Sample records for wind speed sensor

  1. An Analysis of Peak Wind Speed Data from Collocated Mechanical and Ultrasonic Anemometers

    NASA Technical Reports Server (NTRS)

    Short, David A.; Wells, Leonard A.; Merceret, Francis J.; Roeder, William P.

    2005-01-01

    This study focuses on a comparison of peak wind speeds reported by mechanical and ultrasonic anemometers at Cape Canaveral Air Force Station and Kennedy Space Center (CCAFS/KSC) on the east central coast of Florida and Vandenberg Air Force Base (VAFB) on the central coast of California. The legacy mechanical wind instruments on CCAFS/KSC and VAFB weather towers are being changed from propeller-and-vane (CCAFS/KSC) and cup-and-vane (VAFB) sensors to ultrasonic sensors under the Range Standardization and Automation (RSA) program. The wind tower networks on KSC/CCAFS and VAFB have 41 and 27 towers, respectively. Launch Weather Officers, forecasters, and Range Safety analysts at both locations need to understand the performance of the new wind sensors for a myriad of reasons that include weather warnings, watches, advisories, special ground processing operations, launch pad exposure forecasts, user Launch Commit Criteria (LCC) forecasts and evaluations, and toxic dispersion support. The Legacy sensors measure wind speed and direction mechanically. The ultrasonic RSA sensors have no moving parts. Ultrasonic sensors were originally developed to measure very light winds (Lewis and Dover 2004). The technology has evolved and now ultrasonic sensors provide reliable wind data over a broad range of wind speeds. However, because ultrasonic sensors respond more quickly than mechanical sensors to rapid fluctuations in speed, characteristic of gusty wind conditions, comparisons of data from the two sensor types have shown differences in the statistics of peak wind speeds (Lewis and Dover 2004). The 45th Weather Squadron (45 WS) and the 30 WS requested the Applied Meteorology Unit (AMU) to compare data from RSA and Legacy sensors to determine if there are significant differences in peak wind speed information from the two systems.

  2. RSA/Legacy Wind Sensor Comparison. Part 2; Eastern Range

    NASA Technical Reports Server (NTRS)

    Short, David A.; Wheeler, Mark M.

    2006-01-01

    This report describes a comparison of data from ultrasonic and propeller-and-vane anemometers on 5 wind towers at Kennedy Space Center and Cape Canaveral Air Force Station. The ultrasonic sensors are scheduled to replace the Legacy propeller-and-vane sensors under the Range Standardization and Automation (RSA) program. Because previous studies have noted differences between peak wind speeds reported by mechanical and ultrasonic wind sensors, the latter having no moving parts, the 30th and 45th Weather Squadrons wanted to understand possible differences between the two sensor types. The period-of-record was 13-30 May 2005, A total of 357,626 readings of 1-minute average and peak wind speed/direction from each sensor type were used. Statistics of differences in speed and direction were used to identify 15 out of 19 RSA sensors having the most consistent performance, with respect to the Legacy sensors. RSA average wind speed data from these 15 showed a small positive bias of 0.38 kts. A slightly larger positive bias of 0.94 kts was found in the RSA peak wind speed.

  3. RSA/Legacy Wind Sensor Comparison. Part 1; Western Range

    NASA Technical Reports Server (NTRS)

    Short, David A.; Wheeler, Mark M.

    2006-01-01

    This report describes a comparison of data from ultrasonic and cup-and-vane anemometers on 5 wind towers at Vandenberg AFB. The ultrasonic sensors are scheduled to replace the Legacy cup-and-vane sensors under the Range Standardization and Automation (RSA) program. Because previous studies have noted differences between peak wind speeds reported by mechanical and ultrasonic wind sensors, the latter having no moving parts, the 30th and 45th Weather Squadrons wanted to understand possible differences between the two sensor types. The period-of-record was 13-30 May 2005. A total of 153,961 readings of I-minute average and peak wind speed/direction from each sensor type were used. Statistics of differences in speed and direction were used to identify 18 out of 34 RSA sensors having the most consistent performance, with respect to the Legacy sensors. Data from these 18 were used to form a composite comparison. A small positive bias in the composite RSA average wind speed increased from +0.5 kts at 15 kts, to +1 kt at 25 kts. A slightly larger positive bias in the RSA peak wind speed increased from +1 kt at 15 kts, to +2 kts at 30 kts.

  4. Wind Velocity and Position Sensor-less Operation for PMSG Wind Generator

    NASA Astrophysics Data System (ADS)

    Senjyu, Tomonobu; Tamaki, Satoshi; Urasaki, Naomitsu; Uezato, Katsumi; Funabashi, Toshihisa; Fujita, Hideki

    Electric power generation using non-conventional sources is receiving considerable attention throughout the world. Wind energy is one of the available non-conventional energy sources. Electrical power generation using wind energy is possible in two ways, viz. constant speed operation and variable speed operation using power electronic converters. Variable speed power generation is attractive, because maximum electric power can be generated at all wind velocities. However, this system requires a rotor speed sensor, for vector control purpose, which increases the cost of the system. To alleviate the need of rotor speed sensor in vector control, we propose a new sensor-less control of PMSG (Permanent Magnet Synchronous Generator) based on the flux linkage. We can estimate the rotor position using the estimated flux linkage. We use a first-order lag compensator to obtain the flux linkage. Furthermore‚we estimate wind velocity and rotation speed using a observer. The effectiveness of the proposed method is demonstrated thorough simulation results.

  5. Transient response of sap flow to wind speed.

    PubMed

    Chu, Chia R; Hsieh, Cheng-I; Wu, Shen-Yuang; Phillips, Nathan G

    2009-01-01

    Transient responses of sap flow to step changes in wind speed were experimentally investigated in a wind tunnel. A Granier-type sap flow sensor was calibrated and tested in a cylindrical tube for analysis of its transient time response. Then the sensor was used to measure the transient response of a well-watered Pachira macrocarpa plant to wind speed variations. The transient response of sap flow was described using the resistance-capacitance model. The steady sap flow rate increased as the wind speed increased at low wind speeds. Once the wind speed exceeded 8.0 m s(-1), the steady sap flow rate did not increase further. The transpiration rate, measured gravimetrically, showed a similar trend. The response of nocturnal sap flow to wind speed variation was also measured and compared with the results in the daytime. Under the same wind speed, the steady sap flow rate was smaller than that in the daytime, indicating differences between diurnal and nocturnal hydraulic function, and incomplete stomatal closure at night. In addition, it was found that the temporal response of the Granier sensor is fast enough to resolve the transient behaviour of water flux in plant tissue.

  6. Self-Powered Wind Sensor System for Detecting Wind Speed and Direction Based on a Triboelectric Nanogenerator.

    PubMed

    Wang, Jiyu; Ding, Wenbo; Pan, Lun; Wu, Changsheng; Yu, Hua; Yang, Lijun; Liao, Ruijin; Wang, Zhong Lin

    2018-04-24

    The development of the Internet of Things has brought new challenges to the corresponding distributed sensor systems. Self-powered sensors that can perceive and respond to environmental stimuli without an external power supply are highly desirable. In this paper, a self-powered wind sensor system based on an anemometer triboelectric nanogenerator (a-TENG, free-standing mode) and a wind vane triboelectric nanogenerator (v-TENG, single-electrode mode) is proposed for simultaneously detecting wind speed and direction. A soft friction mode is adopted instead of a typical rigid friction for largely enhancing the output performance of the TENG. The design parameters including size, unit central angle, and applied materials are optimized to enhance sensitivity, resolution, and wide measurement scale. The optimized a-TENG could deliver an open-circuit voltage of 88 V and short-circuit current of 6.3 μA, corresponding to a maximum power output of 0.47 mW (wind speed of 6.0 m/s), which is capable of driving electronics for data transmission and storage. The current peak value of the a-TENG signal is used for analyzing wind speed for less energy consumption. Moreover, the output characteristics of a v-TENG are further explored, with six actual operation situations, and the v-TENG delivers fast response to the incoming wind and accurately outputs the wind direction data. As a wind sensor system, wind speed ranging from 2.7 to 8.0 m/s can be well detected (consistent with a commercial sensor) and eight regular directions can be monitored. Therefore, the fabricated wind sensor system has great potential in wireless environmental monitoring applications.

  7. A Wind Energy Powered Wireless Temperature Sensor Node

    PubMed Central

    Zhang, Chuang; He, Xue-Feng; Li, Si-Yu; Cheng, Yao-Qing; Rao, Yang

    2015-01-01

    A wireless temperature sensor node composed of a piezoelectric wind energy harvester, a temperature sensor, a microcontroller, a power management circuit and a wireless transmitting module was developed. The wind-induced vibration energy harvester with a cuboid chamber of 62 mm × 19.6 mm × 10 mm converts ambient wind energy into electrical energy to power the sensor node. A TMP102 temperature sensor and the MSP430 microcontroller are used to measure the temperature. The power management module consists of LTC3588-1 and LT3009 units. The measured temperature is transmitted by the nRF24l01 transceiver. Experimental results show that the critical wind speed of the harvester was about 5.4 m/s and the output power of the harvester was about 1.59 mW for the electrical load of 20 kΩ at wind speed of 11.2 m/s, which was sufficient to power the wireless sensor node to measure and transmit the temperature every 13 s. When the wind speed increased from 6 m/s to 11.5 m/s, the self-powered wireless sensor node worked normally. PMID:25734649

  8. A wind energy powered wireless temperature sensor node.

    PubMed

    Zhang, Chuang; He, Xue-Feng; Li, Si-Yu; Cheng, Yao-Qing; Rao, Yang

    2015-02-27

    A wireless temperature sensor node composed of a piezoelectric wind energy harvester, a temperature sensor, a microcontroller, a power management circuit and a wireless transmitting module was developed. The wind-induced vibration energy harvester with a cuboid chamber of 62 mm × 19.6 mm × 10 mm converts ambient wind energy into electrical energy to power the sensor node. A TMP102 temperature sensor and the MSP430 microcontroller are used to measure the temperature. The power management module consists of LTC3588-1 and LT3009 units. The measured temperature is transmitted by the nRF24l01 transceiver. Experimental results show that the critical wind speed of the harvester was about 5.4 m/s and the output power of the harvester was about 1.59 mW for the electrical load of 20 kΩ at wind speed of 11.2 m/s, which was sufficient to power the wireless sensor node to measure and transmit the temperature every 13 s. When the wind speed increased from 6 m/s to 11.5 m/s, the self-powered wireless sensor node worked normally.

  9. Rugged, no-moving-parts windspeed and static pressure probe designs for measurements in planetary atmospheres

    NASA Technical Reports Server (NTRS)

    Bedard, A. J., Jr.; Nishiyama, R. T.

    1993-01-01

    Instruments developed for making meteorological observations under adverse conditions on Earth can be applied to systems designed for other planetary atmospheres. Specifically, a wind sensor developed for making measurements within tornados is capable of detecting induced pressure differences proportional to wind speed. Adding strain gauges to the sensor would provide wind direction. The device can be constructed in a rugged form for measuring high wind speeds in the presence of blowing dust that would clog bearings and plug passages of conventional wind speed sensors. Sensing static pressure in the lower boundary layer required development of an omnidirectional, tilt-insensitive static pressure probe. The probe provides pressure inputs to a sensor with minimum error and is inherently weather-protected. The wind sensor and static pressure probes have been used in a variety of field programs and can be adapted for use in different planetary atmospheres.

  10. Direct Torque Control of a Small Wind Turbine with a Sliding-Mode Speed Controller

    NASA Astrophysics Data System (ADS)

    Sri Lal Senanayaka, Jagath; Karimi, Hamid Reza; Robbersmyr, Kjell G.

    2016-09-01

    In this paper. the method of direct torque control in the presence of a sliding-mode speed controller is proposed for a small wind turbine being used in water heating applications. This concept and control system design can be expanded to grid connected or off-grid applications. Direct torque control of electrical machines has shown several advantages including very fast dynamics torque control over field-oriented control. Moreover. the torque and flux controllers in the direct torque control algorithms are based on hvsteretic controllers which are nonlinear. In the presence of a sliding-mode speed control. a nonlinear control system can be constructed which is matched for AC/DC conversion of the converter that gives fast responses with low overshoots. The main control objectives of the proposed small wind turbine can be maximum power point tracking and soft-stall power control. This small wind turbine consists of permanent magnet synchronous generator and external wind speed. and rotor speed measurements are not required for the system. However. a sensor is needed to detect the rated wind speed overpass events to activate proper speed references for the wind turbine. Based on the low-cost design requirement of small wind turbines. an available wind speed sensor can be modified. or a new sensor can be designed to get the required measurement. The simulation results will be provided to illustrate the excellent performance of the closed-loop control system in entire wind speed range (4-25 m/s).

  11. Application of Surface Protective Coating to Enhance Environment-Withstanding Property of the MEMS 2D Wind Direction and Wind Speed Sensor.

    PubMed

    Shin, Kyu-Sik; Lee, Dae-Sung; Song, Sang-Woo; Jung, Jae Pil

    2017-09-19

    In this study, a microelectromechanical system (MEMS) two-dimensional (2D) wind direction and wind speed sensor consisting of a square heating source and four thermopiles was manufactured using the heat detection method. The heating source and thermopiles of the manufactured sensor must be exposed to air to detect wind speed and wind direction. Therefore, there are concerns that the sensor could be contaminated by deposition or adhesion of dust, sandy dust, snow, rain, and so forth, in the air, and that the membrane may be damaged by physical shock. Hence, there was a need to protect the heating source, thermopiles, and the membrane from environmental and physical shock. The upper protective coating to protect both the heating source and thermopiles and the lower protective coating to protect the membrane were formed by using high-molecular substances such as SU-8, Teflon and polyimide (PI). The sensor characteristics with the applied protective coatings were evaluated.

  12. Comparison of surface wind stress measurements - Airborne radar scatterometer versus sonic anemometer

    NASA Technical Reports Server (NTRS)

    Brucks, J. T.; Leming, T. D.; Jones, W. L.

    1980-01-01

    Sea surface wind stress measurements recorded by a sonic anemometer are correlated with airborne scatterometer measurements of ocean roughness (cross section of radar backscatter) to establish the accuracy of remotely sensed data and assist in the definition of geophysical algorithms for the scatterometer sensor aboard Seasat A. Results of this investigation are as follows: Comparison of scatterometer and sonic anemometer wind stress measurements are good for the majority of cases; however, a tendency exists for scatterometer wind stress to be somewhat high for higher wind conditions experienced in this experiment (6-9 m/s). The scatterometer wind speed algorithm tends to overcompute the higher wind speeds by approximately 0.5 m/s. This is a direct result of the scatterometer overestimate of wind stress from which wind speeds are derived. Algorithmic derivations of wind speed and direction are, in most comparisons, within accuracies defined by Seasat A scatterometer sensor specifications.

  13. An Analysis of Peak Wind Speed Data from Collocated Mechanical and Ultrasonic Anemometers

    NASA Technical Reports Server (NTRS)

    Short, David A.; Wells, Leonard; Merceret, Francis J.; Roeder, William P.

    2007-01-01

    This study compared peak wind speeds reported by mechanical and ultrasonic anemometers at Cape Canaveral Air Force Station and Kennedy Space Center (CCAFS/KSC) on the east central coast of Florida and Vandenberg Air Force Base (VAFB) on the central coast of California. Launch Weather Officers, forecasters, and Range Safety analysts need to understand the performance of wind sensors at CCAFS/KSC and VAFB for weather warnings, watches, advisories, special ground processing operations, launch pad exposure forecasts, user Launch Commit Criteria (LCC) forecasts and evaluations, and toxic dispersion support. The legacy CCAFS/KSC and VAFB weather tower wind instruments are being changed from propeller-and-vane (CCAFS/KSC) and cup-and-vane (VAFB) sensors to ultrasonic sensors under the Range Standardization and Automation (RSA) program. Mechanical and ultrasonic wind measuring techniques are known to cause differences in the statistics of peak wind speed as shown in previous studies. The 45th Weather Squadron (45 WS) and the 30th Weather Squadron (30 WS) requested the Applied Meteorology Unit (AMU) to compare data between the RSA ultrasonic and legacy mechanical sensors to determine if there are significant differences. Note that the instruments were sited outdoors under naturally varying conditions and that this comparison was not designed to verify either technology. Approximately 3 weeks of mechanical and ultrasonic wind data from each range from May and June 2005 were used in this study. The CCAFS/KSC data spanned the full diurnal cycle, while the VAFB data were confined to 1000-1600 local time. The sample of 1-minute data from numerous levels on five different towers on each range totaled more than 500,000 minutes of data (482,979 minutes of data after quality control). The ten towers were instrumented at several levels, ranging from 12 ft to 492 ft above ground level. The ultrasonic sensors were collocated at the same vertical levels as the mechanical sensors and typically within 15 ft horizontally of each another. Data from a total of 53 RSA ultrasonic sensors, collocated with mechanical sensors were compared. The 1- minute average wind speed/direction and the 1-second peak wind speed/direction were compared.

  14. Analysis of the Viking Lander 1 surface wind vector for sols 45 to 375

    NASA Technical Reports Server (NTRS)

    Leovy, C. B.

    1984-01-01

    The Viking Lander 1 wind sensor data during the period between sols 45 and 375 were corrected. During this period, the heating element of the quadrant sensor which provided the primary signal used for determining wind direction had failed, but both hot film wind sensors were functioning normally. The wind speed and direction corrections are explained.

  15. Development of a validation model for the defense meteorological satellite program's special sensor microwave imager

    NASA Technical Reports Server (NTRS)

    Swift, C. T.; Goodberlet, M. A.; Wilkerson, J. C.

    1990-01-01

    The Defence Meteorological Space Program's (DMSP) Special Sensor Microwave/Imager (SSM/I), an operational wind speed algorithm was developed. The algorithm is based on the D-matrix approach which seeks a linear relationship between measured SSM/I brightness temperatures and environmental parameters. D-matrix performance was validated by comparing algorithm derived wind speeds with near-simultaneous and co-located measurements made by off-shore ocean buoys. Other topics include error budget modeling, alternate wind speed algorithms, and D-matrix performance with one or more inoperative SSM/I channels.

  16. Wind Speed Measurement by Paper Anemometer

    ERIC Educational Resources Information Center

    Zhong, Juhua; Cheng, Zhongqi; Guan, Wenchuan

    2011-01-01

    A simple wind speed measurement device, a paper anemometer, is fabricated based on the theory of standing waves. In providing the working profile of the paper anemometer, an experimental device is established, which consists of an anemometer sensor, a sound sensor, a microphone, paper strips, a paper cup, and sonic acquisition software. It shows…

  17. Power Maximization Control of Variable Speed Wind Generation System Using Permanent Magnet Synchronous Generator

    NASA Astrophysics Data System (ADS)

    Morimoto, Shigeo; Nakamura, Tomohiko; Takeda, Yoji

    This paper proposes the sensorless output power maximization control of the wind generation system. A permanent magnet synchronous generator (PMSG) is used as a variable speed generator in the proposed system. The generator torque is suitably controlled according to the generator speed and thus the power from a wind turbine settles down on the maximum power point by the proposed MPPT control method, where the information of wind velocity is not required. Moreover, the maximum available generated power is obtained by the optimum current vector control. The current vector of PMSG is optimally controlled according to the generator speed and the required torque in order to minimize the losses of PMSG considering the voltage and current constraints. The proposed wind power generation system can be achieved without mechanical sensors such as a wind velocity detector and a position sensor. Several experimental results show the effectiveness of the proposed control method.

  18. A Comparison of Wind Speed Data from Mechanical and Ultrasonic Anemometers

    NASA Technical Reports Server (NTRS)

    Short, D.; Wells, L.; Merceret, F.; Roeder, W. P.

    2006-01-01

    This study compared the performance of mechanical and ultrasonic anemometers at the Eastern Range (ER; Kennedy Space Center and Cape Canaveral Air Force Station on Florida's Atlantic coast) and the Western Range (WR; Vandenberg Air Force Base on California's Pacific coast). Launch Weather Officers, forecasters, and Range Safety analysts need to understand the performance of wind sensors at the ER and WR for weather warnings, watches, advisories, special ground processing operations, launch pad exposure forecasts, user Launch Commit Criteria (LCC) forecasts and evaluations, and toxic dispersion support. The current ER and WR weather tower wind instruments are being changed from the current propeller-and-vane (ER) and cup-and-vane (WR) sensors to ultrasonic sensors through the Range Standardization and Automation (RSA) program. The differences between mechanical and ultrasonic techniques have been found to cause differences in the statistics of peak wind speed in previous studies. The 45th Weather Squadron (45 WS) and the 30th Weather Squadron (30 WS) requested the Applied Meteorology Unit (AMU) to compare data between RSA and current sensors to determine if there are significant differences. Approximately 3 weeks of Legacy and RSA wind data from each range were used in the study, archived during May and June 2005. The ER data spanned the full diurnal cycle, while the WR data was confined to 1000-1600 local time. The sample of 1-minute data from numerous levels on 5 different towers on each range totaled more than 500,000 minutes of data (482,979 minutes of data after quality control). The 10 towers were instrumented at several levels, ranging from 12 ft to 492 ft above ground level. The RSA sensors were collocated at the same vertical levels as the present sensors and typically within 15 ft horizontally of each another. Data from a total of 53 RSA ultrasonic sensors, collocated with present sensors were compared. The 1-minute average wind speed/direction and the 1-second peak wind speed/direction were compared.

  19. Assessing the Impact of Different Measurement Time Intervals on Observed Long-Term Wind Speed Trends

    NASA Astrophysics Data System (ADS)

    Azorin-Molina, C.; Vicente-Serrano, S. M.; McVicar, T.; Jerez, S.; Revuelto, J.; López Moreno, J. I.

    2014-12-01

    During the last two decades climate studies have reported a tendency toward a decline in measured near-surface wind speed in some regions of Europe, North America, Asia and Australia. This weakening in observed wind speed has been recently termed "global stilling", showing a worldwide average trend of -0.140 m s-1 dec-1 during last 50-years. The precise cause of the "global stilling" remains largely uncertain and has been hypothetically attributed to several factors, mainly related to: (i) an increasing surface roughness (i.e. forest growth, land use changes, and urbanization); (ii) a slowdown in large-scale atmospheric circulation; (iii) instrumental drifts and technological improvements, maintenance, and shifts in measurements sites and calibration issues; (iv) sunlight dimming due to air pollution; and (v) astronomical changes. This study proposed a novel investigation aimed at analyzing how different measurement time intervals used to calculate a wind speed series can affect the sign and magnitude of long-term wind speed trends. For instance, National Weather Services across the globe estimate daily average wind speed using different time intervals and formulae that may affect the trend results. Firstly, we carried out a comprehensive review of wind studies reporting the sign and magnitude of wind speed trend and the sampling intervals used. Secondly, we analyzed near-surface wind speed trends recorded at 59 land-based stations across Spain comparing monthly mean wind speed series obtained from: (a) daily mean wind speed data averaged from standard 10-min mean observations at 0000, 0700, 1300 and 1800 UTC; and (b) average wind speed of 24 hourly measurements (i.e., wind run measurements) from 0000 to 2400 UTC. Thirdly and finally, we quantified the impact of anemometer drift (i.e. bearing malfunction) by presenting preliminary results (1-year of paired measurements) from a comparison of one new anemometer sensor against one malfunctioned anenometer sensor due to old bearings.

  20. One- to two-month oscillations in SSMI surface wind speed in western tropical Pacific Ocean

    NASA Technical Reports Server (NTRS)

    Collins, Michael L.; Stanford, John L.; Halpern, David

    1994-01-01

    The 10-m wind speed over the ocean can be estimated from microwave brightness temperature measurements recorded by the Special Sensor Microwave Imager (SSMI) instrument mounted on a polar-orbiting spacecraft. Four-year (1988-1991) time series of average daily 1 deg x 1 deg SSMI wind speeds were analyzed at selected sites in the western tropical Pacific Ocean. One- to two-month period wind speed oscillations with amplitudes statistically significant at the 95% confidence level were observed near Kanton, Eniwetok, Guam, and Truk. This is the first report of such an oscillation in SSMI wind speeds.

  1. Near-surface Salinity and Temperature Structure Observed with Dual-Sensor Drifters in the Subtropical South Pacific

    NASA Astrophysics Data System (ADS)

    Dong, Shenfu; Goni, Gustavo; Volkov, Denis; Lumpkin, Rick; Foltz, Gregory

    2017-04-01

    Three surface drifters equipped with temperature and salinity sensors at 0.2 m and 5 m depths were deployed in April/May 2015 in the subtropical South Pacific Ocean with the objective of measuring near-surface salinity differences seen by satellite and in situ sensors and examining the causes of the differences. Measurements from these drifters indicate that, on average, water at a depth of 0.2 m is about 0.013 psu fresher than at 5 m and about 0.024°C warmer. Events with large temperature and salinity differences between the two depths often occur when surface winds are weak. In addition to the expected surface freshening and cooling during rainfall events, surface salinification occurs under weak wind conditions when there is strong surface warming that enhances evaporation and upper ocean stratification. Further examination of the drifter measurements demonstrate that (i) the amount of surface freshening and vertical salinity gradient heavily depend on wind speed during rain events, (ii) salinity differences between 0.2 m and 5 m are positively correlated with the corresponding temperature differences, and (iii) temperature exhibits a diurnal cycle at both depths, whereas the diurnal cycle of salinity is observed only at 0.2 m when the wind speed is less than 4 m/s. Its phase is consistent with diurnal changes in surface temperature-induced evaporation. Below a wind speed of 6 m/s, the amplitudes of the diurnal cycles of temperature at both depths decrease with increasing wind speed. Wind speed also affects the phasing of the diurnal cycle of T5m with the time of maximum T5m increasing gradually with decreasing wind speed. Wind speed does not affect the phasing of the diurnal cycle of T0.2m. At 0.2 m and 5 m, the diurnal cycle of temperature also depends on surface solar radiation, with the amplitude and time of diurnal maximum increasing as solar radiation increases.

  2. Iron charge states observed in the solar wind

    NASA Technical Reports Server (NTRS)

    Ipavich, F. M.; Galvin, A. B.; Gloeckler, G.; Hovestadt, D.; Klecker, B.; Scholer, M.

    1983-01-01

    Solar wind measurements from the ULECA sensor of the Max-Planck-Institut/University of Maryland experiment on ISEE-3 are reported. The low energy section of approx the ULECA sensor selects particles by their energy per charge (over the range 3.6 keV/Q to 30 keV/Q) and simultaneously measures their total energy with two low-noise solid state detectors. Solar wind Fe charge state measurements from three time periods of high speed solar wind occurring during a post-shock flow and a coronal hole-associated high speed stream are presented. Analysis of the post-shock flow solar wind indicates the charge state distributions for Fe were peaked at approx +16, indicative of an unusually high coronal temperature (3,000,000 K). In contrast, the Fe charge state distribution observed in a coronal hole-associated high speed stream peaks at approx -9, indicating a much lower coronal temperature (1,400,000 K). This constitutes the first reported measurements of iron charge states in a coronal hole-associated high speed stream.

  3. Control system for a vertical axis windmill

    DOEpatents

    Brulle, Robert V.

    1983-10-18

    A vertical axis windmill having a rotating structure is provided with a series of articulated vertical blades whose positions are controlled to maintain a constant RPM for the rotating structure, when wind speed is sufficient. A microprocessor controller is used to process information on wind speed, wind direction and RPM of the rotating structure to develop an electrical signal for establishing blade position. The preferred embodiment of the invention, when connected to a utility grid, is designed to generate 40 kilowatts of power when exposed to a 20 mile per hour wind. The control system for the windmill includes electrical blade actuators that modulate the blades of the rotating structure. Blade modulation controls the blade angle of attack, which in turn controls the RPM of the rotor. In the preferred embodiment, the microprocessor controller provides the operation logic and control functions. A wind speed sensor provides inputs to start or stop the windmill, and a wind direction sensor is used to keep the blade flip region at 90.degree. and 270.degree. to the wind. The control system is designed to maintain constant rotor RPM when wind speed is between 10 and 40 miles per hour.

  4. Control system for a vertical-axis windmill

    DOEpatents

    Brulle, R.V.

    1981-09-03

    A vertical-axis windmill having a rotating structure is provided with a series of articulated vertical blades whose positions are controlled to maintain a constant RPM for the rotating structure, when wind speed is sufficient. A microprocessor controller is used to process information on wind speed, wind direction and RPM of the rotating structure to develop an electrical signal for establishing blade position. The preferred embodiment of the invention, when connected to a utility grid, is designed to generate 40 kilowatts of power when exposed to a 20 mile per hour wind. The control system for the windmill includes electrical blade actuators that modulate the blades of the rotating structure. Blade modulation controls the blade angle of attack, which in turn controls the RPM of the rotor. In the preferred embodiment, the microprocessor controller provides the operation logic and control functions. A wind speed sensor provides inputs to start or stop the windmill, and a wind direction sensor is used to keep the blade flip region at 90 and 270/sup 0/ to the wind. The control system is designed to maintain constant rotor RPM when wind speed is between 10 and 40 miles per hour.

  5. Multisensor satellite data integration for sea surface wind speed and direction determination

    NASA Technical Reports Server (NTRS)

    Glackin, D. L.; Pihos, G. G.; Wheelock, S. L.

    1984-01-01

    Techniques to integrate meteorological data from various satellite sensors to yield a global measure of sea surface wind speed and direction for input to the Navy's operational weather forecast models were investigated. The sensors were launched or will be launched, specifically the GOES visible and infrared imaging sensor, the Nimbus-7 SMMR, and the DMSP SSM/I instrument. An algorithm for the extrapolation to the sea surface of wind directions as derived from successive GOES cloud images was developed. This wind veering algorithm is relatively simple, accounts for the major physical variables, and seems to represent the best solution that can be found with existing data. An algorithm for the interpolation of the scattered observed data to a common geographical grid was implemented. The algorithm is based on a combination of inverse distance weighting and trend surface fitting, and is suited to combing wind data from disparate sources.

  6. Weather Sensors from Spain on Mars Rover Curiosity

    NASA Image and Video Library

    2010-11-30

    Sensors on two finger-like mini-booms extending horizontally from the mast of NASA Mars rover Curiosity will monitor wind speed, wind direction and air temperature; image taken during installation of the instrument inside a clean room at NASA JPL.

  7. Mooring Analysis of the Ocean Sentinel through Field Observation and Numerical Simulation

    DTIC Science & Technology

    2013-11-22

    DAS controls the Ocean Sentinel’s three power systems: a diesel generator, a wind turbine , and two solar panels. The DAS monitors sensors that detect...or floating wind turbines . A summary of different mooring configurations and their characteristics is shown in Table 2. 10 Figure 10...Table 3. Secondary wind speed and direction are measured with a Gill Windsonic Wind Sensor , which uses ultrasonic transmissions to calculate wind

  8. MEMS Cantilever Sensor for THz Photoacoustic Chemical Sensing and Spectroscopy

    DTIC Science & Technology

    2013-12-26

    meaning the detector didn’t have to be cryogenically cooled. Piezoresistive cantilever style sensor designs have been fabricated for wind and...made a two cantilever pizeoresistive wind speed sensor that utilized a Wheatstone bridge configuration. The designed cantilevers, etched out of...Murakami et al. in Japan fabricated diaphragm and cantilever PZT microphone sensors for anomaly detection in machines such as turbines or engines

  9. Influence of Wind Speed on RGB-D Images in Tree Plantations

    PubMed Central

    Andújar, Dionisio; Dorado, José; Bengochea-Guevara, José María; Conesa-Muñoz, Jesús; Fernández-Quintanilla, César; Ribeiro, Ángela

    2017-01-01

    Weather conditions can affect sensors’ readings when sampling outdoors. Although sensors are usually set up covering a wide range of conditions, their operational range must be established. In recent years, depth cameras have been shown as a promising tool for plant phenotyping and other related uses. However, the use of these devices is still challenged by prevailing field conditions. Although the influence of lighting conditions on the performance of these cameras has already been established, the effect of wind is still unknown. This study establishes the associated errors when modeling some tree characteristics at different wind speeds. A system using a Kinect v2 sensor and a custom software was tested from null wind speed up to 10 m·s−1. Two tree species with contrasting architecture, poplars and plums, were used as model plants. The results showed different responses depending on tree species and wind speed. Estimations of Leaf Area (LA) and tree volume were generally more consistent at high wind speeds in plum trees. Poplars were particularly affected by wind speeds higher than 5 m·s−1. On the contrary, height measurements were more consistent for poplars than for plum trees. These results show that the use of depth cameras for tree characterization must take into consideration wind conditions in the field. In general, 5 m·s−1 (18 km·h−1) could be established as a conservative limit for good estimations. PMID:28430119

  10. A wind tunnel study of aeolian sediment transport response to unsteady winds

    NASA Astrophysics Data System (ADS)

    Li, Bailiang; McKenna Neuman, Cheryl

    2014-06-01

    Although moderate attention has been paid to the response of the aeolian mass transport rate to wind gusts, it is still unclear how the particle size and volumetric concentration affect this relation. Very little is known about the response time of the particle speed, and specifically, how the sensor scale and elevation affect measurements of this variable. The present study addresses this knowledge gap through a series of wind tunnel experiments in which a gusty wind was generated by programming the fan motor to adjust to a randomly selected rpm every 10 s. Beds consisting of either medium or coarse sand were investigated through synchronous, co-located measurements of the local wind speed and particle speed/count rate obtained via a customized laser Doppler anemometry (LDA) system. The vertically integrated sand transport rate (Q) and the wind speed in the freestream were quantified using a passive sand trap and pitot tube, respectively. The results of the experiments indicate that the response of the aeolian transport system to wind gusts is generally faster in terms of the particle speed than the mass transport rate, while the degree of correlation is found to vary with the sensor elevation, as well as with the particle size and volumetric concentration. In essence, the coupling within the transport system is demonstrated to be strongly scale dependent.

  11. Unitary Shaft-Angle and Shaft-Speed Sensor Assemblies

    NASA Technical Reports Server (NTRS)

    Alhorn, Dean C.; Howard, David E.; Smith, Dennis A.

    2006-01-01

    The figure depicts a unit that contains a rotary-position or a rotary-speed sensor, plus electronic circuitry necessary for its operation, all enclosed in a single housing with a shaft for coupling to an external rotary machine. This rotation sensor unit is complete: when its shaft is mechanically connected to that of the rotary machine and it is supplied with electric power, it generates an output signal directly indicative of the rotary position or speed, without need for additional processing by other circuitry. The incorporation of all of the necessary excitatory and readout circuitry into the housing (in contradistinction to using externally located excitatory and/or readout circuitry) in a compact arrangement is the major difference between this unit and prior rotation-sensor units. The sensor assembly inside the housing includes excitatory and readout integrated circuits mounted on a circular printed-circuit board. In a typical case in which the angle or speed transducer(s) utilize electromagnetic induction, the assembly also includes another circular printed-circuit board on which the transducer windings are mounted. A sheet of high-magnetic permeability metal ("mu metal") is placed between the winding board and the electronic-circuit board to prevent spurious coupling of excitatory signals from the transducer windings to the readout circuits. The housing and most of the other mechanical hardware can be common to a variety of different sensor designs. Hence, the unit can be configured to generate any of variety of outputs by changing the interior sensor assembly. For example, the sensor assembly could contain an analog tachometer circuit that generates an output proportional (in both magnitude and sign or in magnitude only) to the speed of rotation.

  12. Time dependent wind fields

    NASA Technical Reports Server (NTRS)

    Chelton, D. B.

    1986-01-01

    Two tasks were performed: (1) determination of the accuracy of Seasat scatterometer, altimeter, and scanning multichannel microwave radiometer measurements of wind speed; and (2) application of Seasat altimeter measurements of sea level to study the spatial and temporal variability of geostrophic flow in the Antarctic Circumpolar Current. The results of the first task have identified systematic errors in wind speeds estimated by all three satellite sensors. However, in all cases the errors are correctable and corrected wind speeds agree between the three sensors to better than 1 ms sup -1 in 96-day 2 deg. latitude by 6 deg. longitude averages. The second task has resulted in development of a new technique for using altimeter sea level measurements to study the temporal variability of large scale sea level variations. Application of the technique to the Antarctic Circumpolar Current yielded new information about the ocean circulation in this region of the ocean that is poorly sampled by conventional ship-based measurements.

  13. Analysis of the Bivariate Parameter Wind Differences Between Jimsphere and Windsonde

    NASA Technical Reports Server (NTRS)

    Susko, Michael

    1987-01-01

    An analysis is presented for the bivariate parameter differences between the FPS-16 Radar/Jimsphere and the Meteorological Sounding System (MSS) Windsonde. The Jimsphere is used as the standard to measure the ascent wind during the Space Shuttle launches at Kennedy Space Center, Florida, and the Windsonde is the backup system. In addition, a discussion of the terrestrial environment (below 20 km) and a description of the Jimsphere and Windsonde wind sensors are given. Computation of the wind statistics from 64 paired Jimsphere and Windsonde balloon releases in support of 14 Space Shuttle launches shows a good agreement between the two wind sensors. From the analysis of buildup and back-off data for various scales of distance and the comparison of the cumulative percent frequency (CPF) versus wind speed change, it is shown that the wind speed change for various scales of distances for the Jimsphere and Windsonde compare favorably.

  14. Wind reconstruction algorithm for Viking Lander 1

    NASA Astrophysics Data System (ADS)

    Kynkäänniemi, Tuomas; Kemppinen, Osku; Harri, Ari-Matti; Schmidt, Walter

    2017-06-01

    The wind measurement sensors of Viking Lander 1 (VL1) were only fully operational for the first 45 sols of the mission. We have developed an algorithm for reconstructing the wind measurement data after the wind measurement sensor failures. The algorithm for wind reconstruction enables the processing of wind data during the complete VL1 mission. The heater element of the quadrant sensor, which provided auxiliary measurement for wind direction, failed during the 45th sol of the VL1 mission. Additionally, one of the wind sensors of VL1 broke down during sol 378. Regardless of the failures, it was still possible to reconstruct the wind measurement data, because the failed components of the sensors did not prevent the determination of the wind direction and speed, as some of the components of the wind measurement setup remained intact for the complete mission. This article concentrates on presenting the wind reconstruction algorithm and methods for validating the operation of the algorithm. The algorithm enables the reconstruction of wind measurements for the complete VL1 mission. The amount of available sols is extended from 350 to 2245 sols.

  15. Development of a self-packaged 2D MEMS thermal wind sensor for low power applications

    NASA Astrophysics Data System (ADS)

    Zhu, Yan-qing; Chen, Bei; Qin, Ming; Huang, Jian-qiu; Huang, Qing-an

    2015-08-01

    This article describes the design, fabrication, and testing of a self-packaged 2D thermal wind sensor. The sensor consists of four heaters and nine thermistors. A central thermistor senses the average heater temperature, whereas the other eight, which are distributed symmetrically around the heaters, measure the temperature differences between the upstream and downstream surface of the sensor. The sensor was realized on one side of a silicon-in-glass (SIG) substrate. Vertical silicon vias in the substrate ensure good thermal contact between the sensor and the airflow and the glass effectively isolates the heaters from the thermistors. The substrate was fabricated by using a glass reflow process, after which the sensor was realized by a lift-off process. The sensor’s geometry was investigated with the help of simulations. These show that narrow heaters, moderate heater spacing, and thin substrates all improve the sensor’s sensitivity. Finally, the sensor was tested and calibrated in a wind tunnel by using a linear interpolation algorithm. At a constant heating power of 24.5 mW, measurement results show that the sensor can detect airflow speeds of up to 25 m s-1, with an accuracy of 0.1 m s-1 at low speeds and 0.5 m s-1 at high speeds. Airflow direction can be determined in a range of 360° with an accuracy of ±6°.

  16. Efficacy of spatial averaging of infrasonic pressure in varying wind speeds.

    PubMed

    DeWolf, Scott; Walker, Kristoffer T; Zumberge, Mark A; Denis, Stephane

    2013-06-01

    Wind noise reduction (WNR) is important in the measurement of infrasound. Spatial averaging theory led to the development of rosette pipe arrays. The efficacy of rosettes decreases with increasing wind speed and only provides a maximum of ~20 dB WNR due to a maximum size limitation. An Optical Fiber Infrasound Sensor (OFIS) reduces wind noise by instantaneously averaging infrasound along the sensor's length. In this study two experiments quantify the WNR achieved by rosettes and OFISs of various sizes and configurations. Specifically, it is shown that the WNR for a circular OFIS 18 m in diameter is the same as a collocated 32-inlet pipe array of the same diameter. However, linear OFISs ranging in length from 30 to 270 m provide a WNR of up to ~30 dB in winds up to 5 m/s. The measured WNR is a logarithmic function of the OFIS length and depends on the orientation of the OFIS with respect to wind direction. OFISs oriented parallel to the wind direction achieve ~4 dB greater WNR than those oriented perpendicular to the wind. Analytical models for the rosette and OFIS are developed that predict the general observed relationships between wind noise reduction, frequency, and wind speed.

  17. A directional cylindrical anemometer with four sets of differential pressure sensors

    NASA Astrophysics Data System (ADS)

    Liu, C.; Du, L.; Zhao, Z.

    2016-03-01

    This paper presents a solid-state directional anemometer for simultaneously measuring the speed and direction of a wind in a plane in a speed range 1-40 m/s. This instrument has a cylindrical shape and works by detecting the pressure differences across diameters of the cylinder when exposed to wind. By analyzing our experimental data in a Reynolds number regime 1.7 × 103-7 × 104, we figure out the relationship between the pressure difference distribution and the wind velocity. We propose a novel and simple solution based on the relationship and design an anemometer which composes of a circular cylinder with four sets of differential pressure sensors, tubes connecting these sensors with the cylinder's surface, and corresponding circuits. In absence of moving parts, this instrument is small and immune of friction. It has simple internal structures, and the fragile sensing elements are well protected. Prototypes have been fabricated to estimate performance of proposed approach. The power consumption of the prototype is less than 0.5 W, and the sample rate is up to 31 Hz. The test results in a wind tunnel indicate that the maximum relative speed measuring error is 5% and the direction error is no more than 5° in a speed range 2-40 m/s. In theory, it is capable of measuring wind up to 60 m/s. When the air stream goes slower than 2 m/s, the measuring errors of directions are slightly greater, and the performance of speed measuring degrades but remains in an acceptable range of ±0.2 m/s.

  18. Internal Acoustics Measurements of a Full Scale Advanced Ducted Propulsor Demonstrator

    NASA Technical Reports Server (NTRS)

    Santa Maria, O. L.; Soderman, P. T.; Horne, W. C.; Jones, M. G.; Bock, L. A.

    1995-01-01

    Acoustics measurements of a Pratt & Whitney full-scale ADP (Advanced Ducted Propulsor), an ultrahigh by-pass ratio engine, were conducted in the NASA Ames 40- by 80-Foot Wind Tunnel. This paper presents data from measurements taken from sensors on a fan exit guide vane in the ADP. Data from two sensors, one at mid-span and the other at the tip of the fan exit guide vane, are presented. At the blade passage frequency (BPF), the levels observed at the various engine and wind speeds were higher at the mid-span sensor than the tip sensor. The coherence between these internal sensors and external microphones were calculated and plotted as a function of angle (angles ranged from 5 degrees to 160 degrees) relative to the ADP longitudinal axis. At the highest engine and wind speeds, the coherence between the tip sensor and the external microphones was observed to decrease at higher multiples of the BPF. These results suggest that the rotor-stator interaction tones are stronger in the mid-span region than at the tip.

  19. Segmented wind energy harvester based on contact-electrification and as a self-powered flow rate sensor

    NASA Astrophysics Data System (ADS)

    Su, Yuanjie; Xie, Guangzhong; Xie, Fabiao; Xie, Tao; Zhang, Qiuping; Zhang, Hulin; Du, Hongfei; Du, Xiaosong; Jiang, Yadong

    2016-06-01

    A single-electrode-based segmented triboelectric nanogenerator (S-TENG) was developed. By utilizing the wind-induced vibration of a fluorinated ethylene propylene (FEP) film between two copper electrodes, the S-TENG delivers an open-circuit voltage up to 36 V and a short-circuit current of 11.8 μA, which can simultaneously light up 20 LEDs and charge capacitors. Moreover, the S-TENG holds linearity between output current and flow rate, revealing its feasibility as a self-powered wind speed sensor. This work demonstrates potential applications of S-TENG in wind energy harvester, self-powered gas sensor, high altitude air navigation.

  20. Long-Term Declining Trends in Historical Wind Measurements at the Blue Hill Meteorological Observatory, 1885-2013

    NASA Astrophysics Data System (ADS)

    Azorin-Molina, C.; Iacono, M. J.

    2014-12-01

    The Blue Hill Meteorological Observatory, located on the 635-foot summit of Great Blue Hill ten miles south of Boston, Massachusetts, has been the site of continuous monitoring of the local weather and climate since its founding in 1885. The meticulous, extensive and high-quality climate record maintained at this location has included the measurement of wind among many other parameters since its earliest days, and this provides a unique opportunity to examine wind speed trends at this site over nearly 130 years. Although multiple wind sensors have been in use during this time and the height of the anemometers was raised in 1908, the wind records have been made as consistent as possible through careful analysis of these changes and the application of adjustments to ensure consistency. The 30-year mean wind speed at this location has decreased from 6.8 m s-1 in the middle 20th century to its present value of 6.0 m s-1 with an increase in the rate of the decline beginning around 1980. The wind speed time series shows a significant (p < 0.05) downward trend over the entire period from 1885-2013 (-0.085 m s-1 decade-1) that is stronger and also significant for the sub-periods from 1961-2013 (-0.266 m s-1 decade-1) and 1979-2008 (-0.342 m s-1 decade-1). This declining trend persists in all seasons and has significant implications for the efficiency of wind power generation in the area, if it reflects a regional change in the near-surface wind regime. The wind instruments in use since the 19th century will be described, and the official long-term record will be compared with measurements from other wind sensors at the Observatory and surrounding locations. In addition, initial investigations of the possible causes of the wind speed decline will be presented in the context of global stilling (i.e. the theory of a widespread decline in measured near-surface wind speed), including an analysis of the wind speed change as a function of wind direction.

  1. All-optical fiber anemometer based on laser heated fiber Bragg gratings.

    PubMed

    Gao, Shaorui; Zhang, A Ping; Tam, Hwa-Yaw; Cho, L H; Lu, Chao

    2011-05-23

    A fiber-optic anemometer based on fiber Bragg gratings (FBGs) is presented. A short section of cobalt-doped fiber was utilized to make a fiber-based "hot wire" for wind speed measurement. Fiber Bragg gratings (FBGs) were fabricated in the cobalt-doped fiber using 193 nm laser pulses to serve as localized temperature sensors. A miniature all-optical fiber anemometer is constructed by using two FBGs to determine the dynamic thermal equilibrium between the laser heating and air flow cooling through monitoring the FBGs' central wavelengths. It was demonstrated that the sensitivity of the sensor can be adjusted through the power of pump laser or the coating on the FBG. Experimental results reveal that the proposed FBG-based anemometer exhibits very good performance for wind speed measurement. The resolution of the FBG-based anemometer is about 0.012 m/s for wind speed range between 2.0 m/s and 8.0 m/s.

  2. Piezoelectric wind turbine

    NASA Astrophysics Data System (ADS)

    Kishore, Ravi Anant; Priya, Shashank

    2013-03-01

    In past few years, there has been significant focus towards developing small scale renewable energy based power sources for powering wireless sensor nodes in remote locations such as highways and bridges to conduct continuous health monitoring. These prior efforts have led to the development of micro-scale solar modules, hydrogen fuel cells and various vibration based energy harvesters. However, the cost effectiveness, reliability, and practicality of these solutions remain a concern. Harvesting the wind energy using micro-to-small scale wind turbines can be an excellent solution in variety of outdoor scenarios provided they can operate at few miles per hour of wind speed. The conventional electromagnetic generator used in the wind mills always has some cogging torque which restricts their operation above certain cut-in wind speed. This study aims to develop a novel piezoelectric wind turbine that utilizes bimorph actuators for electro-mechanical energy conversion. This device utilizes a Savonius rotor that is connected to a disk having magnets at the periphery. The piezoelectric actuators arranged circumferentially around the disk also have magnets at the tip which interacts with the magnetic field of the rotating disk and produces cyclical deflection. The wind tunnel experiments were conducted between 2-12 mph of wind speeds to characterize and optimize the power output of the wind turbine. Further, testing was conducted in the open environment to quantify the response to random wind gusts. An attempt was made towards integration of the piezoelectric wind turbine with the wireless sensor node.

  3. Near-surface salinity and temperature structure observed with dual-sensor drifters in the subtropical South Pacific

    NASA Astrophysics Data System (ADS)

    Dong, Shenfu; Volkov, Denis; Goni, Gustavo; Lumpkin, Rick; Foltz, Gregory R.

    2017-07-01

    Three surface drifters equipped with temperature and salinity sensors at 0.2 and 5 m depths were deployed in April/May 2015 in the subtropical South Pacific with the objective of measuring near-surface salinity differences seen by satellite and in situ sensors and examining the causes of these differences. Measurements from these drifters indicate that water at a depth of 0.2 m is about 0.013 psu fresher than at 5 m and about 0.024°C warmer. Events with large temperature and salinity differences between the two depths are caused by anomalies in surface freshwater and heat fluxes, modulated by wind. While surface freshening and cooling occurs during rainfall events, surface salinification is generally observed under weak wind conditions (≤4 m/s). Further examination of the drifter measurements demonstrates that (i) the amount of surface freshening and strength of the vertical salinity gradient heavily depend on wind speed during rain events, (ii) salinity differences between 0.2 and 5 m are positively correlated with the corresponding temperature differences for cases with surface salinification, and (iii) temperature exhibits a diurnal cycle at both depths, whereas the diurnal cycle of salinity is observed only at 0.2 m when the wind speed is less than 6 m/s. The amplitudes of the diurnal cycles of temperature at both depths decrease with increasing wind speed. The mean diurnal cycle of surface salinity is dominated by events with winds less than 2 m/s.

  4. Near-surface Salinity and Temperature structure Observed with Dual-Sensor Drifters in the Subtropical South Pacific

    NASA Astrophysics Data System (ADS)

    Dong, S.; Volkov, D.; Goni, G. J.; Lumpkin, R.; Foltz, G. R.

    2017-12-01

    Three surface drifters equipped with temperature and salinity sensors at 0.2 m and 5 m depths were deployed in April/May 2015 in the subtropical South Pacific with the objective of measuring near-surface salinity differences seen by satellite and in situ sensors and examining the causes of these differences. Measurements from these drifters indicate that water at a depth of 0.2 m is about 0.013 psu fresher than at 5 m and about 0.024°C warmer. Events with large temperature and salinity differences between the two depths are caused by anomalies in surface freshwater and heat fluxes, modulated by wind. While surface freshening and cooling occurs during rainfall events, surface salinification is generally observed under weak wind conditions (≤4 m/s). Further examination of the drifter measurements demonstrates that (i) the amount of surface freshening and strength of the vertical salinity gradient heavily depend on wind speed during rain events, (ii) salinity differences between 0.2 m and 5 m are positively correlated with the corresponding temperature differences for cases with surface salinification, and (iii) temperature exhibits a diurnal cycle at both depths, whereas the diurnal cycle of salinity is observed only at 0.2 m when the wind speed is less than 6 m/s. The amplitudes of the diurnal cycles of temperature at both depths decrease with increasing wind speed. The mean diurnal cycle of surface salinity is dominated by events with winds less than 2 m/s.

  5. Results of the Imager for Mars Pathfinder windsock experiment

    USGS Publications Warehouse

    Sullivan, R.; Greeley, R.; Kraft, M.; Wilson, G.; Golombek, M.; Herkenhoff, K.; Murphy, J.; Smith, P.

    2000-01-01

    The Imager for Mars Pathfinder (IMP) windsock experiment measured wind speeds at three heights within 1.2 m of the Martian surface during Pathfinder landed operations. These wind data allowed direct measurement of near-surface wind profiles on Mars for the first time, including determination of aerodynamic roughness length and wind friction speeds. Winds were light during periods of windsock imaging, but data from the strongest breezes indicate aerodynamic roughness length of 3 cm at the landing site, with wind friction speeds reaching 1 m/s. Maximum wind friction speeds were about half of the threshold-of-motion friction speeds predicted for loose, fine-grained materials on smooth Martian terrain and about one third of the threshold-of-motion friction speeds predicted for the same size particles over terrain with aerodynamic roughness of 3 cm. Consistent with this, and suggesting that low wind speeds prevailed when the windsock array was not imaged and/or no particles were available for aeolian transport, no wind-related changes to the surface during mission operations have been recognized. The aerodynamic roughness length reported here implies that proposed deflation of fine particles around the landing site, or activation of duneforms seen by IMP and Sojourner, would require wind speeds >28 m/s at the Pathfinder top windsock height (or >31 m/s at the equivalent Viking wind sensor height of 1.6 m) and wind speeds >45 m/s above 10 m. These wind speeds would cause rock abrasion if a supply of durable particles were available for saltation. Previous analyses indicate that the Pathfinder landing site probably is rockier and rougher than many other plains units on Mars, so aerodynamic roughness length elsewhere probably is less than the 3-cm value reported for the Pathfinder site. Copyright 2000 by the American Geophysical Union.

  6. Estimation of wind speeds inside Super Typhoon Nepartak from AMSR2 low-frequency brightness temperatures

    NASA Astrophysics Data System (ADS)

    Zhang, Lei; Yin, Xiaobin; Shi, Hanqing; Wang, Zhenzhan; Xu, Qing

    2018-04-01

    Accurate estimations of typhoon-level winds are highly desired over the western Pacific Ocean. A wind speed retrieval algorithm is used to retrieve the wind speeds within Super Typhoon Nepartak (2016) using 6.9- and 10.7-GHz brightness temperatures from the Japanese Advanced Microwave Scanning Radiometer 2 (AMSR2) sensor on board the Global Change Observation Mission-Water 1 (GCOM-W1) satellite. The results show that the retrieved wind speeds clearly represent the intensification process of Super Typhoon Nepartak. A good agreement is found between the retrieved wind speeds and the Soil Moisture Active Passive wind speed product. The mean bias is 0.51 m/s, and the root-mean-square difference is 1.93 m/s between them. The retrieved maximum wind speeds are 59.6 m/s at 04:45 UTC on July 6 and 71.3 m/s at 16:58 UTC on July 6. The two results demonstrate good agreement with the results reported by the China Meteorological Administration and the Joint Typhoon Warning Center. In addition, Feng-Yun 2G (FY-2G) satellite infrared images, Feng-Yun 3C (FY-3C) microwave atmospheric sounder data, and AMSR2 brightness temperature images are also used to describe the development and structure of Super Typhoon Nepartak.

  7. Design, implementation, and application of 150-degree commutation VSI to improve speed range of sensored BLDC motor

    NASA Astrophysics Data System (ADS)

    Ozgenel, Mehmet Cihat

    2017-09-01

    Permanent magnet brushless dc (BLDC) motors are very convenient for many applications such as industrial, medical, robotic, aerospace, small electric vehicles, and home applications because of their inherent satisfying dynamic characteristics. There are numerous studies about these motors and their control schemes such as sensorless control and different speed and torque control schemes. All electric motors need commutation in order to produce speed and torque. Commutation in brushed DC motors is performed by means of a brush and collector. In BLDC motors, commutation is provided electronically in contrast to the brushed dc motors. In BLDC motors, motor phase windings are energized according to the information of the rotor position by inverter transistors. Rotor position information is used for commutation. Therefore, rotor position information is required to produce speed and torque for BLDC motors. The easiest and cheapest way to obtain rotor position information is to use Hall-effect or optical sensors. BLDC motor manufacturers generally produce BLDC motors equipped with three Hall-effect position sensors. Having three position sensors on BLDC motors provides six-step commutation which ensures two phase windings are energized in each moment. The third phase is empty. In this study, all phase windings are energized in the same time. This commutation method is twelve-step or 150 degrees commutation. So that more speed can be achieved from the same BLDC motor by comparison with six-step commutation. In this paper, both six-step and twelve-step commutation methods applied to the same BLDC motor and obtained experimental results from this study were presented, examined, and discussed.

  8. Design, implementation, and application of 150-degree commutation VSI to improve speed range of sensored BLDC motor.

    PubMed

    Ozgenel, Mehmet Cihat

    2017-09-01

    Permanent magnet brushless dc (BLDC) motors are very convenient for many applications such as industrial, medical, robotic, aerospace, small electric vehicles, and home applications because of their inherent satisfying dynamic characteristics. There are numerous studies about these motors and their control schemes such as sensorless control and different speed and torque control schemes. All electric motors need commutation in order to produce speed and torque. Commutation in brushed DC motors is performed by means of a brush and collector. In BLDC motors, commutation is provided electronically in contrast to the brushed dc motors. In BLDC motors, motor phase windings are energized according to the information of the rotor position by inverter transistors. Rotor position information is used for commutation. Therefore, rotor position information is required to produce speed and torque for BLDC motors. The easiest and cheapest way to obtain rotor position information is to use Hall-effect or optical sensors. BLDC motor manufacturers generally produce BLDC motors equipped with three Hall-effect position sensors. Having three position sensors on BLDC motors provides six-step commutation which ensures two phase windings are energized in each moment. The third phase is empty. In this study, all phase windings are energized in the same time. This commutation method is twelve-step or 150 degrees commutation. So that more speed can be achieved from the same BLDC motor by comparison with six-step commutation. In this paper, both six-step and twelve-step commutation methods applied to the same BLDC motor and obtained experimental results from this study were presented, examined, and discussed.

  9. Flight measurement and analysis of AAFE RADSCAT wind speed signature of the ocean

    NASA Technical Reports Server (NTRS)

    Schroeder, L. C.; Jones, W. L.; Schaffner, P. R.; Mitchell, J. L.

    1984-01-01

    The advanced aerospace flight experiment radiometer scatterometer (AAFE RADSCAT) which was developed as a research tool to evaluate the use of microwave frequency remote sensors to provide wind speed information at the ocean surface is discussed. The AAFE RADSCAT helped establish the feasibility of the satellite scatterometer for measuring both wind speed and direction. The most important function of the AAFE RADSCAT was to provide a data base of ocean normalized radar cross section (NRCS) measurements as a function of surface wind vector at 13.9 GHz. The NRCS measurements over a wide parametric range of incidence angles, azimuth angles, and winds were obtained in a series of RADSCAT aircraft missions. The obtained data base was used to model the relationship between k sub u band radar signature and ocean surface wind vector. The models developed therefrom are compared with those used for inversion of the SEASAT-A satellite scatterometer (SASS) radar measurements to wind speeds.

  10. Final report on the portable weather station.

    DOT National Transportation Integrated Search

    2010-03-01

    This station was required to have air temperature, relative humidity, wind speed and direction, and : pavement temperature sensors of similar quality to the traditional RWIS sensors, have an integrated solar : powered battery system, and be trailer...

  11. Whitecap coverage from aerial photography

    NASA Technical Reports Server (NTRS)

    Austin, R. W.

    1970-01-01

    A program for determining the feasibility of deriving sea surface wind speeds by remotely sensing ocean surface radiances in the nonglitter regions is discussed. With a knowledge of the duration and geographical extent of the wind field, information about the conventional sea state may be derived. The use of optical techniques for determining sea state has obvious limitations. For example, such means can be used only in daylight and only when a clear path of sight is available between the sensor and the surface. However, sensors and vehicles capable of providing the data needed for such techniques are planned for the near future; therefore, a secondary or backup capability can be provided with little added effort. The information currently being sought regarding white water coverage is also of direct interest to those working with passive microwave systems, the study of energy transfer between winds and ocean currents, the aerial estimation of wind speeds, and many others.

  12. Wind tunnel test of Teledyne Geotech model 1564B cup anemometer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Parker, M.J.; Addis, R.P.

    1991-04-04

    The Department of Energy (DOE) Environment, Safety and Health Compliance Assessment (Tiger Team) of the Savannah River Site (SRS) questioned the method by which wind speed sensors (cup anemometers) are calibrated by the Environmental Technology Section (ETS). The Tiger Team member was concerned that calibration data was generated by running the wind tunnel to only 26 miles per hour (mph) when speeds exceeding 50 mph are readily obtainable. A wind tunnel experiment was conducted and confirmed the validity of the practice. Wind speeds common to SRS (6 mph) were predicted more accurately by 0--25 mph regression equations than 0--50 mphmore » regression equations. Higher wind speeds were slightly overpredicted by the 0--25 mph regression equations when compared to 0--50 mph regression equations. However, the greater benefit of more accurate lower wind speed predictions accuracy outweight the benefit of slightly better high (extreme) wind speed predictions. Therefore, it is concluded that 0--25 mph regression equations should continue to be utilized by ETS at SRS. During the Department of Energy Tiger Team audit, concerns were raised about the calibration of SRS cup anemometers. Wind speed is measured by ETS with Teledyne Geotech model 1564B cup anemometers, which are calibrated in the ETS wind tunnel. Linear regression lines are fitted to data points of tunnel speed versus anemometer output voltages up to 25 mph. The regression coefficients are then implemented into the data acquisition computer software when an instrument is installed in the field. The concern raised was that since the wind tunnel at SRS is able to generate a maximum wind speed higher than 25 mph, errors may be introduced in not using the full range of the wind tunnel.« less

  13. Wind tunnel test of Teledyne Geotech model 1564B cup anemometer

    NASA Astrophysics Data System (ADS)

    Parker, M. J.; Addis, R. P.

    1991-04-01

    The Department of Energy (DOE) Environment, Safety, and Health Compliance Assessment (Tiger Team) of the Savannah River Site (SRS) questioned the method by which wind speed sensors (cup anemometers) are calibrated by the Environmental Technology Section (ETS). The Tiger Team member was concerned that calibration data was generated by running the wind tunnel to only 26 miles per hour (mph) when speeds exceeding 50 mph are readily obtainable. A wind tunnel experiment was conducted and confirmed the validity of the practice. Wind speeds common to SRS (6 mph) were predicted more accurately by 0-25 mph regression equations than 0-50 mph regression equations. Higher wind speeds were slightly overpredicted by the 0-25 mph regression equations when compared to 0-50 mph regression equations. However, the greater benefit of more accurate lower wind speed predictions accuracy outweigh the benefit of slightly better high (extreme) wind speed predictions. Therefore, it is concluded that 0-25 mph regression equations should continue to be utilized by ETS at SRS. During the Department of Energy Tiger Team audit, concerns were raised about the calibration of SRS cup anemometers. Wind speed is measured by ETS with Teledyne Geotech model 1564B cup anemometers, which are calibrated in the ETS wind tunnel. Linear regression lines are fitted to data points of tunnel speed versus anemometer output voltages up to 25 mph. The regression coefficients are then implemented into the data acquisition computer software when an instrument is installed in the field. The concern raised was that since the wind tunnel at SRS is able to generate a maximum wind speed higher than 25 mph, errors may be introduced in not using the full range of the wind tunnel.

  14. Lidar configurations for wind turbine control

    NASA Astrophysics Data System (ADS)

    Mirzaei, Mahmood; Mann, Jakob

    2016-09-01

    Lidar sensors have proved to be very beneficial in the wind energy industry. They can be used for yaw correction, feed-forward pitch control and load verification. However, the current lidars are expensive. One way to reduce the price is to use lidars with few measurement points. Finding the best configuration of an inexpensive lidar in terms of number of measurement points, the measurement distance and the opening angle is the subject of this study. In order to solve the problem, a lidar model is developed and used to measure wind speed in a turbulence box. The effective wind speed measured by the lidar is compared against the effective wind speed on a wind turbine rotor both theoretically and through simulations. The study provides some results to choose the best configuration of the lidar with few measurement points.

  15. Effectiveness enhancement of a cycloidal wind turbine by individual active control of blade motion

    NASA Astrophysics Data System (ADS)

    Hwang, In Seong; Lee, Yun Han; Kim, Seung Jo

    2007-04-01

    In this paper, a research for the effectiveness enhancement of a Cycloidal Wind Turbine by individual active control of blade motion is described. To improve the performance of the power generation system, which consists of several straight blades rotating about axis in parallel direction, the cycloidal blade system and the individual active blade control method are adopted. It has advantages comparing with horizontal axis wind turbine or conventional vertical axis wind turbine because it maintains optimal blade pitch angles according to wind speed, wind direction and rotor rotating speed to produce high electric power at any conditions. It can do self-starting and shows good efficiency at low wind speed and complex wind condition. Optimal blade pitch angle paths are obtained through CFD analysis according to rotor rotating speed and wind speed. The individual rotor blade control system consists of sensors, actuators and microcontroller. To realize the actuating device, servo motors are installed to each rotor blade. Actuating speed and actuating force are calculated to compare with the capacities of servo motor, and some delays of blade pitch angles are corrected experimentally. Performance experiment is carried out by the wind blowing equipment and Labview system, and the rotor rotates from 50 to 100 rpm according to the electric load. From this research, it is concluded that developing new vertical axis wind turbine, Cycloidal Wind Turbine which is adopting individual active blade pitch control method can be a good model for small wind turbine in urban environment.

  16. An atlas of monthly mean distributions of SSMI surface wind speed, AVHRR/2 sea surface temperature, AMI surface wind velocity, TOPEX/POSEIDON sea surface height, and ECMWF surface wind velocity during 1993

    NASA Technical Reports Server (NTRS)

    Halpern, D.; Fu, L.; Knauss, W.; Pihos, G.; Brown, O.; Freilich, M.; Wentz, F.

    1995-01-01

    The following monthly mean global distributions for 1993 are presented with a common color scale and geographical map: 10-m height wind speed estimated from the Special Sensor Microwave Imager (SSMI) on a United States (U.S.) Air Force Defense Meteorological Satellite Program (DMSP) spacecraft; sea surface temperature estimated from the Advanced Very High Resolution Radiometer (AVHRR/2) on a U.S. National Oceanic and Atmospheric Administration (NOAA) satellite; 10-m height wind speed and direction estimated from the Active Microwave Instrument (AMI) on the European Space Agency (ESA) European Remote Sensing (ERS-1) satellite; sea surface height estimated from the joint U.S.-France Topography Experiment (TOPEX)/POSEIDON spacecraft; and 10-m height wind speed and direction produced by the European Center for Medium-Range Weather Forecasting (ECMWF). Charts of annual mean, monthly mean, and sampling distributions are displayed.

  17. Three-Dimensional Venturi Sensor for Measuring Extreme Winds

    NASA Technical Reports Server (NTRS)

    Zysko, Jan A.; Perotti, Jose M.; Amis, Christopher; Randazzo, John; Blalock, Norman; Eckhoff, Anthony

    2003-01-01

    A three-dimensional (3D) Venturi sensor is being developed as a compact, rugged means of measuring wind vectors having magnitudes of as much as 300 mph (134 m/s). This sensor also incorporates auxiliary sensors for measuring temperature from -40 to +120 F (-40 to +49 C), relative humidity from 0 to 100 percent, and atmospheric pressure from 846 to 1,084 millibar (85 to 108 kPa). Conventional cup-and-vane anemometers are highly susceptible to damage by both high wind forces and debris, due to their moving parts and large profiles. In addition, they exhibit slow recovery times contributing to an inaccurately high average-speed reading. Ultrasonic and hot-wire anemometers overcome some of the disadvantages of the cup and-vane anemometers, but they have other disadvantageous features, including limited dynamic range and susceptibility to errors caused by external acoustic noise and rain. In contrast, the novel 3D Venturi sensor is less vulnerable to wind damage because of its smaller profile and ruggedness. Since the sensor has no moving parts, it provides increased reliability and lower maintenance costs. It has faster response and recovery times to changing wind conditions than traditional systems. In addition, it offers wide dynamic range and is expected to be relatively insensitive to rain and acoustic energy. The Venturi effect in this sensor is achieved by the mirrored double-inflection curve, which is then rotated 360 to create the desired detection surfaces. The curve is optimized to provide a good balance of pressure difference between sensor ports and overall maximum fluid velocity while in the shape. Four posts are used to separate the two shapes, and their size and location were chosen to minimize effects on the pressure measurements. The 3D Venturi sensor has smart software algorithms to map the wind pressure exerted on the surfaces of the design. Using Bernoulli's equation, the speed of the wind is calculated from the differences among the pressure readings at the various ports. The direction of the wind is calculated from the spatial distribution and magnitude of the pressure readings. All of the pressure port sizes and locations have been optimized to minimize measurement errors and to reside in areas demonstrating a stable pressure reading proportional to the velocity range.

  18. Surface Wind Vector and Rain Rate Observation Capability of Future Hurricane Imaging Radiometer (HIRAD)

    NASA Technical Reports Server (NTRS)

    Miller, Timothy; Atlas, Robert; Bailey, M. C.; Black, Peter; El-Nimri, Salem; Hood, Robbie; James, Mark; Johnson, James; Jones, Linwood; Ruf, Christopher; hide

    2009-01-01

    The Hurricane Imaging Radiometer (HIRAD) is the next-generation Stepped Frequency Microwave Radiometer (SFMR), and it will offer the capability of simultaneous wide-swath observations of both extreme ocean surface wind vector and strong precipitation from either aircraft (including UAS) or satellite platforms. HIRAD will be a compact, lightweight, low-power instrument with no moving parts that will produce valid wind observations under hurricane conditions when existing microwave sensors (radiometers or scatterometers) are hindered by precipitation. The SFMR i s a proven aircraft remote sensing system for simultaneously observing extreme ocean surface wind speeds and rain rates, including those of major hurricane intensity. The proposed HIRAD instrument advances beyond the current nadir viewing SFMR to an equivalent wide-swath SFMR imager using passive microwave synthetic thinned aperture radiometer technology. The first version of the instrument will be a single polarization system for wind speed and rain rate, with a dual-polarization system to follow for wind vector capability. This sensor will operate over 4-7 GHz (C-band frequencies) where the required tropical cyclone remote sensing physics has been validated by both SFMR and WindSat radiometers. HIRAD incorporates a unique, technologically advanced array antenna and several other technologies successfully demonstrated by NASA s Instrument Incubator Program. A brassboard (laboratory) version of the instrument has been completed and successfully tested in a test chamber. Development of the aircraft instrument is underway, with flight testing planned for the fall of 2009. Preliminary Observing System Simulation Experiments (OSSEs) show that HIRAD will have a significant positive impact on surface wind analyses as either a new aircraft or satellite sensor. New off-nadir data collected in 2008 by SFMR that affirms the ability of this measurement technique to obtain wind speed data at non-zero incidence angle will be presented, as well as data from the brassboard instrument chamber tests.

  19. Measurement of temperature and pressure on the surface of a blunt cone using FBG sensor in hypersonic wind tunnel

    NASA Astrophysics Data System (ADS)

    Prasad, A. S. Guru; Sharath, U.; Nagarjun, V.; Hegde, G. M.; Asokan, S.

    2013-09-01

    Measurement of temperature and pressure exerted on the leeward surface of a blunt cone specimen has been demonstrated in the present work in a hypersonic wind tunnel using fiber Bragg grating (FBG) sensors. The experiments were conducted on a 30° apex-angle blunt cone with 51 mm base diameter at wind flow speeds of Mach 6.5 and 8.35 in a 300 mm hypersonic wind tunnel of Indian Institute of Science, Bangalore. A special pressure insensitive temperature sensor probe along with the conventional bare FBG sensors was used for explicit temperature and aerodynamic pressure measurement respectively on the leeward surface of the specimen. computational fluid dynamics (CFD) simulation of the flow field around the blunt cone specimen has also been carried out to obtain the temperature and pressure at conditions analogous to experiments. The results obtained from FBG sensors and the CFD simulations are found to be in good agreement with each other.

  20. AMOS Phase IV Annual Report

    DTIC Science & Technology

    1980-06-01

    Microthermal Probe System; 2) Acoustic Sounder; 3) Star Sensor; and i 4) Seeing Monitor. Thý in ..ru. cn.tat -ion, much of it one-of-a-kind prototype...profiles of C 2 N2 3) Acoustic Sounder: an instrument that measures C to 300 m altitude; 4) Microthermal Probes: two systems, consisting of three 2...atmospheric program produced - 146 - Y- MICROTHERMAL NICRPHMERI-AL PROBES (3) _j PPRBES (3) WIND SPEED & WIND SPEED & DIRECTION ---- I- DIRECTION

  1. Hurricane Imaging Radiometer Wind Speed and Rain Rate Retrievals during the 2010 GRIP Flight Experiment

    NASA Technical Reports Server (NTRS)

    Sahawneh, Saleem; Farrar, Spencer; Johnson, James; Jones, W. Linwood; Roberts, Jason; Biswas, Sayak; Cecil, Daniel

    2014-01-01

    Microwave remote sensing observations of hurricanes, from NOAA and USAF hurricane surveillance aircraft, provide vital data for hurricane research and operations, for forecasting the intensity and track of tropical storms. The current operational standard for hurricane wind speed and rain rate measurements is the Stepped Frequency Microwave Radiometer (SFMR), which is a nadir viewing passive microwave airborne remote sensor. The Hurricane Imaging Radiometer, HIRAD, will extend the nadir viewing SFMR capability to provide wide swath images of wind speed and rain rate, while flying on a high altitude aircraft. HIRAD was first flown in the Genesis and Rapid Intensification Processes, GRIP, NASA hurricane field experiment in 2010. This paper reports on geophysical retrieval results and provides hurricane images from GRIP flights. An overview of the HIRAD instrument and the radiative transfer theory based, wind speed/rain rate retrieval algorithm is included. Results are presented for hurricane wind speed and rain rate for Earl and Karl, with comparison to collocated SFMR retrievals and WP3D Fuselage Radar images for validation purposes.

  2. Dataset from chemical gas sensor array in turbulent wind tunnel.

    PubMed

    Fonollosa, Jordi; Rodríguez-Luján, Irene; Trincavelli, Marco; Huerta, Ramón

    2015-06-01

    The dataset includes the acquired time series of a chemical detection platform exposed to different gas conditions in a turbulent wind tunnel. The chemo-sensory elements were sampling directly the environment. In contrast to traditional approaches that include measurement chambers, open sampling systems are sensitive to dispersion mechanisms of gaseous chemical analytes, namely diffusion, turbulence, and advection, making the identification and monitoring of chemical substances more challenging. The sensing platform included 72 metal-oxide gas sensors that were positioned at 6 different locations of the wind tunnel. At each location, 10 distinct chemical gases were released in the wind tunnel, the sensors were evaluated at 5 different operating temperatures, and 3 different wind speeds were generated in the wind tunnel to induce different levels of turbulence. Moreover, each configuration was repeated 20 times, yielding a dataset of 18,000 measurements. The dataset was collected over a period of 16 months. The data is related to "On the performance of gas sensor arrays in open sampling systems using Inhibitory Support Vector Machines", by Vergara et al.[1]. The dataset can be accessed publicly at the UCI repository upon citation of [1]: http://archive.ics.uci.edu/ml/datasets/Gas+sensor+arrays+in+open+sampling+settings.

  3. REMS Wind Sensor Preliminary Results

    NASA Astrophysics Data System (ADS)

    De La Torre Juarez, M.; Gomez-Elvira, J.; Navarro, S.; Marin, M.; Torres, J.; Rafkin, S. C.; Newman, C. E.; Pla-García, J.

    2015-12-01

    The REMS instrument is part of the Mars Science Laboratory payload. It is a sensor suite distributed over several parts of the rover. The wind sensor, which is composed of two booms equipped with a set of hot plate anemometers, is installed on the Rover Sensing Mast (RSM). During landing most of the hot plates of one boom were damaged, most likely by the pebbles lifted by the Sky Crane thruster. The loss of one wind boom necessitated a full review of the data processing strategy. Different algorithms have been tested on the readings of the first Mars year, and these results are now archived in the Planetary Data System (PDS), The presentation will include a description of the data processing methods and of the resulting products, including the typical evolution of wind speed and direction session-by-session, hour-by-hour and other kinds of statistics . A review of the wind readings over the first Mars year will also be presented.

  4. Experimental study and finite element analysis of wind-induced vibration of modal car based on fluid-structure interaction

    NASA Astrophysics Data System (ADS)

    Tao, Li-li; Du, Guang-sheng; Liu, Li-ping; Liu, Yong-hui; Shao, Zhu-feng

    2013-02-01

    The wind-induced vibration of the front windshield concerns the traffic safety and the aerodynamic characteristics of cars. In this paper, the numerical simulation and the experiment are combined to study the wind-induced vibrations of the front windshield at different speeds of a van-body model bus. The Fluid-Structure Interaction (FSI) model is used for the finite element analysis of the vibration characteristics of the front windshield glass in the travelling process, and the wind-induced vibration response characteristics of the glass is obtained. A wind-tunnel experiment with an eddy current displacement sensor is carried out to study the deformation of the windshield at different wind speeds, and to verify the numerical simulation results. It is shown that the windshield of the model bus windshield undergoes a noticeable deformation as the speed changes, and from the deformation curve obtained, it is seen that in the accelerating process, the deformation of the glass increases as the speed increases, and with the speed being stablized, it also tends to a certain value. The results of this study can provide a scientific basis for the safety design of the windshield and the body.

  5. Quantifying energy and mass transfer in crop canopies: sensors for measurement of temperature and air velocity

    NASA Technical Reports Server (NTRS)

    Bugbee, B.; Monje, O.; Tanner, B.

    1996-01-01

    Here we report on the in situ performance of inexpensive, miniature sensors that have increased our ability to measure mass and energy fluxes from plant canopies in controlled environments: 1. Surface temperature. Canopy temperature measurements indicate changes in stomatal aperture and thus latent and sensible heat fluxes. Infrared transducers from two manufacturers (Exergen Corporation, Newton, MA; and Everest Interscience, Tucson, AZ, USA) have recently become available. Transducer accuracy matched that of a more expensive hand-held infrared thermometer. 2. Air velocity varies above and within plant canopies and is an important component in mass and energy transfer models. We tested commercially-available needle, heat-transfer anemometers (1 x 50 mm cylinder) that consist of a fine-wire thermocouple and a heater inside a hypodermic needle. The needle is heated and wind speed determined from the temperature rise above ambient. These sensors are particularly useful in measuring the low wind speeds found within plant canopies. 3. Accurate measurements of air temperature adjacent to plant leaves facilitates transport phenomena modeling. We quantified the effect of radiation and air velocity on temperature rise in thermocouples from 10 to 500 micrometers. At high radiation loads and low wind speeds, temperature errors were as large as 7 degrees C above air temperature.

  6. Evaluating and Extending the Ocean Wind Climate Data Record

    PubMed Central

    Ricciardulli, Lucrezia; Rodriguez, Ernesto; Stiles, Bryan W.; Bourassa, Mark A.; Long, David G.; Hoffman, Ross N.; Stoffelen, Ad; Verhoef, Anton; O'Neill, Larry W.; Farrar, J. Tomas; Vandemark, Douglas; Fore, Alexander G.; Hristova-Veleva, Svetla M.; Turk, F. Joseph; Gaston, Robert; Tyler, Douglas

    2017-01-01

    Satellite microwave sensors, both active scatterometers and passive radiometers, have been systematically measuring near-surface ocean winds for nearly 40 years, establishing an important legacy in studying and monitoring weather and climate variability. As an aid to such activities, the various wind datasets are being intercalibrated and merged into consistent climate data records (CDRs). The ocean wind CDRs (OW-CDRs) are evaluated by comparisons with ocean buoys and intercomparisons among the different satellite sensors and among the different data providers. Extending the OW-CDR into the future requires exploiting all available datasets, such as OSCAT-2 scheduled to launch in July 2016. Three planned methods of calibrating the OSCAT-2 σo measurements include 1) direct Ku-band σo intercalibration to QuikSCAT and RapidScat; 2) multisensor wind speed intercalibration; and 3) calibration to stable rainforest targets. Unfortunately, RapidScat failed in August 2016 and cannot be used to directly calibrate OSCAT-2. A particular future continuity concern is the absence of scheduled new or continuation radiometer missions capable of measuring wind speed. Specialized model assimilations provide 30-year long high temporal/spatial resolution wind vector grids that composite the satellite wind information from OW-CDRs of multiple satellites viewing the Earth at different local times. PMID:28824741

  7. Evaluating and Extending the Ocean Wind Climate Data Record.

    PubMed

    Wentz, Frank J; Ricciardulli, Lucrezia; Rodriguez, Ernesto; Stiles, Bryan W; Bourassa, Mark A; Long, David G; Hoffman, Ross N; Stoffelen, Ad; Verhoef, Anton; O'Neill, Larry W; Farrar, J Tomas; Vandemark, Douglas; Fore, Alexander G; Hristova-Veleva, Svetla M; Turk, F Joseph; Gaston, Robert; Tyler, Douglas

    2017-05-01

    Satellite microwave sensors, both active scatterometers and passive radiometers, have been systematically measuring near-surface ocean winds for nearly 40 years, establishing an important legacy in studying and monitoring weather and climate variability. As an aid to such activities, the various wind datasets are being intercalibrated and merged into consistent climate data records (CDRs). The ocean wind CDRs (OW-CDRs) are evaluated by comparisons with ocean buoys and intercomparisons among the different satellite sensors and among the different data providers. Extending the OW-CDR into the future requires exploiting all available datasets, such as OSCAT-2 scheduled to launch in July 2016. Three planned methods of calibrating the OSCAT-2 σ o measurements include 1) direct Ku-band σ o intercalibration to QuikSCAT and RapidScat; 2) multisensor wind speed intercalibration; and 3) calibration to stable rainforest targets. Unfortunately, RapidScat failed in August 2016 and cannot be used to directly calibrate OSCAT-2. A particular future continuity concern is the absence of scheduled new or continuation radiometer missions capable of measuring wind speed. Specialized model assimilations provide 30-year long high temporal/spatial resolution wind vector grids that composite the satellite wind information from OW-CDRs of multiple satellites viewing the Earth at different local times.

  8. Design and realization of an automatic weather station at island

    NASA Astrophysics Data System (ADS)

    Chen, Yong-hua; Li, Si-ren

    2011-10-01

    In this paper, the design and development of an automatic weather station monitoring is described. The proposed system consists of a set of sensors for measuring meteorological parameters (temperature, wind speed & direction, rain fall, visibility, etc.). To increase the reliability of the system, wind speed & direction are measured redundantly with duplicate sensors. The sensor signals are collected by the data logger CR1000 at several analog and digital inputs. The CR1000 and the sensors form a completely autonomous system which works with the other systems installed in the container. Communication with the master PC is accomplished over the method of Code Division Multiple Access (CDMA) with the Compact Caimore6550P CDMA DTU. The data are finally stored in tables on the CPU as well as on the CF-Card. The weather station was built as an efficient autonomous system which operates with the other systems to provide the required data for a fully automatic measurement system.

  9. Design and application of a novel high precision and low cost electronic tachogenerator for sensor-based brushless direct current motor drivers.

    PubMed

    Ozgenel, Mehmet Cihat; Bal, Gungor; Uygun, Durmus

    2017-03-01

    This study presents a precise speed control method for Brushless Direct Current (BLDC) Motors using an electronic tachogenerator (ETg) instead of an electro-mechanical tachogenerator. Most commonly used three-phase BLDC motors have three position sensors for rotor position data to provide commutation among stator windings. Aforementioned position sensors are usually Hall-effect sensors delivering binary-high and binary-low data as long as the motor rotates. These binary sets from three Hall-effect sensors can be used as an analogue rotor speed signal for closed loop applications. Each position sensor signal is apart from 120 electrical degrees. By using an electronic circuitry, a combination of position sensor signals is converted to the analogue signal providing an input to a PI speed controller. To implement this, a frequency to voltage converter has been used in this study. Then, the analogue speed signal has been evaluated as rotor speed data in comparison with the reference speed. So, an ETg system has been successfully achieved in place of an electro-mechanical tachogenerator for BLDC motor speed control. The proposed ETg has been tested under various speed conditions on an experimental setup. Employed tests and obtained results show that the proposed low-cost speed feedback sub-system can be effectively used in BLDC motor drive systems. Through the proved method and designed sub-system, a new motor controller chip with a speed feedback capability has been aimed.

  10. Design and application of a novel high precision and low cost electronic tachogenerator for sensor-based brushless direct current motor drivers

    NASA Astrophysics Data System (ADS)

    Ozgenel, Mehmet Cihat; Bal, Gungor; Uygun, Durmus

    2017-03-01

    This study presents a precise speed control method for Brushless Direct Current (BLDC) Motors using an electronic tachogenerator (ETg) instead of an electro-mechanical tachogenerator. Most commonly used three-phase BLDC motors have three position sensors for rotor position data to provide commutation among stator windings. Aforementioned position sensors are usually Hall-effect sensors delivering binary-high and binary-low data as long as the motor rotates. These binary sets from three Hall-effect sensors can be used as an analogue rotor speed signal for closed loop applications. Each position sensor signal is apart from 120 electrical degrees. By using an electronic circuitry, a combination of position sensor signals is converted to the analogue signal providing an input to a PI speed controller. To implement this, a frequency to voltage converter has been used in this study. Then, the analogue speed signal has been evaluated as rotor speed data in comparison with the reference speed. So, an ETg system has been successfully achieved in place of an electro-mechanical tachogenerator for BLDC motor speed control. The proposed ETg has been tested under various speed conditions on an experimental setup. Employed tests and obtained results show that the proposed low-cost speed feedback sub-system can be effectively used in BLDC motor drive systems. Through the proved method and designed sub-system, a new motor controller chip with a speed feedback capability has been aimed.

  11. Integrated monitoring of wind plant systems

    NASA Astrophysics Data System (ADS)

    Whelan, Matthew J.; Janoyan, Kerop D.; Qiu, Tong

    2008-03-01

    Wind power is a renewable source of energy that is quickly gaining acceptance by many. Advanced sensor technologies have currently focused solely on improving wind turbine rotor aerodynamics and increasing of the efficiency of the blade design and concentration. Alternatively, potential improvements in wind plant efficiency may be realized through reduction of reactionary losses of kinetic energy to the structural and substructural systems supporting the turbine mechanics. Investigation of the complete dynamic structural response of the wind plant is proposed using a large-scale, high-rate wireless sensor network. The wireless network enables sensors to be placed across the sizable structure, including the rotating blades, without consideration of cabling issues and the economic burden associated with large spools of measurement cables. A large array of multi-axis accelerometers is utilized to evaluate the modal properties of the system as well as individual members and would enable long-term structural condition monitoring of the wind turbine as well. Additionally, environmental parameters, including wind speed, temperature, and humidity, are wirelessly collected for correlation. Such a wireless system could be integrated with electrical monitoring sensors and actuators and incorporated into a remote multi-turbine centralized plant monitoring and control system.

  12. Validation of ERS-1 environmental data products

    NASA Technical Reports Server (NTRS)

    Goodberlet, Mark A.; Swift, Calvin T.; Wilkerson, John C.

    1994-01-01

    Evaluation of the launch-version algorithms used by the European Space Agency (ESA) to derive wind field and ocean wave estimates from measurements of sensors aboard the European Remote Sensing satellite, ERS-1, has been accomplished through comparison of the derived parameters with coincident measurements made by 24 open ocean buoys maintained by the National Oceanic and Atmospheric Administration). During the period from November 1, 1991 through February 28, 1992, data bases with 577 and 485 pairs of coincident sensor/buoy wind and wave measurements were collected for the Active Microwave Instrument (AMI) and Radar Altimeter (RA) respectively. Based on these data, algorithm retrieval accuracy is estimated to be plus or minus 4 m/s for AMI wind speed, plus or minus 3 m/s for RA wind speed and plus or minus 0.6 m for RA wave height. After removing 180 degree ambiguity errors, the AMI wind direction retrieval accuracy was estimated at plus or minus 28 degrees. All of the ERS-1 wind and wave retrievals are relatively unbiased. These results should be viewed as interim since improved algorithms are under development. As final versions are implemented, additional assessments should be conducted to complete the validation.

  13. Applications of the DOE/NASA wind turbine engineering information system

    NASA Technical Reports Server (NTRS)

    Neustadter, H. E.; Spera, D. A.

    1981-01-01

    A statistical analysis of data obtained from the Technology and Engineering Information Systems was made. The systems analyzed consist of the following elements: (1) sensors which measure critical parameters (e.g., wind speed and direction, output power, blade loads and component vibrations); (2) remote multiplexing units (RMUs) on each wind turbine which frequency-modulate, multiplex and transmit sensor outputs; (3) on-site instrumentation to record, process and display the sensor output; and (4) statistical analysis of data. Two examples of the capabilities of these systems are presented. The first illustrates the standardized format for application of statistical analysis to each directly measured parameter. The second shows the use of a model to estimate the variability of the rotor thrust loading, which is a derived parameter.

  14. An Implementation of the Salt-Farm Monitoring System Using Wireless Sensor Network

    NASA Astrophysics Data System (ADS)

    Ju, Jonggil; Park, Ingon; Lee, Yongwoong; Cho, Jongsik; Cho, Hyunwook; Yoe, Hyun; Shin, Changsun

    In producing solar salt, natural environmental factors such as temperature, humidity, solar radiation, wind direction, wind speed and rain are essential elements which influence on the productivity and quality of salt. If we can manage the above mentioned environmental elements efficiently, we could achieve improved results in production of salt with good quality. To monitor and manage the natural environments, this paper suggests the Salt-Farm Monitoring System (SFMS) which is operated with renewable energy power. The system collects environmental factors directly from the environmental measure sensors and the sensor nodes. To implement a stand-alone system, we applied solar cell and wind generator to operate this system. Finally, we showed that the SFMS could monitor the salt-farm environments by using wireless sensor nodes and operate correctly without external power supply.

  15. Evaluation of the variability of wind speed at different heights and its impact on the receiver efficiency of central receiver systems

    NASA Astrophysics Data System (ADS)

    Delgado, A.; Gertig, C.; Blesa, E.; Loza, A.; Hidalgo, C.; Ron, R.

    2016-05-01

    Typical plant configurations for Central Receiver Systems (CRS) are comprised of a large field of heliostats which concentrate solar irradiation onto the receiver, which is elevated hundreds of meters above the ground. Wind speed changes with altitude above ground, impacting on the receiver thermal efficiency due to variations of the convective heat losses. In addition, the physical properties of air vary at high altitudes to a significant degree, which should be considered in the thermal losses calculation. DNV GL has long-reaching experience in wind energy assessment with reliable methodologies to reduce the uncertainty of the determination of the wind regime. As a part of this study, DNV GL estimates the wind speed at high altitude for different sites using two methods, a detailed estimation applying the best practices used in the wind energy sector based on measurements from various wind sensors and a simplified estimation applying the power law (1, 2) using only one wind measurement and a representative value for the surface roughness. As a result of the study, a comparison of the wind speed estimation considering both methods is presented and the impact on the receiver performance for the evaluated case is estimated.

  16. Field and numerical study of wind and surface waves at short fetches

    NASA Astrophysics Data System (ADS)

    Baydakov, Georgy; Kuznetsova, Alexandra; Sergeev, Daniil; Papko, Vladislav; Kandaurov, Alexander; Vdovin, Maxim; Troitskaya, Yuliya

    2016-04-01

    Measurements were carried out in 2012-2015 from May to October in the waters of Gorky Reservoir belonging to the Volga Cascade. The methods of the experiment focus on the study of airflow in the close proximity to the water surface. The sensors were positioned at the oceanographic Froude buoy including five two-component ultrasonic sensors WindSonic by Gill Instruments at different levels (0.1, 0.85, 1.3, 2.27, 5.26 meters above the mean water surface level), one water and three air temperature sensors, and three-channel wire wave gauge. One of wind sensors (0.1 m) was located on the float tracking the waveform for measuring the wind speed in the close proximity to the water surface. Basic parameters of the atmospheric boundary layer (the friction velocity u∗, the wind speed U10 and the drag coefficient CD) were calculated from the measured profiles of wind speed. Parameters were obtained in the range of wind speeds of 1-12 m/s. For wind speeds stronger than 4 m/s CD values were lower than those obtained before (see eg. [1,2]) and those predicted by the bulk parameterization. However, for weak winds (less than 3 m/s) CD values considerably higher than expected ones. The new parameterization of surface drag coefficient was proposed on the basis of the obtained data. The suggested parameterization of drag coefficient CD(U10) was implemented within wind input source terms in WAVEWATCH III [3]. The results of the numerical experiments were compared with the results obtained in the field experiments on the Gorky Reservoir. The use of the new drag coefficient improves the agreement in significant wave heights HS [4]. At the same time, the predicted mean wave periods are overestimated using both built-in source terms and adjusted source terms. We associate it with the necessity of the adjusting of the DIA nonlinearity model in WAVEWATCH III to the conditions of the middle-sized reservoir. Test experiments on the adjusting were carried out. The work was supported by the Russian Foundation for Basic Research (Grants No. 15-35-20953, 14-05-00367, 15-45-02580) and project ASIST of FP7. The field experiment is supported by Russian Science Foundation (Agreement No. 15-17-20009), numerical simulations are partially supported by Russian Science Foundation (Agreement No. 14-17-00667). References 1. A.V. Babanin, V.K. Makin Effects of wind trend and gustiness on the sea drag: Lake George study // Journal of Geophysical Research, 2008, 113, C02015, doi:10.1029/2007JC004233 2. S.S. Atakturk, K.B. Katsaros Wind Stress and Surface Waves Observed on Lake Washington // Journal of Physical Oceanography, 1999, 29, pp. 633-650 3. Kuznetsova A.M., Baydakov G.A., Papko V.V., Kandaurov A.A., Vdovin M.I., Sergeev D.A., Troitskaya Yu.I. Adjusting of wind input source term in WAVEWATCH III model for the middle-sized water body on the basis of the field experiment // Hindawi Publishing Corporation, Advances in Meteorology, 2016, Vol. 1, article ID 574602 4. G.A. Baydakov, A.M. Kuznetsova, D.A. Sergeev, V.V. Papko, A.A. Kandaurov, M.I. Vdovin, and Yu.I. Troitskaya Field study and numerical modeling of wind and surface waves at the middle-sized water body // Geophysical Research Abstracts, Vol.17, EGU2015-9427, Vienne, Austria, 2015.

  17. An atlas of monthly mean distributions of GEOSAT sea surface height, SSMI surface wind speed, AVHRR/2 sea surface temperature, and ECMWF surface wind components during 1988

    NASA Technical Reports Server (NTRS)

    Halpern, D.; Zlotnicki, V.; Newman, J.; Brown, O.; Wentz, F.

    1991-01-01

    Monthly mean global distributions for 1988 are presented with a common color scale and geographical map. Distributions are included for sea surface height variation estimated from GEOSAT; surface wind speed estimated from the Special Sensor Microwave Imager on the Defense Meteorological Satellite Program spacecraft; sea surface temperature estimated from the Advanced Very High Resolution Radiometer on NOAA spacecrafts; and the Cartesian components of the 10m height wind vector computed by the European Center for Medium Range Weather Forecasting. Charts of monthly mean value, sampling distribution, and standard deviation value are displayed. Annual mean distributions are displayed.

  18. A method of calibrating wind velocity sensors with a modified gas flow calibrator

    NASA Technical Reports Server (NTRS)

    Stump, H. P.

    1978-01-01

    A procedure was described for calibrating air velocity sensors in the exhaust flow of a gas flow calibrator. The average velocity in the test section located at the calibrator exhaust was verified from the mass flow rate accurately measured by the calibrator's precision sonic nozzles. Air at elevated pressures flowed through a series of screens, diameter changes, and flow straighteners, resulting in a smooth flow through the open test section. The modified system generated air velocities of 2 to 90 meters per second with an uncertainty of about two percent for speeds below 15 meters per second and four percent for the higher speeds. Wind tunnel data correlated well with that taken in the flow calibrator.

  19. Dependence of Radar Backscatter on the Energetics of the Air-Sea Interface

    DTIC Science & Technology

    1990-07-01

    14 3 Figure 41a. Shematic Spectrum of Wind Speed Near the Ground Estimated from a Study of Van der Hoven (1957...O.O0 Figure 41a. Schematic Spectrum of Wind Speed Near the Ground Estimated from a Study of Van der Hoven (1957) (from Lumley and Panofsky, 1964) The...resolved is 0.6 to 8.0s. Following Der (1976), the sensors are capacitance transduction devices which produce output voltage signals proportional to surface

  20. Gear-box fault detection using time-frequency based methods

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Odgaard, Peter Fogh; Stoustrup, Jakob

    2015-01-01

    Gear-box fault monitoring and detection is important for optimization of power generation and availability of wind turbines. The current industrial approach is to use condition monitoring systems, which runs in parallel with the wind turbine control system, using expensive additional sensors. An alternative would be to use the existing measurements which are normally available for the wind turbine control system. The usage of these sensors instead would cut down the cost of the wind turbine by not using additional sensors. One of these available measurements is the generator speed, in which changes in the gear-box resonance frequency can be detected.more » Two different time-frequency based approaches are presented in this paper. One is a filter based approach and the other is based on a Karhunen-Loeve basis. Both of them detects the gear-box fault with an acceptable detection delay.« less

  1. Tropospheric Airborne Meteorological Data Reporting (TAMDAR) Sensor Validation and Verification on National Oceanographic and Atmospheric Administration (NOAA) Lockheed WP-3D Aircraft

    NASA Technical Reports Server (NTRS)

    Tsoucalas, George; Daniels, Taumi S.; Zysko, Jan; Anderson, Mark V.; Mulally, Daniel J.

    2010-01-01

    As part of the National Aeronautics and Space Administration's Aviation Safety and Security Program, the Tropospheric Airborne Meteorological Data Reporting project (TAMDAR) developed a low-cost sensor for aircraft flying in the lower troposphere. This activity was a joint effort with support from Federal Aviation Administration, National Oceanic and Atmospheric Administration, and industry. This paper reports the TAMDAR sensor performance validation and verification, as flown on board NOAA Lockheed WP-3D aircraft. These flight tests were conducted to assess the performance of the TAMDAR sensor for measurements of temperature, relative humidity, and wind parameters. The ultimate goal was to develop a small low-cost sensor, collect useful meteorological data, downlink the data in near real time, and use the data to improve weather forecasts. The envisioned system will initially be used on regional and package carrier aircraft. The ultimate users of the data are National Centers for Environmental Prediction forecast modelers. Other users include air traffic controllers, flight service stations, and airline weather centers. NASA worked with an industry partner to develop the sensor. Prototype sensors were subjected to numerous tests in ground and flight facilities. As a result of these earlier tests, many design improvements were made to the sensor. The results of tests on a final version of the sensor are the subject of this report. The sensor is capable of measuring temperature, relative humidity, pressure, and icing. It can compute pressure altitude, indicated air speed, true air speed, ice presence, wind speed and direction, and eddy dissipation rate. Summary results from the flight test are presented along with corroborative data from aircraft instruments.

  2. Surface-roughness considerations for atmospheric correction of ocean color sensors. II: Error in the retrieved water-leaving radiance.

    PubMed

    Gordon, H R; Wang, M

    1992-07-20

    In the algorithm for the atmospheric correction of coastal zone color scanner (CZCS) imagery, it is assumed that the sea surface is flat. Simulations are carried out to assess the error incurred when the CZCS-type algorithm is applied to a realistic ocean in which the surface is roughened by the wind. In situations where there is no direct Sun glitter (either a large solar zenith angle or the sensor tilted away from the specular image of the Sun), the following conclusions appear justified: (1) the error induced by ignoring the surface roughness is less, similar1 CZCS digital count for wind speeds up to approximately 17 m/s, and therefore can be ignored for this sensor; (2) the roughness-induced error is much more strongly dependent on the wind speed than on the wave shadowing, suggesting that surface effects can be adequately dealt with without precise knowledge of the shadowing; and (3) the error induced by ignoring the Rayleigh-aerosol interaction is usually larger than that caused by ignoring the surface roughness, suggesting that in refining algorithms for future sensors more effort should be placed on dealing with the Rayleigh-aerosol interaction than on the roughness of the sea surface.

  3. Wind-tunnel investigation of the flow correction for a model-mounted angle of attack sensor at angles of attack from -10 deg to 110 deg. [Langley 12-foot low speed wind tunnel test

    NASA Technical Reports Server (NTRS)

    Moul, T. M.

    1979-01-01

    A preliminary wind tunnel investigation was undertaken to determine the flow correction for a vane angle of attack sensor over an angle of attack range from -10 deg to 110 deg. The sensor was mounted ahead of the wing on a 1/5 scale model of a general aviation airplane. It was shown that the flow correction was substantial, reaching about 15 deg at an angle of attack of 90 deg. The flow correction was found to increase as the sensor was moved closer to the wing or closer to the fuselage. The experimentally determined slope of the flow correction versus the measured angle of attack below the stall angle of attack agreed closely with the slope of flight data from a similar full scale airplane.

  4. The Special Sensor Microwave Imager Wind Dataset: A Source of Quantitative Information for the Ocean-to-Land Advection

    NASA Technical Reports Server (NTRS)

    Otterman, J.; Ardizzone, J.; Atlas, R.; Demaree, G.; Huth, R.; Jaagus, J.; Koslowsky, D.; Przybylak, R.; Wos, A.; Atlas, Robert (Technical Monitor)

    1999-01-01

    It is well recognized that advection from the North Atlantic has a profound effect on the climatic conditions in central Europe. A new dataset of the ocean-surface winds, derived from the Special Sensor Microwave Imager, SSM/1, is now available. This satellite instrument measures the wind speed, but not the direction. However, variational analysis developed at the Data Assimilation Office, NASA Goddard Space Flight Center, by combining the SSM/I measurements with wind vectors measured from ships, etc., produced global maps of the ocean surface winds suitable for climate analysis. From this SSM/I dataset, a specific index I(sub na) of the North Atlantic surface winds has been developed, which pertinently quantifies the low-level advection into central Europe. For a selected time-period, the index I(sub na) reports the average of the amplitude of the wind, averaging only the speed when the direction is from the southwest (when the wind is from another direction, the contribution counts to the average as zero speed). Strong correlations were found between February I(sub na) and the surface air temperatures in Europe 50-60 deg N. In the present study, we present the correlations between I(sub na) and temperature I(sub s), and also the sensitivity of T(sub s), to an increase in I(sub na), in various seasons and various regions. We specifically analyze the flow of maritime-air from the North Atlantic that produced two extraordinary warm periods: February 1990, and early-winter 2000/2001. The very cold December 2001 was clearly due to a northerly flow. Our conclusion is that the SSM/I dataset is very useful for providing insight to the forcing of climatic fluctuations in Europe.

  5. Accurate aircraft wind measurements using the global positioning system (GPS)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dobosy, R.J.; Crawford, T.L., McMillen, R.T., Dumas, E.J.

    1996-11-01

    High accuracy measurements of the spatial distribution of wind speed are required in the study of turbulent exchange between the atmosphere and the earth. The use of a differential global positioning system (GPS) to determine the sensor velocity vector component of wind speed is discussed in this paper. The results of noise and rocking testing are summarized, and fluxes obtained from the GPS-based methods are compared to those measured from systems on towers and airplanes. The GPS-based methods provided usable measurements that compared well with tower and aircraft data at a significantly lower cost. 21 refs., 1 fig., 2 tabs.

  6. A new approach to correct yaw misalignment in the spinning ultrasonic anemometer

    NASA Astrophysics Data System (ADS)

    Ghaemi-Nasab, M.; Davari, Ali R.; Franchini, S.

    2018-01-01

    Single-axis ultrasonic anemometers are the modern instruments for accurate wind speed measurements. Despite their widespread and ever increasing applications, little attention has been paid up to now to spinning ultrasonic anemometers that can accurately measure both the wind speed and its direction in a single and robust apparatus. In this study, intensive wind-tunnel tests were conducted on a spinning single-axis ultrasonic anemometer to investigate the yaw misalignment in ultrasonic wind speed measurements during the yaw rotation. The anemometer was rotating inside the test section with various angular velocities, and the experiments were performed at several combinations of wind speed and anemometer angular velocity. The instantaneous angular position of the ultrasonic signal path with wind direction was measured using an angular position sensor. For a spinning anemometer, the circulatory wake and the associated flow distortion, along with the Doppler effect, impart a phase shift in the signals measured by the anemometer, which should be added to the position data for correcting the yaw misalignment. In this paper, the experimental data are used to construct a theoretical model, based on a response surface method, to correct the phase shift for various wind speeds and anemometer rotational velocities. This model is shown to successfully correct the velocity indicated by the spinning anemometer for the phase shift due to the rotation, and can easily be used in the calibration process for such anemometers.

  7. ECMWF and SSM/I global surface wind speeds

    NASA Technical Reports Server (NTRS)

    Halpern, David; Hollingsworth, Anthony; Wentz, Frank

    1994-01-01

    Monthly mean 2.5 deg x 2.5 deg resolution 10-m height wind speeds from the Special Sensor Microwave/Imager (SSM/I) instrument and the European Centre for Medium-Range Weather Forecasts (ECMWF) forecast-analysis system are compared between 60 deg S and 60 deg N during 1988-91. The SSM/I data were uniformly processed while numerous changes were made to the ECMWF forecast-analysis system. The SSM/I measurements, which were compared with moored-buoy wind observations, were used as a reference dataset to evaluate the influence of the changes made to the ECMWF system upon the ECMWF surface wind speed over the ocean. A demonstrable yearly decrease of the difference between SSM/I and ECMWF wind speeds occurred in the 10 deg S-10 deg N region, including the 5 deg S-5 deg N zone of the Pacific Ocean, where nearly all of the variations occurred in the 160 deg E-160 deg W region. The apparent improvement of the ECMWF wind speed occurred at the same time as the yearly decrease of the equatorial Pacific SSM/I wind speed, which was associated with the natural transition from La Nina to El Nino conditions. In the 10 deg S-10 deg N tropical Atlantic, the ECMWF wind speed had a 4-yr trend, which was not expected nor was it duplicated with the SSM/I data. No yearly trend was found in the difference between SSM/I and ECMWF surface wind speeds in middle latitudes of the Northern and Southern Hemispheres. The magnitude of the differences between SSM/I and ECMWF was 0.4 m/s or 100% larger in the Northern than in the Southern Hemisphere extratropics. In two areas (Arabian Sea and North Atlantic Ocean) where ECMWF and SSM/I wind speeds were compared to ship measurements, the ship data had much better agreement with the ECMWF analyses compared to SSM/I data. In the 10 deg S-10 deg N area the difference between monthly standard deviations of the daily wind speeds dropped significantly from 1988 to 1989 but remained constant at about 30% for the remaining years.

  8. An FPGA Testbed for Characterizing and Mapping DOD Applications

    DTIC Science & Technology

    2017-12-27

    series expansion helps to linearize pitch control design for wind turbine using linear quadratic regulator (LQR) [15]. In multi-static radar system...A. Mahmud, M. A. Chowdhury, and J. Zhang, “Stability enhancement of dfig wind turbine using lqr pitch control over rated wind speed,” in 2016 IEEE...the problem of meeting payload design specifications is exacerbated by the need to identify manufacturers with interfaces that match the sensors

  9. Midwest Consortium for Wind Turbine Reliability and Optimization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Scott R. Dana; Douglas E. Adams; Noah J. Myrent

    2012-05-11

    This report provides an overview of the efforts aimed to establish a student focused laboratory apparatus that will enhance Purdue's ability to recruit and train students in topics related to the dynamics, operations and economics of wind turbines. The project also aims to facilitate outreach to students at Purdue and in grades K-12 in the State of Indiana by sharing wind turbine operational data. For this project, a portable wind turbine test apparatus was developed and fabricated utilizing an AirX 400W wind energy converter. This turbine and test apparatus was outfitted with an array of sensors used to monitor windmore » speed, turbine rotor speed, power output and the tower structural dynamics. A major portion of this project included the development of a data logging program used to display real-time sensor data and the recording and creation of output files for data post-processing. The apparatus was tested in an open field to subject the turbine to typical operating conditions and the data acquisition system was adjusted to obtain desired functionality to facilitate use for student projects in existing courses offered at Purdue University and Indiana University. Data collected using the data logging program is analyzed and presented to demonstrate the usefulness of the test apparatus related to wind turbine dynamics and operations.« less

  10. Measuring Effects Of Lightning On Power And Telephone Lines

    NASA Technical Reports Server (NTRS)

    Jafferis, William; Thompson, E. M.; Medelius, P.; Rubinstein, M.; Tzeng, A.

    1992-01-01

    Spherical antenna senses both horizontal and vertical fields simultaneously. Measures "fast" components of electric field used in conjunction with other equipment, including antenna measuring "slow" vertical component of electric field; microphone that senses thunder; cameras making visual records, which locate lightning; magnetic-field sensor; optical sensors; and instruments measuring speed and direction of wind.

  11. Geometeorological data collected by the USGS Desert Winds Project at Desert Wells, Sonoran Desert, central-west Arizona, 1981 - 1996

    USGS Publications Warehouse

    Helm, Paula J.; Breed, Carol S.; Tigges, Richard; Creighton, Shawn

    1998-01-01

    The data in this report were obtained by instruments deployed on a GOES-satellite data collection station operated by the U.S. Geological Survey Desert Winds Project at Desert Wells (latitude 33° 42' 08" N, longitude 113° 48' 40" W), La Paz County, west-central Arizona. The elevation is 344 m (1,130 ft). From January 9, 1981 through May 31, 1995 the station recorded eight parameters: wind direction, wind speed, peak gust, air temperature, precipitation, humidity, barometric pressure, and soil temperature. On June 1, 1995, the station was upgraded by adding a SENSIT sand-flux sensor, which records grain impacts concurrently with wind speed and wind direction measurements. Included with the data is descriptive text on the geology, soils, climate, vegetation, and land use at the site, as well as text on data format, date retrieval software and instructions, and metadata

  12. BOU: Development of a low-cost tethered balloon sensing system for monitoring the lower atmosphere

    NASA Astrophysics Data System (ADS)

    Picos, Rodrigo; Lopez-Grifol, Alvaro; Martinez-Villagrassa, Daniel; Simó, Gemma; Wenger, Burkhard; Dünnermann, Jens; Jiménez, Maria Antonia; Cuxart, Joan

    2016-04-01

    The study of the atmospheric boundary layer, the lowest part of the atmosphere, and the processes that occur therein often requires the observation of vertical profiles of the main meteorological variables, i.e. air temperature and humidity, wind vector and barometric pressure. In particular, when the interest is focused on the air-surface interactions, a high vertical resolution over the first 500 m is required for the observations to describe the physical processes that occur immediately above the surface. Typically, these needs are covered with the use of captive balloons, which are helium-filled balloons tethered to a winch on the ground and a sensor package suspended a short distance below the balloon. Since the commercial version of such instrumental platforms are scarce and expensive, a new low-cost device has been developed in the last years: BOU (tethered Balloon sonde OWL-UIB). In this paper, we focus on the sensor package and data acquisition system part, that is able to fulfill the low-cost requirements. The system uses a low-cost Arduino Mega board as the processor, and stores all the data in a SD card, though an RF connection is also possible but more unreliable. The system has been configured to sample temperature, humidity, air pressure, wind speed, having also a magnetometer and an accelerometer. Sampling time was 1 second, though it was possible to set it faster. It is worth mentioning that the system is easily reconfigurable, and more sensors can be added. The system is powered by a Polymer battery of 1800mA , allowing the system to run continously for more than 6 hours. The temperature is acquired using three different sensors (a HYT 271 calibrated sensor with an accuracy of ±0.2 °C, plus the internal temperature sensors of the wind and pressure sensors, with accuracies around ±0.5 °C). The humidity is also sensed using the calibrated HYT 271 sensor, which features an accuracy of ±1.8%. Air pressure is sensed using a BMP080 sensor, which also provides a reading of the temperature (less accurate than the HYT 271 but useful as a complement). Wind speed is measured using a low-cost hot-wire sensor, bought from a commercial source (Wind Sensor Rev. P, from Modern Device), that has also been calibrated against a WindSonic. This sensor also provides a reading of the temperature, with the same characteristics than the BMP080. Finally, the magnetometer and the accelerometer are used as a mean of tracking the position of the balloon, allowing us to additionally estimate the wind direction from the lateral acceleration. This system has been used successfully in different campaigns, comparing favorably the obtained values against data obtained using an unmanned aerial vehicle (UAV) and a WindRass. Possible additions to the system are a GPS tracker, a RF link to the base station, and different kinds of sensors. The current configuration of the system includes RS232, I2C, and purely analog input ports, giving it a wide flexibility to add different sensors.

  13. Meteorological Automatic Weather Station (MAWS) Instrument Handbook

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Holdridge, Donna J; Kyrouac, Jenni A

    The Meteorological Automatic Weather Station (MAWS) is a surface meteorological station, manufactured by Vaisala, Inc., dedicated to the balloon-borne sounding system (BBSS), providing surface measurements of the thermodynamic state of the atmosphere and the wind speed and direction for each radiosonde profile. These data are automatically provided to the BBSS during the launch procedure and included in the radiosonde profile as the surface measurements of record for the sounding. The MAWS core set of measurements is: Barometric Pressure (hPa), Temperature (°C), Relative Humidity (%), Arithmetic-Averaged Wind Speed (m/s), and Vector-Averaged Wind Direction (deg). The sensors that collect the core variablesmore » are mounted at the standard heights defined for each variable.« less

  14. Study of the effect of wind speed on evaporation from soil through integrated modeling of the atmospheric boundary layer and shallow subsurface.

    PubMed

    Davarzani, Hossein; Smits, Kathleen; Tolene, Ryan M; Illangasekare, Tissa

    2014-01-01

    In an effort to develop methods based on integrating the subsurface to the atmospheric boundary layer to estimate evaporation, we developed a model based on the coupling of Navier-Stokes free flow and Darcy flow in porous medium. The model was tested using experimental data to study the effect of wind speed on evaporation. The model consists of the coupled equations of mass conservation for two-phase flow in porous medium with single-phase flow in the free-flow domain under nonisothermal, nonequilibrium phase change conditions. In this model, the evaporation rate and soil surface temperature and relative humidity at the interface come directly from the integrated model output. To experimentally validate numerical results, we developed a unique test system consisting of a wind tunnel interfaced with a soil tank instrumented with a network of sensors to measure soil-water variables. Results demonstrated that, by using this coupling approach, it is possible to predict the different stages of the drying process with good accuracy. Increasing the wind speed increases the first stage evaporation rate and decreases the transition time between two evaporative stages (soil water flow to vapor diffusion controlled) at low velocity values; then, at high wind speeds the evaporation rate becomes less dependent on the wind speed. On the contrary, the impact of wind speed on second stage evaporation (diffusion-dominant stage) is not significant. We found that the thermal and solute dispersion in free-flow systems has a significant influence on drying processes from porous media and should be taken into account.

  15. Study of the effect of wind speed on evaporation from soil through integrated modeling of the atmospheric boundary layer and shallow subsurface

    PubMed Central

    Davarzani, Hossein; Smits, Kathleen; Tolene, Ryan M; Illangasekare, Tissa

    2014-01-01

    In an effort to develop methods based on integrating the subsurface to the atmospheric boundary layer to estimate evaporation, we developed a model based on the coupling of Navier-Stokes free flow and Darcy flow in porous medium. The model was tested using experimental data to study the effect of wind speed on evaporation. The model consists of the coupled equations of mass conservation for two-phase flow in porous medium with single-phase flow in the free-flow domain under nonisothermal, nonequilibrium phase change conditions. In this model, the evaporation rate and soil surface temperature and relative humidity at the interface come directly from the integrated model output. To experimentally validate numerical results, we developed a unique test system consisting of a wind tunnel interfaced with a soil tank instrumented with a network of sensors to measure soil-water variables. Results demonstrated that, by using this coupling approach, it is possible to predict the different stages of the drying process with good accuracy. Increasing the wind speed increases the first stage evaporation rate and decreases the transition time between two evaporative stages (soil water flow to vapor diffusion controlled) at low velocity values; then, at high wind speeds the evaporation rate becomes less dependent on the wind speed. On the contrary, the impact of wind speed on second stage evaporation (diffusion-dominant stage) is not significant. We found that the thermal and solute dispersion in free-flow systems has a significant influence on drying processes from porous media and should be taken into account. PMID:25309005

  16. Jimsphere wind and turbulence exceedance statistic

    NASA Technical Reports Server (NTRS)

    Adelfang, S. I.; Court, A.

    1972-01-01

    Exceedance statistics of winds and gusts observed over Cape Kennedy with Jimsphere balloon sensors are described. Gust profiles containing positive and negative departures, from smoothed profiles, in the wavelength ranges 100-2500, 100-1900, 100-860, and 100-460 meters were computed from 1578 profiles with four 41 weight digital high pass filters. Extreme values of the square root of gust speed are normally distributed. Monthly and annual exceedance probability distributions of normalized rms gust speeds in three altitude bands (2-7, 6-11, and 9-14 km) are log-normal. The rms gust speeds are largest in the 100-2500 wavelength band between 9 and 14 km in late winter and early spring. A study of monthly and annual exceedance probabilities and the number of occurrences per kilometer of level crossings with positive slope indicates significant variability with season, altitude, and filter configuration. A decile sampling scheme is tested and an optimum approach is suggested for drawing a relatively small random sample that represents the characteristic extreme wind speeds and shears of a large parent population of Jimsphere wind profiles.

  17. Direct mechanical torque sensor for model wind turbines

    NASA Astrophysics Data System (ADS)

    Kang, Hyung Suk; Meneveau, Charles

    2010-10-01

    A torque sensor is developed to measure the mechanical power extracted by model wind turbines. The torque is measured by mounting the model generator (a small dc motor) through ball bearings to the hub and by preventing its rotation by the deflection of a strain-gauge-instrumented plate. By multiplying the measured torque and rotor angular velocity, a direct measurement of the fluid mechanical power extracted from the flow is obtained. Such a measurement is more advantageous compared to measuring the electrical power generated by the model generator (dc motor), since the electrical power is largely affected by internal frictional, electric and magnetic losses. Calibration experiments are performed, and during testing, the torque sensor is mounted on a model wind turbine in a 3 rows × 3 columns array of wind turbines in a wind tunnel experiment. The resulting electrical and mechanical powers are quantified and compared over a range of applied loads, for three different incoming wind velocities. Also, the power coefficients are obtained as a function of the tip speed ratio. Significant differences between the electrical and mechanical powers are observed, which highlights the importance of using the direct mechanical power measurement for fluid dynamically meaningful results. A direct calibration with the measured current is also explored. The new torque sensor is expected to contribute to more accurate model wind tunnel tests which should provide added flexibility in model studies of the power that can be harvested from wind turbines and wind-turbine farms.

  18. A Novel Low-Power-Consumption All-Fiber-Optic Anemometer with Simple System Design.

    PubMed

    Zhang, Yang; Wang, Fang; Duan, Zhihui; Liu, Zexu; Liu, Zigeng; Wu, Zhenlin; Gu, Yiying; Sun, Changsen; Peng, Wei

    2017-09-14

    A compact and low-power consuming fiber-optic anemometer based on single-walled carbon nanotubes (SWCNTs) coated tilted fiber Bragg grating (TFBG) is presented. TFBG as a near infrared in-fiber sensing element is able to excite a number of cladding modes and radiation modes in the fiber and effectively couple light in the core to interact with the fiber surrounding mediums. It is an ideal in-fiber device used in a fiber hot-wire anemometer (HWA) as both coupling and sensing elements to simplify the sensing head structure. The fabricated TFBG was immobilized with an SWCNT film on the fiber surface. SWCNTs, a kind of innovative nanomaterial, were utilized as light-heat conversion medium instead of traditional metallic materials, due to its excellent infrared light absorption ability and competitive thermal conductivity. When the SWCNT film strongly absorbs the light in the fiber, the sensor head can be heated and form a "hot wire". As the sensor is put into wind field, the wind will take away the heat on the sensor resulting in a temperature variation that is then accurately measured by the TFBG. Benefited from the high coupling and absorption efficiency, the heating and sensing light source was shared with only one broadband light source (BBS) without any extra pumping laser complicating the system. This not only significantly reduces power consumption, but also simplifies the whole sensing system with lower cost. In experiments, the key parameters of the sensor, such as the film thickness and the inherent angle of the TFBG, were fully investigated. It was demonstrated that, under a very low BBS input power of 9.87 mW, a 0.100 nm wavelength response can still be detected as the wind speed changed from 0 to 2 m/s. In addition, the sensitivity was found to be -0.0346 nm/(m/s) under the wind speed of 1 m/s. The proposed simple and low-power-consumption wind speed sensing system exhibits promising potential for future long-term remote monitoring and on-chip sensing in practical applications.

  19. Comparison of weak-wind characteristics across different Surface Types in stable stratification

    NASA Astrophysics Data System (ADS)

    Freundorfer, Anita; Rehberg, Ingo; Thomas, Christoph

    2017-04-01

    Atmospheric transport in weak winds and very stable conditions is often characterized by phenomena collectively referred to as submeso motions since their time and spatial scales exceed those of turbulence, but are smaller than synoptic motions. Evidence is mounting that submeso motions invalidate models for turbulent dispersion and diffusion since their physics are not captured by current similarity theories. Typical phenomena in the weak-wind stable boundary layer include meandering motions, quasi two-dimensional pancake-vortices or wavelike motions. These motions may be subject to non-local forcing and sensitive to small topographic undulations. The invalidity of Taylor's hypothesis of frozen turbulence for submeso motions requires the use of sensor networks to provide observations in both time and space domains simultaneously. We present the results from the series of Advanced Resolution Canopy Flow Observations (ARCFLO) experiments using a sensor network consisting of 12 sonic anemometers and 12 thermohygrometers. The objective of ARCFLO was to observe the flow and the turbulent and submeso transport at a high spatial and temporal resolution at 4 different sites in the Pacific Northwest, USA. These sites represented a variable degree of terrain complexity (flat to mountainous) and vegetation architecture (grass to forest, open to dense). In our study, a distinct weak-wind regime was identified for each site using the threshold velocity at which the friction velocity becomes dependent upon the mean horizontal wind speed. Here we used the scalar mean of the wind speed because the friction velocity showed a clearer dependence on the scalar mean compared to the vector mean of the wind velocity. It was found that the critical speed for the weak wind regime is higher in denser vegetation. For an open agricultural area (Botany and Plant Pathology Farm) we found a critical wind speed of v_crit= (0.24±0.05) ms-1 while for a very dense forest (Mary's River Douglas Fir site) with a Leaf Area Index of LAI=9.4 m2m-2, the critical wind speed measures v_crit= (1.0±0.1) ms-1. Further analyses include developing an identification scheme to sample submeso motions using their quasi two-dimensional nature. Once separated from turbulence the properties of submeso motions and the impact of different canopy densities on those motions can be explored. We hypothesize that submeso motions are the main generating mechanism for the locally confined and intermittent turbulence in the weak-wind and stable boundary layers.

  20. Composition of inner-source heavy pickup ions at 1 AU: SOHO/CELIAS/CTOF observations. Implications for the production mechanisms

    NASA Astrophysics Data System (ADS)

    Taut, A.; Berger, L.; Drews, C.; Wimmer-Schweingruber, R. F.

    2015-04-01

    Context. Pickup ions in the inner heliosphere mainly originate in two sources, one interstellar and one in the inner solar system. In contrast to the interstellar source that is comparatively well understood, the nature of the inner source has not been clearly identified. Former results obtained with the Solar Wind Ion Composition Spectrometer on-board the Ulysses spacecraft revealed that the composition of inner-source pickup ions is similar, but not equal, to the elemental solar-wind composition. These observations suffered from very low counting statistics of roughly one C+ count per day. Aims: Because the composition of inner-source pickup ions could lead to identifying their origin, we used data from the Charge-Time-Of-Flight sensor on-board the Solar and Heliospheric Observatory. It offers a large geometry factor that results in about 100 C+ counts per day combined with an excellent mass-per-charge resolution. These features enable a precise determination of the inner-source heavy pickup ion composition at 1 AU. To address the production mechanisms of inner-source pickup ions, we set up a toy model based on the production scenario involving the passage of solar-wind ions through thin dust grains to explain the observed deviations of the inner-source PUI and the elemental solar-wind composition. Methods: An in-flight calibration of the sensor allows identification of heavy pickup ions from pulse height analysis data by their mass-per-charge. A statistical analysis was performed to derive the inner-source heavy pickup ion relative abundances of N+, O+, Ne+, Mg+, Mg2+, and Si+ compared to C+. Results: Our results for the inner-source pickup ion composition are in good agreement with previous studies and confirm the deviations from the solar-wind composition. The large geometry factor of the Charge-Time-of-Flight sensor even allowed the abundance ratios of the two most prominent pickup ions, C+ and O+, to be investigated at varying solar-wind speeds. We found that the O+/C+ ratio increases systematically with higher solar-wind speeds. This observation is an unprecedented feature characterising the production of inner-source pickup ions. Comparing our observations to the toy model results, we find that both the deviation from the solar-wind composition and the solar-wind-speed dependent O+/C+ ratio can be explained.

  1. Airflow energy harvesting with high wind velocities for industrial applications

    NASA Astrophysics Data System (ADS)

    Chew, Z. J.; Tuddenham, S. B.; Zhu, M.

    2016-11-01

    An airflow energy harvester capable of harvesting energy from vortices at high speed is presented in this paper. The airflow energy harvester is implemented using a modified helical Savonius turbine and an electromagnetic generator. A power management module with maximum power point finding capability is used to manage the harvested energy and convert the low voltage magnitude from the generator to a usable level for wireless sensors. The airflow energy harvester is characterized using vortex generated by air hitting a plate in a wind tunnel. By using an aircraft environment with wind speed of 17 m/s as case study, the output power of the airflow energy harvester is measured to be 126 mW. The overall efficiency of the power management module is 45.76 to 61.2%, with maximum power point tracking efficiency of 94.21 to 99.72% for wind speed of 10 to 18 m/s, and has a quiescent current of 790 nA for the maximum power point tracking circuit.

  2. An optical fiber infrasound sensor: a new lower limit on atmospheric pressure noise between 1 and 10 Hz.

    PubMed

    Zumberge, Mark A; Berger, Jonathan; Hedlin, Michael A H; Husmann, Eric; Nooner, Scott; Hilt, Richard; Widmer-Schnidrig, Rudolf

    2003-05-01

    A new distributed sensor for detecting pressure variations caused by distant sources has been developed. The instrument reduces noise due to air turbulence in the infrasound band by averaging pressure along a line by means of monitoring strain in a long tubular diaphragm with an optical fiber interferometer. Above 1 Hz, the optical fiber infrasound sensor (OFIS) is less noisy than sensors relying on mechanical filters. Records collected from an 89-m-long OFS indicate a new low noise limit in the band from 1 to 10 Hz. Because the OFIS integrates pressure variations at light-speed rather than the speed of sound, phase delays of the acoustical signals caused by the sensor are negligible. Very long fiber-optic sensors are feasible and hold the promise of better wind-noise reduction than can be achieved with acoustical-mechanical systems.

  3. Kinematic analysis of conically scanned environmental properties

    NASA Technical Reports Server (NTRS)

    Wilkerson, Thomas D. (Inventor); Sanders, Jason A. (Inventor); Andrus, Ionio Q. (Inventor)

    2003-01-01

    A method for determining the velocity of features such as wind. The method preferably includes producing sensor signals and projecting the sensor signals sequentially along lines lying on the surface of a cone. The sensor signals may be in the form of lidar, radar or sonar for example. As the sensor signals are transmitted, the signals contact objects and are backscattered. The backscattered sensor signals are received to determine the location of objects as they pass through the transmission path. The speed and direction the object is moving may be calculated using the backscattered data. The data may be plotted in a two dimensional array with a scan angle on one axis and a scan time on the other axis. The prominent curves that appear in the plot may be analyzed to determine the speed and direction the object is traveling.

  4. Crack Monitoring of Operational Wind Turbine Foundations

    PubMed Central

    McAlorum, Jack; Fusiek, Grzegorz; Niewczas, Pawel; McKeeman, Iain; Rubert, Tim

    2017-01-01

    The degradation of onshore, reinforced-concrete wind turbine foundations is usually assessed via above-ground inspections, or through lengthy excavation campaigns that suspend wind power generation. Foundation cracks can and do occur below ground level, and while sustained measurements of crack behaviour could be used to quantify the risk of water ingress and reinforcement corrosion, these cracks have not yet been monitored during turbine operation. Here, we outline the design, fabrication and field installation of subterranean fibre-optic sensors for monitoring the opening and lateral displacements of foundation cracks during wind turbine operation. We detail methods for in situ sensor characterisation, verify sensor responses against theoretical tower strains derived from wind speed data, and then show that measured crack displacements correlate with monitored tower strains. Our results show that foundation crack opening displacements respond linearly to tower strain and do not change by more than ±5 μm. Lateral crack displacements were found to be negligible. We anticipate that the work outlined here will provide a starting point for real-time, long-term and dynamic analyses of crack displacements in future. Our findings could furthermore inform the development of cost-effective monitoring systems for ageing wind turbine foundations. PMID:28825687

  5. Crack Monitoring of Operational Wind Turbine Foundations.

    PubMed

    Perry, Marcus; McAlorum, Jack; Fusiek, Grzegorz; Niewczas, Pawel; McKeeman, Iain; Rubert, Tim

    2017-08-21

    The degradation of onshore, reinforced-concrete wind turbine foundations is usually assessed via above-ground inspections, or through lengthy excavation campaigns that suspend wind power generation. Foundation cracks can and do occur below ground level, and while sustained measurements of crack behaviour could be used to quantify the risk of water ingress and reinforcement corrosion, these cracks have not yet been monitored during turbine operation. Here, we outline the design, fabrication and field installation of subterranean fibre-optic sensors for monitoring the opening and lateral displacements of foundation cracks during wind turbine operation. We detail methods for in situ sensor characterisation, verify sensor responses against theoretical tower strains derived from wind speed data, and then show that measured crack displacements correlate with monitored tower strains. Our results show that foundation crack opening displacements respond linearly to tower strain and do not change by more than ±5 μ m. Lateral crack displacements were found to be negligible. We anticipate that the work outlined here will provide a starting point for real-time, long-term and dynamic analyses of crack displacements in future. Our findings could furthermore inform the development of cost-effective monitoring systems for ageing wind turbine foundations.

  6. Surface and Tower Meteorological Instrumentation at NSA Handbook - January 2006

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    MT Ritsche

    2006-01-30

    The Surface and Tower Meteorological Instrumentation at Atqasuk (METTWR2H) uses mainly conventional in situ sensors to measure wind speed, wind direction, air temperature, dew point and humidity mounted on a 10-m tower. It also obtains barometric pressure, visibility, and precipitation data from sensors at or near the base of the tower. In addition, a Chilled Mirror Hygrometer is located at 1 m for comparison purposes. Temperature and relative humidity probes are mounted at 2 m and 5 m on the tower. For more information, see the Surface and Tower Meteorological Instrumentation at Atqasuk Handbook.

  7. Air-sea interaction with SSM/I and altimeter

    NASA Technical Reports Server (NTRS)

    1985-01-01

    A number of important developments in satellite remote sensing techniques have occurred recently which offer the possibility of studying over vast areas of the ocean the temporally evolving energy exchange between the ocean and the atmosphere. Commencing in spring of 1985, passive and active microwave sensors that can provide valuable data for scientific utilization will start to become operational on Department of Defense (DOD) missions. The passive microwave radiometer can be used to estimate surface wind speed, total air column humidity, and rain rate. The active radar, or altimeter, senses surface gravity wave height and surface wind speed.

  8. A Wave Glider for Studies of Biofouling and Ocean Productivity

    DTIC Science & Technology

    2017-11-07

    sensors for conductivity, water and air temperature , dissolved oxygen , chlorophyll-a fluorescence, wind speed and direction, barometric pressure, and...endurance, reduce fuel consumption , and reduce carbon emissions. During deployments, vessels encounter a range of planktonic assemblages and ocean...with an acoustic Doppler current profiler, an optical camera system, and standard sensors for conductivity, water and air temperature , dissolved

  9. Investigation of the spatial variability and possible origins of wind-induced air pressure fluctuations responsible for pressure pumping

    NASA Astrophysics Data System (ADS)

    Mohr, Manuel; Laemmel, Thomas; Maier, Martin; Zeeman, Matthias; Longdoz, Bernard; Schindler, Dirk

    2017-04-01

    The exchange of greenhouse gases between the soil and the atmosphere is highly relevant for the climate of the Earth. Recent research suggests that wind-induced air pressure fluctuations can alter the soil gas transport and therefore soil gas efflux significantly. Using a newly developed method, we measured soil gas transport in situ in a well aerated forest soil. Results from these measurements showed that the commonly used soil gas diffusion coefficient is enhanced up to 30% during periods of strong wind-induced air pressure fluctuations. The air pressure fluctuations above the forest floor are only induced at high above-canopy wind speeds (> 5 m s-1) and lie in the frequency range 0.01-0.1 Hz. Moreover, the amplitudes of air pressure fluctuations in this frequency range show a clear quadratic dependence on mean above-canopy wind speed. However, the origin of these wind-induced pressure fluctuations is still unclear. Airflow measurements and high-precision air pressure measurements were conducted at three different vegetation-covered sites (conifer forest, deciduous forest, grassland) to investigate the spatial variability of dominant air pressure fluctuations, their origin and vegetation-dependent characteristics. At the conifer forest site, a vertical profile of air pressure fluctuations was measured and an array consisting of five pressure sensors were installed at the forest floor. At the grassland site, the air pressure measurements were compared with wind observations made by ground-based LIDAR and spatial temperature observations from a fibre-optic sensing network (ScaleX Campaign 2016). Preliminary results show that at all sites the amplitudes of relevant air pressure fluctuations increase with increasing wind speed. Data from the array measurements reveal that there are no time lags between the air pressure signals of different heights, but a time lag existed between the air pressure signals of the sensors distributed laterally on the forest floor, suggesting a horizontal propagation of the air pressure waves.

  10. Wind-wave coupling in the atmospheric boundary layer over a reservoir: field measurements and verification of the model

    NASA Astrophysics Data System (ADS)

    Troitskaya, Yuliya; Papko, Vladislav; Baidakov, Georgy; Vdovin, Maxim; Kandaurov, Alexander; Sergeev, Daniil

    2013-04-01

    This paper presents the results of field experiments conducted at the Gorky Reservoir to test a quasi-linear model of the atmospheric boundary layer [1]. In the course of the experiment we simultaneously measured profiles of wind speed and surface wave spectra using instruments placed on the Froude buoy, which measures the following parameters: i) the module and the direction of the wind speed using ultrasonic wind sensor WindSonic Gill instruments, located on the 4 - levels from 0.1 x 5 m long; ii) profile of the surface waves with 3-channel string wave-gauge with a base of 5 cm, iii) the temperature of the water and air with a resistive sensor. From the measured profiles of wind speed, we calculated basic parameters of the atmospheric boundary layer: the friction velocity u*, the wind speed at the standard height of 10 m U10 and the drag coefficient CD. Data on CD(U10), obtained at the Gorky Reservoir, were compared with similar data obtained on Lake George in Australia during the Australian Shallow Water Experiment (AUSWEX) conducted in 1997 - 1999 [2,3]. A good agreement was obtained between measured data at two different on the parameters of inland waters: deep Gorky reservoir and shallow Lake George.To elucidate the reasons for this coincidence of the drag coefficients under strongly different conditions an analysis of surface waves was conducted.Measurements have shown that in both water bodies the surface wave spectra have almost the same asymptotics (spatial spectrum - k-3, the frequency spectrum -5), corresponding to the Phillips saturation spectrum.These spectra are typically observed for the steep surface waves, for which the basic dissipation mechanism is wave breaking. The similarity of the short-wave parts of the spectra can be regarded as a probable cause of coincidence of dependency of drag coefficient of the water surface on wind speed. Quantitative verification of this hypothesis was carried out in the framework of quasi-linear model of the wind over the waves [1]. In the calculations the input parameters are measured friction velocity of wind and surface wave spectrum. The appropriate wind speed at the standard height of 10 m and the resistance coefficient surface were calculated. It is shown that at a wind speed of 6 m/s, the model reproduces the measurements. Significant difference of model predictions and measurements at lower values may be due to large measurement error caused by the nonstationarity of weak winds. Authors are grateful to prof. A.Babanin for fruitful discussion and access to data of AUSWEX. This work was supported by RFBR (project 11-05-12047-ofi-m, 13-05-00865-a, 12-05-33070). References 1. Troitskaya, Y. I., D. A. Sergeev, A. A. Kandaurov, G. A.Baidakov, M A. Vdovin, and V. I. Kazakov Laboratory and theoretical modeling of air-sea momentum transfer under severe wind conditions J.Geophys. Res., 117, C00J21, doi:10.1029/2011JC007778 2. Donelan M.A., Babanin A.V., Young I.R., Banner M.L., McCormick C. Wave follower field measurements of the wind input spectral function. Part I: Measurements and calibrations // J. Atmos. Oceanic Technol., 2005. V. 22. P. 799-813. 3. Babanin, A.V., and V.K. Makin: Effects of wind trend and gustiness on the sea drag: Lake George study. Journal of Geophysical Research, 2008, 113, C02015, doi:10.1029/2007JC004233, 18p

  11. An atlas of monthly mean distributions of SSMI surface wind speed, ARGOS buoy drift, AVHRR/2 sea surface temperature, and ECMWF surface wind components during 1990

    NASA Technical Reports Server (NTRS)

    Halpern, D.; Knauss, W.; Brown, O.; Wentz, F.

    1993-01-01

    The following monthly mean global distributions for 1990 are proposed with a common color scale and geographical map: 10-m height wind speed estimated from the Special Sensor Microwave Imager (SSMI) on a United States (US) Air Force Defense Meteorological Satellite Program (DMSP) spacecraft; sea surface temperature estimated from the advanced very high resolution radiometer (AVHRR/2) on a U.S. National Oceanic and Atmospheric Administration (NOAA) spacecraft; Cartesian components of free drifting buoys which are tracked by the ARGOS navigation system on NOAA satellites; and Cartesian components on the 10-m height wind vector computed by the European Center for Medium-Range Weather Forecasting (ECMWF). Charts of monthly mean value, sampling distribution, and standard deviation values are displayed. Annual mean distributions are displayed.

  12. An atlas of monthly mean distributions of SSMI surface wind speed, ARGOS buoy drift, AVHRR/2 sea surface temperature, and ECMWF surface wind components during 1991

    NASA Technical Reports Server (NTRS)

    Halpern, D.; Knauss, W.; Brown, O.; Wentz, F.

    1993-01-01

    The following monthly mean global distributions for 1991 are presented with a common color scale and geographical map: 10-m height wind speed estimated from the Special Sensor Microwave Imager (SSMI) on a United States Air Force Defense Meteorological Satellite Program (DMSP) spacecraft; sea surface temperature estimated from the advanced very high resolution radiometer (AVHRR/2) on a U.S. National Oceanic and Atmospheric Administration (NOAA) spacecraft; Cartesian components of free-drifting buoys which are tracked by the ARGOS navigation system on NOAA satellites; and Cartesian components of the 10-m height wind vector computed by the European Center for Medium-Range Weather Forecasting (ECMWF). Charts of monthly mean value, sampling distribution, and standard deviation value are displayed. Annual mean distributions are displayed.

  13. Cost-Effectiveness Analysis of Aerial Platforms and Suitable Communication Payloads

    DTIC Science & Technology

    2014-03-01

    High altitude long endurance (HALE) platforms for tactical wireless communications and sensor use in military operations. (Master’s thesis, Naval...the ground, which can offer near limitless endurance. Additionally, running data over wired networks reduces wireless congestion. The most...system that utilizes different wind speeds and wind directions at different altitudes in an attempt to position the balloons for optimal communications

  14. Vibration-based angular speed estimation for multi-stage wind turbine gearboxes

    NASA Astrophysics Data System (ADS)

    Peeters, Cédric; Leclère, Quentin; Antoni, Jérôme; Guillaume, Patrick; Helsen, Jan

    2017-05-01

    Most processing tools based on frequency analysis of vibration signals are only applicable for stationary speed regimes. Speed variation causes the spectral content to smear, which encumbers most conventional fault detection techniques. To solve the problem of non-stationary speed conditions, the instantaneous angular speed (IAS) is estimated. Wind turbine gearboxes however are typically multi-stage gearboxes, consisting of multiple shafts, rotating at different speeds. Fitting a sensor (e.g. a tachometer) to every single stage is not always feasible. As such there is a need to estimate the IAS of every single shaft based on the vibration signals measured by the accelerometers. This paper investigates the performance of the multi-order probabilistic approach for IAS estimation on experimental case studies of wind turbines. This method takes into account the meshing orders of the gears present in the system and has the advantage that a priori it is not necessary to associate harmonics with a certain periodic mechanical event, which increases the robustness of the method. It is found that the MOPA has the potential to easily outperform standard band-pass filtering techniques for speed estimation. More knowledge of the gearbox kinematics is beneficial for the MOPA performance, but even with very little knowledge about the meshing orders, the MOPA still performs sufficiently well to compete with the standard speed estimation techniques. This observation is proven on two different data sets, both originating from vibration measurements on the gearbox housing of a wind turbine.

  15. Climate refugia: The physical, hydrologic and disturbance basis

    NASA Astrophysics Data System (ADS)

    Holden, Z. A.; Maneta, M. P.; Forthofer, J.

    2015-12-01

    Projected changes in global climate and associated shifts in vegetation have increased interest in understanding species persistence at local scales. We examine the climatic and physical factors that could mediate changes in the distribution of vegetation in regions of complex topography. Using massive networks of low-cost temperature and humidity sensors, we developed topographically-resolved daily historical gridded temperature data for the US Northern Rockies. We used the WindNinja model to create daily historical wind speed maps across the same domain. Using a spatially distributed ecohydrology model (ECH2O) we examine separately the sensitivity of modeled evapotranspiration and soil moisture to wind, radiation, soil properties, minimum temperature and humidity. A suite of physical factors including lower wind speeds, cold air drainage, solar shading and increased soil depth reduce evapotranspiration and increase late season moisture availability in valley bottoms. Evapotranspiration shows strong sensitivity to spatial variability in surface wind speed, suggesting that sheltering effects from winds may be an important factor contributing to mountain refugia. Fundamental to our understanding of patterns of vegetation change is the role of stand-replacing wildfires, which modify the physical environment and subsequent patterns of species persistence and recruitment. Using satellite-derived maps of burn severity for recent fires in the US Northern Rockies we examined relationships between wind speed, cold air drainage potential and soil depth and the occurrence of unburned and low severity fire. Severe fire is less likely to occur in areas with high cold air drainage potential and low wind speeds, suggesting that sheltered valley bottoms have mediated the severity of recent wildfires. Our finding highlight the complex physical mechanisms by which mountain weather and climate mediate fire-induced vegetation changes in the US Northern Rocky Mountains.

  16. Improved spatial monitoring of air temperature in forested complex terrain: an energy-balance based calibration method

    NASA Astrophysics Data System (ADS)

    Kennedy, A. M.; Thomas, C. K.; Pypker, T. G.; Bond, B. J.; Selker, J. S.; Unsworth, M. H.

    2009-12-01

    Fiber-optic distributed temperature sensing (DTS) has great potential for spatial monitoring in hydrology and atmospheric science. DTS systems have an advantage over conventional individual temperature sensors in that thousands of quasi-concurrent temperature measurements may be made along the entire length of a fiber at 1 meter increments by a single instrument, thus increasing measurement precision. However, like any other temperature sensors, the fiber temperature is influenced by energy exchange with its environment, particularly by radiant energy (solar and long-wave) and by wind speed. The objective of this research is to perform an energy-balance based calibration of a DTS fiber system that will reduce the uncertainty of air temperature measurements in open and forested environments. To better understand the physics controlling the fiber temperature reported by the DTS, alternating black and white fiber optic cables were installed on vertical wooden jigs inside a recirculating wind tunnel. A constant irradiance from six 600W halogen lamps was directed on a two meter section of fiber to permit controlled observations of the resulting temperature difference between the black and white fibers as wind speed was varied. The net short and longwave radiation balance of each fiber was measured with an Eppley pyranometer and Kipp and Zonen pyrgeometer. Additionally, accurate air temperature was recorded from a screened platinum resistance thermometer, and sonic anemometers were positioned to record wind speed and turbulence. Relationships between the temperature excess of each fiber, net radiation, and wind speed were developed and will be used to derive correction terms in future field work. Preliminary results indicate that differential heating of fibers (black-white) is driven largely by net radiation with wind having a smaller but consistent effect. Subsequent work will require field verification to confirm that the observed wind tunnel correction algorithms are applicable in both open and forest canopy settings. Our ultimate goal is to use atmospheric DTS measurements of 3D temperature fields in a small steep-walled forested watershed to gain a better understanding and rigorous description of the processes governing air circulation (cold air drainage etc) in the canopy. Such knowledge will assist in the interpretation of observed biological responses.

  17. Fiber optic pressure sensors in skin-friction measurements

    NASA Technical Reports Server (NTRS)

    Kidwell, R.

    1985-01-01

    Fiber optic lever pressure sensors intended for use in a low speed wind tunnel environment were designed, constructed and tested for the measurement of normal and shear displacements associated with the pressures acting on a flat aluminum plate. On-site tests performed along with several static and dynamic measurements made have established that, with proper modifications and improvements, the design concepts are acceptable and can be utilized for their intended use. Several elastomers were investigated for use in sensors and for their incorporation into these sensors. Design and assembly techniques for probes and complete sensors were developed.

  18. Design of a miniature wind turbine for powering wireless sensors

    NASA Astrophysics Data System (ADS)

    Xu, F. J.; Yuan, F. G.; Hu, J. Z.; Qiu, Y. P.

    2010-04-01

    In this paper, a miniature wind turbine (MWT) system composed of commercially available off-the-shelf components was designed and tested for harvesting energy from ambient airflow to power wireless sensors. To make MWT operate at very low air flow rates, a 7.6 cm thorgren plastic Propeller blade was adopted as the wind turbine blade. A sub watt brushless DC motor was used as generator. To predict the performance of the MWT, an equivalent circuit model was employed for analyzing the output power and the net efficiency of the MWT system. In theory, the maximum net efficiency 14.8% of the MWT system was predicted. Experimental output power of the MWT versus resistive loads ranging from 5 ohms to 500 ohms under wind speeds from 3 m/s to 4.5 m/s correlates well with those from the predicted model, which means that the equivalent circuit model provides a guideline for optimizing the performance of the MWT and can be used for fulfilling the design requirements by selecting specific components for powering wireless sensors.

  19. Data acquisition and analysis in the DOE/NASA Wind Energy Program

    NASA Technical Reports Server (NTRS)

    Neustadter, H. E.

    1980-01-01

    Four categories of data systems, each responding to a distinct information need are presented. The categories are: control, technology, engineering and performance. The focus is on the technology data system which consists of the following elements: sensors which measure critical parameters such as wind speed and direction, output power, blade loads and strains, and tower vibrations; remote multiplexing units (RMU) mounted on each wind turbine which frequency modulate, multiplex and transmit sensor outputs; the instrumentation available to record, process and display these signals; and centralized computer analysis of data. The RMU characteristics and multiplexing techniques are presented. Data processing is illustrated by following a typical signal through instruments such as the analog tape recorder, analog to digital converter, data compressor, digital tape recorder, video (CRT) display, and strip chart recorder.

  20. The spectrum of wind speed fluctuations encountered by a rotating blade of a wind energy conversion system

    NASA Astrophysics Data System (ADS)

    Connell, J. R.

    1982-01-01

    The results of anemometer, hot-wire anemometer, and laser anemometer array and crosswind sampling of wind speed and turbulence in an area swept by intermediate-to-large wind turbine blades are presented, with comparisons made with a theoretical model for the wind fluctuations. A rotating frame of reference was simulated by timing the anemometric readings at different points of the actuator disk area to coincide with the moment a turbine blade would pass through the point. The hot-wire sensors were mounted on an actual rotating boom, while the laser scanned the wind velocity field in a vertical crosswind circle. The midfrequency region of the turbulence spectrum was found to be depleted, with energy shifted to the high end of the spectrum, with an additional peak at the rotation frequency of the rotor. A model is developed, assuming homogeneous, isotropic turbulence, to reproduce the observed spectra and verify and extend scaling relations using turbine and atmospheric length and time scales. The model is regarded as useful for selecting wind turbine hub heights and rotor rotation rates.

  1. Multifuctional integrated sensors (MFISES).

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Homeijer, Brian D.; Roozeboom, Clifton

    2015-10-01

    Many emerging IoT applications require sensing of multiple physical and environmental parameters for: completeness of information, measurement validation, unexpected demands, improved performance. For example, a typical outdoor weather station measures temperature, humidity, barometric pressure, light intensity, rainfall, wind speed and direction. Existing sensor technologies do not directly address the demand for cost, size, and power reduction in multi-paramater sensing applications. Industry sensor manufacturers have developed integrated sensor systems for inertial measurements that combine accelerometers, gyroscopes, and magnetometers, but do not address environmental sensing functionality. In existing research literature, a technology gap exists between the functionality of MEMS sensors and themore » real world applications of the sensors systems.« less

  2. ED15-0249-032

    NASA Image and Video Library

    2015-08-13

    NASA’s Global Hawk aircraft deploys a dropsonde during a test flight over the Dryden Aeronautical Test Range in August 2015. The small, tube-shaped sensor will transmit data on temperature, humidity, and wind speed, which will be used to help improve weather model forecasts

  3. Boundary layer separation and reattachment detection on airfoils by thermal flow sensors.

    PubMed

    Sturm, Hannes; Dumstorff, Gerrit; Busche, Peter; Westermann, Dieter; Lang, Walter

    2012-10-24

    A sensor concept for detection of boundary layer separation (flow separation, stall) and reattachment on airfoils is introduced in this paper. Boundary layer separation and reattachment are phenomena of fluid mechanics showing characteristics of extinction and even inversion of the flow velocity on an overflowed surface. The flow sensor used in this work is able to measure the flow velocity in terms of direction and quantity at the sensor's position and expected to determine those specific flow conditions. Therefore, an array of thermal flow sensors has been integrated (flush-mounted) on an airfoil and placed in a wind tunnel for measurement. Sensor signals have been recorded at different wind speeds and angles of attack for different positions on the airfoil. The sensors used here are based on the change of temperature distribution on a membrane (calorimetric principle). Thermopiles are used as temperature sensors in this approach offering a baseline free sensor signal, which is favorable for measurements at zero flow. Measurement results show clear separation points (zero flow) and even negative flow values (back flow) for all sensor positions. In addition to standard silicon-based flow sensors, a polymer-based flexible approach has been tested showing similar results.

  4. Boundary Layer Separation and Reattachment Detection on Airfoils by Thermal Flow Sensors

    PubMed Central

    Sturm, Hannes; Dumstorff, Gerrit; Busche, Peter; Westermann, Dieter; Lang, Walter

    2012-01-01

    A sensor concept for detection of boundary layer separation (flow separation, stall) and reattachment on airfoils is introduced in this paper. Boundary layer separation and reattachment are phenomena of fluid mechanics showing characteristics of extinction and even inversion of the flow velocity on an overflowed surface. The flow sensor used in this work is able to measure the flow velocity in terms of direction and quantity at the sensor's position and expected to determine those specific flow conditions. Therefore, an array of thermal flow sensors has been integrated (flush-mounted) on an airfoil and placed in a wind tunnel for measurement. Sensor signals have been recorded at different wind speeds and angles of attack for different positions on the airfoil. The sensors used here are based on the change of temperature distribution on a membrane (calorimetric principle). Thermopiles are used as temperature sensors in this approach offering a baseline free sensor signal, which is favorable for measurements at zero flow. Measurement results show clear separation points (zero flow) and even negative flow values (back flow) for all sensor positions. In addition to standard silicon-based flow sensors, a polymer-based flexible approach has been tested showing similar results. PMID:23202160

  5. Wind Tunnel Measurements for Flutter of a Long-Afterbody Bridge Deck

    PubMed Central

    Chen, Zeng-Shun; Zhang, Cheng; Wang, Xu; Ma, Cun-Ming

    2017-01-01

    Bridges are an important component of transportation. Flutter is a self-excited, large amplitude vibration, which may lead to collapse of bridges. It must be understood and avoided. This paper takes the Jianghai Channel Bridge, which is a significant part of the Hong Kong-Zhuhai-Macao Bridge, as an example to investigate the flutter of the bridge deck. Firstly, aerodynamic force models for flutter of bridges were introduced. Then, wind tunnel tests of the bridge deck during the construction and the operation stages, under different wind attack angles and wind velocities, were carried out using a high frequency base balance (HFBB) system and laser displacement sensors. From the tests, the static aerodynamic forces and flutter derivatives of the bridge deck were observed. Correspondingly, the critical flutter wind speeds of the bridge deck were determined based on the derivatives, and they are compared with the directly measured flutter speeds. Results show that the observed derivatives are reasonable and applicable. Furthermore, the critical wind speeds in the operation stage is smaller than those in the construction stage. Besides, the flutter instabilities of the bridge in the construction and the operation stages are good. This study helps guarantee the design and the construction of the Jianghai Channel Bridge, and advances the understanding of flutter of long afterbody bridge decks. PMID:28208773

  6. Wind Tunnel Measurements for Flutter of a Long-Afterbody Bridge Deck.

    PubMed

    Chen, Zeng-Shun; Zhang, Cheng; Wang, Xu; Ma, Cun-Ming

    2017-02-09

    Bridges are an important component of transportation. Flutter is a self-excited, large amplitude vibration, which may lead to collapse of bridges. It must be understood and avoided. This paper takes the Jianghai Channel Bridge, which is a significant part of the Hong Kong-Zhuhai-Macao Bridge, as an example to investigate the flutter of the bridge deck. Firstly, aerodynamic force models for flutter of bridges were introduced. Then, wind tunnel tests of the bridge deck during the construction and the operation stages, under different wind attack angles and wind velocities, were carried out using a high frequency base balance (HFBB) system and laser displacement sensors. From the tests, the static aerodynamic forces and flutter derivatives of the bridge deck were observed. Correspondingly, the critical flutter wind speeds of the bridge deck were determined based on the derivatives, and they are compared with the directly measured flutter speeds. Results show that the observed derivatives are reasonable and applicable. Furthermore, the critical wind speeds in the operation stage is smaller than those in the construction stage. Besides, the flutter instabilities of the bridge in the construction and the operation stages are good. This study helps guarantee the design and the construction of the Jianghai Channel Bridge, and advances the understanding of flutter of long afterbody bridge decks.

  7. Satellite observations of a polar low over the Norwegian Sea by Special Sensor Microwave Imager, Geosat, and TIROS-N Operational Vertical Sounder

    NASA Technical Reports Server (NTRS)

    Claud, Chantal; Mognard, Nelly M.; Katsaros, Kristina B.; Chedin, Alain; Scott, Noelle A.

    1993-01-01

    Many polar lows are generated at the boundary between sea ice and the ocean, in regions of large temperature gradients, where in situ observations are rare or nonexistent. Since satellite observations are frequent in high-latitude regions, they can be used to detect polar lows and track their propagation and evolution. The Special Sensor Microwave/Imager (SSM/I) providing estimates of surface wind speed, integrated cloud liquid water content, water vapor content, and precipitation size ice-scattering signal over the ocean; the Geosat radar altimeter measuring surface wind speed and significant wave height; and the TIROS-N Operational Vertical Sounder (TOVS) allowing the determination of temperature and humidity profiles in the atmosphere have been used in synergy for a specific case which occurred in the Norwegian Sea on January, 23-24 1988. All three instruments show sharp atmospheric gradients associated with the propagation of this low across the ocean, which permit the detection of the polar low at a very early stage and tracking it during its development, propagation, and decay. The wind speed gradients are measured with good qualitative agreement between the altimeter and SSM/I. TOVS retrieved fields prior to the formation of the low confirm the presence of an upper level trough, while during the mature phase baroclinicity can be observed in the 1000-500 hPa geopotential thicknesses.

  8. SUSI 62 A Robust and Safe Parachute Uav with Long Flight Time and Good Payload

    NASA Astrophysics Data System (ADS)

    Thamm, H. P.

    2011-09-01

    In many research areas in the geo-sciences (erosion, land use, land cover change, etc.) or applications (e.g. forest management, mining, land management etc.) there is a demand for remote sensing images of a very high spatial and temporal resolution. Due to the high costs of classic aerial photo campaigns, the use of a UAV is a promising option for obtaining the desired remote sensed information at the time it is needed. However, the UAV must be easy to operate, safe, robust and should have a high payload and long flight time. For that purpose, the parachute UAV SUSI 62 was developed. It consists of a steel frame with a powerful 62 cm3 2- stroke engine and a parachute wing. The frame can be easily disassembled for transportation or to replace parts. On the frame there is a gimbal mounted sensor carrier where different sensors, standard SLR cameras and/or multi-spectral and thermal sensors can be mounted. Due to the design of the parachute, the SUSI 62 is very easy to control. Two different parachute sizes are available for different wind speed conditions. The SUSI 62 has a payload of up to 8 kg providing options to use different sensors at the same time or to extend flight duration. The SUSI 62 needs a runway of between 10 m and 50 m, depending on the wind conditions. The maximum flight speed is approximately 50 km/h. It can be operated in a wind speed of up to 6 m/s. The design of the system utilising a parachute UAV makes it comparatively safe as a failure of the electronics or the remote control only results in the UAV coming to the ground at a slow speed. The video signal from the camera, the GPS coordinates and other flight parameters are transmitted to the ground station in real time. An autopilot is available, which guarantees that the area of investigation is covered at the desired resolution and overlap. The robustly designed SUSI 62 has been used successfully in Europe, Africa and Australia for scientific projects and also for agricultural, forestry and industrial applications.

  9. Automated Continuous Commissioning of Commercial Buildings

    DTIC Science & Technology

    2011-09-01

    matched pair of supply and return chilled water temperature sensors, a pyranometer , and aspirated wet and dry bulb temperature sensors for the weather...temp X Aspirated weather station is required. Outside air wet bulb X Pyranometer X Wind speed & direction X Main power meter X Lighting load power X...Aspirated weather station is required. Outside air wet bulb X Pyranometer X Provides measurements on global horizontal solar radiation, beam radiation and

  10. Field intercomparison of six different three-dimensional sonic anemometers

    NASA Astrophysics Data System (ADS)

    Mauder, Matthias; Zeeman, Matthias

    2017-04-01

    Although sonic anemometers have been used extensively for several decades in micrometeorological and ecological research, there is still some scientific debate about the measurement uncertainty of these instruments. This is due to the fact that an absolute reference for the measurement of turbulent wind fluctuations in the free atmosphere does not exist. In view of this lack we have conducted a field intercomparison experiment of six commonly used sonic anemometers from four major manufacturers. The models included Campbell CSAT3, Gill HS-50 and R3, METEK uSonic-3 Omni, R.M. Young 81000 and 81000RE. The experiment was conducted over a meadow at the TERENO/ICOS site De-Fen in southern Germany over a period of 16 days in June of 2016 in preparation of the ScaleX campaign. The measurement height was 3 m for all sensors, which were separated by 9 m from each other, each on its own tripod, in order to limit contamination of the turbulence measurements by neighbouring structures as much as possible. Moreover, the data were filtered for potentially disturbed wind sectors, and the high-frequency data from all instruments were treated with the same post-processing algorithm. In this presentation, we compare the results for various turbulence statistics from all sensors. These include mean horizontal wind speed, standard deviations of vertical wind velocity and sonic temperature, friction velocity and the covariance between vertical wind velocity and sonic temperature. Quantitative measures of uncertainty were derived from these results. We find that biases and regression intercepts are generally very small for all sensors and all computed variables, except for the temperature measurements of the two Gill sonic anemometers (HS and R3), which are known to suffer from a transducer-temperature dependence of the sonic temperature measurement. The comparability of the instruments is not always as good, which means that there is some scatter but the errors compensate at least partly. The best overall agreement between the different instruments was found for the variables "mean wind speed" and "buoyancy flux", which reflects that the sensors are optimized for measuring these quantities.

  11. The effect of sensor sheltering and averaging techniques on wind measurements at the Shuttle Landing Facility

    NASA Technical Reports Server (NTRS)

    Merceret, Francis J.

    1995-01-01

    This document presents results of a field study of the effect of sheltering of wind sensors by nearby foliage on the validity of wind measurements at the Space Shuttle Landing Facility (SLF). Standard measurements are made at one second intervals from 30-feet (9.1-m) towers located 500 feet (152 m) from the SLF centerline. The centerline winds are not exactly the same as those measured by the towers. A companion study, Merceret (1995), quantifies the differences as a function of statistics of the observed winds and distance between the measurements and points of interest. This work examines the effect of nearby foliage on the accuracy of the measurements made by any one sensor, and the effects of averaging on interpretation of the measurements. The field program used logarithmically spaced portable wind towers to measure wind speed and direction over a range of conditions as a function of distance from the obstructing foliage. Appropriate statistics were computed. The results suggest that accurate measurements require foliage be cut back to OFCM standards. Analysis of averaging techniques showed that there is no significant difference between vector and scalar averages. Longer averaging periods reduce measurement error but do not otherwise change the measurement in reasonably steady flow regimes. In rapidly changing conditions, shorter averaging periods may be required to capture trends.

  12. The effect of sensor spacing on wind measurements at the Shuttle Landing Facility

    NASA Technical Reports Server (NTRS)

    Merceret, Francis J.

    1995-01-01

    This document presents results of a field study of the effect of sensor spacing on the validity of wind measurements at the Space Shuttle landing Facility (SLF). Standard measurements are made at one second intervals from 30 foot (9.1m) towers located 500 feet (152m) from the SLF centerline. The centerline winds are not exactly the same as those measured by the towers. This study quantifies the differences as a function of statistics of the observed winds and distance between the measurements and points of interest. The field program used logarithmically spaced portable wind towers to measure wind speed and direction over a range of conditions. Correlations, spectra, moments, and structure functions were computed. A universal normalization for structure functions was devised. The normalized structure functions increase as the 2/3 power of separation distance until an asymptotic value is approached. This occurs at spacings of several hundred feet (about 100m). At larger spacings, the structure functions are bounded by the asymptote. This enables quantitative estimates of the expected differences between the winds at the measurement point and the points of interest to be made from the measured wind statistics. A procedure is provided for making these estimates.

  13. Quantifying Hurricane Wind Speed with Undersea Sound

    DTIC Science & Technology

    2006-06-01

    even detect hurricanes using practical linear arrays at long ranges in these environments. 2.6 Conclusions We have shown that the wind- generated noise...application in other seismic research where a sensor on land measures signals generated by sources at sea. For example undersea earthquakes [124] and...at 100 Hz for a 64-element A/2-spaced horizontal broadside array as a function of steering angle for hurricane generated noise in the North Atlantic

  14. A Well-Calibrated Ocean Algorithm for Special Sensor Microwave/Imager

    NASA Technical Reports Server (NTRS)

    Wentz, Frank J.

    1997-01-01

    I describe an algorithm for retrieving geophysical parameters over the ocean from special sensor microwave/imager (SSM/I) observations. This algorithm is based on a model for the brightness temperature T(sub B) of the ocean and intervening atmosphere. The retrieved parameters are the near-surface wind speed W, the columnar water vapor V, the columnar cloud liquid water L, and the line-of-sight wind W(sub LS). I restrict my analysis to ocean scenes free of rain, and when the algorithm detects rain, the retrievals are discarded. The model and algorithm are precisely calibrated using a very large in situ database containing 37,650 SSM/I overpasses of buoys and 35,108 overpasses of radiosonde sites. A detailed error analysis indicates that the T(sub B) model rms accuracy is between 0.5 and 1 K and that the rms retrieval accuracies for wind, vapor, and cloud are 0.9 m/s, 1.2 mm, and 0.025 mm, respectively. The error in specifying the cloud temperature will introduce an additional 10% error in the cloud water retrieval. The spatial resolution for these accuracies is 50 km. The systematic errors in the retrievals are smaller than the rms errors, being about 0.3 m/s, 0.6 mm, and 0.005 mm for W, V, and L, respectively. The one exception is the systematic error in wind speed of -1.0 m/s that occurs for observations within +/-20 deg of upwind. The inclusion of the line-of-sight wind W(sub LS) in the retrieval significantly reduces the error in wind speed due to wind direction variations. The wind error for upwind observations is reduced from -3.0 to -1.0 m/s. Finally, I find a small signal in the 19-GHz, horizontal polarization (h(sub pol) T(sub B) residual DeltaT(sub BH) that is related to the effective air pressure of the water vapor profile. This information may be of some use in specifying the vertical distribution of water vapor.

  15. Simulation of the Impact of New Aircraft- and Satellite-based Ocean Surface Wind Measurements on Estimates of Hurricane Intensity

    NASA Technical Reports Server (NTRS)

    Uhlhorn, Eric; Atlas, Robert; Black, Peter; Buckley, Courtney; Chen, Shuyi; El-Nimri, Salem; Hood, Robbie; Johnson, James; Jones, Linwood; Miller, Timothy; hide

    2009-01-01

    The Hurricane Imaging Radiometer (HIRAD) is a new airborne microwave remote sensor currently under development to enhance real-time hurricane ocean surface wind observations. HIRAD builds on the capabilities of the Stepped Frequency Microwave Radiometer (SFMR), which now operates on NOAA P-3, G-4, and AFRC C-130 aircraft. Unlike the SFMR, which measures wind speed and rain rate along the ground track directly beneath the aircraft, HIRAD will provide images of the surface wind and rain field over a wide swath (approximately 3 times the aircraft altitude). To demonstrate potential improvement in the measurement of peak hurricane winds, we present a set of Observing System Simulation Experiments (OSSEs) in which measurements from the new instrument as well as those from existing platforms (air, surface, and space-based) are simulated from the output of a high-resolution (approximately 1.7 km) numerical model. Simulated retrieval errors due to both instrument noise as well as model function accuracy are considered over the expected range of incidence angles, wind speeds and rain rates. Based on numerous simulated flight patterns and data source combinations, statistics are developed to describe relationships between the observed and true (from the model s perspective) peak wind speed. These results have implications for improving the estimation of hurricane intensity (as defined by the peak sustained wind anywhere in the storm), which may often go un-observed due to sampling limitations.

  16. U.S. Army Unmanned Aircraft Systems Roadmap 2010-2035: Eyes of the Army

    DTIC Science & Technology

    2010-04-09

    Doppler LIDAR could provide data such as cloud density, wind speed, and real-time vertical wind pro- files). Also, a multispectral LIDAR payload designed...usually operate from unimproved areas and do not usually require an improved runway. Payloads may include a sensor ball with EO/IR and a laser range... lasers , communications relay, SIGINT, AIS, weapons, and supplies. Group 5 UAS must meet DoD airworthiness standards prior to operation in NAS

  17. Organizational Analysis of Energy Manpower Requirements in the United States Navy

    DTIC Science & Technology

    2013-06-01

    ix LIST OF FIGURES Figure 1.  A 1.5 Megawatt wind turbine set up at the Marine Corps Logistics Base in Barstow, CA. (From Flores, 2010...Figure 1. A 1.5 Megawatt wind turbine set up at the Marine Corps Logistics Base in Barstow, CA. (From Flores, 2010) 9 In an effort to capture...electronic and information warfare systems ) (h ) Network Engineering (including wireless networks, sensor networks, high speed data networking, and

  18. Waypoint Generation Based on Sensor Aimpoint

    DTIC Science & Technology

    2009-03-01

    attitude, the POI may shift outside of the FOV. Wind affects MAVs more than other air vehicles because wind speeds can quickly approach the slow cruise...and all of my time at AFIT. Your insights, hard- learned lessons, and stories have helped me in more ways than simply completing this academic...My greatest thanks, appreciation, and love goes to my wife. Without you, I could not have done this. From your taking care of big and little things to

  19. Planetary Wind Determination by Doppler Tracking of a Small Entry Probe Network

    NASA Astrophysics Data System (ADS)

    Atkinson, D. H.; Asmar, S.; Lazio, J.; Preston, R. A.

    2017-12-01

    To understand the origin and chemical/dynamical evolution of planetary atmospheres, measurements of atmospheric chemistries and processes including dynamics are needed. In situ measurements of planetary winds have been demonstrated on multiple occasions, including the Pioneer multiprobe and Venera missions to Venus, and the Galileo/Jupiter and Huygens/Titan probes. However, with the exception of Pioneer Venus, the retrieval of the zonal (east-west) wind profile has been limited to a single atmospheric slice. significantly improved understanding of the global dynamics requires sampling of multiple latitudes, times of day, and seasons. Simultaneous tracking of a small network of probes would enable measurements of spatially distributed winds providing a substantially improved characterization of a planet's global atmospheric circulation. Careful selection of descent locations would provide wind measurements at latitudes receiving different solar insolations, longitudes reflecting different times of day, and different seasons if both hemispheres are targeted. Doppler wind retrievals are limited by the stability of the probe and carrier spacecraft clocks, and must be equipped with an ultrastable oscillator, accelerometers for reconstructing the probe entry trajectory, and pressure / temperature sensors for determination of descent speed. A probe were equipped with both absolute and dynamic pressure sensors can measure planet center-relative and atmosphere-relative descent speeds, enabling the measurement of vertical winds from convection or atmospheric waves. Possible ambiguities arising from the assumption of no north-south winds could be removed if the probe were simultaneously tracked from the carrier spacecraft as well as from the Earth or a second spacecraft. The global circulation of an atmosphere comprising waves and flows that vary with location and depth is inherently tied to the thermal, chemical, and energy structure of the atmosphere. Wind measurements along a single vertical atmospheric slice cannot adequately represent the overall dynamical properties of the atmosphere. To more completely characterize the dynamical structure of a planetary atmosphere, it is proposed that future in situ planetary missions include a network of small probes dedicated to wind measurements.

  20. Design and performance of a centimetre-scale shrouded wind turbine for energy harvesting

    NASA Astrophysics Data System (ADS)

    Howey, D. A.; Bansal, A.; Holmes, A. S.

    2011-08-01

    A miniature shrouded wind turbine aimed at energy harvesting for power delivery to wireless sensors in pipes and ducts is presented. The device has a rotor diameter of 2 cm, with an outer diameter of 3.2 cm, and generates electrical power by means of an axial-flux permanent magnet machine built into the shroud. Fabrication was accomplished using a combination of traditional machining, rapid prototyping, and flexible printed circuit board technology for the generator stator, with jewel bearings providing low friction and start up speed. Prototype devices can operate at air speeds down to 3 m s-1, and deliver between 80 µW and 2.5 mW of electrical power at air speeds in the range 3-7 m s-1. Experimental turbine performance curves, obtained by wind tunnel testing and corrected for bearing losses using data obtained in separate vacuum run-down tests, are compared with the predictions of an elementary blade element momentum (BEM) model. The two show reasonable agreement at low tip speed ratios. However, in experiments where a maximum could be observed, the maximum power coefficient (~9%) is marginally lower than predicted from the BEM model and occurs at a lower than predicted tip speed ratio of around 0.6.

  1. Fiber optic pressure sensors in skin-friction measurements

    NASA Technical Reports Server (NTRS)

    Cuomo, F. W.

    1986-01-01

    A fiber optic lever sensing technique that can be used to measure normal pressure as well as shear stresses is discussed. This method uses three unequal fibers combining small size and good sensitivity. Static measurements appear to confirm the theoretical models predicted by geometrical optics and dynamic tests performed at frequencies up to 10 kHz indicate a flat response within this frequency range. These sensors are intended for use in a low speed wind tunnel environment.

  2. Motion-Corrected 3D Sonic Anemometer for Tethersondes and Other Moving Platforms

    NASA Technical Reports Server (NTRS)

    Bognar, John

    2012-01-01

    To date, it has not been possible to apply 3D sonic anemometers on tethersondes or similar atmospheric research platforms due to the motion of the supporting platform. A tethersonde module including both a 3D sonic anemometer and associated motion correction sensors has been developed, enabling motion-corrected 3D winds to be measured from a moving platform such as a tethersonde. Blimps and other similar lifting systems are used to support tethersondes meteorological devices that fly on the tether of a blimp or similar platform. To date, tethersondes have been limited to making basic meteorological measurements (pressure, temperature, humidity, and wind speed and direction). The motion of the tethersonde has precluded the addition of 3D sonic anemometers, which can be used for high-speed flux measurements, thereby limiting what has been achieved to date with tethersondes. The tethersonde modules fly on a tether that can be constantly moving and swaying. This would introduce enormous error into the output of an uncorrected 3D sonic anemometer. The motion correction that is required must be implemented in a low-weight, low-cost manner to be suitable for this application. Until now, flux measurements using 3D sonic anemometers could only be made if the 3D sonic anemometer was located on a rigid, fixed platform such as a tower. This limited the areas in which they could be set up and used. The purpose of the innovation was to enable precise 3D wind and flux measurements to be made using tether - sondes. In brief, a 3D accelerometer and a 3D gyroscope were added to a tethersonde module along with a 3D sonic anemometer. This combination allowed for the necessary package motions to be measured, which were then mathematically combined with the measured winds to yield motion-corrected 3D winds. At the time of this reporting, no tethersonde has been able to make any wind measurement other than a basic wind speed and direction measurement. The addition of a 3D sonic anemometer is unique, as is the addition of the motion-correction sensors.

  3. Aircraft Aerodynamic Parameter Detection Using Micro Hot-Film Flow Sensor Array and BP Neural Network Identification

    PubMed Central

    Que, Ruiyi; Zhu, Rong

    2012-01-01

    Air speed, angle of sideslip and angle of attack are fundamental aerodynamic parameters for controlling most aircraft. For small aircraft for which conventional detecting devices are too bulky and heavy to be utilized, a novel and practical methodology by which the aerodynamic parameters are inferred using a micro hot-film flow sensor array mounted on the surface of the wing is proposed. A back-propagation neural network is used to model the coupling relationship between readings of the sensor array and aerodynamic parameters. Two different sensor arrangements are tested in wind tunnel experiments and dependence of the system performance on the sensor arrangement is analyzed. PMID:23112638

  4. Aircraft aerodynamic parameter detection using micro hot-film flow sensor array and BP neural network identification.

    PubMed

    Que, Ruiyi; Zhu, Rong

    2012-01-01

    Air speed, angle of sideslip and angle of attack are fundamental aerodynamic parameters for controlling most aircraft. For small aircraft for which conventional detecting devices are too bulky and heavy to be utilized, a novel and practical methodology by which the aerodynamic parameters are inferred using a micro hot-film flow sensor array mounted on the surface of the wing is proposed. A back-propagation neural network is used to model the coupling relationship between readings of the sensor array and aerodynamic parameters. Two different sensor arrangements are tested in wind tunnel experiments and dependence of the system performance on the sensor arrangement is analyzed.

  5. Development and Evaluation of New Algorithms for the Retrieval of Wind and Internal Wave Parameters from Shipborne Marine Radar Data

    DTIC Science & Technology

    2012-12-01

    traditional buoy measurements , which are based on the analysis of the buoy motion using accelerometer and tilt sensors, is the capacity to detect multi-modal...the radar- based estimates slightly overestimate the measured data. Fig. 6.33 shows a time series of p-p-distances and corresponding water depths as...32 3.5 Time series of wind speed and direction measurements from ship anemome- ters 1 and 2 from

  6. Evaluation of total energy-rate feedback for glidescope tracking in wind shear

    NASA Technical Reports Server (NTRS)

    Belcastro, C. M.; Ostroff, A. J.

    1986-01-01

    Low-altitude wind shear is recognized as an infrequent but significant hazard to all aircraft during take-off and landing. A total energy-rate sensor, which is potentially applicable to this problem, has been developed for measuring specific total energy-rate of an airplane with respect to the air mass. This paper presents control system designs, with and without energy-rate feedback, for the approach to landing of a transport airplane through severe wind shear and gusts to evaluate application of this sensor. A system model is developed which incorporates wind shear dynamics equations with the airplance equations of motion, thus allowing the control systems to be analyzed under various wind shears. The control systems are designed using optimal output feedback and are analyzed using frequency domain control theory techniques. Control system performance is evaluated using a complete nonlinear simulation of the airplane and a severe wind shear and gust data package. The analysis and simulation results indicate very similar stability and performance characteristics for the two designs. An implementation technique for distributing the velocity gains between airspeed and ground speed in the simulation is also presented, and this technique is shown to improve the performance characteristics of both designs.

  7. Toward RADSCAT measurements over the sea and their interpretation

    NASA Technical Reports Server (NTRS)

    Claassen, J. P.; Fung, A. K.; Wu, S. T.; Chan, H. L.

    1973-01-01

    Investigations into several areas which are essential to the execution and interpretation of suborbital observations by composite radiometer - scatterometer sensor (RADSCAT) are reported. Experiments and theory were developed to demonstrate the remote anemometric capability of the sensor over the sea through various weather conditions. It is shown that weather situations found in extra tropical cyclones are useful for demonstrating the all weather capability of the composite sensor. The large scale fluctuations of the wind over the sea dictate the observational coverage required to correlate measurements with the mean surface wind speed. Various theoretical investigations were performed to establish a premise for the joint interpretation of the experiment data. The effects of clouds and rains on downward radiometric observations over the sea were computed. A method of predicting atmospheric attenuation from joint observations is developed. In other theoretical efforts, the emission and scattering characteristics of the sea were derived. Composite surface theories with coherent and noncoherent assumptions were employed.

  8. Wedge and Conical Probes for the Instantaneous Measurement of Free-Stream Flow Quantities at Supersonic Speeds

    NASA Technical Reports Server (NTRS)

    Bobbitt, Percy J.; Maglieri, Domenic J.; Banks, Daniel W.; Fuchs, Aaron W.

    2011-01-01

    Wedge and conical shaped probes for the measurement of free-stream flow quantities at supersonic speeds have been tested in both wind tunnel and flight. These probes have improved capabilities over similar ones used in the past. Through the use of miniature pressure sensors, that are located inside the probes, they are able to provide instantaneous measurements of a time-varying environment. Detailed herein are the results of the tests in NASA Langley Researcher Center s Unitary Plan Wind Tunnel (UPWT) at Mach numbers of 1.6, 1.8 and 2.0, as well as flight tests carried out at the NASA Dryden Flight Research Center (DFRC) on its F-15 aircraft up to Mach numbers of 1.9. In the flight tests the probes were attached to a fixture on the underside of the F-15 fuselage. Problems controlling the velocity of the flow through the conical probe, required for accurate temperature measurements, are noted, as well as some calibration problems of the miniature pressure sensors that impact the accuracy of the measurements.

  9. Self-Powered Wireless Smart Sensor Node Enabled by an Ultrastable, Highly Efficient, and Superhydrophobic-Surface-Based Triboelectric Nanogenerator.

    PubMed

    Zhao, Kun; Wang, Zhong Lin; Yang, Ya

    2016-09-27

    Wireless sensor networks will be responsible for a majority of the fast growth in intelligent systems in the next decade. However, most of the wireless smart sensor nodes require an external power source such as a Li-ion battery, where the labor cost and environmental waste issues of replacing batteries have largely limited the practical applications. Instead of using a Li-ion battery, we report an ultrastable, highly efficient, and superhydrophobic-surface-based triboelectric nanogenerator (TENG) to scavenge wind energy for sustainably powering a wireless smart temperature sensor node. There is no decrease in the output voltage and current of the TENG after continuous working for about 14 h at a wind speed of 12 m/s. Through a power management circuit, the TENG can deliver a constant output voltage of 3.3 V and a pulsed output current of about 100 mA to achieve highly efficient energy storage in a capacitor. A wireless smart temperature sensor node can be sustainably powered by the TENG for sending the real-time temperature data to an iPhone under a working distance of 26 m, demonstrating the feasibility of the self-powered wireless smart sensor networks.

  10. Evaluation and Windspeed Dependence of MODIS Aerosol Retrievals Over Open Ocean

    NASA Technical Reports Server (NTRS)

    Kleidman, Richard G.; Smirnov, Alexander; Levy, Robert C.; Mattoo, Shana; Tanre, Didier

    2011-01-01

    The Maritime Aerosol Network (MAN) data set provides high quality ground-truth to validate the MODIS aerosol product over open ocean. Prior validation of the ocean aerosol product has been limited to coastal and island sites. Comparing MODIS Collection 5 ocean aerosol retrieval products with collocated MAN measurements from ships shows that MODIS is meeting the pre-launch uncertainty estimates for aerosol optical depth (AOD) with 64% and 67% of retrievals at 550 nm, and 74% and 78% of retrievals at 870 nm, falling within expected uncertainty for Terra and Aqua, respectively. Angstrom Exponent comparisons show a high correlation between MODIS retrievals and shipboard measurements (R= 0.85 Terra, 0.83 Aqua), although the MODIS aerosol algorithm tends to underestimate particle size for large particles and overestimate size for small particles, as seen in earlier Collections. Prior analysis noted an offset between Terra and Aqua ocean AOD, without concluding which sensor was more accurate. The simple linear regression reported here, is consistent with other anecdotal evidence that Aqua agreement with AERONET is marginally better. However we cannot claim based on the current study that the better Aqua comparison is statistically significant. Systematic increase of error as a function of wind speed is noted in both Terra and Aqua retrievals. This wind speed dependency enters the retrieval when winds deviate from the 6 m/s value assumed in the rough ocean surface and white cap parameterizations. Wind speed dependency in the results can be mitigated by using auxiliary NCEP wind speed information in the retrieval process.

  11. Assessing the capability of EOS sensors in measuring ocean-atmosphere moisture exchange

    NASA Technical Reports Server (NTRS)

    Liu, W. T.

    1985-01-01

    As part of the Science Synergism Studies to identify interdisciplinary Scientific studies, which could be addressed by the Environmental Observing System (EOS), the techniques being developed to measure ocean-atmosphere moisture exchanges using satellite sensors were evaluated. Studies required to use sensors proposed for EOS were examined. A method has been developed to compute the moisture flux using the wind speed, sea surface temperature, and preciptable water measured by satellite sensors. It relies on a statistical model which predicts surface-level humidity from precipitable water. The Scanning Multichannel Microwave Radiometer (SMMR) measures all 3 parameters and was found to be sensitive to the annual cycle and large interannual variations such as the 1982 to 1983 El Nino. There are systematic differences between geophysical parameters measured by Nimbus/SMMR and in situ measurements. After quadratic trends and crosstalks were removed from the parameters through multivariate regressions, the latent heat fluxes computed from SMMR agree with those computed from ship reports to within 30 W/sq m. The poor quality of ship reports may be the cause of a portion of this scatter. Similar results are found using SEASAT/SMMR data. When the scatterometer winds were used instead of the SMMR winds, the difference between the satellite fluxes and the ship fluxes was reduced.

  12. Vibrating-Wire, Supercooled Liquid Water Content Sensor Calibration and Characterization Progress

    NASA Technical Reports Server (NTRS)

    King, Michael C.; Bognar, John A.; Guest, Daniel; Bunt, Fred

    2016-01-01

    NASA conducted a winter 2015 field campaign using weather balloons at the NASA Glenn Research Center to generate a validation database for the NASA Icing Remote Sensing System. The weather balloons carried a specialized, disposable, vibrating-wire sensor to determine supercooled liquid water content aloft. Significant progress has been made to calibrate and characterize these sensors. Calibration testing of the vibrating-wire sensors was carried out in a specially developed, low-speed, icing wind tunnel, and the results were analyzed. The sensor ice accretion behavior was also documented and analyzed. Finally, post-campaign evaluation of the balloon soundings revealed a gradual drift in the sensor data with increasing altitude. This behavior was analyzed and a method to correct for the drift in the data was developed.

  13. Performance of the high speed anechoic wind tunnel at Lyon University

    NASA Technical Reports Server (NTRS)

    Sunyach, M.; Brunel, B.; Comte-Bellot, G.

    1986-01-01

    The characteristics of the feed duct, the wind tunnel, and the experiments run in the convergent-divergent anechoic wind tunnel at Lyon University are described. The wind tunnel was designed to eliminate noise from the entrance of air or from flow interactions with the tunnel walls so that noise caused by the flow-test structure interactions can be studied. The channel contains 1 x 1 x 0.2 m glass and metal foil baffles spaced 0.2 m apart. The flow is forced by a 350 kW fan in the primary circuit, and a 110 kW blower in the secondary circuit. The primary circuit features a factor of four throat reductions, followed by a 1.6 reduction before the test section. Upstream and downstream sensors permit monitoring of the anechoic effectiveness of the channel. Other sensors allow modeling of the flow structures in the tunnel. The tunnel was used to examine turbulent boundary layers in flows up to 140 m/sec, tubulence-excited vibrations in walls, and the effects of laminar and turbulent flows on the appearance and locations of noise sources.

  14. High Accuracy Temperature Measurements Using RTDs with Current Loop Conditioning

    NASA Technical Reports Server (NTRS)

    Hill, Gerald M.

    1997-01-01

    To measure temperatures with a greater degree of accuracy than is possible with thermocouples, RTDs (Resistive Temperature Detectors) are typically used. Calibration standards use specialized high precision RTD probes with accuracies approaching 0.001 F. These are extremely delicate devices, and far too costly to be used in test facility instrumentation. Less costly sensors which are designed for aeronautical wind tunnel testing are available and can be readily adapted to probes, rakes, and test rigs. With proper signal conditioning of the sensor, temperature accuracies of 0.1 F is obtainable. For reasons that will be explored in this paper, the Anderson current loop is the preferred method used for signal conditioning. This scheme has been used in NASA Lewis Research Center's 9 x 15 Low Speed Wind Tunnel, and is detailed.

  15. Theoretical and experimental investigations of sensor location for optimal aeroelastic system state estimation

    NASA Technical Reports Server (NTRS)

    Liu, G.

    1985-01-01

    One of the major concerns in the design of an active control system is obtaining the information needed for effective feedback. This involves the combination of sensing and estimation. A sensor location index is defined as the weighted sum of the mean square estimation errors in which the sensor locations can be regarded as estimator design parameters. The design goal is to choose these locations to minimize the sensor location index. The choice of the number of sensors is a tradeoff between the estimation quality based upon the same performance index and the total costs of installing and maintaining extra sensors. An experimental study for choosing the sensor location was conducted on an aeroelastic system. The system modeling which includes the unsteady aerodynamics model developed by Stephen Rock was improved. Experimental results verify the trend of the theoretical predictions of the sensor location index for different sensor locations at various wind speeds.

  16. An SVM-based solution for fault detection in wind turbines.

    PubMed

    Santos, Pedro; Villa, Luisa F; Reñones, Aníbal; Bustillo, Andres; Maudes, Jesús

    2015-03-09

    Research into fault diagnosis in machines with a wide range of variable loads and speeds, such as wind turbines, is of great industrial interest. Analysis of the power signals emitted by wind turbines for the diagnosis of mechanical faults in their mechanical transmission chain is insufficient. A successful diagnosis requires the inclusion of accelerometers to evaluate vibrations. This work presents a multi-sensory system for fault diagnosis in wind turbines, combined with a data-mining solution for the classification of the operational state of the turbine. The selected sensors are accelerometers, in which vibration signals are processed using angular resampling techniques and electrical, torque and speed measurements. Support vector machines (SVMs) are selected for the classification task, including two traditional and two promising new kernels. This multi-sensory system has been validated on a test-bed that simulates the real conditions of wind turbines with two fault typologies: misalignment and imbalance. Comparison of SVM performance with the results of artificial neural networks (ANNs) shows that linear kernel SVM outperforms other kernels and ANNs in terms of accuracy, training and tuning times. The suitability and superior performance of linear SVM is also experimentally analyzed, to conclude that this data acquisition technique generates linearly separable datasets.

  17. Transonic applications of the Wake Imaging System

    NASA Astrophysics Data System (ADS)

    Crowder, J. P.

    1982-09-01

    The extension of a rapid flow field survey method (wake imaging system) originally developed for low speed wind tunnel operation, to transonic wind tunnel applications is discussed. The advantage of the system, beside the simplicity and low cost of the data acquisition system, is that the probe position data are recorded as an optical image of the actual sensor and thus are unaffected by the inevitable deflections of the probe support. This permits traversing systems which are deliberately flexible and have unusual motions. Two transverse drive systems are described and several typical data images are given.

  18. Design, testing and demonstration of a small unmanned aircraft system (sUAS) and payload for measuring wind speed and particulate matter in the atmospheric boundary layer

    NASA Astrophysics Data System (ADS)

    Riddell, Kevin Donald Alexander

    The atmospheric boundary layer (ABL) is the layer of air directly influenced by the Earth's surface and is the layer of the atmosphere most important to humans as this is the air we live in. Methods for measuring the properties of the ABL include three general approaches: satellite based, ground based and airborne. A major research challenge is that many contemporary methods provide a restricted spatial resolution or coverage of variations of ABL properties such as how wind speed varies across a landscape with complex topography. To enhance our capacity to measure the properties of the ABL, this thesis presents a new technique that involves a small unmanned aircraft system (sUAS) equipped with a customized payload for measuring wind speed and particulate matter. The research presented herein outlines two key phases in establishing the proof of concept of the payload and its integration on the sUAS: (1) design and testing and (2) field demonstration. The first project focuses on measuring wind speed, which has been measured with fixed wing sUASs in previous research. but not with a helicopter sUAS. The second project focuses on the measurement of particulate matter, which is a major air pollutant typically measured with ground-based sensors. Results from both proof of concept projects suggest that ABL research could benefit from the proposed techniques. .

  19. Wind Turbines Adaptation to the Variability of the Wind Field

    NASA Astrophysics Data System (ADS)

    Ulianov, Yuriy; Martynenko, Gennadii; Misaylov, Vitaliy; Soliannikova, Iuliia

    2010-05-01

    WIND TURBINES ADAPTATION TO THE VARIABILITY OF THE WIND FIELD The subject of our scientific research is wind power turbines (WPT) with the horizontal axis which were now common in the world. Efficient wind turbines work is largely determined by non-stationarity of the wind field, expressed in its gustiness, the presence of vertical and horizontal shifts of wind speed and direction. At critical values of the wind parameters WPT has aerodynamic and mechanical overload, leading to breakdowns, premature wear and reduce the life of the wind turbine. To prevent accidents at the peak values of wind speed it is used the regulatory system of windwheels. WPT control systems provide a process orientation of the wind turbine rotor axis in the line of the mean wind. Wind turbines are also equipped with braking device used to protect against breakdowns when a significant increase in the wind. In general, all these methods of regulation are not always effective. Thus, in practice there may be situations when the wind speed is many times greater than the stated limit. For example, if there are microbursts in the atmospheric boundary layer, low-level wind shears caused by its gust front, storms, etc. It is required for a wind power turbine adaptation to intensive short-term wind impulses and considerable vertical wind shifts that the data about them shall be obtained ahead of time. To do this it is necessary to have the information on the real structure of the wind field in the area of the blade sweep for the minimum range against the wind that is determined by the mean speed and the system action time. The implementation of acoustic and laser traditional wind sounding systems is limited by ambient acoustic noise, by heavy rain, snowfall and by fog. There are free of these disadvantages the inclined radioacoustic sounding (IRASS) technique which works for a system of remote detection and control of wind gusts. IRASS technique is realized as low-potential Doppler pulse radar including combined RF-acoustic antenna installed coaxially with the gondola of the wind power turbine. The work of the technique is synchronized with rotation of blades to eliminate their shielding action. Dangerous in terms of dynamic strength is the wind load pulse, the rise time which is comparable with the period of the natural frequency of the wind turbine elements (blade, tower, rotor, etc.). The amplitude decay of resonant vibrations at critical values of the speed of rotation can be realized through the use of mechanical elastic supports with nonlinear artificial dampers. They have a high coefficient of resistance, but may cause self-excited oscillations. We propose the way to deal with raised vibration of wind turbine elements at the expense of short-term increase of damping in the range of critical rotary axis speeds or during impulsive effects of wind loadings (wind gusts). This is possible through the use of non-linear electromagnetic dampers or active magnetic bearings. Their feature is the possibility of varying the mechanical stiffness and damping properties by changing the electrical parameters of electromagnets. The controlling of these parameters is carried out by the control system (CS) with the information feedback on the spatial-temporal structure of the wind field obtained from IRASS. In the composition of the CS can also be included the rotational speed sensor of the WPT rotor. This approach to the adaptation of wind turbines will allow to reduce vibration and to perform early compensation of the load on their components, which arise under the wind gusts. In addition, corrections about the wind field obtained with IRASS, would increase the mean power of WPT.

  20. Solar and Net Radiation for Estimating Potential Evaporation from Three Vegetation Canopies

    Treesearch

    D.M. Amatya; R.W. Skaggs; G.W. Cheschier; G.P. Fernandez

    2000-01-01

    Solar and net radiation data are frequent/y used in estimating potential evaporation (PE) from various vegetative surfaces needed for water balance and hydrologic modeling studies. Weather parameters such as air temperature, relative humidity, wind speed, solar radiation, and net radiation have been continuously monitored using automated sensors to estimate PE for...

  1. Assessment and Analysis of QuikSCAT Vector Wind Products for the Gulf of Mexico: A Long-Term and Hurricane Analysis.

    PubMed

    Sharma, Neha; D'Sa, Eurico

    2008-03-18

    The northern Gulf of Mexico is a region that has been frequently impacted in recent years by natural disasters such as hurricanes. The use of remote sensing data such as winds from NASA's QuikSCAT satellite sensor would be useful for emergency preparedness during such events. In this study, the performance of QuikSCAT products, including JPL's latest Level 2B (L2B) 12.5 km swath winds, were evaluated with respect to buoy-measured winds in the Gulf of Mexico for the period January 2005 to February 2007. Regression analyses indicated better accuracy of QuikSCAT's L2B DIRTH, 12.5 km than the Level 3 (L3), 25 km wind product. QuikSCAT wind data were compared directly with buoy data keeping a maximum time interval of 20 min and spatial interval of 0.1° (≈10 km). R² values for moderate wind speeds were 0.88 and 0.93 for L2B, and 0.75 and 0.89 for L3 for speed and direction, respectively. QuikSCAT wind comparisons for buoys located offshore were better than those located near the coast. Hurricanes that took place during 2002-06 were studied individually to obtain regressions of QuikSCAT versus buoys for those events. Results show QuikSCAT's L2B DIRTH wind product compared well with buoys during hurricanes up to the limit of buoy measurements. Comparisons with the National Hurricane Center (NHC) best track analyses indicated QuikSCAT winds to be lower than those obtained by NHC, possibly due to rain contamination, while buoy measurements appeared to be constrained at high wind speeds. This study has confirmed good agreement of the new QuikSCAT L2B product with buoy measurements and further suggests its potential use during extreme weather conditions in the Gulf of Mexico.

  2. Wind Tunnel Test of an RPV with Shape-Change Control Effector and Sensor Arrays

    NASA Technical Reports Server (NTRS)

    Raney, David L.; Cabell, Randolph H.; Sloan, Adam R.; Barnwell, William G.; Lion, S. Todd; Hautamaki, Bret A.

    2004-01-01

    A variety of novel control effector concepts have recently emerged that may enable new approaches to flight control. In particular, the potential exists to shift the composition of the typical aircraft control effector suite from a small number of high authority, specialized devices (rudder, aileron, elevator, flaps), toward larger numbers of smaller, less specialized, distributed device arrays. The concept envisions effector and sensor networks composed of relatively small high-bandwidth devices able to simultaneously perform a variety of control functions using feedback from disparate data sources. To investigate this concept, a remotely piloted flight vehicle has been equipped with an array of 24 trailing edge shape-change effectors and associated pressure measurements. The vehicle, called the Multifunctional Effector and Sensor Array (MESA) testbed, was recently tested in NASA Langley's 12-ft Low Speed wind tunnel to characterize its stability properties, control authorities, and distributed pressure sensitivities for use in a dynamic simulation prior to flight testing. Another objective was to implement and evaluate a scheme for actively controlling the spanwise pressure distribution using the shape-change array. This report describes the MESA testbed, design of the pressure distribution controller, and results of the wind tunnel test.

  3. Potential of Future Hurricane Imaging Radiometer (HIRAD) Ocean Surface Wind Observations for Determining Tropical Storm Vortex Intensity and Structure

    NASA Technical Reports Server (NTRS)

    Atlas, Robert; Bailey, M. C.; Black, Peter; James, Mark; Johnson, James; Jones, Linwood; Miller, Timothy; Ruf, Christopher; Uhlhorn, Eric

    2008-01-01

    The Hurricane Imaging Radiometer (HIRAD) is an innovative technology development, which offers the potential of new and unique remotely sensed observations of both extreme oceanic wind events and strong precipitation from either UAS or satellite platforms. It is based on the airborne Stepped Frequency Microwave Radiometer (SFMR), which is a proven aircraft remote sensing technique for observing tropical cyclone ocean surface wind speeds and rain rates, including those of major hurricane intensity. The proposed HIRAD instrument advances beyond the current nadir viewing SFMR to an equivalent wide-swath SFMR imager using passive microwave synthetic thinned aperture radiometer technology. This sensor will operate over 4-7 GHz (C-band frequencies) where the required tropical cyclone remote sensing physics has been validated by both SFMR and WindSat radiometers. HIRAD incorporates a unique, technologically advanced array antenna and several other technologies successfully demonstrated by the NASA's Instrument Incubator Program. A brassboard version of the instrument is complete and has been successfully tested in an anechoic chamber, and development of the aircraft instrument is well underway. HIRAD will be a compact, lightweight, low-power instrument with no moving parts that will produce wide-swath imagery of ocean vector winds and rain during hurricane conditions when existing microwave sensors (radiometers or scatterometers) are hindered. Preliminary studies show that HIRAD will have a significant positive impact on analyses as either a new aircraft or satellite sensor.

  4. Development of a fiber optic compressor blade sensor

    NASA Technical Reports Server (NTRS)

    Dhadwal, Harbans Singh

    1995-01-01

    A complete working prototype of the fiber optic blade tip sensor was first tested in the laboratory, followed by a thorough evaluation at NASA W8 Single Compressor Stage Facility in Lewis Research Center. Subsequently, a complete system with three parallel channels was fabricated and delivered to Dr. Kurkov. The final system was tested in the Subsonic Wind Tunnel Facility, in parallel with The General Electric Company's light probe system. The results at all operating speeds were comparable. This report provides a brief description of the system and presents a summary of the experimental results.

  5. Extracting full-field dynamic strain response of a rotating wind turbine using photogrammetry

    NASA Astrophysics Data System (ADS)

    Baqersad, Javad; Poozesh, Peyman; Niezrecki, Christopher; Avitabile, Peter

    2015-04-01

    Health monitoring of wind turbines is typically performed using conventional sensors (e.g. strain-gages and accelerometers) that are usually mounted to the nacelle or gearbox. Although many wind turbines stop operating due to blade failures, there are typically few to no sensor mounted on the blades. Placing sensors on the rotating parts of the structure is a challenge due to the wiring and data transmission constraints. Within the current work, an approach to monitor full-field dynamic response of rotating structures (e.g. wind turbine blades or helicopter rotors) is developed and experimentally verified. A wind turbine rotor was used as the test structure and was mounted to a block and horizontally placed on the ground. A pair of bearings connected to the rotor shaft allowed the turbine to freely spin along the shaft. Several optical targets were mounted to the blades and a pair of high-speed cameras was used to monitor the dynamics of the spinning turbine. Displacements of the targets during rotation were measured using three-dimensional point tracking. The point tracking technique measured both rigid body displacement and flexible deformation of the blades at target locations. While the structure is rotating, only flap displacements of optical targets (displacements out of the rotation plane) were used in strain prediction process. The measured displacements were expanded and applied to the finite element model of the turbine to extract full-field dynamic strain on the structure. The proposed approach enabled the prediction of dynamic response on the outer surface as well as within the inner points of the structure where no other sensor could be easily mounted. In order to validate the proposed approach, the predicted strain was compared to strain measured at four locations on the spinning blades using a wireless strain-gage system.

  6. Improvements to the swath-level near-surface atmospheric state parameter retrievals within the NRL Ocean Surface Flux System (NFLUX)

    NASA Astrophysics Data System (ADS)

    May, J. C.; Rowley, C. D.; Meyer, H.

    2017-12-01

    The Naval Research Laboratory (NRL) Ocean Surface Flux System (NFLUX) is an end-to-end data processing and assimilation system used to provide near-real-time satellite-based surface heat flux fields over the global ocean. The first component of NFLUX produces near-real-time swath-level estimates of surface state parameters and downwelling radiative fluxes. The focus here will be on the satellite swath-level state parameter retrievals, namely surface air temperature, surface specific humidity, and surface scalar wind speed over the ocean. Swath-level state parameter retrievals are produced from satellite sensor data records (SDRs) from four passive microwave sensors onboard 10 platforms: the Special Sensor Microwave Imager/Sounder (SSMIS) sensor onboard the DMSP F16, F17, and F18 platforms; the Advanced Microwave Sounding Unit-A (AMSU-A) sensor onboard the NOAA-15, NOAA-18, NOAA-19, Metop-A, and Metop-B platforms; the Advanced Technology Microwave Sounder (ATMS) sensor onboard the S-NPP platform; and the Advanced Microwave Scannin Radiometer 2 (AMSR2) sensor onboard the GCOM-W1 platform. The satellite SDRs are translated into state parameter estimates using multiple polynomial regression algorithms. The coefficients to the algorithms are obtained using a bootstrapping technique with all available brightness temperature channels for a given sensor, in addition to a SST field. For each retrieved parameter for each sensor-platform combination, unique algorithms are developed for ascending and descending orbits, as well as clear vs cloudy conditions. Each of the sensors produces surface air temperature and surface specific humidity retrievals. The SSMIS and AMSR2 sensors also produce surface scalar wind speed retrievals. Improvement is seen in the SSMIS retrievals when separate algorithms are used for the even and odd scans, with the odd scans performing better than the even scans. Currently, NFLUX treats all SSMIS scans as even scans. Additional improvement in all of the surface retrievals comes from using a 3-hourly SST field, as opposed to a daily SST field.

  7. In-situ erosion of cohesive sediment in a large shallow lake experiencing long-term decline in wind speed

    NASA Astrophysics Data System (ADS)

    Wu, Tingfeng; Timo, Huttula; Qin, Boqiang; Zhu, Guangwei; Janne, Ropponen; Yan, Wenming

    2016-08-01

    In order to address the major factors affecting cohesive sediment erosion using high-frequency in-situ observations in Lake Taihu, and the response of this erosion to long-term decline in wind speed, high-frequency meteorological, hydrological and turbidity sensors were deployed to record continuous field wind-induced wave, current and sediment erosion processes; Statistical analyses and mathematic modeling spanning 44 years were also conducted. The results revealed that the unconsolidated surficial cohesive sediment frequently experiences the processes of erosion, suspension and deposition. Wind waves, generated by the absorption of wind energy, are the principal force driving this cycle. When the wavelength-to-water depth ratio (L/D) is 2-3, wave propagation is affected by lakebed friction and surface erosion occurs. When L/D > 3, the interaction between wave and lakebed increases to induce massive erosion. However, influenced by rapid urbanization in the Lake Taihu basin, wind speed has significantly decreased, by an average rate of -0.022 m s-1 a-1, from 1970 to 2013. This has reduced the erodible area, represented by simulated L/D, at a rate of -16.9 km2 a-1 in the autumn and winter, and -8.1 km2 a-1 in the spring and summer. This significant decrease in surface erosion area, and the near disappearance of areas experiencing massive erosion, imply that Lake Taihu has become calmer, which can be expected to have adverse effects on the lake ecosystem by increasing eutrophication and nuisance cyanobacteria blooms.

  8. Transition Marshall Space Flight Center Wind Profiler Splicing Algorithm to Launch Services Program Upper Winds Tool

    NASA Technical Reports Server (NTRS)

    Bauman, William H., III

    2014-01-01

    NASAs LSP customers and the future SLS program rely on observations of upper-level winds for steering, loads, and trajectory calculations for the launch vehicles flight. On the day of launch, the 45th Weather Squadron (45 WS) Launch Weather Officers (LWOs) monitor the upper-level winds and provide forecasts to the launch team via the AMU-developed LSP Upper Winds tool for launches at Kennedy Space Center (KSC) and Cape Canaveral Air Force Station. This tool displays wind speed and direction profiles from rawinsondes released during launch operations, the 45th Space Wing 915-MHz Doppler Radar Wind Profilers (DRWPs) and KSC 50-MHz DRWP, and output from numerical weather prediction models.The goal of this task was to splice the wind speed and direction profiles from the 45th Space Wing (45 SW) 915-MHz Doppler radar Wind Profilers (DRWPs) and KSC 50-MHz DRWP at altitudes where the wind profiles overlap to create a smooth profile. In the first version of the LSP Upper Winds tool, the top of the 915-MHz DRWP wind profile and the bottom of the 50-MHz DRWP were not spliced, sometimes creating a discontinuity in the profile. The Marshall Space Flight Center (MSFC) Natural Environments Branch (NE) created algorithms to splice the wind profiles from the two sensors to generate an archive of vertically complete wind profiles for the SLS program. The AMU worked with MSFC NE personnel to implement these algorithms in the LSP Upper Winds tool to provide a continuous spliced wind profile.The AMU transitioned the MSFC NE algorithms to interpolate and fill data gaps in the data, implement a Gaussian weighting function to produce 50-m altitude intervals in each sensor, and splice the data together from both DRWPs. They did so by porting the MSFC NE code written with MATLAB software into Microsoft Excel Visual Basic for Applications (VBA). After testing the new algorithms in stand-alone VBA modules, the AMU replaced the existing VBA code in the LSP Upper Winds tool with the new algorithms. They then tested the code in the LSP Upper Winds tool with archived data. The tool will be delivered to the 45 WS after the 50-MHz DRWP upgrade is complete and the tool is tested with real-time data. The 50-MHz DRWP upgrade is expected to be finished in October 2014.

  9. Pressure-Sensitive Paints Advance Rotorcraft Design Testing

    NASA Technical Reports Server (NTRS)

    2013-01-01

    The rotors of certain helicopters can spin at speeds as high as 500 revolutions per minute. As the blades slice through the air, they flex, moving into the wind and back out, experiencing pressure changes on the order of thousands of times a second and even higher. All of this makes acquiring a true understanding of rotorcraft aerodynamics a difficult task. A traditional means of acquiring aerodynamic data is to conduct wind tunnel tests using a vehicle model outfitted with pressure taps and other sensors. These sensors add significant costs to wind tunnel testing while only providing measurements at discrete locations on the model's surface. In addition, standard sensor solutions do not work for pulling data from a rotor in motion. "Typical static pressure instrumentation can't handle that," explains Neal Watkins, electronics engineer in Langley Research Center s Advanced Sensing and Optical Measurement Branch. "There are dynamic pressure taps, but your costs go up by a factor of five to ten if you use those. In addition, recovery of the pressure tap readings is accomplished through slip rings, which allow only a limited amount of sensors and can require significant maintenance throughout a typical rotor test." One alternative to sensor-based wind tunnel testing is pressure sensitive paint (PSP). A coating of a specialized paint containing luminescent material is applied to the model. When exposed to an LED or laser light source, the material glows. The glowing material tends to be reactive to oxygen, explains Watkins, which causes the glow to diminish. The more oxygen that is present (or the more air present, since oxygen exists in a fixed proportion in air), the less the painted surface glows. Imaged with a camera, the areas experiencing greater air pressure show up darker than areas of less pressure. "The paint allows for a global pressure map as opposed to specific points," says Watkins. With PSP, each pixel recorded by the camera becomes an optical pressure tap. "Instead of having 100 or 200 pressure taps, you can have in theory several million, up to whatever the resolution of your camera is." Watkins explains that typical wind tunnel testing requires two models: one with very little instrumentation, and a pressure model with a significant amount of sensors applied. "If you can make all of your measurements on one model with PSP, you've decreased your model costs by at least a factor of two and preferably your testing costs by about that much," he says. PSP technology has been around for almost 20 years, but a PSP solution for gathering instantaneous dynamic pressure data from surfaces moving at high speeds, such as rotor blades, was not available until a NASA partnership led to a game-changing innovation.

  10. Statistical Evaluation of VIIRS Ocean Color Products

    NASA Astrophysics Data System (ADS)

    Mikelsons, K.; Wang, M.; Jiang, L.

    2016-02-01

    Evaluation and validation of satellite-derived ocean color products is a complicated task, which often relies on precise in-situ measurements for satellite data quality assessment. However, in-situ measurements are only available in comparatively few locations, expensive, and not for all times. In the open ocean, the variability in spatial and temporal scales is longer, and the water conditions are generally more stable. We use this fact to perform extensive statistical evaluations of consistency for ocean color retrievals based on comparison of retrieved data at different times, and corresponding to various retrieval parameters. We have used the NOAA Multi-Sensor Level-1 to Level-2 (MSL12) ocean color data processing system for ocean color product data derived from the Visible Infrared Imaging Radiometer Suite (VIIRS). We show the results for statistical dependence of normalized water-leaving radiance spectra with respect to various parameters of retrieval geometry, such as solar- and sensor-zenith angles, as well as physical variables, such as wind speed, air pressure, ozone amount, water vapor, etc. In most cases, the results show consistent retrievals within the relevant range of retrieval parameters, showing a good performance with the MSL12 in the open ocean. The results also yield the upper bounds of solar- and sensor-zenith angles for reliable ocean color retrievals, and also show a slight increase of VIIRS-derived normalized water-leaving radiances with wind speed and water vapor concentration.

  11. The science benefits of and the antenna requirements for microwave remote sensing from geostationary orbit

    NASA Technical Reports Server (NTRS)

    Stutzman, Warren L. (Editor); Brown, Gary S. (Editor)

    1991-01-01

    The primary objective of the Large Space Antenna (LSA) Science Panel was to evaluate the science benefits that can be realized with a 25-meter class antenna in a microwave/millimeter wave remote sensing system in geostationary orbit. The panel concluded that a 25-meter or larger antenna in geostationary orbit can serve significant passive remote sensing needs in the 10 to 60 GHz frequency range, including measurements of precipitation, water vapor, atmospheric temperature profile, ocean surface wind speed, oceanic cloud liquid water content, and snow cover. In addition, cloud base height, atmospheric wind profile, and ocean currents can potentially be measured using active sensors with the 25-meter antenna. Other environmental parameters, particularly those that do not require high temporal resolution, are better served by low Earth orbit based sensors.

  12. Remote-sensing reflectance determinations in the coastal ocean environment: impact of instrumental characteristics and environmental variability.

    PubMed

    Toole, D A; Siegel, D A; Menzies, D W; Neumann, M J; Smith, R C

    2000-01-20

    Three independent ocean color sampling methodologies are compared to assess the potential impact of instrumental characteristics and environmental variability on shipboard remote-sensing reflectance observations from the Santa Barbara Channel, California. Results indicate that under typical field conditions, simultaneous determinations of incident irradiance can vary by 9-18%, upwelling radiance just above the sea surface by 8-18%, and remote-sensing reflectance by 12-24%. Variations in radiometric determinations can be attributed to a variety of environmental factors such as Sun angle, cloud cover, wind speed, and viewing geometry; however, wind speed is isolated as the major source of uncertainty. The above-water approach to estimating water-leaving radiance and remote-sensing reflectance is highly influenced by environmental factors. A model of the role of wind on the reflected sky radiance measured by an above-water sensor illustrates that, for clear-sky conditions and wind speeds greater than 5 m/s, determinations of water-leaving radiance at 490 nm are undercorrected by as much as 60%. A data merging procedure is presented to provide sky radiance correction parameters for above-water remote-sensing reflectance estimates. The merging results are consistent with statistical and model findings and highlight the importance of multiple field measurements in developing quality coastal oceanographic data sets for satellite ocean color algorithm development and validation.

  13. Event-based measurement of boundary-layer winds and topographic effects with a small unmanned aircraft system (sUas)

    NASA Astrophysics Data System (ADS)

    Riddell, K.; Hugenholtz, C.

    2012-12-01

    Numerical models are invaluable tools for developing and testing hypotheses about interactions and feedbacks between wind and topography. However, field-based measurements are equally important for building and enhancing confidence in model output. Several field methods are available, including conventional approaches using tall masts equipped with an array of anemometers, as well as weather balloons, but few methods are able to match the level of detail available in model simulations of topographically-modified windflow. Here we propose an alternative method that may enhance numerical models. The method involves a small unmanned aircraft system (sUas) equipped with a meteorological sensor payload. The sUas is a two blade helicopter that weighs 5.5 kg, and has a length of 1.32 m. We designed a simple measurement and control system using an Arduino micro-controller, which acquired measurements at pre-defined coordinates autonomously. The entire survey was pre-configured and uploaded to the aircraft, effectively avoiding the need for manual aircraft operation and data collection. We collected raw measurements at each waypoint, yielding a point cloud of windspeed data. During test flights the sUas was able to maintain a stable position (± 0.6 m vertical and horizontal) in wind speeds up to 50 km/h. We used the raw data to map the wind speed-up ratio relative to a reference anemometer. Although it would be preferable to acquire continuous measurements at each waypoint, the sUas method only provides a snapshot of wind at each location. However, despite this limitation, the sUas does fill a void in terms of spatial measurements within the boundary layer. It may be possible to enhance this method in the future through deployment of sUas swarms that measure wind concurrently at many locations. Furthermore, other sensors can be deployed on sUas for measuring aeolian processes such as dust.

  14. Fiber-optic anemometer based on single-walled carbon nanotube coated tilted fiber Bragg grating.

    PubMed

    Zhang, Yang; Wang, Fang; Liu, Zigeng; Duan, Zhihui; Cui, Wenli; Han, Jie; Gu, Yiying; Wu, Zhenlin; Jing, Zhenguo; Sun, Changsen; Peng, Wei

    2017-10-02

    In this work, a novel and simple optical fiber hot-wire anemometer based on single-walled carbon nanotubes (SWCNTs) coated tilted fiber Bragg grating (TFBG) is proposed and demonstrated. For the hot-wire wind speed sensor design, TFBG is an ideal in-fiber sensing structure due to its unique features. It is utilized as both light coupling and temperature sensing element without using any geometry-modified or uncommon fiber, which simplifies the sensor structure. To further enhance the thermal conversion capability, SWCNTs are coated on the surface of the TFBG instead of traditional metallic materials, which have excellent thermal characteristics. When a laser light is pumped into the sensor, the pump light propagating in the core will be easily coupled into cladding of the fiber via the TFBG and strongly absorbed by the SWCNTs thin film. This absorption acts like a hot-wire raising the local temperature of the fiber, which is accurately detected by the TFBG resonance shift. In the experiments, the sensor's performances were investigated and controlled by adjusting the inherent angle of the TFBG, the thickness of SWCNTs film, and the input power of the pump laser. It was demonstrated that the developed anemometer exhibited significant light absorption efficiency up to 93%, and the maximum temperature of the local area on the fiber was heated up to 146.1°C under the relatively low pump power of 97.76 mW. The sensitivity of -0.3667 nm/(m/s) at wind speed of 1.0 m/s was measured with the selected 12° TFBG and 1.6 μm film.

  15. How wind turbines affect the performance of seismic monitoring stations and networks

    NASA Astrophysics Data System (ADS)

    Neuffer, Tobias; Kremers, Simon

    2017-12-01

    In recent years, several minor seismic events were observed in the apparently aseismic region of the natural gas fields in Northern Germany. A seismic network was installed in the region consisting of borehole stations with sensor depths up to 200 m and surface stations to monitor induced seismicity. After installation of the network in 2012, an increasing number of wind turbines was established in proximity (<5 km) to several stations, thereby influencing the local noise conditions. This study demonstrates the impact of wind turbines on seismic noise level in a frequency range of 1-10 Hz at the monitoring sites with correlation to wind speed, based on the calculation of power spectral density functions and I95 values of waveforms over a time period of 4 yr. It could be shown that higher wind speeds increase the power spectral density amplitudes at distinct frequencies in the considered frequency band, depending on height as well as number and type of influencing wind turbines. The azimuthal direction of incoming Rayleigh waves at a surface station was determined to identify the noise sources. The analysis of the perturbed wave field showed that Rayleigh waves with backazimuths pointing to wind turbines in operation are dominating the wave field in a frequency band of 3-4 Hz. Additional peaks in a frequency range of 1-4 Hz could be attributed to turbine tower eigenfrequencies of various turbine manufactures with the hub height as defining parameter. Moreover, the influence of varying noise levels at a station on the ability to automatically detect seismic events was investigated. The increased noise level in correlation to higher wind speeds at the monitoring sites deteriorates the station's recording quality inhibiting the automatic detection of small seismic events. As a result, functionality and task fulfilment of the seismic monitoring network is more and more limited by the increasing number of nearby wind turbines.

  16. Assessment of ultrafine particles and noise measurements using fuzzy logic and data mining techniques.

    PubMed

    Fernández-Camacho, R; Brito Cabeza, I; Aroba, J; Gómez-Bravo, F; Rodríguez, S; de la Rosa, J

    2015-04-15

    This study focuses on correlations between total number concentrations, road traffic emissions and noise levels in an urban area in the southwest of Spain during the winter and summer of 2009. The high temporal correlation between sound pressure levels, traffic intensity, particle number concentrations related to traffic, black carbon and NOx concentrations suggests that noise is linked to traffic emissions as a main source of pollution in urban areas. First, the association of these different variables was studied using PreFuRGe, a computational tool based on data mining and fuzzy logic. The results showed a clear association between noise levels and road-traffic intensity for non-extremely high wind speed levels. This behaviour points, therefore, to vehicular emissions being the main source of urban noise. An analysis for estimating the total number concentration from noise levels is also proposed in the study. The high linearity observed between particle number concentrations linked to traffic and noise levels with road traffic intensity can be used to calculate traffic related particle number concentrations experimentally. At low wind speeds, there are increases in noise levels of 1 dB for every 100 vehicles in circulation. This is equivalent to 2000 cm(-3) per vehicle in winter and 500 cm(-3) in summer. At high wind speeds, wind speed could be taken into account. This methodology allows low cost sensors to be used as a proxy for total number concentration monitoring in urban air quality networks. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. Atmospheric measurements on Mars - The Viking meteorology experiment

    NASA Technical Reports Server (NTRS)

    Chamberlain, T. E.; Cole, H. L.; Dutton, R. G.; Greene, G. C.; Tillman, J. E.

    1976-01-01

    The Viking meteorology experiment is one of nine experiments to be carried out on the surface of Mars by each of two Viking Landers positioned at different latitudes and longitudes in the Northern Hemisphere. The meteorology experiment will measure pressure, temperature, wind speed, and wind direction at 1.5-hr intervals throughout the Martian day. The duration of each measurement period, the interval between data samples for a measurement period, and the time at which the measurement period is started will be varied throughout the mission. The scientific investigation and the sensors and electronics used for making the atmospheric measurement are discussed.

  18. Softwall acoustical characteristics and measurement capabilities of the NASA Lewis 9x15 foot low speed wind tunnel

    NASA Technical Reports Server (NTRS)

    Rentz, P. E.

    1976-01-01

    Acoustical characteristics and source directionality measurement capabilities of the wind tunnel in the softwall configuration were evaluated, using aerodynamically clean microphone supports. The radius of measurement was limited by the size of the test section, instead of the 3.0 foot (1 m) limitation of the hardwall test section. The wind-on noise level in the test section was reduced 10 dB. Reflections from the microphone support boom, after absorptive covering, induced measurement errors in the lower frequency bands. Reflections from the diffuser back wall were shown to be significant. Tunnel noise coming up the diffuser was postulated as being responsible, at least partially, for the wind-on noise in the test section and settling chamber. The near field characteristics of finite-sized sources and the theoretical response of a porous strip sensor in the presence of wind are presented.

  19. Real-time economic nonlinear model predictive control for wind turbine control

    NASA Astrophysics Data System (ADS)

    Gros, Sebastien; Schild, Axel

    2017-12-01

    Nonlinear model predictive control (NMPC) is a strong candidate to handle the control challenges emerging in the modern wind energy industry. Recent research suggested that wind turbine (WT) control based on economic NMPC (ENMPC) can improve the closed-loop performance and simplify the task of controller design when compared to a classical NMPC approach. This paper establishes a formal relationship between the ENMPC controller and the classic NMPC approach, and compares empirically their closed-loop nominal behaviour and performance. The robustness of the performance is assessed for an inaccurate modelling of the tower fore-aft main frequency. Additionally, though a perfect wind preview is assumed here, the effect of having a limited horizon of preview of the wind speed via the LIght Detection And Ranging (LIDAR) sensor is investigated. Finally, this paper provides new algorithmic solutions for deploying ENMPC for WT control, and report improved computational times.

  20. An SVM-Based Solution for Fault Detection in Wind Turbines

    PubMed Central

    Santos, Pedro; Villa, Luisa F.; Reñones, Aníbal; Bustillo, Andres; Maudes, Jesús

    2015-01-01

    Research into fault diagnosis in machines with a wide range of variable loads and speeds, such as wind turbines, is of great industrial interest. Analysis of the power signals emitted by wind turbines for the diagnosis of mechanical faults in their mechanical transmission chain is insufficient. A successful diagnosis requires the inclusion of accelerometers to evaluate vibrations. This work presents a multi-sensory system for fault diagnosis in wind turbines, combined with a data-mining solution for the classification of the operational state of the turbine. The selected sensors are accelerometers, in which vibration signals are processed using angular resampling techniques and electrical, torque and speed measurements. Support vector machines (SVMs) are selected for the classification task, including two traditional and two promising new kernels. This multi-sensory system has been validated on a test-bed that simulates the real conditions of wind turbines with two fault typologies: misalignment and imbalance. Comparison of SVM performance with the results of artificial neural networks (ANNs) shows that linear kernel SVM outperforms other kernels and ANNs in terms of accuracy, training and tuning times. The suitability and superior performance of linear SVM is also experimentally analyzed, to conclude that this data acquisition technique generates linearly separable datasets. PMID:25760051

  1. Simulation of the Impact of New Ocean Surface Wind Measurements on H*Wind Analyses

    NASA Technical Reports Server (NTRS)

    Miller, Timothy; Atlas, Robert; Black, Peter; Chen, Shuyi; Hood, Robbie; Johnson, James; Jones, Linwood; Ruf, Chris; Uhlhorn, Eric

    2008-01-01

    The H*Wind analysis, a product of the Hurricane Research Division of NOAA's Atlantic Oceanographic and Meteorological Laboratory, brings together wind measurements from a variety of observation platforms into an objective analysis of the distribution of surface wind speeds in a tropical cyclone. This product is designed to improve understanding of the extent and strength of the wind field, and to improve the assessment of hurricane intensity. See http://www.aoml.noaa.gov/hrd/data sub/wind.html. The Hurricane Imaging Radiometer (HIRAD) is a new passive microwave remote sensor for hurricane observations that is currently under development by NASA Marshall Space Flight Center, NOAA Hurricane Research Division, the University of Central Florida and the University of Michigan. HIRAD is being designed to enhance the current real-time airborne ocean surface winds observation capabilities of NOAA and USAF Weather Squadron hurricane hunter aircraft using the operational airbome Stepped Frequency Microwave Radiometer (SFMR). Unlike SFMR, which measures wind speed and rain rate along the ground track directly beneath the aircraft, HIRAD will provide images of the surface wind and rain field over a wide swath (approximately 3 x the aircraft altitude, or approximately 2 km from space). The instrument is described in a separate paper presented at this conference. The present paper describes a set of Observing System Simulation Experiments (OSSEs) in which measurements from the new instrument as well as those from existing instruments (air, surface, and space-based) are simulated from the output of a numerical model from the University of Miami, and those results are used to construct H*Wind analyses. Evaluations will be presented on the relative impact of HIRAD and other instruments on H*Wind analyses, including the use of HIRAD from 2 aircraft altitudes and from a space-based platform.

  2. Observation of high-resolution wind fields and offshore wind turbine wakes using TerraSAR-X imagery

    NASA Astrophysics Data System (ADS)

    Gies, Tobias; Jacobsen, Sven; Lehner, Susanne; Pleskachevsky, Andrey

    2014-05-01

    1. Introduction Numerous large-scale offshore wind farms have been built in European waters and play an important role in providing renewable energy. Therefore, knowledge of behavior of wakes, induced by large wind turbines and their impact on wind power output is important. The spatial variation of offshore wind turbine wake is very complex, depending on wind speed, wind direction, ambient atmospheric turbulence and atmospheric stability. In this study we demonstrate the application of X-band TerraSAR-X (TS-X) data with high spatial resolution for studies on wind turbine wakes in the near and far field of the offshore wind farm Alpha Ventus, located in the North Sea. Two cases which different weather conditions and different wake pattern as observed in the TS-X image are presented. 2. Methods The space-borne synthetic aperture radar (SAR) is a unique sensor that provides two-dimensional information on the ocean surface. Due to their high resolution, daylight and weather independency and global coverage, SARs are particularly suitable for many ocean and coastal applications. SAR images reveal wind variations on small scales and thus represent a valuable means in detailed wind-field analysis. The general principle of imaging turbine wakes is that the reduced wind speed downstream of offshore wind farms modulates the sea surface roughness, which in turn changes the Normalized Radar Cross Section (NRCS, denoted by σ0) in the SAR image and makes the wake visible. In this study we present two cases at the offshore wind farm Alpha Ventus to investigate turbine-induced wakes and the retrieved sea surface wind field. Using the wind streaks, visible in the TS-X image and the shadow behind the offshore wind farm, induced by turbine wake, the sea surface wind direction is derived and subsequently the sea surface wind speed is calculated using the latest generation of wind field algorithm XMOD2. 3. Case study alpha ventus Alpha Ventus is located approximately 45 km from the coast of Borkum, Germany, and consists of twelve 5-Megawatt wind power turbines. The retrieved results are validated by comparing with QuikSCAT measurements, the results of the German Weather Service (DWD) atmospheric model and in-situ measurements of wind speed and wind direction, obtained from the research platform FiNO1, installed 400 m west of Alpha Ventus. 4. Conclusion In the presented case study we quantify the wake characteristics of wake length, wake width, maximum velocity de?cit, wake merging and wake meandering. We show that SAR has the capability to map the sea surface two-dimensionally in high spatial resolution which provides a unique opportunity to observe spatial characteristics of offshore wind turbine wakes. The SAR derived information can support offshore wind farming with respect to optimal siting and design and help to estimate their effects on the environment.

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Herman, R.; O’Brien, S.

    Using our own prototype sensor arrays that were deployed to collect microclimate data, we were able to visualize distinct differences in temperature, wind speed, and humidity over very small ranges of distance. We collected data across four polygons within the Barrow Environmental Observatory site. Our prototype microclimate arrays were based on an Arduino microcontroller, DS18B20 temperature sensors, DHT11 relative humidity/temperature sensors, and Vernier anemometers. Data were obtained in a small grid pattern with four sensors spaced 60 cm apart along the x-axis, and moved at 60 cm increments along a y-line across a polygon. Overlaying bird nest location with suchmore » data has allowed us to better answer our research question, “How do Arctic birds choose where to nest to maximize fitness in harsh Arctic environments?”« less

  4. [Effects of wind speed on drying processes of fuelbeds composed of Mongolian oak broad-leaves.

    PubMed

    Zhang, Li Bin; Sun, Ping; Jin, Sen

    2016-11-18

    Water desorption processes of fuel beds with Mongolian oak broad-leaves were observed under conditions with various wind speeds but nearly constant air temperature and humidity. The effects of wind speed on drying coefficients of fuel beds with various moisture contents were analyzed. Three phases of drying process, namely high initial moisture content (>75%) of phase 1, transition state of phase 2, and equilibrium phase III could be identified. During phase 1, water loss rate under higher wind speed was higher than that under lower wind speed. Water loss rate under higher wind speed was lower than that under lower wind speed during phase 2. During phase 3, water loss rates under different wind speeds were similar. The wind effects decreased with the decrease of fuel moisture. The drying coefficient of the Mongolian oak broad-leaves fuel beds was affected by wind speed and fuel bed compactness, and the interaction between these two factors. The coefficient increased with wind speed roughly in a monotonic cubic polynomial form.

  5. A nonlinear dynamics approach for incorporating wind-speed patterns into wind-power project evaluation.

    PubMed

    Huffaker, Ray; Bittelli, Marco

    2015-01-01

    Wind-energy production may be expanded beyond regions with high-average wind speeds (such as the Midwest U.S.A.) to sites with lower-average speeds (such as the Southeast U.S.A.) by locating favorable regional matches between natural wind-speed and energy-demand patterns. A critical component of wind-power evaluation is to incorporate wind-speed dynamics reflecting documented diurnal and seasonal behavioral patterns. Conventional probabilistic approaches remove patterns from wind-speed data. These patterns must be restored synthetically before they can be matched with energy-demand patterns. How to accurately restore wind-speed patterns is a vexing problem spurring an expanding line of papers. We propose a paradigm shift in wind power evaluation that employs signal-detection and nonlinear-dynamics techniques to empirically diagnose whether synthetic pattern restoration can be avoided altogether. If the complex behavior of observed wind-speed records is due to nonlinear, low-dimensional, and deterministic system dynamics, then nonlinear dynamics techniques can reconstruct wind-speed dynamics from observed wind-speed data without recourse to conventional probabilistic approaches. In the first study of its kind, we test a nonlinear dynamics approach in an application to Sugarland Wind-the first utility-scale wind project proposed in Florida, USA. We find empirical evidence of a low-dimensional and nonlinear wind-speed attractor characterized by strong temporal patterns that match up well with regular daily and seasonal electricity demand patterns.

  6. On the measurement of turbulent fluctuations in high-speed flows using hot wires and hot films

    NASA Technical Reports Server (NTRS)

    Acharya, M.

    1978-01-01

    A hot wire has a limited life in high speed wind-tunnel flows because it is typically subjected to large dynamic loads. As a consequence hot films and modified hot wires are frequently used for turbulence measurements in such flows. However, the fluctuation sensitivities of such probes are reduced because of various factors, leading to erroneous results. This paper describes the results of tests on some sensors in both subsonic and supersonic boundary-layer flows. A simple technique to determine dynamic calibration correction factors for the sensitivities is also presented.

  7. Buffet characteristics of the F-8 supercritical wing airplane

    NASA Technical Reports Server (NTRS)

    Deangelis, V. M.; Monaghan, R. C.

    1977-01-01

    The buffet characteristics of the F-8 supercritical wing airplane were investigated. Wing structural response was used to determine the buffet characteristics of the wing and these characteristics are compared with wind tunnel model data and the wing flow characteristics at transonic speeds. The wingtip accelerometer was used to determine the buffet onset boundary and to measure the buffet intensity characteristics of the airplane. The effects of moderate trailing edge flap deflections on the buffet onset boundary are presented. The supercritical wing flow characteristics were determined from wind tunnel and flight static pressure measurements and from a dynamic pressure sensor mounted on the flight test airplane in the vicinity of the shock wave that formed on the upper surface of the wing at transonic speeds. The comparison of the airplane's structural response data to the supercritical flow characteristics includes the effects of a leading edge vortex generator.

  8. Modeling wind adjustment factor and midflame wind speed for Rothermel's surface fire spread model

    Treesearch

    Patricia L. Andrews

    2012-01-01

    Rothermel's surface fire spread model was developed to use a value for the wind speed that affects surface fire, called midflame wind speed. Models have been developed to adjust 20-ft wind speed to midflame wind speed for sheltered and unsheltered surface fuel. In this report, Wind Adjustment Factor (WAF) model equations are given, and the BehavePlus fire modeling...

  9. Wind speed perception and risk.

    PubMed

    Agdas, Duzgun; Webster, Gregory D; Masters, Forrest J

    2012-01-01

    How accurately do people perceive extreme wind speeds and how does that perception affect the perceived risk? Prior research on human-wind interaction has focused on comfort levels in urban settings or knock-down thresholds. No systematic experimental research has attempted to assess people's ability to estimate extreme wind speeds and perceptions of their associated risks. We exposed 76 people to 10, 20, 30, 40, 50, and 60 mph (4.5, 8.9, 13.4, 17.9, 22.3, and 26.8 m/s) winds in randomized orders and asked them to estimate wind speed and the corresponding risk they felt. Multilevel modeling showed that people were accurate at lower wind speeds but overestimated wind speeds at higher levels. Wind speed perceptions mediated the direct relationship between actual wind speeds and perceptions of risk (i.e., the greater the perceived wind speed, the greater the perceived risk). The number of tropical cyclones people had experienced moderated the strength of the actual-perceived wind speed relationship; consequently, mediation was stronger for people who had experienced fewer storms. These findings provide a clearer understanding of wind and risk perception, which can aid development of public policy solutions toward communicating the severity and risks associated with natural disasters.

  10. Assessment of C-Type Darrieus Wind Turbine Under Low Wind Speed Condition

    NASA Astrophysics Data System (ADS)

    Misaran, M. S.; Rahman, Md. M.; Muzammil, W. K.; Ismail, M. A.

    2017-07-01

    Harvesting wind energy in in a low wind speed region is deem un-economical if not daunting task. Study shows that a minimum cut in speed of 3.5 m/s is required to extract a meaningful wind energy for electricity while a mean speed of 6 m/s is preferred. However, in Malaysia the mean speed is at 2 m/s with certain potential areas having 3 m/s mean speed. Thus, this work aims to develop a wind turbine that able to operate at lower cut-in speed and produce meaningful power for electricity generation. A C-type Darrieus blade is selected as it shows good potential to operate in arbitrary wind speed condition. The wind turbine is designed and fabricated in UMS labs while the performance of the wind turbine is evaluated in a simulated wind condition. Test result shows that the wind turbine started to rotate at 1 m/s compared to a NACA 0012 Darrieus turbine that started to rotate at 3 m/s. The performance of the turbine shows that it have good potential to be used in an intermittent arbitrary wind speed condition as well as low mean wind speed condition.

  11. Exploring the Effects of Atmospheric Forcings on Evaporation: Experimental Integration of the Atmospheric Boundary Layer and Shallow Subsurface

    PubMed Central

    Smits, Kathleen; Eagen, Victoria; Trautz, Andrew

    2015-01-01

    Evaporation is directly influenced by the interactions between the atmosphere, land surface and soil subsurface. This work aims to experimentally study evaporation under various surface boundary conditions to improve our current understanding and characterization of this multiphase phenomenon as well as to validate numerical heat and mass transfer theories that couple Navier-Stokes flow in the atmosphere and Darcian flow in the porous media. Experimental data were collected using a unique soil tank apparatus interfaced with a small climate controlled wind tunnel. The experimental apparatus was instrumented with a suite of state of the art sensor technologies for the continuous and autonomous collection of soil moisture, soil thermal properties, soil and air temperature, relative humidity, and wind speed. This experimental apparatus can be used to generate data under well controlled boundary conditions, allowing for better control and gathering of accurate data at scales of interest not feasible in the field. Induced airflow at several distinct wind speeds over the soil surface resulted in unique behavior of heat and mass transfer during the different evaporative stages. PMID:26131928

  12. Mixture distributions of wind speed in the UAE

    NASA Astrophysics Data System (ADS)

    Shin, J.; Ouarda, T.; Lee, T. S.

    2013-12-01

    Wind speed probability distribution is commonly used to estimate potential wind energy. The 2-parameter Weibull distribution has been most widely used to characterize the distribution of wind speed. However, it is unable to properly model wind speed regimes when wind speed distribution presents bimodal and kurtotic shapes. Several studies have concluded that the Weibull distribution should not be used for frequency analysis of wind speed without investigation of wind speed distribution. Due to these mixture distributional characteristics of wind speed data, the application of mixture distributions should be further investigated in the frequency analysis of wind speed. A number of studies have investigated the potential wind energy in different parts of the Arabian Peninsula. Mixture distributional characteristics of wind speed were detected from some of these studies. Nevertheless, mixture distributions have not been employed for wind speed modeling in the Arabian Peninsula. In order to improve our understanding of wind energy potential in Arabian Peninsula, mixture distributions should be tested for the frequency analysis of wind speed. The aim of the current study is to assess the suitability of mixture distributions for the frequency analysis of wind speed in the UAE. Hourly mean wind speed data at 10-m height from 7 stations were used in the current study. The Weibull and Kappa distributions were employed as representatives of the conventional non-mixture distributions. 10 mixture distributions are used and constructed by mixing four probability distributions such as Normal, Gamma, Weibull and Extreme value type-one (EV-1) distributions. Three parameter estimation methods such as Expectation Maximization algorithm, Least Squares method and Meta-Heuristic Maximum Likelihood (MHML) method were employed to estimate the parameters of the mixture distributions. In order to compare the goodness-of-fit of tested distributions and parameter estimation methods for sample wind data, the adjusted coefficient of determination, Bayesian Information Criterion (BIC) and Chi-squared statistics were computed. Results indicate that MHML presents the best performance of parameter estimation for the used mixture distributions. In most of the employed 7 stations, mixture distributions give the best fit. When the wind speed regime shows mixture distributional characteristics, most of these regimes present the kurtotic statistical characteristic. Particularly, applications of mixture distributions for these stations show a significant improvement in explaining the whole wind speed regime. In addition, the Weibull-Weibull mixture distribution presents the best fit for the wind speed data in the UAE.

  13. Estimating Sea Surface Salinity and Wind Using Combined Passive and Active L-Band Microwave Observations

    NASA Technical Reports Server (NTRS)

    Yueh, Simon H.; Chaubell, Mario J.

    2012-01-01

    Several L-band microwave radiometer and radar missions have been, or will be, operating in space for land and ocean observations. These include the NASA Aquarius mission and the Soil Moisture Active Passive (SMAP) mission, both of which use combined passive/ active L-band instruments. Aquarius s passive/active L-band microwave sensor has been designed to map the salinity field at the surface of the ocean from space. SMAP s primary objectives are for soil moisture and freeze/thaw detection, but it will operate continuously over the ocean, and hence will have significant potential for ocean surface research. In this innovation, an algorithm has been developed to retrieve simultaneously ocean surface salinity and wind from combined passive/active L-band microwave observations of sea surfaces. The algorithm takes advantage of the differing response of brightness temperatures and radar backscatter to salinity, wind speed, and direction, thus minimizing the least squares error (LSE) measure, which signifies the difference between measurements and model functions of brightness temperatures and radar backscatter. The algorithm uses the conjugate gradient method to search for the local minima of the LSE. Three LSE measures with different measurement combinations have been tested. The first LSE measure uses passive microwave data only with retrieval errors reaching 1 to 2 psu (practical salinity units) for salinity, and 1 to 2 m/s for wind speed. The second LSE measure uses both passive and active microwave data for vertical and horizontal polarizations. The addition of active microwave data significantly improves the retrieval accuracy by about a factor of five. To mitigate the impact of Faraday rotation on satellite observations, the third LSE measure uses measurement combinations invariant under the Faraday rotation. For Aquarius, the expected RMS SSS (sea surface salinity) error will be less than about 0.2 psu for low winds, and increases to 0.3 psu at 25 m/s wind speed for warm waters (25 C). To achieve the required 0.2 psu accuracy, the impact of sea surface roughness (e.g. wind-generated ripples) on the observed brightness temperature has to be corrected to better than one tenth of a degree Kelvin. With this algorithm, the accuracy of retrieved wind speed will be high, varying from a few tenths to 0.6 m/s. The expected direction accuracy is also excellent (less than 10 ) for mid to high winds, but degrades for lower speeds (less than 7 m/s).

  14. Quantification of wind flow in the European Mars Simulation Wind Tunnel Facility

    NASA Astrophysics Data System (ADS)

    Holstein-Rathlou, C.; Merrison, J. P.; Iversen, J. J.; Nornberg, P.

    2012-04-01

    We present the European Mars Simulation Wind Tunnel facility, a unique prototype facility capable of simulating a wide range of environmental conditions, such as those which can be found at the surface of Earth or Mars. The chamber complements several other large-scale simulation facilities at Aarhus University, Denmark. The facility consists of a 50 m3 environmental chamber capable of operating at low pressure (0.02 - 1000 mbar) and cryogenic temperatures (-130 °C up to +60 °C). This chamber houses a re-circulating wind tunnel capable of generating wind speeds up to 25 m/s and has a dust injection system that can produce suspended particulates (aerosols). It employs a unique LED based optical illumination system (solar simulator) and an advanced network based control system. Laser based optoelectronic instrumentation is used to quantify and monitor wind flow, dust suspension and deposition. This involves a commercial Laser Doppler Anemometer (LDA) and a Particle Dynamics Analysis receiver (PDA), which are small laser based instruments specifically designed for measuring wind speed and sizes of particles situated in a wind flow. Wind flow calibrations will be performed with the LDA system and presented. Pressure and temperature calibrations will follow in order to enable the facility to be used for the testing, development, calibration and comparison of e.g. meteorological sensors under a wide range of environmental conditions as well as multi-disciplinary scientific studies. The wind tunnel is accessible to international collaborators and space agencies for instrument testing, calibration and qualification. It has been financed by the European Space Agency (ESA) as well as the Aarhus University Science Faculty and the Villum Kann Rasmussen Foundation.

  15. A Coastal Bay Summer Breeze Study, Part 1: Results of the Quiberon 2006 Experimental Campaign

    NASA Astrophysics Data System (ADS)

    Mestayer, Patrice G.; Calmet, Isabelle; Herlédant, Olivier; Barré, Sophie; Piquet, Thibaud; Rosant, Jean-Michel

    2018-04-01

    The Quiberon 2006 experiment was launched to document the onset and development of land and sea breezes over a semi-circular coastal bay propitious to inshore sailing competitions. The measurements were taken during the 2 weeks of 16-28 June 2006. Micrometeorological variables were recorded at three shore sites around the bay using turbulence sensors on 10-30-m high masts, on four instrumented catamarans at selected sites within the bay, and at a fourth shore site with a Sodar. Synoptic data and local measurements are analyzed here from the point of view of both micrometeorologists and competition skippers, testing in particular the empirical rules of breeze veering and backing according to the wind direction with respect to the coastline orientation at the mesoscale (the quadrant theory). Our analysis focuses on the patterns of lower-altitude wind direction and speed around the bay and over the water basin, and the temporal variations during the periods of the breeze onset, establishment and thermal reinforcement. In offshore synoptic-flow conditions (quadrants 1 and 2), the clockwise rotation of the surface flow had a very large amplitude, reaching up to 360°. The breeze strength was negatively correlated to that of the synoptic wind speed. In conditions of onshore synoptic flow from the west (quadrant 3) at an angle to the mainland coast but perpendicular to the Quiberon peninsula, the rotation of the flow was backwards in the early morning and clockwise during the day with a moderate amplitude (40°-50°) around the synoptic wind direction. As the surface wind speed was much larger than the synoptic wind speed, such a case we have designated as a "synoptic breeze". The breeze onset was shown to fail several times under the influence of weak non-thermal events, e.g., the passage of an occluded front or clouds or an excess of convection. Finally, several local-scale influences of the complex coastal shape appeared in our measurements, e.g., wind fanning in the lee of the isthmus and airflow skirting around the peninsula forehand.

  16. A Nonlinear Dynamics Approach for Incorporating Wind-Speed Patterns into Wind-Power Project Evaluation

    PubMed Central

    Huffaker, Ray; Bittelli, Marco

    2015-01-01

    Wind-energy production may be expanded beyond regions with high-average wind speeds (such as the Midwest U.S.A.) to sites with lower-average speeds (such as the Southeast U.S.A.) by locating favorable regional matches between natural wind-speed and energy-demand patterns. A critical component of wind-power evaluation is to incorporate wind-speed dynamics reflecting documented diurnal and seasonal behavioral patterns. Conventional probabilistic approaches remove patterns from wind-speed data. These patterns must be restored synthetically before they can be matched with energy-demand patterns. How to accurately restore wind-speed patterns is a vexing problem spurring an expanding line of papers. We propose a paradigm shift in wind power evaluation that employs signal-detection and nonlinear-dynamics techniques to empirically diagnose whether synthetic pattern restoration can be avoided altogether. If the complex behavior of observed wind-speed records is due to nonlinear, low-dimensional, and deterministic system dynamics, then nonlinear dynamics techniques can reconstruct wind-speed dynamics from observed wind-speed data without recourse to conventional probabilistic approaches. In the first study of its kind, we test a nonlinear dynamics approach in an application to Sugarland Wind—the first utility-scale wind project proposed in Florida, USA. We find empirical evidence of a low-dimensional and nonlinear wind-speed attractor characterized by strong temporal patterns that match up well with regular daily and seasonal electricity demand patterns. PMID:25617767

  17. Sniffle: a step forward to measure in situ CO 2 fluxes with the floating chamber technique

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ribas-Ribas, Mariana; Kilcher, Levi F.; Wurl, Oliver

    Understanding how the ocean absorbs anthropogenic CO 2 is critical for predicting climate change. We designed Sniffle, a new autonomous drifting buoy with a floating chamber, to measure gas transfer velocities and air-sea CO 2 fluxes with high spatiotemporal resolution. Currently, insufficient in situ data exist to verify gas transfer parameterizations at low wind speeds (<4 m s -1), which leads to underestimation of gas transfer velocities and, therefore, of air-sea CO 2 fluxes. The Sniffle is equipped with a sensor to consecutively measure aqueous and atmospheric pCO 2 and to monitor increases or decreases of CO 2 inside themore » chamber. During autonomous operation, a complete cycle lasts 40 minutes, with a new cycle initiated after flushing the chamber. The Sniffle can be deployed for up to 15 hours at wind speeds up to 10 m s -1. Floating chambers often overestimate fluxes because they create additional turbulence at the water surface. We correct fluxes by measuring turbulence with two acoustic Doppler velocimeters, one positioned directly under the floating chamber and the other positioned sideways, to compare artificial disturbance caused by the chamber and natural turbulence. The first results of deployment in the North Sea during the summer of 2016 demonstrate that the new drifting buoy is a useful tool that can improve our understanding of gas transfer velocity with in situ measurements. At low and moderate wind speeds and different conditions, the results obtained indicate that the observed tidal basin was acting as a source of atmospheric CO 2. Wind speed and turbulence alone could not fully explain the variance in gas transfer velocity. We suggest therefore, that other factors like surfactants, rain or tidal current will have an impact on gas transfer parameterizations.« less

  18. Sniffle: a step forward to measure in situ CO 2 fluxes with the floating chamber technique

    DOE PAGES

    Ribas-Ribas, Mariana; Kilcher, Levi F.; Wurl, Oliver

    2018-01-09

    Understanding how the ocean absorbs anthropogenic CO 2 is critical for predicting climate change. We designed Sniffle, a new autonomous drifting buoy with a floating chamber, to measure gas transfer velocities and air-sea CO 2 fluxes with high spatiotemporal resolution. Currently, insufficient in situ data exist to verify gas transfer parameterizations at low wind speeds (<4 m s -1), which leads to underestimation of gas transfer velocities and, therefore, of air-sea CO 2 fluxes. The Sniffle is equipped with a sensor to consecutively measure aqueous and atmospheric pCO 2 and to monitor increases or decreases of CO 2 inside themore » chamber. During autonomous operation, a complete cycle lasts 40 minutes, with a new cycle initiated after flushing the chamber. The Sniffle can be deployed for up to 15 hours at wind speeds up to 10 m s -1. Floating chambers often overestimate fluxes because they create additional turbulence at the water surface. We correct fluxes by measuring turbulence with two acoustic Doppler velocimeters, one positioned directly under the floating chamber and the other positioned sideways, to compare artificial disturbance caused by the chamber and natural turbulence. The first results of deployment in the North Sea during the summer of 2016 demonstrate that the new drifting buoy is a useful tool that can improve our understanding of gas transfer velocity with in situ measurements. At low and moderate wind speeds and different conditions, the results obtained indicate that the observed tidal basin was acting as a source of atmospheric CO 2. Wind speed and turbulence alone could not fully explain the variance in gas transfer velocity. We suggest therefore, that other factors like surfactants, rain or tidal current will have an impact on gas transfer parameterizations.« less

  19. Convective Heat Transfer at the Martian Boundary Layer, Measurement and Model

    NASA Astrophysics Data System (ADS)

    Tomás Soria-Salinas, Álvaro; Zorzano-Mier, María Paz; Martín-Torres, Javier

    2016-04-01

    We present a measuring concept to measure the convective heat transfer coefficient h near a spacecraft operating on the surface of Mars. This coefficient can be used to derive the speed of the wind and direction, and to detect its modulations. This measuring concept will be used in the instrument HABIT (HabitAbility: Brines, Irradiance and Temperature) for the Surface Platform of ExoMars 2018 (ESA-Roscosmos). The method is based on the use of 3 Resistance Temperature Thermodetectors (RTD) that measure the temperature at 3 locations along the axial direction of a rod of length L: at the base of the rod, Tb, an intermediate point x = L/n, TLn, and the tip,Ta. This sensing fin is called the Air Temperature Sensor (ATS). HABIT shall incorporate three ATS, oriented in perpendicular directions and thus exposed to wind in a different way. Solving these equations for each ATS, provides three fluid temperatures Tf as well as three m parameters that are used to derive three heat transfer coefficients h. This magnitude is dependent on the local forced convection and therefore is sensitive to the direction, speed and modulations of the wind. The m-parameter has already proven to be useful to investigate the convective activity at the planetary boundary layer on Mars and to determine the height of the planetary boundary layer. This method shall be presented here by: 1) Introducing the mathematical concepts for the retrieval of the m-parameter; 2) performing ANSYS simulations of the fluid dynamics and the thermal environment around the ATS-rods under wind conditions in Mars; and 3) comparing the method by using data measurements from the Rover Environmental Monitoring Station (REMS) at the Curiosity rover of NASA's Mars Science Laboratory project currently operating on Mars. The results shall be compared with the wind sensor measurements of three years of REMS operation on Mars.

  20. Wind Speed Perception and Risk

    PubMed Central

    Agdas, Duzgun; Webster, Gregory D.; Masters, Forrest J.

    2012-01-01

    Background How accurately do people perceive extreme wind speeds and how does that perception affect the perceived risk? Prior research on human–wind interaction has focused on comfort levels in urban settings or knock-down thresholds. No systematic experimental research has attempted to assess people's ability to estimate extreme wind speeds and perceptions of their associated risks. Method We exposed 76 people to 10, 20, 30, 40, 50, and 60 mph (4.5, 8.9, 13.4, 17.9, 22.3, and 26.8 m/s) winds in randomized orders and asked them to estimate wind speed and the corresponding risk they felt. Results Multilevel modeling showed that people were accurate at lower wind speeds but overestimated wind speeds at higher levels. Wind speed perceptions mediated the direct relationship between actual wind speeds and perceptions of risk (i.e., the greater the perceived wind speed, the greater the perceived risk). The number of tropical cyclones people had experienced moderated the strength of the actual–perceived wind speed relationship; consequently, mediation was stronger for people who had experienced fewer storms. Conclusion These findings provide a clearer understanding of wind and risk perception, which can aid development of public policy solutions toward communicating the severity and risks associated with natural disasters. PMID:23226230

  1. Simulation of the Impact of New Aircraft and Satellite-Based Ocean Surface Wind Measurements on H*Wind Analyses

    NASA Technical Reports Server (NTRS)

    Miller, TImothy L.; Atlas, R. M.; Black, P. G.; Case, J. L.; Chen, S. S.; Hood, R. E.; Johnson, J. W.; Jones, L.; Ruf, C. S.; Uhlborn, E. W.

    2008-01-01

    Accurate observations of surface ocean vector winds (OVW) with high spatial and temporal resolution are required for understanding and predicting tropical cyclones. As NASA's QuikSCAT and Navy's WindSat operate beyond their design life, many members of the weather and climate science communities recognize the importance of developing new observational technologies and strategies to meet the essential need for OVW information to improve hurricane intensity and location forecasts. The Hurricane Imaging Radiometer (HIRAD) is an innovative technology development which offers new and unique remotely sensed satellite observations of both extreme oceanic wind events and strong precipitation. It is based on the airborne Stepped Frequency Microwave Radiometer (SFMR), which is the only proven remote sensing technique for observing tropical cyclone (TC) ocean surface wind speeds and rain rates. The proposed HIRAD instrument advances beyond the current nadir viewing SFMR to an equivalent wide-swath SFMR imager using passive microwave synthetic thinned aperture radiometer (STAR) technology. This sensor will operate over 4-7 GHz (C-band frequencies) where the required TC remote sensing physics has been validated by both SFMR and WindSat radiometers. The instrument is described in more detail in a paper by Jones et al. presented to the Tropical Meteorology Special Symposium at this AMS Annual Meeting. Simulated HIRAD passes through a simulation of hurricane Frances are being developed to demonstrate HIRAD estimation of surface wind speed over a wide swath in the presence of heavy rain. These are currently being used in "quick" OSSEs (Observing System Simulation Experiments) with H'Wind analyses as the discriminating tool. The H'Wind analysis, a product of the Hurricane Research Division of NOAA's Atlantic , Oceanographic and Meteorological Laboratory, brings together wind measurements from a variety of observation platforms into an objective analysis of the distribution of wind speeds in a tropical cyclone. This product is designed to improve understanding of the extent and strength of the wind field, and to improve the assessment of hurricane intensity. See http://www.aoml.noaa._ov/hrd/data sub/wind.html. Observations have been simulated from both aircraft altitudes and space. The simulated flight patterns for the aircraft platform cases have been designed to duplicate the timing and flight patterns used in routine NOAA and USAF hurricane surveillance flights, and the spaceborne case simulates a TRMM orbit and altitude.

  2. NASA Tech Briefs, September 2003

    NASA Technical Reports Server (NTRS)

    2003-01-01

    Topics include: Oxygen-Partial-Pressure Sensor for Aircraft Oxygen Mask; Three-Dimensional Venturi Sensor for Measuring Extreme Winds; Swarms of Micron-Sized Sensors; Monitoring Volcanoes by Use of Air-Dropped Sensor Packages; Capacitive Sensors for Measuring Masses of Cryogenic Fluids; UHF Microstrip Antenna Array for Synthetic- Aperture Radar; Multimode Broad-Band Patch Antennas; 164-GHz MMIC HEMT Frequency Doubler; GPS Position and Heading Circuitry for Ships; Software for Managing Parametric Studies; Software Aids Visualization of Computed Unsteady Flow; Software for Testing Electroactive Structural Components; Advanced Software for Analysis of High-Speed Rolling-Element Bearings; Web Program for Development of GUIs for Cluster Computers; XML-Based Generator of C++ Code for Integration With GUIs; Oxide Protective Coats for Ir/Re Rocket Combustion Chambers; Simplified Waterproofing of Aerogels; Improved Thermal-Insulation Systems for Low Temperatures; Device for Automated Cutting and Transfer of Plant Shoots; Extension of Liouville Formalism to Postinstability Dynamics; Advances in Thrust-Based Emergency Control of an Airplane; Ultrasonic/Sonic Mechanisms for Drilling and Coring; Exercise Device Would Exert Selectable Constant Resistance; Improved Apparatus for Measuring Distance Between Axles; Six Classes of Diffraction-Based Optoelectronic Instruments; Modernizing Fortran 77 Legacy Codes; Active State Model for Autonomous Systems; Shields for Enhanced Protection Against High-Speed Debris; Scaling of Two-Phase Flows to Partial-Earth Gravity; Neutral-Axis Springs for Thin-Wall Integral Boom Hinges.

  3. European shags optimize their flight behavior according to wind conditions.

    PubMed

    Kogure, Yukihisa; Sato, Katsufumi; Watanuki, Yutaka; Wanless, Sarah; Daunt, Francis

    2016-02-01

    Aerodynamics results in two characteristic speeds of flying birds: the minimum power speed and the maximum range speed. The minimum power speed requires the lowest rate of energy expenditure per unit time to stay airborne and the maximum range speed maximizes air distance traveled per unit of energy consumed. Therefore, if birds aim to minimize the cost of transport under a range of wind conditions, they are predicted to fly at the maximum range speed. Furthermore, take-off is predicted to be strongly affected by wind speed and direction. To investigate the effect of wind conditions on take-off and cruising flight behavior, we equipped 14 European shags Phalacrocorax aristotelis with a back-mounted GPS logger to measure position and hence ground speed, and a neck-mounted accelerometer to record wing beat frequency and strength. Local wind conditions were recorded during the deployment period. Shags always took off into the wind regardless of their intended destination and take-off duration was correlated negatively with wind speed. We combined ground speed and direction during the cruising phase with wind speed and direction to estimate air speed and direction. Whilst ground speed was highly variable, air speed was comparatively stable, although it increased significantly during strong head winds, because of stronger wing beats. The increased air speeds in head winds suggest that birds fly at the maximum range speed, not at the minimum power speed. Our study demonstrates that European shags actively adjust their flight behavior to utilize wind power to minimize the costs of take-off and cruising flight. © 2016. Published by The Company of Biologists Ltd.

  4. Diode Laser Diagnostics of High Speed Flows (Postprint)

    DTIC Science & Technology

    2006-10-01

    Tests were conducted in the Research Cell 18 direct connect wind tunnel facility at WPAFB. TDLAS was used to detect water and oxygen at...the measurements and provide, in essence, an internal standard for the development of the oxygen sensor . American Institute of Aeronautics and...definitely improves SNR if fast flow noise dominates as in this case. The improved optical and electronic TDLAS system detected water and oxygen at

  5. ? stability of wind turbine switching control

    NASA Astrophysics Data System (ADS)

    Palejiya, Dushyant; Shaltout, Mohamed; Yan, Zeyu; Chen, Dongmei

    2015-01-01

    In order to maximise the wind energy capture, wind turbines are operated at variable speeds. Depending on the wind speed, a turbine switches between two operating modes: a low wind speed mode and a high wind speed mode. During the low wind speed mode, the control objective is to maximise wind energy capture by controlling both the blade pitch angle and the electrical generator torque. During the high wind speed mode, the control goal is to maintain the rated power generation by only adjusting the blade pitch angle. This paper establishes the stability criteria for the switching operation of wind turbines using ? gain under the nonlinear control framework. Also, the performance of the wind turbine system is analysed by using the step response, a well-known measure for second-order linear systems.

  6. Developing an automated risk management tool to minimize bird and bat mortality at wind facilities.

    PubMed

    Robinson Willmott, Julia; Forcey, Greg M; Hooton, Lauren A

    2015-11-01

    A scarcity of baseline data is a significant barrier to understanding and mitigating potential impacts of offshore development on birds and bats. Difficult and sometimes unpredictable conditions coupled with high expense make gathering such data a challenge. The Acoustic and Thermographic Offshore Monitoring (ATOM) system combines thermal imaging with acoustic and ultrasound sensors to continuously monitor bird and bat abundance, flight height, direction, and speed. ATOM's development and potential capabilities are discussed, and illustrated using onshore and offshore test data obtained over 16 months in the eastern USA. Offshore deployment demonstrated birds tending to fly into winds and activity declining sharply in winds >10 km h(-1). Passerines showed distinct seasonal changes in flight bearing and flew higher than non-passerines. ATOM data could be used to automatically shut down wind turbines to minimize collision mortality while simultaneously providing information for modeling activity in relation to weather and season.

  7. Using Model Helicopters for Meteorological Observations in Support of Tornado Forecasting

    NASA Astrophysics Data System (ADS)

    Harrison, William; Roscoe, Bryan; Schafer, David; Bluestein, Howard; Lary, David

    2012-10-01

    In order to gain a better understanding of the physical factors involved in tornadogenesis, a complete 3-D profile of winds, temperature, and humidity in the forward-flank and rear-flank gust front regions in supercells is required. Conventional methods of making comparative measurements in and around storms are very limited. Measurements that comprehensively profile the boundary layer winds and thermodynamics are valuable but rare. A better understanding of the physical properties in these boundary layers will improve forecasts and increase warning times in affected areas. Remote-controlled model helicopters are a uniquely qualified platform for this application, allowing us to fully profile these boundary layers. Our system will consist of a swarm of autonomous acrobatic helicopters, each outfitted with temperature, pressure, humidity, and wind speed sensors.

  8. Analyzing the dynamic response of rotating blades in small-scale wind turbines

    NASA Astrophysics Data System (ADS)

    Hsiung, Wan-Ying; Huang, Yu-Ting; Loh, Chin-Hsiung; Loh, Kenneth J.; Kamisky, Robert J.; Nip, Danny; van Dam, Cornelis

    2014-03-01

    The objective of this study was to validate modal analysis, system identification and damage detection of small-scale rotating wind turbine blades in the laboratory and in the field. Here, wind turbine blades were instrumented with accelerometers and strain gages, and data acquisition was achieved using a prototype wireless sensing system. In the first portion of this study conducted in the laboratory, sensors were installed onto metallic structural elements that were fabricated to be representative of an actual wind blade. In order to control the excitation (rotation of the wind blade), a motor was used to spin the blades at controlled angular velocities. The wind turbine was installed on a shaking table for testing under rotation of turbine blades. Data measured by the sensors were recorded while the blade was operated at different speeds. On the other hand, the second part of this study utilized a small-scale wind turbine system mounted on the rooftop of a building. The main difference, as compared to the lab tests, was that the field tests relied on actual wind excitations (as opposed to a controlled motor). The raw data from both tests were analyzed using signal processing and system identification techniques for deriving the model response of the blades. The multivariate singular spectrum analysis (MSSA) and covariance-driven stochastic subspace identification method (SSI-COV) were used to identify the dynamic characteristics of the system. Damage of one turbine blade (loose bolts connection) in the lab test was also conducted. The extracted modal properties for both undamaged and damage cases under different ambient or forced excitations (earthquake loading) were compared. These tests confirmed that dynamic characterization of rotating wind turbines was feasible, and the results will guide future monitoring studies planned for larger-scale systems.

  9. Multi-step-ahead Method for Wind Speed Prediction Correction Based on Numerical Weather Prediction and Historical Measurement Data

    NASA Astrophysics Data System (ADS)

    Wang, Han; Yan, Jie; Liu, Yongqian; Han, Shuang; Li, Li; Zhao, Jing

    2017-11-01

    Increasing the accuracy of wind speed prediction lays solid foundation to the reliability of wind power forecasting. Most traditional correction methods for wind speed prediction establish the mapping relationship between wind speed of the numerical weather prediction (NWP) and the historical measurement data (HMD) at the corresponding time slot, which is free of time-dependent impacts of wind speed time series. In this paper, a multi-step-ahead wind speed prediction correction method is proposed with consideration of the passing effects from wind speed at the previous time slot. To this end, the proposed method employs both NWP and HMD as model inputs and the training labels. First, the probabilistic analysis of the NWP deviation for different wind speed bins is calculated to illustrate the inadequacy of the traditional time-independent mapping strategy. Then, support vector machine (SVM) is utilized as example to implement the proposed mapping strategy and to establish the correction model for all the wind speed bins. One Chinese wind farm in northern part of China is taken as example to validate the proposed method. Three benchmark methods of wind speed prediction are used to compare the performance. The results show that the proposed model has the best performance under different time horizons.

  10. Spectral sea surface reflectance of skylight.

    PubMed

    Zhang, Xiaodong; He, Shuangyan; Shabani, Afshin; Zhai, Peng-Wang; Du, Keping

    2017-02-20

    In examining the dependence of the sea surface reflectance of skylight ρs on sky conditions, wind speed, solar zenith angle, and viewing geometry, Mobley [Appl. Opt.38, 7442 (1999).10.1364/AO.38.007442] assumed ρs is independent of wavelength. Lee et al. [Opt. Express18, 26313 (2010).10.1364/OE.18.026313] showed experimentally that ρs does vary spectrally due to the spectral difference of sky radiance coming from different directions, which was ignored in Mobley's study. We simulated ρs from 350 nm to 1000 nm by explicitly accounting for spectral variations of skylight distribution and Fresnel reflectance. Furthermore, we separated sun glint from sky glint because of significant differences in magnitude, spectrum and polarization state between direct sun light and skylight light. The results confirm that spectral variation of ρs(λ) mainly arises from the spectral distribution of skylight and would vary from slightly blueish due to normal dispersion of the refractive index of water, to neutral and then to reddish with increasing wind speeds and decreasing solar zenith angles. Polarization moderately increases sky glint by 8 - 20% at 400 nm but only by 0 - 10% at 1000 nm. Sun glint is inherently reddish and becomes significant (>10% of sky glint) when the sun is at the zenith with moderate winds or when the sea is roughened (wind speeds > 10 m s-1) with solar zenith angles < 20°. We recommend a two-step procedure by first correcting the glint due to direct sun light, which is unpolarized, followed by removing the glint due to diffused and polarized skylight. The simulated ρs(λ) as a function of wind speeds, sun angles and aerosol concentrations for currently recommended sensor-sun geometry, i.e., zenith angle = 40° and azimuthal angle relative to the sun = 45°, is available upon request.

  11. Statistical distribution of wind speeds and directions globally observed by NSCAT

    NASA Astrophysics Data System (ADS)

    Ebuchi, Naoto

    1999-05-01

    In order to validate wind vectors derived from the NASA scatterometer (NSCAT), statistical distributions of wind speeds and directions over the global oceans are investigated by comparing with European Centre for Medium-Range Weather Forecasts (ECMWF) wind data. Histograms of wind speeds and directions are calculated from the preliminary and reprocessed NSCAT data products for a period of 8 weeks. For wind speed of the preliminary data products, excessive low wind distribution is pointed out through comparison with ECMWF winds. A hump at the lower wind speed side of the peak in the wind speed histogram is discernible. The shape of the hump varies with incidence angle. Incompleteness of the prelaunch geophysical model function, SASS 2, tentatively used to retrieve wind vectors of the preliminary data products, is considered to cause the skew of the wind speed distribution. On the contrary, histograms of wind speeds of the reprocessed data products show consistent features over the whole range of incidence angles. Frequency distribution of wind directions relative to spacecraft flight direction is calculated to assess self-consistency of the wind directions. It is found that wind vectors of the preliminary data products exhibit systematic directional preference relative to antenna beams. This artificial directivity is also considered to be caused by imperfections in the geophysical model function. The directional distributions of the reprocessed wind vectors show less directivity and consistent features, except for very low wind cases.

  12. MP3 - A Meteorology and Physical Properties Package to explore Air:Sea interaction on Titan

    NASA Astrophysics Data System (ADS)

    Lorenz, R. D.

    2012-04-01

    The exchange of mass, heat and momentum at the air:sea interface are profound influences on our environment. Titan presents us with an opportunity to study these processes in a novel physical context. The MP3 instrument, under development for the proposed Discovery mission TiME (Titan Mare Explorer) is an integrated suite of small, simple sensors that combines the a traditional meteorology package with liquid physical properties and depth-sounding. In TiME's 6-Titan-day (96-day) nominal mission, MP3 will have an extended measurement opportunity in one of the most evocative environments in the solar system. The mission and instrument benefit from APL's expertise and experience in marine as well as space systems. The topside meteorology sensors (METH, WIND, PRES, TEMP) will yield the first long-duration in-situ data to constrain Global Circulation Models. The sea sensors (TEMP, TURB, DIEL, SOSO) allow high cadence bulk composition measurements to detect heterogeneities as the TiME capsule drifts across Ligeia, while a depth sounder (SONR) will measure the bottom profile. The combination of these sensors (and vehicle dynamics, ACCL) will characterize air:sea exchange. In addition to surface data, a measurement subset (ACCL, PRES, METH, TEMP) is made during descent to characterize the structure of the polar troposphere and marine boundary layer. A single electronics box inside the vehicle performs supervising and data handling functions and is connected to the sensors on the exterior via a wire and fiber optic harness. ACCL: MEMS accelerometers and angular rate sensors measure the vehicle motion during descent and on the surface, to recover wave amplitude and period and to correct wind measurements for vehicle motion. TEMP: Precision sensors are installed at several locations above and below the 'waterline' to measure air and sea temperatures. Installation of topside sensors at several locations ensures that at least one is on the upwind side of the vehicle. PRES: The barometer subsystem uses pressure sensors from FMI of the type flown on Huygens. METH. Methane humidity (and the presence of fog) is measured with a near-IR differential absorption spectro-photometer. The humidity may vary with and fetch, as well as on nearby rainfall. WIND. An ultrasonic anemometer, mounted on a mast to minimize flow perturbations, measures wind speed and direction. DIEL : An immersed parallel-plate capacitor (spare from Huygens SSP) fills with liquid to measure the dielectric constant. This is sensitive to the methane/ethane ratio, and to the possible presence of nitriles such as HCN. SOSO : A pair of ultrasound transducers (SSP spares) measure the speed of sound in the liquid, a function of the methane/ethane ratio (unaffected by trace nitriles). SONR : A down-looking piezoelectric depth-sounder to measure the bottom profile. The echo record will also indicate suspended scatterers and the presence of bubble noise at the sea surface. TURB. A visible light beam is passed through the liquid and the direct and scattered intensity is measured to gauge particles in the liquid and the deposition of solar heat with depth.

  13. Power Smoothing and MPPT for Grid-connected Wind Power Generation with Doubly Fed Induction Generator

    NASA Astrophysics Data System (ADS)

    Kai, Takaaki; Tanaka, Yuji; Kaneda, Hirotoshi; Kobayashi, Daichi; Tanaka, Akio

    Recently, doubly fed induction generator (DFIG) and synchronous generator are mostly applied for wind power generation, and variable speed control and power factor control are executed for high efficiently for wind energy capture and high quality for power system voltage. In variable speed control, a wind speed or a generator speed is used for maximum power point tracking. However, performances of a wind generation power fluctuation due to wind speed variation have not yet investigated for those controls. The authors discuss power smoothing by those controls for the DFIG inter-connected to 6.6kV distribution line. The performances are verified using power system simulation software PSCAD/EMTDC for actual wind speed data and are examined from an approximate equation of wind generation power fluctuation for wind speed variation.

  14. Flight speed and performance of the wandering albatross with respect to wind.

    PubMed

    Richardson, Philip L; Wakefield, Ewan D; Phillips, Richard A

    2018-01-01

    Albatrosses and other large seabirds use dynamic soaring to gain sufficient energy from the wind to travel large distances rapidly and with little apparent effort. The recent development of miniature bird-borne tracking devices now makes it possible to explore the physical and biological implications of this means of locomotion in detail. Here we use GPS tracking and concurrent reanalyzed wind speed data to model the flight performance of wandering albatrosses Diomedea exulans soaring over the Southern Ocean. We investigate the extent to which flight speed and performance of albatrosses is facilitated or constrained by wind conditions encountered during foraging trips. We derived simple equations to model observed albatross ground speed as a function of wind speed and relative wind direction. Ground speeds of the tracked birds in the along-wind direction varied primarily by wind-induced leeway, which averaged 0.51 (± 0.02) times the wind speed at a reference height of 5 m. By subtracting leeway velocity from ground velocity, we were able to estimate airspeed (the magnitude of the bird's velocity through the air). As wind speeds increased from 3 to 18 m/s, the airspeed of wandering albatrosses flying in an across-wind direction increased by 0.42 (± 0.04) times the wind speed (i.e. ~ 6 m/s). At low wind speeds, tracked birds increased their airspeed in upwind flight relative to that in downwind flight. At higher wind speeds they apparently limited their airspeeds to a maximum of around 20 m/s, probably to keep the forces on their wings in dynamic soaring well within tolerable limits. Upwind airspeeds were nearly constant and downwind leeway increased with wind speed. Birds therefore achieved their fastest upwind ground speeds (~ 9 m/s) at low wind speeds (~ 3 m/s). This study provides insights into which flight strategies are optimal for dynamic soaring. Our results are consistent with the prediction that the optimal range speed of albatrosses is higher in headwind than tailwind flight but only in wind speeds of up to ~ 7 m/s. Our models predict that wandering albatrosses have oval-shaped airspeed polars, with the fastest airspeeds ~ 20 m/s centered in the across-wind direction. This suggests that in upwind flight in high winds, albatrosses can increase their ground speed by tacking like sailboats.

  15. Forest impact estimated with NOAA AVHRR and landsat TM data related to an empirical hurricane wind-field distribution

    USGS Publications Warehouse

    Ramsey, Elijah W.; Hodgson, M.E.; Sapkota, S.K.; Nelson, G.A.

    2001-01-01

    An empirical model was used to relate forest type and hurricane-impact distribution with wind speed and duration to explain the variation of hurricane damage among forest types along the Atchafalaya River basin of coastal Louisiana. Forest-type distribution was derived from Landsat Thematic Mapper image data, hurricane-impact distribution from a suite of transformed advanced very high resolution radiometer images, and wind speed and duration from a wind-field model. The empirical model explained 73%, 84%, and 87% of the impact variances for open, hardwood, and cypress-tupelo forests, respectively. These results showed that the estimated impact for each forest type was highly related to the duration and speed of extreme winds associated with Hurricane Andrew in 1992. The wind-field model projected that the highest wind speeds were in the southern basin, dominated by cypress-tupelo and open forests, while lower wind speeds were in the northern basin, dominated by hardwood forests. This evidence could explain why, on average, the impact to cypress-tupelos was more severe than to hardwoods, even though cypress-tupelos are less susceptible to wind damage. Further, examination of the relative importance of wind speed in explaining the impact severity to each forest type showed that the impact to hardwood forests was mainly related to tropical-depression to tropical-storm force wind speeds. Impacts to cypress-tupelo and open forests (a mixture of willows and cypress-tupelo) were broadly related to tropical-storm force wind speeds and by wind speeds near and somewhat in excess of hurricane force. Decoupling the importance of duration from speed in explaining the impact severity to the forests could not be fully realized. Most evidence, however, hinted that impact severity was positively related to higher durations at critical wind speeds. Wind-speed intervals, which were important in explaining the impact severity on hardwoods, showed that higher durations, but not the highest wind speeds, were concentrated in the northern basin, dominated by hardwoods. The extreme impacts associated with the cypress-tupelo forests in the southeast corner of the basin intersected the highest durations as well as the highest wind speeds. ?? 2001 Published by Elsevier Science Inc.

  16. Multi-parameter monitoring of electrical machines using integrated fibre Bragg gratings

    NASA Astrophysics Data System (ADS)

    Fabian, Matthias; Hind, David; Gerada, Chris; Sun, Tong; Grattan, Kenneth T. V.

    2017-04-01

    In this paper a sensor system for multi-parameter electrical machine condition monitoring is reported. The proposed FBG-based system allows for the simultaneous monitoring of machine vibration, rotor speed and position, torque, spinning direction, temperature distribution along the stator windings and on the rotor surface as well as the stator wave frequency. This all-optical sensing solution reduces the component count of conventional sensor systems, i.e., all 48 sensing elements are contained within the machine operated by a single sensing interrogation unit. In this work, the sensing system has been successfully integrated into and tested on a permanent magnet motor prototype.

  17. Wind Turbine Diagnosis under Variable Speed Conditions Using a Single Sensor Based on the Synchrosqueezing Transform Method.

    PubMed

    Guo, Yanjie; Chen, Xuefeng; Wang, Shibin; Sun, Ruobin; Zhao, Zhibin

    2017-05-18

    The gearbox is one of the key components in wind turbines. Gearbox fault signals are usually nonstationary and highly contaminated with noise. The presence of amplitude-modulated and frequency-modulated (AM-FM) characteristics compound the difficulty of precise fault diagnosis of wind turbines, therefore, it is crucial to develop an effective fault diagnosis method for such equipment. This paper presents an improved diagnosis method for wind turbines via the combination of synchrosqueezing transform and local mean decomposition. Compared to the conventional time-frequency analysis techniques, the improved method which is performed in non-real-time can effectively reduce the noise pollution of the signals and preserve the signal characteristics, and hence is suitable for the analysis of nonstationary signals with high noise. This method is further validated by simulated signals and practical vibration data measured from a 1.5 MW wind turbine. The results confirm that the proposed method can simultaneously control the noise and increase the accuracy of time-frequency representation.

  18. Wind Turbine Diagnosis under Variable Speed Conditions Using a Single Sensor Based on the Synchrosqueezing Transform Method

    PubMed Central

    Guo, Yanjie; Chen, Xuefeng; Wang, Shibin; Sun, Ruobin; Zhao, Zhibin

    2017-01-01

    The gearbox is one of the key components in wind turbines. Gearbox fault signals are usually nonstationary and highly contaminated with noise. The presence of amplitude-modulated and frequency-modulated (AM-FM) characteristics compound the difficulty of precise fault diagnosis of wind turbines, therefore, it is crucial to develop an effective fault diagnosis method for such equipment. This paper presents an improved diagnosis method for wind turbines via the combination of synchrosqueezing transform and local mean decomposition. Compared to the conventional time-frequency analysis techniques, the improved method which is performed in non-real-time can effectively reduce the noise pollution of the signals and preserve the signal characteristics, and hence is suitable for the analysis of nonstationary signals with high noise. This method is further validated by simulated signals and practical vibration data measured from a 1.5 MW wind turbine. The results confirm that the proposed method can simultaneously control the noise and increase the accuracy of time-frequency representation. PMID:28524090

  19. Geophysics, Oceanography

    NASA Technical Reports Server (NTRS)

    Halpern, D.; Wentz, F.

    1993-01-01

    Development of decade-long time series of global surface wind measurements for studies ofseasonal-to-interannual climate variability presents unique challenges for space- borne instrumentationbecause of the necessity to combine data sets of 3- to 5-year lifetimes. Before the first Special SensorMicrowave Imager (SSMI), which was launched on the Defence Meteorological Satellite Program(DMSP) F8 spacecraft in July 1987, stopped recording wind speed in December 1991, another SSMIwas launched on DMSP F10 in December 1991. Interpretation of the 1987 - 1993 composite timeseries is dependent upon the space and time characteristics of the differences between concurrent F8and F10 SSMI measurements. This paper emphasizes large geographical regions and 1-month timescale. The F8-F10 area-weighted difference between 60 degrees S and 60 degrees S during 305 daysof 1991 (-0.12 m s^(-1)) was comparable to the year-to-year wind speed variations during 1988-1991. The 10 degree-zonal averaged monthly mean F8-F10 difference was negative (positive) forwind speeds less (greater) than 7.9 m s^(-1), reaching - 0.43(0.32) m s^(-1) at 5(10) m s^(-1). The10 degree-zonal averaged monthly mean F8-F10 bias had considerable variations throughout the yearand between 60 degrees S - 60 degrees N, with the largest temporal variation (1.4 m s^(-1)) in the 50degrees - 60 degrees N region from February to April. The 1991 average value of the monthly meanroot-mean-square (rms) difference between F8 and F10 daily wind speeds in 10 degree-longitudinalbands was 2.0 m s^(-1) over 60 degrees S - 60 degrees N, the amplitude of the annual cycle of therms difference was largest in the northern hemisphere middle latitudes, and the rms difference wasrelated to the wind speed (e.g., at 6 and 10 m s^(-1), the rms difference was 1.7 and 2.7 m s^(-1),respectively). The relationship between monthly mean 1/3 degrees x 1/3 degrees F8-F10 SSMI windspeed differences and integrated water vapor and liquid water content in the atmosphere is discussed.

  20. Intraday evaporation and heat fluxes variation at air-water interface of extremely shallow lakes in Chilean Andean Plateau

    NASA Astrophysics Data System (ADS)

    Vergara, Jaime; de la Fuente, Alberto

    2016-04-01

    Salars are landscapes formed by evapo-concentration of salts that usually have extremely shallow terminal lagoons (de la Fuente & Niño, 2010). They are located in the altiplanic region of the Andes Mountains of Chile, Argentina, Bolivia and Peru, and they sustain highly vulnerable and isolated ecosystems in the Andean Desert. These ecosystems are sustained by benthic primary production, which is directly linked to mass, heat and momentum transfer between the water column and the atmosphere (de la Fuente, 2014). Despite the importance of these transport processes across the air-water interface, there are few studies describing their intraday variation and how they are influenced by the stability of the atmospheric boundary layer in the altiplano. The main objective of this work is to analyze the intraday vertical transport variation of water vapor, temperature and momentum between the atmosphere and a shallow water body on Salar del Huasco located in northern Chile (20°19'40"S, 68°51'25"W). To achieve this goal, we measured atmospheric and water variables in a campaign realized on late October 2015, using high frequency meteorological instruments (a sonic anemometer with an incorporated infrared gas analyzer, and a standard meteorological station) and water sensors. From these data, we characterize the intraday variation of water vapor, temperature and momentum fluxes, we quantify the influence of the atmospheric boundary layer stability on them, and we estimate transfer coefficients associated to latent heat, sensible heat, hydrodynamic drag and vertical transport of water vapor. As first results, we found that latent and sensible heat fluxes are highly influenced by wind speed rather buoyancy, and we can identify four intraday intervals with different thermo-hydrodynamic features: (1) cooling under stable condition with wind speed near 0 from midnight until sunrise; (2) free convection with nearly no wind speed under unstable condition from sunrise until midday; (3) forced convection with high wind speed (near 15 m/s) and unstable condition close to neutral condition from noon to sunset; and (4) cooling under unstable conditions with significant wind speed, from sunset until midnight.

  1. Field intercomparison of prevailing sonic anemometers

    NASA Astrophysics Data System (ADS)

    Mauder, Matthias; Zeeman, Matthias J.

    2018-01-01

    Three-dimensional sonic anemometers are the core component of eddy covariance systems, which are widely used for micrometeorological and ecological research. In order to characterize the measurement uncertainty of these instruments we present and analyse the results from a field intercomparison experiment of six commonly used sonic anemometer models from four major manufacturers. These models include Campbell CSAT3, Gill HS-50 and R3, METEK uSonic-3 Omni, R. M. Young 81000 and 81000RE. The experiment was conducted over a meadow at the TERENO/ICOS site DE-Fen in southern Germany over a period of 16 days in June of 2016 as part of the ScaleX campaign. The measurement height was 3 m for all sensors, which were separated by 9 m from each other, each on its own tripod, in order to limit contamination of the turbulence measurements by adjacent structures as much as possible. Moreover, the high-frequency data from all instruments were treated with the same post-processing algorithm. In this study, we compare the results for various turbulence statistics, which include mean horizontal wind speed, standard deviations of vertical wind velocity and sonic temperature, friction velocity, and the buoyancy flux. Quantitative measures of uncertainty, such as bias and comparability, are derived from these results. We find that biases are generally very small for all sensors and all computed variables, except for the sonic temperature measurements of the two Gill sonic anemometers (HS and R3), confirming a known transducer-temperature dependence of the sonic temperature measurement. The best overall agreement between the different instruments was found for the mean wind speed and the buoyancy flux.

  2. Mountainous Ecosystem Sensor Array (MESA): a mesh sensor network for climate change research in remote mountainous environments

    NASA Astrophysics Data System (ADS)

    Robinson, P. W.; Neal, D.; Frome, D.; Kavanagh, K.; Davis, A.; Gessler, P. E.; Hess, H.; Holden, Z. A.; Link, T. E.; Newingham, B. A.; Smith, A. M.

    2013-12-01

    Developing sensor networks robust enough to perform unattended in the world's remote regions is critical since these regions serve as important benchmarks that lack anthropogenic influence. Paradoxically, the factors that make these remote, natural sites challenging for sensor networking are often what make them indispensable for climate change research. The MESA (Mountainous Ecosystem Sensor Array) project has faced these challenges and developed a wireless mesh sensor network across a 660 m topoclimatic gradient in a wilderness area in central Idaho. This sensor array uses advances in sensing, networking, and power supply technologies to provide near real-time synchronized data covering a suite of biophysical parameters used in ecosystem process models. The 76 sensors in the network monitor atmospheric carbon dioxide concentration, humidity, air and soil temperature, soil water content, precipitation, incoming and outgoing shortwave and longwave radiation, snow depth, wind speed and direction, and leaf wetness at synchronized time intervals ranging from two minutes to two hours and spatial scales from a few meters to two kilometers. We present our novel methods of placing sensors and network nodes above, below, and throughout the forest canopy without using meteorological towers. In addition, we explain our decision to use different forms of power (wind and solar) and the equipment we use to control and integrate power harvesting. Further, we describe our use of the network to sense and quantify its own power use. Using examples of environmental data from the project, we discuss how these data may be used to increase our understanding of the effects of climate change on ecosystem processes in mountainous environments. MESA sensor locations across a 700 m topoclimatic gradient at the University of Idaho Taylor Wilderness Research Station.

  3. Tropospheric Airborne Meteorological Data Reporting (TAMDAR) Overview

    NASA Technical Reports Server (NTRS)

    Daniels, Taumi S.; Moninger, William R.; Mamrosh, Richard D.

    2008-01-01

    This paper is an overview of the Tropospheric Airborne Meteorological Data Reporting (TAMDAR) project, giving some history on the project, various applications of the atmospheric data, and future ideas and plans. As part of NASA's Aviation Safety and Security Program, the TAMDAR project developed a small low-cost sensor that collects useful meteorological data and makes them available in near real time to improve weather forecasts. This activity has been a joint effort with FAA, NOAA, universities, and industry. A tri-agency team collaborated by developing a concept of operations, determining the sensor specifications, and evaluating sensor performance as reported by Moosakhanian et. al. (2006). Under contract with Georgia Tech Research Institute, NASA worked with AirDat of Raleigh, NC to develop the sensor. The sensor is capable of measuring temperature, relative humidity, pressure, and icing. It can compute pressure altitude, indicated and true air speed, ice accretion rate, wind speed and direction, peak and average turbulence, and eddy dissipation rate. The overall development process, sensor capabilities, and performance based on ground and flight tests is reported by Daniels (2002), Daniels et. al. (2004) and by Tsoucalas et. al. (2006). An in-service evaluation of the sensor was performed called the Great Lakes Fleet Experiment (GLFE), first reported by Moninger et. al. (2004) and Mamrosh et. al. (2005). In this experiment, a Mesaba Airlines fleet was equipped to collect meteorological data over the Great Lakes region during normal revenue-producing flights.

  4. Study on the abnormal data rejection and normal condition evaluation applied in wind turbine farm

    NASA Astrophysics Data System (ADS)

    Zhang, Ying; Qian, Zheng; Tian, Shuangshu

    2016-01-01

    The condition detection of wind turbine is always an important issue which attract more and more attentions because of the rapid development of wind farm. And the on-line data analysis is also difficult since a lot of measured data is collected. In this paper, the abnormal data rejection and normal condition evaluation of wind turbine is processed. At first, since there are large amounts of abnormal data in the normal operation of wind turbine, which is probably caused by fault, maintenance downtime, power-limited operation and failure of wind speed sensor, a novel method is proposed to reject abnormal data in order to make more accurate analysis for the wind turbine condition. The core principle of this method is to fit the wind power curves by using the scatter diagram. The data outside the area covered by wind power curves is the abnormal data. The calculation shows that the abnormal data is rejected effectively. After the rejection, the vibration signals of wind turbine bearing which is a critical component are analyzed and the relationship between the vibration characteristic value and the operating condition of wind turbine is discussed. It will provide powerful support for the accurate fault analysis of wind turbine.

  5. Study on typhoon characteristic based on bridge health monitoring system.

    PubMed

    Wang, Xu; Chen, Bin; Sun, Dezhang; Wu, Yinqiang

    2014-01-01

    Through the wind velocity and direction monitoring system installed on Jiubao Bridge of Qiantang River, Hangzhou city, Zhejiang province, China, a full range of wind velocity and direction data was collected during typhoon HAIKUI in 2012. Based on these data, it was found that, at higher observed elevation, turbulence intensity is lower, and the variation tendency of longitudinal and lateral turbulence intensities with mean wind speeds is basically the same. Gust factor goes higher with increasing mean wind speed, and the change rate obviously decreases as wind speed goes down and an inconspicuous increase occurs when wind speed is high. The change of peak factor is inconspicuous with increasing time and mean wind speed. The probability density function (PDF) of fluctuating wind speed follows Gaussian distribution. Turbulence integral scale increases with mean wind speed, and its PDF does not follow Gaussian distribution. The power spectrum of observation fluctuating velocity is in accordance with Von Karman spectrum.

  6. Gas exchange-wind speed relation measured with sulfur hexafluoride on a lake

    NASA Technical Reports Server (NTRS)

    Wanninkhof, R.; Broecker, W. S.; Ledwell, J. R.

    1985-01-01

    Gas-exchange processes control the uptake and release of various gases in natural systems such as oceans, rivers, and lakes. Not much is known about the effect of wind speed on gas exchange in such systems. In the experiment described here, sulfur hexafluoride was dissolved in lake water, and the rate of escape of the gas with wind speed (at wind speeds up to 6 meters per second) was determined over a 1-month period. A sharp change in the wind speed dependence of the gas-exchange coefficient was found at wind speeds of about 2.4 meters per second, in agreement with the results of wind-tunnel studies. However the gas-exchange coefficients at wind speeds above 3 meters per second were smaller than those observed in wind tunnels and are in agreement with earlier lake and ocean results.

  7. Wind energy potential assessment of Cameroon's coastal regions for the installation of an onshore wind farm.

    PubMed

    Arreyndip, Nkongho Ayuketang; Joseph, Ebobenow; David, Afungchui

    2016-11-01

    For the future installation of a wind farm in Cameroon, the wind energy potentials of three of Cameroon's coastal cities (Kribi, Douala and Limbe) are assessed using NASA average monthly wind data for 31 years (1983-2013) and compared through Weibull statistics. The Weibull parameters are estimated by the method of maximum likelihood, the mean power densities, the maximum energy carrying wind speeds and the most probable wind speeds are also calculated and compared over these three cities. Finally, the cumulative wind speed distributions over the wet and dry seasons are also analyzed. The results show that the shape and scale parameters for Kribi, Douala and Limbe are 2.9 and 2.8, 3.9 and 1.8 and 3.08 and 2.58, respectively. The mean power densities through Weibull analysis for Kribi, Douala and Limbe are 33.7 W/m2, 8.0 W/m2 and 25.42 W/m2, respectively. Kribi's most probable wind speed and maximum energy carrying wind speed was found to be 2.42 m/s and 3.35 m/s, 2.27 m/s and 3.03 m/s for Limbe and 1.67 m/s and 2.0 m/s for Douala, respectively. Analysis of the wind speed and hence power distribution over the wet and dry seasons shows that in the wet season, August is the windiest month for Douala and Limbe while September is the windiest month for Kribi while in the dry season, March is the windiest month for Douala and Limbe while February is the windiest month for Kribi. In terms of mean power density, most probable wind speed and wind speed carrying maximum energy, Kribi shows to be the best site for the installation of a wind farm. Generally, the wind speeds at all three locations seem quite low, average wind speeds of all the three studied locations fall below 4.0m/s which is far below the cut-in wind speed of many modern wind turbines. However we recommend the use of low cut-in speed wind turbines like the Savonius for stand alone low energy needs.

  8. Estimation of effective wind speed

    NASA Astrophysics Data System (ADS)

    Østergaard, K. Z.; Brath, P.; Stoustrup, J.

    2007-07-01

    The wind speed has a huge impact on the dynamic response of wind turbine. Because of this, many control algorithms use a measure of the wind speed to increase performance, e.g. by gain scheduling and feed forward. Unfortunately, no accurate measurement of the effective wind speed is online available from direct measurements, which means that it must be estimated in order to make such control methods applicable in practice. In this paper a new method is presented for the estimation of the effective wind speed. First, the rotor speed and aerodynamic torque are estimated by a combined state and input observer. These two variables combined with the measured pitch angle is then used to calculate the effective wind speed by an inversion of a static aerodynamic model.

  9. Aeolus -A Mission to Study the Thermal and Wind Environment of Mars

    NASA Technical Reports Server (NTRS)

    Colaprete, Anthony

    2017-01-01

    Aeolus is a small satellite mission to observe surface and atmospheric forcing and general circulation of Mars, by measuring surface energy balance, atmospheric temperatures, aerosols and clouds, and winds. Critically, Aeolus will make these measurements at all local times of day, providing information on both seasonal and diurnal variability. To date, direct measurements of Martian wind speeds have only been possible at the surface, only during daylight hours, and over small areas limited by rover traverse capabilities. From orbit, thermal measurements (e.g., estimates from assumed geostrophic balance) as well as images of dust storms and dune migration have provided inputs to derive current data sets on Martian winds. However, Mars General Circulation models demonstrate that wind speeds derived from these indirect measurements may be in error by 50 to 100%. For this reason, direct wind velocity measurements have been deemed "High Priority" by MEPAG (Mars Exploration Program Analysis Group); measuring wind speeds and corresponding thermal data is vital to understanding the climate of Mars. Aeolus will carry four Spatial Heterodyne Spectrometers (SHS), coupled to two orthogonal viewing telescopes. These high-resolution near-infrared spectrometers will measure CO2 (daytime absorption) and O2 (day and night emission) lines in the Martian atmosphere. Doppler shifts in these lines can be measured during Martian day and night, resolving wind speeds down to 5 m/s. Orthogonal views allow the spectrometers to capture wind vectors over all observation locations. Aeolus will also carry the atmospheric limb-viewing Thermal Limb Sounder (TLS) to measure atmospheric temperatures, water ice clouds, and dust abundances across all altitudes where winds are measured. Finally, the Surface Radiometric Sensor Package (SuRSeP), a nadir viewing radiometer, will measure the total reflected solar and emitted thermal radiance, surface temperature, and water cloud and dust total column abundances. The combined spectral and thermal measurements will provide a new understanding of the global energy balance, dust transport processes, and climate cycles in the Martian atmosphere. Aeolus will consist of a single satellite in a near-polar orbit, allowing it to pass over all local times, with the baseline mission observing all seasons of an entire Martian year (two Earth years). Aeolus was one of two Martian smallsat concepts selected for study through the Planetary Science Deep Space SmallSat Studies program. This talk will provide an overview of the mission, including science rationale, instruments, spacecraft, and mission operations concept.

  10. Effect of thermal stability/complex terrain on wind turbine model(s): a wind tunnel study to address complex atmospheric conditions

    NASA Astrophysics Data System (ADS)

    Guala, M.; Hu, S. J.; Chamorro, L. P.

    2011-12-01

    Turbulent boundary layer measurements in both wind tunnel and in the near-neutral atmospheric surface layer revealed in the last decade the significant contribution of the large scales of motions to both turbulent kinetic energy and Reynolds stresses, for a wide range of Reynolds number. These scales are known to grow throughout the logarithmic layer and to extend several boundary layer heights in the streamwise direction. Potentially, they are a source of strong unsteadiness in the power output of wind turbines and in the aerodynamic loads of wind turbine blades. However, the large scales in realistic atmospheric conditions deserves further study, with well controlled boundary conditions. In the atmospheric wind tunnel of the St. Anthony Falls Laboratory, with a 16 m long test section and independently controlled incoming flow and floor temperatures, turbulent boundary layers in a range of stability conditions, from the stratified to the convective case, can be reproduced and monitored. Measurements of fluctuating temperature, streamwise and wall normal velocity components are simultaneously obtained by an ad hoc calibrated and customized triple-wire sensor. A wind turbine model with constant loading DC motor, constant tip speed ratio, and a rotor diameter of 0.128m is used to mimic a large full scale turbine in the atmospheric boundary layer. Measurements of the fluctuating voltage generated by the DC motor are compared with measurements of the blade's angular velocity by laser scanning, and eventually related to velocity measurements from the triple-wire sensor. This study preliminary explores the effect of weak stability and complex terrain (through a set of spanwise aligned topographic perturbations) on the large scales of the flow and on the fluctuations in the wind turbine(s) power output.

  11. Monthly and annual percentage levels of wind speed differences computed by using FPS-16 radar/Jimsphere wind profile data from Cape Kennedy, Florida

    NASA Technical Reports Server (NTRS)

    Susko, M.; Kaufman, J. W.

    1973-01-01

    The percentage levels of wind speed differences are presented computed from sequential FPS-16 radar/Jimsphere wind profiles. The results are based on monthly profiles obtained from December 1964 to July 1970 at Cape Kennedy, Florida. The profile sequences contain a series of three to ten Jimspheres released at approximately 1.5-hour intervals. The results given are the persistence analysis of wind speed difference at 1.5-hour intervals to a maximum time interval of 12 hours. The monthly percentage of wind speed differences and the annual percentage of wind speed differences are tabulated. The percentage levels are based on the scalar wind speed changes calculated over an altitude interval of approximately 50 meters and printed out every 25 meters as a function of initial wind speed within each five-kilometer layer from near sea level to 20 km. In addition, analyses were made of the wind speed difference for the 0.2 to 1 km layer as an aid for studies associated with take-off and landing of the space shuttle.

  12. Dynamics modeling and periodic control of horizontal-axis wind turbines

    NASA Astrophysics Data System (ADS)

    Stol, Karl Alexander

    2001-07-01

    The development of large multi-megawatt wind turbines has increased the need for active feedback control to meet multiple performance objectives. Power regulation is still of prime concern but there is an increasing interest in mitigating loads for these very large, dynamically soft and highly integrated power systems. This work explores the opportunities for utilizing state space modeling, modal analysis, and multi-objective controllers in advanced horizontal-axis wind turbines. A linear state-space representation of a generic, multiple degree-of-freedom wind turbine is developed to test various control methods and paradigms. The structural model, SymDyn, provides for limited flexibility in the tower, drive train and blades assuming a rigid component architecture with joint springs and dampers. Equations of motion are derived symbolically, verified by numerical simulation, and implemented in the Matlab with Simulink computational environment. AeroDyn, an industry-standard aerodynamics package for wind turbines, provides the aerodynamic load data through interfaced subroutines. Linearization of the structural model produces state equations with periodic coefficients due to the interaction of rotating and non-rotating components. Floquet theory is used to extract the necessary modal properties and several parametric studies identify the damping levels and dominant dynamic coupling influences. Two separate issues of control design are investigated: full-state feedback and state estimation. Periodic gains are developed using time-varying LQR techniques and many different time-invariant control designs are constructed, including a classical PID controller. Disturbance accommodating control (DAC) allows the estimation of wind speed for minimization of the disturbance effects on the system. Controllers are tested in simulation for multiple objectives using measurement of rotor position and rotor speed only and actuation of independent blade pitch. It is found that periodic control is capable of reducing cyclic blade bending moments while regulating speed but that optimal performance requires additional sensor information. Periodic control is also the only design found that could successfully control the yaw alignment although blade loads are increased as a consequence. When speed regulation is the only performance objective then a time-invariant state-space design or PID is appropriate.

  13. Air/sea DMS gas transfer in the North Atlantic: evidence for limited interfacial gas exchange at high wind speed

    NASA Astrophysics Data System (ADS)

    Bell, T. G.; De Bruyn, W.; Miller, S. D.; Ward, B.; Christensen, K.; Saltzman, E. S.

    2013-05-01

    Shipboard measurements of eddy covariance DMS air/sea fluxes and seawater concentration were carried out in the North Atlantic bloom region in June/July 2011. Gas transfer coefficients (k660) show a linear dependence on mean horizontal wind speed at wind speeds up to 11 m s-1. At higher wind speeds the relationship between k660 and wind speed weakens. At high winds, measured DMS fluxes were lower than predicted based on the linear relationship between wind speed and interfacial stress extrapolated from low to intermediate wind speeds. In contrast, the transfer coefficient for sensible heat did not exhibit this effect. The apparent suppression of air/sea gas flux at higher wind speeds appears to be related to sea state, as determined from shipboard wave measurements. These observations are consistent with the idea that long waves suppress near surface water side turbulence, and decrease interfacial gas transfer. This effect may be more easily observed for DMS than for less soluble gases, such as CO2, because the air/sea exchange of DMS is controlled by interfacial rather than bubble-mediated gas transfer under high wind speed conditions.

  14. Air-sea dimethylsulfide (DMS) gas transfer in the North Atlantic: evidence for limited interfacial gas exchange at high wind speed

    NASA Astrophysics Data System (ADS)

    Bell, T. G.; De Bruyn, W.; Miller, S. D.; Ward, B.; Christensen, K.; Saltzman, E. S.

    2013-11-01

    Shipboard measurements of eddy covariance dimethylsulfide (DMS) air-sea fluxes and seawater concentration were carried out in the North Atlantic bloom region in June/July 2011. Gas transfer coefficients (k660) show a linear dependence on mean horizontal wind speed at wind speeds up to 11 m s-1. At higher wind speeds the relationship between k660 and wind speed weakens. At high winds, measured DMS fluxes were lower than predicted based on the linear relationship between wind speed and interfacial stress extrapolated from low to intermediate wind speeds. In contrast, the transfer coefficient for sensible heat did not exhibit this effect. The apparent suppression of air-sea gas flux at higher wind speeds appears to be related to sea state, as determined from shipboard wave measurements. These observations are consistent with the idea that long waves suppress near-surface water-side turbulence, and decrease interfacial gas transfer. This effect may be more easily observed for DMS than for less soluble gases, such as CO2, because the air-sea exchange of DMS is controlled by interfacial rather than bubble-mediated gas transfer under high wind speed conditions.

  15. Simulation of the Impact of New Aircraft- and Satellite-Based Ocean Surface Wind Measurements on H*Wind Analyses and Numerical Forecasts

    NASA Technical Reports Server (NTRS)

    Miller, Timothy; Atlas, Robert; Black, Peter; Buckley, Courtney; Chen, Shuyi; Hood, robbie; Johnson, James; Jones, Linwood; Ruf, Chris; Uhlhorn, Eric; hide

    2008-01-01

    The Hurricane Imaging Radiometer (HIRAD) is a new airborne microwave remote sensor for hurricane observations that is currently under development by NASA Marshall Space Flight Center, NOAA Hurricane Research Division, the University of Central Florida and the University of Michigan. HIRAD is being designed to enhance the realtime airborne ocean surface winds observation capabilities of NOAA and USAF Weather Squadron hurricane hunter aircraft using the operational airborne Stepped Frequency Microwave Radiometer (SFMR). Unlike SFMR, which measures wind speed and rain rate along the ground track directly beneath the aircraft, HIRAD will provide images of the surface wind and rain field over a wide swath ( 3 x the aircraft altitude). The present paper describes a set of Observing System Simulation Experiments (OSSEs) in which measurements from the new instrument as well as those from existing instruments (air, surface, and space-based) are simulated from the output of a detailed numerical model, and those results are used to construct H*Wind analyses. The H*Wind analysis, a product of the Hurricane Research Division of NOAA s Atlantic Oceanographic and Meteorological Laboratory, brings together wind measurements from a variety of observation platforms into an objective analysis of the distribution of wind speeds in a tropical cyclone. This product is designed to improve understanding of the extent and strength of the wind field, and to improve the assessment of hurricane intensity. See http://www.aoml.noaa.gov/hrd/data_sub/wind.html. Evaluations will be presented on the impact of the HIRAD instrument on H*Wind analyses, both in terms of adding it to the full suite of current measurements, as well as using it to replace instrument(s) that may not be functioning at the future time the HIRAD instrument is deployed. Plans to demonstrate the potential for HIRAD to improve numerical weather prediction of hurricanes will also be presented.

  16. Simulation of the Impact of New Air-Based Ocean Surface Wind Measurements on H*Wind Analyses

    NASA Technical Reports Server (NTRS)

    Miller, Timothy; Atlas, Robert; Black, Peter; Case, Jonathan; Chen, Shuyi; Hood, Robbie; Jones, Linwood; Ruff, Chris; Uhlhorn, Eric

    2008-01-01

    The H'Wind analysis, a product of the Hurricane Research Division of NOAA's Atlantic Oceanographic and Meteorological Laboratory, brings together wind measurements from a variety of observation platforms into an objective analysis of the distribution of wind speeds in a tropical cyclone. This product is designed to improve understanding of the extent and strength of the wind field, and to improve the assessment of hurricane intensity. See http://www.aoml.noaa.gov/hrd/data sub/wind.html. The Hurricane Imaging Radiometer (HIRad) is a new airborne microwave remote sensor for hurricane observations that is currently under development by NASA Marshall Space Flight Center, NOAA Hurricane Research Division, the University of Central Florida and the University of Michigan. HIRad is being designed to enhance the real-time airborne ocean surface winds observation capabilities of NOAA and USAF Weather Squadron hurricane hunter aircraft using the operational airborne Stepped Frequency Microwave Radiometer (SFMR). Unlike SFMR, which measures wind speed and rain rate along the ground track directly beneath the aircraft, HIRad will provide images of the surface wind and rain field over a wide swath (approx. 3 x the aircraft altitude). The instrument is described in a paper presented to the Hurricanes and Tropical Meteorology Symposium. The present paper describes a set of Observing System Simulation Experiments (OSSEs) in which measurements from the new instrument as well as those from existing instruments (air, surface, and space-based) are simulated from the output of a numerical model from the University of Miami and those results are used to construct H*Wind analyses. Evaluations will be presented on the impact of the HIRad instrument on H'Wind analyses, both in terms of adding it to the full suite of current measurements, as well as using it to replace instrument(s) that may not be functioning at the future tame the HIRad instrument is implemented.

  17. Inventory of File sref.t03z.pgrb197.prob_ds_3hrly.grib

    Science.gov Websites

    ground WIND 3 hour fcst Wind Speed [prob] prob >12.89 005 10 m above ground WIND 3 hour fcst Wind Speed [prob] prob >17.5 006 10 m above ground WIND 3 hour fcst Wind Speed [prob] prob >25.78 007 2 ;0.015 010 10 m above ground WIND 6 hour fcst Wind Speed [prob] prob >12.89 011 10 m above ground WIND

  18. Expertise effects in cutaneous wind perception.

    PubMed

    Pluijms, Joost P; Cañal-Bruland, Rouwen; Bergmann Tiest, Wouter M; Mulder, Fabian A; Savelsbergh, Geert J P

    2015-08-01

    We examined whether expertise effects are present in cutaneous wind perception. To this end, we presented wind stimuli consisting of different wind directions and speeds in a wind simulator. The wind simulator generated wind stimuli from 16 directions and with three speeds by means of eight automotive wind fans. Participants were asked to judge cutaneously perceived wind directions and speeds without having access to any visual or auditory information. Expert sailors (n = 6), trained to make the most effective use of wind characteristics, were compared to less-skilled sailors (n = 6) and to a group of nonsailors (n = 6). The results indicated that expert sailors outperformed nonsailors in perceiving wind direction (i.e., smaller mean signed errors) when presented with low wind speeds. This suggests that expert sailors are more sensitive in picking up differences in wind direction, particularly when confronted with low wind speeds that demand higher sensitivity.

  19. On the role of high frequency waves in ocean altimetry

    NASA Astrophysics Data System (ADS)

    Vandemark, Douglas C.

    This work mines a coastal and open ocean air-sea interaction field experiment data set where the goals are to refine satellite retrieval of wind, wind stress, and sea level using a microwave radar altimeter. The data were collected from a low-flying aircraft using a sensor suite designed to measure the surface waves, radar backscatter, the atmospheric flow, and turbulent fluxes within the marine boundary layer. This uncommon ensemble provides the means to address several specific altimeter-related topics. First, we examine and document the impact that non wind-driven gravity wave variability, e.g. swell, has upon the commonly-invoked direct relationship between altimeter backscatter and near surface wind speed. The demonstrated impact is larger in magnitude and more direct than previously suggested. The study also isolates the wind-dependence of short-scale slope variance and suggests its magnitude is somewhat lower than shown elsewhere while a second-order dependence on long waves is also evident. A second study assesses the hypothesis that wind-aligned swell interacts with the atmospheric boundary flow leading to a depressed level of turbulence. Cases of reduced drag coefficient at moderate wind speeds were in evidence within the data set, and buoy observations indicate that swell was present and a likely control during these events. Coincidentally, short-scale wave roughness was also depressed suggesting decreased wind stress. Attempts to confirm the theory failed, however, due to numerous limitations in the quantity and quality of the data in hand. A lesson learned is that decoupling atmospheric stability and wave impacts in field campaigns requires both a very large amount of data as well as vertical resolution of fluxes within the first 10--20 m of the surface.

  20. Using Sentinel-1 SAR satellites to map wind speed variation across offshore wind farm clusters

    NASA Astrophysics Data System (ADS)

    James, S. F.

    2017-11-01

    Offshore wind speed maps at 500m resolution are derived from freely available satellite Synthetic Aperture Radar (SAR) data. The method for processing many SAR images to derive wind speed maps is described in full. The results are tested against coincident offshore mast data. Example wind speed maps for the UK Thames Estuary offshore wind farm cluster are presented.

  1. On Modeling Eavesdropping Attacks in Underwater Acoustic Sensor Networks †

    PubMed Central

    Wang, Qiu; Dai, Hong-Ning; Li, Xuran; Wang, Hao; Xiao, Hong

    2016-01-01

    The security and privacy of underwater acoustic sensor networks has received extensive attention recently due to the proliferation of underwater activities. This paper proposes an analytical model to investigate the eavesdropping attacks in underwater acoustic sensor networks. Our analytical framework considers the impacts of various underwater acoustic channel conditions (such as the acoustic signal frequency, spreading factor and wind speed) and different hydrophones (isotropic hydrophones and array hydrophones) in terms of network nodes and eavesdroppers. We also conduct extensive simulations to evaluate the effectiveness and the accuracy of our proposed model. Empirical results show that our proposed model is quite accurate. In addition, our results also imply that the eavesdropping probability heavily depends on both the underwater acoustic channel conditions and the features of hydrophones. PMID:27213379

  2. Analytical expressions for maximum wind turbine average power in a Rayleigh wind regime

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carlin, P.W.

    Average or expectation values for annual power of a wind turbine in a Rayleigh wind regime are calculated and plotted as a function of cut-out wind speed. This wind speed is expressed in multiples of the annual average wind speed at the turbine installation site. To provide a common basis for comparison of all real and imagined turbines, the Rayleigh-Betz wind machine is postulated. This machine is an ideal wind machine operating with the ideal Betz power coefficient of 0.593 in a Rayleigh probability wind regime. All other average annual powers are expressed in fractions of that power. Cases consideredmore » include: (1) an ideal machine with finite power and finite cutout speed, (2) real machines operating in variable speed mode at their maximum power coefficient, and (3) real machines operating at constant speed.« less

  3. Effective wind speed estimation: Comparison between Kalman Filter and Takagi-Sugeno observer techniques.

    PubMed

    Gauterin, Eckhard; Kammerer, Philipp; Kühn, Martin; Schulte, Horst

    2016-05-01

    Advanced model-based control of wind turbines requires knowledge of the states and the wind speed. This paper benchmarks a nonlinear Takagi-Sugeno observer for wind speed estimation with enhanced Kalman Filter techniques: The performance and robustness towards model-structure uncertainties of the Takagi-Sugeno observer, a Linear, Extended and Unscented Kalman Filter are assessed. Hence the Takagi-Sugeno observer and enhanced Kalman Filter techniques are compared based on reduced-order models of a reference wind turbine with different modelling details. The objective is the systematic comparison with different design assumptions and requirements and the numerical evaluation of the reconstruction quality of the wind speed. Exemplified by a feedforward loop employing the reconstructed wind speed, the benefit of wind speed estimation within wind turbine control is illustrated. Copyright © 2015 ISA. Published by Elsevier Ltd. All rights reserved.

  4. Wind speed response of marine non-precipitating stratocumulus clouds over a diurnal cycle in cloud-system resolving simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kazil, Jan; Feingold, Graham; Yamaguchi, Takanobu

    Observed and projected trends in large-scale wind speed over the oceans prompt the question: how do marine stratocumulus clouds and their radiative properties respond to changes in large-scale wind speed? Wind speed drives the surface fluxes of sensible heat, moisture, and momentum and thereby acts on cloud liquid water path (LWP) and cloud radiative properties. We present an investigation of the dynamical response of non-precipitating, overcast marine stratocumulus clouds to different wind speeds over the course of a diurnal cycle, all else equal. In cloud-system resolving simulations, we find that higher wind speed leads to faster boundary layer growth and strongermore » entrainment. The dynamical driver is enhanced buoyant production of turbulence kinetic energy (TKE) from latent heat release in cloud updrafts. LWP is enhanced during the night and in the morning at higher wind speed, and more strongly suppressed later in the day. Wind speed hence accentuates the diurnal LWP cycle by expanding the morning–afternoon contrast. The higher LWP at higher wind speed does not, however, enhance cloud top cooling because in clouds with LWP ≳50 gm –2, longwave emissions are insensitive to LWP. This leads to the general conclusion that in sufficiently thick stratocumulus clouds, additional boundary layer growth and entrainment due to a boundary layer moistening arises by stronger production of TKE from latent heat release in cloud updrafts, rather than from enhanced longwave cooling. Here, we find that large-scale wind modulates boundary layer decoupling. At nighttime and at low wind speed during daytime, it enhances decoupling in part by faster boundary layer growth and stronger entrainment and in part because shear from large-scale wind in the sub-cloud layer hinders vertical moisture transport between the surface and cloud base. With increasing wind speed, however, in decoupled daytime conditions, shear-driven circulation due to large-scale wind takes over from buoyancy-driven circulation in transporting moisture from the surface to cloud base and thereby reduces decoupling and helps maintain LWP. Furthermore, the total (shortwave + longwave) cloud radiative effect (CRE) responds to changes in LWP and cloud fraction, and higher wind speed translates to a stronger diurnally averaged total CRE. However, the sensitivity of the diurnally averaged total CRE to wind speed decreases with increasing wind speed.« less

  5. Wind speed response of marine non-precipitating stratocumulus clouds over a diurnal cycle in cloud-system resolving simulations

    DOE PAGES

    Kazil, Jan; Feingold, Graham; Yamaguchi, Takanobu

    2016-05-12

    Observed and projected trends in large-scale wind speed over the oceans prompt the question: how do marine stratocumulus clouds and their radiative properties respond to changes in large-scale wind speed? Wind speed drives the surface fluxes of sensible heat, moisture, and momentum and thereby acts on cloud liquid water path (LWP) and cloud radiative properties. We present an investigation of the dynamical response of non-precipitating, overcast marine stratocumulus clouds to different wind speeds over the course of a diurnal cycle, all else equal. In cloud-system resolving simulations, we find that higher wind speed leads to faster boundary layer growth and strongermore » entrainment. The dynamical driver is enhanced buoyant production of turbulence kinetic energy (TKE) from latent heat release in cloud updrafts. LWP is enhanced during the night and in the morning at higher wind speed, and more strongly suppressed later in the day. Wind speed hence accentuates the diurnal LWP cycle by expanding the morning–afternoon contrast. The higher LWP at higher wind speed does not, however, enhance cloud top cooling because in clouds with LWP ≳50 gm –2, longwave emissions are insensitive to LWP. This leads to the general conclusion that in sufficiently thick stratocumulus clouds, additional boundary layer growth and entrainment due to a boundary layer moistening arises by stronger production of TKE from latent heat release in cloud updrafts, rather than from enhanced longwave cooling. Here, we find that large-scale wind modulates boundary layer decoupling. At nighttime and at low wind speed during daytime, it enhances decoupling in part by faster boundary layer growth and stronger entrainment and in part because shear from large-scale wind in the sub-cloud layer hinders vertical moisture transport between the surface and cloud base. With increasing wind speed, however, in decoupled daytime conditions, shear-driven circulation due to large-scale wind takes over from buoyancy-driven circulation in transporting moisture from the surface to cloud base and thereby reduces decoupling and helps maintain LWP. Furthermore, the total (shortwave + longwave) cloud radiative effect (CRE) responds to changes in LWP and cloud fraction, and higher wind speed translates to a stronger diurnally averaged total CRE. However, the sensitivity of the diurnally averaged total CRE to wind speed decreases with increasing wind speed.« less

  6. Peak Wind Tool for General Forecasting

    NASA Technical Reports Server (NTRS)

    Barrett, Joe H., III; Short, David

    2008-01-01

    This report describes work done by the Applied Meteorology Unit (AMU) in predicting peak winds at Kennedy Space Center (KSC) and Cape Canaveral Air Force Station (CCAFS). The 45th Weather Squadron requested the AMU develop a tool to help them forecast the speed and timing of the daily peak and average wind, from the surface to 300 ft on KSC/CCAFS during the cool season. Based on observations from the KSC/CCAFS wind tower network , Shuttle Landing Facility (SLF) surface observations, and CCAFS sounding s from the cool season months of October 2002 to February 2007, the AMU created mul tiple linear regression equations to predict the timing and speed of the daily peak wind speed, as well as the background average wind speed. Several possible predictors were evaluated, including persistence , the temperature inversion depth and strength, wind speed at the top of the inversion, wind gust factor (ratio of peak wind speed to average wind speed), synoptic weather pattern, occurrence of precipitation at the SLF, and strongest wind in the lowest 3000 ft, 4000 ft, or 5000 ft.

  7. Generalized extreme gust wind speeds distributions

    USGS Publications Warehouse

    Cheng, E.; Yeung, C.

    2002-01-01

    Since summer 1996, the US wind engineers are using the extreme gust (or 3-s gust) as the basic wind speed to quantify the destruction of extreme winds. In order to better understand these destructive wind forces, it is important to know the appropriate representations of these extreme gust wind speeds. Therefore, the purpose of this study is to determine the most suitable extreme value distributions for the annual extreme gust wind speeds recorded in large selected areas. To achieve this objective, we are using the generalized Pareto distribution as the diagnostic tool for determining the types of extreme gust wind speed distributions. The three-parameter generalized extreme value distribution function is, thus, reduced to either Type I Gumbel, Type II Frechet or Type III reverse Weibull distribution function for the annual extreme gust wind speeds recorded at a specific site.With the considerations of the quality and homogeneity of gust wind data collected at more than 750 weather stations throughout the United States, annual extreme gust wind speeds at selected 143 stations in the contiguous United States were used in the study. ?? 2002 Elsevier Science Ltd. All rights reserved.

  8. Implementation of a sensor guided flight algorithm for target tracking by small UAS

    NASA Astrophysics Data System (ADS)

    Collins, Gaemus E.; Stankevitz, Chris; Liese, Jeffrey

    2011-06-01

    Small xed-wing UAS (SUAS) such as Raven and Unicorn have limited power, speed, and maneuverability. Their missions can be dramatically hindered by environmental conditions (wind, terrain), obstructions (buildings, trees) blocking clear line of sight to a target, and/or sensor hardware limitations (xed stare, limited gimbal motion, lack of zoom). Toyon's Sensor Guided Flight (SGF) algorithm was designed to account for SUAS hardware shortcomings and enable long-term tracking of maneuvering targets by maintaining persistent eyes-on-target. SGF was successfully tested in simulation with high-delity UAS, sensor, and environment models, but real- world ight testing with 60 Unicorn UAS revealed surprising second order challenges that were not highlighted by the simulations. This paper describes the SGF algorithm, our rst round simulation results, our second order discoveries from ight testing, and subsequent improvements that were made to the algorithm.

  9. Hemispherical array of sensors with contractively wrapped polymer petals for flow sensing

    NASA Astrophysics Data System (ADS)

    Kanhere, Elgar; Wang, Nan; Kottapalli, Ajay Giri Prakash; Miao, Jianmin; Triantafyllou, Michael

    2017-11-01

    Hemispherical arrays have inherent advantages that allow simultaneous detection of flow speed and direction due to their shape. Though MEMS technology has progressed leaps and bounds, fabrication of array of sensors on a hemispherical surface is still a challenge. In this work, a novel approach of constructing hemispherical array is presented which employs a technique of contractively wrapping a hemispherical surface with flexible liquid crystal polymer petals. This approach also leverages the offerings from rapid prototyping technology and established standard MEMS fabrication processes. Hemispherical arrays of piezoresistive sensors are constructed with two types of petal wrappings, 4-petals and 8-petals, on a dome. The flow sensing and direction detection abilities of the dome are evaluated through experiments in wind tunnel. Experimental results demonstrate that a dome equipped with a dense array of sensors can provide information pertaining to the stimulus, through visualization of output profile over the entire surface.

  10. Sensitive bistable magnetic sensors using twisted amorphous magnetostrictive ribbons due to Matteucci effect

    NASA Astrophysics Data System (ADS)

    Mohri, K.; Takeuchi, S.

    1982-11-01

    New sensitive magnetic-field sensors are presented using twisted amorphous magnetostrictive ribbons such as Fe80B20 and Fe81-xCrxB17Si2. Sharp voltage pulses are induced between ends of the ribbon of as short as 25 mm or at the terminals of the detecting coil against external fields of as low as 1 Oe and 0.01 Hz-6 kHz. The domain nucleation field at the bistable flux reversal is very constant for 130 °C, 600 h using Fe79Cr2B17Si2, and a possible maximum operating temperature is about 180 °C. Small sized magnetic sensors without any windings for detecting rotational speed, distance, and other mechanical quantities are realized using the twisted ribbons by combining with small magnets. These sensitive and reliable magnetic sensors with digital outputs are suitable for applications in industrial robots and automobiles controlled with microcomputers.

  11. In-situ and path-averaged measurements of aerosol optical properties

    NASA Astrophysics Data System (ADS)

    van Binsbergen, Sven A.; Grossmann, Peter; February, Faith J.; Cohen, Leo H.; van Eijk, Alexander M. J.; Stein, Karin U.

    2017-09-01

    This paper compares in-situ and path-averaged measurements of the electro-optical transmission, with emphasis on aerosol effects. The in-situ sensors consisted of optical particle counters (OPC), the path-averaged data was provided by a 7-wavelength transmissometer (MSRT) and scintillometers (BLS). Data were collected at two sites: a homogeneous test site in Northern Germany, and over the inhomogeneous False Bay near Cape Town, South Africa. A retrieval algorithm was developed to infer characteristics of the aerosol size distribution (Junge approximation) from the MSRT data. A comparison of the various sensors suggests that the optical particle counters are over optimistic in their estimate of the transmission. For the homogeneous test site, in-situ and path-averaged sensors yield similar results. For the inhomogeneous test site, sensors may react differently or temporally separated to meteorological events such as a change in wind speed and/or direction.

  12. A new method for wind speed forecasting based on copula theory.

    PubMed

    Wang, Yuankun; Ma, Huiqun; Wang, Dong; Wang, Guizuo; Wu, Jichun; Bian, Jinyu; Liu, Jiufu

    2018-01-01

    How to determine representative wind speed is crucial in wind resource assessment. Accurate wind resource assessments are important to wind farms development. Linear regressions are usually used to obtain the representative wind speed. However, terrain flexibility of wind farm and long distance between wind speed sites often lead to low correlation. In this study, copula method is used to determine the representative year's wind speed in wind farm by interpreting the interaction of the local wind farm and the meteorological station. The result shows that the method proposed here can not only determine the relationship between the local anemometric tower and nearby meteorological station through Kendall's tau, but also determine the joint distribution without assuming the variables to be independent. Moreover, the representative wind data can be obtained by the conditional distribution much more reasonably. We hope this study could provide scientific reference for accurate wind resource assessments. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. Semiparametric Modeling of Daily Ammonia Levels in Naturally Ventilated Caged-Egg Facilities

    PubMed Central

    Gutiérrez-Zapata, Diana María; Galeano-Vasco, Luis Fernando; Cerón-Muñoz, Mario Fernando

    2016-01-01

    Ammonia concentration (AMC) in poultry facilities varies depending on different environmental conditions and management; however, this is a relatively unexplored subject in Colombia (South America). The objective of this study was to model daily AMC variations in a naturally ventilated caged-egg facility using generalized additive models. Four sensor nodes were used to record AMC, temperature, relative humidity and wind speed on a daily basis, with 10 minute intervals for 12 weeks. The following variables were included in the model: Heat index, Wind, Hour, Location, Height of the sensor to the ground level, and Period of manure accumulation. All effects included in the model were highly significant (p<0.001). The AMC was higher during the night and early morning when the wind was not blowing (0.0 m/s) and the heat index was extreme. The average and maximum AMC were 5.94±3.83 and 31.70 ppm, respectively. Temperatures above 25°C and humidity greater than 80% increased AMC levels. In naturally ventilated caged-egg facilities the daily variations observed in AMC primarily depend on cyclic variations of the environmental conditions and are also affected by litter handling (i.e., removal of the bedding material). PMID:26812150

  14. Nonparametric Stochastic Model for Uncertainty Quantifi cation of Short-term Wind Speed Forecasts

    NASA Astrophysics Data System (ADS)

    AL-Shehhi, A. M.; Chaouch, M.; Ouarda, T.

    2014-12-01

    Wind energy is increasing in importance as a renewable energy source due to its potential role in reducing carbon emissions. It is a safe, clean, and inexhaustible source of energy. The amount of wind energy generated by wind turbines is closely related to the wind speed. Wind speed forecasting plays a vital role in the wind energy sector in terms of wind turbine optimal operation, wind energy dispatch and scheduling, efficient energy harvesting etc. It is also considered during planning, design, and assessment of any proposed wind project. Therefore, accurate prediction of wind speed carries a particular importance and plays significant roles in the wind industry. Many methods have been proposed in the literature for short-term wind speed forecasting. These methods are usually based on modeling historical fixed time intervals of the wind speed data and using it for future prediction. The methods mainly include statistical models such as ARMA, ARIMA model, physical models for instance numerical weather prediction and artificial Intelligence techniques for example support vector machine and neural networks. In this paper, we are interested in estimating hourly wind speed measures in United Arab Emirates (UAE). More precisely, we predict hourly wind speed using a nonparametric kernel estimation of the regression and volatility functions pertaining to nonlinear autoregressive model with ARCH model, which includes unknown nonlinear regression function and volatility function already discussed in the literature. The unknown nonlinear regression function describe the dependence between the value of the wind speed at time t and its historical data at time t -1, t - 2, … , t - d. This function plays a key role to predict hourly wind speed process. The volatility function, i.e., the conditional variance given the past, measures the risk associated to this prediction. Since the regression and the volatility functions are supposed to be unknown, they are estimated using nonparametric kernel methods. In addition, to the pointwise hourly wind speed forecasts, a confidence interval is also provided which allows to quantify the uncertainty around the forecasts.

  15. Wind turbine wake characterization using long-range Doppler lidar

    NASA Astrophysics Data System (ADS)

    Aitken, M.; Lundquist, J. K.; Hestmark, K.; Banta, R. M.; Pichugina, Y.; Brewer, A.

    2012-12-01

    Wind turbines extract energy from the freestream flow, resulting in a waked region behind the rotor which is characterized by reduced wind speed and increased turbulence. The velocity deficit in the wake diminishes with distance, as faster-moving air outside is gradually entrained. In a concentrated group of turbines, then, downwind machines experience very different inflow conditions compared to those in the front row. As utility-scale turbines rarely exist in isolation, detailed knowledge of the mean flow and turbulence structure inside wakes is needed to correctly model both power production and turbine loading at modern wind farms. To this end, the Turbine Wake and Inflow Characterization Study (TWICS) was conducted in the spring of 2011 to determine the reduction in wind speeds downstream from a multi-MW turbine located at the National Renewable Energy Laboratory's National Wind Technology Center (NWTC) near Boulder, Colorado. Full-scale measurements of wake dynamics are hardly practical or even possible with conventional sensors, such as cup anemometers mounted on meteorological (met) masts. Accordingly, the High Resolution Doppler Lidar (HRDL) developed by the National Oceanic and Atmospheric Administration's Earth System Research Laboratory was employed to investigate the formation and propagation of wakes under varying levels of ambient wind speed, shear, atmospheric stability, and turbulence. HRDL remotely senses line-of-sight wind velocities and has been used in several previous studies of boundary layer aerodynamics. With a fully steerable beam and a maximum range up to about 5 km, depending on atmospheric conditions, HRDL performed a comprehensive survey of the wind flow in front of and behind the turbine to study the shape, meandering, and attenuation of wakes. Due in large part to limited experimental data availability, wind farm wake modeling is still subject to an unacceptable amount of uncertainty, particularly in complex terrain. Here, analytical techniques are developed to distinguish wakes from the background variability, and moreover, wakes are then classified by width, height, length, and velocity deficit based on atmospheric stability and inflow conditions. By integrating these advanced observational capabilities with innovative approaches to atmospheric modeling, this work will help to improve simulation tools used to quantify power loss and fatigue loading due to wake effects, thereby aiding the optimization of wind farm layouts.

  16. Wireless remote weather monitoring system based on MEMS technologies.

    PubMed

    Ma, Rong-Hua; Wang, Yu-Hsiang; Lee, Chia-Yen

    2011-01-01

    This study proposes a wireless remote weather monitoring system based on Micro-Electro-Mechanical Systems (MEMS) and wireless sensor network (WSN) technologies comprising sensors for the measurement of temperature, humidity, pressure, wind speed and direction, integrated on a single chip. The sensing signals are transmitted between the Octopus II-A sensor nodes using WSN technology, following amplification and analog/digital conversion (ADC). Experimental results show that the resistance of the micro temperature sensor increases linearly with input temperature, with an average TCR (temperature coefficient of resistance) value of 8.2 × 10(-4) (°C(-1)). The resistance of the pressure sensor also increases linearly with air pressure, with an average sensitivity value of 3.5 × 10(-2) (Ω/kPa). The sensitivity to humidity increases with ambient temperature due to the effect of temperature on the dielectric constant, which was determined to be 16.9, 21.4, 27.0, and 38.2 (pF/%RH) at 27 °C, 30 °C, 40 °C, and 50 °C, respectively. The velocity of airflow is obtained by summing the variations in resistor response as airflow passed over the sensors providing sensitivity of 4.2 × 10(-2), 9.2 × 10(-2), 9.7 × 10(-2) (Ω/ms(-1)) with power consumption by the heating resistor of 0.2, 0.3, and 0.5 W, respectively. The passage of air across the surface of the flow sensors prompts variations in temperature among each of the sensing resistors. Evaluating these variations in resistance caused by the temperature change enables the measurement of wind direction.

  17. ARC-2012-ACD12-0020-002

    NASA Image and Video Library

    2012-02-02

    Shen_Nargis: Snapshot of a very large simulation showing the altitude and velocity of wind speeds within the 2008 Cyclone Nargis. Top wind speeds for the storm were measured at 135 mph. The lowest altitude winds are shown in blue, while the highest altitude winds are shown in pink. Wind speed is shown by color density: higher density denotes stronger winds, slightly transparent color indicates slower wind speeds. Credit: Bryan Green, NASA Ames Research Center; Bo-wen Shen, NASA Goddard Space Flight Center.

  18. Atmospheric forcing of sea ice anomalies in the Ross Sea Polynya region

    NASA Astrophysics Data System (ADS)

    Dale, Ethan; McDonald, Adrian; Rack, Wolfgang

    2016-04-01

    Despite warming trends in global temperatures, sea ice extent in the southern hemisphere has shown an increasing trend over recent decades. Wind-driven sea ice export from coastal polynyas is an important source of sea ice production. Areas of major polynyas in the Ross Sea, the region with largest increase in sea ice extent, have been suggested to produce the vast amount of the sea ice in the region. We investigate the impacts of strong wind events on polynyas and the subsequent sea ice production. We utilize Bootstrap sea ice concentration (SIC) measurements derived from satellite based, Special Sensor Microwave Imager (SSM/I) brightness temperature images. These are compared with surface wind measurements made by automatic weather stations of the University of Wisconsin-Madison Antarctic Meteorology Program. Our analysis focusses on the winter period defined as 1st April to 1st November in this study. Wind data was used to classify each day into characteristic regimes based on the change of wind speed. For each regime, a composite of SIC anomaly was formed for the Ross Sea region. We found that persistent weak winds near the edge of the Ross Ice Shelf are generally associated with positive SIC anomalies in the Ross Sea polynya area (RSP). Conversely we found negative SIC anomalies in this area during persistent strong winds. By analyzing sea ice motion vectors derived from SSM/I brightness temperatures, we find significant sea ice motion anomalies throughout the Ross Sea during strong wind events. These anomalies persist for several days after the strong wing event. Strong, negative correlations are found between SIC within the RSP and wind speed indicating that strong winds cause significant advection of sea ice in the RSP. This rapid decrease in SIC is followed by a more gradual recovery in SIC. This increase occurs on a time scale greater than the average persistence of strong wind events and the resulting Sea ice motion anomalies, highlighting the production of new sea ice through thermodynamic processes.

  19. Evaluation of the vibrational behaviour of a rotating disk by optical tip-clearance measurements

    NASA Astrophysics Data System (ADS)

    García, Iker; Zubia, Joseba; Beloki, Josu; Arrue, Jon; Villatoro, Joel

    2015-05-01

    The results of an experimental investigation on the vibrational behaviour of a rotating disk are reported. This disk is a prototype that simulates a component of an aircraft engine. The air flow through the gap between the edge of the disk and the casing, produced because of the pressure difference between the upstream and downstream parts of the disk, might force the disk to flutter under certain circumstances. This situation is simulated in a wind tunnel. The main goal of the tests is to evaluate the vibrational behaviour of a rotating disk, obtaining the correspondence between the vibration frequencies of the disk and the pressure differences when the disk is rotating at diverse speeds. An innovative noncontact technique is utilised, which employs three optical sensors that are angularly equidistributed on the casing of the wind tunnel. In order to verify the results given by the optical sensors, a strain gauge was mounted on the surface of the rotating disk. The results show a perfect agreement between the vibration frequencies detected by both kinds of sensors, proving that the combination of both allows the calculation of the nodal diameter corresponding to the vibration of the disk.

  20. Development of a MEMS dual-axis differential capacitance floating element shear stress sensor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barnard, Casey; Griffin, Benjamin

    A single-axis MEMS wall shear stress sensor with differential capacitive transduction method is produced. Using a synchronous modulation and demodulation interface circuit, the system is capable of making real time measurements of both mean and fluctuating wall shear stress. A sensitivity of 3.44 mV/Pa is achieved, with linearity in response demonstrated up to testing limit of 2 Pa. Minimum detectable signals of 340 μPa at 100 Hz and 120 μPa at 1 kHz are indicated, with a resonance of 3.5 kHz. Multiple full scale wind tunnel tests are performed, producing spectral measurements of turbulent boundary layers in wind speeds rangingmore » up to 0.5 Ma (18 Pa of mean wall shear stress). The compact packaging allows for minimally invasive installation, and has proven relatively robust over multiple testing events. Temperature sensitivity, likely due to poor CTE matching of packaged materials, is an ongoing concern being addressed. These successes are being directly leveraged into a development plan for a dual-axis wall shear stress sensor, capable of producing true vector estimates at the wall.« less

  1. Post-processing method for wind speed ensemble forecast using wind speed and direction

    NASA Astrophysics Data System (ADS)

    Sofie Eide, Siri; Bjørnar Bremnes, John; Steinsland, Ingelin

    2017-04-01

    Statistical methods are widely applied to enhance the quality of both deterministic and ensemble NWP forecasts. In many situations, like wind speed forecasting, most of the predictive information is contained in one variable in the NWP models. However, in statistical calibration of deterministic forecasts it is often seen that including more variables can further improve forecast skill. For ensembles this is rarely taken advantage of, mainly due to that it is generally not straightforward how to include multiple variables. In this study, it is demonstrated how multiple variables can be included in Bayesian model averaging (BMA) by using a flexible regression method for estimating the conditional means. The method is applied to wind speed forecasting at 204 Norwegian stations based on wind speed and direction forecasts from the ECMWF ensemble system. At about 85 % of the sites the ensemble forecasts were improved in terms of CRPS by adding wind direction as predictor compared to only using wind speed. On average the improvements were about 5 %, but mainly for moderate to strong wind situations. For weak wind speeds adding wind direction had more or less neutral impact.

  2. Field Intercomparison of Six Sifferent Three-dimensional Sonic Anemometers

    NASA Astrophysics Data System (ADS)

    Zeeman, M. J.; Mauder, M.

    2016-12-01

    Although sonic anemometers have been used extensively for several decades in micrometeorological and ecological research, there is still some scientific debate about the measurement uncertainty of these instruments. This is due to the fact that an absolute reference for the measurement of turbulent wind fluctuations in the free atmosphere does not exist. In view of this lack we have conducted a field intercomparison experiment of six commonly used sonic anemometers from four major manufacturers. The models included Campbell CSAT3, Gill HS-50 and R3, METEK uSonic-3 Omni, R.M. Young 81000 and 81000RE. The experiment was conducted over a meadow at the TERENO/ICOS site De-Fen in southern Germany over a period of 16 days in June of 2016 in preparation of the ScaleX campaign. The measurement height was 3 m for all sensors, which were separated by 9 m from each other, each on its own tripod, in order to limit contamination of the turbulence measurements by neighbouring structures as much as possible. Moreover, the data were filtered for potentially disturbed wind sectors, and the high-frequency data from all instruments were treated with the same post-processing algorithm. In this presentation, we compare the results for various turbulence statistics from all sensors. These include mean horizontal wind speed, standard deviations of vertical wind velocity and sonic temperature, friction velocity and the covariance between vertical wind velocity and sonic temperature. Quantitative measures of uncertainty, such as bias and comparability are derived from these results.

  3. Aeolian processes over gravel beds: Field wind tunnel simulation and its application atop the Mogao Grottoes, China

    NASA Astrophysics Data System (ADS)

    Zhang, Weimin; Tan, Lihai; Zhang, Guobin; Qiu, Fei; Zhan, Hongtao

    2014-12-01

    The aeolian processes of erosion, transport and deposition are threatening the Mogao Grottoes, a world culture heritage site. A field wind tunnel experiment was conducted atop the Mogao Grottoes using weighing sensors to quantify aeolian processes over protective gravel beds. Results reveal that aeolian erosion and deposition over gravel beds are basically influenced by gravel coverage and wind speed. Erosion is a main aeolian process over gravel beds and its strength level is mainly determined by gravel coverage: strong (<30%), medium (30-50%) and slight (>50%). Aeolian deposition only occurs when gravel coverage is equal to or greater than 30% and wind speeds are between 8 and 12 m s-1, and this process continues until the occurrence of the equilibrium coverage. In addition, the change in conditions of external sand supply affects the transition between aeolian deposition and erosion over gravel beds, and the quantity of sand transport at the height of 0-24 mm is an important indicator of aeolian deposition and erosion over gravel beds. Our results also demonstrate that making the best use of wind regime atop the Mogao Grottoes and constructing an artificial gobi surface in staggered arrays, with 30% coverage and 30-mm-high gravels and in 40 mm spacing can trap westerly invading sand flow and enable the stronger easterly wind to return the deposited sand on the gravel surface back to the Mingsha Mountain so as to minimize the damage of the blown sand flux to the Mogao Grottoes.

  4. Measuring Fast-Temporal Sediment Fluxes with an Analogue Acoustic Sensor: A Wind Tunnel Study

    PubMed Central

    Poortinga, Ate; van Minnen, Jan; Keijsers, Joep; Riksen, Michel; Goossens, Dirk; Seeger, Manuel

    2013-01-01

    In aeolian research, field measurements are important for studying complex wind-driven processes for land management evaluation and model validation. Consequently, there have been many devices developed, tested, and applied to investigate a range of aeolian-based phenomena. However, determining the most effective application and data analysis techniques is widely debated in the literature. Here we investigate the effectiveness of two different sediment traps (the BEST trap and the MWAC catcher) in measuring vertical sediment flux. The study was performed in a wind tunnel with sediment fluxes characterized using saltiphones. Contrary to most studies, we used the analogue output of five saltiphones mounted on top of each other to determine the total kinetic energy, which was then used to calculate aeolian sediment budgets. Absolute sediment losses during the experiments were determined using a balance located beneath the test tray. Test runs were conducted with different sand sizes and at different wind speeds. The efficiency of the two traps did not vary with the wind speed or sediment size but was affected by both the experimental setup (position of the lowest trap above the surface and number of traps in the saltation layer) and the technique used to calculate the sediment flux. Despite this, good agreement was found between sediment losses calculated from the saltiphone and those measured using the balance. The results of this study provide a framework for measuring sediment fluxes at small time resolution (seconds to milliseconds) in the field. PMID:24058512

  5. Measuring fast-temporal sediment fluxes with an analogue acoustic sensor: a wind tunnel study.

    PubMed

    Poortinga, Ate; van Minnen, Jan; Keijsers, Joep; Riksen, Michel; Goossens, Dirk; Seeger, Manuel

    2013-01-01

    In aeolian research, field measurements are important for studying complex wind-driven processes for land management evaluation and model validation. Consequently, there have been many devices developed, tested, and applied to investigate a range of aeolian-based phenomena. However, determining the most effective application and data analysis techniques is widely debated in the literature. Here we investigate the effectiveness of two different sediment traps (the BEST trap and the MWAC catcher) in measuring vertical sediment flux. The study was performed in a wind tunnel with sediment fluxes characterized using saltiphones. Contrary to most studies, we used the analogue output of five saltiphones mounted on top of each other to determine the total kinetic energy, which was then used to calculate aeolian sediment budgets. Absolute sediment losses during the experiments were determined using a balance located beneath the test tray. Test runs were conducted with different sand sizes and at different wind speeds. The efficiency of the two traps did not vary with the wind speed or sediment size but was affected by both the experimental setup (position of the lowest trap above the surface and number of traps in the saltation layer) and the technique used to calculate the sediment flux. Despite this, good agreement was found between sediment losses calculated from the saltiphone and those measured using the balance. The results of this study provide a framework for measuring sediment fluxes at small time resolution (seconds to milliseconds) in the field.

  6. A Multilayer Dataset of SSM/I-Derived Global Ocean Surface Turbulent Fluxes

    NASA Technical Reports Server (NTRS)

    Chou, Shu-Hsien; Shie, Chung-Lin; Atlas, Robert M.; Ardizzone, Joe; Nelkin, Eric; Einaud, Franco (Technical Monitor)

    2001-01-01

    A dataset including daily- and monthly-mean turbulent fluxes (momentum, latent heat, and sensible heat) and some relevant parameters over global oceans, derived from the Special Sensor Microwave/Imager (SSM/I) data, for the period July 1987-December 1994 and the 1988-94 annual and monthly-mean climatologies of the same variables is created. It has a spatial resolution of 2.0deg x 2.5deg latitude-longitude. The retrieved surface air humidity is found to be generally accurate as compared to the collocated radiosonde observations over global oceans. The retrieved wind stress and latent heat flux show useful accuracy as verified against research quality measurements of ship and buoy in the western equatorial Pacific. The 1988-94 seasonal-mean wind stress and latent heat flux show reasonable patterns related to seasonal variations of the atmospheric general circulation. The patterns of 1990-93 annual-mean turbulent fluxes and input variables are generally in good agreement with one of the best global analyzed flux datasets that based on COADS (comprehensive ocean-atmosphere data set) with corrections on wind speeds and covered the same period. The retrieved wind speed is generally within +/-1 m/s of the COADS-based, but is stronger by approx. 1-2 m/s in the northern extratropical oceans. The discrepancy is suggested to be mainly due to higher COADS-modified wind speeds resulting from underestimation of anemometer heights. Compared to the COADS-based, the retrieved latent heat flux and sea-air humidity difference are generally larger with significant differences in the trade wind zones and the ocean south of 40degS (up to approx. 40-60 W/sq m and approx. 1-1.5 g/kg). The discrepancy is believed to be mainly caused by higher COADS-based surface air humidity arising from the overestimation of dew point temperatures and from the extrapolation of observed high humidity southward into data-void regions south of 40degS. The retrieved sensible heat flux is generally within +/-5 W/sq m of UWM/COADS, except for some areas in the extratropical oceans, where the differences in wind speed have large impact on the difference in sensible heat flux. The dataset of SSM/I-derived turbulent fluxes is useful for climate studies, forcing of ocean models, and validation of coupled ocean-atmosphere global models.

  7. High-Gain Airborne Microphone Windscreen Characterization Method Using Modified Research Wind Tunnel

    NASA Astrophysics Data System (ADS)

    Banks, Joseph Andrew

    In recent years, UAS (unmanned aerial systems) have gained improved functionality by integrating advanced cameras, sensors, and hardware systems; however, UAS still lack effective means to detect and record audio signals. This is partially due to the physical scale of hardware and complexity of that hardware's integration into UAS. The current study is part of a larger research effort to integrate a high-gain parabolic microphone into a UAV (unmanned aerial vehicle) for use in acoustic surveying. Due to the aerodynamic interaction between a flush mounted parabolic antenna and the free-stream grazing flow, it is necessary to fair the antenna into the aircraft using a windscreen. The current study develops a characterization method by which various windscreen designs and configurations can be optimized. This method measures a candidate windscreen's normal incidence sound transmission loss (STL) as well as the increase of hydrodynamic noise generated by its installation at a range of flow speeds. A test apparatus was designed and installed on the Low Speed Wind Tunnel at Oklahoma State University. The test apparatus utilizes a "quiet box" attached to the wind tunnel test section floor. A pass-through window between the wind tunnel test section and the quiet box allows candidate wind screens to be mounted between the two environments. Microphones mounted both in the wind tunnel test section, and within the quiet box record the acoustic spectrum at various flow speeds, ranging between 36 and 81 feet per second. A tensioned KevlarRTM wind screen validation specimen was fabricated to validate system performance. The STL spectrum is measured based on comparing the signal from microphones on either side of the KevlarRTM membrane. The results for normal incidence STL for the flow off scenario are compared to results presented in other studies for the same material under tension. Flow-on transmission loss spectral data along with the increase in flow noise caused by the membrane is also measured at several flow speeds. The system has been shown to produce STL data consistent with the reference data for flow-on and flow-off test configurations, as well as being able to detect the increase in flow-induced noise generated by the validation specimen windscreen.

  8. 40 CFR Table F-2 to Subpart F of... - Particle Sizes and Wind Speeds for Full Wind Tunnel Test, Wind Tunnel Inlet Aspiration Test, and...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 5 2011-07-01 2011-07-01 false Particle Sizes and Wind Speeds for Full Wind Tunnel Test, Wind Tunnel Inlet Aspiration Test, and Static Chamber Test F Table F-2 to Subpart F... Part 53—Particle Sizes and Wind Speeds for Full Wind Tunnel Test, Wind Tunnel Inlet Aspiration Test...

  9. 40 CFR Table F-2 to Subpart F of... - Particle Sizes and Wind Speeds for Full Wind Tunnel Test, Wind Tunnel Inlet Aspiration Test, and...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 5 2010-07-01 2010-07-01 false Particle Sizes and Wind Speeds for Full Wind Tunnel Test, Wind Tunnel Inlet Aspiration Test, and Static Chamber Test F Table F-2 to Subpart F... Part 53—Particle Sizes and Wind Speeds for Full Wind Tunnel Test, Wind Tunnel Inlet Aspiration Test...

  10. A Space Weather Forecasting System with Multiple Satellites Based on a Self-Recognizing Network

    PubMed Central

    Tokumitsu, Masahiro; Ishida, Yoshiteru

    2014-01-01

    This paper proposes a space weather forecasting system at geostationary orbit for high-energy electron flux (>2 MeV). The forecasting model involves multiple sensors on multiple satellites. The sensors interconnect and evaluate each other to predict future conditions at geostationary orbit. The proposed forecasting model is constructed using a dynamic relational network for sensor diagnosis and event monitoring. The sensors of the proposed model are located at different positions in space. The satellites for solar monitoring equip with monitoring devices for the interplanetary magnetic field and solar wind speed. The satellites orbit near the Earth monitoring high-energy electron flux. We investigate forecasting for typical two examples by comparing the performance of two models with different numbers of sensors. We demonstrate the prediction by the proposed model against coronal mass ejections and a coronal hole. This paper aims to investigate a possibility of space weather forecasting based on the satellite network with in-situ sensing. PMID:24803190

  11. A space weather forecasting system with multiple satellites based on a self-recognizing network.

    PubMed

    Tokumitsu, Masahiro; Ishida, Yoshiteru

    2014-05-05

    This paper proposes a space weather forecasting system at geostationary orbit for high-energy electron flux (>2 MeV). The forecasting model involves multiple sensors on multiple satellites. The sensors interconnect and evaluate each other to predict future conditions at geostationary orbit. The proposed forecasting model is constructed using a dynamic relational network for sensor diagnosis and event monitoring. The sensors of the proposed model are located at different positions in space. The satellites for solar monitoring equip with monitoring devices for the interplanetary magnetic field and solar wind speed. The satellites orbit near the Earth monitoring high-energy electron flux. We investigate forecasting for typical two examples by comparing the performance of two models with different numbers of sensors. We demonstrate the prediction by the proposed model against coronal mass ejections and a coronal hole. This paper aims to investigate a possibility of space weather forecasting based on the satellite network with in-situ sensing.

  12. DMSP Special Sensor Microwave/Imager Calibration/Validation

    DTIC Science & Technology

    1991-05-20

    degrade , regardless of the algorithm, seems to be about 2 mm/hr. SSMAI wind speed retrieval accuracy in... the U.S. and ;ome rangeland of the western U.S. at peak vegetation cover. 2. The " cerrado " vegetation regior, of central Brazil. These are savanna tye...presented; with and without the 85 GIIz channels as a con.;_tcuence of the degradation of the 85 GHz channels on the SSM/I on DMSP F-8. The primary data

  13. Temporal and spatial variation of maximum wind speed days during the past 20 years in major cities of Xinjiang

    NASA Astrophysics Data System (ADS)

    Baidourela, Aliya; Jing, Zhen; Zhayimu, Kahaer; Abulaiti, Adili; Ubuli, Hakezi

    2018-04-01

    Wind erosion and sandstorms occur in the neighborhood of exposed dust sources. Wind erosion and desertification increase the frequency of dust storms, deteriorate air quality, and damage the ecological environment and agricultural production. The Xinjiang region has a relatively fragile ecological environment. Therefore, the study of the characteristics of maximum wind speed and wind direction in this region is of great significance to disaster prevention and mitigation, the management of activated dunes, and the sustainable development of the region. Based on the latest data of 71 sites in Xinjiang, this study explores the temporal evolution and spatial distribution of maximum wind speed in Xinjiang from 1993 to 2013, and highlights the distribution of annual and monthly maximum wind speed and the characteristics of wind direction in Xinjiang. Between 1993 and 2013, Ulugchat County exhibited the highest number of days with the maximum wind speed (> 17 m/s), while Wutian exhibited the lowest number. In Xinjiang, 1999 showed the highest number of maximum wind speed days (257 days), while 2013 showed the lowest number (69 days). Spring and summer wind speeds were greater than those in autumn and winter. There were obvious differences in the direction of maximum wind speed in major cities and counties of Xinjiang. East of the Tianshan Mountains, maximum wind speeds are mainly directed southeast and northeast. North and south of the Tianshan Mountains, they are mainly directed northwest and northeast, while west of the Tianshan Mountains, they are mainly directed southeast and northwest.

  14. Highly reliable wind-rolling triboelectric nanogenerator operating in a wide wind speed range

    PubMed Central

    Yong, Hyungseok; Chung, Jihoon; Choi, Dukhyun; Jung, Daewoong; Cho, Minhaeng; Lee, Sangmin

    2016-01-01

    Triboelectric nanogenerators are aspiring energy harvesting methods that generate electricity from the triboelectric effect and electrostatic induction. This study demonstrates the harvesting of wind energy by a wind-rolling triboelectric nanogenerator (WR-TENG). The WR-TENG generates electricity from wind as a lightweight dielectric sphere rotates along the vortex whistle substrate. Increasing the kinetic energy of a dielectric converted from the wind energy is a key factor in fabricating an efficient WR-TENG. Computation fluid dynamics (CFD) analysis is introduced to estimate the precise movements of wind flow and to create a vortex flow by adjusting the parameters of the vortex whistle shape to optimize the design parameters to increase the kinetic energy conversion rate. WR-TENG can be utilized as both a self-powered wind velocity sensor and a wind energy harvester. A single unit of WR-TENG produces open-circuit voltage of 11.2 V and closed-circuit current of 1.86 μA. Additionally, findings reveal that the electrical power is enhanced through multiple electrode patterns in a single device and by increasing the number of dielectric spheres inside WR-TENG. The wind-rolling TENG is a novel approach for a sustainable wind-driven TENG that is sensitive and reliable to wind flows to harvest wasted wind energy in the near future. PMID:27653976

  15. Wind speed variability over the Canary Islands, 1948-2014: focusing on trend differences at the land-ocean interface and below-above the trade-wind inversion layer

    NASA Astrophysics Data System (ADS)

    Azorin-Molina, Cesar; Menendez, Melisa; McVicar, Tim R.; Acevedo, Adrian; Vicente-Serrano, Sergio M.; Cuevas, Emilio; Minola, Lorenzo; Chen, Deliang

    2017-08-01

    This study simultaneously examines wind speed trends at the land-ocean interface, and below-above the trade-wind inversion layer in the Canary Islands and the surrounding Eastern North Atlantic Ocean: a key region for quantifying the variability of trade-winds and its response to large-scale atmospheric circulation changes. Two homogenized data sources are used: (1) observed wind speed from nine land-based stations (1981-2014), including one mountain weather station (Izaña) located above the trade-wind inversion layer; and (2) simulated wind speed from two atmospheric hindcasts over ocean (i.e., SeaWind I at 30 km for 1948-2014; and SeaWind II at 15 km for 1989-2014). The results revealed a widespread significant negative trend of trade-winds over ocean for 1948-2014, whereas no significant trends were detected for 1989-2014. For this recent period wind speed over land and ocean displayed the same multi-decadal variability and a distinct seasonal trend pattern with a strengthening (late spring and summer; significant in May and August) and weakening (winter-spring-autumn; significant in April and September) of trade-winds. Above the inversion layer at Izaña, we found a predominance of significant positive trends, indicating a decoupled variability and opposite wind speed trends when compared to those reported in boundary layer. The analysis of the Trade Wind Index (TWI), the North Atlantic Oscillation Index (NAOI) and the Eastern Atlantic Index (EAI) demonstrated significant correlations with the wind speed variability, revealing that the correlation patterns of the three indices showed a spatio-temporal complementarity in shaping wind speed trends across the Eastern North Atlantic.

  16. Wind speed variability over the Canary Islands, 1948-2014: focusing on trend differences at the land-ocean interface and below-above the trade-wind inversion layer

    NASA Astrophysics Data System (ADS)

    Azorin-Molina, Cesar; Menendez, Melisa; McVicar, Tim R.; Acevedo, Adrian; Vicente-Serrano, Sergio M.; Cuevas, Emilio; Minola, Lorenzo; Chen, Deliang

    2018-06-01

    This study simultaneously examines wind speed trends at the land-ocean interface, and below-above the trade-wind inversion layer in the Canary Islands and the surrounding Eastern North Atlantic Ocean: a key region for quantifying the variability of trade-winds and its response to large-scale atmospheric circulation changes. Two homogenized data sources are used: (1) observed wind speed from nine land-based stations (1981-2014), including one mountain weather station (Izaña) located above the trade-wind inversion layer; and (2) simulated wind speed from two atmospheric hindcasts over ocean (i.e., SeaWind I at 30 km for 1948-2014; and SeaWind II at 15 km for 1989-2014). The results revealed a widespread significant negative trend of trade-winds over ocean for 1948-2014, whereas no significant trends were detected for 1989-2014. For this recent period wind speed over land and ocean displayed the same multi-decadal variability and a distinct seasonal trend pattern with a strengthening (late spring and summer; significant in May and August) and weakening (winter-spring-autumn; significant in April and September) of trade-winds. Above the inversion layer at Izaña, we found a predominance of significant positive trends, indicating a decoupled variability and opposite wind speed trends when compared to those reported in boundary layer. The analysis of the Trade Wind Index (TWI), the North Atlantic Oscillation Index (NAOI) and the Eastern Atlantic Index (EAI) demonstrated significant correlations with the wind speed variability, revealing that the correlation patterns of the three indices showed a spatio-temporal complementarity in shaping wind speed trends across the Eastern North Atlantic.

  17. Dynamics of cyanobacterial bloom formation during short-term hydrodynamic fluctuation in a large shallow, eutrophic, and wind-exposed Lake Taihu, China.

    PubMed

    Wu, Tingfeng; Qin, Boqiang; Zhu, Guangwei; Luo, Liancong; Ding, Yanqing; Bian, Geya

    2013-12-01

    Short-term hydrodynamic fluctuations caused by extreme weather events are expected to increase worldwide because of global climate change, and such fluctuations can strongly influence cyanobacterial blooms. In this study, the cyanobacterial bloom disappearance and reappearance in Lake Taihu, China, in response to short-term hydrodynamic fluctuations, was investigated by field sampling, long-term ecological records, high-frequency sensors and MODIS satellite images. The horizontal drift caused by the dominant easterly wind during the phytoplankton growth season was mainly responsible for cyanobacterial biomass accumulation in the western and northern regions of the lake and subsequent bloom formation over relatively long time scales. The cyanobacterial bloom changed slowly under calm or gentle wind conditions. In contrast, the short-term bloom events within a day were mainly caused by entrainment and disentrainment of cyanobacterial colonies by wind-induced hydrodynamics. Observation of a westerly event in Lake Taihu revealed that when the 30 min mean wind speed (flow speed) exceeded the threshold value of 6 m/s (5.7 cm/s), cyanobacteria in colonies were entrained by the wind-induced hydrodynamics. Subsequently, the vertical migration of cyanobacterial colonies was controlled by hydrodynamics, resulting in thorough mixing of algal biomass throughout the water depth and the eventual disappearance of surface blooms. Moreover, the intense mixing can also increase the chance for forming larger and more cyanobacterial colonies, namely, aggregation. Subsequently, when the hydrodynamics became weak, the cyanobacterial colonies continuously float upward without effective buoyancy regulation, and cause cyanobacterial bloom explosive expansion after the westerly. Furthermore, the results of this study indicate that the strong wind happening frequently during April and October can be an important cause of the formation and expansion of cyanobacterial blooms in Lake Taihu.

  18. Laboratory modeling of air-sea interaction under severe wind conditions

    NASA Astrophysics Data System (ADS)

    Troitskaya, Yuliya; Vasiliy, Kazakov; Nicolay, Bogatov; Olga, Ermakova; Mikhail, Salin; Daniil, Sergeev; Maxim, Vdovin

    2010-05-01

    Wind-wave interaction at extreme wind speed is of special interest now in connection with the problem of explanation of the sea surface drag saturation at the wind speed exceeding 30 m/s. The idea on saturation (and even reduction) of the coefficient of aerodynamic resistance of the sea surface at hurricane wind speed was first suggested by Emanuel (1995) on the basis of theoretical analysis of sensitivity of maximum wind speed in a hurricane to the ratio of the enthalpy and momentum exchange coefficients. Both field (Powell, Vickery, Reinhold, 2003, French et al, 2007, Black, et al, 2007) and laboratory (Donelan et al, 2004) experiments confirmed that at hurricane wind speed the sea surface drag coefficient is significantly reduced in comparison with the parameterization obtained at moderate to strong wind conditions. Two groups of possible theoretical mechanisms for explanation of the effect of the sea surface drag reduction can be specified. In the first group of models developed by Kudryavtsev & Makin (2007) and Kukulka,Hara Belcher (2007), the sea surface drag reduction is explained by peculiarities of the air flow over breaking waves. Another approach more appropriate for the conditions of developed sea exploits the effect of sea drops and sprays on the wind-wave momentum exchange (Andreas, 2004; Makin, 2005; Kudryavtsev, 2006). The main objective of this work is investigation of factors determining momentum exchange under high wind speeds basing on the laboratory experiment in a well controlled environment. The experiments were carried out in the Thermo-Stratified WInd-WAve Tank (TSWIWAT) of the Institute of Applied Physics. The parameters of the facility are as follows: airflow 0 - 25 m/s (equivalent 10-m neutral wind speed U10 up to 60 m/s), dimensions 10m x 0.4m x 0.7 m, temperature stratification of the water layer. Simultaneous measurements of the airflow velocity profiles and wind waves were carried out in the wide range of wind velocities. Airflow velocity profile was measured by WindSonic ultrasonic wind sensor. The water elevation was measured by the three-channel wave-gauge. Top and side views of the water surface were fixed by CCD-camera. Wind friction velocity and surface drag coefficients were retrieved from the measurements by the profile method. Obtained values are in good agreement with the data of measurements by Donelan et al (2004). The directional frequency-wave-number spectra of surface waves were retrieved by the wavelet directional method (Donelan et al, 1996). The obtained dependencies of parameters of the wind waves indicate existing of two regimes of the waves with the critical wind speed Ucr about 30 m/s. For U10Ucr the dependencies of peak wave period, peak wavelength, significant wave height on the wind speed tend to saturation, in the same time the peak wave slope has the maximum at approximately Ucr and then decreases with the tendency to saturation. The surface drag also tends to saturation for U10>Ucr similarly to (Donelan et al, 2004). Video filming indicates onset of wave breaking with white-capping and spray generation at wind speeds approximately equal to Ucr. We compared the obtained experimental dependencies with the predictions of the quasi-linear model of the turbulent boundary layer over the waved water surface (Reutov&Troitskaya, 1995). Comparing shows that theoretical predictions give low estimates for the measured drag coefficient and wave fields. Taking into account momentum flux associated with the spray generation yields theoretical estimations in good agreement with the experimental data. Basing on the experimental data a possible physical mechanism of the drag is suggested. Tearing of the wave crests at severe wind conditions leads to the effective smoothing (decreasing wave slopes) of the water surface, which in turn reduces the aerodynamic roughness of the water surface. Quantitative agreement of the experimental data and theoretical estimations od the surface drag occurs if spray and drop momentum flux is taken into account. This study was supported by Russian Foundation for basic research (project code 07-05-00565, 10-05-00339). References Andreas E. L. Spray stress revised, J. Phys. Oceanogr., 2004, v.34, p.1429--1440. Black P.G., et al, Bulletin of the American Meteorological Society, 2007, v. 88, №3, p.357-374. Donelan M.A., et al, J. Phys. Oceanogr., 26, 1901-1914, 1996 Donelan M.A., et al, Geophys. Res. Lett., 2004, v.31, L18306. Emanuel, K.A. , J. Atmos. Sci/, 1995, v.52, p.3969-3976. Fairall C.W., et al, J. Climate, 2003, v.16, № 4, p.571-591. French, J. R., et al, J. Atmos. Sci., 2007, v.64, p.1089-1102. Garratt J.R., Mon. Weather Rev., 1977, v.105, p.915-929. Kudryavtsev V. N., J. Geophys. Res., 2006, v.111, C07020. Kudryavtsev V., Makin V. , Boundary-Layer Meteorol., 2007, v.125, p. 289--303. Kukulka, T., T. Hara, and S. E. Belcher., J. Phys. Oceanogr., 37, 1811-1828, 2007 Makin V. K. ,Boundary Layer Meteorol., 2005, v. 115, №1, p.169-176. Powell, M.D., Vickery P.J., Reinhold T.A., Nature, 2003, v.422, p.279-283. Reutov V.P., Troitskaya Yu.I. ,. Izvestiya RAN, FAO, 31, 825-834, 1995

  19. Spatio-temporal modelling of wind speed variations and extremes in the Caribbean and the Gulf of Mexico

    NASA Astrophysics Data System (ADS)

    Rychlik, Igor; Mao, Wengang

    2018-02-01

    The wind speed variability in the North Atlantic has been successfully modelled using a spatio-temporal transformed Gaussian field. However, this type of model does not correctly describe the extreme wind speeds attributed to tropical storms and hurricanes. In this study, the transformed Gaussian model is further developed to include the occurrence of severe storms. In this new model, random components are added to the transformed Gaussian field to model rare events with extreme wind speeds. The resulting random field is locally stationary and homogeneous. The localized dependence structure is described by time- and space-dependent parameters. The parameters have a natural physical interpretation. To exemplify its application, the model is fitted to the ECMWF ERA-Interim reanalysis data set. The model is applied to compute long-term wind speed distributions and return values, e.g., 100- or 1000-year extreme wind speeds, and to simulate random wind speed time series at a fixed location or spatio-temporal wind fields around that location.

  20. Regional and local meteorology influences high-resolution tropospheric ozone concentration in the Los Angeles Basin

    NASA Astrophysics Data System (ADS)

    Koutzoukis, S.; Jenerette, D.; Chandler, M.; Wang, J.; Ge, C.; Ripplinger, J.

    2017-12-01

    Urban air quality and climate directly affect resident health. The Los Angeles (LA) Basin is a highly populated metropolitan area, with widespread point sources of ozone (O3) precursors (NOx , Volatile Organic Compounds, CO) from fossil fuel combustion. The LA basin exists on a coast-to-mountain gradient, with increasing temperatures towards the Transverse Ranges, which rise to 1700m. Frequently not compliant with 8-hour O3 standards, the LA and South Coast Air Basins are designated as severe and extreme non-attainment areas. Summer weather in the LA basin is characterized by a persistent high pressure system, creating an inversion that traps air pollutants, including O3 precursors, coupled with physical geography that blocks prevailing upper atmosphere air flow. These interactions make neighborhood-level O3 levels more variable than common regional models. Over the summer of 2017, we investigated the importance of local meteorology, wind patterns and air temperature, in transporting and mixing ozone precursors from point sources along the coast-to-mountain gradient. We deployed a network of six EPA federal equivalent method ozone and meteorological sensors in three campaigns in the LA basin along the coast-to-mountain transect. Each campaign, we collaborated with citizen scientists to deploy three sensor stations in two, 4 km2 quadrats, for a total of six high-resolution 4 km2 pixels. O3 concentrations vary greatly along the transect. At the coastal sites, daily O3 ranges from 0ppm to 60ppm and the range increases at the inland sites, to 100ppm. At all sites, there was a positive relationship between wind speed, air temperature, and O3 concentration, with increasing correlation inland. The Pearson correlation coefficient between wind speed and O3 concentration doubles from the coast to inland, and triples between air temperature and O3. The site-specific relationships between O3 and wind direction and temperature vary, suggesting neighborhood-effects from local point sources.

  1. Systematic Variability of the He+ Pickup Ion Velocity Distribution Function Observed with SOHO/CELIAS/CTOF

    NASA Astrophysics Data System (ADS)

    Taut, A.; Drews, C.; Berger, L.; Wimmer-Schweingruber, R. F.

    2015-12-01

    The 1D Velocity Distribution Function (VDF) of He+ pickup ions shows two distinct populations that reflect the sources of these ions. The highly suprathermal population is the result of the ionization and pickup of almost resting interstellar neutrals that are injected into the solar wind as a highly anisotropic torus distribution. The nearly thermalized population is centered around the solar wind bulk speed and is mainly attributed to inner-source pickup ions that originate in the inner heliosphere. It is generally believed that the initial torus distribution of interstellar pickup ions is rapidly isotropized by resonant wave-particle interactions, but recent observations by Drews et al. (2015) of a torus-like VDF strongly limit this isotropization. This in turn means that more observational data is needed to further characterize the kinetic behavior of pickup ions. In this study we use data from the Charge-Time-Of-Flight sensor on-board SOHO. As this sensor offers unrivaled counting statistics for He+ together with a sufficient mass-per-charge resolution it is well-suited for investigating the He+ VDF on comparatively short timescales. We combine this data with the high resolution magnetic field data from WIND via an extrapolation to the location of SOHO. With this combination of instruments we investigate the He+ VDF for time periods of different solar wind speeds, magnetic field directions, and wave power. We find a systematic trend of the short-term He+ VDF with these parameters. Especially by varying the considered magnetic field directions we observe a 1D projection of the anisotropic torus-like VDF. In addition, we investigate stream interaction regions and coronal mass ejections. In the latter we observe an excess of inner-source He+ that is accompanied by a significant increase of heavy pickup ion count rates. This may be linked to the as yet ill understood production mechanism of inner-source pickup ions.

  2. Statistical Short-Range Guidance for Peak Wind Speed Forecasts on Kennedy Space Center/Cape Canaveral Air Force Station: Phase I Results

    NASA Technical Reports Server (NTRS)

    Lambert, Winifred C.; Merceret, Francis J. (Technical Monitor)

    2002-01-01

    This report describes the results of the ANU's (Applied Meteorology Unit) Short-Range Statistical Forecasting task for peak winds. The peak wind speeds are an important forecast element for the Space Shuttle and Expendable Launch Vehicle programs. The Keith Weather Squadron and the Spaceflight Meteorology Group indicate that peak winds are challenging to forecast. The Applied Meteorology Unit was tasked to develop tools that aid in short-range forecasts of peak winds at tower sites of operational interest. A 7 year record of wind tower data was used in the analysis. Hourly and directional climatologies by tower and month were developed to determine the seasonal behavior of the average and peak winds. In all climatologies, the average and peak wind speeds were highly variable in time. This indicated that the development of a peak wind forecasting tool would be difficult. Probability density functions (PDF) of peak wind speed were calculated to determine the distribution of peak speed with average speed. These provide forecasters with a means of determining the probability of meeting or exceeding a certain peak wind given an observed or forecast average speed. The climatologies and PDFs provide tools with which to make peak wind forecasts that are critical to safe operations.

  3. Evaluating anemometer drift: A statistical approach to correct biases in wind speed measurement

    NASA Astrophysics Data System (ADS)

    Azorin-Molina, Cesar; Asin, Jesus; McVicar, Tim R.; Minola, Lorenzo; Lopez-Moreno, Juan I.; Vicente-Serrano, Sergio M.; Chen, Deliang

    2018-05-01

    Recent studies on observed wind variability have revealed a decline (termed "stilling") of near-surface wind speed during the last 30-50 years over many mid-latitude terrestrial regions, particularly in the Northern Hemisphere. The well-known impact of cup anemometer drift (i.e., wear on the bearings) on the observed weakening of wind speed has been mentioned as a potential contributor to the declining trend. However, to date, no research has quantified its contribution to stilling based on measurements, which is most likely due to lack of quantification of the ageing effect. In this study, a 3-year field experiment (2014-2016) with 10-minute paired wind speed measurements from one new and one malfunctioned (i.e., old bearings) SEAC SV5 cup anemometer which has been used by the Spanish Meteorological Agency in automatic weather stations since mid-1980s, was developed for assessing for the first time the role of anemometer drift on wind speed measurement. The results showed a statistical significant impact of anemometer drift on wind speed measurements, with the old anemometer measuring lower wind speeds than the new one. Biases show a marked temporal pattern and clear dependency on wind speed, with both weak and strong winds causing significant biases. This pioneering quantification of biases has allowed us to define two regression models that correct up to 37% of the artificial bias in wind speed due to measurement with an old anemometer.

  4. Estimating Variances of Horizontal Wind Fluctuations in Stable Conditions

    NASA Astrophysics Data System (ADS)

    Luhar, Ashok K.

    2010-05-01

    Information concerning the average wind speed and the variances of lateral and longitudinal wind velocity fluctuations is required by dispersion models to characterise turbulence in the atmospheric boundary layer. When the winds are weak, the scalar average wind speed and the vector average wind speed need to be clearly distinguished and both lateral and longitudinal wind velocity fluctuations assume equal importance in dispersion calculations. We examine commonly-used methods of estimating these variances from wind-speed and wind-direction statistics measured separately, for example, by a cup anemometer and a wind vane, and evaluate the implied relationship between the scalar and vector wind speeds, using measurements taken under low-wind stable conditions. We highlight several inconsistencies inherent in the existing formulations and show that the widely-used assumption that the lateral velocity variance is equal to the longitudinal velocity variance is not necessarily true. We derive improved relations for the two variances, and although data under stable stratification are considered for comparison, our analysis is applicable more generally.

  5. Gas transfer velocities measured at low wind speed over a lake

    USGS Publications Warehouse

    Crusius, John; Wanninkhof, R.

    2003-01-01

    The relationship between gas transfer velocity and wind speed was evaluated at low wind speeds by quantifying the rate of evasion of the deliberate tracer, SF6, from a small oligotrophic lake. Several possible relationships between gas transfer velocity and low wind speed were evaluated by using 1-min-averaged wind speeds as a measure of the instantaneous wind speed values. Gas transfer velocities in this data set can be estimated virtually equally well by assuming any of three widely used relationships between k600 and winds referenced to 10-m height, U10: (1) a bilinear dependence with a break in the slope at ???3.7 m s-1, which resulted in the best fit; (2) a power dependence; and (3) a constant transfer velocity for U10 3.7 m s-1 which, coupled with the typical variability in instantaneous wind speeds observed in the field, leads to average transfer velocity estimates that are higher than those predicted for steady wind trends. The transfer velocities predicted by the bilinear steady wind relationship for U10 < ???3.7 m s-1 are virtually identical to the theoretical predictions for transfer across a smooth surface.

  6. Evaluation of reanalysis near-surface winds over northern Africa in Boreal summer

    NASA Astrophysics Data System (ADS)

    Engelstaedter, Sebastian; Washington, Richard

    2014-05-01

    The emission of dust from desert surfaces depends on the combined effects of surface properties such as surface roughness, soil moisture, soil texture and particle size (erodibility) and wind speed (erosivity). In order for dust cycle models to realistically simulate dust emissions for the right reasons, it is essential that erosivity and erodibility controlling factors are represented correctly. There has been a focus on improving dust emission schemes or input fields of soil distribution and texture even though it has been shown that the use of wind fields from different reanalysis datasets to drive the same model can result in significant differences in the dust emissions. Here we evaluate the representation of near-surface wind speed from three different reanalysis datasets (ERA-Interim, CFSR and MERRA) over the North African domain. Reanalysis 10m wind speeds are compared with observations from SYNOP and METAR reports available from the UK Meteorological Office Integrated Data Archive System (MIDAS) Land and Marine Surface Stations Dataset. We compare 6-hourly observations of 10m wind speed between 1 January 1989 and 31 December 2009 from more the 500 surface stations with the corresponding reanalysis values. A station data based mean wind speed climatology for North Africa is presented. Overall, the representation of 10m winds is relatively poor in all three reanalysis datasets with stations in the northern parts of the Sahara still being better simulated (correlation coefficients ~ 0.5) than stations in the Sahel (correlation coefficients < 0.3) which points at the reanalyses not being able to realistically capture the Sahel dynamics systems. All three reanalyses have a systematic bias towards overestimating wind speed below 3-4 m/s and underestimating wind speed above 4 m/s. This bias becomes larger with increasing wind speed but is independent of the time of day. For instance, 14 m/s observed wind speeds are underestimated on average by 6 m/s in the ERA-Interim reanalysis. Given the cubic relationship between wind speed and dust emission this large underestimation is expected to significantly impact the simulation of dust emissions. A negative relationship between observed and ERA-Interim wind speed is found for winds above 14 m/s indicating that high wind speed generating processes are not well (if at all) represented in the model.

  7. Relationship between wind speed and gas exchange over the ocean

    NASA Technical Reports Server (NTRS)

    Wanninkhof, Rik

    1992-01-01

    A quadratic dependence of gas exchange on wind speed is employed to analyze the relationship between gas transfer and wind speed with particular emphasizing variable and/or low wind speeds. The quadratic dependence is fit through gas-transfer velocities over the ocean determined by methods based on the natural C-14 disequilibrium and the bomb C-14 inventory. The variation in the CO2 levels is related to these mechanisms, but the results show that other causes play significant roles. A weaker dependence of gas transfer on wind is suggested for steady winds, and long-term averaged winds demonstrate a stronger dependence in the present model. The chemical enhancement of CO2 exchange is also shown to play a role by increasing CO2 fluxes at low wind speeds.

  8. 11- and 22-year variations of the cosmic ray density and of the solar wind speed

    NASA Technical Reports Server (NTRS)

    Chirkov, N. P.

    1985-01-01

    Cosmic ray density variations for 17-21 solar activity cycles and the solar wind speed for 20-21 events are investigated. The 22-year solar wind speed recurrence was found in even and odd cycles. The 22-year variations of cosmic ray density were found to be opposite that of solar wind speed and solar activity. The account of solar wind speed in 11-year variations significantly decreases the modulation region of cosmic rays when E = 10-20 GeV.

  9. Stable plume rise in a shear layer.

    PubMed

    Overcamp, Thomas J

    2007-03-01

    Solutions are given for plume rise assuming a power-law wind speed profile in a stably stratified layer for point and finite sources with initial vertical momentum and buoyancy. For a constant wind speed, these solutions simplify to the conventional plume rise equations in a stable atmosphere. In a shear layer, the point of maximum rise occurs further downwind and is slightly lower compared with the plume rise with a constant wind speed equal to the wind speed at the top of the stack. If the predictions with shear are compared with predictions for an equivalent average wind speed over the depth of the plume, the plume rise with shear is higher than plume rise with an equivalent average wind speed.

  10. Generation and Validation of Spatial Distribution of Hourly Wind Speed Time-Series using Machine Learning

    NASA Astrophysics Data System (ADS)

    Veronesi, F.; Grassi, S.

    2016-09-01

    Wind resource assessment is a key aspect of wind farm planning since it allows to estimate the long term electricity production. Moreover, wind speed time-series at high resolution are helpful to estimate the temporal changes of the electricity generation and indispensable to design stand-alone systems, which are affected by the mismatch of supply and demand. In this work, we present a new generalized statistical methodology to generate the spatial distribution of wind speed time-series, using Switzerland as a case study. This research is based upon a machine learning model and demonstrates that statistical wind resource assessment can successfully be used for estimating wind speed time-series. In fact, this method is able to obtain reliable wind speed estimates and propagate all the sources of uncertainty (from the measurements to the mapping process) in an efficient way, i.e. minimizing computational time and load. This allows not only an accurate estimation, but the creation of precise confidence intervals to map the stochasticity of the wind resource for a particular site. The validation shows that machine learning can minimize the bias of the wind speed hourly estimates. Moreover, for each mapped location this method delivers not only the mean wind speed, but also its confidence interval, which are crucial data for planners.

  11. A Novel Wind Speed Forecasting Model for Wind Farms of Northwest China

    NASA Astrophysics Data System (ADS)

    Wang, Jian-Zhou; Wang, Yun

    2017-01-01

    Wind resources are becoming increasingly significant due to their clean and renewable characteristics, and the integration of wind power into existing electricity systems is imminent. To maintain a stable power supply system that takes into account the stochastic nature of wind speed, accurate wind speed forecasting is pivotal. However, no single model can be applied to all cases. Recent studies show that wind speed forecasting errors are approximately 25% to 40% in Chinese wind farms. Presently, hybrid wind speed forecasting models are widely used and have been verified to perform better than conventional single forecasting models, not only in short-term wind speed forecasting but also in long-term forecasting. In this paper, a hybrid forecasting model is developed, the Similar Coefficient Sum (SCS) and Hermite Interpolation are exploited to process the original wind speed data, and the SVM model whose parameters are tuned by an artificial intelligence model is built to make forecast. The results of case studies show that the MAPE value of the hybrid model varies from 22.96% to 28.87 %, and the MAE value varies from 0.47 m/s to 1.30 m/s. Generally, Sign test, Wilcoxon's Signed-Rank test, and Morgan-Granger-Newbold test tell us that the proposed model is different from the compared models.

  12. Indexed semi-Markov process for wind speed modeling.

    NASA Astrophysics Data System (ADS)

    Petroni, F.; D'Amico, G.; Prattico, F.

    2012-04-01

    The increasing interest in renewable energy leads scientific research to find a better way to recover most of the available energy. Particularly, the maximum energy recoverable from wind is equal to 59.3% of that available (Betz law) at a specific pitch angle and when the ratio between the wind speed in output and in input is equal to 1/3. The pitch angle is the angle formed between the airfoil of the blade of the wind turbine and the wind direction. Old turbine and a lot of that actually marketed, in fact, have always the same invariant geometry of the airfoil. This causes that wind turbines will work with an efficiency that is lower than 59.3%. New generation wind turbines, instead, have a system to variate the pitch angle by rotating the blades. This system able the wind turbines to recover, at different wind speed, always the maximum energy, working in Betz limit at different speed ratios. A powerful system control of the pitch angle allows the wind turbine to recover better the energy in transient regime. A good stochastic model for wind speed is then needed to help both the optimization of turbine design and to assist the system control to predict the value of the wind speed to positioning the blades quickly and correctly. The possibility to have synthetic data of wind speed is a powerful instrument to assist designer to verify the structures of the wind turbines or to estimate the energy recoverable from a specific site. To generate synthetic data, Markov chains of first or higher order are often used [1,2,3]. In particular in [1] is presented a comparison between a first-order Markov chain and a second-order Markov chain. A similar work, but only for the first-order Markov chain, is conduced by [2], presenting the probability transition matrix and comparing the energy spectral density and autocorrelation of real and synthetic wind speed data. A tentative to modeling and to join speed and direction of wind is presented in [3], by using two models, first-order Markov chain with different number of states, and Weibull distribution. All this model use Markov chains to generate synthetic wind speed time series but the search for a better model is still open. Approaching this issue, we applied new models which are generalization of Markov models. More precisely we applied semi-Markov models to generate synthetic wind speed time series. In a previous work we proposed different semi-Markov models, showing their ability to reproduce the autocorrelation structures of wind speed data. In that paper we showed also that the autocorrelation is higher with respect to the Markov model. Unfortunately this autocorrelation was still too small compared to the empirical one. In order to overcome the problem of low autocorrelation, in this paper we propose an indexed semi-Markov model. More precisely we assume that wind speed is described by a discrete time homogeneous semi-Markov process. We introduce a memory index which takes into account the periods of different wind activities. With this model the statistical characteristics of wind speed are faithfully reproduced. The wind is a very unstable phenomenon characterized by a sequence of lulls and sustained speeds, and a good wind generator must be able to reproduce such sequences. To check the validity of the predictive semi-Markovian model, the persistence of synthetic winds were calculated, then averaged and computed. The model is used to generate synthetic time series for wind speed by means of Monte Carlo simulations and the time lagged autocorrelation is used to compare statistical properties of the proposed models with those of real data and also with a time series generated though a simple Markov chain. [1] A. Shamshad, M.A. Bawadi, W.M.W. Wan Hussin, T.A. Majid, S.A.M. Sanusi, First and second order Markov chain models for synthetic generation of wind speed time series, Energy 30 (2005) 693-708. [2] H. Nfaoui, H. Essiarab, A.A.M. Sayigh, A stochastic Markov chain model for simulating wind speed time series at Tangiers, Morocco, Renewable Energy 29 (2004) 1407-1418. [3] F. Youcef Ettoumi, H. Sauvageot, A.-E.-H. Adane, Statistical bivariate modeling of wind using first-order Markov chain and Weibull distribution, Renewable Energy 28 (2003) 1787-1802.

  13. A multiple-fan active control wind tunnel for outdoor wind speed and direction simulation

    NASA Astrophysics Data System (ADS)

    Wang, Jia-Ying; Meng, Qing-Hao; Luo, Bing; Zeng, Ming

    2018-03-01

    This article presents a new type of active controlled multiple-fan wind tunnel. The wind tunnel consists of swivel plates and arrays of direct current fans, and the rotation speed of each fan and the shaft angle of each swivel plate can be controlled independently for simulating different kinds of outdoor wind fields. To measure the similarity between the simulated wind field and the outdoor wind field, wind speed and direction time series of two kinds of wind fields are recorded by nine two-dimensional ultrasonic anemometers, and then statistical properties of the wind signals in different time scales are analyzed based on the empirical mode decomposition. In addition, the complexity of wind speed and direction time series is also investigated using multiscale entropy and multivariate multiscale entropy. Results suggest that the simulated wind field in the multiple-fan wind tunnel has a high degree of similarity with the outdoor wind field.

  14. Evaluation of the Space Shuttle Transatlantic Abort Landing Atmospheric Sounding System

    NASA Technical Reports Server (NTRS)

    Leahy, Frank B.

    2003-01-01

    A study was conducted to determine the quality of thermodynamic and wind data measured by or derived from the Transatlantic Abort Landing (TAL) Atmospheric Sounding System (TASS). The system has Global Positioning System (GPS) tracking capability and includes a helium-filled latex balloon that carries an instrument package (sonde) and various ground equipment that receives and processes the data from the sonde. TASS is used to provide vertical profiles of thermodynamic and low-resolution wind data in support of Shuttle abort landing operations at TAL sites. TASS uses GPS to determine height, wind speed, and wind direction. The TASS sonde has sensors that directly measure air temperature and relative humidity. These are then used to derive air pressure and density. Test flights were conducted where a TASS sonde and a reference sonde were attached to the same balloon and the two profiles were compared. The objective of the testing was to determine if TASS thermodynamic and wind data met Space Shuttle Program (SSP) accuracy requirements outlined in the Space Shuttle Launch and Landing Program Requirements Document (PRD).

  15. Methods and apparatus for reducing peak wind turbine loads

    DOEpatents

    Moroz, Emilian Mieczyslaw

    2007-02-13

    A method for reducing peak loads of wind turbines in a changing wind environment includes measuring or estimating an instantaneous wind speed and direction at the wind turbine and determining a yaw error of the wind turbine relative to the measured instantaneous wind direction. The method further includes comparing the yaw error to a yaw error trigger that has different values at different wind speeds and shutting down the wind turbine when the yaw error exceeds the yaw error trigger corresponding to the measured or estimated instantaneous wind speed.

  16. Wind Retrievals under Rain for Passive Satellite Microwave Radiometers and its Applications to Hurricane Tracking

    NASA Technical Reports Server (NTRS)

    Meissner, Thomas; Wentz, Frank J.

    2008-01-01

    We have developed an algorithm that retrieves wind speed under rain using C-hand and X-band channels of passive microwave satellite radiometers. The spectral difference of the brightness temperature signals due to wind or rain allows to find channel combinations that are sufficiently sensitive to wind speed but little or not sensitive to rain. We &ve trained a statistical algorithm that applies under hurricane conditions and is able to measure wind speeds in hurricanes to an estimated accuracy of about 2 m/s. We have also developed a global algorithm, that is less accurate but can be applied under all conditions. Its estimated accuracy is between 2 and 5 mls, depending on wind speed and rain rate. We also extend the wind speed region in our model for the wind induced sea surface emissivity from currently 20 m/s to 40 mls. The data indicate that the signal starts to saturate above 30 mls. Finally, we make an assessment of the performance of wind direction retrievals from polarimetric radiometers as function of wind speed and rain rate

  17. Tethered Balloon Operations at ARM AMF3 Site at Oliktok Point, AK

    NASA Astrophysics Data System (ADS)

    Dexheimer, D.; Lucero, D. A.; Helsel, F.; Hardesty, J.; Ivey, M.

    2015-12-01

    Oliktok Point has been the home of the Atmospheric Radiation Measurement Program's (ARM) third ARM Mobile Facility, or AMF3, since October 2013. The AMF3 is operated through Sandia National Laboratories and hosts instrumentation collecting continuous measurements of clouds, aerosols, precipitation, energy, and other meteorological variables. The Arctic region is warming more quickly than any other region due to climate change and Arctic sea ice is declining to record lows. Sparsity of atmospheric data from the Arctic leads to uncertainty in process comprehension, and atmospheric general circulation models (AGCM) are understood to underestimate low cloud presence in the Arctic. Increased vertical resolution of meteorological properties and cloud measurements will improve process understanding and help AGCMs better characterize Arctic clouds. SNL is developing a tethered balloon system capable of regular operation at AMF3 in order to provide increased vertical resolution atmospheric data. The tethered balloon can be operated within clouds at altitudes up to 7,000' AGL within DOE's R-2204 restricted area. Pressure, relative humidity, temperature, wind speed, and wind direction are recorded at multiple altitudes along the tether. These data were validated against stationary met tower data in Albuquerque, NM. The altitudes of the sensors were determined by GPS and calculated using a line counter and clinometer and compared. Wireless wetness sensors and supercooled liquid water content sensors have also been deployed and their data has been compared with other sensors. This presentation will provide an overview of the balloons, sensors, and test flights flown, and will provide a preliminary look at data from sensor validation campaigns and test flights.

  18. Distributed cyberinfrastructure tools for automated data processing of structural monitoring data

    NASA Astrophysics Data System (ADS)

    Zhang, Yilan; Kurata, Masahiro; Lynch, Jerome P.; van der Linden, Gwendolyn; Sederat, Hassan; Prakash, Atul

    2012-04-01

    The emergence of cost-effective sensing technologies has now enabled the use of dense arrays of sensors to monitor the behavior and condition of large-scale bridges. The continuous operation of dense networks of sensors presents a number of new challenges including how to manage such massive amounts of data that can be created by the system. This paper reports on the progress of the creation of cyberinfrastructure tools which hierarchically control networks of wireless sensors deployed in a long-span bridge. The internet-enabled cyberinfrastructure is centrally managed by a powerful database which controls the flow of data in the entire monitoring system architecture. A client-server model built upon the database provides both data-provider and system end-users with secured access to various levels of information of a bridge. In the system, information on bridge behavior (e.g., acceleration, strain, displacement) and environmental condition (e.g., wind speed, wind direction, temperature, humidity) are uploaded to the database from sensor networks installed in the bridge. Then, data interrogation services interface with the database via client APIs to autonomously process data. The current research effort focuses on an assessment of the scalability and long-term robustness of the proposed cyberinfrastructure framework that has been implemented along with a permanent wireless monitoring system on the New Carquinez (Alfred Zampa Memorial) Suspension Bridge in Vallejo, CA. Many data interrogation tools are under development using sensor data and bridge metadata (e.g., geometric details, material properties, etc.) Sample data interrogation clients including those for the detection of faulty sensors, automated modal parameter extraction.

  19. The Aquarius Salinity Product: Intercomparison with SMOS and In-Situ Observations and Importance of the Ocean Surface Roughness Correction

    NASA Astrophysics Data System (ADS)

    Meissner, Thomas; Hilburn, Kyle; Wentz, Frank; Gentemann, Chelle

    2013-04-01

    The Aquarius L-band radiometer/scatterometer system is designed to provide monthly salinity maps at 150 km spatial scale to an accuracy of 0.2 psu. The sensor was launched on June 10, 2011, aboard the Argentine CONAE SAC-D spacecraft. The L-band radiometers and the scatterometer have been taking science data observations since August 25, 2011. This first part of the presentation gives an overview over the major features of the Version 2.1 Aquarius Level 2 salinity retrieval algorithm: 1. Antenna pattern correction: spillover and cross polarization contamination. 2. Correction for the drift of the Aquarius internal calibration system. 3. Correction for intruding celestial radiation, foremost from the galaxy. 4. Correction for effects of the wind roughened ocean surface. We then present a thorough validation study for the salinity product, which consists in a 3-way intercomparison between Aquarius, SMOS and in-situ buoy salinity measurements. The Aquarius - buy comparison shows that that the Aquarius Version 2.1 salinity product is very close to meet the aforementioned mission requirement of 0.2 psu. We demonstrate that in order to meet this accuracy it is crucial to use the L-band scatterometer for correcting effects from the wind roughened ocean surface, which turns out to be the major driver in the salinity retrieval uncertainty budget. A surface roughness correction algorithm that is based solely on auxiliary input of wind fields from numerical weather prediction models (e.g. NCEP, ECMWF) is not sufficient to meet the stringent Aquarius mission requirement, especially at wind speeds above 10 m/s. We show that presence of the Aquarius L-band scatterometer together with the L-band radiometer allows the retrieval of an Aquarius wind speed product whose accuracy matches or exceeds that of other common ocean wind speeds (WindSat, SSMIS). By comparing SMOS and Aquarius salinity fields with the in-situ observations we assess the importance of the roughness correction and the presence of the L-band scatterometer, which is a major difference between the two missions.

  20. MiniSODAR(TradeMark) Evaluation

    NASA Technical Reports Server (NTRS)

    Short, David A.; Wheeler, Mark M.

    2003-01-01

    This report describes results of the AMU's Instrumentation and Measurement task for evaluation of the Doppler miniSODAR(TradeMark) System (DmSS). The DmSS is an acoustic wind profiler providing high resolution data to a height of approx. 410 ft. The Boeing Company installed a DmSS near Space Launch Complex 37 in mid-2002 as a substitute for a tall wind tower and plans to use DmSS data for the analysis and forecasting of winds during ground and launch operations. Peak wind speed data are of particular importance to Launch Weather Officers of the 45th Weather Squadron for evaluating user Launch Commit Criteria. The AMU performed a comparative analysis of wind data between the DmSS and nearby wind towers from August 2002 to July 2003. The DmSS vertical profile of average wind speed showed good agreement with the wind towers. However, the DMSS peak wind speeds were higher, on average, than the wind tower peak wind speeds by about 25%. A statistical model of an idealized Doppler profiler was developed and it predicted that average wind speeds would be well determined but peak wind speeds would be over-estimated due to an under-specification of vertical velocity variations in the atmosphere over the Profiler.

  1. An examination of loads and responses of a wind turbine undergoing variable-speed operation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wright, A.D.; Buhl, M.L. Jr.; Bir, G.S.

    1996-11-01

    The National Renewable Energy Laboratory has recently developed the ability to predict turbine loads and responses for machines undergoing variable-speed operation. The wind industry has debated the potential benefits of operating wind turbine sat variable speeds for some time. Turbine system dynamic responses (structural response, resonance, and component interactions) are an important consideration for variable-speed operation of wind turbines. The authors have implemented simple, variable-speed control algorithms for both the FAST and ADAMS dynamics codes. The control algorithm is a simple one, allowing the turbine to track the optimum power coefficient (C{sub p}). The objective of this paper is tomore » show turbine loads and responses for a particular two-bladed, teetering-hub, downwind turbine undergoing variable-speed operation. The authors examined the response of the machine to various turbulent wind inflow conditions. In addition, they compare the structural responses under fixed-speed and variable-speed operation. For this paper, they restrict their comparisons to those wind-speed ranges for which limiting power by some additional control strategy (blade pitch or aileron control, for example) is not necessary. The objective here is to develop a basic understanding of the differences in loads and responses between the fixed-speed and variable-speed operation of this wind turbine configuration.« less

  2. Modelling storm development and the impact when introducing waves, sea spray and heat fluxes

    NASA Astrophysics Data System (ADS)

    Wu, Lichuan; Rutgersson, Anna; Sahlée, Erik

    2015-04-01

    In high wind speed conditions, sea spray generated due to intensity breaking waves have big influence on the wind stress and heat fluxes. Measurements show that drag coefficient will decrease in high wind speed. Sea spray generation function (SSGF), an important term of wind stress parameterization in high wind speed, usually treated as a function of wind speed/friction velocity. In this study, we introduce a wave state depended SSGG and wave age depended Charnock number into a high wind speed wind stress parameterization (Kudryavtsev et al., 2011; 2012). The proposed wind stress parameterization and sea spray heat fluxes parameterization from Andreas et al., (2014) were applied to an atmosphere-wave coupled model to test on four storm cases. Compared with measurements from the FINO1 platform in the North Sea, the new wind stress parameterization can reduce the forecast errors of wind in high wind speed range, but not in low wind speed. Only sea spray impacted on wind stress, it will intensify the storms (minimum sea level pressure and maximum wind speed) and lower the air temperature (increase the errors). Only the sea spray impacted on the heat fluxes, it can improve the model performance on storm tracks and the air temperature, but not change much in the storm intensity. If both of sea spray impacted on the wind stress and heat fluxes are taken into account, it has the best performance in all the experiment for minimum sea level pressure and maximum wind speed and air temperature. Andreas, E. L., Mahrt, L., and Vickers, D. (2014). An improved bulk air-sea surface flux algorithm, including spray-mediated transfer. Quarterly Journal of the Royal Meteorological Society. Kudryavtsev, V. and Makin, V. (2011). Impact of ocean spray on the dynamics of the marine atmospheric boundary layer. Boundary-layer meteorology, 140(3):383-410. Kudryavtsev, V., Makin, V., and S, Z. (2012). On the sea-surface drag and heat/mass transfer at strong winds. Technical report, Royal Netherlands Meteorological Institute.

  3. Independent Auditors Report on the Air Force General Fund FY 2015 and FY 2014 Basic Financial Statements for United States Air Force Agency Financial Report 2015

    DTIC Science & Technology

    2015-11-09

    and intelligence warfighting support. AFSPC operates sensors that provide direct attack warning and assessment to U.S. Strategic Command and North...combinations. AFRL conducted low-speed wind tunnel tests of 9%-scale model completed at NASA Langley Research Center (LaRC); data validated analytical...by $2M across JTAC platforms and expanding mobile device operation usage by 95 hours. The BATMAN-II team also delivered a new wireless mobile

  4. Independent Auditors Report on the Air Force Working Capital Fund FY 2015 and FY 2014 Basic Financial Statements for United States Air Force Agency Financial Report 2015

    DTIC Science & Technology

    2015-11-09

    missile warning, weather and intelligence warfighting support. AFSPC operates sensors that provide direct attack warning and assessment to U.S...toughness combinations. AFRL conducted low-speed wind tunnel tests of 9%-scale model completed at NASA Langley Research Center (LaRC); data validated... wireless mobile monitoring capability designed for dismounted Pararescue Jumpers (PJ) called United States Air Force 89 Battlefield Airmen Trauma

  5. Mixed H2/H∞ pitch control of wind turbine with a Markovian jump model

    NASA Astrophysics Data System (ADS)

    Lin, Zhongwei; Liu, Jizhen; Wu, Qiuwei; Niu, Yuguang

    2018-01-01

    This paper proposes a Markovian jump model and the corresponding H2/H∞ control strategy for the wind turbine driven by the stochastic switching wind speed, which can be used to regulate the generator speed in order to harvest the rated power while reducing the fatigue loads on the mechanical side of wind turbine. Through sampling the low-frequency wind speed data into separate intervals, the stochastic characteristic of the steady wind speed can be represented as a Markov process, while the high-frequency wind speed in the each interval is regarded as the disturbance input. Then, the traditional operating points of wind turbine can be divided into separate subregions correspondingly, where the model parameters and the control mode can be fixed in each mode. Then, the mixed H2/H∞ control problem is discussed for such a class of Markovian jump wind turbine working above the rated wind speed to guarantee both the disturbance rejection and the mechanical loads objectives, which can reduce the power volatility and the generator torque fluctuation of the whole transmission mechanism efficiently. Simulation results for a 2 MW wind turbine show the effectiveness of the proposed method.

  6. Prospects for generating electricity by large onshore and offshore wind farms

    NASA Astrophysics Data System (ADS)

    Volker, Patrick J. H.; Hahmann, Andrea N.; Badger, Jake; Jørgensen, Hans E.

    2017-03-01

    The decarbonisation of energy sources requires additional investments in renewable technologies, including the installation of onshore and offshore wind farms. For wind energy to remain competitive, wind farms must continue to provide low-cost power even when covering larger areas. Inside very large wind farms, winds can decrease considerably from their free-stream values to a point where an equilibrium wind speed is reached. The magnitude of this equilibrium wind speed is primarily dependent on the balance between turbine drag force and the downward momentum influx from above the wind farm. We have simulated for neutral atmospheric conditions, the wind speed field inside different wind farms that range from small (25 km2) to very large (105 km2) in three regions with distinct wind speed and roughness conditions. Our results show that the power density of very large wind farms depends on the local free-stream wind speed, the surface characteristics, and the turbine density. In onshore regions with moderate winds the power density of very large wind farms reaches 1 W m-2, whereas in offshore regions with very strong winds it exceeds 3 W m-2. Despite a relatively low power density, onshore regions with moderate winds offer potential locations for very large wind farms. In offshore regions, clusters of smaller wind farms are generally preferable; under very strong winds also very large offshore wind farms become efficient.

  7. A novel application of artificial neural network for wind speed estimation

    NASA Astrophysics Data System (ADS)

    Fang, Da; Wang, Jianzhou

    2017-05-01

    Providing accurate multi-steps wind speed estimation models has increasing significance, because of the important technical and economic impacts of wind speed on power grid security and environment benefits. In this study, the combined strategies for wind speed forecasting are proposed based on an intelligent data processing system using artificial neural network (ANN). Generalized regression neural network and Elman neural network are employed to form two hybrid models. The approach employs one of ANN to model the samples achieving data denoising and assimilation and apply the other to predict wind speed using the pre-processed samples. The proposed method is demonstrated in terms of the predicting improvements of the hybrid models compared with single ANN and the typical forecasting method. To give sufficient cases for the study, four observation sites with monthly average wind speed of four given years in Western China were used to test the models. Multiple evaluation methods demonstrated that the proposed method provides a promising alternative technique in monthly average wind speed estimation.

  8. Wind Noise Suppression for Infrasound Sensors

    DTIC Science & Technology

    2014-03-01

    Wind Noise Suppression for Infrasound Sensors by John M. Noble, W.C. Kirkpatrick Alberts, II, Sandra L. Collier, Richard Raspet, and Mark A...Laboratory Adelphi, MD 20783-1197 ARL-TR-6873 March 2014 Wind Noise Suppression for Infrasound Sensors John M. Noble, Sandra L. Collier, and...DATES COVERED (From - To) October 2012 to September 2013 4. TITLE AND SUBTITLE Wind Noise Suppression for Infrasound Sensors 5a. CONTRACT NUMBER 5b

  9. Effect of Wind Speed on Aerosol Optical Depth over Remote Oceans, Based on Data from the Maritime Aerosol Network

    NASA Technical Reports Server (NTRS)

    Smirnov, A.; Sayer, A. M.; Holben, B. N.; Hsu, N. C.; Sakerin, S. M.; Macke, A.; Nelson, N. B.; Courcoux, Y.; Smyth, T. J.; Croot, P.; hide

    2012-01-01

    The Maritime Aerosol Network (MAN) has been collecting data over the oceans since November 2006. The MAN archive provides a valuable resource for aerosol studies in maritime environments. In the current paper we investigate correlations between ship-borne aerosol optical depth (AOD) and near-surface wind speed, either measured (onboard or from satellite) or modeled (NCEP). According to our analysis, wind speed influences columnar aerosol optical depth, although the slope of the linear regression between AOD and wind speed is not steep (approx. 0.004 - 0.005), even for strong winds over 10m/s. The relationships show significant scatter (correlation coefficients typically in the range 0.3 - 0.5); the majority of this scatter can be explained by the uncertainty on the input data. The various wind speed sources considered yield similar patterns. Results are in good agreement with the majority of previously published relationships between surface wind speed and ship-based or satellite-based AOD measurements. The basic relationships are similar for all the wind speed sources considered; however, the gradient of the relationship varies by around a factor of two depending on the wind data used

  10. A hybrid wavelet transform based short-term wind speed forecasting approach.

    PubMed

    Wang, Jujie

    2014-01-01

    It is important to improve the accuracy of wind speed forecasting for wind parks management and wind power utilization. In this paper, a novel hybrid approach known as WTT-TNN is proposed for wind speed forecasting. In the first step of the approach, a wavelet transform technique (WTT) is used to decompose wind speed into an approximate scale and several detailed scales. In the second step, a two-hidden-layer neural network (TNN) is used to predict both approximated scale and detailed scales, respectively. In order to find the optimal network architecture, the partial autocorrelation function is adopted to determine the number of neurons in the input layer, and an experimental simulation is made to determine the number of neurons within each hidden layer in the modeling process of TNN. Afterwards, the final prediction value can be obtained by the sum of these prediction results. In this study, a WTT is employed to extract these different patterns of the wind speed and make it easier for forecasting. To evaluate the performance of the proposed approach, it is applied to forecast Hexi Corridor of China's wind speed. Simulation results in four different cases show that the proposed method increases wind speed forecasting accuracy.

  11. Effect of wind speed on aerosol optical depth over remote oceans, based on data from the Maritime Aerosol Network

    NASA Astrophysics Data System (ADS)

    Smirnov, A.; Sayer, A. M.; Holben, B. N.; Hsu, N. C.; Sakerin, S. M.; Macke, A.; Nelson, N. B.; Courcoux, Y.; Smyth, T. J.; Croot, P.; Quinn, P. K.; Sciare, J.; Gulev, S. K.; Piketh, S.; Losno, R.; Kinne, S.; Radionov, V. F.

    2011-12-01

    The Maritime Aerosol Network (MAN) has been collecting data over the oceans since November 2006. The MAN archive provides a valuable resource for aerosol studies in maritime environments. In the current paper we investigate correlations between ship-borne aerosol optical depth (AOD) and near-surface wind speed, either measured (onboard or from satellite) or modeled (NCEP). According to our analysis, wind speed influences columnar aerosol optical depth, although the slope of the linear regression between AOD and wind speed is not steep (∼0.004-0.005), even for strong winds over 10 m s-1. The relationships show significant scatter (correlation coefficients typically in the range 0.3-0.5); the majority of this scatter can be explained by the uncertainty on the input data. The various wind speed sources considered yield similar patterns. Results are in good agreement with the majority of previously published relationships between surface wind speed and ship-based or satellite-based AOD measurements. The basic relationships are similar for all the wind speed sources considered; however, the gradient of the relationship varies by around a factor of two depending on the wind data used.

  12. Effect of wind speed on aerosol optical depth over remote oceans, based on data from the Maritime Aerosol Network

    NASA Astrophysics Data System (ADS)

    Smirnov, A.; Sayer, A. M.; Holben, B. N.; Hsu, N. C.; Sakerin, S. M.; Macke, A.; Nelson, N. B.; Courcoux, Y.; Smyth, T. J.; Croot, P.; Quinn, P. K.; Sciare, J.; Gulev, S. K.; Piketh, S.; Losno, R.; Kinne, S.; Radionov, V. F.

    2012-02-01

    The Maritime Aerosol Network (MAN) has been collecting data over the oceans since November 2006. The MAN archive provides a valuable resource for aerosol studies in maritime environments. In the current paper we investigate correlations between ship-borne aerosol optical depth (AOD) and near-surface wind speed, either measured (onboard or from satellite) or modeled (NCEP). According to our analysis, wind speed influences columnar aerosol optical depth, although the slope of the linear regression between AOD and wind speed is not steep (~0.004-0.005), even for strong winds over 10 m s-1. The relationships show significant scatter (correlation coefficients typically in the range 0.3-0.5); the majority of this scatter can be explained by the uncertainty on the input data. The various wind speed sources considered yield similar patterns. Results are in good agreement with the majority of previously published relationships between surface wind speed and ship-based or satellite-based AOD measurements. The basic relationships are similar for all the wind speed sources considered; however, the gradient of the relationship varies by around a factor of two depending on the wind data used.

  13. A Hybrid Wavelet Transform Based Short-Term Wind Speed Forecasting Approach

    PubMed Central

    Wang, Jujie

    2014-01-01

    It is important to improve the accuracy of wind speed forecasting for wind parks management and wind power utilization. In this paper, a novel hybrid approach known as WTT-TNN is proposed for wind speed forecasting. In the first step of the approach, a wavelet transform technique (WTT) is used to decompose wind speed into an approximate scale and several detailed scales. In the second step, a two-hidden-layer neural network (TNN) is used to predict both approximated scale and detailed scales, respectively. In order to find the optimal network architecture, the partial autocorrelation function is adopted to determine the number of neurons in the input layer, and an experimental simulation is made to determine the number of neurons within each hidden layer in the modeling process of TNN. Afterwards, the final prediction value can be obtained by the sum of these prediction results. In this study, a WTT is employed to extract these different patterns of the wind speed and make it easier for forecasting. To evaluate the performance of the proposed approach, it is applied to forecast Hexi Corridor of China's wind speed. Simulation results in four different cases show that the proposed method increases wind speed forecasting accuracy. PMID:25136699

  14. Observations of micro-turbulence in the solar wind near the sun with interplanetary scintillation

    NASA Technical Reports Server (NTRS)

    Yamauchi, Y.; Misawa, H.; Kojima, M.; Mori, H.; Tanaka, T.; Takaba, H.; Kondo, T.; Tokumaru, M.; Manoharan, P. K.

    1995-01-01

    Velocity and density turbulence of solar wind were inferred from interplanetary scintillation (IPS) observations at 2.3 GHz and 8.5 GHz using a single-antenna. The observations were made during September and October in 1992 - 1994. They covered the distance range between 5 and 76 solar radii (Rs). We applied the spectrum fitting method to obtain a velocity, an axial ratio, an inner scale and a power-law spectrum index. We examined the difference of the turbulence properties near the Sun between low-speed solar wind and high-speed solar wind. Both of solar winds showed acceleration at the distance range of 10 - 30 Rs. The radial dependence of anisotropy and spectrum index did not have significant difference between low-speed and high-speed solar winds. Near the sun, the radial dependence of the inner scale showed the separation from the linear relation as reported by previous works. We found that the inner scale of high-speed solar wind is larger than that of low-speed wind.

  15. Calculation of wind speeds required to damage or destroy buildings

    NASA Astrophysics Data System (ADS)

    Liu, Henry

    Determination of wind speeds required to damage or destroy a building is important not only for the improvement of building design and construction but also for the estimation of wind speeds in tornadoes and other damaging storms. For instance, since 1973 the U.S. National Weather Service has been using the well-known Fujita scale (F scale) to estimate the maximum wind speeds of tornadoes [Fujita, 1981]. The F scale classifies tornadoes into 13 numbers, F-0 through F-12. The wind speed (maximum gust speed) associated with each F number is given in Table 1. Note that F-6 through F-12 are for wind speeds between 319 mi/hr (mph) and the sonic velocity (approximately 760 mph; 1 mph = 1.6 km/kr). However, since no tornadoes have been classified to exceed F-5, the F-6 through F-12 categories have no practical meaning [Fujita, 1981].

  16. Wind Resource Assessment in Complex Terrain with a High-Resolution Numerical Weather Prediction Model

    NASA Astrophysics Data System (ADS)

    Gruber, Karin; Serafin, Stefano; Grubišić, Vanda; Dorninger, Manfred; Zauner, Rudolf; Fink, Martin

    2014-05-01

    A crucial step in planning new wind farms is the estimation of the amount of wind energy that can be harvested in possible target sites. Wind resource assessment traditionally entails deployment of masts equipped for wind speed measurements at several heights for a reasonably long period of time. Simplified linear models of atmospheric flow are then used for a spatial extrapolation of point measurements to a wide area. While linear models have been successfully applied in the wind resource assessment in plains and offshore, their reliability in complex terrain is generally poor. This represents a major limitation to wind resource assessment in Austria, where high-altitude locations are being considered for new plant sites, given the higher frequency of sustained winds at such sites. The limitations of linear models stem from two key assumptions in their formulation, the neutral stratification and attached boundary-layer flow, both of which often break down in complex terrain. Consequently, an accurate modeling of near-surface flow over mountains requires the adoption of a NWP model with high horizontal and vertical resolution. This study explores the wind potential of a site in Styria in the North-Eastern Alps. The WRF model is used for simulations with a maximum horizontal resolution of 800 m. Three nested computational domains are defined, with the innermost one encompassing a stretch of the relatively broad Enns Valley, flanked by the main crest of the Alps in the south and the Nördliche Kalkalpen of similar height in the north. In addition to the simulation results, we use data from fourteen 10-m wind measurement sites (of which 7 are located within valleys and 5 near mountain tops) and from 2 masts with anemometers at several heights (at hillside locations) in an area of 1600 km2 around the target site. The potential for wind energy production is assessed using the mean wind speed and turbulence intensity at hub height. The capacity factor is also evaluated, considering the frequency of wind speed between cut-in and cut-out speed and of winds with a low vertical velocity component only. Wind turbines do not turn on at wind speeds below cut-in speed. Wind turbines are taken off from the generator in the case of wind speeds higher than cut-out speed and inclination angles of the wind vector greater than 8o. All of these parameters were computed at each model grid point in the innermost domain in order to map their spatial variability. The results show that in complex terrain the annual mean wind speed at hub height is not sufficient to predict the capacity factor of a turbine; vertical wind speed and the frequency of horizontal wind speed out of the range of cut-in and cut-out speed contribute substantially to a reduction of the energy harvest and locally high turbulence may considerably raise the building costs.

  17. Passive air sampling using semipermeable membrane devices at different wind-speeds in situ calibrated by performance reference compounds.

    PubMed

    Söderström, Hanna S; Bergqvist, Per-Anders

    2004-09-15

    Semipermeable membrane devices (SPMDs) are passive samplers used to measure the vapor phase of organic pollutants in air. This study tested whether extremely high wind-speeds during a 21-day sampling increased the sampling rates of polycyclic aromatic hydrocarbons (PAHs) and polychlorinated biphenyls (PCBs), and whether the release of performance reference compounds (PRCs) was related to the uptakes at different wind-speeds. Five samplers were deployed in an indoor, unheated, and dark wind tunnel with different wind-speeds at each site (6-50 m s(-1)). In addition, one sampler was deployed outside the wind tunnel and one outside the building. To test whether a sampler, designed to reduce the wind-speeds, decreased the uptake and release rates, each sampler in the wind tunnel included two SPMDs positioned inside a protective device and one unprotected SPMD outside the device. The highest amounts of PAHs and PCBs were found in the SPMDs exposed to the assumed highest wind-speeds. Thus, the SPMD sampling rates increased with increasing wind-speeds, indicating that the uptake was largely controlled by the boundary layer at the membrane-air interface. The coefficient of variance (introduced by the 21-day sampling and the chemical analysis) for the air concentrations of three PAHs and three PCBs, calculated using the PRC data, was 28-46%. Thus, the PRCs had a high ability to predict site effects of wind and assess the actual sampling situation. Comparison between protected and unprotected SPMDs showed that the sampler design reduced the wind-speed inside the devices and thereby the uptake and release rates.

  18. Wind power in Jamaica

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, A.A.; Daniel, A.R.; Daniel, S.T.

    1990-01-01

    Parameters to evaluate the potential for using wind energy to generate electricity in Jamaica were obtained. These include the average wind power scaled to a height of 20 m at existing weather stations and temporary anemometer sites, the variation in annual and monthly wind power, and the frequency distribution of wind speed and wind energy available. Four small commercial turbines were assumed to be operating at some of the sites, and the estimated energy captured by them, the time they operated above their cut-in speed and their capacity factors were also determined. Diurnal variations of wind speed and prevailing windmore » directions are discussed and a map showing wind power at various sites was produced. Two stations with long-term averages, Manley and Morant Point, gave results which warranted further investigation. Results from some temporary stations are also encouraging. Mean wind speeds at two other sites in the Caribbean are given for comparison. A method for estimating the power exponent for scaling the wind speed from climatic data is described in Appendix 2.« less

  19. Extended Statistical Short-Range Guidance for Peak Wind Speed Analyses at the Shuttle Landing Facility: Phase II Results

    NASA Technical Reports Server (NTRS)

    Lambert, Winifred C.

    2003-01-01

    This report describes the results from Phase II of the AMU's Short-Range Statistical Forecasting task for peak winds at the Shuttle Landing Facility (SLF). The peak wind speeds are an important forecast element for the Space Shuttle and Expendable Launch Vehicle programs. The 45th Weather Squadron and the Spaceflight Meteorology Group indicate that peak winds are challenging to forecast. The Applied Meteorology Unit was tasked to develop tools that aid in short-range forecasts of peak winds at tower sites of operational interest. A seven year record of wind tower data was used in the analysis. Hourly and directional climatologies by tower and month were developed to determine the seasonal behavior of the average and peak winds. Probability density functions (PDF) of peak wind speed were calculated to determine the distribution of peak speed with average speed. These provide forecasters with a means of determining the probability of meeting or exceeding a certain peak wind given an observed or forecast average speed. A PC-based Graphical User Interface (GUI) tool was created to display the data quickly.

  20. Flying with the wind: Scale dependency of speed and direction measurements in modelling wind support in avian flight

    USGS Publications Warehouse

    Safi, Kamran; Kranstauber, Bart; Weinzierl, Rolf P.; Griffin, Larry; Reese, Eileen C.; Cabot, David; Cruz, Sebastian; Proaño, Carolina; Takekawa, John Y.; Newman, Scott H.; Waldenström, Jonas; Bengtsson, Daniel; Kays, Roland; Wikelski, Martin; Bohrer, Gil

    2013-01-01

    Background: Understanding how environmental conditions, especially wind, influence birds' flight speeds is a prerequisite for understanding many important aspects of bird flight, including optimal migration strategies, navigation, and compensation for wind drift. Recent developments in tracking technology and the increased availability of data on large-scale weather patterns have made it possible to use path annotation to link the location of animals to environmental conditions such as wind speed and direction. However, there are various measures available for describing not only wind conditions but also the bird's flight direction and ground speed, and it is unclear which is best for determining the amount of wind support (the length of the wind vector in a bird’s flight direction) and the influence of cross-winds (the length of the wind vector perpendicular to a bird’s direction) throughout a bird's journey.Results: We compared relationships between cross-wind, wind support and bird movements, using path annotation derived from two different global weather reanalysis datasets and three different measures of direction and speed calculation for 288 individuals of nine bird species. Wind was a strong predictor of bird ground speed, explaining 10-66% of the variance, depending on species. Models using data from different weather sources gave qualitatively similar results; however, determining flight direction and speed from successive locations, even at short (15 min intervals), was inferior to using instantaneous GPS-based measures of speed and direction. Use of successive location data significantly underestimated the birds' ground and airspeed, and also resulted in mistaken associations between cross-winds, wind support, and their interactive effects, in relation to the birds' onward flight.Conclusions: Wind has strong effects on bird flight, and combining GPS technology with path annotation of weather variables allows us to quantify these effects for understanding flight behaviour. The potentially strong influence of scaling effects must be considered and implemented in developing sampling regimes and data analysis.

  1. Flying with the wind: scale dependency of speed and direction measurements in modelling wind support in avian flight.

    PubMed

    Safi, Kamran; Kranstauber, Bart; Weinzierl, Rolf; Griffin, Larry; Rees, Eileen C; Cabot, David; Cruz, Sebastian; Proaño, Carolina; Takekawa, John Y; Newman, Scott H; Waldenström, Jonas; Bengtsson, Daniel; Kays, Roland; Wikelski, Martin; Bohrer, Gil

    2013-01-01

    Understanding how environmental conditions, especially wind, influence birds' flight speeds is a prerequisite for understanding many important aspects of bird flight, including optimal migration strategies, navigation, and compensation for wind drift. Recent developments in tracking technology and the increased availability of data on large-scale weather patterns have made it possible to use path annotation to link the location of animals to environmental conditions such as wind speed and direction. However, there are various measures available for describing not only wind conditions but also the bird's flight direction and ground speed, and it is unclear which is best for determining the amount of wind support (the length of the wind vector in a bird's flight direction) and the influence of cross-winds (the length of the wind vector perpendicular to a bird's direction) throughout a bird's journey. We compared relationships between cross-wind, wind support and bird movements, using path annotation derived from two different global weather reanalysis datasets and three different measures of direction and speed calculation for 288 individuals of nine bird species. Wind was a strong predictor of bird ground speed, explaining 10-66% of the variance, depending on species. Models using data from different weather sources gave qualitatively similar results; however, determining flight direction and speed from successive locations, even at short (15 min intervals), was inferior to using instantaneous GPS-based measures of speed and direction. Use of successive location data significantly underestimated the birds' ground and airspeed, and also resulted in mistaken associations between cross-winds, wind support, and their interactive effects, in relation to the birds' onward flight. Wind has strong effects on bird flight, and combining GPS technology with path annotation of weather variables allows us to quantify these effects for understanding flight behaviour. The potentially strong influence of scaling effects must be considered and implemented in developing sampling regimes and data analysis.

  2. Meteorological data for selected sites along the Colorado River Corridor, Arizona, 2011-13

    USGS Publications Warehouse

    Caster, Joshua J.; Dealy, Timothy P.; Andrews, Timothy; Fairley, Helen C.; East, Amy E.; Sankey, Joel B.

    2014-01-01

    This report presents data from 14 automated weather stations collected as part of an ongoing monitoring program within the Grand Canyon National Park and Glen Canyon Recreation Area along the Colorado River Corridor in Arizona. Weather data presented in this document include precipitation, wind speed, maximum wind gusts, wind direction, barometric pressure, relative humidity, and air temperature collected by the Grand Canyon Monitoring and Research Center at 4-minute intervals between January 1, 2011, and December 31, 2013, using automated weather stations consisting of a data logger and a weather transmitter equipped with a piezoelectric sensor, ultrasonic transducers, and capacitive thermal and pressure sensors. Data collection was discontinuous because of station additions, station removals, changes in permits, and equipment failure. A large volume of data was collected for each station. These data are part of a larger research effort focused on physical processes affecting landscapes and archaeological-site stability in the Colorado River Corridor—both natural processes (including meteorological events) and those related to the Glen Canyon Dam operations. Meteorological conditions during the study interval were warmer and drier than is typical, due to ongoing drought conditions during the time period studied. The El Niño/Southern Oscillation was primarily in a neutral state during the reporting period.

  3. Changes in wind speed and extremes in Beijing during 1960-2008 based on homogenized observations

    NASA Astrophysics Data System (ADS)

    Li, Zhen; Yan, Zhongwei; Tu, Kai; Liu, Weidong; Wang, Yingchun

    2011-03-01

    Daily observations of wind speed at 12 stations in the Greater Beijing Area during 1960-2008 were homogenized using the Multiple Analysis of Series for Homogenization method. The linear trends in the regional mean annual and seasonal (winter, spring, summer and autumn) wind speed series were -0.26, -0.39, -0.30, -0.12 and -0.22 m s-1 (10 yr)-1, respectively. Winter showed the greatest magnitude in declining wind speed, followed by spring, autumn and summer. The annual and seasonal frequencies of wind speed extremes (days) also decreased, more prominently for winter than for the other seasons. The declining trends in wind speed and extremes were formed mainly by some rapid declines during the 1970s and 1980s. The maximum declining trend in wind speed occurred at Chaoyang (CY), a station within the central business district (CBD) of Beijing with the highest level of urbanization. The declining trends were in general smaller in magnitude away from the city center, except for the winter case in which the maximum declining trend shifted northeastward to rural Miyun (MY). The influence of urbanization on the annual wind speed was estimated to be about -0.05 m s-1 (10 yr)-1 during 1960-2008, accounting for around one fifth of the regional mean declining trend. The annual and seasonal geostrophic wind speeds around Beijing, based on daily mean sea level pressure (MSLP) from the ERA-40 reanalysis dataset, also exhibited decreasing trends, coincident with the results from site observations. A comparative analysis of the MSLP fields between 1966-1975 and 1992-2001 suggested that the influences of both the winter and summer monsoons on Beijing were weaker in the more recent of the two decades. It is suggested that the bulk of wind in Beijing is influenced considerably by urbanization, while changes in strong winds or wind speed extremes are prone to large-scale climate change in the region.

  4. An improved canopy wind model for predicting wind adjustment factors and wildland fire behavior

    Treesearch

    W. J. Massman; J. M. Forthofer; M. A. Finney

    2017-01-01

    The ability to rapidly estimate wind speed beneath a forest canopy or near the ground surface in any vegetation is critical to practical wildland fire behavior models. The common metric of this wind speed is the "mid-flame" wind speed, UMF. However, the existing approach for estimating UMF has some significant shortcomings. These include the assumptions that...

  5. Wind speed vector restoration algorithm

    NASA Astrophysics Data System (ADS)

    Baranov, Nikolay; Petrov, Gleb; Shiriaev, Ilia

    2018-04-01

    Impulse wind lidar (IWL) signal processing software developed by JSC «BANS» recovers full wind speed vector by radial projections and provides wind parameters information up to 2 km distance. Increasing accuracy and speed of wind parameters calculation signal processing technics have been studied in this research. Measurements results of IWL and continuous scanning lidar were compared. Also, IWL data processing modeling results have been analyzed.

  6. Simulation of the Impact of New Aircraft- and Satellite-Based Ocean Surface Wind Measurements on H*Wind Analyses and Numerical Forecasts

    NASA Technical Reports Server (NTRS)

    Miller, Timothy; Atlas, Robert; Black, Peter; Chen, Shuyi; Hood, Robbie; Johnson, James; Jones, Linwood; Ruf, Chris; Uhlhorn, Eric; Krishnamurti, T. N.; hide

    2009-01-01

    The Hurricane Imaging Radiometer (HIRAD) is a new airborne microwave remote sensor for hurricane observations that is currently under development by NASA Marshall Space Flight Center, NOAA Hurricane Research Division, the University of Central Florida and the University of Michigan. HIRAD is being designed to enhance the realtime airborne ocean surface winds observation capabilities of NOAA and USAF Weather Squadron hurricane hunter aircraft using the operational airborne Stepped Frequency Microwave Radiometer (SFMR). Unlike SFMR, which measures wind speed and rain rate along the ground track directly beneath the aircraft, HIRAD will provide images of the surface wind and rain field over a wide swath ( 3 x the aircraft altitude). The present paper describes a set of Observing System Simulation Experiments (OSSEs) in which measurements from the new instrument as well as those from existing instruments (air, surface, and space-based) are simulated from the output of a detailed numerical model, and those results are used to construct H*Wind analyses. The H*Wind analysis, a product of the Hurricane Research Division of NOAA s Atlantic Oceanographic and Meteorological Laboratory, brings together wind measurements from a variety of observation platforms into an objective analysis of the distribution of wind speeds in a tropical cyclone. This product is designed to improve understanding of the extent and strength of the wind field, and to improve the assessment of hurricane intensity. See http://www.aoml.noaa.gov/hrd/data_sub/wind.html. Evaluations will be presented on the impact of the HIRAD instrument on H*Wind analyses, both in terms of adding it to the full suite of current measurements, as well as using it to replace instrument(s) that may not be functioning at the future time the HIRAD instrument is implemented. Also shown will be preliminary results of numerical weather prediction OSSEs in which the impact of the addition of HIRAD observations to the initial state on numerical forecasts of the hurricane intensity and structure is assessed.

  7. An Initial Assessment of the Impact of CYGNSS Ocean Surface Wind Assimilation on Navy Global and Mesoscale Numerical Weather Prediction

    NASA Astrophysics Data System (ADS)

    Baker, N. L.; Tsu, J.; Swadley, S. D.

    2017-12-01

    We assess the impact of assimilation of CYclone Global Navigation Satellite System (CYGNSS) ocean surface winds observations into the NAVGEM[i] global and COAMPS®[ii] mesoscale numerical weather prediction (NWP) systems. Both NAVGEM and COAMPS® used the NRL 4DVar assimilation system NAVDAS-AR[iii]. Long term monitoring of the NAVGEM Forecast Sensitivity Observation Impact (FSOI) indicates that the forecast error reduction for ocean surface wind vectors (ASCAT and WindSat) are significantly larger than for SSMIS wind speed observations. These differences are larger than can be explained by simply two pieces of information (for wind vectors) versus one (wind speed). To help understand these results, we conducted a series of Observing System Experiments (OSEs) to compare the assimilation of ASCAT wind vectors with the equivalent (computed) ASCAT wind speed observations. We found that wind vector assimilation was typically 3 times more effective at reducing the NAVGEM forecast error, with a higher percentage of beneficial observations. These results suggested that 4DVar, in the absence of an additional nonlinear outer loop, has limited ability to modify the analysis wind direction. We examined several strategies for assimilating CYGNSS ocean surface wind speed observations. In the first approach, we assimilated CYGNSS as wind speed observations, following the same methodology used for SSMIS winds. The next two approaches converted CYGNSS wind speed to wind vectors, using NAVGEM sea level pressure fields (following Holton, 1979), and using NAVGEM 10-m wind fields with the AER Variational Analysis Method. Finally, we compared these methods to CYGNSS wind speed assimilation using multiple outer loops with NAVGEM Hybrid 4DVar. Results support the earlier studies suggesting that NAVDAS-AR wind speed assimilation is sub-optimal. We present detailed results from multi-month NAVGEM assimilation runs along with case studies using COAMPS®. Comparisons include the fit of analyses and forecasts with in-situ observations and analyses from other NWP centers (e.g. ECMWF and GFS). [i] NAVy Global Environmental Model [ii] COAMPS® is a registered trademark of the Naval Research Laboratory for the Navy's Coupled Ocean Atmosphere Mesoscale Prediction System. [iii] NRL Atmospheric Variational Data Assimilation System

  8. Multifractal analysis of the time series of daily means of wind speed in complex regions

    NASA Astrophysics Data System (ADS)

    Laib, Mohamed; Golay, Jean; Telesca, Luciano; Kanevski, Mikhail

    2018-04-01

    In this paper, we applied the multifractal detrended fluctuation analysis to the daily means of wind speed measured by 119 weather stations distributed over the territory of Switzerland. The analysis was focused on the inner time fluctuations of wind speed, which could be more linked with the local conditions of the highly varying topography of Switzerland. Our findings point out to a persistent behaviour of all the measured wind speed series (indicated by a Hurst exponent significantly larger than 0.5), and to a high multifractality degree indicating a relative dominance of the large fluctuations in the dynamics of wind speed, especially in the Swiss plateau, which is comprised between the Jura and Alp mountain ranges. The study represents a contribution to the understanding of the dynamical mechanisms of wind speed variability in mountainous regions.

  9. Constructing a Plastic Bottle Wind Turbine as a Practical Aid for Learning about Using Wind Energy to Generate Electricity

    ERIC Educational Resources Information Center

    Appleyard, S. J.

    2009-01-01

    A simple horizontal axis wind turbine can be easily constructed using a 1.5 l PET plastic bottle, a compact disc and a small dynamo. The turbine operates effectively at low wind speeds and has a rotational speed of 500 rpm at a wind speed of about 14 km h[superscript -1]. The wind turbine can be used to demonstrate the relationship between open…

  10. DE-Sync: A Doppler-Enhanced Time Synchronization for Mobile Underwater Sensor Networks.

    PubMed

    Zhou, Feng; Wang, Qi; Nie, DongHu; Qiao, Gang

    2018-05-25

    Time synchronization is the foundation of cooperative work among nodes of underwater sensor networks; it takes a critical role in the research and application of underwater sensor networks. Although numerous time synchronization protocols have been proposed for terrestrial wireless sensor networks, they cannot be directly applied to underwater sensor networks. This is because most of them typically assume that the propagation delay among sensor nodes is negligible, which is not the case in underwater sensor networks. Time synchronization is mainly affected by a long propagation delay among sensor nodes due to the low propagation speed of acoustic signals. Furthermore, sensor nodes in underwater tend to experience some degree of mobility due to wind or ocean current, or some other nodes are on self-propelled vehicles, such as autonomous underwater vehicles (AUVs). In this paper, we propose a Doppler-enhanced time synchronization scheme for mobile underwater sensor networks, called DE-Sync. Our new scheme considers the effect of the clock skew during the process of estimating the Doppler scale factor and directly substitutes the Doppler scale factor into linear regression to achieve the estimation of the clock skew and offset. Simulation results show that DE-Sync outperforms existing time synchronization protocols in both accuracy and energy efficiency.

  11. Six mechanisms used on the SSM/1 radiometer

    NASA Technical Reports Server (NTRS)

    Ludwig, H. R.

    1985-01-01

    Future USAF Block 5D Defense Meteorological Satellites will carry a scanning microwave radiometer sensor (SSM/1). SSM/1 senses the emission of microwave energy and returns to earth data used to determine weather conditions, such as rainfall rates, soil moisture, and oceanic wind speed. The overall design of the SSM/1 radiometer was largely influenced by the mechanisms. The radiometer was designed to be stowed in a cavity on the existing spacecraft. The deployment of the sensor is complex due to the constraint of this cavity and the need for precision in the deployment. The radiometer will continuously rotate, instead of oscillate, creating the need for a bearing and power transfer assembly and a momentum compensation device. The six mechanisms developed for this program are described.

  12. Association between wind speed and the occurrence of sickle cell acute painful episodes: results of a case-crossover study

    PubMed Central

    Nolan, Vikki G.; Zhang, Yuqing; Lash, Timothy; Sebastiani, Paola; Steinberg, Martin H.

    2015-01-01

    Summary The role of the weather as a trigger of sickle cell acute painful episodes has long been debated. To more accurately describe the role of the weather as a trigger of painful events, we conducted a case-crossover study of the association between local weather conditions and the occurrence of painful episodes. From the Cooperative Study of Sickle Cell Disease, we identified 813 patients with sickle cell anaemia who had 3570 acute painful episodes. We found an association between wind speed and the onset of pain, specifically wind speed during the 24-h period preceding the onset of pain. Analysing wind speed as a categorical trait, showed a 13% increase (95% confidence interval: 3%, 24%) in odds of pain, when comparing the high wind speed to lower wind speed (P = 0.007). In addition, the association between wind speed and painful episodes was found to be stronger among men, particularly those in the warmer climate regions of the United States. These results are in agreement with another study that found an association between wind speed and hospital visits for pain in the United Kingdom, and lends support to physiological and clinical studies that have suggested that skin cooling is associated with sickle vasoocclusion and perhaps pain. PMID:18729854

  13. Association between wind speed and the occurrence of sickle cell acute painful episodes: results of a case-crossover study.

    PubMed

    Nolan, Vikki G; Zhang, Yuqing; Lash, Timothy; Sebastiani, Paola; Steinberg, Martin H

    2008-11-01

    The role of the weather as a trigger of sickle cell acute painful episodes has long been debated. To more accurately describe the role of the weather as a trigger of painful events, we conducted a case-crossover study of the association between local weather conditions and the occurrence of painful episodes. From the Cooperative Study of Sickle Cell Disease, we identified 813 patients with sickle cell anaemia who had 3570 acute painful episodes. We found an association between wind speed and the onset of pain, specifically wind speed during the 24-h period preceding the onset of pain. Analysing wind speed as a categorical trait, showed a 13% increase (95% confidence interval: 3%, 24%) in odds of pain, when comparing the high wind speed to lower wind speed (P = 0.007). In addition, the association between wind speed and painful episodes was found to be stronger among men, particularly those in the warmer climate regions of the United States. These results are in agreement with another study that found an association between wind speed and hospital visits for pain in the United Kingdom, and lends support to physiological and clinical studies that have suggested that skin cooling is associated with sickle vasoocclusion and perhaps pain.

  14. Reliability of Wind Speed Data from Satellite Altimeter to Support Wind Turbine Energy

    NASA Astrophysics Data System (ADS)

    Uti, M. N.; Din, A. H. M.; Omar, A. H.

    2017-10-01

    Satellite altimeter has proven itself to be one of the important tool to provide good quality information in oceanographic study. Nowadays, most countries in the world have begun in implementation the wind energy as one of their renewable energy for electric power generation. Many wind speed studies conducted in Malaysia using conventional method and scientific technique such as anemometer and volunteer observing ships (VOS) in order to obtain the wind speed data to support the development of renewable energy. However, there are some limitations regarding to this conventional method such as less coverage for both spatial and temporal and less continuity in data sharing by VOS members. Thus, the aim of this research is to determine the reliability of wind speed data by using multi-mission satellite altimeter to support wind energy potential in Malaysia seas. Therefore, the wind speed data are derived from nine types of satellite altimeter starting from year 1993 until 2016. Then, to validate the reliability of wind speed data from satellite altimeter, a comparison of wind speed data form ground-truth buoy that located at Sabah and Sarawak is conducted. The validation is carried out in terms of the correlation, the root mean square error (RMSE) calculation and satellite track analysis. As a result, both techniques showing a good correlation with value positive 0.7976 and 0.6148 for point located at Sabah and Sarawak Sea, respectively. It can be concluded that a step towards the reliability of wind speed data by using multi-mission satellite altimeter can be achieved to support renewable energy.

  15. The Impact of Variable Wind Shear Coefficients on Risk Reduction of Wind Energy Projects

    PubMed Central

    Thomson, Allan; Yoonesi, Behrang; McNutt, Josiah

    2016-01-01

    Estimation of wind speed at proposed hub heights is typically achieved using a wind shear exponent or wind shear coefficient (WSC), variation in wind speed as a function of height. The WSC is subject to temporal variation at low and high frequencies, ranging from diurnal and seasonal variations to disturbance caused by weather patterns; however, in many cases, it is assumed that the WSC remains constant. This assumption creates significant error in resource assessment, increasing uncertainty in projects and potentially significantly impacting the ability to control gird connected wind generators. This paper contributes to the body of knowledge relating to the evaluation and assessment of wind speed, with particular emphasis on the development of techniques to improve the accuracy of estimated wind speed above measurement height. It presents an evaluation of the use of a variable wind shear coefficient methodology based on a distribution of wind shear coefficients which have been implemented in real time. The results indicate that a VWSC provides a more accurate estimate of wind at hub height, ranging from 41% to 4% reduction in root mean squared error (RMSE) between predicted and actual wind speeds when using a variable wind shear coefficient at heights ranging from 33% to 100% above the highest actual wind measurement. PMID:27872898

  16. Hourly Wind Speed Interval Prediction in Arid Regions

    NASA Astrophysics Data System (ADS)

    Chaouch, M.; Ouarda, T.

    2013-12-01

    The long and extended warm and dry summers, the low rate of rain and humidity are the main factors that explain the increase of electricity consumption in hot arid regions. In such regions, the ventilating and air-conditioning installations, that are typically the most energy-intensive among energy consumption activities, are essential for securing healthy, safe and suitable indoor thermal conditions for building occupants and stored materials. The use of renewable energy resources such as solar and wind represents one of the most relevant solutions to overcome the increase of the electricity demand challenge. In the recent years, wind energy is gaining more importance among the researchers worldwide. Wind energy is intermittent in nature and hence the power system scheduling and dynamic control of wind turbine requires an estimate of wind energy. Accurate forecast of wind speed is a challenging task for the wind energy research field. In fact, due to the large variability of wind speed caused by the unpredictable and dynamic nature of the earth's atmosphere, there are many fluctuations in wind power production. This inherent variability of wind speed is the main cause of the uncertainty observed in wind power generation. Furthermore, producing wind power forecasts might be obtained indirectly by modeling the wind speed series and then transforming the forecasts through a power curve. Wind speed forecasting techniques have received substantial attention recently and several models have been developed. Basically two main approaches have been proposed in the literature: (1) physical models such as Numerical Weather Forecast and (2) statistical models such as Autoregressive integrated moving average (ARIMA) models, Neural Networks. While the initial focus in the literature has been on point forecasts, the need to quantify forecast uncertainty and communicate the risk of extreme ramp events has led to an interest in producing probabilistic forecasts. In short term context, probabilistic forecasts might be more relevant than point forecasts for the planner to build scenarios In this paper, we are interested in estimating predictive intervals of the hourly wind speed measures in few cities in United Arab emirates (UAE). More precisely, given a wind speed time series, our target is to forecast the wind speed at any specific hour during the day and provide in addition an interval with the coverage probability 0

  17. Seasonality, interannual variability, and linear tendency of wind speeds in the northeast Brazil from 1986 to 2011.

    PubMed

    Torres Silva dos Santos, Alexandre; Moisés Santos e Silva, Cláudio

    2013-01-01

    Wind speed analyses are currently being employed in several fields, especially in wind power generation. In this study, we used wind speed data from records of Universal Fuess anemographs at an altitude of 10 m from 47 weather stations of the National Institute of Meteorology (Instituto Nacional de Meteorologia-INMET) from January 1986 to December 2011. The objective of the study was to investigate climatological aspects and wind speed trends. To this end, the following methods were used: filling of missing data, descriptive statistical calculations, boxplots, cluster analysis, and trend analysis using the Mann-Kendall statistical method. The seasonal variability of the average wind speeds of each group presented higher values for winter and spring and lower values in the summer and fall. The groups G1, G2, and G5 showed higher annual averages in the interannual variability of wind speeds. These observed peaks were attributed to the El Niño and La Niña events, which change the behavior of global wind circulation and influence wind speeds over the region. Trend analysis showed more significant negative values for the G3, G4, and G5 groups for all seasons of the year and in the annual average for the period under study.

  18. Seasonality, Interannual Variability, and Linear Tendency of Wind Speeds in the Northeast Brazil from 1986 to 2011

    PubMed Central

    Santos e Silva, Cláudio Moisés

    2013-01-01

    Wind speed analyses are currently being employed in several fields, especially in wind power generation. In this study, we used wind speed data from records of Universal Fuess anemographs at an altitude of 10 m from 47 weather stations of the National Institute of Meteorology (Instituto Nacional de Meteorologia-INMET) from January 1986 to December 2011. The objective of the study was to investigate climatological aspects and wind speed trends. To this end, the following methods were used: filling of missing data, descriptive statistical calculations, boxplots, cluster analysis, and trend analysis using the Mann-Kendall statistical method. The seasonal variability of the average wind speeds of each group presented higher values for winter and spring and lower values in the summer and fall. The groups G1, G2, and G5 showed higher annual averages in the interannual variability of wind speeds. These observed peaks were attributed to the El Niño and La Niña events, which change the behavior of global wind circulation and influence wind speeds over the region. Trend analysis showed more significant negative values for the G3, G4, and G5 groups for all seasons of the year and in the annual average for the period under study. PMID:24250267

  19. Wind speed time series reconstruction using a hybrid neural genetic approach

    NASA Astrophysics Data System (ADS)

    Rodriguez, H.; Flores, J. J.; Puig, V.; Morales, L.; Guerra, A.; Calderon, F.

    2017-11-01

    Currently, electric energy is used in practically all modern human activities. Most of the energy produced came from fossil fuels, making irreversible damage to the environment. Lately, there has been an effort by nations to produce energy using clean methods, such as solar and wind energy, among others. Wind energy is one of the cleanest alternatives. However, the wind speed is not constant, making the planning and operation at electric power systems a difficult activity. Knowing in advance the amount of raw material (wind speed) used for energy production allows us to estimate the energy to be generated by the power plant, helping the maintenance planning, the operational management, optimal operational cost. For these reasons, the forecast of wind speed becomes a necessary task. The forecast process involves the use of past observations from the variable to forecast (wind speed). To measure wind speed, weather stations use devices called anemometers, but due to poor maintenance, connection error, or natural wear, they may present false or missing data. In this work, a hybrid methodology is proposed, and it uses a compact genetic algorithm with an artificial neural network to reconstruct wind speed time series. The proposed methodology reconstructs the time series using a ANN defined by a Compact Genetic Algorithm.

  20. Wind speed affects prey-catching behaviour in an orb web spider.

    PubMed

    Turner, Joe; Vollrath, Fritz; Hesselberg, Thomas

    2011-12-01

    Wind has previously been shown to influence the location and orientation of spider web sites and also the geometry and material composition of constructed orb webs. We now show that wind also influences components of prey-catching behaviour within the web. A small wind tunnel was used to generate different wind speeds. Araneus diadematus ran more slowly towards entangled Drosophila melanogaster in windy conditions, which took less time to escape the web. This indicates a lower capture probability and a diminished overall predation efficiency for spiders at higher wind speeds. We conclude that spiders' behaviour of taking down their webs as wind speed increases may therefore not be a response only to possible web damage.

  1. Wind speed affects prey-catching behaviour in an orb web spider

    NASA Astrophysics Data System (ADS)

    Turner, Joe; Vollrath, Fritz; Hesselberg, Thomas

    2011-12-01

    Wind has previously been shown to influence the location and orientation of spider web sites and also the geometry and material composition of constructed orb webs. We now show that wind also influences components of prey-catching behaviour within the web. A small wind tunnel was used to generate different wind speeds. Araneus diadematus ran more slowly towards entangled Drosophila melanogaster in windy conditions, which took less time to escape the web. This indicates a lower capture probability and a diminished overall predation efficiency for spiders at higher wind speeds. We conclude that spiders' behaviour of taking down their webs as wind speed increases may therefore not be a response only to possible web damage.

  2. Analysis of evolution of meddies in the North Atlantic using float experiments and multi - sensor data

    NASA Astrophysics Data System (ADS)

    Jo, Y.; Yan, X.; Zheng, Q.; Klemas, V. V.; Liu, W.

    2002-05-01

    We analyzed the interactions of Mediterranean eddies (meddies) in the North Atlantic with large - and meso - scale dynamic processes. The study focuses on the baroclinic instability due to the surface wind forcing, topographical Rossby wave (TRW) and the meddies' signals in multi-sensor data. The Hilbert - Huang's Energy - Frequency - Time spectrum was employed to estimate the dominant frequency. The major power peak of the surface wind forcing and sea surface height anomaly occurs every 33 months and relates to horizontal translation of the southwestward meddies. This frequency is quite close to M\\x81ler and Siedler's (1992) zonal variability with periods of 3 - 4 years. The subsequent power peaks in the vertical displacement of the meddies are at 5 day and 10 day intervals as derived from AMUSE and SEMAPHORE experiments (1993 - 1995). These 5 and 10 day periods may be caused by the intrusion of dense Mediterranean water. The contributions of the rotation speed, thermal expansion, and vertical fluctuation in the meddies' signals were estimated using the data taken by the AMUSE and the SEMAPHORE experiments. Consequently, mean monthly climatological meddies' signals from the multi-sensor analysis and float measurements show that the meddies mean kinetic energy is related to topographic scales.

  3. A New 1DVAR Retrieval for AMSR2 and GMI: Validation and Sensitivites

    NASA Astrophysics Data System (ADS)

    Duncan, D.; Kummerow, C. D.

    2015-12-01

    A new non-raining retrieval has been developed for microwave imagers and applied to the GMI and AMSR2 sensors. With the Community Radiative Transfer Model (CRTM) as the forward model for the physical retrieval, a 1-dimensional variational method finds the atmospheric state which minimizes the difference between observed and simulated brightness temperatures. A key innovation of the algorithm development is a method to calculate the sensor error covariance matrix that is specific to the forward model employed and includes off-diagonal elements, allowing the algorithm to handle various forward models and sensors with little cross-talk. The water vapor profile is resolved by way of empirical orthogonal functions (EOFs) and then summed to get total precipitable water (TPW). Validation of retrieved 10m wind speed, TPW, and sea surface temperature (SST) is performed via comparison with buoys and radiosondes as well as global models and other remotely sensed products. In addition to the validation, sensitivity experiments investigate the impact of ancillary data on the under-constrained retrieval, a concern for climate data records that strive to be independent of model biases. The introduction of model analysis data is found to aid the algorithm most at high frequency channels and affect TPW retrievals, whereas wind and cloud water retrievals show little effect from ingesting further ancillary data.

  4. Statistical characteristics of polar lows over the Nordic Seas based on satellite passive microwave data

    NASA Astrophysics Data System (ADS)

    Smirnova, J. E.; Zabolotskikh, E. V.; Bobylev, L. P.; Chapron, B.

    2016-12-01

    In this study polar lows over the Nordic Seas for the period of 1995-2008 have been detected and studied using the Special Sensor Microwave Imager (SSM/I) data. A new methodology for polar low detection and monitoring based on the analysis of the total atmospheric water vapor content (WVC) fields retrieved from SSM/I was used. Lifetimes, diameters, translation speeds, distances traveled, and intensities were estimated for the detected polar lows using SSM/I WVC, sea surface wind speed fields and infrared imagery. Over the Norwegian and Barents Seas, the polar low activity was found to be almost equal. A positive tendency in the total number of polar lows for the time period of 1995-2008 was detected.

  5. Control of forward swept wing configurations dominated by flight-dynamic/aeroelastic interactions

    NASA Technical Reports Server (NTRS)

    Rimer, M.; Chipman, R.; Muniz, B.

    1984-01-01

    An active control system concept for an aeroelastic wind-tunnel model of a statically unstable FSW configuration with wing-mounted stores is developed to provide acceptable longitudinal flying qualities while maintaining adequate flutter speed margin. On FSW configurations, the inherent aeroelastic wing divergence tendency causes strong flight-dynamic/aeroelastic interactions that in certain cases can produce a dynamic instability known as body-freedom flutter (BFF). The carriage of wing-mounted stores is shown to severely aggravate this problem. The control system developed combines a canard-based SAS with an Active Divergence/Flutter Suppression (ADFS) system which relies on wing-mounted sensors and a trailing-edge device (flaperon). Synergism between these two systems is exploited to obtain the flying qualities and flutter speed objectives.

  6. The Role of Aircraft Motion in Airborne Gravity Data Quality

    NASA Astrophysics Data System (ADS)

    Childers, V. A.; Damiani, T.; Weil, C.; Preaux, S. A.

    2015-12-01

    Many factors contribute to the quality of airborne gravity data measured with LaCoste and Romberg-type sensors, such as the Micro-g LaCoste Turnkey Airborne Gravity System used by the National Geodetic Survey's GRAV-D (Gravity for the Redefinition of the American Vertical Datum) Project. For example, it is well documented that turbulence is a big factor in the overall noise level of the measurement. Turbulence is best controlled by avoidance; thus flights in the GRAV-D Project are only undertaken when the predicted wind speeds at flight level are ≤ 40 kts. Tail winds are known to be particularly problematic. The GRAV-D survey operates on a number of aircraft in a variety of wind conditions and geographic locations, and an obvious conclusion from our work to date is that the aircraft itself plays an enormous role in the quality of the airborne gravity measurement. We have identified a number of features of the various aircraft which can be determined to play a role: the autopilot, the size and speed of the aircraft, inherent motion characteristics of the airframe, tip tanks and other modifications to the airframe to reduce motion, to name the most important. This study evaluates the motion of a number of the GRAV-D aircraft and looks at the correlation between this motion and the noise characteristics of the gravity data. The GRAV-D Project spans 7 years and 42 surveys, so we have a significant body of data for this evaluation. Throughout the project, the sensor suite has included an inertial measurement unit (IMU), first the Applanix POSAv, and then later the Honeywell MicroIRS IMU as a part of a NovAtel SPAN GPS/IMU system. We compare the noise characteristics of the data with measures of aircraft motion (via pitch, roll, and yaw captured by the IMU) using a variety of statistical tools. It is expected that this comparison will support the conclusion that certain aircraft tend to work well with this type of gravity sensor while others tend to be problematic in general.

  7. Multi-frequency SAR, SSM/I and AVHRR derived geophysical information of the marginal ice zone

    NASA Technical Reports Server (NTRS)

    Shuchman, R. A.; Onstott, R. G.; Wackerman, C. C.; Russel, C. A.; Sutherland, L. L.; Johannessen, O. M.; Johannessen, J. A.; Sandven, S.; Gloerson, P.

    1991-01-01

    A description is given of the fusion of synthetic aperture radar (SAR), special sensor microwave imager (SSM/I), and NOAA Advanced Very High Resolution Radiometer (AVHRR) data to study arctic processes. These data were collected during the SIZEX/CEAREX experiments that occurred in the Greenland Sea in March of 1989. Detailed comparisons between the SAR, AVHRR, and SSM/I indicated: (1) The ice edge position was in agreement to within 25 km, (2) The SSM/I SAR total ice concentration compared favorably, however, the SSM/I significantly underpredicted the multiyear fraction, (3) Combining high resolution SAR with SSM/I can potentially map open water and new ice features in the marginal ice zone (MIZ) which cannot be mapped by the single sensors, and (4) The combination of all three sensors provides accurate ice information as well as sea surface temperature and wind speeds.

  8. Numerical simulation on a straight-bladed vertical axis wind turbine with auxiliary blade

    NASA Astrophysics Data System (ADS)

    Li, Y.; Zheng, Y. F.; Feng, F.; He, Q. B.; Wang, N. X.

    2016-08-01

    To improve the starting performance of the straight-bladed vertical axis wind turbine (SB-VAWT) at low wind speed, and the output characteristics at high wind speed, a flexible, scalable auxiliary vane mechanism was designed and installed into the rotor of SB-VAWT in this study. This new vertical axis wind turbine is a kind of lift-to-drag combination wind turbine. The flexible blade expanded, and the driving force of the wind turbines comes mainly from drag at low rotational speed. On the other hand, the flexible blade is retracted at higher speed, and the driving force is primarily from a lift. To research the effects of the flexible, scalable auxiliary module on the performance of SB-VAWT and to find its best parameters, the computational fluid dynamics (CFD) numerical calculation was carried out. The calculation result shows that the flexible, scalable blades can automatic expand and retract with the rotational speed. The moment coefficient at low tip speed ratio increased substantially. Meanwhile, the moment coefficient has also been improved at high tip speed ratios in certain ranges.

  9. The Influence of Spatial Resolutions on the Retrieval Accuracy of Sea Surface Wind Speed with Cross-polarized C-band SAR images

    NASA Astrophysics Data System (ADS)

    Zhang, K.; Han, B.; Mansaray, L. R.; Xu, X.; Guo, Q.; Jingfeng, H.

    2017-12-01

    Synthetic aperture radar (SAR) instruments on board satellites are valuable for high-resolution wind field mapping, especially for coastal studies. Since the launch of Sentinel-1A on April 3, 2014, followed by Sentinel-1B on April 25, 2016, large amount of C-band SAR data have been added to a growing accumulation of SAR datasets (ERS-1/2, RADARSAT-1/2, ENVISAT). These new developments are of great significance for a wide range of applications in coastal sea areas, especially for high spatial resolution wind resource assessment, in which the accuracy of retrieved wind fields is extremely crucial. Recently, it is reported that wind speeds can also be retrieved from C-band cross-polarized SAR images, which is an important complement to wind speed retrieval from co-polarization. However, there is no consensus on the optimal resolution for wind speed retrieval from cross-polarized SAR images. This paper presents a comparison strategy for investigating the influence of spatial resolutions on sea surface wind speed retrieval accuracy with cross-polarized SAR images. Firstly, for wind speeds retrieved from VV-polarized images, the optimal geophysical C-band model (CMOD) function was selected among four CMOD functions. Secondly, the most suitable C-band cross-polarized ocean (C-2PO) model was selected between two C-2POs for the VH-polarized image dataset. Then, the VH-wind speeds retrieved by the selected C-2PO were compared with the VV-polarized sea surface wind speeds retrieved using the optimal CMOD, which served as reference, at different spatial resolutions. Results show that the VH-polarized wind speed retrieval accuracy increases rapidly with the decrease in spatial resolutions from 100 m to 1000 m, with a drop in RMSE of 42%. However, the improvement in wind speed retrieval accuracy levels off with spatial resolutions decreasing from 1000 m to 5000 m. This demonstrates that the pixel spacing of 1 km may be the compromising choice for the tradeoff between the spatial resolution and wind speed retrieval accuracy with cross-polarized images obtained from RADASAT-2 fine quad polarization mode. Figs. 1 illustrate the variation of the following statistical parameters: Bias, Corr, R2, RMSE and STD as a function of spatial resolution.

  10. Generating Electricity by Harnessing Air That Flows Around a Skyscraper by Using Bernoulli's Principle And The Venturi Effect w/Special Emphasis on Biomimicry

    NASA Astrophysics Data System (ADS)

    Pizzolato, R.

    2017-12-01

    Can skyscrapers become carbon neutral using wind that flows around them to power wind turbines? I say YES! To test this idea, I constructed a venturi to capture wind flowing around a skyscraper by applying Bernoulli's Principle and the Venturi Effect to power vertical axis wind turbines (VAWT) to generate electricity. The model was constructed from polycarbonate. Turbine blades (45°&60°) carved from balsa wood with square edges, airfoils, and trailing edge tubercles (Humpback whales-biomimicry) were tested in a wind tunnel. Output was measured using Vernier's Logger Pro 3.12 software, energy and wind sensors. Voltage (mV), current (mA), power (mW) and total energy (mJ) produced at winds speeds of 3.9, 5, 7.5 and 10 m/s were recorded. 10 trials were performed for each blade angle and each blade design for a total of 240 trials. Trials were 100 seconds long and recorded at a rate of 10 measurements/second. The blades that showed the largest %Δ in total average energy output (mJ) were the 60° airfoil blades w/ tubercles on the trailing edge (20,490 mJ) when compared to 60° square edged blades (7,021 mJ). The trend of the data showed that the airfoils w/tubercles (45° & 60°) outperformed all the other blade designs at wind speeds of 7.5 m/s and 10 m/s. Also, the 45° airfoil w/tubercles produced the highest output of 25,136 mJ! This was possibly due to the improved aerodynamics of the tubercle blades which led to improvements in lift and a reduction in drag. The data shows that turbine blades that incorporate biomimicry in their design result in more efficient power output. Through biomimicry, it is possible to efficiently generate electricity with a skyscraper and reduce our dependence upon fossil fuels!

  11. Some remarks on waves in the solar wind

    NASA Technical Reports Server (NTRS)

    Kellogg, Paul J.

    1995-01-01

    Waves are significant to the solar wind in two ways as modifiers of the particle distribution functions, and as diagnostics. In addition, the solar wind serves as an important laboratory for the study of plasma wave processes, as it is possible to make detailed measurements of phenomena which are too small to be easily measured by laboratory sized sensors. There are two areas where waves (we include discontinuities under this heading) must make important modifications of the distribution functions: in accelerating the alpha particles to higher speeds than the protons (Marsch et al.) and in accelerating the solar wind itself. A third area is possibly in maintaining the relative isotropy of the solar wind ion distribution in the solar wind rest frame. As the solar wind is nearly collisionless, the ions should conserve magnetic moment in rushing out from the sun, and therefore Tperp/B should be relatively constant, but it is obviously not. This has not received much attention. The waves, both electromagnetic and electrostatic, which are pan of the solar Type 111 burst phenomenon, have been extensively studied as examples of nonlinear plasma phenomena, and also used as remote sensors to trace the solar magnetic field. The observations made by Ulysses show that the field can be traced in this way out to perhaps a little more than an A.U., but then the electromagnetic pan of the type 111 burst fades out. Nevertheless, sometimes Langmuir waves appear at Ulysses at an appropriate extrapolated time. This seems to support the picture in which the electromagnetic waves at the fundamental plasma frequency are trapped in density fluctuations. Langmuir waves in the solar wind are usually in quasi-thermal equilibrium quasi because the solar wind itself is not isothermal. The Observatory of Paris group (Steinberg. Meyer-Vernet, Hoang) has exploited this with an experiment on WIND which is capable of providing density and temperature on a faster time scale than hitherto. Recently it has been found that Langmuir waves are associated with magnetic holes. This may help to elucidate the nature of magnetic holes. Nonlinear processes are important in the transformation of wave energy to panicle energy. Some recent examples from WIND data will be shown.

  12. Forecasting Cool Season Daily Peak Winds at Kennedy Space Center and Cape Canaveral Air Force Station

    NASA Technical Reports Server (NTRS)

    Barrett, Joe, III; Short, David; Roeder, William

    2008-01-01

    The expected peak wind speed for the day is an important element in the daily 24-Hour and Weekly Planning Forecasts issued by the 45th Weather Squadron (45 WS) for planning operations at Kennedy Space Center (KSC) and Cape Canaveral Air Force Station (CCAFS). The morning outlook for peak speeds also begins the warning decision process for gusts ^ 35 kt, ^ 50 kt, and ^ 60 kt from the surface to 300 ft. The 45 WS forecasters have indicated that peak wind speeds are a challenging parameter to forecast during the cool season (October-April). The 45 WS requested that the Applied Meteorology Unit (AMU) develop a tool to help them forecast the speed and timing of the daily peak and average wind, from the surface to 300 ft on KSC/CCAFS during the cool season. The tool must only use data available by 1200 UTC to support the issue time of the Planning Forecasts. Based on observations from the KSC/CCAFS wind tower network, surface observations from the Shuttle Landing Facility (SLF), and CCAFS upper-air soundings from the cool season months of October 2002 to February 2007, the AMU created multiple linear regression equations to predict the timing and speed of the daily peak wind speed, as well as the background average wind speed. Several possible predictors were evaluated, including persistence, the temperature inversion depth, strength, and wind speed at the top of the inversion, wind gust factor (ratio of peak wind speed to average wind speed), synoptic weather pattern, occurrence of precipitation at the SLF, and strongest wind in the lowest 3000 ft, 4000 ft, or 5000 ft. Six synoptic patterns were identified: 1) surface high near or over FL, 2) surface high north or east of FL, 3) surface high south or west of FL, 4) surface front approaching FL, 5) surface front across central FL, and 6) surface front across south FL. The following six predictors were selected: 1) inversion depth, 2) inversion strength, 3) wind gust factor, 4) synoptic weather pattern, 5) occurrence of precipitation at the SLF, and 6) strongest wind in the lowest 3000 ft. The forecast tool was developed as a graphical user interface with Microsoft Excel to help the forecaster enter the variables, and run the appropriate regression equations. Based on the forecaster's input and regression equations, a forecast of the day's peak and average wind is generated and displayed. The application also outputs the probability that the peak wind speed will be ^ 35 kt, 50 kt, and 60 kt.

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Belu, Radian; Koracin, Darko

    The main objective of the study was to investigate spatial and temporal characteristics of the wind speed and direction in complex terrain that are relevant to wind energy assessment and development, as well as to wind energy system operation, management, and grid integration. Wind data from five tall meteorological towers located in Western Nevada, USA, operated from August 2003 to March 2008, used in the analysis. The multiannual average wind speeds did not show significant increased trend with increasing elevation, while the turbulence intensity slowly decreased with an increase were the average wind speed. The wind speed and direction weremore » modeled using the Weibull and the von Mises distribution functions. The correlations show a strong coherence between the wind speed and direction with slowly decreasing amplitude of the multiday periodicity with increasing lag periods. The spectral analysis shows significant annual periodicity with similar characteristics at all locations. The relatively high correlations between the towers and small range of the computed turbulence intensity indicate that wind variability is dominated by the regional synoptic processes. Knowledge and information about daily, seasonal, and annual wind periodicities are very important for wind energy resource assessment, wind power plant operation, management, and grid integration.« less

  14. Statistical and Spectral Analysis of Wind Characteristics Relevant to Wind Energy Assessment Using Tower Measurements in Complex Terrain

    DOE PAGES

    Belu, Radian; Koracin, Darko

    2013-01-01

    The main objective of the study was to investigate spatial and temporal characteristics of the wind speed and direction in complex terrain that are relevant to wind energy assessment and development, as well as to wind energy system operation, management, and grid integration. Wind data from five tall meteorological towers located in Western Nevada, USA, operated from August 2003 to March 2008, used in the analysis. The multiannual average wind speeds did not show significant increased trend with increasing elevation, while the turbulence intensity slowly decreased with an increase were the average wind speed. The wind speed and direction weremore » modeled using the Weibull and the von Mises distribution functions. The correlations show a strong coherence between the wind speed and direction with slowly decreasing amplitude of the multiday periodicity with increasing lag periods. The spectral analysis shows significant annual periodicity with similar characteristics at all locations. The relatively high correlations between the towers and small range of the computed turbulence intensity indicate that wind variability is dominated by the regional synoptic processes. Knowledge and information about daily, seasonal, and annual wind periodicities are very important for wind energy resource assessment, wind power plant operation, management, and grid integration.« less

  15. Solar Wind Helium Abundance as a Function of Speed and Heliographic Latitude: Variation through a Solar Cycle

    NASA Technical Reports Server (NTRS)

    Kasper, J. C.; Stenens, M. L.; Stevens, M. L.; Lazarus, A. J.; Steinberg, J. T.; Ogilvie, Keith W.

    2006-01-01

    We present a study of the variation of the relative abundance of helium to hydrogen in the solar wind as a function of solar wind speed and heliographic latitude over the previous solar cycle. The average values of A(sub He), the ratio of helium to hydrogen number densities, are calculated in 25 speed intervals over 27-day Carrington rotations using Faraday Cup observations from the Wind spacecraft between 1995 and 2005. The higher speed and time resolution of this study compared to an earlier work with the Wind observations has led to the discovery of three new aspects of A(sub He), modulation during solar minimum from mid-1995 to mid-1997. First, we find that for solar wind speeds between 350 and 415 km/s, A(sub He), varies with a clear six-month periodicity, with a minimum value at the heliographic equatorial plane and a typical gradient of 0.01 per degree in latitude. For the slow wind this is a 30% effect. We suggest that the latitudinal gradient may be due to an additional dependence of coronal proton flux on coronal field strength or the stability of coronal loops. Second, once the gradient is subtracted, we find that A(sub He), is a remarkably linear function of solar wind speed. Finally, we identify a vanishing speed, at which A(sub He), is zero, is 259 km/s and note that this speed corresponds to the minimum solar wind speed observed at one AU. The vanishing speed may be related to previous theoretical work in which enhancements of coronal helium lead to stagnation of the escaping proton flux. During solar maximum the A(sub He), dependences on speed and latitude disappear, and we interpret this as evidence of two source regions for slow solar wind in the ecliptic plane, one being the solar minimum streamer belt and the other likely being active regions.

  16. A reward semi-Markov process with memory for wind speed modeling

    NASA Astrophysics Data System (ADS)

    Petroni, F.; D'Amico, G.; Prattico, F.

    2012-04-01

    The increasing interest in renewable energy leads scientific research to find a better way to recover most of the available energy. Particularly, the maximum energy recoverable from wind is equal to 59.3% of that available (Betz law) at a specific pitch angle and when the ratio between the wind speed in output and in input is equal to 1/3. The pitch angle is the angle formed between the airfoil of the blade of the wind turbine and the wind direction. Old turbine and a lot of that actually marketed, in fact, have always the same invariant geometry of the airfoil. This causes that wind turbines will work with an efficiency that is lower than 59.3%. New generation wind turbines, instead, have a system to variate the pitch angle by rotating the blades. This system able the wind turbines to recover, at different wind speed, always the maximum energy, working in Betz limit at different speed ratios. A powerful system control of the pitch angle allows the wind turbine to recover better the energy in transient regime. A good stochastic model for wind speed is then needed to help both the optimization of turbine design and to assist the system control to predict the value of the wind speed to positioning the blades quickly and correctly. The possibility to have synthetic data of wind speed is a powerful instrument to assist designer to verify the structures of the wind turbines or to estimate the energy recoverable from a specific site. To generate synthetic data, Markov chains of first or higher order are often used [1,2,3]. In particular in [1] is presented a comparison between a first-order Markov chain and a second-order Markov chain. A similar work, but only for the first-order Markov chain, is conduced by [2], presenting the probability transition matrix and comparing the energy spectral density and autocorrelation of real and synthetic wind speed data. A tentative to modeling and to join speed and direction of wind is presented in [3], by using two models, first-order Markov chain with different number of states, and Weibull distribution. All this model use Markov chains to generate synthetic wind speed time series but the search for a better model is still open. Approaching this issue, we applied new models which are generalization of Markov models. More precisely we applied semi-Markov models to generate synthetic wind speed time series. The primary goal of this analysis is the study of the time history of the wind in order to assess its reliability as a source of power and to determine the associated storage levels required. In order to assess this issue we use a probabilistic model based on indexed semi-Markov process [4] to which a reward structure is attached. Our model is used to calculate the expected energy produced by a given turbine and its variability expressed by the variance of the process. Our results can be used to compare different wind farms based on their reward and also on the risk of missed production due to the intrinsic variability of the wind speed process. The model is used to generate synthetic time series for wind speed by means of Monte Carlo simulations and backtesting procedure is used to compare results on first and second oder moments of rewards between real and synthetic data. [1] A. Shamshad, M.A. Bawadi, W.M.W. Wan Hussin, T.A. Majid, S.A.M. Sanusi, First and second order Markov chain models for synthetic gen- eration of wind speed time series, Energy 30 (2005) 693-708. [2] H. Nfaoui, H. Essiarab, A.A.M. Sayigh, A stochastic Markov chain model for simulating wind speed time series at Tangiers, Morocco, Re- newable Energy 29 (2004) 1407-1418. [3] F. Youcef Ettoumi, H. Sauvageot, A.-E.-H. Adane, Statistical bivariate modeling of wind using first-order Markov chain and Weibull distribu- tion, Renewable Energy 28 (2003) 1787-1802. [4]F. Petroni, G. D'Amico, F. Prattico, Indexed semi-Markov process for wind speed modeling. To be submitted.

  17. Analysis of Heliport Environmental Data: Indianapolis Downtown Heliport Wall Street Heliport. Volume 2. Wall Street Heliport Data Plots

    DTIC Science & Technology

    1989-05-01

    r--S is. WATER FLIGHT CODE A T ION DATA FROCE.SFD 51 !4E FAA ’FCtINICAL CF.N!FR AfLAV’IC CITY AP0 N1 08403 D SPEED F WIND SPEED IS 10 𔃻iP1. OR...08,35 DEEC INDICATE WIND SPEED IN S NG OCCURS IF WIND SPEED IS 10 IlPt. OR GREATER IND S. ING INDICATES WIND SPEED A YORK WALL ST. DR HELIPORT CALM IiI G

  18. Wind Speed and Sea State Dependencies of Air-Sea Gas Transfer: Results From the High Wind Speed Gas Exchange Study (HiWinGS)

    NASA Astrophysics Data System (ADS)

    Blomquist, B. W.; Brumer, S. E.; Fairall, C. W.; Huebert, B. J.; Zappa, C. J.; Brooks, I. M.; Yang, M.; Bariteau, L.; Prytherch, J.; Hare, J. E.; Czerski, H.; Matei, A.; Pascal, R. W.

    2017-10-01

    A variety of physical mechanisms are jointly responsible for facilitating air-sea gas transfer through turbulent processes at the atmosphere-ocean interface. The nature and relative importance of these mechanisms evolves with increasing wind speed. Theoretical and modeling approaches are advancing, but the limited quantity of observational data at high wind speeds hinders the assessment of these efforts. The HiWinGS project successfully measured gas transfer coefficients (k660) with coincident wave statistics under conditions with hourly mean wind speeds up to 24 m s-1 and significant wave heights to 8 m. Measurements of k660 for carbon dioxide (CO2) and dimethylsulfide (DMS) show an increasing trend with respect to 10 m neutral wind speed (U10N), following a power law relationship of the form: k660 CO2˜U10N1.68 and k660 dms˜U10N1.33. Among seven high wind speed events, CO2 transfer responded to the intensity of wave breaking, which depended on both wind speed and sea state in a complex manner, with k660 CO2 increasing as the wind sea approaches full development. A similar response is not observed for DMS. These results confirm the importance of breaking waves and bubble injection mechanisms in facilitating CO2 transfer. A modified version of the Coupled Ocean-Atmosphere Response Experiment Gas transfer algorithm (COAREG ver. 3.5), incorporating a sea state-dependent calculation of bubble-mediated transfer, successfully reproduces the mean trend in observed k660 with wind speed for both gases. Significant suppression of gas transfer by large waves was not observed during HiWinGS, in contrast to results from two prior field programs.

  19. Wind energy conversion system

    DOEpatents

    Longrigg, Paul

    1987-01-01

    The wind energy conversion system includes a wind machine having a propeller connected to a generator of electric power, the propeller rotating the generator in response to force of an incident wind. The generator converts the power of the wind to electric power for use by an electric load. Circuitry for varying the duty factor of the generator output power is connected between the generator and the load to thereby alter a loading of the generator and the propeller by the electric load. Wind speed is sensed electro-optically to provide data of wind speed upwind of the propeller, to thereby permit tip speed ratio circuitry to operate the power control circuitry and thereby optimize the tip speed ratio by varying the loading of the propeller. Accordingly, the efficiency of the wind energy conversion system is maximized.

  20. A Spacebased Ocean Surface Exchange Data Analysis System

    NASA Technical Reports Server (NTRS)

    Tang, Wenqing; Liu, W. Timothy

    2000-01-01

    Emerging technologies have provided unprecedented opportunities to transform information into knowledge and disseminate them in a much faster, cheaper, and userfriendly mode. We have set up a system to produce and disseminate high level (gridded) ocean surface wind data from the NASA Scatterometer and European Remote Sensing missions. The data system is being expanded to produce real-time gridded ocean surface winds from an improved sensor SeaWinds on the Quikscat Mission. The wind field will be combined with hydrologic parameters from the Tropical Rain Measuring Mission to monitor evolving weather systems and natural hazard in real time. It will form the basis for spacebased Ocean Surface Exchange Data Analysis System (SOSEDAS) which will include the production of ocean surface momentum, heat, and water fluxes needed for interdisciplinary studies of ocean-atmosphere interaction. Various commercial or non-commercial software tools have been compared and selected in terms of their ability in database management, remote data accessing, graphical interface, data quality, storage needs and transfer speed, etc. Issues regarding system security and user authentication, distributed data archiving and accessing, strategy to compress large-volume geophysical and satellite data/image. and increasing transferring speed are being addressed. A simple and easy way to access information and derive knowledge from spacebased data of multiple missions is being provided. The evolving 'knowledge system' will provide relevant infrastructure to address Earth System Science, make inroads in educating an informed populace, and illuminate decision and policy making.

  1. The effect of ego-motion on environmental monitoring.

    PubMed

    Lerner, Uri; Yacobi, Tamar; Levy, Ilan; Moltchanov, Sharon A; Cole-Hunter, Tom; Fishbain, Barak

    2015-11-15

    Air pollution has a proven impact on public health. Currently, pollutant levels are obtained by high-priced, sizeable, stationary Air Quality Monitoring (AQM) stations. Recent developments in sensory and communication technologies have made relatively low-cost, micro-sensing units (MSUs) feasible. Their lower power consumption and small size enable mobile sensing, deploying single or multiple units simultaneously. Recent studies have reported on measurements acquired by mobile MSUs, mounted on cars, bicycles and pedestrians. While these modes of transportation inherently present different velocity and acceleration regimes, the effect of the sensors' varying movement characteristics have not been previously accounted for. This research assesses the impact of sensor's motion on its functionality through laboratory measurements and a field campaign. The laboratory setup consists of a wind tunnel to assess the effect of air flow on the measurements of nitrogen dioxide and ozone at different velocities in a controlled environment, while the field campaign is based on three cars mounted with MSUs, measuring pollutants and environmental variables at different traveling speeds. In both experimental designs we can regard the MSUs as a moving object in the environment, i.e. having a distinct ego-motion. The results show that MSU's behavior is highly affected by variation in speed and sensor placement with respect to direction of movement, mainly due to the physical properties of installed sensors. This strongly suggests that any future design of MSU must account for the speed effect from the design stage all the way through deployment and results analysis. This is the first report examining the influence of airflow variations on MSU's ability to accurately measure pollutant levels. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. Short-term wind speed prediction based on the wavelet transformation and Adaboost neural network

    NASA Astrophysics Data System (ADS)

    Hai, Zhou; Xiang, Zhu; Haijian, Shao; Ji, Wu

    2018-03-01

    The operation of the power grid will be affected inevitably with the increasing scale of wind farm due to the inherent randomness and uncertainty, so the accurate wind speed forecasting is critical for the stability of the grid operation. Typically, the traditional forecasting method does not take into account the frequency characteristics of wind speed, which cannot reflect the nature of the wind speed signal changes result from the low generality ability of the model structure. AdaBoost neural network in combination with the multi-resolution and multi-scale decomposition of wind speed is proposed to design the model structure in order to improve the forecasting accuracy and generality ability. The experimental evaluation using the data from a real wind farm in Jiangsu province is given to demonstrate the proposed strategy can improve the robust and accuracy of the forecasted variable.

  3. Effects of sea maturity on satellite altimeter measurements

    NASA Technical Reports Server (NTRS)

    Glazman, Roman E.; Pilorz, Stuart H.

    1990-01-01

    For equilibrium and near-equilibrium sea states, the wave slope variance is a function of wind speed U and of the sea maturity. The influence of both factors on the altimeter measurements of wind speed, wave height, and radar cross section is studied experimentally on the basis of 1 year's worth of Geosat altimeter observations colocated with in situ wind and wave measurements by 20 NOAA buoys. Errors and biases in altimeter wind speed and wave height measurements are investigted. A geophysically significant error trend correlated with the sea maturity is found in wind-speed measurements. This trend is explained by examining the effect of the generalized wind fetch on the curves of the observed dependence. It is concluded that unambiguous measurements of wind speed by altimeter, in a wide range of sea states, are impossible without accounting for the actual degree of wave development.

  4. WIND SPEED Monitoring in Northern Eurasia

    NASA Astrophysics Data System (ADS)

    Bulygina, O.; Korshunova, N. N.; Razuvaev, V. N.; Groisman, P. Y.

    2016-12-01

    The wind regime of Russia varies a great deal due to the large size of the country's territory and variety of climate and terrain conditions. Changes in the regime of surface wind are of great practical importance. They can affect heat and water balance. Strong wind is one of the most hazardous meteorological event for various sectors of economy and for infrastructure. The main objective of this research is to monitoring wind speed change in Northern Eurasia At meteorological stations wind speed and wind direction are measured at the height of 10-12 meters over the land surface with the help of wind meters or wind wanes. Calculations were made on the basis of data for the period of 1980-2015. It allowed the massive scale disruption of homogeneity to be eliminated and sufficient period needed to obtain sustainable statistic characteristics to be retained. Data on average and maximum wind speed measured at 1457 stations of Russia were used. The analysis of changes in wind characteristics was made on the basis of point data and series of average characteristics obtained for 18 quasi-homogeneous climatic regions. Statistical characteristics (average and maximum values of wind speed, prevailing wind direction, values of the boundary of the 90%, 95% and 99%-confidence interval in the distribution of maximum wind speed) were obtained for all seasons and for the year as a whole. Values of boundaries of the 95% and 99%-confidence interval in the distribution of maximum wind speed were considered as indicators of extremeness of the wind regime. The trend of changes in average and maximum wind speed was assessed with a linear trend coefficient. A special attention was paid to wind changes in the Arctic where dramatic changes in surface air temperature and sea ice extent and density have been observed during the past decade. The analysis of the results allowed seasonal and regional features of changes in the wind regime on the territory of the northern part of Eurasia to be determined. The outcomes could help to provide specific recommendations to users of hydrometeorological information for making reasonable decisions to minimize losses caused by adverse wind-related weather conditions. The work was supported by the Ministry of Education and Science of the Russian Federation (grant 14.B25.31.0026).

  5. Supporting data for hydrologic studies in San Francisco Bay, California; meteorological measurements at the Port of Redwood City during 1992-1994

    USGS Publications Warehouse

    Schemel, Laurence E.

    1995-01-01

    Meteorological data were collected during 1992-94 at the Port of Redwood City, California, to support hydrologic studies in southern San Francisco Bay. The meteorological variables that were measured were air temperature, atmospheric pressure, quantum flux (insolation), and four parameters of wind speed and direction: scalar mean horizontal wind speed, (vector) resultant horizontal wind speed, resultant wind direction, and standard deviation of the wind direction. Hourly mean values based on measurements at five-minute intervals were logged at the site, then transferred to a portable computer monthly. Daily mean values were computed for temperature, insolation, pressure, and scalar wind speed. Hourly- mean and daily-mean values are presented in time- series plots and daily variability and seasonal and annual cycles are described. All data are provided in ASCII files on an IBM-formatted disk. Observations of temperature and wind speed at the Port of Redwood City were compared with measurements made at the San Francisco International Airport. Most daily mean values for temperature agreed within one- to two-tenths of a degree Celsius between the two locations. Daily mean wind speeds at the Port of Redwood City were typically half the values at the San Francisco International Airport. During summers, the differences resulted from stronger wind speeds at the San Francisco International Airport occurring over longer periods of each day. A comparison of hourly wind speeds at the Palo Alto Municipal Airport with those at the Port of Redwood City showed that values were similar in magnitude.

  6. Dependence of the Normalized Radar Cross Section of Water Waves on Bragg Wavelength-Wind Speed Sensitivity

    NASA Technical Reports Server (NTRS)

    Long, David G.; Collyer, R. Scott; Reed, Ryan; Arnold, David V.

    1996-01-01

    Measurements of the normalized radar cross section (sigma(sup o)) made by the YSCAT ultrawideband scatterometer during an extended deployment on the Canada Centre for Inland Waters(CCIW) Research Tower located at Lake Ontario are analyzed and compared with anemometer wind measurements to study the sensitivity of (sigma(sup o)) to the wind speed as a function of the Bragg wavelength. This paper concentrates on upwind and downwind azimuth angles in the wind speed range of 4.5-12 m/s. While YSCAT collected measurements of sigma(sup o) at a variety of frequencies and incidence angles, this paper focuses on frequencies of 2.0, 3.05, 5.30, 10.02, and 14.0 GHz and incidence angles within the Bragg regime, 30-50 deg. Adopting a power law model to describe the relationship between sigma(sup o) and wind speed, both wind speed exponents and upwind/downwind (u/d) ratios of sigma(sup o) are found using least squares linear regression. The analysis of the wind speed exponents and u/d ratios show that shorter Bragg wavelengths (Lambda less than 4 cm) are the most sensitive to wind speed and direction. Additionally, vertical polarization (V-pol) sigma(sup o) is shown to be more sensitive to wind speed than horizontal polarization (H-pol) sigma(sup o), while the H-pol u/d ratio is larger than the V-pol u/d ratio.

  7. Within-year Exertional Heat Illness Incidence in U.S. Army Soldiers, 2008-2012

    DTIC Science & Technology

    2015-06-01

    index (MDI;(17)) were created. Wind speed (in kph) was calculated as wind speed (in mph)*1.61. Wind chill was calculated for all climate samples...downloaded from the NOAA website, new variables for wind speed (converted from mph to kph), wind chill , minimum temperature, and modified discomfort...Windspeed_Kph** 0.16 + 0.3965 * DryBulbCelsius * Windspeed_Kph ** 0.16. Dry bulb temperatures (in °C) and wind chill temperatures (in °C) were

  8. Tool for Forecasting Cool-Season Peak Winds Across Kennedy Space Center and Cape Canaveral Air Force Station (CCAFS)

    NASA Technical Reports Server (NTRS)

    Barrett, Joe H., III; Roeder, William P.

    2010-01-01

    Peak wind speed is important element in 24-Hour and Weekly Planning Forecasts issued by 45th Weather Squadron (45 WS). Forecasts issued for planning operations at KSC/CCAFS. 45 WS wind advisories issued for wind gusts greater than or equal to 25 kt. 35 kt and 50 kt from surface to 300 ft. AMU developed cool-season (Oct - Apr) tool to help 45 WS forecast: daily peak wind speed, 5-minute average speed at time of peak wind, and probability peak speed greater than or equal to 25 kt, 35 kt, 50 kt. AMU tool also forecasts daily average wind speed from 30 ft to 60 ft. Phase I and II tools delivered as a Microsoft Excel graphical user interface (GUI). Phase II tool also delivered as Meteorological Interactive Data Display System (MIDDS) GUI. Phase I and II forecast methods were compared to climatology, 45 WS wind advisories and North American Mesoscale model (MesoNAM) forecasts in a verification data set.

  9. Field measurements of horizontal forward motion velocities of terrestrial dust devils: Towards a proxy for ambient winds on Mars and Earth

    NASA Astrophysics Data System (ADS)

    Balme, M. R.; Pathare, A.; Metzger, S. M.; Towner, M. C.; Lewis, S. R.; Spiga, A.; Fenton, L. K.; Renno, N. O.; Elliott, H. M.; Saca, F. A.; Michaels, T. I.; Russell, P.; Verdasca, J.

    2012-11-01

    Dust devils - convective vortices made visible by the dust and debris they entrain - are common in arid environments and have been observed on Earth and Mars. Martian dust devils have been identified both in images taken at the surface and in remote sensing observations from orbiting spacecraft. Observations from landing craft and orbiting instruments have allowed the dust devil translational forward motion (ground velocity) to be calculated, but it is unclear how these velocities relate to the local ambient wind conditions, for (i) only model wind speeds are generally available for Mars, and (ii) on Earth only anecdotal evidence exists that compares dust devil ground velocity with ambient wind velocity. If dust devil ground velocity can be reliably correlated to the ambient wind regime, observations of dust devils could provide a proxy for wind speed and direction measurements on Mars. Hence, dust devil ground velocities could be used to probe the circulation of the martian boundary layer and help constrain climate models or assess the safety of future landing sites. We present results from a field study of terrestrial dust devils performed in the southwest USA in which we measured dust devil horizontal velocity as a function of ambient wind velocity. We acquired stereo images of more than a 100 active dust devils and recorded multiple size and position measurements for each dust devil. We used these data to calculate dust devil translational velocity. The dust devils were within a study area bounded by 10 m high meteorology towers such that dust devil speed and direction could be correlated with the local ambient wind speed and direction measurements. Daily (10:00-16:00 local time) and 2-h averaged dust devil ground speeds correlate well with ambient wind speeds averaged over the same period. Unsurprisingly, individual measurements of dust devil ground speed match instantaneous measurements of ambient wind speed more poorly; a 20-min smoothing window applied to the ambient wind speed data improves the correlation. In general, dust devils travel 10-20% faster than ambient wind speed measured at 10 m height, suggesting that their ground speeds are representative of the boundary layer winds a few tens of meters above ground level. Dust devil ground motion direction closely matches the measured ambient wind direction. The link between ambient winds and dust devil ground velocity demonstrated here suggests that a similar one should apply on Mars. Determining the details of the martian relationship between dust devil ground velocity and ambient wind velocity might require new in situ or modelling studies but, if completed successfully, would provide a quantitative means of measuring wind velocities on Mars that would otherwise be impossible to obtain.

  10. Wind turbine fault detection and classification by means of image texture analysis

    NASA Astrophysics Data System (ADS)

    Ruiz, Magda; Mujica, Luis E.; Alférez, Santiago; Acho, Leonardo; Tutivén, Christian; Vidal, Yolanda; Rodellar, José; Pozo, Francesc

    2018-07-01

    The future of the wind energy industry passes through the use of larger and more flexible wind turbines in remote locations, which are increasingly offshore to benefit stronger and more uniform wind conditions. The cost of operation and maintenance of offshore wind turbines is approximately 15-35% of the total cost. Of this, 80% goes towards unplanned maintenance issues due to different faults in the wind turbine components. Thus, an auspicious way to contribute to the increasing demands and challenges is by applying low-cost advanced fault detection schemes. This work proposes a new method for detection and classification of wind turbine actuators and sensors faults in variable-speed wind turbines. For this purpose, time domain signals acquired from the operating wind turbine are represented as two-dimensional matrices to obtain grayscale digital images. Then, the image pattern recognition is processed getting texture features under a multichannel representation. In this work, four types of texture characteristics are used: statistical, wavelet, granulometric and Gabor features. Next, the most significant ones are selected using the conditional mutual criterion. Finally, the faults are detected and distinguished between them (classified) using an automatic classification tool. In particular, a 10-fold cross-validation is used to obtain a more generalized model and evaluates the classification performance. Coupled non-linear aero-hydro-servo-elastic simulations of a 5 MW offshore type wind turbine are carried out in several fault scenarios. The results show a promising methodology able to detect and classify the most common wind turbine faults.

  11. Snow drift: acoustic sensors for avalanche warning and research

    NASA Astrophysics Data System (ADS)

    Lehning, M.; Naaim, F.; Naaim, M.; Brabec, B.; Doorschot, J.; Durand, Y.; Guyomarc'h, G.; Michaux, J.-L.; Zimmerli, M.

    Based on wind tunnel measurements at the CSTB (Jules Verne) facility in Nantes and based on field observations at the SLF experimental site Versuchsfeld Weissfluhjoch, two acoustic wind drift sensors are evaluated against different mechanical snow traps and one optical snow particle counter. The focus of the work is the suitability of the acoustic sensors for applications such as avalanche warning and research. Although the acoustic sensors have not yet reached the accuracy required for typical research applications, they can, however, be useful for snow drift monitoring to help avalanche forecasters. The main problem of the acoustic sensors is a difficult calibration that has to take into account the variable snow properties. Further difficulties arise from snow fall and high wind speeds. However, the sensor is robust and can be operated remotely under harsh conditions. It is emphasized that due to the lack of an accurate reference method for snow drift measurements, all sensors play a role in improving and evaluating snow drift models. Finally, current operational snow drift models and snow drift sensors are compared with respect to their usefulness as an aid for avalanche warning. While drift sensors always make a point measurement, the models are able to give a more representative drift index that is valid for a larger area. Therefore, models have the potential to replace difficult observations such as snow drift in operational applications. Current models on snow drift are either only applicable in flat terrain, are still too complex for an operational application (Lehning et al., 2000b), or offer only limited information on snow drift, such as the SNOWPACK drift index (Lehning et al., 2000a). On the other hand, snow drift is also difficult to measure. While mechanical traps (Mellor 1960; Budd et al., 1966) are probably still the best reference, they require more or less continuous manual operation and are thus not suitable for remote locations or long-term monitoring. Optical sensors (Schmidt, 1977; Brown and Pomeroy, 1989; Sato and Kimura, 1993) have been very successful for research applications, but suffer from the fact that they give a single flux value at one specific height. In addition, they have not been used, to our knowledge, for long-term monitoring applications or at remote sites. New developments of acoustic sensors have taken place recently (Chritin et al., 1999; Font et al., 1998). Jaedicke (2001) gives examples of possible applications of acoustic snow drift sensors. He emphasizes the advantages of acoustic sensors for snow drift monitoring at remote locations, but could not present any evaluation of the accuracy of the measurements. We present a complete evaluation of the new acoustic sensors for snow drift and discuss their applications for research or avalanche warning. We compare the suitability of sensors for operational applications.

  12. A Vehicular Mobile Standard Instrument for Field Verification of Traffic Speed Meters Based on Dual-Antenna Doppler Radar Sensor

    PubMed Central

    Du, Lei; Sun, Qiao; Cai, Changqing; Bai, Jie; Fan, Zhe; Zhang, Yue

    2018-01-01

    Traffic speed meters are important legal measuring instruments specially used for traffic speed enforcement and must be tested and verified in the field every year using a vehicular mobile standard speed-measuring instrument to ensure speed-measuring performances. The non-contact optical speed sensor and the GPS speed sensor are the two most common types of standard speed-measuring instruments. The non-contact optical speed sensor requires extremely high installation accuracy, and its speed-measuring error is nonlinear and uncorrectable. The speed-measuring accuracy of the GPS speed sensor is rapidly reduced if the amount of received satellites is insufficient enough, which often occurs in urban high-rise regions, tunnels, and mountainous regions. In this paper, a new standard speed-measuring instrument using a dual-antenna Doppler radar sensor is proposed based on a tradeoff between the installation accuracy requirement and the usage region limitation, which has no specified requirements for its mounting distance and no limitation on usage regions and can automatically compensate for the effect of an inclined installation angle on its speed-measuring accuracy. Theoretical model analysis, simulated speed measurement results, and field experimental results compared with a GPS speed sensor with high accuracy showed that the dual-antenna Doppler radar sensor is effective and reliable as a new standard speed-measuring instrument. PMID:29621142

  13. A Vehicular Mobile Standard Instrument for Field Verification of Traffic Speed Meters Based on Dual-Antenna Doppler Radar Sensor.

    PubMed

    Du, Lei; Sun, Qiao; Cai, Changqing; Bai, Jie; Fan, Zhe; Zhang, Yue

    2018-04-05

    Traffic speed meters are important legal measuring instruments specially used for traffic speed enforcement and must be tested and verified in the field every year using a vehicular mobile standard speed-measuring instrument to ensure speed-measuring performances. The non-contact optical speed sensor and the GPS speed sensor are the two most common types of standard speed-measuring instruments. The non-contact optical speed sensor requires extremely high installation accuracy, and its speed-measuring error is nonlinear and uncorrectable. The speed-measuring accuracy of the GPS speed sensor is rapidly reduced if the amount of received satellites is insufficient enough, which often occurs in urban high-rise regions, tunnels, and mountainous regions. In this paper, a new standard speed-measuring instrument using a dual-antenna Doppler radar sensor is proposed based on a tradeoff between the installation accuracy requirement and the usage region limitation, which has no specified requirements for its mounting distance and no limitation on usage regions and can automatically compensate for the effect of an inclined installation angle on its speed-measuring accuracy. Theoretical model analysis, simulated speed measurement results, and field experimental results compared with a GPS speed sensor with high accuracy showed that the dual-antenna Doppler radar sensor is effective and reliable as a new standard speed-measuring instrument.

  14. Application and verification of ECMWF seasonal forecast for wind energy

    NASA Astrophysics Data System (ADS)

    Žagar, Mark; Marić, Tomislav; Qvist, Martin; Gulstad, Line

    2015-04-01

    A good understanding of long-term annual energy production (AEP) is crucial when assessing the business case of investing in green energy like wind power. The art of wind-resource assessment has emerged into a scientific discipline on its own, which has advanced at high pace over the last decade. This has resulted in continuous improvement of the AEP accuracy and, therefore, increase in business case certainty. Harvesting the full potential output of a wind farm or a portfolio of wind farms depends heavily on optimizing operation and management strategy. The necessary information for short-term planning (up to 14 days) is provided by standard weather and power forecasting services, and the long-term plans are based on climatology. However, the wind-power industry is lacking quality information on intermediate scales of the expected variability in seasonal and intra-annual variations and their geographical distribution. The seasonal power forecast presented here is designed to bridge this gap. The seasonal power production forecast is based on the ECMWF seasonal weather forecast and the Vestas' high-resolution, mesoscale weather library. The seasonal weather forecast is enriched through a layer of statistical post-processing added to relate large-scale wind speed anomalies to mesoscale climatology. The resulting predicted energy production anomalies, thus, include mesoscale effects not captured by the global forecasting systems. The turbine power output is non-linearly related to the wind speed, which has important implications for the wind power forecast. In theory, the wind power is proportional to the cube of wind speed. However, due to the nature of turbine design, this exponent is close to 3 only at low wind speeds, becomes smaller as the wind speed increases, and above 11-13 m/s the power output remains constant, called the rated power. The non-linear relationship between wind speed and the power output generally increases sensitivity of the forecasted power to the wind speed anomalies. On the other hand, in some cases and areas where turbines operate close to, or above the rated power, the sensitivity of power forecast is reduced. Thus, the seasonal power forecasting system requires good knowledge of the changes in frequency of events with sufficient wind speeds to have acceptable skill. The scientific background for the Vestas seasonal power forecasting system is described and the relationship between predicted monthly wind speed anomalies and observed wind energy production are investigated for a number of operating wind farms in different climate zones. Current challenges will be discussed and some future research and development areas identified.

  15. Evaluation of NOAA's High Resolution Rapid Refresh (HRRR), 12 km North America Model (NAM12) and 4km North America Model (NAM 4) hub-height wind speed forecasts

    NASA Astrophysics Data System (ADS)

    Pendergrass, W.; Vogel, C. A.

    2013-12-01

    As an outcome of discussions between Duke Energy Generation and NOAA/ARL following the 2009 AMS Summer Community Meeting, in Norman Oklahoma, ARL and Duke Energy Generation (Duke) signed a Cooperative Research and Development Agreement (CRADA) which allows NOAA to conduct atmospheric boundary layer (ABL) research using Duke renewable energy sites as research testbeds. One aspect of this research has been the evaluation of forecast hub-height winds from three NOAA atmospheric models. Forecasts of 10m (surface) and 80m (hub-height) wind speeds from (1) NOAA/GSD's High Resolution Rapid Refresh (HRRR) model, (2) NOAA/NCEP's 12 km North America Model (NAM12) and (3) NOAA/NCEP's 4k high resolution North America Model (NAM4) were evaluated against 18 months of surface-layer wind observations collected at the joint NOAA/Duke Energy research station located at Duke Energy's West Texas Ocotillo wind farm over the period April 2011 through October 2012. HRRR, NAM12 and NAM4 10m wind speed forecasts were compared with 10m level wind speed observations measured on the NOAA/ATDD flux-tower. Hub-height (80m) HRRR , NAM12 and NAM4 forecast wind speeds were evaluated against the 80m operational PMM27-28 meteorological tower supporting the Ocotillo wind farm. For each HRRR update, eight forecast hours (hour 01, 02, 03, 05, 07, 10, 12, 15) plus the initialization hour (hour 00), evaluated. For the NAM12 and NAM4 models forecast hours 00-24 from the 06z initialization were evaluated. Performance measures or skill score based on absolute error 50% cumulative probability were calculated for each forecast hour. HRRR forecast hour 01 provided the best skill score with an absolute wind speed error within 0.8 m/s of observed 10m wind speed and 1.25 m/s for hub-height wind speed at the designated 50% cumulative probability. For both NAM4 and NAM12 models, skill scores were diurnal with comparable best scores observed during the day of 0.7 m/s of observed 10m wind speed and 1.1 m/s for hub-height wind speed at the designated 50% cumulative probability level.

  16. High wind speeds prevent formation of a distinct bacterioneuston community in the sea-surface microlayer

    PubMed Central

    Stolle, Christian; Giebel, Helge-Ansgar; Brinkhoff, Thorsten; Ribas-Ribas, Mariana; Hodapp, Dorothee; Wurl, Oliver

    2017-01-01

    Abstract The sea-surface microlayer (SML) at the boundary between atmosphere and hydrosphere represents a demanding habitat for bacteria. Wind speed is a crucial but poorly studied factor for its physical integrity. Increasing atmospheric burden of CO2, as suggested for future climate scenarios, may particularly act on this habitat at the air–sea interface. We investigated the effect of increasing wind speeds and different pCO2 levels on SML microbial communities in a wind-wave tunnel, which offered the advantage of low spatial and temporal variability. We found that enrichment of bacteria in the SML occurred solely at a U10 wind speed of ≤5.6 m s−1 in the tunnel and ≤4.1 m s−1 in the Baltic Sea. High pCO2 levels further intensified the bacterial enrichment in the SML during low wind speed. In addition, low wind speed and pCO2 induced the formation of a distinctive bacterial community as revealed by 16S rRNA gene fingerprints and influenced the presence or absence of individual taxonomic units within the SML. We conclude that physical stability of the SML below a system-specific wind speed threshold induces specific bacterial communities in the SML entailing strong implications for ecosystem functioning by wind-driven impacts on habitat properties, gas exchange and matter cycling processes. PMID:28369320

  17. High wind speeds prevent formation of a distinct bacterioneuston community in the sea-surface microlayer.

    PubMed

    Rahlff, Janina; Stolle, Christian; Giebel, Helge-Ansgar; Brinkhoff, Thorsten; Ribas-Ribas, Mariana; Hodapp, Dorothee; Wurl, Oliver

    2017-05-01

    The sea-surface microlayer (SML) at the boundary between atmosphere and hydrosphere represents a demanding habitat for bacteria. Wind speed is a crucial but poorly studied factor for its physical integrity. Increasing atmospheric burden of CO2, as suggested for future climate scenarios, may particularly act on this habitat at the air-sea interface. We investigated the effect of increasing wind speeds and different pCO2 levels on SML microbial communities in a wind-wave tunnel, which offered the advantage of low spatial and temporal variability. We found that enrichment of bacteria in the SML occurred solely at a U10 wind speed of ≤5.6 m s-1 in the tunnel and ≤4.1 m s-1 in the Baltic Sea. High pCO2 levels further intensified the bacterial enrichment in the SML during low wind speed. In addition, low wind speed and pCO2 induced the formation of a distinctive bacterial community as revealed by 16S rRNA gene fingerprints and influenced the presence or absence of individual taxonomic units within the SML. We conclude that physical stability of the SML below a system-specific wind speed threshold induces specific bacterial communities in the SML entailing strong implications for ecosystem functioning by wind-driven impacts on habitat properties, gas exchange and matter cycling processes. © FEMS 2017.

  18. Determination of the wind power systems load to achieve operation in the maximum energy area

    NASA Astrophysics Data System (ADS)

    Chioncel, C. P.; Tirian, G. O.; Spunei, E.; Gillich, N.

    2018-01-01

    This paper analyses the operation of the wind turbine, WT, in the maximum power point, MPP, by linking the load of the Permanent Magnet Synchronous Generator, PMSG, with the wind speed value. The load control methods at wind power systems aiming an optimum performance in terms of energy are based on the fact that the energy captured by the wind turbine significantly depends on the mechanical angular speed of the wind turbine. The presented control method consists in determining the optimal mechanical angular speed, ωOPTIM, using an auxiliary low power wind turbine, WTAUX, operating without load, at maximum angular velocity, ωMAX. The method relies on the fact that the ratio ωOPTIM/ωMAX has a constant value for a given wind turbine and does not depend on the time variation of the wind speed values.

  19. Ship-borne measurements of aerosol optical depth over remote oceans and its dependence on wind speed

    NASA Astrophysics Data System (ADS)

    Smirnov, A.; Sayer, A. M.; Holben, B. N.; Hsu, N. C.; Sakerin, S. M.; Macke, A.; Nelson, N. B.; Courcoux, Y.; Smyth, T. J.; Croot, P. L.; Quinn, P.; Sciare, J.; Gulev, S. K.; Piketh, S.; Losno, R.; Kinne, S. A.; Radionov, V. F.

    2011-12-01

    Aerosol production sources over the World Ocean and various factors determining aerosol spatial and temporal distribution are important for understanding the Earth's radiation budget and aerosol-cloud interactions. Sea-salt aerosol production, being a major source of aerosol over remote oceans, depends on surface wind speed. Recently in a number of publications the effect of wind speed on aerosol optical depth (AOD) has been presented utilizing coastal, island-based and satellite-based AOD measurements. However, the influence of wind speed on the columnar optical depth is still poorly understood, because not all factors and precursors influencing AOD dependence can be accounted for. The Maritime Aerosol Network (a component of AERONET) data archive provides an excellent opportunity to analyze in depth a relationship between ship-based AOD measurements and wind speed. We considered only data presumably not influenced by urban/industrial continental sources, dust outbreaks, biomass burning, or glaciers and pack ice. Additional restrictions imposed on the data set were acceptance of only points taken not closer than two degrees from the nearest landmass. We present analyses on the effect of surface (deck-level) wind speed (acquired onboard, modeled by NCEP, measured from satellite) on AOD and its spectral dependence. Latitudinal comparison of measured onboard and modeled wind speeds showed relatively small bias, which was higher at high latitudes. Instantaneous AOD measurements and daily means yielded similar relationships with various wind speed subsets (instantaneous ship-based and NCEP, averaged over previous 24 hours, steady, satellite retrieved). We compared regression statistics of optical parameters versus wind speed presented in various papers and based on various satellite and sunphotometer measurements. Overall, despite certain scatter, the current work and a majority of publications showed consistent patterns, with the AOD versus wind speed (range 2-16 m/s) dependence close to linear.

  20. Windstorm Impact Reduction Implementation Plan

    DTIC Science & Technology

    2007-01-01

    wind events, including hurricanes, tornadoes and straight line winds from thunderstorms. This information is repeated in brief during severe weather...event documentation and damage analyses. Better understanding of atmospheric dynamics of straight - line winds Wind observing systems and...Developed techniques for improved extreme wind speed maps Investigation of straight - line winds Wind speed and direction analysis for input to

  1. 11. INTERIOR VIEW OF 8FOOT HIGH SPEED WIND TUNNEL. SAME ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    11. INTERIOR VIEW OF 8-FOOT HIGH SPEED WIND TUNNEL. SAME CAMERA POSITION AS VA-118-B-10 LOOKING IN THE OPPOSITE DIRECTION. - NASA Langley Research Center, 8-Foot High Speed Wind Tunnel, 641 Thornell Avenue, Hampton, Hampton, VA

  2. Development of Wind Speed Retrieval from Cross-Polarization Chinese Gaofen-3 Synthetic Aperture Radar in Typhoons

    PubMed Central

    Yuan, Xinzhe; Sun, Jian; Zhou, Wei; Zhang, Qingjun

    2018-01-01

    The purpose of our work is to determine the feasibility and effectiveness of retrieving sea surface wind speeds from C-band cross-polarization (herein vertical-horizontal, VH) Chinese Gaofen-3 (GF-3) SAR images in typhoons. In this study, we have collected three GF-3 SAR images acquired in Global Observation (GLO) and Wide ScanSAR (WSC) mode during the summer of 2017 from the China Sea, which includes the typhoons Noru, Doksuri and Talim. These images were collocated with wind simulations at 0.12° grids from a numeric model, called the Regional Assimilation and Prediction System-Typhoon model (GRAPES-TYM). Recent research shows that GRAPES-TYM has a good performance for typhoon simulation in the China Sea. Based on the dataset, the dependence of wind speed and of radar incidence angle on normalized radar cross (NRCS) of VH-polarization GF-3 SAR have been investigated, after which an empirical algorithm for wind speed retrieval from VH-polarization GF-3 SAR was tuned. An additional four VH-polarization GF-3 SAR images in three typhoons, Noru, Hato and Talim, were investigated in order to validate the proposed algorithm. SAR-derived winds were compared with measurements from Windsat winds at 0.25° grids with wind speeds up to 40 m/s, showing a 5.5 m/s root mean square error (RMSE) of wind speed and an improved RMSE of 5.1 m/s wind speed was achieved compared with the retrieval results validated against GRAPES-TYM winds. It is concluded that the proposed algorithm is a promising potential technique for strong wind retrieval from cross-polarization GF-3 SAR images without encountering a signal saturation problem. PMID:29385068

  3. A Lyapunov based approach to energy maximization in renewable energy technologies

    NASA Astrophysics Data System (ADS)

    Iyasere, Erhun

    This dissertation describes the design and implementation of Lyapunov-based control strategies for the maximization of the power captured by renewable energy harnessing technologies such as (i) a variable speed, variable pitch wind turbine, (ii) a variable speed wind turbine coupled to a doubly fed induction generator, and (iii) a solar power generating system charging a constant voltage battery. First, a torque control strategy is presented to maximize wind energy captured in variable speed, variable pitch wind turbines at low to medium wind speeds. The proposed strategy applies control torque to the wind turbine pitch and rotor subsystems to simultaneously control the blade pitch and tip speed ratio, via the rotor angular speed, to an optimum point at which the capture efficiency is maximum. The control method allows for aerodynamic rotor power maximization without exact knowledge of the wind turbine model. A series of numerical results show that the wind turbine can be controlled to achieve maximum energy capture. Next, a control strategy is proposed to maximize the wind energy captured in a variable speed wind turbine, with an internal induction generator, at low to medium wind speeds. The proposed strategy controls the tip speed ratio, via the rotor angular speed, to an optimum point at which the efficiency constant (or power coefficient) is maximal for a particular blade pitch angle and wind speed by using the generator rotor voltage as a control input. This control method allows for aerodynamic rotor power maximization without exact wind turbine model knowledge. Representative numerical results demonstrate that the wind turbine can be controlled to achieve near maximum energy capture. Finally, a power system consisting of a photovoltaic (PV) array panel, dc-to-dc switching converter, charging a battery is considered wherein the environmental conditions are time-varying. A backstepping PWM controller is developed to maximize the power of the solar generating system. The controller tracks a desired array voltage, designed online using an incremental conductance extremum-seeking algorithm, by varying the duty cycle of the switching converter. The stability of the control algorithm is demonstrated by means of Lyapunov analysis. Representative numerical results demonstrate that the grid power system can be controlled to track the maximum power point of the photovoltaic array panel in varying atmospheric conditions. Additionally, the performance of the proposed strategy is compared to the typical maximum power point tracking (MPPT) method of perturb and observe (P&O), where the converter dynamics are ignored, and is shown to yield better results.

  4. Coordinated control strategy for improving the two drops of the wind storage combined system

    NASA Astrophysics Data System (ADS)

    Qian, Zhou; Chenggen, Wang; Jing, Bu

    2018-05-01

    In the power system with high permeability wind power, due to wind power fluctuation, the operation of large-scale wind power grid connected to the system brings challenges to the frequency stability of the system. When the doubly fed wind power generation unit does not reserve spare capacity to participate in the system frequency regulation, the system frequency will produce two drops in different degrees when the wind power exits frequency modulation and enters the speed recovery stage. To solve this problem, based on the complementary advantages of wind turbines and energy storage systems in power transmission and frequency modulation, a wind storage combined frequency modulation strategy based on sectional control is proposed in this paper. Based on the TOP wind power frequency modulation strategy, the wind power output reference value is determined according to the linear relationship between the output and the speed of the wind turbine, and the auxiliary wind power load reduction is controlled when the wind power exits frequency modulation into the speed recovery stage, so that the wind turbine is recovered to run at the optimal speed. Then, according to the system frequency and the wind turbine operation state, set the energy storage system frequency modulation output. Energy storage output active support is triggered during wind speed recovery. And then when the system frequency to return to the normal operating frequency range, reduce energy storage output or to exit frequency modulation. The simulation results verify the effectiveness of the proposed method.

  5. Modeling and simulation of soft sensor design for real-time speed and position estimation of PMSM.

    PubMed

    Omrane, Ines; Etien, Erik; Dib, Wissam; Bachelier, Olivier

    2015-07-01

    This paper deals with the design of a speed soft sensor for permanent magnet synchronous motor. At high speed, model-based soft sensor is used and it gives excellent results. However, it fails to deliver satisfactory performance at zero or very low speed. High-frequency soft sensor is used at low speed. We suggest to use a model-based soft sensor together with the high-frequency soft sensor to overcome the limitations of the first one at low speed range. Copyright © 2015 ISA. Published by Elsevier Ltd. All rights reserved.

  6. Coastal Ohio Wind Project for Reduced Barriers to Deployment of Offshore Wind Energy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gorsevski, Peter; Afjeh, Abdollah; Jamali, Mohsin

    The Coastal Ohio Wind Project was created to establish the viability of wind turbines on the coastal and offshore regions of Northern Ohio. The project’s main goal was to improve operational unit strategies used for environmental impact assessment of offshore turbines on lake wildlife by optimizing and fusing data from the multi-instrument surveillance system and providing an engineering analysis of potential design/operational alternatives for offshore wind turbines. The project also developed a general economic model for offshore WTG deployment to quantify potential revenue losses due to wind turbine shutdown related to ice and avian issues. In a previous phase ofmore » this project (Award Number: DE-FG36-06GO86096), we developed a surveillance system that was used to collect different parameters such as passage rates, flight paths, flight directions, and flight altitudes of nocturnal migrating species, movements of birds and bats, and bird calls for assessing patterns and peak passage rates during migration. To derive such parameters we used thermal IR imaging cameras, acoustic recorders, and marine radar Furuno (XANK250), which was coupled with a XIR3000B digitizing card from Russell Technologies and open source radR processing software. The integration yielded a development of different computational techniques and methods, which we further developed and optimized as a combined surveillance system. To accomplish this task we implemented marine radar calibration, optimization of processing parameters, and fusion of the multi-sensor data in order to make inferences about the potential avian targets. The main goal of the data fusion from the multi-sensor environment was aimed at reduction of uncertainties while providing acceptable confidence levels with detailed information about the migration patterns. Another component comprised of an assessment of wind resources in a near lake environment and an investigation of the effectiveness of ice coating materials to mitigate adverse effects of ice formation on wind turbine structures. Firstly, a Zephir LiDAR system was acquired and installed at Woodlands School in Huron, Ohio, which is located near Lake Erie. Wind resource data were obtained at ten measurement heights, 200m, 150m, 100m, 80m, 60m, 40m, 38m, 30m, 20m, and 10m. The Woodlands School’s wind turbine anemometer also measured the wind speed at the hub height. These data were collected for approximately one year. The hub anemometer data correlated well with the LiDAR wind speed measurements at the same height. The data also showed that on several days different power levels were recorded by the turbine at the same wind speed as indicated by the hub anemometer. The corresponding LiDAR data showed that this difference can be attributed to variability in the wind over the turbine rotor swept area, which the hub anemometer could not detect. The observation suggests that single point hub wind velocity measurements are inadequate to accurately estimate the power generated by a turbine at all times since the hub wind speed is not a good indicator of the wind speed over the turbine rotor swept area when winds are changing rapidly. To assess the effectiveness of ice coatings to mitigate the impact of ice on turbine structures, a closed-loop icing research tunnel (IRT) was designed and constructed. By controlling the temperature, air speed, water content and liquid droplet size, the tunnel enabled consistent and repeatable ice accretion under a variety of conditions with temperatures between approximately 0°C and -20°C and wind speeds up to 40 miles per hour in the tunnel’s test section. The tunnel’s cooling unit maintained the tunnel temperature within ±0.2°C. The coatings evaluated in the study were Boyd Coatings Research Company’s CRC6040R3, MicroPhase Coatings Inc.’s PhaseBreak TP, ESL and Flex coatings. Similar overall performance was observed in all coatings tested in that water droplets form on the test articles beginning at the stagnation region and spreading in the downstream direction in time. When comparing ice accumulation characteristics for the four coatings tested, for ice thickness during accumulation the CRC6040R3 had the least, followed by the ESL, Flex, and TP. However, when comparing the coatings’ ability to reduce ice adhesion, the Flex showed the highest adhesion reduction, followed by the ESL, TP and CRC 6040R3 coatings. The ice accumulated on the Flex coated surface shed under gravity when rotated 90 degrees following the tests while the other coatings required application of varying degrees of force to remove the ice. In conclusion, the ice coatings tested were not sufficient in preventing ice accumulation on all surfaces. However, Flex coating shows promise in mitigating ice on the rotor blades under the gravitational and centrifugal forces. Only the effect of gravity in shedding the ice was considered in this study. Further research will be needed to evaluate this coating on rotating blades in the icing tunnel to characterize its effectiveness. Lastly, the development of economic feasibility models used existing approaches adapted for offshore deployment in marine settings to one more suitable for Lake Erie deployment. Two different wind turbine models were tested and dynamic return on investment (ROI) model scenarios were generated. For the purpose of estimating power generation three bladed wind turbines of 3 MW capacity were selected including Model1- Leitwind LTW101-3.000-kW and Model2-Vostro V90-3.0 MW. The analysis were based on the revenue aspect of decision making of deploying wind turbines in the Ohio coastal region. The installation cost, maintenance and operational aspects were disregarded due to unavailability of data. The adjusted varying price (residential and industrial sector) and projected future price of electricity in different years suggested that the Leitwind model could generate $32.4 million of revenue in 25 years if the supply electricity is in the residential sector, while it would be $14.7million if the supply is in the industrial sector. For the Vostro model these figures are $28.6 million for residential sector and $12.9 million for industrial sector for 25 years.« less

  7. Effects of Sea-Surface Waves and Ocean Spray on Air-Sea Momentum Fluxes

    NASA Astrophysics Data System (ADS)

    Zhang, Ting; Song, Jinbao

    2018-04-01

    The effects of sea-surface waves and ocean spray on the marine atmospheric boundary layer (MABL) at different wind speeds and wave ages were investigated. An MABL model was developed that introduces a wave-induced component and spray force to the total surface stress. The theoretical model solution was determined assuming the eddy viscosity coefficient varied linearly with height above the sea surface. The wave-induced component was evaluated using a directional wave spectrum and growth rate. Spray force was described using interactions between ocean-spray droplets and wind-velocity shear. Wind profiles and sea-surface drag coefficients were calculated for low to high wind speeds for wind-generated sea at different wave ages to examine surface-wave and ocean-spray effects on MABL momentum distribution. The theoretical solutions were compared with model solutions neglecting wave-induced stress and/or spray stress. Surface waves strongly affected near-surface wind profiles and sea-surface drag coefficients at low to moderate wind speeds. Drag coefficients and near-surface wind speeds were lower for young than for old waves. At high wind speeds, ocean-spray droplets produced by wind-tearing breaking-wave crests affected the MABL strongly in comparison with surface waves, implying that wave age affects the MABL only negligibly. Low drag coefficients at high wind caused by ocean-spray production increased turbulent stress in the sea-spray generation layer, accelerating near-sea-surface wind. Comparing the analytical drag coefficient values with laboratory measurements and field observations indicated that surface waves and ocean spray significantly affect the MABL at different wind speeds and wave ages.

  8. Effects of wind speed on aerosol spray penetration in adult mosquito bioassay cages.

    PubMed

    Hoffmann, W Clint; Fritz, Bradley K; Farooq, Muhammad; Cooperband, Miriam F

    2008-09-01

    Bioassay cages are commonly used to assess efficacy of insecticides against adult mosquitoes in the field. To correlate adult mortality readings to insecticidal efficacy and/or spray application parameters properly, it is important to know how the cage used in the bioassay interacts with the spray cloud containing the applied insecticide. This study compared the size of droplets, wind speed, and amount of spray material penetrating cages and outside of cages in a wind tunnel at different wind speeds. Two bioassay cages, Center for Medical, Agricultural and Veterinary Entomology (CMAVE) and Circle, were evaluated. The screen materials used on these cages reduced the size of droplets, wind speed, and amount of spray material inside the cages as compared to the spray cloud and wind velocity outside of the cages. When the wind speed in the dispersion tunnel was set at 0.6 m/sec (1.3 mph), the mean wind speed inside of the CMAVE Bioassay Cage and Circle Cage was 0.045 m/sec (0.10 mph) and 0.075 m/sec (0.17 mph), respectively. At air velocities of 2.2 m/sec (4.9 mph) in the dispersion tunnel, the mean wind speed inside of the CMAVE Bioassay Cage and Circle Cage was 0.83 m/sec (1.86 mph) and 0.71 m/sec (1.59 mph), respectively. Consequently, there was a consistent 50-70% reduction of spray material penetrating the cages compared to the spray cloud that approached the cages. These results provide a better understanding of the impact of wind speed, cage design, and construction on ultra-low-volume spray droplets.

  9. A Comparison of Tropical Storm (TS) and Non-TS Gust Factors for Assessing Peak Wind Probabilities at the Eastern Range

    NASA Technical Reports Server (NTRS)

    Merceret, Francis J.; Crawford, Winifred C.

    2010-01-01

    Knowledge of peak wind speeds is important to the safety of personnel and flight hardware at Kennedy Space Center (KSC) and the Cape Canaveral Air Force Station (CCAFS), but they are more difficult to forecast than mean wind speeds. Development of a reliable model for the gust factor (GF) relating the peak to the mean wind speed motivated a previous study of GF in tropical storms. The same motivation inspired a climatological study of non-TS peak wind speed statistics without the use of GF. Both studies presented their respective statistics as functions of mean wind speed and height. The few comparisons of IS and non-TS GF in the literature suggest that the non-TS GF at a given height and mean wind speed are smaller than the corresponding TS GF. The investigation reported here converted the non-TS peak wind statistics mentioned above to the equivalent GF statistics and compared the results with the previous TS GF results. The advantage of this effort over all previously reported studies of its kind is that the TS and non-TS data are taken from the same towers in the same locations. That eliminates differing surface attributes, including roughness length and thermal properties, as a major source of variance in the comparison. The results are consistent with the literature, but include much more detailed, quantitative information on the nature of the relationship between TS and non-TS GF as a function of height and mean wind speed. In addition, the data suggest the possibility of providing an operational model for non-TS GF as a function of height and wind speed in a manner similar to the one previously developed for TS GF.

  10. Multiple and variable speed electrical generator systems for large wind turbines

    NASA Technical Reports Server (NTRS)

    Andersen, T. S.; Hughes, P. S.; Kirschbaum, H. S.; Mutone, G. A.

    1982-01-01

    A cost effective method to achieve increased wind turbine generator energy conversion and other operational benefits through variable speed operation is presented. Earlier studies of multiple and variable speed generators in wind turbines were extended for evaluation in the context of a specific large sized conceptual design. System design and simulation have defined the costs and performance benefits which can be expected from both two speed and variable speed configurations.

  11. Wind speed statistics for Goldstone, California, anemometer sites

    NASA Technical Reports Server (NTRS)

    Berg, M.; Levy, R.; Mcginness, H.; Strain, D.

    1981-01-01

    An exploratory wind survey at an antenna complex was summarized statistically for application to future windmill designs. Data were collected at six locations from a total of 10 anemometers. Statistics include means, standard deviations, cubes, pattern factors, correlation coefficients, and exponents for power law profile of wind speed. Curves presented include: mean monthly wind speeds, moving averages, and diurnal variation patterns. It is concluded that three of the locations have sufficiently strong winds to justify consideration for windmill sites.

  12. Measurement of global oceanic winds from Seasat-SMMR and its comparison with Seasat-SASS and ALT derived winds

    NASA Technical Reports Server (NTRS)

    Pandey, Prem C.

    1987-01-01

    The retrieval of ocean-surface wind speed from different channel combinations of Seasat SMMR measurements is demonstrated. Wind speeds derived using the best two channel subsets (10.6 H and 18.0 V) were compared with in situ data collected during the Joint Air-Sea Interaction (JASIN) experiment and an rms difference of 1.5 m/s was found. Global maps of wind speed generated with the present algorithm show that the averaged winds are arranged in well-ordered belts.

  13. Use of the Azimuth Wavelength Cut-Off to Retrieve the Sea Surface Wind Speed from Sentinel 1 and COSMO-SkyMed SAR Data

    NASA Astrophysics Data System (ADS)

    Grieco, G.; Nirchio, F.; Montuori, A.; Migliaccio, M.; Lin, W.; Portabella, M.

    2016-08-01

    The dependency of the azimuth wavelength cut-off on the wind speed has been studied through a dataset of Sentinel-1 multi look SAR images co-located with wind speed measurements, significant wave height and mean wave direction from ECMWF operational output.A Geophysical Model Function (GMF) has been fitted and a retrieval exercise has been done comparing the results to a set of independent wind speed scatterometer measurements of the Chinese mission HY-2A. The preliminary results show that the dependency of the azimuth cut-off on the wind speed is linear only for fully developed sea states and that the agreement between the retrieved values and the measurements is good especially for high wind speed.A similar approach has been used to assess the dependency of the azimuth cut-off also for X-band COSMO-SkyMed data. The dataset is still incomplete but the preliminary results show a similar trend.

  14. Recent recovery of surface wind speed after decadal decrease: a focus on South Korea

    NASA Astrophysics Data System (ADS)

    Kim, JongChun; Paik, Kyungrock

    2015-09-01

    We investigate the multi-decadal variability of observed surface wind speed around South Korea. It is found that surface wind speed exhibits decreasing trend from mid-1950s until 2003, which is similar with the trends reported for other parts of the world. However, the decreasing trend ceases and becomes unclear since then. It is revealed that decreasing wind speed until 2003 is strongly associated with the decreasing trend of the spatial variance in both atmospheric pressure and air temperature across the East Asia for the same period. On the contrary, break of decreasing trend in surface wind speed since 2003 is associated with increasing spatial variance in surface temperature over the East Asia. Ground observation shows that surface wind speed and air temperature exhibit highly negative correlations for both summer and winter prior to 2003. However, since 2003, the correlations differ between seasons. We suggest that mechanisms behind the recent wind speed trend are different between summer and winter. This is on the basis of an interesting finding that air temperature has decreased while surface temperature has increased during winter months since 2003. We hypothesize that such contrasting temperature trends indicate more frequent movement of external cold air mass into the region since 2003. We also hypothesize that increasing summer wind speed is driven by intrusion of warm air mass into the region which is witnessed via increasing spatial variance in surface temperature across East Asia and the fact that both air and surface temperature rise together.

  15. Dual-Doppler lidar observation of horizontal convective rolls and near-surface streaks

    NASA Astrophysics Data System (ADS)

    Iwai, Hironori; Ishii, Shoken; Tsunematsu, Nobumitsu; Mizutani, Kohei; Murayama, Yasuhiro; Itabe, Toshikazu; Yamada, Izumi; Matayoshi, Naoki; Matsushima, Dai; Weiming, Sha; Yamazaki, Takeshi; Iwasaki, Toshiki

    2008-07-01

    Dual-Doppler lidar and heliborne sensors were used to investigate the three-dimensional (3D) structure of the wind field over Sendai Airport in June 2007. The 3D structures of several-hundred-meter-scale horizontal convective rolls (HCRs) in the sea-breeze layer were observed by the dual-Doppler lidar. The scale of the HCRs determined by the heliborne sensors roughly agreed with that determined by the dual-Doppler lidar. Analysis of the dual-Doppler lidar data showed that the region of upward flow in the HCRs originated in near-surface low-speed streaks. This structure is consistent with the results of large-eddy simulations of the atmospheric boundary layer. The aspect ratios of the HCRs were close to those predicted by linear theories.

  16. Evaluation of a novel wind tunnel for the measurement of the kinetics of odour emissions from piggery effluent.

    PubMed

    Sohn, J H; Smith, R; Yoong, E; Hudson, N; Kim, T I

    2004-01-01

    A novel laboratory wind tunnel, with the capability to control factors such as air flow-rate, was developed to measure the kinetics of odour emissions from liquid effluent. The tunnel allows the emission of odours and other volatiles under an atmospheric transport system similar to ambient conditions. Sensors for wind speed, temperature and humidity were installed and calibrated. To calibrate the wind tunnel, trials were performed to determine the gas recovery efficiency under different air flow-rates (ranging from 0.001 to 0.028m3/s) and gas supply rates (ranging from 2.5 to 10.0 L/min) using a standard CO gas mixture. The results have shown gas recovery efficiencies ranging from 61.7 to 106.8%, while the average result from the trials was 81.14%. From statistical analysis, it was observed that the highest, most reliable gas recovery efficiency of the tunnel was 88.9%. The values of air flow-rate and gas supply rate corresponding to the highest gas recovery efficiency were 0.028 m3/s and 10.0 L/min respectively. This study suggested that the wind tunnel would provide precise estimates of odour emission rate. However, the wind tunnel needs to be calibrated to compensate for errors caused by different air flow-rates.

  17. Uncertainty of the global oceanic CO2 exchange at the air-water interface induced by the choice of the gas exchange velocity formulation and the wind product: quantification and spatial analysis

    NASA Astrophysics Data System (ADS)

    Roobaert, Alizee; Laruelle, Goulven; Landschützer, Peter; Regnier, Pierre

    2017-04-01

    In lakes, rivers, estuaries and the ocean, the quantification of air-water CO2 exchange (FCO2) is still characterized by large uncertainties partly due to the lack of agreement over the parameterization of the gas exchange velocity (k). Although the ocean is generally regarded as the best constrained system because k is only controlled by the wind speed, numerous formulations are still currently used, leading to potentially large differences in FCO2. Here, a quantitative global spatial analysis of FCO2 is presented using several k-wind speed formulations in order to compare the effect of the choice of parameterization of k on FCO2. This analysis is performed at a 1 degree resolution using a sea surface pCO2 product generated using a two-step artificial neuronal network by Landschützer et al. (2015) over the 1991-2011 period. Four different global wind speed datasets (CCMP, ERA, NCEP 1 and NCEP 2) are also used to assess the effect of the choice of one wind speed product over the other when calculating the global and regional oceanic FCO2. Results indicate that this choice of wind speed product only leads to small discrepancies globally (6 %) except with NCEP 2 which produces a more intense global FCO2 compared to the other wind products. Regionally, theses differences are even more pronounced. For a given wind speed product, the choice of parametrization of k yields global FCO2 differences ranging from 7 % to 16 % depending on the wind product used. We also provide latitudinal profiles of FCO2 and its uncertainty calculated combining all combinations between the different k-relationships and the four wind speed products. Wind speeds >14 m s-1, which only account for 7 % of all observations, contributes disproportionately to the global oceanic FCO2 and, for this range of wind speeds, the uncertainty induced by the choice of formulation for k is maximum ( 50 %).

  18. Wind effects on coastal zone color scanner chlorophyll patterns in the U.S. Mid-Atlantic Bight during spring 1979

    NASA Technical Reports Server (NTRS)

    Eslinger, David L.; Iverson, Richard L.

    1986-01-01

    Coastal zone color scanner (CZCS) chlorophyll concentration increases in the Mid-Atlantic Bight were associated with high wind speeds in continental shelf waters during March and May 1979. Maximum spring CZCS chlorophyll concentrations occurred during April when the water column was not thermally stratified and were spatially and temporally associated with reductions in wind speed both in onshelf and in offshelf regions. Increased chlorophyll concentrations in offshelf waters were associated with high wind speeds during May when a deep chlorophyll maximum was present. Chlorophyll patchiness was observed on length scales typical of those controlled by biological processes during the April low-wind period but not during March or May when wind speeds were greater. The spring CZCS chlorophyll maximum in the southern portion of the Mid-Atlantic Bight occurred in response to a reduction in mixed layer depth caused by decreased wind speeds and not by increased water column stratification.

  19. On the Decrease of the Oceanic Drag Coefficient in High Winds

    NASA Astrophysics Data System (ADS)

    Donelan, Mark A.

    2018-02-01

    The sheltering coefficient - prefixing Jeffreys' concept of the exponential wave growth rate at a gas-liquid interface - is shown to be Reynolds number dependent from laboratory measurements of waves and Reynolds stresses. There are two turbulent flow regimes: wind speed range of 2.5 to 30 m/s where the drag coefficients increase with wind speed, and wind speed range of 30 to 50 m/s where sheltering/drag coefficients decrease/saturate with wind speed. By comparing model calculations of drag coefficients - using a fixed sheltering coefficient - with ocean observations over a wind speed range of 1 to 50 m/s a similar Reynolds number dependence of the oceanic sheltering coefficient is revealed. In consequence the drag coefficient is a function of Reynolds number and wave age, and not just wind speed as frequently assumed. The resulting decreasing drag coefficient above 30 m/s is shown to be critical in explaining the rapid intensification so prominent in the climatology of Atlantic hurricanes. The Reynolds number dependence of the sheltering coefficient, when employed in coupled models, should lead to significant improvements in the prediction of intensification and decay of tropical cyclones. A calculation of curvature at the wave crest suggests that at wind speeds above 56.15 m/s all waves-breaking or not-induce steady flow separation leading to a minimum in the drag coefficient. This is further evidence of the veracity of the observations of the oceanic drag coefficient at high winds.

  20. The Evolution of a Snow Dune Field

    NASA Astrophysics Data System (ADS)

    Filhol, S.; Pirk, N.; Schuler, T.; Burkhart, J. F.

    2017-12-01

    On March 24, 2017 we observed the evolution of a snow dune field during a passing storm on the alpine plateau of Finse, Norway. With a terrestrial lidar we captured 15 high-resolution scans of the snow surface over an area of about 5000 m2 over the course of 7.5 hours from which we analyze morphological changes. An eddy covariance system located nearby at the Finse Alpine Research Station recorded wind and its turbulent structure, and measured the snow drifting flux with a FlowCapt sensor. This combined dataset provides novel insight into the responses and changes of the snow surface morphology exposed to storm constraints (e.g. wind speed, drifting flux). We found that individual dunes have moved 30 to 37 m over the course of 7.5 hours. The wavelength of the dunes varied from 10.3±3.1 m at the time of the first scan to 13.6±3.3 m at the last scan. Within this time period we observed individual dunes 1) migrating down wind, later becoming 2) temporarily nearly static as the wind speed dropped, and finally 3) migrating, growing, and merging into larger transverse dunes under strong wind conditions accompanied by large quantities of drifting snow. This dynamics can be considered analogous to sand dune behavior, however, on much shorter time scale (1h vs 10-100 years) and smaller spatial scale (10m vs 100m). The record of this event helps us to understand the morphological evolution of a snow surface during a blowing snow storm, and further illustrates the fate of self-sustained bedforms such as dunes in varying conditions. Such detailed description of erosion/deposition processes of the snow surface are crucial for improvements of land surface models, commonly applied to hydrological and ecological purposes.

  1. Sea-State Dependence of Aerosol Concentration in the Marine Atmospheric Boundary Layer

    NASA Astrophysics Data System (ADS)

    Lenain, L.; Melville, W. K.

    2016-02-01

    While sea spray aerosols represent a large portion of the aerosols present in the marine environment, and despite evidence of the importance of surface wave and wave-breaking related processes in the coupling of the ocean with the atmosphere, sea spray source generation functions are traditionally parameterized by the wind speed at 10m. It is clear that unless the wind and wave field are fully developed, the source function will be a function of both wind and wave parameters. In this study, we report on an air-sea interaction experiment, the ONR phase-resolved High-Resolution Air-Sea Interaction experiments (HIRES), conducted off the coast of Northern California in June 2010. Detailed measurements of aerosol number concentration in the Marine Atmospheric Boundary Layer (MABL), at altitudes ranging from as low as 30m and up to 800m AMSL over a broad range of environmental conditions (significant wave height, Hs, of 2 to 4.5m and wind speed at 10m height, U10, of 10 to 18 m/s) collected from an instrumented research aircraft, are presented. Aerosol number densities and volume are computed over a range of particle diameters from 0.1 to 200 µm, while the surface conditions, i.e. significant wave height, moments of the breaker length distribution Λ(c), and wave breaking dissipation, were measured by a suite of electro-optical sensors that included the NASA Airborne Topographic Mapper (ATM). The sea-state dependence of the aerosol concentration in the MABL is evident, ultimately stressing the need to incorporate wave and wave kinematics in the spray source generation functions that are traditionally primarily parameterized by surface winds. A scaling of the measured aerosol volume distribution by wave and atmospheric state variables is proposed.

  2. The effects of the variations in sea surface temperature and atmospheric stability in the estimation of average wind speed by SEASAT-SASS

    NASA Technical Reports Server (NTRS)

    Liu, W. T.

    1984-01-01

    The average wind speeds from the scatterometer (SASS) on the ocean observing satellite SEASAT are found to be generally higher than the average wind speeds from ship reports. In this study, two factors, sea surface temperature and atmospheric stability, are identified which affect microwave scatter and, therefore, wave development. The problem of relating satellite observations to a fictitious quantity, such as the neutral wind, that has to be derived from in situ observations with models is examined. The study also demonstrates the dependence of SASS winds on sea surface temperature at low wind speeds, possibly due to temperature-dependent factors, such as water viscosity, which affect wave development.

  3. Comparison of the 10x10 and the 8x6 Supersonic Wind Tunnels at the NASA Glenn Research Center for Low-Speed (Subsonic) Operation

    NASA Technical Reports Server (NTRS)

    Hoffman, Thomas R.; Johns, Albert L.; Bury, Mark E.

    2002-01-01

    NASA Glenn Research Center and Lockheed Martin tested an aircraft model in two wind tunnels to compare low-speed (subsonic) flow characteristics. Test objectives were to determine and document similarities and uniqueness of the tunnels and to verify that the 10- by 10-Foot Supersonic Wind Tunnel (10x10 SWT) is a viable low-speed test facility when compared to the 8- by 6-Foot Supersonic Wind Tunnel (8x6 SWT). Conclusions are that the data from the two facilities compares very favorably and that the 10-by 10-Foot Supersonic Wind Tunnel at NASA Glenn Research Center is a viable low-speed wind tunnel.

  4. Hurricane Harvey's Rapid Wind Intensification seen by NASA's SMAP

    NASA Image and Video Library

    2017-08-28

    The rapid intensification of Hurricane Harvey is seen in this pair of images of ocean surface wind speeds as observed by the radiometer instrument aboard NASA's Soil Moisture Active Passive (SMAP) satellite at 7:29 a.m. CDT Aug. 24th, 2017 (left) and at 7 p.m. CDT Aug. 26th (right). Color indicates wind speed, with red being highest and blue lowest. The images show Harvey's maximum wind speeds increased from approximately 56 miles per hour (25 meters per second) to about 107 miles per hour (47.8 meters per second) in the 36 hours just before landfall. The higher wind speeds estimated near the mouth of the Mississippi River are erroneous and are due to errors in the ancillary sea-surface-salinity data product used by SMAP to estimate extreme wind speeds. https://photojournal.jpl.nasa.gov/catalog/PIA21884

  5. Wind-Tunnel and Flight Test Results for the Measurements of Flow Variables at Supersonic Speeds Using Improved Wedge and Conical Probes

    NASA Technical Reports Server (NTRS)

    Bobbitt, Percy J.; Maglieri, Domenic J.; Banks, Daniel W.; Frederick, Michael A.; Fuchs, Aaron W.

    2012-01-01

    The results of supersonic wind-tunnel tests on three probes at nominal Mach numbers of 1.6, 1.8 and 2.0 and flight tests on two of these probes up to a Mach number of 1.9 are described. One probe is an 8 deg. half-angle wedge with two total-pressure measurements and one static. The second, a conical probe, is a cylinder that has a 15 deg., semi-angle cone tip with one total-pressure orifice at the apex and four static-pressure orifices on the surface of the cone, 90 deg. apart, and about two-thirds of the distance from the cone apex to the base of the cone. The third is a 2 deg. semi-angle cone that has two static ports located 180 deg. apart about 1.5 inches behind the apex of the cone. The latter probe was included since it has been the "probe of choice" for wind-tunnel flow-field pressure measurements (or one similar to it) for the past half-century. The wedge and 15 deg. conical probes used in these tests were designed for flight diagnostic measurements for flight Mach numbers down to 1.35 and 1.15 respectively, and have improved capabilities over earlier probes of similar shape. The 15. conical probe also has a temperature sensor that is located inside the cylindrical part of the probe that is exposed to free-stream flow through an annulus at the apex of the cone. It enables the determination of free-stream temperature, density, speed of sound, and velocity, in addition to free-stream pressure, Mach number, angle of attack and angle of sideslip. With the time-varying velocity, acceleration can be calculated. Wind-tunnel tests of the two probes were made in NASA Langley Research Center fs Unitary Plan Wind Tunnel (UPWT) at Mach numbers of 1.6, 1.8, and 2.0. Flight tests were carried out at the NASA Dryden Flight Research Center (DFRC) on its F-15B aircraft up to Mach numbers of 1.9. The probes were attached to a fixture, referred to as the Centerline Instrumented Pylon (CLIP), under the fuselage of the aircraft. Problems controlling the velocity of the flow through the conical probe required for accurate temperature measurements are noted, as well as some calibration problems of the miniature pressure sensors that required a re-calculation of the flow variables. Data are presented for angle of attack, pressure and Mach number obtained in the wind tunnel and in flight. In the wind tunnel some transient data were obtained by translating the probes through the shock flow field created by a bump on the wind-tunnel wall.

  6. Field Calibration of Wind Direction Sensor to the True North and Its Application to the Daegwanryung Wind Turbine Test Sites

    PubMed Central

    Lee, Jeong Wan

    2008-01-01

    This paper proposes a field calibration technique for aligning a wind direction sensor to the true north. The proposed technique uses the synchronized measurements of captured images by a camera, and the output voltage of a wind direction sensor. The true wind direction was evaluated through image processing techniques using the captured picture of the sensor with the least square sense. Then, the evaluated true value was compared with the measured output voltage of the sensor. This technique solves the discordance problem of the wind direction sensor in the process of installing meteorological mast. For this proposed technique, some uncertainty analyses are presented and the calibration accuracy is discussed. Finally, the proposed technique was applied to the real meteorological mast at the Daegwanryung test site, and the statistical analysis of the experimental testing estimated the values of stable misalignment and uncertainty level. In a strict sense, it is confirmed that the error range of the misalignment from the exact north could be expected to decrease within the credibility level. PMID:27873957

  7. Session A-14: Variability of Storm Tracks Storm Tracks and Unseasonable Temperatures in Europe in December 2001

    NASA Technical Reports Server (NTRS)

    Przybylak, R.; Ardizzone, J.; Atlas, R.; Koslowsky, D.; Otterman, J.; Rogers, J.; Starr, D.; Atlas, Robert (Technical Monitor)

    2002-01-01

    In December 2001, a series of cyclonic centers progressed rapidly into Europe from the west and north. The cyclones moved in generally similar directions, along paths separated by few hundreds of kilometers. The advancing cyclones brought the usual sequence of changing wind directions and produced some high speed wind events. We investigate the wind patterns for this month based on analyses derived the Special Sensor Microwave/Imager observations and NCEP analyses. Whereas southwesterlies from the North Atlantic produced moderate temperatures early in the month, strong northerlies and northwesterlies (up to 15 m/s on 20-22 December) produced a drop in daily minimum and maximum temperatures of 18.8 C and 9.9 C, respectively, over a 4 day period (to -18.8 C and -6.8 C, respectively, on December 23 in Torun, Poland). Such low values in December are unprecedented in recent decades, though not for January or February.

  8. Sensitivity of turbine-height wind speeds to parameters in planetary boundary-layer and surface-layer schemes in the weather research and forecasting model

    DOE PAGES

    Yang, Ben; Qian, Yun; Berg, Larry K.; ...

    2016-07-21

    We evaluate the sensitivity of simulated turbine-height wind speeds to 26 parameters within the Mellor–Yamada–Nakanishi–Niino (MYNN) planetary boundary-layer scheme and MM5 surface-layer scheme of the Weather Research and Forecasting model over an area of complex terrain. An efficient sampling algorithm and generalized linear model are used to explore the multiple-dimensional parameter space and quantify the parametric sensitivity of simulated turbine-height wind speeds. The results indicate that most of the variability in the ensemble simulations is due to parameters related to the dissipation of turbulent kinetic energy (TKE), Prandtl number, turbulent length scales, surface roughness, and the von Kármán constant. Themore » parameter associated with the TKE dissipation rate is found to be most important, and a larger dissipation rate produces larger hub-height wind speeds. A larger Prandtl number results in smaller nighttime wind speeds. Increasing surface roughness reduces the frequencies of both extremely weak and strong airflows, implying a reduction in the variability of wind speed. All of the above parameters significantly affect the vertical profiles of wind speed and the magnitude of wind shear. Lastly, the relative contributions of individual parameters are found to be dependent on both the terrain slope and atmospheric stability.« less

  9. Sensitivity of turbine-height wind speeds to parameters in planetary boundary-layer and surface-layer schemes in the weather research and forecasting model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Ben; Qian, Yun; Berg, Larry K.

    We evaluate the sensitivity of simulated turbine-height wind speeds to 26 parameters within the Mellor–Yamada–Nakanishi–Niino (MYNN) planetary boundary-layer scheme and MM5 surface-layer scheme of the Weather Research and Forecasting model over an area of complex terrain. An efficient sampling algorithm and generalized linear model are used to explore the multiple-dimensional parameter space and quantify the parametric sensitivity of simulated turbine-height wind speeds. The results indicate that most of the variability in the ensemble simulations is due to parameters related to the dissipation of turbulent kinetic energy (TKE), Prandtl number, turbulent length scales, surface roughness, and the von Kármán constant. Themore » parameter associated with the TKE dissipation rate is found to be most important, and a larger dissipation rate produces larger hub-height wind speeds. A larger Prandtl number results in smaller nighttime wind speeds. Increasing surface roughness reduces the frequencies of both extremely weak and strong airflows, implying a reduction in the variability of wind speed. All of the above parameters significantly affect the vertical profiles of wind speed and the magnitude of wind shear. Lastly, the relative contributions of individual parameters are found to be dependent on both the terrain slope and atmospheric stability.« less

  10. Improving the Response of a Wheel Speed Sensor by Using a RLS Lattice Algorithm

    PubMed Central

    Hernandez, Wilmar

    2006-01-01

    Among the complete family of sensors for automotive safety, consumer and industrial application, speed sensors stand out as one of the most important. Actually, speed sensors have the diversity to be used in a broad range of applications. In today's automotive industry, such sensors are used in the antilock braking system, the traction control system and the electronic stability program. Also, typical applications are cam and crank shaft position/speed and wheel and turbo shaft speed measurement. In addition, they are used to control a variety of functions, including fuel injection, ignition timing in engines, and so on. However, some types of speed sensors cannot respond to very low speeds for different reasons. What is more, the main reason why such sensors are not good at detecting very low speeds is that they are more susceptible to noise when the speed of the target is low. In short, they suffer from noise and generally only work at medium to high speeds. This is one of the drawbacks of the inductive (magnetic reluctance) speed sensors and is the case under study. Furthermore, there are other speed sensors like the differential Hall Effect sensors that are relatively immune to interference and noise, but they cannot detect static fields. This limits their operations to speeds which give a switching frequency greater than a minimum operating frequency. In short, this research is focused on improving the performance of a variable reluctance speed sensor placed in a car under performance tests by using a recursive least-squares (RLS) lattice algorithm. Such an algorithm is situated in an adaptive noise canceller and carries out an optimal estimation of the relevant signal coming from the sensor, which is buried in a broad-band noise background where we have little knowledge of the noise characteristics. The experimental results are satisfactory and show a significant improvement in the signal-to-noise ratio at the system output.

  11. Wind increases leaf water use efficiency.

    PubMed

    Schymanski, Stanislaus J; Or, Dani

    2016-07-01

    A widespread perception is that, with increasing wind speed, transpiration from plant leaves increases. However, evidence suggests that increasing wind speed enhances carbon dioxide (CO2 ) uptake while reducing transpiration because of more efficient convective cooling (under high solar radiation loads). We provide theoretical and experimental evidence that leaf water use efficiency (WUE, carbon uptake per water transpired) commonly increases with increasing wind speed, thus improving plants' ability to conserve water during photosynthesis. Our leaf-scale analysis suggests that the observed global decrease in near-surface wind speeds could have reduced WUE at a magnitude similar to the increase in WUE attributed to global rise in atmospheric CO2 concentrations. However, there is indication that the effect of long-term trends in wind speed on leaf gas exchange may be compensated for by the concurrent reduction in mean leaf sizes. These unintuitive feedbacks between wind, leaf size and water use efficiency call for re-evaluation of the role of wind in plant water relations and potential re-interpretation of temporal and geographic trends in leaf sizes. © 2015 The Authors. Plant, Cell & Environment published by John Wiley & Sons Ltd.

  12. Observed drag coefficients in high winds in the near offshore of the South China Sea

    DOE PAGES

    Bi, Xueyan; Liu, Yangan; Gao, Zhiqiu; ...

    2015-07-14

    This paper investigates the relationships between friction velocity, 10 m drag coefficient, and 10 m wind speed using data collected at two offshore observation towers (one over the sea and the other on an island) from seven typhoon episodes in the South China Sea from 2008 to 2014. The two towers were placed in areas with different water depths along a shore-normal line. The depth of water at the tower over the sea averages about 15 m, and the depth of water near the island is about 10 m. The observed maximum 10 min average wind speed at a heightmore » of 10 m is about 32 m s⁻¹. Momentum fluxes derived from three methods (eddy covariance, inertial dissipation, and flux profile) are compared. The momentum fluxes derived from the flux profile method are larger (smaller) over the sea (on the island) than those from the other two methods. The relationship between the 10 m drag coefficient and the 10 m wind speed is examined by use of the data obtained by the eddy covariance method. The drag coefficient first decreases with increasing 10 m wind speed when the wind speeds are 5–10 m s⁻¹, then increases and reaches a peak value of 0.002 around a wind speed of 18 m s⁻¹. The drag coefficient decreases with increasing 10 m wind speed when 10 m wind speeds are 18–27 m s⁻¹. A comparison of the measurements from the two towers shows that the 10 m drag coefficient from the tower in 10 m water depth is about 40% larger than that from the tower in 15 m water depth when the 10 m wind speed is less than 10 m s⁻¹. Above this, the difference in the 10 m drag coefficients of the two towers disappears.« less

  13. Observed drag coefficients in high winds in the near offshore of the South China Sea

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bi, Xueyan; Liu, Yangan; Gao, Zhiqiu

    This paper investigates the relationships between friction velocity, 10 m drag coefficient, and 10 m wind speed using data collected at two offshore observation towers (one over the sea and the other on an island) from seven typhoon episodes in the South China Sea from 2008 to 2014. The two towers were placed in areas with different water depths along a shore-normal line. The depth of water at the tower over the sea averages about 15 m, and the depth of water near the island is about 10 m. The observed maximum 10 min average wind speed at a heightmore » of 10 m is about 32 m s⁻¹. Momentum fluxes derived from three methods (eddy covariance, inertial dissipation, and flux profile) are compared. The momentum fluxes derived from the flux profile method are larger (smaller) over the sea (on the island) than those from the other two methods. The relationship between the 10 m drag coefficient and the 10 m wind speed is examined by use of the data obtained by the eddy covariance method. The drag coefficient first decreases with increasing 10 m wind speed when the wind speeds are 5–10 m s⁻¹, then increases and reaches a peak value of 0.002 around a wind speed of 18 m s⁻¹. The drag coefficient decreases with increasing 10 m wind speed when 10 m wind speeds are 18–27 m s⁻¹. A comparison of the measurements from the two towers shows that the 10 m drag coefficient from the tower in 10 m water depth is about 40% larger than that from the tower in 15 m water depth when the 10 m wind speed is less than 10 m s⁻¹. Above this, the difference in the 10 m drag coefficients of the two towers disappears.« less

  14. 40 CFR Table F-2 to Subpart F of... - Particle Sizes and Wind Speeds for Full Wind Tunnel Test, Wind Tunnel Inlet Aspiration Test, and...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Wind Tunnel Test, Wind Tunnel Inlet Aspiration Test, and Static Chamber Test F Table F-2 to Subpart F... Part 53—Particle Sizes and Wind Speeds for Full Wind Tunnel Test, Wind Tunnel Inlet Aspiration Test, and Static Chamber Test Primary Partical Mean Size a (µm) Full Wind Tunnel Test 2 km/hr 24 km/hr Inlet...

  15. 40 CFR Table F-2 to Subpart F of... - Particle Sizes and Wind Speeds for Full Wind Tunnel Test, Wind Tunnel Inlet Aspiration Test, and...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Wind Tunnel Test, Wind Tunnel Inlet Aspiration Test, and Static Chamber Test F Table F-2 to Subpart F... Part 53—Particle Sizes and Wind Speeds for Full Wind Tunnel Test, Wind Tunnel Inlet Aspiration Test, and Static Chamber Test Primary Partical Mean Size a (µm) Full Wind Tunnel Test 2 km/hr 24 km/hr Inlet...

  16. 40 CFR Table F-2 to Subpart F of... - Particle Sizes and Wind Speeds for Full Wind Tunnel Test, Wind Tunnel Inlet Aspiration Test, and...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Wind Tunnel Test, Wind Tunnel Inlet Aspiration Test, and Static Chamber Test F Table F-2 to Subpart F... Part 53—Particle Sizes and Wind Speeds for Full Wind Tunnel Test, Wind Tunnel Inlet Aspiration Test, and Static Chamber Test Primary Partical Mean Size a (µm) Full Wind Tunnel Test 2 km/hr 24 km/hr Inlet...

  17. Are estimates of wind characteristics based on measurements with Pitot tubes and GNSS receivers mounted on consumer-grade unmanned aerial vehicles applicable in meteorological studies?

    PubMed

    Niedzielski, Tomasz; Skjøth, Carsten; Werner, Małgorzata; Spallek, Waldemar; Witek, Matylda; Sawiński, Tymoteusz; Drzeniecka-Osiadacz, Anetta; Korzystka-Muskała, Magdalena; Muskała, Piotr; Modzel, Piotr; Guzikowski, Jakub; Kryza, Maciej

    2017-09-01

    The objective of this paper is to empirically show that estimates of wind speed and wind direction based on measurements carried out using the Pitot tubes and GNSS receivers, mounted on consumer-grade unmanned aerial vehicles (UAVs), may accurately approximate true wind parameters. The motivation for the study is that a growing number of commercial and scientific UAV operations may soon become a new source of data on wind speed and wind direction, with unprecedented spatial and temporal resolution. The feasibility study was carried out within an isolated mountain meadow of Polana Izerska located in the Izera Mountains (SW Poland) during an experiment which aimed to compare wind characteristics measured by several instruments: three UAVs (swinglet CAM, eBee, Maja) equipped with the Pitot tubes and GNSS receivers, wind speed and direction meters mounted at 2.5 and 10 m (mast), conventional weather station and vertical sodar. The three UAVs performed seven missions along spiral-like trajectories, most reaching 130 m above take-off location. The estimates of wind speed and wind direction were found to agree between UAVs. The time series of wind speed measured at 10 m were extrapolated to flight altitudes recorded at a given time so that a comparison was made feasible. It was found that the wind speed estimates provided by the UAVs on a basis of the Pitot tube/GNSS data are in agreement with measurements carried out using dedicated meteorological instruments. The discrepancies were recorded in the first and last phases of UAV flights.

  18. Ensemble Nonlinear Autoregressive Exogenous Artificial Neural Networks for Short-Term Wind Speed and Power Forecasting.

    PubMed

    Men, Zhongxian; Yee, Eugene; Lien, Fue-Sang; Yang, Zhiling; Liu, Yongqian

    2014-01-01

    Short-term wind speed and wind power forecasts (for a 72 h period) are obtained using a nonlinear autoregressive exogenous artificial neural network (ANN) methodology which incorporates either numerical weather prediction or high-resolution computational fluid dynamics wind field information as an exogenous input. An ensemble approach is used to combine the predictions from many candidate ANNs in order to provide improved forecasts for wind speed and power, along with the associated uncertainties in these forecasts. More specifically, the ensemble ANN is used to quantify the uncertainties arising from the network weight initialization and from the unknown structure of the ANN. All members forming the ensemble of neural networks were trained using an efficient particle swarm optimization algorithm. The results of the proposed methodology are validated using wind speed and wind power data obtained from an operational wind farm located in Northern China. The assessment demonstrates that this methodology for wind speed and power forecasting generally provides an improvement in predictive skills when compared to the practice of using an "optimal" weight vector from a single ANN while providing additional information in the form of prediction uncertainty bounds.

  19. Ensemble Nonlinear Autoregressive Exogenous Artificial Neural Networks for Short-Term Wind Speed and Power Forecasting

    PubMed Central

    Lien, Fue-Sang; Yang, Zhiling; Liu, Yongqian

    2014-01-01

    Short-term wind speed and wind power forecasts (for a 72 h period) are obtained using a nonlinear autoregressive exogenous artificial neural network (ANN) methodology which incorporates either numerical weather prediction or high-resolution computational fluid dynamics wind field information as an exogenous input. An ensemble approach is used to combine the predictions from many candidate ANNs in order to provide improved forecasts for wind speed and power, along with the associated uncertainties in these forecasts. More specifically, the ensemble ANN is used to quantify the uncertainties arising from the network weight initialization and from the unknown structure of the ANN. All members forming the ensemble of neural networks were trained using an efficient particle swarm optimization algorithm. The results of the proposed methodology are validated using wind speed and wind power data obtained from an operational wind farm located in Northern China. The assessment demonstrates that this methodology for wind speed and power forecasting generally provides an improvement in predictive skills when compared to the practice of using an “optimal” weight vector from a single ANN while providing additional information in the form of prediction uncertainty bounds. PMID:27382627

  20. Interplanetary gas. XX - Does the radial solar wind speed increase with latitude

    NASA Technical Reports Server (NTRS)

    Brandt, J. C.; Harrington, R. S.; Roosen, R. G.

    1975-01-01

    The astrometric technique used to derive solar wind speeds from ionic comet-tail orientations has been used to test the suggestion that the radial solar wind speed is higher near the solar poles than near the equator. We find no evidence for the suggested latitude variation.

  1. Laboratory Study of Topographic Effects on the Near-surface Tornado Flow Field

    NASA Astrophysics Data System (ADS)

    Razavi, Alireza; Sarkar, Partha P.

    2018-03-01

    To study topographic effects on the near-surface tornado flow field, the Iowa State University tornado simulator was used to simulate a translating tornado passing over three different two-dimensional topographies: a ridge, an escarpment and a valley. The effect of the translation speed on maximum horizontal wind speeds is observed for translation speeds of 0.15 and 0.50 m s^{-1} , with the lower value resulting in a larger maximum horizontal wind speed. The tornado translation over the three topographies with respect to flat terrain is assessed for changes in: (a) the maximum horizontal wind speeds in terms of the flow-amplification factor; (b) the maximum aerodynamic drag in terms of the tornado speed-up ratio; (c) the maximum duration of exposure at any location to high wind speeds of a specific range in terms of the exposure amplification factor. Results show that both the maximum wind amplification factor of 14%, as well as the maximum speed-up ratio of 14%, occur on the ridge. For all topographies, the increase in aerodynamic drag is observed to be maximized for low-rise buildings, which illustrates the importance of the vertical profiles of the horizontal wind speed near the ground. The maximum exposure amplification factors, estimated for the range of wind speeds corresponding to the EF2 (50-60 m s^{-1} ) and EF3 (61-75 m s^{-1}) scales, are 86 and 110% for the ridge, 4 and 60% for the escarpment and - 6 and 47% for the valley, respectively.

  2. Idealized models of the joint probability distribution of wind speeds

    NASA Astrophysics Data System (ADS)

    Monahan, Adam H.

    2018-05-01

    The joint probability distribution of wind speeds at two separate locations in space or points in time completely characterizes the statistical dependence of these two quantities, providing more information than linear measures such as correlation. In this study, we consider two models of the joint distribution of wind speeds obtained from idealized models of the dependence structure of the horizontal wind velocity components. The bivariate Rice distribution follows from assuming that the wind components have Gaussian and isotropic fluctuations. The bivariate Weibull distribution arises from power law transformations of wind speeds corresponding to vector components with Gaussian, isotropic, mean-zero variability. Maximum likelihood estimates of these distributions are compared using wind speed data from the mid-troposphere, from different altitudes at the Cabauw tower in the Netherlands, and from scatterometer observations over the sea surface. While the bivariate Rice distribution is more flexible and can represent a broader class of dependence structures, the bivariate Weibull distribution is mathematically simpler and may be more convenient in many applications. The complexity of the mathematical expressions obtained for the joint distributions suggests that the development of explicit functional forms for multivariate speed distributions from distributions of the components will not be practical for more complicated dependence structure or more than two speed variables.

  3. Performance study of personal inhalable aerosol samplers at ultra-low wind speeds.

    PubMed

    Sleeth, Darrah K; Vincent, James H

    2012-03-01

    The assessment of personal inhalable aerosol samplers in a controlled laboratory setting has not previously been carried out at the ultra-low wind speed conditions that represent most modern workplaces. There is currently some concern about whether the existing inhalable aerosol convention is appropriate at these low wind speeds and an alternative has been suggested. It was therefore important to assess the performance of the most common personal samplers used to collect the inhalable aerosol fraction, especially those that were designed to match the original curve. The experimental set-up involved use of a hybrid ultra-low speed wind tunnel/calm air chamber and a rotating, heating breathing mannequin to measure the inhalable fraction of aerosol exposure. The samplers that were tested included the Institute of Occupational Medicine (IOM), Button, and GSP inhalable samplers as well as the closed-face cassette sampler that has been (and still is) widely used by occupational hygienists in many countries. The results showed that, down to ∼0.2 m s(-1), the samplers matched the current inhalability criterion relatively well but were significantly greater than this at the lowest wind speed tested. Overall, there was a significant effect of wind speed on sampling efficiency, with lower wind speeds clearly associated with an increase in sampling efficiency.

  4. Flight paths of seabirds soaring over the ocean surface enable measurement of fine-scale wind speed and direction.

    PubMed

    Yonehara, Yoshinari; Goto, Yusuke; Yoda, Ken; Watanuki, Yutaka; Young, Lindsay C; Weimerskirch, Henri; Bost, Charles-André; Sato, Katsufumi

    2016-08-09

    Ocean surface winds are an essential factor in understanding the physical interactions between the atmosphere and the ocean. Surface winds measured by satellite scatterometers and buoys cover most of the global ocean; however, there are still spatial and temporal gaps and finer-scale variations of wind that may be overlooked, particularly in coastal areas. Here, we show that flight paths of soaring seabirds can be used to estimate fine-scale (every 5 min, ∼5 km) ocean surface winds. Fine-scale global positioning system (GPS) positional data revealed that soaring seabirds flew tortuously and ground speed fluctuated presumably due to tail winds and head winds. Taking advantage of the ground speed difference in relation to flight direction, we reliably estimated wind speed and direction experienced by the birds. These bird-based wind velocities were significantly correlated with wind velocities estimated by satellite-borne scatterometers. Furthermore, extensive travel distances and flight duration of the seabirds enabled a wide range of high-resolution wind observations, especially in coastal areas. Our study suggests that seabirds provide a platform from which to measure ocean surface winds, potentially complementing conventional wind measurements by covering spatial and temporal measurement gaps.

  5. Flight paths of seabirds soaring over the ocean surface enable measurement of fine-scale wind speed and direction

    PubMed Central

    Yonehara, Yoshinari; Goto, Yusuke; Yoda, Ken; Watanuki, Yutaka; Young, Lindsay C.; Weimerskirch, Henri; Bost, Charles-André; Sato, Katsufumi

    2016-01-01

    Ocean surface winds are an essential factor in understanding the physical interactions between the atmosphere and the ocean. Surface winds measured by satellite scatterometers and buoys cover most of the global ocean; however, there are still spatial and temporal gaps and finer-scale variations of wind that may be overlooked, particularly in coastal areas. Here, we show that flight paths of soaring seabirds can be used to estimate fine-scale (every 5 min, ∼5 km) ocean surface winds. Fine-scale global positioning system (GPS) positional data revealed that soaring seabirds flew tortuously and ground speed fluctuated presumably due to tail winds and head winds. Taking advantage of the ground speed difference in relation to flight direction, we reliably estimated wind speed and direction experienced by the birds. These bird-based wind velocities were significantly correlated with wind velocities estimated by satellite-borne scatterometers. Furthermore, extensive travel distances and flight duration of the seabirds enabled a wide range of high-resolution wind observations, especially in coastal areas. Our study suggests that seabirds provide a platform from which to measure ocean surface winds, potentially complementing conventional wind measurements by covering spatial and temporal measurement gaps. PMID:27457932

  6. The impact of changing wind speeds on gas transfer and its effect on global air-sea CO2 fluxes

    NASA Astrophysics Data System (ADS)

    Wanninkhof, R.; Triñanes, J.

    2017-06-01

    An increase in global wind speeds over time is affecting the global uptake of CO2 by the ocean. We determine the impact of changing winds on gas transfer and CO2 uptake by using the recently updated, global high-resolution, cross-calibrated multiplatform wind product (CCMP-V2) and a fixed monthly pCO2 climatology. In particular, we assess global changes in the context of regional wind speed changes that are attributed to large-scale climate reorganizations. The impact of wind on global CO2 gas fluxes as determined by the bulk formula is dependent on several factors, including the functionality of the gas exchange-wind speed relationship and the regional and seasonal differences in the air-water partial pressure of CO2 gradient (ΔpCO2). The latter also controls the direction of the flux. Fluxes out of the ocean are influenced more by changes in the low-to-intermediate wind speed range, while ingassing is impacted more by changes in higher winds because of the regional correlations between wind and ΔpCO2. Gas exchange-wind speed parameterizations with a quadratic and third-order polynomial dependency on wind, each of which meets global constraints, are compared. The changes in air-sea CO2 fluxes resulting from wind speed trends are greatest in the equatorial Pacific and cause a 0.03-0.04 Pg C decade-1 increase in outgassing over the 27 year time span. This leads to a small overall decrease of 0.00 to 0.02 Pg C decade-1 in global net CO2 uptake, contrary to expectations that increasing winds increase net CO2 uptake.Plain Language SummaryThe effects of changing winds are isolated from the total change in trends in global air-sea CO2 fluxes over the last 27 years. The overall effect of increasing winds over time has a smaller impact than expected as the impact in regions of outgassing is greater than for the regions acting as a CO2 sink.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012AIPC.1440..507F','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012AIPC.1440..507F"><span>Wind tunnel testing of 5-bladed H-rotor wind turbine with the integration of the omni-direction-guide-vane</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Fazlizan, A.; Chong, W. T.; Omar, W. Z. W.; Mansor, S.; Zain, Z. M.; Pan, K. C.; Oon, C. S.</p> <p>2012-06-01</p> <p>A novel omni-direction-guide-vane (ODGV) that surrounds a vertical axis wind turbine (VAWT) is designed to improve the wind turbine performance by increasing the oncoming wind speed and guiding the wind-stream through optimum flow angles before impinging onto the turbine blades. Wind tunnel testing was performed to measure the performance of a 5-bladed H-rotor wind turbine with Wortmann FX63-137 airfoil blades, with and without the integration of the ODGV. The test was conducted using a scaled model turbine which was constructed to simulate the VAWT enclosed by the ODGV on a building. The diameter and height of the ODGV are 2 times larger than the VAWT's. Torque, rotational speed and power measurements were performed by using torque transducer with hysteresis brake applied to the rotor shaft. The VAWT shows an improvement on its self-starting behavior where the cut-in speed reduced to 4 m/s with the ODGV (7.35 m/s without the ODGV). Since the VAWT is able to self-start at lower wind speed, the working hour of the wind turbine would increase. At the wind speed of 6 m/s and free-running condition (only rotor inertia and bearing friction were applied), the ODGV helps to increase the rotor RPM by 182%. At the same wind speed (6 m/s), the ODGV helps to increase the power output by 3.48 times at peak torque. With this innovative design, the size of VAWT can be reduced for a given power output and should generate interest in the market, even for regions with weaker winds.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2009AGUFM.A33H..01M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2009AGUFM.A33H..01M"><span>Impacts of past and future climate change on wind energy resources in the United States</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>McCaa, J. R.; Wood, A.; Eichelberger, S.; Westrick, K.</p> <p>2009-12-01</p> <p>The links between climate change and trends in wind energy resources have important potential implications for the wind energy industry, and have received significant attention in recent studies. We have conducted two studies that provide insights into the potential for climate change to affect future wind power production. In one experiment, we projected changes in power capacity for a hypothetical wind farm located near Kennewick, Washington, due to greenhouse gas-induced climate change, estimated using a set of regional climate model simulations. Our results show that the annual wind farm power capacity is projected to decrease 1.3% by 2050. In a wider study focusing on wind speed instead of power, we analyzed projected changes in wind speed from 14 different climate simulations that were performed in support of the Fourth Assessment Report of the Intergovernmental Panel on Climate Change (IPCC AR4). Our results show that the predicted ensemble mean changes in annual mean wind speeds are expected to be modest. However, seasonal changes and changes predicted by individual models are large enough to affect the profitability of existing and future wind projects. The majority of the model simulations reveal that near-surface wind speed values are expected to shift poleward in response to the IPCC A2 emission scenario, particularly during the winter season. In the United States, most models agree that the mean annual wind speed values will increase in a region extending from the Great Lakes southward across the Midwest and into Texas. Decreased values, though, are predicted across most of the western United States. However, these predicted changes have a strong seasonal dependence, with wind speed increases over most of the United States during the winter and decreases over the northern United States during the summer.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..19.1674P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..19.1674P"><span>Effect of air turbulence on gas transport in soil; comparison of approaches</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Pourbakhtiar, Alireza; Papadikis, Konstantinos; Poulsen, Tjalfe; Bridge, Jonathan; Wilkinson, Stephen</p> <p>2017-04-01</p> <p>Greenhouse gases are playing the key role in global warming. Soil is a source of greenhouse gases such as methane (CH4). Radon (Rn) which is a radioactive gas can emit form subsurface into the atmosphere and leads to health concerns in urban areas. Temperature, humidity, air pressure and vegetation of soil can affect gas emissions inside soil (Oertel et al., 2016). It's shown in many cases that wind induced fluctuations is an important factor in transport of gas through soil and other porous media. An example is: landfill gas emissions (Poulsen et al., 2001). We applied an experimental equipment for measuring controlled air turbulence on gas transport in soil in relation to the depth of sample. Two approaches for measurement of effect of wind turbulence on gas transport were applied and compared. Experiments were carried out with diffusion of CO2 and air as tracer gases with average vertical wind speeds of 0 to 0.83 m s-1. In approach A, Six different sample thicknesses from 5 to 30 cm were selected and total of 4 different wind conditions with different speed and fluctuations were applied. In approach B, a sample with constant depth was used. Five oxygen sensors were places inside sample at different depths. Total of 111 experiments were carried out. Gas transport is described by advection-dispersion equation. Gas transport is quantified as a dispersion coefficient. Oxygen breakthrough curves as a function of distance to the surface of the sample exposed to wind were derived numerically with an explicit forward time, central space finite-difference based model to evaluate gas transport. We showed that wind turbulence-induced fluctuations is an important factor in gas transport that can increase gas transport with average of 45 times more than molecular diffusion under zero wind condition. Comparison of two strategies for experiments, indicated that, constant deep samples (Approach B) are more reliable for measurement of gas transport under influence of wind turbulence. They are more similar to natural conditions and also the lower layers of soil are affecting the diffusion and dispersion coefficients of soil in the upper layers. Power spectrum density is calculated for all the all wind conditions to determine strength vibration of all the wind speeds and its relation to gas transport. Differential pressure for different wind conditions are measured at two sides of samples. References Oertel, C., Matschullat, J., Zurba, K., Zimmermann, F. & Erasmi, S. 2016. Greenhouse gas emissions from soils—A review. Chemie der Erde - Geochemistry, 76, 327-352. Poulsen, T.G., Christophersen, M., Moldrup, P. & Kjeldsen, P. 2001. Modeling lateral gas transport in soil adjacent to old landfill. Journal of Environmental Engineering (ASCE), 127, 145-153.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017PhDT........66S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017PhDT........66S"><span>Interaction Between the Atmospheric Boundary Layer and Wind Energy: From Continental-Scale to Turbine-Scale</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>St. Martin, Clara Mae</p> <p></p> <p>Wind turbines and groups of wind turbines, or "wind plants", interact with the complex and heterogeneous boundary layer of the atmosphere. We define the boundary layer as the portion of the atmosphere directly influenced by the surface, and this layer exhibits variability on a range of temporal and spatial scales. While early developments in wind energy could ignore some of this variability, recent work demonstrates that improved understanding of atmosphere-turbine interactions leads to the discovery of new ways to approach turbine technology development as well as processes such as performance validation and turbine operations. This interaction with the atmosphere occurs at several spatial and temporal scales from continental-scale to turbine-scale. Understanding atmospheric variability over continental-scales and across plants can facilitate reliance on wind energy as a baseload energy source on the electrical grid. On turbine scales, understanding the atmosphere's contribution to the variability in power production can improve the accuracy of power production estimates as we continue to implement more wind energy onto the grid. Wind speed and directional variability within a plant will affect wind turbine wakes within the plants and among neighboring plants, and a deeper knowledge of these variations can help mitigate effects of wakes and possibly even allow the manipulation of these wakes for increased production. Herein, I present the extent of my PhD work, in which I studied outstanding questions at these scales at the intersections of wind energy and atmospheric science. My work consists of four distinct projects. At the coarsest scales, I analyze the separation between wind plant sites needed for statistical independence in order to reduce variability for grid-integration of wind. At lower wind speeds, periods of unstable and more turbulent conditions produce more power than periods of stable and less turbulent conditions, while at wind speeds closer to rated wind speed, periods of unstable and more turbulent conditions produce less power than periods of stable and less turbulent conditions. Using these new, stability- and turbulence-specific power curves to calculate annual energy production (AEP) estimates results in smaller AEPs than if calculated using no stability and turbulence filters, which could have implications for manufacturers and operators. In my third project, I address the problem of expensive power production validation. Rather than erecting towers to provide upwind wind measurements, I explore the utility of using nacelle-mounted anemometers for power curve verification studies. I calculate empirical nacelle transfer functions (NTFs) with upwind tower and turbine measurements. The fifth-order and second-order NTFs show a linear relationship between upwind wind speed and nacelle wind speed at wind speeds less than about 9 m s-1 , but this relationship becomes non-linear at wind speeds higher than about 9 m s-1. The use of NTFs results in AEPs within 1 % of an AEP using upwind wind speeds. Additionally, during periods of unstable conditions as well as during more turbulent conditions, the nacelle-mounted anemometer underestimates the upwind wind speed more than during periods of stable conditions and less turbulence conditions at some wind speed bins below rated speed. Finally, in my fourth project, I consider spatial scales on the order of a wind plant. Using power production data from over 300 turbines from four neighboring wind farms in the western US along with simulations using the Weather Research and Forecasting model's Wind Farm Parameterization (WRF-WFP), I investigate the advantage of using the WFP to simulate wakes. During this case, winds from the west and north-northwest range from about 5 to 11 m s-1. A down-ramp occurs in this case study, which WRF predicts too early. The early prediction of the down-ramp likely affects the error in WRF-predicted power, the results of which show exaggerated wake effects. While these projects span a range of spatio-temporal scales, a unifying theme is the important aspect of atmospheric variation on wind power production, wind power production estimates, and means for facilitating the integration of wind-generated electricity into power grids. Future work, such as universal NTFs for sites with similar characteristics, NTFs for waked turbines, or the deployment of lidars on turbine nacelles for operation purposes, should continue to study the mutually-important interconnections between these two fields. (Abstract shortened by ProQuest.).</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012AGUFMOS11H..03M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012AGUFMOS11H..03M"><span>The Aquarius Level 2 Algorithm</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Meissner, T.; Wentz, F. J.; Hilburn, K. A.; Lagerloef, G. S.; Le Vine, D. M.</p> <p>2012-12-01</p> <p>The Aquarius L-band radiometer/scatterometer system is designed to provide monthly salinity maps at 150 km spatial scale to an accuracy of 0.2 psu. The sensor was launched on June 10, 2011, aboard the Argentine CONAE SAC-D spacecraft. The L-band radiometers and the scatterometer have been taking science data observations since August 25, 2011. This presentation discusses the current state of the Aquarius Level processing algorithm, which transforms radiometer counts ultimately into sea surface salinity (SSS). We focus on several topics that we have investigated since launch: 1. Updated Pointing A detailed check of the Aquarius pointing angles was performed, which consists in making adjustments of the two pointing angles, azimuth angle and off-nadir angle, for each horn. It has been found that the necessary adjustments for all 3 horns can be explained by a single offset for the antenna pointing if we introduce a constant offset in the roll angle by - 0.51 deg and the pitch angle by + 0.16 deg. 2. Antenna Patterns and Instrument Calibration In March 2012 JPL has produced a set of new antenna patterns using the GRASP software. Compared with the various pre-launch patterns those new patterns lead to an increase in the spillover coefficient by about 1%. We discuss its impact on several components of the Level 2 processing: the antenna pattern correction (APC), the correction for intrusion of galactic and solar radiation that is reflected from the ocean surface into the Aquarius field of view, and the correction of contamination from land surface radiation entering into the sidelobes. We show that the new antenna patterns result in a consistent calibration of all 3 Stokes parameters, which can be best demonstrated during spacecraft pitch maneuvers. 3. Cross Polarization Couplings of the 3rd Stokes Parameter Using the APC values for the cross polarization coupling of the 3rd Stokes parameter into the 1st and 2nd Stokes parameter lead to a spurious image of the 3rd Stokes parameter into the SSS and an unwanted bias of the SSS between the ascending and descending part of the swath. We show that in order to remove this effect it is necessary to fine tune the cross polarization coupling of the 3rd Stokes parameter. 4. Aquarius Wind Speed Retrievals and Impact on Surface Roughness Correction Backscatter measurements form the Aquarius scatterometer can be combined with radiometer observations to derive an Aquarius wind speed product. We show that if the weights for the various scatterometer and radiometer channels are chosen appropriately, this Aquarius wind speed matches the high performance of the WindSat and SSM/I retrieved wind speed. This results in an RMS accuracy of about 0.7 m/s when comparing with ground truth observations. This is a significant improvement over wind speeds from NCEP which are currently used in the Aquarius L2vel 2 processing and which have an RMS accuracy of about only 1.2 m/s. We discuss the impact of using this improved wind speed product on the Level 2 surface roughness correction and ultimately on the retrieved SSS.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20130014610','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20130014610"><span>Adaptive Disturbance Tracking Theory with State Estimation and State Feedback for Region II Control of Large Wind Turbines</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Balas, Mark J.; Thapa Magar, Kaman S.; Frost, Susan A.</p> <p>2013-01-01</p> <p>A theory called Adaptive Disturbance Tracking Control (ADTC) is introduced and used to track the Tip Speed Ratio (TSR) of 5 MW Horizontal Axis Wind Turbine (HAWT). Since ADTC theory requires wind speed information, a wind disturbance generator model is combined with lower order plant model to estimate the wind speed as well as partial states of the wind turbine. In this paper, we present a proof of stability and convergence of ADTC theory with lower order estimator and show that the state feedback can be adaptive.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AIPC.1859b0093R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AIPC.1859b0093R"><span>Design and development of nautilus whorl-wind turbine</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>R, Pramod; Kumar, G. B. Veeresh; Harsha, P. Sai Sri; Kumar, K. A. Udaya</p> <p>2017-07-01</p> <p>Our life is directly related to energy and its consumption, and the issues of energy research are extremely important and highly sensitive. Scientists and researchers attempt to accelerate solutions for wind energy generation, design parameters under the influence of novel policies adopted for energy management and the concerns for global warming and climate change. The objective of this study is to design a small wind turbine that is optimized for the constraints that come with residential use. The study is aimed at designing a wind turbine for tapping the low speed wind in urban locations. The design process includes the selection of the wind turbine type and the determination of the blade airfoil, finding the maximum drag model and manufacturing of the turbine economically. In this study, the Nautilus turbine is modeled, simulated and the characteristic curves are plotted. The cutting in wind speed for the turbine is around 1m/s. The turbine rotates in a range of 20 rpm to 500 rpm at wind speeds 1m/s to 10m/s On a below average day at noon where the wind speed are usually low the turbine recorded an rpm of 120 (average value) at 4m/s wind speeds. This study focuses on a computational fluid dynamics analysis of compressible radially outward flow.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1245979','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/1245979"><span>Eddy Correlation Flux Measurement System Handbook</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Cook, D. R.</p> <p>2016-01-01</p> <p>The eddy correlation (ECOR) flux measurement system provides in situ, half-hour measurements of the surface turbulent fluxes of momentum, sensible heat, latent heat, and carbon dioxide (CO2) (and methane at one Southern Great Plains extended facility (SGP EF) and the North Slope of Alaska Central Facility (NSA CF). The fluxes are obtained with the eddy covariance technique, which involves correlation of the vertical wind component with the horizontal wind component, the air temperature, the water vapor density, and the CO2 concentration. The instruments used are: • a fast-response, three-dimensional (3D) wind sensor (sonic anemometer) to obtain the orthogonal wind componentsmore » and the speed of sound (SOS) (used to derive the air temperature) • an open-path infrared gas analyzer (IRGA) to obtain the water vapor density and the CO2 concentration, and • an open-path infrared gas analyzer (IRGA) to obtain methane density and methane flux at one SGP EF and at the NSA CF. The ECOR systems are deployed at the locations where other methods for surface flux measurements (e.g., energy balance Bowen ratio [EBBR] systems) are difficult to employ, primarily at the north edge of a field of crops. A Surface Energy Balance System (SEBS) has been installed collocated with each deployed ECOR system in SGP, NSA, Tropical Western Pacific (TWP), ARM Mobile Facility 1 (AMF1), and ARM Mobile Facility 2 (AMF2). The surface energy balance system consists of upwelling and downwelling solar and infrared radiometers within one net radiometer, a wetness sensor, and soil measurements. The SEBS measurements allow the comparison of ECOR sensible and latent heat fluxes with the energy balance determined from the SEBS and provide information on wetting of the sensors for data quality purposes. The SEBS at one SGP and one NSA site also support upwelling and downwelling PAR measurements to qualify those two locations as Ameriflux sites.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/5453144-observations-martian-surface-winds-viking-lander-site','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/5453144-observations-martian-surface-winds-viking-lander-site"><span>Observations of Martian surface winds at the Viking Lander 1 site</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Murphy, J.R.; Leovy, C.B.; Tillman, J.E.</p> <p>1990-08-30</p> <p>Partial failure of the wind instrumentation on the Viking Lander 1 (VL1) in the Martian subtropics (22.5{degree}N) has limited previous analyses of meteorological data for this site. The authors describe a method for reconstructing surface winds using data from the partially failed sensor and present and analyze a time series of wind, pressure, and temperature at the site covering 350 Mars days (sols). At the beginning of the mission during early summer, winds were controlled by regional topography, but they soon underwent a transition to a regime controlled by the Hadley circulation. Diurnal and semidiurnal wind oscillations and synoptic variationsmore » have been analyzed and compared with the corresponding variations at the Viking Lander 2 middle latitude site (48{degree}N). Diurnal wind oscillations were controlled primarily by regional topography and boundary layer forcing, although a global mode may have been influencing them during two brief episodes. Semidiurnal wind oscillations were controlled by the westward propagating semidiurnal tide from sol 210 onward. Comparison of the synoptic variations at the two sites suggests that the same eastward propagating wave trains were present at both sites, at least following the first 1977 great dust storm, but discordant inferred zonal wave numbers and phase speeds at the two sites cast doubt on the zonal wave numbers deduced from analyses of combined wind and pressure data, particularly at the VL1 site where the signal to noise ratio of the dominant synoptic waves is relatively small.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012AdAtS..29.1227L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012AdAtS..29.1227L"><span>Numerical study on the impact of ground heating and ambient wind speed on flow fields in street canyons</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Li, Lei; Yang, Lin; Zhang, Li-Jie; Jiang, Yin</p> <p>2012-11-01</p> <p>The impact of ground heating on flow fields in street canyons under different ambient wind speed conditions was studied based on numerical methods. A series of numerical tests were performed, and three factors including height-to-width (H/W) ratio, ambient wind speed and ground heating intensity were taken into account. Three types of street canyon with H/W ratios of 0.5, 1.0 and 2.0, respectively, were used in the simulation and seven speed values ranging from 0.0 to 3.0 m s-1 were set for the ambient wind speed. The ground heating intensity, which was defined as the difference between the ground temperature and air temperature, ranged from 10 to 40 K with an increase of 10 K in the tests. The results showed that under calm conditions, ground heating could induce circulation with a wind speed of around 1.0 m s-1, which is enough to disperse pollutants in a street canyon. It was also found that an ambient wind speed threshold may exist for street canyons with a fixed H/W ratio. When ambient wind speed was lower than the threshold identified in this study, the impact of the thermal effect on the flow field was obvious, and there existed a multi-vortex flow pattern in the street canyon. When the ambient wind speed was higher than the threshold, the circulation pattern was basically determined by dynamic effects. The tests on the impact of heating intensity showed that a higher ground heating intensity could strengthen the vortical flow within the street canyon, which would help improve pollutant diffusion capability in street canyons.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014JPhCS.555a2035F','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014JPhCS.555a2035F"><span>Operating wind turbines in strong wind conditions by using feedforward-feedback control</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Feng, Ju; Sheng, Wen Zhong</p> <p>2014-12-01</p> <p>Due to the increasing penetration of wind energy into power systems, it becomes critical to reduce the impact of wind energy on the stability and reliability of the overall power system. In precedent works, Shen and his co-workers developed a re-designed operation schema to run wind turbines in strong wind conditions based on optimization method and standard PI feedback control, which can prevent the typical shutdowns of wind turbines when reaching the cut-out wind speed. In this paper, a new control strategy combing the standard PI feedback control with feedforward controls using the optimization results is investigated for the operation of variable-speed pitch-regulated wind turbines in strong wind conditions. It is shown that the developed control strategy is capable of smoothening the power output of wind turbine and avoiding its sudden showdown at high wind speeds without worsening the loads on rotor and blades.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19830010987','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19830010987"><span>Description of the 3 MW SWT-3 wind turbine at San Gorgonio Pass, California</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Rybak, S. C.</p> <p>1982-01-01</p> <p>The SWT-3 wind turbine, a microprocessor controlled three bladed variable speed upwind machine with a 3MW rating that is presently operational and undergoing system testing, is discussed. The tower, a rigid triangular truss configuration, is rotated about its vertical axis to position the wind turbine into the prevailing wind. The blades rotate at variable speed in order to maintain an optimum 6 to 1 tip speed ratio between cut in and fated wind velocity, thereby maximizing power extraction from the wind. Rotor variable speed is implemented by the use of a hydrostatic transmission consisting of fourteen fixed displacement pumps operating in conjunction with eighteen variable displacement motors. Full blade pitch with on-off hydraulic actuation is used to maintain 3MW of output power.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018ThApC.132.1303S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018ThApC.132.1303S"><span>Homogenization of Tianjin monthly near-surface wind speed using RHtestsV4 for 1951-2014</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Si, Peng; Luo, Chuanjun; Liang, Dongpo</p> <p>2018-05-01</p> <p>Historical Chinese surface meteorological records provided by the special fund for basic meteorological data from the National Meteorological Information Center (NMIC) were processed to produce accurate wind speed data. Monthly 2-min near-surface wind speeds from 13 observation stations in Tianjin covering 1951-2014 were homogenized using RHtestV4 combined with their metadata. Results indicate that 10 stations had significant breakpoints—77% of the Tianjin stations—suggesting that inhomogeneity was common in the Tianjin wind speed series. Instrument change accounted for most changes, based on the metadata, including changes in type and height, especially for the instrument type. Average positive quantile matching (QM) adjustments were more than negative adjustments at 10 stations; positive biases with a probability density of 0.2 or more were mainly concentrates in the range 0.2 m s-1 to 1.2 m s-1, while the corresponding negative biases were mainly in the range -0.1 to -1.2 m s-1. Here, changes in variances and trends in the monthly mean surface wind speed series at 10 stations before and after adjustment were compared. Climate characteristics of wind speed in Tianjin were more reasonably reflected by the adjusted data; inhomogeneity in wind speed series was largely corrected. Moreover, error analysis reveals that there was a high consistency between the two datasets here and that from the NMIC, with the latter as the reference. The adjusted monthly near-surface wind speed series shows a certain reliability for the period 1951-2014 in Tianjin.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/FR-2013-06-05/pdf/2013-13197.pdf','FEDREG'); return false;" href="https://www.gpo.gov/fdsys/pkg/FR-2013-06-05/pdf/2013-13197.pdf"><span>78 FR 33897 - Atlantic Wind Lease Sale 2 (ATLW2) Commercial Leasing for Wind Power on the Outer Continental...</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.gpo.gov/fdsys/browse/collection.action?collectionCode=FR">Federal Register 2010, 2011, 2012, 2013, 2014</a></p> <p></p> <p>2013-06-05</p> <p>... megawatts (MW), that the turbines of the wind farm facility under commercial operations can produce at their rated wind speed as designated by the turbine's manufacturer. The nameplate capacity at the start of..., the nameplate capacity of the wind farm facility at the rated wind speed of the turbines would be 100...</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li class="active"><span>22</span></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_22 --> <div id="page_23" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li class="active"><span>23</span></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li><a href="#" onclick='return showDiv("page_25");'>25</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="441"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4897491','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4897491"><span>The Wind Energy Potential of Kurdistan, Iran</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Arefi, Farzad; Moshtagh, Jamal; Moradi, Mohammad</p> <p>2014-01-01</p> <p>In the current work by using statistical methods and available software, the wind energy assessment of prone regions for installation of wind turbines in, Qorveh, has been investigated. Information was obtained from weather stations of Baneh, Bijar, Zarina, Saqez, Sanandaj, Qorveh, and Marivan. The monthly average and maximum of wind speed were investigated between the years 2000–2010 and the related curves were drawn. The Golobad curve (direction and percentage of dominant wind and calm wind as monthly rate) between the years 1997–2000 was analyzed and drawn with plot software. The ten-minute speed (at 10, 30, and 60 m height) and direction (at 37.5 and 10 m height) wind data were collected from weather stations of Iranian new energy organization. The wind speed distribution during one year was evaluated by using Weibull probability density function (two-parametrical), and the Weibull curve histograms were drawn by MATLAB software. According to the average wind speed of stations and technical specifications of the types of turbines, the suitable wind turbine for the station was selected. Finally, the Divandareh and Qorveh sites with favorable potential were considered for installation of wind turbines and construction of wind farms. PMID:27355042</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2008AGUFM.U11B0025H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2008AGUFM.U11B0025H"><span>Winds at the Phoenix Landing Site</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Holstein-Rathlou, C.; Gunnlaugsson, H. P.; Taylor, P.; Lange, C.; Moores, J.; Lemmon, M.</p> <p>2008-12-01</p> <p>Local wind speeds and directions have been measured at the Phoenix landing site using the Telltale wind indicator. The Telltale is mounted on top of the meteorological mast at roughly 2 meters height above the surface. The Telltale is a mechanical anemometer consisting of a lightweight cylinder suspended by Kevlar fibers that are deflected under the action of wind. Images taken with the Surface Stereo Imager (SSI) of the Telltale deflection allows the wind speed and direction to be quantified. Winds aloft have been estimated using image series (10 images ~ 50 s apart) taken of the Zenith (Zenith Movies). In contrast enhanced images cloud like features are seen to move through the image field and give indication of directions and angular speed. Wind speeds depend on the height of where these features originate while directions are unambiguously determined. The wind data shows dominant wind directions and diurnal variations, likely caused by slope winds. Recent night time measurements show frost formation on the Telltale mirror. The results will be discussed in terms of global and slope wind modeling and the current calibration of the data is discussed. It will also be illustrated how wind data can aid in interpreting temperature fluctuations seen on the lander.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016SPIE.9799E..16K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016SPIE.9799E..16K"><span>Power source for wireless sensors in pipes</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Keddis, Sherif; Schwesinger, Norbert</p> <p>2016-04-01</p> <p>In this paper, we present investigations on wireless sensors for fluid control inside a pipe. Autarkic sensors are in the technical trend. They are typically connected with a transceiver unit for data transmission. Sensors usually need a lower amount of energy than data transceivers. Therefore, they are commonly supplied via wires or batteries with electricity. With common technologies, this request leads to high requirements on tightness in liquids since poor sealing could easily lead to failures. Replacement of batteries inside pipes is complicated and almost accompanied by a flow interruption. The application of energy harvesters as power supply is therefore a good alternative. In our studies we used flexible piezoelectric energy harvesters of PVDF (Poly-Vinylidene-Di-Fluoride). All harvesting units consist of piezoelectric PVDF-foils as active layers and Aluminum-foils as electrodes. The layers were stacked alternating on each other and wound to a spool. A LDPE-film wraps the spool and prevents the inflow of liquids. The device has following parameters: <li> No. of windings: 4 in air, 4, 5, 7 in water </li> <li> Dimensions: 15 mm Ø 22mm </li> <li> Materials: PDVF: 25μm Aluminimum: 6μm, LDPE: 25μm </li> A ring shaped bluff body was placed inside the pipe to induce turbulence in the fluid stream. As the harvesters have been arranged downstream of the bluff body, they were forced to oscillate independent of the media. In each case, deformation of the active layers led to a polarization and a separation of electrical charges. Experiments were carried out in a wind channel as well as in a water pipe. In air, the spool oscillates with a frequency of about 30Hz, at a wind speed of about 7m/s. A -Voltage of about 4V (peak-peak) was measured. This delivers in case of power adjustment, power values of about 0.54μW. In water, the velocity of the fluid was limited to nearly one tenth. Oscillation starts only at a water speed above 0.6m/s. The average oscillation frequency is about 18Hz. At a velocity of 0.74m/s, a peak-peak-Voltage up to about 2.3V was found. In case of impedance adjustment, the power was about 0.33μW. This power is stored in a capacitor. Assuming a data transmission unit consumes about 0.2 mWs during one operational period of 1 second, the duty cycle time can be calculated to about 6.2 minutes for air harvesting and 10.1 minutes for harvesting in water.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1995PhDT........82R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1995PhDT........82R"><span>Multiplate Radiation Shields: Investigating Radiational Heating Errors</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Richardson, Scott James</p> <p>1995-01-01</p> <p>Multiplate radiation shield errors are examined using the following techniques: (1) analytic heat transfer analysis, (2) optical ray tracing, (3) numerical fluid flow modeling, (4) laboratory testing, (5) wind tunnel testing, and (6) field testing. Guidelines for reducing radiational heating errors are given that are based on knowledge of the temperature sensor to be used, with the shield being chosen to match the sensor design. Small, reflective sensors that are exposed directly to the air stream (not inside a filter as is the case for many temperature and relative humidity probes) should be housed in a shield that provides ample mechanical and rain protection while impeding the air flow as little as possible; protection from radiation sources is of secondary importance. If a sensor does not meet the above criteria (i.e., is large or absorbing), then a standard Gill shield performs reasonably well. A new class of shields, called part-time aspirated multiplate radiation shields, are introduced. This type of shield consists of a multiplate design usually operated in a passive manner but equipped with a fan-forced aspiration capability to be used when necessary (e.g., low wind speed). The fans used here are 12 V DC that can be operated with a small dedicated solar panel. This feature allows the fan to operate when global solar radiation is high, which is when the largest radiational heating errors usually occur. A prototype shield was constructed and field tested and an example is given in which radiational heating errors were reduced from 2 ^circC to 1.2 ^circC. The fan was run continuously to investigate night-time low wind speed errors and the prototype shield reduced errors from 1.6 ^ circC to 0.3 ^circC. Part-time aspirated shields are an inexpensive alternative to fully aspirated shields and represent a good compromise between cost, power consumption, reliability (because they should be no worse than a standard multiplate shield if the fan fails), and accuracy. In addition, it is possible to modify existing passive shields to incorporate part-time aspiration, thus making them even more cost-effective. Finally, a new shield is described that incorporates a large diameter top plate that is designed to shade the lower portion of the shield. This shield increases flow through it by 60%, compared to the Gill design and it is likely to reduce radiational heating errors, although it has not been tested.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015AGUFM.H13H1637W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015AGUFM.H13H1637W"><span>Ground Snow Measurements: Comparisons of the Hotplate, Weighing and Manual Methods</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Wettlaufer, A.; Snider, J.; Campbell, L. S.; Steenburgh, W. J.; Burkhart, M.</p> <p>2015-12-01</p> <p>The Yankee Environmental Systems (YES) Hotplate was developed to avoid some of the problems associated with weighing snowfall sensors. This work compares Hotplate, weighing sensor (ETI NOAH-II) and manual measurements of liquid-equivalent depth. The main field site was at low altitude in western New York; Hotplate and ETI comparisons were also made at two forested subalpine sites in southeastern Wyoming. The manual measurement (only conducted at the New York site) was derived by weighing snow cores sampled from a snow board. The two recording gauges (Hotplate and ETI) were located within 5 m of the snow board. Hotplate-derived accumulations were corrected using a wind-speed dependent catch efficiency and the ETI orifice was heated and alter shielded. Three important findings are evident from the comparisons: 1) The Yes-derived accumulations, recorded in a user-accessible file, were compared to accumulations derived using an in-house calibration and fundamental measurements (plate power, long and shortwave radiances, wind speed, and temperature). These accumulations are highly correlated (N=24; r2=0.99), but the YES-derived values are larger by 20%. 2) The in-house Hotplate accumulations are in good agreement with ETI-based accumulations but with larger variability (N=24; r2=0.88). 3) The comparison of in-house Hotplate accumulation versus manual accumulation, expressed as mm of liquid, exhibits a fitted linear relationship Y (in-house) versus X (manual) given by Y = -0.2 (±1.4) + 0.9 (±0.1) · X (N= 20; r2=0.89). Thus, these two methods agree within statistical uncertainty.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20140010875','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20140010875"><span>A New Study of Sea Spray Optical Properties from Multi-Sensor Spaceborne Observations</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Dawson, K. W.; Meskhidze, N.; Josset, D.; Gasso, S.</p> <p>2014-01-01</p> <p>Retrievals of aerosol optical depth (AOD) from the Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) satellite sensor require the assumption of an extinction-to-backscatter ratio, also known as the lidar ratio. This paper evaluates a new method to calculate lidar ratio of sea spray aerosol using two independent sources: the AOD from Synergized Optical Depth of Aerosols (SODA) and the integrated attenuated backscatter from CALIOP. The method applied in this study allows particulate lidar ratio to be calculated for individual CALIOP retrievals of single aerosol layer columns over the ocean. Analyses are carried out using CALIOP level 2, 5km sea spray aerosol layer products and collocated SODA nighttime data from December 2007 to December 2009. The global mean lidar ratio for sea spray aerosols was found to be 26 sr, roughly 30 higher than the one prescribed by CALIOP. Data analysis also showed considerable spatiotemporal variability in calculated lidar ratio over different parts of the remote oceans. The calculated aerosol lidar ratios are shown to be inversely related to the mean ocean surface wind speed: increase in ocean surface wind speed (U10) from 0 to 15 ms-1 reduces the mean lidar ratios for sea spray particles from 32 sr (for 0 U10 4 ms-1) to 22 sr (for U10 15 ms-1). Such changes in the lidar ratio are expected to have a corresponding effect on sea spray AOD. The outcomes of this study are relevant for future improvements of the SODA and CALIOP operational product and could lead to more accurate retrievals of sea spray AOD.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018ClDy...50..735L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018ClDy...50..735L"><span>Observed surface wind speed declining induced by urbanization in East China</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Li, Zhengquan; Song, Lili; Ma, Hao; Xiao, Jingjing; Wang, Kuo; Chen, Lian</p> <p>2018-02-01</p> <p>Monthly wind data from 506 meteorological stations and ERA-Interim reanalysis during 1991-2015, are used to examine the surface wind trend over East China. Furthermore, combining the urbanization information derived from the DMSP/OLS nighttime light data during 1992-2013, the effects of urbanization on surface wind change are investigated by applying the observation minus reanalysis (OMR) method. The results show that the observed surface wind speed over East China is distinctly weakening with a rate of -0.16 m s-1 deca-1 during 1991-2015, while ERA-Interim wind speed does not have significant decreasing or increasing trend in the same period. The observed surface wind declining is mainly attributed to underlying surface changes of stations observational areas that were mostly induced by the urbanization in East China. Moreover, the wind declining intensity is closely related to the urbanization rhythms. The OMR annual surface wind speeds of Rhythm-VS, Rhythm-S, Rhythm-M, Rhythm-F and Rhythm-VF, have decreasing trends with the rates of -0.02 to -0.09, -0.16 to -0.26, -0.22 to -0.30, -0.26 to -0.36 and -0.33 to -0.51 m s-1 deca-1, respectively. The faster urbanization rhythm is, the stronger wind speed weakening presents. Additionally urban expansion is another factor resulted in the observed surface wind declining.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015EGUGA..17.6811T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015EGUGA..17.6811T"><span>A Novel UAS Rapid Deployment Platform for Targeted Gas Sampling and Meteorological Soundings at Altitudes up to 2,700 masl</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Thomas, Rick M.; Greatwood, Colin; Richardson, Tom; Freer, Jim; MacKenzie, Rob; Brownlow, Rebecca; Lowry, David; Fisher, Rebecca E.; France, James; Nisbet, Euan G.</p> <p>2015-04-01</p> <p>This research project has developed Unmanned Aerial System (UAS) technologies for intelligent targeting and collection of atmospheric gas samples to investigate the so-called Southern Tropical Methane Anomaly, for which it is necessary to sample air below and above the trade-wind inversion. Air parcels above and below the South Atlantic trade-wind inversion can have markedly different trajectories and, hence, encounter very different methane source regions. The system is intelligent in that high resolution temperature and humidity sensors linked to the ground station characterise the atmospheric profile on the upward flight to ensure the platform targets the appropriate sample elevations on the downward trajectory. This capability has been proven to an altitude of 2,700 metres above sea level (masl; ca. 700 mb) at Ascension Island in the South Atlantic and shown that rapid and repeat deployment and sample collection is achievable. Three novel eight motor multirotor UAS (or octocopter) platforms were developed at Bristol Robotics Laboratory (BRL) using primarily off -the-shelf components with a custom-built main fuselage. Gas sampling and atmospheric sensor systems were designed by the University of Birmingham. Our paper explores the capability of this UAS and provides some initial results from the air sampling campaign conducted in September 2014. Thirty-eight sampling flights were conducted over 12 days and the resulting 47 samples analysed for their CH4 concentration using the high-precision Picarro Cavity Ring Down Spectrometer already installed at Ascension Island. A subset of samples were sent for δ13CCH4 analysis in Egham, UK. The flights were conducted up to an altitude of 2,700m with 2,000m being typical. There were no major incidents although variable zero and high wind situations above the trade wind inversion (typically at 1,800m) both presented unique challenges and required careful flight planning strategies and in flight trajectory changes. As a result algorithms were developed to estimate in-flight wind speed and direction from aircraft attitude data. The results from the meteorological samples compared favourably with modelled data from the local Met Office station and we also show comparisons with wind speed and direction as well as insights gained from the CH4 analysis. Finally, system improvements and further measurements planned for our return to the island in mid-2015 are presented. Acknowledgement This work is supported by the Natural Environment Research Council Grant NE/K005979/1.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.ars.usda.gov/research/publications/publication/?seqNo115=291529','TEKTRAN'); return false;" href="http://www.ars.usda.gov/research/publications/publication/?seqNo115=291529"><span>Effect of wind speed on performance of a solar-pv array</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ars.usda.gov/research/publications/find-a-publication/">USDA-ARS?s Scientific Manuscript database</a></p> <p></p> <p></p> <p>Thousands of solar photovoltaic (PV) arrays have been installed over the past few years, but the effect of wind speed on the predicted performance of PV arrays is not usually considered by installers. An increase in wind speed will cool the PV array, and the electrical power of the PV modules will ...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..1910783S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..1910783S"><span>Estimation of the CO2 fluxes between the ocean and atmosphere for the hurricane wind forces using remote sensing data.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Sergeev, Daniil; Soustova, Irina; Balandina, Galina</p> <p>2017-04-01</p> <p>CO2 transfer between the hydrosphere and atmosphere in the boundary layer is an important part of the global cycle of the main greenhouse gas. Gas flux is determined by the difference of the partial pressures of the gas between the atmosphere and hydrosphere, near the border, as well as to a large extent processes involving turbulent boundary layer. The last is usually characterized by power dependence on the equivalent wind speed (10-m height). Hurricane-force winds lead to intensive wave breaking, with formation of spray in the air, and bubbles in the water. Such multiphase turbulent processes at the interface strongly intensify gas transfer. Currently, data characterizing the dependence of the gas exchange of the wind speed for the hurricane conditions demonstrate a strong variation. On the other hand there is an obvious problem of obtaining reliable data on the wind speed. Widely used reanalysis data typically underestimate wind speed, due to the low spatial and temporal resolution One of the most promising ways to measure near water wind speed is the use of the data of remote sensing. The present study used technique to obtain near water wind speed based on the processing of remote sensing of the ocean surface data obtained with C-band scattermeter of RADARSAT using geophysical model function, developed in a laboratory conditions for a wide range of wind speeds, including hurricanes (see [1]). This function binds wind speed with effective radar cross-section in cross-polarized mode. We used two different parameterizations of gas transfer velocity of the wind speed. Widely used in [2], and obtained by processing results of recent experiment in modeling winds up to hurricane on wind-wave facility [3]. The new method of calculating was tested by the example of hurricane Earl image (09.2010). Estimates showed 13-18 times excess CO2 fluxes rates in comparison with monitoring data NOAA (see. [4]). 1. Troitskaya Yu., Abramov V., Ermoshkin A., Zuikova E., Kazakov V., Sergeev D., Kandaurov A., Ermakova O. Laboratory study of cross-polarized radar return under gale-force wind conditions // Int. J. Remote Sens. 2016a. T. 37. № 9. C. 1981-1989. 2. Kanamitsu, M.,Ebisuzaki,W.,Woollen,J.,Yang,S.-K.,Hnilo,J.J.,Fiorino,M.,Potter, G.L.,.NCEP-DOEAMIP-IIreanalysis(R-2) // Bull. Am. Meteorol. Soc., 2002, 83, 1631-1643. 3. K. E. Krall and B. Jahne First laboratory study of air-sea gas exchange at hurricane wind speeds // Ocean Sci., 2014, 10, 257-265. 4. ERDDAP EXPERIMENTAL. AOML Monthly Global Carbon Fluxes dataset. - ИнTepнeT-pecypc. Peжin дocTyпa: http://cwcgom.aoml.noaa.gov/erddap/griddap/aomlcarbonfluxes.graph.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2011IJTIA.131.1276R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2011IJTIA.131.1276R"><span>Stability Augmentation of Wind Farm using Variable Speed Permanent Magnet Synchronous Generator</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Rosyadi, Marwan; Muyeen, S. M.; Takahashi, Rion; Tamura, Junji</p> <p></p> <p>This paper presents a new control strategy of variable speed permanent magnet wind generator for stability augmentation of wind farm including fixed speed wind turbine with Induction Generator (IG). A new control scheme is developed for two levels back-to-back converters of Permanent Magnet Synchronous Generator (PMSG), by which both active and reactive powers delivered to the grid can be controlled easily. To avoid the converter damage, the DC link protection controller is also proposed in order to protect the dc link circuit during fault condition. To evaluate the control capability of the proposed controllers, simulations are performed on two model systems composed of wind farms connected to an infinite bus. From transient and steady state analyses by using PSCAD/EMTDC, it is concluded that the proposed control scheme is very effective to improve the stability of wind farm for severe network disturbance and randomly fluctuating wind speed.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/pages/biblio/1353004-validating-precision-estimates-horizontal-wind-measurements-from-doppler-lidar','SCIGOV-DOEP'); return false;" href="https://www.osti.gov/pages/biblio/1353004-validating-precision-estimates-horizontal-wind-measurements-from-doppler-lidar"><span>Validating precision estimates in horizontal wind measurements from a Doppler lidar</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/pages">DOE PAGES</a></p> <p>Newsom, Rob K.; Brewer, W. Alan; Wilczak, James M.; ...</p> <p>2017-03-30</p> <p>Results from a recent field campaign are used to assess the accuracy of wind speed and direction precision estimates produced by a Doppler lidar wind retrieval algorithm. The algorithm, which is based on the traditional velocity-azimuth-display (VAD) technique, estimates the wind speed and direction measurement precision using standard error propagation techniques, assuming the input data (i.e., radial velocities) to be contaminated by random, zero-mean, errors. For this study, the lidar was configured to execute an 8-beam plan-position-indicator (PPI) scan once every 12 min during the 6-week deployment period. Several wind retrieval trials were conducted using different schemes for estimating themore » precision in the radial velocity measurements. Here, the resulting wind speed and direction precision estimates were compared to differences in wind speed and direction between the VAD algorithm and sonic anemometer measurements taken on a nearby 300 m tower.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016PhRvF...1f0507B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016PhRvF...1f0507B"><span>Efficient coordination of swarms of sensor-laden balloons for persistent, in situ, real-time measurement of hurricane development*</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Bewley, Thomas; Meneghello, Gianluca</p> <p>2016-10-01</p> <p>Accurate long-term forecasts of the path and intensity of severe hurricanes are imperative to protect property and save lives. Extensive real-time measurements within hurricanes, especially near their core, are essential for supplementing the limited relevant information accessible by satellites in order to improve such forecasts. Current operational methods for obtaining in situ information, such as dropsondes and repeated manned and unmanned aircraft flights over and within hurricanes, are both expensive and limited in duration. In the present work it is demonstrated by numerical experiments how a swarm of robust, inexpensive, buoyancy-controlled, sensor-laden balloons might be deployed and controlled in an energetically efficient, coordinated fashion, for days at a time, to continuously monitor relevant properties (pressure, humidity, temperature, and wind speed) of a hurricane as it develops. Rather than fighting its gale-force winds, the strong and predictable stratification of these winds is leveraged to efficiently disperse the balloons into a favorable time-evolving distribution. An iterative bootstrap approach is envisioned in which (a) sensor balloons are used to help improve the available computational estimate of the uncertain and underresolved flow field of the hurricane and (b) this (imprecise) estimate of the hurricane flow field is leveraged to improve the distribution of the sensor balloons, which then better facilitates (a), etc. The control approach envisioned in this ambitious effort is a combination of (centrally computed) model predictive control for coordination at the largest scales, which is the focus of the present paper, coupled with a feedback control strategy (decentrally computed, on the balloons themselves), for smaller-scale corrections. Our work indicates that, following such an approach, certain target orbits of interest within the hurricane can be continuously sampled by some balloons, while others make repeated sweeps between the eye and the spiral rain bands.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20020005125','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20020005125"><span>Position Sensor with Integrated Signal-Conditioning Electronics on a Printed Wiring Board</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Alhorn, Dean C. (Inventor); Howard, David E. (Inventor); Smith, Dennis A. (Inventor)</p> <p>2001-01-01</p> <p>A position sensor, such as a rotary position sensor, includes the signal-conditioning electronics in the housing. The signal-conditioning electronics are disposed on a printed wiring board, which is assembled with another printed wiring board including the sensor windings to provide a sub-assembly. A mu-metal shield is interposed between the printed wiring boards to prevent magnetic interference. The sub-assembly is disposed in the sensor housing adjacent to an inductor board which turns on a shaft. The inductor board emanates an internally or externally generated excitation signal that induces a signal in the sensor windings. The induced signal represents the rotary position of the inductor board relative to the sensor winding board.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20010108854','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20010108854"><span>Biogeochemical Response to Mesoscale Physical Forcing in the California Current System</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Niiler, Pearn P.; Letelier, Ricardo; Moisan, John R.; Marra, John A. (Technical Monitor)</p> <p>2001-01-01</p> <p>In the first part of the project, we investigated the local response of the coastal ocean ecosystems (changes in chlorophyll, concentration and chlorophyll, fluorescence quantum yield) to physical forcing by developing and deploying Autonomous Drifting Ocean Stations (ADOS) within several mesoscale features along the U.S. west coast. Also, we compared the temporal and spatial variability registered by sensors mounted in the drifters to that registered by the sensors mounted in the satellites in order to assess the scales of variability that are not resolved by the ocean color satellite. The second part of the project used the existing WOCE SVP Surface Lagrangian drifters to track individual water parcels through time. The individual drifter tracks were used to generate multivariate time series by interpolating/extracting the biological and physical data fields retrieved by remote sensors (ocean color, SST, wind speed and direction, wind stress curl, and sea level topography). The individual time series of the physical data (AVHRR, TOPEX, NCEP) were analyzed against the ocean color (SeaWiFS) time-series to determine the time scale of biological response to the physical forcing. The results from this part of the research is being used to compare the decorrelation scales of chlorophyll from a Lagrangian and Eulerian framework. The results from both parts of this research augmented the necessary time series data needed to investigate the interactions between the ocean mesoscale features, wind, and the biogeochemical processes. Using the historical Lagrangian data sets, we have completed a comparison of the decorrelation scales in both the Eulerian and Lagrangian reference frame for the SeaWiFS data set. We are continuing to investigate how these results might be used in objective mapping efforts.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018E%26ES..114a2016J','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018E%26ES..114a2016J"><span>Research and analysis on response characteristics of bracket-line coupling system under wind load</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Jiayu, Zhao; Qing, Sun</p> <p>2018-01-01</p> <p>In this paper, a three-dimensional finite element model of bracket-line coupling system is established based on ANSYS software. Using the wind velocity time series which is generated by MATLAB as a power input, by comparing and analyzing the influence of different wind speeds and different wind attack angles, it is found that when 0 degree wind acts on the structure, wires have a certain damping effect in the bracket-line coupling system and at the same wind speed, the 90 degree direction is the most unfavorable wind direction for the whole structure according to the three kinds of angle wind calculated at present. In the bracket-line coupling system, the bracket structure is more sensitive to the increase of wind speed while the conductors are more sensitive to the change of wind attack angle.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29892635','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29892635"><span>Datasets on hub-height wind speed comparisons for wind farms in California.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Wang, Meina; Ullrich, Paul; Millstein, Dev</p> <p>2018-08-01</p> <p>This article includes the description of data information related to the research article entitled "The future of wind energy in California: Future projections with the Variable-Resolution CESM"[1], with reference number RENE_RENE-D-17-03392. Datasets from the Variable-Resolution CESM, Det Norske Veritas Germanischer Lloyd Virtual Met, MERRA-2, CFSR, NARR, ISD surface observations, and upper air sounding observations were used for calculating and comparing hub-height wind speed at multiple major wind farms across California. Information on hub-height wind speed interpolation and power curves at each wind farm sites are also presented. All datasets, except Det Norske Veritas Germanischer Lloyd Virtual Met, are publicly available for future analysis.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20140003461','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20140003461"><span>Wind Noise Reduction in a Non-Porous Subsurface Windscreen</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Zuckerwar, Allan J.; Shams, Qamar A.; Knight, H. Keith</p> <p>2012-01-01</p> <p>Measurements of wind noise reduction were conducted on a box-shaped, subsurface windscreen made of closed cell polyurethane foam. The windscreen was installed in the ground with the lid flush with the ground surface. The wind was generated by means of a fan, situated on the ground, and the wind speed was measured at the center of the windscreen lid with an ultrasonic anemometer. The wind speed was controlled by moving the fan to selected distances from the windscreen. The wind noise was measured on a PCB Piezotronics 3†electret microphone. Wind noise spectra were measured with the microphone exposed directly to the wind (atop the windscreen lid) and with the microphone installed inside the windscreen. The difference between the two spectra comprises the wind noise reduction. At wind speeds of 3, 5, and 7 m/s, the wind noise reduction is typically 15 dB over the frequency range of 0.1-20 Hz.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2008JFST....3..359G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2008JFST....3..359G"><span>Field Tests of Wind Turbine Unit with Tandem Wind Rotors and Double Rotational Armatures</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Galal, Ahmed Mohamed; Kanemoto, Toshiaki</p> <p></p> <p>This paper discusses the field tests of the wind turbine unit, in which the front and the rear wind rotors drive the inner and the outer armatures of the synchronous generator. The wind rotors were designed conveniently by the traditional procedure for the single wind rotor, where the diameters of the front and the rear wind rotors are 2 m and 1.33 m. The tests were done on a pick-up type truck driven straightly at constant speed. The rotational torque of the unit is directly proportional to the induced electric current irrespective of the rotational speeds of the wind rotors, while the induced voltage is proportional to the relative rotational speed. The performance of the unit is significantly affected not only by the wind velocity, but also by the blade setting angles of both wind rotors and the applied load especially at lower wind velocity.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015JGRC..120..716Z','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015JGRC..120..716Z"><span>Typhoon air-sea drag coefficient in coastal regions</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Zhao, Zhong-Kuo; Liu, Chun-Xia; Li, Qi; Dai, Guang-Feng; Song, Qing-Tao; Lv, Wei-Hua</p> <p>2015-02-01</p> <p>The air-sea drag during typhoon landfalls is investigated for a 10 m wind speed as high as U10 ≈ 42 m s-1, based on multilevel wind measurements from a coastal tower located in the South China Sea. The drag coefficient (CD) plotted against the typhoon wind speed is similar to that of open ocean conditions; however, the CD curve shifts toward a regime of lower winds, and CD increases by a factor of approximately 0.5 relative to the open ocean. Our results indicate that the critical wind speed at which CD peaks is approximately 24 m s-1, which is 5-15 m s-1 lower than that from deep water. Shoaling effects are invoked to explain the findings. Based on our results, the proposed CD formulation, which depends on both water depth and wind speed, is applied to a typhoon forecast model. The forecasts of typhoon track and surface wind speed are improved. Therefore, a water-depth-dependence formulation of CD may be particularly pertinent for parameterizing air-sea momentum exchanges over shallow water.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li class="active"><span>23</span></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li><a href="#" onclick='return showDiv("page_25");'>25</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_23 --> <div id="page_24" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li class="active"><span>24</span></li> <li><a href="#" onclick='return showDiv("page_25");'>25</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="461"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..19.6898M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..19.6898M"><span>Near-surface wind speed statistical distribution: comparison between ECMWF System 4 and ERA-Interim</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Marcos, Raül; Gonzalez-Reviriego, Nube; Torralba, Verónica; Cortesi, Nicola; Young, Doo; Doblas-Reyes, Francisco J.</p> <p>2017-04-01</p> <p>In the framework of seasonal forecast verification, knowing whether the characteristics of the climatological wind speed distribution, simulated by the forecasting systems, are similar to the observed ones is essential to guide the subsequent process of bias adjustment. To bring some light about this topic, this work assesses the properties of the statistical distributions of 10m wind speed from both ERA-Interim reanalysis and seasonal forecasts of ECMWF system 4. The 10m wind speed distribution has been characterized in terms of the four main moments of the probability distribution (mean, standard deviation, skewness and kurtosis) together with the coefficient of variation and goodness of fit Shapiro-Wilks test, allowing the identification of regions with higher wind variability and non-Gaussian behaviour at monthly time-scales. Also, the comparison of the predicted and observed 10m wind speed distributions has been measured considering both inter-annual and intra-seasonal variability. Such a comparison is important in both climate research and climate services communities because it provides useful climate information for decision-making processes and wind industry applications.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015AMTD....810429W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015AMTD....810429W"><span>Lidar arc scan uncertainty reduction through scanning geometry optimization</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Wang, H.; Barthelmie, R. J.; Pryor, S. C.; Brown, G.</p> <p>2015-10-01</p> <p>Doppler lidars are frequently operated in a mode referred to as arc scans, wherein the lidar beam scans across a sector with a fixed elevation angle and the resulting measurements are used to derive an estimate of the n minute horizontal mean wind velocity (speed and direction). Previous studies have shown that the uncertainty in the measured wind speed originates from turbulent wind fluctuations and depends on the scan geometry (the arc span and the arc orientation). This paper is designed to provide guidance on optimal scan geometries for two key applications in the wind energy industry: wind turbine power performance analysis and annual energy production. We present a quantitative analysis of the retrieved wind speed uncertainty derived using a theoretical model with the assumption of isotropic and frozen turbulence, and observations from three sites that are onshore with flat terrain, onshore with complex terrain and offshore, respectively. The results from both the theoretical model and observations show that the uncertainty is scaled with the turbulence intensity such that the relative standard error on the 10 min mean wind speed is about 30 % of the turbulence intensity. The uncertainty in both retrieved wind speeds and derived wind energy production estimates can be reduced by aligning lidar beams with the dominant wind direction, increasing the arc span and lowering the number of beams per arc scan. Large arc spans should be used at sites with high turbulence intensity and/or large wind direction variation when arc scans are used for wind resource assessment.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFM.A23C0244A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFM.A23C0244A"><span>Impact of CYGNSS Data on Tropical Cyclone Analyses and Forecasts in a Regional OSSE Framework</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Annane, B.; McNoldy, B. D.; Leidner, S. M.; Atlas, R. M.; Hoffman, R.; Majumdar, S.</p> <p>2016-12-01</p> <p>The Cyclone Global Navigation Satellite System, or CYGNSS, is a planned constellation of micro-satellites that will utilize reflected Global Positioning System (GPS) satellite signals to retrieve ocean surface wind speed along the satellites' ground tracks. The orbits are designed so that there is excellent coverage of the tropics and subtropics, resulting in more thorough spatial sampling and improved sampling intervals over tropical cyclones than is possible with current spaceborne scatterometer and passive microwave sensor platforms. Furthermore, CYGNSS will be able to retrieve winds under all precipitating conditions, and over a large range of wind speeds.A regional Observing System Simulation Experiment (OSSE) framework was developed at NOAA/AOML and University of Miami that features a high-resolution regional nature run (27-km regional domain with 9/3/1 km storm-following nests; Nolan et al., 2013) embedded within a lower-resolution global nature run . Simulated observations are generated by sampling from the nature run and are provided to a data assimilation scheme, which produces analyses for a high-resolution regional forecast model, the 2014 operational Hurricane-WRF model. For data assimilation, NOAA's GSI and EnKF systems are used. Analyses are performed on the parent domain at 9-km resolution. The forecast model uses a single storm-following 3-km resolution nest. Synthetic CYGNSS wind speed data have also been created, and the impacts of the assimilation of these data on the forecasts of tropical cyclone track and intensity will be discussed.In addition to the choice of assimilation scheme, we have also examined a number of other factors/parameters that effect the impact of simulated CYGNSS observations, including frequency of data assimilation cycling (e.g., hourly, 3-hourly and 6-hourly) and the assimilation of scalar versus vector synthetic CYGNSS winds.We have found sensitivity to all of the factors tested and will summarize the methods used for testing as well as results. Generally, we have found that more frequent cycling is better than less; and flow-dependent background error covariances (e.g., EnKF) are better than static or climatological assumptions about the background error covariance.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/ADA956365','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/ADA956365"><span>Disposition of Orange Herbicide by Incineration. Revised Draft Environmental Statement</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>1974-04-01</p> <p>a ship , the "Vulcanls," has beer equipped to carry certain hazardous liquid chemical cargoes ...dispersed. For this analyses the dispersion zone is based on a one knot wind speed , "crosswind" of the ship’s course, 10 knot speed for the ship during... shipping company; the wind speed and effective mixing height are very con- servative. For such a low wind speed , it is anticipated that the</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70185130','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70185130"><span>Airflows and turbulent flux measurements in mountainous terrain: Part 1. Canopy and local effects</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Turnipseed, Andrew A.; Anderson, Dean E.; Blanken, Peter D.; Baugh, William M.; Monson, Russell K.</p> <p>2003-01-01</p> <p>We have studied the effects of local topography and canopy structure on turbulent flux measurements at a site located in mountainous terrain within a subalpine, coniferous forest. Our primary aim was to determine whether the complex terrain of the site affects the accuracy of eddy flux measurements from a practical perspective. We observed displacement heights, roughness lengths, spectral peaks, turbulent length scales, and profiles of turbulent intensities that were comparable in magnitude and pattern to those reported for forest canopies in simpler terrain. We conclude that in many of these statistical measures, the local canopy exerts considerably more influence than does topographical complexity. Lack of vertical flux divergence and modeling suggests that the flux footprints for the site are within the standards acceptable for the application of flux statistics. We investigated three different methods of coordinate rotation: double rotation (DR), triple rotation (TR), and planar-fit rotation (PF). Significant variability in rotation angles at low wind speeds was encountered with the commonly used DR and TR methods, as opposed to the PF method, causing some overestimation of the fluxes. However, these differences in fluxes were small when applied to large datasets involving sensible heat and CO2 fluxes. We observed evidence of frequent drainage flows near the ground during stable, stratified conditions at night. Concurrent with the appearance of these flows, we observed a positive bias in the mean vertical wind speed, presumably due to subtle topographic variations inducing a flow convergence below the measurement sensors. In the presence of such drainage flows, advection of scalars and non-zero bias in the mean vertical wind speed can complicate closure of the mass conservation budget at the site.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018ACP....18.4297L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018ACP....18.4297L"><span>Using eddy covariance to measure the dependence of air-sea CO2 exchange rate on friction velocity</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Landwehr, Sebastian; Miller, Scott D.; Smith, Murray J.; Bell, Thomas G.; Saltzman, Eric S.; Ward, Brian</p> <p>2018-03-01</p> <p>Parameterisation of the air-sea gas transfer velocity of CO2 and other trace gases under open-ocean conditions has been a focus of air-sea interaction research and is required for accurately determining ocean carbon uptake. Ships are the most widely used platform for air-sea flux measurements but the quality of the data can be compromised by airflow distortion and sensor cross-sensitivity effects. Recent improvements in the understanding of these effects have led to enhanced corrections to the shipboard eddy covariance (EC) measurements.Here, we present a revised analysis of eddy covariance measurements of air-sea CO2 and momentum fluxes from the Southern Ocean Surface Ocean Aerosol Production (SOAP) study. We show that it is possible to significantly reduce the scatter in the EC data and achieve consistency between measurements taken on station and with the ship underway. The gas transfer velocities from the EC measurements correlate better with the EC friction velocity (u*) than with mean wind speeds derived from shipboard measurements corrected with an airflow distortion model. For the observed range of wind speeds (u10 N = 3-23 m s-1), the transfer velocities can be parameterised with a linear fit to u*. The SOAP data are compared to previous gas transfer parameterisations using u10 N computed from the EC friction velocity with the drag coefficient from the Coupled Ocean-Atmosphere Response Experiment (COARE) model version 3.5. The SOAP results are consistent with previous gas transfer studies, but at high wind speeds they do not support the sharp increase in gas transfer associated with bubble-mediated transfer predicted by physically based models.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20040086752','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20040086752"><span>Improved Correction System for Vibration Sensitive Inertial Angle of Attack Measurement Devices</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Crawford, Bradley L.; Finley, Tom D.</p> <p>2000-01-01</p> <p>Inertial angle of attack (AoA) devices currently in use at NASA Langley Research Center (LaRC) are subject to inaccuracies due to centrifugal accelerations caused by model dynamics, also known as sting whip. Recent literature suggests that these errors can be as high as 0.25 deg. With the current AoA accuracy target at LaRC being 0.01 deg., there is a dire need for improvement. With other errors in the inertial system (temperature, rectification, resolution, etc.) having been reduced to acceptable levels, a system is currently being developed at LaRC to measure and correct for the sting-whip-induced errors. By using miniaturized piezoelectric accelerometers and magnetohydrodynamic rate sensors, not only can the total centrifugal acceleration be measured, but yaw and pitch dynamics in the tunnel can also be characterized. These corrections can be used to determine a tunnel's past performance and can also indicate where efforts need to be concentrated to reduce these dynamics. Included in this paper are data on individual sensors, laboratory testing techniques, package evaluation, and wind tunnel test results on a High Speed Research (HSR) model in the Langley 16-Foot Transonic Wind Tunnel.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015CEAS....7..347B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015CEAS....7..347B"><span>ARCADE-R2 experiment on board BEXUS 17 stratospheric balloon</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Barbetta, Marco; Boesso, Alessandro; Branz, Francesco; Carron, Andrea; Olivieri, Lorenzo; Prendin, Jacopo; Rodeghiero, Gabriele; Sansone, Francesco; Savioli, Livia; Spinello, Fabio; Francesconi, Alessandro</p> <p>2015-09-01</p> <p>This paper provides an overview of the ARCADE-R2 experiment, a technology demonstrator that aimed to prove the feasibility of small-scale satellite and/or aircraft systems with automatic (a) attitude determination, (b) control and (c) docking capabilities. The experiment embodies a simplified scenario in which an unmanned vehicle mock-up performs rendezvous and docking operations with a fixed complementary unit. The experiment is composed by a supporting structure, which holds a small vehicle with one translational and one rotational degree of freedom, and its fixed target. The dual system features three main custom subsystems: a relative infrared navigation sensor, an attitude control system based on a reaction wheel and a small-scale docking mechanism. The experiment bus is equipped with pressure and temperature sensors, and wind probes to monitor the external environmental conditions. The experiment flew on board the BEXUS 17 stratospheric balloon on October 10, 2013, where several navigation-control-docking sequences were executed and data on the external pressure, temperature, wind speed and direction were collected, characterizing the atmospheric loads applied to the vehicle. This paper describes the critical components of ARCADE-R2 as well as the main results obtained from the balloon flight.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFM.A43I0383M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFM.A43I0383M"><span>Estimating Tropical Cyclone Surface Wind Field Parameters with the CYGNSS Constellation</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Morris, M.; Ruf, C. S.</p> <p>2016-12-01</p> <p>A variety of parameters can be used to describe the wind field of a tropical cyclone (TC). Of particular interest to the TC forecasting and research community are the maximum sustained wind speed (VMAX), radius of maximum wind (RMW), 34-, 50-, and 64-kt wind radii, and integrated kinetic energy (IKE). The RMW is the distance separating the storm center and the VMAX position. IKE integrates the square of surface wind speed over the entire storm. These wind field parameters can be estimated from observations made by the Cyclone Global Navigation Satellite System (CYGNSS) constellation. The CYGNSS constellation consists of eight small satellites in a 35-degree inclination circular orbit. These satellites will be operating in standard science mode by the 2017 Atlantic TC season. CYGNSS will provide estimates of ocean surface wind speed under all precipitating conditions with high temporal and spatial sampling in the tropics. TC wind field data products can be derived from the level-2 CYGNSS wind speed product. CYGNSS-based TC wind field science data products are developed and tested in this paper. Performance of these products is validated using a mission simulator prelaunch.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018OptEL..14..216X','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018OptEL..14..216X"><span>Performance analysis of air-water quantum key distribution with an irregular sea surface</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Xu, Hua-bin; Zhou, Yuan-yuan; Zhou, Xue-jun; Wang, Lian</p> <p>2018-05-01</p> <p>In the air-water quantum key distribution (QKD), the irregular sea surface has some influence on the photon polarization state. The wind is considered as the main factor causing the irregularity, so the model of irregular sea surface based on the wind speed is adopted. The relationships of the quantum bit error rate with the wind speed and the initial incident angle are simulated. Therefore, the maximum secure transmission depth of QKD is confirmed, and the limitation of the wind speed and the initial incident angle is determined. The simulation results show that when the wind speed and the initial incident angle increase, the performance of QKD will fall down. Under the intercept-resend attack condition, the maximum safe transmission depth of QKD is up to 105 m. To realize safe communications in the safe diving depth of submarines (100 m), the initial incident angle is requested to be not exceeding 26°, and with the initial incident angle increased, the limitation of wind speed is decreased.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1984IEEEP..72.1097V','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1984IEEEP..72.1097V"><span>A solid-state controller for a wind-driven slip-ring induction generator</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Velayudhan, C.; Bundell, J. H.; Leary, B. G.</p> <p>1984-08-01</p> <p>The three-phase induction generator appears to become the preferred choice for wind-powered systems operated in parallel with existing power systems. A problem arises in connection with the useful operating speed range of the squirrel-cage machine, which is relatively narrow, as, for instance, in the range from 1 to 1.15. Efficient extraction of energy from a wind turbine, on the other hand, requires a speed range, perhaps as large as 1 to 3. One approach for 'matching' the generator to the turbine for the extraction of maximum power at any usable wind speed involves the use of a slip-ring induction machine. The power demand of the slip-ring machine can be matched to the available output from the wind turbine by modifying the speed-torque characteristics of the generator. A description is presented of a simple electronic rotor resistance controller which can optimize the power taken from a wind turbine over the full speed range.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016ERL....11l4012M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016ERL....11l4012M"><span>Will surface winds weaken in response to global warming?</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ma, Jian; Foltz, Gregory R.; Soden, Brian J.; Huang, Gang; He, Jie; Dong, Changming</p> <p>2016-12-01</p> <p>The surface Walker and tropical tropospheric circulations have been inferred to slow down from historical observations and model projections, yet analysis of large-scale surface wind predictions is lacking. Satellite measurements of surface wind speed indicate strengthening trends averaged over the global and tropical oceans that are supported by precipitation and evaporation changes. Here we use corrected anemometer-based observations to show that the surface wind speed has not decreased in the averaged tropical oceans, despite its reduction in the region of the Walker circulation. Historical simulations and future projections for climate change also suggest a near-zero wind speed trend averaged in space, regardless of the Walker cell change. In the tropics, the sea surface temperature pattern effect acts against the large-scale circulation slow-down. For higher latitudes, the surface winds shift poleward along with the eddy-driven mid-latitude westerlies, resulting in a very small contribution to the global change in surface wind speed. Despite its importance for surface wind speed change, the influence of the SST pattern change on global-mean rainfall is insignificant since it cannot substantially alter the global energy balance. As a result, the precipitation response to global warming remains ‘muted’ relative to atmospheric moisture increase. Our results therefore show consistency between projections and observations of surface winds and precipitation.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012EGUGA..14..318P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012EGUGA..14..318P"><span>First and second order semi-Markov chains for wind speed modeling</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Prattico, F.; Petroni, F.; D'Amico, G.</p> <p>2012-04-01</p> <p>The increasing interest in renewable energy leads scientific research to find a better way to recover most of the available energy. Particularly, the maximum energy recoverable from wind is equal to 59.3% of that available (Betz law) at a specific pitch angle and when the ratio between the wind speed in output and in input is equal to 1/3. The pitch angle is the angle formed between the airfoil of the blade of the wind turbine and the wind direction. Old turbine and a lot of that actually marketed, in fact, have always the same invariant geometry of the airfoil. This causes that wind turbines will work with an efficiency that is lower than 59.3%. New generation wind turbines, instead, have a system to variate the pitch angle by rotating the blades. This system able the wind turbines to recover, at different wind speed, always the maximum energy, working in Betz limit at different speed ratios. A powerful system control of the pitch angle allows the wind turbine to recover better the energy in transient regime. A good stochastic model for wind speed is then needed to help both the optimization of turbine design and to assist the system control to predict the value of the wind speed to positioning the blades quickly and correctly. The possibility to have synthetic data of wind speed is a powerful instrument to assist designer to verify the structures of the wind turbines or to estimate the energy recoverable from a specific site. To generate synthetic data, Markov chains of first or higher order are often used [1,2,3]. In particular in [3] is presented a comparison between a first-order Markov chain and a second-order Markov chain. A similar work, but only for the first-order Markov chain, is conduced by [2], presenting the probability transition matrix and comparing the energy spectral density and autocorrelation of real and synthetic wind speed data. A tentative to modeling and to join speed and direction of wind is presented in [1], by using two models, first-order Markov chain with different number of states, and Weibull distribution. All this model use Markov chains to generate synthetic wind speed time series but the search for a better model is still open. Approaching this issue, we applied new models which are generalization of Markov models. More precisely we applied semi-Markov models to generate synthetic wind speed time series. Semi-Markov processes (SMP) are a wide class of stochastic processes which generalize at the same time both Markov chains and renewal processes. Their main advantage is that of using whatever type of waiting time distribution for modeling the time to have a transition from one state to another one. This major flexibility has a price to pay: availability of data to estimate the parameters of the model which are more numerous. Data availability is not an issue in wind speed studies, therefore, semi-Markov models can be used in a statistical efficient way. In this work we present three different semi-Markov chain models: the first one is a first-order SMP where the transition probabilities from two speed states (at time Tn and Tn-1) depend on the initial state (the state at Tn-1), final state (the state at Tn) and on the waiting time (given by t=Tn-Tn-1), the second model is a second order SMP where we consider the transition probabilities as depending also on the state the wind speed was before the initial state (which is the state at Tn-2) and the last one is still a second order SMP where the transition probabilities depends on the three states at Tn-2,Tn-1 and Tn and on the waiting times t_1=Tn-1-Tn-2 and t_2=Tn-Tn-1. The three models are used to generate synthetic time series for wind speed by means of Monte Carlo simulations and the time lagged autocorrelation is used to compare statistical properties of the proposed models with those of real data and also with a time series generated though a simple Markov chain. [1] F. Youcef Ettoumi, H. Sauvageot, A.-E.-H. Adane, Statistical bivariate modeling of wind using first-order Markov chain and Weibull distribution, Renewable Energy, 28/2003 1787-1802. [2] A. Shamshad, M.A. Bawadi, W.M.W. Wan Hussin, T.A. Majid, S.A.M. Sanusi, First and second order Markov chain models for synthetic generation of wind speed time series, Energy 30/2005 693-708. [3] H. Nfaoui, H. Essiarab, A.A.M. Sayigh, A stochastic Markov chain model for simulating wind speed time series at Tangiers, Morocco, Renewable Energy 29/2004, 1407-1418.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018MNRAS.tmp.1010H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018MNRAS.tmp.1010H"><span>Short, large amplitude speed enhancements in the near-Sun fast solar wind</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Horbury, T. S.; Matteini, L.; Stansby, D.</p> <p>2018-04-01</p> <p>We report the presence of intermittent, short discrete enhancements in plasma speed in the near-Sun high speed solar wind. Lasting tens of seconds to minutes in spacecraft measurements at 0.3 AU, speeds inside these enhancements can reach 1000 km/s, corresponding to a kinetic energy up to twice that of the bulk high speed solar wind. These events, which occur around 5% of the time, are Alfvénic in nature with large magnetic field deflections and are the same temperature as the surrounding plasma, in contrast to the bulk fast wind which has a well-established positive speed-temperature correlation. The origin of these speed enhancements is unclear but they may be signatures of discrete jets associated with transient events in the chromosphere or corona. Such large short velocity changes represent a measurement and analysis challenge for the upcoming Parker Solar Probe and Solar Orbiter missions.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20160007540','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20160007540"><span>Unsteady Heat-Flux Measurements of Second-Mode Instability Waves in a Hypersonic Boundary Layer</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Kergerise, Michael A.; Rufer, Shann J.</p> <p>2016-01-01</p> <p>In this paper we report on the application of the atomic layer thermopile (ALTP) heat- flux sensor to the measurement of laminar-to-turbulent transition in a hypersonic flat plate boundary layer. The centerline of the flat-plate model was instrumented with a streamwise array of ALTP sensors and the flat-plate model was exposed to a Mach 6 freestream over a range of unit Reynolds numbers. Here, we observed an unstable band of frequencies that are associated with second-mode instability waves in the laminar boundary layer that forms on the flat-plate surface. The measured frequencies, group velocities, phase speeds, and wavelengths of these instability waves are in agreement with data previously reported in the literature. Heat flux time series, and the Morlet-wavelet transforms of them, revealed the wave-packet nature of the second-mode instability waves. In addition, a laser-based radiative heating system was developed to measure the frequency response functions (FRF) of the ALTP sensors used in the wind tunnel test. These measurements were used to assess the stability of the sensor FRFs over time and to correct spectral estimates for any attenuation caused by the finite sensor bandwidth.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20090016345','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20090016345"><span>Ground/Flight Correlation of Aerodynamic Loads with Structural Response</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Mangalam, Arun S.; Davis, Mark C.</p> <p>2009-01-01</p> <p>United States Air Force Research Laboratory (AFRL) ground tests at the NASA Transonic Dynamics Tunnel (TDT) and NASA flight tests provide a basis and methodology for in-flight characterization of the aeroelastic performance through the monitoring of the fluid-structure interaction using surface flow sensors. NASA NF-15B flight tests provided a unique opportunity to test the correlation of aerodynamic loads with sectional flow attachment/detachment points, also known as flow bifurcation points (FBPs), as observed in previous wind tunnel tests. The NF-15B tail was instrumented with hot-film sensors and strain gages for measuring root-bending strains. These data were gathered via selected sideslip maneuvers performed at level flight and subsonic speeds. The aerodynamic loads generated by the sideslip maneuver resulted in root-bending strains and hot-film sensor signals near the stagnation region that were highly correlated. For the TDT tests, a flexible wing section developed under the AFRL SensorCraft program was instrumented with strain gages, accelerometers, and hot-film sensors at multiple span stations. The TDT tests provided data showing a gradual phase change between the FBP and the structural mode occurred during a resonant condition as the wings structural modes were excited by the tunnel-generated gusts.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016ExFl...57..130K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016ExFl...57..130K"><span>Unsteady heat-flux measurements of second-mode instability waves in a hypersonic flat-plate boundary layer</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kegerise, Michael A.; Rufer, Shann J.</p> <p>2016-08-01</p> <p>In this paper, we report on the application of the atomic layer thermopile (ALTP) heat-flux sensor to the measurement of laminar-to-turbulent transition in a hypersonic flat-plate boundary layer. The centerline of the flat-plate model was instrumented with a streamwise array of ALTP sensors, and the flat-plate model was exposed to a Mach 6 freestream over a range of unit Reynolds numbers. Here, we observed an unstable band of frequencies that are associated with second-mode instability waves in the laminar boundary layer that forms on the flat-plate surface. The measured frequencies, group velocities, phase speeds, and wavelengths of these instability waves are consistent with data previously reported in the literature. Heat flux time series, and the Morlet wavelet transforms of them, revealed the wave-packet nature of the second-mode instability waves. In addition, a laser-based radiative heating system was used to measure the frequency response functions (FRF) of the ALTP sensors used in the wind tunnel test. These measurements were used to assess the stability of the sensor FRFs over time and to correct spectral estimates for any attenuation caused by the finite sensor bandwidth.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016JPhCS.753g2031S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016JPhCS.753g2031S"><span>Optimal sensor placement for modal testing on wind turbines</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Schulze, Andreas; Zierath, János; Rosenow, Sven-Erik; Bockhahn, Reik; Rachholz, Roman; Woernle, Christoph</p> <p>2016-09-01</p> <p>The mechanical design of wind turbines requires a profound understanding of the dynamic behaviour. Even though highly detailed simulation models are already in use to support wind turbine design, modal testing on a real prototype is irreplaceable to identify site-specific conditions such as the stiffness of the tower foundation. Correct identification of the mode shapes of a complex mechanical structure much depends on the placement of the sensors. For operational modal analysis of a 3 MW wind turbine with a 120 m rotor on a 100 m tower developed by W2E Wind to Energy, algorithms for optimal placement of acceleration sensors are applied. The mode shapes used for the optimisation are calculated by means of a detailed flexible multibody model of the wind turbine. Among the three algorithms in this study, the genetic algorithm with weighted off-diagonal criterion yields the sensor configuration with the highest quality. The ongoing measurements on the prototype will be the basis for the development of optimised wind turbine designs.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19780041990&hterms=joint+inversion&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D10%26Ntt%3Djoint%2Binversion','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19780041990&hterms=joint+inversion&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D10%26Ntt%3Djoint%2Binversion"><span>An empirical model for ocean radar backscatter and its application in inversion routine to eliminate wind speed and direction effects</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Dome, G. J.; Fung, A. K.; Moore, R. K.</p> <p>1977-01-01</p> <p>Several regression models were tested to explain the wind direction dependence of the 1975 JONSWAP (Joint North Sea Wave Project) scatterometer data. The models consider the radar backscatter as a harmonic function of wind direction. The constant term accounts for the major effect of wind speed and the sinusoidal terms for the effects of direction. The fundamental accounts for the difference in upwind and downwind returns, while the second harmonic explains the upwind-crosswind difference. It is shown that a second harmonic model appears to adequately explain the angular variation. A simple inversion technique, which uses two orthogonal scattering measurements, is also described which eliminates the effect of wind speed and direction. Vertical polarization was shown to be more effective in determining both wind speed and direction than horizontal polarization.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19950032354&hterms=solar+intensity+measurement&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D70%26Ntt%3Dsolar%2Bintensity%2Bmeasurement','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19950032354&hterms=solar+intensity+measurement&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D70%26Ntt%3Dsolar%2Bintensity%2Bmeasurement"><span>Latitudinal variation of speed and mass flux in the acceleration region of the solar wind inferred from spectral broadening measurements</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Woo, Richard; Goldstein, Richard M.</p> <p>1994-01-01</p> <p>Spectral broadening measurements conducted at S-band (13-cm wavelength) during solar minimum conditions in the heliocentric distance range of 3-8 R(sub O) by Mariner 4, Pioneer 10, Mariner 10, Helios 1, Helios 2, and Viking have been combined to reveal a factor of 2.6 reduction in bandwidth from equator to pole. Since spectral broadening bandwidth depends on electron density fluctuation and solar wind speed, and latitudinal variation of the former is available from coherence bandwidth measurements, the remote sensing spectral broadening measurements provide the first determination of the latitudinal variation of solar wind speed in the acceleration region. When combined with electron density measurements deduced from white-light coronagraphs, this result also leads to the first determination of the latitudinal variation of mass flux in the acceleration region. From equator to pole, solar wind speed increases by a factor of 2.2, while mass flux decreases by a factor of 2.3. These results are consistent with measurements of solar wind speed by multi-station intensity scintillation measurements, as well as measurements of mass flux inferred from Lyman alpha observations, both of which pertain to the solar wind beyond 0.5 AU. The spectral broadening observations, therefore, strengthen earlier conclusions about the latitudinal variation of solar wind speed and mass flux, and reinforce current solar coronal models and their implications for solar wind acceleration and solar wind modeling.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li class="active"><span>24</span></li> <li><a href="#" onclick='return showDiv("page_25");'>25</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_24 --> <div id="page_25" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li class="active"><span>25</span></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="481"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2008PhDT........69F','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2008PhDT........69F"><span>An integrated modeling method for wind turbines</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Fadaeinedjad, Roohollah</p> <p></p> <p>To study the interaction of the electrical, mechanical, and aerodynamic aspects of a wind turbine, a detailed model that considers all these aspects must be used. A drawback of many studies in the area of wind turbine simulation is that either a very simple mechanical model is used with a detailed electrical model, or vice versa. Hence the interactions between electrical and mechanical aspects of wind turbine operation are not accurately taken into account. In this research, it will be shown that a combination of different simulation packages, namely TurbSim, FAST, and Simulink can be used to model the aerodynamic, mechanical, and electrical aspects of a wind turbine in detail. In this thesis, after a review of some wind turbine concepts and software tools, a simulation structure is proposed for studying wind turbines that integrates the mechanical and electrical components of a wind energy conversion device. Based on the simulation structure, a comprehensive model for a three-bladed variable speed wind turbine with doubly-fed induction generator is developed. Using the model, the impact of a voltage sag on the wind turbine tower vibration is investigated under various operating conditions such as power system short circuit level, mechanical parameters, and wind turbine operating conditions. It is shown how an electrical disturbance can cause more sustainable tower vibrations under high speed and turbulent wind conditions, which may disrupt the operation of pitch control system. A similar simulation structure is used to model a two-bladed fixed speed wind turbine with an induction generator. An extension of the concept is introduced by adding a diesel generator system. The model is utilized to study the impact of the aeroelastic aspects of wind turbine (i.e. tower shadow, wind shears, yaw error, turbulence, and mechanical vibrations) on the power quality of a stand-alone wind-diesel system. Furthermore, an IEEE standard flickermeter model is implemented in a Simulink environment to study the flicker contribution of the wind turbine in the wind-diesel system. By using a new wind power plant representation method, a large wind farm (consisting of 96 fixed speed wind turbines) is modelled to study the power quality of wind power system. The flicker contribution of wind farm is also studied with different wind turbine numbers, using the flickermeter model. Keywords. Simulink, FAST, TurbSim, AreoDyn, wind energy, doubly-fed induction generator, variable speed wind turbine, voltage sag, tower vibration, power quality, flicker, fixed speed wind turbine, wind shear, tower shadow, and yaw error.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017PhDT........96T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017PhDT........96T"><span>Practical Design Guidelines for Fugitive Gas Detection from Unmanned Aerial Vehicles</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Tandy, William D., Jr.</p> <p></p> <p>Simulation, design, and analysis are combined in this effort to realize a UAV-scale instrument for fugitive gas detection. The contributing material to the industry begins by extending and correlating an integrated Gaussian plume model useful for instrument predictions and trade studies, regardless of the instrument type or molecule of interest. A variety of generally applicable plots are produced from this foundation, including receiver operator curves for leak rate detectability vs. wind speed, beam diameter vs. leak rate detectability, and plots for required scan densities. The atmospheric and instrument parameter trade studies are followed by hardware-specific analyses applicable to differential absorption lidar (DIAL) instruments. A synopsis of the lessons learned from hands-on experiences in the lab further define the design space for DIAL sensors. The dissertation culminates in the detailed design and analysis of two DIAL instrument concepts. The conclusion is that a DIAL instrument capable of reliably detecting a 50 SCFH plume in winds speeds up to 7 mph is on the threshold of being achievable on a quadcopter platform. Of special note is that the effort was funded by a Pipeline and Hazardous Materials Safety Administration grant and performed in collaboration with Ball Aerospace & Technologies.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19780029773&hterms=Ocean+science&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D40%26Ntt%3DOcean%2Bscience','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19780029773&hterms=Ocean+science&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D40%26Ntt%3DOcean%2Bscience"><span>Seasat-A and the commercial ocean community</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Montgomery, D. R.; Wolff, P.</p> <p>1977-01-01</p> <p>The Seasat-A program has been initiated as a 'proof-of-concept' mission to evaluate the effectiveness of remotely sensing oceanology and related meteorological phenomena from a satellite platform in space utilizing sensors developed on previous space and aircraft test programs. The sensors include three active microwave sensors; a radar altimeter, a windfield scatterometer, and a synthetic aperture radar. A passive scanning multifrequency microwave radiometer, visual and infrared radiometer are also included. All weather, day-night measurements of sea surface temperature, surface wind speed/direction and sea state and directional wave spectra will be made. Two key programs are planned for data utilization with users during the mission. Foremost is a program with the commercial ocean community to test the utility of Seasat-A data and to begin the transfer of ocean remote sensing technology to the civil sector. A second program is a solicitation of investigations, led by NOAA, to involve the ocean science community in a series of scientific investigations.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017TCry...11..267D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017TCry...11..267D"><span>Atmospheric forcing of sea ice anomalies in the Ross Sea polynya region</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Dale, Ethan R.; McDonald, Adrian J.; Coggins, Jack H. J.; Rack, Wolfgang</p> <p>2017-01-01</p> <p>We investigate the impacts of strong wind events on the sea ice concentration within the Ross Sea polynya (RSP), which may have consequences on sea ice formation. Bootstrap sea ice concentration (SIC) measurements derived from satellite SSM/I brightness temperatures are correlated with surface winds and temperatures from Ross Ice Shelf automatic weather stations (AWSs) and weather models (ERA-Interim). Daily data in the austral winter period were used to classify characteristic weather regimes based on the percentiles of wind speed. For each regime a composite of a SIC anomaly was formed for the entire Ross Sea region and we found that persistent weak winds near the edge of the Ross Ice Shelf are generally associated with positive SIC anomalies in the Ross Sea polynya and vice versa. By analyzing sea ice motion vectors derived from the SSM/I brightness temperatures we find significant sea ice motion anomalies throughout the Ross Sea during strong wind events, which persist for several days after a strong wind event has ended. Strong, negative correlations are found between SIC and AWS wind speed within the RSP indicating that strong winds cause significant advection of sea ice in the region. We were able to partially recreate these correlations using colocated, modeled ERA-Interim wind speeds. However, large AWS and model differences are observed in the vicinity of Ross Island, where ERA-Interim underestimates wind speeds by a factor of 1.7 resulting in a significant misrepresentation of RSP processes in this area based on model data. Thus, the cross-correlation functions produced by compositing based on ERA-Interim wind speeds differed significantly from those produced with AWS wind speeds. In general the rapid decrease in SIC during a strong wind event is followed by a more gradual recovery in SIC. The SIC recovery continues over a time period greater than the average persistence of strong wind events and sea ice motion anomalies. This suggests that sea ice recovery occurs through thermodynamic rather than dynamic processes.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20000094364','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20000094364"><span>Atmospheric Boundary Layer Wind Data During the Period January 1, 1998 Through January 31, 1999 at the Dallas-Fort Worth Airport. Volume 1; Quality Assessment</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Zak, J. Allen; Rodgers, William G., Jr.</p> <p>2000-01-01</p> <p>The quality of the Aircraft Vortex Spacing System (AVOSS) is critically dependent on representative wind profiles in the atmospheric boundary layer. These winds observed from a number of sensor systems around the Dallas-Fort Worth airport were combined into single vertical wind profiles by an algorithm developed and implemented by MIT Lincoln Laboratory. This process, called the AVOSS Winds Analysis System (AWAS), is used by AVOSS for wake corridor predictions. During times when AWAS solutions were available, the quality of the resultant wind profiles and variance was judged from a series of plots combining all sensor observations and AWAS profiles during the period 1200 to 0400 UTC daily. First, input data was evaluated for continuity and consistency from criteria established. Next, the degree of agreement among all wind sensor systems was noted and cases of disagreement identified. Finally, the resultant AWAS solution was compared to the quality-assessed input data. When profiles differed by a specified amount from valid sensor consensus winds, times and altitudes were flagged. Volume one documents the process and quality of input sensor data. Volume two documents the data processing/sorting process and provides the resultant flagged files.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19820028333&hterms=1087&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D50%26Ntt%3D%2526%25231087','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19820028333&hterms=1087&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D50%26Ntt%3D%2526%25231087"><span>Correlations between solar wind parameters and auroral kilometric radiation intensity</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Gallagher, D. L.; Dangelo, N.</p> <p>1981-01-01</p> <p>The relationship between solar wind properties and the influx of energy into the nightside auroral region as indicated by the intensity of auroral kilometric radiation is investigated. Smoothed Hawkeye satellite observations of auroral radiation at 178, 100 and 56.2 kHz for days 160 through 365 of 1974 are compared with solar wind data from the composite Solar Wind Plasma Data Set, most of which was supplied by the IMP-8 spacecraft. Correlations are made between smoothed daily averages of solar wind ion density, bulk flow speed, total IMF strength, electric field, solar wind speed in the southward direction, solar wind speed multiplied by total IMF strength, the substorm parameter epsilon and the Kp index. The greatest correlation is found between solar wind bulk flow speed and auroral radiation intensity, with a linear correlation coefficient of 0.78 for the 203 daily averages examined. A possible mechanism for the relationship may be related to the propagation into the nightside magnetosphere of low-frequency long-wavelength electrostatic waves produced in the magnetosheath by the solar wind.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://images.nasa.gov/#/details-PIA21939.html','SCIGOVIMAGE-NASA'); return false;" href="https://images.nasa.gov/#/details-PIA21939.html"><span>Rapid Intensification of Hurricane Irma Seen in New SMAP Wind Images</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://images.nasa.gov/">NASA Image and Video Library</a></p> <p></p> <p>2017-09-05</p> <p>This pair of images shows ocean surface wind speeds for Hurricane Irma as observed at 5:26 a.m. EDT on Sept. 4, 2017 (top) and 24.5 hours later at 6:02 a.m. EDT on September 5th (bottom) by the radiometer instrument on NASA's Soil Moisture Active Passive (SMAP) satellite. Color indicates wind speed, with red being highest and blue lowest. Irma intensified from a Category 2 hurricane on Sept. 4 with observed wind speed of 106 miles per hour (47.5 meters per second) to a Category 5 hurricane on Sept. 5 with a maximum observed wind speed of 160 miles per hour (71.4 meters per second). https://photojournal.jpl.nasa.gov/catalog/PIA21939</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2010AGUFM.S11A1930M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2010AGUFM.S11A1930M"><span>Imaging the atmosphere using volcanic infrasound recorded on a dense local sensor network</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Marcillo, O. E.; Johnson, J. B.; Johnson, R.</p> <p>2010-12-01</p> <p>We deployed a 47-node infrasound sensor network around Kilauea’s Halemaumau Vent to image the atmospheric conditions of the near-surface. This active vent is a persistent radiator of energetic infrasound enabling us to probe atmospheric winds and temperatures. This research builds upon a previous experiment that recorded infrasound on a three-node network, to determine relative phase delay and invert for atmospheric wind. The technique developed for this previous analysis assumed the intrinsic sound speed and was able to track the evolution of the average wind field in a large area (around 10 km2) and was largely insensitive to local meteorological effects, caused by topography and vegetation. The results of this previous experiment showed the potential of this technique for atmospheric studies and called for a following experiment with a denser sensor network over a larger area. During the summer 2010, we returned to Kilauea and deployed a 47-sensor network in three different configurations around Kilauea summit and down the volcano’s flanks. Persistent infrasonic tremor was ‘loud’ with excess pressures up to 10 Pa (when scaled to 1 km) and periods of high acoustic emissions that lasted from hours to days. The instrumentation for this experiment was composed of single-channel RefTek RT125A Texan digitizers and InfraNMT infrasound sensors. The Texan digitizers provide high-resolution 24-bit analog to digital conversion and can operate continuously for approximately five days with two D-cell batteries. The InfraNMT sensor is based on a piezo-electric transducer and was developed at the Infrasound Laboratory at New Mexico Tech. This sensor features low power (< 3 mA at 9 V) and flat response between 0.02 to 50 Hz. Three different network topologies were tested during this two-week experiment. For the first and second topologies, the sensors were deployed along established roads on two almost perpendicular sensor lines centered at the Halema’uma’u crater. The furthest sensors were located at ~24 km and ~10 km from the vent respectively. Numerical analysis indicates that these two configurations will be able to probe the atmospheric conditions up to 2 km above the ground. The third topology featured most of the sensors on the summit crater at similar radial distances (2-4 km) and different azimuths. The data collected with the third topology is expected to provide detailed information of the very-local infrasonic field. Each configuration was on the ground and operational for around 84 hours. This full dataset will provide an opportunity to investigate source phenomenology and/or propagation effects of the infrasonic field. Tomographic studies of the atmosphere are expected to provide meteorological data that will be of value for ash and gas propagation models.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1998JGR...10325101E','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1998JGR...10325101E"><span>Estimation of wind stress using dual-frequency TOPEX data</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Elfouhaily, Tanos; Vandemark, Douglas; Gourrion, Jéro‸me; Chapron, Bertrand</p> <p>1998-10-01</p> <p>The TOPEX/POSEIDON satellite carries the first dual-frequency radar altimeter. Monofrequency (Ku-band) algorithms are presently used to retrieve surface wind speed from the altimeter's radar cross-section measurement (σ0Ku). These algorithms work reasonably well, but it is also known that altimeter wind estimates can be contaminated by residual effects, such as sea state, embedded in the σ0Ku measurement. Investigating the potential benefit of using two frequencies for wind retrieval, it is shown that a simple evaluation of TOPEX data yields previously unavailable information, particularly for high and low wind speeds. As the wind speed increases, the dual-frequency data provides a measurement more directly linked to the short-scale surface roughness, which in turn is associated with the local surface wind stress. Using a global TOPEX σ0° data set and TOPEX's significant wave height (Hs) estimate as a surrogate for the sea state's degree of development, it is also shown that differences between the two TOPEX σ0 measurements strongly evidence nonlocal sea state signature. A composite scattering theory is used to show how the dual-frequency data can provide an improved friction velocity model, especially for winds above 7 m/s. A wind speed conversion is included using a sea state dependent drag coefficient fed with TOPEX Hs data. Two colocated TOPEX-buoy data sets (from the National Data Buoy Center (NDBC) and the Structure des Echanges Mer-Atmosphre, Proprietes des Heterogeneites Oceaniques: Recherche Expérimentale (SEMAPHORE) campaign) are employed to test the new wind speed algorithm. A measurable improvement in wind speed estimation is obtained when compared to the monofrequency Witter and Chelton [1991] model.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=1331759','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=1331759"><span>The influence of wind resistance in running and walking and the mechanical efficiency of work against horizontal or vertical forces</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Pugh, L. G. C. E.</p> <p>1971-01-01</p> <p>1. O2 intakes were determined on subjects running and walking at various constant speeds, (a) against wind of up to 18·5 m/sec (37 knots) in velocity, and (b) on gradients ranging from 2 to 8%. 2. In running and walking against wind, O2 intakes increased as the square of wind velocity. 3. In running on gradients the relation of O2 intake and lifting work was linear and independent of speed. In walking on gradients the relation was linear at work rates above 300 kg m/min, but curvilinear at lower work rates. 4. In a 65 kg athlete running at 4·45 m/sec (marathon speed) V̇O2 increased from 3·0 l./min with minimal wind to 5·0 l./min at a wind velocity of 18·5 m/sec. The corresponding values for a 75 kg subject walking at 1·25 m/sec were 0·8 l./min with minimal wind and 3·1 l./min at a wind velocity of 18·5 m/sec. 5. Direct measurements of wind pressure on shapes of similar area to one of the subjects yielded higher values than those predicted from the relation of wind velocity and lifting work at equal O2 intakes. Horizontal work against wind was more efficient than vertical work against gravity. 6. The energy cost of overcoming air resistance in track running may be 7·5% of the total energy cost at middle distance speed and 13% at sprint speed. Running 1 m behind another runner virtually eliminated air resistance and reduced V̇O2 by 6·5% at middle distance speed. PMID:5574828</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017IJSE...36..450A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017IJSE...36..450A"><span>Analysis of conditions favourable for small vertical axis wind turbines between building passages in urban areas of Sweden</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Awan, Muhammad Rizwan; Riaz, Fahid; Nabi, Zahid</p> <p>2017-05-01</p> <p>This paper presents the analysis of installing the vertical axis wind turbines between the building passages on an island in Stockholm, Sweden. Based on the idea of wind speed amplification due to the venture effect in passages, practical measurements were carried out to study the wind profile for a range of passage widths in parallel building passages. Highest increment in wind speed was observed in building passages located on the periphery of sland as wind enters from free field. Wind mapping was performed in the island to choose the most favourable location to install the vertical axis wind turbines (VAWT). Using the annual wind speed data for location and measured amplification factor, energy potential of the street was calculated. This analysis verified that small vertical axis wind turbines can be installed in the passage centre line provided that enough space is provided for traffic and passengers.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014PhDT.......490S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014PhDT.......490S"><span>System Identification for the Clipper Liberty C96 Wind Turbine</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Showers, Daniel</p> <p></p> <p>System identification techniques are powerful tools that help improve modeling capabilities of real world dynamic systems. These techniques are well established and have been successfully used on countless systems in many areas. However, wind turbines provide a unique challenge for system identification because of the difficulty in measuring its primary input: wind. This thesis first motivates the problem by demonstrating the challenges with wind turbine system identification using both simulations and real data. It then suggests techniques toward successfully identifying a dynamic wind turbine model including the notion of an effective wind speed and how it might be measured. Various levels of simulation complexity are explored for insights into calculating an effective wind speed. In addition, measurements taken from the University of Minnesota's Clipper Liberty C96 research wind turbine are used for a preliminary investigation into the effective wind speed calculation and system identification of a real world wind turbine.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013IJEEP..14..571S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013IJEEP..14..571S"><span>Analysis of the Flicker Level Produced by a Fixed-Speed Wind Turbine</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Suppioni, Vinicius; P. Grilo, Ahda</p> <p>2013-10-01</p> <p>In this article, the analysis of the flicker emission during continuous operation of a mid-scale fixed-speed wind turbine connected to a distribution system is presented. Flicker emission is investigated based on simulation results, and the dependence of flicker emission on short-circuit capacity, grid impedance angle, mean wind speed, and wind turbulence is analyzed. The simulations were conducted in different programs in order to provide a more realistic wind emulation and detailed model of mechanical and electrical components of the wind turbine. Such aim is accomplished by using FAST (Fatigue, Aerodynamics, Structures, and Turbulence) to simulate the mechanical parts of the wind turbine, Simulink/MatLab to simulate the electrical system, and TurbSim to obtain the wind model. The results show that, even for a small wind generator, the flicker level can limit the wind power capacity installed in a distribution system.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19920020412','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19920020412"><span>Study of optical techniques for the Ames unitary wind tunnels. Part 3: Angle of attack</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Lee, George</p> <p>1992-01-01</p> <p>A review of optical sensors that are capable of accurate angle of attack measurements in wind tunnels was conducted. These include sensors being used or being developed at NASA Ames and Langley Research Centers, Boeing Airplane Company, McDonald Aircraft Company, Arnold Engineering Development Center, National Aerospace Laboratory of the Netherlands, National Research Council of Canada, and the Royal Aircraft Establishment of England. Some commercial sensors that may be applicable to accurate angle measurements were also reviewed. It was found that the optical sensor systems were based on interferometers, polarized light detector, linear or area photodiode cameras, position sensing photodetectors, and laser scanners. Several of the optical sensors can meet the requirements of the Ames Unitary Plan Wind Tunnel. Two of these, the Boeing interferometer and the Complere lateral effect photodiode sensors are being developed for the Ames Unitary Plan Wind Tunnel.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1043180','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/1043180"><span>Final Technical Report Recovery Act: Online Nonintrusive Condition Monitoring and Fault Detection for Wind Turbines</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Wei Qiao</p> <p>2012-05-29</p> <p>The penetration of wind power has increased greatly over the last decade in the United States and across the world. The U.S. wind power industry installed 1,118 MW of new capacity in the first quarter of 2011 alone and entered the second quarter with another 5,600 MW under construction. By 2030, wind energy is expected to provide 20% of the U.S. electricity needs. As the number of wind turbines continues to grow, the need for effective condition monitoring and fault detection (CMFD) systems becomes increasingly important [3]. Online CMFD is an effective means of not only improving the reliability, capacitymore » factor, and lifetime, but it also reduces the downtime, energy loss, and operation and maintenance (O&M) of wind turbines. The goal of this project is to develop novel online nonintrusive CMFD technologies for wind turbines. The proposed technologies use only the current measurements that have been used by the control and protection system of a wind turbine generator (WTG); no additional sensors or data acquisition devices are needed. Current signals are reliable and easily accessible from the ground without intruding on the wind turbine generators (WTGs) that are situated on high towers and installed in remote areas. Therefore, current-based CMFD techniques have great economic benefits and the potential to be adopted by the wind energy industry. Specifically, the following objectives and results have been achieved in this project: (1) Analyzed the effects of faults in a WTG on the generator currents of the WTG operating at variable rotating speed conditions from the perspective of amplitude and frequency modulations of the current measurements; (2) Developed effective amplitude and frequency demodulation methods for appropriate signal conditioning of the current measurements to improve the accuracy and reliability of wind turbine CMFD; (3) Developed a 1P-invariant power spectrum density (PSD) method for effective signature extraction of wind turbine faults with characteristic frequencies in the current or current demodulated signals, where 1P stands for the shaft rotating frequency of a WTG; (4) Developed a wavelet filter for effective signature extraction of wind turbine faults without characteristic frequencies in the current or current demodulated signals; (5) Developed an effective adaptive noise cancellation method as an alternative to the wavelet filter method for signature extraction of wind turbine faults without characteristic frequencies in the current or current demodulated signals; (6) Developed a statistical analysis-based impulse detection method for effective fault signature extraction and evaluation of WTGs based on the 1P-invariant PSD of the current or current demodulated signals; (7) Validated the proposed current-based wind turbine CMFD technologies through extensive computer simulations and experiments for small direct-drive WTGs without gearboxes; and (8) Showed, through extensive experiments for small direct-drive WTGs, that the performance of the proposed current-based wind turbine CMFD technologies is comparable to traditional vibration-based methods. The proposed technologies have been successfully applied for detection of major failures in blades, shafts, bearings, and generators of small direct-drive WTGs. The proposed technologies can be easily integrated into existing wind turbine control, protection, and monitoring systems and can be implemented remotely from the wind turbines being monitored. The proposed technologies provide an alternative to vibration-sensor-based CMFD. This will reduce the cost and hardware complexity of wind turbine CMFD systems. The proposed technologies can also be combined with vibration-sensor-based methods to improve the accuracy and reliability of wind turbine CMFD systems. When there are problems with sensors, the proposed technologies will ensure proper CMFD for the wind turbines, including their sensing systems. In conclusion, the proposed technologies offer an effective means to achieve condition-based smart maintenance for wind turbines and have a great potential to be adopted by the wind energy industry due to their almost no-cost, nonintrusive features. Although only validated for small direct-drive wind turbines without gearboxes, the proposed technologies are also applicable for CMFD of large-size wind turbines with and without gearboxes. However, additional investigations are recommended in order to apply the proposed technologies to those large-size wind turbines.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/1337284-rain-aerosol-relationships-influenced-wind-speed-rain-aerosol-relationships','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/1337284-rain-aerosol-relationships-influenced-wind-speed-rain-aerosol-relationships"><span></span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Yang, Yang; Russell, Lynn M.; Lou, Sijia</p> <p></p> <p>The aerosol optical depth (AOD) has been shown to correlate with precipitation rate (R) in recent studies. The relationships between R and AOD are examined in this study using 150-year simulations in preindustrial conditions with the CESM model. Through partial correlation analysis, with the impact from 10-m wind speed removed, relationships between modeled AOD and R exert a significant change from positive to negative over the mid-latitude oceans, indicating that the wind speed has the largest contribution to the relationships over the mid-latitude oceans. Sensitivity simulation shows that variations in wind speed lead to increasing R by +0.99 mm day-1more » averaged globally, offsetting 64% of the wet scavenging induced decrease in precipitation between polluted and clean conditions. These demonstrate that wind speed is one of the major drivers of R-AOD relationships. Relative humidity can also result in the positive relationships; however, its role is smaller than that of wind speed.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5240972','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5240972"><span>Moving Model Test of High-Speed Train Aerodynamic Drag Based on Stagnation Pressure Measurements</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Yang, Mingzhi; Du, Juntao; Huang, Sha; Zhou, Dan</p> <p>2017-01-01</p> <p>A moving model test method based on stagnation pressure measurements is proposed to measure the train aerodynamic drag coefficient. Because the front tip of a high-speed train has a high pressure area and because a stagnation point occurs in the center of this region, the pressure of the stagnation point is equal to the dynamic pressure of the sensor tube based on the obtained train velocity. The first derivation of the train velocity is taken to calculate the acceleration of the train model ejected by the moving model system without additional power. According to Newton’s second law, the aerodynamic drag coefficient can be resolved through many tests at different train speeds selected within a relatively narrow range. Comparisons are conducted with wind tunnel tests and numerical simulations, and good agreement is obtained, with differences of less than 6.1%. Therefore, the moving model test method proposed in this paper is feasible and reliable. PMID:28095441</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70194569','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70194569"><span>Fog water collection effectiveness: Mesh intercomparisons</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Fernandez, Daniel; Torregrosa, Alicia; Weiss-Penzias, Peter; Zhang, Bong June; Sorensen, Deckard; Cohen, Robert; McKinley, Gareth; Kleingartner, Justin; Oliphant, Andrew; Bowman, Matthew</p> <p>2018-01-01</p> <p>To explore fog water harvesting potential in California, we conducted long-term measurements involving three types of mesh using standard fog collectors (SFC). Volumetric fog water measurements from SFCs and wind data were collected and recorded in 15-minute intervals over three summertime fog seasons (2014–2016) at four California sites. SFCs were deployed with: standard 1.00 m2 double-layer 35% shade coefficient Raschel; stainless steel mesh coated with the MIT-14 hydrophobic formulation; and FogHa-Tin, a German manufactured, 3-dimensional spacer fabric deployed in two orientations. Analysis of 3419 volumetric samples from all sites showed strong relationships between mesh efficiency and wind speed. Raschel mesh collected 160% more fog water than FogHa-Tin at wind speeds less than 1 m s–1 and 45% less for wind speeds greater than 5 m s–1. MIT-14 coated stainless-steel mesh collected more fog water than Raschel mesh at all wind speeds. At low wind speeds of < 1 m s–1 the coated stainless steel mesh collected 3% more and at wind speeds of 4–5 m s–1, it collected 41% more. FogHa-Tin collected 5% more fog water when the warp of the weave was oriented vertically, per manufacturer specification, than when the warp of the weave was oriented horizontally. Time series measurements of three distinct mesh across similar wind regimes revealed inconsistent lags in fog water collection and inconsistent performance. Since such differences occurred under similar wind-speed regimes, we conclude that other factors play important roles in mesh performance, including in-situ fog event and aerosol dynamics that affect droplet-size spectra and droplet-to-mesh surface interactions.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012ISPAr39B1..345B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012ISPAr39B1..345B"><span>Introducing a Low-Cost Mini-Uav for - and Multispectral-Imaging</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Bendig, J.; Bolten, A.; Bareth, G.</p> <p>2012-07-01</p> <p>The trend to minimize electronic devices also accounts for Unmanned Airborne Vehicles (UAVs) as well as for sensor technologies and imaging devices. Consequently, it is not surprising that UAVs are already part of our daily life and the current pace of development will increase civil applications. A well known and already wide spread example is the so called flying video game based on Parrot's AR.Drone which is remotely controlled by an iPod, iPhone, or iPad (<a href = "http://ardrone.parrot.com" target="_blank">http://ardrone.parrot.com</a>). The latter can be considered as a low-weight and low-cost Mini-UAV. In this contribution a Mini-UAV is considered to weigh less than 5 kg and is being able to carry 0.2 kg to 1.5 kg of sensor payload. While up to now Mini-UAVs like Parrot's AR.Drone are mainly equipped with RGB cameras for videotaping or imaging, the development of such carriage systems clearly also goes to multi-sensor platforms like the ones introduced for larger UAVs (5 to 20 kg) by Jaakkolla et al. (2010) for forestry applications or by Berni et al. (2009) for agricultural applications. The problem when designing a Mini-UAV for multi-sensor imaging is the limitation of payload of up to 1.5 kg and a total weight of the whole system below 5 kg. Consequently, the Mini-UAV without sensors but including navigation system and GPS sensors must weigh less than 3.5 kg. A Mini-UAV system with these characteristics is HiSystems' MK-Okto (<a href = "www.mikrokopter.de" target="_blank">www.mikrokopter.de</a>). Total weight including battery without sensors is less than 2.5 kg. Payload of a MK-Okto is approx. 1 kg and maximum speed is around 30 km/h. The MK-Okto can be operated up to a wind speed of less than 19 km/h which corresponds to Beaufort scale number 3 for wind speed. In our study, the MK-Okto is equipped with a handheld low-weight NEC F30IS thermal imaging system. The F30IS which was developed for veterinary applications, covers 8 to 13 μm, weighs only 300 g, and is capturing the temperature range between -20 °C and 100 °C. Flying at a height of 100 m, the camera's image covers an area of approx. 50 by 40 m. The sensor's resolution is 160 x 120 pixel and the field of view is 28° (H) x 21° (V). According to the producer, absolute accuracy for temperature is ±1 °C and the thermal sensitivity is >0.1 K. Additionally, the MK-Okto is equipped with Tetracam's Mini MCA. The Mini MCA in our study is a four band multispectral imaging system. Total weight is 700 g and spectral characteristics can be modified by filters between 400 and 1000 nm. In this study, three bands with a width of 10 nm (green: 550 nm, red: 671 nm, NIR1: 800 nm) and one band of 20 nm width (NIR2: 950 nm) have been used. Even so the MK-Okto is able to carry both sensors at the same time, the imaging systems were used separately for this contribution. First results of a combined thermal- and multispectral MK-Okto campaign in 2011 are presented and evaluated for a sugarbeet field experiment examining pathogens and drought stress.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20040000726','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20040000726"><span>Sensor Calibration and Ocean Products for TRMM Microwave Radiometer</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Wentz, Frank J.; Lawrence, Richard J. (Technical Monitor)</p> <p>2003-01-01</p> <p>During the three years of finding, we have carefully corrected for two sensor/platform problems, developed a physically based retrieval algorithm to calculate SST, wind speed, water vapor, cloud liquid water and rain rates, validated these variables, and demonstrated that satellite microwave radiometers can provide very accurate SST retrievals through clouds. Prior to this, there was doubt by some scientists that the technique of microwave SST retrieval from satellites is a viable option. We think we have put these concerns to rest, and look forward to making microwave SSTs a standard component of the Earth science data sets. Our TMI SSTs were featured on several network news broadcasts and were reported in Science magazine. Additionally, we have developed a SST algorithm for VIRS to facilitate IR/MW inter-comparisons and completed research into diurnal cycles and air-sea interactions.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li class="active"><span>25</span></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_25 --> <div class="footer-extlink text-muted" style="margin-bottom:1rem; text-align:center;">Some links on this page may take you to non-federal websites. Their policies may differ from this site.</div> </div><!-- container --> <a id="backToTop" href="#top"> Top </a> <footer> <nav> <ul class="links"> <li><a href="/sitemap.html">Site Map</a></li> <li><a href="/website-policies.html">Website Policies</a></li> <li><a href="https://www.energy.gov/vulnerability-disclosure-policy" target="_blank">Vulnerability Disclosure Program</a></li> <li><a href="/contact.html">Contact Us</a></li> </ul> </nav> </footer> <script type="text/javascript"><!-- // var lastDiv = ""; function showDiv(divName) { // hide last div if (lastDiv) { document.getElementById(lastDiv).className = "hiddenDiv"; } //if value of the box is not nothing and an object with that name exists, then change the class if (divName && document.getElementById(divName)) { document.getElementById(divName).className = "visibleDiv"; lastDiv = divName; } } //--> </script> <script> /** * Function that tracks a click on an outbound link in Google Analytics. * This function takes a valid URL string as an argument, and uses that URL string * as the event label. */ var trackOutboundLink = function(url,collectionCode) { try { h = window.open(url); setTimeout(function() { ga('send', 'event', 'topic-page-click-through', collectionCode, url); }, 1000); } catch(err){} }; </script> <!-- Google Analytics --> <script> (function(i,s,o,g,r,a,m){i['GoogleAnalyticsObject']=r;i[r]=i[r]||function(){ (i[r].q=i[r].q||[]).push(arguments)},i[r].l=1*new Date();a=s.createElement(o), m=s.getElementsByTagName(o)[0];a.async=1;a.src=g;m.parentNode.insertBefore(a,m) })(window,document,'script','//www.google-analytics.com/analytics.js','ga'); ga('create', 'UA-1122789-34', 'auto'); ga('send', 'pageview'); </script> <!-- End Google Analytics --> <script> showDiv('page_1') </script> </body> </html>