Sample records for wind working groups

  1. KANSAS WIND POWERING AMERICAN STATE OUTREACH: KANSAS WIND WORKING GROUP

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    HAMMARLUND, RAY

    2010-10-27

    The Kansas Wind Working Group (WWG) is a 33-member group announced by former Governor Kathleen Sebelius on Jan. 7, 2008. Formed through Executive Order 08-01, the WWG will educate stakeholder groups with the current information on wind energy markets, technologies, economics, policies, prospects and issues. Governor Mark Parkinson serves as chair of the Kansas Wind Working Group. The group has been instrumental in focusing on the elements of government and coordinating government and private sector efforts in wind energy development. Those efforts have moved Kansas from 364 MW of wind three years ago to over 1000 MW today. Further, themore » Wind Working Group was instrumental in fleshing out issues such as a state RES and net metering, fundamental parts of HB 2369 that was passed and is now law in Kansas. This represents the first mandatory RES and net metering in Kansas history.« less

  2. Tennessee Valley and Eastern Kentucky Wind Working Group

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Katie Stokes

    2012-05-03

    In December 2009, the Southern Alliance for Clean Energy (SACE), through a partnership with the Appalachian Regional Commission, EKPC, Kentucky's Department for Energy Development and Independence, SACE, Tennessee's Department of Environment and Conservation, and TVA, and through a contract with the Department of Energy, established the Tennessee Valley and Eastern Kentucky Wind Working Group (TVEKWWG). TVEKWWG consists of a strong network of people and organizations. Working together, they provide information to various organizations and stakeholders regarding the responsible development of wind power in the state. Members include representatives from utility interests, state and federal agencies, economic development organizations, non-government organizations,more » local decision makers, educational institutions, and wind industry representatives. The working group is facilitated by the Southern Alliance for Clean Energy. TVEKWWG supports the Department of Energy by helping educate and inform key stakeholders about wind energy in the state of Tennessee.« less

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    The Wind Powering America FY06 Activities Summary reflects the accomplishments of our state wind working groups, our programs at the National Renewable Energy Laboratory, and our partner organizations. The national WPA team remains a leading force for moving wind energy forward in the United States. WPA continues to work with its national, regional, and state partners to communicate the opportunities and benefits of wind energy to a diverse set of stakeholders. WPA now has 29 state wind working groups (welcoming New Jersey, Indiana, Illinois, and Missouri in 2006) that form strategic alliances to communicate wind's benefits to the state stakeholders.more » More than 120 members of national and state public and private sector organizations from 34 states attended the 5th Annual WPA All-States Summit in Pittsburgh in June.« less

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Clifton, Andrew

    IEA Wind Task 32 seeks to identify and mitigate the barriers to the adoption of lidar for wind energy applications. In Phase 1 of the task, a working group looked at the state of the art of wind lidar in complex flow conditions. This presentation is a short summary of that work, given at the start of Phase 2.

  5. Wind Powering America FY07 Activities Summary

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    2008-02-01

    The Wind Powering America FY07 Activities Summary reflects the accomplishments of our state wind working groups, our programs at the National Renewable Energy Laboratory, and our partner organizations. The national WPA team remains a leading force for moving wind energy forward in the United States. WPA continues to work with its national, regional, and state partners to communicate the opportunities and benefits of wind energy to a diverse set of stakeholders. WPA now has 30 state wind working groups (welcoming Georgia and Wisconsin in 2007) that form strategic alliances to communicate wind's benefits to the state stakeholders. More than 140more » members of national and state public and private sector organizations from 39 U.S. states and Canada attended the 6th Annual WPA All-States Summit in Los Angeles in June. WPA's emphasis remains on the rural agricultural sector, which stands to reap the significant economic development benefits of wind energy development. Additionally, WPA continues its program of outreach, education, and technical assistance to Native American communities, public power entities, and regulatory and legislative bodies.« less

  6. Social Acceptance of Wind: A Brief Overview (Presentation)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lantz, E.

    This presentation discusses concepts and trends in social acceptance of wind energy, profiles recent research findings, and discussions mitigation strategies intended to resolve wind power social acceptance challenges as informed by published research and the experiences of individuals participating in the International Energy Agencies Working Group on Social Acceptance of Wind Energy

  7. Deception, Disinformation, and Strategic Communications: How One Interagency Group Made a Major Difference (Strategic Perspectives, no. 11)

    DTIC Science & Technology

    2012-06-01

    working groups have a light work load, not many meetings, and a lot of work done on paper.” They tend to be long- winded and “a pain in the neck...how Soviet dummy submarines made of rubber to fool satellite surveillance bent in high winds , exposing them as fakes. The CIA’s director of operations...The Walker spy ring was run by a low-ranking Sailor, operated undetected for 18 years, and gave away an astounding array of secrets that did

  8. Model Attitude and Deformation Measurements at the NASA Glenn Research Center

    NASA Technical Reports Server (NTRS)

    Woike, Mark R.

    2008-01-01

    The NASA Glenn Research Center is currently participating in an American Institute of Aeronautics and Astronautics (AIAA) sponsored Model Attitude and Deformation Working Group. This working group is chartered to develop a best practices document dealing with the measurement of two primary areas of wind tunnel measurements, 1) model attitude including alpha, beta and roll angle, and 2) model deformation. Model attitude is a principle variable in making aerodynamic and force measurements in a wind tunnel. Model deformation affects measured forces, moments and other measured aerodynamic parameters. The working group comprises of membership from industry, academia, and the Department of Defense (DoD). Each member of the working group gave a presentation on the methods and techniques that they are using to make model attitude and deformation measurements. This presentation covers the NASA Glenn Research Center s approach in making model attitude and deformation measurements.

  9. Wind Powering America: The Next Steps in North Carolina

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Banks, Jennifer L.; Scanlin, Dennis; Quinlan, Paul

    2013-06-18

    The goal of this project is to apply the WPA’s proactive outreach strategy to the problem of educating the public about the likely transmission infrastructure developments concomitant to the significant development of wind energy resources in North Carolina. Given the lead time to develop significant new transmission infrastructure (5-10 years), it is critical to begin this outreach work today, so that wind resources can be developed to adequately meet the 20% by 2030 goal in the mid- to long-term (10-20 years). The project team planned to develop a transmission infrastructure outreach campaign for North Carolina by: (1) convening a utilitymore » interest group (UIG) of the North Carolina Wind Working Group (NC WWG) consisting of electric utilities in the state and the Southeast; and (2) expanding outreach to local and state government officials in North Carolina.« less

  10. Robert Thresher | NREL

    Science.gov Websites

    also created new codes, new methods of analysis for wind turbine testing and new methods to develop of 35 employees. Dr. Thresher's group was responsible for the next generation wind turbine . Thresher was asked to work for two years with DOE in Washington D.C. to manage the innovative wind turbine

  11. Wind River Watershed Restoration, 2005-2006 Annual Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jezorek, Ian G.; Connolly, Patrick J.; Munz, Carrie

    2008-11-10

    This report summarizes work completed by U.S. Geological Survey's Columbia River Research Laboratory (USGS-CRRL) in the Wind River subbasin during the period April 2005 through March 2006 under Bonneville Power Administration (BPA) contract 22095. During this period, we collected temperature, flow, and habitat data to characterize habitat condition and variation within and among tributaries and mainstem sections in the Wind River subbasin. We also conducted electrofishing and snorkeling surveys to determine juvenile salmonid populations within select study areas throughout the subbasin. Portions of this work were completed with additional funding from U.S. Fish and Wildlife Service (USFWS) and the Lowermore » Columbia Fish Enhancement Group (LCFEG). A statement of work (SOW) was submitted to BPA in March 2005 that outlined work to be performed by USGS-CRRL. The SOW was organized by work elements, with each describing a research task. This report summarizes the progress completed under each work element.« less

  12. NREL: International Activities - Assessments and Tools

    Science.gov Websites

    for Solar and Wind Energy, a collaborative, open-architecture project led by the International Renewable Energy Agency (IRENA) for Multilateral Solar and Wind Working Group of the Clean Energy associated with integrating variable renewable energy into the power grid. OpenEI: Open Energy Information

  13. Wind River Watershed Restoration: Annual Report April 2005 - March 2006

    USGS Publications Warehouse

    Jezorek, Ian G.; Connolly, Patrick J.; Charrier, Jodi; Munz, Carrie

    2007-01-01

    This report summarizes work completed by U.S. Geological Survey’s Columbia River Research Laboratory (USGS-CRRL) in the Wind River subbasin during the period April 2005 through March 2006 under Bonneville Power Administration (BPA) contract 22095. During this period, we collected temperature, flow, and habitat data to characterize habitat condition and variation within and among tributaries and mainstem sections in the Wind River subbasin. We also conducted electrofishing and snorkeling surveys to determine juvenile salmonid populations within select study areas throughout the subbasin. Portions of this work were completed with additional funding from U.S. Fish and Wildlife Service (USFWS) and the Lower Columbia Fish Enhancement Group (LCFEG).

  14. Renewable Electricity Futures (Presentation)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    DeMeo, E.

    2012-08-01

    This presentation library summarizes findings of NREL's Renewable Electricity Futures study, published in June 2012. RE Futures investigated the challenges and impacts of achieving very high renewable electricity generation levels in the contiguous United States by 2050. It was presented at Wind Powering America States Summit. The Summit, which follows the American Wind Energy Association's (AWEA's) annual WINDPOWER Conference and Exhibition, provides state Wind Working Groups, state energy officials, U.S. Energy Department and national laboratory representatives, and professional and institutional partners an opportunity to review successes, opportunities, and challenges for wind energy and plan future collaboration.

  15. Effect of Wind Turbine Noise on Workers' Sleep Disorder: A Case Study of Manjil Wind Farm in Northern Iran

    NASA Astrophysics Data System (ADS)

    Abbasi, Milad; Monnazzam, Mohammad Reza; Zakerian, Sayedabbolfazl; Yousefzadeh, Arsalan

    2015-04-01

    Noise from wind turbines is one of the most important factors affecting the health, welfare, and human sleep. This research was carried out to study the effect of wind turbine noise on workers' sleep disorder. For this, Manjil Wind Farm, because of the greater number of staff and turbines than other wind farms in Iran, was chosen as case study. A total number of 53 participants took part in this survey. They were classified into three groups of mechanics, security, and official. In this study, daytime sleepiness data of workers were gathered using Epworth Sleepiness Scales (ESS) was used to determine the level of daytime sleepiness among the workers. The 8-h equivalent sound level (LAeq,8h) was measured to determine the individuals' exposure at each occupational group. Finally, the effect of sound, age, and workers' experience on individuals' sleep disorder was analyzed through multiple regression analysis in the R software. The results showed that there was a positive and significant relationship between age, workers' experience, equivalent sound level, and the level of sleep disorder. When age is constant, sleep disorder will increase by 26% as per each 1 dB increase in equivalent sound level. In situations where equivalent sound level is constant, an increase of 17% in sleep disorder is occurred as per each year of work experience. Because of the difference in sound exposure in different occupational groups. The effect of noise in repairing group was about 6.5 times of official group and also 3.4 times of the security group. Sleep disorder effect caused by wind turbine noise in the security group is almost two times more than the official group. Unlike most studies on wind turbine noise that address the sleep disorder among inhabitants nearby wind farms, this study, for the first time in the world, examines the impact of wind turbine noise on sleep disorder of workers who are more closer to wind turbines and exposed to higher levels of noise. So despite all the good benefits of wind turbines, it can be stated that this technology has health risks for all those exposed to its sound. However, further research is needed to confirm the results of this study.

  16. Wind Alliance for the Sustainable Development

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Camacho, Damarys Gonzalez

    2012-09-30

    The Puerto Rico Energy Affairs Administration (PREAA) is actively engaged in the implementation of existing public policy for the conservation of energy and promotion of renewable energy to reduce consumer’s costs and reduce environmental impact. Puerto Rico is an island in where no own reserves of gas, oil or coal exists. This severe dependence in on foreign oil is reflected in the higher cost of electricity in Puerto Rico, which is significantly higher than most of the United States. Therefore, public energy policy of Puerto Rico places emphasis on diversification of energy sources and the use of renewable energy technologies.more » The Wind energy Alliance for the Sustainable Development project focused on the formation of a wind energy working group to educate and promote wind energy technologies; at the same time the evaluating the viability of wind energy in Puerto Rico. The educational outreach was performed through a series of wind energy workshops where interested parties such as, installers, sellers, engineers, general public even opposing groups participate from the activities.« less

  17. Venus mesospheric winds and the carbon monoxide bulge

    NASA Technical Reports Server (NTRS)

    Gurwell, Mark A.; Muhleman, Duane O.; Shah, Kathryn Pierce

    1992-01-01

    Recently, our group mapped the CO absorption lines on the disk of Venus in 1988 using the synthetic aperture array at the Owens Valley Radio Observatory. Observations were make in the (0-1) rotational transition of CO at 115 GHz, or a wavelength of 2.6 mm. Systematic variations in the Doppler shifts of the lines (particularly near the limbs) enable the group to directly map the wind field at 100 plus or minus 10 km, the peak altitude for the experimental weighting functions used. These measurements show that the winds are indeed of the order of a 100 m/s at this altitude. Previously, many had assumed that the vertical wind profile would quickly fall to zero above the cloud tops, due to cyclostrophic breakdown. This work is reviewed.

  18. Efficiency of lung ventilation for people performing wind instruments.

    PubMed

    Brzęk, Anna; Famuła, Anna; Kowalczyk, Anna; Plinta, Ryszard

    Wind instruments musicians are particularly prone to excessive respiratory efforts. Prolonged wind instruments performing may lead to changes in respiratory tracts and thus to respiratory muscles overload. It may result in decreasing lung tissue pliability and, as a consequence, in emphysema. Aim of the research has been to describe basic spirometric parameters for wind players and causes of potential changes. Slow and forced spirometry with the use of Micro Lab Viasys (Micro Medical, Great Britain) was conducted on 31 wind musicians (group A). A survey concerning playing time and frequency, weight of instruments, and education on diaphragmatic breathing was conducted. The control group included 34 healthy persons at similar age (group B). The results were statistically described using Excel and Statistica programmes. The respiratory parameters were within the range of physiological norms and forced expiratory volume in 1 s to forced vital capacity (FEV1/FVC) exceeded in both groups the values of 100%. Forced vital capacity and expiratory vital capacity (EVC) values were significantly lower in the group of musicians than in the control group (p < 0.001). In 45% the group A used diaphragmatic breathing, in 31% of examinees mixed respiratory tract was observed. The significant discrepancy of individual parameters was obtained regarding age and the length of time when performing wind instrument. Spirometric parameters relative to standards may prove a good respiratory capacity. Peak expiratory flow (PEF) and FEV1 may indicate that a proper technique of respiration during performance was acquired. The length of time when performing wind instrument may influence parameters of dynamic spirometry. Med Pr 2016;67(4):427-433. This work is available in Open Access model and licensed under a CC BY-NC 3.0 PL license.

  19. Wind/tornado design criteria, development to achieve required probabilistic performance goals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ng, D.S.

    1991-06-01

    This paper describes the strategy for developing new design criteria for a critical facility to withstand loading induced by the wind/tornado hazard. The proposed design requirements for resisting wind/tornado loads are based on probabilistic performance goals. The proposed design criteria were prepared by a Working Group consisting of six experts in wind/tornado engineering and meteorology. Utilizing their best technical knowledge and judgment in the wind/tornado field, they met and discussed the methodologies and reviewed available data. A review of the available wind/tornado hazard model for the site, structural response evaluation methods, and conservative acceptance criteria lead to proposed design criteriamore » that has a high probability of achieving the required performance goals.« less

  20. Wind/tornado design criteria, development to achieve required probabilistic performance goals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ng, D.S.

    This paper describes the strategy for developing new design criteria for a critical facility to withstand loading induced by the wind/tornado hazard. The proposed design requirements for resisting wind/tornado loads are based on probabilistic performance goals. The proposed design criteria were prepared by a Working Group consisting of six experts in wind/tornado engineering and meteorology. Utilizing their best technical knowledge and judgment in the wind/tornado field, they met and discussed the methodologies and reviewed available data. A review of the available wind/tornado hazard model for the site, structural response evaluation methods, and conservative acceptance criteria lead to proposed design criteriamore » that has a high probability of achieving the required performance goals.« less

  1. Wind Systems for Pumping Water: A Training Manual. No. T-25.

    ERIC Educational Resources Information Center

    Eschenbach, Willis

    This document was prepared as a training manual for people interested in developing appropriate technological approaches to using wind power to pump water. The training program is divided into two basic formats, one in which a session focuses on the design process and participants are expected to do some design work in groups, and another which…

  2. NREL: International Activities - U.S.-China Renewable Energy Partnership

    Science.gov Websites

    Solar PV and TC88 Wind working groups. Renewable Energy Technology These projects enhance policies to Collaboration on innovative business models and financing solutions for solar PV deployment. Micrositing and O development. Current Projects Recommendations for photovoltaic (PV) and wind grid code updates. New energy

  3. A cross-sectional survey of physical strains among offshore wind farm workers in the German exclusive economic zone

    PubMed Central

    Mette, Janika; Mache, Stefanie; Harth, Volker; Preisser, Alexandra M

    2018-01-01

    Objectives To assess the physical strains of employees in the German offshore wind industry, according to job type and phase of the wind farm (under construction or operation). Design Web-based cross-sectional survey. Setting Offshore wind farm companies operating within the German exclusive economic zone. Participants Male workers with regular offshore commitments and at least 28 days spent offshore in the past year (n=268). Outcome measures Physical strains (eg, climbing, noise, working overhead, with twisted upper body or in confined spaces, vibration, heavy lifting, humidity, odours). Results The most frequently mentioned physical strain was ’climbing’ with 63.8% of the respondents reporting to be always or frequently confronted with climbing and ascending stairs during offshore work. Work as a technician was associated with a greater exposition to noise, vibrations, humidity, cold, heat, chemical substances, lifting/carrying heavy loads, transport of equipment, working in non-ergonomic positions and in cramped spaces, as well as climbing. Indeed, statistical analyses showed that, after adjusting for phase of the wind farm, age, nationality, offshore experience, work schedule and type of shift, compared with non-technicians, working as a technician was associated with more frequently lifting/carrying of heavy loads (OR 2.58, 95% CI 1.58 to 4.23), transport of equipment (OR 2.06 95% CI 1.27 to 3.33), working with a twisted upper body (OR 2.85 95% CI 1.74 to 4.69), working overhead (OR 2.77 95% CI 1.67 to 4.58) and climbing (OR 2.30 95% CI 1.40 to 3.77). Working in wind farms under construction was strongly associated with increased and decreased exposure to humidity (OR 2.32 95% CI 1.38 to 3.92) and poor air quality (OR 0.58 95% CI 0.35 to 0.95), respectively. Conclusions Workers on offshore wind farms constitute a heterogeneous group, including a wide variety of occupations. The degree of exposure to detrimental physical strains varies depending on the type of job. Technicians are more exposed to ergonomic challenges than other offshore workers. PMID:29602849

  4. 2016-2017 Status Assessment and Update on the Wind Vision Roadmap: Findings from Topical Working Sessions, April 2016 - March 2017

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lantz, Eric J.; Mone, Christopher D.; DeMeo, Edgar

    IIn March 2015, the U.S. Department of Energy (DOE) released Wind Vision: A New Era for Wind Power in the United States (DOE 2015), which explores a scenario in which wind provides 10 percent of U.S. electricity in 2020, 20 percent in 2030, and 35 percent in 2050. The Wind Vision report also includes a roadmap of recommended actions aimed at pursuit of the vision and its underlying wind-deployment scenario. The roadmap was compiled by the Wind Vision project team, which included representatives from the industrial, electric-power, government-laboratory, academic, environmental-stewardship, regulatory, and permitting stakeholder groups. The roadmap describes high-level activitiesmore » suitable for all sectors with a stake in wind power and energy development. It is intended to be a 'living document,' and DOE expects to engage the wind community from time to time to track progress.« less

  5. Roadmap to the multidisciplinary design analysis and optimisation of wind energy systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Perez-Moreno, S. Sanchez; Zaaijer, M. B.; Bottasso, C. L.

    Here, a research agenda is described to further encourage the application of Multidisciplinary Design Analysis and Optimisation (MDAO) methodologies to wind energy systems. As a group of researchers closely collaborating within the International Energy Agency (IEA) Wind Task 37 for Wind Energy Systems Engineering: Integrated Research, Design and Development, we have identified challenges that will be encountered by users building an MDAO framework. This roadmap comprises 17 research questions and activities recognised to belong to three research directions: model fidelity, system scope and workflow architecture. It is foreseen that sensible answers to all these questions will enable to more easilymore » apply MDAO in the wind energy domain. Beyond the agenda, this work also promotes the use of systems engineering to design, analyse and optimise wind turbines and wind farms, to complement existing compartmentalised research and design paradigms.« less

  6. Roadmap to the multidisciplinary design analysis and optimisation of wind energy systems

    DOE PAGES

    Perez-Moreno, S. Sanchez; Zaaijer, M. B.; Bottasso, C. L.; ...

    2016-10-03

    Here, a research agenda is described to further encourage the application of Multidisciplinary Design Analysis and Optimisation (MDAO) methodologies to wind energy systems. As a group of researchers closely collaborating within the International Energy Agency (IEA) Wind Task 37 for Wind Energy Systems Engineering: Integrated Research, Design and Development, we have identified challenges that will be encountered by users building an MDAO framework. This roadmap comprises 17 research questions and activities recognised to belong to three research directions: model fidelity, system scope and workflow architecture. It is foreseen that sensible answers to all these questions will enable to more easilymore » apply MDAO in the wind energy domain. Beyond the agenda, this work also promotes the use of systems engineering to design, analyse and optimise wind turbines and wind farms, to complement existing compartmentalised research and design paradigms.« less

  7. Wind River Watershed Restoration: Annual report April 2006 to March 2007

    USGS Publications Warehouse

    Connolly, Patrick J.; Jezorek, Ian G.; Munz, Carrie S.

    2007-01-01

    This report summarizes work completed by U.S. Geological Survey’s Columbia River Research Laboratory (USGS-CRRL) in the Wind River subbasin during the period April 2006 through March 2007 under Bonneville Power Administration (BPA) contract 26922. During this period, we collected temperature, flow, and habitat data to characterize physical habitat condition and variation within and among tributaries and mainstem sections in the Wind River subbasin. We also conducted electrofishing and snorkeling surveys to determine juvenile salmonid populations within select study areas throughout the subbasin. Portions of this work were completed with additional funding from U.S. Fish and Wildlife Service (USFWS) and the Lower Columbia Fish Enhancement Group (LCFEG). Funding from USFWS was for work to contribute to a study of potential interactions between introduced Chinook salmon Oncorhynchus tshawytscha and wild steelhead O. mykiss. Funding from LCFEG was for work to evaluate the effects of nutrient enrichment in small streams. A statement of work (SOW) was submitted to BPA in March 2006 that outlined work to be performed by USGS-CRRL. The SOW was organized by work elements, with each describing a research task. This report summarizes the progress completed under each work element.

  8. Wind River Watershed Restoration, 2006-2007 Annual Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Connolly, Patrick J.; Jezorek, Ian G.; Munz, Carrie S.

    2008-11-04

    This report summarizes work completed by U.S. Geological Survey's Columbia River Research Laboratory (USGS-CRRL) in the Wind River subbasin during the period April 2006 through March 2007 under Bonneville Power Administration (BPA) contract 26922. During this period, we collected temperature, flow, and habitat data to characterize physical habitat condition and variation within and among tributaries and mainstem sections in the Wind River subbasin. We also conducted electrofishing and snorkeling surveys to determine juvenile salmonid populations within select study areas throughout the subbasin. Portions of this work were completed with additional funding from U.S. Fish and Wildlife Service (USFWS) and themore » Lower Columbia Fish Enhancement Group (LCFEG). Funding from USFWS was for work to contribute to a study of potential interactions between introduced Chinook salmon Oncorhynchus tshawytscha and wild steelhead O. mykiss. Funding from LCFEG was for work to evaluate the effects of nutrient enrichment in small streams. A statement of work (SOW) was submitted to BPA in March 2006 that outlined work to be performed by USGS-CRRL. The SOW was organized by work elements, with each describing a research task. This report summarizes the progress completed under each work element.« less

  9. A cross-sectional survey of physical strains among offshore wind farm workers in the German exclusive economic zone.

    PubMed

    Velasco Garrido, Marcial; Mette, Janika; Mache, Stefanie; Harth, Volker; Preisser, Alexandra M

    2018-03-30

    To assess the physical strains of employees in the German offshore wind industry, according to job type and phase of the wind farm (under construction or operation). Web-based cross-sectional survey. Offshore wind farm companies operating within the German exclusive economic zone. Male workers with regular offshore commitments and at least 28 days spent offshore in the past year (n=268). Physical strains (eg, climbing, noise, working overhead, with twisted upper body or in confined spaces, vibration, heavy lifting, humidity, odours). The most frequently mentioned physical strain was 'climbing' with 63.8% of the respondents reporting to be always or frequently confronted with climbing and ascending stairs during offshore work. Work as a technician was associated with a greater exposition to noise, vibrations, humidity, cold, heat, chemical substances, lifting/carrying heavy loads, transport of equipment, working in non-ergonomic positions and in cramped spaces, as well as climbing.Indeed, statistical analyses showed that, after adjusting for phase of the wind farm, age, nationality, offshore experience, work schedule and type of shift, compared with non-technicians, working as a technician was associated with more frequently lifting/carrying of heavy loads (OR 2.58, 95% CI 1.58 to 4.23), transport of equipment (OR 2.06 95% CI 1.27 to 3.33), working with a twisted upper body (OR 2.85 95% CI 1.74 to 4.69), working overhead (OR 2.77 95% CI 1.67 to 4.58) and climbing (OR 2.30 95% CI 1.40 to 3.77). Working in wind farms under construction was strongly associated with increased and decreased exposure to humidity (OR 2.32 95% CI 1.38 to 3.92) and poor air quality (OR 0.58 95% CI 0.35 to 0.95), respectively. Workers on offshore wind farms constitute a heterogeneous group, including a wide variety of occupations. The degree of exposure to detrimental physical strains varies depending on the type of job. Technicians are more exposed to ergonomic challenges than other offshore workers. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  10. Wind/Tornado Guidelines Study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ng, D.S.; Holman, G.S.

    1991-10-01

    This report documents the strategy employed to develop recommended wind/tornado hazard design guidelines for a New Production Reactor (NRP) currently planned for either the Idaho National Engineering Laboratory (INEL) or the Savannah River (SR) site. The Wind/Tornado Working Group (WTWG), comprising six nationally recognized experts in structural engineering, wind engineering, and meteorology, formulated an independent set of guidelines based on site-specific wind/tornado hazard curves and state-of-the-art tornado missile technology. The basic philosophy was to select realistic wind and missile load specifications, and to meet performance goals by applying conservative structural response evaluation and acceptance criteria. Simplified probabilistic risk analyses (PRAs)more » for wind speeds and missile impact were performed to estimate annual damage risk frequencies for both the INEL and SR sites. These PRAs indicate that the guidelines will lead to facilities that meet the US Department of Energy (DOE) design requirements and that the Nuclear Regulatory Commission guidelines adopted by the DOE for design are adequate to meet the NPR safety goals.« less

  11. Data Archive and Portal Thrust Area Strategy Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sivaraman, Chitra; Stephan, Eric G.; Macduff, Matt C.

    2014-09-01

    This report describes the Data Archive and Portal (DAP), a key capability of the U.S. Department of Energy's Atmosphere to Electron (A2e) initiative. The DAP Thrust Area Planning Group was organized to develop a plan for deploying this capability. Primarily, the report focuses on a distributed system--a DOE Wind Cloud--that functions as a repository for all A2e data. The Wind Cloud will be accessible via an open, easy-to-navigate user interface that facilitates community data access, interaction, and collaboration. DAP management will work with the community, industry, and international standards bodies to develop standards for wind data and to capture importantmore » characteristics of all data in the Wind Cloud.« less

  12. Experimental investigation of change of energy of infragavity waves in dependence on spectral characteristics of an irregular wind waves in coastal zone

    NASA Astrophysics Data System (ADS)

    Saprykina, Yana; Divinskii, Boris

    2013-04-01

    An infragravity waves are long waves with periods of 20 - 300 s. Most essential influence of infragarvity waves on dynamic processes is in a coastal zone, where its energy can exceed the energy of wind waves. From practical point of view, the infragravity waves are important, firstly, due to their influence on sand transport processes in a coastal zone. For example, interacting with group structure of wind waves the infragravity waves can define position of underwater bars on sandy coast. Secondly, they are responsible on formation of long waves in harbors. Main source of infragravity waves is wave group structure defined by sub-nonlinear interactions of wind waves (Longuet-Higgins, Stewart, 1962). These infragravity waves are bound with groups of wind waves and propagate with wave group velocity. Another type of infragravity waves are formed in a surf zone as a result of migration a wave breaking point (Symonds, et al., 1982). What from described above mechanisms of formation of infragravity waves prevails, till now it is unknown. It is also unknown how energy of infragravity waves depends on energy of input wind waves and how it changes during nonlinear wave transformation in coastal zone. In our work on the basis of the analysis of data of field experiment and numerical simulation a contribution of infragravity waves in total wave energy in depending on integral characteristics of an irregular wave field in the conditions of a real bathymetry was investigated. For analysis the data of field experiment "Shkorpilovtsy-2007" (Black sea) and data of numerical modeling of Boussinesq type equation with extended dispersion characteristics (Madsen et al., 1997) were used. It was revealed that infragravity waves in a coastal zone are defined mainly by local group structure of waves, which permanently changes due to nonlinearity, shoaling and breaking processes. Free infragravity waves appearing after wave breaking exist together with bound infragravity waves. There are no clear total dependences of energy of infrragravity waves from energy of wind waves and mean period of infragravity waves from mean period of wind waves. But significant wave height of infragravity waves depends on relative water depth (wave height of wind waves divided on water depth). There are different types of this dependence for breaking and non-breaking waves. The influence of peak period, significant wave height and directional spreading of initial wave spectrum on these dependences are discussed. The peculiarities of spectra of infragravity waves for non-breaking, breaking and multibreaking wind waves are shown. This work is supported by the RFBR, project 12-05-00965. References: Longuet-Higgins, M. S., R. W. Stewart, 1962. Radiation stress and mass transport in gravity waves, with an application to surf beats. J. Fluid Mech., 13, pp. 481-504. Symonds G., D.A. Huntley, A.J. Bowen, 1982. Two dimensional surf beat: long wave generation by a time-varying breakpoint. J. of Geoph. Res., 87(C), pp.492-498. Madsen P.A., Sorensen O.R., Shaffer H.A. 1997. Surf zone dynamics simulated by a Boussinesq type model. Coastal Engineering, 32, p. 255-287.

  13. Propulsion and Energetics Panel Working Group 15 on the Uniform Engine Test Programme

    DTIC Science & Technology

    1990-02-01

    earlier test of uniform aerodynamic models in wind tunnels under the auspices of the Fluid Dynamics Panel. A formal proposal was presented to the...this major new effort and members of the engine test community throughout AGARD were selected to serve on Working Group 15 along with PEP...STPA/MO 4 Mr J.R.Bednarsk; 4 Avenue de Ia Porte d’lssy PE-63 75015 Paris Naval Air Propulsion Center PO Box 7176 GERMANY Trenton. New Jersey 08628

  14. Respiratory function in wind instrument players.

    PubMed

    Zuskin, Eugenija; Mustajbegovic, Jadranka; Schachter, E N; Kern, Josipa; Vitale, Ksenija; Pucarin-Cvetkovic, Jasna; Chiarelli, A; Milosevic, M; Jelinic, Jagoda Doko

    2009-01-01

    The playing of wind instruments has been associated with changes in respiratory function. To investigate the effect of playing wind instruments on lung function and respiratory symptoms. The present study included 99 wind instrument players and a group of 41 string instrument players as a control from 3 major orchestras in Zagreb, Croatia. Data on chronic respiratory symptoms were recorded in all studied subjects. Lung function was measured in wind instrument players by recording maximum expiratory flow-volume curves. Wind instrument players demonstrated significantly higher prevalences of sinusitis, nasal catarrh and hoarseness compared to control musicians. One wind instrument player developed asthma associated with his work. Odds ratios for wind instrument players were significant for chronic cough, chronic phlegm and chronic bronchitis by smoking habit (p<0.05 or p<0.01) but not for length of employment. Ventilatory capacity data indicate that wind instrument players had significantly greater FEV1 (smokers and nonsmokers) as well as FEF50 (nonsmokers) (p<0.05) compared to predicted values. Regression analysis of pulmonary function tests in wind instrument players demonstrate a significant link between FEV1 and FEF50 and length of employment. Those wind instrument players with longer employment had the greatest increases in lung function. Our data suggest that musicians playing wind instruments may be susceptible to chronic upper airway symptoms. Interestingly wind instrument playing may be associated with higher than expected lung function parameters.

  15. Wind power forecasting: IEA Wind Task 36 & future research issues

    NASA Astrophysics Data System (ADS)

    Giebel, G.; Cline, J.; Frank, H.; Shaw, W.; Pinson, P.; Hodge, B.-M.; Kariniotakis, G.; Madsen, J.; Möhrlen, C.

    2016-09-01

    This paper presents the new International Energy Agency Wind Task 36 on Forecasting, and invites to collaborate within the group. Wind power forecasts have been used operatively for over 20 years. Despite this fact, there are still several possibilities to improve the forecasts, both from the weather prediction side and from the usage of the forecasts. The new International Energy Agency (IEA) Task on Forecasting for Wind Energy tries to organise international collaboration, among national meteorological centres with an interest and/or large projects on wind forecast improvements (NOAA, DWD, MetOffice, met.no, DMI,...), operational forecaster and forecast users. The Task is divided in three work packages: Firstly, a collaboration on the improvement of the scientific basis for the wind predictions themselves. This includes numerical weather prediction model physics, but also widely distributed information on accessible datasets. Secondly, we will be aiming at an international pre-standard (an IEA Recommended Practice) on benchmarking and comparing wind power forecasts, including probabilistic forecasts. This WP will also organise benchmarks, in cooperation with the IEA Task WakeBench. Thirdly, we will be engaging end users aiming at dissemination of the best practice in the usage of wind power predictions. As first results, an overview of current issues for research in short-term forecasting of wind power is presented.

  16. First Scientific Working Group Meeting of Airborne Doppler Lidar Wind Velocity Measurement Program

    NASA Technical Reports Server (NTRS)

    Kaufman, J. W. (Editor)

    1980-01-01

    The purpose of the first scientific working group meeting was fourfold: (1) to identify flight test options for engineering verification of the MSFC Doppler Lidar; (2) to identify flight test options for gathering data for scientific/technology applications; (3) to identify additional support equipment needed on the CV 990 aircraft for the flight tests; and (4) to identify postflight data processing and data sets requirements. The working group identified approximately ten flight options for gathering data on atmospheric dynamics processes, including turbulence, valley breezes, and thunderstorm cloud anvil and cold air outflow dynamics. These test options will be used as a basis for planning the fiscal year 1981 tests of the Doppler Lidar system.

  17. Energy 101: Wind Turbines - 2014 Update

    ScienceCinema

    None

    2018-05-11

    See how wind turbines generate clean electricity from the power of wind. The video highlights the basic principles at work in wind turbines, and illustrates how the various components work to capture and convert wind energy to electricity. This updated version also includes information on the Energy Department's efforts to advance offshore wind power. Offshore wind energy footage courtesy of Vestas.

  18. Perceived Risk and Response to the Wind Turbine Ice Throw Hazard: Comparing Community Stakeholders and Operations and Maintenance Personnel in Two Regions of Texas

    NASA Astrophysics Data System (ADS)

    Klaus, Greg

    Risk managers who work directly with wind energy know that accumulations of ice on wind turbine blades pose a substantial risk to wind farm employees and a lesser extent to the general public. However, overall, the hazards of ice throw are not generally known to the public, as there has not been a significant event in the U.S. which has drawn any media attention. As we continue to install more and more turbines, the number of people exposed greatly increases, and it is only a matter of time before the industry suffers a severe incident or even a fatality. Thus, the goals of this research were threefold: 1) to understand the extent to which two at-risk groups--community stakeholders as well as operations and maintenance personnel at wind farms might differ in their perceived levels of risk to the ice throw hazard; 2) to understand the degree to which community stakeholders and operations and maintenance might differ on choosing measures of protection for their affected areas; and 3) to improve safety by identifying protective measures that all stakeholders--community citizens, wind farm employees, contractors, and land owners--are willing to undertake to mitigate their risk against the ice throw hazard which includes adopting measures to reduce their own risk toward the hazard, as well as, their community's vulnerability toward the hazards and threat of ice throw from wind turbines. This research also makes a valuable contribution to the theoretical body of risk research with respect to a technological hazard for which little is known. This research found that the two groups differed on statistically significant variables for observed risk, perceived personal risk, risk to the community, levels of trust in safety leaders, best protective actions, and preferred warning systems; however, there was no statistical significance between the groups on perceived benefits of wind energy.

  19. Health effects of wind turbines in working environments - a scoping review.

    PubMed

    Freiberg, Alice; Schefter, Christiane; Girbig, Maria; Murta, Vanise Cleto; Seidler, Andreas

    2018-01-23

    Objectives The wind industry is a growing economic sector, yet there is no overview summarizing all exposures emanating from wind turbines throughout their life cycle that may pose a risk for workers` health. The aim of this scoping review was to survey and outline the body of evidence around the health effects of wind turbines in working environments in order to identify research gaps and to highlight the need for further research. Methods A scoping review with a transparent and systematic procedure was conducted using a comprehensive search strategy. Two independent reviewers conducted most of the review steps. Results Twenty articles of varying methodical quality were included. Our findings of the included studies indicate that substances used in rotor blade manufacture (epoxy resin and styrene) cause skin disorders, and respectively, respiratory ailments and eye complaints; exposure to onshore wind turbine noise leads to annoyance, sleep disorders, and lowered general health; finally working in the wind industry is associated with a considerable accident rate, resulting in injuries or fatalities. Conclusions Due to the different work activities during the life cycle of a wind turbine and the distinction between on- and offshore work, there are no specific overall health effects of working in the wind sector. Previous research has primarily focused on evaluating the effects of working in the wind industry on skin disorders, accidents, and noise consequences. There is a need for further research, particularly in studying the effect of wind turbine work on psychological and musculoskeletal disorders, work-related injury and accident rates, and health outcomes in later life cycle phases.

  20. Working Group on Ice Forces (4th) State-of-the-Art Report Held in Iowa City, Iowa in 1986.

    DTIC Science & Technology

    1989-02-01

    INTRODUCTION When droplets generated from sea water fly in cold air, cool and hit an object, spray ice will form. Spray ice causes hazards and...or spray generated by waves hitting the structure. Wind-generated spray forms as a result of direct whipping of wave crests by the wind and of bursting...Spray generated by waves hitting a structure, on the other hand, can result in very high liquid water contents. Values of up to 5 kgm -3 have been

  1. National Wind Tunnel Complex (NWTC)

    NASA Technical Reports Server (NTRS)

    1996-01-01

    The National Wind Tunnel Complex (NWTC) Final Report summarizes the work carried out by a unique Government/Industry partnership during the period of June 1994 through May 1996. The objective of this partnership was to plan, design, build and activate 'world class' wind tunnel facilities for the development of future-generation commercial and military aircraft. The basis of this effort was a set of performance goals defined by the National Facilities Study (NFS) Task Group on Aeronautical Research and Development Facilities which established two critical measures of improved wind tunnel performance; namely, higher Reynolds number capability and greater productivity. Initial activities focused upon two high-performance tunnels (low-speed and transonic). This effort was later descoped to a single multipurpose tunnel. Beginning in June 1994, the NWTC Project Office defined specific performance requirements, planned site evaluation activities, performed a series of technical/cost trade studies, and completed preliminary engineering to support a proposed conceptual design. Due to budget uncertainties within the Federal government, the NWTC project office was directed to conduct an orderly closure following the Systems Design Review in March 1996. This report provides a top-level status of the project at that time. Additional details of all work performed have been archived and are available for future reference.

  2. Stability Impact on Wake Development in Moderately Complex Terrain

    NASA Astrophysics Data System (ADS)

    Infield, D.; Zorzi, G.

    2017-05-01

    This paper uses a year of SCADA data from Whitelee Wind Farm near Glasgow to investigate wind turbine wake development in moderately complex terrain. Atmospheric stability measurements in terms of Richardson number from a met mast at an adjoining site have been obtained and used to assess the impact of stability on wake development. Considerable filtering of these data has been undertaken to ensure that all turbines are working normally and are well aligned with the wind direction. A group of six wind turbines, more or less in a line, have been selected for analysis, and winds within a 2 degree direction sector about this line are used to ensure, as far as possible, that all the turbines investigated are fully immersed in the wake/s of the upstream turbine/s. Results show how the terrain effects combine with the wake effects, with both being of comparable importance for the site in question. Comparison has been made with results from two commercial CFD codes for neutral stability, and reasonable agreement is demonstrated. Richardson number has been plotted against wind shear and turbulence intensity at a met mast on the wind farm that for the selected wind direction is not in the wake of any turbines. Good correlations are found indicating that the Richardson numbers obtained are reliable. The filtered data used for wake analysis were split according to Richardson number into two groups representing slightly stable to neutral, and unstable conditions. Very little difference in wake development is apparent. A greater difference can be observed when the data are separated simply by turbulence intensity, suggesting that, although turbulence intensity is correlated with stability, of the two it is the parameter that most directly impacts on wake development through mixing of ambient and wake flows.

  3. Wind at Work.

    ERIC Educational Resources Information Center

    Adams, Stephen

    1998-01-01

    Describes a project in which students create wind machines to harness the wind's power and do mechanical work. Demonstrates kinetic and potential energy conversions and makes work and power calculations meaningful. Students conduct hands-on investigations with their machines. (DDR)

  4. Wind power forecasting: IEA Wind Task 36 & future research issues

    DOE PAGES

    Giebel, G.; Cline, J.; Frank, H.; ...

    2016-10-03

    Here, this paper presents the new International Energy Agency Wind Task 36 on Forecasting, and invites to collaborate within the group. Wind power forecasts have been used operatively for over 20 years. Despite this fact, there are still several possibilities to improve the forecasts, both from the weather prediction side and from the usage of the forecasts. The new International Energy Agency (IEA) Task on Forecasting for Wind Energy tries to organise international collaboration, among national meteorological centres with an interest and/or large projects on wind forecast improvements (NOAA, DWD, MetOffice, met.no, DMI,...), operational forecaster and forecast users. The Taskmore » is divided in three work packages: Firstly, a collaboration on the improvement of the scientific basis for the wind predictions themselves. This includes numerical weather prediction model physics, but also widely distributed information on accessible datasets. Secondly, we will be aiming at an international pre-standard (an IEA Recommended Practice) on benchmarking and comparing wind power forecasts, including probabilistic forecasts. This WP will also organise benchmarks, in cooperation with the IEA Task WakeBench. Thirdly, we will be engaging end users aiming at dissemination of the best practice in the usage of wind power predictions. As first results, an overview of current issues for research in short-term forecasting of wind power is presented.« less

  5. Portable Wind Energy Harvesters for Low-Power Applications: A Survey

    PubMed Central

    Nabavi, Seyedfakhreddin; Zhang, Lihong

    2016-01-01

    Energy harvesting has become an increasingly important topic thanks to the advantages in renewability and environmental friendliness. In this paper, a comprehensive study on contemporary portable wind energy harvesters has been conducted. The electrical power generation methods of portable wind energy harvesters are surveyed in three major groups, piezoelectric-, electromagnetic-, and electrostatic-based generators. The paper also takes another view of this area by gauging the required mechanisms for trapping wind flow from ambient environment. In this regard, rotational and aeroelastic mechanisms are analyzed for the portable wind energy harvesting devices. The comparison between both mechanisms shows that the aeroelastic mechanism has promising potential in producing an energy harvester in smaller scale although how to maintain the resonator perpendicular to wind flow for collecting the maximum vibration is still a major challenge to overcome for this mechanism. Furthermore, this paper categorizes the previously published portable wind energy harvesters to macro and micro scales in terms of their physical dimensions. The power management systems are also surveyed to explore the possibility of improving energy conversion efficiency. Finally some insights and research trends are pointed out based on an overall analysis of the previously published works along the historical timeline. PMID:27438834

  6. Portable Wind Energy Harvesters for Low-Power Applications: A Survey.

    PubMed

    Nabavi, Seyedfakhreddin; Zhang, Lihong

    2016-07-16

    Energy harvesting has become an increasingly important topic thanks to the advantages in renewability and environmental friendliness. In this paper, a comprehensive study on contemporary portable wind energy harvesters has been conducted. The electrical power generation methods of portable wind energy harvesters are surveyed in three major groups, piezoelectric-, electromagnetic-, and electrostatic-based generators. The paper also takes another view of this area by gauging the required mechanisms for trapping wind flow from ambient environment. In this regard, rotational and aeroelastic mechanisms are analyzed for the portable wind energy harvesting devices. The comparison between both mechanisms shows that the aeroelastic mechanism has promising potential in producing an energy harvester in smaller scale although how to maintain the resonator perpendicular to wind flow for collecting the maximum vibration is still a major challenge to overcome for this mechanism. Furthermore, this paper categorizes the previously published portable wind energy harvesters to macro and micro scales in terms of their physical dimensions. The power management systems are also surveyed to explore the possibility of improving energy conversion efficiency. Finally some insights and research trends are pointed out based on an overall analysis of the previously published works along the historical timeline.

  7. Implementing Machine Learning in the PCWG Tool

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Clifton, Andrew; Ding, Yu; Stuart, Peter

    The Power Curve Working Group (www.pcwg.org) is an ad-hoc industry-led group to investigate the performance of wind turbines in real-world conditions. As part of ongoing experience-sharing exercises, machine learning has been proposed as a possible way to predict turbine performance. This presentation provides some background information about machine learning and how it might be implemented in the PCWG exercises.

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Giebel, G.; Cline, J.; Frank, H.

    Here, this paper presents the new International Energy Agency Wind Task 36 on Forecasting, and invites to collaborate within the group. Wind power forecasts have been used operatively for over 20 years. Despite this fact, there are still several possibilities to improve the forecasts, both from the weather prediction side and from the usage of the forecasts. The new International Energy Agency (IEA) Task on Forecasting for Wind Energy tries to organise international collaboration, among national meteorological centres with an interest and/or large projects on wind forecast improvements (NOAA, DWD, MetOffice, met.no, DMI,...), operational forecaster and forecast users. The Taskmore » is divided in three work packages: Firstly, a collaboration on the improvement of the scientific basis for the wind predictions themselves. This includes numerical weather prediction model physics, but also widely distributed information on accessible datasets. Secondly, we will be aiming at an international pre-standard (an IEA Recommended Practice) on benchmarking and comparing wind power forecasts, including probabilistic forecasts. This WP will also organise benchmarks, in cooperation with the IEA Task WakeBench. Thirdly, we will be engaging end users aiming at dissemination of the best practice in the usage of wind power predictions. As first results, an overview of current issues for research in short-term forecasting of wind power is presented.« less

  9. The New WindForS Wind Energy Test Site in Southern Germany

    NASA Astrophysics Data System (ADS)

    Clifton, A. J.

    2017-12-01

    Wind turbines are increasingly being installed in complex terrain where patchy landcover, forestry, steep slopes, and complex regional and local atmospheric conditions lead to major challenges for traditional numerical weather prediction methods. In this presentation, the new WindForS complex terrain test site will be introduced. WindForS is a southern Germany-based research consortium of more than 20 groups at higher education and research institutes, with strong links to regional government and industry. The new test site will be located in the hilly, forested terrain of the Swabian Alps between Stuttgart and Germany, and will consist of two wind turbines with four meteorological towers. The test site will be used for accompanying ecological research and will also have mobile eddy covariance measurement stations as well as bird and bat monitoring systems. Seismic and noise monitoring systems are also planned. The large number of auxiliary measurements at this facility are intended to allow the complete atmosphere-wind turbine-environment-people system to be characterized. This presentation will show some of the numerical weather prediction work and measurements done at the site so far, and inform the audience about WindForS' plans for the future. A major focus of the presentation will be on opportunities for collaboration through field campaigns or model validation.

  10. The influence of wind resistance in running and walking and the mechanical efficiency of work against horizontal or vertical forces

    PubMed Central

    Pugh, L. G. C. E.

    1971-01-01

    1. O2 intakes were determined on subjects running and walking at various constant speeds, (a) against wind of up to 18·5 m/sec (37 knots) in velocity, and (b) on gradients ranging from 2 to 8%. 2. In running and walking against wind, O2 intakes increased as the square of wind velocity. 3. In running on gradients the relation of O2 intake and lifting work was linear and independent of speed. In walking on gradients the relation was linear at work rates above 300 kg m/min, but curvilinear at lower work rates. 4. In a 65 kg athlete running at 4·45 m/sec (marathon speed) V̇O2 increased from 3·0 l./min with minimal wind to 5·0 l./min at a wind velocity of 18·5 m/sec. The corresponding values for a 75 kg subject walking at 1·25 m/sec were 0·8 l./min with minimal wind and 3·1 l./min at a wind velocity of 18·5 m/sec. 5. Direct measurements of wind pressure on shapes of similar area to one of the subjects yielded higher values than those predicted from the relation of wind velocity and lifting work at equal O2 intakes. Horizontal work against wind was more efficient than vertical work against gravity. 6. The energy cost of overcoming air resistance in track running may be 7·5% of the total energy cost at middle distance speed and 13% at sprint speed. Running 1 m behind another runner virtually eliminated air resistance and reduced V̇O2 by 6·5% at middle distance speed. PMID:5574828

  11. Interaction Between the Atmospheric Boundary Layer and Wind Energy: From Continental-Scale to Turbine-Scale

    NASA Astrophysics Data System (ADS)

    St. Martin, Clara Mae

    Wind turbines and groups of wind turbines, or "wind plants", interact with the complex and heterogeneous boundary layer of the atmosphere. We define the boundary layer as the portion of the atmosphere directly influenced by the surface, and this layer exhibits variability on a range of temporal and spatial scales. While early developments in wind energy could ignore some of this variability, recent work demonstrates that improved understanding of atmosphere-turbine interactions leads to the discovery of new ways to approach turbine technology development as well as processes such as performance validation and turbine operations. This interaction with the atmosphere occurs at several spatial and temporal scales from continental-scale to turbine-scale. Understanding atmospheric variability over continental-scales and across plants can facilitate reliance on wind energy as a baseload energy source on the electrical grid. On turbine scales, understanding the atmosphere's contribution to the variability in power production can improve the accuracy of power production estimates as we continue to implement more wind energy onto the grid. Wind speed and directional variability within a plant will affect wind turbine wakes within the plants and among neighboring plants, and a deeper knowledge of these variations can help mitigate effects of wakes and possibly even allow the manipulation of these wakes for increased production. Herein, I present the extent of my PhD work, in which I studied outstanding questions at these scales at the intersections of wind energy and atmospheric science. My work consists of four distinct projects. At the coarsest scales, I analyze the separation between wind plant sites needed for statistical independence in order to reduce variability for grid-integration of wind. At lower wind speeds, periods of unstable and more turbulent conditions produce more power than periods of stable and less turbulent conditions, while at wind speeds closer to rated wind speed, periods of unstable and more turbulent conditions produce less power than periods of stable and less turbulent conditions. Using these new, stability- and turbulence-specific power curves to calculate annual energy production (AEP) estimates results in smaller AEPs than if calculated using no stability and turbulence filters, which could have implications for manufacturers and operators. In my third project, I address the problem of expensive power production validation. Rather than erecting towers to provide upwind wind measurements, I explore the utility of using nacelle-mounted anemometers for power curve verification studies. I calculate empirical nacelle transfer functions (NTFs) with upwind tower and turbine measurements. The fifth-order and second-order NTFs show a linear relationship between upwind wind speed and nacelle wind speed at wind speeds less than about 9 m s-1 , but this relationship becomes non-linear at wind speeds higher than about 9 m s-1. The use of NTFs results in AEPs within 1 % of an AEP using upwind wind speeds. Additionally, during periods of unstable conditions as well as during more turbulent conditions, the nacelle-mounted anemometer underestimates the upwind wind speed more than during periods of stable conditions and less turbulence conditions at some wind speed bins below rated speed. Finally, in my fourth project, I consider spatial scales on the order of a wind plant. Using power production data from over 300 turbines from four neighboring wind farms in the western US along with simulations using the Weather Research and Forecasting model's Wind Farm Parameterization (WRF-WFP), I investigate the advantage of using the WFP to simulate wakes. During this case, winds from the west and north-northwest range from about 5 to 11 m s-1. A down-ramp occurs in this case study, which WRF predicts too early. The early prediction of the down-ramp likely affects the error in WRF-predicted power, the results of which show exaggerated wake effects. While these projects span a range of spatio-temporal scales, a unifying theme is the important aspect of atmospheric variation on wind power production, wind power production estimates, and means for facilitating the integration of wind-generated electricity into power grids. Future work, such as universal NTFs for sites with similar characteristics, NTFs for waked turbines, or the deployment of lidars on turbine nacelles for operation purposes, should continue to study the mutually-important interconnections between these two fields. (Abstract shortened by ProQuest.).

  12. Winds of Revolution Sweep through Science Education.

    ERIC Educational Resources Information Center

    Krieger, James

    1990-01-01

    Described is the status of science education reform in 1990. Different groups working on change, demographic trends in the US, student anecdotes, lab operations, the role of Sigma Xi, goals set by the state governors, industry efforts, and programs for the improvement of middle school teachers are discussed. (CW)

  13. Feng shui And Emotional Response in the Critical care Environment (FARCE) study.

    PubMed

    Charles, R; Glover, S; Bauchmüller, K; Wood, D

    2017-12-01

    The aim of this study was to investigate the relationship between nursing staff emotions and their surrounding environment, using the ancient system of feng shui. Two orientations of critical care bed spaces (wind and water groups, respectively) were mapped using a western bagua. Energy or 'chi' scores for nine emotions were calculated based on the positive or negative flow of chi in each of the two groups. During a two-week period, nursing staff were allocated to work in a bed space in either the wind or water groups; nursing staff who were not allocated to a study bed space acted as a control group. Participating nursing staff completed a questionnaire, ranking nine emotional states and their overall inner harmony, using a 11-point chi scale. In total, 108 questionnaires were completed. Critical bed space orientation according to feng shui principles was not related to nurse-reported chi scores or inner harmony (p > 0.05 for all measurements). There was also poor correlation between the bagua-predicted and reported chi scores for both the wind and water groups (R 2  = 0.338 and 0.093, respectively). The use of feng shui to guide the layout of critical care bed spaces does not improve the emotional well-being of nursing staff. © 2017 The Association of Anaesthetists of Great Britain and Ireland.

  14. The space shuttle payload planning working groups. Volume 5: Solar physics

    NASA Technical Reports Server (NTRS)

    1973-01-01

    The findings of the Solar Physics working group of the space shuttle payload planning activity are presented. The areas to be investigated by the solar physics experiments are: (1) the production of mechanical energy in the subphotospheric layers and its transport and dissipation in the upper layers of the atmosphere, (2) the mass flux from the subphotospheric layers into the chromosphere and corona and beyond the solar wind, (3) solar activity and its relationship to magnetic fields, and (4) the production of solar flares. The approach to be followed in conducting the experiments and the equipment required are defined.

  15. Rapid Near-inertial Internal Wave Group Propagation Through the Transition Layer from Float and Glider Observations in the Bay of Bengal

    NASA Astrophysics Data System (ADS)

    Johnston, S.; Rudnick, D. L.; Sherman, J. T.

    2016-02-01

    Two Spray gliders and 1 SOLO-II float were deployed in 2013 and 2014 as components of ONR's Air-Sea Interactions in the Northern Indian Ocean (ASIRI) experiment. Shallow (10-50 m) salinity-controlled mixed layers in the Bay of Bengal isolate the rest of the deeper isothermal layer and ocean interior from winds. The transition layer is a deeper stratification maximum (20-100 m), which separates the upper ocean from the interior. Downward near-inertial internal wave (NIW) groups are observed here in potential density fluctuations and can rapidly (a few inertial periods) transfer energy out of the mixed layer into the stratified interior. (Inertial periods are T = 2*pi/f = 2 - 3 days from 9 - 17°N, where f is the Coriolis frequency.) When isopycnals shoal at fronts, the transition layer is brought closer to the mixed layer allowing for faster downward group speed due to the higher stratification. With about 10 inertial wind events in the NCEP reanalysis over the observation period of about 21 weeks, we find 3 NIW groups with clear downward energy (upward phase) propagation into the interior. The groups reach 200 m within 2-3 T and have vertical wavelengths of about 200 m. This implies horizontal wavelengths of about 200 km if the waves have a frequency of 1.1f. This horizontal wavelength and propagation time scale appear consistent with surface wind forcing correlation scales from 3-day highpassed wind products and decay estimates from surface drifters and theory (Park et al., 2009). Our results extend this previous work by making subsurface observations and measuring further equatorward. The mesoscale appears to mediate: (a) the conversion from mixed layer inertial oscillations into propagating NIW and (b) NIW propagation into the interior.

  16. Wind for Schools: Developing Educational Programs to Train the Next Generation of Wind Energy Experts (Poster)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baring-Gould, I.; Flowers, L.; Kelly, M.

    2009-05-01

    As the world moves toward a vision of expanded wind energy, the industry is faced with the challenges of obtaining a skilled workforce and addressing local wind development concerns. Wind Powering America's Wind for Schools Program works to address these issues. The program installs small wind turbines at community "host" schools while developing wind application centers at higher education institutions. Teacher training with interactive and interschool curricula is implemented at each host school, while students at the universities assist in implementing the host school systems while participating in other wind course work. This poster provides an overview of the program'smore » objectives, goals, approach, and results.« less

  17. Sri Lanka Wind Farm Analysis and Site Selection Assistance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Young, M.; Vilhauer, R.

    2003-08-01

    The United States Department of Energy (DOE), through the National Renewable Energy Laboratory (NREL), has been working in partnership with the U.S. Agency for International Development (USAID) in an on-going process to quantify the Sri Lanka wind energy potential and foster wind energy development. Work to date includes completion of the NREL wind atlas for Sri Lanka. In addition, the Ceylon Electricity Board (CEB) has conducted a wind resource assessment of several areas of the country and has successfully completed and is currently operating a 3-MW pilot wind project. A review of the work completed to date indicates that additionalmore » activities are necessary to provide Sri Lanka with the tools necessary to identify the best wind energy development opportunities. In addition, there is a need to identify key policy, regulatory, business and infrastructure issues that affect wind energy development and to recommend steps to encourage and support wind power development and investment.« less

  18. Dimensional Analysis on Forest Fuel Bed Fire Spread.

    PubMed

    Yang, Jiann C

    2018-01-01

    A dimensional analysis was performed to correlate the fuel bed fire rate of spread data previously reported in the literature. Under wind condition, six pertinent dimensionless groups were identified, namely dimensionless fire spread rate, dimensionless fuel particle size, fuel moisture content, dimensionless fuel bed depth or dimensionless fuel loading density, dimensionless wind speed, and angle of inclination of fuel bed. Under no-wind condition, five similar dimensionless groups resulted. Given the uncertainties associated with some of the parameters used to estimate the dimensionless groups, the dimensionless correlations using the resulting dimensionless groups correlate the fire rates of spread reasonably well under wind and no-wind conditions.

  19. Calibration of the Flow in the Test Section of the Research Wind Tunnel at DST Group

    DTIC Science & Technology

    2015-10-01

    calibration of the flow in the test section of the Research Wind Tunnel at DST Group. The calibration was performed to establish the flow quality and to...of the Flow in the Test Section of the Research Wind Tunnel at DST Group Executive Summary The Defence Science and Technology Group (DST

  20. The answer is blowing in the wind: free-flying honeybees can integrate visual and mechano-sensory inputs for making complex foraging decisions.

    PubMed

    Ravi, Sridhar; Garcia, Jair E; Wang, Chun; Dyer, Adrian G

    2016-11-01

    Bees navigate in complex environments using visual, olfactory and mechano-sensorial cues. In the lowest region of the atmosphere, the wind environment can be highly unsteady and bees employ fine motor-skills to enhance flight control. Recent work reveals sophisticated multi-modal processing of visual and olfactory channels by the bee brain to enhance foraging efficiency, but it currently remains unclear whether wind-induced mechano-sensory inputs are also integrated with visual information to facilitate decision making. Individual honeybees were trained in a linear flight arena with appetitive-aversive differential conditioning to use a context-setting cue of 3 m s -1 cross-wind direction to enable decisions about either a 'blue' or 'yellow' star stimulus being the correct alternative. Colour stimuli properties were mapped in bee-specific opponent-colour spaces to validate saliency, and to thus enable rapid reverse learning. Bees were able to integrate mechano-sensory and visual information to facilitate decisions that were significantly different to chance expectation after 35 learning trials. An independent group of bees were trained to find a single rewarding colour that was unrelated to the wind direction. In these trials, wind was not used as a context-setting cue and served only as a potential distracter in identifying the relevant rewarding visual stimuli. Comparison between respective groups shows that bees can learn to integrate visual and mechano-sensory information in a non-elemental fashion, revealing an unsuspected level of sensory processing in honeybees, and adding to the growing body of knowledge on the capacity of insect brains to use multi-modal sensory inputs in mediating foraging behaviour. © 2016. Published by The Company of Biologists Ltd.

  1. Monsoon Winds to the "Land of Gold."

    ERIC Educational Resources Information Center

    California Univ., Berkeley. Office of Resources for International and Area Studies.

    This integrated unit, intended for use with sixth or seventh graders, introduces students to the trading networks and geographic factors that influenced the maritime spice trade from southeast Asia to the Roman Empire and Han China during the period 100 B.C. to 100 A.D. The unit is designed so that students work in cooperative groups in a series…

  2. Integrating social science into forestry in the wildland/urban interface

    Treesearch

    Jeffrey J. Brooks; Hannah Brenkert; Judy E. Serby; Joseph G. Champ; Tony Simons; Daniel R. Williams

    2006-01-01

    A different kind of storm--neither fire nor wind--brought 60 forestry practitioners who work in wildfire risk prevention and several social science researchers together near Lyons, CO. Brainstorm. This unique retreat--a meeting of the minds--commingled these two groups to share and tackle ideas concerning social issues that shape decisions and behaviors regarding...

  3. Computational examination of utility scale wind turbine wake interactions

    DOE PAGES

    Okosun, Tyamo; Zhou, Chenn Q.

    2015-07-14

    We performed numerical simulations of small, utility scale wind turbine groupings to determine how wakes generated by upstream turbines affect the performance of the small turbine group as a whole. Specifically, various wind turbine arrangements were simulated to better understand how turbine location influences small group wake interactions. The minimization of power losses due to wake interactions certainly plays a significant role in the optimization of wind farms. Since wind turbines extract kinetic energy from the wind, the air passing through a wind turbine decreases in velocity, and turbines downstream of the initial turbine experience flows of lower energy, resultingmore » in reduced power output. Our study proposes two arrangements of turbines that could generate more power by exploiting the momentum of the wind to increase velocity at downstream turbines, while maintaining low wake interactions at the same time. Furthermore, simulations using Computational Fluid Dynamics are used to obtain results much more quickly than methods requiring wind tunnel models or a large scale experimental test.« less

  4. Simulating wind energy resources with mesoscale models: Intercomparison of state-of-the-art models over Northern Europe

    NASA Astrophysics Data System (ADS)

    Hahmann, A. N.

    2015-12-01

    Mesoscale models are increasingly being used to estimate wind conditions to identify perspective areas and sites where to develop wind farm projects. Mesoscale models are useful because they give information over extensive areas with various terrain complexities where measurements are scarce and measurement campaigns costly. Various mesoscale models and families of mesoscale models are being used, with thousands of setup options. Since long-term integrations are expensive and tedious to carry out, only limited comparisons exist. We have carried out a blind benchmarking study to evaluate the capabilities of mesoscale models used in wind energy to estimate site wind conditions: to highlight common issues on mesoscale modeling of wind conditions on sites with different characteristics, and to identify gaps and strengths of models and understand the root conditions for further evaluating uncertainties. Three experimental sites with tall mast measurements were selected: FINO3 (offshore), Høvsøre (coastal), and Cabauw (land-based). The participants were asked to provide hourly time series of wind speed and direction, temperature, etc., at various heights for 2011. The methods used were left to the choice of the participants, but they were asked for a detailed description of their model and many other parameters (e.g., horizontal and vertical resolution, model parameterizations, surface roughness length) that could be used to group the models and interpret the results of the intercomparison. The analysis of the time series includes comparison to observations, summarized with well-known measures such as biases, RMSE, correlations, and of sector-wise statistics, and the temporal spectra. The statistics were grouped by the models, their spatial resolution, forcing data, various integration methods, etc. The results show high fidelity of the various entries in simulating the wind climate at the offshore and coastal site. Over land and the statistics of other derived fields (e.g. wind shear distributions) show much less similarities among the models and with the observations. Cloud computing now allows the use of mesoscale models by non-experts for site assessment. This tool is very useful and powerful, but users must be aware of the different issues that might be encountered in working with different setups.

  5. Wind power live! An interactive exhibit and related programs about wind generated energy at the Science Museum of Minnesota. Final performance report, February 1, 1995--September 30, 1996

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hamilton, P.

    The final performance report for the Wind Power Live! museum exhibit summarizes the goals and outcomes for the project. Project goals included: (1) help museum visitors understand why wind is being considered as a significant energy source; (2) enable visualization of the dynamics and power output of turbines; (3) exhibit a working wind turbine; (4) showcase wind as a technological success story; (5) consider the environmental costs and benefits of wind energy; (6) examine the economics of wind power, and (7) explain some of the limits to wind power as a commercial energy source. The methods of meeting the projectmore » goals through the museum exhibit are briefly outlined in the report. Goal number three, to introduce a working wind turbine, was dropped from the final project.« less

  6. [Evaluation of the reliability of freight elevator operators].

    PubMed

    Gosk, A; Borodulin-Nadzieja, L; Janocha, A; Salomon, E

    1991-01-01

    The study involved 58 workers employed at winding machines. Their reliability was estimated from the results of psychomotoric test precision, condition of the vegetative nervous system, and from the results of psychological tests. The tests were carried out at the laboratory and at the workplaces, with all distractive factors and functional connection of the work process present. We have found that the reliability of the workers may be affected by a variety of factors. Among the winding machine operators, work monotony can lead to "monotony syndrome". Among the signalists , the appreciation of great responsibility can lead to unpredictable and non-adequate reactions. From both groups, persons displaying a lower-than-average precision were isolated. All those persons demonstrated a reckless attitude and the opinion of their superiors about them was poor. Those persons constitute potential risk for the reliable operation of the discussed team.

  7. Mars Technologies Spawn Durable Wind Turbines

    NASA Technical Reports Server (NTRS)

    Bubenheim, David L.

    2013-01-01

    Sometimes referred to as regenerative life support systems, the concept includes an enclosed self-sufficient habitat that can independently support life for years on end. Such a system aims not only to produce its own food and water but to purify air and convert waste into useful byproducts. In the early 1990s, NASA was planning for an extended stay on Mars, and Bubenheim and his Ames colleagues were concentrating efforts on creating a complete ecological system to sustain human crewmembers during their time on the Red Planet. The main barrier to developing such a system, he says, is energy. Mars has no power plants, and a regenerative system requires equipment that runs on electricity to do everything from regulating humidity in the atmosphere to monitoring the quality of recycled water. The Ames group started looking at how to best make power on a planet that is millions of miles away from Earth and turned to a hybrid concept combining wind and solar power technologies. The reason was that Mars experiences frequent dust storms that can block nearly all sunlight. When theres a dust storm and the wind is blowing, the wind system could be the dominant power source. When the wind is not blowing and the sun is out, photovoltaics could be the dominant source, says Bubenheim.To develop and test the wind power technology, Ames turned to a remote, harsh environment here on Earth: the South Pole. The South Pole was a really good analog for Mars, says Bubenheim. The technology features for going to Mars were the same technology features needed to make something work at the South Pole.Around the same time that NASA started investigating energy technologies for the Red Planet, the National Science Foundation (NSF) was working on a redesign of their station at the South Pole. To power its operations, NSF used fuel that it flew to the remote location, but the Foundation recognized the benefits of also using onsite renewable energy technologies. In the winter they have small crews and their power requirements are less, says Bubenheim. In the summers, they bring in larger groups and photovoltaics could supply a lot of power. Using renewable energy technology could be a way of reducing the amount of fuel they have to fly in.Technology TransferTo advance wind turbine technology to meet the requirements of extremely harsh environments like that on Mars, Ames partnered with NSF and the Department of Energy. It was clear that a lot of the same features were also desirable for the cold regions of the Earth, says Bubenheim. NASA took the leadership on the team because we had the longest-term technology a Mars turbine. Years before, NSF had worked with a company called Northern Power Systems (NPS), based in Barre, Vermont, to deploy a 3-kilowatt wind turbine on Black Island off the coast of Antarctica.Sometimes referred to as regenerative life support systems, the concept includes an enclosed self-sufficient habitat that can independently support life for years on end. Such a system aims not only to produce its own food and water but to purify air and convert waste into useful byproducts. In the early 1990s, NASA was planning for an extended stay on Mars, and Bubenheim and his Ames colleagues were concentrating efforts on creating a complete ecological system to sustain human crewmembers during their time on the Red Planet. The main barrier to developing such a system, he says, is energy. Mars has no power plants, and a regenerative system requires equipment that runs on electricity to do everything from regulating humidity in the atmosphere to monitoring the quality of recycled water. The Ames group started looking at how to best make power on a planet that is millions of miles away from Earth and turned to a hybrid concept combining wind and solar power technologies. The reason was that Mars experiences frequent dust storms that can block nearly all sunlight. When there's a dust storm and the wind is blowing, the wind system could be the dominant power source. When the wind is not blowing and the sun is out, photovoltaics could be the dominant source, says Bubenheim.To develop and test the wind power technology, Ames turned to a remote, harsh environment here on Earth: the South Pole. The South Pole was a really good analog for Mars, says Bubenheim. The technology features for going to Mars were the same technology features needed to make something work at the South Pole.Around the same time that NASA started investigating energy technologies for the Red Planet, the National Science Foundation (NSF) was working on a redesign of their station at the South Pole. To power its operations, NSF used fuel that it flew to the remote location, but the Foundation recognized the benefits of also using onsite renewable energy technologies. In the winter they have small crews and their power requirements are less, says Bubenheim. In the summers, they bring in larger groups and photovoltaics could supply a lot of power. Using renewable energy technology could be a way of reducing the amount of fuel they have to fly in.Technology Transfer To advance wind turbine technology to meet the requirements of extremely harsh environments like that on Mars, Ames partnered with NSF and the Department of Energy. It was clear that a lot of the same features were also desirable for the cold regions of the Earth, says Bubenheim. NASA took the leadership on the team because we had the longest-term technology a Mars turbine.

  8. Wind-forced modulations in crossing sea states over infinite depth water

    NASA Astrophysics Data System (ADS)

    Debsarma, Suma; Senapati, Sudipta; Das, K. P.

    2014-09-01

    The present work is motivated by the work of Leblanc ["Amplification of nonlinear surface waves by wind," Phys. Fluids 19, 101705 (2007)] which showed that Stokes waves grow super exponentially under fair wind as a result of modulational instability. Here, we have studied the effect of wind in a situation of crossing sea states characterized by two obliquely propagating wave systems in deep water. It is found that the wind-forced uniform wave solution in crossing seas grows explosively with a super-exponential growth rate even under a steady horizontal wind flow. This is an important piece of information in the context of the formation of freak waves.

  9. Investigation of cloud/water vapor motion winds from geostationary satellite

    NASA Technical Reports Server (NTRS)

    Nieman, Steve; Velden, Chris; Hayden, Kit; Menzel, Paul

    1993-01-01

    Work has been primarily focussed on three tasks: (1) comparison of wind fields produced at MSFC with the CO2 autowind/autoeditor system newly installed in NESDIS operations; (2) evaluation of techniques for improved tracer selection through use of cloud classification predictors; and (3) development of height assignment algorithm with water vapor channel radiances. The contract goal is to improve the CIMSS wind system by developing new techniques and assimilating better existing techniques. The work reported here was done in collaboration with the NESDIS scientists working on the operational winds software, so that NASA funded research can benefit NESDIS operational algorithms.

  10. Improvement of background solar wind predictions

    NASA Astrophysics Data System (ADS)

    Dálya, Zsuzsanna; Opitz, Andrea

    2016-04-01

    In order to estimate the solar wind properties at any heliospheric positions propagation tools use solar measurements as input data. The ballistic method extrapolates in-situ solar wind observations to the target position. This works well for undisturbed solar wind, while solar wind disturbances such as Corotating Interaction Regions (CIRs) and Coronal Mass Ejections (CMEs) need more consideration. We are working on dedicated ICME lists to clean these signatures from the input data in order to improve our prediction accuracy. These ICME lists are created from several heliospheric spacecraft measurements: ACE, WIND, STEREO, SOHO, MEX and VEX. As a result, we are able to filter out these events from the time series. Our corrected predictions contribute to the investigation of the quiet solar wind and space weather studies.

  11. Wake characteristics of wind turbines in utility-scale wind farms

    NASA Astrophysics Data System (ADS)

    Yang, Xiaolei; Foti, Daniel; Sotiropoulos, Fotis

    2017-11-01

    The dynamics of turbine wakes is affected by turbine operating conditions, ambient atmospheric turbulent flows, and wakes from upwind turbines. Investigations of the wake from a single turbine have been extensively carried out in the literature. Studies on the wake dynamics in utility-scale wind farms are relatively limited. In this work, we employ large-eddy simulation with an actuator surface or actuator line model for turbine blades to investigate the wake dynamics in utility-scale wind farms. Simulations of three wind farms, i.e., the Horns Rev wind farm in Denmark, Pleasant Valley wind farm in Minnesota, and the Vantage wind farm in Washington are carried out. The computed power shows a good agreement with measurements. Analysis of the wake dynamics in the three wind farms is underway and will be presented in the conference. This work was support by Xcel Energy (RD4-13). The computational resources were provided by National Renewable Energy Laboratory.

  12. Effects of wind on background particle concentrations at truck freight terminals.

    PubMed

    Garcia, Ronald; Hart, Jaime E; Davis, Mary E; Reaser, Paul; Natkin, Jonathan; Laden, Francine; Garshick, Eric; Smith, Thomas J

    2007-01-01

    Truck freight terminals are predominantly located near highways and industrial facilities. This proximity to pollution sources, coupled with meteorological conditions and wind patterns, may affect occupational exposures to particles at these work locations. To understand this process, data from an environmental sampling study of particles at U.S. trucking terminals, along with weather and geographic maps, were analyzed to determine the extent to which the transportation of particles from local pollutant sources elevated observed occupational exposures at these locations. To help identify potential upwind sources, wind direction weighted averages and speed measurements were used to construct wind roses that were superimposed on overhead photos of the terminal and examined for upwind source activity. Statistical tests were performed on these "source" and "nonsource" directions to determine whether there were significant differences in observed particle levels between the two groups. Our results provide evidence that nearby upwind pollution sources significantly elevated background concentrations at only a few of the locations sampled, whereas the majority provided little to no evidence of a significant upwind source effect.

  13. Participatory support to farmers in improving safety and health at work: building WIND farmer volunteer networks in Viet Nam.

    PubMed

    Kawakami, Tsuyoshi; Van, Vhu Nhu; Theu, Nguyen Van; Khai, Ton That; Kogi, Kazutaka

    2008-10-01

    The government of Viet Nam places a high priority on upgrading the quality of farmers' lives. Providing adequate occupational safety and health (OSH) protection for all farmers is an important challenge. The Ministry of Labour, Invalids and Social Affairs (MOLISA) of Viet Nam trained WIND (Work Improvement in Neighbourhood Development) farmer volunteers. From 2004-2007, MOLISA in cooperation with ministries of health and agriculture trained 480 WIND farmer volunteers in selected 14 provinces. Trained farmer volunteers trained their neighbouring farmers and expanded their networks. The WIND training programme produced in Cantho, Viet Nam in 1996, was used as the core training methodology. The WIND action-checklist, good example photo-sheets, and other participatory training materials were designed for WIND farmer volunteers as practical training tools. The volunteers trained 7,922 farmers. The trained farmers implemented 28,508 improvements in materials handling, work posture, machine and electrical safety, working environments and control of hazardous chemicals, and welfare facilities. The provincial support committees organized follow-up workshops and strengthen the WIND farmer volunteer networks. The system of WIND farmer volunteers proved effective in extending practical OSH protection measures to farmers at grassroots level. The system of WIND farmer volunteers was adopted in the First National Programme on Labour Protection and OSH of Viet Nam as a practical means in OSH and is now further expanding within the framework of the National Programme.

  14. The power of positive and negative expectations to influence reported symptoms and mood during exposure to wind farm sound.

    PubMed

    Crichton, Fiona; Dodd, George; Schmid, Gian; Gamble, Greg; Cundy, Tim; Petrie, Keith J

    2014-12-01

    Wind farm developments have been hampered by claims that sound from wind turbines causes symptoms and negative health reports in nearby residents. As scientific reviews have failed to identify a plausible link between wind turbine sound and health effects, psychological expectations have been proposed as an explanation for health complaints. Building on recent work showing negative expectations can create symptoms from wind turbines, we investigated whether positive expectations can produce the opposite effect, in terms of a reduction in symptoms and improvements in reported health. 60 participants were randomized to either positive or negative expectation groups and subsequently exposed to audible wind farm sound and infrasound. Prior to exposure, negative expectation participants watched a DVD incorporating TV footage about health effects said to be caused by infrasound produced by wind turbines. In contrast, positive expectation participants viewed a DVD that outlined the possible therapeutic effects of infrasound exposure. During exposure to audible windfarm sound and infrasound, symptoms and mood were strongly influenced by the type of expectations. Negative expectation participants experienced a significant increase in symptoms and a significant deterioration in mood, while positive expectation participants reported a significant decrease in symptoms and a significant improvement in mood. The study demonstrates that expectations can influence symptom and mood reports in both positive and negative directions. The results suggest that if expectations about infrasound are framed in more neutral or benign ways, then it is likely reports of symptoms or negative effects could be nullified.

  15. Exploring the nearshore marine wind profile from field measurements and numerical hindcast

    NASA Astrophysics Data System (ADS)

    del Jesus, F.; Menendez, M.; Guanche, R.; Losada, I.

    2012-12-01

    Wind power is the predominant offshore renewable energy resource. In the last years, offshore wind farms have become a technically feasible source of electrical power. The economic feasibility of offshore wind farms depends on the quality of the offshore wind conditions compared to that of onshore sites. Installation and maintenance costs must be balanced with more hours and a higher quality of the available resources. European offshore wind development has revealed that the optimum offshore sites are those in which the distance from the coast is limited with high available resource. Due to the growth in the height of the turbines and the complexity of the coast, with interactions between inland wind/coastal orography and ocean winds, there is a need for field measurements and validation of numerical models to understand the marine wind profile near the coast. Moreover, recent studies have pointed out that the logarithmic law describing the vertical wind profile presents limitations. The aim of this work is to characterize the nearshore vertical wind profile in the medium atmosphere boundary layer. Instrumental observations analyzed in this work come from the Idermar project (www.Idermar.es). Three floating masts deployed at different locations on the Cantabrian coast provide wind measurements from a height of 20 to 90 meters. Wind speed and direction are measured as well as several meteorological variables at different heights of the profile. The shortest wind time series has over one year of data. A 20 year high-resolution atmospheric hindcast, using the WRF-ARW model and focusing on hourly offshore wind fields, is also analyzed. Two datasets have been evaluated: a European reanalysis with a ~15 Km spatial resolution, and a hybrid downscaling of wind fields with a spatial resolution of one nautical mile over the northern coast of Spain.. These numerical hindcasts have been validated based on field measurement data. Several parameterizations of the vertical wind profile are evaluated and, based on this work, a particular parameterization of the wind profile is proposed.

  16. Single phase two pole/six pole motor

    DOEpatents

    Kirschbaum, Herbert S.

    1984-01-01

    A single phase alternating current two pole/six pole motor is provided with a main stator winding having six coils disposed unequally around the periphery of the machine. These coils are divided into two groups. When these groups are connected such that their magnetomotive forces are additive, two pole motor operation results. When the polarity of one of the groups is then reversed, six pole motor operation results. An auxiliary stator winding which is similar to the main stator winding is displaced from the main stator winding by 90 electrical degrees on a two pole basis.

  17. MO and DA on the SWIE Instrument on the Wind Spacecraft

    NASA Technical Reports Server (NTRS)

    Lazarus, Alan J.

    2002-01-01

    The construction of the Faraday Cup portion of the SWIE instrument on the Wind spacecraft, participation in Mission Operations, and Data Analysis (MO and DA) of observations of the solar wind has been supported by a sequence of grants. This 'final' Report represents work done on Mission Operations and Data Analysis for the Faraday Cup portion of the SWE. The work reported here was supported under NASA Grant NAG5-7359 (OSP 6701100) from June 1998 to October 2001. It should be noted that this work is continuing under NASA Grant NAG-10915, and therefore this report is 'final' only in the sense that the Grant has changed its number; a future report will cover the entire period of work. We have two types of obligations under these contracts: (1) To provide and assure the validity of "Key Parameters" which describe the basic properties of the solar wind on a daily basis. We have provided our 92 second observations daily via plots and parameters available from our Web site: http://web.mit.edu/space/www/wind/wind.html (2). To carry out scientific studies based on our observations. To document the extent of our research, we are including below a list of publications and presentations related to this project. The observations from Wind have made a major contribution to the study of the solar wind, and have every indication of continuing to do so.

  18. Effect of leading-edge roughness on stability and transition of wind turbine blades

    NASA Astrophysics Data System (ADS)

    Kutz, Douglas; Freels, Justin; Hidore, John; White, Edward

    2011-11-01

    Over time, wind turbine blades erode due to impacts with sand and other debris. The resulting surface roughness degrades the blades' aerodynamic performance. Experimental studies conducted at the Texas A&M University Low-Speed Wind Tunnel examine roughness effects using a 2D NACA 63-418 airfoil with interchangeable leading edges of varying roughness at chord Reynolds numbers up to 3 . 0 ×106 . These data reveal decreased CL , max and increased CD , min as roughness increases. At very high roughness levels, even the lift curve slope is reduced. To better understand these findings and improve modeling of roughness effects, extensive boundary layer measurements including surface-mounted hotfilms and boundary-layer velocity profiles are used to assess how laminar-to-turbulent transition is promoted by roughness. As expected, roughness accelerates transition. Tollmien-Schlichting (TS) transition is observed only for a smooth leading edge while bypass transition is observed for the moderate and high roughness levels. Results are compared to N-factor transition predictions generated with software used by the wind industry. Predictions are successful for the smooth leading edge but even the low roughness level prevents correct transition prediction using TS-based methods. Support for this work by Vestas Technology Americas, Inc., is gratefully acknowledged as is the support of the wind-energy research group and the Low-Speed Wind Tunnel staff.

  19. Control strategies for wind farm power optimization: LES study

    NASA Astrophysics Data System (ADS)

    Ciri, Umberto; Rotea, Mario; Leonardi, Stefano

    2017-11-01

    Turbines in wind farms operate in off-design conditions as wake interactions occur for particular wind directions. Advanced wind farm control strategies aim at coordinating and adjusting turbine operations to mitigate power losses in such conditions. Coordination is achieved by controlling on upstream turbines either the wake intensity, through the blade pitch angle or the generator torque, or the wake direction, through yaw misalignment. Downstream turbines can be adapted to work in waked conditions and limit power losses, using the blade pitch angle or the generator torque. As wind conditions in wind farm operations may change significantly, it is difficult to determine and parameterize the variations of the coordinated optimal settings. An alternative is model-free control and optimization of wind farms, which does not require any parameterization and can track the optimal settings as conditions vary. In this work, we employ a model-free optimization algorithm, extremum-seeking control, to find the optimal set-points of generator torque, blade pitch and yaw angle for a three-turbine configuration. Large-Eddy Simulations are used to provide a virtual environment to evaluate the performance of the control strategies under realistic, unsteady incoming wind. This work was supported by the National Science Foundation, Grants No. 1243482 (the WINDINSPIRE project) and IIP 1362033 (I/UCRC WindSTAR). TACC is acknowledged for providing computational time.

  20. Lidar-Enhanced Wind Turbine Control: Past, Present, and Future

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Scholbrock, Andrew; Fleming, Paul; Schlipf, David

    The main challenges in harvesting energy from the wind arise from the unknown incoming turbulent wind field. Balancing the competing interests of reduction in structural loads and increasing energy production is the goal of a wind turbine controller to reduce the cost of producing wind energy. Conventional wind turbines use feedback methods to optimize these goals, reacting to wind disturbances after they have already impacted the wind turbine. Lidar sensors offer a means to provide additional inputs to a wind turbine controller, enabling new techniques to improve control methods, allowing a controller to actuate a wind turbine in anticipation ofmore » an incoming wind disturbance. This paper will look at the development of lidar-enhanced controls and how they have been used for various turbine load reductions with pitch actuation, as well as increased energy production with improved yaw control. Ongoing work will also be discussed to show that combining pitch and torque control using feedforward nonlinear model predictive control can lead to both reduced loads and increased energy production. Future work is also proposed on extending individual wind turbine controls to the wind plant level and determining how lidars can be used for control methods to further lower the cost of wind energy by minimizing wake impacts in a wind farm.« less

  1. Healthy offshore workforce? A qualitative study on offshore wind employees' occupational strain, health, and coping.

    PubMed

    Mette, Janika; Velasco Garrido, Marcial; Harth, Volker; Preisser, Alexandra M; Mache, Stefanie

    2018-01-23

    Offshore work has been described as demanding and stressful. Despite this, evidence regarding the occupational strain, health, and coping behaviors of workers in the growing offshore wind industry in Germany is still limited. The purpose of our study was to explore offshore wind employees' perceptions of occupational strain and health, and to investigate their strategies for dealing with the demands of offshore work. We conducted 21 semi-structured telephone interviews with employees in the German offshore wind industry. The interviews were transcribed and analyzed in a deductive-inductive approach following Mayring's qualitative content analysis. Workers generally reported good mental and physical health. However, they also stated perceptions of stress at work, fatigue, difficulties detaching from work, and sleeping problems, all to varying extents. In addition, physical health impairment in relation to offshore work, e.g. musculoskeletal and gastrointestinal complaints, was documented. Employees described different strategies for coping with their job demands. The strategies comprised of both problem and emotion-focused approaches, and were classified as either work-related, health-related, or related to seeking social support. Our study is the first to investigate the occupational strain, health, and coping of workers in the expanding German offshore wind industry. The results offer new insights that can be utilized for future research in this field. In terms of practical implications, the findings suggest that measures should be carried out aimed at reducing occupational strain and health impairment among offshore wind workers. In addition, interventions should be initiated that foster offshore wind workers' health and empower them to further expand on effective coping strategies at their workplace.

  2. Careers in Wind Energy

    ERIC Educational Resources Information Center

    Liming, Drew; Hamilton, James

    2011-01-01

    As a common form of renewable energy, wind power is generating more than just electricity. It is increasingly generating jobs for workers in many different occupations. Many workers are employed on wind farms: areas where groups of wind turbines produce electricity from wind power. Wind farms are frequently located in the midwestern, western, and…

  3. Clinical study of the hypothesis of endogenous collateral wind on acute coronary syndrome: a review.

    PubMed

    Wang, Xian; Zhang, Cong; Yang, Ran; Zhu, Haiyan; Zhao, Huaibing; Li, Xiaoming

    2014-01-01

    Acute Coronary Syndrome (ACS), is a serious threat to people's health, and life, and in recent years, the incidence has increased yearly. This study was to propose the hypothesis of "endogenous collateral wind" based on the patho-mechanism of thrombogenesis complicated by ruptured plaque on ACS, and the theory of traditional Chinese medicine. Through successful coronary angiography (CAG), and intravascular ultrasound (IVUS), patients with coronary artery disease were made the differential diagnosis such as blood stasis, blood stasis due to phlegm obstruction, and endogenous collateral wind. The levels of plasma inflammatory marker were measured to study on the characteristics of "endogenous collateral wind". Luo heng dripping pills with promoting blood circulation to expel wind-evil, and remove wetness were made based on the hypothesis of "endogenous collateral wind" on ACS. Patients with unstable angina were randomly divided into 3, groups based on therapeutic methods: conventional therapy group, Luo Heng dripping pills group and Tongxinluo caps. Differences among groups were compared. There were great changes in number and degree of coronary arteriostenosis confirmed by CAG, the types of ACC/AHA lesion and Levin lesion confirmed by CAG, remodeling index, positive or negative remodeling percentage measured by IVUS, the plasma levels of plasma inflammatory marker measured by ELLSA in the patients with endogenous collateral wind, compared with patients with blood stasis and blood stasis due to phlegm obstruction. The total effective rate of improved angina in Luo Heng dripping pills group was significantly higher than those in other two groups. The levels of plasma inflammatory marker were significantly lower in Luo Heng dripping pills group. There were some pathological basis which were found about the hypothesis of "endogenous collateral wind" on acute coronary syndrome. It provided evidences for patients with coronary artery disease treated by medicines with expelling evil-wind, and removing wetness.

  4. NREL Leads Wind Farm Modeling Research - Continuum Magazine | NREL

    Science.gov Websites

    ten 2-MW Bonus wind turbines. Photo provided by HC Sorensen, Middelgrunden Wind Turbine Cooperative ) has created complex computer modeling tools to improve wind turbine design and overall wind farm activity surrounding a multi-megawatt wind turbine. In addition to its work with Doppler LIDAR, the

  5. The Winding Valley of Grief: When a Dog Guide Retires or Dies

    ERIC Educational Resources Information Center

    Schneider, Katherine Standish

    2005-01-01

    Schools that train dog guides work hard to help their clients bond with their new partners, but during the initial training, little is said about the other end of the process, for example, when it is time to say good-bye. When people return for subsequent dogs, a grief group or individual counseling may be offered, but the focus remains on moving…

  6. Single phase two pole/six pole motor

    DOEpatents

    Kirschbaum, H.S.

    1984-09-25

    A single phase alternating current two pole/six pole motor is provided with a main stator winding having six coils disposed unequally around the periphery of the machine. These coils are divided into two groups. When these groups are connected such that their magnetomotive forces are additive, two pole motor operation results. When the polarity of one of the groups is then reversed, six pole motor operation results. An auxiliary stator winding which is similar to the main stator winding is displaced from the main stator winding by 90 electrical degrees on a two pole basis. 12 figs.

  7. Six pole/eight pole single-phase motor

    DOEpatents

    Kirschbaum, Herbert S.

    1984-01-01

    A single phase alternating current electric motor is provided with a main stator winding having two coil groups which are connected to form eight poles for eight-pole operation and to form six poles for six-pole operation. Each group contains four series connected coil elements with each element spanning approximately one-seventh of the periphery of the machine. The coil groups are spaced 180 mechanical degrees apart such that each end coil of one group overlaps one of the end coils of the other group. An auxiliary stator winding having two coil groups with the same relative angular displacement as the main stator winding coil groups is included.

  8. Six pole/eight pole single-phase motor

    DOEpatents

    Kirschbaum, H.S.

    1984-07-31

    A single phase alternating current electric motor is provided with a main stator winding having two coil groups which are connected to form eight poles for eight-pole operation and to form six poles for six-pole operation. Each group contains four series connected coil elements with each element spanning approximately one-seventh of the periphery of the machine. The coil groups are spaced 180 mechanical degrees apart such that each end coil of one group overlaps one of the end coils of the other group. An auxiliary stator winding having two coil groups with the same relative angular displacement as the main stator winding coil groups is included. 10 figs.

  9. Wind Sensing and Modeling | Grid Modernization | NREL

    Science.gov Websites

    Simulation at the turbine, wind plant, and regional scales for resource prospecting, resource assessment Sensing and Modeling Wind Sensing and Modeling NREL's wind sensing and modeling work supports the deployment of wind-based generation technologies for all stages of a plant's life, from resource estimates to

  10. Does the magnetic expansion factor play a role in solar wind acceleration?

    NASA Astrophysics Data System (ADS)

    Wallace, S.; Arge, C. N.; Pihlstrom, Y.

    2017-12-01

    For the past 25+ years, the magnetic expansion factor (fs) has been a parameter used in the calculation of terminal solar wind speed (vsw) in the Wang-Sheeley-Arge (WSA) coronal and solar wind model. The magnetic expansion factor measures the rate of flux tube expansion in cross section between the photosphere out to 2.5 solar radii (i.e., source surface), and is inversely related to vsw (Wang & Sheeley, 1990). Since the discovery of this inverse relationship, the physical role that fs plays in solar wind acceleration has been debated. In this study, we investigate whether fs plays a causal role in determining terminal solar wind speed or merely serves as proxy. To do so, we study pseudostreamers, which occur when coronal holes of the same polarity are near enough to one another to limit field line expansion. Pseudostreamers are of particular interest because despite having low fs, spacecraft observations show that solar wind emerging from these regions have slow to intermediate speeds of 350-550 km/s (Wang et al., 2012). In this work, we develop a methodology to identify pseudostreamers that are magnetically connected to satellites using WSA output produced with ADAPT input maps. We utilize this methodology to obtain the spacecraft-observed solar wind speed from the exact parcel of solar wind that left the pseudostreamer. We then compare the pseudostreamer's magnetic expansion factor with the observed solar wind speed from multiple spacecraft (i.e., ACE, STEREO-A & B, Ulysses) magnetically connected to the region. We will use this methodology to identify several cases ( 20) where spacecraft are magnetically connected to pseudostreamers, and perform a statistical analysis to determine the correlation of fs within pseudostreamers and the terminal speed of the solar wind emerging from them. This work will help determine if fs plays a physical role in the speed of solar wind originating from regions that typically produce slow wind. This work compliments previous case studies of solar wind originating from pseudostreamers (Riley et al., 2015, Riley & Luhmann 2012) and will contribute to identifying the physical properties of solar wind from these regions. Future work will explore the role of fs in modulating the fast solar wind and will involve a similar analysis for cases where spacecraft are deep within coronal holes.

  11. 75 FR 77654 - Notice of Intent To Prepare a Land Use Plan Amendment and an Environmental Impact Statement for...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-12-13

    ..., maintenance, and decommissioning of wind turbine generators and associated facilities necessary to... the Pattern Energy Group Ocotillo Express Wind Energy Project, Imperial County, CA AGENCY: Bureau of... Pattern Energy Group Ocotillo Express Wind Energy Project Draft EIR/EIS by any of the following methods...

  12. Analysis of Wind Turbine Simulation Models: Assessment of Simplified versus Complete Methodologies: Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Honrubia-Escribano, A.; Jimenez-Buendia, F.; Molina-Garcia, A.

    This paper presents the current status of simplified wind turbine models used for power system stability analysis. This work is based on the ongoing work being developed in IEC 61400-27. This international standard, for which a technical committee was convened in October 2009, is focused on defining generic (also known as simplified) simulation models for both wind turbines and wind power plants. The results of the paper provide an improved understanding of the usability of generic models to conduct power system simulations.

  13. Simulating the Reiner Gamma Lunar Swirl: Solar Wind Standoff Works!

    NASA Astrophysics Data System (ADS)

    Deca, Jan; Divin, Andrey; Lue, Charles; Ahmadi, Tara; Horányi, Mihály

    2017-04-01

    Discovered by early astronomers during the Renaissance, the Reiner Gamma formation is a prominent lunar surface feature. Observations have shown that the tadpole-shaped albedo marking, or swirl, is co-located with one of the strongest crustal magnetic anomalies on the Moon. The region therefore presents an ideal test case to constrain the kinetic solar wind interaction with lunar magnetic anomalies and its possible consequences for lunar swirl formation. All known swirls have been associated with magnetic anomalies, but the opposite does not hold. The evolutionary scenario of the lunar albedo markings has been under debate since the Apollo era. By coupling fully kinetic simulations with a surface vector mapping model based on Kaguya and Lunar Prospector magnetic field measurements, we show that solar wind standoff is the dominant process to have formed the lunar swirls. It is an ion-electron kinetic interaction mechanism that locally prevents weathering by solar wind ions and the subsequent formation of nanophase iron. The correlation between the surface weathering process and the surface reflectance is optimal when evaluating the proton energy flux, rather than the proton density or number flux. This is an important result to characterise the primary process for surface darkening. In addition, the simulated proton reflection rate is for the first time directly compared with in-orbit flux measurements from the SARA:SWIM ion sensor onboard the Chandrayaan-1 spacecraft. The agreement is found excellent. Understanding the relation between the lunar surface albedo features and the co-located magnetic anomaly is essential for our interpretation of the Moon's geological history, space weathering, and to evaluate future lunar exploration opportunities. This work was supported in part by NASA's Solar System Exploration Research Virtual Institute (SSERVI): Institute for Modeling Plasmas, Atmosphere, and Cosmic Dust (IMPACT). The work by C.L. was supported by NASA grant NNX15AP89G. Resources were provided by the NASA High-End Computing (HEC) Program through the NASA Advanced Supercomputing (NAS) Division at Ames Research Center. Part of this work was inspired by discussions within International Team 336: "Plasma Surface Interactions with Airless Bodies in Space and the Laboratory" at the International Space Science Institute, Bern, Switzerland. The LRO-WAC data are publicly available from the NASA PDS Imaging Node. The Wind/MFI and Wind/SWE data used in this study are available via the NASA National Space Science Data Center, Space Physics Data Facility, and the MIT Space Plasma Group. The Chandrayaan-1/SARA data are available via the Indian Space Science Data Center.

  14. Seasonality, interannual variability, and linear tendency of wind speeds in the northeast Brazil from 1986 to 2011.

    PubMed

    Torres Silva dos Santos, Alexandre; Moisés Santos e Silva, Cláudio

    2013-01-01

    Wind speed analyses are currently being employed in several fields, especially in wind power generation. In this study, we used wind speed data from records of Universal Fuess anemographs at an altitude of 10 m from 47 weather stations of the National Institute of Meteorology (Instituto Nacional de Meteorologia-INMET) from January 1986 to December 2011. The objective of the study was to investigate climatological aspects and wind speed trends. To this end, the following methods were used: filling of missing data, descriptive statistical calculations, boxplots, cluster analysis, and trend analysis using the Mann-Kendall statistical method. The seasonal variability of the average wind speeds of each group presented higher values for winter and spring and lower values in the summer and fall. The groups G1, G2, and G5 showed higher annual averages in the interannual variability of wind speeds. These observed peaks were attributed to the El Niño and La Niña events, which change the behavior of global wind circulation and influence wind speeds over the region. Trend analysis showed more significant negative values for the G3, G4, and G5 groups for all seasons of the year and in the annual average for the period under study.

  15. Seasonality, Interannual Variability, and Linear Tendency of Wind Speeds in the Northeast Brazil from 1986 to 2011

    PubMed Central

    Santos e Silva, Cláudio Moisés

    2013-01-01

    Wind speed analyses are currently being employed in several fields, especially in wind power generation. In this study, we used wind speed data from records of Universal Fuess anemographs at an altitude of 10 m from 47 weather stations of the National Institute of Meteorology (Instituto Nacional de Meteorologia-INMET) from January 1986 to December 2011. The objective of the study was to investigate climatological aspects and wind speed trends. To this end, the following methods were used: filling of missing data, descriptive statistical calculations, boxplots, cluster analysis, and trend analysis using the Mann-Kendall statistical method. The seasonal variability of the average wind speeds of each group presented higher values for winter and spring and lower values in the summer and fall. The groups G1, G2, and G5 showed higher annual averages in the interannual variability of wind speeds. These observed peaks were attributed to the El Niño and La Niña events, which change the behavior of global wind circulation and influence wind speeds over the region. Trend analysis showed more significant negative values for the G3, G4, and G5 groups for all seasons of the year and in the annual average for the period under study. PMID:24250267

  16. IEA Wind Task 26 - Multi-national Case Study of the Financial Cost of Wind Energy; Work Package 1 Final Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schwabe, P.; Lensink, S.; Hand, M.

    2011-03-01

    The lifetime cost of wind energy is comprised of a number of components including the investment cost, operation and maintenance costs, financing costs, and annual energy production. Accurate representation of these cost streams is critical in estimating a wind plant's cost of energy. Some of these cost streams will vary over the life of a given project. From the outset of project development, investors in wind energy have relatively certain knowledge of the plant's lifetime cost of wind energy. This is because a wind energy project's installed costs and mean wind speed are known early on, and wind generation generallymore » has low variable operation and maintenance costs, zero fuel cost, and no carbon emissions cost. Despite these inherent characteristics, there are wide variations in the cost of wind energy internationally, which is the focus of this report. Using a multinational case-study approach, this work seeks to understand the sources of wind energy cost differences among seven countries under International Energy Agency (IEA) Wind Task 26 - Cost of Wind Energy. The participating countries in this study include Denmark, Germany, the Netherlands, Spain, Sweden, Switzerland, and the United States. Due to data availability, onshore wind energy is the primary focus of this study, though a small sample of reported offshore cost data is also included.« less

  17. Lidar-Enhanced Wind Turbine Control: Past, Present, and Future: Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Scholbrock, Andrew; Fleming, Paul; Wright, Alan

    2016-07-01

    This paper will look at the development of lidar-enhanced controls and how they have been used for turbine load reduction with pitch actuation, as well as increased energy production with improved yaw control. Ongoing work will also be discussed to show that combining pitch and torque control using feedforward nonlinear model predictive control can lead to both reduced loads and increased energy production. Future work is also proposed on extending individual wind turbine controls to the wind plant level and determining how lidars can be used for control methods to further lower the cost of wind energy by minimizing wakemore » impacts in a wind farm.« less

  18. Wind farm topology-finding algorithm considering performance, costs, and environmental impacts.

    PubMed

    Tazi, Nacef; Chatelet, Eric; Bouzidi, Youcef; Meziane, Rachid

    2017-06-05

    Optimal power in wind farms turns to be a modern problem for investors and decision makers; onshore wind farms are subject to performance and economic and environmental constraints. The aim of this work is to define the best installed capacity (best topology) with maximum performance and profits and consider environmental impacts as well. In this article, we continue the work recently done on wind farm topology-finding algorithm. The proposed resolution technique is based on finding the best topology of the system that maximizes the wind farm performance (availability) under the constraints of costs and capital investments. Global warming potential of wind farm is calculated and taken into account in the results. A case study is done using data and constraints similar to those collected from wind farm constructors, managers, and maintainers. Multi-state systems (MSS), universal generating function (UGF), wind, and load charge functions are applied. An economic study was conducted to assess the wind farm investment. Net present value (NPV) and levelized cost of energy (LCOE) were calculated for best topologies found.

  19. Fluid Dynamics Panel Working Group 12 on Adaptive Wind Tunnel Walls: Technology and Applications (Les Souffleries a Paroi Adaptable Technologies et Applications)

    DTIC Science & Technology

    1990-04-01

    mensional Wall Adaptation. Dissertation, Universite Libre de Bruxelles, 1986. [4.22] Prandtl, L.: Experimentelle Prufung der [4.12] AshilI , P.R., Weeks...TR 86026 U, Feb.1986. May 1988. [6.29] Archambaud, J.P. and Chevallier, J.P., "Utilisation [6.91 AshilI , P.R. and Weeks, D.J., "A Method for Deter- de

  20. Wind Energy Resource Atlas of Sri Lanka and the Maldives

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Elliott, D.; Schwartz, M.; Scott, G.

    2003-08-01

    The Wind Energy Resource Atlas of Sri Lanka and the Maldives, produced by the National Renewable Energy Laboratory's (NREL's) wind resource group identifies the wind characteristics and distribution of the wind resource in Sri Lanka and the Maldives. The detailed wind resource maps and other information contained in the atlas facilitate the identification of prospective areas for use of wind energy technologies, both for utility-scale power generation and off-grid wind energy applications.

  1. Using Bayes Model Averaging for Wind Power Forecasts

    NASA Astrophysics Data System (ADS)

    Preede Revheim, Pål; Beyer, Hans Georg

    2014-05-01

    For operational purposes predictions of the forecasts of the lumped output of groups of wind farms spread over larger geographic areas will often be of interest. A naive approach is to make forecasts for each individual site and sum them up to get the group forecast. It is however well documented that a better choice is to use a model that also takes advantage of spatial smoothing effects. It might however be the case that some sites tends to more accurately reflect the total output of the region, either in general or for certain wind directions. It will then be of interest giving these a greater influence over the group forecast. Bayesian model averaging (BMA) is a statistical post-processing method for producing probabilistic forecasts from ensembles. Raftery et al. [1] show how BMA can be used for statistical post processing of forecast ensembles, producing PDFs of future weather quantities. The BMA predictive PDF of a future weather quantity is a weighted average of the ensemble members' PDFs, where the weights can be interpreted as posterior probabilities and reflect the ensemble members' contribution to overall forecasting skill over a training period. In Revheim and Beyer [2] the BMA procedure used in Sloughter, Gneiting and Raftery [3] were found to produce fairly accurate PDFs for the future mean wind speed of a group of sites from the single sites wind speeds. However, when the procedure was attempted applied to wind power it resulted in either problems with the estimation of the parameters (mainly caused by longer consecutive periods of no power production) or severe underestimation (mainly caused by problems with reflecting the power curve). In this paper the problems that arose when applying BMA to wind power forecasting is met through two strategies. First, the BMA procedure is run with a combination of single site wind speeds and single site wind power production as input. This solves the problem with longer consecutive periods where the input data does not contain information, but it has the disadvantage of nearly doubling the number of model parameters to be estimated. Second, the BMA procedure is run with group mean wind power as the response variable instead of group mean wind speed. This also solves the problem with longer consecutive periods without information in the input data, but it leaves the power curve to also be estimated from the data. [1] Raftery, A. E., et al. (2005). Using Bayesian Model Averaging to Calibrate Forecast Ensembles. Monthly Weather Review, 133, 1155-1174. [2]Revheim, P. P. and H. G. Beyer (2013). Using Bayesian Model Averaging for wind farm group forecasts. EWEA Wind Power Forecasting Technology Workshop,Rotterdam, 4-5 December 2013. [3]Sloughter, J. M., T. Gneiting and A. E. Raftery (2010). Probabilistic Wind Speed Forecasting Using Ensembles and Bayesian Model Averaging. Journal of the American Statistical Association, Vol. 105, No. 489, 25-35

  2. Monitoring of wind load and response for cable-supported bridges in Hong Kong

    NASA Astrophysics Data System (ADS)

    Wong, Kai-yuen; Chan, Wai-Yee K.; Man, King-Leung

    2001-08-01

    Structural health monitoring for the three cable-supported bridges located in the West of Hong Kong or the Tsing Ma Control Area has been carried out since the opening of these bridges to public traffic. The three cable-supported bridges are referred to as the Tsing Ma (suspension) Bridge, the Kap Shui Mun (cable-stayed) Bridge and the Ting Kau (cable-stayed) Bridge. The structural health monitoring works involved are classified as six monitoring categories, namely, wind load and response, temperature load and response, traffic load and response, geometrical configuration monitoring, strains and stresses/forces monitoring and global dynamic characteristics monitoring. As wind loads and responses had been a major concern in the design and construction stages, this paper therefore outlines the work of wind load and response monitoring on Tsing Ma, Kap Shui Mun and Ting Kau Bridges. The paper starts with a brief description of the sensory systems. The description includes the layout and performance requirements of sensory systems for wind load and responses monitoring. Typical results of wind load and response monitoring in graphical forms are then presented. These graphical forms include the plots of wind rose diagrams, wind incidences vs wind speeds, wind turbulence intensities, wind power spectra, gust wind factors, coefficient of terrain roughness, extreme wind analyses, deck deflections/rotations vs wind speeds, acceleration spectra, acceleration/displacement contours, and stress demand ratios. Finally conclusions on wind load and response monitoring on the three cable-supported bridges are drawn.

  3. Final Report on the Creation of the Wind Integration National Dataset (WIND) Toolkit and API: October 1, 2013 - September 30, 2015

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hodge, Bri-Mathias

    2016-04-08

    The primary objective of this work was to create a state-of-the-art national wind resource data set and to provide detailed wind plant output data for specific sites based on that data set. Corresponding retrospective wind forecasts were also included at all selected locations. The combined information from these activities was used to create the Wind Integration National Dataset (WIND), and an extraction tool was developed to allow web-based data access.

  4. Into Turbulent Air: Hummingbird Aerodynamic Control in Unsteady Circumstances

    DTIC Science & Technology

    2016-06-24

    costs of flight. We have also completed studies of hummingbird hovering flight within a vertical wind tunnel to enable study of the vortex ring state...vertical wind tunnel to enable study of the vortex ring state, a well-known problem in helicopter descent. This work evaluated both ascending and...wakes. DISTRIBUTION A: Distribution approved for public release. Our work with hummingbirds hovering in a vertical wind tunnel has enabled

  5. The Spectrum of Wind Power Fluctuations

    NASA Astrophysics Data System (ADS)

    Bandi, Mahesh

    2016-11-01

    Wind is a variable energy source whose fluctuations threaten electrical grid stability and complicate dynamical load balancing. The power generated by a wind turbine fluctuates due to the variable wind speed that blows past the turbine. Indeed, the spectrum of wind power fluctuations is widely believed to reflect the Kolmogorov spectrum; both vary with frequency f as f - 5 / 3. This variability decreases when aggregate power fluctuations from geographically distributed wind farms are averaged at the grid via a mechanism known as geographic smoothing. Neither the f - 5 / 3 wind power fluctuation spectrum nor the mechanism of geographic smoothing are understood. In this work, we explain the wind power fluctuation spectrum from the turbine through grid scales. The f - 5 / 3 wind power fluctuation spectrum results from the largest length scales of atmospheric turbulence of order 200 km influencing the small scales where individual turbines operate. This long-range influence spatially couples geographically distributed wind farms and synchronizes farm outputs over a range of frequencies and decreases with increasing inter-farm distance. Consequently, aggregate grid-scale power fluctuations remain correlated, and are smoothed until they reach a limiting f - 7 / 3 spectrum. This work was funded by the Collective Interactions Unit, OIST Graduate University, Japan.

  6. Relationship Between Wind Instrument Playing Habits and Symptoms of Temporomandibular Disorders in Non-Professional Musicians.

    PubMed

    Nishiyama, Akira; Tsuchida, Erisa

    2016-01-01

    In this study, we focused on the habits of wind instrumentalists as well as the presence of playing instruments, and investigated associations between the risk of temporomandibular disorders (TMD) and playing wind instruments in non-professional musicians. Seventy-two non-professional players of wind instruments (instrument group) (mean(SD), 20.0(1.1) y; 42 women) and 66 non-players (control group) (22.0(2.6) y; 45 women) participated in this study. Factors were investigated using questionnaires (a screening questionnaire for TMD, instrument playing habits, years of experience, and time played per day). The prevalence of a high risk of TMD was not significantly different between the instrument group (29.2%) and control group (21.2%). In the instrument group, the frequency of subjects who felt mouthpiece pressure in the high risk of TMD group (47.6%) was significantly greater than that in the low risk of TMD group (21.6%). Mouthpiece pressure was found to be a significant factor contributing to a high risk of TMD (odds ratio, 3.31; 95% CI, 1.12-9.79). This study suggests that pressure from the mouthpiece was one of the contributing factors related to a high risk of TMD in non-professional wind instrument players.

  7. Acquisition of Turbulence Data Using the DST Group Constant-Temperature Hot-Wire Anemometer System

    DTIC Science & Technology

    2015-10-01

    fluctuations in the low-speed wind tunnel at DST Group. The use of both single- wire and crossed- wire (2 wire ) probes is described. Areas covered include a...fluid-flow studies, including testing of models of aircraft, ships and submarines in wind and water tunnels. Hot- wire anemometers and associated hot...spectra of velocity fluctuations in the low-speed wind tunnel at DST Group. The use of both single- wire and crossed- wire (2 wires ) probes is

  8. Surface waves on the tailward flanks of the Earth's magnetopause

    NASA Technical Reports Server (NTRS)

    Seon, J.; Frank, L. A.; Lazarus, A. J.; Lepping, R. P.

    1995-01-01

    Forty-three examples of ISEE 1 tailward flank side magnetopause crossings are examined and directly compared with upstream solar wind parameters. The crossings are classified into two groups. In the first group, a few sudden magnetopause crossings are observed, whereas repeated magnetopause crossings and oscillatory motions, often with boundary layer signatures, are observed in the second group. These distinctive characteristics of the two groups are interpreted in terms of the surface waves due to the Kelvin-Helmholtz instability. It is found that low solar wind speed tends to favor characteristics of the first group, whereas high solar wind speed yields those of the second group. However, no evident correlations between the groups and the interplanetary magnetic field directions are found.

  9. 77 FR 7601 - Notice of Segregation of Public Lands for the Pattern Energy Group Ocotillo Express Wind Energy...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-13

    ... LVRWB10B3980] Notice of Segregation of Public Lands for the Pattern Energy Group Ocotillo Express Wind Energy...) application for the Ocotillo Express Wind Project. The public land contained in this segregation totals approximately 12,436 acres. DATES: Effective Date: This segregation is effective on February 13, 2012. FOR...

  10. NREL/University of Delaware Offshore Wind R&D Collaboration: Cooperative Research and Development Final Report, CRADA Number CRD-10-393

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Musial, Walt

    2015-11-12

    Specifically, the work under this CRADA includes, but is not limited to, the development of test procedures for an offshore test site in Delaware waters; testing of installed offshore wind turbines; performance monitoring of those turbines; and a program of research and development on offshore wind turbine blades, components, coatings, foundations, installation and construction of bottom-fixed structures, environmental impacts, policies, and more generally on means to enhance the reliability, facilitate permitting, and reduce costs for offshore wind turbines. This work will be conducted both at NREL's National Wind Technology Center and participant facilities, as well as the established offshore windmore » test sites.« less

  11. Wind tunnel measurements of wake structure and wind farm power for actuator disk model wind turbines in yaw

    NASA Astrophysics Data System (ADS)

    Howland, Michael; Bossuyt, Juliaan; Kang, Justin; Meyers, Johan; Meneveau, Charles

    2016-11-01

    Reducing wake losses in wind farms by deflecting the wakes through turbine yawing has been shown to be a feasible wind farm control approach. In this work, the deflection and morphology of wakes behind a wind turbine operating in yawed conditions are studied using wind tunnel experiments of a wind turbine modeled as a porous disk in a uniform inflow. First, by measuring velocity distributions at various downstream positions and comparing with prior studies, we confirm that the nonrotating wind turbine model in yaw generates realistic wake deflections. Second, we characterize the wake shape and make observations of what is termed a "curled wake," displaying significant spanwise asymmetry. Through the use of a 100 porous disk micro-wind farm, total wind farm power output is studied for a variety of yaw configurations. Strain gages on the tower of the porous disk models are used to measure the thrust force as a substitute for turbine power. The frequency response of these measurements goes up to the natural frequency of the model and allows studying the spatiotemporal characteristics of the power output under the effects of yawing. This work has been funded by the National Science Foundation (Grants CBET-113380 and IIA-1243482, the WINDINSPIRE project). JB and JM are supported by ERC (ActiveWindFarms, Grant No. 306471).

  12. Wind-fuel cell hybrid project in rural Alaska

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    David Lockard

    2000-02-18

    This is a summary of the work performed on the Wind-Fuel Cell Hybrid Project: (1) On October 5th, Tim Howell of the Golden Field Office and Tom Anderson of Battelle Labs arrived in Anchorage. They met with David Lockard, Project Manager, and Percy Frisby, Director of the Alaska Rural Energy Programs Group. (2) On October 6th, Tim, Tom and David flew to Nome to inspect the proposed wind turbine site and meet with John Handeland, Director of the Nome Joint Utility System. They visited the proposed site as well as several private, residential-sized wind turbines operating in the Nome area.more » (3)Tim and Tom flew to Unalaska on October 7th to meet with Mike Golat, City of Unalaska Public Utility Director, and to inspect the proposed wind turbine sites at Pyramid Creek and Pyramid Valley. (4)Tim sent a scoping letter on December 17th to a variety of local, state and federal agencies requesting comments on the proposed wind turbine project. (5) David discussed this project with Marc Schwartz and Gerry Nix at NREL. Marc provided David with a list of wind prospectors and meteorologists. (6) Tom raised the question of FAA permits for structures over 200 feet tall. Gerry provided information on NREL's experience with FAA permitting on other projects. David summarized the potential turbine choices and heights in a spreadsheet and initiated contact with the Alaska region FAA office regarding the permitting process. (7) David responded to a list of design questions from Tom regarding the project foundations, power output, and size for use in developing the environmental assessment. (8) David tried to get wind data for the Nome Anvil Mountain White Alice site from the Corps of Engineers and the Air Force, but was not able to find any. (9) David solicited quotes from vendors of wind monitoring equipment and provided cost information to Doug Hooker, federal grant manager in preparation for ordering the equipment.« less

  13. Applied Meteorology Unit (AMU) Quarterly Report - Fourth Quarter FY-10

    NASA Technical Reports Server (NTRS)

    Bauman, William; Crawford, Winifred; Barrett, Joe; Watson, Leela; Wheeler, Mark

    2010-01-01

    Three AMU tasks were completed in this Quarter, each resulting in a forecast tool now being used in operations and a final report documenting how the work was done. AMU personnel completed the following tasks (1) Phase II of the Peak Wind Tool for General Forecasting task by delivering an improved wind forecasting tool to operations and providing training on its use; (2) a graphical user interface (GUI) she updated with new scripts to complete the ADAS Update and Maintainability task, and delivered the scripts to the Spaceflight Meteorology Group on Johnson Space Center, Texas and National Weather Service in Melbourne, Fla.; and (3) the Verify MesoNAM Performance task after we created and delivered a GUI that forecasters will use to determine the performance of the operational MesoNAM weather model forecast.

  14. 77 FR 24976 - Environmental Impact Statement for the Proposed Wheatgrass Ridge Wind Project, Fort Hall Indian...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-26

    ... Proposed Wheatgrass Ridge Wind Project, Fort Hall Indian Reservation, Idaho AGENCY: Bureau of Indian... proposed Wheatgrass Ridge Wind Project on the Fort Hall Indian Reservation, Idaho. FOR FURTHER INFORMATION... INFORMATION: The BIA is canceling work on this EIS because the proponent of the Wheatgrass Ridge Wind Project...

  15. Advancing the Growth of the U.S. Wind Industry: Federal Incentives, Funding, and Partnership Opportunities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    The U.S. Department of Energy’s (DOE’s) Wind Energy Technologies Office (WETO) works to accelerate the development and deployment of wind power. The office provides information for researchers, developers,businesses, manufacturers, communities, and others seeking various types of federal assistance available for advancing wind projects.

  16. Impact of wind turbine sound on general health, sleep disturbance and annoyance of workers: a pilot- study in Manjil wind farm, Iran.

    PubMed

    Abbasi, Milad; Monazzam, Mohammad Reza; Akbarzadeh, Arash; Zakerian, Seyyed Abolfazl; Ebrahimi, Mohammad Hossein

    2015-01-01

    The wind turbine's sound seems to have a proportional effect on health of people living near to wind farms. This study aimed to investigate the effect of noise emitted from wind turbines on general health, sleep and annoyance among workers of manjil wind farm, Iran. A total number of 53 workers took part in this study. Based on the type of job, they were categorized into three groups of maintenance, security and office staff. The persons' exposure at each job-related group was measured by eight-hour equivalent sound level (LAeq, 8 h). A Noise annoyance scale, Epworth sleepiness scale and 28-item general health questionnaire was used for gathering data from workers. The data were analyzed through Multivariate Analysis of variance (MANOVA) test, Pillai's Trace test, Paired comparisons analysis and Multivariate regression test were used in the R software. The results showed that, response variables (annoyance, sleep disturbance and health) were significantly different between job groups. The results also indicated that sleep disturbance as well as noise exposure had a significant effect on general health. Noise annoyance and distance from wind turbines could significantly explain about 44.5 and 34.2 % of the variance in sleep disturbance and worker's general health, respectively. General health was significantly different in different age groups while age had no significant impact on sleep disturbance. The results were reverse for distance because it had no significant impact on health, but sleep disturbance was significantly affected. We came to this conclusion that wind turbines noise can directly impact on annoyance, sleep and health. This type of energy generation can have potential health risks for wind farm workers. However, further research is needed to confirm the results of this study.

  17. Applied Meteorology Unit Quarterly Report, Second Quarter FY-13

    NASA Technical Reports Server (NTRS)

    Bauman, William; Crawford, Winifred; Watson, Leela; Shafer, Jaclyn; Huddleston, Lisa

    2013-01-01

    The AMU team worked on six tasks for their customers: (1) Ms. Crawford continued work on the objective lightning forecast task for airports in east-central Florida, and began work on developing a dual-Doppler analysis with local Doppler radars, (2) Ms. Shafer continued work for Vandenberg Air Force Base on an automated tool to relate pressure gradients to peak winds, (3) Dr. Huddleston continued work to develop a lightning timing forecast tool for the Kennedy Space Center/Cape Canaveral Air Force Station area, (4) Dr. Bauman continued work on a severe weather forecast tool focused on east-central Florida, (5) Mr. Decker began developing a wind pairs database for the Launch Services Program to use when evaluating upper-level winds for launch vehicles, and (6) Dr. Watson began work to assimilate observational data into the high-resolution model configurations, she created for Wallops Flight Facility and the Eastern Range.

  18. Advancing the Growth of the U.S. Wind Industry: Federal Incentives, Funding, and Partnership Opportunities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    The U.S. Department of Energy's (DOE's) Wind Energy Technologies Office (WETO) works to accelerate the development and deployment of wind power. The office provides information for researchers, developers, businesses, manufacturers, communities, and others seeking various types of federal assistance available for advancing wind projects. This fact sheet outlines the primary federal incentives for developing and investing in wind power, resources for funding wind power, and opportunities to partner with DOE and other federal agencies on efforts to move the U.S. wind industry forward.

  19. Magnetopause Standoff Position Changes and Geosynchronous Orbit Crossings: Models and Observations

    NASA Astrophysics Data System (ADS)

    Collado-Vega, Y. M.; Rastaetter, L.; Sibeck, D. G.

    2017-12-01

    The Earth's magnetopause is the boundary that mostly separates the solar wind with the Earth's magnetosphere. Its location has been studied and estimated via simulation models, observational data and empirical models. This research aims to study the changes of the magnetopause standoff location due to different solar wind conditions using a combination of all the different methods. We will use the Run-On-Request capabilities within the MHD models available from the Community Coordinated Modeling Center (CCMC) at NASA Goddard Space Flight Center, specifically BATS-R-US (SWMF), OpenGGCM, LFM and GUMICS models. The magnetopause standoff position prediction and response time to the solar wind changes will then be compared to results from available empirical models (e.g. Shue et al. 1998), and to THEMIS, Cluster, Geotail and MMS missions magnetopause crossing observations. We will also use times of extreme solar wind conditions where magnetopause crossings have been observed by the GOES satellites. Rigorous analysis/comparison of observations and empirical models is critical in determining magnetosphere dynamics for model validation. This research goes also hand in hand with the efforts of the working group at the CCMC/LWS International Forum for Space Weather Capabilities Assessment workshop that aims to analyze different events to define metrics for model-data comparison. Preliminary results of this particular research show that there are some discrepancies between the MHD models standoff positions of the dayside magnetopause for the same solar wind conditions that include an increase in solar wind dynamic pressure and a step function in the IMF Bz component. In cases of nominal solar wind conditions, it has been observed that the models do mostly agree with the observational data from the different satellite missions.

  20. The Elusive Access to Education for Muslim Women in Kenya from the Late Nineteenth Century to the "Winds of Change" in Africa (1890s to 1960s)

    ERIC Educational Resources Information Center

    Keshavjee, Rashida

    2010-01-01

    This article discusses the denial of access to education to Ismaili Muslim women in colonial Kenya during the 1890s and the 1960s. The Ismailis were part of the "Asians" in Africa, a working class, religious, Muslim immigrant group from India, circumscribed by poverty and a traditional culture, the orthodox elements of which, with regard…

  1. Complex Flow: Workshop Report; January 17-18, 2012, University of Colorado, Boulder

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    2012-06-01

    The Department of Energy's Wind Program organized a two-day workshop designed to examine complex wind flow into and out of the wind farm environment and the resulting impacts on the mechanical workings of individual wind turbines. An improved understanding of these processes will subsequently drive down the risk involved for wind energy developers, financiers, and owner/operators, thus driving down the cost of energy.

  2. Atlas de Recursos Eólicos del Estado de Oaxaca (The Spanish version of Wind Energy Resource Atlas of Oaxaca) (in Spanish)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Elliott, D.; Schwartz, M.; Scott, G.

    The Oaxaca Wind Resource Atlas, produced by the National Renewable Energy Laboratory's (NREL's) wind resource group, is the result of an extensive mapping study for the Mexican State of Oaxaca. This atlas identifies the wind characteristics and distribution of the wind resource in Oaxaca. The detailed wind resource maps and other information contained in the atlas facilitate the identification of prospective areas for use of wind energy technologies, both for utility-scale power generation and off-grid wind energy applications.

  3. Wind Turbine Structural Dynamics

    NASA Technical Reports Server (NTRS)

    Miller, D. R. (Editor)

    1978-01-01

    A workshop on wind turbine structural dynamics was held to review and document current United States work on the dynamic behavior of large wind turbines, primarily of the horizontal-axis type, and to identify and discuss other wind turbine configurations that may have lower cost and weight. Information was exchanged on the following topics: (1) Methods for calculating dynamic loads; (2) Aeroelasticity stability (3) Wind loads, both steady and transient; (4) Critical design conditions; (5) Drive train dynamics; and (6) Behavior of operating wind turbines.

  4. Scientific Analysis of Data for the ISTP/SOLARMAX Programs

    NASA Technical Reports Server (NTRS)

    Lazarus, Alan J.

    2001-01-01

    This Grant supplemented our work on data analysis from the Wind spacecraft which was one of the ISTRIA fleet of spacecraft. It was targeted at observations related to the time of solar maximum in 2000. The work we proposed to do under this grant included comparison of solar wind parameters obtained from different spacecraft in order to establish correlation lengths appropriate to the solar wind and also to compare parameters to explore solar cycle effects.

  5. Wind Tunnel Management and Resource Optimization: A Systems Modeling Approach

    NASA Technical Reports Server (NTRS)

    Jacobs, Derya, A.; Aasen, Curtis A.

    2000-01-01

    Time, money, and, personnel are becoming increasingly scarce resources within government agencies due to a reduction in funding and the desire to demonstrate responsible economic efficiency. The ability of an organization to plan and schedule resources effectively can provide the necessary leverage to improve productivity, provide continuous support to all projects, and insure flexibility in a rapidly changing environment. Without adequate internal controls the organization is forced to rely on external support, waste precious resources, and risk an inefficient response to change. Management systems must be developed and applied that strive to maximize the utility of existing resources in order to achieve the goal of "faster, cheaper, better". An area of concern within NASA Langley Research Center was the scheduling, planning, and resource management of the Wind Tunnel Enterprise operations. Nine wind tunnels make up the Enterprise. Prior to this research, these wind tunnel groups did not employ a rigorous or standardized management planning system. In addition, each wind tunnel unit operated from a position of autonomy, with little coordination of clients, resources, or project control. For operating and planning purposes, each wind tunnel operating unit must balance inputs from a variety of sources. Although each unit is managed by individual Facility Operations groups, other stakeholders influence wind tunnel operations. These groups include, for example, the various researchers and clients who use the facility, the Facility System Engineering Division (FSED) tasked with wind tunnel repair and upgrade, the Langley Research Center (LaRC) Fabrication (FAB) group which fabricates repair parts and provides test model upkeep, the NASA and LARC Strategic Plans, and unscheduled use of the facilities by important clients. Expanding these influences horizontally through nine wind tunnel operations and vertically along the NASA management structure greatly increases the complexity of developing a model that can be used for successfully implementing a standardized management planning tool. The objective of this study was to implement an Integrated Wind Tunnel Planning System to improve the operations within the aeronautics testing and research group, in particular Wind Tunnel Enterprise. The study included following steps: Conducted literature search and expert discussions (NASA and Old Dominion University faculty), Performed environmental scan of NASA Langley wind tunnel operations as foundation for problem definition. Established operation requirements and evaluation methodologies. Examined windtunnel operations to map out the common characteristics, critical components, and system structure. Reviewed and evaluated various project scheduling and management systems for implementation, Evaluated and implemented "Theory of Constraints (TOC)" project scheduling methodology at NASA Langley wind tunnel operations together with NASA staff.

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    William Morris; Dennis Fitzpatrick

    This final report is issued for the "Supplemental power for the Town of Browning waste-water treatment facility" under the Field Verification Program for Small Wind Turbines Grant. The grant application was submitted on April 16, 1999 wherein the full description of this project is outlined. The project was initially designed to test the Bergy small wind turbines, 10 kW, applicability to residential and commercial applications. The objectives of the project were the following: 1. To verify the performance of the BWC Excel-S/E model wind turbine in an operational application in the fierce winds and severe weather conditions of the Classmore » V winds of the Blackfeet Indian Reservation of Northern Montana. 2. To open up the Blackfeet reservation and northern Montana, to government sponsored, regionally distributed wind generation programs. 3. To examine the natural partnership of wind/electric with water pumping and water purification applications whose requirements parallel the variably available nature of energy produced by wind. 4. To provide data and hands-on experience to citizens, scientists, political leaders, utility operators and Tribal planners with regard to the potential uses of small-capacity, distributed-array wind turbines on the Blackfeet Reservation and in other areas of northern Montana. This project has not been without a few, which were worked out and at the time of this report continue to be worked on with the installation of two new Trace Technologies invertors and a rebuilt one with new technology inside. For the most part when the system has worked it produced power that was used within the wastewater system as was the purpose of this project.« less

  7. Wind Power Curve Modeling in Simple and Complex Terrain

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bulaevskaya, V.; Wharton, S.; Irons, Z.

    2015-02-09

    Our previous work on wind power curve modeling using statistical models focused on a location with a moderately complex terrain in the Altamont Pass region in northern California (CA). The work described here is the follow-up to that work, but at a location with a simple terrain in northern Oklahoma (OK). The goal of the present analysis was to determine the gain in predictive ability afforded by adding information beyond the hub-height wind speed, such as wind speeds at other heights, as well as other atmospheric variables, to the power prediction model at this new location and compare the resultsmore » to those obtained at the CA site in the previous study. While we reach some of the same conclusions at both sites, many results reported for the CA site do not hold at the OK site. In particular, using the entire vertical profile of wind speeds improves the accuracy of wind power prediction relative to using the hub-height wind speed alone at both sites. However, in contrast to the CA site, the rotor equivalent wind speed (REWS) performs almost as well as the entire profile at the OK site. Another difference is that at the CA site, adding wind veer as a predictor significantly improved the power prediction accuracy. The same was true for that site when air density was added to the model separately instead of using the standard air density adjustment. At the OK site, these additional variables result in no significant benefit for the prediction accuracy.« less

  8. 77 FR 58120 - Combined Notice of Filings #2

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-09-19

    .... Applicants: Constellation Energy Commodities Group, Inc., R.E. Ginna Nuclear Power Plant, LLC, PECO Energy... Point Nuclear Station, LLC, Constellation Mystic Power, LLC, Cassia Gulch Wind Park, LLC, Michigan Wind 1, LLC, Harvest Windfarm, LLC, Exelon Wind 4, LLC, Criterion Power Partners, LLC, Cow Branch Wind...

  9. Computer investigations of the turbulent flow around a NACA2415 airfoil wind turbine

    NASA Astrophysics Data System (ADS)

    Driss, Zied; Chelbi, Tarek; Abid, Mohamed Salah

    2015-12-01

    In this work, computer investigations are carried out to study the flow field developing around a NACA2415 airfoil wind turbine. The Navier-Stokes equations in conjunction with the standard k-ɛ turbulence model are considered. These equations are solved numerically to determine the local characteristics of the flow. The models tested are implemented in the software "SolidWorks Flow Simulation" which uses a finite volume scheme. The numerical results are compared with experiments conducted on an open wind tunnel to validate the numerical results. This will help improving the aerodynamic efficiency in the design of packaged installations of the NACA2415 airfoil type wind turbine.

  10. Wind Engineering

    NASA Technical Reports Server (NTRS)

    1983-01-01

    Dr. Jack Cermak, Director of Fluid Dynamics and Diffusion Laboratory, developed the first wind tunnel to simulate the changing temperatures, directions and velocities of natural winds. In this work, Cermak benefited from NASA technology related to what is known as the atmospheric boundary layer (ABL).

  11. Wind turbine wake visualization and characteristics analysis by Doppler lidar.

    PubMed

    Wu, Songhua; Liu, Bingyi; Liu, Jintao; Zhai, Xiaochun; Feng, Changzhong; Wang, Guining; Zhang, Hongwei; Yin, Jiaping; Wang, Xitao; Li, Rongzhong; Gallacher, Daniel

    2016-05-16

    Wind power generation is growing fast as one of the most promising renewable energy sources that can serve as an alternative to fossil fuel-generated electricity. When the wind turbine generator (WTG) extracts power from the wind, the wake evolves and leads to a considerable reduction in the efficiency of the actual power generation. Furthermore, the wake effect can lead to the increase of turbulence induced fatigue loads that reduce the life time of WTGs. In this work, a pulsed coherent Doppler lidar (PCDL) has been developed and deployed to visualize wind turbine wakes and to characterize the geometry and dynamics of wakes. As compared with the commercial off-the-shelf coherent lidars, the PCDL in this work has higher updating rate of 4 Hz and variable physical spatial resolution from 15 to 60 m, which improves its capability to observation the instantaneous turbulent wind field. The wind speed estimation method from the arc scan technique was evaluated in comparison with wind mast measurements. Field experiments were performed to study the turbulent wind field in the vicinity of operating WTGs in the onshore and offshore wind parks from 2013 to 2015. Techniques based on a single and a dual Doppler lidar were employed for elucidating main features of turbine wakes, including wind velocity deficit, wake dimension, velocity profile, 2D wind vector with resolution of 10 m, turbulence dissipation rate and turbulence intensity under different conditions of surface roughness. The paper shows that the PCDL is a practical tool for wind energy research and will provide a significant basis for wind farm site selection, design and optimization.

  12. Wind energy resource modelling in Portugal and its future large-scale alteration due to anthropogenic induced climate changes =

    NASA Astrophysics Data System (ADS)

    Carvalho, David Joao da Silva

    The high dependence of Portugal from foreign energy sources (mainly fossil fuels), together with the international commitments assumed by Portugal and the national strategy in terms of energy policy, as well as resources sustainability and climate change issues, inevitably force Portugal to invest in its energetic self-sufficiency. The 20/20/20 Strategy defined by the European Union defines that in 2020 60% of the total electricity consumption must come from renewable energy sources. Wind energy is currently a major source of electricity generation in Portugal, producing about 23% of the national total electricity consumption in 2013. The National Energy Strategy 2020 (ENE2020), which aims to ensure the national compliance of the European Strategy 20/20/20, states that about half of this 60% target will be provided by wind energy. This work aims to implement and optimise a numerical weather prediction model in the simulation and modelling of the wind energy resource in Portugal, both in offshore and onshore areas. The numerical model optimisation consisted in the determination of which initial and boundary conditions and planetary boundary layer physical parameterizations options provide wind power flux (or energy density), wind speed and direction simulations closest to in situ measured wind data. Specifically for offshore areas, it is also intended to evaluate if the numerical model, once optimised, is able to produce power flux, wind speed and direction simulations more consistent with in situ measured data than wind measurements collected by satellites. This work also aims to study and analyse possible impacts that anthropogenic climate changes may have on the future wind energetic resource in Europe. The results show that the ECMWF reanalysis ERA-Interim are those that, among all the forcing databases currently available to drive numerical weather prediction models, allow wind power flux, wind speed and direction simulations more consistent with in situ wind measurements. It was also found that the Pleim-Xiu and ACM2 planetary boundary layer parameterizations are the ones that showed the best performance in terms of wind power flux, wind speed and direction simulations. This model optimisation allowed a significant reduction of the wind power flux, wind speed and direction simulations errors and, specifically for offshore areas, wind power flux, wind speed and direction simulations more consistent with in situ wind measurements than data obtained from satellites, which is a very valuable and interesting achievement. This work also revealed that future anthropogenic climate changes can negatively impact future European wind energy resource, due to tendencies towards a reduction in future wind speeds especially by the end of the current century and under stronger radiative forcing conditions.

  13. How the factoid of wind turbines causing 'vibroacoustic disease' came to be 'irrefutably demonstrated'.

    PubMed

    Chapman, Simon; St George, Alexis

    2013-06-01

    In recent years, claims have proliferated in cyberspace that wind turbines cause a large variety of symptoms and diseases. One of these, "vibroacoustic disease" (VAD) is frequently mentioned. The aim of this study is to examine the quality of the evidence on how VAD came to be associated with wind turbine exposure by wind farm opponents. Searches of the web (Google advanced) and major research databases for papers on VAD and wind turbines. Self-citation analysis of research papers on VAD. Google returned 24,700 hits for VAD and wind turbines. Thirty-five research papers on VAD were found, none reporting any association between VAD and wind turbines. Of the 35 papers, 34 had a first author from a single Portuguese research group. Seventy-four per cent of citations to these papers were self-citations by the group. Median self-citation rates in science are around 7%. Two unpublished case reports presented at conferences were found asserting that VAD was "irrefutably demonstrated" to be caused by wind turbines. The quality of these reports was abject. VAD has received virtually no scientific recognition beyond the group who coined and promoted the concept. There is no evidence of even rudimentary quality that vibroacoustic disease is associated with or caused by wind turbines. The claim that wind turbines cause VAD is a factoid that has gone 'viral' in cyberspace and may be contributing to nocebo effects among those living near turbines. © 2013 The Authors. ANZJPH © 2013 Public Health Association of Australia.

  14. Investigation of cloud/water vapor motion winds from geostationary satellite

    NASA Technical Reports Server (NTRS)

    1993-01-01

    This report summarizes the research work accomplished on the NASA grant contract NAG8-892 during 1992. Research goals of this contract are the following: to complete upgrades to the Cooperative Institute for Meteorological Satellite Studies (CIMSS) wind system procedures for assigning heights and incorporating first guess information; to evaluate these modifications using simulated tracer fields; to add an automated quality control system to minimize the need for manual editing, while maintaining product quality; and to benchmark the upgraded algorithm in tests with NMC and/or MSFC. Work progressed on all these tasks and is detailed. This work was done in collaboration with CIMSS NOAA/NESDIS scientists working on the operational winds software, so that NASA funded research can benefit NESDIS operational algorithms.

  15. Playing-Related Musculoskeletal Disorders of Professional Orchestra Musicians from the North of Portugal: Comparing String and Wind Musicians.

    PubMed

    Sousa, Cláudia Maria; Machado, Jorge Pereira; Greten, Henry Johannes; Coimbra, Daniela

    2017-04-28

    It is well known that musicians are a group prone to suffer from playing-related musculoskeletal disorders. Professional orchestra musicians play for several hours a week and have to fight against pain caused by their profession. The aim of this study was to explore and describe self-reported complaints among professional orchestra musicians and to compare its intensity and the prevalence between string and wind instruments. Hundred and twelve professional orchestra musicians from the three main professional orchestras from the North of Portugal were individually interviewed about the prevalence and the intensity (measured by verbal numerical scale for pain) of their playing-related musculoskeletal disorders. About two third (62.5%) of the interviewed musicians presented playing-related musculoskeletal disorders during the time of the interview. Despite there are no significant statistic values between groups, results suggested that playing-related musculoskeletal disorders are more common in string players and more intense in wind players. Referring to the prevalence of playing-related musculoskeletal disorders, our data is in line with other studies from different countries. More than half of professional orchestra musicians in the North of Portugal are playing with a mild to moderate pain. Future studies focusing on working-related problems among professional orchestra musicians in Portugal would be useful to better describe the problem of occupational diseases among performing artist.

  16. Research Based on the Acoustic Emission of Wind Power Tower Drum Dynamic Monitoring Technology

    NASA Astrophysics Data System (ADS)

    Zhang, Penglin; Sang, Yuan; Xu, Yaxing; Zhao, Zhiqiang

    Wind power tower drum is one of the key components of the wind power equipment. Whether the wind tower drum performs safety directly affects the efficiency, life, and performance of wind power equipment. Wind power tower drum in the process of manufacture, installation, and operation may lead to injury, and the wind load and gravity load and long-term factors such as poor working environment under the action of crack initiation or distortion, which eventually result in the instability or crack of the wind power tower drum and cause huge economic losses. Thus detecting the wind power tower drum crack damage and instability is especially important. In this chapter, acoustic emission is used to monitor the whole process of wind power tower drum material Q345E steel tensile test at first, and processing and analysis tensile failure signal of the material. And then based on the acoustic emission testing technology to the dynamic monitoring of wind power tower drum, the overall detection and evaluation of the existence of active defects in the whole structure, and the acoustic emission signals collected for processing and analysis, we could preliminarily master the wind tower drum mechanism of acoustic emission source. The acoustic emission is a kind of online, efficient, and economic method, which has very broad prospects for work. The editorial committee of nondestructive testing qualification and certification of personnel teaching material of science and technology industry of national defense, "Acoustic emission testing" (China Machine Press, 2005.1).

  17. NWTC Aerodynamics Studies Improve Energy Capture and Lower Costs of Wind-Generated Electricity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    2015-08-01

    Researchers at the National Wind Technology Center (NWTC) at the National Renewable Energy Laboratory (NREL) have expanded wind turbine aerodynamic research from blade and rotor aerodynamics to wind plant and atmospheric inflow effects. The energy capture from wind plants is dependent on all of these aerodynamic interactions. Research at the NWTC is crucial to understanding how wind turbines function in large, multiple-row wind plants. These conditions impact the cumulative fatigue damage of turbine structural components that ultimately effect the useful lifetime of wind turbines. This work also is essential for understanding and maximizing turbine and wind plant energy production. Bothmore » turbine lifetime and wind plant energy production are key determinants of the cost of wind-generated electricity.« less

  18. Wind turbines acoustic measurements

    NASA Astrophysics Data System (ADS)

    Trematerra, Amelia; Iannace, Gino

    2017-07-01

    The importance of wind turbines has increased over the last few years throughout the European Community. The European energy policy guidelines state that for the year 2020 20% of all energy must be produced by alternative energy sources. Wind turbines are an important type of energy production without petrol. A wind speed in a range from 2.5 m/s to 25.0 m/s is needed. One of the obstacles to the widespread diffusion of wind turbine is noise generation. This work presents some noise measurements of wind turbines in the South of Italy, and discusses the noise problems for the people living near wind farms.

  19. NAWIG News: The Quarterly Newsletter of the Native American Wind Interest Group, Summer 2007

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    DOE's Wind Powering America program has initiated a quarterly NAWIG newsletter to present Native American wind information, including projects, interviews with pioneers, issues, WPA activities, and related events.

  20. Old flying ice-rock body in space allows a glance at its inner working.

    NASA Astrophysics Data System (ADS)

    Bieler, A. M.

    2015-12-01

    I am studying old, cold bodies of rock and ice flying through space, usually far, far away from the Sun. They are even behind the last of the big 8 balls we call our home worlds. (There were 9 balls a few yearsago, but then one of the balls was not considered a ball anymore by some people and he/she had to leave the group.)Because they are so far away from the Sun, they remain dark and very cold for the most part of their life.That is why even most of the very nervous stuff sticks on them ever since. With stuff I mean the little things that the Sun, the big 8 balls, we humans and everything else that is flying around the Sun ismade of. The nervous ones quickly change into something wind like andcan get lost. But the cold on the ice-rock bodies slows this down andthey stick around. This makes those ice-rock bodies interesting tostudy, they did not change too much since they were made.I study news sent back from a computer controlled box flying around oneof those rock-ice things that is now closer to the Sun. When thespace between such a body and the Sun gets smaller, it warms up andsome of the ice changes into wind like things. We find out how muchof what stuff is flying away from that body and at what time.Then I and my friends put those numbers into a big ass computer to findout more on how those rock-ice bodies work. Where does the wind comefrom? Do they all come from the same place or only some? Is it really the Sun's fault? How many cups of ice change into wind each day? Many questions.

  1. Wind energy utilization: A bibliography with abstracts - Cumulative volume 1944/1974

    NASA Technical Reports Server (NTRS)

    1975-01-01

    Bibliography, up to 1974 inclusive, of articles and books on utilization of wind power in energy generation. Worldwide literature is surveyed, and short abstracts are provided in many cases. The citations are grouped by subject: (1) general; (2) utilization; (3) wind power plants; (4) wind power generators (rural, synchronous, remote station); (5) wind machines (motors, pumps, turbines, windmills, home-built); (6) wind data and properties; (7) energy storage; and (8) related topics (control and regulation devices, wind measuring devices, blade design and rotors, wind tunnel simulation, aerodynamics). Gross-referencing is aided by indexes of authors, corporate sources, titles, and keywords.

  2. Impacts of the Mesoscale Ocean-Atmosphere Coupling on the Peru-Chile Ocean Dynamics: The Current-Induced Wind Stress Modulation

    NASA Astrophysics Data System (ADS)

    Oerder, V.; Colas, F.; Echevin, V.; Masson, S.; Lemarié, F.

    2018-02-01

    The ocean dynamical responses to the surface current-wind stress interaction at the oceanic mesoscale are investigated in the South-East Pacific using a high-resolution regional ocean-atmosphere coupled model. Two simulations are compared: one includes the surface current in the wind stress computation while the other does not. In the coastal region, absolute wind velocities are different between the two simulations but the wind stress remains very similar. As a consequence, the mean regional oceanic circulation is almost unchanged. On the contrary, the mesoscale activity is strongly reduced when taking into account the effect of the surface current on the wind stress. This is caused by a weakening of the eddy kinetic energy generation near the coast by the wind work and to intensified offshore eddy damping. We show that, above coherent eddies, the current-stress interaction generates eddy damping through Ekman pumping and eddy kinetic energy dissipation through wind work. This alters significantly the coherent eddy vertical structures compared with the control simulation, weakening the temperature and vorticity anomalies and increasing strongly the vertical velocity anomalies associated to eddies.

  3. Dynamic wake model with coordinated pitch and torque control of wind farms for power tracking

    NASA Astrophysics Data System (ADS)

    Shapiro, Carl; Meyers, Johan; Meneveau, Charles; Gayme, Dennice

    2017-11-01

    Control of wind farm power production, where wind turbines within a wind farm coordinate to follow a time-varying power set point, is vital for increasing renewable energy participation in the power grid. Previous work developed a one-dimensional convection-diffusion equation describing the advection of the velocity deficit behind each turbine (wake) as well the turbulent mixing of the wake with the surrounding fluid. Proof-of-concept simulations demonstrated that a receding horizon controller built around this time-dependent model can effectively provide power tracking services by modulating the thrust coefficients of individual wind turbines. In this work, we extend this model-based controller to include pitch angle and generator torque control and the first-order dynamics of the drive train. Including these dynamics allows us to investigate control strategies for providing kinetic energy reserves to the grid, i.e. storing kinetic energy from the wind in the rotating mass of the wind turbine rotor for later use. CS, CM, and DG are supported by NSF (ECCS-1230788, CMMI 1635430, and OISE-1243482, the WINDINSPIRE project). JM is supported by ERC (ActiveWindFarms, 306471). This research was conducted using computational resources at MARCC.

  4. Similarity solutions for systems arising from an Aedes aegypti model

    NASA Astrophysics Data System (ADS)

    Freire, Igor Leite; Torrisi, Mariano

    2014-04-01

    In a recent paper a new model for the Aedes aegypti mosquito dispersal dynamics was proposed and its Lie point symmetries were investigated. According to the carried group classification, the maximal symmetry Lie algebra of the nonlinear cases is reached whenever the advection term vanishes. In this work we analyze the family of systems obtained when the wind effects on the proposed model are neglected. Wide new classes of solutions to the systems under consideration are obtained.

  5. Magnetic field adjustment structure and method for a tapered wiggler

    DOEpatents

    Halbach, Klaus

    1988-03-01

    An improved method and structure is disclosed for adjusting the magnetic field generated by a group of electromagnet poles spaced along the path of a charged particle beam to compensate for energy losses in the charged particles which comprises providing more than one winding on at least some of the electromagnet poles; connecting one respective winding on each of several consecutive adjacent electromagnet poles to a first power supply, and the other respective winding on the electromagnet pole to a different power supply in staggered order; and independently adjusting one power supply to independently vary the current in one winding on each electromagnet pole in a group whereby the magnetic field strength of each of a group of electromagnet poles may be changed in smaller increments.

  6. Magnetic field adjustment structure and method for a tapered wiggler

    DOEpatents

    Halbach, Klaus

    1988-01-01

    An improved method and structure is disclosed for adjusting the magnetic field generated by a group of electromagnet poles spaced along the path of a charged particle beam to compensate for energy losses in the charged particles which comprises providing more than one winding on at least some of the electromagnet poles; connecting one respective winding on each of several consecutive adjacent electromagnet poles to a first power supply, and the other respective winding on the electromagnet pole to a different power supply in staggered order; and independently adjusting one power supply to independently vary the current in one winding on each electromagnet pole in a group whereby the magnetic field strength of each of a group of electromagnet poles may be changed in smaller increments.

  7. 76 FR 40390 - Notice of Availability of a Draft Land Use Plan Amendment, Environmental Impact Statement and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-08

    ..., 474 megawatt (MW) wind energy project including 158 wind turbine generators, a substation... Environmental Impact Report for the Pattern Energy Group Ocotillo Express Wind Energy Project, Imperial County... Statement (EIS) and Draft Environmental Impact Report (EIR) for the Ocotillo Express Wind Energy Project...

  8. Design of water pumping system by wind turbine for using in coastal areas of Bangladesh

    NASA Astrophysics Data System (ADS)

    Alam, Muhammad Mahbubul; Tasnim, Tamanna; Doha, Umnia

    2017-06-01

    In this work, a theoretical analysis has been carried out to analyze the prospect of Wind Pumping System (WPS) for using in coastal areas of Bangladesh. Wind speed data of three coastal areas of Bangladesh-Kutubdia, Patenga and Sathkhira has been analyzed and an optimal wind turbine viable for this wind speed range has been designed using the simulation software Q-blade. The simulated turbine is then coupled with a rotodynamic pump. The output of the Wind Pumping System (WPS) for the three coastal areas has been studied.

  9. Basic Wind Tech Course - Lesson Plans and Activities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Swapp, Andy

    2011-07-01

    The funds from this project were used to purchase tools and instrumentation to help replicate actual on-the-job wind energy scenarios which provided the students with the practical or applied components of wind energy jobs. This project enhanced the educational experiences provided for the students in terms of engineering and science components of wind energy by using electronics, control systems, and electro-mechanical instrumentation to help students learn standardized wind-specific craftsman skills. In addition the tools and instrumentation helped the students learn the safety necessary to work in the wind industry.

  10. Senu Sirnivas | NREL

    Science.gov Websites

    issues in the development of offshore wind energy technology. He advises, facilitates, and executes laboratory initiatives in offshore wind, working closely with DOE, industry, and university research partners . Prior to joining NREL, he worked in the offshore oil and gas industry for 20 years. Education M.S. in

  11. An Investigation of the Large Scale Evolution and Topology of Coronal Mass Ejections in the Solar Wind

    NASA Technical Reports Server (NTRS)

    Riley, Peter

    2000-01-01

    This investigation is concerned with the large-scale evolution and topology of coronal mass ejections (CMEs) in the solar wind. During this reporting period we have focused on several aspects of CME properties, their identification and their evolution in the solar wind. The work included both analysis of Ulysses and ACE observations as well as fluid and magnetohydrodynamic simulations. In addition, we analyzed a series of "density holes" observed in the solar wind, that bear many similarities with CMEs. Finally, this work was communicated to the scientific community at three meetings and has led to three scientific papers that are in various stages of review.

  12. Matrix Converter Interface for a Wind Energy Conversion System: Issues and Limitations

    NASA Astrophysics Data System (ADS)

    Patki, Chetan; Agarwal, Vivek

    2009-08-01

    Variable speed grid connected wind energy systems sometimes involve AC-AC power electronic interface between the generator and the grid. Matrix converter is an attractive option for such applications. Variable speed of the wind generator demands variable voltage variable frequency at the generator terminal. Matrix converter is used in this work to generate such a supply. Also, matrix converter can be appropriately controlled to compensate the grid for non-linear, reactive loads. However, any change of power factor on the grid side reflects on the voltage magnitude on the wind generator side. It is highlighted that this may contradict the maximum power point tracking control requirements. All the results of this work are presented.

  13. Best Practices for Wind Energy Development in the Great Lakes Region

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pebbles, Victoria; Hummer, John; Haven, Celia

    2011-07-19

    This report offers a menu of 18 different, yet complementary, preferred practices and policies. The best practices cover all phases of the wind energy development process - from the policies that allow for wind development, to the sustainable operation of a wind project, to the best practices for decommissioning a spent turbine - including applications for offshore wind. Each best practice describes the opportunities and challenges (pros and cons), and offers a case example that illustrates how that best practice is being utilized by a particular jurisdiction or wind project. The practices described in this publication were selected by amore » diverse group of interests from the Great Lakes Wind Collaborative that included environmental groups, industry, academia, and federal, state and local government regulators. The practices were identified through a year-long process that included a literature review, online survey and interviews with individuals from the public, private and non-profit sectors. Optimally, a suite of these best practices would be applied in an appropriate combination to fit the conditions of a particular wind project or a set of wind projects within a given locality or region.« less

  14. Offshore Energy Mapping for Northeast Atlantic and Mediterranean: MARINA PLATFORM project

    NASA Astrophysics Data System (ADS)

    Kallos, G.; Galanis, G.; Spyrou, C.; Kalogeri, C.; Adam, A.; Athanasiadis, P.

    2012-04-01

    Deep offshore ocean energy mapping requires detailed modeling of the wind, wave, tidal and ocean circulation estimations. It requires also detailed mapping of the associated extremes. An important issue in such work is the co-generation of energy (generation of wind, wave, tides, currents) in order to design platforms on an efficient way. For example wind and wave fields exhibit significant phase differences and therefore the produced energy from both sources together requires special analysis. The other two sources namely tides and currents have different temporal scales from the previous two. Another important issue is related to the estimation of the environmental frequencies in order to avoid structural problems. These are issues studied at the framework of the FP7 project MARINA PLATFORM. The main objective of the project is to develop deep water structures that can exploit the energy from wind, wave, tidal and ocean current energy sources. In particular, a primary goal will be the establishment of a set of equitable and transparent criteria for the evaluation of multi-purpose platforms for marine renewable energy. Using these criteria, a novel system set of design and optimisation tools will be produced addressing new platform design, component engineering, risk assessment, spatial planning, platform-related grid connection concepts, all focussed on system integration and reducing costs. The University of Athens group is in charge for estimation and mapping of wind, wave, tidal and ocean current resources, estimate available energy potential, map extreme event characteristics and provide any additional environmental parameter required.

  15. Reindeer habitat use in relation to two small wind farms, during preconstruction, construction, and operation.

    PubMed

    Skarin, Anna; Alam, Moudud

    2017-06-01

    Worldwide there is a rush toward wind power development and its associated infrastructure. In Fennoscandia, large-scale wind farms comprising several hundred windmills are currently built in important grazing ranges used for Sámi reindeer husbandry. In this study, reindeer habitat use was assessed using reindeer fecal pellet group counts in relation to two relatively small wind farms, with 8 and 10 turbines, respectively. In 2009, 1,315 15-m 2 plots were established and pellet groups were counted and cleaned from the plots. This was repeated once a year in May, during preconstruction, construction, and operation of the wind farms, covering 6 years (2009-2014) of reindeer habitat use in the area. We modeled the presence/absence of any pellets in a plot at both the local (wind farm site) and regional (reindeer calving to autumn range) scale with a hierarchical logistic regression, where spatial correlation was accounted for via random effects, using vegetation type, and the interaction between distance to wind turbine and time period as predictor variables. Our results revealed an absolute reduction in pellet groups by 66% and 86% around each wind farm, respectively, at local scale and by 61% at regional scale during the operation phase compared to the preconstruction phase. At the regional, scale habitat use declined close to the turbines in the same comparison. However, at the local scale, we observed increased habitat use close to the wind turbines at one of the wind farms during the operation phase. This may be explained by continued use of an important migration route close to the wind farm. The reduced use at the regional scale nevertheless suggests that there may be an overall avoidance of both wind farms during operation, but further studies of reindeer movement and behavior are needed to gain a better understanding of the mechanisms behind this suggested avoidance.

  16. Energy Systems Integration News | Energy Systems Integration Facility |

    Science.gov Websites

    NREL group of children in front of a 3D visualization screen. Students from the OpenWorld Learning group interact with a wind turbine wind velocity simulation at the 3D visualization lab at the

  17. Propagation of Interplanetary Disturbances in the Outer Heliosphere

    NASA Technical Reports Server (NTRS)

    Wang, Chi

    2002-01-01

    Work finished during 2002 included: (1) Finished a multi-fluid solar wind model; (2) Determined the solar wind slowdown and interstellar neutral density; (3) Studied shock propagation and evolution in the outer heliosphere; (4) Investigated statistical properties of the solar wind in the outer heliosphere.

  18. Jobs and Economic Development Impacts from Small Wind: JEDI Model in the Works (Presentation)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tegen, S.

    2012-06-01

    This presentation covers the National Renewable Energy Laboratory's role in economic impact analysis for wind power Jobs and Economic Development Impacts (JEDI) models, JEDI results, small wind JEDI specifics, and a request for information to complete the model.

  19. Wind turbine fault detection and classification by means of image texture analysis

    NASA Astrophysics Data System (ADS)

    Ruiz, Magda; Mujica, Luis E.; Alférez, Santiago; Acho, Leonardo; Tutivén, Christian; Vidal, Yolanda; Rodellar, José; Pozo, Francesc

    2018-07-01

    The future of the wind energy industry passes through the use of larger and more flexible wind turbines in remote locations, which are increasingly offshore to benefit stronger and more uniform wind conditions. The cost of operation and maintenance of offshore wind turbines is approximately 15-35% of the total cost. Of this, 80% goes towards unplanned maintenance issues due to different faults in the wind turbine components. Thus, an auspicious way to contribute to the increasing demands and challenges is by applying low-cost advanced fault detection schemes. This work proposes a new method for detection and classification of wind turbine actuators and sensors faults in variable-speed wind turbines. For this purpose, time domain signals acquired from the operating wind turbine are represented as two-dimensional matrices to obtain grayscale digital images. Then, the image pattern recognition is processed getting texture features under a multichannel representation. In this work, four types of texture characteristics are used: statistical, wavelet, granulometric and Gabor features. Next, the most significant ones are selected using the conditional mutual criterion. Finally, the faults are detected and distinguished between them (classified) using an automatic classification tool. In particular, a 10-fold cross-validation is used to obtain a more generalized model and evaluates the classification performance. Coupled non-linear aero-hydro-servo-elastic simulations of a 5 MW offshore type wind turbine are carried out in several fault scenarios. The results show a promising methodology able to detect and classify the most common wind turbine faults.

  20. Predicting Near-surface Winds with WindNinja for Wind Energy Applications

    NASA Astrophysics Data System (ADS)

    Wagenbrenner, N. S.; Forthofer, J.; Shannon, K.; Butler, B.

    2016-12-01

    WindNinja is a high-resolution diagnostic wind model widely used by operational wildland fire managers to predict how near-surface winds may influence fire behavior. Many of the features which have made WindNinja successful for wildland fire are also important for wind energy applications. Some of these features include flexible runtime options which allow the user to initialize the model with coarser scale weather model forecasts, sparse weather station observations, or a simple domain-average wind for what-if scenarios; built-in data fetchers for required model inputs, including gridded terrain and vegetation data and operational weather model forecasts; relatively fast runtimes on simple hardware; an extremely user-friendly interface; and a number of output format options, including KMZ files for viewing in Google Earth and GeoPDFs which can be viewed in a GIS. The recent addition of a conservation of mass and momentum solver based on OpenFOAM libraries further increases the utility of WindNinja to modelers in the wind energy sector interested not just in mean wind predictions, but also in turbulence metrics. Here we provide an evaluation of WindNinja forecasts based on (1) operational weather model forecasts and (2) weather station observations provided by the MesoWest API. We also compare the high-resolution WindNinja forecasts to the coarser operational weather model forecasts. For this work we will use the High Resolution Rapid Refresh (HRRR) model and the North American Mesoscale (NAM) model. Forecasts will be evaluated with data collected in the Birch Creek valley of eastern Idaho, USA between June-October 2013. Near-surface wind, turbulence data, and vertical wind and temperature profiles were collected at very high spatial resolution during this field campaign specifically for use in evaluating high-resolution wind models like WindNinja. This work demonstrates the ability of WindNinja to generate very high-resolution wind forecasts for wind energy applications and evaluates the forecasts produced by two different initialization methods with data collected in a broad valley surrounded by complex terrain.

  1. Development of a quiet supersonic wind tunnel with a cryogenic adaptive nozzle

    NASA Technical Reports Server (NTRS)

    Wolf, Stephen W. D.

    1993-01-01

    The main objective of this work is to develop an interim Quiet (low-disturbance) supersonic wind tunnel for the NASA-Ames Fluid Mechanics Laboratory (FML). The main emphasis is to bring on-line a full-scale Mach 1.6 tunnel as rapidly as possible to impact the NASA High Speed Research Program (HSRP). The development of a cryogenic adaptive nozzle and other sophisticated features of the tunnel will now happen later, after the full scale wind tunnel is in operation. The work under this contract for the period of this report can be summarized as follows: provide aerodynamic design requirements for the NASA-Ames Fluid Mechanics Laboratory (FML) Laminar Flow Supersonic Wind Tunnel (LFSWT); research design parameters for a unique Mach 1.6 drive system for the LFSWT using an 1/8th-scale Proof-of-Concept (PoC) supersonic wind tunnel; carry out boundary layer transition studies in PoC to aid the design of critical components of the LFSWT; appraise the State of the Art in quiet supersonic wind tunnel design; and help develop a supersonic research capability within the FML particularly in the areas of high speed transition measurements and schlieren techniques. The body of this annual report summarizes the work of the Principal Investigator.

  2. Operating wind turbines in strong wind conditions by using feedforward-feedback control

    NASA Astrophysics Data System (ADS)

    Feng, Ju; Sheng, Wen Zhong

    2014-12-01

    Due to the increasing penetration of wind energy into power systems, it becomes critical to reduce the impact of wind energy on the stability and reliability of the overall power system. In precedent works, Shen and his co-workers developed a re-designed operation schema to run wind turbines in strong wind conditions based on optimization method and standard PI feedback control, which can prevent the typical shutdowns of wind turbines when reaching the cut-out wind speed. In this paper, a new control strategy combing the standard PI feedback control with feedforward controls using the optimization results is investigated for the operation of variable-speed pitch-regulated wind turbines in strong wind conditions. It is shown that the developed control strategy is capable of smoothening the power output of wind turbine and avoiding its sudden showdown at high wind speeds without worsening the loads on rotor and blades.

  3. Introducing WISDEM:An Integrated System Modeling for Wind Turbines and Plant (Presentation)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dykes, K.; Graf, P.; Scott, G.

    2015-01-01

    The National Wind Technology Center wind energy systems engineering initiative has developed an analysis platform to leverage its research capabilities toward integrating wind energy engineering and cost models across wind plants. This Wind-Plant Integrated System Design & Engineering Model (WISDEM) platform captures the important interactions between various subsystems to achieve a better National Wind Technology Center wind energy systems engineering initiative has developed an analysis platform to leverage its research capabilities toward integrating wind energy engineering and cost models across wind plants. This Wind-Plant Integrated System Design & Engineering Model (WISDEM) platform captures the important interactions between various subsystems tomore » achieve a better understanding of how to improve system-level performance and achieve system-level cost reductions. This work illustrates a few case studies with WISDEM that focus on the design and analysis of wind turbines and plants at different system levels.« less

  4. Synthetic thermosphere winds based on CHAMP neutral and plasma density measurements

    NASA Astrophysics Data System (ADS)

    Gasperini, F.; Forbes, J. M.; Doornbos, E. N.; Bruinsma, S. L.

    2016-04-01

    Meridional winds in the thermosphere are key to understanding latitudinal coupling and thermosphere-ionosphere coupling, and yet global measurements of this wind component are scarce. In this work, neutral and electron densities measured by the Challenging Minisatellite Payload (CHAMP) satellite at solar low and geomagnetically quiet conditions are converted to pressure gradient and ion drag forces, which are then used to solve the horizontal momentum equation to estimate low latitude to midlatitude zonal and meridional "synthetic" winds. We validate the method by showing that neutral and electron densities output from National Center for Atmospheric Research (NCAR) Thermosphere Ionosphere Mesosphere Electrodynamics-General Circulation Model (TIME-GCM) can be used to derive solutions to the momentum equations that replicate reasonably well (over 85% of the variance) the winds self-consistently calculated within the TIME-GCM. CHAMP cross-track winds are found to share over 65% of the variance with the synthetic zonal winds, providing further reassurance that this wind product should provide credible results. Comparisons with the Horizontal Wind Model 14 (HWM14) show that the empirical model largely underestimates wind speeds and does not reproduce much of the observed variability. Additionally, in this work we reveal the longitude, latitude, local time, and seasonal variability in the winds; show evidence of ionosphere-thermosphere (IT) coupling, with enhanced postsunset eastward winds due to depleted ion drag; demonstrate superrotation speeds of ˜27 m/s at the equator; discuss vertical wave coupling due the diurnal eastward propagating tide with zonal wave number 3 and the semidiurnal eastward propagating tide with zonal wave number 2.

  5. Philippine Wind Farm Analysis and Site Selection Analysis, 1 January 2000 - 31 December 2000

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Conover, K.

    2001-12-01

    The U.S. Department of Energy (DOE), through the National Renewable Energy Laboratory (NREL), has been working in partnership with the U.S. Agency for International Development (USAID) in an ongoing process to quantify the Philippine wind energy potential and foster wind farm development. As part of that process, NREL retained Global Energy Concepts, LLC (GEC) to review and update the policy needs as well as develop a site-screening process applicable for the Philippines. GEC worked closely with the Philippines National Power Corporation (NPC) in completing this work. This report provides the results of the policy needs and site selection analyses conductedmore » by GEC.« less

  6. Expertise effects in cutaneous wind perception.

    PubMed

    Pluijms, Joost P; Cañal-Bruland, Rouwen; Bergmann Tiest, Wouter M; Mulder, Fabian A; Savelsbergh, Geert J P

    2015-08-01

    We examined whether expertise effects are present in cutaneous wind perception. To this end, we presented wind stimuli consisting of different wind directions and speeds in a wind simulator. The wind simulator generated wind stimuli from 16 directions and with three speeds by means of eight automotive wind fans. Participants were asked to judge cutaneously perceived wind directions and speeds without having access to any visual or auditory information. Expert sailors (n = 6), trained to make the most effective use of wind characteristics, were compared to less-skilled sailors (n = 6) and to a group of nonsailors (n = 6). The results indicated that expert sailors outperformed nonsailors in perceiving wind direction (i.e., smaller mean signed errors) when presented with low wind speeds. This suggests that expert sailors are more sensitive in picking up differences in wind direction, particularly when confronted with low wind speeds that demand higher sensitivity.

  7. The Winds of B Supergiants

    NASA Technical Reports Server (NTRS)

    Fullerton, A. W.; Massa, D. L.; Prinja, R. K.; Owocki, S. P.; Cranmer, S. R.

    1998-01-01

    This report summarizes the progress of the work conducted under the program "The Winds of B Supergiants," conducted by Raytheon STX Corporation. The report consists of a journal article "Wind variability in B supergiants III. Corotating spiral structures in the stellar wind of HD 64760." The first step in the project was the analysis of the 1996 time series of 2 B supergiants and an O star. These data were analyzed and reported on at the ESO workshop, "Cyclical Variability in Stellar Winds."

  8. Advanced wind turbine design

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jamieson, P.M.; Jaffrey, A.

    1995-09-01

    Garrad Hassan have a project in progress funded by the UK Department of Trade and Industry (DTI) to assess the prospects and cost benefits of advanced wind turbine design. In the course of this work, a new concept, the coned rotor design, has been developed. This enables a wind turbine system to operate in effect with variable rotor diameter augmenting energy capture in light winds and shedding loads in storm conditions. Comparisons with conventional design suggest that a major benefit in reduced cost of wind generated electricity may be possible.

  9. Advanced wind turbine design

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jamieson, P.M.; Jaffrey, A.

    1997-11-01

    Garrad Hassan have a project in progress funded by the U.K. Department of Trade and Industry (DTI) to assess the prospects and cost benefits of advanced wind turbine design. In the course of this work, a new concept, the coned rotor design, has been developed. This enables a wind turbine system to operate in effect with variable rotor diameter augmenting energy capture in light winds and shedding loads in storm conditions. Comparisons with conventional design suggest that a major benefit in reduced cost of wind-generated electricity may be possible.

  10. Work with Us | Wind | NREL

    Science.gov Websites

    our cutting-edge research facilities to develop, test, and evaluate wind technologies. License Our advantage of the center's facilities and research and development capabilities. An aerial photo of buildings wind-generated electricity. Companies partner with NREL when they have particular design challenges

  11. Reminiscences on the study of wind waves

    PubMed Central

    MITSUYASU, Hisashi

    2015-01-01

    The wind blowing over sea surface generates tiny wind waves. They develop with time and space absorbing wind energy, and become huge wind waves usually referred to ocean surface waves. The wind waves cause not only serious sea disasters but also take important roles in the local and global climate changes by affecting the fluxes of momentum, heat and gases (e.g. CO2) through the air-sea boundary. The present paper reviews the selected studies on wind waves conducted by our group in the Research Institute for Applied Mechanics (RIAM), Kyushu University. The themes discussed are interactions between water waves and winds, the energy spectrum of wind waves, nonlinear properties of wind waves, and the effects of surfactant on some air-sea interaction phenomena. PMID:25864467

  12. Reminiscences on the study of wind waves.

    PubMed

    Mitsuyasu, Hisashi

    2015-01-01

    The wind blowing over sea surface generates tiny wind waves. They develop with time and space absorbing wind energy, and become huge wind waves usually referred to ocean surface waves. The wind waves cause not only serious sea disasters but also take important roles in the local and global climate changes by affecting the fluxes of momentum, heat and gases (e.g. CO2) through the air-sea boundary. The present paper reviews the selected studies on wind waves conducted by our group in the Research Institute for Applied Mechanics (RIAM), Kyushu University. The themes discussed are interactions between water waves and winds, the energy spectrum of wind waves, nonlinear properties of wind waves, and the effects of surfactant on some air-sea interaction phenomena.

  13. An investigation of the environment surrounding supercell thunderstorms using wind profiler data

    NASA Astrophysics Data System (ADS)

    Thornhill, Kenneth Lee, II

    1998-12-01

    One of the cornerstones of severe thunderstorm research has been quantifying the relationship between the ambient vertical wind profile and the environment of a supercell thunderstorm. Continual refinement of that understanding will lead to the ability to distinguish between tornadic and non-tornadic supercells. Recently, studies have begun to show the importance of the mid-level winds (about 3-6 km), in addition to the normally analyzed 0-3 km inflow layer winds. The 32 wind profilers of the NOAA Profiler Network provide a new source of wind field data that is of higher temporal and spatial resolution that the normally used radiosonde soundings. Continuous raw wind field data (u, v, and w) is now available every 6 minutes, with a quality controlled hourly averaged wind field data set also available. In this work, a 6-minute quality control algorithm is presented and utilized. This 6-minute quality controlled wind data can be used to calculate predictive parameters such as storm relative environmental helicity, Bulk Richardson Number shear, and positive mean shear, indices that are normally calculated only for the inflow layer. In addition, the time series evolution of the mean midlevel winds and the mean vertical winds can also be examined. This present work concentrates on the 1994 and 1995 spring tornado seasons in the central plains of the United States. Combining the data from the NOAA Profiler Network with the data collected from the Verification of the Origins of Rotation in Tornadoes Experiment, the time series evolution of the several indices mentioned above are examined for the winds above the inflow layer in an attempt to add to the current understanding of the relationship between the vertical wind profile and the environment of tornadic and non-tornadic supercell thunderstorms.

  14. Applied Meteorology Unit (AMU) Quarterly Report

    NASA Technical Reports Server (NTRS)

    Bauman, William; Crawford, Winifred; Watson, Leela; Wheeler, Mark

    2011-01-01

    This Quarter's Highlights include reports on the following tasks: (1) Mr. Wheeler completed a study for the 30th Weather Squadron at Vandenberg Air Force Base in California in which he found precursors in weather observations that will help the forecasters determine when they will get strong wind gusts at their northern towers. The final report is now on the AMU website at http://science.ksc.nasa.gov/amu/final-reports/30ws-north-base-winds.pdf. (2) continued work on the second phase of verifying the performance of the MesoNAM weather model at Kennedy Space Center (KSC) and Cape Canaveral Air Force Station (CCAFS). (3) continued work to improve the AMU peak wind tool by analyzing wind tower data to determine peak wind behavior during times of onshore and offshore flow. (4) continued updating lightning c1imatologies for KSC/CCAFS and other airfields around central Florida and created new c1imatologies for moisture and stability thresholds.

  15. Analyzing wind turbine flow interaction through vibration data

    NASA Astrophysics Data System (ADS)

    Castellani, Francesco; D'Elia, Gianluca; Astolfi, Davide; Mucchi, Emiliano; Giorgio, Dalpiaz; Terzi, Ludovico

    2016-09-01

    Wind turbines commonly undergo non-stationary flow and, not rarely, even rather extreme phenomena. In particular, rough terrains represent a challenging testing ground, because of the combination of terrain-driven flow and wakes. It is therefore crucial to assess the impact of dynamic loads on the turbines. In this work, tower and drive-train vibrations are analyzed, from a subcluster of four turbines of a wind farm sited in a very complex terrain. The main outcome of the study is that it is possible to start from the analysis of wind conditions and interpret how wakes manifest in the vibrations of the turbines, both at structural level (tower vibrations) and at the drive-train level. This wind to gear approach therefore allows to build a connection between a flow phenomenon and a mechanical phenomenon (vibrations) and can be precious to assess loads in different working conditions.

  16. Indexed semi-Markov process for wind speed modeling.

    NASA Astrophysics Data System (ADS)

    Petroni, F.; D'Amico, G.; Prattico, F.

    2012-04-01

    The increasing interest in renewable energy leads scientific research to find a better way to recover most of the available energy. Particularly, the maximum energy recoverable from wind is equal to 59.3% of that available (Betz law) at a specific pitch angle and when the ratio between the wind speed in output and in input is equal to 1/3. The pitch angle is the angle formed between the airfoil of the blade of the wind turbine and the wind direction. Old turbine and a lot of that actually marketed, in fact, have always the same invariant geometry of the airfoil. This causes that wind turbines will work with an efficiency that is lower than 59.3%. New generation wind turbines, instead, have a system to variate the pitch angle by rotating the blades. This system able the wind turbines to recover, at different wind speed, always the maximum energy, working in Betz limit at different speed ratios. A powerful system control of the pitch angle allows the wind turbine to recover better the energy in transient regime. A good stochastic model for wind speed is then needed to help both the optimization of turbine design and to assist the system control to predict the value of the wind speed to positioning the blades quickly and correctly. The possibility to have synthetic data of wind speed is a powerful instrument to assist designer to verify the structures of the wind turbines or to estimate the energy recoverable from a specific site. To generate synthetic data, Markov chains of first or higher order are often used [1,2,3]. In particular in [1] is presented a comparison between a first-order Markov chain and a second-order Markov chain. A similar work, but only for the first-order Markov chain, is conduced by [2], presenting the probability transition matrix and comparing the energy spectral density and autocorrelation of real and synthetic wind speed data. A tentative to modeling and to join speed and direction of wind is presented in [3], by using two models, first-order Markov chain with different number of states, and Weibull distribution. All this model use Markov chains to generate synthetic wind speed time series but the search for a better model is still open. Approaching this issue, we applied new models which are generalization of Markov models. More precisely we applied semi-Markov models to generate synthetic wind speed time series. In a previous work we proposed different semi-Markov models, showing their ability to reproduce the autocorrelation structures of wind speed data. In that paper we showed also that the autocorrelation is higher with respect to the Markov model. Unfortunately this autocorrelation was still too small compared to the empirical one. In order to overcome the problem of low autocorrelation, in this paper we propose an indexed semi-Markov model. More precisely we assume that wind speed is described by a discrete time homogeneous semi-Markov process. We introduce a memory index which takes into account the periods of different wind activities. With this model the statistical characteristics of wind speed are faithfully reproduced. The wind is a very unstable phenomenon characterized by a sequence of lulls and sustained speeds, and a good wind generator must be able to reproduce such sequences. To check the validity of the predictive semi-Markovian model, the persistence of synthetic winds were calculated, then averaged and computed. The model is used to generate synthetic time series for wind speed by means of Monte Carlo simulations and the time lagged autocorrelation is used to compare statistical properties of the proposed models with those of real data and also with a time series generated though a simple Markov chain. [1] A. Shamshad, M.A. Bawadi, W.M.W. Wan Hussin, T.A. Majid, S.A.M. Sanusi, First and second order Markov chain models for synthetic generation of wind speed time series, Energy 30 (2005) 693-708. [2] H. Nfaoui, H. Essiarab, A.A.M. Sayigh, A stochastic Markov chain model for simulating wind speed time series at Tangiers, Morocco, Renewable Energy 29 (2004) 1407-1418. [3] F. Youcef Ettoumi, H. Sauvageot, A.-E.-H. Adane, Statistical bivariate modeling of wind using first-order Markov chain and Weibull distribution, Renewable Energy 28 (2003) 1787-1802.

  17. Effects of setting angle on performance of fish-bionic wind wheel

    NASA Astrophysics Data System (ADS)

    Li, G. S.; Yang, Z. X.; Song, L.; Chen, Q.; Li, Y. B.; Chen, W.

    2016-08-01

    With the energy crisis and the increasing environmental pollutionmore and more efforts have been made about wind power development. In this paper, a new type of vertical axis named the fish-bionic wind wheel was proposed, and the outline of wind wheel was constructed by curve of Fourier fitting and polynomial equations. This paper attempted to research the relationship between the setting angle and the wind turbine characteristics by computational fluid dynamics (CFD) simulation. The results showed that the setting angle of the fish-bionic wind wheel has some significant effects on the efficiency of the wind turbine, Within the range of wind speed from 13m/s to 15m/s, wind wheel achieves the maximum efficiency when the setting angle is at 37 degree. The conclusion will work as a guideline for the improvement of wind turbine design.

  18. Large-Eddy Simulation of Wind-Plant Aerodynamics: Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Churchfield, M. J.; Lee, S.; Moriarty, P. J.

    In this work, we present results of a large-eddy simulation of the 48 multi-megawatt turbines composing the Lillgrund wind plant. Turbulent inflow wind is created by performing an atmospheric boundary layer precursor simulation and turbines are modeled using a rotating, variable-speed actuator line representation. The motivation for this work is that few others have done wind plant large-eddy simulations with a substantial number of turbines, and the methods for carrying out the simulations are varied. We wish to draw upon the strengths of the existing simulations and our growing atmospheric large-eddy simulation capability to create a sound methodology for performingmore » this type of simulation. We have used the OpenFOAM CFD toolbox to create our solver.« less

  19. Wind turbine wake characterization using long-range Doppler lidar

    NASA Astrophysics Data System (ADS)

    Aitken, M.; Lundquist, J. K.; Hestmark, K.; Banta, R. M.; Pichugina, Y.; Brewer, A.

    2012-12-01

    Wind turbines extract energy from the freestream flow, resulting in a waked region behind the rotor which is characterized by reduced wind speed and increased turbulence. The velocity deficit in the wake diminishes with distance, as faster-moving air outside is gradually entrained. In a concentrated group of turbines, then, downwind machines experience very different inflow conditions compared to those in the front row. As utility-scale turbines rarely exist in isolation, detailed knowledge of the mean flow and turbulence structure inside wakes is needed to correctly model both power production and turbine loading at modern wind farms. To this end, the Turbine Wake and Inflow Characterization Study (TWICS) was conducted in the spring of 2011 to determine the reduction in wind speeds downstream from a multi-MW turbine located at the National Renewable Energy Laboratory's National Wind Technology Center (NWTC) near Boulder, Colorado. Full-scale measurements of wake dynamics are hardly practical or even possible with conventional sensors, such as cup anemometers mounted on meteorological (met) masts. Accordingly, the High Resolution Doppler Lidar (HRDL) developed by the National Oceanic and Atmospheric Administration's Earth System Research Laboratory was employed to investigate the formation and propagation of wakes under varying levels of ambient wind speed, shear, atmospheric stability, and turbulence. HRDL remotely senses line-of-sight wind velocities and has been used in several previous studies of boundary layer aerodynamics. With a fully steerable beam and a maximum range up to about 5 km, depending on atmospheric conditions, HRDL performed a comprehensive survey of the wind flow in front of and behind the turbine to study the shape, meandering, and attenuation of wakes. Due in large part to limited experimental data availability, wind farm wake modeling is still subject to an unacceptable amount of uncertainty, particularly in complex terrain. Here, analytical techniques are developed to distinguish wakes from the background variability, and moreover, wakes are then classified by width, height, length, and velocity deficit based on atmospheric stability and inflow conditions. By integrating these advanced observational capabilities with innovative approaches to atmospheric modeling, this work will help to improve simulation tools used to quantify power loss and fatigue loading due to wake effects, thereby aiding the optimization of wind farm layouts.

  20. Building a stakeholder's vision of an offshore wind-farm project: A group modeling approach.

    PubMed

    Château, Pierre-Alexandre; Chang, Yang-Chi; Chen, Hsin; Ko, Tsung-Ting

    2012-03-15

    This paper describes a Group Model Building (GMB) initiative that was designed to discuss the various potential effects that an offshore wind-farm may have on its local ecology and socioeconomic development. The representatives of various organizations in the study area, Lu-Kang, Taiwan, have held several meetings, and structured debates have been organized to promote the emergence of a consensual view on the main issues and their implications. A System Dynamics (SD) model has been built and corrected iteratively with the participants through the GMB process. The diverse interests within the group led the process toward the design of multifunctional wind-farms with different modalities. The scenario analyses, using the SD model under various policies, including no wind-farm policy, objectively articulates the vision of the local stakeholders. The results of the SD simulations show that the multifunctional wind-farms may have superior economic effects and the larger wind-farms with bird corridors could reduce ecological impact. However, the participants of the modeling process did not appreciate any type of offshore wind-farm development when considering all of the identified key factors of social acceptance. The insight gained from the study can provide valuable information to actualize feasible strategies for the green energy technique to meet local expectations. Copyright © 2012 Elsevier B.V. All rights reserved.

  1. A Biomimetic Ultrasonic Whistle for Use as a Bat Deterrent on Wind Turbines

    NASA Astrophysics Data System (ADS)

    Sievert, Paul; Seyed-Aghazadeh, Banafsheh; Carlson, Daniel; Dowling, Zara; Modarres-Sadeghi, Yahya

    2016-11-01

    As wind energy continues to gain worldwide prominence, more and more turbines are detrimentally influencing bat colonies. In 2012 alone, an estimated 600,000 bats were killed by wind turbines in the United States. Bats show a tendency to fly towards turbines. The objective of this work is to deter bats from the proximity of the swept area of operational wind turbine blades. Established field studies have shown that bats avoid broadband ultrasonic noise on the same frequency spectrum as their echolocation chirps. A biomimetic ultrasonic pulse generator for use as a bat deterrent on wind turbines is designed and studied experimentally. This device, which works based on the fundamentals of flow-induced oscillations of a flexible sheet is a whistle-like device inspired by a bat larynx, mechanically powered via air flow on a wind turbine blade. Current device prototypes have proven robust at producing ultrasound across the 20 - 70 kHz range for flow inlet velocities of 4 - 14 m/s. Ultimately, a deterrent as described here could provide a reliable, cost-effective means of alerting bats to the presence of moving turbine blades, reducing bat mortality at wind facilities, and reducing regulatory uncertainty for wind facility developers. The financial support provided by the US Department of Energy, and the Massachusetts Clean Energy center is acknowledged.

  2. Turbulent Extreme Event Simulations for Lidar-Assisted Wind Turbine Control

    NASA Astrophysics Data System (ADS)

    Schlipf, David; Raach, Steffen

    2016-09-01

    This work presents a wind field generator which allows to shape wind fields in the time domain while maintaining the spectral properties. This is done by an iterative generation of wind fields and by minimizing the error between wind characteristics of the generated wind fields and desired values. The method leads towards realistic ultimate load calculations for lidar-assisted control. This is demonstrated by fitting a turbulent wind field to an Extreme Operating Gust. The wind field is then used to compare a baseline feedback controller alone against a combined feedback and feedforward controller using simulated lidar measurements. The comparison confirms that the lidar-assisted controller is still able to significantly reduce the ultimate loads on the tower base under this more realistic conditions.

  3. Alternative Energy Lessons in Scotland

    NASA Astrophysics Data System (ADS)

    Boyle, Julie

    2010-05-01

    In Scotland the new science curriculum for pupils aged 12 to 15 shall include the following outcomes: "Using my knowledge and understanding, I can express an informed view on a national or global environmental issue;" "I have participated in constructing a model to harness a renewable source of energy and can investigate how to optimise the output;" and "I can discuss why it is important to me and to the future of the world that alternatives to fossil fuels are developed." There will be an emphasis on creating lessons that will nurture responsible citizens, improve pupil engagement and allow students to develop their team working skills. To help teachers plan lessons to address this, the Scottish Schools Equipment Research Centre and Edinburgh University made teaching materials on four renewable energy resources. This poster describes how their suggested activities on solar cells, wind turbines, hydroelectric power stations and wave power were used in science lessons with twelve year old students. After an initial class discussion based on issues related to climate change and diminishing fossil fuel supplies, a workshop activity was carried out in three stages. The students were issued with a fact sheet about one of four imaginary islands (Skisdale, Cloudy Island, Surfsville and Sun City) and they were asked to work in teams to choose the most suitable method of generating electricity for their island. Issues such as costs, where it will be sited and environmental implications were considered. They were then asked to conduct practical activities by constructing and testing models for these forms of renewable energy. To conclude, they presented their proposal to the rest of the class with reasoned explanations. The kits used in the lessons can be purchased from Anderson Scientific (sales@andersonscientific.co.uk). The solar cells were simply connected to a voltmeter. The wind and hydroelectric groups used the same basic equipment. This was made using a small water bottle, insulating tape, a screwdriver, a connecting block, a solar motor, a plastic fan and thin wires. The only difference was that the wind groups were issued hairdryers and the hydroelectric groups worked at a sink. The wave turbine was constructed in a similar way using the bases from two 5 litre water bottles. Various investigations were conducted into the factors affecting the voltage produced. For instance, the effect of the distance from the light source, the area of the solar cell, the type of blades, the depth of water and the wind speed were studied. The lessons reinforced their understanding of ideas covered in Science and Geography, such as voltage, power, fair tests, compass directions and map contours. Students also had the opportunity to practise connecting electrical components in series and they consolidated their understanding of energy changes, observing that generators convert kinetic energy to electrical energy. The activities allowed students to learn the basics of how renewable energy technologies work. The tasks provided a hands-on experience of renewable energy being used to power small-scale electrical devices such as an LED. The students also gained an appreciation of the complex issues involved in planning and implementing renewable energy generation in the real world.

  4. Marli: Mars Lidar for Global Wind Profiles and Aerosol Profiles from Orbit

    NASA Technical Reports Server (NTRS)

    Abshire, J. B.; Guzewich, S. D.; Smith, M. D.; Riris, H.; Sun, X.; Gentry, B. M.; Yu, A.; Allan, G. R.

    2016-01-01

    The Mars Exploration Analysis Group's Next Orbiter Science Analysis Group (NEXSAG) has recently identified atmospheric wind measurements as one of 5 top compelling science objectives for a future Mars orbiter. To date, only isolated lander observations of martian winds exist. Winds are the key variable to understand atmospheric transport and answer fundamental questions about the three primary cycles of the martian climate: CO2, H2O, and dust. However, the direct lack of observations and imprecise and indirect inferences from temperature observations leave many basic questions about the atmospheric circulation unanswered. In addition to addressing high priority science questions, direct wind observations from orbit would help validate 3D general circulation models (GCMs) while also providing key input to atmospheric reanalyses. The dust and CO2 cycles on Mars are partially coupled and their influences on the atmospheric circulation modify the global wind field. Dust absorbs solar infrared radiation and its variable spatial distribution forces changes in the atmospheric temperature and wind fields. Thus it is important to simultaneously measure the height-resolved wind and dust profiles. MARLI provides a unique capability to observe these variables continuously, day and night, from orbit.

  5. Wind Turbines Adaptation to the Variability of the Wind Field

    NASA Astrophysics Data System (ADS)

    Ulianov, Yuriy; Martynenko, Gennadii; Misaylov, Vitaliy; Soliannikova, Iuliia

    2010-05-01

    WIND TURBINES ADAPTATION TO THE VARIABILITY OF THE WIND FIELD The subject of our scientific research is wind power turbines (WPT) with the horizontal axis which were now common in the world. Efficient wind turbines work is largely determined by non-stationarity of the wind field, expressed in its gustiness, the presence of vertical and horizontal shifts of wind speed and direction. At critical values of the wind parameters WPT has aerodynamic and mechanical overload, leading to breakdowns, premature wear and reduce the life of the wind turbine. To prevent accidents at the peak values of wind speed it is used the regulatory system of windwheels. WPT control systems provide a process orientation of the wind turbine rotor axis in the line of the mean wind. Wind turbines are also equipped with braking device used to protect against breakdowns when a significant increase in the wind. In general, all these methods of regulation are not always effective. Thus, in practice there may be situations when the wind speed is many times greater than the stated limit. For example, if there are microbursts in the atmospheric boundary layer, low-level wind shears caused by its gust front, storms, etc. It is required for a wind power turbine adaptation to intensive short-term wind impulses and considerable vertical wind shifts that the data about them shall be obtained ahead of time. To do this it is necessary to have the information on the real structure of the wind field in the area of the blade sweep for the minimum range against the wind that is determined by the mean speed and the system action time. The implementation of acoustic and laser traditional wind sounding systems is limited by ambient acoustic noise, by heavy rain, snowfall and by fog. There are free of these disadvantages the inclined radioacoustic sounding (IRASS) technique which works for a system of remote detection and control of wind gusts. IRASS technique is realized as low-potential Doppler pulse radar including combined RF-acoustic antenna installed coaxially with the gondola of the wind power turbine. The work of the technique is synchronized with rotation of blades to eliminate their shielding action. Dangerous in terms of dynamic strength is the wind load pulse, the rise time which is comparable with the period of the natural frequency of the wind turbine elements (blade, tower, rotor, etc.). The amplitude decay of resonant vibrations at critical values of the speed of rotation can be realized through the use of mechanical elastic supports with nonlinear artificial dampers. They have a high coefficient of resistance, but may cause self-excited oscillations. We propose the way to deal with raised vibration of wind turbine elements at the expense of short-term increase of damping in the range of critical rotary axis speeds or during impulsive effects of wind loadings (wind gusts). This is possible through the use of non-linear electromagnetic dampers or active magnetic bearings. Their feature is the possibility of varying the mechanical stiffness and damping properties by changing the electrical parameters of electromagnets. The controlling of these parameters is carried out by the control system (CS) with the information feedback on the spatial-temporal structure of the wind field obtained from IRASS. In the composition of the CS can also be included the rotational speed sensor of the WPT rotor. This approach to the adaptation of wind turbines will allow to reduce vibration and to perform early compensation of the load on their components, which arise under the wind gusts. In addition, corrections about the wind field obtained with IRASS, would increase the mean power of WPT.

  6. Hub vortex helical instability as the origin of wake meandering in the lee of a model wind-turbine

    NASA Astrophysics Data System (ADS)

    Viola, Francesco; Iungo, Giacomo Valerio; Camarri, Simone; Porte-Agel, Fernando; Gallaire, Francois

    2012-11-01

    Wind tunnel measurements were performed for the wake produced by a three-bladed wind turbine immersed in uniform flow. These tests show the presence of a vorticity structure in the near wake region mainly oriented along the streamwise direction, which is denoted as hub vortex. The hub vortex is characterized by oscillations with frequencies lower than the one connected to the rotational velocity of the rotor, which are ascribed to wake meandering by previous works. This phenomenon consists in transversal oscillations of the wind turbine wake, which are excited by the shedding of vorticity structures from the rotor disc acting as a bluff body. In this work temporal and spatial linear stability analyses of a wind turbine wake are performed on a base flow obtained through time-averaged wind tunnel velocity measurements. This study shows that the low frequency spectral component detected experimentally is the result of a convective instability of the hub vortex, which is characterized by a counter-winding single-helix structure. Simultaneous hot-wire measurements confirm the presence of a helicoidal unstable mode of the hub vortex with a streamwise wavenumber roughly equal to the one predicted from the linear instability analysis.

  7. Design and validation of a wind tunnel system for odour sampling on liquid area sources.

    PubMed

    Capelli, L; Sironi, S; Del Rosso, R; Céntola, P

    2009-01-01

    The aim of this study is to describe the methods adopted for the design and the experimental validation of a wind tunnel, a sampling system suitable for the collection of gaseous samples on passive area sources, which allows to simulate wind action on the surface to be monitored. The first step of the work was the study of the air velocity profiles. The second step of the work consisted in the validation of the sampling system. For this purpose, the odour concentration of some air samples collected by means of the wind tunnel was measured by dynamic olfactometry. The results of the air velocity measurements show that the wind tunnel design features enabled the achievement of a uniform and homogeneous air flow through the hood. Moreover, the laboratory tests showed a very good correspondence between the odour concentration values measured at the wind tunnel outlet and the odour concentration values predicted by the application of a specific volatilization model, based on the Prandtl boundary layer theory. The agreement between experimental and theoretical trends demonstrate that the studied wind tunnel represents a suitable sampling system for the simulation of specific odour emission rates from liquid area sources without outward flow.

  8. Wind tunnel studies on spray deposition on leaves of tree species used for windbreaks and exposure of honey bees.

    PubMed

    Ucar, Tamer; Hall, Franklin R; Tew, James E; Hacker, James K

    2003-03-01

    A wind tunnel study was conducted to determine pesticide deposition on commonly used windbreak tree species used as spray drift barriers and associated exposure of honey bees. Although it has been known that windbreaks are effective in reducing chemical drift from agricultural applications, there is still an enormous information and data gap on details of the dependence of the mechanism on the biological materials of the barriers and on standardization of relevant assessment methods. Beneficial arthropods like honey bees are adversely affected by airborne drift of pesticides. A study was initiated by first establishing a wind tunnel to create a controlled environment for capture efficiency work. Suitable spray parameters were determined after a preliminary study to construct and develop a wind tunnel protocol. A tracer dye solution was sprayed onto the windbreak samples and honey bees located in the wind tunnel at various simulated wind speeds. Analysis of data from this work has shown that needle-like foliage of windbreak trees captures two to four times more spray than broad-leaves. In addition, it was determined that, at lower wind speeds, flying bees tend to capture slightly more spray than bees at rest.

  9. Tropospheric Wind Monitoring During Day-of-Launch Operations for NASA's Space Shuttle Program

    NASA Technical Reports Server (NTRS)

    Decker, Ryan; Leach, Richard

    2004-01-01

    The Environments Group at the National Aeronautics and Space Administration's Marshall Space Flight Center monitors the winds aloft above Kennedy Space Center (KSC) in support of the Space Shuttle Program day-of-launch operations. Assessment of tropospheric winds is used to support the ascent phase of launch. Three systems at KSC are used to generate independent tropospheric wind profiles prior to launch; 1) high resolution jimsphere balloon system, 2) 50-MHz Doppler Radar Wind Profiler (DRWP) and 3) low resolution radiosonde system. All independent sources are compared against each other for accuracy. To assess spatial and temporal wind variability during launch countdown each jimsphere profile is compared against a design wind database to ensure wind change does not violate wind change criteria.

  10. How Reliable Is the Prediction of Solar Wind Background?

    NASA Astrophysics Data System (ADS)

    Jian, Lan K.; MacNeice, Peter; Taktakishvili, Aleksandre; Odstrcil, Dusan; Jackson, Bernard; Yu, Hsiu-Shan; Riley, Pete; Sokolov, Igor

    2015-04-01

    The prediction of solar wind background is a necessary part of space weather forecasting. Multiple coronal and heliospheric models have been installed at the Community Coordinated Modeling Center (CCMC) to produce the solar wind, including the Wang-Sheely-Arge (WSA)-Enlil model, MHD-Around-a-Sphere (MAS)-Enlil model, Space Weather Modeling Framework (SWMF), and heliospheric tomography using interplanetary scintillation (IPS) data. By comparing the modeling results with the OMNI data over 7 Carrington rotations in 2007, we have conducted a third-party validation of these models for the near-Earth solar wind. This work will help the models get ready for the transition from research to operation. Besides visual comparison, we have quantitatively assessed the models’ capabilities in reproducing the time series and statistics of solar wind parameters. Using improved algorithms, we have identified magnetic field sector boundaries (SBs) and slow-to-fast stream interaction regions (SIRs) as focused structures. The success rate of capturing them and the time offset vary largely with models. For this period, the 2014 version of MAS-Enlil model works best for SBs, and the heliospheric tomography works best for SIRs. General strengths and weaknesses for each model are identified to provide an unbiased reference to model developers and users.

  11. Tropospheric Wind Monitoring During Day-of-Launch Operations for National Aeronautics and Space Administration's Space Shuttle Program

    NASA Technical Reports Server (NTRS)

    Decker, Ryan K.; Leach, Richard

    2004-01-01

    The Environments Group at the National Aeronautics and Space Administration's Marshall Space Flight Center (NASA/MSFC) monitors the winds aloft at Kennedy Space Center (KSC) during the countdown for all Space Shuttle launches. Assessment of tropospheric winds is used to support the ascent phase of launch. Three systems at KSC are used to generate independent tropospheric wind profiles prior to launch; 1) high resolution Jimsphere balloon system, 2) 50-MHz Doppler Radar Wind Profiler (DRWP) and 3) low resolution radiosonde system. Data generated by the systems are used to assess spatial and temporal wind variability during launch countdown to ensure wind change observed does not violate wind change criteria constraints.

  12. High pressure superconducting radial magnetic bearing

    NASA Technical Reports Server (NTRS)

    Eyssa, Y. M.; Huang, X.

    1990-01-01

    In a conventional radial magnetic bearing, the rotor (soft magnetic material) can only have attraction force from one of the electromagnets in the stator. The stator electromagnets consist of small copper windings with a soft magnetic material iron yoke. The maximum pressure obtainable is about 200 N/sq cm. It is shown that replacing the stator copper winding by a superconducting winding in the above configuration can increase the pressure to about 1000 N/sq cm. It is also shown that replacing the iron in the rotor by a group of superconducting windings in persistent mode and using a group of saddle coils in the stator can produce a pressure in excess of 2000 N/sq cm.

  13. 75 FR 2531 - Combined Notice of Filings #1

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-01-15

    ... Power, LLC, Terra-Gen VG Wind, LLC, Terra-Gen 251 Wind, LLC, Chandler Wind Partners, LLC. Description... Power Source Generation, Inc., Calvert Cliffs Nuclear Power Plant LLC, Constellation Energy Commodities..., Inc., Constellation Energy Commodities Group Maine, LLC, R.E. Ginna Nuclear Power Plant, Raven One...

  14. Auditory recognition of familiar and unfamiliar subjects with wind turbine noise.

    PubMed

    Maffei, Luigi; Masullo, Massimiliano; Gabriele, Maria Di; Votsi, Nefta-Eleftheria P; Pantis, John D; Senese, Vincenzo Paolo

    2015-04-17

    Considering the wide growth of the wind turbine market over the last decade as well as their increasing power size, more and more potential conflicts have arisen in society due to the noise radiated by these plants. Our goal was to determine whether the annoyance caused by wind farms is related to aspects other than noise. To accomplish this, an auditory experiment on the recognition of wind turbine noise was conducted to people with long experience of wind turbine noise exposure and to people with no previous experience to this type of noise source. Our findings demonstrated that the trend of the auditory recognition is the same for the two examined groups, as far as the increase of the distance and the decrease of the values of sound equivalent levels and loudness are concerned. Significant differences between the two groups were observed as the distance increases. People with wind turbine noise experience showed a higher tendency to report false alarms than people without experience.

  15. Auditory recognition of familiar and unfamiliar subjects with wind turbine noise

    PubMed Central

    Maffei, Luigi; Masullo, Massimiliano; Di Gabriele, Maria; Votsi, Nefta-Eleftheria P.; Pantis, John D.; Senese, Vincenzo Paolo

    2015-01-01

    Considering the wide growth of the wind turbine market over the last decade as well as their increasing power size, more and more potential conflicts have arisen in society due to the noise radiated by these plants. Our goal was to determine whether the annoyance caused by wind farms is related to aspects other than noise. To accomplish this, an auditory experiment on the recognition of wind turbine noise was conducted to people with long experience of wind turbine noise exposure and to people with no previous experience to this type of noise source. Our findings demonstrated that the trend of the auditory recognition is the same for the two examined groups, as far as the increase of the distance and the decrease of the values of sound equivalent levels and loudness are concerned. Significant differences between the two groups were observed as the distance increases. People with wind turbine noise experience showed a higher tendency to report false alarms than people without experience. PMID:25898408

  16. Tethered Satellite System Contingency Investigation Board

    NASA Technical Reports Server (NTRS)

    1992-01-01

    The Tethered Satellite System (TSS-1) was launched aboard the Space Shuttle Atlantis (STS-46) on July 31, 1992. During the attempted on-orbit operations, the Tethered Satellite System failed to deploy successfully beyond 256 meters. The satellite was retrieved successfully and was returned on August 6, 1992. The National Aeronautics and Space Administration (NASA) Associate Administrator for Space Flight formed the Tethered Satellite System (TSS-1) Contingency Investigation Board on August 12, 1992. The TSS-1 Contingency Investigation Board was asked to review the anomalies which occurred, to determine the probable cause, and to recommend corrective measures to prevent recurrence. The board was supported by the TSS Systems Working group as identified in MSFC-TSS-11-90, 'Tethered Satellite System (TSS) Contingency Plan'. The board identified five anomalies for investigation: initial failure to retract the U2 umbilical; initial failure to flyaway; unplanned tether deployment stop at 179 meters; unplanned tether deployment stop at 256 meters; and failure to move tether in either direction at 224 meters. Initial observations of the returned flight hardware revealed evidence of mechanical interference by a bolt with the level wind mechanism travel as well as a helical shaped wrap of tether which indicated that the tether had been unwound from the reel beyond the travel by the level wind mechanism. Examination of the detailed mission events from flight data and mission logs related to the initial failure to flyaway and the failure to move in either direction at 224 meters, together with known preflight concerns regarding slack tether, focused the assessment of these anomalies on the upper tether control mechanism. After the second meeting, the board requested the working group to complete and validate a detailed integrated mission sequence to focus the fault tree analysis on a stuck U2 umbilical, level wind mechanical interference, and slack tether in upper tether control mechanism and to prepare a detailed plan for hardware inspection, test, and analysis including any appropriate hardware disassembly.

  17. Tethered Satellite System Contingency Investigation Board

    NASA Astrophysics Data System (ADS)

    1992-11-01

    The Tethered Satellite System (TSS-1) was launched aboard the Space Shuttle Atlantis (STS-46) on July 31, 1992. During the attempted on-orbit operations, the Tethered Satellite System failed to deploy successfully beyond 256 meters. The satellite was retrieved successfully and was returned on August 6, 1992. The National Aeronautics and Space Administration (NASA) Associate Administrator for Space Flight formed the Tethered Satellite System (TSS-1) Contingency Investigation Board on August 12, 1992. The TSS-1 Contingency Investigation Board was asked to review the anomalies which occurred, to determine the probable cause, and to recommend corrective measures to prevent recurrence. The board was supported by the TSS Systems Working group as identified in MSFC-TSS-11-90, 'Tethered Satellite System (TSS) Contingency Plan'. The board identified five anomalies for investigation: initial failure to retract the U2 umbilical; initial failure to flyaway; unplanned tether deployment stop at 179 meters; unplanned tether deployment stop at 256 meters; and failure to move tether in either direction at 224 meters. Initial observations of the returned flight hardware revealed evidence of mechanical interference by a bolt with the level wind mechanism travel as well as a helical shaped wrap of tether which indicated that the tether had been unwound from the reel beyond the travel by the level wind mechanism. Examination of the detailed mission events from flight data and mission logs related to the initial failure to flyaway and the failure to move in either direction at 224 meters, together with known preflight concerns regarding slack tether, focused the assessment of these anomalies on the upper tether control mechanism. After the second meeting, the board requested the working group to complete and validate a detailed integrated mission sequence to focus the fault tree analysis on a stuck U2 umbilical, level wind mechanical interference, and slack tether in upper tether control mechanism and to prepare a detailed plan for hardware inspection, test, and analysis including any appropriate hardware disassembly.

  18. Effects of setting angle and chord length on performance of four blades bionic wind turbine

    NASA Astrophysics Data System (ADS)

    Yang, Z. X.; Li, G. S.; Song, L.; Bai, Y. F.

    2017-11-01

    With the energy crisis and the increasing environmental pollution, more and more efforts have been made about wind power development. In this paper, a four blades bionic wind turbine was proposed, and the outline of wind turbine was constructed by the fitted curve. This paper attempted to research the effects of setting angle and chord length on performance of four blades bionic wind turbine by computational fluid dynamics (CFD) simulation. The results showed that the setting angle and chord length of the bionic wind turbine has some significant effects on the efficiency of the wind turbine, and within the range of wind speed from 7 m/s to 15 m/s, the wind turbine achieved maximum efficiency when the setting angle is 31 degree and the chord length is 125 mm. The conclusion will work as a guideline for the improvement of wind turbine design

  19. The dune effect on sand-transporting winds on Mars.

    PubMed

    Jackson, Derek W T; Bourke, Mary C; Smyth, Thomas A G

    2015-11-05

    Wind on Mars is a significant agent of contemporary surface change, yet the absence of in situ meteorological data hampers the understanding of surface-atmospheric interactions. Airflow models at length scales relevant to landform size now enable examination of conditions that might activate even small-scale bedforms (ripples) under certain contemporary wind regimes. Ripples have the potential to be used as modern 'wind vanes' on Mars. Here we use 3D airflow modelling to demonstrate that local dune topography exerts a strong influence on wind speed and direction and that ripple movement likely reflects steered wind direction for certain dune ridge shapes. The poor correlation of dune orientation with effective sand-transporting winds suggests that large dunes may not be mobile under modelled wind scenarios. This work highlights the need to first model winds at high resolution before inferring regional wind patterns from ripple movement or dune orientations on the surface of Mars today.

  20. The dune effect on sand-transporting winds on Mars

    PubMed Central

    Jackson, Derek W. T.; Bourke, Mary C; Smyth, Thomas A. G.

    2015-01-01

    Wind on Mars is a significant agent of contemporary surface change, yet the absence of in situ meteorological data hampers the understanding of surface–atmospheric interactions. Airflow models at length scales relevant to landform size now enable examination of conditions that might activate even small-scale bedforms (ripples) under certain contemporary wind regimes. Ripples have the potential to be used as modern ‘wind vanes' on Mars. Here we use 3D airflow modelling to demonstrate that local dune topography exerts a strong influence on wind speed and direction and that ripple movement likely reflects steered wind direction for certain dune ridge shapes. The poor correlation of dune orientation with effective sand-transporting winds suggests that large dunes may not be mobile under modelled wind scenarios. This work highlights the need to first model winds at high resolution before inferring regional wind patterns from ripple movement or dune orientations on the surface of Mars today. PMID:26537669

  1. Study on the glaze ice accretion of wind turbine with various chord lengths

    NASA Astrophysics Data System (ADS)

    Liang, Jian; Liu, Maolian; Wang, Ruiqi; Wang, Yuhang

    2018-02-01

    Wind turbine icing often occurs in winter, which changes the aerodynamic characteristics of the blades and reduces the work efficiency of the wind turbine. In this paper, the glaze ice model is established for horizontal-axis wind turbine in 3-D. The model contains the grid generation, two-phase simulation, heat and mass transfer. Results show that smaller wind turbine suffers from more serious icing problem, which reflects on a larger ice thickness. Both the collision efficiency and heat transfer coefficient increase under smaller size condition.

  2. 77 FR 5865 - American Unity Investments, Inc., China Display Technologies, Inc., China Wind Energy, Inc., Fuda...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-06

    ... SECURITIES AND EXCHANGE COMMISSION [File No. 500-1] American Unity Investments, Inc., China Display Technologies, Inc., China Wind Energy, Inc., Fuda Faucet Works, Inc., Greater China Media... concerning the securities of China Wind Energy, Inc. because it has not filed any periodic reports since the...

  3. Advanced Thermoplastic Resins for Manufacturing Wind Turbine Blades |

    Science.gov Websites

    Turbine Blades Advanced Thermoplastic Resins for Manufacturing Wind Turbine Blades At its Composites Arkema's Elium liquid thermoplastic resin. Photo of men working on turbine blades in a dome-shaped building composite structures of wind turbine blades. Capabilities Learn more about NREL's IACMI projects and its

  4. Storing Renewable Energy in Chemical Bonds

    ScienceCinema

    Helm, Monte; Bullock, Morris

    2018-01-16

    With nearly 7 billion people, the world's population is demanding more electricity every year. Improved technologies are bringing wind and solar power to our electrical grid. However, wind turbines and solar panels only work when the wind blows or the sun shines. PNNL scientists discuss catalysis approaches for storing and releasing energy on demand.

  5. Design and Analysis of Wind Turbine Blade Hub using Aluminium Alloy AA 6061-T6

    NASA Astrophysics Data System (ADS)

    Ravikumar, S.; Jaswanthvenkatram, V.; Sai kumar, Y. J. N. V.; Sohaib, S. Md.

    2017-05-01

    This work presents the design and analysis of horizontal axis wind turbine blade hub using different material. The hub is very crucial part of the wind turbine, which experience the loads from the blades and the loads were transmitted to the main shaft. At present wind turbine is more expensive and weights more than a million pounds, with the nacelle, rotor hub and blades accounting for most of the weight. In this work Spheroidal graphite cast iron GGG 40.3 is replaced by aluminium alloy 6061-T6 to enhance the casting properties and also to improve the strength-weight ratio. This transition of material leads to reduction in weight of the wind turbine. All the loads caused by wind and extreme loads on the blades are transferred to the hub. Considering the IEC 61400-1 standard for defining extreme loads on the hub the stress and deflection were calculated on the hub by using Finite element Analysis. Result obtained from ANSYS is compared and discussed with the existing design.

  6. Overview of ERA Integrated Technology Demonstration (ITD) 51A Ultra-High Bypass (UHB) Integration for Hybrid Wing Body (HWB)

    NASA Technical Reports Server (NTRS)

    Flamm, Jeffrey D.; James, Kevin D.; Bonet, John T.

    2016-01-01

    The NASA Environmentally Responsible Aircraft Project (ERA) was a ve year project broken into two phases. In phase II, high N+2 Technical Readiness Level demonstrations were grouped into Integrated Technology Demonstrations (ITD). This paper describes the work done on ITD-51A: the Vehicle Systems Integration, Engine Airframe Integration Demonstration. Refinement of a Hybrid Wing Body (HWB) aircraft from the possible candidates developed in ERA Phase I was continued. Scaled powered, and unpowered wind- tunnel testing, with and without acoustics, in the NASA LARC 14- by 22-foot Subsonic Tunnel, the NASA ARC Unitary Plan Wind Tunnel, and the 40- by 80-foot test section of the National Full-Scale Aerodynamics Complex (NFAC) in conjunction with very closely coupled Computational Fluid Dynamics was used to demonstrate the fuel burn and acoustic milestone targets of the ERA Project.

  7. Investigation on wind energy-compressed air power system.

    PubMed

    Jia, Guang-Zheng; Wang, Xuan-Yin; Wu, Gen-Mao

    2004-03-01

    Wind energy is a pollution free and renewable resource widely distributed over China. Aimed at protecting the environment and enlarging application of wind energy, a new approach to application of wind energy by using compressed air power to some extent instead of electricity put forward. This includes: explaining the working principles and characteristics of the wind energy-compressed air power system; discussing the compatibility of wind energy and compressor capacity; presenting the theoretical model and computational simulation of the system. The obtained compressor capacity vs wind power relationship in certain wind velocity range can be helpful in the designing of the wind power-compressed air system. Results of investigations on the application of high-pressure compressed air for pressure reduction led to conclusion that pressure reduction with expander is better than the throttle regulator in energy saving.

  8. NAWIG News: The Quarterly Newsletter of the Native American Wind Interest Group; Summer 2006

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    2006-06-01

    The United States is home to more than 700 American Indian tribes and Native Alaska villages and corporations located on 96 million acres. Many of these tribes and villages have excellent wind resources that could be commercially developed to meet their electricity needs or for electricity export. The Wind Powering America program engages Native Americans in wind energy development, and as part of that effort, the NAWIG newsletter informs readers of events in the Native American/wind energy community.

  9. NAWIG News: The Quarterly Newsletter of the Native American Wind Interest Group; Summer 2005

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    2005-09-01

    The United States is home to more than 700 American Indian tribes and Native Alaska villages and corporations located on 96 million acres. Many of these tribes and villages have excellent wind resources that could be commercially developed to meet their electricity needs or for electricity export. The Wind Powering America program engages Native Americans in wind energy development, and as part of that effort, the NAWIG newsletter informs readers of events in the Native American/wind energy community.

  10. The typical structure of tornado proximity soundings

    NASA Astrophysics Data System (ADS)

    Schaefer, Joseph T.; Livingston, Richard L.

    1988-05-01

    An objective scheme based on empirical orthogonal function analysis to detect patterns in a single or multivariate data set is developed and applied to rawinsonde observations taken in the near-tornado environment. If only temperature data are considered, two distinct categories, differentiated chiefly by the tropopause height, are found. When moisture observations are included with the temperatures, the separation between categories becomes less distinct. However, it is noted that within the near-tornado environment there is an inverse relationship between the degree of observed convective and conditional instability. Analysis of only the winds shows that a low-level veering with height is the rule. However, the strength of the veering can vary considerably. When the temperature, moisture, and winds are treated in concert, two categories again appear. One group occurs with strong winds and a low tropopause, while the other group features weak winds and a high tropopause. These groups correspond to "springtime" and "summertime" synoptic situations, respectively. Comparisons of the various analyses indicate that the near-tornado environment typically features a balance between the strength of the veering of the winds and the amount of conditional instability present. Summer tornadoes feature strong conditional instability and weak winds, while springtime tornadoes occur with stronger veering and convective instability. The strongest tornadoes occur with springtime-type conditions.

  11. Draftsmen at Work during Construction of the Aircraft Engine Research Laboratory

    NASA Image and Video Library

    1942-09-21

    The National Advisory Committee for Aeronautics (NACA) Aircraft Engine Research Laboratory was designed by a group of engineers at the Langley Memorial Aeronautical Laboratory in late 1940 and 1941. Under the guidance of Ernest Whitney, the men worked on drawings and calculations in a room above Langley’s Structural Research Laboratory. The main Aircraft Engine Research Laboratory design group originally consisted of approximately 30 engineers and draftsmen, but there were smaller groups working separately on specific facilities. The new engine lab would have six principal buildings: the Engine Research Building, hangar, Fuels and Lubricants Building, Administration Building, Propeller Test Stand, and Altitude Wind Tunnel. In December 1941 most of those working on the project transferred to Cleveland from Langley. Harrison Underwood and Charles Egan led 18 architectural, 26 machine equipment, 3 structural and 10 mechanical draftsmen. Initially these staff members were housed in temporary offices in the hangar. As sections of the four-acre Engine Research Building were completed in the summer of 1942, the design team began relocating there. The Engine Research Building contained a variety of test cells and laboratories to address virtually every aspect of piston engine research. It also contained a two-story office wing, seen in this photograph that would later house many of the powerplant research engineers.

  12. Kansas Wind Energy Consortium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gruenbacher, Don

    2015-12-31

    This project addresses both fundamental and applied research problems that will help with problems defined by the DOE “20% Wind by 2030 Report”. In particular, this work focuses on increasing the capacity of small or community wind generation capabilities that would be operated in a distributed generation approach. A consortium (KWEC – Kansas Wind Energy Consortium) of researchers from Kansas State University and Wichita State University aims to dramatically increase the penetration of wind energy via distributed wind power generation. We believe distributed generation through wind power will play a critical role in the ability to reach and extend themore » renewable energy production targets set by the Department of Energy. KWEC aims to find technical and economic solutions to enable widespread implementation of distributed renewable energy resources that would apply to wind.« less

  13. Effect of Dimension and Shape of Magnet on the Performance AC Generator with Translation Motion

    NASA Astrophysics Data System (ADS)

    Indriani, A.; Dimas, S.; Hendra

    2018-02-01

    The development of power plants using the renewable energy sources is very rapid. Renewable energy sources used solar energy, wind energy, ocean wave energy and other energy. All of these renewable energy sources require a processing device or a change of motion system to become electrical energy. One processing device is a generator which have work principle of converting motion (mechanical) energy into electrical energy with rotary shaft, blade and other motion components. Generator consists of several types of rotation motion and linear motion (translational). The generator have components such as rotor, stator and anchor. In the rotor and stator having magnet and winding coil as an electric generating part of the electric motion force. Working principle of AC generator with linear motion (translation) also apply the principle of Faraday that is using magnetic induction which change iron magnet to produce magnetic flux. Magnetic flux is captured by the stator to be converted into electrical energy. Linear motion generators consist of linear induction machine, wound synchronous machine field, and permanent magnet synchronous [1]. Performance of synchronous generator of translation motion is influenced by magnet type, magnetic shape, coil winding, magnetic and coil spacing and others. In this paper focus on the neodymium magnet with varying shapes, number of coil windings and gap of magnetic distances. This generator work by using pneumatic mechanism (PLTGL) for power plants system. Result testing of performance AC generator translation motion obtained that maximum voltage, current and power are 63 Volt for diameter winding coil 0.15 mm, number of winding coil 13000 and distance of magnet 20 mm. For effect shape of magnet, maximum voltage happen on rectangle magnet 30x20x5 mm with 4.64 Volt. Voltage and power on effect of diameter winding coil is 14.63 V and 17.82 W at the diameter winding coil 0.7 and number of winding coil is 1260 with the distance of magnet 25 mm.

  14. 77 FR 14416 - Notice of Availability of a Final Environmental Impact Statement and Final Environmental Impact...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-09

    ... wind turbine generators; a substation; administration, operations and maintenance facilities... Action (the ``Refined Project''). Under the Refined Project configuration, only 112 wind turbines... Report for the Pattern Energy Group's Ocotillo Express Wind Energy Project and Proposed California Desert...

  15. Wind utilization in remote regions: An economic study. [for comparison with diesel engines

    NASA Technical Reports Server (NTRS)

    Vansant, J. H.

    1973-01-01

    A wind driven generator was considered as a supplement to a diesel group, for the purpose of economizing fuel when wind power is available. A specific location on Hudson's Bay, Povognituk, was selected. Technical and economic data available for a wind machine of 10-kilowatt nominal capacity and available wind data for that region were used for the study. After subtracting the yearly wind machine costs from savings in fuel costs, a net savings of $1400 per year is realized. These values are approximate, but are though to be highly conservative.

  16. Rotary actuator

    NASA Technical Reports Server (NTRS)

    Brudnicki, Myron (Inventor)

    1995-01-01

    Rotary actuators and other mechanical devices incorporating shape memory alloys are provided herein. Shape memory alloys are a group of metals which when deformed at temperatures below their martensite temperatures, resume the shapes which they had prior to the deformation if they are heated to temperatures above their austensite temperatures. Actuators in which shape memory alloys are employed include bias spring types, in which springs deform the shape memory alloy (SMA), and differential actuators, which use two SMA members mechanically connected in series. Another type uses concentric cylindrical members. One member is in the form of a sleeve surrounding a cylinder, both being constructed of shape memory alloys. Herein two capstans are mounted on a shaft which is supported in a framework. Each capstan is capable of rotating the shaft. Shape memory wire, as two separate lengths of wire, is wrapped around each capstan to form a winding around that capstan. The winding on one capstan is so wrapped that the wire is in a prestretched state. The winding on the other capstan is so wrapped that the wire is in a taut, but not a prestretched, state. Heating one performs work in one direction, thus deforming the other one. When the other SMA is heated the action is reversed.

  17. Experimental Study on New Multi-Column Tension-Leg-Type Floating Wind Turbine

    NASA Astrophysics Data System (ADS)

    Zhao, Yong-sheng; She, Xiao-he; He, Yan-ping; Yang, Jian-min; Peng, Tao; Kou, Yu-feng

    2018-04-01

    Deep-water regions often have winds favorable for offshore wind turbines, and floating turbines currently show the greatest potential to exploit such winds. This work established proper scaling laws for model tests, which were then implemented in the construction of a model wind turbine with optimally designed blades. The aerodynamic, hydrodynamic, and elastic characteristics of the proposed new multi-column tension-leg-type floating wind turbine (WindStar TLP system) were explored in the wave tank testing of a 1:50 scale model at the State Key Laboratory of Ocean Engineering at Shanghai Jiao Tong University. Tests were conducted under conditions of still water, white noise waves, irregular waves, and combined wind, wave, and current loads. The results established the natural periods of the motion, damping, motion response amplitude operators, and tendon tensions of the WindStar TLP system under different environmental conditions, and thus could serve as a reference for further research. Key words: floating wind turbine, model test, WindStar TLP, dynamic response

  18. High Work, High-Efficiency Turbines for Uninhabited Aerial Vehicles (UAVs)

    DTIC Science & Technology

    2013-09-01

    controlling highly loaded LP turbine blades have been demonstrated in a low speed linear cascade at the AFRL Low Speed Wind Tunnel (LSWT) facility that...34, pp. 1570-1577. [34] Selig M. S. and Mcgranahan, B. D., “ Wind Tunnel Aerodynamic Tests of Six Airfoils for Use on Small Wind Turbines .” National...aerodynamic flows is of interest in many design domains such as air vehicles, turbomachinery, and wind turbines . Micro-air-vehicles (MAV) which have small

  19. Large-Eddy Simulation of Wind-Plant Aerodynamics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Churchfield, M. J.; Lee, S.; Moriarty, P. J.

    In this work, we present results of a large-eddy simulation of the 48 multi-megawatt turbines composing the Lillgrund wind plant. Turbulent inflow wind is created by performing an atmospheric boundary layer precursor simulation, and turbines are modeled using a rotating, variable-speed actuator line representation. The motivation for this work is that few others have done large-eddy simulations of wind plants with a substantial number of turbines, and the methods for carrying out the simulations are varied. We wish to draw upon the strengths of the existing simulations and our growing atmospheric large-eddy simulation capability to create a sound methodology formore » performing this type of simulation. We used the OpenFOAM CFD toolbox to create our solver. The simulated time-averaged power production of the turbines in the plant agrees well with field observations, except with the sixth turbine and beyond in each wind-aligned. The power produced by each of those turbines is overpredicted by 25-40%. A direct comparison between simulated and field data is difficult because we simulate one wind direction with a speed and turbulence intensity characteristic of Lillgrund, but the field observations were taken over a year of varying conditions. The simulation shows the significant 60-70% decrease in the performance of the turbines behind the front row in this plant that has a spacing of 4.3 rotor diameters in this direction. The overall plant efficiency is well predicted. This work shows the importance of using local grid refinement to simultaneously capture the meter-scale details of the turbine wake and the kilometer-scale turbulent atmospheric structures. Although this work illustrates the power of large-eddy simulation in producing a time-accurate solution, it required about one million processor-hours, showing the significant cost of large-eddy simulation.« less

  20. Fast response modeling of a two building urban street canyon

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pardyjak, E. R.; Brown, M. J.

    2002-01-01

    QWIC-URB is a fast response model designed to generate high resolution, 3-dimensional wind fields around buildings. The wind fields are produced using a mass consistent diagnostic wind model based on the work of Roeckle (1990, 1998) and Kaplan & Dinar (1996). QWIC-URB has been used for producing wind fields around single buildings with various incident wind angles (Pardyjak and Brown 2001). Recently, the model has been expanded to consider two-building, 3D canyon flow. That is, two rectangular parallelepipeds of height H, crosswind width W, and length L separated by a distance S. The purpose of this work is to continuemore » to evaluate the Roeckle (1990) model and develop improvements. In this paper, the model is compared to the twin high-rise building data set of Ohba et al. (1993, hereafter OSL93). Although the model qualitatively predicts the flow field fairly well for simple canyon flow, it over predicts the strength of vortex circulation and fails to reproduce the upstream rotor.« less

  1. Estimates of Sputter Yields of Solar-Wind Heavy Ions of Lunar Regolith Materials

    NASA Technical Reports Server (NTRS)

    Barghouty, Abdulmasser F.; Adams, James H., Jr.

    2008-01-01

    At energies of approximately 1 keV/amu, solar-wind protons and heavy ions interact with the lunar surface materials via a number of microscopic interactions that include sputtering. Solar-wind induced sputtering is a main mechanism by which the composition of the topmost layers of the lunar surface can change, dynamically and preferentially. This work concentrates on sputtering induced by solar-wind heavy ions. Sputtering associated with slow (speeds the electrons speed in its first Bohr orbit) and highly charged ions are known to include both kinetic and potential sputtering. Potential sputtering enjoys some unique characteristics that makes it of special interest to lunar science and exploration. Unlike the yield from kinetic sputtering where simulation and approximation schemes exist, the yield from potential sputtering is not as easy to estimate. This work will present a preliminary numerical scheme designed to estimate potential sputtering yields from reactions relevant to this aspect of solar-wind lunar-surface coupling.

  2. Applied Meteorology Unit (AMU) Quarterly Report Fourth Quarter FY-13

    NASA Technical Reports Server (NTRS)

    Bauman, William; Crawford, Winifred; Watson, Leela; Shafer, Jaclyn; Huddleston, Lisa

    2013-01-01

    Ms. Shafer completed the task to determine relationships between pressure gradients and peak winds at Vandenberg Air Force Base (VAFB), and began developing a climatology for the VAFB wind towers; Dr. Huddleston completed the task to develop a tool to help forecast the time of the first lightning strike of the day in the Kennedy Space Center (KSC)/Cape Canaveral Air Force Station (CCAFS) area; Dr. Bauman completed work on a severe weather forecast tool focused on the Eastern Range (ER), and also developed upper-winds analysis tools for VAFB and Wallops Fl ight Facility (WFF); Ms. Crawford processed and displayed radar data in the software she will use to create a dual-Doppler analysis over the east-central Florida and KSC/CCAFS areas; Mr. Decker completed developing a wind pairs database for the Launch Services Program to use when evaluating upper-level winds for launch vehicles; Dr. Watson continued work to assimilate observational data into the high-resolution model configurations she created for WFF and the ER.

  3. Wind Turbine Controller to Mitigate Structural Loads on a Floating Wind Turbine Platform

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fleming, Paul A.; Peiffer, Antoine; Schlipf, David

    This paper summarizes the control design work that was performed to optimize the controller of a wind turbine on the WindFloat structure. The WindFloat is a semi-submersible floating platform designed to be a support structure for a multi-megawatt power-generating wind turbine. A controller developed for a bottom-fixed wind turbine configuration was modified for use when the turbine is mounted on the WindFloat platform. This results in an efficient platform heel resonance mitigation scheme. In addition several control modules, designed with a coupled linear model, were added to the fixed-bottom baseline controller. The approach was tested in a fully coupled nonlinearmore » aero-hydroelastic simulation tool in which wind and wave disturbances were modeled. This testing yielded significant improvements in platform global performance and tower-base-bending loading.« less

  4. Application of a wind-wave-current coupled model in the Catalan coast (NW Mediterranean sea), for wind energy purposes

    NASA Astrophysics Data System (ADS)

    María Palomares, Ana; Navarro, Jorge; Grifoll, Manel; Pallares, Elena; Espino, Manuel

    2016-04-01

    This work shows the main results of the HAREAMAR project (including HAREMAR, ENE2012-38772-C02-01 and DARDO, ENE2012-38772-C02-02 projects), concerning the local Wind, Wave and Current simulation at St. Jordi Bay (NW Mediterranean Sea). Offshore Wind Energy has become one of the main topics within the research in Wind Energy research. Although there are quite a few models with a high level of reliability for wind simulation and prediction in onshore places, the wind prediction needs further investigations for adaptation to the Offshore emplacements, taking into account the interaction atmosphere-ocean. The main problem in these ocean areas is the lack of wind data, which neither allows for characterizing the energy potential and wind behaviour in a particular place, nor validating the forecasting models. The main objective of this work is to reduce the local prediction errors, in order to make the meteo-oceanographic hindcast and forecast more reliable. The COAWST model (Coupled-Ocean-Atmosphere-Wave Sediment Transport Model; Warner et al., 2010) system has been implemented in the region considering a set of downscaling nested meshes to obtain high-resolution outputs in the region. The adaptation to this particular area, combining the different wind, wave and ocean model domains has been far from simple, because the grid domains for the three models differ significantly. This work shows the main results of the COAWST model implementation to this particular area, including both monthly and other set of tests in different atmospheric situations, especially chosen for their particular interest. The time period considered for the validation is the whole year 2012. A comparative study between the WRF, SWAN and ROMS model outputs (without coupling), the COWAST model outputs, and a buoy measurements moored in the region was performed for this year. References Warner, J.C., Armstrong, B., He, R., and Zambon, J.B., 2010, Development of a Coupled Ocean-Atmosphere-Wave-Sediment Transport (COAWST) modeling system: Ocean Modeling, 35 (3), 230-244.

  5. Health impact of wind farms.

    PubMed

    Kurpas, Donata; Mroczek, Bozena; Karakiewicz, Beata; Kassolik, Krzysztof; Andrzejewski, Waldemar

    2013-01-01

    Wind power is employed worldwide as an alternative source of energy. At the same time, however, the health effects of wind turbines have become a matter of discussion. The purpose of this study is a critical review of available reports providing arguments both for and against the construction of wind farms. The authors also attempt to propose recommendations in accordance with the Evidence-Based Medicine (EBM) guidelines. In the case of exposure to wind farms, a randomized controlled trial (RCT) is impossible. To obtain the highest-level recommendations, analysis of case-control studies or cohort studies with control groups should be performed. Preferably, it should include geostatistical analysis conducted with the use of variograms and the kriging technique. Combinations of key words were entered into the Thomson Reuters Web of Knowledge (SM) and the Internet search engine Google. SHORT DESCRIPTION OF STATE OF THE ART: The nuisance caused by wind turbines is stereotypically linked with the noise that they produce. Nevertheless, the visual aspect of wind farms, opinions about them, and sensitivity to sound seem to be of the greater importance. To date, the direct correlations between the vicinity of modern wind farms, the noise that wind turbines make, and possible consequences to health have not been described in peer reviewed articles. Health effects are more probably associated with some environmental factors leading to annoyance or frustration. All types of studies share the same conclusion: wind turbines can provoke annoyance. As with any project involving changes in the local environment, a certain level of irritation among the population can be expected. There are elected officials and government representatives who should decide what level of social annoyance is acceptable, and whether wind power advantages outweigh its potential drawbacks. The influence of wind turbines on human emotional and physical health is a relatively new field of research. Further analyses of these issues are justified, especially because none of the studies published in peer-reviewed journals so far meet the criteria for cohort or case-control studies. Due to methodology, currently available research results do not allow for higher than C-level recommendations. In the case of wind farms, the ideal types of research would be: a retrospective observation of a particular group of residents before and after the wind farm construction, case-control studies or cohort studies with control groups matched in respect of socioeconomic factors, predisposition for chronic diseases, exposure to environmental risk factors, and only one variable which would differentiate cases from controls--the distance between place of residence and a wind farm.

  6. Array Effects in Large Wind Farms. Cooperative Research and Development Final Report, CRADA Number CRD-09-343

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moriarty, Patrick

    2016-02-23

    The effects of wind turbine wakes within operating wind farms have a substantial impact on the overall energy production from the farm. The current generation of models drastically underpredicts the impact of these wakes leading to non-conservative estimates of energy capture and financial losses to wind farm operators and developers. To improve these models, detailed research of operating wind farms is necessary. Rebecca Barthelmie of Indiana University is a world leader of wind farm wakes effects and would like to partner with NREL to help improve wind farm modeling by gathering additional wind farm data, develop better models and increasemore » collaboration with European researchers working in the same area. This is currently an active area of research at NREL and the capabilities of both parties should mesh nicely.« less

  7. IEA Wind Task 26: The Past and Future Cost of Wind Energy, Work Package 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lantz, E.; Wiser, R.; Hand, M.

    2012-05-01

    Over the past 30 years, wind power has become a mainstream source of electricity generation around the world. However, the future of wind power will depend a great deal on the ability of the industry to continue to achieve cost of energy reductions. In this summary report, developed as part of the International Energy Agency Wind Implementing Agreement Task 26, titled 'The Cost of Wind Energy,' we provide a review of historical costs, evaluate near-term market trends, review the methods used to estimate long-term cost trajectories, and summarize the range of costs projected for onshore wind energy across an arraymore » of forward-looking studies and scenarios. We also highlight the influence of high-level market variables on both past and future wind energy costs.« less

  8. Wind Shear/Turbulence Inputs to Flight Simulation and Systems Certification

    NASA Technical Reports Server (NTRS)

    Bowles, Roland L. (Editor); Frost, Walter (Editor)

    1987-01-01

    The purpose of the workshop was to provide a forum for industry, universities, and government to assess current status and likely future requirements for application of flight simulators to aviation safety concerns and system certification issues associated with wind shear and atmospheric turbulence. Research findings presented included characterization of wind shear and turbulence hazards based on modeling efforts and quantitative results obtained from field measurement programs. Future research thrusts needed to maximally exploit flight simulators for aviation safety application involving wind shear and turbulence were identified. The conference contained sessions on: Existing wind shear data and simulator implementation initiatives; Invited papers regarding wind shear and turbulence simulation requirements; and Committee working session reports.

  9. Assessment of the Economic Potential of Distributed Wind in Colorado, Minnesota, and New York

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McCabe, Kevin; Sigrin, Benjamin O.; Lantz, Eric J.

    This work seeks to identify current and future spatial distributions of economic potential for behind-the-meter distributed wind, serving primarily rural or suburban homes, farms, and manufacturing facilities in Colorado, Minnesota, and New York. These states were identified by technical experts based on their current favorability for distributed wind deployment. We use NREL's Distributed Wind Market Demand Model (dWind) (Lantz et al. 2017; Sigrin et al. 2016) to identify and rank counties in each of the states by their overall and per capita potential. From this baseline assessment, we also explore how and where improvements in cost, performance, and other marketmore » sensitivities affect distributed wind potential.« less

  10. Study of dispersed small wind systems interconnected with a utility distribution system

    NASA Astrophysics Data System (ADS)

    Curtice, D.; Patton, J.; Bohn, J.; Sechan, N.

    1980-03-01

    Operating problems for various penetrations of small wind systems connected to the distribution system on a utility are defined. Protection equipment, safety hazards, feeder voltage regulation, line losses, and voltage flicker problems are studied, assuming different small wind systems connected to an existing distribution system. To identify hardware deficiencies, possible solutions provided by off-the-shelf hardware and equipment are assessed. Results of the study indicate that existing techniques are inadequate for detecting isolated operation of a small wind system. Potential safety hazards posed by small wind systems are adequately handled by present work procedures although these procedures require a disconnect device at synchronous generator and self commutated inverter small wind systems.

  11. Effects of Cross-axis Wind Jet Events on the Northern Red Sea Circulation

    NASA Astrophysics Data System (ADS)

    Menezes, V. V.; Bower, A. S.; Farrar, J. T.

    2016-12-01

    Despite its small size, the Red Sea has a complex circulation. There are boundary currents in both sides of the basin, a meridional overturning circulation, water mass formation in the northern part and an intense eddy activity. This complex pattern is driven by strong air-sea interactions. The Red Sea has one of the largest evaporation rates of the global oceans (2m/yr), an intricate and seasonally varying wind pattern. The winds blowing over the Northern Rea Sea (NRS, north of 20N) are predominantly southeastward along the main axis all year round; in the southern, they reverse seasonally due to the monsoonal regime. Although the winds are mostly along-axis in the NRS, several works have shown that sometimes during the boreal winter, the winds blow in a cross-axis direction. The westward winds from Saudi Arabia bring relatively cold dry air and dust from the desert, enhancing heat loss and evaporation off the Red Sea. These wind-jet events may contribute to increased eddy activity and are a trigger for water mass formation. Despite that, our knowledge about the cross-axis winds and their effect on NRS circulation is still incipient. In the present work we analyze 10-years of Quikscat scatterometer winds and altimetric sea surface height anomalies, together with 2-yrs of mooring data, to characterize the westward wind jet events and their impacts on the circulation. We show that the cross-axis winds are, indeed, an important component of the wind regime, explaining 11% of wind variability of the NRS (well-described by a 2nd EOF mode). The westward events occur predominantly in the winter, preferentially in January (about 15 events in 10-years) and have a mean duration of 4-5 days, with a maximum of 12 days (north of 22N). There are around 6 events per year, but in 2002-2003 and 2007-2008, twice more events were detected. The westward wind events are found to strongly modify the wind stress curl, causing a distinct positive/negative curl pattern along the main axis. This pattern enhances the eddy activity and impacts the NRS circulation.

  12. Conductor for a fluid-cooled winding

    DOEpatents

    Kenney, Walter J.

    1983-01-01

    A conductor and method of making the conductor are provided for use in winding electrical coils which are cooled by a fluid communicating with the conductor. The conductor is cold worked through twisting and reshaping steps to form a generally rectangular cross section conductor having a plurality of helical cooling grooves extending axially of the conductor. The conductor configuration makes it suitable for a wide variety of winding applications and permits the use of simple strip insulation between turns and perforated sheet insulation between layers of the winding.

  13. Wind Lidar Activities in the United States

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Clifton, Andrew; Newman, Jennifer; St. Pe, Alexandra

    2017-06-28

    IEA Wind Task 32 seeks to identify and mitigate the barriers to the adoption of lidar for wind energy applications. This work is partly achieved by sharing experience across researchers and practitioners in the United States and worldwide. This presentation is a short summary of some wind lidar-related activities taking place in the country, and was presented by Andrew Clifton at the Task 32 meeting in December 2016 in his role as the U.S. Department of Energy-nominated country representative to the task.

  14. Real time wind farm emulation using SimWindFarm toolbox

    NASA Astrophysics Data System (ADS)

    Topor, Marcel

    2016-06-01

    This paper presents a wind farm emulation solution using an open source Matlab/Simulink toolbox and the National Instruments cRIO platform. This work is based on the Aeolus SimWindFarm (SWF) toolbox models developed at Aalborg university, Denmark. Using the Matlab Simulink models developed in SWF, the modeling code can be exported to a real time model using the NI Veristand model framework and the resulting code is integrated as a hardware in the loop control on the NI 9068 platform.

  15. 75 FR 8322 - Tatanka Wind Power, LLC, Complainant, v. Montana-Dakota Utilities Company, a Division of MDU...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-02-24

    ... Wind Power, LLC (Complainant) filed a formal complaint against Montana-Dakota Utilities Company, a... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Docket No. EL10-41-000] Tatanka Wind Power, LLC, Complainant, v. Montana-Dakota Utilities Company, a Division of MDU Resources Group, Inc...

  16. LAWS simulation: Sampling strategies and wind computation algorithms

    NASA Technical Reports Server (NTRS)

    Emmitt, G. D. A.; Wood, S. A.; Houston, S. H.

    1989-01-01

    In general, work has continued on developing and evaluating algorithms designed to manage the Laser Atmospheric Wind Sounder (LAWS) lidar pulses and to compute the horizontal wind vectors from the line-of-sight (LOS) measurements. These efforts fall into three categories: Improvements to the shot management and multi-pair algorithms (SMA/MPA); observing system simulation experiments; and ground-based simulations of LAWS.

  17. Conducting experimental investigations of wind influence on high-rise constructions

    NASA Astrophysics Data System (ADS)

    Poddaeva, Olga I.; Fedosova, Anastasia N.; Churin, Pavel S.; Gribach, Julia S.

    2018-03-01

    The design of buildings with a height of more than 100 meters is accompanied by strict control in determining the external loads and the subsequent calculation of building structures, which is due to the uniqueness of these facilities. An important factor, the impact of which must be carefully studied at the stage of development of project documentation, is the wind. This work is devoted to the problem of studying the wind impact on buildings above 100 meters. In the article the technique of carrying out of experimental researches of wind influence on high-rise buildings and constructions, developed in the Educational-research-and-production laboratory on aerodynamic and aeroacoustic tests of building designs of NRU MGSU is presented. The publication contains a description of the main stages of the implementation of wind tunnel tests. The article presents the approbation of the methodology, based on the presented algorithm, on the example of a high-rise building under construction. This paper reflects the key requirements that are established at different stages of performing wind impact studies, as well as the results obtained, including the average values of the aerodynamic pressure coefficients, total forces and aerodynamic drag coefficients. Based on the results of the work, conclusions are presented.

  18. Bioinspired turbine blades offer new perspectives for wind energy

    NASA Astrophysics Data System (ADS)

    Cognet, V.; Courrech du Pont, S.; Dobrev, I.; Massouh, F.; Thiria, B.

    2017-02-01

    Wind energy is becoming a significant alternative solution for future energy production. Modern turbines now benefit from engineering expertise, and a large variety of different models exists, depending on the context and needs. However, classical wind turbines are designed to operate within a narrow zone centred around their optimal working point. This limitation prevents the use of sites with variable wind to harvest energy, involving significant energetic and economic losses. Here, we present a new type of bioinspired wind turbine using elastic blades, which passively deform through the air loading and centrifugal effects. This work is inspired from recent studies on insect flight and plant reconfiguration, which show the ability of elastic wings or leaves to adapt to the wind conditions and thereby to optimize performance. We show that in the context of energy production, the reconfiguration of the elastic blades significantly extends the range of operating regimes using only passive, non-consuming mechanisms. The versatility of the new turbine model leads to a large increase of the converted energy rate, up to 35%. The fluid/elasticity mechanisms involved for the reconfiguration capability of the new blades are analysed in detail, using experimental observations and modelling.

  19. 78 FR 52974 - Gamesa Technology Corporation, Including On-Site Leased Workers From A & A Wind Pros Inc., ABB...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-27

    ... Power Blades (ND) Inc., Matrix Service Industrial Contract, Mistras Group, Onion ICS LLC, Power Climber Wind, Rope Partner, Inc., Run Energy LP, SERENA USA, Inc., Spherion ``The Mergis Group,'' System One Up... facility on Spain and ``increased blade outsourcing of 65%.'' The attachment to the request included a...

  20. An Examination of the Intonation Tendencies of Wind Instrumentalists Based on Their Performance of Selected Harmonic Musical Intervals.

    ERIC Educational Resources Information Center

    Karrick, Brant

    1998-01-01

    Studies intonation trends of wind instrumentalists with regard to harmonic intervals, including factors such as tuning system, location, interval type, direction of deviation from equal temperament, and group. Compares the performance of two groups, professionals and advanced students. Reports findings and discusses similarities to and differences…

  1. WINDENG - a new network in Europe

    NASA Astrophysics Data System (ADS)

    Sempreviva, A. M.; Barthelmie, R.; Landberg, L.; Heinemann, D.; Strack, M.; Christensen, L.; Stefanatos, N.; Svenson, J.; Lavagnini, A.; Tammelin, B.

    2003-04-01

    A European training-through-research network is underway in which wind conditions relevant to wind turbine and wind farm design for the implementation of the wind energy in Europe are being studied. The network is based on:- - The success of a previous network within the EU Human Capital and Mobility programme in establishing links among European institutes through the co-operative effort of young scientists working in countries other than their own. - The need to foster the necessary exchange of experiences and personal contacts in order to produce a fruitful collaboration for the academic and research institutions and private companies involved. The aim of the network is to bring together young and experienced researchers to work jointly to define the basis for the design of wind turbines and wind fans in different environments. The goals are:- - To define reliable values for turbulence descriptors to be used in modelling the turbulent wind fields, spectra, coherence in homogeneous and complex terrain and offshore, to offer guidelines for wind turbine design. - To improve existing methods used for modelling wind climates under the different situations existing within Europe to offer reliable tools for wind farm designers in complex terrain and offshore. - To address all European climates from the cold Baltic and nearby North Sea to warmer Mediterranean regions. - To supply knowledge of use to EU energy policies, to local authorities or national and international energy agencies and authorities. Furthermore it will offer guidelines for the best turbine design and best sitting procedures for isolated generators or turbine parks. The project got underway in September 2002 and the first positions for young researchers are expected to begin in early 2003. This poster will present the first scientific and practical results.

  2. Evaluation of candidate working fluid formulations for the electrothermal-chemical wind tunnel

    NASA Technical Reports Server (NTRS)

    Akyurtlu, Jale F.; Akyurtlu, Ates

    1993-01-01

    A new hypersonic test facility which can simulate conditions typical of atmospheric flight at Mach numbers up to 20 is currently under study at the NASA/LaRC Hypersonic Propulsion Branch. In the proposed research, it was suggested that a combustion augmented electrothermal wind tunnel concept may be applied to the planned hypersonic testing facility. The purpose of the current investigation is to evaluate some candidate working fluid formulations which may be used in the chemical-electrothermal wind. The efforts in the initial phase of this research were concentrated on acquiring the code used by GASL to model the electrothermal wind tunnel and testing it using the conditions of GASL simulation. The early version of the general chemical kinetics code (GCKP84) was obtained from NASA and the latest updated version of the code (LSENS) was obtained from the author Dr. Bittker. Both codes are installed on a personal computer with a 486 25 MHz processor and 16 Mbyte RAM. Since the available memory was not sufficient to debug LSENS, for the current work GCKP84 was used.

  3. A large-eddy simulation based power estimation capability for wind farms over complex terrain

    NASA Astrophysics Data System (ADS)

    Senocak, I.; Sandusky, M.; Deleon, R.

    2017-12-01

    There has been an increasing interest in predicting wind fields over complex terrain at the micro-scale for resource assessment, turbine siting, and power forecasting. These capabilities are made possible by advancements in computational speed from a new generation of computing hardware, numerical methods and physics modelling. The micro-scale wind prediction model presented in this work is based on the large-eddy simulation paradigm with surface-stress parameterization. The complex terrain is represented using an immersed-boundary method that takes into account the parameterization of the surface stresses. Governing equations of incompressible fluid flow are solved using a projection method with second-order accurate schemes in space and time. We use actuator disk models with rotation to simulate the influence of turbines on the wind field. Data regarding power production from individual turbines are mostly restricted because of proprietary nature of the wind energy business. Most studies report percentage drop of power relative to power from the first row. There have been different approaches to predict power production. Some studies simply report available wind power in the upstream, some studies estimate power production using power curves available from turbine manufacturers, and some studies estimate power as torque multiplied by rotational speed. In the present work, we propose a black-box approach that considers a control volume around a turbine and estimate the power extracted from the turbine based on the conservation of energy principle. We applied our wind power prediction capability to wind farms over flat terrain such as the wind farm over Mower County, Minnesota and the Horns Rev offshore wind farm in Denmark. The results from these simulations are in good agreement with published data. We also estimate power production from a hypothetical wind farm in complex terrain region and identify potential zones suitable for wind power production.

  4. A pan-European quantitative assessment of soil loss by wind

    NASA Astrophysics Data System (ADS)

    Borrelli, Pasqualle; Lugato, Emanuele; Panagos, Panos

    2016-04-01

    Soil erosion by wind is a serious environmental problem often low perceived but resulting in severe soil degradation forms. On the long-term a considerable part of topsoil - rich in nutrient and organic matters - could be removed compromising the agricultural productivity and inducing an increased use of fertilizers. Field scale studies and observations proven that wind erosion is a serious problem in many European sites. The state-of-the-art suggests a scenario where wind erosion locally affects the temperate climate areas of the northern European countries, as well as the semi-arid areas of the Mediterranean region. However, observations, field measurements and modelling assessments are extremely limited and unequally distributed across Europe. It implies a lack of knowledge about where and when wind erosion occurs, limiting policy actions aimed at mitigating land degradation. To gain a better understanding about soil degradation process, the Soil Resource Assessment working group of the Joint Research Centre carried out the first pan-European assessments of wind-erodible fraction of soil (EF) (Geoderma, 232, 471-478, 2014) and land susceptibility to wind erosion (Land Degradation & Development, DOI: 10.1002/ldr.2318). Today's challenge is to integrate the insights archived by these pan-European assessments, local experiments and field-scale models into a new generation of regional-scale wind erosion models. A GIS version of the Revised Wind Erosion Equation (RWEQ) was developed with the aim to i) move a step forward into the aforementioned challenges, and ii) evaluate the soil loss potential due to wind erosion in the agricoltural land of the EU. The model scheme was designed to describe daily soil loss potential, combining spatiotemporal conditions of soil erodibility, crust factor, soil moisture content, vegetation coverage and wind erosivity at 1 km2 resolution. The average soil loss predicted by GIS-RWEQ in the EU arable land ranges from 0 to 39.9 Mg ha-1 yr-1, with a mean value of 0.53 Mg ha-1 yr-1. A cross-country analysis shows highest mean annual soil loss values in Denmark (3 Mg ha-1 yr-1), the Netherland (2.6 Mg ha-1 yr-1), Bulgaria (1.8 Mg ha-1 yr-1) and to a lesser extent in the United Kingdom (1 Mg ha-1 yr-1) and Romania (0.95 Mg ha-1 yr-1). The cross-validation results provides encouraging outcomes in line with the local measurements reported by academic literature. Novel insights into the spatiotemporal dynamics of wind erosion processes have been achieved, providing knowledge and a tool to gain a more comprehensive understanding of wind erosion processes in Europe.

  5. Measurements of the interaction of wave groups with shorter wind-generated waves

    NASA Technical Reports Server (NTRS)

    Chu, Jacob S.; Long, Steven R.; Phillips, O. M.

    1992-01-01

    Fields of statistically steady wind-generated waves produced in a wind wave facility were perturbed by the injection of groups of longer, mechanically generated waves with various slopes. The time histories of the surface displacements were measured at four fetches in ensembles consisting of 100 realizations of each set of experimental conditions; the data were stored and analyzed digitally. Four distinct stages in the overall interaction are identified and characterized. The properties of the wave energy front are documented, and a preliminary discussion is given of the dynamic processes involved in its formation.

  6. A High-Resolution Merged Wind Dataset for DYNAMO: Progress and Future Plans

    NASA Technical Reports Server (NTRS)

    Lang, Timothy J.; Mecikalski, John; Li, Xuanli; Chronis, Themis; Castillo, Tyler; Hoover, Kacie; Brewer, Alan; Churnside, James; McCarty, Brandi; Hein, Paul; hide

    2015-01-01

    In order to support research on optimal data assimilation methods for the Cyclone Global Navigation Satellite System (CYGNSS), launching in 2016, work has been ongoing to produce a high-resolution merged wind dataset for the Dynamics of the Madden Julian Oscillation (DYNAMO) field campaign, which took place during late 2011/early 2012. The winds are produced by assimilating DYNAMO observations into the Weather Research and Forecasting (WRF) three-dimensional variational (3DVAR) system. Data sources from the DYNAMO campaign include the upper-air sounding network, radial velocities from the radar network, vector winds from the Advanced Scatterometer (ASCAT) and Oceansat-2 Scatterometer (OSCAT) satellite instruments, the NOAA High Resolution Doppler Lidar (HRDL), and several others. In order the prep them for 3DVAR, significant additional quality control work is being done for the currently available TOGA and SMART-R radar datasets, including automatically dealiasing radial velocities and correcting for intermittent TOGA antenna azimuth angle errors. The assimilated winds are being made available as model output fields from WRF on two separate grids with different horizontal resolutions - a 3-km grid focusing on the main DYNAMO quadrilateral (i.e., Gan Island, the R/V Revelle, the R/V Mirai, and Diego Garcia), and a 1-km grid focusing on the Revelle. The wind dataset is focused on three separate approximately 2-week periods during the Madden Julian Oscillation (MJO) onsets that occurred in October, November, and December 2011. Work is ongoing to convert the 10-m surface winds from these model fields to simulated CYGNSS observations using the CYGNSS End-To-End Simulator (E2ES), and these simulated satellite observations are being compared to radar observations of DYNAMO precipitation systems to document the anticipated ability of CYGNSS to provide information on the relationships between surface winds and oceanic precipitation at the mesoscale level. This research will improve our understanding of the future utility of CYGNSS for documenting key MJO processes.

  7. Experimental studies of Savonius wind turbines with variations sizes and fin numbers towards performance

    NASA Astrophysics Data System (ADS)

    Utomo, Ilham Satrio; Tjahjana, Dominicus Danardono Dwi Prija; Hadi, Syamsul

    2018-02-01

    The use of renewable energy in Indonesia is still low. Especially the use of wind energy. Wind turbine Savonius is one turbine that can work with low wind speed. However, Savonius wind turbines still have low efficiency. Therefore it is necessary to modify. Modifications by using the fin are expected to increase the positive drag force by creating a flow that can enter the overlap ratio of the gap. This research was conducted using experimental approach scheme. Parameters generated from the experiment include: power generator, power coefficient, torque coefficient. The experimental data will be collected by variation of fin area, horizontal finning, at wind speed 3 m/s - 4,85 m/s. Experimental results show that with the addition of fin can improve the performance of wind turbine Savonius 11%, and by using the diameter of 115 mm fin is able to provide maximum performance in wind turbine Savonius.

  8. A study of rotor and platform design trade-offs for large-scale floating vertical axis wind turbines

    NASA Astrophysics Data System (ADS)

    Griffith, D. Todd; Paquette, Joshua; Barone, Matthew; Goupee, Andrew J.; Fowler, Matthew J.; Bull, Diana; Owens, Brian

    2016-09-01

    Vertical axis wind turbines are receiving significant attention for offshore siting. In general, offshore wind offers proximity to large populations centers, a vast & more consistent wind resource, and a scale-up opportunity, to name a few beneficial characteristics. On the other hand, offshore wind suffers from high levelized cost of energy (LCOE) and in particular high balance of system (BoS) costs owing to accessibility challenges and limited project experience. To address these challenges associated with offshore wind, Sandia National Laboratories is researching large-scale (MW class) offshore floating vertical axis wind turbines (VAWTs). The motivation for this work is that floating VAWTs are a potential transformative technology solution to reduce offshore wind LCOE in deep-water locations. This paper explores performance and cost trade-offs within the design space for floating VAWTs between the configurations for the rotor and platform.

  9. Stabilization of Wind Energy Conversion System with Hydrogen Generator by Using EDLC Energy Storage System

    NASA Astrophysics Data System (ADS)

    Shishido, Seiji; Takahashi, Rion; Murata, Toshiaki; Tamura, Junji; Sugimasa, Masatoshi; Komura, Akiyoshi; Futami, Motoo; Ichinose, Masaya; Ide, Kazumasa

    The spread of wind power generation is progressed hugely in recent years from a viewpoint of environmental problems including global warming. Though wind power is considered as a very prospective energy source, wind power fluctuation due to the random fluctuation of wind speed has still created some problems. Therefore, research has been performed how to smooth the wind power fluctuation. This paper proposes Energy Capacitor System (ECS) for the smoothing of wind power which consists of Electric Double-Layer Capacitor (EDLC) and power electronics devices and works as an electric power storage system. Moreover, hydrogen has received much attention in recent years from a viewpoint of exhaustion problem of fossil fuel. Therefore it is also proposed that a hydrogen generator is installed at the wind farm to generate hydrogen. In this paper, the effectiveness of the proposed system is verified by the simulation analyses using PSCAD/EMTDC.

  10. Framing sound: Using expectations to reduce environmental noise annoyance.

    PubMed

    Crichton, Fiona; Dodd, George; Schmid, Gian; Petrie, Keith J

    2015-10-01

    Annoyance reactions to environmental noise, such as wind turbine sound, have public health implications given associations between annoyance and symptoms related to psychological distress. In the case of wind farms, factors contributing to noise annoyance have been theorised to include wind turbine sound characteristics, the noise sensitivity of residents, and contextual aspects, such as receiving information creating negative expectations about sound exposure. The experimental aim was to assess whether receiving positive or negative expectations about wind farm sound would differentially influence annoyance reactions during exposure to wind farm sound, and also influence associations between perceived noise sensitivity and noise annoyance. Sixty volunteers were randomly assigned to receive either negative or positive expectations about wind farm sound. Participants in the negative expectation group viewed a presentation which incorporated internet material indicating that exposure to wind turbine sound, particularly infrasound, might present a health risk. Positive expectation participants viewed a DVD which framed wind farm sound positively and included internet information about the health benefits of infrasound exposure. Participants were then simultaneously exposed to sub-audible infrasound and audible wind farm sound during two 7 min exposure sessions, during which they assessed their experience of annoyance. Positive expectation participants were significantly less annoyed than negative expectation participants, while noise sensitivity only predicted annoyance in the negative group. Findings suggest accessing negative information about sound is likely to trigger annoyance, particularly in noise sensitive people and, importantly, portraying sound positively may reduce annoyance reactions, even in noise sensitive individuals. Copyright © 2015 Elsevier Inc. All rights reserved.

  11. Assessment of C-Type Darrieus Wind Turbine Under Low Wind Speed Condition

    NASA Astrophysics Data System (ADS)

    Misaran, M. S.; Rahman, Md. M.; Muzammil, W. K.; Ismail, M. A.

    2017-07-01

    Harvesting wind energy in in a low wind speed region is deem un-economical if not daunting task. Study shows that a minimum cut in speed of 3.5 m/s is required to extract a meaningful wind energy for electricity while a mean speed of 6 m/s is preferred. However, in Malaysia the mean speed is at 2 m/s with certain potential areas having 3 m/s mean speed. Thus, this work aims to develop a wind turbine that able to operate at lower cut-in speed and produce meaningful power for electricity generation. A C-type Darrieus blade is selected as it shows good potential to operate in arbitrary wind speed condition. The wind turbine is designed and fabricated in UMS labs while the performance of the wind turbine is evaluated in a simulated wind condition. Test result shows that the wind turbine started to rotate at 1 m/s compared to a NACA 0012 Darrieus turbine that started to rotate at 3 m/s. The performance of the turbine shows that it have good potential to be used in an intermittent arbitrary wind speed condition as well as low mean wind speed condition.

  12. Peak Wind Tool for General Forecasting

    NASA Technical Reports Server (NTRS)

    Barrett, Joe H., III; Short, David

    2008-01-01

    This report describes work done by the Applied Meteorology Unit (AMU) in predicting peak winds at Kennedy Space Center (KSC) and Cape Canaveral Air Force Station (CCAFS). The 45th Weather Squadron requested the AMU develop a tool to help them forecast the speed and timing of the daily peak and average wind, from the surface to 300 ft on KSC/CCAFS during the cool season. Based on observations from the KSC/CCAFS wind tower network , Shuttle Landing Facility (SLF) surface observations, and CCAFS sounding s from the cool season months of October 2002 to February 2007, the AMU created mul tiple linear regression equations to predict the timing and speed of the daily peak wind speed, as well as the background average wind speed. Several possible predictors were evaluated, including persistence , the temperature inversion depth and strength, wind speed at the top of the inversion, wind gust factor (ratio of peak wind speed to average wind speed), synoptic weather pattern, occurrence of precipitation at the SLF, and strongest wind in the lowest 3000 ft, 4000 ft, or 5000 ft.

  13. Smart structure for small wind turbine blade

    NASA Astrophysics Data System (ADS)

    Supeni, E. E.; Epaarachchi, J. A.; Islam, M. M.; Lau, K. T.

    2013-08-01

    Wind energy is seen as a viable alternative energy option for future energy demand. The blades of wind turbines are generally regarded as the most critical component of the wind turbine system. Ultimately, the blades act as the prime mover of the whole system which interacts with the wind flow during the production of energy. During wind turbine operation the wind loading cause the deflection of the wind turbine blade which can be significant and affect the turbine efficiency. Such a deflection in wind blade not only will result in lower performance in electrical power generation but also increase of material degradation due high fatigue life and can significantly shorten the longevity for the wind turbine material. In harnessing stiffness of the blade will contribute massive weight factor and consequently excessive bending moment. To overcome this excessive deflection due to wind loading on the blade, it is feasible to use shape memory alloy (SMA) wires which has ability take the blade back to its optimal operational shape. This paper details analytical and experimental work being carried out to minimize blade flapping deflection using SMA.

  14. Dispersal of large branchiopod cysts: Potential movement by wind from potholes on the Colorado Plateau

    USGS Publications Warehouse

    Graham, T.B.; Wirth, D.

    2008-01-01

    Wind is suspected to be a primary dispersal mechanism for large branchiopod cysts on the Colorado Plateau. We used a wind tunnel to investigate wind velocities capable of moving pothole sediment and cysts from intact and disturbed surfaces. Material moved in the wind tunnel was trapped in filters; cysts were separated from sediment and counted. Undisturbed sediment moved at velocities as low as 5.9 m s-1 (12.3 miles h-1). A single all-terrain vehicle (ATV) track increased the sediment mass collected 10-fold, with particles moving at a wind velocity of only 4.2 m s-1 (8.7 miles h-1). Cysts were recovered from every wind tunnel trial. Measured wind velocities are representative of low-wind speeds measured near Moab, Utah. Wind can move large numbers of cysts to and from potholes on the Colorado Plateau. Our results indicate that large branchiopod cysts move across pothole basins at low-wind speeds; additional work is needed to establish velocities at which cysts move between potholes. ?? 2007 Springer Science+Business Media B.V.

  15. The Pattern of Complaints about Australian Wind Farms Does Not Match the Establishment and Distribution of Turbines: Support for the Psychogenic, ‘Communicated Disease’ Hypothesis

    PubMed Central

    Chapman, Simon; St. George, Alexis; Waller, Karen; Cakic, Vince

    2013-01-01

    Background and Objectives With often florid allegations about health problems arising from wind turbine exposure now widespread, nocebo effects potentially confound any future investigation of turbine health impact. Historical audits of health complaints are therefore important. We test 4 hypotheses relevant to psychogenic explanations of the variable timing and distribution of health and noise complaints about wind farms in Australia. Setting All Australian wind farms (51 with 1634 turbines) operating 1993–2012. Methods Records of complaints about noise or health from residents living near 51 Australian wind farms were obtained from all wind farm companies, and corroborated with complaints in submissions to 3 government public enquiries and news media records and court affidavits. These are expressed as proportions of estimated populations residing within 5 km of wind farms. Results There are large historical and geographical variations in wind farm complaints. 33/51 (64.7%) of Australian wind farms including 18/34 (52.9%) with turbine size >1 MW have never been subject to noise or health complaints. These 33 farms have an estimated 21,633 residents within 5 km and have operated complaint-free for a cumulative 267 years. Western Australia and Tasmania have seen no complaints. 129 individuals across Australia (1 in 254 residents) appear to have ever complained, with 94 (73%) being residents near 6 wind farms targeted by anti wind farm groups. The large majority 116/129(90%) of complainants made their first complaint after 2009 when anti wind farm groups began to add health concerns to their wider opposition. In the preceding years, health or noise complaints were rare despite large and small-turbine wind farms having operated for many years. Conclusions The reported historical and geographical variations in complaints are consistent with psychogenic hypotheses that expressed health problems are “communicated diseases” with nocebo effects likely to play an important role in the aetiology of complaints. PMID:24146893

  16. The pattern of complaints about Australian wind farms does not match the establishment and distribution of turbines: support for the psychogenic, 'communicated disease' hypothesis.

    PubMed

    Chapman, Simon; St George, Alexis; Waller, Karen; Cakic, Vince

    2013-01-01

    With often florid allegations about health problems arising from wind turbine exposure now widespread, nocebo effects potentially confound any future investigation of turbine health impact. Historical audits of health complaints are therefore important. We test 4 hypotheses relevant to psychogenic explanations of the variable timing and distribution of health and noise complaints about wind farms in Australia. All Australian wind farms (51 with 1634 turbines) operating 1993-2012. Records of complaints about noise or health from residents living near 51 Australian wind farms were obtained from all wind farm companies, and corroborated with complaints in submissions to 3 government public enquiries and news media records and court affidavits. These are expressed as proportions of estimated populations residing within 5 km of wind farms. There are large historical and geographical variations in wind farm complaints. 33/51 (64.7%) of Australian wind farms including 18/34 (52.9%) with turbine size >1 MW have never been subject to noise or health complaints. These 33 farms have an estimated 21,633 residents within 5 km and have operated complaint-free for a cumulative 267 years. Western Australia and Tasmania have seen no complaints. 129 individuals across Australia (1 in 254 residents) appear to have ever complained, with 94 (73%) being residents near 6 wind farms targeted by anti wind farm groups. The large majority 116/129(90%) of complainants made their first complaint after 2009 when anti wind farm groups began to add health concerns to their wider opposition. In the preceding years, health or noise complaints were rare despite large and small-turbine wind farms having operated for many years. The reported historical and geographical variations in complaints are consistent with psychogenic hypotheses that expressed health problems are "communicated diseases" with nocebo effects likely to play an important role in the aetiology of complaints.

  17. Wind Turbine Wake-Redirection Control at the Fishermen's Atlantic City Windfarm: Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Churchfield, M.; Fleming, P.; Bulder, B.

    2015-05-06

    In this paper, we will present our work towards designing a control strategy to mitigate wind turbine wake effects by redirecting the wakes, specifically applied to the Fishermen’s Atlantic City Windfarm (FACW), proposed for deployment off the shore of Atlantic City, New Jersey. As wind turbines extract energy from the air, they create low-speed wakes that extend behind them. Full wake recovery Full wake recovery to the undisturbed wind speed takes a significant distance. In a wind energy plant the wakes of upstream turbines may travel downstream to the next row of turbines, effectively subjecting them to lower wind speeds,more » meaning these waked turbines will produce less power.« less

  18. Walter Musial | NREL

    Science.gov Websites

    Walter.Musial@nrel.gov | 303-384-6956 Walt is a principal engineer and the manager of Offshore Wind at NREL , where he has worked since 1988. In 2003, he initiated the offshore wind energy research program at NREL

  19. The Great Plains Wind Power Test Facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schroeder, John

    2014-01-30

    This multi-year, multi-faceted project was focused on the continued development of a nationally-recognized facility for the testing, characterization, and improvement of grid-connected wind turbines, integrated wind-water desalination systems, and related educational and outreach topics. The project involved numerous faculty and graduate students from various engineering departments, as well as others from the departments of Geosciences (in particular the Atmospheric Science Group) and Economics. It was organized through the National Wind Institute (NWI), which serves as an intellectual hub for interdisciplinary and transdisciplinary research, commercialization and education related to wind science, wind energy, wind engineering and wind hazard mitigation at Texasmore » Tech University (TTU). Largely executed by an academic based team, the project resulted in approximately 38 peer-reviewed publications, 99 conference presentations, the development/expansion of several experimental facilities, and two provisional patents.« less

  20. Application of Neural Networks to Wind tunnel Data Response Surface Methods

    NASA Technical Reports Server (NTRS)

    Lo, Ching F.; Zhao, J. L.; DeLoach, Richard

    2000-01-01

    The integration of nonlinear neural network methods with conventional linear regression techniques is demonstrated for representative wind tunnel force balance data modeling. This work was motivated by a desire to formulate precision intervals for response surfaces produced by neural networks. Applications are demonstrated for representative wind tunnel data acquired at NASA Langley Research Center and the Arnold Engineering Development Center in Tullahoma, TN.

  1. Flow-Visualization Techniques Used at High Speed by Configuration Aerodynamics Wind-Tunnel-Test Team

    NASA Technical Reports Server (NTRS)

    Lamar, John E. (Editor)

    2001-01-01

    This paper summarizes a variety of optically based flow-visualization techniques used for high-speed research by the Configuration Aerodynamics Wind-Tunnel Test Team of the High-Speed Research Program during its tenure. The work of other national experts is included for completeness. Details of each technique with applications and status in various national wind tunnels are given.

  2. Isometry group orbit quantization of spinning strings in AdS3 × S3

    NASA Astrophysics Data System (ADS)

    Heinze, Martin; Jorjadze, George; Megrelidze, Luka

    2015-03-01

    Describing the bosonic AdS3 × S3 particle and string in SU(1,1) × SU(2) group variables, we provide a Hamiltonian treatment of the isometry group orbits of solutions via analysis of the pre-symplectic form. For the particle we obtain a one-parameter family of orbits parameterized by creation-annihilation variables, which leads to the Holstein-Primakoff realization of the isometry group generators. The scheme is then applied to spinning string solutions characterized by one winding number in AdS3 and two winding numbers in S3. We find a two-parameter family of orbits, where quantization again provides the Holstein-Primakoff realization of the symmetry generators with an oscillator-type energy spectrum. Analyzing the minimal energy at strong coupling, we verify the spectrum of short strings at special values of winding numbers.

  3. Analysing wind farm efficiency on complex terrains

    NASA Astrophysics Data System (ADS)

    Castellani, Francesco; Astolfi, Davide; Terzi, Ludovico; Schaldemose Hansen, Kurt; Sanz Rodrigo, Javier

    2014-06-01

    Actual performances of onshore wind farms are deeply affected both by wake interactions and terrain complexity: therefore monitoring how the efficiency varies with the wind direction is a crucial task. Polar efficiency plot is therefore a useful tool for monitoring wind farm performances. The approach deserves careful discussion for onshore wind farms, where orography and layout commonly affect performance assessment. The present work deals with three modern wind farms, owned by Sorgenia Green, located on hilly terrains with slopes from gentle to rough. Further, onshore wind farm of Nprrekffir Enge has been analysed as a reference case: its layout is similar to offshore wind farms and the efficiency is mainly driven by wakes. It is shown and justified that terrain complexity imposes a novel and more consistent way for defining polar efficiency. Dependency of efficiency on wind direction, farm layout and orography is analysed and discussed. Effects of atmospheric stability have been also investigated through MERRA reanalysis data from NASA satellites. Monin-Obukhov Length has been used to discriminate climate regimes.

  4. Large wind ripples on Mars: A record of atmospheric evolution

    NASA Astrophysics Data System (ADS)

    Lapotre, M. G. A.; Ewing, R. C.; Lamb, M. P.; Fischer, W. W.; Grotzinger, J. P.; Rubin, D. M.; Lewis, K. W.; Ballard, M. J.; Day, M.; Gupta, S.; Banham, S. G.; Bridges, N. T.; Des Marais, D. J.; Fraeman, A. A.; Grant, J. A.; Herkenhoff, K. E.; Ming, D. W.; Mischna, M. A.; Rice, M. S.; Sumner, D. A.; Vasavada, A. R.; Yingst, R. A.

    2016-07-01

    Wind blowing over sand on Earth produces decimeter-wavelength ripples and hundred-meter- to kilometer-wavelength dunes: bedforms of two distinct size modes. Observations from the Mars Science Laboratory Curiosity rover and the Mars Reconnaissance Orbiter reveal that Mars hosts a third stable wind-driven bedform, with meter-scale wavelengths. These bedforms are spatially uniform in size and typically have asymmetric profiles with angle-of-repose lee slopes and sinuous crest lines, making them unlike terrestrial wind ripples. Rather, these structures resemble fluid-drag ripples, which on Earth include water-worked current ripples, but on Mars instead form by wind because of the higher kinematic viscosity of the low-density atmosphere. A reevaluation of the wind-deposited strata in the Burns formation (about 3.7 billion years old or younger) identifies potential wind-drag ripple stratification formed under a thin atmosphere.

  5. Large wind ripples on Mars: A record of atmospheric evolution

    USGS Publications Warehouse

    Lapotre, M G; Ewing, R C; Lamb, M P; Fischer, W W; Grotzinger, J P; Rubin, D M; Lewis, K W; Ballard, M; Day, Mitch D.; Gupta, S.; Banham, S G; Bridges, N T; Des Marais, D J; Fraeman, A A; Grant, J A; Herkenhoff, Kenneth E.; Ming, D W; Mischna, M A; Rice, M S; Sumner, D A; Vasavada, A R; Yingst, R A

    2016-01-01

    Wind blowing over sand on Earth produces decimeter-wavelength ripples and hundred-meter– to kilometer-wavelength dunes: bedforms of two distinct size modes. Observations from the Mars Science Laboratory Curiosity rover and the Mars Reconnaissance Orbiter reveal that Mars hosts a third stable wind-driven bedform, with meter-scale wavelengths. These bedforms are spatially uniform in size and typically have asymmetric profiles with angle-of-repose lee slopes and sinuous crest lines, making them unlike terrestrial wind ripples. Rather, these structures resemble fluid-drag ripples, which on Earth include water-worked current ripples, but on Mars instead form by wind because of the higher kinematic viscosity of the low-density atmosphere. A reevaluation of the wind-deposited strata in the Burns formation (about 3.7 billion years old or younger) identifies potential wind-drag ripple stratification formed under a thin atmosphere.

  6. Field testing of feedforward collective pitch control on the CART2 using a nacelle-based Lidar scanner

    DOE PAGES

    Schlipf, David; Fleming, Paul; Haizmann, Florian; ...

    2014-12-16

    This work presents the results from a field test of LIDAR assisted collective pitch control using a scanning LIDAR device installed on the nacelle of a mid-scale research turbine. A nonlinear feedforward controller is extended by an adaptive filter to remove all uncorrelated frequencies of the wind speed measurement to avoid unnecessary control action. Positive effects on the rotor speed regulation as well as on tower, blade and shaft loads have been observed in the case that the previous measured correlation and timing between the wind preview and the turbine reaction are accomplish. The feedforward controller had negative impact, whenmore » the LIDAR measurement was disturbed by obstacles in front of the turbine. This work proves, that LIDAR is valuable tool for wind turbine control not only in simulations but also under real conditions. Moreover, the paper shows that further understanding of the relationship between the wind measurement and the turbine reaction is crucial to improve LIDAR assisted control of wind turbines.« less

  7. Electric Motor Thermal Management Research: Annual Progress Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bennion, Kevin S.

    Past work in the area of active convective cooling provided data on the average convective heat transfer coefficients of circular orifice automatic transmission fluid (ATF) jets impinging on stationary targets intended to represent the wire bundle surface of the motor end-winding. Work during FY16 focused on the impact of alternative jet geometries that could lead to improved cooling over a larger surface of the motor winding. Results show that the planar jet heat transfer coefficients over a small (12.7-mm-diameter) target surface are not too much lower than for the circular orifice jet in which all of the ATF from themore » jet impinges on the target surface. The planar jet has the potential to achieve higher heat transfer over a larger area of the motor end winding. A new test apparatus was constructed to measure the spatial dependence of the heat transfer relative to the jet nozzle over a larger area representative of a motor end-winding. The tested planar flow geometry has the potential to provide more uniform cooling over the full end-winding surface versus the conventional jet configuration. The data will be used by motor designers to develop thermal management strategies to improve motor power density. Work on passive thermal design in collaboration with Oak Ridge National Laboratory to measure the thermal conductivity of wire bundle samples representative of end-winding and slot-winding materials was completed. Multiple measurement techniques were compared to determine which was most suitable for measuring composite wire bundle samples. NREL used a steady-state thermal resistance technique to measure the direction-dependent thermal conductivity. The work supported new interactions with industry to test new materials and reduce passive-stack thermal resistance in motors, leading to motors with increased power density. NREL collaborated with Ames Laboratory in the area of material characterization. The work focused on measuring the transverse rupture strength of new magnet materials developed at Ames. The impact of the improved transverse rupture strength is a mechanically stronger magnet that is easier for manufacturers to implement into motor designs. The thermal conductivity of the new magnet materials was also measured in comparison to two commercially available AlNiCo magnet materials. The impact of the thermal conductivity of the magnet material will need to be analyzed in the context of a motor application.« less

  8. Air Force Officers Visit Aircraft Engine Research Laboratory

    NASA Image and Video Library

    1945-08-21

    A group of 60 Army Air Forces officers visited the National Advisory Committee for Aeronautics (NACA) Aircraft Engine Research Laboratory on August 27, 1945. The laboratory enacted strict security regulations throughout World War II. During the final months of the war, however, the NACA began opening its doors to groups of writers, servicemen, and aviation industry leaders. These events were the first exposure of the new engine laboratory to the outside world. Grandstands were built alongside the Altitude Wind Tunnel specifically for group photographs. George Lewis, Raymond Sharp, and Addison Rothrock (right to left) addressed this group of officers in the Administration Building auditorium. Lewis was the NACA’s Director of Aeronautical Research, Sharp was the lab’s manager, and Rothrock was the lab’s chief of research. Abe Silverstein, Jesse Hall and others watch from the rear of the room. The group toured several facilities after the talks, including the Altitude Wind Tunnel and a new small supersonic wind tunnel. The visit concluded with a NACA versus Army baseball game and cookout.

  9. The Wind Energy Potential of Kurdistan, Iran

    PubMed Central

    Arefi, Farzad; Moshtagh, Jamal; Moradi, Mohammad

    2014-01-01

    In the current work by using statistical methods and available software, the wind energy assessment of prone regions for installation of wind turbines in, Qorveh, has been investigated. Information was obtained from weather stations of Baneh, Bijar, Zarina, Saqez, Sanandaj, Qorveh, and Marivan. The monthly average and maximum of wind speed were investigated between the years 2000–2010 and the related curves were drawn. The Golobad curve (direction and percentage of dominant wind and calm wind as monthly rate) between the years 1997–2000 was analyzed and drawn with plot software. The ten-minute speed (at 10, 30, and 60 m height) and direction (at 37.5 and 10 m height) wind data were collected from weather stations of Iranian new energy organization. The wind speed distribution during one year was evaluated by using Weibull probability density function (two-parametrical), and the Weibull curve histograms were drawn by MATLAB software. According to the average wind speed of stations and technical specifications of the types of turbines, the suitable wind turbine for the station was selected. Finally, the Divandareh and Qorveh sites with favorable potential were considered for installation of wind turbines and construction of wind farms. PMID:27355042

  10. Assessing the Future of Distributed Wind: Opportunities for Behind-the-Meter Projects

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lantz, Eric; Sigrin, Benjamin; Gleason, Michael

    2016-11-01

    Wind power is one of the fastest growing sources of new electricity generation in the United States. Cumulative installed capacity was more than 74,000 megawatts (MW) at year-end 2015 and wind power supplied 4.7% of total 2015 U.S. electricity generation. Despite the growth of the wind power industry, the distributed wind market has remained limited. Cumulative installations of distributed wind through 2015 totaled 934 MW. This first-of-a-kind exploratory analysis characterizes the future opportunity for behind-the-meter distributed wind, serving primarily rural or suburban homes, farms, and manufacturing facilities. This work focuses only on the grid-connected, behind-the-meter subset of the broader distributedmore » wind market. We estimate this segment to be approximately half of the 934 MW of total installed distributed wind capacity at year-end 2015. Potential from other distributed wind market segments including systems installed in front of the meter (e.g., community wind) and in remote, off-grid locations is not assessed in this analysis and therefore, would be additive to results presented here. These other distributed wind market segments are not considered in this initial effort because of their relatively unique economic and market attributes.« less

  11. Improving uncertainty estimates: Inter-annual variability in Ireland

    NASA Astrophysics Data System (ADS)

    Pullinger, D.; Zhang, M.; Hill, N.; Crutchley, T.

    2017-11-01

    This paper addresses the uncertainty associated with inter-annual variability used within wind resource assessments for Ireland in order to more accurately represent the uncertainties within wind resource and energy yield assessments. The study was undertaken using a total of 16 ground stations (Met Eireann) and corresponding reanalysis datasets to provide an update to previous work on this topic undertaken nearly 20 years ago. The results of the work demonstrate that the previously reported 5.4% of wind speed inter-annual variability is considered to be appropriate, guidance is given on how to provide a robust assessment of IAV using available sources of data including ground stations, MERRA-2 and ERA-Interim.

  12. NREL and DONG Energy Collaboration for Grid Simulator Controls and Testing: Cooperative Research and Development Final Report, CRADA Number CRD-13-527

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gevorgian, Vahan

    The National Renewable Energy Laboratory (NREL) and DONG Energy are interested in collaborating for the development of control algorithms, modeling, and grid simulator testing of wind turbine generator systems involving NWTC's advanced Controllable Grid Interface (CGI). NREL and DONG Energy will work together to develop control algorithms, models, test methods, and protocols involving NREL's CGI, as well as appropriate data acquisition systems for grid simulation testing. The CRADA also includes work on joint publication of results achieved from modeling and testing efforts. Further, DONG Energy will send staff to NREL on a long-term basis for collaborative work including modeling andmore » testing. NREL will send staff to DONG Energy on a short-term basis to visit wind power sites and participate in meetings relevant to this collaborative effort. DOE has provided NREL with over 10 years of support in developing custom facilities and capabilities to enable testing of full-scale integrated wind turbine drivetrain systems in accordance with the needs of the US wind industry. NREL currently operates a 2.5MW dynamometer and is in the processes of commissioning a 5MW dynamometer and a grid simulator (referred to as a 'Controllable Grid Interface' or CGI). DONG Energy is the market leader in offshore wind power development, with currently over 1 GW of on- and offshore wind power in operation, and 1.3 GW under construction. DONG Energy has on-going R&D projects involving high voltage DC (HVDC) transmission.« less

  13. Distributed Wind Soft Costs: A Beginning

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jimenez, Tony; Forsyth,Trudy; Preus, Robert

    2016-06-14

    Tony Jimenez presented this overview of distributed wind soft costs at the 2016 Small Wind Conference in Stevens Point, Wisconsin, on June 14, 2016. Soft costs are any non-hardware project costs, such as costs related to permitting fees, installer/developer profit, taxes, transaction costs, permitting, installation, indirect corporate costs, installation labor, and supply chain costs. This presentation provides an overview of soft costs, a distributed wind project taxonomy (of which soft costs are a subset), an alpha data set project demographics, data summary, and future work in this area.

  14. Experimental characterization of vertical-axis wind turbine noise.

    PubMed

    Pearson, C E; Graham, W R

    2015-01-01

    Vertical-axis wind turbines are wind-energy generators suitable for use in urban environments. Their associated noise thus needs to be characterized and understood. As a first step, this work investigates the relative importance of harmonic and broadband contributions via model-scale wind-tunnel experiments. Cross-spectra from a pair of flush-mounted wall microphones exhibit both components, but further analysis shows that the broadband dominates at frequencies corresponding to the audible range in full-scale operation. This observation has detrimental implications for noise-prediction reliability and hence also for acoustic design optimization.

  15. Wind tunnel productivity status and improvement activities at NASA Langley Research Center

    NASA Technical Reports Server (NTRS)

    Putnam, Lawrence E.

    1996-01-01

    Over the last three years, a major effort has been underway to re-engineering the way wind tunnel testing is accomplished at the NASA Langley Research Center. This effort began with the reorganization of the LaRC and the consolidation of the management of the wind tunnels in the Aerodynamics Division under one operations branch. This paper provides an overview of the re-engineering activities and gives the status of the improvements in the wind tunnel productivity and customer satisfaction that have resulted from the new ways of working.

  16. Storing wind energy into electrical accumulators

    NASA Astrophysics Data System (ADS)

    Dordescu, M.; Petrescu, D. I.; Erdodi, G. M.

    2016-12-01

    Shall be determined, in this work, the energy stored in the accumulators electrical, AE, at a wind system operating at wind speeds time-varying. mechanical energy caught in the turbine from the wind, (TV), is transformed into electrical energy by the generator synchronous with the permanent magnets, GSMP. The Generator synchronous with the permanent magnets saws, via a rectifier, energy in a battery AE, finished in a choice of two: variant 1-unregulated rectifier and variant of the 2-controlled rectifier and task adapted. Through simulation determine the differences between the two versions

  17. Flexible reserve markets for wind integration

    NASA Astrophysics Data System (ADS)

    Fernandez, Alisha R.

    The increased interconnection of variable generation has motivated the use of improved forecasting to more accurately predict future production with the purpose to lower total system costs for balancing when the expected output exceeds or falls short of the actual output. Forecasts are imperfect, and the forecast errors associated with utility-scale generation from variable generators need new balancing capabilities that cannot be handled by existing ancillary services. Our work focuses on strategies for integrating large amounts of wind generation under the flex reserve market, a market that would called upon for short-term energy services during an under or oversupply of wind generation to maintain electric grid reliability. The flex reserve market would be utilized for time intervals that fall in-between the current ancillary services markets that would be longer than second-to-second energy services for maintaining system frequency and shorter than reserve capacity services that are called upon for several minutes up to an hour during an unexpected contingency on the grid. In our work, the wind operator would access the flex reserve market as an energy service to correct for unanticipated forecast errors, akin to paying the generators participating in the market to increase generation during a shortfall or paying the other generators to decrease generation during an excess of wind generation. Such a market does not currently exist in the Mid-Atlantic United States. The Pennsylvania-New Jersey-Maryland Interconnection (PJM) is the Mid-Atlantic electric grid case study that was used to examine if a flex reserve market can be utilized for integrating large capacities of wind generation in a lowcost manner for those providing, purchasing and dispatching these short-term balancing services. The following work consists of three studies. The first examines the ability of a hydroelectric facility to provide short-term forecast error balancing services via a flex reserve market, identifying the operational constraints that inhibit a multi-purpose dam facility to meet the desired flexible energy demand. The second study transitions from the hydroelectric facility as the decision maker providing flex reserve services to the wind plant as the decision maker purchasing these services. In this second study, methods for allocating the costs of flex reserve services under different wind policy scenarios are explored that aggregate farms into different groupings to identify the least-cost strategy for balancing the costs of hourly day-ahead forecast errors. The least-cost strategy may be different for an individual wind plant and for the system operator, noting that the least-cost strategy is highly sensitive to cost allocation and aggregation schemes. The latter may also cause cross-subsidies in the cost for balancing wind forecast errors among the different wind farms. The third study builds from the second, with the objective to quantify the amount of flex reserves needed for balancing future forecast errors using a probabilistic approach (quantile regression) to estimating future forecast errors. The results further examine the usefulness of separate flexible markets PJM could use for balancing oversupply and undersupply events, similar to the regulation up and down markets used in Europe. These three studies provide the following results and insights to large-scale wind integration using actual PJM wind farm data that describe the markets and generators within PJM. • Chapter 2 provides an in-depth analysis of the valuable, yet highly-constrained, energy services multi-purpose hydroelectric facilities can provide, though the opportunity cost for providing these services can result in large deviations from the reservoir policies with minimal revenue gain in comparison to dedicating the whole of dam capacity to providing day-ahead, baseload generation. • Chapter 3 quantifies the system-wide efficiency gains and the distributive effects of PJM's decision to act as a single balancing authority, which means that it procures ancillary services across its entire footprint simultaneously. This can be contrasted to Midwest Independent System Operator (MISO), which has several balancing authorities operating under its footprint. • Chapter 4 uses probabilistic methods to estimate the uncertainty in the forecast errors and the quantity of energy needed to balance these forecast errors at a certain percentile. Current practice is to use a point forecast that describes the conditional expectation of the dependent variable at each time step. The approach here uses quantile regression to describe the relationship between independent variable and the conditional quantiles (equivalently the percentiles) of the dependent variable. An estimate of the conditional density is performed, which contains information about the covariate relationship of the sign of the forecast errors (negative for too much wind generation and positive for too little wind generation) and the wind power forecast. This additional knowledge may be implemented in the decision process to more accurately schedule day-ahead wind generation bids and provide an example for using separate markets for balancing an oversupply and undersupply of generation. Such methods are currently used for coordinating large footprints of wind generation in Europe.

  18. NAWIG News: The Quarterly Newsletter of the Native American Wind Interest Group, Fall 2008, Wind & Hydropower Technologies Program (Brochure)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    2008-09-01

    As part of its Native American outreach, DOE?s Wind Powering America program produces a newsletter to present Native American wind information, including projects, interviews with pioneers, issues, WPA activities, and related events. This issue features an interview with Dave Danz, a tribal planner for the Grand Portage Band of Chippewa in northeastern Minnesota, and a feature on the new turbine that powers the KILI radio station on the Pine Ridge Reservation.

  19. Wind Fins: Novel Lower-Cost Wind Power System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    David C. Morris; Dr. Will D. Swearingen

    This project evaluated the technical feasibility of converting energy from the wind with a novel “wind fin” approach. This patent-pending technology has three major components: (1) a mast, (2) a vertical, hinged wind structure or fin, and (3) a power takeoff system. The wing structure responds to the wind with an oscillating motion, generating power. The overall project goal was to determine the basic technical feasibility of the wind fin technology. Specific objectives were the following: (1) to determine the wind energy-conversion performance of the wind fin and the degree to which its performance could be enhanced through basic designmore » improvements; (2) to determine how best to design the wind fin system to survive extreme winds; (3) to determine the cost-effectiveness of the best wind fin designs compared to state-of-the-art wind turbines; and (4) to develop conclusions about the overall technical feasibility of the wind fin system. Project work involved extensive computer modeling, wind-tunnel testing with small models, and testing of bench-scale models in a wind tunnel and outdoors in the wind. This project determined that the wind fin approach is technically feasible and likely to be commercially viable. Project results suggest that this new technology has the potential to harvest wind energy at approximately half the system cost of wind turbines in the 10kW range. Overall, the project demonstrated that the wind fin technology has the potential to increase the economic viability of small wind-power generation. In addition, it has the potential to eliminate lethality to birds and bats, overcome public objections to the aesthetics of wind-power machines, and significantly expand wind-power’s contribution to the national energy supply.« less

  20. Western Wind and Solar Integration Study Phase 3A: Low Levels of Synchronous Generation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miller, Nicholas W.; Leonardi, Bruno; D'Aquila, Robert

    The stability of the North American electric power grids under conditions of high penetrations of wind and solar is a significant concern and possible impediment to reaching renewable energy goals. The 33% wind and solar annual energy penetration considered in this study results in substantial changes to the characteristics of the bulk power system. This includes different power flow patterns, different commitment and dispatch of existing synchronous generation, and different dynamic behavior from wind and solar generation. The Western Wind and Solar Integration Study (WWSIS), sponsored by the U.S. Department of Energy, is one of the largest regional solar andmore » wind integration studies to date. In multiple phases, it has explored different aspects of the question: Can we integrate large amounts of wind and solar energy into the electric power system of the West? The work reported here focused on the impact of low levels of synchronous generation on the transient stability performance in one part of the region in which wind generation has displaced synchronous thermal generation under highly stressed, weak system conditions. It is essentially an extension of WWSIS-3. Transient stability, the ability of the power system to maintain synchronism among all elements following disturbances, is a major constraint on operations in many grids, including the western U.S. and Texas systems. These constraints primarily concern the performance of the large-scale bulk power system. But grid-wide stability concerns with high penetrations of wind and solar are still not thoroughly understood. This work focuses on 'traditional' fundamental frequency stability issues, such as maintaining synchronism, frequency, and voltage. The objectives of this study are to better understand the implications of low levels of synchronous generation and a weak grid on overall system performance by: 1) Investigating the Western Interconnection under conditions of both high renewable generation (e.g., wind and solar) and low synchronous generation (e.g., significant coal power plant decommitment or retirement); and 2) Analyzing both the large-scale stability of the Western Interconnection and regional stability issues driven by more geographically dispersed renewable generation interacting with a transmission grid that evolved with large, central station plants at key nodes. As noted above, the work reported here is an extension of the research performed in WWSIS-3.« less

  1. What Factors Explain Harmful Algal Blooms of Dinophysis Along the Texas Coast?

    NASA Astrophysics Data System (ADS)

    Replogle, L.; Henrichs, D.; Campbell, L.

    2016-02-01

    The toxic dinoflagellate Dinophysis ovum is one of the harmful algal species that bloom along the Texas coast. Blooms of D. ovum can be explained by several factors that work together to cause bloom initiation. This work utilized image counts collected by the Imaging FlowCytobot (IFCB) at Port Aransas, TX and modeled winds from the European Centre for Medium-range Weather Forecasts. Based on a previous study of another dinoflagellate species, it was hypothesized that winds will be highly correlated with harmful algal bloom (HAB) years versus non-HAB years for D. ovum. Weak northerly winds and downwelling along the coast will be associated with HAB years, while strong northerly or southerly winds will be associated with non-HAB years. In non-HAB years, wind-driven currents caused by upcoast or strongly flowing downcoast winds will result in northward or southward movement of D. ovum cells. In HAB years, weaker downcoast winds will allow for accumulation of D. ovum at the coast. Results showed that weak downcoast, along-shore winds occurred in the weeks preceding HAB events in 2008, 2010, 2011, 2012 and 2014, and likely contributed to the accumulation of Dinophysis cells along the Texas coast. When winds moved upcoast or strongly downcoast in the weeks preceding bloom months, Dinophysis blooms did not occur. Additional factors (e.g. sea surface temperature, surface-based runoff, El Niño Southern Oscillation, North Atlantic Oscillation and salinity) were analyzed to better define a favorable environment for bloom formation. Sea surface temperature and surface based runoff were significantly correlated with bloom occurrence, whereas El Niño Southern Oscillation and the North Atlantic Oscillation were not.

  2. Atmospheric turbulence affects wind turbine nacelle transferfunctions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    St. Martin, Clara M.; Lundquist, Julie K.; Clifton, Andrew

    Despite their potential as a valuable source of individual turbine power performance and turbine array energy production optimization information, nacelle-mounted anemometers have often been neglected because complex flows around the blades and nacelle interfere with their measurements. This work quantitatively explores the accuracy of and potential corrections to nacelle anemometer measurements to determine the degree to which they may be useful when corrected for these complex flows, particularly for calculating annual energy production (AEP) in the absence of other meteorological data. Using upwind meteorological tower measurements along with nacelle-based measurements from a General Electric (GE) 1.5sle model, we calculate empiricalmore » nacelle transfer functions (NTFs) and explore how they are impacted by different atmospheric and turbulence parameters. This work provides guidelines for the use of NTFs for deriving useful wind measurements from nacelle-mounted anemometers. Corrections to the nacelle anemometer wind speed measurements can be made with NTFs and used to calculate an AEP that comes within 1 % of an AEP calculated with upwind measurements. We also calculate unique NTFs for different atmospheric conditions defined by temperature stratification as well as turbulence intensity, turbulence kinetic energy, and wind shear. During periods of low stability as defined by the Bulk Richardson number ( RB), the nacelle-mounted anemometer underestimates the upwind wind speed more than during periods of high stability at some wind speed bins below rated speed, leading to a more steep NTF during periods of low stability. Similarly, during periods of high turbulence, the nacelle-mounted anemometer underestimates the upwind wind speed more than during periods of low turbulence at most wind bins between cut-in and rated wind speed. Based on these results, we suggest different NTFs be calculated for different regimes of atmospheric stability and turbulence for power performance validation purposes.« less

  3. Advanced Issues of Wind Turbine Modelling and Control

    NASA Astrophysics Data System (ADS)

    Simani, Silvio

    2015-11-01

    The motivation for this paper comes from a real need to have an overview about the challenges of modelling and control for very demanding systems, such as wind turbine systems, which require reliability, availability, maintainability, and safety over power conversion efficiency. These issues have begun to stimulate research and development in the wide control community particularly for these installations that need a high degree of “sustainability”. Note that this topic represents a key point mainly for offshore wind turbines with very large rotors, since they are characterised by challenging modelling and control problems, as well as expensive and safety critical maintenance works. In this case, a clear conflict exists between ensuring a high degree of availability and reducing maintenance times, which affect the final energy cost. On the other hand, wind turbines have highly nonlinear dynamics, with a stochastic and uncontrollable driving force as input in the form of wind speed, thus representing an interesting challenge also from the modelling point of view. Suitable control methods can provide a sustainable optimisation of the energy conversion efficiency over wider than normally expected working conditions. Moreover, a proper mathematical description of the wind turbine system should be able to capture the complete behaviour of the process under monitoring, thus providing an important impact on the control design itself. In this way, the control scheme could guarantee prescribed performance, whilst also giving a degree of “tolerance” to possible deviation of characteristic properties or system parameters from standard conditions, if properly included in the wind turbine model itself. The most important developments in advanced controllers for wind turbines are addressed, and open problems in the areas of modelling of wind turbines are also outlined.

  4. Atmospheric turbulence affects wind turbine nacelle transferfunctions

    DOE PAGES

    St. Martin, Clara M.; Lundquist, Julie K.; Clifton, Andrew; ...

    2017-06-02

    Despite their potential as a valuable source of individual turbine power performance and turbine array energy production optimization information, nacelle-mounted anemometers have often been neglected because complex flows around the blades and nacelle interfere with their measurements. This work quantitatively explores the accuracy of and potential corrections to nacelle anemometer measurements to determine the degree to which they may be useful when corrected for these complex flows, particularly for calculating annual energy production (AEP) in the absence of other meteorological data. Using upwind meteorological tower measurements along with nacelle-based measurements from a General Electric (GE) 1.5sle model, we calculate empiricalmore » nacelle transfer functions (NTFs) and explore how they are impacted by different atmospheric and turbulence parameters. This work provides guidelines for the use of NTFs for deriving useful wind measurements from nacelle-mounted anemometers. Corrections to the nacelle anemometer wind speed measurements can be made with NTFs and used to calculate an AEP that comes within 1 % of an AEP calculated with upwind measurements. We also calculate unique NTFs for different atmospheric conditions defined by temperature stratification as well as turbulence intensity, turbulence kinetic energy, and wind shear. During periods of low stability as defined by the Bulk Richardson number ( RB), the nacelle-mounted anemometer underestimates the upwind wind speed more than during periods of high stability at some wind speed bins below rated speed, leading to a more steep NTF during periods of low stability. Similarly, during periods of high turbulence, the nacelle-mounted anemometer underestimates the upwind wind speed more than during periods of low turbulence at most wind bins between cut-in and rated wind speed. Based on these results, we suggest different NTFs be calculated for different regimes of atmospheric stability and turbulence for power performance validation purposes.« less

  5. Effect of hurricane paths on storm surge response at Tianjin, China

    NASA Astrophysics Data System (ADS)

    Feng, Xingru; Yin, Baoshu; Yang, Dezhou

    2012-06-01

    A hurricane induced storm surge simulation system was developed for Tianjin coast, which consists of a hurricane model and a storm surge model. The peak storm surge result of the simulation agreed well with that of the observation. Three observed paths (Rita, Mimie and WINNIE) and a hypothetical path (Rita2) were chosen as the selective hurricane paths according to their positions relative to Tianjin. The sensitivity of Tianjin storm surge to the four paths was investigated using the validated storm surge simulation system. Three groups of experiments were done. In group one, the models were forced by the wind field and air pressure; in group two and three the models were forced by the wind only and the air pressure only respectively. In the experiments, the hurricane moved with a fixed speed and an intensity of 50 year return period. The simulation results show that path of the type Rita2 is the easiest to cause storm surge disaster in Tianjin, and the effect of air pressure forcing is most evident for path of the type Rita in Tianjin storm surge process. The above conclusions were analyzed through the evolution of the wind fields and the air pressure distributions. Comparing the experiment results of Group one, two and three, it can be seen that the storm surge is mainly induced by the wind forcing and the nonlinear interaction between the effect of wind forcing and air pressure forcing on the storm surge tends to weaken the storm surge.

  6. X-RAY EMISSION LINE PROFILES FROM WIND CLUMP BOW SHOCKS IN MASSIVE STARS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ignace, R.; Waldron, W. L.; Cassinelli, J. P.

    2012-05-01

    The consequences of structured flows continue to be a pressing topic in relating spectral data to physical processes occurring in massive star winds. In a preceding paper, our group reported on hydrodynamic simulations of hypersonic flow past a rigid spherical clump to explore the structure of bow shocks that can form around wind clumps. Here we report on profiles of emission lines that arise from such bow shock morphologies. To compute emission line profiles, we adopt a two-component flow structure of wind and clumps using two 'beta' velocity laws. While individual bow shocks tend to generate double-horned emission line profiles,more » a group of bow shocks can lead to line profiles with a range of shapes with blueshifted peak emission that depends on the degree of X-ray photoabsorption by the interclump wind medium, the number of clump structures in the flow, and the radial distribution of the clumps. Using the two beta law prescription, the theoretical emission measure and temperature distribution throughout the wind can be derived. The emission measure tends to be power law, and the temperature distribution is broad in terms of wind velocity. Although restricted to the case of adiabatic cooling, our models highlight the influence of bow shock effects for hot plasma temperature and emission measure distributions in stellar winds and their impact on X-ray line profile shapes. Previous models have focused on geometrical considerations of the clumps and their distribution in the wind. Our results represent the first time that the temperature distribution of wind clump structures are explicitly and self-consistently accounted for in modeling X-ray line profile shapes for massive stars.« less

  7. Large structures and tethers working group

    NASA Technical Reports Server (NTRS)

    Murphy, G.; Garrett, H.; Samir, U.; Barnett, A.; Raitt, J.; Sullivan, J.; Katz, I.

    1986-01-01

    The Large Structures and Tethers Working Group sought to clarify the meaning of large structures and tethers as they related to space systems. Large was assumed to mean that the characteristic length of the structure was greater than one of such relevant plasma characteristics as ion gyroradius or debey length. Typically, anything greater than or equal to the Shuttle dimensions was considered large. It was agreed that most large space systems that the tether could be better categorized as extended length, area, or volume structures. The key environmental interactions were then identified in terms of these three categories. In the following Working Group summary, these categories and the related interactions are defined in detail. The emphasis is on how increases in each of the three spatial dimensions uniquely determine the interactions with the near-Earth space environment. Interactions with the environments around the other planets and the solar wind were assumed to be similar or capable of being extrapolated from the near-Earth results. It should be remembered in the following that the effects on large systems do not just affect specific technologies but will quite likely impact whole missions. Finally, the possible effects of large systems on the plasma environment, although only briefly discussed, were felt to be of potentially great concern.

  8. Lessons learned from Ontario wind energy disputes

    NASA Astrophysics Data System (ADS)

    Fast, Stewart; Mabee, Warren; Baxter, Jamie; Christidis, Tanya; Driver, Liz; Hill, Stephen; McMurtry, J. J.; Tomkow, Melody

    2016-02-01

    Issues concerning the social acceptance of wind energy are major challenges for policy-makers, communities and wind developers. They also impact the legitimacy of societal decisions to pursue wind energy. Here we set out to identify and assess the factors that lead to wind energy disputes in Ontario, Canada, a region of the world that has experienced a rapid increase in the development of wind energy. Based on our expertise as a group comprising social scientists, a community representative and a wind industry advocate engaged in the Ontario wind energy situation, we explore and suggest recommendations based on four key factors: socially mediated health concerns, the distribution of financial benefits, lack of meaningful engagement and failure to treat landscape concerns seriously. Ontario's recent change from a feed-in-tariff-based renewable electricity procurement process to a competitive bid process, albeit with more attention to community engagement, will only partially address these concerns.

  9. Design and Operation of Power Systems with Large Amounts of Wind Power: Final Summary Report, IEA WIND Task 25, Phase Three 2012-2014

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Holttinen, Hannele; Kiviluoma, Juha; Forcione, Alain

    2016-06-01

    This report summarizes recent findings on wind integration from the 16 countries participating in the International Energy Agency (IEA) Wind collaboration research Task 25 in 2012-2014. Both real experience and studies are reported. The national case studies address several impacts of wind power on electric power systems. In this report, they are grouped under long-term planning issues and short-term operational impacts. Long-term planning issues include grid planning and capacity adequacy. Short-term operational impacts include reliability, stability, reserves, and maximizing the value in operational timescales (balancing related issues). The first section presents variability and uncertainty of power system-wide wind power, andmore » the last section presents recent wind integration studies for higher shares of wind power. Appendix 1 provides a summary of ongoing research in the national projects contributing to Task 25 in 2015-2017.« less

  10. Flight and wind-tunnel calibrations of a flush airdata sensor at high angles of attack and sideslip and at supersonic Mach numbers

    NASA Technical Reports Server (NTRS)

    Moes, Timothy R.; Whitmore, Stephen A.; Jordan, Frank L., Jr.

    1993-01-01

    A nonintrusive airdata-sensing system was calibrated in flight and wind-tunnel experiments to an angle of attack of 70 deg and to angles of sideslip of +/- 15 deg. Flight-calibration data have also been obtained to Mach 1.2. The sensor, known as the flush airdata sensor, was installed on the nosecap of an F-18 aircraft for flight tests and on a full-scale F-18 forebody for wind-tunnel tests. Flight tests occurred at the NASA Dryden Flight Research Facility, Edwards, California, using the F-18 High Alpha Research Vehicle. Wind-tunnel tests were conducted in the 30- by 60-ft wind tunnel at the NASA LaRC, Hampton, Virginia. The sensor consisted of 23 flush-mounted pressure ports arranged in concentric circles and located within 1.75 in. of the tip of the nosecap. An overdetermined mathematical model was used to relate the pressure measurements to the local airdata quantities. The mathematical model was based on potential flow over a sphere and was empirically adjusted based on flight and wind-tunnel data. For quasi-steady maneuvering, the mathematical model worked well throughout the subsonic, transonic, and low supersonic flight regimes. The model also worked well throughout the angle-of-attack and sideslip regions studied.

  11. Flight and wind-tunnel calibrations of a flush airdata sensor at high angles of attack and sideslip and at supersonic Mach numbers

    NASA Technical Reports Server (NTRS)

    Moes, Timothy R.; Whitmore, Stephen A.; Jordan, Frank L., Jr.

    1993-01-01

    A nonintrusive airdata-sensing system was calibrated in flight and wind-tunnel experiments to an angle of attack of 70 deg and to angles of sideslip of +/- 15 deg. Flight-calibration data have also been obtained to Mach 1.2. The sensor, known as the flush airdata sensor, was installed on the nosecap of an F-18 aircraft for flight tests and on a full-scale F-18 forebody for wind-tunnel tests. Flight tests occurred at the NASA Dryden Flight Research Facility, Edwards, California, using the F-18 High Alpha Research Vehicle. Wind-tunnel tests were conducted in the 30- by 60-ft wind tunnel at the NASA LaRC, Hampton, Virginia. The sensor consisted of 23 flush-mounted pressure ports arranged in concentric circles and located within 1.75 in. of the tip of the nosecap. An overdetermined mathematical model was used to relate the pressure measurements to the local airdata quantities. The mathematical model was based on potential flow over a sphere and was empirically adjusted based on flight and wind-tunnel data. For quasi-steady maneuvering, the mathematical model worked well throughout the subsonic, transonic, and low supersonic flight regimes. The model also worked well throughout the angles-of-attack and -sideslip regions studied.

  12. Genesis Solar Wind Science Canister Components Curated as Potential Solar Wind Collectors and Reference Contamination Sources

    NASA Technical Reports Server (NTRS)

    Allton, J. H.; Gonzalez, C. P.; Allums, K. K.

    2016-01-01

    The Genesis mission collected solar wind for 27 months at Earth-Sun L1 on both passive and active collectors carried inside of a Science Canister, which was cleaned and assembled in an ISO Class 4 cleanroom prior to launch. The primary passive collectors, 271 individual hexagons and 30 half-hexagons of semiconductor materials, are described in. Since the hard landing reduced the 301 passive collectors to many thousand smaller fragments, characterization and posting in the online catalog remains a work in progress, with about 19% of the total area characterized to date. Other passive collectors, surfaces of opportunity, have been added to the online catalog. For species needing to be concentrated for precise measurement (e.g. oxygen and nitrogen isotopes) an energy-independent parabolic ion mirror focused ions onto a 6.2 cm diameter target. The target materials, as recovered after landing, are described in. The online catalog of these solar wind collectors, a work in progress, can be found at: http://curator.jsc.nasa.gov/gencatalog/index.cfm This paper describes the next step, the cataloging of pieces of the Science Canister, which were surfaces exposed to the solar wind or component materials adjacent to solar wind collectors which may have contributed contamination.

  13. Horizontal Axis Wind Turbine Experiments at Full-Scale Reynolds Numbers

    NASA Astrophysics Data System (ADS)

    Miller, Mark; Kiefer, Janik; Nealon, Tara; Westergaard, Carsten; Hultmark, Marcus

    2017-11-01

    Achieving high Reynolds numbers on a wind turbine model remains a major challenge for experimentalists. Since Reynolds number effects need to be captured accurately, matching this parameter is of great importance. The challenge stems from the large scale ratio between model and full-size, typically on the order of 1:100. Traditional wind tunnels are limited due to finite tunnel size, with velocity as the only free-parameter available for increasing the Reynolds number. Unfortunately, increasing the velocity 100 times is untenable because it violates Mach number matching with the full-scale and results in unfeasible rotation rates. Present work in Princeton University's high pressure wind tunnel makes it possible to evaluate the Reynolds number sensitivity with regard to wind turbine aerodynamics. This facility, which uses compressed air as the working fluid, allows for adjustment of the Reynolds number, via the fluid density, independent of the Tip Speed Ratio (TSR) and Mach number. Power and thrust coefficients will be shown as a function of Reynolds number and TSR for a model wind turbine. The Reynolds number range investigated exceeds 10 ×106 based on diameter and free-stream conditions or 3 ×106 based on the tip chord, matching those of the full-scale. National Science Foundation and Andlinger Center for Energy and the Environment.

  14. Effect of Wind Flow on Convective Heat Losses from Scheffler Solar Concentrator Receivers

    NASA Astrophysics Data System (ADS)

    Nene, Anita Arvind; Ramachandran, S.; Suyambazhahan, S.

    2018-05-01

    Receiver is an important element of solar concentrator system. In a Scheffler concentrator, solar rays get concentrated at focus of parabolic dish. While radiation losses are more predictable and calculable since strongly related to receiver temperature, convective looses are difficult to estimate in view of additional factors such as wind flow direction, speed, receiver geometry, prior to current work. Experimental investigation was carried out on two geometries of receiver namely cylindrical and conical with 2.7 m2 Scheffler to find optimum condition of tilt to provide best efficiency. Experimental results showed that as compared to cylindrical receiver, conical receiver gave maximum efficiency at 45° tilt angle. However effect of additional factors like wind speed, wind direction on especially convective losses could not be separately seen. The current work was undertaken to investigate further the same two geometries using computation fluid dynamics using FLUENT to compute convective losses considering all variables such at tilt angle of receiver, wind velocity and wind direction. For cylindrical receiver, directional heat transfer coefficient (HTC) is remarkably high to tilt condition meaning this geometry is critical to tilt leading to higher convective heat losses. For conical receiver, directional average HTC is remarkably less to tilt condition leading to lower convective heat loss.

  15. The evolution of inner disk winds from a large survey of high-resolution [OI] spectra

    NASA Astrophysics Data System (ADS)

    Banzatti, Andrea; Pascucci, Illaria; Edwards, Suzan

    2018-01-01

    Current theoretical work suggests that protoplanetary disk evolution and dispersal could be driven by radially extended disk winds. I will present new observational results on the evolution of inner disk winds as linked to jets and to the dispersal of disks. The analysis is based on a large survey of forbidden emission from oxygen ([OI]) as observed in the optical (5577 and 6300 ang) at the spectral resolution of ~7 km/s, and it is part of a large recent effort (Rigliaco et al. 2013, Simon et al. 2016) to study winds at higher resolution than in the past. Past work identified two largely distinct components in [OI] emission: a high-velocity-component (HVC) that has been related to collimated jets, and a low-velocity-component (LVC) that has been attributed to slow disk winds (MHD and/or photoevaporative). The larger sample, high resolution, and improved correction for photospheric absorption now allow us to find new important clues, in particular in terms of the evolution of line blue-shifts and of 5577/6300 line flux ratios in the LVC. I will discuss these findings in the context of the properties and evolution of wind process(es) that are proposed to produce them.

  16. The Future of Wind Energy in California: Future Projections in Variable-Resolution CESM

    NASA Astrophysics Data System (ADS)

    Wang, M.; Ullrich, P. A.; Millstein, D.; Collier, C.

    2017-12-01

    This study focuses on the wind energy characterization and future projection at five primary wind turbine sites in California. Historical (1980-2000) and mid-century (2030-2050) simulations were produced using the Variable-Resolution Community Earth System Model (VR-CESM) to analyze the trends and variations in wind energy under climate change. Datasets from Det Norske Veritas Germanischer Llyod (DNV GL), MERRA-2, CFSR, NARR, as well as surface observational data were used for model validation and comparison. Significant seasonal wind speed changes under RCP8.5 were detected from several wind farm sites. Large-scale patterns were then investigated to analyze the synoptic-scale impact on localized wind change. The agglomerative clustering method was applied to analyze and group different wind patterns. The associated meteorological background of each cluster was investigated to analyze the drivers of different wind patterns. This study improves the characterization of uncertainty around the magnitude and variability in space and time of California's wind resources in the near future, and also enhances understanding of the physical mechanisms related to the trends in wind resource variability.

  17. Should future wind speed changes be taken into account in wind farm development?

    NASA Astrophysics Data System (ADS)

    Devis, Annemarie; Van Lipzig, Nicole P. M.; Demuzere, Matthias

    2018-06-01

    Accurate wind resource assessments are crucial in the development of wind farm projects. However, it is common practice to estimate the wind yield over the next 20 years from short-term measurements and reanalysis data of the past 20 years, even though wind climatology is expected to change under the future climate. The present work examines future changes in wind power output over Europe using an ensemble of ESMs. The power output is calculated using the entire wind speed PDF and a non-constant power conversion coefficient. Based on this method, the ESM ensemble projects changes in near-future power outputs with a spatially varying magnitude between ‑12% and 8%. The most extreme changes occur over the Mediterranean region. For the first time, the sensitivity of these future change in power output to the type of wind turbine is also investigated. The analysis reveals that the projected wind power changes may vary in up to half of their magnitude, depending on the type of turbine and region of interest. As such, we recommend that wind industries fully account for projected near-future changes in wind power output by taking them into account as a well-defined loss/gain and uncertainty when estimating the yield of a future wind farm.

  18. Loss of efficiency in a coaxial arrangement of a pair of wind rotors

    NASA Astrophysics Data System (ADS)

    Okulov, V. L.; Naumov, I. V.; Tsoy, M. A.; Mikkelsen, R. F.

    2017-07-01

    The efficiency of a pair of wind turbines is experimentally investigated for the case when the model of the second rotor is coaxially located in the wake of the first one. This configuration implies the maximum level of losses in wind farms, as in the rotor wakes, the deceleration of the freestream is maximum. As a result of strain gauge measurements, the dependences of dimensionless power characteristics of both rotors on the distances between them were determined for different modes at different tip speed ratios. The obtained results are of interest for further development of aerodynamics of wind turbines, for optimizing the work of existing wind farms and reducing their power losses due to interactions with wakes of other wind turbines during design and calculation.

  19. Integrating Systems Health Management with Adaptive Controls for a Utility-Scale Wind Turbine

    NASA Technical Reports Server (NTRS)

    Frost, Susan A.; Goebel, Kai; Trinh, Khanh V.; Balas, Mark J.; Frost, Alan M.

    2011-01-01

    Increasing turbine up-time and reducing maintenance costs are key technology drivers for wind turbine operators. Components within wind turbines are subject to considerable stresses due to unpredictable environmental conditions resulting from rapidly changing local dynamics. Systems health management has the aim to assess the state-of-health of components within a wind turbine, to estimate remaining life, and to aid in autonomous decision-making to minimize damage. Advanced adaptive controls can provide the mechanism to enable optimized operations that also provide the enabling technology for Systems Health Management goals. The work reported herein explores the integration of condition monitoring of wind turbine blades with contingency management and adaptive controls. Results are demonstrated using a high fidelity simulator of a utility-scale wind turbine.

  20. HST FGS1R Results On the Association Between Binary Wolf-Rayet Stars and Non-Thermal Radio Emission

    NASA Astrophysics Data System (ADS)

    Wallace, D. J.; Gies, D. R.; Nelan, E.; Leitherer, C.

    2000-12-01

    Two separate models have been proposed to explain the non-thermal emission detected in some Wolf-Rayet (WR) stars. In models based on single WR stars, this emission is proposed to arise via synchrotron radiative processes in the outer (intrinsically unstable) WR wind (e.g. White & Chen 1995). In models based on WR + O systems, this non-thermal radio emission is suggested to arise from the WR wind colliding with the wind of a companion (e.g. Williams et al. 1990). In order to be observed, the colliding winds region is believed to occur in wide binaries where the interaction zone is outside the WR radio photosphere (≈30 AU based on spherically symmetric uniform wind models). HST FGS1R observations of 9 non-thermal and 9, as a control group, purely thermal radio emitting stars attempted to verify the theory that this non-thermal emission is always a result of binary interactions. If the binary model is correct, then most or all of our non-thermal targets should have companions with projected separations of 0.01″

  1. Effect of Virtual Reality Exposure and Aural Stimuli on Eye Contact, Directional Focus, and Focus of Attention of Novice Wind Band Conductors

    ERIC Educational Resources Information Center

    Orman, Evelyn K.

    2016-01-01

    This study examined the effects of virtual reality immersion with audio on eye contact, directional focus and focus of attention for novice wind band conductors. Participants (N = 34) included a control group (n = 12) and two virtual reality groups with (n = 10) and without (n = 12) head tracking. Participants completed conducting/score study…

  2. Validation of DYSTOOL for unsteady aerodynamic modeling of 2D airfoils

    NASA Astrophysics Data System (ADS)

    González, A.; Gomez-Iradi, S.; Munduate, X.

    2014-06-01

    From the point of view of wind turbine modeling, an important group of tools is based on blade element momentum (BEM) theory using 2D aerodynamic calculations on the blade elements. Due to the importance of this sectional computation of the blades, the National Renewable Wind Energy Center of Spain (CENER) developed DYSTOOL, an aerodynamic code for 2D airfoil modeling based on the Beddoes-Leishman model. The main focus here is related to the model parameters, whose values depend on the airfoil or the operating conditions. In this work, the values of the parameters are adjusted using available experimental or CFD data. The present document is mainly related to the validation of the results of DYSTOOL for 2D airfoils. The results of the computations have been compared with unsteady experimental data of the S809 and NACA0015 profiles. Some of the cases have also been modeled using the CFD code WMB (Wind Multi Block), within the framework of a collaboration with ACCIONA Windpower. The validation has been performed using pitch oscillations with different reduced frequencies, Reynolds numbers, amplitudes and mean angles of attack. The results have shown a good agreement using the methodology of adjustment for the value of the parameters. DYSTOOL have demonstrated to be a promising tool for 2D airfoil unsteady aerodynamic modeling.

  3. Software Reviews.

    ERIC Educational Resources Information Center

    McGrath, Diane, Ed.

    1989-01-01

    Reviewed are two computer software programs for Apple II computers on weather for upper elementary and middle school grades. "Weather" introduces the major factors (temperature, humidity, wind, and air pressure) affecting weather. "How Weather Works" uses simulation and auto-tutorial formats on sun, wind, fronts, clouds, and…

  4. Nature and Variability of Coronal Streamers and their Relationship to the Slow Speed Wind

    NASA Technical Reports Server (NTRS)

    Strachan, Leonard

    2005-01-01

    NASA Grant NAG5-12781 is a study on the "Nature and Variability of Coronal Streamers and their Relationship to the Slow Speed Wind." The two main goals of this study are to identify: 1) Where in the streamer structure does the solar wind originate, and 2) What coronal conditions are responsible for the variability of the slow speed wind. To answer the first question, we examined the mostly closed magnetic field regions in streamer cores to search for evidence of outflow. Preliminary results from the OVI Doppler dimming ratios indicates that most of the flow originates from the edges of coronal streamers but this idea should be confirmed by a comparison of the coronal plasma properties with in situ solar wind data. To answer the second question, the work performed thus far suggests that solar minimum streamers have larger perpendicular velocity distributions than do solar maximum streamers. If it can be shown that solar minimum streamers also produce higher solar wind speeds then this would suggest that streamers and coronal holes have similar solar wind acceleration mechanisms. The key to both questions lie in the analysis of the in situ solar wind data sets. This work was not able to be completed during the period of performance and therefore the grant was formally extended for an additional year at no cost to NASA. We hope to have final results and a publication by the end of the calendar year 2004. The SAO personnel involved in the research are Leonard Strachan (PI), Mari Paz Miralles, Alexander Panasyuk, and a Southern University student Michael Baham.

  5. Variations of Strahl Properties with Fast and Slow Solar Wind

    NASA Technical Reports Server (NTRS)

    Figueroa-Vinas, Adolfo; Goldstein, Melvyn L.; Gurgiolo, Chris

    2008-01-01

    The interplanetary solar wind electron velocity distribution function generally shows three different populations. Two of the components, the core and halo, have been the most intensively analyzed and modeled populations using different theoretical models. The third component, the strahl, is usually seen at higher energies, is confined in pitch-angle, is highly field-aligned and skew. This population has been more difficult to identify and to model in the solar wind. In this work we make use of the high angular, energy and time resolution and three-dimensional data of the Cluster/PEACE electron spectrometer to identify and analyze this component in the ambient solar wind during high and slow speed solar wind. The moment density and fluid velocity have been computed by a semi-numerical integration method. The variations of solar wind density and drift velocity with the general build solar wind speed could provide some insight into the source, origin, and evolution of the strahl.

  6. Hurricane modification and adaptation in Miami-Dade County, Florida.

    PubMed

    Klima, Kelly; Lin, Ning; Emanuel, Kerry; Morgan, M Granger; Grossmann, Iris

    2012-01-17

    We investigate tropical cyclone wind and storm surge damage reduction for five areas along the Miami-Dade County coastline either by hardening buildings or by the hypothetical application of wind-wave pumps to modify storms. We calculate surge height and wind speed as functions of return period and sea surface temperature reduction by wind-wave pumps. We then estimate costs and economic losses with the FEMA HAZUS-MH MR3 damage model and census data on property at risk. All areas experience more surge damages for short return periods, and more wind damages for long periods. The return period at which the dominating hazard component switches depends on location. We also calculate the seasonal expected fraction of control damage for different scenarios to reduce damages. Surge damages are best reduced through a surge barrier. Wind damages are best reduced by a portfolio of techniques that, assuming they work and are correctly deployed, include wind-wave pumps.

  7. Wind Turbine Contingency Control Through Generator De-Rating

    NASA Technical Reports Server (NTRS)

    Frost, Susan; Goebel, Kai; Balas, Mark

    2013-01-01

    Maximizing turbine up-time and reducing maintenance costs are key technology drivers for wind turbine operators. Components within wind turbines are subject to considerable stresses due to unpredictable environmental conditions resulting from rapidly changing local dynamics. In that context, systems health management has the aim to assess the state-of-health of components within a wind turbine, to estimate remaining life, and to aid in autonomous decision-making to minimize damage to the turbine. Advanced contingency control is one way to enable autonomous decision-making by providing the mechanism to enable safe and efficient turbine operation. The work reported herein explores the integration of condition monitoring of wind turbines with contingency control to balance the trade-offs between maintaining system health and energy capture. The contingency control involves de-rating the generator operating point to achieve reduced loads on the wind turbine. Results are demonstrated using a high fidelity simulator of a utility-scale wind turbine.

  8. Exploring X-ray Emission from Winds in Two Early B-type Binary Systems

    NASA Astrophysics Data System (ADS)

    Rotter, John P.; Hole, Tabetha; Ignace, Richard; Oskinova, Lida

    2017-01-01

    The winds of the most massive (O-type) stars have been well studied, but less is known about the winds of early-type B stars, especially in binaries. Extending O-star wind theory to these smaller stars, we would expect them to emit X-rays, and when in a B-star binary system, the wind collision should emit additional X-rays. This combined X-ray flux from nearby B-star binary systems should be detectable with current telescopes. Yet X-ray observations of two such systems with the Chandra Observatory not only show far less emission than predicted, but also vary significantly from each other despite having very similar observed characteristics. We will present these observations, and our work applying the classic Castor, Abbott, and Klein (CAK) wind theory, combined with more recent analytical wind-shock models, attempting to reproduce this unexpected range of observations.

  9. Aeroacoustic research in wind tunnels: A status report

    NASA Technical Reports Server (NTRS)

    Bender, J.; Arndt, R. E. A.

    1973-01-01

    The increasing attention given to aerodynamically generated noise brings into focus the need for quality experimental research in this area. To meet this need several specialized anechoic wind tunnels have been constructed. In many cases, however, budgetary constraints and the like make it desirable to use conventional wind tunnels for this work. Three basic problems are inherent in conventional facilities: (1) high background noise, (2) strong frequency dependent reverberation effects, and (3) unique instrumentation problems. The known acoustic characteristics of several conventional wind tunnels are evaluated and data obtained in a smaller 4- x 5-foot wind tunnel which is convertible from a closed jet to an open jet mode are presented. The data from these tunnels serve as a guideline for proposed modifications to a 7- x 10-foot wind tunnel. Consideration is given to acoustic treatment in several different portions of the wind tunnel.

  10. The influence of winding direction of two-layer HTS DC cable on the critical current

    NASA Astrophysics Data System (ADS)

    Vyatkin, V. S.; Kashiwagi, K.; Ivanov, Y. V.; Otabe, E. S.; Yamaguchi, S.

    2017-09-01

    The design of twist pitch and direction of winding in multilayer HTS coaxial cable is important. For HTS AC transmitting cables, the main condition of twist pitch is the balance of inductances of each layer for providing the current balance between layers. In this work, the finite element method analysis for the coaxial cables with both same and opposite directions winding is used to calculate magnetic field distribution, and critical current of the cable is estimated. It was found that the critical current of the cable with same direction winding is about 10 percent higher than that in the case of the cable with the opposite direction winding.

  11. Wind estimation around the shipwreck of Oriental Star based on field damage surveys and radar observations.

    PubMed

    Meng, Zhiyong; Yao, Dan; Bai, Lanqiang; Zheng, Yongguang; Xue, Ming; Zhang, Xiaoling; Zhao, Kun; Tian, Fuyou; Wang, Mingjun

    Based on observational analyses and on-site ground and aerial damage surveys, this work aims to reveal the weather phenomena-especially the wind situation-when Oriental Star capsized in the Yangtze River on June 1, 2015. Results demonstrate that the cruise ship capsized when it encountered strong winds at speeds of at least 31 m s -1 near the apex of a bow echo embedded in a squall line. As suggested by the fallen trees within a 2-km radius around the wreck location, such strong winds were likely caused by microburst straight-line wind and/or embedded small vortices, rather than tornadoes.

  12. Design, manufacturing and tests of first cryogen-free MgB2 prototype coils for offshore wind generators

    NASA Astrophysics Data System (ADS)

    Sarmiento, G.; Sanz, S.; Pujana, A.; Merino, J. M.; Iturbe, R.; Apiñaniz, S.; Nardelli, D.; Marino, I.

    2014-05-01

    Although renewable sector has started to take advantage of the offshore wind energy recently, the development is very intense. Turbines reliability, size, and cost are key aspects for the wind industry, especially in marine locations. A superconducting generator will allow a significant reduction in terms of weight and size, but cost and reliability are two aspects to deal with. MgB2 wire is presented as one promising option to be used in superconducting coils for wind generators. This work shows the experimental results in first cryogen-free MgB2 prototype coils, designed according to specific requirements of TECNALIA's wind generator concept.

  13. Management experience of an international venture in space The Ulysses mission

    NASA Technical Reports Server (NTRS)

    Yoshida, Ronald Y.; Meeks, Willis G.

    1986-01-01

    The management of the Ulysses project, a probe which will fly a solar polar orbit, is described. The 5-yr mission will feature a flyby of Jupiter to deflect the spacecraft into a high-inclination orbit. Data on the solar corona, solar wind, the sun-wind interface, the heliospheric magnetic field, solar and nonsolar cosmic rays, etc., will be gathered as a function of the solar latitude. NASA will track and control the probe with the Deep Space Network. JPL provides project management for NASA while the Directorate of Scientific Programs performs ESA management functions. The DOE will provide a radioisotope thermoelectric generator while NASA and ESA each supply half the scientific payload. A NASA-ESA Joint Working Group meets about twice per year to monitor the project and discuss the technical and scientific requirements. Safety issues and measures which are being addressed due to the presence of the Pu-238 heat source for the RTG are discussed.

  14. Space Weathering Agent: Solar Wind

    NASA Astrophysics Data System (ADS)

    Martel, L. M. V.

    2009-08-01

    In the vacuum of space, the interactions of energetic particles with the surfaces of airless planetary bodies cause radiation damage, chemical changes, optical changes, erosional sputtering, and heat. This is an essential part of the process called space weathering. A group at the Laboratory for Atomic and Surface Physics at the University of Virginia specialize in experiments, among other things, where they bombard surfaces with charged particles to see what happens. Recent work by Mark Loeffler, Cathy Dukes, and Raul Baragiola focused on what happens to olivine mineral grains when they are irradiated by helium ions to better understand the effects of solar wind on the surface composition and, therefore, appearance of asteroids. Their experiments were the first to measure chemical and reflectance changes in olivine before and after irradiation while still under vacuum conditions. The resulting changes in the reflectance spectra of olivine slabs and powders are directly correlated with the formation of metallic iron in the very outer surface of the mineral grains.

  15. Mixed H2/H∞ pitch control of wind turbine with a Markovian jump model

    NASA Astrophysics Data System (ADS)

    Lin, Zhongwei; Liu, Jizhen; Wu, Qiuwei; Niu, Yuguang

    2018-01-01

    This paper proposes a Markovian jump model and the corresponding H2/H∞ control strategy for the wind turbine driven by the stochastic switching wind speed, which can be used to regulate the generator speed in order to harvest the rated power while reducing the fatigue loads on the mechanical side of wind turbine. Through sampling the low-frequency wind speed data into separate intervals, the stochastic characteristic of the steady wind speed can be represented as a Markov process, while the high-frequency wind speed in the each interval is regarded as the disturbance input. Then, the traditional operating points of wind turbine can be divided into separate subregions correspondingly, where the model parameters and the control mode can be fixed in each mode. Then, the mixed H2/H∞ control problem is discussed for such a class of Markovian jump wind turbine working above the rated wind speed to guarantee both the disturbance rejection and the mechanical loads objectives, which can reduce the power volatility and the generator torque fluctuation of the whole transmission mechanism efficiently. Simulation results for a 2 MW wind turbine show the effectiveness of the proposed method.

  16. Final Technical Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lisa M. Daniels

    2002-05-08

    This project was very successful in terms of providing a unique source of information for rural communities and landowners. We are very pleased with the overall results and believe that this is a vital program for the sustainable development of wind energy. The outreach materials created by Windustry are filling a serious void in information about how local communities and rural landowners can participate in wind development projects. In our program implementation we learned how great the demand is for this type of information both through our hotline calls and website usage. We also realized that the materials require constantmore » updating and maintenance. There is a balance that needs to be found in printing the materials to have handouts ready at meetings for our primary target audience and more research and revisions for the website materials. All of this work is of an ongoing nature. Since this funding was awarded for one year, Windustry will be seeking other funding sources to continue the work in future years. Below is a summary of the Windustry accomplishments as well a sampling of website usage reports. Windustry is appreciative of the US DOE for its support of this wind energy industry work and the Wind Powering America initiative.« less

  17. The Beginner's Guide to Wind Tunnels with TunnelSim and TunnelSys

    NASA Technical Reports Server (NTRS)

    Benson, Thomas J.; Galica, Carol A.; Vila, Anthony J.

    2010-01-01

    The Beginner's Guide to Wind Tunnels is a Web-based, on-line textbook that explains and demonstrates the history, physics, and mathematics involved with wind tunnels and wind tunnel testing. The Web site contains several interactive computer programs to demonstrate scientific principles. TunnelSim is an interactive, educational computer program that demonstrates basic wind tunnel design and operation. TunnelSim is a Java (Sun Microsystems Inc.) applet that solves the continuity and Bernoulli equations to determine the velocity and pressure throughout a tunnel design. TunnelSys is a group of Java applications that mimic wind tunnel testing techniques. Using TunnelSys, a team of students designs, tests, and post-processes the data for a virtual, low speed, and aircraft wing.

  18. Comparison of low-altitude wind-shear statistics derived from measured and proposed standard wind profiles

    NASA Technical Reports Server (NTRS)

    Usry, J. W.

    1983-01-01

    Wind shear statistics were calculated for a simulated set of wind profiles based on a proposed standard wind field data base. Wind shears were grouped in altitude in altitude bands of 100 ft between 100 and 1400 ft and in wind shear increments of 0.025 knot/ft. Frequency distributions, means, and standard deviations for each altitude band were derived for the total sample were derived for both sets. It was found that frequency distributions in each altitude band for the simulated data set were more dispersed below 800 ft and less dispersed above 900 ft than those for the measured data set. Total sample frequency of occurrence for the two data sets was about equal for wind shear values between +0.075 knot/ft, but the simulated data set had significantly larger values for all wind shears outside these boundaries. It is shown that normal distribution in both data sets neither data set was normally distributed; similar results are observed from the cumulative frequency distributions.

  19. Avian Monitoring and Risk Assessment at the San Gorgonio Wind Resource Area

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anderson, R.; Tom, J.; Neumann, N.

    2005-08-01

    The primary objective of this study at the San Gorgonio Wind Resource Area was to estimate and compare bird utilization, fatality rates, and the risk index among factors including bird taxonomic groups, wind turbine and reference areas, wind turbine sizes and types, and geographic locations. The key questions addressed to meet this objective include: (1) Are there any differences in the level of bird activity, called ''utilization rate'' or ''use'', with the operating wind plant and within the surrounding undeveloped areas (reference area)?; (2) Are there any differences in the rate of bird fatalities (or avian fatality) within the operatingmore » wind plant or the surrounding undeveloped areas (reference area)?; (3) Does bird use, fatality rates, or bird risk index vary according to the geographic location, type and size of wind turbine, and/or type of bird within the operating wind plant and surrounding undeveloped areas (reference area)?; and (4) How do raptor fatality rates at San Gorgonio compare to other wind projects with comparable data?« less

  20. Conflict Resolution for Wind-Optimal Aircraft Trajectories in North Atlantic Oceanic Airspace with Wind Uncertainties

    NASA Technical Reports Server (NTRS)

    Rodionova, Olga; Sridhar, Banavar; Ng, Hok K.

    2016-01-01

    Air traffic in the North Atlantic oceanic airspace (NAT) experiences very strong winds caused by jet streams. Flying wind-optimal trajectories increases individual flight efficiency, which is advantageous when operating in the NAT. However, as the NAT is highly congested during peak hours, a large number of potential conflicts between flights are detected for the sets of wind-optimal trajectories. Conflict resolution performed at the strategic level of flight planning can significantly reduce the airspace congestion. However, being completed far in advance, strategic planning can only use predicted environmental conditions that may significantly differ from the real conditions experienced further by aircraft. The forecast uncertainties result in uncertainties in conflict prediction, and thus, conflict resolution becomes less efficient. This work considers wind uncertainties in order to improve the robustness of conflict resolution in the NAT. First, the influence of wind uncertainties on conflict prediction is investigated. Then, conflict resolution methods accounting for wind uncertainties are proposed.

  1. Investigation of Solar Wind Correlations and Solar Wind Modifications Near Earth by Multi-Spacecraft Observations: IMP 8, WIND and INTERBALL-1

    NASA Technical Reports Server (NTRS)

    Paularena, Karolen I.; Richardson, John D.; Zastenker, Georgy N.

    2002-01-01

    The foundation of this Project is use of the opportunity available during the ISTP (International Solar-Terrestrial Physics) era to compare solar wind measurements obtained simultaneously by three spacecraft - IMP 8, WIND and INTERBALL-1 at wide-separated points. Using these data allows us to study three important topics: (1) the size and dynamics of near-Earth mid-scale (with dimension about 1-10 million km) and small-scale (with dimension about 10-100 thousand km) solar wind structures; (2) the reliability of the common assumption that solar wind conditions at the upstream Lagrangian (L1) point accurately predict the conditions affecting Earth's magnetosphere; (3) modification of the solar wind plasma and magnetic field in the regions near the Earth magnetosphere, the foreshock and the magnetosheath. Our Project was dedicated to these problems. Our research has made substantial contributions to the field and has lead others to undertake similar work.

  2. Observations of micro-turbulence in the solar wind near the sun with interplanetary scintillation

    NASA Technical Reports Server (NTRS)

    Yamauchi, Y.; Misawa, H.; Kojima, M.; Mori, H.; Tanaka, T.; Takaba, H.; Kondo, T.; Tokumaru, M.; Manoharan, P. K.

    1995-01-01

    Velocity and density turbulence of solar wind were inferred from interplanetary scintillation (IPS) observations at 2.3 GHz and 8.5 GHz using a single-antenna. The observations were made during September and October in 1992 - 1994. They covered the distance range between 5 and 76 solar radii (Rs). We applied the spectrum fitting method to obtain a velocity, an axial ratio, an inner scale and a power-law spectrum index. We examined the difference of the turbulence properties near the Sun between low-speed solar wind and high-speed solar wind. Both of solar winds showed acceleration at the distance range of 10 - 30 Rs. The radial dependence of anisotropy and spectrum index did not have significant difference between low-speed and high-speed solar winds. Near the sun, the radial dependence of the inner scale showed the separation from the linear relation as reported by previous works. We found that the inner scale of high-speed solar wind is larger than that of low-speed wind.

  3. Multi-objective Extremum Seeking Control for Enhancement of Wind Turbine Power Capture with Load Reduction

    NASA Astrophysics Data System (ADS)

    Xiao, Yan; Li, Yaoyu; Rotea, Mario A.

    2016-09-01

    The primary objective in below rated wind speed (Region 2) is to maximize the turbine's energy capture. Due to uncertainty, variability of turbine characteristics and lack of inexpensive but precise wind measurements, model-free control strategies that do not use wind measurements such as Extremum Seeking Control (ESC) have received significant attention. Based on a dither-demodulation scheme, ESC can maximize the wind power capture in real time despite uncertainty, variabilities and lack of accurate wind measurements. The existing work on ESC based wind turbine control focuses on power capture only. In this paper, a multi-objective extremum seeking control strategy is proposed to achieve nearly optimum wind energy capture while decreasing structural fatigue loads. The performance index of the ESC combines the rotor power and penalty terms of the standard deviations of selected fatigue load variables. Simulation studies of the proposed multi-objective ESC demonstrate that the damage-equivalent loads of tower and/or blade loads can be reduced with slight compromise in energy capture.

  4. Markovian properties of wind turbine wakes within a 3x3 array

    NASA Astrophysics Data System (ADS)

    Melius, Matthew; Tutkun, Murat; Cal, Raúl Bayoán

    2012-11-01

    Wind turbine arrays have proven to be significant sources of renewable energy. Accurate projections of energy production is difficult to achieve because the wake of a wind turbine is highly intermittent and turbulent. Seeking to further the understanding of the downstream propagation of wind turbine wakes, a stochastic analysis of experimentally obtained turbulent flow data behind a wind turbine was performed. A 3x3 wind turbine array was constructed in the test section of a recirculating wind tunnel where X-wire anemometers were used to collect point velocity statistics. In this work, mathematics of the theory of Markovian processes are applied to obtain a statistical description of longitudinal velocity increments inside the turbine wake using conditional probability density functions. Our results indicate an existence of Markovian properties at scales on the order of the Taylor microscale, λ, which has also been observed and documented in different turbulent flows. This leads to characterization of the multi-point description of the wind turbine wakes using the most recent states of the flow.

  5. Evaluating exposures to complex mixtures of chemicals during a new production process in the plastics industry.

    PubMed

    Meijster, Tim; Burstyn, Igor; Van Wendel De Joode, Berna; Posthumus, Maarten A; Kromhout, Hans

    2004-08-01

    The goal of this study was to monitor emission of chemicals at a factory where plastics products were fabricated by a new robotic (impregnated tape winding) production process. Stationary and personal air measurements were taken to determine which chemicals were released and at what concentrations. Principal component analyses (PCA) and linear regression were used to determine the emission sources of different chemicals found in the air samples. We showed that complex mixtures of chemicals were released, but most concentrations were below Dutch exposure limits. Based on the results of the principal component analyses, the chemicals found were divided into three groups. The first group consisted of short chain aliphatic hydrocarbons (C2-C6). The second group included larger hydrocarbons (C9-C11) and some cyclic hydrocarbons. The third group contained all aromatic and two aliphatic hydrocarbons. Regression analyses showed that emission of the first group of chemicals was associated with cleaning activities and the use of epoxy resins. The second and third group showed strong association with the type of tape used in the new tape winding process. High levels of CO and HCN (above exposure limits) were measured on one occasion when a different brand of impregnated polypropylene sulphide tape was used in the tape winding process. Plans exist to drastically increase production with the new tape winding process. This will cause exposure levels to rise and therefore further control measures should be installed to reduce release of these chemicals.

  6. Wind tunnel simulations of wind turbine wake interactions in neutral and stratified wind flow.

    NASA Astrophysics Data System (ADS)

    Hancock, P. E.; Pascheke, F.

    2010-09-01

    A second programme of work is about to commence as part of a further four years of funding for the UK-EPSRC SUPERGEN-Wind large-wind-farm consortium. The first part of the initial programme at Surrey was to establish and set up appropriate techniques for both on- and off-shore boundary layers (though with an emphasis on the latter) at a suitable scale, and to build suitable rotating model wind turbines. The EnFlo wind tunnel, a UK-NCAS special facility, is capable of creating scaled neutral, stable and unstable boundary layers in its 20m long working section. The model turbines are 1/300-scale of 5MW-size, speed controlled with phase-lock measurement capability, and the blade design takes into account low Reynolds-number effects. Velocity measurements are primarily made using two-component LDA, combined with a ‘cold-wire' probe in order to measure the local turbulent heat flux. Simulation of off-shore wakes is particularly constrained because i) at wind tunnel scale the inherently low surface roughness can be below that for fully rough conditions, ii) the power required to stratify the flow varies as the square of the flow speed, and could easily be impractically large, iii) low blade Reynolds number. The boundary layer simulations, set up to give near-equilibrium conditions in terms of streamwise development, and the model turbines have been designed against these constraints, but not all constraints can be always met simultaneously in practice. Most measurements so far have been made behind just one or two turbines in neutral off- and on-shore boundary layers, at stations up to 12 disk diameters downstream. These show how, for example, the wake of a turbine affects the development of the wake of a downwind turbine that is laterally off-set by say half or one diameter, and how the unaffected part from the first turbine merges with the affected wake of the second. As expected a lower level of atmospheric turbulence causes the wakes to develop and fill-in more slowly compared with the on-shore case. A turbine can also suppress the level of atmospheric turbulence below hub height. In neutral flow, the wakes grow in width and height. However, even in mild stable stratification the vertical development of the wake deficit can be completely inhibited; at least some reduction would be expected arising from the stabilizing influence on vertical fluctuations. The width in contrast develops at about the same rate. As anticipated, the wake development is slower still in the stable case because of the lower level ambient turbulence. The maximum deficit is at a lower height than it is for neutral flow. Various aspects of the turbulence in the wake have been investigated. Second-phase work will examine a larger number of wake-turbine and wake-wake interactions, make a more detailed study of how turbines alter the atmospheric turbulence, and examine more cases of stratification. Work is also in hand related to turbines in or near forested regions, and it is expected that aspects of the physics will have links with the effect a large wind farm will have on the ABL and on the wind resource for a downwind farm. The work will produce a series of test cases to assist in the development of better wake and wind resource prediction models as well as a better understanding of wake physics.

  7. Empirical wind retrieval model based on SAR spectrum measurements

    NASA Astrophysics Data System (ADS)

    Panfilova, Maria; Karaev, Vladimir; Balandina, Galina; Kanevsky, Mikhail; Portabella, Marcos; Stoffelen, Ad

    The present paper considers polarimetric SAR wind vector applications. Remote-sensing measurements of the near-surface wind over the ocean are of great importance for the understanding of atmosphere-ocean interaction. In recent years investigations for wind vector retrieval using Synthetic Aperture Radar (SAR) data have been performed. In contrast with scatterometers, a SAR has a finer spatial resolution that makes it a more suitable microwave instrument to explore wind conditions in the marginal ice zones, coastal regions and lakes. The wind speed retrieval procedure from scatterometer data matches the measured radar backscattering signal with the geophysical model function (GMF). The GMF determines the radar cross section dependence on the wind speed and direction with respect to the azimuthal angle of the radar beam. Scatterometers provide information on wind speed and direction simultaneously due to the fact that each wind vector cell (WVC) is observed at several azimuth angles. However, SAR is not designed to be used as a high resolution scatterometer. In this case, each WVC is observed at only one single azimuth angle. That is why for wind vector determination additional information such as wind streak orientation over the sea surface is required. It is shown that the wind vector can be obtained using polarimetric SAR without additional information. The main idea is to analyze the spectrum of a homogeneous SAR image area instead of the backscattering normalized radar cross section. Preliminary numerical simulations revealed that SAR image spectral maxima positions depend on the wind vector. Thus the following method for wind speed retrieval is proposed. In the first stage of the algorithm, the SAR spectrum maxima are determined. This procedure is carried out to estimate the wind speed and direction with ambiguities separated by 180 degrees due to the SAR spectrum symmetry. The second stage of the algorithm allows us to select the correct wind direction ambiguity from polarimetric SAR. A criterion based on the complex correlation coefficient between the VV and VH signals sign is applied to select the wind direction. An additional quality control on the wind speed value retrieved with the spectral method is applied. Here, we use the direction obtained with the spectral method and the backscattered signal for CMOD wind speed estimate. The algorithm described above may be refined by the use of numerous SAR data and wind measurements. In the present preliminary work the first results of SAR images combined with in situ data processing are presented. Our results are compared to the results obtained using previously developed models CMOD, C-2PO for VH polarization and statistical wind retrieval approaches [1]. Acknowledgments. This work is supported by the Russian Foundation of Basic Research (grants 13-05-00852-a). [1] M. Portabella, A. Stoffelen, J. A. Johannessen, Toward an optimal inversion method for synthetic aperture radar wind retrieval, Journal of geophysical research, V. 107, N C8, 2002

  8. 3D Airflow patterns over coastal foredunes: implications for aeolian sediment transport

    NASA Astrophysics Data System (ADS)

    Jackson, Derek W. T.; Cooper, Andrew G.; Baas, Andreas C. W.; Lynch, Kevin; Beyers, Meiring

    2010-05-01

    A fundamental criterion for the development of coastal sand dunes is usually highlighted as a significant onshore wind component of the local wind field. The presence of large sand dune systems on coasts where the predominant wind blows offshore is therefore difficult to explain and usually they are attributed to the past occurrence of onshore winds and, by implication, subsequent changes in climate. Recent studies have shown that offshore winds can be deflected or 'steered' by existing dunes so that their direction changes. This can occur to such an extent that a process known as 'flow reversal' can arise, whereby the initially offshore wind actually flows onshore at the beach. This process is important because it can cause sand to be blown from the beach and into the dunes, causing them to grow. This may be central in explaining the presence of extensive dunes on coasts where the dominant wind is offshore, but is also important in how dunes recover after periods of wave erosion during storms. Offshore winds have traditionally been excluded from sediment budget calculations for coastal dunes, but when they do transport sand onshore, this may have been an important oversight leading to significant underestimates of the volume of sand being transported by wind. This work investigates the controls on the processes and the mechanisms involved in deformation of the flow and resulting sediment transport at coastal foredunes in Northern Ireland. We use a combination of field measurement of wind and sediment transport coupled with state-of-the-art aerodynamic modelling using computational fluid dynamics (CFD) and 3-D sonic anemometry. Our working hypothesis is that offshore winds contribute substantially to foredune behaviour on leeside coasts. Preliminary results show strong reverse flow eddies in the seaward side of the foredunes during offshore wind events. These secondary flow reversals have been above velocity threshold and are transport capable. Using CFD modelling across a high resolution LIDAR surface of the dunes and beach we have isolated key areas of wind direction and velocity patterns which are important in aeolian transport budgets. Results are particularly important in post-storm recovery of foredunes damaged under wave action as offshore winds can initiate significant onshore transport, re-supplying the backbeach and foredune zones.

  9. Improvements and Advances to the Cross-Calibrated Multi-Platform (CCMP) Ocean Vector Wind Analysis (V2.0 release)

    NASA Astrophysics Data System (ADS)

    Scott, J. P.; Wentz, F. J.; Hoffman, R. N.; Atlas, R. M.

    2016-02-01

    Ocean vector wind is a valuable climate data record (CDR) useful in observing and monitoring changes in climate and air-sea interactions. Ocean surface wind stress influences such processes as heat, moisture, and momentum fluxes between the atmosphere and ocean, driving ocean currents and forcing ocean circulation. The Cross-Calibrated Multi-Platform (CCMP) ocean vector wind analysis is a quarter-degree, six-hourly global ocean wind analysis product created using the variational analysis method (VAM) [Atlas et al., 1996; Hoffman et al., 2003]. The CCMP V1.1 wind product is a highly-esteemed, widely-used data set containing the longest gap-free record of satellite-based ocean vector wind data (July 1987 to June 2012). CCMP V1.1 was considered a "first-look" data set that used the most-timely, albeit preliminary, releases of satellite, in situ, and modeled ECMWF-Operational wind background fields. The authors have been working with the original producers of CCMP V1.1 to create an updated, improved, and consistently-reprocessed CCMP V2.0 ocean vector wind analysis data set. With Remote Sensing Systems (RSS) having recently updated all passive microwave satellite instrument calibrations and retrievals to the RSS Version-7 RTM standard, the reprocessing of the CCMP data set into a higher-quality CDR using inter-calibrated satellite inputs became feasible. In addition to the use of SSM/I, SSMIS, TRMM TMI, QuikSCAT, AMSRE, and WindSat instruments, AMSR2, GMI, and ASCAT have been also included in the CCMP V2.0 data set release, which has now been extended to the beginning of 2015. Additionally, the background field has been updated to use six-hourly, quarter-degree ERA-Interim wind vector inputs, and the quality-checks on the in situ data have been carefully reviewed and improved. The goal of the release of the CCMP V2.0 ocean wind vector analysis product is to serve as a merged ocean wind vector data set for climate studies. Diligent effort has been made by the authors to minimize systematic and spurious sources of error. The authors will present a complete discussion of upgrades made to the CCMP V2.0 data set, as well as present validation work that has been completed on the CCMP V2.0 wind analysis product.

  10. Beatty Wind Monitoring Project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hurt, Rick

    2009-06-01

    The UNLV Center for Energy Research (CER) and Valley Electric Association (VEA) worked with Kitty Shubert of the Beatty Economic Redevelopment Corporation (BERC) to install two wind monitoring stations outside the town of Beatty, Nevada. The following is a description of the two sites. The information for a proposed third site is also shown. The sites were selected from previous work by the BERC and Idaho National Laboratory. The equipment was provided by the BERC and installed by researchers from the UNLV CER.

  11. A reward semi-Markov process with memory for wind speed modeling

    NASA Astrophysics Data System (ADS)

    Petroni, F.; D'Amico, G.; Prattico, F.

    2012-04-01

    The increasing interest in renewable energy leads scientific research to find a better way to recover most of the available energy. Particularly, the maximum energy recoverable from wind is equal to 59.3% of that available (Betz law) at a specific pitch angle and when the ratio between the wind speed in output and in input is equal to 1/3. The pitch angle is the angle formed between the airfoil of the blade of the wind turbine and the wind direction. Old turbine and a lot of that actually marketed, in fact, have always the same invariant geometry of the airfoil. This causes that wind turbines will work with an efficiency that is lower than 59.3%. New generation wind turbines, instead, have a system to variate the pitch angle by rotating the blades. This system able the wind turbines to recover, at different wind speed, always the maximum energy, working in Betz limit at different speed ratios. A powerful system control of the pitch angle allows the wind turbine to recover better the energy in transient regime. A good stochastic model for wind speed is then needed to help both the optimization of turbine design and to assist the system control to predict the value of the wind speed to positioning the blades quickly and correctly. The possibility to have synthetic data of wind speed is a powerful instrument to assist designer to verify the structures of the wind turbines or to estimate the energy recoverable from a specific site. To generate synthetic data, Markov chains of first or higher order are often used [1,2,3]. In particular in [1] is presented a comparison between a first-order Markov chain and a second-order Markov chain. A similar work, but only for the first-order Markov chain, is conduced by [2], presenting the probability transition matrix and comparing the energy spectral density and autocorrelation of real and synthetic wind speed data. A tentative to modeling and to join speed and direction of wind is presented in [3], by using two models, first-order Markov chain with different number of states, and Weibull distribution. All this model use Markov chains to generate synthetic wind speed time series but the search for a better model is still open. Approaching this issue, we applied new models which are generalization of Markov models. More precisely we applied semi-Markov models to generate synthetic wind speed time series. The primary goal of this analysis is the study of the time history of the wind in order to assess its reliability as a source of power and to determine the associated storage levels required. In order to assess this issue we use a probabilistic model based on indexed semi-Markov process [4] to which a reward structure is attached. Our model is used to calculate the expected energy produced by a given turbine and its variability expressed by the variance of the process. Our results can be used to compare different wind farms based on their reward and also on the risk of missed production due to the intrinsic variability of the wind speed process. The model is used to generate synthetic time series for wind speed by means of Monte Carlo simulations and backtesting procedure is used to compare results on first and second oder moments of rewards between real and synthetic data. [1] A. Shamshad, M.A. Bawadi, W.M.W. Wan Hussin, T.A. Majid, S.A.M. Sanusi, First and second order Markov chain models for synthetic gen- eration of wind speed time series, Energy 30 (2005) 693-708. [2] H. Nfaoui, H. Essiarab, A.A.M. Sayigh, A stochastic Markov chain model for simulating wind speed time series at Tangiers, Morocco, Re- newable Energy 29 (2004) 1407-1418. [3] F. Youcef Ettoumi, H. Sauvageot, A.-E.-H. Adane, Statistical bivariate modeling of wind using first-order Markov chain and Weibull distribu- tion, Renewable Energy 28 (2003) 1787-1802. [4]F. Petroni, G. D'Amico, F. Prattico, Indexed semi-Markov process for wind speed modeling. To be submitted.

  12. Numerical simulation of a mistral wind event occuring

    NASA Astrophysics Data System (ADS)

    Guenard, V.; Caccia, J. L.; Tedeschi, G.

    2003-04-01

    The experimental network of the ESCOMPTE field experiment (june-july 2001) is turned into account to investigate the Mistral wind affecting the Marseille area (South of France). Mistral wind is a northerly flow blowing across the Rhône valley and toward the Mediterranean sea resulting from the dynamical low pressure generated in the wake of the Alps ridge. It brings cold, dry air masses and clear sky conditions over the south-eastern part of France. Up to now, few scientific studies have been carried out on the Mistral wind especially the evolution of its 3-D structure so that its mesoscale numerical simulation is still relevant. Non-hydrostatic RAMS model is performed to better investigate this mesoscale phenomena. Simulations at a 12 km horizontal resolution are compared to boundary layer wind profilers and ground measurements. Preliminary results suit quite well with the Mistral statistical studies carried out by the operational service of Météo-France and observed wind profiles are correctly reproduced by the numerical model RAMS which appears to be an efficient tool for its understanding of Mistral. Owing to the absence of diabatic effect in Mistral events which complicates numerical simulations, the present work is the first step for the validation of RAMS model in that area. Further works will consist on the study of the interaction of Mistral wind with land-sea breeze. Also, RAMS simulations will be combined with aerosol production and ocean circulation models to supply chemists and oceanographers with some answers for their studies.

  13. Anomalous meridional thermospheric neutral winds in the AE-E NATE data: Effects of the equatorial nighttime pressure bulge

    NASA Technical Reports Server (NTRS)

    Goembel, L.; Herrero, F. A.

    1995-01-01

    The work described here makes it possible to identify anomalous wind behavior such as the nighttime meridional wind abatements that occur at F-region heights. A new analysis technique uses a simple empirical wind model to simulate measurements of 'normal' winds (as measured by the Neutral Atmosphere and Temperature Experiment (NATE) that flew on the Atmosphere Explorer-E (AE-E)) to highlight anomalous wind measurements made by the satellite while in circular orbits at 270-290 km altitude. Our approach is based on the recognition that the 'in orbit' wind variation must show the combined effects of the diurnal wind variation as seen from the ground with the latitude variation of the satellite orbit. For the data period 77250-78035 examined thus far, the wind abatement always occurred with a corresponding pressure or temperature maximum, and was detected on 12 out of the 36 nights with data. This study has revealed that the wind abatement occur only during or shortly after increases in solar extreme ultraviolet (EUV) flux, as indicated by daily radio flux measurements. In the past, nighttime wind reversals at mid-latitudes have been associated with increased geomagnetic activity. This study indicates that intensified solar EUV heating may be responsible for anomalous thermospheric nighttime winds at mid-latitudes.

  14. Modeling Flue Pipes: Subsonic Flow, Lattice Boltzmann, and Parallel Distributed Computers.

    DTIC Science & Technology

    1995-01-01

    Abstract The problem of simulating the hydrodynamics and the acoustic waves inside wind musical instruments such as the recorder, the organ, and the ute...inside wind musical instruments such as the recorder, the organ, and the ute is considered. The problem is attacked by developing suitable local...applications such as the simulation of uid dynamics inside wind musical instruments. In the past, he has also worked on numerical methods for ordinary di

  15. Solar Wind Helium Abundance as a Function of Speed and Heliographic Latitude: Variation through a Solar Cycle

    NASA Technical Reports Server (NTRS)

    Kasper, J. C.; Stenens, M. L.; Stevens, M. L.; Lazarus, A. J.; Steinberg, J. T.; Ogilvie, Keith W.

    2006-01-01

    We present a study of the variation of the relative abundance of helium to hydrogen in the solar wind as a function of solar wind speed and heliographic latitude over the previous solar cycle. The average values of A(sub He), the ratio of helium to hydrogen number densities, are calculated in 25 speed intervals over 27-day Carrington rotations using Faraday Cup observations from the Wind spacecraft between 1995 and 2005. The higher speed and time resolution of this study compared to an earlier work with the Wind observations has led to the discovery of three new aspects of A(sub He), modulation during solar minimum from mid-1995 to mid-1997. First, we find that for solar wind speeds between 350 and 415 km/s, A(sub He), varies with a clear six-month periodicity, with a minimum value at the heliographic equatorial plane and a typical gradient of 0.01 per degree in latitude. For the slow wind this is a 30% effect. We suggest that the latitudinal gradient may be due to an additional dependence of coronal proton flux on coronal field strength or the stability of coronal loops. Second, once the gradient is subtracted, we find that A(sub He), is a remarkably linear function of solar wind speed. Finally, we identify a vanishing speed, at which A(sub He), is zero, is 259 km/s and note that this speed corresponds to the minimum solar wind speed observed at one AU. The vanishing speed may be related to previous theoretical work in which enhancements of coronal helium lead to stagnation of the escaping proton flux. During solar maximum the A(sub He), dependences on speed and latitude disappear, and we interpret this as evidence of two source regions for slow solar wind in the ecliptic plane, one being the solar minimum streamer belt and the other likely being active regions.

  16. PREFACE: Wake Conference 2015

    NASA Astrophysics Data System (ADS)

    Barney, Andrew; Nørkær Sørensen, Jens; Ivanell, Stefan

    2015-06-01

    The 44 papers in this volume constitute the proceedings of the 2015 Wake Conference, held in Visby on the island of Gotland in Sweden. It is the fourth time this conference has been held. The Wake Conference series started in Visby, where it was held in 2009 and 2011. In 2013 it took place in Copenhagen where it was combined with the International Conference on Offshore Wind Energy and Ocean Energy. In 2015 it is back where it started in Visby, where it takes place at Uppsala University Campus Gotland, June 9th-11th. The global yearly production of electrical energy by wind turbines has grown tremendously in the past decade and it now comprises more than 3% of the global electrical power consumption. Today the wind power industry has a global annual turnover of more than 50 billion USD and an annual average growth rate of more than 20%. State-of-the-art wind turbines have rotor diameters of up to 150 m and 8 MW installed capacity. These turbines are often placed in large wind farms that have a total production capacity corresponding to that of a nuclear power plant. In order to make a substantial impact on one of the most significant challenges of our time, global warming, the industry's growth has to continue for a decade or two yet. This in turn requires research into the physics of wind turbine wakes and wind farms. Modern wind turbines are today clustered in wind farms in which the turbines are fully or partially influenced by the wake of upstream turbines. As a consequence, the wake behind the wind turbines has a lower mean wind speed and an increased turbulence level, as compared to the undisturbed flow outside the farm. Hence, wake interaction results in decreased total production of power, caused by lower kinetic energy in the wind, and an increase in the turbulence intensity. Therefore, understanding the physical nature of the vortices and their dynamics in the wake of a turbine is important for the optimal design of a wind farm. This conference is aimed at scientists and PhD students working in the field of wake dynamics. The conference covers the following subject areas: Wake and vortex dynamics, instabilities in trailing vortices and wakes, simulation and measurements of wakes, analytical approaches for modeling wakes, wake interaction and other wind farm investigations. Many people have been involved in producing the 2015 Wake Conference proceedings. The work by the more than 60 reviewers ensuring the quality of the papers is greatly appreciated. The timely evaluation and coordination of the reviews would not have been possible without the work of the section editors: Christian Masson, ÉTS, Fernando Porté-Agel, EPFL, Gerard Schepers, ECN Wind Energy, Gijs Van Kuik, Delft University, Gunner Larsen, DTU Wind Energy, Jakob Mann, DTU Wind Energy, Javier Sanz Rodrigo, CENER, Johan Meyers, KU Leuven, Rebecca Barthelmie, Cornell University, Sandrine Aubrun-Sanches, Université d'Orléans and Thomas Leweke, IRPHE-CNRS. We are also immensely indebted to the very responsive support from the editorial team at IOP Publishing, especially Sarah Toms, during the review process of these proceedings. Visby, Sweden, June 2015 Andrew Barney, Jens Nørkær Sørensen and Stefan Ivanell Uppsala University - Campus Gotland

  17. LWST Phase I Project Conceptual Design Study: Evaluation of Design and Construction Approaches for Economical Hybrid Steel/Concrete Wind Turbine Towers; June 28, 2002 -- July 31, 2004

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    LaNier, M. W.

    The United States Department of Energy (DOE) Wind Energy Research Program has begun a new effort to partner with U.S. industry to develop wind technology that will allow wind systems to compete in regions of low wind speed. The Class 4 and 5 sites targeted by this effort have annual average wind speeds of 5.8 m/s (13 mph), measured at 10 m (33 ft) height. Such sites are abundant in the United States and would increase the land area available for wind energy production twenty-fold. The new program is targeting a levelized cost of energy of 3 cents/kWh at thesemore » sites by 2010. A three-element approach has been initiated. These efforts are concept design, component development, and system development. This work builds on previous activities under the WindPACT program and the Next Generation Turbine program. If successful, DOE estimates that his new technology could result in 35 to 45 gigawatts of additional wind capacity being installed by 2020.« less

  18. Resolving Environmental Effects of Wind Energy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sinclair, Karin C; DeGeorge, Elise M; Copping, Andrea E.

    Concerns for potential wildlife impacts resulting from land-based and offshore wind energy have created challenges for wind project development. Research is not always adequately supported, results are neither always readily accessible nor are they satisfactorily disseminated, and so decisions are often made based on the best available information, which may be missing key findings. The potential for high impacts to avian and bat species and marine mammals have been used by wind project opponents to stop, downsize, or severely delay project development. The global nature of the wind industry - combined with the understanding that many affected species cross-national boundaries,more » and in many cases migrate between continents - also points to the need to collaborate on an international level. The International Energy Agency (IEA) Wind Technology Collaborative Programs facilitates coordination on key research issues. IEA Wind Task 34 - WREN: Working Together to Resolve Environmental Effects of Wind Energy-is a collaborative forum to share lessons gained from field research and modeling, including management methods, wildlife monitoring methods, best practices, study results, and successful approaches to mitigating impacts and addressing the cumulative effects of wind energy on wildlife.« less

  19. Relationship between wind, waves and radar backscatter

    NASA Technical Reports Server (NTRS)

    Katsaros, Kristina B.; Ataktuerk, Serhad S.

    1991-01-01

    The aim of the research was to investigate the relationship between wind, waves, and radar backscatter from water surface. To this end, three field experiments with periods of 2 to 4 weeks were carried out during summer months in 1988, 1989 and 1990. For these periods, the University of Washington group provided (1) environmental parameters such as wind speed, wind stress, and atmospheric stratification through measurements of surface fluxes (of momentum, sensible heat and latent heat) and of air and water temperatures; and (2) wave height spectra including both the dominant waves and the short gravity-capillary waves. Surface flux measurements were performed by using our well tested instruments: a K-Gill twin propeller-vane anemometer and a fast response thermocouple psychrometer. Wave heights were measured by a resistance wire wave gauge. The University of Kansas group was responsible for the operation of the microwave radars.

  20. RSRA sixth scale wind tunnel test. Tabulated balance data, volume 2

    NASA Technical Reports Server (NTRS)

    Ruddell, A.; Flemming, R.

    1974-01-01

    Summaries are presented of all the force and moment data acquired during the RSRA Sixth Scale Wind Tunnel Test. These data include and supplement the data presented in curve form in previous reports. Each summary includes the model configuration, wing and empennage incidences and deflections, and recorded balance data. The first group of data in each summary presents the force and moment data in full scale parametric form, the dynamic pressure and velocity in the test section, and the powered nacelle fan speed. The second and third groups of data are the balance data in nondimensional coefficient form. The wind axis coefficient data corresponds to the parametric data divided by the wing area for forces and divided by the product of the wing area and wing span or mean aerodynamic chord for moments. The stability axis data resolves the wind axis data with respect to the angle of yaw.

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schreck, S.; Sant, T.; Micallef, D.

    Wind turbine structures and components suffer excessive loads and premature failures when key aerodynamic phenomena are not well characterized, fail to be understood, or are inaccurately predicted. Turbine blade rotational augmentation remains incompletely characterized and understood, thus limiting robust prediction for design. Pertinent rotational augmentation research including experimental, theoretical, and computational work has been pursued for some time, but large scale wind tunnel testing is a relatively recent development for investigating wind turbine blade aerodynamics. Because of their large scale and complementary nature, the MEXICO and UAE Phase VI wind tunnel experiments offer unprecedented synergies to better characterize and understandmore » rotational augmentation of blade aerodynamics.« less

  2. Wind energy converter with high-speed vertical axis rotor and straight rotor blades

    NASA Astrophysics Data System (ADS)

    Zelck, G.

    1982-11-01

    Complete documents for a wind energy converter with a vertical axis rotor and straight blades (H-rotor) were developed. The 2 blade rotor with rigid and rectangular air foils in wooden construction reaches the nominal output of 75 KVA from 11,4 m/sec. wind velocity onwards. The development activities are supported by wind tunnel and component tests. The final design selected was based upon previous development work. Trade offs show that the design is more advantageous compared to other designs. The use of wood as a material for the rotary and horizontal blade supports gives positive result.

  3. Measurements of Operational Wind Turbine Noise in UK Waters.

    PubMed

    Cheesman, Samuel

    2016-01-01

    The effects of wind farm operational noise have not been addressed to the same extent as their construction methods such as piling and drilling of the foundations despite their long operational lifetimes compared with weeks of construction. The results of five postconstruction underwater sound-monitoring surveys on wind farms located throughout the waters of the British Isles are discussed. These wind farms consist of differing turbine power outputs, from 3 to 3.6 MW, and differing numbers of turbines. This work presents an overview of the results obtained and discusses both the levels and frequency components of the sound in several metrics.

  4. Meteorology Research in DOE's Atmosphere to Electrons (A2e) Program

    NASA Astrophysics Data System (ADS)

    Cline, J.; Haupt, S. E.; Shaw, W. J.

    2017-12-01

    DOE's Atmosphere to electrons (A2e) program is performing cutting edge research to allow optimization of wind plants. This talk will summarize the atmospheric science portion of A2e, with an overview of recent and planned observation and modeling projects designed to bridge the terra incognita between the mesoscale and the microscales that affect wind plants. Introduction A2e is a major focus of the Wind Energy Technologies Office (WETO) within the Office of Energy Efficiency & Renewable Energy (EERE) at the DOE. The overall objective of A2e is to optimize wind power production and integrates improved knowledge of atmospheric inflow (fuel), turbine and plant aerodynamics, and control systems. The atmospheric component of the work addresses both the need for improved forecasting of hub-height winds and the need for improved turbulence characterization for turbine inflows under realistic atmospheric conditions and terrain. Several projects will be discussed to address observations of meteorological variables in regions not typically observed. The modelling needs are addressed through major multi-institutional integrated studies comprising both theoretical and numerical advances to improve models and field observations for physical insight. Model improvements are subjected to formal verification and validation, and numerical and observational data are archived and disseminated to the public through the A2e Data Archive and Portal (DAP; http://a2e.energy.gov). The overall outcome of this work will be increased annual energy production from wind plants and improved turbine lifetimes through a better understanding of atmospheric loading. We will briefly describe major components of the atmospheric part of the A2e strategy and work being done and planned.

  5. Completion of the Edward Air Force Base Statistical Guidance Wind Tool

    NASA Technical Reports Server (NTRS)

    Dreher, Joseph G.

    2008-01-01

    The goal of this task was to develop a GUI using EAFB wind tower data similar to the KSC SLF peak wind tool that is already in operations at SMG. In 2004, MSFC personnel began work to replicate the KSC SLF tool using several wind towers at EAFB. They completed the analysis and QC of the data, but due to higher priority work did not start development of the GUI. MSFC personnel calculated wind climatologies and probabilities of 10-minute peak wind occurrence based on the 2-minute average wind speed for several EAFB wind towers. Once the data were QC'ed and analyzed the climatologies were calculated following the methodology outlined in Lambert (2003). The climatologies were calculated for each tower and month, and then were stratified by hour, direction (10" sectors), and direction (45" sectors)/hour. For all climatologies, MSFC calculated the mean, standard deviation and observation counts of the Zminute average and 10-minute peak wind speeds. MSFC personnel also calculated empirical and modeled probabilities of meeting or exceeding specific 10- minute peak wind speeds using PDFs. The empirical PDFs were asymmetrical and bounded on the left by the 2- minute average wind speed. They calculated the parametric PDFs by fitting the GEV distribution to the empirical distributions. Parametric PDFs were calculated in order to smooth and interpolate over variations in the observed values due to possible under-sampling of certain peak winds and to estimate probabilities associated with average winds outside the observed range. MSFC calculated the individual probabilities of meeting or exceeding specific 10- minute peak wind speeds by integrating the area under each curve. The probabilities assist SMG forecasters in assessing the shuttle FR for various Zminute average wind speeds. The A M ' obtained the processed EAFB data from Dr. Lee Bums of MSFC and reformatted them for input to Excel PivotTables, which allow users to display different values with point-click-drag techniques. The GUI was created from the PivotTables using VBA code. It is run through a macro within Excel and allows forecasters to quickly display and interpret peak wind climatology and probabilities in a fast-paced operational environment. The GUI was designed to look and operate exactly the same as the KSC SLF tool since SMG forecasters were already familiar with that product. SMG feedback was continually incorporated into the GUI ensuring the end product met their needs. The final version of the GUI along with all climatologies, PDFs, and probabilities has been delivered to SMG and will be put into operational use.

  6. Current and Future Opportunities for Wind Power in the Southeast

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tinnesand, Heidi; Roberts, Owen; Lantz, Eric

    This presentation discusses future wind opportunities in the Southeast including factors such as changes in wind turbine technology, historical innovation trends, and forecast demand growth among regions. The presentation covers the current status of wind in the United States at 80-m hub height and the near-future outlook with a hub height at 110 to 140 meters. Future cost reductions in 2030 and beyond are also explored. Heidi Tinnesand presented this information to a utility advisory group meeting in Charlotte, North Carolina, on October 5, 2016.

  7. Philippines: Small-scale renewable energy update

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1997-12-01

    This paper gives an overview of the application of small scale renewable energy sources in the Philippines. Sources looked at include solar, biomass, micro-hydroelectric, mini-hydroelectric, wind, mini-geothermal, and hybrid. A small power utilities group is being spun off the major utility, to provide a structure for developing rural electrification programs. In some instances, private companies have stepped forward, avoiding what is perceived as overwhelming beaurocracy, and installed systems with private financing. The paper provides information on survey work which has been done on resources, and the status of cooperative programs to develop renewable systems in the nation.

  8. Violations of the Lattice Index Theorem for Spherical Center Vortices

    NASA Astrophysics Data System (ADS)

    Höllwieser, R.; Faber, M.; Heller, U. M.

    2011-05-01

    We address the puzzle raised in a previous work of our group [Phys. Rev. D 77, 14515 (2008)], where we found a violation of the lattice index theorem with the overlap Dirac operator in the fundamental representation even for "admissible" gauge fields of a classical, spherical center vortex. Here we confirm the discrepancy between the topological charge and the index of the Dirac operator also for asqtad staggered fermions and adjoint representations. Numerically, the discrepancy equals the sum of the winding numbers of the spheres when they are regarded as maps S3→SU(2).

  9. ELT Site Prospection in Morrocan Atlas Mountains

    NASA Astrophysics Data System (ADS)

    Benkhaldoun, Z.

    2006-08-01

    The Extremly Large Telescope site testing working group had selected Morrocan's mounting, as one of five locations over the word, to teste for this european project. For that we first of all carried out a selection of two sites basing on their location relative to the dominant wind flow, the cloud cover and the circulation of the Saharan aerosols. We will detail in the communication which we present here, methodology followed and results obtained. We also present the localizations of both site with a cartographic, geological study and some seismic information. The first measurements of the seeing will be also presented.

  10. Investigation of water vapor motion winds from geostationary satellites

    NASA Technical Reports Server (NTRS)

    Velden, Christopher

    1993-01-01

    Motions deduced in animated water vapor imagery from geostationary satellites can be used to infer wind fields in cloudless regimes. For the past several years, CIMSS has been exploring this potentially important source of global-scale wind information. Recently, METEOSAT-3 data has become routinely available to both the U.S. operational and research community. Compared with the current GOES satellite, the METEOSAT has a superior resolution (5 km vs. 16 km) in its water vapor channel. Preliminary work: at CIMSS has demonstrated that wind sets derived from METEOSAT water vapor imagery can provide important upper-tropospheric wind information in data void areas, and can positively impact numerical model guidance in meteorological applications. Specifically, hurricane track forecasts can be improved. Currently, we are exploring methods to further improve the derivation and quality of the water vapor wind sets.

  11. Wind River watershed restoration, annual report November 2009 to October 2010.

    USGS Publications Warehouse

    Connolly, P.J.; Jezorek, I.G.

    2011-01-01

    This report summarizes work completed by U.S. Geological Survey’s Columbia River Research Laboratory (USGS-CRRL) in the Wind River subbasin during the period November 2009 through October 2010 under Bonneville Power Administration (BPA) contract 46102. Long term research in the Wind River has focused on assessments of steelhead/rainbow trout Oncorhynchus mykiss populations, interactions with introduced populations of spring Chinook salmon O. tshawytscha and brook trout Salvelinus fontinalis, and influences of habitat variables and habitat restoration on fish productivity. During the period covered by this report, we collected water temperature data to characterize variation within and among tributaries and mainstem sections in the Trout Creek watershed, and assisted Washington Department of Fish and Wildlife (WDFW) with smolt trapping and tagging of smolt and parr steelhead with passive integrated transponder (PIT) tags. We also continued to maintain and test efficacy of a passive integrated transponder tag interrogation system (PTIS) in Trout Creek for assessing the adult steelhead runsize. A statement of work (SOW) was submitted to BPA in October 2009 that outlined work to be performed by USGS-CRRL. The SOW was organized by work elements, with each describing a research task. This report summarizes the progress completed under each work element.

  12. Assessing climate change impacts on the near-term stability of the wind energy resource over the United States

    PubMed Central

    Pryor, S. C.; Barthelmie, R. J.

    2011-01-01

    The energy sector comprises approximately two-thirds of global total greenhouse gas emissions. For this and other reasons, renewable energy resources including wind power are being increasingly harnessed to provide electricity generation potential with negligible emissions of carbon dioxide. The wind energy resource is naturally a function of the climate system because the “fuel” is the incident wind speed and thus is determined by the atmospheric circulation. Some recent articles have reported historical declines in measured near-surface wind speeds, leading some to question the continued viability of the wind energy industry. Here we briefly articulate the challenges inherent in accurately quantifying and attributing historical tendencies and making robust projections of likely future wind resources. We then analyze simulations from the current generation of regional climate models and show, at least for the next 50 years, the wind resource in the regions of greatest wind energy penetration will not move beyond the historical envelope of variability. Thus this work suggests that the wind energy industry can, and will, continue to make a contribution to electricity provision in these regions for at least the next several decades. PMID:21536905

  13. Assessing climate change impacts on the near-term stability of the wind energy resource over the United States.

    PubMed

    Pryor, S C; Barthelmie, R J

    2011-05-17

    The energy sector comprises approximately two-thirds of global total greenhouse gas emissions. For this and other reasons, renewable energy resources including wind power are being increasingly harnessed to provide electricity generation potential with negligible emissions of carbon dioxide. The wind energy resource is naturally a function of the climate system because the "fuel" is the incident wind speed and thus is determined by the atmospheric circulation. Some recent articles have reported historical declines in measured near-surface wind speeds, leading some to question the continued viability of the wind energy industry. Here we briefly articulate the challenges inherent in accurately quantifying and attributing historical tendencies and making robust projections of likely future wind resources. We then analyze simulations from the current generation of regional climate models and show, at least for the next 50 years, the wind resource in the regions of greatest wind energy penetration will not move beyond the historical envelope of variability. Thus this work suggests that the wind energy industry can, and will, continue to make a contribution to electricity provision in these regions for at least the next several decades.

  14. Wind farm density and harvested power in very large wind farms: A low-order model

    NASA Astrophysics Data System (ADS)

    Cortina, G.; Sharma, V.; Calaf, M.

    2017-07-01

    In this work we create new understanding of wind turbine wakes recovery process as a function of wind farm density using large-eddy simulations of an atmospheric boundary layer diurnal cycle. Simulations are forced with a constant geostrophic wind and a time varying surface temperature extracted from a selected period of the Cooperative Atmospheric Surface Exchange Study field experiment. Wind turbines are represented using the actuator disk model with rotation and yaw alignment. A control volume analysis around each turbine has been used to evaluate wind turbine wake recovery and corresponding harvested power. Results confirm the existence of two dominant recovery mechanisms, advection and flux of mean kinetic energy, which are modulated by the background thermal stratification. For the low-density arrangements advection dominates, while for the highly loaded wind farms the mean kinetic energy recovers through fluxes of mean kinetic energy. For those cases in between, a smooth balance of both mechanisms exists. From the results, a low-order model for the wind farms' harvested power as a function of thermal stratification and wind farm density has been developed, which has the potential to be used as an order-of-magnitude assessment tool.

  15. Wind-waves interactions in the Gulf of Eilat

    NASA Astrophysics Data System (ADS)

    Shani-Zerbib, Almog; Liberzon, Dan; T-SAIL Team

    2017-11-01

    The Gulf of Eilat, at the southern tip of Israel, with its elongated rectangular shape and unique diurnal wind pattern is an appealing location for wind-waves interactions research. Results of experimental work will be reported analyzing a continuous, 50 hour long, data. Using a combined array of wind and waves sensing instruments, the wave field statistics and its response to variations of wind forcing were investigated. Correlations between diurnal fluctuations in wind magnitude and direction and the wave field response will be discussed. The directional spread of waves' energy, as estimated by the Wavelet Directional Method, showed a strong response to small variations in wind flow direction attributed to the unique topography of the gulf surroundings and its bathymetry. Influenced by relatively strong winds during the light hours, the wave field was dominated by a significant amount of breakings that are well pronounced in the saturation range of waves spectra. Temporal growth and decay behavior of the waves during the morning and evening wind transition periods was examined. Sea state induced roughness, as experienced by the wind flow turbulent boundary layer, is examined in view of the critical layer theory. Israel Science Foundation Grant # 1521/15.

  16. International Energy Agency (IEA): Implementing Agreement for Co-operation in the Research and Development of Wind Turbine Systems (IEA Wind)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sinclair, Karin C

    This fact sheet covers the work that is being done via the International Energy Agency Task 34 (WREN). The fact sheet highlights the objective, strategy, primary activities, members, and contacts for this task.

  17. Sonic Anemometry to Measure Natural Ventilation in Greenhouses

    PubMed Central

    López, Alejandro; Valera, Diego Luis; Molina-Aiz, Francisco

    2011-01-01

    The present work has developed a methodology for studying natural ventilation in Mediterranean greenhouses by means of sonic anemometry. In addition, specific calculation programmes have been designed to enable processing and analysis of the data recorded during the experiments. Sonic anemometry allows us to study the direction of the airflow at all the greenhouse vents. Knowing through which vents the air enters and leaves the greenhouse enables us to establish the airflow pattern of the greenhouse under natural ventilation conditions. In the greenhouse analysed in this work for Poniente wind (from the southwest), a roof vent designed to open towards the North (leeward) could allow a positive interaction between the wind and stack effects, improving the ventilation capacity of the greenhouse. The cooling effect produced by the mass of turbulent air oscillating between inside and outside the greenhouse at the side vents was limited to 2% (for high wind speed, uo ≥ 4 m s−1) reaching 36.3% when wind speed was lower (uo = 2 m s−1). PMID:22163728

  18. Sonic anemometry to measure natural ventilation in greenhouses.

    PubMed

    López, Alejandro; Valera, Diego Luis; Molina-Aiz, Francisco

    2011-01-01

    The present work has developed a methodology for studying natural ventilation in Mediterranean greenhouses by means of sonic anemometry. In addition, specific calculation programmes have been designed to enable processing and analysis of the data recorded during the experiments. Sonic anemometry allows us to study the direction of the airflow at all the greenhouse vents. Knowing through which vents the air enters and leaves the greenhouse enables us to establish the airflow pattern of the greenhouse under natural ventilation conditions. In the greenhouse analysed in this work for Poniente wind (from the southwest), a roof vent designed to open towards the North (leeward) could allow a positive interaction between the wind and stack effects, improving the ventilation capacity of the greenhouse. The cooling effect produced by the mass of turbulent air oscillating between inside and outside the greenhouse at the side vents was limited to 2% (for high wind speed, u(o) ≥ 4 m s(-1)) reaching 36.3% when wind speed was lower (u(o) = 2 m s(-1)).

  19. Applied Meteorology Unit (AMU) Quarterly Report Third Quarter FY · 13

    NASA Technical Reports Server (NTRS)

    Bauman, William; Crawford, Winifred; Watson, Leela; Shafer, Jaclyn; Huddleston, Lisa

    2013-01-01

    The AMU team worked on seven tasks for their customers: (1) Ms. Crawford completed the objective lightning forecast tool for east -central Florida airports and delivered the tool and the final report to the customers. (2) Ms. Shafer continued work for Vandenberg Air Force Base on an automated tool to relate pressure gradients to peak winds. (3) Dr. Huddleston updated and delivered the tool that shows statistics on the timing of the first lightning strike of the day in the Kennedy Space Center (KSC)/Cape Canaveral Air Force Station (CCAFS) area. (4) Dr. Bauman continued work on a severe weather forecast tool focused on the Eastern Range (ER). (5) Ms. Crawford acquired the software and radar data needed to create a dual-Doppler analysis over the east-central Florida and KSC/CCAFS areas. (6) Mr. Decker continued developing a wind pairs database for the Launch Services Program to use when evaluating upper-level winds for launch vehicles. (7) Dr. Watson continued work to assimilate observational data into the high-resolution model configurations she created for Wallops Flight Facility and the ER.

  20. Does magnetic storm generation depend on the solar wind type?

    NASA Astrophysics Data System (ADS)

    Nikolaeva, N. S.; Yermolaev, Yu. I.; Lodkina, I. G.; Yermolaev, M. Yu.

    2017-09-01

    The purpose of this work is to draw the reader's attention to the problem of possible differences in the generation of magnetic storms by different large-scale solar wind types: corotating interaction regions (CIRs), Sheaths, and interplanetary coronal mass ejections (ICMEs), including magnetic clouds (MCs) and Ejecta. We recently showed that the description of relationships between interplanetary conditions and Dst and Dst* indices with the modified formula by Burton et al. gives an 50% higher efficiency of storm generation by Sheath and CIR than that by ICME. Many function couplings (FCs) between different interplanetary parameters and the magnetosphere state have been suggested in the literature; however, they have not been analyzed for different solar wind types. In this work, we study the generation efficiency of the main phase of a storm by different solar wind streams with the use of 12 FCs on the basis of OMNI data for 1976-2000. The results show that the Sheath has the highest efficiency for most FCs, and MC is the least efficient, and this result corresponds to our previous results. The reliability of the results and possible causes of differences for different FCs and solar wind types are to be studied further.

  1. Adaptive strategies in nocturnally migrating insects and songbirds: contrasting responses to wind.

    PubMed

    Chapman, Jason W; Nilsson, Cecilia; Lim, Ka S; Bäckman, Johan; Reynolds, Don R; Alerstam, Thomas

    2016-01-01

    Animals that use flight as their mode of transportation must cope with the fact that their migration and orientation performance is strongly affected by the flow of the medium they are moving in, that is by the winds. Different strategies can be used to mitigate the negative effects and benefit from the positive effects of a moving flow. The strategies an animal can use will be constrained by the relationship between the speed of the flow and the speed of the animal's own propulsion in relation to the surrounding air. Here we analyse entomological and ornithological radar data from north-western Europe to investigate how two different nocturnal migrant taxa, the noctuid moth Autographa gamma and songbirds, deal with wind by analysing variation in resulting flight directions in relation to the wind-dependent angle between the animal's heading and track direction. Our results, from fixed locations along the migratory journey, reveal different global strategies used by moths and songbirds during their migratory journeys. As expected, nocturnally migrating moths experienced a greater degree of wind drift than nocturnally migrating songbirds, but both groups were more affected by wind in autumn than in spring. The songbirds' strategies involve elements of both drift and compensation, providing some benefits from wind in combination with destination and time control. In contrast, moths expose themselves to a significantly higher degree of drift in order to obtain strong wind assistance, surpassing the songbirds in mean ground speed, at the cost of a comparatively lower spatiotemporal migratory precision. Moths and songbirds show contrasting but adaptive responses to migrating through a moving flow, which are fine-tuned to the respective flight capabilities of each group in relation to the wind currents they travel within. © 2015 The Authors. Journal of Animal Ecology © 2015 British Ecological Society.

  2. An optimal control framework for dynamic induction control of wind farms and their interaction with the atmospheric boundary layer.

    PubMed

    Munters, W; Meyers, J

    2017-04-13

    Complex turbine wake interactions play an important role in overall energy extraction in large wind farms. Current control strategies optimize individual turbine power, and lead to significant energy losses in wind farms compared with lone-standing wind turbines. In recent work, an optimal coordinated control framework was introduced (Goit & Meyers 2015 J. Fluid Mech. 768 , 5-50 (doi:10.1017/jfm.2015.70)). Here, we further elaborate on this framework, quantify the influence of optimization parameters and introduce new simulation results for which gains in power production of up to 21% are observed.This article is part of the themed issue 'Wind energy in complex terrains'. © 2017 The Authors.

  3. Space Launch System Ascent Static Aerodynamic Database Development

    NASA Technical Reports Server (NTRS)

    Pinier, Jeremy T.; Bennett, David W.; Blevins, John A.; Erickson, Gary E.; Favaregh, Noah M.; Houlden, Heather P.; Tomek, William G.

    2014-01-01

    This paper describes the wind tunnel testing work and data analysis required to characterize the static aerodynamic environment of NASA's Space Launch System (SLS) ascent portion of flight. Scaled models of the SLS have been tested in transonic and supersonic wind tunnels to gather the high fidelity data that is used to build aerodynamic databases. A detailed description of the wind tunnel test that was conducted to produce the latest version of the database is presented, and a representative set of aerodynamic data is shown. The wind tunnel data quality remains very high, however some concerns with wall interference effects through transonic Mach numbers are also discussed. Post-processing and analysis of the wind tunnel dataset are crucial for the development of a formal ascent aerodynamics database.

  4. An optimal control framework for dynamic induction control of wind farms and their interaction with the atmospheric boundary layer

    PubMed Central

    Munters, W.

    2017-01-01

    Complex turbine wake interactions play an important role in overall energy extraction in large wind farms. Current control strategies optimize individual turbine power, and lead to significant energy losses in wind farms compared with lone-standing wind turbines. In recent work, an optimal coordinated control framework was introduced (Goit & Meyers 2015 J. Fluid Mech. 768, 5–50 (doi:10.1017/jfm.2015.70)). Here, we further elaborate on this framework, quantify the influence of optimization parameters and introduce new simulation results for which gains in power production of up to 21% are observed. This article is part of the themed issue ‘Wind energy in complex terrains’. PMID:28265024

  5. Wind Energy Applications and Training Symposium

    NASA Astrophysics Data System (ADS)

    Sixteen representatives from 11 developing nations participated in the 1990 Wind Energy Applications and Training Symposium (WEATS) program. Consistent with previous symposia, the format included classroom-style training and field trip experiences to acquaint the participants with the history and progress of wind energy development in the U.S., technologically and economically. Brief presentations about wind energy development in all the countries represented were made by the participants. Several reports were prepared and presented along with slides for further explanation. The one-on-one symposium wrap-up session on the last day continues to be a good method of discovering what can be the next step in working with each country to develop their wind energy potential. Seventeen papers have been indexed separately for inclusion on the data base.

  6. CFD simulations of power coefficients for an innovative Darrieus style vertical axis wind turbine with auxiliary straight blades

    NASA Astrophysics Data System (ADS)

    Arpino, F.; Cortellessa, G.; Dell'Isola, M.; Scungio, M.; Focanti, V.; Profili, M.; Rotondi, M.

    2017-11-01

    The increasing price of fossil derivatives, global warming and energy market instabilities, have led to an increasing interest in renewable energy sources such as wind energy. Amongst the different typologies of wind generators, small scale Vertical Axis Wind Turbines (VAWT) present the greatest potential for off grid power generation at low wind speeds. In the present work, Computational Fluid Dynamic (CFD) simulations were performed in order to investigate the performance of an innovative configuration of straight-blades Darrieus-style vertical axis micro wind turbine, specifically developed for small scale energy conversion at low wind speeds. The micro turbine under investigation is composed of three pairs of airfoils, consisting of a main and auxiliary blades with different chord lengths. The simulations were made using the open source finite volume based CFD toolbox OpenFOAM, considering different turbulence models and adopting a moving mesh approach for the turbine rotor. The simulated data were reported in terms of dimensionless power coefficients for dynamic performance analysis. The results from the simulations were compared to the data obtained from experiments on a scaled model of the same VAWT configuration, conducted in a closed circuit open chamber wind tunnel facility available at the Laboratory of Industrial Measurements (LaMI) of the University of Cassino and Lazio Meridionale (UNICLAM). From the proposed analysis, it was observed that the most suitable model for the simulation of the performances of the micro turbine under investigation is the one-equation Spalart-Allmaras, even if under the conditions analysed in the present work and for TSR values higher than 1.1, some discrepancies between numerical and experimental data can be observed.

  7. Saptio-temporal complementarity of wind and solar power in India

    NASA Astrophysics Data System (ADS)

    Lolla, Savita; Baidya Roy, Somnath; Chowdhury, Sourangshu

    2015-04-01

    Wind and solar power are likely to be a part of the solution to the climate change problem. That is why they feature prominently in the energy policies of all industrial economies including India. One of the major hindrances that is preventing an explosive growth of wind and solar energy is the issue of intermittency. This is a major problem because in a rapidly moving economy, energy production must match the patterns of energy demand. Moreover, sudden increase and decrease in energy supply may destabilize the power grids leading to disruptions in power supply. In this work we explore if the patterns of variability in wind and solar energy availability can offset each other so that a constant supply can be guaranteed. As a first step, this work focuses on seasonal-scale variability for each of the 5 regional power transmission grids in India. Communication within each grid is better than communication between grids. Hence, it is assumed that the grids can switch sources relatively easily. Wind and solar resources are estimated using the MERRA Reanalysis data for the 1979-2013 period. Solar resources are calculated with a 20% conversion efficiency. Wind resources are estimated using a 2 MW turbine power curve. Total resources are obtained by optimizing location and number of wind/solar energy farms. Preliminary results show that the southern and western grids are more appropriate for cogeneration than the other grids. Many studies on wind-solar cogeneration have focused on temporal complementarity at local scale. However, this is one of the first studies to explore spatial complementarity over regional scales. This project may help accelerate renewable energy penetration in India by identifying regional grid(s) where the renewable energy intermittency problem can be minimized.

  8. Improvement of a wind-tunnel sampling system for odour and VOCs.

    PubMed

    Wang, X; Jiang, J; Kaye, R

    2001-01-01

    Wind-tunnel systems are widely used for collecting odour emission samples from surface area sources. Consequently, a portable wind-tunnel system was developed at the University of New South Wales that was easy to handle and suitable for sampling from liquid surfaces. Development work was undertaken to ensure even air-flows above the emitting surface and to optimise air velocities to simulate real situations. However, recovery efficiencies for emissions have not previously been studied for wind-tunnel systems. A series of experiments was carried out for determining and improving the recovery rate of the wind-tunnel sampling system by using carbon monoxide as a tracer gas. It was observed by mass balance that carbon monoxide recovery rates were initially only 37% to 48% from a simulated surface area emission source. It was therefore apparent that further development work was required to improve recovery efficiencies. By analysing the aerodynamic character of air movement and CO transportation inside the wind-tunnel, it was determined that the apparent poor recoveries resulted from uneven mixing at the sample collection point. A number of modifications were made for the mixing chamber of the wind-tunnel system. A special sampling chamber extension and a sampling manifold with optimally distributed sampling orifices were developed for the wind-tunnel sampling system. The simulation experiments were repeated with the new sampling system. Over a series of experiments, the recovery efficiency of sampling was improved to 83-100% with an average of 90%, where the CO tracer gas was introduced at a single point and 92-102% with an average of 97%, where the CO tracer gas was introduced along a line transverse to the sweep air. The stability and accuracy of the new system were determined statistically and are reported.

  9. A process for providing positive primary control power by wind turbines

    NASA Astrophysics Data System (ADS)

    Marschner, V.; Michael, J.; Liersch, J.

    2014-12-01

    Due to the increasing share of wind energy in electricity generation, wind turbines have to fulfil additional requirements in the context of grid integration. The paper examines to which extent wind turbines can provide positive control power following the related grid code. The additional power has to be obtained from the rotating flywheel mass of the wind turbine's rotor. A simple physical model is developed that allows to draw conclusions about appropriate concepts by means of a dynamic simulation of the variables rotational speed, torque, power output and rotor power. The paper discusses scenarios to provide control power. The supply of control power at partial load is examined in detail using simulations. Under partial load conditions control power can be fed into the grid for a short time. Thereby the rotational speed drops so that aerodynamic efficiency decreases and feed-in power is below the initial value after the control process. In this way an unfavourable situation for the grid control is produced, therefore the paper proposes a modified partial load condition with a higher rotational speed. By providing primary control power the rotor is delayed to the optimum rotational speed so that more rotational energy can be fed in and fed-in power can be increased persistently. However, as the rotor does not operate at optimum speed, a small amount of the energy yield is lost. Finally, the paper shows that a wind farm can combine these two concepts: A part of the wind turbines work under modified partial load conditions can compensate the decrease of power of the wind turbines working under partial load conditions. Therefore the requested control power is provided and afterwards the original value of power is maintained.

  10. Implementation of rooftop reciculation parameterization into the QUIC fast response urban wind model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bagal, N.; Singh, B.; Pardyjak, E. R.

    2004-01-01

    The QUIC (Quick Urban & Industrial Complex) dispersion modeling system has been developed to provide high-resolution wind and concentration fields in cities. The fast response 3D urban wind model QUIC-URB explicitly solves for the flow field around buildings using a suite of empirical parameterizations and mass conservation. This procedure is based on the work of Rockle (1990). The current Rockle (1990) model does not capture the rooftop recirculation region associated with flow separation from the leading edge of an isolated building. According to Banks et al. (2001), there are two forms of separation depending on the incident wind angle. Formore » an incident wind angle within 20{sup o} of perpendicular to the front face of the building, 'bubble separation' occurs in which cylindrical vortices whose axis are orthogonal to the flow are generated along the rooftop surface (see Fig. 1). For a 'corner wind' flow or incident wind angle of 30{sup o} to 70{sup o} of perpendicular to the front face of the building, 'conical' or 'delta wing' vortices form along the roof surface (Fig. 3). In this work, a model for rooftop recirculation is implemented into the QUIC- URB model for the two incident wind angle regimes described above. The parameterizations for the length and height of the recirculation region are from Wilson (1979) for the case of flow perpendicular or near perpendicular to the building and from Banks et al. (2000) for the case of off-angle flow. In this paper, we describe the rooftop algorithms and show how the model results are improved through comparisons to experimental data (Snyder and Lawson 1994).« less

  11. Wind River watershed restoration: Annual report of U.S. Geological Survey activities November 2010 – October 2011

    USGS Publications Warehouse

    Jezorek, Ian G.; Connolly, Patrick J.; Munz, Carrie S.

    2012-01-01

    This report summarizes work completed by U.S. Geological Survey’s Columbia River Research Laboratory (USGS-CRRL) in the Wind River subbasin during November 2010 through October 2011 under Bonneville Power Administration (BPA) contract 40481. The primary focus of USGS activities during this contract was on tagging of juvenile steelhead Oncorhynchus mykiss with Passive Integrated Transponder (PIT) tags, and working toward a network of instream PIT tag detection systems to monitor movements and life histories of these fish.

  12. Three essays on the effect of wind generation on power system planning and operations

    NASA Astrophysics Data System (ADS)

    Davis, Clay Duane

    While the benefits of wind generation are well known, some drawbacks are still being understood as wind power is integrated into the power grid at increasing levels. The primary difference between wind generation and other forms of generation is the intermittent, and somewhat unpredictable, aspect of this resource. The somewhat uncontrollable aspect of wind generation makes it important to consider the relationship between this resource and load, and also how the operation of other non-wind generation resources may be affected. The three essays that comprise this dissertation focus on these and other important issues related to wind generation; leading to an improved understanding of how to better plan for and utilize this resource. The first essay addresses the cost of increased levels of installed wind capacity from both a capacity planning and economic dispatch perspective to arrive at the total system cost of installing a unit of wind capacity. This total includes not only the cost of the wind turbine and associated infrastructure, but also the cost impact an additional unit of wind capacity has on the optimal mix and operation of other generating units in the electricity supply portfolio. The results of the model showed that for all wind expansion scenarios, wind capacity is not cost-effective regardless of the level of the wind production tax credit and carbon prices that were considered. Larger levels of installed wind capacity result in reduced variable cost, but this reduction is not able to offset increases in capital cost, as a unit of installed wind capacity does not result in an equal reduction in other non-wind capacity needs. The second essay develops a methodology to better handle unexpected short term fluctuations in wind generation within the existing power system. The methodology developed in this essay leads to lower expected costs by anticipating and planning for fluctuations in wind generation by focusing on key constraints in the system. The modified methodology achieves expected costs for the UC-ED problem that are as low as the full stochastic model and markedly lower than the deterministic model. The final essay focuses on valuing energy storage located at a wind site through multiple revenue streams, where energy storage is valued from the perspective of a profit maximizing investor. Given the current state of battery storage technology, a battery capacity of zero is optimal in the setting considered in this essay. The results presented in this essay are dependent on a technological breakthrough that substantially reduces battery cost and conclude that allowing battery storage to simultaneously participate in multiple wholesale markets is optimal relative to participating in any one market alone. Also, co-locating battery storage and wind provides value by altering the optimal transmission line capacity to the battery and wind site. This dissertation considers problems of wind integration from an economic perspective and builds on existing work in this area. The economics of wind integration and utilization are important because wind generation levels are already significant and will likely become more so in the future. While this dissertation adds to the existing literature, additional work is needed in this area to ensure wind generation adds as much value to the overall system as possible.

  13. BAAM Additive Manufacturing of Magnetically Levitated Wind Turbine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Richardson, Bradley S.; Noakes, Mark W.; Roschli, Alex C.

    ORNL worked with Hover Energy LLC (Hover) on the design of Big Area Additive Manufacturing (BAAM) extrusion components. The objective of this technical collaboration was to identify and evaluate fabrication of components using alternative additive manufacturing techniques. Multiple candidate parts were identified. A design modification to fabricate diverters using additive manufacturing (AM) was performed and the part was analyzed based on anticipated wind loading. Scaled versions of two parts were printed using the BAAM for wind tunnel testing.

  14. Flank solar wind interaction

    NASA Technical Reports Server (NTRS)

    Moses, Stewart L.; Greenstadt, Eugene W.; Coroniti, Ferdinand V.

    1994-01-01

    In this report we will summarize the results of the work performed under the 'Flank Solar Wind Interaction' investigation in support of NASA's Space Physics Guest Investigator Program. While this investigation was focused on the interaction of the Earth's magnetosphere with the solar wind as observed by instruments on the International Sun-Earth Explorer (ISEE) 3 spacecraft, it also represents the culmination of decades of research performed by scientists at TRW on the rich phenomenology of collisionless shocks in space.

  15. Wind Turbine Gearbox Oil Filtration and Condition Monitoring

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sheng, Shuangwen

    This is an invited presentation for a pre-conference workshop, titled advances and opportunities in lubrication: wind turbine, at the 2015 Society of Tribologists and Lubrication Engineers (STLE) Tribology Frontiers Conference held in Denver, CO. It gives a brief overview of wind turbine gearbox oil filtration and condition monitoring by highlighting typical industry practices and challenges. The presentation starts with an introduction by covering recent growth of global wind industry, reliability challenges, benefits of oil filtration and condition monitoring, and financial incentives to conduct wind operation and maintenance research, which includes gearbox oil filtration and condition monitoring work presented herein. Then,more » the presentation moves on to oil filtration by stressing the benefits of filtration, discussing typical main- and offline-loop practices, highlighting important factors considered when specifying a filtration system, and illustrating real-world application challenges through a cold-start example. In the next section on oil condition monitoring, a discussion on oil sample analysis, oil debris monitoring, oil cleanliness measurements and filter analysis is given based on testing results mostly obtained by and at NREL, and by pointing out a few challenges with oil sample analysis. The presentation concludes with a brief touch on future research and development (R and D) opportunities. It is hoping that the information presented can inform the STLE community to start or redirect their R and D work to help the wind industry advance.« less

  16. Generation and Validation of Spatial Distribution of Hourly Wind Speed Time-Series using Machine Learning

    NASA Astrophysics Data System (ADS)

    Veronesi, F.; Grassi, S.

    2016-09-01

    Wind resource assessment is a key aspect of wind farm planning since it allows to estimate the long term electricity production. Moreover, wind speed time-series at high resolution are helpful to estimate the temporal changes of the electricity generation and indispensable to design stand-alone systems, which are affected by the mismatch of supply and demand. In this work, we present a new generalized statistical methodology to generate the spatial distribution of wind speed time-series, using Switzerland as a case study. This research is based upon a machine learning model and demonstrates that statistical wind resource assessment can successfully be used for estimating wind speed time-series. In fact, this method is able to obtain reliable wind speed estimates and propagate all the sources of uncertainty (from the measurements to the mapping process) in an efficient way, i.e. minimizing computational time and load. This allows not only an accurate estimation, but the creation of precise confidence intervals to map the stochasticity of the wind resource for a particular site. The validation shows that machine learning can minimize the bias of the wind speed hourly estimates. Moreover, for each mapped location this method delivers not only the mean wind speed, but also its confidence interval, which are crucial data for planners.

  17. Problems at the Leading Edge of Space Weathering as Revealed by TEM Combined with Surface Science Techniques

    NASA Technical Reports Server (NTRS)

    Christoffersen, R.; Dukes, C. A.; Keller, L. P.; Rahman, Z.; Baragiola, R. A.

    2015-01-01

    Both transmission electron micros-copy (TEM) and surface analysis techniques such as X-ray photoelectron spectroscopy (XPS) were instrumen-tal in making the first characterizations of material generated by space weathering in lunar samples [1,2]. Without them, the nature of nanophase metallic Fe (npFe0) correlated with the surface of lunar regolith grains would have taken much longer to become rec-ognized and understood. Our groups at JSC and UVa have been using both techniques in a cross-correlated way to investigate how the solar wind contributes to space weathering [e.g., 3]. These efforts have identified a number of ongoing problems and knowledge gaps. Key insights made by UVa group leader Raul Barag-iola during this work are gratefully remembered.

  18. Statistical Short-Range Guidance for Peak Wind Speed Forecasts at Edwards Air Force Base, CA

    NASA Technical Reports Server (NTRS)

    Dreher, Joseph G.; Crawford, Winifred; Lafosse, Richard; Hoeth, Brian; Burns, Kerry

    2009-01-01

    The peak winds near the surface are an important forecast element for space shuttle landings. As defined in the Flight Rules (FR), there are peak wind thresholds that cannot be exceeded in order to ensure the safety of the shuttle during landing operations. The National Weather Service Spaceflight Meteorology Group (SMG) is responsible for weather forecasts for all shuttle landings, and is required to issue surface average and 10-minute peak wind speed forecasts. They indicate peak winds are a challenging parameter to forecast. To alleviate the difficulty in making such wind forecasts, the Applied Meteorology Unit (AMU) developed a PC-based graphical user interface (GUI) for displaying peak wind climatology and probabilities of exceeding peak wind thresholds for the Shuttle Landing Facility (SLF) at Kennedy Space Center (KSC; Lambert 2003). However, the shuttle occasionally may land at Edwards Air Force Base (EAFB) in southern California when weather conditions at KSC in Florida are not acceptable, so SMG forecasters requested a similar tool be developed for EAFB.

  19. Horizontal geometrical reaction time model for two-beam nacelle LiDARs

    NASA Astrophysics Data System (ADS)

    Beuth, Thorsten; Fox, Maik; Stork, Wilhelm

    2015-06-01

    Wind energy is one of the leading sustainable energies. To attract further private and state investment in this technology, a broad scaled drop of the cost of energy has to be enforced. There is a trend towards using Laser Doppler Velocimetry LiDAR systems for enhancing power output and minimizing downtimes, fatigue and extreme forces. Since most used LiDARs are horizontally setup on a nacelle and work with two beams, it is important to understand the geometrical configuration which is crucial to estimate reaction times for the actuators to compensate wind gusts. In the beginning of this article, the basic operating modes of wind turbines are explained and the literature on wind behavior is analyzed to derive specific wind speed and wind angle conditions in relation to the yaw angle of the hub. A short introduction to the requirements for the reconstruction of the wind vector length and wind angle leads to the problem of wind shear detection of angled but horizontal homogeneous wind fronts due to the spatial separation of the measuring points. A distance is defined in which the wind shear of such homogeneous wind fronts is not present which is used as a base to estimate further distance calculations. The reaction time of the controller and the actuators are having a negative effect on the effective overall reaction time for wind regulation as well. In the end, exemplary calculations estimate benefits and disadvantages of system parameters for wind gust regulating LiDARs for a wind turbine of typical size. An outlook shows possible future improvements concerning the vertical wind behavior.

  20. Wind Energy Guide.

    ERIC Educational Resources Information Center

    Harrison, David

    The booklet, intended for students and other visitors to the Lathrop E. Smith Environmental Education Center (Rockville, Maryland), explains how windmills work and their economic and environmental advantages. The history of windmills in Europe and Asia is briefly described, as well as the history of windmills and wind generators (for electricity)…

  1. Aeronautical Facilities Catalogue. Volume 1: Wind Tunnels

    NASA Technical Reports Server (NTRS)

    Penaranda, F. E. (Compiler); Freda, M. S. (Compiler)

    1985-01-01

    Domestic and foreign wind tunnel facilities are enumerated and their technical parameters are described. Data pertinent to managers and engineers are presented. Facilities judged comparable in testing capability are noted and grouped together. Several comprehensive cross-indexes and charts are included.

  2. Are local wind power resources well estimated?

    NASA Astrophysics Data System (ADS)

    Lundtang Petersen, Erik; Troen, Ib; Jørgensen, Hans E.; Mann, Jakob

    2013-03-01

    Planning and financing of wind power installations require very importantly accurate resource estimation in addition to a number of other considerations relating to environment and economy. Furthermore, individual wind energy installations cannot in general be seen in isolation. It is well known that the spacing of turbines in wind farms is critical for maximum power production. It is also well established that the collective effect of wind turbines in large wind farms or of several wind farms can limit the wind power extraction downwind. This has been documented by many years of production statistics. For the very large, regional sized wind farms, a number of numerical studies have pointed to additional adverse changes to the regional wind climate, most recently by the detailed studies of Adams and Keith [1]. They show that the geophysical limit to wind power production is likely to be lower than previously estimated. Although this problem is of far future concern, it has to be considered seriously. In their paper they estimate that a wind farm larger than 100 km2 is limited to about 1 W m-2. However, a 20 km2 off shore farm, Horns Rev 1, has in the last five years produced 3.98 W m-2 [5]. In that light it is highly unlikely that the effects pointed out by [1] will pose any immediate threat to wind energy in coming decades. Today a number of well-established mesoscale and microscale models exist for estimating wind resources and design parameters and in many cases they work well. This is especially true if good local data are available for calibrating the models or for their validation. The wind energy industry is still troubled by many projects showing considerable negative discrepancies between calculated and actually experienced production numbers and operating conditions. Therefore it has been decided on a European Union level to launch a project, 'The New European Wind Atlas', aiming at reducing overall uncertainties in determining wind conditions. The project is structured around three areas of work, to be implemented in parallel. Creation and publication of a European wind atlas in electronic form [2], which will include the underlying data and a new EU wind climate database which will as a minimum include: wind resources and their associated uncertainty; extreme wind and uncertainty; turbulence characteristics; adverse weather conditions such as heavy icing, electrical storms and so on together with the probability of occurrence; the level of predictability for short-term forecasting and assessment of uncertainties; guidelines and best practices for the use of data especially for micro-siting. Development of dynamical downscaling methodologies and open-source models validated through measurement campaigns, to enable the provision of accurate wind resource and external wind load climatology and short-term prediction at high spatial resolution and covering Europe. The developed downscaling methodologies and models will be fully documented and made publicly available and will be used to produce overview maps of wind resources and other relevant data at several heights and at high horizontal resolution. Measurement campaigns to validate the model chain used in the wind atlas. At least five coordinated measurement campaigns will be undertaken and will cover complex terrains (mountains and forests), offshore, large changes in surface characteristics (roughness change) and cold climates. One of the great challenges to the project is the application of mesoscale models for wind resource calculation, which is by no means a simple matter [3]. The project will use global reanalysis data as boundary conditions. These datasets, which are time series of the large-scale meteorological situation covering decades, have been created by assimilation of measurement data from around the globe in a dynamical consistent fashion using large-scale numerical models. For wind energy, the application of the reanalysis datasets is as a long record of the large-scale wind conditions. The large-scale reanalyses are performed in only a few global weather prediction centres using models that have been developed over many years, and which are still being developed and validated and are being used in operational services. Mesoscale models are more diverse, but nowadays quite a number have a proven track record in applications such as regional weather prediction and also wind resource assessment. There are still some issues, and use of model results without proper validation may lead to gross errors. For resource assessment it is necessary to include direct validation with in situ observed wind data over sufficiently long periods. In doing so, however, the mesoscale model output must be downscaled using some microscale physical or empirical/statistical model. That downscaling process is not straightforward, and the microscale models themselves tend to disagree in some terrain types as shown by recent blind tests [4]. All these 'technical' details and choices, not to mention the model formulation itself, the numerical schemes used, and the effective spatial and temporal resolution, can have a significant impact on the results. These problems, as well as the problem of how uncertainties are propagated through the model chain to the calculated wind resources, are central in the work with the New European Wind Atlas. The work of [1] shows that when wind energy has been implemented on a very massive scale, it will affect the power production from entire regions and that has to be taken into account. References [1] Adams A S and Keith D W 2013 Are global wind power resource estimates overstated? Environ. Res. Lett. 8 015021 [2] 2011 A New EU Wind Energy Atlas: Proposal for an ERANET+ Project (Produced by the TPWind Secretariat) Nov. [3] Petersen E L Troen I 2012 Wind conditions and resource assessment WIREs Energy Environ. 1 206-17 [4] Bechmann A, Sørensen N N, Berg J, Mann J Rethore P-E 2011 The Bolund experiment, part II: blind comparison of microscale flow models Boundary-Layer Meteorol. 141 245-71 [5] www.lorc.dk/offshore-wind-farms-map/horns-rev-1 www.ens.dk

  3. First and second order semi-Markov chains for wind speed modeling

    NASA Astrophysics Data System (ADS)

    Prattico, F.; Petroni, F.; D'Amico, G.

    2012-04-01

    The increasing interest in renewable energy leads scientific research to find a better way to recover most of the available energy. Particularly, the maximum energy recoverable from wind is equal to 59.3% of that available (Betz law) at a specific pitch angle and when the ratio between the wind speed in output and in input is equal to 1/3. The pitch angle is the angle formed between the airfoil of the blade of the wind turbine and the wind direction. Old turbine and a lot of that actually marketed, in fact, have always the same invariant geometry of the airfoil. This causes that wind turbines will work with an efficiency that is lower than 59.3%. New generation wind turbines, instead, have a system to variate the pitch angle by rotating the blades. This system able the wind turbines to recover, at different wind speed, always the maximum energy, working in Betz limit at different speed ratios. A powerful system control of the pitch angle allows the wind turbine to recover better the energy in transient regime. A good stochastic model for wind speed is then needed to help both the optimization of turbine design and to assist the system control to predict the value of the wind speed to positioning the blades quickly and correctly. The possibility to have synthetic data of wind speed is a powerful instrument to assist designer to verify the structures of the wind turbines or to estimate the energy recoverable from a specific site. To generate synthetic data, Markov chains of first or higher order are often used [1,2,3]. In particular in [3] is presented a comparison between a first-order Markov chain and a second-order Markov chain. A similar work, but only for the first-order Markov chain, is conduced by [2], presenting the probability transition matrix and comparing the energy spectral density and autocorrelation of real and synthetic wind speed data. A tentative to modeling and to join speed and direction of wind is presented in [1], by using two models, first-order Markov chain with different number of states, and Weibull distribution. All this model use Markov chains to generate synthetic wind speed time series but the search for a better model is still open. Approaching this issue, we applied new models which are generalization of Markov models. More precisely we applied semi-Markov models to generate synthetic wind speed time series. Semi-Markov processes (SMP) are a wide class of stochastic processes which generalize at the same time both Markov chains and renewal processes. Their main advantage is that of using whatever type of waiting time distribution for modeling the time to have a transition from one state to another one. This major flexibility has a price to pay: availability of data to estimate the parameters of the model which are more numerous. Data availability is not an issue in wind speed studies, therefore, semi-Markov models can be used in a statistical efficient way. In this work we present three different semi-Markov chain models: the first one is a first-order SMP where the transition probabilities from two speed states (at time Tn and Tn-1) depend on the initial state (the state at Tn-1), final state (the state at Tn) and on the waiting time (given by t=Tn-Tn-1), the second model is a second order SMP where we consider the transition probabilities as depending also on the state the wind speed was before the initial state (which is the state at Tn-2) and the last one is still a second order SMP where the transition probabilities depends on the three states at Tn-2,Tn-1 and Tn and on the waiting times t_1=Tn-1-Tn-2 and t_2=Tn-Tn-1. The three models are used to generate synthetic time series for wind speed by means of Monte Carlo simulations and the time lagged autocorrelation is used to compare statistical properties of the proposed models with those of real data and also with a time series generated though a simple Markov chain. [1] F. Youcef Ettoumi, H. Sauvageot, A.-E.-H. Adane, Statistical bivariate modeling of wind using first-order Markov chain and Weibull distribution, Renewable Energy, 28/2003 1787-1802. [2] A. Shamshad, M.A. Bawadi, W.M.W. Wan Hussin, T.A. Majid, S.A.M. Sanusi, First and second order Markov chain models for synthetic generation of wind speed time series, Energy 30/2005 693-708. [3] H. Nfaoui, H. Essiarab, A.A.M. Sayigh, A stochastic Markov chain model for simulating wind speed time series at Tangiers, Morocco, Renewable Energy 29/2004, 1407-1418.

  4. Statistical Short-Range Guidance for Peak Wind Speed Forecasts on Kennedy Space Center/Cape Canaveral Air Force Station: Phase I Results

    NASA Technical Reports Server (NTRS)

    Lambert, Winifred C.; Merceret, Francis J. (Technical Monitor)

    2002-01-01

    This report describes the results of the ANU's (Applied Meteorology Unit) Short-Range Statistical Forecasting task for peak winds. The peak wind speeds are an important forecast element for the Space Shuttle and Expendable Launch Vehicle programs. The Keith Weather Squadron and the Spaceflight Meteorology Group indicate that peak winds are challenging to forecast. The Applied Meteorology Unit was tasked to develop tools that aid in short-range forecasts of peak winds at tower sites of operational interest. A 7 year record of wind tower data was used in the analysis. Hourly and directional climatologies by tower and month were developed to determine the seasonal behavior of the average and peak winds. In all climatologies, the average and peak wind speeds were highly variable in time. This indicated that the development of a peak wind forecasting tool would be difficult. Probability density functions (PDF) of peak wind speed were calculated to determine the distribution of peak speed with average speed. These provide forecasters with a means of determining the probability of meeting or exceeding a certain peak wind given an observed or forecast average speed. The climatologies and PDFs provide tools with which to make peak wind forecasts that are critical to safe operations.

  5. Development of Archean crust in the Wind River Mountains, Wyoming

    NASA Technical Reports Server (NTRS)

    Frost, C. D.; Koesterer, M. E.; Koesterer, M. E.; Koesterer, M. E.; Koesterer, M. E.

    1986-01-01

    The Wind River Mountains are a NW-SE trending range composed almost entirely of high-grade Archean gneiss and granites which were thrust to the west over Phanerozoic sediments during the Laramide orogeny. Late Archean granites make up over 50% of the exposed crust and dominates the southern half of the range, while older orthogneisses and magnatites form most of the northen half of the range. Locally these gneisses contain enclaves of supracrustal rocks, which appear to be the oldest preserved rocks in the range. Detailed work in the Medina Mountain area of the central Wind River Mountains and reconnaissance work throughout much of the northern part of the range has allowed definition of the sequence of events which marked crustal development in this area. The sequence of events are described.

  6. EPSCoR Final Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Holdmann, Gwen

    2016-12-20

    Alaska is considered a world leader in renewable energy and microgrid technologies. Our workplan started as an analysis of existing wind-diesel systems, many of which were not performing as designed. We aimed to analyze and understand the performance of existing wind-diesel systems, to establish a knowledge baseline from which to work towards improvement and maximizing renewable energy utilization. To accomplish this, we worked with the Alaska Energy Authority to develop a comprehensive database of wind system experience, including underlying climatic and socioeconomic characteristics, actual operating data, projected vs. actual capital and O&M costs, and a catalogue of catastrophic anomalies. Thismore » database formed the foundation for the rest of the research program, with the overarching goal of delivering low-cost, reliable, and sustainable energy to diesel microgrids.« less

  7. Extended Statistical Short-Range Guidance for Peak Wind Speed Analyses at the Shuttle Landing Facility: Phase II Results

    NASA Technical Reports Server (NTRS)

    Lambert, Winifred C.

    2003-01-01

    This report describes the results from Phase II of the AMU's Short-Range Statistical Forecasting task for peak winds at the Shuttle Landing Facility (SLF). The peak wind speeds are an important forecast element for the Space Shuttle and Expendable Launch Vehicle programs. The 45th Weather Squadron and the Spaceflight Meteorology Group indicate that peak winds are challenging to forecast. The Applied Meteorology Unit was tasked to develop tools that aid in short-range forecasts of peak winds at tower sites of operational interest. A seven year record of wind tower data was used in the analysis. Hourly and directional climatologies by tower and month were developed to determine the seasonal behavior of the average and peak winds. Probability density functions (PDF) of peak wind speed were calculated to determine the distribution of peak speed with average speed. These provide forecasters with a means of determining the probability of meeting or exceeding a certain peak wind given an observed or forecast average speed. A PC-based Graphical User Interface (GUI) tool was created to display the data quickly.

  8. Physical understanding of the tropical cyclone wind-pressure relationship.

    PubMed

    Chavas, Daniel R; Reed, Kevin A; Knaff, John A

    2017-11-08

    The relationship between the two common measures of tropical cyclone intensity, the central pressure deficit and the peak near-surface wind speed, is a long-standing problem in tropical meteorology that has been approximated empirically yet lacks physical understanding. Here we provide theoretical grounding for this relationship. We first demonstrate that the central pressure deficit is highly predictable from the low-level wind field via gradient wind balance. We then show that this relationship reduces to a dependence on two velocity scales: the maximum azimuthal-mean azimuthal wind speed and half the product of the Coriolis parameter and outer storm size. This simple theory is found to hold across a hierarchy of models spanning reduced-complexity and Earth-like global simulations and observations. Thus, the central pressure deficit is an intensity measure that combines maximum wind speed, storm size, and background rotation rate. This work has significant implications for both fundamental understanding and risk analysis, including why the central pressure better explains historical economic damages than does maximum wind speed.

  9. Effects of Wind and Freshwater on the Atlantic Meridional Overturning Circulation: Role of Sea Ice and Vertical Diffusion

    NASA Astrophysics Data System (ADS)

    Wang, Kun; Yang, Haijun; Dai, Haijin; Wang, Yuxing; Li, Qing

    2015-04-01

    Effects of wind and fresh water on the Atlantic meridional overturning circulation (AMOC) are investigated in a fully coupled climate model (CESM1.0). The AMOC can change significantly when perturbing either the wind stress or fresh water flux in the northern North Atlantic. This work pays special attention on the wind stress effect. Our model results show that the wind forcing is a crucial element in maintaining the AMOC. When the wind-stress is reduced, the vertical convection and diffusion are weakened immediately, triggering a salt deficit in the northern North Atlantic that prevents the deep water formation there. The salinity advection from the south, however, plays a contrary role to salt the upper ocean. As the AMOC weakens, the sea ice expends southward and melts, freshening the upper ocean that weakens the AMOC further. There is a positive feedback between the sea ice melting and AMOC strength, which eventually determines the AMOC strength in the reduced wind world.

  10. Wind tunnel technology for the development of future commercial aircraft

    NASA Technical Reports Server (NTRS)

    Szodruch, J.

    1986-01-01

    Requirements for new technologies in the area of civil aircraft design are mainly related to the high cost involved in the purchase of modern, fuel saving aircraft. A second important factor is the long term rise in the price of fuel. The demonstration of the benefits of new technologies, as far as these are related to aerodynamics, will,for the foreseeable future, still be based on wind tunnel measurements. Theoretical computation methods are very successfully used in design work, wing optimization, and an estimation of the Reynolds number effect. However, wind tunnel tests are still needed to verify the feasibility of the considered concepts. Along with other costs, the cost for the wind tunnel tests needed for the development of an aircraft is steadily increasing. The present investigation is concerned with the effect of numerical aerodynamics and civil aircraft technology on the development of wind tunnels. Attention is given to the requirements for the wind tunnel, investigative methods, measurement technology, models, and the relation between wind tunnel experiments and theoretical methods.

  11. Measurements of wind-waves under transient wind conditions.

    NASA Astrophysics Data System (ADS)

    Shemer, Lev; Zavadsky, Andrey

    2015-11-01

    Wind forcing in nature is always unsteady, resulting in a complicated evolution pattern that involves numerous time and space scales. In the present work, wind waves in a laboratory wind-wave flume are studied under unsteady forcing`. The variation of the surface elevation is measured by capacitance wave gauges, while the components of the instantaneous surface slope in across-wind and along-wind directions are determined by a regular or scanning laser slope gauge. The locations of the wave gauge and of the laser slope gauge are separated by few centimeters in across-wind direction. Instantaneous wind velocity was recorded simultaneously using Pitot tube. Measurements are performed at a number of fetches and for different patterns of wind velocity variation. For each case, at least 100 independent realizations were recorded for a given wind velocity variation pattern. The accumulated data sets allow calculating ensemble-averaged values of the measured parameters. Significant differences between the evolution patterns of the surface elevation and of the slope components were found. Wavelet analysis was applied to determine dominant wave frequency of the surface elevation and of the slope variation at each instant. Corresponding ensemble-averaged values acquired by different sensors were computed and compared. Analysis of the measured ensemble-averaged quantities at different fetches makes it possible to identify different stages in the wind-wave evolution and to estimate the appropriate time and length scales.

  12. Evaluation of candidate working fluid formulations for the electrothermal - chemical wind tunnel

    NASA Technical Reports Server (NTRS)

    Akyurtlu, Jale F.; Akyurtlu, Ates

    1991-01-01

    Various candidate chemical formulations are evaluated as a precursor for the working fluid to be used in the electrothermal hypersonic test facility which was under study at the NASA LaRC Hypersonic Propulsion Branch, and the formulations which would most closely satisfy the goals set for the test facility are identified. Out of the four tasks specified in the original proposal, the first two, literature survey and collection of kinetic data, are almost completed. The third task, work on a mathematical model of the ET wind tunnel operation, was started and concentrated on the expansion in the nozzle with finite rate kinetics.

  13. Ooishi's Observation: Viewed in the Context of Jet Stream Discovery.

    NASA Astrophysics Data System (ADS)

    Lewis, John M.

    2003-03-01

    Although aircraft encounters with strong westerly winds during World War II provided the stimulus for postwar research on the jet stream, Wasaburo Ooishi observed these winds in the 1920s. Ooishi's work is reviewed in the context of earlier work in upperair observation and postwar work on the jet stream. An effort is made to reconstruct Ooishi's path to the directorship of Japan's first upper-air observatory by reliance on historical studies and memoirs from the Central Meteorological Observatory.Archival records from Japan's Aerological Observatory have been used to document Ooishi's upperair observations. The first official report from the observatory (written in 1926 and in the auxiliary language of Esperanto) assumes a central role in the study. In this report, data are stratified by season and used to produce the mean seasonal wind profiles. The profile for winter gives the first known evidence of the persistent strong westerlies over Japan that would later become known as the jet stream.

  14. Wind Powering America State Outreach. Final Technical Report: Washington State

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stearns, Tim

    2013-09-30

    The Washington Department of Commerce, via a U.S. Department of Energy grant, supported research into siting and permitting processes for wind projects by Skagit County, Washington. The goal was to help a local government understand key issues, consider how other areas have addressed wind siting, and establish a basis for enacting permitting and zoning ordinances that provided a more predictable permitting path and process for landowners, citizens, government and developers of small and community wind projects. The County?s contractor developed a report that looked at various approaches to wind siting, interviewed stakeholders, and examined technology options. The contractor outlined keymore » issues and recommended the adoption of a siting process. The Skagit County Commission considered the report and directed the Skagit County Planning & Development Services Department to add development of wind guidelines to its work plan for potential changes to development codes.« less

  15. Detecting salt deposition on a wind turbine blade using laser induced breakdown spectroscopy technique

    NASA Astrophysics Data System (ADS)

    Sathiesh Kumar, V.; Vasa, Nilesh J.; Sarathi, R.

    2013-07-01

    The study of pollution performance on a wind turbine blade due to lightning is important, as it can cause major damage to wind turbine blades. In the present work, optical emission spectroscopy (OES) technique is used to understand the influence of pollutant deposited on a wind turbine blade in an off-shore environment. A methodical experimental study was carried out by adopting IEC 60507 standards, and it was observed that the lightning discharge propagates at the interface between the pollutant and the glass fiber reinforced plastic (Material used in manufacturing of wind turbine blades). In addition, as a diagnostic condition monitoring technique, laser-induced breakdown spectroscopy (LIBS) is proposed and demonstrated to rank the severity of pollutant on the wind turbine blades from a remote area. Optical emission spectra observed during surface discharge process induced by lightning impulse voltage is in agreement with the spectra observed during LIBS.

  16. Climatology at the Roque de LOS Muchachos Observatory

    NASA Astrophysics Data System (ADS)

    Varela, Antonia M.; Muñoz-Tuñón, Casiana

    2009-09-01

    The Roque de los Muchachos Observatory (ORM) at La Palma (Canary Islands) is one of the two top pre-selected sites for hosting the future European Extremely Large Telescope (E-ELT), the other ones are Ventarrones (Chile), Macon (Argentine) and Aklim (Maroc). Meteorological and seeing conditions are crucial both for the site selection and for telescope design and feasibility studies for adaptive optics. The ELTs shall be very sensitive to wind behavior when operating in open air, therefore ground level wind velocity and wind gust are also required for the feasibility of the telescope construction. Here we analyze the wind speed and wind direction, the air temperature, the relative humidity and the barometric pressure statistical results obtained from data recorded at different sites at the ORM by several Automatic Weather Stations (AWS) since 1985, day and night time separately. Ground wind speed regimes (775mbar) are compared with those provided by satellites from 200 to 700mbar. There exists also observational evidence of the correlation between the seeing and the wind speed and wind direction that will be discussed in this work.

  17. Effects of anisotropic thermal conduction on wind properties in hot accretion flow

    NASA Astrophysics Data System (ADS)

    Bu, De-Fu; Wu, Mao-Chun; Yuan, Ye-Fei

    2016-06-01

    Previous works have clearly shown the existence of winds from black hole hot accretion flow and investigated their detailed properties. In extremely low accretion rate systems, the collisional mean-free path of electrons is large compared with the length-scale of the system, thus thermal conduction is dynamically important. When the magnetic field is present, the thermal conduction is anisotropic and energy transport is along magnetic field lines. In this paper, we study the effects of anisotropic thermal conduction on the wind production in hot accretion flows by performing two-dimensional magnetohydrodynamic simulations. We find that thermal conduction has only moderate effects on the mass flux of wind. But the energy flux of wind can be increased by a factor of ˜10 due to the increase of wind velocity when thermal conduction is included. The increase of wind velocity is because of the increase of driving forces (e.g. gas pressure gradient force and centrifugal force) when thermal conduction is included. This result demonstrates that thermal conduction plays an important role in determining the properties of wind.

  18. Evaluation of dynamic response for monopole and hybrid wind mill tower

    NASA Astrophysics Data System (ADS)

    Shah, Hemal J.; Desai, Atul K.

    2017-07-01

    The wind mill towers are constructed using monopoles or lattice type tower. As the height of tower increases it gives more power but it becomes uneconomical, so in the present research work innovative wind mill tower such as combination of monopole and lattice tower is analyzed using FEM software. When the tall structures are constructed on soft soil it becomes dynamically sensitive so 3 types of soil such as hard, medium and soft soil is also modeled and the innovative tower is studied for different operating frequencies of wind turbine. From study it is concluded that the innovative tower will reduce resonance condition considering soil structure interaction.

  19. Segmented wind energy harvester based on contact-electrification and as a self-powered flow rate sensor

    NASA Astrophysics Data System (ADS)

    Su, Yuanjie; Xie, Guangzhong; Xie, Fabiao; Xie, Tao; Zhang, Qiuping; Zhang, Hulin; Du, Hongfei; Du, Xiaosong; Jiang, Yadong

    2016-06-01

    A single-electrode-based segmented triboelectric nanogenerator (S-TENG) was developed. By utilizing the wind-induced vibration of a fluorinated ethylene propylene (FEP) film between two copper electrodes, the S-TENG delivers an open-circuit voltage up to 36 V and a short-circuit current of 11.8 μA, which can simultaneously light up 20 LEDs and charge capacitors. Moreover, the S-TENG holds linearity between output current and flow rate, revealing its feasibility as a self-powered wind speed sensor. This work demonstrates potential applications of S-TENG in wind energy harvester, self-powered gas sensor, high altitude air navigation.

  20. Intensified diapycnal mixing in the midlatitude western boundary currents.

    PubMed

    Jing, Zhao; Wu, Lixin

    2014-12-10

    The wind work on oceanic near-inertial motions is suggested to play an important role in furnishing the diapycnal mixing in the deep ocean which affects the uptake of heat and carbon by the ocean as well as climate changes. However, it remains a puzzle where and through which route the near-inertial energy penetrates into the deep ocean. Using the measurements collected in the Kuroshio extension region during January 2005, we demonstrate that the diapycnal mixing in the thermocline and deep ocean is tightly related to the shear variance of wind-generated near-inertial internal waves with the diapycnal diffusivity 6 × 10(-5) m(2)s(-1) almost an order stronger than that observed in the circulation gyre. It is estimated that 45%-62% of the local near-inertial wind work 4.5 × 10(-3) Wm(-2) radiates into the thermocline and deep ocean and accounts for 42%-58% of the energy required to furnish mixing there. The elevated mixing is suggested to be maintained by the energetic near-inertial wind work and strong eddy activities causing enhanced downward near-inertial energy flux than earlier findings. The western boundary current turns out to be a key region for the penetration of near-inertial energy into the deep ocean and a hotspot for the diapycnal mixing in winter.

  1. Self-consistent modelling of line-driven hot-star winds with Monte Carlo radiation hydrodynamics

    NASA Astrophysics Data System (ADS)

    Noebauer, U. M.; Sim, S. A.

    2015-11-01

    Radiative pressure exerted by line interactions is a prominent driver of outflows in astrophysical systems, being at work in the outflows emerging from hot stars or from the accretion discs of cataclysmic variables, massive young stars and active galactic nuclei. In this work, a new radiation hydrodynamical approach to model line-driven hot-star winds is presented. By coupling a Monte Carlo radiative transfer scheme with a finite volume fluid dynamical method, line-driven mass outflows may be modelled self-consistently, benefiting from the advantages of Monte Carlo techniques in treating multiline effects, such as multiple scatterings, and in dealing with arbitrary multidimensional configurations. In this work, we introduce our approach in detail by highlighting the key numerical techniques and verifying their operation in a number of simplified applications, specifically in a series of self-consistent, one-dimensional, Sobolev-type, hot-star wind calculations. The utility and accuracy of our approach are demonstrated by comparing the obtained results with the predictions of various formulations of the so-called CAK theory and by confronting the calculations with modern sophisticated techniques of predicting the wind structure. Using these calculations, we also point out some useful diagnostic capabilities our approach provides. Finally, we discuss some of the current limitations of our method, some possible extensions and potential future applications.

  2. Integrating Laboratory Activity into a Junior High School Classroom

    ERIC Educational Resources Information Center

    Shyr, Wen-Jye

    2010-01-01

    This paper presents a wind power system laboratory activity and an outline for evaluating student performance in this activity. The work described here was to design and implement the laboratory to assist teachers in achieving the teaching objective of this activity. The laboratory teaching activities introduce energy sources, wind energy…

  3. Breezy Power: From Wind to Energy

    ERIC Educational Resources Information Center

    Claymier, Bob

    2009-01-01

    This lesson combines the science concepts of renewable energy and producing electricity with the technology concepts of design, constraints, and technology's impact on the environment. Over five class periods, sixth-grade students "work" for a fictitious power company as they research wind as an alternative energy source and design and test a…

  4. The e-Beam Sustained Laser Technology for Space-based Doppler Wind Lidar

    NASA Technical Reports Server (NTRS)

    Brown, M. J.; Holman, W.; Robinson, R. J.; Schwarzenberger, P. M.; Smith, I. M.; Wallace, S.; Harris, M. R.; Willetts, D. V.; Kurzius, S. C.

    1992-01-01

    An overview is presented of GEC Avionics activities relating to the Spaceborne Doppler Wind Lidar. In particular, the results of design studies into the use of an e-beam sustained CO2 laser for spaceborne applications, and experimental work on a test bed system are discussed.

  5. Calculating Synchronous Inductive Reactances of Contactless Machines When Magnetic Circuit is Saturated and of Machines with Superconducting Excitation Windings,

    DTIC Science & Technology

    The work studies the effect of magnetic circuit saturation on the synchronous inductive reactance of the armature. A practical method is given for...calculating synchronized parameters in saturating synchronized machines with additional clearances and machines with superconducting excitation windings.

  6. Investigating the Climate System: WINDS. Winds at work. Problem-Based Classroom Modules

    ERIC Educational Resources Information Center

    Astwood, Phil

    2003-01-01

    With support from National Aeronautics and Space Administration's (NASA's) Goddard Space Flight Center, Institute for Global Environmental Strategies (IGES) has developed educational materials that incorporate information and data from the Tropical Rainfall Measuring Mission (TRMM), a joint satellite mission between the United States and Japan.…

  7. A Hybrid Wind-Farm Parametrization for Mesoscale and Climate Models

    NASA Astrophysics Data System (ADS)

    Pan, Yang; Archer, Cristina L.

    2018-04-01

    To better understand the potential impact of wind farms on weather and climate at the regional to global scales, a new hybrid wind-farm parametrization is proposed for mesoscale and climate models. The proposed parametrization is a hybrid model because it is not based on physical processes or conservation laws, but on the multiple linear regression of the results of large-eddy simulations (LES) with the geometric properties of the wind-farm layout (e.g., the blockage ratio and blockage distance). The innovative aspect is that each wind turbine is treated individually based on its position in the farm and on the wind direction by predicting the velocity upstream of each turbine. The turbine-induced forces and added turbulence kinetic energy (TKE) are first derived analytically and then implemented in the Weather Research and Forecasting model. Idealized simulations of the offshore Lillgrund wind farm are conducted. The wind-speed deficit and TKE predicted with the hybrid model are in excellent agreement with those from the LES results, while the wind-power production estimated with the hybrid model is within 10% of that observed. Three additional wind farms with larger inter-turbine spacing than at Lillgrund are also considered, and a similar agreement with LES results is found, proving that the hybrid parametrization works well with any wind farm regardless of the spacing between turbines. These results indicate the wind-turbine position, wind direction, and added TKE are essential in accounting for the wind-farm effects on the surroundings, for which the hybrid wind-farm parametrization is a promising tool.

  8. Energetics characteristics accounting for the explosive development of a twin extratropical cyclone over the Northwest Pacific Ocean

    NASA Astrophysics Data System (ADS)

    Fu, Shenming

    2017-04-01

    A twin extratropical cyclone that appeared over the Northwest Pacific Ocean during the winter of 2011 is reproduced reasonably well by the fifth-generation PSU-NCAR Mesoscale Model (MM5). One cyclone in this event has developed into an extreme explosive extratropical cyclone (EEC), with a maximum deepening rate up to 2.7 Bergeron, a minimum SLP of 933 hPa, and a maximum surface wind of 33 m s-1, which means its intensity is comparable with the intensity of a typhoon. The rotational and divergent wind kinetic energy (KE) budget equations are applied to this twin cyclone event so as to understand the rapid enhancement of the wind speed in this case. Preliminary results indicate that, overall, the rotational wind KE is much larger than the divergent wind KE, however, the latter can be of comparable intensity with the rotational wind KE around the regions where the wind speed strengthened most rapidly. Different quadrants of the twin cyclone show significant unevenness, overall, the southeastern quadrant of the EEC features the rapidest enhancement of wind speed, whereas the northwestern quadrant shows the slowest wind-speed acceleration. The vertical stretching of the EEC show consistent variation features with the rotational wind KE. The transport of KE by rotational wind, the conversion from divergent wind KE to rotational wind KE, and the work done by pressure gradient force all contributed to the enhancement of rotational wind KE. In contrast, the divergent wind KE is mainly produced by the baroclinic energy conversion.

  9. Thermal winds in stellar mass black hole and neutron star binary systems

    NASA Astrophysics Data System (ADS)

    Done, Chris; Tomaru, Ryota; Takahashi, Tadayuki

    2018-01-01

    Black hole binaries show equatorial disc winds at high luminosities, which apparently disappear during the spectral transition to the low/hard state. This is also where the radio jet appears, motivating speculation that both wind and jet are driven by different configurations of the same magnetic field. However, these systems must also have thermal winds, as the outer disc is clearly irradiated. We develop a predictive model of the absorption features from thermal winds, based on pioneering work of Begelman, McKee & Shields. We couple this to a realistic model of the irradiating spectrum as a function of luminosity to predict the entire wind evolution during outbursts. We show that the column density of the thermal wind scales roughly with luminosity, and does not shut off at the spectral transition, though its visibility will be affected by the abrupt change in ionizing spectrum. We re-analyse the data from H1743-322, which most constrains the difference in wind across the spectral transition, and show that these are consistent with the thermal wind models. We include simple corrections for radiation pressure, which allows stronger winds to be launched from smaller radii. These winds become optically thick around Eddington, which may even explain the exceptional wind seen in one observation of GRO J1655-40. These data can instead be fit by magnetic wind models, but similar winds are not seen in this or other systems at similar luminosities. Hence, we conclude that the majority (perhaps all) of current data can be explained by thermal or thermal-radiative winds.

  10. Warm-season severe wind events in Germany

    NASA Astrophysics Data System (ADS)

    Gatzen, Christoph

    2013-04-01

    A 15-year data set of wind measurements was analyzed with regard to warm season severe wind gusts in Germany. For April to September of the years 1997 to 2011, 1035 wind measurements of 26 m/s or greater were found. These wind reports were associated with 268 wind events. In total, 252 convective wind events contributed to 837 (81%) of the wind reports, 16 non-convective synoptic-scale wind events contributed to 198 reports (19%). Severe wind events were found with synoptic situations characterized by rather strong mid-level flow and advancing mid-level troughs. Severe convective wind events were analyzed using radar images and classified with respect to the observed radar structure. The most important convective mode was squall lines that were associated with one third of all severe wind gusts, followed by groups, bow echo complexes, and bow echoes. Supercells and cells were not associated with many wind reports. The low contribution of isolated cells indicates that rather large-scale forcing by synoptic-scale features like fronts is important for German severe wind events. Bow echoes were found to be present for 58% of all wind reports. The movement speed of bow echoes indicated a large variation with a maximum speed of 33 m/s. Extreme wind events as well as events with more than 15 wind reports were found to be related to higher movement speeds. Concentrating on the most intense events, derechos seem to be very important to the warm season wind threat in Germany. Convective events with a path length of more than 400 km contributed to 36% of all warm-season wind gusts in this data set. Furthermore, eight of nine extreme gusts exceeding 40 m/s were recorded with derecho events.

  11. Unsteady Flow in Different Atmospheric Boundary Layer Regimes and Its Impact on Wind-Turbine Performance

    NASA Astrophysics Data System (ADS)

    Gohari, Iman; Korobenko, Artem; Yan, Jinhui; Bazilevs, Yuri; Sarkar, Sutanu

    2016-11-01

    Wind is a renewable energy resource that offers several advantages including low pollutant emission and inexpensive construction. Wind turbines operate in conditions dictated by the Atmospheric Boundary Layer (ABL) and that motivates the study of coupling ABL simulations with wind turbine dynamics. The ABL simulations can be used for realistic modeling of the environment which, with the use of fluid-structure interaction, can give realistic predictions of extracted power, rotor loading, and blade structural response. The ABL simulations provide inflow boundary conditions to the wind-turbine simulator which uses arbitrary Lagrangian-Eulerian variational multiscale formulation. In the present work, ABL simulations are performed to examine two different scenarios: (i) A neutral ABL with zero heat-flux and inversion layer at 350m, in which the wind turbine experiences maximum mean shear; (2) A shallow ABL with the surface cooling-rate of -1 K/hr, in which the wind turbine experiences maximum mean velocity at the low-level-jet nose height. We will discuss differences in the unsteady flow between the two different ABL conditions and their impact on the performance of the wind turbine cluster in the coupled ABL-wind turbine simulations.

  12. Exact Analytic Solution for a Ballistic Orbiting Wind

    NASA Astrophysics Data System (ADS)

    Wilkin, Francis P.; Hausner, Harry

    2017-07-01

    Much theoretical and observational work has been done on stellar winds within binary systems. We present a new solution for a ballistic wind launched from a source in a circular orbit. The solution is that of a single wind—no second wind is included in the system and the shocks that arise are those due to the orbiting wind interacting with itself. Our method emphasizes the curved streamlines in the corotating frame, where the flow is steady-state, allowing us to obtain an exact solution for the mass density at all pre-shock locations. Assuming an initially isotropic wind, fluid elements launched from the interior hemisphere of the wind will be the first to cross other streamlines, resulting in a spiral structure bounded by two shock surfaces. Streamlines from the outer wind hemisphere later intersect these shocks as well. An analytic solution is obtained for the geometry of the two shock surfaces. Although the inner and outer shock surfaces asymptotically trace Archimedean spirals, our tail solution suggests many crossings where the shocks overlap, beyond which the analytic solution cannot be continued. Our solution can be readily extended to an initially anisotropic wind.

  13. Analysis of environmental dispersion in a wetland flow under the effect of wind: Extended solution

    NASA Astrophysics Data System (ADS)

    Wang, Huilin; Huai, Wenxin

    2018-02-01

    The accurate analysis of the contaminant transport process in wetland flows is essential for environmental assessment. However, dispersivity assessment becomes complicated when the wind strength and direction are taken into consideration. Prior studies illustrating the wind effect on environmental dispersion in wetland flows simply focused on the mean longitudinal concentration distribution. Moreover, the results obtained by these analyses are not accurate when done on a smaller scale, namely, the initial stage of the contaminant transport process. By combining the concentration moments method (the Aris' method) and Gill's expansion theory, the previous researches on environmental dispersion in wetland flows with effect of wind have been extended. By adopting up to 4th-order moments, the wind effect-as illustrated by dimensionless parameters Er (wind force) and ω (wind direction)-on kurtosis and skewness is discussed, the up to 4th-order vertical concentration distribution is obtained, and the two-dimensional concentration distribution is illustrated. This work demonstrates that wind intensity and direction can significantly affect the contaminant dispersion. Moreover, the study presents a more accurate analytical solution of environmental dispersion in wetland flows under various wind conditions.

  14. Modelling Magnetodisc Response to Solar Wind Events

    NASA Astrophysics Data System (ADS)

    Achilleos, N.; Guio, P.; Arridge, C. S.

    2017-09-01

    The Sun's influence is felt by planets in the solar system in many different ways. In this work, we use theoretical models of the magnetic fields of the Gas Giants (Jupiter and Saturn) to predict how they would change in response to compressions and expansions in the flow of charged particles ('solar wind') which continually emanates from the Sun. This in an example of 'Space Weather' - the interaction between the solar wind and magnetized planets, such as Jupiter, Saturn and even the Earth.

  15. Wind turbine model and loop shaping controller design

    NASA Astrophysics Data System (ADS)

    Gilev, Bogdan

    2017-12-01

    A model of a wind turbine is evaluated, consisting of: wind speed model, mechanical and electrical model of generator and tower oscillation model. Model of the whole system is linearized around of a nominal point. By using the linear model with uncertainties is synthesized a uncertain model. By using the uncertain model is developed a H∞ controller, which provide mode of stabilizing the rotor frequency and damping the tower oscillations. Finally is simulated work of nonlinear system and H∞ controller.

  16. Aerodynamics of small-scale vertical-axis wind turbines

    NASA Astrophysics Data System (ADS)

    Paraschivoiu, I.; Desy, P.

    1985-12-01

    The purpose of this work is to study the influence of various rotor parameters on the aerodynamic performance of a small-scale Darrieus wind turbine. To do this, a straight-bladed Darrieus rotor is calculated by using the double-multiple-streamtube model including the streamtube expansion effects through the rotor (CARDAAX computer code) and the dynamicstall effects. The straight-bladed Darrieus turbine is as expected more efficient with respect the curved-bladed rotor but for a given solidity is operates at higher wind speeds.

  17. Ground testing and simulation. II - Aerodynamic testing and simulation: Saving lives, time, and money

    NASA Technical Reports Server (NTRS)

    Dayman, B., Jr.; Fiore, A. W.

    1974-01-01

    The present work discusses in general terms the various kinds of ground facilities, in particular, wind tunnels, which support aerodynamic testing. Since not all flight parameters can be simulated simultaneously, an important problem consists in matching parameters. It is pointed out that there is a lack of wind tunnels for a complete Reynolds-number simulation. Using a computer to simulate flow fields can result in considerable reduction of wind-tunnel hours required to develop a given flight vehicle.

  18. Modeling and Optimizing Green Microgrids at Remote U.S. Navy Islands

    DTIC Science & Technology

    2017-12-01

    storage, and controls. All of these components work together as a system solution to serve a nearby load, such as a wind turbine and a storage battery...includes five diesel generators of varying capacities and seven 100kW wind turbines . The diesel genset specifics are shown in Table 1. They typically...run at only 30% of nominal capacity, while they are most efficient at 70% (Anderson et al. 2017). The wind turbines are all Northwind 100 kW models

  19. Directional analysis of CO2 persistence at a rural site.

    PubMed

    Pérez, Isidro A; Sánchez, M Luisa; García, M Ángeles; Paredes, Vanessa

    2011-09-01

    Conditional probability was used to establish persistence of CO(2) concentrations at a rural site. Measurements extended over three years and were performed with a CO(2) continuous monitor and a sodar. Concentrations in the usual range at this site were proposed as the truncation level to calculate conditional probability, allowing us to determine the extent of CO(2) sequences. Extension of episodes may be inferred from these values. Persistence of wind directions revealed two groups of sectors, one with a persistence of about 16 h and another of about 9 h. Cumulative distribution of CO(2) was calculated in each wind sector and three groups, associated with different concentration origins, were established. One group was linked to transport and local sources, another to the rural environment, and a third to transport of clean air masses. Daily evolution of concentrations revealed major differences during the night and monthly analysis allowed us to associate group 1 with the vegetation cycle and group 3 with wind speed from December to April. Persistence of concentrations was obtained, and group 3 values were lower for concentrations above the truncation level, whereas persistence of groups 1 and 2 was similar. However, group 3 persistence was, in general, between group 1 and 2 persistence for concentrations below the truncation level. Copyright © 2011 Elsevier B.V. All rights reserved.

  20. Wind tunnel measurements of the power output variability and unsteady loading in a micro wind farm model

    NASA Astrophysics Data System (ADS)

    Bossuyt, Juliaan; Howland, Michael; Meneveau, Charles; Meyers, Johan

    2015-11-01

    To optimize wind farm layouts for a maximum power output and wind turbine lifetime, mean power output measurements in wind tunnel studies are not sufficient. Instead, detailed temporal information about the power output and unsteady loading from every single wind turbine in the wind farm is needed. A very small porous disc model with a realistic thrust coefficient of 0.75 - 0.85, was designed. The model is instrumented with a strain gage, allowing measurements of the thrust force, incoming velocity and power output with a frequency response up to the natural frequency of the model. This is shown by reproducing the -5/3 spectrum from the incoming flow. Thanks to its small size and compact instrumentation, the model allows wind tunnel studies of large wind turbine arrays with detailed temporal information from every wind turbine. Translating to field conditions with a length-scale ratio of 1:3,000 the frequencies studied from the data reach from 10-4 Hz up to about 6 .10-2 Hz. The model's capabilities are demonstrated with a large wind farm measurement consisting of close to 100 instrumented models. A high correlation is found between the power outputs of stream wise aligned wind turbines, which is in good agreement with results from prior LES simulations. Work supported by ERC (ActiveWindFarms, grant no. 306471) and by NSF (grants CBET-113380 and IIA-1243482, the WINDINSPIRE project).

  1. Counting Jobs and Economic Impacts from Distributed Wind in the United States (Poster)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tegen, S.

    This conference poster describes the distributed wind Jobs and Economic Development Imapcts (JEDI) model. The goal of this work is to provide a model that estimates jobs and other economic effects associated with the domestic distributed wind industry. The distributed wind JEDI model is a free input-output model that estimates employment and other impacts resulting from an investment in distributed wind installations. Default inputs are from installers and industry experts and are based on existing projects. User input can be minimal (use defaults) or very detailed for more precise results. JEDI can help evaluate potential scenarios, current or future; informmore » stakeholders and decision-makers; assist businesses in evaluating economic development impacts and estimating jobs; assist government organizations with planning and evaluating and developing communities.« less

  2. A multi-timescale view on the slow solar wind with MTOF

    NASA Astrophysics Data System (ADS)

    Heidrich-Meisner, Verena; Wimmer-Schweingruber, Robert F.; Wurz, Peter; Bochsler, Peter; Ipavich, Fred M.; Paquette, John A.; Klecker, Bernard

    2013-04-01

    The solar wind is known to be composed of several different types of wind. Their respective differences in speed gives rise to the somewhat crude categories slow and fast wind. However, slow and fast winds also differ in their composition and plasma properties. While coronal holes are accepted as the origin of the fast wind (e.g. [Tu2005]), slow wind is hypothesized to emanate from different regions and to be caused by different mechanisms, although the average properties of slow wind are remarkably uniform. Models for the origin of the slow solar wind fall in three categories. In the first category, slow wind originates from the edges of coronal holes and is driven by reconnection of open field lines from the coronal hole with closed loops [Schwadron2005]. The second category relies on reconnection as well but places the source regions of the slow solar wind at the boundaries of active regions [Sakao2007]. A topological argument underlies the third group which requires that all coronal holes are connected by the so-called "S-web" as the driver of the slow solar wind [Antiochos2011]. Solar wind composition has been continuously measured by for example SOHO/CELIAS and ACE/SWICS. In this work we focus on the mass time-of-flight instrument of SOHO/CELIAS/MTOF [Hovestadt1995], which has been collecting data from 1996 to the present day. Whereas much attention in previous years has been focused on spectacular features of the solar wind like (interplanetary) coronal mass ejections (ICMEs) our main interest lies in understanding the slow solar wind. Although it is remarkably homogeneous in its average properties (e.g. [vonSteiger2000]) it contains many short term variations. This motivates us to investigate the slow solar wind on multiple timescales with a special focus on identifying individual stream with unusual compositions. A first step in this is to identify individual streams. A useful tool to do this reliably is specific entropy [Pagel2004]. Consequently, this leads to an extensive picture of individual streams from MTOF, which can be combined with observations from other spacecraft in the future. In particular, identifying and understanding short-term variations of the slow solar wind has the potential to help distinguishing between different possible source regions and mechanisms. Further, with the long term goal of identifying possible different source mechanisms or regions, we analyze and compare the properties of individual streams on short time scales to focus on significant deviations from the average properties of slow solar wind. References [Antiochos2011] SK Antiochos, Z. Mikic, VS Titov, R. Lionello, and JA Linker. A model for the sources of the slow solar wind. The Astrophysical Journal, 731(2):112, 2011. [Hovestadt1995] D. Hovestadt, M. Hilchenbach, A. Bürgi, B. Klecker, P. Laeverenz, M. Scholer, H. Grünwaldt, WI Axford, S. Livi, E. Marsch, et al. Celias-charge, element and isotope analysis system for soho. Solar Physics, 162(1):441-481, 1995. [Pagel2004] AC Pagel, NU Crooker, TH Zurbuchen, and JT Gosling. Correlation of solar wind entropy and oxygen ion charge state ratio. Journal of geophysical research, 109(A1):A01113, 2004. [Sakao2007] T. Sakao, R. Kano, N. Narukage, J. Kotoku, T. Bando, E.E. DeLuca, L.L. Lundquist, S. Tsuneta, L.K. Harra, Y. Katsukawa, et al. Continuous plasma outflows from the edge of a solar active region as a possible source of solar wind. Science, 318(5856):1585-1588, 2007. [Schwadron2005] NA Schwadron, DJ McComas, HA Elliott, G. Gloeckler, J. Geiss, and R. Von Steiger. Solar wind from the coronal hole boundaries. Journal of geophysical research, 110(A4):A04104, 2005. [Tu2005] C.Y. Tu, C. Zhou, E. Marsch, L.D. Xia, L. Zhao, J.X. Wang, and K. Wilhelm. Solar wind origin in coronal funnels. Science, 308(5721):519-523, 2005. [vonSteiger2000] R. Von Steiger, N. Schwadron, LA Fisk, J. Geiss, G. Gloeckler, S. Hefti, B. Wilken, RF Wimmer-Schweingruber, and TH Zurbuchen. Composition of quasi-stationary solar wind flows from ulysses/solar wind ion composition spectrometer. Journal of geophysical research, 105:27, 2000.

  3. Weather Research and Forecasting model simulation of an onshore wind farm: assessment against LiDAR and SCADA data

    NASA Astrophysics Data System (ADS)

    Santoni, Christian; Garcia-Cartagena, Edgardo J.; Zhan, Lu; Iungo, Giacomo Valerio; Leonardi, Stefano

    2017-11-01

    The integration of wind farm parameterizations into numerical weather prediction models is essential to study power production under realistic conditions. Nevertheless, recent models are unable to capture turbine wake interactions and, consequently, the mean kinetic energy entrainment, which are essential for the development of power optimization models. To address the study of wind turbine wake interaction, one-way nested mesoscale to large-eddy simulation (LES) were performed using the Weather Research and Forecasting model (WRF). The simulation contains five nested domains modeling the mesoscale wind on the entire North Texas Panhandle region to the microscale wind fluctuations and turbine wakes of a wind farm located at Panhandle, Texas. The wind speed, direction and boundary layer profile obtained from WRF were compared against measurements obtained with a sonic anemometer and light detection and ranging system located within the wind farm. Additionally, the power production were assessed against measurements obtained from the supervisory control and data acquisition system located in each turbine. Furthermore, to incorporate the turbines into very coarse LES, a modification to the implementation of the wind farm parameterization by Fitch et al. (2012) is proposed. This work was supported by the NSF, Grants No. 1243482 (WINDINSPIRE) and IIP 1362033 (WindSTAR), and TACC.

  4. Wind Power Forecasting Error Frequency Analyses for Operational Power System Studies: Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Florita, A.; Hodge, B. M.; Milligan, M.

    2012-08-01

    The examination of wind power forecasting errors is crucial for optimal unit commitment and economic dispatch of power systems with significant wind power penetrations. This scheduling process includes both renewable and nonrenewable generators, and the incorporation of wind power forecasts will become increasingly important as wind fleets constitute a larger portion of generation portfolios. This research considers the Western Wind and Solar Integration Study database of wind power forecasts and numerical actualizations. This database comprises more than 30,000 locations spread over the western United States, with a total wind power capacity of 960 GW. Error analyses for individual sites andmore » for specific balancing areas are performed using the database, quantifying the fit to theoretical distributions through goodness-of-fit metrics. Insights into wind-power forecasting error distributions are established for various levels of temporal and spatial resolution, contrasts made among the frequency distribution alternatives, and recommendations put forth for harnessing the results. Empirical data are used to produce more realistic site-level forecasts than previously employed, such that higher resolution operational studies are possible. This research feeds into a larger work of renewable integration through the links wind power forecasting has with various operational issues, such as stochastic unit commitment and flexible reserve level determination.« less

  5. Analysis of the solar/wind resources in Southern Spain for optimal sizing of hybrid solar-wind power generation systems

    NASA Astrophysics Data System (ADS)

    Quesada-Ruiz, S.; Pozo-Vazquez, D.; Santos-Alamillos, F. J.; Lara-Fanego, V.; Ruiz-Arias, J. A.; Tovar-Pescador, J.

    2010-09-01

    A drawback common to the solar and wind energy systems is their unpredictable nature and dependence on weather and climate on a wide range of time scales. In addition, the variation of the energy output may not match with the time distribution of the load demand. This can partially be solved by the use of batteries for energy storage in stand-alone systems. The problem caused by the variable nature of the solar and wind resources can be partially overcome by the use of energy systems that uses both renewable resources in a combined manner, that is, hybrid wind-solar systems. Since both resources can show complementary characteristics in certain location, the independent use of solar or wind systems results in considerable over sizing of the batteries system compared to the use of hybrid solar-wind systems. Nevertheless, to the day, there is no single recognized method for properly sizing these hybrid wind-solar systems. In this work, we present a method for sizing wind-solar hybrid systems in southern Spain. The method is based on the analysis of the wind and solar resources on daily scale, particularly, its temporal complementary characteristics. The method aims to minimize the size of the energy storage systems, trying to provide the most reliable supply.

  6. NAWIG News: The Quarterly Newsletter of the Native American Wind Interest Group, Spring 2008

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baranowski, R.

    2008-03-01

    The United States is home to more than 700 American Indian tribes and Native Alaska villages and corporations located on 96 million acres. Many of these tribes and villages have excellent wind resources that could be commercially developed to meet their electricity needs or for electricity export. The Wind Powering America program engages Native Americans in wind energy development, and as part of that effort, the NAWIG newsletter informs readers of events in the Native American/wind energy community. This issue features an interview with Steven J. Morello, director of DOE's newly formed Office of Indian Energy Policy and Programs, andmore » a feature on the newly installed Vestas V-47 turbine at Turtle Mountain Community College.« less

  7. A stochastic wind turbine wake model based on new metrics for wake characterization: A stochastic wind turbine wake model based on new metrics for wake characterization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Doubrawa, Paula; Barthelmie, Rebecca J.; Wang, Hui

    Understanding the detailed dynamics of wind turbine wakes is critical to predicting the performance and maximizing the efficiency of wind farms. This knowledge requires atmospheric data at a high spatial and temporal resolution, which are not easily obtained from direct measurements. Therefore, research is often based on numerical models, which vary in fidelity and computational cost. The simplest models produce axisymmetric wakes and are only valid beyond the near wake. Higher-fidelity results can be obtained by solving the filtered Navier-Stokes equations at a resolution that is sufficient to resolve the relevant turbulence scales. This work addresses the gap between thesemore » two extremes by proposing a stochastic model that produces an unsteady asymmetric wake. The model is developed based on a large-eddy simulation (LES) of an offshore wind farm. Because there are several ways of characterizing wakes, the first part of this work explores different approaches to defining global wake characteristics. From these, a model is developed that captures essential features of a LES-generated wake at a small fraction of the cost. The synthetic wake successfully reproduces the mean characteristics of the original LES wake, including its area and stretching patterns, and statistics of the mean azimuthal radius. The mean and standard deviation of the wake width and height are also reproduced. This preliminary study focuses on reproducing the wake shape, while future work will incorporate velocity deficit and meandering, as well as different stability scenarios.« less

  8. Evolution of the Sunspot Number and Solar Wind B Time Series

    NASA Astrophysics Data System (ADS)

    Cliver, Edward W.; Herbst, Konstantin

    2018-03-01

    The past two decades have witnessed significant changes in our knowledge of long-term solar and solar wind activity. The sunspot number time series (1700-present) developed by Rudolf Wolf during the second half of the 19th century was revised and extended by the group sunspot number series (1610-1995) of Hoyt and Schatten during the 1990s. The group sunspot number is significantly lower than the Wolf series before ˜1885. An effort from 2011-2015 to understand and remove differences between these two series via a series of workshops had the unintended consequence of prompting several alternative constructions of the sunspot number. Thus it has been necessary to expand and extend the sunspot number reconciliation process. On the solar wind side, after a decade of controversy, an ISSI International Team used geomagnetic and sunspot data to obtain a high-confidence time series of the solar wind magnetic field strength (B) from 1750-present that can be compared with two independent long-term (> ˜600 year) series of annual B-values based on cosmogenic nuclides. In this paper, we trace the twists and turns leading to our current understanding of long-term solar and solar wind activity.

  9. Radiotelemetric analysis of the effects of prevailing wind direction on Mormon cricket migratory band movement.

    PubMed

    Sword, G A; Lorch, P D; Gwynne, D T

    2008-08-01

    During outbreaks, flightless Mormon crickets [Anabrus simplex Haldeman (Orthoptera: Tettigoniidae)] form large mobile groups known as migratory bands. These bands can contain millions of individuals that march en masse across the landscape. The role of environmental cues in influencing the movement direction of migratory bands is poorly understood and has been the subject of little empirical study. We examined the effect of wind direction on Mormon cricket migratory band movement direction by monitoring the local weather conditions and daily movement patterns of individual insects traveling in bands over the same time course at three close, but spatially distinct sites. Although weather conditions were relatively homogeneous across sites, wind directions tended to be more variable across sites during the morning hours, the period during which directional movement begins. Migratory bands at different sites traveled in distinctly different directions. However, we failed to find any evidence to suggest that the observed variation in migratory band movement direction was correlated with local wind direction at any time during the day. These results support the notion that the cues mediating migratory band directionality are likely to be group specific and that a role for landscape-scale environmental cues such as wind direction is unlikely.

  10. Wind/seismic comparisons for upgrading existing structures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Giller, R.A.

    1989-10-01

    This paper depicts the analysis procedures and methods used to evaluate three existing building structures for extreme wind loads. The three structures involved in this evaluation are located at the US Department of Energy's Hanford Site near Richland, Washington. This site is characterized by open flat grassland with few surrounding obstructions and has extreme winds in lieu of tornados as a design basis accident condition. This group of buildings represents a variety of construction types, including a concrete stack, a concrete load-bearing wall structure, and a rigid steel-frame building. The three structures included in this group have recently been evaluatedmore » for response to the design basis earthquake that included non-linear time history effects. The resulting loads and stresses from the wind analyses were compared to the loads and stresses resulting from seismic analyses. This approach eliminated the need to prepare additional capacity calculations that were already contained in the seismic evaluations. 4 refs., 5 figs., 5 tabs.« less

  11. Risk analysis for U.S. offshore wind farms: the need for an integrated approach.

    PubMed

    Staid, Andrea; Guikema, Seth D

    2015-04-01

    Wind power is becoming an increasingly important part of the global energy portfolio, and there is growing interest in developing offshore wind farms in the United States to better utilize this resource. Wind farms have certain environmental benefits, notably near-zero emissions of greenhouse gases, particulates, and other contaminants of concern. However, there are significant challenges ahead in achieving large-scale integration of wind power in the United States, particularly offshore wind. Environmental impacts from wind farms are a concern, and these are subject to a number of on-going studies focused on risks to the environment. However, once a wind farm is built, the farm itself will face a number of risks from a variety of hazards, and managing these risks is critical to the ultimate achievement of long-term reductions in pollutant emissions from clean energy sources such as wind. No integrated framework currently exists for assessing risks to offshore wind farms in the United States, which poses a challenge for wind farm risk management. In this "Perspective", we provide an overview of the risks faced by an offshore wind farm, argue that an integrated framework is needed, and give a preliminary starting point for such a framework to illustrate what it might look like. This is not a final framework; substantial work remains. Our intention here is to highlight the research need in this area in the hope of spurring additional research about the risks to wind farms to complement the substantial amount of on-going research on the risks from wind farms. © 2015 Society for Risk Analysis.

  12. Dynamics of Venus' Southern hemisphere and South Polar Vortex from VIRTIS data obtained during the Venus Expres Mission

    NASA Astrophysics Data System (ADS)

    Hueso, R.; Garate-Lopez, I.; Sanchez-Lavega, A.

    2011-12-01

    The VIRTIS instrument onboard Venus Express observes Venus in two channels (visible and infrared) obtaining spectra and multi-wavelength images of the planet. The images have been used to trace the motions of the atmosphere at different layers of clouds [1-3]. We review the VIRTIS cloud image data and wind results obtained by different groups [1-3] and we present new results concerning the morphology and evolution of the South Polar Vortex at the upper and lower cloud levels with data covering the first 900 days of the mission. We present wind measurements of the South hemisphere obtained by cloud tracking individual cloud features and higher-resolution wind results of the polar region covering the evolution of the South polar vortex. The later were obtained by an image correlation algorithm run under human supervision to validate the data. We present day-side data of the upper clouds obtained at 380 and 980 nm sensitive to altitudes of 66-70 km, night-side data in the near infrared at 1.74 microns of the lower cloud (45-50 km) and day and night-side data obtained in the thermal infrared (wavelengths of 3.8 and 5.1 microns) which covers the dynamical evolution of Venus South Polar vortex at the cloud tops (66-70 km). We explore the different dynamics associated to the varying morphology of the vortex, its dynamical structure at different altitudes, the variability of the global wind data of the southern hemisphere and the interrelation of the polar vortex dynamics with the wind dynamics at subpolar and mid-latitudes. Acknowledgements: Work funded by Spanish MICIIN AYA2009-10701 with FEDER support and Grupos Gobierno Vasco IT-464-07. References [1] A. Sánchez-Lavega et al., Geophys. Res. Lett. 35, L13204, (2008). [2] D. Luz et al., Science, 332, 577-580 (2011). [3] R. Hueso, et al., Icarus doi:10.1016/j.icarus.2011.04.020 (2011)

  13. Observational Signatures of Parametric Instability at 1AU

    NASA Astrophysics Data System (ADS)

    Bowen, T. A.; Bale, S. D.; Badman, S.

    2017-12-01

    Observations and simulations of inertial compressive turbulence in the solar wind are characterized by density structures anti-correlated with magnetic fluctuations parallel to the mean field. This signature has been interpreted as observational evidence for non-propagating pressure balanced structures (PBS), kinetic ion acoustic waves, as well as the MHD slow mode. Recent work, specifically Verscharen et al. (2017), has highlighted the unexpected fluid like nature of the solar wind. Given the high damping rates of parallel propagating compressive fluctuations, their ubiquity in satellite observations is surprising and suggests the presence of a driving process. One possible candidate for the generation of compressive fluctuations in the solar wind is the parametric instability, in which large amplitude Alfvenic fluctuations decay into parallel propagating compressive waves. This work employs 10 years of WIND observations in order to test the parametric decay process as a source of compressive waves in the solar wind through comparing collisionless damping rates of compressive fluctuations with growth rates of the parametric instability. Preliminary results suggest that generation of compressive waves through parametric decay is overdamped at 1 AU. However, the higher parametric decay rates expected in the inner heliosphere likely allow for growth of the slow mode-the remnants of which could explain density fluctuations observed at 1AU.

  14. Estimating the Quantity of Wind and Solar Required To Displace Storage-Induced Emissions.

    PubMed

    Hittinger, Eric; Azevedo, Inês M L

    2017-11-07

    The variable and nondispatchable nature of wind and solar generation has been driving interest in energy storage as an enabling low-carbon technology that can help spur large-scale adoption of renewables. However, prior work has shown that adding energy storage alone for energy arbitrage in electricity systems across the U.S. routinely increases system emissions. While adding wind or solar reduces electricity system emissions, the emissions effect of both renewable generation and energy storage varies by location. In this work, we apply a marginal emissions approach to determine the net system CO 2 emissions of colocated or electrically proximate wind/storage and solar/storage facilities across the U.S. and determine the amount of renewable energy required to offset the CO 2 emissions resulting from operation of new energy storage. We find that it takes between 0.03 MW (Montana) and 4 MW (Michigan) of wind and between 0.25 MW (Alabama) and 17 MW (Michigan) of solar to offset the emissions from a 25 MW/100 MWh storage device, depending on location and operational mode. Systems with a realistic combination of renewables and storage will result in net emissions reductions compared with a grid without those systems, but the anticipated reductions are lower than a renewable-only addition.

  15. Droplet Depinning on Inclined Surfaces at High Reynolds Numbers

    NASA Astrophysics Data System (ADS)

    White, Edward; Singh, Natasha; Lee, Sungyon

    2017-11-01

    Contact angle hysteresis enables a sessile liquid drop to adhere to a solid surface when the surface is inclined, the drop is exposed to gas-phase flow, or the drop is exposed to both forcing modalities. Previous work by Schmucker and White (2012.DFD.M4.6) identified critical depinning Weber numbers for water drops subject to gravity- and wind-dominated forcing. This work extends the Schmucker and White data and finds the critical depinning Weber number obeys a two-slope linear model. Under pure wind forcing at Reynolds numbers above 1500 and with zero surface inclination, Wecrit = 8.0 . For non-zero inclinations, α, Wecrit decreases proportionally to A Bo sinα where A is the drop aspect ratio and Bo is its Bond number. The same relationship holds for α < 0 when gravity resists depinning by wind. Above We 4 , depinning is dominated by wind forcing; at We < 4 , depinning is gravity dominated. While Wecrit depends linearly on A Bo sinα in both forcing regimes, the slopes of the the limit lines depend on the forcing regime. The difference is attributed to different drop shapes and contact angle distributions that arise depending on whether wind or gravity dominates the depinning behavior. Supported by the National Science Foundation through Grant CBET-1605947.

  16. An Examination of the Quality of Wind Observations with Smartphones

    NASA Astrophysics Data System (ADS)

    Hintz, Kasper; Vedel, Henrik; Muñoz-Gomez, Juan; Woetmann, Niels

    2017-04-01

    Over the last years, the number of devices connected to the internet has increased significantly making it possible for internal and external sensors to communicate via the internet, opening up many possibilities for additional data for use in the atmospheric sciences. Vaavud has manufactured small anemometer devices which can measure wind speed and wind direction when connected to a smartphone. This work examines the quality of such crowdsourced Handheld Wind Observations (HWO). In order to examine the quality of the HWO, multiple idealised measurement sessions were performed at different sites in different atmospheric conditions. In these sessions, a high-precision ultrasonic anemometer was installed to work as a reference measurement. The HWO are extrapolated to 10 m in order to compare these to the reference observations. This allows us to examine the effect of stability correction in the surface layer and the quality of height extrapolated HWO. The height extrapolation is done using the logarithmic wind profile law with and without stability correction. Furthermore, this study examines the optimal ways of using traditional observations and numerical models to validate HWO. In order to do so, a series of numerical reanalysis have been run for a period of 5 months to quantise the effect of including crowdsourced HWO in a traditional observation dataset.

  17. Identifying Wave-Particle Interactions in the Solar Wind using Statistical Correlations

    NASA Astrophysics Data System (ADS)

    Broiles, T. W.; Jian, L. K.; Gary, S. P.; Lepri, S. T.; Stevens, M. L.

    2017-12-01

    Heavy ions are a trace component of the solar wind, which can resonate with plasma waves, causing heating and acceleration relative to the bulk plasma. While wave-particle interactions are generally accepted as the cause of heavy ion heating and acceleration, observations to constrain the physics are lacking. In this work, we statistically link specific wave modes to heavy ion heating and acceleration. We have computed the Fast Fourier Transform (FFT) of transverse and compressional magnetic waves between 0 and 5.5 Hz using 9 days of ACE and Wind Magnetometer data. The FFTs are averaged over plasma measurement cycles to compute statistical correlations between magnetic wave power at each discrete frequency, and ion kinetic properties measured by ACE/SWICS and Wind/SWE. The results show that lower frequency transverse oscillations (< 0.2 Hz) and higher frequency compressional oscillations (> 0.4 Hz) are positively correlated with enhancements in the heavy ion thermal and drift speeds. Moreover, the correlation results for the He2+ and O6+ were similar on most days. The correlations were often weak, but most days had some frequencies that correlated with statistical significance. This work suggests that the solar wind heavy ions are possibly being heated and accelerated by both transverse and compressional waves at different frequencies.

  18. Direct measurements of wind-water momentum coupling in a marsh with emergent vegetation and implications for gas transfer estimates

    NASA Astrophysics Data System (ADS)

    Tse, I.; Poindexter, C.; Variano, E. A.

    2013-12-01

    Among the numerous ecological benefits of restoring wetlands is carbon sequestration. As emergent vegetation thrive, atmospheric CO2 is removed and converted into biomass that gradually become additional soil. Forecasts and management for these systems rely on accurate knowledge of gas exchange between the atmosphere and the wetland surface waters. Our previous work showed that the rate of gas transfer across the air-water interface is affected by the amount of water column mixing caused by winds penetrating through the plant canopy. Here, we present the first direct measurements of wind-water momentum coupling made within a tule marsh. This work in Twitchell Island in the California Delta shows how momentum is imparted into the water from wind stress and that this wind stress interacts with the surface waters in an interesting way. By correlating three-component velocity signals from a sonic anemometer placed within the plant canopy with data from a novel Volumetric Particle Imager (VoPI) placed in the water, we measure the flux of kinetic energy through the plant canopy and the time-scale of the response. We also use this unique dataset to estimate the air-water drag coefficient using an adjoint method.

  19. Fluid-structure coupling for wind turbine blade analysis using OpenFOAM

    NASA Astrophysics Data System (ADS)

    Dose, Bastian; Herraez, Ivan; Peinke, Joachim

    2015-11-01

    Modern wind turbine rotor blades are designed increasingly large and flexible. This structural flexibility represents a problem for the field of Computational Fluid Dynamics (CFD), which is used for accurate load calculations and detailed investigations of rotor aerodynamics. As the blade geometries within CFD simulations are considered stiff, the effect of blade deformation caused by aerodynamic loads cannot be captured by the common CFD approach. Coupling the flow solver with a structural solver can overcome this restriction and enables the investigation of flexible wind turbine blades. For this purpose, a new Finite Element (FE) solver was implemented into the open source CFD code OpenFOAM. Using a beam element formulation based on the Geometrically Exact Beam Theory (GEBT), the structural model can capture geometric non-linearities such as large deformations. Coupled with CFD solvers of the OpenFOAM package, the new framework represents a powerful tool for aerodynamic investigations. In this work, we investigated the aerodynamic performance of a state of the art wind turbine. For different wind speeds, aerodynamic key parameters are evaluated and compared for both, rigid and flexible blade geometries. The present work is funded within the framework of the joint project Smart Blades (0325601D) by the German Federal Ministry for Economic Affairs and Energy (BMWi) under decision of the German Federal Parliament.

  20. Earth Observations taken by the Expedition 13 crew

    NASA Image and Video Library

    2006-09-02

    ISS013-E-75141 (2 Sept. 2006) --- Erg Oriental, Algeria is featured in this image photographed by an Expedition 13 crewmember onboard the International Space Station. One of the main interests of rainless regions like the Sahara Desert to landscape science is that the work of flowing water--mainly streams and rivers--becomes less important than the work of wind. According to scientists, over millennia, and if enough sand is available, winds can generate dunes of enormous size, arranged in regular patterns. Long, generally north-south trending linear dunes stretch across much of northeast Algeria covering a vast tract (approximately 140,000 kilometers square) of the Sahara Desert known as the Erg Oriental. Erg means dune sea in Arabic, and the term has been adopted into modern geology. Spanning this image diagonally are a series of two kilometer-wide linear dunes, comprised of red sand, from a point on the southwest margin of the erg (center point 28.9N 4.8W). The dune chains are more than 100 meters high. The "streets" between the dunes are grayer areas free of sand. Linear dune chains are usually generated roughly parallel with the dominant winds. It also seems to be true that linear dunes are built by stronger winds. This detailed view shows that smaller dunes, known as star dunes, are built on top of the linear dunes. By contrast, star dunes seem to form in weak wind regimes, with winds from different directions in each season -- resulting in characteristic "arms" snaking away from a central point. Some scientists therefore think the dunes in this image were generated in two earlier climatic phases, different from that of today. (1) During a phase when winds were stronger and dominantly from one direction (the south), major linear sand masses accumulated. (2) Later, when wind strengths declined, the star dunes formed. Modern features--known as wind streaks--on the edge of the present erg (not shown), younger than either the linear or star dunes, show that present-day sand-moving winds blow from the southwest.

  1. Mixed Layer Sub-Mesoscale Parameterization - Part 1: Derivation and Assessment

    NASA Technical Reports Server (NTRS)

    Canuto, V. M.; Dubovikov, M. S.

    2010-01-01

    Several studies have shown that sub-mesoscales (SM 1km horizontal scale) play an important role in mixed layer dynamics. In particular, high resolution simulations have shown that in the case of strong down-front wind, the re-stratification induced by the SM is of the same order of the de-stratification induced by small scale turbulence, as well as of that induced by the Ekman velocity. These studies have further concluded that it has become necessary to include SM in ocean global circulation models (OGCMs), especially those used in climate studies. The goal of our work is to derive and assess an analytic parameterization of the vertical tracer flux under baroclinic instabilities and wind of arbitrary directions and strength. To achieve this goal, we have divided the problem into two parts: first, in this work we derive and assess a parameterization of the SM vertical flux of an arbitrary tracer for ocean codes that resolve mesoscales, M, but not sub-mesoscales, SM. In Part 2, presented elsewhere, we have used the results of this work to derive a parameterization of SM fluxes for ocean codes that do not resolve either M or SM. To carry out the first part of our work, we solve the SM dynamic equations including the non-linear terms for which we employ a closure developed and assessed in previous work. We present a detailed analysis for down-front and up-front winds with the following results: (a) down-front wind (blowing in the direction of the surface geostrophic velocity) is the most favorable condition for generating vigorous SM eddies; the de-stratifying effect of the mean flow and re-stratifying effect of SM almost cancel each other out,

  2. Eleventh Street and Bronx frontier: urban pioneering with wind power

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hurwood, D.L.

    1981-01-01

    Wind energy is being applied to electricity generation at two locations in New York City. These small-scale systems (2 KW and 40 KW) are pioneering efforts contrasting with large wind turbines (such as the 2 MW experimental DOE-NASA unit in the Blue Ridge Mountains near Boone, N.C.), in that they are located in an urban setting, and represent initiatives by neighborhood associations and community groups rather than by government or utilities. 54 refs.

  3. Low altitude wind shear statistics derived from measured and FAA proposed standard wind profiles

    NASA Technical Reports Server (NTRS)

    Dunham, R. E., Jr.; Usry, J. W.

    1984-01-01

    Wind shear statistics were calculated for a simulated data set using wind profiles proposed as a standard and compared to statistics derived from measured wind profile data. Wind shear values were grouped in altitude bands of 100 ft between 100 and 1400 ft, and in wind shear increments of 0.025 kt/ft between + or - 0.600 kt/ft for the simulated data set and between + or - 0.200 kt/ft for the measured set. No values existed outside the + or - 0.200 kt/ft boundaries for the measured data. Frequency distributions, means, and standard deviations were derived for each altitude band for both data sets, and compared. Also, frequency distributions were derived for the total sample for both data sets and compared. Frequency of occurrence of a given wind shear was about the same for both data sets for wind shears, but less than + or 0.10 kt/ft, but the simulated data set had larger values outside these boundaries. Neglecting the vertical wind component did not significantly affect the statistics for these data sets. The frequency of occurrence of wind shears for the flight measured data was essentially the same for each altitude band and the total sample, but the simulated data distributions were different for each altitude band. The larger wind shears for the flight measured data were found to have short durations.

  4. Preliminary studies on the reaction of growing geese (Anser anser f. domestica) to the proximity of wind turbines.

    PubMed

    Mikolajczak, J; Borowski, S; Marć-Pieńkowska, J; Odrowaz-Sypniewska, G; Bernacki, Z; Siódmiak, J; Szterk, P

    2013-01-01

    Wind farms produce electricity without causing air pollution and environmental degradation. Unfortunately, wind turbines are a source of infrasound, which may cause a number of physiological effects, such as an increase in cortisol and catecholamine secretion. The impact of infrasound noise, emitted by wind turbines, on the health of geese and other farm animals has not previously been evaluated. Therefore, the aim of this study was to determine the effect of noise, generated by wind turbines, on the stress parameters (cortisol) and the weight gain of geese kept in surrounding areas. The study consisted of 40 individuals of 5-week-old domestic geese Anser anser f domestica, divided into 2 equal groups. The first experimental gaggle (I) remained within 50 m from turbine and the second one (II) within 500 m. During the 12 weeks of the study, noise measurements were also taken. Weight gain and the concentration of cortisol in blood were assessed and significant differences in both cases were found. Geese from gaggle I gained less weight and had a higher concentration of cortisol in blood, compared to individuals from gaggle II. Lower activity and some disturbing changes in behavior of animals from group I were noted. Results of the study suggest a negative effect of the immediate vicinity of a wind turbine on the stress parameters of geese and their productivity.

  5. Bridging worlds/charting new courses

    NASA Astrophysics Data System (ADS)

    This report describes the work being done within Sandia's renewable energy program. This work touches on four major disciplines. (1) Photovoltaics. The goal of this project is to develop costeffective, reliable energy system technologies for energy supplies worldwide produced by U.S. industry. It encompasses cell research and development, collector development, technology evaluation, systems engineering, domestic and international applications, and design assistance. (2) Solar Thermal. This project endeavors to develop and increase acceptance of solar thermal electric and industrial technologies as cost-competitive candidates for power generation and to promote their commercialization. Its' major activities are with dish/Stirling systems, the Solar Two power tower, design assistance to industry and users, technology development and research activities. (3) Wind. The wind project impacts domestic and international markets with commercially feasible systems for utility-scale and other applications of wind energy. The project conducts applied research in aerodynamics, structural dynamics, fatigue, materials and controls, and engineering systems, and develops cooperative work with industry. (4) Geothermal. This project is developing technology to increase proven geothermal reserves and is assisting industry in expanding geothermal power on-line. Development work is in stemhole drilling, drilling techniques, instrumentation for geothermal wells, acoustic telemetry, and drilling exploratory wells.

  6. Private wind powered electricity generators for industry in the UK

    NASA Astrophysics Data System (ADS)

    Thabit, S. S.; Stark, J.

    This paper investigates the impact of the provisions of the new Energy Act, 1983 on industrial wind-powered private generators of electricity and the effects of published tariffs on various industrial working patterns. Up to 30 percent savings can be achieved in annual electricity bill costs for an industrial generator/user of electricity working a single daily shift, if located in a favorable, 7 m/s mean annual wind speed regime. Variation of the availability charge between Electricity Boards about a base value of 0.70 pounds sterling/kVA was found to have insignificant (+ or - 1.3 percent) impact on total electricity bill costs. It was also shown that for industrial users of electricity, the simpler two-rate purchase terms were commercially adequate when compared with the four-rate alternative where expensive metering becomes necessary.

  7. Rick Driscoll | NREL

    Science.gov Websites

    of the Offshore Wind and Ocean Power Systems team, Rick works in the areas of offshore wind and joining NREL, Rick was an Associate Professor of Ocean and Mechanical Engineering at Florida Atlantic University (FAU), where he focused on ocean energy and navy projects for more than 10 years. While at FAU, he

  8. Amy Robertson | NREL

    Science.gov Websites

    validation, and data analysis. At NREL, Amy specializes in the modeling of offshore wind system dynamics. She Amy.Robertson@nrel.gov | 303-384-7157 Amy's expertise is in structural dynamics modeling, verification and of offshore wind modeling tools. Prior to joining NREL, Amy worked as an independent consultant for

  9. Wind Speed Measurement by Paper Anemometer

    ERIC Educational Resources Information Center

    Zhong, Juhua; Cheng, Zhongqi; Guan, Wenchuan

    2011-01-01

    A simple wind speed measurement device, a paper anemometer, is fabricated based on the theory of standing waves. In providing the working profile of the paper anemometer, an experimental device is established, which consists of an anemometer sensor, a sound sensor, a microphone, paper strips, a paper cup, and sonic acquisition software. It shows…

  10. Occupational Health and Industrial Wind Turbines: A Case Study

    ERIC Educational Resources Information Center

    Rand, Robert W.; Ambrose, Stephen E.; Krogh, Carmen M. E.

    2011-01-01

    Industrial wind turbines (IWTs) are being installed at a fast pace globally. Researchers, medical practitioners, and media have reported adverse health effects resulting from living in the environs of IWTs. While there have been some anecdotal reports from technicians and other workers who work in the environs of IWTs, little is known about the…

  11. A survey of numerical models for wind prediction

    NASA Technical Reports Server (NTRS)

    Schonfeld, D.

    1980-01-01

    A literature review is presented of the work done in the numerical modeling of wind flows. Pertinent computational techniques are described, as well as the necessary assumptions used to simplify the governing equations. A steady state model is outlined, based on the data obtained at the Deep Space Communications complex at Goldstone, California.

  12. Calculating the wind energy input to a system using a spatially explicit method that considers atmospheric stability

    EPA Science Inventory

    Atmospheric stability has a major effect in determining the wind energy doing work in the atmospheric boundary layer (ABL); however, it is seldom considered in determining this value in emergy analyses. One reason that atmospheric stability is not usually considered is that a sui...

  13. Evaluation of spray drift using low speed wind tunnel measurements and dispersion modeling

    USDA-ARS?s Scientific Manuscript database

    The objective of this work was to evaluate the EPA’s proposed Test Plan for the validation testing of pesticide spray drift reduction technologies (DRTs) for row and field crops, focusing on the evaluation of ground application systems using the low-speed wind tunnel protocols and processing the dat...

  14. Gradient-Based Optimization of Wind Farms with Different Turbine Heights: Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stanley, Andrew P. J.; Thomas, Jared; Ning, Andrew

    Turbine wakes reduce power production in a wind farm. Current wind farms are generally built with turbines that are all the same height, but if wind farms included turbines with different tower heights, the cost of energy (COE) may be reduced. We used gradient-based optimization to demonstrate a method to optimize wind farms with varied hub heights. Our study includes a modified version of the FLORIS wake model that accommodates three-dimensional wakes integrated with a tower structural model. Our purpose was to design a process to minimize the COE of a wind farm through layout optimization and varying turbine hubmore » heights. Results indicate that when a farm is optimized for layout and height with two separate height groups, COE can be lowered by as much as 5%-9%, compared to a similar layout and height optimization where all the towers are the same. The COE has the best improvement in farms with high turbine density and a low wind shear exponent.« less

  15. Gradient-Based Optimization of Wind Farms with Different Turbine Heights

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stanley, Andrew P. J.; Thomas, Jared; Ning, Andrew

    Turbine wakes reduce power production in a wind farm. Current wind farms are generally built with turbines that are all the same height, but if wind farms included turbines with different tower heights, the cost of energy (COE) may be reduced. We used gradient-based optimization to demonstrate a method to optimize wind farms with varied hub heights. Our study includes a modified version of the FLORIS wake model that accommodates three-dimensional wakes integrated with a tower structural model. Our purpose was to design a process to minimize the COE of a wind farm through layout optimization and varying turbine hubmore » heights. Results indicate that when a farm is optimized for layout and height with two separate height groups, COE can be lowered by as much as 5%-9%, compared to a similar layout and height optimization where all the towers are the same. The COE has the best improvement in farms with high turbine density and a low wind shear exponent.« less

  16. Global composites of surface wind speeds in tropical cyclones based on a 12 year scatterometer database

    NASA Astrophysics Data System (ADS)

    Klotz, Bradley W.; Jiang, Haiyan

    2016-10-01

    A 12 year global database of rain-corrected satellite scatterometer surface winds for tropical cyclones (TCs) is used to produce composites of TC surface wind speed distributions relative to vertical wind shear and storm motion directions in each TC-prone basin and various TC intensity stages. These composites corroborate ideas presented in earlier studies, where maxima are located right of motion in the Earth-relative framework. The entire TC surface wind asymmetry is down motion left for all basins and for lower strength TCs after removing the motion vector. Relative to the shear direction, the motion-removed composites indicate that the surface wind asymmetry is located down shear left for the outer region of all TCs, but for the inner-core region it varies from left of shear to down shear right for different basin and TC intensity groups. Quantification of the surface wind asymmetric structure in further stratifications is a necessary next step for this scatterometer data set.

  17. Wind accretion in the massive X-ray binary 4U 2206+54: abnormally slow wind and a moderately eccentric orbit

    NASA Astrophysics Data System (ADS)

    Ribó, M.; Negueruela, I.; Blay, P.; Torrejón, J. M.; Reig, P.

    2006-04-01

    Massive X-ray binaries are usually classified by the properties of the donor star in classical, supergiant and Be X-ray binaries, the main difference being the mass transfer mechanism between the two components. The massive X-ray binary 4U 2206+54 does not fit in any of these groups, and deserves a detailed study to understand how the transfer of matter and the accretion on to the compact object take place. To this end we study an IUE spectrum of the donor and obtain a wind terminal velocity (v_∞) of ~350 km s-1, which is abnormally slow for its spectral type. We also analyse here more than 9 years of available RXTE/ASM data. We study the long-term X-ray variability of the source and find it to be similar to that observed in the wind-fed supergiant system Vela X-1, reinforcing the idea that 4U 2206+54 is also a wind-fed system. We find a quasi-period decreasing from ~270 to ~130 d, noticed in previous works but never studied in detail. We discuss possible scenarios for its origin and conclude that long-term quasi-periodic variations in the mass-loss rate of the primary are probably driving such variability in the measured X-ray flux. We obtain an improved orbital period of P_orb=9.5591±0.0007 d with maximum X-ray flux at MJD 51856.6±0.1. Our study of the orbital X-ray variability in the context of wind accretion suggests a moderate eccentricity around 0.15 for this binary system. Moreover, the low value of v_∞ solves the long-standing problem of the relatively high X-ray luminosity for the unevolved nature of the donor, BD +53°2790, which is probably an O9.5 V star. We note that changes in v_∞ and/or the mass-loss rate of the primary alone cannot explain the different patterns displayed by the orbital X-ray variability. We finally emphasize that 4U 2206+54, together with LS 5039, could be part of a new population of wind-fed HMXBs with main sequence donors, the natural progenitors of supergiant X-ray binaries.

  18. Mid-latitude thermospheric wind changes during the St. Patrick's Day storm of 2015 observed by two Fabry-Perot interferometers in China

    NASA Astrophysics Data System (ADS)

    Huang, Cong; Xu, Ji-Yao; Zhang, Xiao-Xin; Liu, Dan-Dan; Yuan, Wei; Jiang, Guo-Ying

    2018-04-01

    In this work, we utilize thermospheric wind observations by the Fabry-Perot interferometers (FPI) from the Kelan (KL) station (38.7°N, 111.6°E, Magnetic Latitude: 28.9°N) and the Xinglong (XL) station (40.2°N, 117.4°E, Magnetic Latitude: 30.5°N) in central China during the St. Patrick's Day storm (from Mar. 17 to Mar. 19) of 2015 to analyze thermospheric wind disturbances and compare observations with the Horizontal Wind Model 2007 (HWM07). The results reveal that the wind measurements at KL show very similar trends to those at XL. Large enhancements are seen in both the westward and equatorward winds after the severe geomagnetic storm occurred. The westward wind speed increased to a peak value of 75 m/s and the equatorward wind enhanced to a peak value of over 100 m/s. There also exist obvious poleward disturbances in the meridional winds during Mar. 17 to Mar. 19. According to the comparison with HWM07, there exist evident wind speed and temporal differences between FPI-winds and the model outputs in this severe geomagnetic storm. The discrepancies between the observations and HWM07 imply that the empirical model should be used carefully in wind disturbance forecast during large geomagnetic storms and more investigations between measurements and numerical models are necessary in future studies.

  19. Impact of active and break wind spells on the demand-supply balance in wind energy in India

    NASA Astrophysics Data System (ADS)

    Kulkarni, Sumeet; Deo, M. C.; Ghosh, Subimal

    2018-02-01

    With an installed capacity of over 19,000 MW, the wind power currently accounts for almost 70% of the total installed capacity among the renewable energy sector in India. The extraction of wind power mainly depends on prevailing meteorology which is strongly influenced by monsoon variability. The monsoon season is characterized by significant fluctuations in between periods of wet and dry spells. During the dry spells, the demand for power from agriculture and cooling equipment increases, whereas during the wet periods, such demand reduces, although, at the same time, the power supply increases because of strong westerly winds contributing to an enhanced production of wind energy. At this backdrop, we aim to assess the impact of intra-seasonal wind variability on the balance of energy supply and demand during monsoon seasons in India. Further, we explore the probable cause of wind variability by relating it to El Nino events. It is observed that the active and break phases in wind significantly impact the overall wind potential output. Although the dry spells are generally found to reduce the overall wind potential, their impact on the potential seems to have declined after the year 2000. The impact of meteorological changes on variations in wind power studied in this work should find applications typically in taking investment decisions on conventional generation facilities, like thermal, which are currently used to maintain the balance of power supply and demand.

  20. Colliding Winds and Tomography of O-Type Binaries

    NASA Technical Reports Server (NTRS)

    Gies, Dougles R.

    1995-01-01

    This grant was awarded in support of an observational study with the NASA IUE Observatory during the 15th episode (1992), and it subsequently also supported our continuing work in 16th (1994) and 18th (1995) episodes. The project involved the study of FUV spectra of massive spectroscopic binary systems containing hot stars of spectral type O. We applied a Doppler tomography algorithm to reconstruct the individual component UV spectra of stars in order to obtain improved estimates of the temperature, gravity, UV intensity ratio, and projected rotational velocity for stars in each system, and to make a preliminary survey for abundance anomalies through comparison with standard spectra. We also investigated the orbital phase-related variations in the UV stellar wind lines to probe the geometries of wind-wind collisions in these systems. The project directly supported two Ph.D. dissertations at Georgia State University (by Penny and Thaller), and we are grateful for this support. No inventions were made in the performance of this work. Detailed results are summarized in the abstracts listed in the following section.

  1. Small Particulate Contamination Survey Of Genesis Flight Sample 61423

    NASA Technical Reports Server (NTRS)

    Kuhlman, K. R.; Schmeling, M.; Gonzalez, C. P.; Allums, K. K.; Allton, J. H.; Burnett, D. S.

    2016-01-01

    The Genesis mission collected solar wind and brought it back to Earth in order to provide precise knowledge of solar isotopic and elemental compositions. The ions in the solar wind stop in the collectors at depths on the order of 10 to a few hundred nanometers. This shallow implantation layer is critical for scientific analysis of the composition of the solar wind and must be preserved throughout sample handling, cleaning, processing, distribution, preparation and analysis. We continue to work with the community of scientists analyzing Genesis samples using our unique laboratory facilities -- and, where needed, our unique cleaning techniques -- to significantly enhance the science return from the Genesis mission. This work is motivated by the need to understand the submicron contamination on the collectors in the Genesis payload as recovered from the crash site in the Utah desert, and -- perhaps more importantly -- how to remove it. We continue to evaluate the effectiveness of the wet-chemical "cleaning" steps used by various investigators, to enable them to design improved methods of stripping spacecraft and terrestrial contamination from surfaces while still leaving the solar-wind signal intact.

  2. Improving lidar turbulence estimates for wind energy

    NASA Astrophysics Data System (ADS)

    Newman, J. F.; Clifton, A.; Churchfield, M. J.; Klein, P.

    2016-09-01

    Remote sensing devices (e.g., lidars) are quickly becoming a cost-effective and reliable alternative to meteorological towers for wind energy applications. Although lidars can measure mean wind speeds accurately, these devices measure different values of turbulence intensity (TI) than an instrument on a tower. In response to these issues, a lidar TI error reduction model was recently developed for commercially available lidars. The TI error model first applies physics-based corrections to the lidar measurements, then uses machine-learning techniques to further reduce errors in lidar TI estimates. The model was tested at two sites in the Southern Plains where vertically profiling lidars were collocated with meteorological towers. Results indicate that the model works well under stable conditions but cannot fully mitigate the effects of variance contamination under unstable conditions. To understand how variance contamination affects lidar TI estimates, a new set of equations was derived in previous work to characterize the actual variance measured by a lidar. Terms in these equations were quantified using a lidar simulator and modeled wind field, and the new equations were then implemented into the TI error model.

  3. Improving Lidar Turbulence Estimates for Wind Energy: Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Newman, Jennifer; Clifton, Andrew; Churchfield, Matthew

    2016-10-01

    Remote sensing devices (e.g., lidars) are quickly becoming a cost-effective and reliable alternative to meteorological towers for wind energy applications. Although lidars can measure mean wind speeds accurately, these devices measure different values of turbulence intensity (TI) than an instrument on a tower. In response to these issues, a lidar TI error reduction model was recently developed for commercially available lidars. The TI error model first applies physics-based corrections to the lidar measurements, then uses machine-learning techniques to further reduce errors in lidar TI estimates. The model was tested at two sites in the Southern Plains where vertically profiling lidarsmore » were collocated with meteorological towers. Results indicate that the model works well under stable conditions but cannot fully mitigate the effects of variance contamination under unstable conditions. To understand how variance contamination affects lidar TI estimates, a new set of equations was derived in previous work to characterize the actual variance measured by a lidar. Terms in these equations were quantified using a lidar simulator and modeled wind field, and the new equations were then implemented into the TI error model.« less

  4. Slow and fast solar wind - data selection and statistical analysis

    NASA Astrophysics Data System (ADS)

    Wawrzaszek, Anna; Macek, Wiesław M.; Bruno, Roberto; Echim, Marius

    2014-05-01

    In this work we consider the important problem of selection of slow and fast solar wind data measured in-situ by the Ulysses spacecraft during two solar minima (1995-1997, 2007-2008) and solar maximum (1999-2001). To recognise different types of solar wind we use a set of following parameters: radial velocity, proton density, proton temperature, the distribution of charge states of oxygen ions, and compressibility of magnetic field. We present how this idea of the data selection works on Ulysses data. In the next step we consider the chosen intervals for fast and slow solar wind and perform statistical analysis of the fluctuating magnetic field components. In particular, we check the possibility of identification of inertial range by considering the scale dependence of the third and fourth orders scaling exponents of structure function. We try to verify the size of inertial range depending on the heliographic latitudes, heliocentric distance and phase of the solar cycle. Research supported by the European Community's Seventh Framework Programme (FP7/2007 - 2013) under grant agreement no 313038/STORM.

  5. Applied Meteorology Unit (AMU)

    NASA Technical Reports Server (NTRS)

    Bauman, William; Crawford, Winifred; Watson, Leela; Wheeler, Mark

    2011-01-01

    The AMU Team began four new tasks in this quarter: (1) began work to improve the AMU-developed tool that provides the launch weather officers information on peak wind speeds that helps them assess their launch commit criteria; (2) began updating lightning climatologies for airfields around central Florida. These climatologies help National Weather Service and Air Force forecasters determine the probability of lightning occurrence at these sites; (3) began a study for the 30th Weather Squadron at Vandenberg Air Force Base in California to determine if precursors can be found in weather observations to help the forecasters determine when they will get strong wind gusts in their northern towers; and (4) began work to update the AMU-developed severe weather tool with more data and possibly improve its performance using a new statistical technique. Include is a section of summaries and detail reporting on the quarterly tasks: (1) Peak Wind Tool for user Meteorological Interactive Data Display System (LCC), Phase IV, (2) Situational Lightning climatologies for Central Florida, Phase V, (3) Vandenberg AFB North Base Wind Study and (4) Upgrade Summer Severe Weather Tool Meteorological Interactive Data Display System (MIDDS).

  6. Improving Lidar Turbulence Estimates for Wind Energy

    DOE PAGES

    Newman, Jennifer F.; Clifton, Andrew; Churchfield, Matthew J.; ...

    2016-10-03

    Remote sensing devices (e.g., lidars) are quickly becoming a cost-effective and reliable alternative to meteorological towers for wind energy applications. Although lidars can measure mean wind speeds accurately, these devices measure different values of turbulence intensity (TI) than an instrument on a tower. In response to these issues, a lidar TI error reduction model was recently developed for commercially available lidars. The TI error model first applies physics-based corrections to the lidar measurements, then uses machine-learning techniques to further reduce errors in lidar TI estimates. The model was tested at two sites in the Southern Plains where vertically profiling lidarsmore » were collocated with meteorological towers. Results indicate that the model works well under stable conditions but cannot fully mitigate the effects of variance contamination under unstable conditions. To understand how variance contamination affects lidar TI estimates, a new set of equations was derived in previous work to characterize the actual variance measured by a lidar. Terms in these equations were quantified using a lidar simulator and modeled wind field, and the new equations were then implemented into the TI error model.« less

  7. A methodology to guide the selection of composite materials in a wind turbine rotor blade design process

    NASA Astrophysics Data System (ADS)

    Bortolotti, P.; Adolphs, G.; Bottasso, C. L.

    2016-09-01

    This work is concerned with the development of an optimization methodology for the composite materials used in wind turbine blades. Goal of the approach is to guide designers in the selection of the different materials of the blade, while providing indications to composite manufacturers on optimal trade-offs between mechanical properties and material costs. The method works by using a parametric material model, and including its free parameters amongst the design variables of a multi-disciplinary wind turbine optimization procedure. The proposed method is tested on the structural redesign of a conceptual 10 MW wind turbine blade, its spar caps and shell skin laminates being subjected to optimization. The procedure identifies a blade optimum for a new spar cap laminate characterized by a higher longitudinal Young's modulus and higher cost than the initial one, which however in turn induce both cost and mass savings in the blade. In terms of shell skin, the adoption of a laminate with intermediate properties between a bi-axial one and a tri-axial one also leads to slight structural improvements.

  8. Efficacy and safety of Gantong Granules in the treatment of common cold with wind-heat syndrome: study protocol for a randomized controlled trial.

    PubMed

    Min, Jie; Li, Xiao-qiang; She, Bin; Chen, Yan; Mao, Bing

    2015-05-19

    Although the common cold is generally mild and self-limiting, it is a leading cause of consultations with doctors and missed days from school and work. In light of its favorable effects of relieving symptoms and minimal side-effects, Traditional Chinese Medicine (TCM) has been widely used to treat the common cold. However, there is a lack of robust evidence to support the clinical utility of such a treatment. This study is designed to evaluate the efficacy and safety of Gantong Granules compared with placebo in patients with the common cold with wind-heat syndrome (CCWHS). This is a multicenter, phase IIb, double-blind, placebo-controlled and randomized clinical trial. A total of 240 patients will be recruited, from 5 centers across China and randomly assigned to the high-dose group, medium-dose group, low-dose group or placebo control group in a 1:1:1:1 ratio. All subjects will receive the treatment for 3 to 5 days, followed by a 7-day follow-up period. The primary outcome is the duration of all symptoms. Secondary outcomes include the duration of primary symptoms and each symptom, time to fever relief and time to fever clearance, change in TCM symptom score, and change in Symptom and Sign Score. This trial will provide high-quality evidence on the efficacy and safety of Gantong Granules in treating CCWHS, and help to optimize the dose selection for a phase III clinical trial. The registration number is ChiCTR-TRC-14004255 , which was assigned by the Chinese Clinical Trial Registry on 12 February 2014.

  9. Wind Plant Performance Prediction (WP3) Project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Craig, Anna

    The methods for analysis of operational wind plant data are highly variable across the wind industry, leading to high uncertainties in the validation and bias-correction of preconstruction energy estimation methods. Lack of credibility in the preconstruction energy estimates leads to significant impacts on project financing and therefore the final levelized cost of energy for the plant. In this work, the variation in the evaluation of a wind plant's operational energy production as a result of variations in the processing methods applied to the operational data is examined. Preliminary results indicate that selection of the filters applied to the data andmore » the filter parameters can have significant impacts in the final computed assessment metrics.« less

  10. Field Testing of LIDAR-Assisted Feedforward Control Algorithms for Improved Speed Control and Fatigue Load Reduction on a 600-kW Wind Turbine: Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kumar, Avishek A.; Bossanyi, Ervin A.; Scholbrock, Andrew K.

    2015-12-14

    A severe challenge in controlling wind turbines is ensuring controller performance in the presence of a stochastic and unknown wind field, relying on the response of the turbine to generate control actions. Recent technologies such as LIDAR, allow sensing of the wind field before it reaches the rotor. In this work a field-testing campaign to test LIDAR Assisted Control (LAC) has been undertaken on a 600-kW turbine using a fixed, five-beam LIDAR system. The campaign compared the performance of a baseline controller to four LACs with progressively lower levels of feedback using 35 hours of collected data.

  11. New Observation of the Polar Wind in the Topside Ionosphere

    NASA Astrophysics Data System (ADS)

    Yau, Andrew W.; Howarth, Andrew

    2016-07-01

    The theoretical prediction of the "classical" polar wind dates back to the works of Banks et al., Lemaire et al., Marubashi, Nishida, and other authors in the late sixties and early seventies. Since then, direct in-situ observations of the polar wind have been made on a number of satellites above the topside ionosphere, notably ISIS-2, Akebono, and DE-1, at altitudes of 1400-50,000 km. In this paper, we present the first in-situ observation of the polar wind inside the topside ionosphere on the Enhanced Polar Outflow Probe (e-POP) down to 600 km, and we compare our low-altitude observation with earlier observations at higher altitudes as well as theoretical predictions.

  12. Report of the Comet Science Working Group

    NASA Technical Reports Server (NTRS)

    1979-01-01

    General scientific questions and measurement objectives that can be addressed on a first comet mission relate to: (1) the chemical nature and the physical structure of comet nuclei as well as the changes that occur as functions of time and orbital position; (2) the chemical and physical nature of the atmospheres and ionospheres of comets, the processes which occur in them, and the development of these atmospheres and ionospheres as functions of time and orbital position; and (3) the nature of comet tails, the processes by which they are formed, and the interaction of comets with the solar wind. Capabilities of the various instruments required are discussed.

  13. Obstacle avoidance in social groups: new insights from asynchronous models

    PubMed Central

    Croft, Simon; Budgey, Richard; Pitchford, Jonathan W.; Wood, A. Jamie

    2015-01-01

    For moving animals, the successful avoidance of hazardous obstacles is an important capability. Despite this, few models of collective motion have addressed the relationship between behavioural and social features and obstacle avoidance. We develop an asynchronous individual-based model for social movement which allows social structure within groups to be included. We assess the dynamics of group navigation and resulting collision risk in the context of information transfer through the system. In agreement with previous work, we find that group size has a nonlinear effect on collision risk. We implement examples of possible network structures to explore the impact social preferences have on collision risk. We show that any social heterogeneity induces greater obstacle avoidance with further improvements corresponding to groups containing fewer influential individuals. The model provides a platform for both further theoretical investigation and practical application. In particular, we argue that the role of social structures within bird flocks may have an important role to play in assessing the risk of collisions with wind turbines, but that new methods of data analysis are needed to identify these social structures. PMID:25833245

  14. Inertial Range Turbulence of Fast and Slow Solar Wind at 0.72 AU and Solar Minimum

    NASA Astrophysics Data System (ADS)

    Teodorescu, Eliza; Echim, Marius; Munteanu, Costel; Zhang, Tielong; Bruno, Roberto; Kovacs, Peter

    2015-05-01

    We investigate Venus Express observations of magnetic field fluctuations performed systematically in the solar wind at 0.72 Astronomical Units (AU), between 2007 and 2009, during the deep minimum of solar cycle 24. The power spectral densities (PSDs) of the magnetic field components have been computed for time intervals that satisfy the data integrity criteria and have been grouped according to the type of wind, fast and slow, defined for speeds larger and smaller, respectively, than 450 km s-1. The PSDs show higher levels of power for the fast wind than for the slow. The spectral slopes estimated for all PSDs in the frequency range 0.005-0.1 Hz exhibit a normal distribution. The average value of the trace of the spectral matrix is -1.60 for fast solar wind and -1.65 for slow wind. Compared to the corresponding average slopes at 1 AU, the PSDs are shallower at 0.72 AU for slow wind conditions suggesting a steepening of the solar wind spectra between Venus and Earth. No significant time variation trend is observed for the spectral behavior of both the slow and fast wind.

  15. Integration of Wind Energy Systems into Power Engineering Education Program at UW-Madison

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Venkataramanan, Giri; Lesieutre, Bernard; Jahns, Thomas

    This project has developed an integrated curriculum focused on the power engineering aspects of wind energy systems that builds upon a well-established graduate educational program at UW- Madison. Five new courses have been developed and delivered to students. Some of the courses have been offered on multiple occasions. The courses include: Control of electric drives for Wind Power applications, Utility Applications of Power Electronics (Wind Power), Practicum in Small Wind Turbines, Utility Integration of Wind Power, and Wind and Weather for Scientists and Engineers. Utility Applications of Power Electronics (Wind Power) has been provided for distance education as well asmore » on-campus education. Several industrial internships for students have been organized. Numerous campus seminars that provide discussion on emerging issues related to wind power development have been delivered in conjunction with other campus events. Annual student conferences have been initiated, that extend beyond wind power to include sustainable energy topics to draw a large group of stakeholders. Energy policy electives for engineering students have been identified for students to participate through a certificate program. Wind turbines build by students have been installed at a UW-Madison facility, as a test-bed. A Master of Engineering program in Sustainable Systems Engineering has been initiated that incorporates specializations that include in wind energy curricula. The project has enabled UW-Madison to establish leadership at graduate level higher education in the field of wind power integration with the electric grid.« less

  16. Remote Sensing of Multi-Level Wind Fields with High-Energy Airborne Scanning Coherent Doppler Lidar

    NASA Technical Reports Server (NTRS)

    Rothermel, Jeffry; Olivier, Lisa D.; Banta, Robert M.; Hardesty, R. Michael; Howell, James N.; Cutten, Dean R.; Johnson, Steven C.; Menzies, Robert T.; Tratt, David M.

    1997-01-01

    The atmospheric lidar remote sensing groups of NOAA Environmental Technology Laboratory, NASA Marshall Space Flight Center, and Jet Propulsion Laboratory have developed and flown a scanning, 1 Joule per pulse, CO2 coherent Doppler lidar capable of mapping a three-dimensional volume of atmospheric winds and aerosol backscatter in the troposphere and lower stratosphere. Applications include the study of severe and non-severe atmospheric flows, intercomparisons with other sensors, and the simulation of prospective satellite Doppler lidar wind profilers. Examples of wind measurements are given for the marine boundary layer and near the coastline of the western United States.

  17. Remote sensing of multi-level wind fields with high-energy airborne scanning coherent Doppler lidar.

    PubMed

    Rothermel, J; Olivier, L; Banta, R; Hardesty, R M; Howell, J; Cutten, D; Johnson, S; Menzies, R; Tratt, D M

    1998-01-19

    The atmospheric lidar remote sensing groups of NOAA Environmental Technology Laboratory, NASA Marshall Space Flight Center, and Jet Propulsion Laboratory have developed and flown a scanning, 1 Joule per pulse, CO2 coherent Doppler lidar capable of mapping a three-dimensional volume of atmospheric winds and aerosol backscatter in the planetary boundary layer, free troposphere, and lower stratosphere. Applications include the study of severe and non-severe atmospheric flows, intercomparisons with other sensors, and the simulation of prospective satellite Doppler lidar wind profilers. Examples of wind measurements are given for the marine boundary layer and near the coastline of the western United States.

  18. Smart Novel Semi-Active Tuned Mass Damper for Fixed-Bottom and Floating Offshore Wind (Paper)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rodriguez Tsouroukdissian, Arturo; Lackner, Mathew; Cross-Whiter, John

    The intention of this paper is to present the results of a novel smart semi-active tuned mass damper (SA-TMD), which mitigates unwanted loads for both fixed-bottom and floating offshore wind systems. The paper will focus on the most challenging water depths for both fixed-bottom and floating systems. A close to 38m Monopile and 55m Tension Leg Platform (TLP) will be considered. A technical development and trade-off analysis will be presented comparing the new system with existing passive non-linear TMD (N-TMD) technology and semi-active. TheSATMD works passively and activates itself with low power source under unwanted dynamic loading in less thanmore » 60msec. It is composed of both variable stiffness and damping elements coupled to a central pendulum mass. The analysis has been done numerically in both FAST(NREL) and Orcaflex (Orcina), and integrated in the Wind Turbine system employing CAD/CAE. The results of this work will pave the way for experimental testing to complete the technology qualification process. The load reductions under extreme and fatigue cases reach up significant levels at tower base, consequently reducing LCOE for fixed-bottom to floating wind solutions. The nacelle acceleration is reduced substantially under severe random wind and sea states, reducing the risks of failure of electromechanical components and blades at the rotor nacelle assembly. The SA-TMD system isa new technology that has not been applied previously in wind solutions. Structural damping devices aim to increase offshore wind turbine system robustness and reliability, which eases multiple substructures installations and global stability.« less

  19. Determination of real-time predictors of the wind turbine wake meandering

    NASA Astrophysics Data System (ADS)

    Muller, Yann-Aël; Aubrun, Sandrine; Masson, Christian

    2015-03-01

    The present work proposes an experimental methodology to characterize the unsteady properties of a wind turbine wake, called meandering, and particularly its ability to follow the large-scale motions induced by large turbulent eddies contained in the approach flow. The measurements were made in an atmospheric boundary layer wind tunnel. The wind turbine model is based on the actuator disc concept. One part of the work has been dedicated to the development of a methodology for horizontal wake tracking by mean of a transverse hot wire rake, whose dynamic response is adequate for spectral analysis. Spectral coherence analysis shows that the horizontal position of the wake correlates well with the upstream transverse velocity, especially for wavelength larger than three times the diameter of the disc but less so for smaller scales. Therefore, it is concluded that the wake is actually a rather passive tracer of the large surrounding turbulent structures. The influence of the rotor size and downstream distance on the wake meandering is studied. The fluctuations of the lateral force and the yawing torque affecting the wind turbine model are also measured and correlated with the wake meandering. Two approach flow configurations are then tested: an undisturbed incoming flow (modelled atmospheric boundary layer) and a disturbed incoming flow, with a wind turbine model located upstream. Results showed that the meandering process is amplified by the presence of the upstream wake. It is shown that the coherence between the lateral force fluctuations and the horizontal wake position is significant up to length scales larger than twice the wind turbine model diameter. This leads to the conclusion that the lateral force is a better candidate than the upstream transverse velocity to predict in real time the meandering process, for either undisturbed (wake free) or disturbed incoming atmospheric flows.

  20. Thermal Disk Winds in X-Ray Binaries: Realistic Heating and Cooling Rates Give Rise to Slow, but Massive, Outflows

    NASA Astrophysics Data System (ADS)

    Higginbottom, N.; Proga, D.; Knigge, C.; Long, K. S.

    2017-02-01

    A number of X-ray binaries exhibit clear evidence for the presence of disk winds in the high/soft state. A promising driving mechanism for these outflows is mass loss driven by the thermal expansion of X-ray heated material in the outer disk atmosphere. Higginbottom & Proga recently demonstrated that the properties of thermally driven winds depend critically on the shape of the thermal equilibrium curve, since this determines the thermal stability of the irradiated material. For a given spectral energy distribution, the thermal equilibrium curve depends on an exact balance between the various heating and cooling mechanisms at work. Most previous work on thermally driven disk winds relied on an analytical approximation to these rates. Here, we use the photoionization code cloudy to generate realistic heating and cooling rates which we then use in a 2.5D hydrodynamic model computed in ZEUS to simulate thermal winds in a typical black hole X-ray binary. We find that these heating and cooling rates produce a significantly more complex thermal equilibrium curve, with dramatically different stability properties. The resulting flow, calculated in the optically thin limit, is qualitatively different from flows calculated using approximate analytical rates. Specifically, our thermal disk wind is much denser and slower, with a mass-loss rate that is a factor of two higher and characteristic velocities that are a factor of three lower. The low velocity of the flow—{v}\\max ≃ 200 km s-1—may be difficult to reconcile with observations. However, the high mass-loss rate—15 × the accretion rate—is promising, since it has the potential to destabilize the disk. Thermally driven disk winds may therefore provide a mechanism for state changes.

  1. Saturn's equatorial jet structure from Cassini/ISS

    NASA Astrophysics Data System (ADS)

    García-Melendo, Enrique; Legarreta, Jon; Sánchez-Lavega, Agustín.; Pérez-Hoyos, Santiago; Hueso, Ricardo

    2010-05-01

    Detailed wind observations of the equatorial regions of the gaseous giant planets, Jupiter and Saturn, are crucial for understanding the basic problem of the global circulation and obtaining new detailed information on atmospheric phenomena. In this work we present high resolution data of Saturn's equatorial region wind profile from Cassini/ISS images. To retrieve wind measurements we applied an automatic cross correlator to image pairs taken by Cassini/ISS with the MT1, MT2, MT3 filters centred at the respective three methane absorbing bands of 619nm, 727nm, and 889nm, and with the adjacent continuum CB1, CB2, and CB3 filters. We obtained a complete high resolution coverage of Saturn's wind profile in the equatorial region. The equatorial jet displays an overall symmetric structure similar to that shown the by same region in Jupiter. This result suggests that, in accordance to some of the latest compressible atmosphere computer models, probably global winds in gaseous giants are deeply rooted in the molecular hydrogen layer. Wind profiles in the methane absorbing bands show the effect of strong vertical shear, ~40m/s per scale height, confirming previous results and an important decay in the wind intensity since the Voyager era (~100 m/s in the continuum and ~200 m/s in the methane absorbing band). We also report the discovery of a new feature, a very strong and narrow jet on the equator, about only 5 degrees wide, that despite the vertical shear maintains its intensity (~420 m/s) in both, the continuum and methane absorbing band filters. Acknowledgements: Work supported by the Spanish MICIIN AYA2009-10701 with FEDER and Grupos Gobierno Vasco IT-464-07.

  2. Role of Computational Fluid Dynamics and Wind Tunnels in Aeronautics R and D

    NASA Technical Reports Server (NTRS)

    Malik, Murjeeb R.; Bushnell, Dennis M.

    2012-01-01

    The purpose of this report is to investigate the status and future projections for the question of supplantation of wind tunnels by computation in design and to intuit the potential impact of computation approaches on wind-tunnel utilization all with an eye toward reducing the infrastructure cost at aeronautics R&D centers. Wind tunnels have been closing for myriad reasons, and such closings have reduced infrastructure costs. Further cost reductions are desired, and the work herein attempts to project which wind-tunnel capabilities can be replaced in the future and, if possible, the timing of such. If the possibility exists to project when a facility could be closed, then maintenance and other associated costs could be rescheduled accordingly (i.e., before the fact) to obtain an even greater infrastructure cost reduction.

  3. Lewis Research Center studies of multiple large wind turbine generators on a utility network

    NASA Technical Reports Server (NTRS)

    Gilbert, L. J.; Triezenberg, D. M.

    1979-01-01

    A NASA-Lewis program to study the anticipated performance of a wind turbine generator farm on an electric utility network is surveyed. The paper describes the approach of the Lewis Wind Energy Project Office to developing analysis capabilities in the area of wind turbine generator-utility network computer simulations. Attention is given to areas such as, the Lewis Purdue hybrid simulation, an independent stability study, DOE multiunit plant study, and the WEST simulator. Also covered are the Lewis mod-2 simulation including analog simulation of a two wind turbine system and comparison with Boeing simulation results, and gust response of a two machine model. Finally future work to be done is noted and it is concluded that the study shows little interaction between the generators and between the generators and the bus.

  4. Analysis of turbine-grid interaction of grid-connected wind turbine using HHT

    NASA Astrophysics Data System (ADS)

    Chen, A.; Wu, W.; Miao, J.; Xie, D.

    2018-05-01

    This paper processes the output power of the grid-connected wind turbine with the denoising and extracting method based on Hilbert Huang transform (HHT) to discuss the turbine-grid interaction. At first, the detailed Empirical Mode Decomposition (EMD) and the Hilbert Transform (HT) are introduced. Then, on the premise of decomposing the output power of the grid-connected wind turbine into a series of Intrinsic Mode Functions (IMFs), energy ratio and power volatility are calculated to detect the unessential components. Meanwhile, combined with vibration function of turbine-grid interaction, data fitting of instantaneous amplitude and phase of each IMF is implemented to extract characteristic parameters of different interactions. Finally, utilizing measured data of actual parallel-operated wind turbines in China, this work accurately obtains the characteristic parameters of turbine-grid interaction of grid-connected wind turbine.

  5. Characterization Of Ocean Wind Vector Retrievals Using ERS-2 High-Resolution Long-Term Dataset And Buoy Measurements

    NASA Astrophysics Data System (ADS)

    Polverari, F.; Talone, M.; Crapolicchio, R. Levy, G.; Marzano, F.

    2013-12-01

    The European Remote-sensing Satellite (ERS)-2 scatterometer provides wind retrievals over Ocean. To satisfy the needs of high quality and homogeneous set of scatterometer measurements, the European Space Agency (ESA) has developed the project Advanced Scatterometer Processing System (ASPS) with which a long-term dataset of new ERS-2 wind products, with an enhanced resolution of 25km square, has been generated by the reprocessing of the entire ERS mission. This paper presents the main results of the validation work of such new dataset using in situ measurements provided by the Prediction and Research Moored Array in the Tropical Atlantic (PIRATA). The comparison indicates that, on average, the scatterometer data agree well with buoys measurements, however the scatterometer tends to overestimates lower winds and underestimates higher winds.

  6. Stellar Magnetism, Winds and their Effects on Planetary Environments

    NASA Astrophysics Data System (ADS)

    Vidotto, A. A.

    2016-08-01

    Here, I review some recent works on magnetism of cool, main-sequence stars, their winds and potential impact on surrounding exoplanets. The winds of these stars are very tenuous and persist during their lifetime. Although carrying just a small fraction of the stellar mass, these magnetic winds carry away angular momentum, thus regulating the rotation of the star. Since cool stars are likely to be surrounded by planets, understanding the host star winds and magnetism is a key step towards characterisation of exoplanetary environments. As rotation and activity are intimately related, the spin down of stars leads to a decrease in stellar activity with age. As a consequence, as stars age, a decrease in high-energy (X-ray, extreme ultraviolet) irradiation is observed, which can a ect the evaporation of exoplanetary atmospheres and, thus, also altering exoplanetary evolution.

  7. Studying Solar Wind Properties Around CIRs and Their Effects on GCR Modulation

    NASA Astrophysics Data System (ADS)

    Ghanbari, K.; Florinski, V. A.

    2017-12-01

    Corotating interaction region (CIR) events occur when a fast solar wind stream overtakes slow solar wind, forming a compression region ahead and a rarefaction region behind in the fast solar wind. Usually this phenomena occurs along with a crossing of heliospheric current sheet which is the surface separating solar magnetic fields of opposing polarities. In this work, the solar plasma data provided by the ACE science center are utilized to do a superposed epoch analysis on solar parameters including proton density, proton temperature, solar wind speed and solar magnetic field in order to study how the variations of these parameters affect the modulation of galactic cosmic rays. Magnetic fluctuation variances in different parts a of CIR are computed and analyzed using similar techniques in order to understand the cosmic-ray diffusive transport in these regions.

  8. The NASA/MSFC Coherent Lidar Technology Advisory Team

    NASA Technical Reports Server (NTRS)

    Kavaya, Michael J.

    1999-01-01

    The SPAce Readiness Coherent Lidar Experiment (SPARCLE) mission was proposed as a low cost technology demonstration mission, using a 2-micron, 100-mJ, 6-Hz, 25-cm, coherent lidar system based on demonstrated technology. SPARCLE was selected in late October 1997 to be NASA's New Millennium Program (NMP) second earth-observing (EO-2) mission. To maximize the success probability of SPARCLE, NASA/MSFC desired expert guidance in the areas of coherent laser radar (CLR) theory, CLR wind measurement, fielding of CLR systems, CLR alignment validation, and space lidar experience. This led to the formation of the NASA/MSFC Coherent Lidar Technology Advisory Team (CLTAT) in December 1997. A threefold purpose for the advisory team was identified as: 1) guidance to the SPARCLE mission, 2) advice regarding the roadmap of post-SPARCLE coherent Doppler wind lidar (CDWL) space missions and the desired matching technology development plan 3, and 3) general coherent lidar theory, simulation, hardware, and experiment information exchange. The current membership of the CLTAT is shown. Membership does not result in any NASA or other funding at this time. We envision the business of the CLTAT to be conducted mostly by email, teleconference, and occasional meetings. The three meetings of the CLTAT to date, in Jan. 1998, July 1998, and Jan. 1999, have all been collocated with previously scheduled meetings of the Working Group on Space-Based Lidar Winds. The meetings have been very productive. Topics discussed include the SPARCLE technology validation plan including pre-launch end-to-end testing, the space-based wind mission roadmap beyond SPARCLE and its implications on the resultant technology development, the current values and proposed future advancement in lidar system efficiency, and the difference between using single-mode fiber optical mixing vs. the traditional free space optical mixing.

  9. Classification of Nortes in the Gulf of Mexico derived from wave energy maps

    NASA Astrophysics Data System (ADS)

    Appendini, C. M.; Hernández-Lasheras, J.

    2016-02-01

    Extreme wave climate in the Gulf of Mexico is determined by tropical cyclones and winds from the Central American Cold Surges, locally referred to as Nortes. While hurricanes can have catastrophic effects, extreme waves and storm surge from Nortes occur several times a year, and thus have greater impacts on human activities along the Mexican coast of the Gulf of Mexico. Despite the constant impacts from Nortes, there is no available classification that relates their characteristics (e.g. pressure gradients, wind speed), to the associated coastal impacts. This work presents a first approximation to characterize and classify Nortes, which is based on the assumption that the derived wave energy synthetizes information (i.e. wind intensity, direction and duration) of individual Norte events as they pass through the Gulf of Mexico. First, we developed an index to identify Nortes based on surface pressure differences of two locations. To validate the methodology we compared the events identified with other studies and available Nortes logs. Afterwards, we detected Nortes from the 1986/1987, 2008/2009 and 2009/2010 seasons and used their corresponding wind fields to derive the wave energy maps using a numerical wave model. We used the energy maps to classify the events into groups using manual (visual) and automatic classifications (principal component analysis and k-means). The manual classification identified 3 types of Nortes and the automatic classification identified 5, although 3 of them had a high degree of similarity. The principal component analysis indicated that all events have similar characteristics, as few components are necessary to explain almost all of the variance. The classification from the k-means indicated that 81% of analyzed Nortes affect the southeastern Gulf of Mexico, while a smaller percentage affects the northern Gulf of Mexico and even less affect the western Caribbean.

  10. Observational Signatures Of Agn Feedback Across Cosmic Time

    NASA Astrophysics Data System (ADS)

    Wylezalek, Dominika

    2017-06-01

    While many compelling models of AGN feedback exist, there is no clear data-driven picture of how winds are launched, how they propagate through the galaxy and what impact they have on the galactic gas. Recent work suggests that AGN luminosity plays an important role. The following described projects focus on understanding the power, reach and impact of feedback processes exerted by AGN of different power. I first describe recent efforts in our group of relating feedback signatures in powerful quasars to the specific star formation rate in their host galaxies, where our results are consistent with the AGN having a `negative' impact through feedback on the galaxies' star formation history. Feedback signatures seem to be best observable in gas-rich galaxies where the coupling of the AGN-driven wind to the gas is strongest, in agreement with recent simulations. But how and where does this quenching happen? Is it accomplished through the mechanical action of jets or through nuclear winds driven by radiation pressure? Finally, I show that AGN signatures and AGN-driven winds can be easily hidden and not be apparent in the integrated spectrum of a galaxy hosting a low/intermediate-luminosity AGN. Using data from the new SDSS-IV MaNGA survey, we have developed a new AGN selection algorithm tailored to IFU data and we are uncovering a much more nuanced picture of AGN activity allowing us to discover AGN signatures at large distances from the galaxy center. This implies that large IFU surveys, such as the SDSS-IV MaNGA survey, might uncover many previously unknown AGN and feedback signatures related to them. Outflows and feedback from low- and intermediate-luminosity AGN might have been underestimated in the past but can potentially significantly contribute to the AGN/host-galaxy self-regulation.

  11. Wind-Driven Waves in Tampa Bay, Florida

    NASA Astrophysics Data System (ADS)

    Gilbert, S. A.; Meyers, S. D.; Luther, M. E.

    2002-12-01

    Turbidity and nutrient flux due to sediment resuspension by waves and currents are important factors controlling water quality in Tampa Bay. During December 2001 and January 2002, four Sea Bird Electronics SeaGauge wave and tide recorders were deployed in Tampa Bay in each major bay segment. Since May 2002, a SeaGauge has been continuously deployed at a site in middle Tampa Bay as a component of the Bay Regional Atmospheric Chemistry Experiment (BRACE). Initial results for the summer 2002 data indicate that significant wave height is linearly dependent on wind speed and direction over a range of 1 to 12 m/s. The data were divided into four groups according to wind direction. Wave height dependence on wind speed was examined for each group. Both northeasterly and southwesterly winds force significant wave heights that are about 30% larger than those for northwesterly and southeasterly winds. This difference is explained by variations in fetch due to basin shape. Comparisons are made between these observations and the results of a SWAN-based model of Tampa Bay. The SWAN wave model is coupled to a three-dimensional circulation model and computes wave spectra at each model grid cell under observed wind conditions and modeled water velocity. When SWAN is run without dissipation, the model results are generally similar in wave period but about 25%-50% higher in significant wave height than the observations. The impact of various dissipation mechanisms such as bottom drag and whitecapping on the wave state is being investigated. Preliminary analyses on winter data give similar results.

  12. Assessing Space Weather Applications and Understanding: IMF Bz at L1

    NASA Astrophysics Data System (ADS)

    Riley, P.; Savani, N.; Mays, M. L.; Austin, H. J.

    2017-12-01

    The CCMC - International (CCMC-I) is designed as a self-organizing informal forum for facilitating novel global initiatives on space weather research, development, forecasting and education. Here we capitalize on CCMC'AGUs experience in providing highly utilized web-based services, leadership and trusted relationships with space weather model developers. One of the CCMC-I initiatives is the International Forum for Space Weather Capabilities Assessment. As part of this initiative, within the solar and heliosphere domain, we focus our community discussion on forecasting the magnetic structure of interplanetary CMEs and the ambient solar wind. During the International CCMC-LWS Working Meeting in April 2017 the group instigated open communication to agree upon a standardized process by which all current and future models can be compared under an unbiased test. In this poster, we present our initial findings how we expect different models will move forward with validating and forecasting the magnetic vectors of the solar wind at L1. We also present a new IMF Bz Score-board which will be used to assist in the transitioning of research models into more operational settings.

  13. A wind turbine hybrid simulation framework considering aeroelastic effects

    NASA Astrophysics Data System (ADS)

    Song, Wei; Su, Weihua

    2015-04-01

    In performing an effective structural analysis for wind turbine, the simulation of turbine aerodynamic loads is of great importance. The interaction between the wake flow and the blades may impact turbine blades loading condition, energy yield and operational behavior. Direct experimental measurement of wind flow field and wind profiles around wind turbines is very helpful to support the wind turbine design. However, with the growth of the size of wind turbines for higher energy output, it is not convenient to obtain all the desired data in wind-tunnel and field tests. In this paper, firstly the modeling of dynamic responses of large-span wind turbine blades will consider nonlinear aeroelastic effects. A strain-based geometrically nonlinear beam formulation will be used for the basic structural dynamic modeling, which will be coupled with unsteady aerodynamic equations and rigid-body rotations of the rotor. Full wind turbines can be modeled by using the multi-connected beams. Then, a hybrid simulation experimental framework is proposed to potentially address this issue. The aerodynamic-dominant components, such as the turbine blades and rotor, are simulated as numerical components using the nonlinear aeroelastic model; while the turbine tower, where the collapse of failure may occur under high level of wind load, is simulated separately as the physical component. With the proposed framework, dynamic behavior of NREL's 5MW wind turbine blades will be studied and correlated with available numerical data. The current work will be the basis of the authors' further studies on flow control and hazard mitigation on wind turbine blades and towers.

  14. Experiments on waves under impulsive wind forcing in view of the Phillips (1957) theory

    NASA Astrophysics Data System (ADS)

    Shemer, Lev; Zavadsky, Andrey

    2016-11-01

    Only limited information is currently available on the initial stages of wind-waves growth from rest under sudden wind forcing; the mechanisms leading to the appearance of waves are still not well understood. In the present work, waves emerging in a small-scale laboratory facility under the action of step-like turbulent wind forcing are studied using capacitance and laser slope gauges. Measurements are performed at a number of fetches and for a range of wind velocities. Taking advantage of the fully automated experimental procedure, at least 100 independent realizations are recorded for each wind velocity at every fetch. The accumulated data sets allow calculating ensemble-averaged values of the measured parameters as a function of time elapsed from the blower activation. The accumulated results on the temporal variation of wind-wave field initially at rest allow quantitative comparison with the theory of Phillips (1957). Following Phillips, appearance of the initial detectable ripples was considered first, while the growth of short gravity waves at later times was analyzed separately. Good qualitative and partial quantitative agreement between the Phillips predictions and the measurements was obtained for both those stages of the initial wind-wave field evolution.

  15. Producing Turbulent Wind Tunnel Inflows Relevant to Wind Turbines using an Active Grid

    NASA Astrophysics Data System (ADS)

    Rumple, Christopher; Welch, Matthew; Naughton, Jonathan

    2017-11-01

    The rise of industries like wind energy have provided motivation for generating realistic turbulent inflows in wind tunnels. Facilities with the ability to produce such inflows can study the interaction between the inflow turbulence and the flow of interest such as a wind turbine wake. An active grid - a system of actively driven elements - has gained increasing acceptance in turbulence research over the last 20 years. The ability to tailor the inflow turbulence quantities (e.g. turbulence intensities, integral length scale, and turbulence spectrum) is a driving reason for the growing use of active grids. An active grid with 40 independent axes located within the forward contraction of a low speed wind tunnel is used to explore the range of turbulent inflows possible using hot-wire anemometry to characterize the turbulence. Motor control algorithms (i.e. user waveform inputs) used to produce various turbulent inflows will be presented. Wind data available from meteorological towers are used to develop relevant inflows for wind turbines to demonstrate the usefulness of the active grid. This work was supported by the U.S. Department of Energy, Office of Science, Basic Energy Sciences, under Award # DE-SC0012671.

  16. Computational study: The influence of omni-directional guide vane on the flow pattern characteristic around Savonius wind turbine

    NASA Astrophysics Data System (ADS)

    Wicaksono, Yoga Arob; Tjahjana, D. D. D. P.

    2017-01-01

    Standart Savonius wind turbine have a low performance such as low coefficient of power and low coefficient of torque compared with another type of wind turbine. This phenomenon occurs because the wind stream can cause the negative pressure at the returning rotor. To solve this problem, standard Savonius combined with Omni Directional Guide Vane (ODGV) proposed. The aim of this research is to study the influence of ODGV on the flow pattern characteristic around of Savonius wind turbine. The numerical model is based on the Navier-Stokes equations with the standard k-ɛ turbulent model. This equation solved by a finite volume discretization method. This case was analyzed by commercial computational fluid dynamics solver such as SolidWorks Flow Simulations. Simulations were performed at the different wind directions; there are 0°, 30°,60° at 4 m/s wind speed. The numerical method validated with the past experimental data. The result indicated that the ODGV able to augment air flow to advancing rotor and decrease the negative pressure in the upstream of returning rotor compared to the bare Savonius wind turbine.

  17. Offshore wind turbine foundation monitoring, extrapolating fatigue measurements from fleet leaders to the entire wind farm

    NASA Astrophysics Data System (ADS)

    Weijtens, Wout; Noppe, Nymfa; Verbelen, Tim; Iliopoulos, Alexandros; Devriendt, Christof

    2016-09-01

    The present contribution is part of the ongoing development of a fatigue assessment strategy driven purely on in-situ measurements on operational wind turbines. The primary objective is to estimate the remaining life time of existing wind farms and individual turbines by instrumenting part of the farm with a load monitoring setup. This load monitoring setup allows to measure interface loads and local stress histories. This contribution will briefly discuss how these load measurements can be translated into fatigue assessment of the instrumented turbine. However, due to different conditions at the wind farm, such as turbulence, differences in water depth and foundation design this turbine will not be fully representable for all turbines in the farm. In this paper we will use the load measurements on two offshore wind turbines in the Northwind offshore wind farm to discuss fatigue progression in an operational wind farm. By calculating the damage equivalent loads on the two turbines the fatigue progression is quantified for every 10 minute interval and can be analyzed against turbulence and site conditions. In future work these results will be used to predict the fatigue life progression in the entire farm.

  18. A Database of Interplanetary and Interstellar Dust Detected by the Wind Spacecraft

    NASA Technical Reports Server (NTRS)

    Malaspina, David M.; Wilson, Lynn B., III

    2016-01-01

    It was recently discovered that the WAVES instrument on the Wind spacecraft has been detecting, in situ, interplanetary and interstellar dust of approximately 1 micron radius for the past 22 years. These data have the potential to enable advances in the study of cosmic dust and dust-plasma coupling within the heliosphere due to several unique properties: the Wind dust database spans two full solar cycles; it contains over 107,000 dust detections; it contains information about dust grain direction of motion; it contains data exclusively from the space environment within 350 Earth radii of Earth; and it overlaps by 12 years with the Ulysses dust database. Further, changes to the WAVES antenna response and the plasma environment traversed by Wind over the lifetime of the Wind mission create an opportunity for these data to inform investigations of the physics governing the coupling of dust impacts on spacecraft surfaces to electric field antennas. A Wind dust database has been created to make the Wind dust data easily accessible to the heliophysics community and other researchers. This work describes the motivation, methodology, contents, and accessibility of the Wind dust database.

  19. Interdisciplinary design study of a high-rise integrated roof wind energy system

    NASA Astrophysics Data System (ADS)

    Dekker, R. W. A.; Ferraro, R. M.; Suma, A. B.; Moonen, S. P. G.

    2012-10-01

    Today's market in micro-wind turbines is in constant development introducing more efficient solutions for the future. Besides the private use of tower supported turbines, opportunities to integrate wind turbines in the built environment arise. The Integrated Roof Wind Energy System (IRWES) presented in this work is a modular roof structure integrated on top of existing or new buildings. IRWES is build up by an axial array of skewed shaped funnels used for both wind inlet and outlet. This inventive use of shape and geometry leads to a converging air capturing inlet to create high wind mass flow and velocity toward a Vertical Axis Wind Turbine (VAWT) in the center-top of the roof unit for the generation of a relatively high amount of energy. The scope of this research aims to make an optimized structural design of IRWES to be placed on top of the Vertigo building in Eindhoven; analysis of the structural performance; and impact to the existing structure by means of Finite Element Modeling (FEM). Results show that the obvious impact of wind pressure to the structural design is easily supported in different configurations of fairly simple lightweight structures. In particular, the weight addition to existing buildings remains minimal.

  20. Chirality-dependent flutter of Typha blades in wind

    PubMed Central

    Zhao, Zi-Long; Liu, Zong-Yuan; Feng, Xi-Qiao

    2016-01-01

    Cattail or Typha, an emergent aquatic macrophyte widely distributed in lakes and other shallow water areas, has slender blades with a chiral morphology. The wind-resilient Typha blades can produce distinct hydraulic resistance for ecosystem functions. However, their stem may rupture and dislodge in excessive wind drag. In this paper, we combine fluid dynamics simulations and experimental measurements to investigate the aeroelastic behavior of Typha blades in wind. It is found that the chirality-dependent flutter, including wind-induced rotation and torsion, is a crucial strategy for Typha blades to accommodate wind forces. Flow visualization demonstrates that the twisting morphology of blades provides advantages over the flat one in the context of two integrated functions: improving wind resistance and mitigating vortex-induced vibration. The unusual dynamic responses and superior mechanical properties of Typha blades are closely related to their biological/ecosystem functions and macro/micro structures. This work decodes the physical mechanisms of chirality-dependent flutter in Typha blades and holds potential applications in vortex-induced vibration suppression and the design of, e.g., bioinspired flight vehicles. PMID:27432079

Top