind turbine clusters, the parameters in the same cluster, and equivalence of collector system. Thirdly, an outlook on the development of dynamic wind farm equivalent models in the future is discussed.

  7. Wind Tunnel and Hover Performance Test Results for Multicopter UAS Vehicles

    NASA Technical Reports Server (NTRS)

    Russell, Carl R.; Jung, Jaewoo; Willink, Gina; Glasner, Brett

    2016-01-01

    There is currently a lack of published data for the performance of multicopter unmanned aircraft system (UAS) vehicles, such as quadcopters and octocopters, often referred to collectively as drones. With the rapidly increasing popularity of multicopter UAS, there is interest in better characterizing the performance of this type of aircraft. By studying the performance of currently available vehicles, it will be possible to develop models for vehicles at this scale that can accurately predict performance and model trajectories. This paper describes a wind tunnel test that was recently performed in the U.S. Army's 7- by 10-ft Wind Tunnel at NASA Ames Research Center. During this wind tunnel entry, five multicopter UAS vehicles were tested to determine forces and moments as well as electrical power as a function of wind speed, rotor speed, and vehicle attitude. The test is described here in detail, and a selection of the key results from the test is presented.

  8. The Novaya Zemlya Bora: Analysis and Numerical Modeling

    NASA Astrophysics Data System (ADS)

    Efimov, V. V.; Komarovskaya, O. I.

    2018-01-01

    We consider the data of an ASRI reanalysis to distinguish the properties of velocity and temperature fields in the region of Novaya Zemlya (NZ). A numerical simulation of the bora development is performed using the WRF-ARW regional model of atmospheric circulation for two cases with different directions of the wind. In the case of southeastern winds, the wind speed and temperature fields are reproduced and the characteristics of the bora are defined: temperature and wind speed increase over the lee slope of mountains and coastal western area of the Barents Sea. In the case of a western wind, the bora does not appear. The estimates of temperature contrasts in the flow of the air stream over the NZ mountains found in the processing of the ASRI data are reported. The region of high velocities and fluxes of sensible and latent heat indicating the climatic role of the NZ archipelago noted earlier in [12] is determined.

  9. Recent research on V/STOL test limits at the University of Washington aeronautical laboratory

    NASA Technical Reports Server (NTRS)

    Shindo, S.; Rae, W. H., Jr.

    1980-01-01

    The occurence of flow breakdown during the wind tunnel testing of a powered V/STOL aircraft was studied. Flow breakdown is the low forward speed test limit in a solid wall wind tunnel and is characterized by a vortex which forms on the floor and walls of the wind tunnel thereby failing to simulate free air conditions. The flow is caused by the interaction of the model wake and tunnel boundary layer and affects the model's aerodynamic characteristics in such fashion as to negate their reliability as correctable wind tunnel data. The low speed test limit was examined using a model that possessed a discretely concentrated powered lift system using a pair of lift jets. The system design is discussed and the tests and results which show that flow breakdown occurs at a velocity ratio of approximately 0.20 are reported.

  10. An Error-Reduction Algorithm to Improve Lidar Turbulence Estimates for Wind Energy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Newman, Jennifer F.; Clifton, Andrew

    2016-08-01

    Currently, cup anemometers on meteorological (met) towers are used to measure wind speeds and turbulence intensity to make decisions about wind turbine class and site suitability. However, as modern turbine hub heights increase and wind energy expands to complex and remote sites, it becomes more difficult and costly to install met towers at potential sites. As a result, remote sensing devices (e.g., lidars) are now commonly used by wind farm managers and researchers to estimate the flow field at heights spanned by a turbine. While lidars can accurately estimate mean wind speeds and wind directions, there is still a largemore » amount of uncertainty surrounding the measurement of turbulence with lidars. This uncertainty in lidar turbulence measurements is one of the key roadblocks that must be overcome in order to replace met towers with lidars for wind energy applications. In this talk, a model for reducing errors in lidar turbulence estimates is presented. Techniques for reducing errors from instrument noise, volume averaging, and variance contamination are combined in the model to produce a corrected value of the turbulence intensity (TI), a commonly used parameter in wind energy. In the next step of the model, machine learning techniques are used to further decrease the error in lidar TI estimates.« less

  11. Three-dimensional vapor intrusion modeling approach that combines wind and stack effects on indoor, atmospheric, and subsurface domains.

    PubMed

    Shirazi, Elham; Pennell, Kelly G

    2017-12-13

    Vapor intrusion (IV) exposure risks are difficult to characterize due to the role of atmospheric, building and subsurface processes. This study presents a three-dimensional VI model that extends the common subsurface fate and transport equations to incorporate wind and stack effects on indoor air pressure, building air exchange rate (AER) and indoor contaminant concentration to improve VI exposure risk estimates. The model incorporates three modeling programs: (1) COMSOL Multiphysics to model subsurface fate and transport processes, (2) CFD0 to model atmospheric air flow around the building, and (3) CONTAM to model indoor air quality. The combined VI model predicts AER values, zonal indoor air pressures and zonal indoor air contaminant concentrations as a function of wind speed, wind direction and outdoor and indoor temperature. Steady state modeling results for a single-story building with a basement demonstrate that wind speed, wind direction and opening locations in a building play important roles in changing the AER, indoor air pressure, and indoor air contaminant concentration. Calculated indoor air pressures ranged from approximately -10 Pa to +4 Pa depending on weather conditions and building characteristics. AER values, mass entry rates and indoor air concentrations vary depending on weather conditions and building characteristics. The presented modeling approach can be used to investigate the relationship between building features, AER, building pressures, soil gas concentrations, indoor air concentrations and VI exposure risks.

  12. Investigation of boundary-layer wind predictions during nocturnal low-level jet events using the Weather Research and Forecasting model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mirocha, Jeff D.; Simpson, Matthew D.; Fast, Jerome D.

    Simulations of two periods featuring three consecutive low level jet (LLJ) events in the US Upper Great Plains during the autumn of 2011 were conducted to explore the impacts of various setup configurations and physical process models on simulated flow parameters within the lowest 200 m above the surface, using the Weather Research and Forecasting (WRF) model. Sensitivities of simulated flow parameters to the horizontal and vertical grid spacing, planetary boundary layer (PBL) and land surface model (LSM) physics options, were assessed. Data from a Light Detection and Ranging (lidar) system, deployed to the Weather Forecast Improvement Project (WFIP; Finleymore » et al. 2013) were used to evaluate the accuracy of simulated wind speed and direction at 80 m above the surface, as well as their vertical distributions between 120 and 40 m, covering the typical span of contemporary tall wind turbines. All of the simulations qualitatively captured the overall diurnal cycle of wind speed and stratification, producing LLJs during each overnight period, however large discrepancies occurred at certain times for each simulation in relation to the observations. 54-member ensembles encompassing changes of the above discussed configuration parameters displayed a wide range of simulated vertical distributions of wind speed and direction, and potential temperature, reflecting highly variable representations of stratification during the weakly stable overnight conditions. Root mean square error (RMSE) statistics show that different ensemble members performed better and worse in various simulated parameters at different times, with no clearly superior configuration . Simulations using a PBL parameterization designed specifically for the stable conditions investigated herein provided superior overall simulations of wind speed at 80 m, demonstrating the efficacy of targeting improvements of physical process models in areas of known deficiencies. However, the considerable magnitudes of the RMSE values of even the best performing simulations indicate ample opportunities for further improvements.« less

  13. Time-domain parameter identification of aeroelastic loads by forced-vibration method for response of flexible structures subject to transient wind

    NASA Astrophysics Data System (ADS)

    Cao, Bochao

    Slender structures representing civil, mechanical and aerospace systems such as long-span bridges, high-rise buildings, stay cables, power-line cables, high light mast poles, crane-booms and aircraft wings could experience vortex-induced and buffeting excitations below their design wind speeds and divergent self-excited oscillations (flutter) beyond a critical wind speed because these are flexible. Traditional linear aerodynamic theories that are routinely applied for their response prediction are not valid in the galloping, or near-flutter regime, where large-amplitude vibrations could occur and during non-stationary and transient wind excitations that occur, for example, during hurricanes, thunderstorms and gust fronts. The linear aerodynamic load formulation for lift, drag and moment are expressed in terms of aerodynamic functions in frequency domain that are valid for straight-line winds which are stationary or weakly-stationary. Application of the frequency domain formulation is restricted from use in the nonlinear and transient domain because these are valid for linear models and stationary wind. The time-domain aerodynamic force formulations are suitable for finite element modeling, feedback-dependent structural control mechanism, fatigue-life prediction, and above all modeling of transient structural behavior during non-stationary wind phenomena. This has motivated the developing of time-domain models of aerodynamic loads that are in parallel to the existing frequency-dependent models. Parameters defining these time-domain models can be now extracted from wind tunnel tests, for example, the Rational Function Coefficients defining the self-excited wind loads can be extracted using section model tests using the free vibration technique. However, the free vibration method has some limitations because it is difficult to apply at high wind speeds, in turbulent wind environment, or on unstable cross sections with negative aerodynamic damping. In the current research, new algorithms were developed based on forced vibration technique for direct extraction of the Rational Functions. The first of the two algorithms developed uses the two angular phase lag values between the measured vertical or torsional displacement and the measured aerodynamic lift and moment produced on the section model subject to forced vibration to identify the Rational Functions. This algorithm uses two separate one-degree-of-freedom tests (vertical or torsional) to identify all the four Rational Functions or corresponding Rational Function Coefficients for a two degrees-of-freedom (DOF) vertical-torsional vibration model. It was applied to a streamlined section model and the results compared well with those obtained from earlier free vibration experiment. The second algorithm that was developed is based on direct least squares method. It uses all the data points of displacements and aerodynamic lift and moment instead of phase lag values for more accurate estimates. This algorithm can be used for one-, two- and three-degree-of-freedom motions. A two-degree-of-freedom forced vibration system was developed and the algorithm was shown to work well for both streamlined and bluff section models. The uniqueness of the second algorithms lies in the fact that it requires testing the model at only two wind speeds for extraction of all four Rational Functions. The Rational Function Coefficients that were extracted for a streamlined section model using the two-DOF Least Squares algorithm were validated in a separate wind tunnel by testing a larger scaled model subject to straight-line, gusty and boundary-layer wind.

  14. Eastern Wind Data Set | Grid Modernization | NREL

    Science.gov Websites

    cell was computed by combining these data sets with a composite turbine power curve. Wind power plants wind speed at the site. Adjustments were made for model biases, wake losses, wind gusts, turbine and conversion was also updated to better reflect future wind turbine technology. The 12-hour discontinuity was

  15. An Auto-Tuning PI Control System for an Open-Circuit Low-Speed Wind Tunnel Designed for Greenhouse Technology.

    PubMed

    Espinoza, Karlos; Valera, Diego L; Torres, José A; López, Alejandro; Molina-Aiz, Francisco D

    2015-08-12

    Wind tunnels are a key experimental tool for the analysis of airflow parameters in many fields of application. Despite their great potential impact on agricultural research, few contributions have dealt with the development of automatic control systems for wind tunnels in the field of greenhouse technology. The objective of this paper is to present an automatic control system that provides precision and speed of measurement, as well as efficient data processing in low-speed wind tunnel experiments for greenhouse engineering applications. The system is based on an algorithm that identifies the system model and calculates the optimum PI controller. The validation of the system was performed on a cellulose evaporative cooling pad and on insect-proof screens to assess its response to perturbations. The control system provided an accuracy of <0.06 m·s(-1) for airflow speed and <0.50 Pa for pressure drop, thus permitting the reproducibility and standardization of the tests. The proposed control system also incorporates a fully-integrated software unit that manages the tests in terms of airflow speed and pressure drop set points.

  16. Selecting the process variables for filament winding

    NASA Technical Reports Server (NTRS)

    Calius, E.; Springer, G. S.

    1986-01-01

    A model is described which can be used to determine the appropriate values of the process variables for filament winding cylinders. The process variables which can be selected by the model include the winding speed, fiber tension, initial resin degree of cure, and the temperatures applied during winding, curing, and post-curing. The effects of these process variables on the properties of the cylinder during and after manufacture are illustrated by a numerical example.

  17. Interaction Between the Atmospheric Boundary Layer and Wind Energy: From Continental-Scale to Turbine-Scale

    NASA Astrophysics Data System (ADS)

    St. Martin, Clara Mae

    Wind turbines and groups of wind turbines, or "wind plants", interact with the complex and heterogeneous boundary layer of the atmosphere. We define the boundary layer as the portion of the atmosphere directly influenced by the surface, and this layer exhibits variability on a range of temporal and spatial scales. While early developments in wind energy could ignore some of this variability, recent work demonstrates that improved understanding of atmosphere-turbine interactions leads to the discovery of new ways to approach turbine technology development as well as processes such as performance validation and turbine operations. This interaction with the atmosphere occurs at several spatial and temporal scales from continental-scale to turbine-scale. Understanding atmospheric variability over continental-scales and across plants can facilitate reliance on wind energy as a baseload energy source on the electrical grid. On turbine scales, understanding the atmosphere's contribution to the variability in power production can improve the accuracy of power production estimates as we continue to implement more wind energy onto the grid. Wind speed and directional variability within a plant will affect wind turbine wakes within the plants and among neighboring plants, and a deeper knowledge of these variations can help mitigate effects of wakes and possibly even allow the manipulation of these wakes for increased production. Herein, I present the extent of my PhD work, in which I studied outstanding questions at these scales at the intersections of wind energy and atmospheric science. My work consists of four distinct projects. At the coarsest scales, I analyze the separation between wind plant sites needed for statistical independence in order to reduce variability for grid-integration of wind. At lower wind speeds, periods of unstable and more turbulent conditions produce more power than periods of stable and less turbulent conditions, while at wind speeds closer to rated wind speed, periods of unstable and more turbulent conditions produce less power than periods of stable and less turbulent conditions. Using these new, stability- and turbulence-specific power curves to calculate annual energy production (AEP) estimates results in smaller AEPs than if calculated using no stability and turbulence filters, which could have implications for manufacturers and operators. In my third project, I address the problem of expensive power production validation. Rather than erecting towers to provide upwind wind measurements, I explore the utility of using nacelle-mounted anemometers for power curve verification studies. I calculate empirical nacelle transfer functions (NTFs) with upwind tower and turbine measurements. The fifth-order and second-order NTFs show a linear relationship between upwind wind speed and nacelle wind speed at wind speeds less than about 9 m s-1 , but this relationship becomes non-linear at wind speeds higher than about 9 m s-1. The use of NTFs results in AEPs within 1 % of an AEP using upwind wind speeds. Additionally, during periods of unstable conditions as well as during more turbulent conditions, the nacelle-mounted anemometer underestimates the upwind wind speed more than during periods of stable conditions and less turbulence conditions at some wind speed bins below rated speed. Finally, in my fourth project, I consider spatial scales on the order of a wind plant. Using power production data from over 300 turbines from four neighboring wind farms in the western US along with simulations using the Weather Research and Forecasting model's Wind Farm Parameterization (WRF-WFP), I investigate the advantage of using the WFP to simulate wakes. During this case, winds from the west and north-northwest range from about 5 to 11 m s-1. A down-ramp occurs in this case study, which WRF predicts too early. The early prediction of the down-ramp likely affects the error in WRF-predicted power, the results of which show exaggerated wake effects. While these projects span a range of spatio-temporal scales, a unifying theme is the important aspect of atmospheric variation on wind power production, wind power production estimates, and means for facilitating the integration of wind-generated electricity into power grids. Future work, such as universal NTFs for sites with similar characteristics, NTFs for waked turbines, or the deployment of lidars on turbine nacelles for operation purposes, should continue to study the mutually-important interconnections between these two fields. (Abstract shortened by ProQuest.).

  18. An effective wind speed for models of fire spread

    Treesearch

    Ralph M. Nelson

    2002-01-01

    In previous descriptions of wind-slope interaction and the spread rate of wildland fires it is assumed that the separate effects of wind and slope are independent and additive and that corrections for these effects may be applied to spread rates computed from existing rate of spread models. A different approach is explored in the present paper in which the upslope...

  19. Effects of non-Maxwellian electron velocity distribution functions and nonspherical geometry on minor ions in the solar wind

    NASA Technical Reports Server (NTRS)

    Burgi, A.

    1987-01-01

    A previous model has shown that in order to account for the charge state distribution in the low-speed solar wind, a high coronal temperature is necessary and that this temperature peak goes together with a peak of nx/np in the corona. In the present paper, one of the assumptions made previously, i.e., that coronal electrons are Maxwellian, is relaxed, and a much cooler model is presented, which could account for the same oxygen charge states in the solar wind due to the inclusion of non-Maxwellian electrons. Also, due to a different choice of the coronal magnetic field geometry, this model would show no enhancement of the coronal nx/np. Results of the two models are then compared, and observational tests to distinguish between the two scenarios are proposed: comparison of directly measured coronal Te to charge state measurements in the solar wind, determination of the coronal nx/np measurement of ion speeds in the acceleration region of the solar wind, and measurement of the frozen-in silicon charge state distribution.

  20. Study on typhoon characteristic based on bridge health monitoring system.

    PubMed

    Wang, Xu; Chen, Bin; Sun, Dezhang; Wu, Yinqiang

    2014-01-01

    Through the wind velocity and direction monitoring system installed on Jiubao Bridge of Qiantang River, Hangzhou city, Zhejiang province, China, a full range of wind velocity and direction data was collected during typhoon HAIKUI in 2012. Based on these data, it was found that, at higher observed elevation, turbulence intensity is lower, and the variation tendency of longitudinal and lateral turbulence intensities with mean wind speeds is basically the same. Gust factor goes higher with increasing mean wind speed, and the change rate obviously decreases as wind speed goes down and an inconspicuous increase occurs when wind speed is high. The change of peak factor is inconspicuous with increasing time and mean wind speed. The probability density function (PDF) of fluctuating wind speed follows Gaussian distribution. Turbulence integral scale increases with mean wind speed, and its PDF does not follow Gaussian distribution. The power spectrum of observation fluctuating velocity is in accordance with Von Karman spectrum.

  1. Gas exchange-wind speed relation measured with sulfur hexafluoride on a lake

    NASA Technical Reports Server (NTRS)

    Wanninkhof, R.; Broecker, W. S.; Ledwell, J. R.

    1985-01-01

    Gas-exchange processes control the uptake and release of various gases in natural systems such as oceans, rivers, and lakes. Not much is known about the effect of wind speed on gas exchange in such systems. In the experiment described here, sulfur hexafluoride was dissolved in lake water, and the rate of escape of the gas with wind speed (at wind speeds up to 6 meters per second) was determined over a 1-month period. A sharp change in the wind speed dependence of the gas-exchange coefficient was found at wind speeds of about 2.4 meters per second, in agreement with the results of wind-tunnel studies. However the gas-exchange coefficients at wind speeds above 3 meters per second were smaller than those observed in wind tunnels and are in agreement with earlier lake and ocean results.

  2. The Effect of Wind-Turbine Wakes on Summertime US Midwest Atmospheric Wind Profiles as Observed with Ground-Based Doppler Lidar

    NASA Astrophysics Data System (ADS)

    Rhodes, Michael E.; Lundquist, Julie K.

    2013-07-01

    We examine the influence of a modern multi-megawatt wind turbine on wind and turbulence profiles three rotor diameters (D) downwind of the turbine. Light detection and ranging (lidar) wind-profile observations were collected during summer 2011 in an operating wind farm in central Iowa at 20-m vertical intervals from 40 to 220 m above the surface. After a calibration period during which two lidars were operated next to each other, one lidar was located approximately 2D directly south of a wind turbine; the other lidar was moved approximately 3D north of the same wind turbine. Data from the two lidars during southerly flow conditions enabled the simultaneous capture of inflow and wake conditions. The inflow wind and turbulence profiles exhibit strong variability with atmospheric stability: daytime profiles are well-mixed with little shear and strong turbulence, while nighttime profiles exhibit minimal turbulence and considerable shear across the rotor disk region and above. Consistent with the observations available from other studies and with wind-tunnel and large-eddy simulation studies, measurable reductions in wake wind-speeds occur at heights spanning the wind turbine rotor (43-117 m), and turbulent quantities increase in the wake. In generalizing these results as a function of inflow wind speed, we find the wind-speed deficit in the wake is largest at hub height or just above, and the maximum deficit occurs when wind speeds are below the rated speed for the turbine. Similarly, the maximum enhancement of turbulence kinetic energy and turbulence intensity occurs at hub height, although observations at the top of the rotor disk do not allow assessment of turbulence in that region. The wind shear below turbine hub height (quantified here with the power-law coefficient) is found to be a useful parameter to identify whether a downwind lidar observes turbine wake or free-flow conditions. These field observations provide data for validating turbine-wake models and wind-tunnel observations, and for guiding assessments of the impacts of wakes on surface turbulent fluxes or surface temperatures downwind of turbines.

  3. Wind Induced Sediment Resuspension in a Microtidal Estuary

    NASA Technical Reports Server (NTRS)

    Booth, J. G.; Miller, R. L.; McKee, B. A.; Leathers, R. A.

    1999-01-01

    Bottom sediment resuspension frequency, duration and extent (% of bottom sediments affected) were characterized for the fifteen month period from September 1995 to January 1997 for the Barataria Basin, LA. An empirical model of sediment resuspension as a function of wind speed, direction, fetch and water depth was derived from wave theory. Water column turbidity was examined by processing remotely sensed radiance information from visible and near-IR AVHRR imagery. Based on model predictions, wind induced resuspension occurred during all seasons of this study. Seasonal characteristics for resuspension reveal that late fall, winter and early spring are the periods of most frequent and intense resuspension. Model predictions of the critical wind speed required to induce resuspension indicate that winds of 4 m/s (averaged over all wind directions resuspend approximately 50% of bottom sediments in the water bodies examined. Winds of this magnitude (4 m/s) occurred for 80% of the time during the late fall, winter and early spring and for approximately 30% of the time during the summer. More than 50% of the bottom sedimets are resuspended throughout the year, indicating the importance of resuspension as a process affecting sediment and biogeochemical fluxes in the Barataria Basin.

  4. Improving wind energy forecasts using an Ensemble Kalman Filter data assimilation technique in a fully coupled hydrologic and atmospheric model

    NASA Astrophysics Data System (ADS)

    Williams, J. L.; Maxwell, R. M.; Delle Monache, L.

    2012-12-01

    Wind power is rapidly gaining prominence as a major source of renewable energy. Harnessing this promising energy source is challenging because of the chaotic nature of wind and its propensity to change speed and direction over short time scales. Accurate forecasting tools are critical to support the integration of wind energy into power grids and to maximize its impact on renewable energy portfolios. Numerous studies have shown that soil moisture distribution and land surface vegetative processes profoundly influence atmospheric boundary layer development and weather processes on local and regional scales. Using the PF.WRF model, a fully-coupled hydrologic and atmospheric model employing the ParFlow hydrologic model with the Weather Research and Forecasting model coupled via mass and energy fluxes across the land surface, we have explored the connections between the land surface and the atmosphere in terms of land surface energy flux partitioning and coupled variable fields including hydraulic conductivity, soil moisture and wind speed, and demonstrated that reductions in uncertainty in these coupled fields propagate through the hydrologic and atmospheric system. We have adapted the Data Assimilation Research Testbed (DART), an implementation of the robust Ensemble Kalman Filter data assimilation algorithm, to expand our capability to nudge forecasts produced with the PF.WRF model using observational data. Using a semi-idealized simulation domain, we examine the effects of assimilating observations of variables such as wind speed and temperature collected in the atmosphere, and land surface and subsurface observations such as soil moisture on the quality of forecast outputs. The sensitivities we find in this study will enable further studies to optimize observation collection to maximize the utility of the PF.WRF-DART forecasting system.

  5. Wind energy potential assessment of Cameroon's coastal regions for the installation of an onshore wind farm.

    PubMed

    Arreyndip, Nkongho Ayuketang; Joseph, Ebobenow; David, Afungchui

    2016-11-01

    For the future installation of a wind farm in Cameroon, the wind energy potentials of three of Cameroon's coastal cities (Kribi, Douala and Limbe) are assessed using NASA average monthly wind data for 31 years (1983-2013) and compared through Weibull statistics. The Weibull parameters are estimated by the method of maximum likelihood, the mean power densities, the maximum energy carrying wind speeds and the most probable wind speeds are also calculated and compared over these three cities. Finally, the cumulative wind speed distributions over the wet and dry seasons are also analyzed. The results show that the shape and scale parameters for Kribi, Douala and Limbe are 2.9 and 2.8, 3.9 and 1.8 and 3.08 and 2.58, respectively. The mean power densities through Weibull analysis for Kribi, Douala and Limbe are 33.7 W/m2, 8.0 W/m2 and 25.42 W/m2, respectively. Kribi's most probable wind speed and maximum energy carrying wind speed was found to be 2.42 m/s and 3.35 m/s, 2.27 m/s and 3.03 m/s for Limbe and 1.67 m/s and 2.0 m/s for Douala, respectively. Analysis of the wind speed and hence power distribution over the wet and dry seasons shows that in the wet season, August is the windiest month for Douala and Limbe while September is the windiest month for Kribi while in the dry season, March is the windiest month for Douala and Limbe while February is the windiest month for Kribi. In terms of mean power density, most probable wind speed and wind speed carrying maximum energy, Kribi shows to be the best site for the installation of a wind farm. Generally, the wind speeds at all three locations seem quite low, average wind speeds of all the three studied locations fall below 4.0m/s which is far below the cut-in wind speed of many modern wind turbines. However we recommend the use of low cut-in speed wind turbines like the Savonius for stand alone low energy needs.

  6. Evaluating potentials for future generation off-shore wind-power outside Norway

    NASA Astrophysics Data System (ADS)

    Benestad, R. E.; Haugen, J.; Haakenstad, H.

    2012-12-01

    With todays critical need of renewable energy sources, it is naturally to look towards wind power. With the long coast of Norway, there is a large potential for wind farms offshore Norway. Although there are more challenges with offshore wind energy installations compared to wind farms on land, the offshore wind is generally higher, and there is also higher persistence of wind speed values in the power generating classes. I planning offshore wind farms, there is a need of evaluation of the wind resources, the wind climatology and possible future changes. In this aspect, we use data from regional climate model runs performed in the European ENSEMBLE-project (van der Linden and J.F.B. Mitchell, 2009). In spite of increased reliability in RCMs in the recent years, the simulations still suffer from systematic model errors, therefore the data has to be corrected before using them in wind resource analyses. In correcting the wind speeds from the RCMs, we will use wind speeds from a Norwegian high resolution wind- and wave- archive, NORA10 (Reistad et al 2010), to do quantile mapping (Themeβl et. al. 2012). The quantile mapping is performed individually for each regional simulation driven by ERA40-reanalysis from the ENSEMBLE-project corrected against NORA10. The same calibration is then used to the belonging regional climate scenario. The calibration is done for each grid cell in the domain and for each day of the year centered in a +/-15 day window to make an empirical cumulative density function for each day of the year. The quantile mapping of the scenarios provide us with a new wind speed data set for the future, more correct compared to the raw ENSEMBLE scenarios. References: Reistad M., Ø. Breivik, H. Haakenstad, O. J. Aarnes, B. R. Furevik and J-R Bidlo, 2010, A high-resolution hindcast of wind and waves for The North Sea, The Norwegian Sea and The Barents Sea. J. Geophys. Res., 116. doi:10.1029/2010JC006402. Themessl M. J., A. Gobiet and A. Leuprecht, 2012, Empirical-statistical downscaling and error correction of regional climate models and its imipact on the climate change signal. Climatic Change 112: 449-468, DOI 10.1007/s10584-011-0224-4. Van der Linden P. and J.F.B. Mitchell, 2009, ENSEMBLES: Climate Change and its Impacts_ Summary and results from the ENSEMBLES project. Met Office Hadley Centre, FitzRoy Road, Exeter EX1 3PB, UK.

  7. Dynamic Average-Value Modeling of Doubly-Fed Induction Generator Wind Energy Conversion Systems

    NASA Astrophysics Data System (ADS)

    Shahab, Azin

    In a Doubly-fed Induction Generator (DFIG) wind energy conversion system, the rotor of a wound rotor induction generator is connected to the grid via a partial scale ac/ac power electronic converter which controls the rotor frequency and speed. In this research, detailed models of the DFIG wind energy conversion system with Sinusoidal Pulse-Width Modulation (SPWM) scheme and Optimal Pulse-Width Modulation (OPWM) scheme for the power electronic converter are developed in detail in PSCAD/EMTDC. As the computer simulation using the detailed models tends to be computationally extensive, time consuming and even sometimes not practical in terms of speed, two modified approaches (switching-function modeling and average-value modeling) are proposed to reduce the simulation execution time. The results demonstrate that the two proposed approaches reduce the simulation execution time while the simulation results remain close to those obtained using the detailed model simulation.

  8. Short pulse radar used to measure sea surface wind speed and SWH. [Significant Wave Height

    NASA Technical Reports Server (NTRS)

    Hammond, D. L.; Mennella, R. A.; Walsh, E. J.

    1977-01-01

    A joint airborne measurement program is being pursued by NRL and NASA Wallops Flight Center to determine the extent to which wind speed and sea surface significant wave height (SWH) can be measured quantitatively and remotely with a short pulse (2 ns), wide-beam (60 deg), nadir-looking 3-cm radar. The concept involves relative power measurements only and does not need a scanning antenna, Doppler filters, or absolute power calibration. The slopes of the leading and trailing edges of the averaged received power for the pulse limited altimeter are used to infer SWH and surface wind speed. The interpretation is based on theoretical models of the effects of SWH on the leading edge shape and rms sea-surface slope on the trailing-edge shape. The models include the radar system parameters of antenna beam width and pulsewidth.

  9. WAMDII: The Wide Angle Michelson Doppler Imaging Interferometer

    NASA Technical Reports Server (NTRS)

    1992-01-01

    As part of an effort to learn more about the upper atmosphere and how it is linked to the weather experienced each day, NASA and NRCC are jointly sponsoring the Wide Angle Michelson Doppler Imaging Interferometer (WAMDII) Mission. WAMDII will measure atmospheric temperature and wind speed in the upper atmosphere. In addition to providing data on the upper atmosphere, the wind speed and temperature readings WAMDII takes will also be highly useful in developing and updating computer simulated models of the upper atmosphere. These models are used in the design and testing of equipment and software for Shuttles, satellites, and reentry vehicles. In making its wind speed and temperature measurements, WAMDII examines the Earth's airglow, a faint photochemical luminescence caused by the influx of solar ultraviolet energy into the upper atmosphere. During periods of high solar flare activity, the amount of this UV energy entering the upper atmosphere increases, and this increase may effect airglow emissions.

  10. On the variability of the Charnock constant and the functional dependence of the drag coefficient on wind speed: Part II-Observations

    NASA Astrophysics Data System (ADS)

    Bye, John A. T.; Wolff, Jörg-Olaf; Lettmann, Karsten A.

    2014-07-01

    An analytical expression for the 10 m drag law in terms of the 10 m wind speed at the maximum in the 10 m drag coefficient, and the Charnock constant is presented, which is based on the results obtained from a model of the air-sea interface derived in Bye et al. (2010). This drag law is almost independent of wave age and over the mid-range of wind speeds (5-17 ms-1) is very similar to the drag law based on observed data presented in Foreman and Emeis (2010). The linear fit of the observed data which incorporates a constant into the traditional definition of the drag coefficient is shown to arise to first-order as a consequence of the momentum exchange across the air-sea boundary layer brought about by wave generation and spray production which are explicitly represented in the theoretical model.

  11. Dependence of flow and transport through the Williamson River Delta, Upper Klamath Lake, Oregon, on wind, river inflow, and lake elevation

    USGS Publications Warehouse

    Wood, Tamara M.

    2012-01-01

    The hydrodynamic model of Upper Klamath and Agency Lakes, Oregon, was used to run 384 realizations of a numerical tracer experiment in order to understand the relative effects of wind, lake elevation, and Williamson River inflow on flow and transport (the movement of water and passively transported constituents) through the Williamson River Delta. Significant findings from this study include: * The replacement rate of water increased in Tulana and Goose Bay with increasing lake elevation, Williamson River inflow, and wind speed. * The fraction of Williamson River inflow passing through either side of the Delta increased with lake elevation and Williamson River inflow. * The partial replacement rate of water in Goose Bay with water from the Williamson River increased with wind speed. * The partial replacement rate of water in Tulana with water from the Williamson River decreased with wind speed. * Strong wind forcing at the water surface caused more of the Williamson River inflow to pass through Goose Bay than through Tulana. * Westerly to northwesterly winds result in more of the Williamson River inflow passing through the Goose Bay side of the Delta than through the Tulana side. * Regression models developed from the tracer experiments can be used to quantify the dependencies between transport and the independent variables to obtain rough estimates of useful quantities such as residence time and steady-state solute concentrations.

  12. Evaluation of WRF-Predicted Near-Hub-Height Winds and Ramp Events over a Pacific Northwest Site with Complex Terrain

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Qing; Berg, Larry K.; Pekour, Mikhail

    The WRF model version 3.3 is used to simulate near hub-height winds and power ramps utilizing three commonly used planetary boundary-layer (PBL) schemes: Mellor-Yamada-Janjic (MYJ), University of Washington (UW), and Yonsei University (YSU). The predicted winds have small mean biases compared with observations. Power ramps and step changes (changes within an hour) consistently show that the UW scheme performed better in predicting up ramps under stable conditions with higher prediction accuracy and capture rates. Both YSU and UW scheme show good performance predicting up- and down- ramps under unstable conditions with YSU being slightly better for ramp durations longer thanmore » an hour. MYJ is the most successful simulating down-ramps under stable conditions. The high wind speed and large shear associated with low-level jets are frequently associated with power ramps, and the biases in predicted low-level jet explain some of the shown differences in ramp predictions among different PBL schemes. Low-level jets were observed as low as ~200 m in altitude over the Columbia Basin Wind Energy Study (CBWES) site, located in an area of complex terrain. The shear, low-level peak wind speeds, as well as the height of maximum wind speed are not well predicted. Model simulations with 3 PBL schemes show the largest variability among them under stable conditions.« less

  13. On the predominance of unstable atmospheric conditions in the marine boundary layer offshore of the U.S. northeastern coast

    DOE PAGES

    Archer, Cristina L.; Colle, Brian A.; Veron, Dana L.; ...

    2016-07-18

    The marine boundary layer of the northeastern U.S. is studied with focus on wind speed, atmospheric stability, and turbulent kinetic energy (TKE), the three most relevant properties in the context of offshore wind power development. Two long-term observational data sets are analyzed. The first one consists of multilevel meteorological variables measured up to 60 m during 2003–2011 at the offshore Cape Wind tower, located near the center of the Nantucket Sound. The second data set comes from the 2013–2014 IMPOWR campaign (Improving the Modeling and Prediction of Offshore Wind Resources), in which wind and wave data were collected with newmore » instruments on the Cape Wind platform, in addition to meteorological data measured during 19 flight missions offshore of New York, Connecticut, Rhode Island, and Massachusetts. It is found that, in this region: (1) the offshore wind resource is remarkable, with monthly average wind speeds at 60 m exceeding 7 m s -1 all year round, highest winds in winter (10.1 m s -1) and lowest in summer (7.1 m s -1), and a distinct diurnal modulation, especially in summer; (2) the marine boundary layer is predominantly unstable (61% unstable vs. 21% neutral vs. 18% stable), meaning that mixing is strong, heat fluxes are positive, and the wind speed profile is often nonlogarithmic (~40% of the time); and (3) the shape of the wind speed profile (log versus nonlog) is an effective qualitative proxy for atmospheric stability, whereas TKE alone is not.« less

  14. On the predominance of unstable atmospheric conditions in the marine boundary layer offshore of the U.S. northeastern coast

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Archer, Cristina L.; Colle, Brian A.; Veron, Dana L.

    The marine boundary layer of the northeastern U.S. is studied with focus on wind speed, atmospheric stability, and turbulent kinetic energy (TKE), the three most relevant properties in the context of offshore wind power development. Two long-term observational data sets are analyzed. The first one consists of multilevel meteorological variables measured up to 60 m during 2003–2011 at the offshore Cape Wind tower, located near the center of the Nantucket Sound. The second data set comes from the 2013–2014 IMPOWR campaign (Improving the Modeling and Prediction of Offshore Wind Resources), in which wind and wave data were collected with newmore » instruments on the Cape Wind platform, in addition to meteorological data measured during 19 flight missions offshore of New York, Connecticut, Rhode Island, and Massachusetts. It is found that, in this region: (1) the offshore wind resource is remarkable, with monthly average wind speeds at 60 m exceeding 7 m s -1 all year round, highest winds in winter (10.1 m s -1) and lowest in summer (7.1 m s -1), and a distinct diurnal modulation, especially in summer; (2) the marine boundary layer is predominantly unstable (61% unstable vs. 21% neutral vs. 18% stable), meaning that mixing is strong, heat fluxes are positive, and the wind speed profile is often nonlogarithmic (~40% of the time); and (3) the shape of the wind speed profile (log versus nonlog) is an effective qualitative proxy for atmospheric stability, whereas TKE alone is not.« less

  15. Western Wind Data Set | Grid Modernization | NREL

    Science.gov Websites

    replicates the stochastic nature of wind power plant output. NREL modeled hysteresis around wind turbine cut where wind speeds are often near wind turbine cut-out (~25 m/s), SCORE output does not replicate the Vestas V90). The hysteresis-corrected SCORE is an attempt to put the wind turbine hysteresis at cut-out

  16. Determinants of black carbon, particle mass and number concentrations in London transport microenvironments

    NASA Astrophysics Data System (ADS)

    Rivas, Ioar; Kumar, Prashant; Hagen-Zanker, Alex; Andrade, Maria de Fatima; Slovic, Anne Dorothee; Pritchard, John P.; Geurs, Karst T.

    2017-07-01

    We investigated the determinants of personal exposure concentrations of commuters' to black carbon (BC), ultrafine particle number concentrations (PNC), and particulate matter (PM1, PM2.5 and PM10) in different travel modes. We quantified the contribution of key factors that explain the variation of the previous pollutants in four commuting routes in London, each covered by four transport modes (car, bus, walk and underground). Models were performed for each pollutant, separately to assess the effect of meteorology (wind speed) or ambient concentrations (with either high spatial or temporal resolution). Concentration variations were mainly explained by wind speed or ambient concentrations and to a lesser extent by route and period of the day. In multivariate models with wind speed, the wind speed was the common significant predictor for all the pollutants in the above-ground modes (i.e., car, bus, walk); and the only predictor variable for the PM fractions. Wind speed had the strongest effect on PM during the bus trips, with an increase in 1 m s-1 leading to a decrease in 2.25, 2.90 and 4.98 μg m-3 of PM1, PM2.5 and PM10, respectively. PM2.5 and PM10 concentrations in car trips were better explained by ambient concentrations with high temporal resolution although from a single monitoring station. On the other hand, ambient concentrations with high spatial coverage but lower temporal resolution predicted better the concentrations in bus trips, due to bus routes passing through streets with a high variability of traffic intensity. In the underground models, wind speed was not significant and line and type of windows on the train explained 42% of the variation of PNC and 90% of all PM fractions. Trains in the district line with openable windows had an increase in concentrations of 1 684 cm-3 for PNC and 40.69 μg m-3 for PM2.5 compared with trains that had non-openable windows. The results from this work can be used to target efforts to reduce personal exposures of London commuters.

  17. Monthly and annual percentage levels of wind speed differences computed by using FPS-16 radar/Jimsphere wind profile data from Cape Kennedy, Florida

    NASA Technical Reports Server (NTRS)

    Susko, M.; Kaufman, J. W.

    1973-01-01

    The percentage levels of wind speed differences are presented computed from sequential FPS-16 radar/Jimsphere wind profiles. The results are based on monthly profiles obtained from December 1964 to July 1970 at Cape Kennedy, Florida. The profile sequences contain a series of three to ten Jimspheres released at approximately 1.5-hour intervals. The results given are the persistence analysis of wind speed difference at 1.5-hour intervals to a maximum time interval of 12 hours. The monthly percentage of wind speed differences and the annual percentage of wind speed differences are tabulated. The percentage levels are based on the scalar wind speed changes calculated over an altitude interval of approximately 50 meters and printed out every 25 meters as a function of initial wind speed within each five-kilometer layer from near sea level to 20 km. In addition, analyses were made of the wind speed difference for the 0.2 to 1 km layer as an aid for studies associated with take-off and landing of the space shuttle.

  18. Air/sea DMS gas transfer in the North Atlantic: evidence for limited interfacial gas exchange at high wind speed

    NASA Astrophysics Data System (ADS)

    Bell, T. G.; De Bruyn, W.; Miller, S. D.; Ward, B.; Christensen, K.; Saltzman, E. S.

    2013-05-01

    Shipboard measurements of eddy covariance DMS air/sea fluxes and seawater concentration were carried out in the North Atlantic bloom region in June/July 2011. Gas transfer coefficients (k660) show a linear dependence on mean horizontal wind speed at wind speeds up to 11 m s-1. At higher wind speeds the relationship between k660 and wind speed weakens. At high winds, measured DMS fluxes were lower than predicted based on the linear relationship between wind speed and interfacial stress extrapolated from low to intermediate wind speeds. In contrast, the transfer coefficient for sensible heat did not exhibit this effect. The apparent suppression of air/sea gas flux at higher wind speeds appears to be related to sea state, as determined from shipboard wave measurements. These observations are consistent with the idea that long waves suppress near surface water side turbulence, and decrease interfacial gas transfer. This effect may be more easily observed for DMS than for less soluble gases, such as CO2, because the air/sea exchange of DMS is controlled by interfacial rather than bubble-mediated gas transfer under high wind speed conditions.

  19. Air-sea dimethylsulfide (DMS) gas transfer in the North Atlantic: evidence for limited interfacial gas exchange at high wind speed

    NASA Astrophysics Data System (ADS)

    Bell, T. G.; De Bruyn, W.; Miller, S. D.; Ward, B.; Christensen, K.; Saltzman, E. S.

    2013-11-01

    Shipboard measurements of eddy covariance dimethylsulfide (DMS) air-sea fluxes and seawater concentration were carried out in the North Atlantic bloom region in June/July 2011. Gas transfer coefficients (k660) show a linear dependence on mean horizontal wind speed at wind speeds up to 11 m s-1. At higher wind speeds the relationship between k660 and wind speed weakens. At high winds, measured DMS fluxes were lower than predicted based on the linear relationship between wind speed and interfacial stress extrapolated from low to intermediate wind speeds. In contrast, the transfer coefficient for sensible heat did not exhibit this effect. The apparent suppression of air-sea gas flux at higher wind speeds appears to be related to sea state, as determined from shipboard wave measurements. These observations are consistent with the idea that long waves suppress near-surface water-side turbulence, and decrease interfacial gas transfer. This effect may be more easily observed for DMS than for less soluble gases, such as CO2, because the air-sea exchange of DMS is controlled by interfacial rather than bubble-mediated gas transfer under high wind speed conditions.

  20. Co-existence and switching between fast and Ω-slow wind solutions in rapidly rotating massive stars

    NASA Astrophysics Data System (ADS)

    Araya, I.; Curé, M.; ud-Doula, A.; Santillán, A.; Cidale, L.

    2018-06-01

    Most radiation-driven winds of massive stars can be modelled with m-CAK theory, resulting in the so-called fast solution. However, the most rapidly rotating stars among them, especially when the rotational speed is higher than {˜ } 75 per cent of the critical rotational speed, can adopt a different solution, the so-called Ω-slow solution, characterized by a dense and slow wind. Here, we study the transition region of the solutions where the fast solution changes to the Ω-slow solution. Using both time-steady and time-dependent numerical codes, we study this transition region for various equatorial models of B-type stars. In all cases, in a certain range of rotational speeds we find a region where the fast and the Ω-slow solution can co-exist. We find that the type of solution obtained in this co-existence region depends stongly on the initial conditions of our models. We also test the stability of the solutions within the co-existence region by performing base-density perturbations in the wind. We find that under certain conditions, the fast solution can switch to the Ω-slow solution, or vice versa. Such solution-switching may be a possible contributor of material injected into the circumstellar environment of Be stars, without requiring rotational speeds near critical values.

  1. Investigation of high-speed shaft bearing loads in wind turbine gearboxes through dynamometer testing

    DOE PAGES

    Guo, Yi; Keller, Jonathan

    2017-11-10

    Many wind turbine gearboxes require repair or replacement well before reaching the end of their design life. The most common failure is bearing axial cracks, commonly called white etching cracks (WECs), which typically occur in the inner raceways of the high-speed parallel-stage rolling element bearings. Although the root causes of WECs are debated, one theory is that they are related to routine dynamic operating conditions and occasional transient events prevalent in wind turbines that can result in high bearing stress and sliding of the rolling elements. Here, this paper examined wind turbine gearbox high-speed shaft bearing loads and stresses throughmore » modeling and full-scale dynamometer testing. Bearing outer race loads were directly measured and predicted using a variety of modeling tools in normal operations, misaligned conditions, and transient events particularly prone to bearing sliding. Test data and models of bearing loads were well correlated. Neither operational misalignment due to rotor moments nor static generator misalignment affected the bearing loads when compared with pure-torque conditions. Thus, it is not likely that generator misalignment is a causal factor of WECs. In contrast, during transient events, the bearings experienced alternating periods of high stress, torque reversals, and loads under the minimum requisite at high rotating speeds while showing indications of sliding, all of which could be related to the formation of WECs.« less

  2. Investigation of high-speed shaft bearing loads in wind turbine gearboxes through dynamometer testing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guo, Yi; Keller, Jonathan

    Many wind turbine gearboxes require repair or replacement well before reaching the end of their design life. The most common failure is bearing axial cracks, commonly called white etching cracks (WECs), which typically occur in the inner raceways of the high-speed parallel-stage rolling element bearings. Although the root causes of WECs are debated, one theory is that they are related to routine dynamic operating conditions and occasional transient events prevalent in wind turbines that can result in high bearing stress and sliding of the rolling elements. Here, this paper examined wind turbine gearbox high-speed shaft bearing loads and stresses throughmore » modeling and full-scale dynamometer testing. Bearing outer race loads were directly measured and predicted using a variety of modeling tools in normal operations, misaligned conditions, and transient events particularly prone to bearing sliding. Test data and models of bearing loads were well correlated. Neither operational misalignment due to rotor moments nor static generator misalignment affected the bearing loads when compared with pure-torque conditions. Thus, it is not likely that generator misalignment is a causal factor of WECs. In contrast, during transient events, the bearings experienced alternating periods of high stress, torque reversals, and loads under the minimum requisite at high rotating speeds while showing indications of sliding, all of which could be related to the formation of WECs.« less

  3. Inventory of File sref.t03z.pgrb197.prob_ds_3hrly.grib

    Science.gov Websites

    ground WIND 3 hour fcst Wind Speed [prob] prob >12.89 005 10 m above ground WIND 3 hour fcst Wind Speed [prob] prob >17.5 006 10 m above ground WIND 3 hour fcst Wind Speed [prob] prob >25.78 007 2 ;0.015 010 10 m above ground WIND 6 hour fcst Wind Speed [prob] prob >12.89 011 10 m above ground WIND

  4. Expertise effects in cutaneous wind perception.

    PubMed

    Pluijms, Joost P; Cañal-Bruland, Rouwen; Bergmann Tiest, Wouter M; Mulder, Fabian A; Savelsbergh, Geert J P

    2015-08-01

    We examined whether expertise effects are present in cutaneous wind perception. To this end, we presented wind stimuli consisting of different wind directions and speeds in a wind simulator. The wind simulator generated wind stimuli from 16 directions and with three speeds by means of eight automotive wind fans. Participants were asked to judge cutaneously perceived wind directions and speeds without having access to any visual or auditory information. Expert sailors (n = 6), trained to make the most effective use of wind characteristics, were compared to less-skilled sailors (n = 6) and to a group of nonsailors (n = 6). The results indicated that expert sailors outperformed nonsailors in perceiving wind direction (i.e., smaller mean signed errors) when presented with low wind speeds. This suggests that expert sailors are more sensitive in picking up differences in wind direction, particularly when confronted with low wind speeds that demand higher sensitivity.

  5. 9x15 Low Speed Wind Tunnel Improvements Update

    NASA Technical Reports Server (NTRS)

    Stephens, David

    2017-01-01

    The 9- by 15-Foot Low Speed Wind Tunnel (9x15 LSWT) at NASA Glenn Research Center was built in 1969 in the return leg of the 8- by 6-Foot Supersonic Wind Tunnel (8x6 SWT). The 9x15 LSWT was designed for performance testing of VSTOL aircraft models, but with the addition of the current acoustic treatment in 1986 the tunnel been used principally for acoustic and performance testing of aircraft propulsion systems. The present document describes an anticipated acoustic upgrade to be completed in 2018.

  6. figure1.nc

    EPA Pesticide Factsheets

    NetCDF file of the SREF standard deviation of wind speed and direction that was used to inject variability in the FDDA input.variable U_NDG_OLD contains standard deviation of wind speed (m/s)variable V_NDG_OLD contains the standard deviation of wind direction (deg)This dataset is associated with the following publication:Gilliam , R., C. Hogrefe , J. Godowitch, S. Napelenok , R. Mathur , and S.T. Rao. Impact of inherent meteorology uncertainty on air quality model predictions. JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES. American Geophysical Union, Washington, DC, USA, 120(23): 12,259–12,280, (2015).

  7. Efficacy of spatial averaging of infrasonic pressure in varying wind speeds.

    PubMed

    DeWolf, Scott; Walker, Kristoffer T; Zumberge, Mark A; Denis, Stephane

    2013-06-01

    Wind noise reduction (WNR) is important in the measurement of infrasound. Spatial averaging theory led to the development of rosette pipe arrays. The efficacy of rosettes decreases with increasing wind speed and only provides a maximum of ~20 dB WNR due to a maximum size limitation. An Optical Fiber Infrasound Sensor (OFIS) reduces wind noise by instantaneously averaging infrasound along the sensor's length. In this study two experiments quantify the WNR achieved by rosettes and OFISs of various sizes and configurations. Specifically, it is shown that the WNR for a circular OFIS 18 m in diameter is the same as a collocated 32-inlet pipe array of the same diameter. However, linear OFISs ranging in length from 30 to 270 m provide a WNR of up to ~30 dB in winds up to 5 m/s. The measured WNR is a logarithmic function of the OFIS length and depends on the orientation of the OFIS with respect to wind direction. OFISs oriented parallel to the wind direction achieve ~4 dB greater WNR than those oriented perpendicular to the wind. Analytical models for the rosette and OFIS are developed that predict the general observed relationships between wind noise reduction, frequency, and wind speed.

  8. Using Sentinel-1 SAR satellites to map wind speed variation across offshore wind farm clusters

    NASA Astrophysics Data System (ADS)

    James, S. F.

    2017-11-01

    Offshore wind speed maps at 500m resolution are derived from freely available satellite Synthetic Aperture Radar (SAR) data. The method for processing many SAR images to derive wind speed maps is described in full. The results are tested against coincident offshore mast data. Example wind speed maps for the UK Thames Estuary offshore wind farm cluster are presented.

  9. Commuting fruit bats beneficially modulate their flight in relation to wind.

    PubMed

    Sapir, Nir; Horvitz, Nir; Dechmann, Dina K N; Fahr, Jakob; Wikelski, Martin

    2014-05-07

    When animals move, their tracks may be strongly influenced by the motion of air or water, and this may affect the speed, energetics and prospects of the journey. Flying organisms, such as bats, may thus benefit from modifying their flight in response to the wind vector. Yet, practical difficulties have so far limited the understanding of this response for free-ranging bats. We tracked nine straw-coloured fruit bats (Eidolon helvum) that flew 42.5 ± 17.5 km (mean ± s.d.) to and from their roost near Accra, Ghana. Following detailed atmospheric simulations, we found that bats compensated for wind drift, as predicted under constant winds, and decreased their airspeed in response to tailwind assistance such that their groundspeed remained nearly constant. In addition, bats increased their airspeed with increasing crosswind speed. Overall, bats modulated their airspeed in relation to wind speed at different wind directions in a manner predicted by a two-dimensional optimal movement model. We conclude that sophisticated behavioural mechanisms to minimize the cost of transport under various wind conditions have evolved in bats. The bats' response to the wind is similar to that reported for migratory birds and insects, suggesting convergent evolution of flight behaviours in volant organisms.

  10. Influences of wind and precipitation on different-sized particulate matter concentrations (PM2.5, PM10, PM2.5-10)

    NASA Astrophysics Data System (ADS)

    Zhang, Boen; Jiao, Limin; Xu, Gang; Zhao, Suli; Tang, Xin; Zhou, Yue; Gong, Chen

    2018-06-01

    Though it is recognized that meteorology has a great impact on the diffusion, accumulation and transport of air pollutants, few studies have investigated the impacts on different-sized particulate matter concentrations. We conducted a systematic comparative analysis and used the framework of generalized additive models (GAMs) to explore the influences of critical meteorological parameters, wind and precipitation, on PM2.5, PM10 and PM2.5-10 concentrations in Wuhan during 2013-2016. Overall, results showed that the impacts of wind and precipitation on different-sized PM concentrations are significantly different. The fine PM concentrations decreased gradually with the increase of wind speed, while coarse PM concentrations would increase due to dust resuspension under strong wind. Wind direction exerts limited influence on coarse PM concentrations. Wind speed was linearly correlated with log-transformed PM2.5 concentrations, but nonlinearly correlated with log-transformed PM10 and PM2.5-10 concentrations. We also found the PM2.5 and PM2.5-10 concentrations decreased by nearly 60 and 15% when the wind speed was up to 6 m/s, respectively, indicating a stronger negative impact of wind-speed on fine PM than coarse PM. The scavenging efficiency of precipitation on PM2.5-10 was over twice as high as on PM2.5. Our findings may help to understand the impacts of meteorology on different PM concentrations as well as discriminate and forecast variation in particulate matter concentrations.

  11. Peak Wind Tool for General Forecasting

    NASA Technical Reports Server (NTRS)

    Barrett, Joe H., III

    2010-01-01

    The expected peak wind speed of the day is an important forecast element in the 45th Weather Squadron's (45 WS) daily 24-Hour and Weekly Planning Forecasts. The forecasts are used for ground and space launch operations at the Kennedy Space Center (KSC) and Cape Canaveral Air Force Station (CCAFS). The 45 WS also issues wind advisories for KSC/CCAFS when they expect wind gusts to meet or exceed 25 kt, 35 kt and 50 kt thresholds at any level from the surface to 300 ft. The 45 WS forecasters have indicated peak wind speeds are challenging to forecast, particularly in the cool season months of October - April. In Phase I of this task, the Applied Meteorology Unit (AMU) developed a tool to help the 45 WS forecast non-convective winds at KSC/CCAFS for the 24-hour period of 0800 to 0800 local time. The tool was delivered as a Microsoft Excel graphical user interface (GUI). The GUI displayed the forecast of peak wind speed, 5-minute average wind speed at the time of the peak wind, timing of the peak wind and probability the peak speed would meet or exceed 25 kt, 35 kt and 50 kt. For the current task (Phase II ), the 45 WS requested additional observations be used for the creation of the forecast equations by expanding the period of record (POR). Additional parameters were evaluated as predictors, including wind speeds between 500 ft and 3000 ft, static stability classification, Bulk Richardson Number, mixing depth, vertical wind shear, temperature inversion strength and depth and wind direction. Using a verification data set, the AMU compared the performance of the Phase I and II prediction methods. Just as in Phase I, the tool was delivered as a Microsoft Excel GUI. The 45 WS requested the tool also be available in the Meteorological Interactive Data Display System (MIDDS). The AMU first expanded the POR by two years by adding tower observations, surface observations and CCAFS (XMR) soundings for the cool season months of March 2007 to April 2009. The POR was expanded again by six years, from October 1996 to April 2002, by interpolating 1000-ft sounding data to 100-ft increments. The Phase II developmental data set included observations for the cool season months of October 1996 to February 2007. The AMU calculated 68 candidate predictors from the XMR soundings, to include 19 stability parameters, 48 wind speed parameters and one wind shear parameter. Each day in the data set was stratified by synoptic weather pattern, low-level wind direction, precipitation and Richardson Number, for a total of 60 stratification methods. Linear regression equations, using the 68 predictors and 60 stratification methods, were created for the tool's three forecast parameters: the highest peak wind speed of the day (PWSD), 5-minute average speed at the same time (A WSD), and timing of the PWSD. For PWSD and A WSD, 30 Phase II methods were selected for evaluation in the verification data set. For timing of the PWSD, 12 Phase\\I methods were selected for evaluation. The verification data set contained observations for the cool season months of March 2007 to April 2009. The data set was used to compare the Phase I and II forecast methods to climatology, model forecast winds and wind advisories issued by the 45 WS. The model forecast winds were derived from the 0000 and 1200 UTC runs of the 12-km North American Mesoscale (MesoNAM) model. The forecast methods that performed the best in the verification data set were selected for the Phase II version of the tool. For PWSD and A WSD, linear regression equations based on MesoNAM forecasts performed significantly better than the Phase I and II methods. For timing of the PWSD, none of the methods performed significantly bener than climatology. The AMU then developed the Microsoft Excel and MIDDS GUls. The GUIs display the forecasts for PWSD, AWSD and the probability the PWSD will meet or exceed 25 kt, 35 kt and 50 kt. Since none of the prediction methods for timing of the PWSD performed significantly better thanlimatology, the tool no longer displays this predictand. The Excel and MIDDS GUIs display forecasts for Day-I to Day-3 and Day-I to Day-5, respectively. The Excel GUI uses MesoNAM forecasts as input, while the MIDDS GUI uses input from the MesoNAM and Global Forecast System model. Based on feedback from the 45 WS, the AMU added the daily average wind speed from 30 ft to 60 ft to the tool, which is one of the parameters in the 24-Hour and Weekly Planning Forecasts issued by the 45 WS. In addition, the AMU expanded the MIDDS GUI to include forecasts out to Day-7.

  12. Using Large-Eddy Simulations to Define Spectral and Coherence Characteristics of the Hurricane Boundary Layer for Wind-Energy Applications

    NASA Astrophysics Data System (ADS)

    Worsnop, Rochelle P.; Bryan, George H.; Lundquist, Julie K.; Zhang, Jun A.

    2017-10-01

    Offshore wind-energy development is planned for regions where hurricanes commonly occur, such as the USA Atlantic Coast. Even the most robust wind-turbine design (IEC Class I) may be unable to withstand a Category-2 hurricane (hub-height wind speeds >50 m s^{-1}). Characteristics of the hurricane boundary layer that affect the structural integrity of turbines, especially in major hurricanes, are poorly understood, primarily due to a lack of adequate observations that span typical turbine heights (<200 m above sea level). To provide these data, we use large-eddy simulations to produce wind profiles of an idealized Category-5 hurricane at high spatial (10 m) and temporal (0.1 s) resolution. By comparison with unique flight-level observations from a field project, we find that a relatively simple configuration of the Cloud Model I model accurately represents the properties of Hurricane Isabel (2003) in terms of mean wind speeds, wind-speed variances, and power spectra. Comparisons of power spectra and coherence curves derived from our hurricane simulations to those used in current turbine design standards suggest that adjustments to these standards may be needed to capture characteristics of turbulence seen within the simulated hurricane boundary layer. To enable improved design standards for wind turbines to withstand hurricanes, we suggest modifications to account for shifts in peak power to higher frequencies and greater spectral coherence at large separations.

  13. Using Large-Eddy Simulations to Define Spectral and Coherence Characteristics of the Hurricane Boundary Layer for Wind-Energy Applications

    DOE PAGES

    Worsnop, Rochelle P.; Bryan, George H.; Lundquist, Julie K.; ...

    2017-06-08

    Offshore wind-energy development is planned for regions where hurricanes commonly occur, such as the USA Atlantic Coast. Even the most robust wind-turbine design (IEC Class I) may be unable to withstand a Category-2 hurricane (hub-height wind speeds >50 m s -1). Characteristics of the hurricane boundary layer that affect the structural integrity of turbines, especially in major hurricanes, are poorly understood, primarily due to a lack of adequate observations that span typical turbine heights (<200 m above sea level). To provide these data, we use large-eddy simulations to produce wind profiles of an idealized Category-5 hurricane at high spatial (10more » m) and temporal (0.1 s) resolution. By comparison with unique flight-level observations from a field project, we find that a relatively simple configuration of the Cloud Model I model accurately represents the properties of Hurricane Isabel (2003) in terms of mean wind speeds, wind-speed variances, and power spectra. Comparisons of power spectra and coherence curves derived from our hurricane simulations to those used in current turbine design standards suggest that adjustments to these standards may be needed to capture characteristics of turbulence seen within the simulated hurricane boundary layer. To enable improved design standards for wind turbines to withstand hurricanes, we suggest modifications to account for shifts in peak power to higher frequencies and greater spectral coherence at large separations.« less

  14. Using Large-Eddy Simulations to Define Spectral and Coherence Characteristics of the Hurricane Boundary Layer for Wind-Energy Applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Worsnop, Rochelle P.; Bryan, George H.; Lundquist, Julie K.

    Offshore wind-energy development is planned for regions where hurricanes commonly occur, such as the USA Atlantic Coast. Even the most robust wind-turbine design (IEC Class I) may be unable to withstand a Category-2 hurricane (hub-height wind speeds >50 m s -1). Characteristics of the hurricane boundary layer that affect the structural integrity of turbines, especially in major hurricanes, are poorly understood, primarily due to a lack of adequate observations that span typical turbine heights (<200 m above sea level). To provide these data, we use large-eddy simulations to produce wind profiles of an idealized Category-5 hurricane at high spatial (10more » m) and temporal (0.1 s) resolution. By comparison with unique flight-level observations from a field project, we find that a relatively simple configuration of the Cloud Model I model accurately represents the properties of Hurricane Isabel (2003) in terms of mean wind speeds, wind-speed variances, and power spectra. Comparisons of power spectra and coherence curves derived from our hurricane simulations to those used in current turbine design standards suggest that adjustments to these standards may be needed to capture characteristics of turbulence seen within the simulated hurricane boundary layer. To enable improved design standards for wind turbines to withstand hurricanes, we suggest modifications to account for shifts in peak power to higher frequencies and greater spectral coherence at large separations.« less

  15. Analytical expressions for maximum wind turbine average power in a Rayleigh wind regime

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carlin, P.W.

    Average or expectation values for annual power of a wind turbine in a Rayleigh wind regime are calculated and plotted as a function of cut-out wind speed. This wind speed is expressed in multiples of the annual average wind speed at the turbine installation site. To provide a common basis for comparison of all real and imagined turbines, the Rayleigh-Betz wind machine is postulated. This machine is an ideal wind machine operating with the ideal Betz power coefficient of 0.593 in a Rayleigh probability wind regime. All other average annual powers are expressed in fractions of that power. Cases consideredmore » include: (1) an ideal machine with finite power and finite cutout speed, (2) real machines operating in variable speed mode at their maximum power coefficient, and (3) real machines operating at constant speed.« less

  16. Near real time wind energy forecasting incorporating wind tunnel modeling

    NASA Astrophysics Data System (ADS)

    Lubitz, William David

    A series of experiments and investigations were carried out to inform the development of a day-ahead wind power forecasting system. An experimental near-real time wind power forecasting system was designed and constructed that operates on a desktop PC and forecasts 12--48 hours in advance. The system uses model output of the Eta regional scale forecast (RSF) to forecast the power production of a wind farm in the Altamont Pass, California, USA from 12 to 48 hours in advance. It is of modular construction and designed to also allow diagnostic forecasting using archived RSF data, thereby allowing different methods of completing each forecasting step to be tested and compared using the same input data. Wind-tunnel investigations of the effect of wind direction and hill geometry on wind speed-up above a hill were conducted. Field data from an Altamont Pass, California site was used to evaluate several speed-up prediction algorithms, both with and without wind direction adjustment. These algorithms were found to be of limited usefulness for the complex terrain case evaluated. Wind-tunnel and numerical simulation-based methods were developed for determining a wind farm power curve (the relation between meteorological conditions at a point in the wind farm and the power production of the wind farm). Both methods, as well as two methods based on fits to historical data, ultimately showed similar levels of accuracy: mean absolute errors predicting power production of 5 to 7 percent of the wind farm power capacity. The downscaling of RSF forecast data to the wind farm was found to be complicated by the presence of complex terrain. Poor results using the geostrophic drag law and regression methods motivated the development of a database search method that is capable of forecasting not only wind speeds but also power production with accuracy better than persistence.

  17. On the nature of low-frequency currents over a shallow area of the southern coast of the Gulf of Finland

    NASA Astrophysics Data System (ADS)

    Lilover, M.-J.; Pavelson, J.; Kõuts, T.

    2014-01-01

    This study aims to explain those factors influencing low-frequency currents in a shallow unstratified sea with complex topography. Current velocity measurements using a bottom-mounted ADCP, deployed at 8 m depth on the slope of Naissaar Bank (northern entrance to the Tallinn Bay, Gulf of Finland), were performed over five weeks in late autumn 2008. A quasi-steady current from nine sub-periods (two weeks) was relatively well correlated with wind (mean correlation coefficient of 0.70). During moderate to fresh winds, the current is veered to the right relative to the wind direction, by angles in the range of 14-38°. The flow is directed to the left, relative to the wind direction in stronger wind conditions, indicating evidence of topographic forcing. The observed current was reasonably in accordance with the flow predicted by the classical Ekman model. The modelled current speeds (wind speeds < 11 m s- 1) appear to be overestimated by 3-6 cm s- 1, whilst the observed rotation angles were mostly less than those predicted by the model. Inclusion of barotropic forcing to the Ekman model improved its performance. The discrepancies between the model and observations are discussed in terms of topographic steering, baroclinic effect and surface wave induced forcing.

  18. Simulation of Extreme Surface Winds by Regional Climate Models in the NARCCAP Archive

    NASA Astrophysics Data System (ADS)

    Hatteberg, R.; Takle, E. S.

    2011-12-01

    Surface winds play a significant role in many natural processes as well as providing a very important ecological service for many human activities. Surface winds ventilate pollutants and heat from our cities, contribute to pollination for our crops, and regulate the fluxes of heat, moisture, and carbon dioxide from the earth's surface. Many environmental models such as biogeochemical models, crop models, lake models, pollutant transport models, etc., use surface winds as a key variable. Studies of the impacts of climate change and climate variability on a wide range of natural systems and coupled human-natural systems frequently need information on how surface wind speeds will change as greenhouse gas concentrations in the earth's atmosphere change. We have studied the characteristics of extreme winds - both high winds and low winds - created by regional climate models (RCMs) in the NARCCAP archives. We evaluated the capabilities of five RCMs forced by NCEP reanalysis data as well as global climate model (GCM) data for contemporary and future scenario climates to capture the observed statistical distribution of surface winds, both high-wind events and low-wind conditions. Our domain is limited to the Midwest (37°N to 49°N, -82°W to -101°W) with the Great Lakes masked out, which eliminates orographic effects that may contribute to regional circulations. The majority of this study focuses on the warm seasonal in order to examine derechos on the extreme high end and air pollution and plant processes on the low wind speed end. To examine extreme high winds we focus on derechos, which are long-lasting convectively driven extreme wind events that frequently leave a swath of damage extending across multiple states. These events are unusual in that, despite their relatively small spatial scale, they can persist for hours or even days, drawing energy from well-organized larger mesoscale or synoptic scale processes. We examine the ability of NARCCAP RCMs to reproduce these isolated extreme events by assessing their existence, location, magnitude, synoptic linkage, initiation time and duration as compared to the record of observations of derechos in the Midwest and Northeast US. We find that RCMs do reproduce features with close resemblance to derechos although their magnitudes are considerably below those observed (which may be expected given the 50-km grid spacing of the RCM models). Extreme low wind speeds in summer are frequently associated with stagnation conditions leading to high air pollution events in major cities. Low winds also lead to reduced evapotranspiration by crops, which can impact phenological processes (e.g. pollination and seed fertilization, carbon uptake by plants). We evaluate whether RCMs can simulate climatic distributions of low-wind conditions in the northern US. Results show differences among models in their ability to reproduce observed characteristics of low summer-time winds. Only one model reproduces observed high frequency of calm night-time surface winds in summer, which suggests a need to improve model capabilities for simulating extreme stagnation events.

  19. Wind speed response of marine non-precipitating stratocumulus clouds over a diurnal cycle in cloud-system resolving simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kazil, Jan; Feingold, Graham; Yamaguchi, Takanobu

    Observed and projected trends in large-scale wind speed over the oceans prompt the question: how do marine stratocumulus clouds and their radiative properties respond to changes in large-scale wind speed? Wind speed drives the surface fluxes of sensible heat, moisture, and momentum and thereby acts on cloud liquid water path (LWP) and cloud radiative properties. We present an investigation of the dynamical response of non-precipitating, overcast marine stratocumulus clouds to different wind speeds over the course of a diurnal cycle, all else equal. In cloud-system resolving simulations, we find that higher wind speed leads to faster boundary layer growth and strongermore » entrainment. The dynamical driver is enhanced buoyant production of turbulence kinetic energy (TKE) from latent heat release in cloud updrafts. LWP is enhanced during the night and in the morning at higher wind speed, and more strongly suppressed later in the day. Wind speed hence accentuates the diurnal LWP cycle by expanding the morning–afternoon contrast. The higher LWP at higher wind speed does not, however, enhance cloud top cooling because in clouds with LWP ≳50 gm –2, longwave emissions are insensitive to LWP. This leads to the general conclusion that in sufficiently thick stratocumulus clouds, additional boundary layer growth and entrainment due to a boundary layer moistening arises by stronger production of TKE from latent heat release in cloud updrafts, rather than from enhanced longwave cooling. Here, we find that large-scale wind modulates boundary layer decoupling. At nighttime and at low wind speed during daytime, it enhances decoupling in part by faster boundary layer growth and stronger entrainment and in part because shear from large-scale wind in the sub-cloud layer hinders vertical moisture transport between the surface and cloud base. With increasing wind speed, however, in decoupled daytime conditions, shear-driven circulation due to large-scale wind takes over from buoyancy-driven circulation in transporting moisture from the surface to cloud base and thereby reduces decoupling and helps maintain LWP. Furthermore, the total (shortwave + longwave) cloud radiative effect (CRE) responds to changes in LWP and cloud fraction, and higher wind speed translates to a stronger diurnally averaged total CRE. However, the sensitivity of the diurnally averaged total CRE to wind speed decreases with increasing wind speed.« less

  20. Wind speed response of marine non-precipitating stratocumulus clouds over a diurnal cycle in cloud-system resolving simulations

    DOE PAGES

    Kazil, Jan; Feingold, Graham; Yamaguchi, Takanobu

    2016-05-12

    Observed and projected trends in large-scale wind speed over the oceans prompt the question: how do marine stratocumulus clouds and their radiative properties respond to changes in large-scale wind speed? Wind speed drives the surface fluxes of sensible heat, moisture, and momentum and thereby acts on cloud liquid water path (LWP) and cloud radiative properties. We present an investigation of the dynamical response of non-precipitating, overcast marine stratocumulus clouds to different wind speeds over the course of a diurnal cycle, all else equal. In cloud-system resolving simulations, we find that higher wind speed leads to faster boundary layer growth and strongermore » entrainment. The dynamical driver is enhanced buoyant production of turbulence kinetic energy (TKE) from latent heat release in cloud updrafts. LWP is enhanced during the night and in the morning at higher wind speed, and more strongly suppressed later in the day. Wind speed hence accentuates the diurnal LWP cycle by expanding the morning–afternoon contrast. The higher LWP at higher wind speed does not, however, enhance cloud top cooling because in clouds with LWP ≳50 gm –2, longwave emissions are insensitive to LWP. This leads to the general conclusion that in sufficiently thick stratocumulus clouds, additional boundary layer growth and entrainment due to a boundary layer moistening arises by stronger production of TKE from latent heat release in cloud updrafts, rather than from enhanced longwave cooling. Here, we find that large-scale wind modulates boundary layer decoupling. At nighttime and at low wind speed during daytime, it enhances decoupling in part by faster boundary layer growth and stronger entrainment and in part because shear from large-scale wind in the sub-cloud layer hinders vertical moisture transport between the surface and cloud base. With increasing wind speed, however, in decoupled daytime conditions, shear-driven circulation due to large-scale wind takes over from buoyancy-driven circulation in transporting moisture from the surface to cloud base and thereby reduces decoupling and helps maintain LWP. Furthermore, the total (shortwave + longwave) cloud radiative effect (CRE) responds to changes in LWP and cloud fraction, and higher wind speed translates to a stronger diurnally averaged total CRE. However, the sensitivity of the diurnally averaged total CRE to wind speed decreases with increasing wind speed.« less

  1. Peak Wind Tool for General Forecasting

    NASA Technical Reports Server (NTRS)

    Barrett, Joe H., III; Short, David

    2008-01-01

    This report describes work done by the Applied Meteorology Unit (AMU) in predicting peak winds at Kennedy Space Center (KSC) and Cape Canaveral Air Force Station (CCAFS). The 45th Weather Squadron requested the AMU develop a tool to help them forecast the speed and timing of the daily peak and average wind, from the surface to 300 ft on KSC/CCAFS during the cool season. Based on observations from the KSC/CCAFS wind tower network , Shuttle Landing Facility (SLF) surface observations, and CCAFS sounding s from the cool season months of October 2002 to February 2007, the AMU created mul tiple linear regression equations to predict the timing and speed of the daily peak wind speed, as well as the background average wind speed. Several possible predictors were evaluated, including persistence , the temperature inversion depth and strength, wind speed at the top of the inversion, wind gust factor (ratio of peak wind speed to average wind speed), synoptic weather pattern, occurrence of precipitation at the SLF, and strongest wind in the lowest 3000 ft, 4000 ft, or 5000 ft.

  2. Generalized extreme gust wind speeds distributions

    USGS Publications Warehouse

    Cheng, E.; Yeung, C.

    2002-01-01

    Since summer 1996, the US wind engineers are using the extreme gust (or 3-s gust) as the basic wind speed to quantify the destruction of extreme winds. In order to better understand these destructive wind forces, it is important to know the appropriate representations of these extreme gust wind speeds. Therefore, the purpose of this study is to determine the most suitable extreme value distributions for the annual extreme gust wind speeds recorded in large selected areas. To achieve this objective, we are using the generalized Pareto distribution as the diagnostic tool for determining the types of extreme gust wind speed distributions. The three-parameter generalized extreme value distribution function is, thus, reduced to either Type I Gumbel, Type II Frechet or Type III reverse Weibull distribution function for the annual extreme gust wind speeds recorded at a specific site.With the considerations of the quality and homogeneity of gust wind data collected at more than 750 weather stations throughout the United States, annual extreme gust wind speeds at selected 143 stations in the contiguous United States were used in the study. ?? 2002 Elsevier Science Ltd. All rights reserved.

  3. Analysis of the Contribution of Wind Drift Factor to Oil Slick Movement under Strong Tidal Condition: Hebei Spirit Oil Spill Case

    PubMed Central

    Kim, Tae-Ho; Yang, Chan-Su; Oh, Jeong-Hwan; Ouchi, Kazuo

    2014-01-01

    The purpose of this study is to investigate the effects of the wind drift factor under strong tidal conditions in the western coastal area of Korea on the movement of oil slicks caused by the Hebei Spirit oil spill accident in 2007. The movement of oil slicks was computed using a simple simulation model based on the empirical formula as a function of surface current, wind speed, and the wind drift factor. For the simulation, the Environmental Fluid Dynamics Code (EFDC) model and Automatic Weather System (AWS) were used to generate tidal and wind fields respectively. Simulation results were then compared with 5 sets of spaceborne optical and synthetic aperture radar (SAR) data. From the present study, it was found that highest matching rate between the simulation results and satellite imagery was obtained with different values of the wind drift factor, and to first order, this factor was linearly proportional to the wind speed. Based on the results, a new modified empirical formula was proposed for forecasting the movement of oil slicks on the coastal area. PMID:24498094

  4. A new method for wind speed forecasting based on copula theory.

    PubMed

    Wang, Yuankun; Ma, Huiqun; Wang, Dong; Wang, Guizuo; Wu, Jichun; Bian, Jinyu; Liu, Jiufu

    2018-01-01

    How to determine representative wind speed is crucial in wind resource assessment. Accurate wind resource assessments are important to wind farms development. Linear regressions are usually used to obtain the representative wind speed. However, terrain flexibility of wind farm and long distance between wind speed sites often lead to low correlation. In this study, copula method is used to determine the representative year's wind speed in wind farm by interpreting the interaction of the local wind farm and the meteorological station. The result shows that the method proposed here can not only determine the relationship between the local anemometric tower and nearby meteorological station through Kendall's tau, but also determine the joint distribution without assuming the variables to be independent. Moreover, the representative wind data can be obtained by the conditional distribution much more reasonably. We hope this study could provide scientific reference for accurate wind resource assessments. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Estimation of bubble-mediated air-sea gas exchange from concurrent DMS and CO2 transfer velocities at intermediate-high wind speeds

    NASA Astrophysics Data System (ADS)

    Bell, Thomas G.; Landwehr, Sebastian; Miller, Scott D.; de Bruyn, Warren J.; Callaghan, Adrian H.; Scanlon, Brian; Ward, Brian; Yang, Mingxi; Saltzman, Eric S.

    2017-07-01

    Simultaneous air-sea fluxes and concentration differences of dimethylsulfide (DMS) and carbon dioxide (CO2) were measured during a summertime North Atlantic cruise in 2011. This data set reveals significant differences between the gas transfer velocities of these two gases (Δkw) over a range of wind speeds up to 21 m s-1. These differences occur at and above the approximate wind speed threshold when waves begin breaking. Whitecap fraction (a proxy for bubbles) was also measured and has a positive relationship with Δkw, consistent with enhanced bubble-mediated transfer of the less soluble CO2 relative to that of the more soluble DMS. However, the correlation of Δkw with whitecap fraction is no stronger than with wind speed. Models used to estimate bubble-mediated transfer from in situ whitecap fraction underpredict the observations, particularly at intermediate wind speeds. Examining the differences between gas transfer velocities of gases with different solubilities is a useful way to detect the impact of bubble-mediated exchange. More simultaneous gas transfer measurements of different solubility gases across a wide range of oceanic conditions are needed to understand the factors controlling the magnitude and scaling of bubble-mediated gas exchange.

  6. A model to relate wind tunnel measurements to open field odorant emissions from liquid area sources

    NASA Astrophysics Data System (ADS)

    Lucernoni, F.; Capelli, L.; Busini, V.; Sironi, S.

    2017-05-01

    Waste Water Treatment Plants are known to have significant emissions of several pollutants and odorants causing nuisance to the near-living population. One of the purposes of the present work is to study a suitable model to evaluate odour emissions from liquid passive area sources. First, the models describing volatilization under a forced convection regime inside a wind tunnel device, which is the sampling device that typically used for sampling on liquid area sources, were investigated. In order to relate the fluid dynamic conditions inside the hood to the open field and inside the hood a thorough study of the models capable of describing the volatilization phenomena of the odorous compounds from liquid pools was performed and several different models were evaluated for the open field emission. By means of experimental tests involving pure liquid acetone and pure liquid butanone, it was verified that the model more suitable to describe precisely the volatilization inside the sampling hood is the model for the emission from a single flat plate in forced convection and laminar regime, with a fluid dynamic boundary layer fully developed and a mass transfer boundary layer not fully developed. The proportionality coefficient for the model was re-evaluated in order to account for the specific characteristics of the adopted wind tunnel device, and then the model was related with the selected model for the open field thereby computing the wind speed at 10 m that would cause the same emission that is estimated from the wind tunnel measurement furthermore, the field of application of the proposed model was clearly defined for the considered models during the project, discussing the two different kinds of compounds commonly found in emissive liquid pools or liquid spills, i.e. gas phase controlled and liquid phase controlled compounds. Lastly, a discussion is presented comparing the presented approach for emission rates recalculation in the field, with other approaches possible, i.e. the ones relying on the recalculation of the wind speed at the emission level, instead of the wind speed that would cause in the open field the same emission that is measured with the hood.

  7. Linearized simulation of flow over wind farms and complex terrains.

    PubMed

    Segalini, Antonio

    2017-04-13

    The flow over complex terrains and wind farms is estimated here by numerically solving the linearized Navier-Stokes equations. The equations are linearized around the unperturbed incoming wind profile, here assumed logarithmic. The Boussinesq approximation is used to model the Reynolds stress with a prescribed turbulent eddy viscosity profile. Without requiring the boundary-layer approximation, two new linear equations are obtained for the vertical velocity and the wall-normal vorticity, with a reduction in the computational cost by a factor of 8 when compared with a primitive-variables formulation. The presence of terrain elevation is introduced as a vertical coordinate shift, while forestry or wind turbines are included as body forces, without any assumption about the wake structure for the turbines. The model is first validated against some available experiments and simulations, and then a simulation of a wind farm over a Gaussian hill is performed. The speed-up effect of the hill is clearly beneficial in terms of the available momentum upstream of the crest, while downstream of it the opposite can be said as the turbines face a decreased wind speed. Also, the presence of the hill introduces an additional spanwise velocity component that may also affect the turbines' operations. The linear superposition of the flow over the hill and the flow over the farm alone provided a first estimation of the wind speed along the farm, with discrepancies of the same order of magnitude for the spanwise velocity. Finally, the possibility of using a parabolic set of equations to obtain the turbulent kinetic energy after the linearized model is investigated with promising results.This article is part of the themed issue 'Wind energy in complex terrains'. © 2017 The Author(s).

  8. Linearized simulation of flow over wind farms and complex terrains

    NASA Astrophysics Data System (ADS)

    Segalini, Antonio

    2017-03-01

    The flow over complex terrains and wind farms is estimated here by numerically solving the linearized Navier-Stokes equations. The equations are linearized around the unperturbed incoming wind profile, here assumed logarithmic. The Boussinesq approximation is used to model the Reynolds stress with a prescribed turbulent eddy viscosity profile. Without requiring the boundary-layer approximation, two new linear equations are obtained for the vertical velocity and the wall-normal vorticity, with a reduction in the computational cost by a factor of 8 when compared with a primitive-variables formulation. The presence of terrain elevation is introduced as a vertical coordinate shift, while forestry or wind turbines are included as body forces, without any assumption about the wake structure for the turbines. The model is first validated against some available experiments and simulations, and then a simulation of a wind farm over a Gaussian hill is performed. The speed-up effect of the hill is clearly beneficial in terms of the available momentum upstream of the crest, while downstream of it the opposite can be said as the turbines face a decreased wind speed. Also, the presence of the hill introduces an additional spanwise velocity component that may also affect the turbines' operations. The linear superposition of the flow over the hill and the flow over the farm alone provided a first estimation of the wind speed along the farm, with discrepancies of the same order of magnitude for the spanwise velocity. Finally, the possibility of using a parabolic set of equations to obtain the turbulent kinetic energy after the linearized model is investigated with promising results. This article is part of the themed issue 'Wind energy in complex terrains'.

  9. Probabilities and statistics for backscatter estimates obtained by a scatterometer

    NASA Technical Reports Server (NTRS)

    Pierson, Willard J., Jr.

    1989-01-01

    Methods for the recovery of winds near the surface of the ocean from measurements of the normalized radar backscattering cross section must recognize and make use of the statistics (i.e., the sampling variability) of the backscatter measurements. Radar backscatter values from a scatterometer are random variables with expected values given by a model. A model relates backscatter to properties of the waves on the ocean, which are in turn generated by the winds in the atmospheric marine boundary layer. The effective wind speed and direction at a known height for a neutrally stratified atmosphere are the values to be recovered from the model. The probability density function for the backscatter values is a normal probability distribution with the notable feature that the variance is a known function of the expected value. The sources of signal variability, the effects of this variability on the wind speed estimation, and criteria for the acceptance or rejection of models are discussed. A modified maximum likelihood method for estimating wind vectors is described. Ways to make corrections for the kinds of errors found for the Seasat SASS model function are described, and applications to a new scatterometer are given.

  10. The Effect of Sea-Surface Sun Glitter on Microwave Radiometer Measurements

    NASA Technical Reports Server (NTRS)

    Wentz, F. J.

    1981-01-01

    A relatively simple model for the microwave brightness temperature of sea surface Sun glitter is presented. The model is an accurate closeform approximation for the fourfold Sun glitter integral. The model computations indicate that Sun glitter contamination of on orbit radiometer measurements is appreciable over a large swath area. For winds near 20 m/s, Sun glitter affects the retrieval of environmental parameters for Sun angles as large as 20 to 25 deg. The model predicted biases in retrieved wind speed and sea surface temperature due to neglecting Sun glitter are consistent with those experimentally observed in SEASAT SMMR retrievals. A least squares retrieval algorithm that uses a combined sea and Sun model function shows the potential of retrieving accurate environmental parameters in the presence of Sun glitter so long as the Sun angles and wind speed are above 5 deg and 2 m/s, respectively.

  11. Wind speed reductions by large-scale wind turbine deployments lower turbine efficiencies and set low generation limits.

    PubMed

    Miller, Lee M; Kleidon, Axel

    2016-11-29

    Wind turbines generate electricity by removing kinetic energy from the atmosphere. Large numbers of wind turbines are likely to reduce wind speeds, which lowers estimates of electricity generation from what would be presumed from unaffected conditions. Here, we test how well wind power limits that account for this effect can be estimated without explicitly simulating atmospheric dynamics. We first use simulations with an atmospheric general circulation model (GCM) that explicitly simulates the effects of wind turbines to derive wind power limits (GCM estimate), and compare them to a simple approach derived from the climatological conditions without turbines [vertical kinetic energy (VKE) estimate]. On land, we find strong agreement between the VKE and GCM estimates with respect to electricity generation rates (0.32 and 0.37 W e m -2 ) and wind speed reductions by 42 and 44%. Over ocean, the GCM estimate is about twice the VKE estimate (0.59 and 0.29 W e m -2 ) and yet with comparable wind speed reductions (50 and 42%). We then show that this bias can be corrected by modifying the downward momentum flux to the surface. Thus, large-scale limits to wind power use can be derived from climatological conditions without explicitly simulating atmospheric dynamics. Consistent with the GCM simulations, the approach estimates that only comparatively few land areas are suitable to generate more than 1 W e m -2 of electricity and that larger deployment scales are likely to reduce the expected electricity generation rate of each turbine. We conclude that these atmospheric effects are relevant for planning the future expansion of wind power.

  12. Wind speed reductions by large-scale wind turbine deployments lower turbine efficiencies and set low generation limits

    PubMed Central

    Miller, Lee M.; Kleidon, Axel

    2016-01-01

    Wind turbines generate electricity by removing kinetic energy from the atmosphere. Large numbers of wind turbines are likely to reduce wind speeds, which lowers estimates of electricity generation from what would be presumed from unaffected conditions. Here, we test how well wind power limits that account for this effect can be estimated without explicitly simulating atmospheric dynamics. We first use simulations with an atmospheric general circulation model (GCM) that explicitly simulates the effects of wind turbines to derive wind power limits (GCM estimate), and compare them to a simple approach derived from the climatological conditions without turbines [vertical kinetic energy (VKE) estimate]. On land, we find strong agreement between the VKE and GCM estimates with respect to electricity generation rates (0.32 and 0.37 We m−2) and wind speed reductions by 42 and 44%. Over ocean, the GCM estimate is about twice the VKE estimate (0.59 and 0.29 We m−2) and yet with comparable wind speed reductions (50 and 42%). We then show that this bias can be corrected by modifying the downward momentum flux to the surface. Thus, large-scale limits to wind power use can be derived from climatological conditions without explicitly simulating atmospheric dynamics. Consistent with the GCM simulations, the approach estimates that only comparatively few land areas are suitable to generate more than 1 We m−2 of electricity and that larger deployment scales are likely to reduce the expected electricity generation rate of each turbine. We conclude that these atmospheric effects are relevant for planning the future expansion of wind power. PMID:27849587

  13. Environmental and internal controls of tropical cyclone intensity change

    NASA Astrophysics Data System (ADS)

    Desflots, Melicie

    Tropical cyclone (TC) intensity change is governed by internal dynamics and environmental conditions. This study aims to gain a better understanding of the physical mechanisms responsible for TC intensity changes with a particular focus to those related to the vertical wind shear and the impact of sea spray on the hurricane boundary layer, by using high resolution, full physics numerical simulations. The coupled model consists of three components: the non-hydrostatic, 5th generation Pennsylvania State University-NCAR mesoscale model (MM5), the NOAA/NCEP WAVEWATCH III (WW3) ocean surface wave model, and the WHOI three-dimensional upper ocean circulation model (3DPWP). Sea spray parameterizations (SSP) were developed at NOAA/ESRL, modified by the author and introduced in uncoupled and coupled simulations. The 0.5 km grid resolution MM5 simulation of Hurricane Lili showed a rapid intensification associated with a contracting eyewall. Hurricane Lili weakened in a 5-10 m s-1 vertical wind shear environment. The simulated storm experienced wind shear direction normal to the storm motion, which produced a strong wavenumber one rainfall asymmetry in the downshear-left quadrant of the storm. The increasing vertical wind shear induced a vertical tilt of the vortex with a time lag of 5-6 hours after the wavenumber one rainfall asymmetry was first observed in the model simulation. Other factors controlling intensity and intensity change in tropical cyclones are the air-sea fluxes. Recent studies have shown that the momentum exchange coefficient levels off at high wind speed. However, the behavior of the exchange coefficient for enthalpy flux in high wind and the potential impact of sea spray on it is still uncertain. The current SSP are closely tied to wind speed and overestimate the mediated heat fluxes by sea spray in the hurricane boundary layer. As the sea spray generation depends on wind speed and the variable wave state, a new SSP based on the surface wave energy dissipation (WED) is introduced in the coupled model. In the coupled simulations, the WED is used to quantify the amount of wave breaking related to the generation of spray. The SSP coupled to the waves offers an improvement compared to the wind dependent SSP.

  14. Finite element analysis of high aspect ratio wind tunnel wing model: A parametric study

    NASA Astrophysics Data System (ADS)

    Rosly, N. A.; Harmin, M. Y.

    2017-12-01

    Procedure for designing the wind tunnel model of a high aspect ratio (HAR) wing containing geometric nonlinearities is described in this paper. The design process begins with identification of basic features of the HAR wing as well as its design constraints. This enables the design space to be narrowed down and consequently, brings ease of convergence towards the design solution. Parametric studies in terms of the spar thickness, the span length and the store diameter are performed using finite element analysis for both undeformed and deformed cases, which respectively demonstrate the linear and nonlinear conditions. Two main criteria are accounted for in the selection of the wing design: the static deflections due to gravitational loading should be within the allowable margin of the size of the wind tunnel test section and the flutter speed of the wing should be much below the maximum speed of the wind tunnel. The findings show that the wing experiences a stiffness hardening effect under the nonlinear static solution and the presence of the store enables significant reduction in linear flutter speed.

  15. Statistical wind analysis for near-space applications

    NASA Astrophysics Data System (ADS)

    Roney, Jason A.

    2007-09-01

    Statistical wind models were developed based on the existing observational wind data for near-space altitudes between 60 000 and 100 000 ft (18 30 km) above ground level (AGL) at two locations, Akon, OH, USA, and White Sands, NM, USA. These two sites are envisioned as playing a crucial role in the first flights of high-altitude airships. The analysis shown in this paper has not been previously applied to this region of the stratosphere for such an application. Standard statistics were compiled for these data such as mean, median, maximum wind speed, and standard deviation, and the data were modeled with Weibull distributions. These statistics indicated, on a yearly average, there is a lull or a “knee” in the wind between 65 000 and 72 000 ft AGL (20 22 km). From the standard statistics, trends at both locations indicated substantial seasonal variation in the mean wind speed at these heights. The yearly and monthly statistical modeling indicated that Weibull distributions were a reasonable model for the data. Forecasts and hindcasts were done by using a Weibull model based on 2004 data and comparing the model with the 2003 and 2005 data. The 2004 distribution was also a reasonable model for these years. Lastly, the Weibull distribution and cumulative function were used to predict the 50%, 95%, and 99% winds, which are directly related to the expected power requirements of a near-space station-keeping airship. These values indicated that using only the standard deviation of the mean may underestimate the operational conditions.

  16. Shelter Index and a simple wind speed parameter to characterize vegetation control of sand transport threshold and Flu

    NASA Astrophysics Data System (ADS)

    Gillies, J. A.; Nield, J. M.; Nickling, W. G.; Furtak-Cole, E.

    2014-12-01

    Wind erosion and dust emissions occur in many dryland environments from a range of surfaces with different types and amounts of vegetation. Understanding how vegetation modulates these processes remains a research challenge. Here we present results from a study that examines the relationship between an index of shelter (SI=distance from a point to the nearest upwind vegetation/vegetation height) and particle threshold expressed as the ratio of wind speed measured at 0.45 times the mean plant height divided by the wind speed at 17 m when saltation commences, and saltation flux. The results are used to evaluate SI as a parameter to characterize the influence of vegetation on local winds and sediment transport conditions. Wind speed, wind direction, saltation activity and point saltation flux were measured at 35 locations in defined test areas (~13,000 m2) in two vegetation communities: mature streets of mesquite covered nebkhas and incipient nebkhas dominated by low mesquite plants. Measurement positions represent the most open areas, and hence those places most susceptible to wind erosion among the vegetation elements. Shelter index was calculated for each measurement position for each 10° wind direction bin using digital elevation models for each site acquired using terrestrial laser scanning. SI can show the susceptibility to wind erosion at different time scales, i.e., event, seasonal, or annual, but in a supply-limited system it can fail to define actual flux amounts due to a lack of knowledge of the distribution of sediment across the surface of interest with respect to the patterns of SI.

  17. Seasonal and interannual variability of the Arctic sea ice: A comparison between AO-FVCOM and observations

    NASA Astrophysics Data System (ADS)

    Zhang, Yu; Chen, Changsheng; Beardsley, Robert C.; Gao, Guoping; Qi, Jianhua; Lin, Huichan

    2016-11-01

    A high-resolution (up to 2 km), unstructured-grid, fully ice-sea coupled Arctic Ocean Finite-Volume Community Ocean Model (AO-FVCOM) was used to simulate the sea ice in the Arctic over the period 1978-2014. The spatial-varying horizontal model resolution was designed to better resolve both topographic and baroclinic dynamics scales over the Arctic slope and narrow straits. The model-simulated sea ice was in good agreement with available observed sea ice extent, concentration, drift velocity and thickness, not only in seasonal and interannual variability but also in spatial distribution. Compared with six other Arctic Ocean models (ECCO2, GSFC, INMOM, ORCA, NAME, and UW), the AO-FVCOM-simulated ice thickness showed a higher mean correlation coefficient of ˜0.63 and a smaller residual with observations. Model-produced ice drift speed and direction errors varied with wind speed: the speed and direction errors increased and decreased as the wind speed increased, respectively. Efforts were made to examine the influences of parameterizations of air-ice external and ice-water interfacial stresses on the model-produced bias. The ice drift direction was more sensitive to air-ice drag coefficients and turning angles than the ice drift speed. Increasing or decreasing either 10% in water-ice drag coefficient or 10° in water-ice turning angle did not show a significant influence on the ice drift velocity simulation results although the sea ice drift speed was more sensitive to these two parameters than the sea ice drift direction. Using the COARE 4.0-derived parameterization of air-water drag coefficient for wind stress did not significantly influence the ice drift velocity simulation.

  18. ARC-2012-ACD12-0020-002

    NASA Image and Video Library

    2012-02-02

    Shen_Nargis: Snapshot of a very large simulation showing the altitude and velocity of wind speeds within the 2008 Cyclone Nargis. Top wind speeds for the storm were measured at 135 mph. The lowest altitude winds are shown in blue, while the highest altitude winds are shown in pink. Wind speed is shown by color density: higher density denotes stronger winds, slightly transparent color indicates slower wind speeds. Credit: Bryan Green, NASA Ames Research Center; Bo-wen Shen, NASA Goddard Space Flight Center.

  19. An Investigation of the Drag of Windshields in the 8-foot High-Speed Wind Tunnel

    NASA Technical Reports Server (NTRS)

    Robinson, Russell G; Delano, James B

    1942-01-01

    Report presents the results of tests made to determine the drag of closed-cockpit and transport-type windshields. The tests were made at speeds corresponding to a Mach number range of approximately 0.25 to 0.58 in the NACA 8-foot high-speed wind tunnel. This speed range corresponds to a test Reynolds number range of 2,510,000 to 4,830,000 based on the mean aerodynamic chord of the full-span model (17.29 in.). The shapes of the windshield proper, the hood, and the tail fairing were systematically varied to include common types and refined design.

  20. Evaluation of wind induced currents modeling along the Southern Caspian Sea

    NASA Astrophysics Data System (ADS)

    Bohluly, Asghar; Esfahani, Fariba Sadat; Montazeri Namin, Masoud; Chegini, Fatemeh

    2018-02-01

    To improve our understanding of the Caspian Sea hydrodynamics, its circulation is simulated with special focus on wind-driven currents of its southern basin. The hydrodynamic models are forced with a newly developed fine resolution wind field to increase the accuracy of current modeling. A 2D shallow water equation model and a 3D baroclinic model are applied separately to examine the performance of each model for specific applications in the Caspian Sea. The model results are validated against recent field measurements including AWAC and temperature observations in the southern continental shelf region. Results show that the 2D model is able to well predict the depth-averaged current speed in storm conditions in narrow area of southern coasts. This finding suggests physical oceanographers apply 2D modeling as a more affordable method for extreme current speed analysis at the continental shelf region. On the other hand the 3D model demonstrates a better performance in reproducing monthly mean circulation and hence is preferable for surface circulation of Caspian Sea. Monthly sea surface circulation fields of the southern basin reveal a dipole cyclonic-anticyclonic pattern, a dominant eastward current along the southern coasts which intensifies from May to November and a dominant southward current along the eastern coasts in all months except February when the flow is northward. Monthly mean wind fields exhibit two main patterns including a north-south pattern occurring at warm months and collision of two wind fronts especially in the cold months. This collision occurs on a narrow region at the southern continental shelf regions. Due to wind field complexities, it leads to a major source of uncertainty in predicting the wind-driven currents. However, this source of uncertainty is significantly alleviated by applying a fine resolution wind field.

  1. Assessment of wind energy potential in Poland

    NASA Astrophysics Data System (ADS)

    Starosta, Katarzyna; Linkowska, Joanna; Mazur, Andrzej

    2014-05-01

    The aim of the presentation is to show the suitability of using numerical model wind speed forecasts for the wind power industry applications in Poland. In accordance with the guidelines of the European Union, the consumption of wind energy in Poland is rapidly increasing. According to the report of Energy Regulatory Office from 30 March 2013, the installed capacity of wind power in Poland was 2807MW from 765 wind power stations. Wind energy is strongly dependent on the meteorological conditions. Based on the climatological wind speed data, potential energy zones within the area of Poland have been developed (H. Lorenc). They are the first criterion for assessing the location of the wind farm. However, for exact monitoring of a given wind farm location the prognostic data from numerical model forecasts are necessary. For the practical interpretation and further post-processing, the verification of the model data is very important. Polish Institute Meteorology and Water Management - National Research Institute (IMWM-NRI) runs an operational model COSMO (Consortium for Small-scale Modelling, version 4.8) using two nested domains at horizontal resolutions of 7 km and 2.8 km. The model produces 36 hour and 78 hour forecasts from 00 UTC, for 2.8 km and 7 km domain resolutions respectively. Numerical forecasts were compared with the observation of 60 SYNOP and 3 TEMP stations in Poland, using VERSUS2 (Unified System Verification Survey 2) and R package. For every zone the set of statistical indices (ME, MAE, RMSE) was calculated. Forecast errors for aerological profiles are shown for Polish TEMP stations at Wrocław, Legionowo and Łeba. The current studies are connected with a topic of the COST ES1002 WIRE-Weather Intelligence for Renewable Energies.

  2. Overview of Low-Speed Aerodynamic Tests on a 5.75% Scale Blended-Wing-Body Twin Jet Configuration

    NASA Technical Reports Server (NTRS)

    Vicroy, Dan D.; Dickey, Eric; Princen, Norman; Beyar, Michael D.

    2016-01-01

    The NASA Environmentally Responsible Aviation (ERA) Project sponsored a series of computational and experimental investigations of the propulsion and airframe integration issues associated with Hybrid-Wing-Body (HWB) or Blended-Wing-Body (BWB) configurations. NASA collaborated with Boeing Research and Technology (BR&T) to conduct this research on a new twin-engine Boeing BWB transport configuration. The experimental investigations involved a series of wind tunnel tests with a 5.75-percent scale model conducted in two low-speed wind tunnels. This testing focused on the basic aerodynamics of the configuration and selection of the leading edge Krueger slat position for takeoff and landing. This paper reviews the results and analysis of these low-speed wind tunnel tests.

  3. The dune effect on sand-transporting winds on Mars.

    PubMed

    Jackson, Derek W T; Bourke, Mary C; Smyth, Thomas A G

    2015-11-05

    Wind on Mars is a significant agent of contemporary surface change, yet the absence of in situ meteorological data hampers the understanding of surface-atmospheric interactions. Airflow models at length scales relevant to landform size now enable examination of conditions that might activate even small-scale bedforms (ripples) under certain contemporary wind regimes. Ripples have the potential to be used as modern 'wind vanes' on Mars. Here we use 3D airflow modelling to demonstrate that local dune topography exerts a strong influence on wind speed and direction and that ripple movement likely reflects steered wind direction for certain dune ridge shapes. The poor correlation of dune orientation with effective sand-transporting winds suggests that large dunes may not be mobile under modelled wind scenarios. This work highlights the need to first model winds at high resolution before inferring regional wind patterns from ripple movement or dune orientations on the surface of Mars today.

  4. The dune effect on sand-transporting winds on Mars

    PubMed Central

    Jackson, Derek W. T.; Bourke, Mary C; Smyth, Thomas A. G.

    2015-01-01

    Wind on Mars is a significant agent of contemporary surface change, yet the absence of in situ meteorological data hampers the understanding of surface–atmospheric interactions. Airflow models at length scales relevant to landform size now enable examination of conditions that might activate even small-scale bedforms (ripples) under certain contemporary wind regimes. Ripples have the potential to be used as modern ‘wind vanes' on Mars. Here we use 3D airflow modelling to demonstrate that local dune topography exerts a strong influence on wind speed and direction and that ripple movement likely reflects steered wind direction for certain dune ridge shapes. The poor correlation of dune orientation with effective sand-transporting winds suggests that large dunes may not be mobile under modelled wind scenarios. This work highlights the need to first model winds at high resolution before inferring regional wind patterns from ripple movement or dune orientations on the surface of Mars today. PMID:26537669

  5. Using Seasonal Forecasting Data for Vessel Routing

    NASA Astrophysics Data System (ADS)

    Bell, Ray; Kirtman, Ben

    2017-04-01

    We present an assessment of seasonal forecasting of surface wind speed, significant wave height and ocean surface current speed in the North Pacific for potential use of vessel routing from Singapore to San Diego. WaveWatchIII is forced with surface winds and ocean surface currents from the Community Climate System Model 4 (CCSM4) retrospective forecasts for the period of 1982-2015. Several lead time forecasts are used from zero months to six months resulting in 2,720 model years, ensuring the findings from this study are robust. July surface wind speed and significant wave height can be skillfully forecast with a one month lead time, with the western North Pacific being the most predictable region. Beyond May initial conditions (lead time of two months) the El Niño Southern Oscillation (ENSO) Spring predictability barrier limits skill of significant wave height but there is skill for surface wind speed with January initial conditions (lead time of six months). In a separate study of vessel routing between Norfolk, Virginia and Gibraltar we demonstrate the benefit of a multimodel approach using the North American Multimodel Ensemble (NMME). In collaboration with Charles River Analytics an all-encompassing forecast is presented by using machine learning on the various ensembles which can be using used for industry applications.

  6. Reliability Estimation of Parameters of Helical Wind Turbine with Vertical Axis

    PubMed Central

    Dumitrascu, Adela-Eliza; Lepadatescu, Badea; Dumitrascu, Dorin-Ion; Nedelcu, Anisor; Ciobanu, Doina Valentina

    2015-01-01

    Due to the prolonged use of wind turbines they must be characterized by high reliability. This can be achieved through a rigorous design, appropriate simulation and testing, and proper construction. The reliability prediction and analysis of these systems will lead to identifying the critical components, increasing the operating time, minimizing failure rate, and minimizing maintenance costs. To estimate the produced energy by the wind turbine, an evaluation approach based on the Monte Carlo simulation model is developed which enables us to estimate the probability of minimum and maximum parameters. In our simulation process we used triangular distributions. The analysis of simulation results has been focused on the interpretation of the relative frequency histograms and cumulative distribution curve (ogive diagram), which indicates the probability of obtaining the daily or annual energy output depending on wind speed. The experimental researches consist in estimation of the reliability and unreliability functions and hazard rate of the helical vertical axis wind turbine designed and patented to climatic conditions for Romanian regions. Also, the variation of power produced for different wind speeds, the Weibull distribution of wind probability, and the power generated were determined. The analysis of experimental results indicates that this type of wind turbine is efficient at low wind speed. PMID:26167524

  7. Reliability Estimation of Parameters of Helical Wind Turbine with Vertical Axis.

    PubMed

    Dumitrascu, Adela-Eliza; Lepadatescu, Badea; Dumitrascu, Dorin-Ion; Nedelcu, Anisor; Ciobanu, Doina Valentina

    2015-01-01

    Due to the prolonged use of wind turbines they must be characterized by high reliability. This can be achieved through a rigorous design, appropriate simulation and testing, and proper construction. The reliability prediction and analysis of these systems will lead to identifying the critical components, increasing the operating time, minimizing failure rate, and minimizing maintenance costs. To estimate the produced energy by the wind turbine, an evaluation approach based on the Monte Carlo simulation model is developed which enables us to estimate the probability of minimum and maximum parameters. In our simulation process we used triangular distributions. The analysis of simulation results has been focused on the interpretation of the relative frequency histograms and cumulative distribution curve (ogive diagram), which indicates the probability of obtaining the daily or annual energy output depending on wind speed. The experimental researches consist in estimation of the reliability and unreliability functions and hazard rate of the helical vertical axis wind turbine designed and patented to climatic conditions for Romanian regions. Also, the variation of power produced for different wind speeds, the Weibull distribution of wind probability, and the power generated were determined. The analysis of experimental results indicates that this type of wind turbine is efficient at low wind speed.

  8. Initial Investigation of the Acoustics of a Counter-Rotating Open Rotor Model with Historical Baseline Blades in a Low-Speed Wind Tunnel

    NASA Technical Reports Server (NTRS)

    Elliott, David M.

    2012-01-01

    A counter-rotating open rotor scale model was tested in the NASA Glenn Research Center 9- by 15-Foot Low-Speed Wind Tunnel (LSWT). This model used a historical baseline blade set with which modern blade designs will be compared against on an acoustic and aerodynamic performance basis. Different blade pitch angles simulating approach and takeoff conditions were tested, along with angle-of-attack configurations. A configuration was also tested in order to determine the acoustic effects of a pylon. The shaft speed was varied for each configuration in order to get data over a range of operability. The freestream Mach number was also varied for some configurations. Sideline acoustic data were taken for each of these test configurations.

  9. Self-optimizing Pitch Control for Large Scale Wind Turbine Based on ADRC

    NASA Astrophysics Data System (ADS)

    Xia, Anjun; Hu, Guoqing; Li, Zheng; Huang, Dongxiao; Wang, Fengxiang

    2018-01-01

    Since wind turbine is a complex nonlinear and strong coupling system, traditional PI control method can hardly achieve good control performance. A self-optimizing pitch control method based on the active-disturbance-rejection control theory is proposed in this paper. A linear model of the wind turbine is derived by linearizing the aerodynamic torque equation and the dynamic response of wind turbine is transformed into a first-order linear system. An expert system is designed to optimize the amplification coefficient according to the pitch rate and the speed deviation. The purpose of the proposed control method is to regulate the amplification coefficient automatically and keep the variations of pitch rate and rotor speed in proper ranges. Simulation results show that the proposed pitch control method has the ability to modify the amplification coefficient effectively, when it is not suitable, and keep the variations of pitch rate and rotor speed in proper ranges

  10. Gusts and shear within hurricane eyewalls can exceed offshore wind turbine design standards

    NASA Astrophysics Data System (ADS)

    Worsnop, Rochelle P.; Lundquist, Julie K.; Bryan, George H.; Damiani, Rick; Musial, Walt

    2017-06-01

    Offshore wind energy development is underway in the U.S., with proposed sites located in hurricane-prone regions. Turbine design criteria outlined by the International Electrotechnical Commission do not encompass the extreme wind speeds and directional shifts of hurricanes stronger than category 2. We examine a hurricane's turbulent eyewall using large-eddy simulations with Cloud Model 1. Gusts and mean wind speeds near the eyewall of a category 5 hurricane exceed the current Class I turbine design threshold of 50 m s-1 mean wind and 70 m s-1 gusts. Largest gust factors occur at the eye-eyewall interface. Further, shifts in wind direction suggest that turbines must rotate or yaw faster than current practice. Although current design standards omit mention of wind direction change across the rotor layer, large values (15-50°) suggest that veer should be considered.

  11. Gusts and shear within hurricane eyewalls can exceed offshore wind turbine design standards

    DOE PAGES

    Worsnop, Rochelle P.; Lundquist, Julie K.; Bryan, George H.; ...

    2017-05-30

    Here, offshore wind energy development is underway in the U.S., with proposed sites located in hurricane-prone regions. Turbine design criteria outlined by the International Electrotechnical Commission do not encompass the extreme wind speeds and directional shifts of hurricanes stronger than category 2. We examine a hurricane's turbulent eyewall using large-eddy simulations with Cloud Model 1. Gusts and mean wind speeds near the eyewall of a category 5 hurricane exceed the current Class I turbine design threshold of 50 m s –1 mean wind and 70 m s –1 gusts. Largest gust factors occur at the eye-eyewall interface. Further, shifts inmore » wind direction suggest that turbines must rotate or yaw faster than current practice. Although current design standards omit mention of wind direction change across the rotor layer, large values (15–50°) suggest that veer should be considered.« less

  12. Gusts and shear within hurricane eyewalls can exceed offshore wind turbine design standards

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Worsnop, Rochelle P.; Lundquist, Julie K.; Bryan, George H.

    Here, offshore wind energy development is underway in the U.S., with proposed sites located in hurricane-prone regions. Turbine design criteria outlined by the International Electrotechnical Commission do not encompass the extreme wind speeds and directional shifts of hurricanes stronger than category 2. We examine a hurricane's turbulent eyewall using large-eddy simulations with Cloud Model 1. Gusts and mean wind speeds near the eyewall of a category 5 hurricane exceed the current Class I turbine design threshold of 50 m s –1 mean wind and 70 m s –1 gusts. Largest gust factors occur at the eye-eyewall interface. Further, shifts inmore » wind direction suggest that turbines must rotate or yaw faster than current practice. Although current design standards omit mention of wind direction change across the rotor layer, large values (15–50°) suggest that veer should be considered.« less

  13. Sea spray aerosol fluxes in the Baltic Sea region: Comparison of the WAM model with measurements

    NASA Astrophysics Data System (ADS)

    Markuszewski, Piotr; Kosecki, Szymon; Petelski, Tomasz

    2017-08-01

    Sea spray aerosol flux is an important element of sub-regional climate modeling. The majority of works related to this topic concentrate on open ocean research rather than on smaller, inland seas, e.g., the Baltic Sea. The Baltic Sea is one of the largest brackish inland seas by area, where major inflows of oceanic waters are rare. Furthermore, surface waves in the Baltic Sea have a relatively shorter lifespan in comparison with oceanic waves. Therefore, emission of sea spray aerosol may differ greatly from what is known from oceanic research and should be investigated. This article presents a comparison of sea spray aerosol measurements carried out on-board the s/y Oceania research ship with data calculated in accordance to the WAM model. The measurements were conducted in the southern region of the Baltic Sea during four scientific cruises. The gradient method was used to determinate aerosol fluxes. The fluxes were calculated for particles of diameter in range of 0.5-47 μm. The correlation between wind speed measured and simulated has a good agreement (correlation in range of 0.8). The comparison encompasses three different sea spray generation models. First, function proposed by Massel (2006) which is based only on wave parameters, such as significant wave height and peak frequency. Second, Callaghan (2013) which is based on Gong (2003) model (wind speed relation), and a thorough experimental analysis of whitecaps. Third, Petelski et al. (2014) which is based on in-situ gradient measurements with the function dependent on wind speed. The two first models which based on whitecaps analysis are insufficient. Moreover, the research shows strong relation between aerosol emission and wind speed history.

  14. Review of Reactive Power Dispatch Strategies for Loss Minimization in a DFIG-based Wind Farm

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Baohua; Hu, Weihao; Hou, Peng

    This study reviews and compares the performance of reactive power dispatch strategies for the loss minimization of Doubly Fed Induction Generator (DFIG)-based Wind Farms (WFs). Twelve possible combinations of three WF level reactive power dispatch strategies and four Wind Turbine (WT) level reactive power control strategies are investigated. All of the combined strategies are formulated based on the comprehensive loss models of WFs, including the loss models of DFIGs, converters, filters, transformers, and cables of the collection system. Optimization problems are solved by a Modified Particle Swarm Optimization (MPSO) algorithm. The effectiveness of these strategies is evaluated by simulations onmore » a carefully designed WF under a series of cases with different wind speeds and reactive power requirements of the WF. The wind speed at each WT inside the WF is calculated using the Jensen wake model. The results show that the best reactive power dispatch strategy for loss minimization comes when the WF level strategy and WT level control are coordinated and the losses from each device in the WF are considered in the objective.« less

  15. Review of Reactive Power Dispatch Strategies for Loss Minimization in a DFIG-based Wind Farm

    DOE PAGES

    Zhang, Baohua; Hu, Weihao; Hou, Peng; ...

    2017-06-27

    This study reviews and compares the performance of reactive power dispatch strategies for the loss minimization of Doubly Fed Induction Generator (DFIG)-based Wind Farms (WFs). Twelve possible combinations of three WF level reactive power dispatch strategies and four Wind Turbine (WT) level reactive power control strategies are investigated. All of the combined strategies are formulated based on the comprehensive loss models of WFs, including the loss models of DFIGs, converters, filters, transformers, and cables of the collection system. Optimization problems are solved by a Modified Particle Swarm Optimization (MPSO) algorithm. The effectiveness of these strategies is evaluated by simulations onmore » a carefully designed WF under a series of cases with different wind speeds and reactive power requirements of the WF. The wind speed at each WT inside the WF is calculated using the Jensen wake model. The results show that the best reactive power dispatch strategy for loss minimization comes when the WF level strategy and WT level control are coordinated and the losses from each device in the WF are considered in the objective.« less

  16. Application of a linear spectral model to the study of Amazonian squall lines during GTE/ABLE 2B

    NASA Technical Reports Server (NTRS)

    Silva Dias, Maria A. F.; Ferreira, Rosana N.

    1992-01-01

    A linear nonhydrostatic spectral model is run with the basic state, or large scale, vertical profiles of temperature and wind observed prior to convective development along the northern coast of South America during the GTE/ABLE 2B. The model produces unstable modes with mesoscale wavelength and propagation speed comparable to observed Amazonian squall lines. Several tests with different vertical profiles of low-level winds lead to the conclusion that a shallow and/or weak low-level jet either does not produce a scale selection or, if it does, the selected mode is stationary, indicating the absence of a propagating disturbance. A 700-mbar jet of 13 m/s, with a 600-mbar wind speed greater or equal to 10 m/s, is enough to produce unstable modes with propagating features resembling those of observed Amazonian squall lines. However, a deep layer of moderate winds (about 10 m/s) may produce similar results even in the absence of a low-level wind maximum. The implications in terms of short-term weather forecasting are discussed.

  17. 40 CFR Table F-2 to Subpart F of... - Particle Sizes and Wind Speeds for Full Wind Tunnel Test, Wind Tunnel Inlet Aspiration Test, and...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 5 2011-07-01 2011-07-01 false Particle Sizes and Wind Speeds for Full Wind Tunnel Test, Wind Tunnel Inlet Aspiration Test, and Static Chamber Test F Table F-2 to Subpart F... Part 53—Particle Sizes and Wind Speeds for Full Wind Tunnel Test, Wind Tunnel Inlet Aspiration Test...

  18. 40 CFR Table F-2 to Subpart F of... - Particle Sizes and Wind Speeds for Full Wind Tunnel Test, Wind Tunnel Inlet Aspiration Test, and...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 5 2010-07-01 2010-07-01 false Particle Sizes and Wind Speeds for Full Wind Tunnel Test, Wind Tunnel Inlet Aspiration Test, and Static Chamber Test F Table F-2 to Subpart F... Part 53—Particle Sizes and Wind Speeds for Full Wind Tunnel Test, Wind Tunnel Inlet Aspiration Test...

  19. Results of the Imager for Mars Pathfinder windsock experiment

    USGS Publications Warehouse

    Sullivan, R.; Greeley, R.; Kraft, M.; Wilson, G.; Golombek, M.; Herkenhoff, K.; Murphy, J.; Smith, P.

    2000-01-01

    The Imager for Mars Pathfinder (IMP) windsock experiment measured wind speeds at three heights within 1.2 m of the Martian surface during Pathfinder landed operations. These wind data allowed direct measurement of near-surface wind profiles on Mars for the first time, including determination of aerodynamic roughness length and wind friction speeds. Winds were light during periods of windsock imaging, but data from the strongest breezes indicate aerodynamic roughness length of 3 cm at the landing site, with wind friction speeds reaching 1 m/s. Maximum wind friction speeds were about half of the threshold-of-motion friction speeds predicted for loose, fine-grained materials on smooth Martian terrain and about one third of the threshold-of-motion friction speeds predicted for the same size particles over terrain with aerodynamic roughness of 3 cm. Consistent with this, and suggesting that low wind speeds prevailed when the windsock array was not imaged and/or no particles were available for aeolian transport, no wind-related changes to the surface during mission operations have been recognized. The aerodynamic roughness length reported here implies that proposed deflation of fine particles around the landing site, or activation of duneforms seen by IMP and Sojourner, would require wind speeds >28 m/s at the Pathfinder top windsock height (or >31 m/s at the equivalent Viking wind sensor height of 1.6 m) and wind speeds >45 m/s above 10 m. These wind speeds would cause rock abrasion if a supply of durable particles were available for saltation. Previous analyses indicate that the Pathfinder landing site probably is rockier and rougher than many other plains units on Mars, so aerodynamic roughness length elsewhere probably is less than the 3-cm value reported for the Pathfinder site. Copyright 2000 by the American Geophysical Union.

  20. Mesoscale modelling methodology based on nudging to increase accuracy in WRA

    NASA Astrophysics Data System (ADS)

    Mylonas Dirdiris, Markos; Barbouchi, Sami; Hermmann, Hugo

    2016-04-01

    The offshore wind energy has recently become a rapidly growing renewable energy resource worldwide, with several offshore wind projects in development in different planning stages. Despite of this, a better understanding of the atmospheric interaction within the marine atmospheric boundary layer (MABL) is needed in order to contribute to a better energy capture and cost-effectiveness. Light has been thrown in observational nudging as it has recently become an innovative method to increase the accuracy of wind flow modelling. This particular study focuses on the observational nudging capability of Weather Research and Forecasting (WRF) and ways the uncertainty of wind flow modelling in the wind resource assessment (WRA) can be reduced. Finally, an alternative way to calculate the model uncertainty is pinpointed. Approach WRF mesoscale model will be nudged with observations from FINO3 at three different heights. The model simulations with and without applying observational nudging will be verified against FINO1 measurement data at 100m. In order to evaluate the observational nudging capability of WRF two ways to derive the model uncertainty will be described: one global uncertainty and an uncertainty per wind speed bin derived using the recommended practice of the IEA in order to link the model uncertainty to a wind energy production uncertainty. This study assesses the observational data assimilation capability of WRF model within the same vertical gridded atmospheric column. The principal aim is to investigate whether having observations up to one height could improve the simulation at a higher vertical level. The study will use objective analysis implementing a Cress-man scheme interpolation to interpolate the observation in time and in sp ace (keeping the horizontal component constant) to the gridded analysis. Then the WRF model core will incorporate the interpolated variables to the "first guess" to develop a nudged simulation. Consequently, WRF with and without applying observational nudging will be validated against the higher level of FINO1 met mast using verification statistical metrics such as root mean square error (RMSE), standard deviation of mean error (ME Std), mean error average (bias) and Pearson correlation coefficient (R). The respective process will be followed for different atmospheric stratification regimes in order to evaluate the sensibility of the method to the atmospheric stability. Finally, since wind speed does not have an equally distributed impact on the power yield, the uncertainty will be measured using two ways resulting in a global uncertainty and one per wind speed bin based on a wind turbine power curve in order to evaluate the WRF for the purposes of wind power generation. Conclusion This study shows the higher accuracy of the WRF model after nudging observational data. In a next step these results will be compared with traditional vertical extrapolation methods such as power and log laws. The larger picture of this work would be to nudge the observations from a short offshore metmast in order for the WRF to reconstruct accurately the entire wind profile of the atmosphere up to hub height. This is an important step in order to reduce the cost of offshore WRA. Learning objectives 1. The audience will get a clear view of the added value of observational nudging; 2. An interesting way to calculate WRF uncertainty will be described, linking wind speed uncertainty to energy uncertainty.

  1. Global solar magetic field organization in the extended corona: influence on the solar wind speed and density over the cycle.

    NASA Astrophysics Data System (ADS)

    Réville, V.; Velli, M.; Brun, S.

    2017-12-01

    The dynamics of the solar wind depends intrinsically on the structure of the global solar magnetic field, which undergoes fundamental changes over the 11yr solar cycle. For instance, the wind terminal velocity is thought to be anti-correlated with the expansion factor, a measure of how the magnetic field varies with height in the solar corona, usually computed at a fixed height (≈ 2.5 Rȯ, the source surface radius which approximates the distance at which all magnetic field lines become open). However, the magnetic field expansion affects the solar wind in a more detailed way, its influence on the solar wind properties remaining significant well beyond the source surface: we demonstrate this using 3D global MHD simulations of the solar corona, constrained by surface magnetograms over half a solar cycle (1989-2001). For models to comply with the constraints provided by observed characteristics of the solar wind, namely, that the radial magnetic field intensity becomes latitude independent at some distance from the Sun (Ulysses observations beyond 1 AU), and that the terminal wind speed is anti-correlated with the mass flux, they must accurately describe expansion beyond the solar wind critical point (even up to 10Rȯ and higher in our model). We also show that near activity minimum, expansion in the higher corona beyond 2.5 Rȯ is actually the dominant process affecting the wind speed. We discuss the consequences of this result on the necessary acceleration profile of the solar wind, the location of the sonic point and of the energy deposition by Alfvén waves.

  2. Assessment of the effects of environmental radiation on wind chill equivalent temperatures.

    PubMed

    Shitzer, Avraham

    2008-09-01

    Combinations of wind-driven convection and environmental radiation in cold weather, make the environment "feel" colder. The relative contributions of these mechanisms, which form the basis for estimating wind chill equivalent temperatures (WCETs), are studied over a wide range of environmental conditions. Distinction is made between direct solar radiation and environmental radiation. Solar radiation, which is not included in the analysis, has beneficial effects, as it counters and offsets some of the effects due to wind and low air temperatures. Environmental radiation effects, which are included, have detrimental effects in enhancing heat loss from the human body, thus affecting the overall thermal sensation due to the environment. The analysis is performed by a simple, steady-state analytical model of human-environment thermal interaction using upper and lower bounds of environmental radiation heat exchange. It is shown that, over a wide range of relevant air temperatures and reported wind speeds, convection heat losses dominate over environmental radiation. At low wind speeds radiation contributes up to about 23% of the overall heat loss from exposed skin areas. Its relative contributions reduce considerably as the time of the exposure prolongs and exposed skin temperatures drop. At still higher wind speeds, environmental radiation effects become much smaller contributing about 5% of the total heat loss. These values fall well within the uncertainties associated with the parameter values assumed in the computation of WCETs. It is also shown that environmental radiation effects may be accommodated by adjusting reported wind speeds slightly above their reported values.

  3. A process for providing positive primary control power by wind turbines

    NASA Astrophysics Data System (ADS)

    Marschner, V.; Michael, J.; Liersch, J.

    2014-12-01

    Due to the increasing share of wind energy in electricity generation, wind turbines have to fulfil additional requirements in the context of grid integration. The paper examines to which extent wind turbines can provide positive control power following the related grid code. The additional power has to be obtained from the rotating flywheel mass of the wind turbine's rotor. A simple physical model is developed that allows to draw conclusions about appropriate concepts by means of a dynamic simulation of the variables rotational speed, torque, power output and rotor power. The paper discusses scenarios to provide control power. The supply of control power at partial load is examined in detail using simulations. Under partial load conditions control power can be fed into the grid for a short time. Thereby the rotational speed drops so that aerodynamic efficiency decreases and feed-in power is below the initial value after the control process. In this way an unfavourable situation for the grid control is produced, therefore the paper proposes a modified partial load condition with a higher rotational speed. By providing primary control power the rotor is delayed to the optimum rotational speed so that more rotational energy can be fed in and fed-in power can be increased persistently. However, as the rotor does not operate at optimum speed, a small amount of the energy yield is lost. Finally, the paper shows that a wind farm can combine these two concepts: A part of the wind turbines work under modified partial load conditions can compensate the decrease of power of the wind turbines working under partial load conditions. Therefore the requested control power is provided and afterwards the original value of power is maintained.

  4. Evaluation of Wind Energy Production in Texas using Geographic Information Systems (GIS)

    NASA Astrophysics Data System (ADS)

    Ferrer, L. M.

    2017-12-01

    Texas has the highest installed wind capacity in the United States. The purpose of this research was to estimate the theoretical wind turbine energy production and the utilization ratio of wind turbines in Texas. Windfarm data was combined applying Geographic Information System (GIS) methodology to create an updated GIS wind turbine database, including location and technical specifications. Applying GIS diverse tools, the windfarm data was spatially joined with National Renewable Energy Laboratory (NREL) wind data to calculate the wind speed at each turbine hub. The power output for each turbine at the hub wind speed was evaluated by the GIS system according the respective turbine model power curve. In total over 11,700 turbines are installed in Texas with an estimated energy output of 60 GWh per year and an average utilization ratio of 0.32. This research indicates that applying GIS methodologies will be crucial in the growth of wind energy and efficiency in Texas.

  5. Magneto-thermal Disk Winds from Protoplanetary Disks

    NASA Astrophysics Data System (ADS)

    Bai, Xue-Ning; Ye, Jiani; Goodman, Jeremy; Yuan, Feng

    2016-02-01

    The global evolution and dispersal of protoplanetary disks (PPDs) are governed by disk angular-momentum transport and mass-loss processes. Recent numerical studies suggest that angular-momentum transport in the inner region of PPDs is largely driven by magnetized disk wind, yet the wind mass-loss rate remains unconstrained. On the other hand, disk mass loss has conventionally been attributed to photoevaporation, where external heating on the disk surface drives a thermal wind. We unify the two scenarios by developing a one-dimensional model of magnetized disk winds with a simple treatment of thermodynamics as a proxy for external heating. The wind properties largely depend on (1) the magnetic field strength at the wind base, characterized by the poloidal Alfvén speed vAp, (2) the sound speed cs near the wind base, and (3) how rapidly poloidal field lines diverge (achieve {R}-2 scaling). When {v}{Ap}\\gg {c}{{s}}, corotation is enforced near the wind base, resulting in centrifugal acceleration. Otherwise, the wind is accelerated mainly by the pressure of the toroidal magnetic field. In both cases, the dominant role played by magnetic forces likely yields wind outflow rates that exceed purely hydrodynamical mechanisms. For typical PPD accretion-rate and wind-launching conditions, we expect vAp to be comparable to cs at the wind base. The resulting wind is heavily loaded, with a total wind mass-loss rate likely reaching a considerable fraction of the wind-driven accretion rate. Implications for modeling global disk evolution and planet formation are also discussed.

  6. Temporal and spatial variation of maximum wind speed days during the past 20 years in major cities of Xinjiang

    NASA Astrophysics Data System (ADS)

    Baidourela, Aliya; Jing, Zhen; Zhayimu, Kahaer; Abulaiti, Adili; Ubuli, Hakezi

    2018-04-01

    Wind erosion and sandstorms occur in the neighborhood of exposed dust sources. Wind erosion and desertification increase the frequency of dust storms, deteriorate air quality, and damage the ecological environment and agricultural production. The Xinjiang region has a relatively fragile ecological environment. Therefore, the study of the characteristics of maximum wind speed and wind direction in this region is of great significance to disaster prevention and mitigation, the management of activated dunes, and the sustainable development of the region. Based on the latest data of 71 sites in Xinjiang, this study explores the temporal evolution and spatial distribution of maximum wind speed in Xinjiang from 1993 to 2013, and highlights the distribution of annual and monthly maximum wind speed and the characteristics of wind direction in Xinjiang. Between 1993 and 2013, Ulugchat County exhibited the highest number of days with the maximum wind speed (> 17 m/s), while Wutian exhibited the lowest number. In Xinjiang, 1999 showed the highest number of maximum wind speed days (257 days), while 2013 showed the lowest number (69 days). Spring and summer wind speeds were greater than those in autumn and winter. There were obvious differences in the direction of maximum wind speed in major cities and counties of Xinjiang. East of the Tianshan Mountains, maximum wind speeds are mainly directed southeast and northeast. North and south of the Tianshan Mountains, they are mainly directed northwest and northeast, while west of the Tianshan Mountains, they are mainly directed southeast and northwest.

  7. Effects of subsurface ocean dynamics on instability waves in the tropical Pacific

    NASA Astrophysics Data System (ADS)

    Lawrence, Sean P.; Allen, Myles R.; Anderson, David L. T.; Llewellyn-Jones, David T.

    1998-08-01

    Tropical instability waves in a primitive equation model of the tropical Pacific Ocean, forced with analyzed wind stresses updated daily, show unexpectedly close phase correspondence with observation through the latter half of 1992. This suggests that these waves are not pure instabilities developing from infinitesimal disturbances, but that their phases and phase speeds are at least partially determined by the wind stress forcing. To quantify and explain this observation, we perfomed several numerical experiments, which indicate that remotely forced Rossby waves can influence both the phase and phase speed of tropical instability waves. We suggest that a remote wind forcing determines the high model/observation phase correspondence of tropical instability waves through a relatively realistic simulation of equatorial Kelvin and Rossby wave activity.

  8. Wind extremes in the North Sea basin under climate change: an ensemble study of 12 CMIP5 GCMs

    NASA Astrophysics Data System (ADS)

    de Winter, R.; Ruessink, G.; Sterl, A.

    2012-12-01

    Coastal safety may be influenced by climate change, as changes in extreme surge levels and wave extremes may increase the vulnerability of dunes and other coastal defenses. In the North Sea, an area already prone to severe flooding, these high surge levels and waves are generated by severe wind speeds during storm events. As a result of the geometry of the North Sea, not only the maximum wind speed is relevant, but also wind direction. Analyzing changes in a changing climate implies that several uncertainties need to be taken into account. First, there is the uncertainty in climate experiments, which represents the possible development of the emission of greenhouse gases. Second, there is uncertainty between the climate models that are used to analyze the effect of different climate experiments. The third uncertainty is the natural variability of the climate. When this system variability is large, small trends will be difficult to detect. The natural variability results in statistical uncertainty, especially for events with high return values. We addressed the first two types of uncertainties for extreme wind conditions in the North Sea using 12 CMIP5 GCMs. To evaluate the differences between the climate experiments, two climate experiments (rcp4.5 and rcp8.5) from 2050-2100 are compared with historical runs, running from 1950-2000. Rcp4.5 is considered to be a middle climate experiment and rcp8.5 represents high-end climate scenarios. The projections of the 12 GCMs for a given scenario illustrate model uncertainty. We focus on the North Sea basin, because changes in wind conditions could have a large impact on safety of the densely populated North Sea coast, an area that has already a high exposure to flooding. Our results show that, consistent with ERA-Interim results, the annual maximum wind speed in the historical run demonstrates large interannual variability. For the North Sea, the annual maximum wind speed is not projected to change in either rcp4.5 or rcp8.5. In fact, the differences in the 12 GCMs are larger than the difference between the three experiments. Furthermore, our results show that, the variation in direction of annual maximum wind speed is large and this precludes a firm statement on climate-change induced changes in these directions. Nonetheless, most models indicate a decrease in annual maximum wind speed from south-eastern directions and an increase from south-western and western directions. This might be caused by a poleward shift of the storm track. The amount of wind from north-west and north-north-west, wind directions that are responsible for the development of extreme storm surges in the southern part of the North Sea, are not projected to change. However, North Sea coasts that have the longest fetch for western direction, e.g. the German Bight, may encounter more often high storm surge levels and extreme waves when the annual maximum wind will indeed be more often from western direction.

  9. Wind speed variability over the Canary Islands, 1948-2014: focusing on trend differences at the land-ocean interface and below-above the trade-wind inversion layer

    NASA Astrophysics Data System (ADS)

    Azorin-Molina, Cesar; Menendez, Melisa; McVicar, Tim R.; Acevedo, Adrian; Vicente-Serrano, Sergio M.; Cuevas, Emilio; Minola, Lorenzo; Chen, Deliang

    2017-08-01

    This study simultaneously examines wind speed trends at the land-ocean interface, and below-above the trade-wind inversion layer in the Canary Islands and the surrounding Eastern North Atlantic Ocean: a key region for quantifying the variability of trade-winds and its response to large-scale atmospheric circulation changes. Two homogenized data sources are used: (1) observed wind speed from nine land-based stations (1981-2014), including one mountain weather station (Izaña) located above the trade-wind inversion layer; and (2) simulated wind speed from two atmospheric hindcasts over ocean (i.e., SeaWind I at 30 km for 1948-2014; and SeaWind II at 15 km for 1989-2014). The results revealed a widespread significant negative trend of trade-winds over ocean for 1948-2014, whereas no significant trends were detected for 1989-2014. For this recent period wind speed over land and ocean displayed the same multi-decadal variability and a distinct seasonal trend pattern with a strengthening (late spring and summer; significant in May and August) and weakening (winter-spring-autumn; significant in April and September) of trade-winds. Above the inversion layer at Izaña, we found a predominance of significant positive trends, indicating a decoupled variability and opposite wind speed trends when compared to those reported in boundary layer. The analysis of the Trade Wind Index (TWI), the North Atlantic Oscillation Index (NAOI) and the Eastern Atlantic Index (EAI) demonstrated significant correlations with the wind speed variability, revealing that the correlation patterns of the three indices showed a spatio-temporal complementarity in shaping wind speed trends across the Eastern North Atlantic.

  10. Wind speed variability over the Canary Islands, 1948-2014: focusing on trend differences at the land-ocean interface and below-above the trade-wind inversion layer

    NASA Astrophysics Data System (ADS)

    Azorin-Molina, Cesar; Menendez, Melisa; McVicar, Tim R.; Acevedo, Adrian; Vicente-Serrano, Sergio M.; Cuevas, Emilio; Minola, Lorenzo; Chen, Deliang

    2018-06-01

    This study simultaneously examines wind speed trends at the land-ocean interface, and below-above the trade-wind inversion layer in the Canary Islands and the surrounding Eastern North Atlantic Ocean: a key region for quantifying the variability of trade-winds and its response to large-scale atmospheric circulation changes. Two homogenized data sources are used: (1) observed wind speed from nine land-based stations (1981-2014), including one mountain weather station (Izaña) located above the trade-wind inversion layer; and (2) simulated wind speed from two atmospheric hindcasts over ocean (i.e., SeaWind I at 30 km for 1948-2014; and SeaWind II at 15 km for 1989-2014). The results revealed a widespread significant negative trend of trade-winds over ocean for 1948-2014, whereas no significant trends were detected for 1989-2014. For this recent period wind speed over land and ocean displayed the same multi-decadal variability and a distinct seasonal trend pattern with a strengthening (late spring and summer; significant in May and August) and weakening (winter-spring-autumn; significant in April and September) of trade-winds. Above the inversion layer at Izaña, we found a predominance of significant positive trends, indicating a decoupled variability and opposite wind speed trends when compared to those reported in boundary layer. The analysis of the Trade Wind Index (TWI), the North Atlantic Oscillation Index (NAOI) and the Eastern Atlantic Index (EAI) demonstrated significant correlations with the wind speed variability, revealing that the correlation patterns of the three indices showed a spatio-temporal complementarity in shaping wind speed trends across the Eastern North Atlantic.

  11. An Auto-Tuning PI Control System for an Open-Circuit Low-Speed Wind Tunnel Designed for Greenhouse Technology

    PubMed Central

    Espinoza, Karlos; Valera, Diego L.; Torres, José A.; López, Alejandro; Molina-Aiz, Francisco D.

    2015-01-01

    Wind tunnels are a key experimental tool for the analysis of airflow parameters in many fields of application. Despite their great potential impact on agricultural research, few contributions have dealt with the development of automatic control systems for wind tunnels in the field of greenhouse technology. The objective of this paper is to present an automatic control system that provides precision and speed of measurement, as well as efficient data processing in low-speed wind tunnel experiments for greenhouse engineering applications. The system is based on an algorithm that identifies the system model and calculates the optimum PI controller. The validation of the system was performed on a cellulose evaporative cooling pad and on insect-proof screens to assess its response to perturbations. The control system provided an accuracy of <0.06 m·s−1 for airflow speed and <0.50 Pa for pressure drop, thus permitting the reproducibility and standardization of the tests. The proposed control system also incorporates a fully-integrated software unit that manages the tests in terms of airflow speed and pressure drop set points. PMID:26274962

  12. Towards a High Temporal Frequency Grass Canopy Thermal IR Model for Background Signatures

    NASA Technical Reports Server (NTRS)

    Ballard, Jerrell R., Jr.; Smith, James A.; Koenig, George G.

    2004-01-01

    In this paper, we present our first results towards understanding high temporal frequency thermal infrared response from a dense plant canopy and compare the application of our model, driven both by slowly varying, time-averaged meteorological conditions and by high frequency measurements of local and within canopy profiles of relative humidity and wind speed, to high frequency thermal infrared observations. Previously, we have employed three-dimensional ray tracing to compute the intercepted and scattered radiation fluxes and for final scene rendering. For the turbulent fluxes, we employed simple resistance models for latent and sensible heat with one-dimensional profiles of relative humidity and wind speed. Our modeling approach has proven successful in capturing the directional and diurnal variation in background thermal infrared signatures. We hypothesize that at these scales, where the model is typically driven by time-averaged, local meteorological conditions, the primary source of thermal variance arises from the spatial distribution of sunlit and shaded foliage elements within the canopy and the associated radiative interactions. In recent experiments, we have begun to focus on the high temporal frequency response of plant canopies in the thermal infrared at 1 second to 5 minute intervals. At these scales, we hypothesize turbulent mixing plays a more dominant role. Our results indicate that in the high frequency domain, the vertical profile of temperature change is tightly coupled to the within canopy wind speed In the results reported here, the canopy cools from the top down with increased wind velocities and heats from the bottom up at low wind velocities. .

  13. Good Days, Bad Days: Wind as a Driver of Foraging Success in a Flightless Seabird, the Southern Rockhopper Penguin

    PubMed Central

    Dehnhard, Nina; Ludynia, Katrin; Poisbleau, Maud; Demongin, Laurent; Quillfeldt, Petra

    2013-01-01

    Due to their restricted foraging range, flightless seabirds are ideal models to study the short-term variability in foraging success in response to environmentally driven food availability. Wind can be a driver of upwelling and food abundance in marine ecosystems such as the Southern Ocean, where wind regime changes due to global warming may have important ecological consequences. Southern rockhopper penguins (Eudyptes chrysocome) have undergone a dramatic population decline in the past decades, potentially due to changing environmental conditions. We used a weighbridge system to record daily foraging mass gain (the difference in mean mass of adults leaving the colony in the morning and returning to the colony in the evening) of adult penguins during the chick rearing in two breeding seasons. We related the day-to-day variability in foraging mass gain to ocean wind conditions (wind direction and wind speed) and tested for a relationship between wind speed and sea surface temperature anomaly (SSTA). Foraging mass gain was highly variable among days, but did not differ between breeding seasons, chick rearing stages (guard and crèche) and sexes. It was strongly correlated between males and females, indicating synchronous changes among days. There was a significant interaction of wind direction and wind speed on daily foraging mass gain. Foraging mass gain was highest under moderate to strong winds from westerly directions and under weak winds from easterly directions, while decreasing under stronger easterly winds and storm conditions. Ocean wind speed showed a negative correlation with daily SSTA, suggesting that winds particularly from westerly directions might enhance upwelling and consequently the prey availability in the penguins' foraging areas. Our data emphasize the importance of small-scale, wind-induced patterns in prey availability on foraging success, a widely neglected aspect in seabird foraging studies, which might become more important with increasing changes in climatic variability. PMID:24236139

  14. Basic principles and recent observations of rotationally sampled wind

    NASA Technical Reports Server (NTRS)

    Connell, James R.

    1995-01-01

    The concept of rotationally sampled wind speed is described. The unusual wind characteristics that result from rotationally sampling the wind are shown first for early measurements made using an 8-point ring of anemometers on a vertical plane array of meteorological towers. Quantitative characterization of the rotationally sampled wind is made in terms of the power spectral density function of the wind speed. Verification of the importance of the new concept is demonstrated with spectral analyses of the response of the MOD-OA blade flapwise root bending moment and the corresponding rotational analysis of the wind measured immediately upwind of the MOD-OA using a 12-point ring of anemometers on a 7-tower vertical plane array. The Pacific Northwest Laboratory (PNL) theory of the rotationally sampled wind speed power spectral density function is tested successfully against the wind spectrum measured at the MOD-OA vertical plane array. A single-tower empirical model of the rotationally sampled wind speed is also successfully tested against the measurements from the full vertical plane array. Rotational measurements of the wind velocity with hotfilm anemometers attached to rotating blades are shown to be accurate and practical for research on winds at the blades of wind turbines. Some measurements at the rotor blade of a MOD-2 turbine using the hotfilm technique in a pilot research program are shown. They are compared and contrasted to the expectations based upon application of the PNL theory of rotationally sampled wind to the MOD-2 size and rotation rate but without teeter, blade bending, or rotor induction accounted for. Finally, the importance of temperature layering and of wind modifications due to flow over complex terrain is demonstrated by the use of hotfilm anemometer data, and meteorological tower and acoustic doppler sounder data from the MOD-2 site at Goodnoe Hills, Washington.

  15. Drag Coefficient and Foam in Hurricane Conditions.

    NASA Astrophysics Data System (ADS)

    Golbraikh, E.; Shtemler, Y.

    2016-12-01

    he present study is motivated by recent findings of saturation and even decrease in the drag coefficient (capping) in hurricane conditions, which is accompanied by the production of a foam layer on the ocean surface. As it is difficult to expect at present a comprehensive numerical modeling of the drag coefficient saturation that is followed by wave breaking and foam production, there is no complete confidence and understanding of the saturation phenomenon. Our semi-empirical model is proposed for the estimation of the foam impact on the variation of the effective drag coefficient, Cd , with the reference wind speed U10 in stormy and hurricane conditions. The proposed model treats the efficient air-sea aerodynamic roughness length as a sum of two weighted aerodynamic roughness lengths for the foam-free and foam-covered conditions. On the available optical and radiometric measurements of the fractional foam coverage,αf, combined with direct wind speed measurements in hurricane conditions, which provide the minimum of the effective drag coefficient, Cd for the sea covered with foam. The present model yields Cd10 versus U10 in fair agreement with that evaluated from both open-ocean and laboratory measurements of the vertical variation of mean wind speed in the range of U10 from low to hurricane speeds. The present approach opens opportunities for drag coefficient modeling in hurricane conditions and hurricane intensity estimation by the foam-coverage value using optical and radiometric measurements.

  16. Electron heating within interaction zones of simple high-speed solar wind streams

    NASA Technical Reports Server (NTRS)

    Feldman, W. C.; Asbridge, J. R.; Bame, S. J.; Gosling, J. T.; Lemons, D. S.

    1978-01-01

    In the present paper, electron heating within the high-speed portions of three simple stream-stream interaction zones is studied to further our understanding of the physics of heat flux regulation in interplanetary space. To this end, the thermal signals present in the compressions at the leading edges of the simple high-speed streams are analyzed, showing that the data are inconsistent with the Spitzer conductivity. Instead, a polynomial law is found to apply. Its implication concerning the mechanism of interplanetary heat conduction is discussed, and the results of applying this conductivity law to high-speed flows inside of 1 AU are studied. A self-consistent model of the radial evolution of electrons in the high-speed solar wind is proposed.

  17. Saltation of Non-Spherical Sand Particles

    PubMed Central

    Wang, Zhengshi; Ren, Shan; Huang, Ning

    2014-01-01

    Saltation is an important geological process and the primary source of atmospheric mineral dust aerosols. Unfortunately, no studies to date have been able to precisely reproduce the saltation process because of the simplified theoretical models used. For example, sand particles in most of the existing wind sand movement models are considered to be spherical, the effects of the sand shape on the structure of the wind sand flow are rarely studied, and the effect of mid-air collision is usually neglected. In fact, sand grains are rarely round in natural environments. In this paper, we first analyzed the drag coefficients, drag forces, and starting friction wind speeds of sand grains with different shapes in the saltation process, then established a sand saltation model that considers the coupling effect between wind and the sand grains, the effect of the mid-air collision of sand grains, and the effect of the sand grain shape. Based on this model, the saltation process and sand transport rate of non-spherical sand particles were simulated. The results show that the sand shape has a significant impact on the saltation process; for the same wind speed, the sand transport rates varied for different shapes of sand grains by as much as several-fold. Therefore, sand shape is one of the important factors affecting wind-sand movement. PMID:25170614

  18. Wake flow control using a dynamically controlled wind turbine

    NASA Astrophysics Data System (ADS)

    Castillo, Ricardo; Wang, Yeqin; Pol, Suhas; Swift, Andy; Hussain, Fazle; Westergaard, Carsten; Texas Tech University Team

    2016-11-01

    A wind tunnel based "Hyper Accelerated Wind Farm Kinematic-Control Simulator" (HAWKS) is being built at Texas Tech University to emulate controlled wind turbine flow physics. The HAWKS model turbine has pitch, yaw and speed control which is operated in real model time, similar to that of an equivalent full scale turbine. Also, similar to that of a full scale wind turbine, the controls are developed in a Matlab Simulink environment. The current diagnostic system consists of power, rotor position, rotor speed measurements and PIV wake characterization with four cameras. The setup allows up to 7D downstream of the rotor to be mapped. The purpose of HAWKS is to simulate control strategies at turnaround times much faster than CFD and full scale testing. The fundamental building blocks of the simulator have been tested, and demonstrate wake steering for both static and dynamic turbine actuation. Parameters which have been studied are yaw, rotor speed and combinations hereof. The measured wake deflections for static yaw cases are in agreement with previously reported research implying general applicability of the HAWKS platform for the purpose of manipulating the wake. In this presentation the general results will be introduced followed by an analysis of the wake turbulence and coherent structures when comparing static and dynamic flow cases. The outcome of such studies could ultimately support effective wind farm wake flow control strategies. Texas Emerging Technology Fund (ETF).

  19. Using wind fields from a high resolution atmospheric model for simulating snow dynamics in mountainous terrain

    NASA Astrophysics Data System (ADS)

    Bernhardt, M.; Strasser, U.; Zängl, G.; Mauser, W.; Liston, G.; Pohl, S.

    2008-12-01

    Wind-induced snow transport processes lead to a significant variability of the snow cover. Knowledge about this variability is important for e.g. determining the temporal dynamics of the snowmelt runoff. For predicting the correct amount of transported snow knowledge of the local wind-field is an essential. In high-alpine rugged relief wind fields can hardly be provided by a simple interpolation of station recordings. In this work we use a modified version of the PSU/NCAR Mesoscale Model MM5 to derive wind fields for a 450 km² area at a target resolution of 200 m, accounting for topography and related dynamic effects. We have modelled 220 wind fields representing the most characteristic wind situations within the test-area. The criteria for the extraction of the wind field for the current snowmodel (SNOWTRAND-3D) time step are mean wind speeds and directions in the 700 hPa level derived from DWD (German Weather Service) Local Model reanalysis data with a temporal resolution of one hour. These data are then compared with the corresponding mean wind speeds and directions from the appropriate MM5 nesting area indicating which one of the library files represents the best fit. Verification is conducted by comparison of historical station measurements with corresponding downscaled simulation results. For this downscaling a semi-empirical approach is utilized which accounts for topographic effects. Results for the winter seasons 2003/04 and 2004/05 showing that the presented scheme is able to improve the quality of SNOWTRAN-3D runs with respect to the snow height.

  20. Wake characteristics of an eight-leg tower for a MOD-0 type wind turbine

    NASA Technical Reports Server (NTRS)

    Savino, J. M.; Wagner, L. H.; Sinclair, D.

    1977-01-01

    Low speed wind tunnel tests were conducted to determine the flow characteristics of the wake downwind of a 1/25th scale, all tubular eight leg tower concept suitable for application to the DOE-NASA MOD-0 wind power turbine. Measurements were made of wind speed profiles, and from these were determined the wake local minimum velocity, average velocity, and width for several wind approach angles. These data are presented herein along with tower shadow photographs and comparisons with data from an earlier lattice type, four leg tower model constructed of tubular members. Values of average wake velocity defect ratio and average ratio of wake width to blade radius for the eight leg model were estimated to be around 0.17 and 0.30, respectively, at the plane of the rotor blade. These characteristics suggest that the tower wake of the eight leg concept is slightly less than that of the four leg design.

Top