24 CFR 3280.113 - Glass and glazed openings.
Code of Federal Regulations, 2010 CFR
2010-04-01
... Glass and glazed openings. (a) Windows and sliding glass doors. All windows and sliding glass doors shall meet the requirements of § 3280.403 the “Standard for Windows and Sliding Glass Doors Used in...
NASA Astrophysics Data System (ADS)
Schalm, Olivier; Janssens, Koen; Wouters, Hilde; Caluwé, Danielle
2007-07-01
A set of ca. 500 window glass fragments originating from different historical sites in Belgium and covering the period 12 th-18 th century was analyzed by means of electron probe microanalysis. Most samples are archaeological finds deriving from non-figurative windows in secular buildings. However, the analyzed set also contains glass sampled from still existing non-figurative windows in secular buildings and stained-glass windows in religious buildings. A sudden compositional change at the end of the 14 th century can be noticed among the series of glass compositions that were obtained. These changes could be related to the use of different glassmaker recipes and to the introduction of new raw materials for glass making.
24 CFR 3280.113 - Glass and glazed openings.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 24 Housing and Urban Development 5 2011-04-01 2011-04-01 false Glass and glazed openings. 3280.113... Glass and glazed openings. (a) Windows and sliding glass doors. All windows and sliding glass doors shall meet the requirements of § 3280.403 the “Standard for Windows and Sliding Glass Doors Used in...
Current status of photoprotection by window glass, automobile glass, window films, and sunglasses.
Almutawa, Fahad; Vandal, Robert; Wang, Steven Q; Lim, Henry W
2013-04-01
Ultraviolet radiation (UVR) has known adverse effects on the skin and eyes. Practitioners are becoming more aware of the importance of outdoor photoprotection. However, little attention is directed to the exposure of the skin and eyes to UVR through the window glass or sunglasses. The amount of ultraviolet transmission through glass depends mainly on the type of the glass. All types of commercial and automobile glass block the majority of ultraviolet-B; however, the degree of ultraviolet-A transmission depends on the type of glass. Laminated glass offers better UVA protection than tempered glass; new safety regulations for automobiles may result in increased use of laminated glass for side windows. Window films can be applied to glass to increase UVR protection. Sunglasses need to be compliant with one of the national standards; a wraparound style or side shields offer the best protection. Increased understanding by practitioners on the transmission of UVR through glass, window films, and sunglasses would allow them to better educate the public and to better manage photosensitive patients. © 2013 John Wiley & Sons A/S.
19 CFR 10.52 - Painted, colored or stained glass windows for religious institutions.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 19 Customs Duties 1 2011-04-01 2011-04-01 false Painted, colored or stained glass windows for.... General Provisions Works of Art § 10.52 Painted, colored or stained glass windows for religious institutions. When painted, colored, or stained glass windows or parts thereof, are claimed free of duty under...
19 CFR 10.52 - Painted, colored or stained glass windows for religious institutions.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 19 Customs Duties 1 2010-04-01 2010-04-01 false Painted, colored or stained glass windows for.... General Provisions Works of Art § 10.52 Painted, colored or stained glass windows for religious institutions. When painted, colored, or stained glass windows or parts thereof, are claimed free of duty under...
2000 survey of window manufacturers on the subject of switchable glass
NASA Astrophysics Data System (ADS)
LaPointe, Michael R.; Sottile, Gregory M.
2001-11-01
The results of a 2000 survey of United States window manufacturers on the subject of switchable glass are discussed. The areas covered in this paper include awareness of the overall product category of switchable glass and various types of switchable glass, attitudes toward specific features of switchable glass, expectations for manufacturer production of such products, expectations for market penetration rates among end-product consumers, levels of price sensitivity among window manufacturers regarding switchable glass, and expectations for the pace of new product development within the window industry over the next five years.
VIS-IR transmitting BGG glass windows
NASA Astrophysics Data System (ADS)
Bayya, Shyam S.; Chin, Geoff D.; Sanghera, Jasbinder S.; Aggarwal, Ishwar D.
2003-09-01
BaO-Ga2O3-GeO2 (BGG) glasses have the desired properties for various window applications in the 0.5-5 μm wavelength region. These glasses are low cost alternatives to the currently used window materials. Fabrication of a high optical quality 18" diameter BGG glass window has been demonstrated with a transmitted wave front error of λ/10 at 632 nm. BGG substrates have also been successfully tested for environmental weatherability (MIL-F-48616) and rain erosion durability up to 300 mph. Preliminary EMI grids have been successfully applied on BGG glasses demonstrating attenuation of 20dB in X and Ku bands. Although the mechanical properties of BGG glasses are acceptable for various window applications, it is demonstrated here that the properties can be further improved significantly by the glassceramization process. The ceramization process does not add any significant cost to the final window material. The crystallite size in the present glass-ceramic limits its transmission to the 2-5 μm region.
Large Acrylic Spherical Windows In Hyperbaric Underwater Photography
NASA Astrophysics Data System (ADS)
Lones, Joe J.; Stachiw, Jerry D.
1983-10-01
Both acrylic plastic and glass are common materials for hyperbaric optical windows. Although glass continues to be used occasionally for small windows, virtually all large viewports are made of acrylic. It is easy to uderstand the wide use of acrylic when comparing design properties of this plastic with those of glass, and glass windows are relatively more difficult to fabricate and use. in addition there are published guides for the design and fabrication of acrylic windows to be used in the hyperbaric environment of hydrospace. Although these procedures for fabricating the acrylic windows are somewhat involved, the results are extremely reliable. Acrylic viewports are now fabricated to very large sizes for manned observation or optical quality instrumen tation as illustrated by the numerous acrylic submersible vehicle hulls for hu, an occupancy currently in operation and a 3600 large optical window recently developed for the Walt Disney Circle Vision under-water camera housing.
Technical improvements in 19th century Belgian window glass production
NASA Astrophysics Data System (ADS)
Lauriks, Leen; Collette, Quentin; Wouters, Ine; Belis, Jan
Glass was used since the Roman age in the building envelope, but it became widely applied together with iron since the 19th century. Belgium was a major producer of window glass during the nineteenth century and the majority of the produced window glass was exported all over the world. Investigating the literature on the development of 19th century Belgian window glass production is therefore internationally relevant. In the 17th century, wood was replaced as a fuel by coal. In the 19th century, the regenerative tank furnace applied gas as a fuel in a continuous glass production process. The advantages were a clean production, a more constant and higher temperature in the furnace and a fuel saving. The French chemist Nicolas Leblanc (1787-1793) and later the Belgian chemist Ernest Solvay (1863) invented processes to produce alkali out of common salt. The artificial soda ash improved the quality and aesthetics of the glass plates. During the 19th century, the glass production was industrialized, influencing the operation of furnaces, the improvement of raw materials as well as the applied energy sources. Although the production process was industrialized, glassblowing was still the work of an individual. By improving his work tools, he was able to create larger glass plates. The developments in the annealing process followed this evolution. The industry had to wait until the invention of the drawn glass in the beginning of the 20th century to fully industrialise the window glass manufacture process.
Burnett, B R
2001-03-01
At issue in this case was whether an unusual window defect seen in two of the crime scene photographs was due to a bullet and if so, if that same bullet fatally wounded the victim. The window appeared to have been cracked prior to the apparent shot through it. A .22 bullet recovered from autopsy, when examined only by light microscopy, failed to show associated glass fragments. A previously cracked test window was shot a number of times with .22 caliber bullets near the cracks in an effort to simulate the window defect seen in the crime scene photographs. Several of the defects produced by the test window shots appeared similar to the crime scene window defect. The .22 bullet taken from the victim and several of the test bullets (collected by a cotton box) were examined by scanning electron microscopy/energy dispersive X-ray spectroscopy. The test bullets showed glass particles on and embedded in their surfaces. Particles of similar size and composition were found embedded in the surface of the bullet from the victim. The bullet likely struck the window prior to hitting the victim. It was apparent by the morphology of some of the mushroomed test .22 bullets that they hit the window crack. These bullets showed that the glass on one side of a crack often fails before the other side during the strike. Aggregations of powdered glass on many of the mushroomed surfaces of the .22 bullets suggest that as the bullet mushrooms during impact on the window surface, the glass in contact with the bullet powderizes and coats the mushroomed surface of the bullet with a layer of fine glass particles.
Sound isolation performance of interior acoustical sash
NASA Astrophysics Data System (ADS)
Tocci, Gregory
2002-05-01
In existing, as well as new buildings, an interior light of glass mounted on the inside of a prime window is used to improve the sound transmission loss otherwise obtained by the prime window alone. Interior acoustical sash is most often 1/4 in. (6 mm) monolithic or laminated glass, and is typically spaced 3 in. to 6 in. from the glass of the prime window. This paper presents TL data measured at Riverbank Acoustical Laboratories by Solutia (formerly Monsanto) for lightweight prime windows of various types, with and without interior acoustical sash glazed with 1/4 in. laminated glass. The TL data are used to estimate the A-weighted insertion loss of interior acoustical sash when applied to prime windows glazed with lightweight glass for four transportation noise source types-highway traffic, aircraft, electric rail, and diesel rail. The analysis also has been extended to determine the insertion loss expressed as a change in OITC. The data also exhibit the reductions in insertion loss that can result from short-circuiting the interior acoustical sash with the prime window. [Work supported by Solutia, Inc.
Yang, Peihua; Sun, Peng; Chai, Zhisheng; Huang, Langhuan; Cai, Xiang; Tan, Shaozao; Song, Jinhui; Mai, Wenjie
2014-10-27
Multifunctional glass windows that combine energy storage and electrochromism have been obtained by facile thermal evaporation and electrodeposition methods. For example, WO3 films that had been deposited on fluorine-doped tin oxide (FTO) glass exhibited a high specific capacitance of 639.8 F g(-1). Their color changed from transparent to deep blue with an abrupt decrease in optical transmittance from 91.3% to 15.1% at a wavelength of 633 nm when a voltage of -0.6 V (vs. Ag/AgCl) was applied, demonstrating its excellent energy-storage and electrochromism properties. As a second example, a polyaniline-based pseudocapacitive glass was also developed, and its color can change from green to blue. A large-scale pseudocapacitive WO3-based glass window (15×15 cm(2)) was fabricated as a prototype. Such smart pseudocapacitive glass windows show great potential in functioning as electrochromic windows and concurrently powering electronic devices, such as mobile phones or laptops. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Novel hermetic packaging methods for MOEMS
NASA Astrophysics Data System (ADS)
Stark, David
2003-01-01
Hermetic packaging of micro-optoelectromechanical systems (MOEMS) is an immature technology, lacking industry-consensus methods and standards. Off-the-shelf, catalog window assemblies are not yet available. Window assemblies are in general custom designed and manufactured for each new product, resulting in longer than acceptable cycle times, high procurement costs and questionable reliability. There are currently two dominant window-manufacturing methods wherein a metal frame is attached to glass, as well as a third, less-used method. The first method creates a glass-to-metal seal by heating the glass above its Tg to fuse it to the frame. The second method involves first metallizing the glass where it is to be attached to the frame, and then soldering the glass to the frame. The third method employs solder-glass to bond the glass to the frame. A novel alternative with superior features compared to the three previously described window-manufacturing methods is proposed. The new approach lends itself to a plurality of glass-to-metal attachment techniques. Benefits include lower temperature processing than two of the current methods and potentially more cost-effective manufacturing than all three of today"s attachment methods.
Influence of coatings on the thermal and mechanical processes at insulating glass units
NASA Astrophysics Data System (ADS)
Penkova, Nina; Krumov, Kalin; Surleva, Andriana; Geshkova, Zlatka
2017-09-01
Different coatings on structural glass are used in the advances transparent facades and window systems in order to increase the thermal performance of the glass units and to regulate their optical properties. Coated glass has a higher absorptance in the solar spectrum which leads to correspondent higher temperature in the presence of solar load compared to the uncoated one. That process results in higher climatic loads at the insulating glass units (IGU) and in thermal stresses in the coated glass elements. Temperature fields and gradients in glass panes and climatic loads at IGU in window systems are estimated at different coating of glazed system. The study is implemented by numerical simulation of conjugate heat transfer in the window systems at summer time and presence of solar irradiation, as well as during winter night time.
9. INTERIOR OF LIVING ROOM SHOWING ALUMINUM SLIDING GLASS WINDOW ...
9. INTERIOR OF LIVING ROOM SHOWING ALUMINUM SLIDING GLASS WINDOW FRONT DOOR, AND ORIGINAL 6-LIGHT OVER 1-LIGHT, DOUBLE-HUNG WINDOWS IN SINGLE AND DOUBLE ARRANGEMENTS. VIEW TO NORTHWEST. - Bishop Creek Hydroelectric System, Plant 4, Worker Cottage, Bishop Creek, Bishop, Inyo County, CA
AICUZ Air Installation Compatible Use Zone Report for Mather Air Force Base, California.
1982-09-01
Insulation shall be glass fiber or mineral wool . 1-4 Windows a. Windows other than as described in this sectionshall have a laboratory sound transmission...above. Ceilings shall be substantially airtight, with a minimum number of penetrations. I b. Glass fiber or mineral wool insulation at least 2" thick...throughout the cavity space behind the exterior sheathing and between wall studs. Insulation shall be glass fiber or mineral wool . 2-4 Windows a
Design and comparison of laser windows for high-power lasers
NASA Astrophysics Data System (ADS)
Niu, Yanxiong; Liu, Wenwen; Liu, Haixia; Wang, Caili; Niu, Haisha; Man, Da
2014-11-01
High-power laser systems are getting more and more widely used in industry and military affairs. It is necessary to develop a high-power laser system which can operate over long periods of time without appreciable degradation in performance. When a high-energy laser beam transmits through a laser window, it is possible that the permanent damage is caused to the window because of the energy absorption by window materials. So, when we design a high-power laser system, a suitable laser window material must be selected and the laser damage threshold of the window must be known. In this paper, a thermal analysis model of high-power laser window is established, and the relationship between the laser intensity and the thermal-stress field distribution is studied by deducing the formulas through utilizing the integral-transform method. The influence of window radius, thickness and laser intensity on the temperature and stress field distributions is analyzed. Then, the performance of K9 glass and the fused silica glass is compared, and the laser-induced damage mechanism is analyzed. Finally, the damage thresholds of laser windows are calculated. The results show that compared with K9 glass, the fused silica glass has a higher damage threshold due to its good thermodynamic properties. The presented theoretical analysis and simulation results are helpful for the design and selection of high-power laser windows.
Structural Design of Glass and Ceramic Components for Space System Safety
NASA Technical Reports Server (NTRS)
Bernstein, Karen S.
2007-01-01
Manned space flight programs will always have windows as part of the structural shell of the crew compartment. Astronauts and cosmonauts need to and enjoy looking out of the spacecraft windows at Earth, at approaching vehicles, at scientific objectives and at the stars. With few exceptions spacecraft windows have been made of glass, and the lessons learned over forty years of manned space flight have resulted in a well-defined approach for using this brittle, unforgiving material in NASA's vehicles, in windows and other structural applications. This chapter will outline the best practices that have developed at NASA for designing, verifying and accepting glass (and ceramic) windows and other components for safe and reliable use in any space system.
Lee, Sin-Woo; Ryu, Jong-Sik; Min, Ji-Sook; Choi, Man-Yong; Lee, Kwang-Sik; Shin, Woo-Jin
2016-07-15
Fragments of glass from cars are often found at crime scenes and can be crucial evidence for solving the crime. The glass fragments are important as trace evidence at crime scenes related to car accidents and burgled homes. By identifying the origin of glass fragments, it is possible to infer the identity of a suspect. Our results represent a promising approach to a thorough forensic investigation of car glass. Thirty-five samples from the side windows of cars produced and used in South Korea were collected from the official agencies of five car manufacturers and from two glassmakers. In addition, 120 samples from side mirrors were collected from the same suppliers as well as from small businesses. Their chemical compositions (including Pb isotopes) were analyzed using laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) and linear discriminant analysis (LDA) was performed. The percentages of major elements (Si, Ca, and Fe) in side-window glass varied within narrow ranges (30.0 ± 2.36%, 5.93 ± 0.52%, and 0.33 ± 0.05%, respectively), while the differences among Pb isotope ratios were not significant. In contrast, light rare earth elements (LREEs) were different from each glassmaker. From the LDA, the types of side-window glass were successfully discriminated according to car manufacturer, glassmaker, and even glass thickness. However, glass from side mirrors cannot be used for good forensic identifiers. Discrimination techniques for side-window glass, although not for side mirrors, using chemical compositions combined with multivariate statistical analyses provide evidence for forensic investigations. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.
High-impact resistance optical sensor windows
NASA Astrophysics Data System (ADS)
Askinazi, Joel; Ceccorulli, Mark L.; Goldman, Lee
2011-06-01
Recent field experience with optical sensor windows on both ground and airborne platforms has shown a significant increase in window fracturing from foreign object debris (FOD) impacts and as a by-product of asymmetrical warfare. Common optical sensor window materials such as borosilicate glass do not typically have high impact resistance. Emerging advanced optical window materials such as aluminum oxynitride offer the potential for a significant improvement in FOD impact resistance due to their superior surface hardness, fracture toughness and strength properties. To confirm the potential impact resistance improvement achievable with these emerging materials, Goodrich ISR Systems in collaboration with Surmet Corporation undertook a set of comparative FOD impact tests of optical sensor windows made from borosilicate glass and from aluminum oxynitride. It was demonstrated that the aluminum oxynitride windows could withstand up to three times the FOD impact velocity (as compared with borosilicate glass) before fracture would occur. These highly encouraging test results confirm the utility of this new highly viable window solution for use on new ground and airborne window multispectral applications as well as a retrofit to current production windows. We believe that this solution can go a long way to significantly reducing the frequency and life cycle cost of window replacement.
Theoretical vibro-acoustic modeling of acoustic noise transmission through aircraft windows
NASA Astrophysics Data System (ADS)
Aloufi, Badr; Behdinan, Kamran; Zu, Jean
2016-06-01
In this paper, a fully vibro-acoustic model for sound transmission across a multi-pane aircraft window is developed. The proposed model is efficiently applied for a set of window models to perform extensive theoretical parametric studies. The studied window configurations generally simulate the passenger window designs of modern aircraft classes which have an exterior multi-Plexiglas pane, an interior single acrylic glass pane and a dimmable glass ("smart" glass), all separated by thin air cavities. The sound transmission loss (STL) characteristics of three different models, triple-, quadruple- and quintuple-paned windows identical in size and surface density, are analyzed for improving the acoustic insulation performances. Typical results describing the influence of several system parameters, such as the thicknesses, number and spacing of the window panes, on the transmission loss are then investigated. In addition, a comparison study is carried out to evaluate the acoustic reduction capability of each window model. The STL results show that the higher frequencies sound transmission loss performance can be improved by increasing the number of window panels, however, the low frequency performance is decreased, particularly at the mass-spring resonances.
4. NORTHWEST FRONT, WITH FOUR BULLET GLASS WINDOWS. Edwards ...
4. NORTHWEST FRONT, WITH FOUR BULLET GLASS WINDOWS. - Edwards Air Force Base, South Base Sled Track, Observation Block House, Station "O" area, east end of Sled Track, Lancaster, Los Angeles County, CA
Monolithic dye laser amplifier
Kuklo, T.C.
1993-03-30
A fluid dye laser amplifier for amplifying a dye beam by pump beams has a channel structure defining a channel through which a laseable fluid flows and the dye and pump beams pass transversely to one another through a lasing region. The channel structure is formed with two pairs of mutually spaced-apart and mutually confronting glass windows, which are interlocked and make surface-contacts with one another and surround the lasing region. One of the glass window pairs passes the dye beam and the other passes the pump beams therethrough and through the lasing region. Where these glass window pieces make surface-contacts, glue is used to join the pieces together to form a monolithic structure so as to prevent the dye in the fluid passing through the channel from entering the space between the mutually contacting glass window pieces.
Monolithic dye laser amplifier
Kuklo, Thomas C.
1993-01-01
A fluid dye laser amplifier for amplifying a dye beam by pump beams has a channel structure defining a channel through which a laseable fluid flows and the dye and pump beams pass transversely to one another through a lasing region. The channel structure is formed with two pairs of mutually spaced-apart and mutually confronting glass windows, which are interlocked and make surface-contacts with one another and surround the lasing region. One of the glass window pairs passes the dye beam and the other passes the pump beams therethrough and through the lasing region. Where these glass window pieces make surface-contacts, glue is used to join the pieces together to form a monolithic structure so as to prevent the dye in the fluid passing through the channel from entering the space between the mutually contacting glass window pieces.
El-Deftar, Moteaa M; Speers, Naomi; Eggins, Stephen; Foster, Simon; Robertson, James; Lennard, Chris
2014-08-01
A commercially available laser-induced breakdown spectroscopy (LIBS) instrument was evaluated for the determination of elemental composition of twenty Australian window glass samples, consisting of 14 laminated samples and 6 non-laminated samples (or not otherwise specified) collected from broken windows at crime scenes. In this study, the LIBS figures of merit were assessed in terms of accuracy, limits of detection and precision using three standard reference materials (NIST 610, 612, and 1831). The discrimination potential of LIBS was compared to that obtained using laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS), X-ray microfluorescence spectroscopy (μXRF) and scanning electron microscopy energy dispersive X-ray spectrometry (SEM-EDX) for the analysis of architectural window glass samples collected from crime scenes in the Canberra region, Australia. Pairwise comparisons were performed using a three-sigma rule, two-way ANOVA and Tukey's HSD test at 95% confidence limit in order to investigate the discrimination power for window glass analysis. The results show that the elemental analysis of glass by LIBS provides a discrimination power greater than 97% (>98% when combined with refractive index data), which was comparable to the discrimination powers obtained by LA-ICP-MS and μXRF. These results indicate that LIBS is a feasible alternative to the more expensive LA-ICP-MS and μXRF options for the routine forensic analysis of window glass samples. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
Alghamedi, Ramzy; Vasiliev, Mikhail; Nur-E-Alam, Mohammad; Alameh, Kamal
2014-10-16
All-inorganic visibly-transparent energy-harvesting clear laminated glass windows are the most practical solution to boosting building-integrated photovoltaics (BIPV) energy outputs significantly while reducing cooling- and heating-related energy consumption in buildings. By incorporating luminophore materials into lamination interlayers and using spectrally-selective thin-film coatings in conjunction with CuInSe2 solar cells, most of the visible solar radiation can be transmitted through the glass window with minimum attenuation while ultraviolet (UV) radiation is down-converted and routed together with a significant part of infrared radiation to the edges for collection by solar cells. Experimental results demonstrate a 10 cm × 10 cm vertically-placed energy-harvesting clear glass panel of transparency exceeding 60%, invisible solar energy attenuation greater than 90% and electrical power output near 30 Wp/m(2) mainly generated by infrared (IR) and UV radiations. These results open the way for the realization of large-area visibly-transparent energy-harvesting clear glass windows for BIPV systems.
Alghamedi, Ramzy; Vasiliev, Mikhail; Nur-E-Alam, Mohammad; Alameh, Kamal
2014-01-01
All-inorganic visibly-transparent energy-harvesting clear laminated glass windows are the most practical solution to boosting building-integrated photovoltaics (BIPV) energy outputs significantly while reducing cooling- and heating-related energy consumption in buildings. By incorporating luminophore materials into lamination interlayers and using spectrally-selective thin-film coatings in conjunction with CuInSe2 solar cells, most of the visible solar radiation can be transmitted through the glass window with minimum attenuation while ultraviolet (UV) radiation is down-converted and routed together with a significant part of infrared radiation to the edges for collection by solar cells. Experimental results demonstrate a 10 cm × 10 cm vertically-placed energy-harvesting clear glass panel of transparency exceeding 60%, invisible solar energy attenuation greater than 90% and electrical power output near 30 Wp/m2 mainly generated by infrared (IR) and UV radiations. These results open the way for the realization of large-area visibly-transparent energy-harvesting clear glass windows for BIPV systems. PMID:25321890
Laser sealed vacuum insulation window
Benson, David K.; Tracy, C. Edwin
1987-01-01
A laser sealed evacuated window panel is comprised of two glass panes held spaced apart in relation to each other by a plurality of spherical glass beads and glass welded around the edges to provide an evacuated space between the glass panes that is completely glass sealed from the exterior. The glass welded edge seal is obtained by welding the edges of the glass panes together with a laser beam while the glass panes and bead spacers are positioned in a vacuum furnace and heated to the annealing point of the glass to avoid stress fracture in the area of the glass weld. The laser welding in the furnace can be directed around the perimeter of the glass panel by a combination of rotating the glass panel and linearly translating or aiming the laser with a relay mirror.
3. NORTH FRONT, BULLET GLASS OBSERVATION WINDOWS FACE SLED TRACK. ...
3. NORTH FRONT, BULLET GLASS OBSERVATION WINDOWS FACE SLED TRACK. - Edwards Air Force Base, South Base Sled Track, Instrumentation & Control Building, South of Sled Track, Station "50" area, Lancaster, Los Angeles County, CA
Interior detail of set of three art glass windows near ...
Interior detail of set of three art glass windows near front of chapel, south wall, facing south. - Mare Island Naval Shipyard, St. Peter's Chapel, Walnut Street & Cedar Parkway, Vallejo, Solano County, CA
Note: Ultra-low birefringence dodecagonal vacuum glass cell.
Brakhane, Stefan; Alt, Wolfgang; Meschede, Dieter; Robens, Carsten; Moon, Geol; Alberti, Andrea
2015-12-01
We report on an ultra-low birefringence dodecagonal glass cell for ultra-high vacuum applications. The epoxy-bonded trapezoidal windows of the cell are made of SF57 glass, which exhibits a very low stress-induced birefringence. We characterize the birefringence Δn of each window with the cell under vacuum conditions, obtaining values around 10(-8). After baking the cell at 150 °C, we reach a pressure below 10(-10) mbar. In addition, each window is antireflection coated on both sides, which is highly desirable for quantum optics experiments and precision measurements.
Laser sealed vacuum insulating window
Benson, D.K.; Tracy, C.E.
1985-08-19
A laser sealed evacuated window panel is comprised of two glass panes held spaced apart in relation to each other by a plurality of spherical glass beads and glass welded around the edges to provide an evacuated space between the glass panes that is completely glass sealed from the exterior. The glass welded edge seal is obtained by welding the edges of the glass panes together with a laser beam while the glass panes and bead spacers are positioned in a vacuum furnace and heated to the annealing point of the glass to avoid stress fracture in the area of the glass weld. The laser welding in the furnace can be directed around the perimeter of the galss panel by a combination of rotating the glass panel and linearly translating or aiming the laser with a relay mirror.
6. SOUTH SIDE, DETAIL OF BULLET GLASS WINDOWS AT GROUND ...
6. SOUTH SIDE, DETAIL OF BULLET GLASS WINDOWS AT GROUND LEVEL. - Edwards Air Force Base, South Base Sled Track, Firing Control Blockhouse, South of Sled Track at east end, Lancaster, Los Angeles County, CA
Method of making an integral window hermetic fiber optic component
Dalton, R.D.; Kramer, D.P.; Massey, R.T.; Waker, D.A.
1996-11-12
In the fabrication of igniters, actuators, detonators, and other pyrotechnic devices to be activated by a laser beam, an integral optical glass window is formed by placing a preform in the structural member of the device and then melting the glass and sealing it in place by heating at a temperature between the ceramming temperature of the glass and the melting point of the metal, followed by rapid furnace cooling to avoid devitrification. No other sealing material is needed to achieve hermeticity. A preferred embodiment of this type of device is fabricated by allowing the molten glass to flow further and form a plano-convex lens integral with and at the bottom of the window. The lens functions to decrease the beam divergence caused by refraction of the laser light passing through the window when the device is fired by means of a laser beam. 9 figs.
Method of making an integral window hermetic fiber optic component
Dalton, Rick D.; Kramer, Daniel P.; Massey, Richard T.; Waker, Damon A.
1996-11-12
In the fabrication of igniters, actuators, detonators, and other pyrotechnic devices to be activated by a laser beam, an integral optical glass window is formed by placing a preform in the structural member of the device and then melting the glass and sealing it in place by heating at a temperature between the ceramming temperature of the glass and the melting point of the metal, followed by rapid furnace cooling to avoid devitrification. No other sealing material is needed to achieve hermeticity. A preferred embodiment of this type of device is fabricated by allowing the molten glass to flow further and form a plano-convex lens integral with and at the bottom of the window. The lens functions to decrease the beam divergence caused by refraction of the laser light passing through the window when the device is fired by means of a laser beam.
Ultrathin Fluidic Laminates for Large-Area Façade Integration and Smart Windows.
Heiz, Benjamin P V; Pan, Zhiwen; Lautenschläger, Gerhard; Sirtl, Christin; Kraus, Matthias; Wondraczek, Lothar
2017-03-01
Buildings represent more than 40% of Europe's energy demands and about one third of its CO 2 emissions. Energy efficient buildings and, in particular, building skins have therefore been among the key priorities of international research agendas. Here, glass-glass fluidic devices are presented for large-area integration with adaptive façades and smart windows. These devices enable harnessing and dedicated control of various liquids for added functionality in the building envelope. Combining a microstructured glass pane, a thin cover sheet with tailored mechanical performance, and a liquid for heat storage and transport, a flat-panel laminate is generated with thickness adapted to a single glass sheet in conventional windows. Such multimaterial devices can be integrated with state-of-the-art window glazings or façades to harvest and distribute thermal as well as solar energy by wrapping buildings into a fluidic layer. High visual transparency is achieved through adjusting the optical properties of the employed liquid. Also secondary functionality, such as chromatic windows, polychromatism, or adaptive energy uptake can be generated on part of the liquid.
Steinway piano and stained glass clerestory window in lounge area, ...
Steinway piano and stained glass clerestory window in lounge area, upper deck. Hot water radiators can be seen at base of wall. These run throughout the houseboat. - Houseboat LA DUCHESSE, The Antique Boat Museum, Clayton, Jefferson County, NY
3. NORTHEAST SIDE, WITH A SINGLE BULLET GLASS WINDOW AND ...
3. NORTHEAST SIDE, WITH A SINGLE BULLET GLASS WINDOW AND SOUTHEAST REAR WITH ENTRY DOOR. - Edwards Air Force Base, South Base Sled Track, Observation Block House, Station "O" area, east end of Sled Track, Lancaster, Los Angeles County, CA
Note: Ultra-low birefringence dodecagonal vacuum glass cell
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brakhane, Stefan, E-mail: brakhane@iap.uni-bonn.de; Alt, Wolfgang; Meschede, Dieter
We report on an ultra-low birefringence dodecagonal glass cell for ultra-high vacuum applications. The epoxy-bonded trapezoidal windows of the cell are made of SF57 glass, which exhibits a very low stress-induced birefringence. We characterize the birefringence Δn of each window with the cell under vacuum conditions, obtaining values around 10{sup −8}. After baking the cell at 150 °C, we reach a pressure below 10{sup −10} mbar. In addition, each window is antireflection coated on both sides, which is highly desirable for quantum optics experiments and precision measurements.
Accessing thermoplastic processing windows in metallic glasses using rapid capacitive discharge
Kaltenboeck, Georg; Harris, Thomas; Sun, Kerry; Tran, Thomas; Chang, Gregory; Schramm, Joseph P.; Demetriou, Marios D.; Johnson, William L.
2014-01-01
The ability of the rapid-capacitive discharge approach to access optimal viscosity ranges in metallic glasses for thermoplastic processing is explored. Using high-speed thermal imaging, the heating uniformity and stability against crystallization of Zr35Ti30Cu7.5Be27.5 metallic glass heated deeply into the supercooled region is investigated. The method enables homogeneous volumetric heating of bulk samples throughout the entire supercooled liquid region at high rates (~105 K/s) sufficient to bypass crystallization throughout. The crystallization onsets at temperatures in the vicinity of the “crystallization nose” were identified and a Time-Temperature-Transformation diagram is constructed, revealing a “critical heating rate” for the metallic glass of ~1000 K/s. Thermoplastic process windows in the optimal viscosity range of 100–104 Pa·s are identified, being confined between the glass relaxation and the eutectic crystallization transition. Within this process window, near-net forging of a fine precision metallic glass part is demonstrated. PMID:25269892
7. BULLET GLASS OBSERVATION WINDOW AT GROUND LEVEL ON WEST ...
7. BULLET GLASS OBSERVATION WINDOW AT GROUND LEVEL ON WEST REAR. - Edwards Air Force Base, South Base Sled Track, Firing & Control Blockhouse for 10,000-foot Track, South of Sled Track at midpoint of 20,000-foot track, Lancaster, Los Angeles County, CA
Smart glass as the method of improving the energy efficiency of high-rise buildings
NASA Astrophysics Data System (ADS)
Gamayunova, Olga; Gumerova, Eliza; Miloradova, Nadezda
2018-03-01
The question that has to be answered in high-rise building is glazing and its service life conditions. Contemporary market offers several types of window units, for instance, wooden, aluminum, PVC and combined models. Wooden and PVC windows become the most widespread and competitive between each other. In recent times design engineers choose smart glass. In this article, the advantages and drawbacks of all types of windows are reviewed, and the recommendations are given according to choice of window type in order to improve energy efficiency of buildings.
Cohen, Julien G; Goo, Jin Mo; Yoo, Roh-Eul; Park, Chang Min; Lee, Chang Hyun; van Ginneken, Bram; Chung, Doo Hyun; Kim, Young Tae
2016-12-01
To evaluate the performance of software in segmenting ground-glass and solid components of subsolid nodules in pulmonary adenocarcinomas. Seventy-three pulmonary adenocarcinomas manifesting as subsolid nodules were included. Two radiologists measured the maximal axial diameter of the ground-glass components on lung windows and that of the solid components on lung and mediastinal windows. Nodules were segmented using software by applying five (-850 HU to -650 HU) and nine (-130 HU to -500 HU) attenuation thresholds. We compared the manual and software measurements of ground-glass and solid components with pathology measurements of tumour and invasive components. Segmentation of ground-glass components at a threshold of -750 HU yielded mean differences of +0.06 mm (p = 0.83, 95 % limits of agreement, 4.51 to 4.67) and -2.32 mm (p < 0.001, -8.27 to 3.63) when compared with pathology and manual measurements, respectively. For solid components, mean differences between the software (at -350 HU) and pathology measurements and between the manual (lung and mediastinal windows) and pathology measurements were -0.12 mm (p = 0.74, -5.73 to 5.55]), 0.15 mm (p = 0.73, -6.92 to 7.22), and -1.14 mm (p < 0.001, -7.93 to 5.64), respectively. Software segmentation of ground-glass and solid components in subsolid nodules showed no significant difference with pathology. • Software can effectively segment ground-glass and solid components in subsolid nodules. • Software measurements show no significant difference with pathology measurements. • Manual measurements are more accurate on lung windows than on mediastinal windows.
Noise and Sonic Boom Impact Technology. Sonic Boom Damage to Conventional Structures
1989-02-01
Pallant (21) reported on tests on leaded glass windows conducted in England. Tests were conducted to investigate the effect of repeated booms and to...changes can cause considerable deflections in the window due to the thermal expansion of the lead. However, Pallant also found that these...RD-775-118, July , 1975. 10. Abiassi, J.J., "The Strength of Weathered Window Glass Using Surface Characteristics," Institute For Disaster Research
Schibille, Nadine; Freestone, Ian C.
2013-01-01
136 glasses from the ninth-century monastery of San Vincenzo and its workshops have been analysed by electron microprobe in order to situate the assemblage within the first millennium CE glass making tradition. The majority of the glass compositions can be paralleled by Roman glass from the first to third centuries, with very few samples consistent with later compositional groups. Colours for trailed decoration on vessels, for vessel bodies and for sheet glass for windows were largely produced by melting the glass tesserae from old Roman mosaics. Some weakly-coloured transparent glass was obtained by re-melting Roman window glass, while some was produced by melting and mixing of tesserae, excluding the strongly coloured cobalt blues. Our data suggest that to feed the needs of the glass workshop, the bulk of the glass was removed as tesserae and windows from a large Roman building. This is consistent with a historical account according to which the granite columns of the monastic church were spolia from a Roman temple in the region. The purported shortage of natron from Egypt does not appear to explain the dependency of San Vincenzo on old Roman glass. Rather, the absence of contemporary primary glass may reflect the downturn in long-distance trade in the later first millennium C.E., and the role of patronage in the “ritual economy” founded upon donations and gift-giving of the time. PMID:24146876
Schibille, Nadine; Freestone, Ian C
2013-01-01
136 glasses from the ninth-century monastery of San Vincenzo and its workshops have been analysed by electron microprobe in order to situate the assemblage within the first millennium CE glass making tradition. The majority of the glass compositions can be paralleled by Roman glass from the first to third centuries, with very few samples consistent with later compositional groups. Colours for trailed decoration on vessels, for vessel bodies and for sheet glass for windows were largely produced by melting the glass tesserae from old Roman mosaics. Some weakly-coloured transparent glass was obtained by re-melting Roman window glass, while some was produced by melting and mixing of tesserae, excluding the strongly coloured cobalt blues. Our data suggest that to feed the needs of the glass workshop, the bulk of the glass was removed as tesserae and windows from a large Roman building. This is consistent with a historical account according to which the granite columns of the monastic church were spolia from a Roman temple in the region. The purported shortage of natron from Egypt does not appear to explain the dependency of San Vincenzo on old Roman glass. Rather, the absence of contemporary primary glass may reflect the downturn in long-distance trade in the later first millennium C.E., and the role of patronage in the "ritual economy" founded upon donations and gift-giving of the time.
Moehrle, Matthias; Soballa, Martin; Korn, Manfred
2003-08-01
There is increasing knowledge about the hazards of solar and ultraviolet (UV) radiation to humans. Although people spend a significant time in cars, data on UV exposure during traveling are lacking. The aim of this study was to obtain basic information on personal UV exposure in cars. UV transmission of car glass samples, windscreen, side and back windows and sunroof, was determined. UV exposure of passengers was evaluated in seven German middle-class cars, fitted with three different types of car windows. UV doses were measured with open or closed windows/sunroof of Mercedes-Benz E 220 T, E 320, and S 500, and in an open convertible car (Mercedes-Benz CLK). Bacillus subtilis spore film dosimeters (Viospor) were attached to the front, vertex, cheeks, upper arms, forearms and thighs of 'adult' and 'child' dummies. UV wavelengths longer than >335 nm were transmitted through car windows, and UV irradiation >380 nm was transmitted through compound glass windscreens. There was some variation in the spectral transmission of side windows according to the type of glass. On the arms, UV exposure was 3-4% of ambient radiation when the car windows were shut, and 25-31% of ambient radiation when the windows were open. In the open convertible car, the relative personal doses reached 62% of ambient radiation. The car glass types examined offer substantial protection against short-wave UV radiation. Professional drivers should keep car windows closed on sunny days to reduce occupational UV exposure. In individuals with polymorphic light eruption, produced by long-wave UVA, additional protection by plastic films, clothes or sunscreens appears necessary.
"Stained Glass" Landscape Windows
ERIC Educational Resources Information Center
Vannata, Janine
2008-01-01
Both adults and children alike marvel at the grand vivid stained-glass windows created by American artist Louis Comfort Tiffany. Today he is commonly recognized as one of America's most influential designers and artists throughout the last nineteenth and early twentieth century. In the lesson described in this article, students created their own…
NASA Astrophysics Data System (ADS)
Castro, M. A.; Pereira, F. J.; Aller, A. J.; Littlejohn, D.
2014-12-01
Atmospheric pollution plays important roles in the weathering of the historical buildings and glass windows. Samples of white powdered weathering products, recovered during restoration of the stained-glass windows of León Cathedral in Spain, were characterised using a combination of scanning electron microscopy (SEM) with energy dispersive-X ray spectrometry (ED-XRS), Fourier transform-infrared (FT-IR) spectroscopy and Raman spectrometry. The presence of sulphates, and to a lesser extent carbonates, in the white powdered product is clear indication of the participation of atmospheric acidifying gases, particularly SOx, in the weathering process. It is interesting to note that there was no indication of the participation of NOx gases. There was, however, evidence that the putty and mortar used to seal/join the glasses were major sources of the weathering products. In this way, this study suggests sealants more resistant to oxidation, such as silicone- and zirconia-based materials, should be considered for repairing glass windows in historic buildings to avoid exacerbating degradation.
Low-E Retrofit Demonstration and Educational Program
DOE Office of Scientific and Technical Information (OSTI.GOV)
Culp, Thomas D; Wiehagen, Joseph; Drumheller, S Craig
The objective of this project was to demonstrate the capability of low-emissivity (low-E) storm windows / panels and low-E retrofit glazing systems to significantly and cost effectively improve the energy efficiency of both existing residential and commercial buildings. The key outcomes are listed below: RESIDENTIAL CASE STUDIES: (a) A residential case study in two large multifamily apartment buildings in Philadelphia showed a substantial 18-22% reduction in heating energy use and a 9% reduction in cooling energy use by replacing old clear glass storm windows with modern low-E storm windows. Furthermore, the new low-E storm windows reduced the overall apartment airmore » leakage by an average of 10%. (b) Air leakage testing on interior low-E panels installed in a New York City multifamily building over windows with and without AC units showed that the effective leakage area of the windows was reduced by 77-95%. (c) To study the use of low-E storm windows in a warmer mixed climate with a balance of both heating and cooling, 10 older homes near Atlanta with single pane windows were tested with three types of exterior storm windows: clear glass, low-E glass with high solar heat gain, and low-E glass with lower solar heat gain. The storm windows significantly reduced the overall home air leakage by an average of 17%, or 3.7 ACH50. Considerably high variability in the data made it difficult to draw strong conclusions about the overall energy usage, but for heating periods, the low-E storm windows showed approximately 15% heating energy savings, whereas clear storm windows were neutral in performance. For cooling periods, the low-E storm windows showed a wide range of performance from 2% to over 30% cooling energy savings. Overall, the study showed the potential for significantly more energy savings from using low-E glass versus no storm window or clear glass storm windows in warmer mixed climates, but it is difficult to conclusively say whether one type of low-E performed better than the other. COMMERCIAL CASE STUDIES: (a) A 12-story office building in Philadelphia was retrofitted by adding a double-pane low-E insulating glass unit to the existing single pane windows, to create a triple glazed low-E system. A detailed side-by-side comparison in two pairs of perimeter offices facing north and east showed a 39-60% reduction in heating energy use, a 9-36% reduction in cooling energy use, and a 10% reduction in peak electrical cooling demand. An analysis of utility bills estimated the whole building heating and cooling energy use was reduced by over 25%. Additionally, the retrofit window temperatures were commonly 20 degrees warmer on winter days, and 10-20 degrees cooler on summer days, leading to increased occupant comfort. (b) Two large 4-story office buildings in New Jersey were retrofitted with a similar system, but using two low-E coatings in the retrofit system. The energy savings are being monitored by a separate GPIC project; this work quantified the changes in glass surface temperatures, thermal comfort, and potential glass thermal stress. The low-E retrofit panels greatly reduced daily variations in the interior window surface temperatures, lowering the maximum temperature and raising the minimum temperature by over 20F compared to the original single pane windows with window film. The number of hours of potential thermal discomfort, as measured by deviation between mean radiant temperature and ambient air temperature by more than 3F, were reduced by 93 percent on the south orientation and over two-thirds on the west orientation. Overall, the low-E retrofit led to substantially improved occupant comfort with less periods of both overheating and feeling cold. (c) No significant thermal stress was observed in the New Jersey office building test window when using the low-E retrofit system over a variety of weather conditions. The surface temperature difference only exceeded 10F (500 psi thermal stress) for less than 1.5% of the monitored time, and in all cases, the maximum surface temperature difference never exceeded 35F (1,750 psi thermal stress). LOW-E STORM WINDOW OUTREACH AND EDUCATION PROGRAM: (a) The project team assisted the State of Pennsylvania in adding low-E storm windows as a cost effective weatherization measure on its priority list for the state weatherization assistance program. (b) No technical barriers that could hinder widespread application were identified in the case studies. However, educational barriers have been identified, in that weatherization personnel commonly misunderstand how the application of low-E storm windows is very different than much more expensive full window replacement. (c) A package of educational materials was developed to help communicate the benefits of low-E storm windows and retrofits as a cost effective tool for weatherization personnel. (d) Using detailed thermal simulations, more accurate U-factor and solar heat gain coefficient (SHGC) values were determined for low-E storm windows installed over different primary windows. IN SUMMARY, this work confirmed the potential for low-E storm windows, panels, and retrofit systems to provide significant energy savings, reductions in air leakage, and improvements in thermal comfort in both residential and commercial existing buildings.« less
42 CFR 84.130 - Supplied-air respirators; description.
Code of Federal Regulations, 2010 CFR
2010-10-01
... material to protect the window(s) of facepieces, hoods, and helmets which do not unduly interfere with the wearer's vision and permit easy access to the external surface of such window(s) for cleaning. (c) Type..., glass, woven wire, sheet metal, or other suitable material to protect the window(s) of facepieces, hoods...
Detection of glass particles on bone lesions using SEM-EDS.
Montoriol, Romain; Guilbeau-Frugier, Céline; Chantalat, Elodie; Roumiguié, Mathieu; Delisle, Marie-Bernadette; Payré, Bruno; Telmon, Norbert; Savall, Frédéric
2017-09-01
The problem of identifying the wounding agent in forensic cases is recurrent. Moreover, when several tools are involved, distinguishing the origin of lesions can be difficult. Scanning electron microscopy (SEM)/energy dispersive X-ray analysis (EDS) equipment is increasingly available to the scientific and medical community, and some studies have reported its use in forensic anthropology. However, at our knowledge, no study has reported the use of SEM-EDS in forensic cases involving glass tools, whether in case reports or experiments. We performed an experimental study on human rib fragments, on which we manually created wounds using fragments of window and mirror glass. SEM-EDS was executed on samples without any further preparation on low vacuum mode, then on the same samples after defleshing them completely by boiling them. Window and mirror glass particles were detected on experimental wounds. Both had silica in their spectra, and the opaque side of the mirror contained titanium, allowing for their identification. Boiling and defleshing the bone samples involved a loss of information in terms of the number of wounds detected as positive for glass particles and in the number of glass particles detected, for both window and mirror glass. We suggest the analysis of wounds with suspected glass particles using low vacuum mode and with no defleshment by boiling.
Yoshimoto, Kohei; Masuno, Atsunobu; Ueda, Motoi; Inoue, Hiroyuki; Yamamoto, Hiroshi; Kawashima, Tastunori
2017-03-30
xLa 2 O 3 -(100 - x)Ga 2 O 3 binary glasses were synthesized by an aerodynamic levitation technique. The glass-forming region was found to be 20 ≤ x ≤ 57. The refractive indices were greater than 1.92 and increased linearly with increasing x. The polarizabilities of oxide ions were estimated to be 2.16-2.41 Å 3 , indicating that the glasses were highly ionic. The glasses were transparent over a very wide range from the ultraviolet to the mid-infrared region. The widest transparent window among the oxide glasses was from 270 nm to 10 μm at x = 55. From the Raman scattering spectra, a decrease in bridging oxide ions and an increase in non-bridging oxide ions were confirmed to occur with increasing La 2 O 3 content. The maximum phonon energy was found to be approximately 650 cm -1 , being one of the lowest among oxide glasses. These results show that La 2 O 3 -Ga 2 O 3 binary glasses should be promising host materials for optical applications such as lenses, windows, and filters over a very wide wavelength range.
Yoshimoto, Kohei; Masuno, Atsunobu; Ueda, Motoi; Inoue, Hiroyuki; Yamamoto, Hiroshi; Kawashima, Tastunori
2017-01-01
xLa2O3-(100 − x)Ga2O3 binary glasses were synthesized by an aerodynamic levitation technique. The glass-forming region was found to be 20 ≤ x ≤ 57. The refractive indices were greater than 1.92 and increased linearly with increasing x. The polarizabilities of oxide ions were estimated to be 2.16–2.41 Å3, indicating that the glasses were highly ionic. The glasses were transparent over a very wide range from the ultraviolet to the mid-infrared region. The widest transparent window among the oxide glasses was from 270 nm to 10 μm at x = 55. From the Raman scattering spectra, a decrease in bridging oxide ions and an increase in non-bridging oxide ions were confirmed to occur with increasing La2O3 content. The maximum phonon energy was found to be approximately 650 cm−1, being one of the lowest among oxide glasses. These results show that La2O3-Ga2O3 binary glasses should be promising host materials for optical applications such as lenses, windows, and filters over a very wide wavelength range. PMID:28358112
NASA Astrophysics Data System (ADS)
Yoshimoto, Kohei; Masuno, Atsunobu; Ueda, Motoi; Inoue, Hiroyuki; Yamamoto, Hiroshi; Kawashima, Tastunori
2017-03-01
xLa2O3-(100 - x)Ga2O3 binary glasses were synthesized by an aerodynamic levitation technique. The glass-forming region was found to be 20 ≤ x ≤ 57. The refractive indices were greater than 1.92 and increased linearly with increasing x. The polarizabilities of oxide ions were estimated to be 2.16-2.41 Å3, indicating that the glasses were highly ionic. The glasses were transparent over a very wide range from the ultraviolet to the mid-infrared region. The widest transparent window among the oxide glasses was from 270 nm to 10 μm at x = 55. From the Raman scattering spectra, a decrease in bridging oxide ions and an increase in non-bridging oxide ions were confirmed to occur with increasing La2O3 content. The maximum phonon energy was found to be approximately 650 cm-1, being one of the lowest among oxide glasses. These results show that La2O3-Ga2O3 binary glasses should be promising host materials for optical applications such as lenses, windows, and filters over a very wide wavelength range.
Roome, Christopher J.; Kuhn, Bernd
2014-01-01
Chronic cranial windows have been instrumental in advancing optical studies in vivo, permitting long-term, high-resolution imaging in various brain regions. However, once a window is attached it is difficult to regain access to the brain under the window for cellular manipulations. Here we describe a simple device that combines long term in vivo optical imaging with direct brain access via glass or quartz pipettes and metal, glass, or quartz electrodes for cellular manipulations like dye or drug injections and electrophysiological stimulations or recordings while keeping the craniotomy sterile. Our device comprises a regular cranial window glass coverslip with a drilled access hole later sealed with biocompatible silicone. This chronic cranial window with access port is cheap, easy to manufacture, can be mounted just as the regular chronic cranial window, and is self-sealing after retraction of the pipette or electrode. We demonstrate that multiple injections can be performed through the silicone port by repetitively bolus loading calcium sensitive dye into mouse barrel cortex and recording spontaneous cellular activity over a period of weeks. As an example to the extent of its utility for electrophysiological recording, we describe how simple removal of the silicone seal can permit patch pipette access for whole-cell patch clamp recordings in vivo. During these chronic experiments we do not observe any infections under the window or impairment of animal health. PMID:25426027
Ultrathin Fluidic Laminates for Large‐Area Façade Integration and Smart Windows
Heiz, Benjamin P. V.; Pan, Zhiwen; Lautenschläger, Gerhard; Sirtl, Christin; Kraus, Matthias
2016-01-01
Buildings represent more than 40% of Europe's energy demands and about one third of its CO2 emissions. Energy efficient buildings and, in particular, building skins have therefore been among the key priorities of international research agendas. Here, glass–glass fluidic devices are presented for large‐area integration with adaptive façades and smart windows. These devices enable harnessing and dedicated control of various liquids for added functionality in the building envelope. Combining a microstructured glass pane, a thin cover sheet with tailored mechanical performance, and a liquid for heat storage and transport, a flat‐panel laminate is generated with thickness adapted to a single glass sheet in conventional windows. Such multimaterial devices can be integrated with state‐of‐the‐art window glazings or façades to harvest and distribute thermal as well as solar energy by wrapping buildings into a fluidic layer. High visual transparency is achieved through adjusting the optical properties of the employed liquid. Also secondary functionality, such as chromatic windows, polychromatism, or adaptive energy uptake can be generated on part of the liquid. PMID:28331790
The development of a portable ultrahigh vacuum chamber via silicon block.
Chuang, Ho-Chiao; Huang, Chia-Shiuan
2014-05-01
This paper describes a nonmetallic, light weight portable chamber for ultra-high vacuum (UHV) applications. The chamber consists of a processed silicon block anodically bonding five polished Pyrex glass windows and a Pyrex glass adapter, without using any screws, bolts or vacuum adhesives. The design features provide an alternative chamber for UHV applications which require nonmetallic components. We have cyclically baked the chamber up to 180 °C for 160 h and have achieved an ultimate pressure of 1.4 × 10(-9) Torr (limited by our pumping station), with no leak detected. Both Pyrex glass windows and Pyrex glass adapter have been used successfully.
Evidence of an Intermediate Phase in bulk alloy oxide glass sysem
NASA Astrophysics Data System (ADS)
Chakraborty, S.; Boolchand, P.
2011-03-01
Reversibility windows have been observed in modified oxides (alkali-silicates and -germanates) and identified with Intermediate Phases(IPs). Here we find preliminary evidence of an IP in a ternary oxide glass, (B2 O3)5 (Te O2)95-x (V2O5)x , which is composed of network formers. Bulk glasses are synthesized across the 18% x 35 % composition range, and examined in Raman scattering, modulated DSC and molar volume experiments. Glass transition temperatures Tg (x) steadily decrease with V2O5 content x, and reveal the enthalpy of relaxation at Tg to show a global minimum in the 24% x < 27 range, the reversibility window (IP). Molar volumes reveal a minimum in this window. Raman scattering reveals a Boson mode, and at least six other vibrational bands in the 100cm-1 < ν < 1700cm-1 range. Compositional trends in vibrational mode strengths and frequency are established. These results will be presented in relation to glass structure evolution with vanadia content and the underlying elastic phases. Supported by NSF grant DMR 08-53957.
Window Glasses: State and Prospects
NASA Astrophysics Data System (ADS)
Maiorov, V. A.
2018-04-01
Analysis and generalization of the results of investigations devoted to the improvement of optical properties have been carried out, and descriptions of a structure and a reaction mechanism of available and promising window glasses with solar radiation are presented. All devices are divided into groups with static constant and dynamic regulated spectral characteristics. The group of static glasses includes heat-protective and spectrally selective glasses with low-emissivity coatings and infrared filters with dispersed plasmonic nanoparticles. Electrochromic glasses, nanostructured dynamic infrared filters, and glasses with separated regulation of the transmission of visible-light and near-infrared radiation are dynamic devices. It is noted that the use of mesoporous films made of plasmonic nanoparticles open up especially wide possibilities. Their application allows one to realize a dynamic separated regulation of the transmission of visible light and nearinfrared radiation in which, under the gradual increase in the electric potential on the glass, mechanisms of plasmon and polaron reduction of solar radiation gradually change the glass' condition from light warm to light cold and then to dark cold consecutively.
Photonic microstructures for energy-generating clear glass and net-zero energy buildings
NASA Astrophysics Data System (ADS)
Vasiliev, Mikhail; Alghamedi, Ramzy; Nur-E-Alam, Mohammad; Alameh, Kamal
2016-08-01
Transparent energy-harvesting windows are emerging as practical building-integrated photovoltaics (BIPV), capable of generating electricity while simultaneously reducing heating and cooling demands. By incorporating spectrally-selective diffraction gratings as light deflecting structures of high visible transparency into lamination interlayers and using improved spectrally-selective thin-film coatings, most of the visible solar radiation can be transmitted through the glass windows with minimum attenuation. At the same time, the ultraviolet (UV) and a part of incident solar infrared (IR) radiation energy are converted and/or deflected geometrically towards the panel edge for collection by CuInSe2 solar cells. Experimental results show power conversion efficiencies in excess of 3.04% in 10 cm × 10 cm vertically-placed clear glass panels facing direct sunlight, and up to 2.08% in 50 cm × 50 cm installation-ready framed window systems. These results confirm the emergence of a new class of solar window system ready for industrial application.
Photonic microstructures for energy-generating clear glass and net-zero energy buildings.
Vasiliev, Mikhail; Alghamedi, Ramzy; Nur-E-Alam, Mohammad; Alameh, Kamal
2016-08-23
Transparent energy-harvesting windows are emerging as practical building-integrated photovoltaics (BIPV), capable of generating electricity while simultaneously reducing heating and cooling demands. By incorporating spectrally-selective diffraction gratings as light deflecting structures of high visible transparency into lamination interlayers and using improved spectrally-selective thin-film coatings, most of the visible solar radiation can be transmitted through the glass windows with minimum attenuation. At the same time, the ultraviolet (UV) and a part of incident solar infrared (IR) radiation energy are converted and/or deflected geometrically towards the panel edge for collection by CuInSe2 solar cells. Experimental results show power conversion efficiencies in excess of 3.04% in 10 cm × 10 cm vertically-placed clear glass panels facing direct sunlight, and up to 2.08% in 50 cm × 50 cm installation-ready framed window systems. These results confirm the emergence of a new class of solar window system ready for industrial application.
Photonic microstructures for energy-generating clear glass and net-zero energy buildings
Vasiliev, Mikhail; Alghamedi, Ramzy; Nur-E-Alam, Mohammad; Alameh, Kamal
2016-01-01
Transparent energy-harvesting windows are emerging as practical building-integrated photovoltaics (BIPV), capable of generating electricity while simultaneously reducing heating and cooling demands. By incorporating spectrally-selective diffraction gratings as light deflecting structures of high visible transparency into lamination interlayers and using improved spectrally-selective thin-film coatings, most of the visible solar radiation can be transmitted through the glass windows with minimum attenuation. At the same time, the ultraviolet (UV) and a part of incident solar infrared (IR) radiation energy are converted and/or deflected geometrically towards the panel edge for collection by CuInSe2 solar cells. Experimental results show power conversion efficiencies in excess of 3.04% in 10 cm × 10 cm vertically-placed clear glass panels facing direct sunlight, and up to 2.08% in 50 cm × 50 cm installation-ready framed window systems. These results confirm the emergence of a new class of solar window system ready for industrial application. PMID:27550827
Fabrication of glass gas cells for the HALOE and MAPS satellite experiments
NASA Technical Reports Server (NTRS)
Sullivan, E. M.; Walthall, H. G.
1984-01-01
The Halogen Occultation Experiment (HALOE) and the Measurement of Air Pollution from Satellites (MAPS) experiment are satellite-borne experiments which measure trace constituents in the Earth's atmosphere. The instruments which obtain the data for these experiments are based on the gas filter correlation radiometer measurement technique. In this technique, small samples of the gases of interest are encapsulated in glass cylinders, called gas cells, which act as very selective optical filters. This report describes the techniques employed in the fabrication of the gas cells for the HALOE and MAPS instruments. Details of the method used to fuse the sapphire windows (required for IR transmission) to the glass cell bodies are presented along with detailed descriptions of the jigs and fixtures used during the assembly process. The techniques and equipment used for window inspection and for pairing the HALOE windows are discussed. Cell body materials and the steps involved in preparing the cell bodies for the glass-to-sapphire fusion process are given.
Three-dimensional laser window formation for industrial application
NASA Technical Reports Server (NTRS)
Verhoff, Vincent G.; Kowalski, David
1993-01-01
The NASA Lewis Research Center has developed and implemented a unique process for forming flawless three-dimensional, compound-curvature laser windows to extreme accuracies. These windows represent an integral component of specialized nonintrusive laser data acquisition systems that are used in a variety of compressor and turbine research testing facilities. These windows are molded to the flow surface profile of turbine and compressor casings and are required to withstand extremely high pressures and temperatures. This method of glass formation could also be used to form compound-curvature mirrors that would require little polishing and for a variety of industrial applications, including research view ports for testing devices and view ports for factory machines with compound-curvature casings. Currently, sodium-alumino-silicate glass is recommended for three-dimensional laser windows because of its high strength due to chemical strengthening and its optical clarity. This paper discusses the main aspects of three-dimensional laser window formation. It focuses on the unique methodology and the peculiarities that are associated with the formation of these windows.
78 FR 54949 - Petition for Waiver of Compliance
Federal Register 2010, 2011, 2012, 2013, 2014
2013-09-06
... authorized by MRRM, but not to exceed 30 mph. RPCX 761 has 15 side windows and 4 end windows located in the entry doors (2 panes per door). Each window is two-pane glass with the inner pane [[Page 54950
Code of Federal Regulations, 2010 CFR
2010-04-01
... under the HUD building product standard and certification program for fenestration products (windows and... fenestration products (windows and doors). (a) Applicable standards. (1) All windows and doors shall be... Windows and Glass Doors. (2) This standard has been approved by the Director of the Federal Register for...
10. Photocopy of an engraving of a stained glass window ...
10. Photocopy of an engraving of a stained glass window design by Johann Friedrich Overbeck (1789-1869) on which two of the chancel windows in the Church of the Holy Cross are thought to have been based. This copy is of a photocopy obtained from the Treasury of Notre Dame de Paris, Paris, France, by the late Mrs. Walter C. White of Stateburg, South Carolina. Mrs. White's photocopy is in the possession of Mrs. Richard K. Anderson of the Borough House at Stateburg. - Church of the Holy Cross, State Route 261, Stateburg, Sumter County, SC
NASA Technical Reports Server (NTRS)
Carden, H. D.
1979-01-01
Mechanical excitation was used, and measurements of acceleration response, natural frequencies, and nodal patterns were performed. Results indicate that the wall sections and the complete wall did not act as a unit in responding to sinusoidal vibration inputs. Calculated frequencies of the components that account for this independent behavior of the studs and face sheets agreed resonably well with experimental frequencies. Experimental vibrations of the plate glass window agreed with the calculated behavior, and responses of the window exposed to airplane flyover noise were readily correlated with the test results.
ERIC Educational Resources Information Center
Razwick, Jerry
2003-01-01
Although wired glass is extremely common in school buildings, the International Building Code adopted new standards that eliminate the use of traditional wired glass in K-12 schools, daycare centers, and athletic facilities. Wired glass breaks easily, and the wires can cause significant injuries by forming dangerous snags when the glass breaks.…
Basic Research on Oxynitride Glasses.
1982-07-01
The upsurge in interest in these glasses was originally motivated by their relevance to the processing of Si 3 1 4 -based ceramics (4, 5) when it was...are suggested by results obtained so far, among them refractory glass - ceramics , leach-resistant glasses , hardened optical windows, and Joining...compositions for ceramic - ceramic seals. Oxynitride Glass Synthesis The preparation of oxynitride glasses is more complex than preparation of conventional
Levenson, M.
1960-10-25
A cave window is described. It is constructed of thick glass panes arranged so that interior panes have smaller windowpane areas and exterior panes have larger areas. Exterior panes on the radiation exposure side are remotely replaceable when darkened excessively. Metal shutters minimize exposure time to extend window life.
30 CFR 57.14103 - Operators' stations.
Code of Federal Regulations, 2010 CFR
2010-07-01
... Equipment Safety Devices and Maintenance Requirements § 57.14103 Operators' stations. (a) If windows are provided on operators' stations of self-propelled mobile equipment, the windows shall be made of safety glass or material with equivalent safety characteristics. The windows shall be maintained to provide...
NASA Astrophysics Data System (ADS)
Lefèvre, Roger; Ionescu, Anda; Desplat, Julien; Kounkou-Arnaud, Raphaëlle; Perrussel, Olivier; Languille, Baptiste
2016-04-01
Quantitative impact of the recent abatement of air pollution on the weathering of stone and glass of the UNESCO List in Paris R.-A. Lefèvre1, A. Ionescu1, J. Desplat2, R. Kounkou-Arnaud2, O. Perrussel3, B. Languille4 At the beginning of the 21st century air pollution in Paris continued to considerably decrease. An evident visual consequence was the replacement of thick gypseous black crusts by thin grey coverings on the façades. A quantitative approach of this phenomenon was taken by measurement in the field, followed by calculation using Dose-Response Functions (DRF) and mapping the geographic distribution on a grid of 100m x100m of: 1) The total surface of façades of buildings and monuments in the part of Paris inscribed on the UNESCO List between the Ile Saint-Louis and the Concorde Square; 2) The surface of limestone and window glass present on each façade; 3) The distribution of SO2, NO2 and PM10 concentration every year from 1997 to 2014; 4) The response of materials to climatic and pollution doses; 5) The effective damage to limestone and window glass. Results of measurements in the field: 1) The 772 buildings and monuments inventoried have 20 674 m in length and 414 811 m2 in façade surface: they are representative of the centre of Paris; 2) Limestone occupies 348 268 m2 and window glass 207 394 m2; 3) The mean annual concentration in SO2 dropped from 20 to less than 3 μg m-3; NO2 from 60 to 40 μg m-3 and PM10 from 30 to 20 μg m-3. Results by application of DRF: 4) Limestone recession was divided by 5 in 18 years, from 10 to 2 μm y-1, but with only a spatial variation of 2%; 5) Limestone reflectance increased from 70.5 to 72.5 %; 6) The annual mass of deposited and neo-formed particles on window glass decreased from 100 to 20 μg cm-2; 7) The annual haze of window glass decreased from 8 to 3.5%. Effective damage to stone and glass: 8) The mean annual mass of limestone eroded on the façades decreased according to time but with an irregular geographic distribution from 348 to 22 kg by cell of the map; 9) The mean annual mass of particles deposited or neo-formed on window glass decreased according to time but with an irregular geographic distribution from 4.7 to 0.1 kg by cell of the map. Conclusion. The abatement of air pollution observed in Paris at the beginning of the 21st century had a direct consequence on the weathering of stone and glass. It is quantitatively highlighted in this study.
Recycled Glass and Dredged Materials
2007-03-01
stations, and is either source-separated or co-mingled with plastics, aluminum cans, ceramics , or colored glass containers. In the United States in...anything other than container glass ). The debris may contain contaminants including ceramics (from dishware, pottery, window glass , light bulbs...ERDC TN-DOER-T8 March 2007 Recycled Glass and Dredged Materials by Landris T. Lee, Jr. PURPOSE: This technical note explores the concepts
77 FR 75696 - Petition for Waiver of Compliance
Federal Register 2010, 2011, 2012, 2013, 2014
2012-12-21
....'s Pine Street Yard in Orrville, OH, on the Wheeling and Lake Erie Railway. There are two end windows... eight windows each. No Type I or Type II FRA-certified glazing is currently installed in the car. However, all side windows are \\1/4\\-inch panes of Duplate ASI PPG Safety Glass. Some of these side windows...
ERIC Educational Resources Information Center
Hinshaw, Craig
2011-01-01
Glass as an art form is anything but new. Three thousand years ago the Egyptians were molding glass beads and shaping elegant glass perfume bottles. In this article, the author describes how his students created sun catchers inspired by the beauty of Notre Dame's stained glass windows and the intrigue of Dale Chihuly's sculptures. (Contains 1…
ERIC Educational Resources Information Center
Law, Maxine S.
1980-01-01
Presented are three curriculum sequences about windows that were designed as part of an architectural education course for junior high school students in Ohio. The three units, or "encounters," deal with stained glass, styles of windows, and functions of the window. Each includes student objectives and selected activities. (SJL)
30 CFR 56.14103 - Operators stations.
Code of Federal Regulations, 2010 CFR
2010-07-01
... Safety Devices and Maintenance Requirements § 56.14103 Operators stations. (a) If windows are provided on operators' stations of self-propelled mobile equipment, the windows shall be made of safety glass or material with equivalent safety characteristics. The windows shall be maintained to provide visibility for...
Optical performance of segmented aperture windows for solar tower receivers
NASA Astrophysics Data System (ADS)
Buck, Reiner
2017-06-01
Segmented quartz windows are a concept to build larger windows for receivers that require a closed aperture. Reflection losses are a significant loss factor for such solar receivers. Without any additional measures, the reflection loss can reach about 12%. One important measure to improve transmission is the application of anti-reflective coatings, which is beneficial in any case. Another option is modifying the window geometry, especially the edge surfaces of the glass segments. A certain fraction of the reflection losses are caused by a light-guide effect in the glass body, for rays entering through the front surface. Changing the cut surfaces in a way reducing the light-guide effect can significantly improve transmission of a segmented window. Several possible configurations are evaluated and discussed. The results of ray-tracing simulations verify the improvement. The final selection of the window configuration depends on the optical properties and on mechanical strength, manufacturing and cost considerations. This has to be evaluated for any specific receiver design.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Curcija, Dragan Charlie; Zhu, Ling; Czarnecki, Stephen
WINDOW features include: - Microsoft Windows TM interface - algorithms for the calculation of total fenestration product U-values and Solar Heat Gain Coefficient consistent with ASHRAE SPC 142, ISO 15099, and the National Fenestration Rating Council - a Condensation Resistance Index in accordance with the NFRC 500 Standard - and integrated database of properties - imports data from other LBNL window analysis software: - Import THERM file into the Frame Library - Import records from IGDB and OPtics5 into the Glass Library for the optical properties of coated and uncoated glazings, laminates, and applied films. Program Capabilities WINDOW 7.2 offersmore » the following features: The ability to analyze products made from any combination of glazing layers, gas layers, frames, spacers, and dividers under any environmental conditions and at any tilt; The ability to model complex glazing systems such as venetian blinds and roller shades. Directly accessible libraries of window system components, (glazing systems, glazing layers, gas fills, frame and divider elements), and environmental conditions; The choice of working in English (IP), or Systeme International (SI) units; The ability to specify the dimensions and thermal properties of each frame element (header, sills, jamb, mullion) in a window; A multi-band (wavelength-by-wavelength) spectral model; A Glass Library which can access spectral data files for many common glazing materials from the Optics5database; A night-sky radiative model; A link with the DOE-2.1E and Energy Plus building energy analysis program. Performance Indices and Other Results For a user-defined fenestration system and user-defined environmental conditions, WINDOW calculates: The U-value, solar heat gain coefficient, shading coefficient, and visible transmittance for the complete window system; The U-value, solar heat gain coefficient, shading coefficient, and visible transmittance for the glazing system (center-of-glass values); The U-values of the frame and divider elements and corresponding edge-of-glass areas (based on generic correlations); The total solar and visible transmittance and reflectances of the glazing system. Color properties, i.e. L*, a*, and b* color coordinates, dominant wavelength, and purity for transmitted and reflected (outdoor) solar radiation; The damage-weighted transmittance of the glazing system between 0.3 an 0.38 microns; The angular dependence of the solar and visible transmittances, solar and visible reflectances, solar absorptance, and solar heat gain coefficient of the glazing system; The percent relative humidity of the inside and outside air for which condensation will occur on the interior and exterior glazing surfaces respectively; The center-of-glass temperature distribution.« less
Aulinas, Meritxell; Garcia-Valles, Maite; Gimeno, Domingo; Fernandez-Turiel, Jose Luis; Ruggieri, Flavia; Pugès, Montserrat
2009-06-01
The first step in the restoration of a medieval stained glass window is the evaluation of its degree of degradation. This implies the study of the chemical composition of the stained glass as well as the new mineral phases developed on its surface (patinas). Patinas are clearly related to glass composition, time, environmental conditions, microenvironments developed in local zones, bioactivity, physical and chemical factors, etc. This study was carried out on patinas developed in selected Na-rich stained glass of the Santa Maria de Pedralbes Monastery (Barcelona, Spain). The location of this monument in the city (about 5 km from the shoreline and close to the Collserola hill flank) helped to determine the environmental conditions in which patinas developed. The aim of our study was to characterize the patinas formed on the surface of the selected glass of this monastery in order to understand the role of the chemical composition of the original glass (Na-rich) as well as the environmental conditions in which they developed. Powdered samples of two different color-type patinas (ochre-orange and brownish) were collected in the external and internal parts of the stained glass windows of the Prebystery and Chapter House of the Pedralbes Monastery by using a precision (odontological) drill. These patinas were subsequently analyzed by X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR). XRD analyses evidenced the presence of sulfates (gypsum and thenardite), calcite, Ca-oxalates (whewellite and weddellite), and quartz forming part of the patinas. Although these mineral phases can be found in both color-type patinas, whewellite and thenardite are more common in the ochre-orange patinas. The results obtained were validated by the FTIR measurements. It has been observed, when thenardite is present, that gypsum occurs as traces. Thenardite is in most of the cases associated with whewellite and mainly occurs in the internal parts of the glass. In contrast, weddellite is limited to the absence of thenardite and whewellite and to the external parts of the stained glass. Quartz is present in all the patinas independent of their location and color. Calcite also occurs in many samples. It appears in both color-type patinas and, in some cases, is associated to the presence of weddellite but not to whewellite and/or thenardite. Glass composition together with environmental conditions and location of the patinas (internal or external parts of the stained glass window), as well as the provenance of the glass within the monastery, are the main factors that define the development of the new mineral phases. Moreover, the action of microorganisms, when present, can also strongly influence the development of some mineral phases. For example, the formation of calcite in the external parts of the stained glass (associated with the presence of oxalates) is related to the action of microorganisms. When calcite is formed in the internal parts of the glass and it is not associated with the presence of Ca-oxalates, an inorganic origin can be invoked. The presence of weddellite requires a very humid microenvironment with very little exposure to sunlight. In fact, this mineral phase has only been observed in the external parts of some glass located in the humid and shady side of the monastery. Whewellite (which only appears in the internal parts) needs a low degree of relative humidity. It has been observed that sulfur precipitating in basically one mineral phase (thenardite or gypsum) depends on the microenvironmental conditions of the moment and the glass composition. When thenardite occurs, it can be maintained that the original glass is of Na composition. The occurrence of quartz in all samples is interpreted as being due to the deposition of atmospheric particulate matter. The color of the patinas can be originated by different processes (presence of carotenes, organic pigmentation, atmospheric contamination, etc.). In the case of moderately weathered stained glass windows, the combination of XRD and FTIR techniques is very useful to obtain a fast preliminary evaluation of the degree of weathering of a stained glass window. The presence of specific mineral phases in the patina (e.g., thenardite) confirms the Na composition of the original stained glass. This is important since Na-rich glass underwent a lesser degree of weathering than K- or K-Ca-rich glass. However, their absence cannot preclude other possibilities. It has been extensively evidenced through time that environmental conditions play an important role on the formation of the different mineral phases which form part of the patinas. The first step in the restoration of a stained glass window is the evaluation of the degree of deterioration of the glass. This evaluation includes a chemical analysis of the glass as well as a characterization of the patinas developed on their surfaces. The obtained results will be essential in order to define the best restoration practices to be followed.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-04-07
... are proposing this AD to detect and correct cracking in the fail-safe interlayer of certain No. 2 and... to detect and correct cracking in the fail-safe interlayer of certain No. 2 and No. 3 glass windows... cracking in the fail-safe interlayer of certain No. 2 and No. 3 glass windows, which could result in loss...
Glass-Si heterojunction solar cells
NASA Technical Reports Server (NTRS)
Anderson, R. L.
1975-01-01
Experimental studies and models for In2O3/Si and SnO2/N-Si solar cells are considered for their suitability in terrestrial applications. The silicon is the active material, and the glass serves as the window to solar radiation, an antireflection coating of the Si, and a low resistance contact. Results show that amorphous windows or layers suppress photocurrent. The interfacial SiO2 layer suppresses photocurrent and increases series resistance. Suppression increases with illumination.
Design and Verification of Critical Pressurised Windows for Manned Spaceflight
NASA Astrophysics Data System (ADS)
Lamoure, Richard; Busto, Lara; Novo, Francisco; Sinnema, Gerben; Leal, Mendes M.
2014-06-01
The Window Design for Manned Spaceflight (WDMS) project was tasked with establishing the state-of-art and explore possible improvements to the current structural integrity verification and fracture control methodologies for manned spacecraft windows.A critical review of the state-of-art in spacecraft window design, materials and verification practice was conducted. Shortcomings of the methodology in terms of analysis, inspection and testing were identified. Schemes for improving verification practices and reducing conservatism whilst maintaining the required safety levels were then proposed.An experimental materials characterisation programme was defined and carried out with the support of the 'Glass and Façade Technology Research Group', at the University of Cambridge. Results of the sample testing campaign were analysed, post-processed and subsequently applied to the design of a breadboard window demonstrator.Two Fused Silica glass window panes were procured and subjected to dedicated analyses, inspection and testing comprising both qualification and acceptance programmes specifically tailored to the objectives of the activity.Finally, main outcomes have been compiled into a Structural Verification Guide for Pressurised Windows in manned spacecraft, incorporating best practices and lessons learned throughout this project.
Spark plasma sintering of bulk SrAl2O4-Sr3Al2O6 eutectic glass with wide-band optical window.
Liu, Jiaxi; Lu, Nan; He, Gang; Li, Xiaoyu; Li, Jianqiang; Li, Jiangtao
2018-06-15
SrAl 2 O 4 -Sr 3 Al 2 O 6 eutectic glass was prepared by using an aerodynamic levitator equipped with a CO 2 laser device. A bulk transparent amorphous sample was obtained by the spark plasma sintering (SPS) of the prepared eutectic glass. XRD, a UV-vis-NIR spectrophotometer and FT-IR were employed to characterize the phase evolution and optical properties. The results show that the bulk SrAl 2 O 4 -Sr 3 Al 2 O 6 samples fabricated by the containerless process and SPS between 852 °C-857 °C were fully amorphous. The amorphous sample has a wide transparent window between 270 nm and 6.2 μm. The average refractive index in the visible light region is 1.680 and the Abbe number is 27.4. The prepared bulk SrAl 2 O 4 -Sr 3 Al 2 O 6 eutectic glass with the wide-band optical window may be a promising candidate for optical applications.
Spark plasma sintering of bulk SrAl2O4-Sr3Al2O6 eutectic glass with wide-band optical window
NASA Astrophysics Data System (ADS)
Liu, Jiaxi; Lu, Nan; He, Gang; Li, Xiaoyu; Li, Jianqiang; Li, Jiangtao
2018-06-01
SrAl2O4-Sr3Al2O6 eutectic glass was prepared by using an aerodynamic levitator equipped with a CO2 laser device. A bulk transparent amorphous sample was obtained by the spark plasma sintering (SPS) of the prepared eutectic glass. XRD, a UV–vis-NIR spectrophotometer and FT-IR were employed to characterize the phase evolution and optical properties. The results show that the bulk SrAl2O4-Sr3Al2O6 samples fabricated by the containerless process and SPS between 852 °C–857 °C were fully amorphous. The amorphous sample has a wide transparent window between 270 nm and 6.2 μm. The average refractive index in the visible light region is 1.680 and the Abbe number is 27.4. The prepared bulk SrAl2O4-Sr3Al2O6 eutectic glass with the wide-band optical window may be a promising candidate for optical applications.
Correlates of avian building strikes at a glass façade museum surrounded by avian habitat
NASA Astrophysics Data System (ADS)
Kahle, L.; Flannery, M.; Dumbacher, J. P.
2013-12-01
Bird window collisions are the second largest anthropogenic cause of bird deaths in the world. Effective mitigation requires an understanding of which birds are most likely to strike, when, and why. Here, we examine five years of avian window strike data from the California Academy of Sciences - a relatively new museum with significant glass façade situated in Golden Gate Park, San Francisco. We examine correlates of window-killed birds, including age, sex, season, and migratory or sedentary tendencies of the birds. We also examine correlates of window kills such as presence of habitat surrounding the building and overall window area. We found that males are almost three times more likely than females to mortally strike windows, and immature birds are three times more abundant than adults in our window kill dataset. Among seasons, strikes were not notably different in spring, summer, and fall; however they were notably reduced in winter. There was no statistical effect of building orientation (north, south, east, or west), and the presence of avian habitat directly adjacent to windows had a minor effect. We also report ongoing studies examining various efforts to reduce window kill (primarily external decals and large electronic window blinds.) We hope that improving our understanding of the causes of the window strikes will help us strategically reduce window strikes.
FACILITY 713, LIVING ROOM SHOWING DIAMONDPANED WINDOWS FLANKING THE FIREPLACE, ...
FACILITY 713, LIVING ROOM SHOWING DIAMOND-PANED WINDOWS FLANKING THE FIREPLACE, AND LEADED-GLASS WINDOWS IN DINING ROOM IN RIGHT BACKGROUND, VIEW FACING SOUTHEAST. - Schofield Barracks Military Reservation, Central-Entry Single-Family Housing Type, Between Bragg & Grime Streets near Ayres Avenue, Wahiawa, Honolulu County, HI
46 CFR 177.1010 - Safety glazing materials.
Code of Federal Regulations, 2010 CFR
2010-10-01
... TONS) CONSTRUCTION AND ARRANGEMENT Window Construction and Visibility § 177.1010 Safety glazing materials. Glass and other glazing material used in windows accessible to passengers and crew must be of...
Novel high-pressure windows made of glass-like carbon for x-ray analysis.
Testemale, Denis; Prat, Alain; Lahera, Eric; Hazemann, Jean-Louis
2016-07-01
Original high-pressure glass-like carbon windows developed for x-ray spectroscopy applications are presented. The scientific and technological background of this new technical development is exposed, in particular the limitations of our existing beryllium windows in the context of x-ray absorption spectroscopy (XAS) measurements of solutions with very low solute concentrations at hydrothermal conditions (0.1-200 MPa, 30-600 °C). The benefits of glass-like carbon are exposed, notably its non-crystalline character, the absence of impurities which has been verified by micro-fluorescence laboratory measurements, and its non-toxicity which makes its machining safer. Finite elements mechanical calculations and experimental pressure tests were conducted to determine the pressure limits of windows with two different geometries: cylindrical (thickness 0.5 mm) and inversed-dome shape (thickness 0.5 mm at the tip of the dome). The former break at 150 MPa and the latter show no sign of rupture at 400 MPa. Recent XAS measurements conducted with the new dome shaped windows are presented to show the advantages of the design that allow for the detection of very low concentrations in the transmission mode (down to 30 ppm) and the acquisition of fluorescence XAS spectra in diluted solutions at high pressure. Eventually the perspectives of this original development are discussed.
46 CFR 116.433 - Windows and air ports in fire control boundaries.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 46 Shipping 4 2010-10-01 2010-10-01 false Windows and air ports in fire control boundaries. 116... CONSTRUCTION AND ARRANGEMENT Fire Protection § 116.433 Windows and air ports in fire control boundaries. (a) Windows or air ports must be of tempered or laminated glass of at least 6.5 millimeters (0.25 inches) in...
INTERIOR VIEW SHOWING PROTOTYPE BEGUN APRIL 1988 METHOD OF CUTTING ...
INTERIOR VIEW SHOWING PROTOTYPE BEGUN APRIL 1988 METHOD OF CUTTING GLASS, "PERFECT TIN? MACHINE." MANUFACTURED IN DALLAS, TEXAS AND USED FOR CUTTING GLASS WITH A FINISHED EDGE. - Chambers-McKee Window Glass Company, Cutting House, Clay Avenue Extension, Jeannette, Westmoreland County, PA
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liapis, Andreas C.; Rahman, Atikur; Black, Charles T.
Most optoelectronic components and consumer display devices require glass or plastic covers for protection against the environment. Optical reflections from these encapsulation layers can degrade the device performance or lessen the user experience. In this paper, we use a highly scalable self-assembly based approach to texture glass surfaces at the nanoscale, reducing reflections by such an extent so as to make the glass essentially invisible. Our nanotextures provide broadband antireflection spanning visible and infrared wavelengths (450–2500 nm) that is effective even at large angles of incidence. This technology can be used to improve the performance of photovoltaic devices by eliminatingmore » reflection losses, which can be as much as 8% for glass encapsulated cells. In contrast, solar cells encapsulated with nanotextured glass generate the same photocurrent as when operated without a cover. Finally, ultra-transparent windows having surface nanotextures on both sides can withstand three times more optical fluence than commercial broadband antireflection coatings, making them useful for pulsed laser applications.« less
Liapis, Andreas C.; Rahman, Atikur; Black, Charles T.
2017-10-30
Most optoelectronic components and consumer display devices require glass or plastic covers for protection against the environment. Optical reflections from these encapsulation layers can degrade the device performance or lessen the user experience. In this paper, we use a highly scalable self-assembly based approach to texture glass surfaces at the nanoscale, reducing reflections by such an extent so as to make the glass essentially invisible. Our nanotextures provide broadband antireflection spanning visible and infrared wavelengths (450–2500 nm) that is effective even at large angles of incidence. This technology can be used to improve the performance of photovoltaic devices by eliminatingmore » reflection losses, which can be as much as 8% for glass encapsulated cells. In contrast, solar cells encapsulated with nanotextured glass generate the same photocurrent as when operated without a cover. Finally, ultra-transparent windows having surface nanotextures on both sides can withstand three times more optical fluence than commercial broadband antireflection coatings, making them useful for pulsed laser applications.« less
NASA Astrophysics Data System (ADS)
Liapis, Andreas C.; Rahman, Atikur; Black, Charles T.
2017-10-01
Most optoelectronic components and consumer display devices require glass or plastic covers for protection against the environment. Optical reflections from these encapsulation layers can degrade the device performance or lessen the user experience. Here, we use a highly scalable self-assembly based approach to texture glass surfaces at the nanoscale, reducing reflections by such an extent so as to make the glass essentially invisible. Our nanotextures provide broadband antireflection spanning visible and infrared wavelengths (450-2500 nm) that is effective even at large angles of incidence. This technology can be used to improve the performance of photovoltaic devices by eliminating reflection losses, which can be as much as 8% for glass encapsulated cells. In contrast, solar cells encapsulated with nanotextured glass generate the same photocurrent as when operated without a cover. Ultra-transparent windows having surface nanotextures on both sides can withstand three times more optical fluence than commercial broadband antireflection coatings, making them useful for pulsed laser applications.
Pr3 + -doped GeSx-based glasses for fiber amplifiers at 1.3 µm
NASA Astrophysics Data System (ADS)
Simons, D. R.; Faber, A. J.; de Waal, H.
1995-03-01
The photoluminescence properties of Pr3+ -doped GeS x -based glasses are studied and compared with those of other sulfide and fluoride glasses. The possibility of highly pump-power-efficient fiber amplifiers based on these GeSx-containing glasses in the telecommunications window at 1.3 mu m is discussed.
46 CFR 127.410 - Safety-glazing materials.
Code of Federal Regulations, 2010 CFR
2010-10-01
... ARRANGEMENTS Construction of Windows, Visibility, and Operability of Coverings § 127.410 Safety-glazing materials. Glass and other glazing material used in windows must be material that will not break into...
Smart glass based on electrochromic polymers
NASA Astrophysics Data System (ADS)
Xu, Chunye; Kong, Xiangxing; Liu, Lu; Su, Fengyu; Kim, Sooyeun; Taya, Minoru
2006-03-01
Five-layer-structured electrochromic glass (window), containing a transparent conductive layer, an electrochromic layer, an ionic conductive layer, an ionic storage layer and a second conductive transparent layer, was fabricated. The electrochromic glass adopts the conjugated polymer, poly[3,3-dimethyl-3,4-dihydro-2H-thieno[3,4-b][1,4]dioxepine] (PProDOT-Me2), as a blue electrochromic active layer, vanadium pentaoxide film as an ion storage layer and polymer gel electrolyte as the ionic transport layer. Dimension of smart glass up to 12 x 20 inch was developed. UV curable sealant was applied for the sealing devices. Color changing or switching speed of 12 x 20 inch smart glass from dark state to the transparent state (or vise versa) is less than 15 seconds under applied 1.5 voltages. Besides the long open circuit memory (the colored state or transparent state remains the same state after the power is off), the smart window can be adjusted easily into the intermediate state between the dark state and the transparent state by just simply turn the power on or off. No space consuming or dirt collecting shades, curtains or blinds are needed. The applications of the smart window, e.g. in the aircrafts, automobiles and architectures were discussed as well.
46 CFR 116.1010 - Safety glazing materials.
Code of Federal Regulations, 2010 CFR
2010-10-01
... ARRANGEMENT Window Construction and Visibility § 116.1010 Safety glazing materials. Glass and other glazing material used in windows must be of material that will not break into dangerous fragments if fractured. ...
NASA Astrophysics Data System (ADS)
Menendez, B.; Brimblecombe, P.; Deque, M.; Grossi, C. M.; Ionescu, A.; Lefevre, R. A.
2012-04-01
The banks of the River Seine in Paris are inscribed on the UNESCO List of the World Cultural Heritage since 1991 because they are studded with a succession of masterpieces such as Notre- Dame Cathedral, Sainte Chapelle, Louvre, Place de la Concorde, Tour Eiffel, and with prestigious museums: Louvre, Orsay, Quai Branly, Petit Palais…Unfortunately, these banks are crossed by the Pompidou urban motorway, an important and continuous source of atmospheric pollution. The aim of the Project is to evaluate the evolution of the weathering of limestone, glass and stained glass in the centre of Paris in the 21rst century by crossing Climate and Pollution Models with Dose-Response Functions (DRF) for limestone, glass and stained glass and with Climatology of Salt Transitions for limestone. A Lutetian limestone (« Courville Stone ») has been used for the construction and the restoration of the most important monuments (Notre-Dame, Louvre…) and haussmannian buildings in Paris. It has a fine grain, a medium porosity (19%) and contains 90% of CaO. The modern glass of windows and large contemporaneous façades has a Si-Ca-Na composition, it is chemically inert, has a low thermal inertia, a flat surface, no open porosity and no surface roughness, therefore it is very durable. The glass of stained glass windows has a Si-Ca-K composition and it is low durable. Using different climate and pollution scenarios of the 21rst century, the project will evaluate different schemes of material degradations: (i) - Recession of limestone surface; (ii) - Soiling of limestone surface; (iii) - Soiling of modern glass; (iv) - Leaching of ancient stained glass windows; (v) - Deterioration of limestone by salts. The British Hadley Models, the French Météo- France Arpège-Aladin Models and the ENSEMBLES Approach will be crossed with DRF and Climatology of Salts Transitions. An in-the-field inventory (stock at risk) of the surface occupied on the façades by each kind of material (stone, rendering, metal, glass, stained glass…) will be performed. A mapping of the future degradations will be achieved by means of the Aladin-Climat Model (12 x12 km) and Surfex system (1 x 1 km) of Météo-France. The aspect and the state of weathering of the monuments will allow predicting their attractivity and thus the impact on their attendance, which means on cultural and mass tourism in Paris. This assessment will allow to anticipate or to delay the restoration campaigns for the monumental façades. This prestigious part of Paris will be a model for the entire city for the planning of these maintenance campaigns and for estimating their cost, because the results obtained in the centre of Paris will be transposable to all the haussmannian façades, that are made of the same limestone and the same window glass than those studied in the frame of this project, to the large façades in glass of the contemporaneous buildings and to the ancient stained glass windows of the Parisian churches.
21. INTERIOR OF SOUTHEAST REAR BEDROOM SHOWING ALUMINUMFRAME SLIDING GLASS ...
21. INTERIOR OF SOUTHEAST REAR BEDROOM SHOWING ALUMINUM-FRAME SLIDING GLASS WINDOWS. VIEW TO SOUTHEAST. - Bishop Creek Hydroelectric System, Plant 4, Worker Cottage, Bishop Creek, Bishop, Inyo County, CA
19. INTERIOR OF NORTHEAST REAR BEDROOM SHOWING ALUMINUMFRAME SLIDING GLASS ...
19. INTERIOR OF NORTHEAST REAR BEDROOM SHOWING ALUMINUM-FRAME SLIDING GLASS WINDOWS. VIEW TO NORTHEAST. - Bishop Creek Hydroelectric System, Plant 4, Worker Cottage, Bishop Creek, Bishop, Inyo County, CA
Federal Register 2010, 2011, 2012, 2013, 2014
2013-04-17
... replacement rear windows manufactured for model year 2006 through 2009 Honda Civic two-door coupe passenger... approximately 206 replacement rear windows (National Auto Glass Specifications (NAGS) part number FB22692GTY...: Pilkington explains that the noncompliance for the 205 replacement rear windows exists due to Pilkington's...
Bird-Window Collisions: A Critical Animal Welfare and Conservation Issue.
Klem, Daniel
2015-01-01
Sheet glass and plastic in the form of clear and reflective windows are universally lethal to birds. Reasonable interpretation of available scientific evidence describes windows as a principal human-associated avian mortality factor that is an indiscriminant killer of common species as well as species of conservation concern. A conservative toll estimates 1 billion or more annual fatalities in the United States alone. The injury and death from birds striking windows are foreseeable and preventable, but the most promising legal measures and commercial products are not being applied or made available to protect defenseless victims. Avian window casualties are important for birds and people, and they have nonhuman animal welfare, biodiversity, sustainability, legal, and ethical and moral value justifying responsible human action. Preventing this unintended and unwanted lethal hazard for free-flying birds should be an obligation. Short-term solutions include retrofitting existing panes with a variety of proven measures that among others include applying various materials to cover the outside surface of windows. Long-term solutions include current and proposed bird-safe sheet glass and plastic for remodeling and new construction that have patterns that transform windows into barriers that birds see and avoid.
Potentially improved glasses from space environment
NASA Technical Reports Server (NTRS)
Nichols, R.
1977-01-01
The benefits of processing glasses in a low-gravity space environment are examined. Containerless processing, the absence of gravity driven convection, and lack of sedimentation are seen as potential advantages. Potential applications include the formation of glass-ceramics with a high content of active elements for ferromagnetic devices, the production of ultrapure chalcogenide glasses for laser windows and IR fiber optics, and improved glass products for use in optical systems and laser fusion targets.
NASA Astrophysics Data System (ADS)
Chakraborty, Shibalik; Boolchand, Punit
2014-03-01
Binary GexS100-x glasses reveal elastic and chemical phase transitions driven by network topology. With increasing Ge content x, well defined rigidity (xc(1) =19.3%) and stress(xc(2) =24.85%) transitions and associated optical elasticity power-laws are observed in Raman scattering. Calorimetric measurements reveal a square-well like minimum with window walls that coincide with the two elastic phase transitions. Molar volumes show a trapezoidal-like minimum with edges that nearly coincide with the reversibility window. These results are signatures of the isostatically rigid nature of the elastic phase formed between the rigidity and stress transitions. Complex Cp measurements show melt fragility index, m(x) to also show a global minimum in the reversibility window, underscoring that melt dynamics encode the elastic behavior of the glass formed at Tg. The strong nature of melts formed in the IP has an important practical consequence; they lead to slow homogenization of non-stoichiometric batch compositions reacted at high temperatures. Homogenization of chalcogenides melts/glasses over a scale of a few microns is a pre-requisite to observe the intrinsic physical properties of these materials. Supported by NSF Grant DMR 0853957.
Barton, Christine M.; Zirkle, Keith W.; Greene, Caitlin F.; Newman, Kara B.
2018-01-01
Collisions with glass are a serious threat to avian life and are estimated to kill hundreds of millions of birds per year in the United States. We monitored 22 buildings at the Virginia Tech Corporate Research Center (VTCRC) in Blacksburg, Virginia, for collision fatalities from October 2013 through May 2015 and explored possible effects exerted by glass area and surrounding land cover on avian mortality. We documented 240 individuals representing 55 identifiable species that died due to collisions with windows at the VTCRC. The relative risk of fatal collisions at all buildings over the study period were estimated using a Bayesian hierarchical zero-inflated Poisson model adjusting for percentage of tree and lawn cover within 50 m of buildings, as well as for glass area. We found significant relationships between fatalities and surrounding lawn area (relative risk: 0.96, 95% credible interval: 0.93, 0.98) as well as glass area on buildings (RR: 1.30, 95% CI [1.05–1.65]). The model also found a moderately significant relationship between fatal collisions and the percent land cover of ornamental trees surrounding buildings (RR = 1.02, 95% CI [1.00–1.05]). Every building surveyed had at least one recorded collision death. Our findings indicate that birds collide with VTCRC windows during the summer breeding season in addition to spring and fall migration. The Ruby-throated Hummingbird (Archilochus colubris) was the most common window collision species and accounted for 10% of deaths. Though research has identified various correlates with fatal bird-window collisions, such studies rarely culminate in mitigation. We hope our study brings attention, and ultimately action, to address this significant threat to birds at the VTCRC and elsewhere. PMID:29637021
Novel high-pressure windows made of glass-like carbon for x-ray analysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Testemale, Denis; Prat, Alain; Lahera, Eric
Original high-pressure glass-like carbon windows developed for x-ray spectroscopy applications are presented. The scientific and technological background of this new technical development is exposed, in particular the limitations of our existing beryllium windows in the context of x-ray absorption spectroscopy (XAS) measurements of solutions with very low solute concentrations at hydrothermal conditions (0.1-200 MPa, 30-600 °C). The benefits of glass-like carbon are exposed, notably its non-crystalline character, the absence of impurities which has been verified by micro-fluorescence laboratory measurements, and its non-toxicity which makes its machining safer. Finite elements mechanical calculations and experimental pressure tests were conducted to determine the pressuremore » limits of windows with two different geometries: cylindrical (thickness 0.5 mm) and inversed-dome shape (thickness 0.5 mm at the tip of the dome). The former break at 150 MPa and the latter show no sign of rupture at 400 MPa. Recent XAS measurements conducted with the new dome shaped windows are presented to show the advantages of the design that allow for the detection of very low concentrations in the transmission mode (down to 30 ppm) and the acquisition of fluorescence XAS spectra in diluted solutions at high pressure. Eventually the perspectives of this original development are discussed.« less
VIEW OF JOHN ELDER OF JEANNETTE BADGE NO. 66. BREAKER ...
VIEW OF JOHN ELDER OF JEANNETTE BADGE NO. 66. BREAKER FOR GENERAL GLASS COMPANY. TAKEN ON BREAKER FLOOR IN FRONT OF BUCK USED TO HOLD GLASS. WORK EQUIPMENT INCLUDES: HARD HAT, SAFETY GLASSES, PROTECTIVE SLEEVES, LEATHER APRON, GLOVES WITH RUBBER PADS ("METATARSALS") WITH OVER STEEL-TOED SHOES. - Chambers-McKee Window Glass Company, Furnace No. 2, Clay Avenue Extension, Jeannette, Westmoreland County, PA
46 CFR 72.05-30 - Windows and airports.
Code of Federal Regulations, 2013 CFR
2013-10-01
... open decks or enclosed promenades need not have wire inserted glass. (g) Skylights to spaces containing... skylights, it shall be of the wire inserted type. The glass panels shall be fitted with permanently attached...
46 CFR 72.05-30 - Windows and airports.
Code of Federal Regulations, 2012 CFR
2012-10-01
... open decks or enclosed promenades need not have wire inserted glass. (g) Skylights to spaces containing... skylights, it shall be of the wire inserted type. The glass panels shall be fitted with permanently attached...
46 CFR 72.05-30 - Windows and airports.
Code of Federal Regulations, 2014 CFR
2014-10-01
... open decks or enclosed promenades need not have wire inserted glass. (g) Skylights to spaces containing... skylights, it shall be of the wire inserted type. The glass panels shall be fitted with permanently attached...
77 FR 21422 - Airworthiness Directives; The Boeing Company Airplanes
Federal Register 2010, 2011, 2012, 2013, 2014
2012-04-10
... the fail-safe interlayer of certain No. 2 and No. 3 glass windows, which could result in loss of the... would hinder the internal or external detailed inspections for fail-safe interlayer cracks, glass pane... this AD only if the non-clear damage hinders the inspection for fail-safe interlayer cracks, glass pane...
Through the Sliding Glass Door: #EmpowerTheReader
ERIC Educational Resources Information Center
Johnson, Nancy J.; Koss, Melanie D.; Martinez, Miriam
2018-01-01
This article seeks to complicate the understanding of Bishop's (1990) metaphor of mirrors, windows, and sliding glass doors, with particular emphasis on sliding glass doors and the emotional connections needed for readers to move through them. The authors begin by examining the importance of the reader and the characters he or she meets. Next, the…
24. INTERIOR OF BEDROOM NO. 2 SHOWING ALUMINUMFRAMED SLIDINGGLASS WINDOWS ...
24. INTERIOR OF BEDROOM NO. 2 SHOWING ALUMINUM-FRAMED SLIDING-GLASS WINDOWS ON NORTH AND EAST WALLS. VIEW TO NORTHEAST. - Bishop Creek Hydroelectric System, Plant 6, Cashbaugh-Kilpatrick House, Bishop Creek, Bishop, Inyo County, CA
FACILITY 712, EXTERIOR DETAIL OF FIREPLACE AND LEADEDGLASS WINDOWS, VIEW ...
FACILITY 712, EXTERIOR DETAIL OF FIREPLACE AND LEADED-GLASS WINDOWS, VIEW FACING WEST. - Schofield Barracks Military Reservation, Central-Entry Single-Family Housing Type, Between Bragg & Grime Streets near Ayres Avenue, Wahiawa, Honolulu County, HI
Visual performance assessment through clear and sunscreen-treated windows.
DOT National Transportation Integrated Search
1978-09-01
Reflective sunscreen filters are frequently bonded to vehicle windows to reduce interior heat and brightness. The present study was conducted to investigate the optical properties of and visual preformance through clear and sunscreen-treated glass pa...
Secchi disk observation with spectral-selective glasses in blue and green waters.
Lee, Zhongping; Shang, Shaoling; Lin, Gong; Liu, Tongtong; Liu, Yangyang; Du, Keping; Luis, Kelly
2017-08-21
Radiative transfer modeling of Secchi disk observations has historically been based on conjugated signals of eye response and radiance, where water's attenuation in the entire visible band is included in the attenuation when deciding the Secchi disk depth in water. Aas et al. [Ocean Sci.10(2), 177 (2014)Remote Sens. Environ.169, 139 (2015)] hypothesized that it is actually the attenuation in water's transparent window that matters to the observation of a Secchi disk in water. To test this hypothesis, observations of Secchi disks in blue and green waters were conducted via naked eyes, blue-pass glasses, and green-pass glasses. Measurement results indicate that for blue waters, the observed Secchi depths via naked eyes match the depths obtained with blue-pass glasses and much deeper than the depths with green-pass glasses, although the green-pass glasses match the highest response of human eyes. These observations experimentally support the hypothesis that our eye-brain system uses the contrast information in the transparent window to make a judgement decision regarding sighting a Secchi disk in water.
Use of photovoltaics for waste heat recovery
Polcyn, Adam D
2013-04-16
A device for recovering waste heat in the form of radiated light, e.g. red visible light and/or infrared light includes a housing having a viewing window, and a photovoltaic cell mounted in the housing in a relationship to the viewing window, wherein rays of radiated light pass through the viewing window and impinge on surface of the photovoltaic cell. The housing and/or the cell are cooled so that the device can be used with a furnace for an industrial process, e.g. mounting the device with a view of the interior of the heating chamber of a glass making furnace. In this manner, the rays of the radiated light generated during the melting of glass batch materials in the heating chamber pass through the viewing window and impinge on the surface of the photovoltaic cells to generate electric current which is passed onto an electric load.
Crossover from equilibration to aging: Nonequilibrium theory versus simulations.
Mendoza-Méndez, P; Lázaro-Lázaro, E; Sánchez-Díaz, L E; Ramírez-González, P E; Pérez-Ángel, G; Medina-Noyola, M
2017-08-01
Understanding glasses and the glass transition requires comprehending the nature of the crossover from the ergodic (or equilibrium) regime, in which the stationary properties of the system have no history dependence, to the mysterious glass transition region, where the measured properties are nonstationary and depend on the protocol of preparation. In this work we use nonequilibrium molecular dynamics simulations to test the main features of the crossover predicted by the molecular version of the recently developed multicomponent nonequilibrium self-consistent generalized Langevin equation theory. According to this theory, the glass transition involves the abrupt passage from the ordinary pattern of full equilibration to the aging scenario characteristic of glass-forming liquids. The same theory explains that this abrupt transition will always be observed as a blurred crossover due to the unavoidable finiteness of the time window of any experimental observation. We find that within their finite waiting-time window, the simulations confirm the general trends predicted by the theory.
85. HENNESSY'S DEPARTMENT STORE (130 NORTH MAIN, 18971898) IS A ...
85. HENNESSY'S DEPARTMENT STORE (130 NORTH MAIN, 1897-1898) IS A STEEL FRAME AND BRICK STRUCTURE DESIGNED BY FREDERICK KEES OF MINNEAPOLIS. IT HAS INLAID MARBLE TILES IN THE HALLS, AND PLATE GLASS WINDOWS FRAMED IN COPPER ON THE FIRST AND SECOND FLOORS. THERE IS ALSO A CAST-IRON AND ORNAMENTAL GLASS LOWER LEVEL AND TERRA-COTTA DETAILING AROUND THE WINDOWS. THE ENTRANCE IS AN ELLIPTICAL ARCH WITH IRON GRILL WORK. - Butte Historic District, Bounded by Copper, Arizona, Mercury & Continental Streets, Butte, Silver Bow County, MT
61. Hennessy's Department Store (130 North Main, 18971898) is a ...
61. Hennessy's Department Store (130 North Main, 1897-1898) is a steel frame and brick structure designed by Frederick Kees of Minneapolis. It has inlaid marble tiles in the halls, and plate glass windows framed in copper on the first and second floors. There is also a cast-iron and ornamental glass lower level and terra-cotta detailing around the windows. The entrance is an eliptical arch with iron grill work. - Butte Historic District, Bounded by Copper, Arizona, Mercury & Continental Streets, Butte, Silver Bow County, MT
INTERIOR VIEW SHOWING FURNACE KEEPER OBSERVING FURNACE THROUGH BLUE GLASS ...
INTERIOR VIEW SHOWING FURNACE KEEPER OBSERVING FURNACE THROUGH BLUE GLASS EVERY TWENTY MINUTES TO DETERMINE SIZE AND TEXTURE OF BATCH AND OTHER VARIABLES. FAN IN FRONT COOLS WORKERS AS THEY CONDUCT REPAIRS. FURNACE TEMPERATURE AT 1572 DEGREES FAHRENHEIT. - Chambers-McKee Window Glass Company, Furnace No. 2, Clay Avenue Extension, Jeannette, Westmoreland County, PA
DOT National Transportation Integrated Search
1994-01-01
The 1993 Session of the Virginia General Assembly lessened restrictions relating to the application of aftermarket tinted window films to motor vehicle glass. Effective July 1, 1993, vehicles are allowed to have window tinting treatments that do not ...
The Benefits of Aluminum Windows.
ERIC Educational Resources Information Center
Goyal, R. C.
2002-01-01
Discusses benefits of aluminum windows for college construction and renovation projects, including that aluminum is the most successfully recycled material, that it meets architectural glass deflection standards, that it has positive thermal energy performance, and that it is a preferred exterior surface. (EV)
Window acoustic study for advanced turboprop aircraft
NASA Technical Reports Server (NTRS)
Prydz, R. A.; Balena, F. J.
1984-01-01
An acoustic analysis was performed to establish window designs for advanced turboprop powered aircraft. The window transmission loss requirements were based on A-weighted interior noise goals of 80 and 75 dBA. The analytical results showed that a triple pane window consisting of two glass outer panes and an inner pane of acrylic would provide the required transmission loss and meet the sidewall space limits. Two window test articles were fabricated for laboratory evaluation and verification of the predicted transmission loss. Procedures for performing laboratory tests are presented.
Hester, Nathan; Li, Ke; Schramski, John R; Crittenden, John
2012-04-30
Globally, residential energy consumption continues to rise due to a variety of trends such as increasing access to modern appliances, overall population growth, and the overall increase of electricity distribution. Currently, residential energy consumption accounts for approximately one-fifth of total U.S. energy consumption. This research analyzes the effectiveness of a range of energy-saving measures for residential houses in semi-arid climates. These energy-saving measures include: structural insulated panels (SIP) for exterior wall construction, daylight control, increased window area, efficient window glass suitable for the local weather, and several combinations of these. Our model determined that energy consumption is reduced by up to 6.1% when multiple energy savings technologies are combined. In addition, pre-construction technologies (structural insulated panels (SIPs), daylight control, and increased window area) provide roughly 4 times the energy savings when compared to post-construction technologies (window blinds and efficient window glass). The model also illuminated the importance variations in local climate and building configuration; highlighting the site-specific nature of this type of energy consumption quantification for policy and building code considerations. Published by Elsevier Ltd.
Network rigidity and properties of SiO2 and GeO2 glasses under pressure.
Trachenko, Kostya; Dove, Martin T; Brazhkin, Vadim; El'kin, F S
2004-09-24
We report in situ studies of SiO2 glass under pressure and find that temperature-induced densification takes place in a pressure window. To explain this effect, we study how rigidity of glasses changes under pressure, with rigidity percolation affecting the dynamics of local relaxation events. We link rigidity percolation in glasses to other effects, including a large increase of crystallization temperature and logarithmic relaxation under pressure.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Quarrie, L., E-mail: Lindsay.Quarrie@l-3com.com, E-mail: lindsay.o.quarrie@gmail.com; Air Force Research Laboratory, AFRL/RDLC Laser CoE, 3550 Aberdeen Avenue SE, Kirtland AFB, NM 87117-5776
The lifetime of Diode-Pumped Alkali Lasers (DPALs) is limited by damage initiated by reaction of the glass envelope of its gain medium with rubidium vapor. Rubidium is absorbed into the glass and the rubidium cations diffuse through the glass structure, breaking bridging Si-O bonds. A damage-resistant thin film was developed enhancing high-optical transmission at natural rubidium resonance input and output laser beam wavelengths of 780 nm and 795 nm, while protecting the optical windows of the gain cell in a DPAL. The methodology developed here can be readily modified for simulation of expected transmission performance at input pump and outputmore » laser wavelengths using different combination of thin film materials in a DPAL. High coupling efficiency of the light through the gas cell was accomplished by matching the air-glass and glass-gas interfaces at the appropriate wavelengths using a dielectric stack of high and low index of refraction materials selected to work at the laser energies and protected from the alkali metal vapor in the gain cell. Thin films as oxides of aluminum, zirconium, tantalum, and silicon were selected allowing the creation of Fabry-Perot optical filters on the optical windows achieving close to 100% laser transmission in a solid optic combination of window and highly reflective mirror. This approach allows for the development of a new whole solid optic laser.« less
Prediction of glass durability as a function of environmental conditions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jantzen, C M
1988-01-01
A thermodynamic model of glass durability is applied to natural, ancient, and nuclear waste glasses. The durabilities of over 150 different natural and man-made glasses, including actual ancient Roman and Islamic glasses (Jalame ca. 350 AD, Nishapur 10-11th century AD and Gorgon 9-11th century AD), are compared. Glass durability is a function of the thermodynamic hydration free energy, ..delta..G/sub hyd/, which can be calculated from glass composition and solution pH. The durability of the most durable nuclear waste glasses examined was /approximately/10/sup 6/ years. The least durable waste glass formulations were comparable in durability to the most durable simulated medievalmore » window glasses of /approximately/10/sup 3/ years. In this manner, the durability of nuclear waste glasses has been interpolated to be /approximately/10/sup 6/ years and no less than 10/sup 3/ years. Hydration thermodynamics have been shown to be applicable to the dissolution of glass in various natural environments. Groundwater-glass interactions relative to geologic disposal of nuclear waste, hydration rind dating of obsidians, andor other archeological studies can be modeled, e.g., the relative durabilities of six simulated medieval window glasses have been correctly predicted for both laboratory (one month) and burial (5 years) experiments. Effects of solution pH on glass dissolution has been determined experimentally for the 150 different glasses and can be predicted theoretically by hydration thermodynamics. The effects of solution redox on dissolution of glass matrix elements such as SI and B have shown to be minimal. The combined effects of solution pH and Eh have been described and unified by construction of thermodynamically calculated Pourbaix (pH-Eh) diagrams for glass dissolution. The Pourbaix diagrams have been quantified to describe glass dissolution as a function of environmental conditions by use of the data derived from hydration thermodynamics. 56 refs., 7 figs.« less
Glass Fragment Hazard from Windows Broken by Airblast
1980-05-30
Reference 2). Velocities, masses, and spetial distributions of frao- ments have been mfeasured by trapping the fragments in Sty.roFoam 0 ( expanded ... polystyrene ) "witness plates located behind windows in houses subjected to large chiemical or nuclear ex- plosions (References 3 and 4). Yields ranged
Interior detail view, surviving stained glass panel in an east ...
Interior detail view, surviving stained glass panel in an east aisle window. Most of the stained glass has been removed from the building and relocated to other area churches. (Similar to HABS No. PA-6694-25). - Acts of the Apostles Church in Jesus Christ, 1400-28 North Twenty-eighth Street, northwest corner of North Twenty-eighth & Master Streets, Philadelphia, Philadelphia County, PA
NASA Astrophysics Data System (ADS)
Ottavy, Xavier; Trébinjac, Isabelle; Vouillarmet, André
1999-09-01
When measurements are performed in high speed, small-scale compressors, the use of curved glass windows is required in order to avoid any mismatch between the measurement window and the casing. However, the glass curvature leads to optical distortions, which hinder acceptable measurements and can even prevent the acquisition of any data. Thus, an original optical assembly, which consists in inserting a simple and inexpensive corrective window between the frontal lens of the anemometer and the shroud window, is proposed. The way of determining the geometric characteristics and the position of this corrective window, which restores very acceptable foci, is presented in the paper. The reliability of this corrective optical assembly is highlighted by comparative measurements in a test case. Using such an optical setting, L2F measurements were realised along a section, downstream of the inlet guide vane (IGV) of a transonic compressor stage. The spatial resolution leads to a good description of the interaction of the wake with the oblique shock emanating from the leading edge of the rotor. A phenomenological study of the wake/shock interaction with a change of frame is realised using the streamwise equation of the transport of vorticity.
Patterns of bird-window collisions inform mitigation on a university campus
Winton, R. Scott; Wu, Charlene J.; Zambello, Erika; Wittig, Thomas W.; Cagle, Nicolette L.
2016-01-01
Bird-window collisions cause an estimated one billion bird deaths annually in the United States. Building characteristics and surrounding habitat affect collision frequency. Given the importance of collisions as an anthropogenic threat to birds, mitigation is essential. Patterned glass and UV-reflective films have been proven to prevent collisions. At Duke University’s West campus in Durham, North Carolina, we set out to identify the buildings and building characteristics associated with the highest frequencies of collisions in order to propose a mitigation strategy. We surveyed six buildings, stratified by size, and measured architectural characteristics and surrounding area variables. During 21 consecutive days in spring and fall 2014, and spring 2015, we conducted carcass surveys to document collisions. In addition, we also collected ad hoc collision data year-round and recorded the data using the app iNaturalist. Consistent with previous studies, we found a positive relationship between glass area and collisions. Fitzpatrick, the building with the most window area, caused the most collisions. Schwartz and the Perk, the two small buildings with small window areas, had the lowest collision frequencies. Penn, the only building with bird deterrent pattern, caused just two collisions, despite being almost completely made out of glass. Unlike many research projects, our data collection led to mitigation action. A resolution supported by the student government, including news stories in the local media, resulted in the application of a bird deterrent film to the building with the most collisions: Fitzpatrick. We present our collision data and mitigation result to inspire other researchers and organizations to prevent bird-window collisions. PMID:26855877
Optical Property Requirements for Glasses, Ceramics and Plastics in Spacecraft Window Systems
NASA Technical Reports Server (NTRS)
Estes, Lynda
2011-01-01
This is a preliminary draft of a standard published by the National Aeronautics and Space Administration (NASA) Johnson Space Center (JSC) that is intended to provide uniform window optical design requirements in support of the development of human-rated spaceflight hardware. The material covered in this standard is based on data from extensive testing by the Advanced Sensing and Optical Measurement Branch at NASA Langley Research Center, and compiled into requirements format by the NASA JSC Structural Engineering Division. At the time of this initial document release, a broader technical community has not reviewed this standard. The technical content of this standard is primarily based on the Constellation Program Orion Crew Exploration Vehicle Window Optical Properties Requirements, CxP 72407, Baseline. Unlike other optical requirements documents available for human rated spacecraft, this document includes requirements that ensure functionality for windows that contain glass/ceramic and/or plastic window substrate materials. These requirements were derived by measuring the optical properties of fused silica and aluminosilicate glass window assemblies and ensuring that the performance of any window assembly that includes a plastic pane or panes will meet the performance level of the all-glass assemblies. The resulting requirements are based upon the performance and parameter metrology testing of a variety of materials, including glass, transparent ceramics, acrylics, and polycarbonates. In general, these requirements are minimum specifications for each optical parameter in order to achieve the function specified for each functional category, A through D. Because acrylic materials perform at a higher level than polycarbonates in the optics regime, and CxP/Orion is planning to use acrylic in the Orion spacecraft, these requirements are based heavily on metrology from that material. As a result, two of the current Category D requirements for plastics are cited in such a way that will result in the screening out of polycarbonates. It is acknowledged that many polycarbonates can perform the functions of Category D, such as piloting and imagery with lens with apertures up to 25mm, without performance issues. Therefore, this forward warns users that certain requirements, such as birefringence and wavefront, for Category D plastics need to be revised to allow those polycarbonates that perform adequately in Category D to be accepted, while at the same time, screen out those materials that do not perform up to par. At the time of document release, the requirements in question have been identified by a TBD beside the proposed requirement criteria (which is based upon acrylic performance). Vehicles that are designed with acrylic materials for windowpanes are encouraged to use the values presented in this document for all requirements, in order to ensure adequate optical performance.
A Summary of the Evaluation of PPG Herculite XP Glass in Punched Window and Storefront Assemblies
2013-01-01
frames for all IGU windows extruded from existing dies. The glazing was secured to the frame on all four sides with a 1/2-in bead width of DOW 995...lite and non-laminated IGU debris tests. A wood frame with a 4-in wide slit was placed behind the window to transform the debris cloud into a narrow...speed camera DIC Set-up laser deflection gauge shock tube window wood frame with slit high speed camerawell lit backdrop Debris Tracking Set-up laser
Designing Glass Panels for Economy and Reliability
NASA Technical Reports Server (NTRS)
Moore, D. M.
1983-01-01
Analytical method determines probability of failure of rectangular glass plates subjected to uniformly distributed loads such as those from wind, earthquake, snow, and deadweight. Developed as aid in design of protective glass covers for solar-cell arrays and solar collectors, method is also useful in estimating the reliability of large windows in buildings exposed to high winds and is adapted to nonlinear stress analysis of simply supported plates of any elastic material.
Precision glass molding: Toward an optimal fabrication of optical lenses
NASA Astrophysics Data System (ADS)
Zhang, Liangchi; Liu, Weidong
2017-03-01
It is costly and time consuming to use machining processes, such as grinding, polishing and lapping, to produce optical glass lenses with complex features. Precision glass molding (PGM) has thus been developed to realize an efficient manufacture of such optical components in a single step. However, PGM faces various technical challenges. For example, a PGM process must be carried out within the super-cooled region of optical glass above its glass transition temperature, in which the material has an unstable non-equilibrium structure. Within a narrow window of allowable temperature variation, the glass viscosity can change from 105 to 1012 Pas due to the kinetic fragility of the super-cooled liquid. This makes a PGM process sensitive to its molding temperature. In addition, because of the structural relaxation in this temperature window, the atomic structure that governs the material properties is strongly dependent on time and thermal history. Such complexity often leads to residual stresses and shape distortion in a lens molded, causing unexpected changes in density and refractive index. This review will discuss some of the central issues in PGM processes and provide a method based on a manufacturing chain consideration from mold material selection, property and deformation characterization of optical glass to process optimization. The realization of such optimization is a necessary step for the Industry 4.0 of PGM.
Evaluation of 3D printed optofluidic smart glass prototypes.
Wolfe, Daniel; Goossen, K W
2018-01-22
Smart glass or smart windows are an innovative technology used for thermal management, energy efficiency, and privacy applications. Notable commercially available smart glass relies on an electric stimuli to modulate the glass from a transparent to a translucent mode of operation. However, the current market technologies, such as electrochromic, polymer dispersed liquid crystal, and suspended particle devices are expensive and suffer from solar absorption, poor transmittance modulation, and in some cases, continuous power consumption. The authors of this paper present a novel optofluidic smart glass prototype capable of modulating visible light transmittance from 8% to 85%.
Transparent and flexible heaters based on Al:ZnO degenerate semiconductor
NASA Astrophysics Data System (ADS)
Roul, Monee K.; Obasogie, Brandon; Kogo, Gilbert; Skuza, J. R.; Mundle, R. M.; Pradhan, A. K.
2017-10-01
We report on high performance transparent Al:ZnO (AZO) thin film heaters on flexible polymer (polyethylene terephthalate) and glass substrates which demonstrate low sheet resistivity. AZO thin films were grown by radio-frequency magnetron sputtering at low Ts (below 200 °C) on flexible, transparent polyethylene terephthalate substrates that show stable and reproducible results by applying low (<10 V) voltages. This study also examined identical AZO thin films on glass substrates that showed highly reproducible heating effects due to the Joule heating effect. The potential applications are foldable and wearable electronics, pain/injury therapy smart windows, automobile window defrosters, and low-cost power electronics.
Thermodynamic model of natural, medieval and nuclear waste glass durability
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jantzen, C.M.; Plodinec, M.J.
1983-01-01
A thermodynamic model of glass durability based on hydration of structural units has been applied to natural glass, medieval window glasses, and glasses containing nuclear waste. The relative durability predicted from the calculated thermodynamics correlates directly with the experimentally observed release of structural silicon in the leaching solution in short-term laboratory tests. By choosing natural glasses and ancient glasses whose long-term performance is known, and which bracket the durability of waste glasses, the long-term stability of nuclear waste glasses can be interpolated among these materials. The current Savannah River defense waste glass formulation is as durable as natural basalt frommore » the Hanford Reservation (10/sup 6/ years old). The thermodynamic hydration energy is shown to be related to the bond energetics of the glass. 69 references, 2 figures, 1 table.« less
Nano-materials enabled thermoelectricity from window glasses.
Inayat, Salman B; Rader, Kelly R; Hussain, Muhammad M
2012-01-01
With a projection of nearly doubling up the world population by 2050, we need wide variety of renewable and clean energy sources to meet the increased energy demand. Solar energy is considered as the leading promising alternate energy source with the pertinent challenge of off sunshine period and uneven worldwide distribution of usable sun light. Although thermoelectricity is considered as a reasonable renewable energy from wasted heat, its mass scale usage is yet to be developed. Here we show, large scale integration of nano-manufactured pellets of thermoelectric nano-materials, embedded into window glasses to generate thermoelectricity using the temperature difference between hot outside and cool inside. For the first time, this work offers an opportunity to potentially generate 304 watts of usable power from 9 m(2) window at a 20°C temperature gradient. If a natural temperature gradient exists, this can serve as a sustainable energy source for green building technology.
Improved Comfort | Efficient Windows Collaborative
temperature; how low the glass temperature drops depends on the window's insulating quality. If people are exposed to the effects of a cold surface, they can experience significant radiant heat loss to that cold surface and they feel uncomfortable, even if the room air temperature is comfortable. When the interior
5. EXTERIOR OF SOUTH END OF HOUSE SHOWING OPEN DOOR ...
5. EXTERIOR OF SOUTH END OF HOUSE SHOWING OPEN DOOR TO BASEMENT BELOW KITCHEN, ORIGINAL PAIRED WOODFRAMED SLIDING-GLASS WINDOWS ON KITCHEN WALL AND 1LIGHT OVER 1-LIGHT DOUBLE-HUNG WINDOW ON STORM PORCH ADDITION. VIEW TO WEST. - Rush Creek Hydroelectric System, Clubhouse Cottage, Rush Creek, June Lake, Mono County, CA
Instantaneous Optical Wall-Temperature of Vertical Two-Phase Annular Flow
NASA Astrophysics Data System (ADS)
Fehring, Brian; Livingston-Jha, Simon; Morse, Roman; Chan, Jason; Doherty, James; Brueggeman, Colby; Nellis, Gregory; Dressler, Kristofer; Berson, ArganthaëL.; Multiphase Flow Visualization; Analysis Laboratory at University of Wisconsin-Madison Team
2017-11-01
We present a non-invasive optical technique for measuring the instantaneous temperature at the inner wall of a flow duct. The technique is used to characterize a fully-developed vertical annular flow of R245fa refrigerant. The test section includes transparent heating windows made of glass coated with fluorine-doped tin-oxide. A 15 mW helium-neon laser is directed through a prism mounted on one of the glass windows and reflected off of the interface between the 150-micron-thick liquid film and the inside wall of the testing section window. The intensity of the laser light reflected at the liquid film-window interface depends on the index of refraction of liquid R245fa, which itself depends on the temperature of the fluid. The intensity of the reflected light is measured using a photodiode and calibrated to a light reflectance model based on the Fresnel equations and Snell's law. Instantaneous temperature data is combined with optical liquid film thickness measurements to calculate the local instantaneous heat transfer coefficient at the wall.
Early stage of weathering of medieval-like potash-lime model glass: evaluation of key factors.
Gentaz, Lucile; Lombardo, Tiziana; Loisel, Claudine; Chabas, Anne; Vallotto, Marta
2011-02-01
Throughout history, a consequent part of the medieval stained glass windows have been lost, mostly because of deliberate or accidental mechanic destruction during war or revolution, but, in some cases, did not withstand the test of time simply because of their low durability. Indeed, the glasses that remain nowadays are for many in a poor state of conservation and are heavily deteriorated. Under general exposure conditions, stained glass windows undergo different kinds of weathering processes that modify their optical properties, chemistry, and structure: congruent dissolution, leaching, and particle deposition (the combination of those two leading together to the formation of neocrystallisations and eventually crusts). Previous research has studied the weathering forms and the mechanisms from which they are originated, some others identified the main environmental parameters responsible for the deterioration and highlighted that both intrinsic (glass composition) and extrinsic (environmental parameters) factors influence glass degradation. Nevertheless, a clear quantification of the impact of the different deterioration extrinsic factors has not been performed. By analysing the results obtained with model glass (durable and nondurable) exposed in the field, this paper proposes a simple mathematical computation evaluating the contribution of the different weathering factors for the early stages of exposure of the stained glasses. In the case of non durable glass, water runoff was identified as the main factor inducing the leaching (83.4 ± 2.6% contribution), followed by gas (6.4 ± 1.5%) and particle deposition (6.8 ± 2.2%) and adsorbed water (3.4 ± 0.6%). Moreover, it was shown that the extrinsic stimuli superimposes with the impact of glass composition to the weathering. Those results show that the role played by dry deposition, even if less important than that of the wet deposition, cannot be neglected.
46 CFR 72.05-30 - Windows and airports.
Code of Federal Regulations, 2011 CFR
2011-10-01
... strength purposes in certain locations. All glass shall be fitted in steel or equivalent metal frames and shall be retained by steel or equivalent metal glazing beads or angles. (b) Where wire-inserted glass is required, and the single wire type is employed, the strands shall run horizontally and shall be not more...
46 CFR 72.05-30 - Windows and airports.
Code of Federal Regulations, 2010 CFR
2010-10-01
... strength purposes in certain locations. All glass shall be fitted in steel or equivalent metal frames and shall be retained by steel or equivalent metal glazing beads or angles. (b) Where wire-inserted glass is required, and the single wire type is employed, the strands shall run horizontally and shall be not more...
The Language of Stained-Glass Windows
ERIC Educational Resources Information Center
Brew, Charl Anne
2010-01-01
The splendor and beauty of stained glass punctuates any room. In this article, the author describes a cross-curriculum project which incorporated the French classes' research and written study of France in the Middle Ages. For the project the author suggested Sainte-Chapelle which is considered a reliquary and was built by Louis IX to house the…
Study of the effect of ZnO film on some properties of clear and color window glass
NASA Astrophysics Data System (ADS)
Hamead, Alaa A. Abdul; Ahmed, Sura S.; Khdheer, Mena F.
2018-05-01
In the current research, a samples of transparent color and colorless window glass were prepared, (includes metal transition oxides) for construction applications. A nano-film layer of zinc oxide ZnO was deposited by spray pyrolysis technique for use in sustainability applications prepared. Structural properties (x-ray diffraction XRD, scanning electron microscopy SEM and atomic force microscopy AFM), and thermal properties, as well as optical properties and the effect of weathering conditions on applied film on clear and colored glass were examined. The results showed that the deposition film had a thickness of less than 90nm and that it was crystallized with high optical transparently, that was not significantly affected after deposited the ZnO nano film. While thermal insulation decreased significantly after deposition, and the effect of the weather conditions was very low as the ZnO coating was not affected, as the thermal insulation did not change after exposure to accelerated air conditions. Make it suitable in glass applications for buildings in vertical construction.
Fracture Strength of Fused Silica From Photonic Signatures Around Collision Sites
NASA Technical Reports Server (NTRS)
Yost, William T.; Cramer, K Elliott
2015-01-01
Impact sites in glass affect its fracture strength. An analytical model that predicts fracture strength from grey-field polariscope (GFP) readings (photoelastic retardations) has been developed and reported in the literature. The model is suggestive that stress fields, resulting from impact damage, destablizes sites within the glass, which lead to pathways that cause strength degradation. Using data collected from fused silica specimens fabricated from outer window panes that were designed for the space shuttle, the model was tested against four categories of inflicted damage. The damage sites were cored from the window carcasses, examined with the GFP and broken using the ASTM Standard C1499-09 to measure the fracture strength. A correlation is made between the fracture strength and the photoelastic retardation measured at the damage site in each specimen. A least-squares fit is calculated. The results are compared with the predictions from the model. A plausible single-sided NDE damage site inspection method (a version of which is planned for glass inspection in the Orion Project) that relates photoelastic retardation in glass components to its fracture strength is presented.
Car glass microphones using piezoelectric transducers for external alarm detection and localization
NASA Astrophysics Data System (ADS)
Bolzmacher, Christian; Le Guelvouit, Valentin
2015-05-01
This work describes the potential use of car windows as a long range acoustic sensing device for external alarm signals. The goal is to detect and localize siren signals (e.g. ambulances and police cars) and to alert presbycusic drivers of its presence by visual and acoustic feedback in order to improve individual mobility and increase the sense of security. The glass panes of a Renault Zoé operating as an acoustic antenna have been equipped with large 50 mm outer diameter piezoceramic rings, hidden in the lower part of the door structure and the lower part of the windshield and the rear window. The response of the glass to quasi-static signals and sweep excitation has been recorded. In general, the glass pane is acting as a high pass filter due to its inherent stiffness and provides only little damping. This effect is compensated by using a charge amplifier electronic circuit. The detection capability up to 120 m as well as a dynamic test where the car is moving towards the sound source is reported.
Numerical and experimental validation for the thermal transmittance of windows with cellular shades
Hart, Robert
2018-02-21
Some highly energy efficient window attachment products are available today, but more rapid market adoption would be facilitated by fair performance metrics. It is important to have validated simulation tools to provide a basis for this analysis. This paper outlines a review and validation of the ISO 15099 center-of-glass zero-solar-load heat transfer correlations for windows with cellular shades. Thermal transmittance was measured experimentally, simulated using computational fluid dynamics (CFD) analysis, and simulated utilizing correlations from ISO 15099 as implemented in Berkeley Lab WINDOW and THERM software. CFD analysis showed ISO 15099 underestimates heat flux of rectangular cavities by up tomore » 60% when aspect ratio (AR) = 1 and overestimates heat flux up to 20% when AR = 0.5. CFD analysis also showed that wave-type surfaces of cellular shades have less than 2% impact on heat flux through the cavities and less than 5% for natural convection of room-side surface. WINDOW was shown to accurately represent heat flux of the measured configurations to a mean relative error of 0.5% and standard deviation of 3.8%. Finally, several shade parameters showed significant influence on correlation accuracy, including distance between shade and glass, inconsistency in cell stretch, size of perimeter gaps, and the mounting hardware.« less
Numerical and experimental validation for the thermal transmittance of windows with cellular shades
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hart, Robert
Some highly energy efficient window attachment products are available today, but more rapid market adoption would be facilitated by fair performance metrics. It is important to have validated simulation tools to provide a basis for this analysis. This paper outlines a review and validation of the ISO 15099 center-of-glass zero-solar-load heat transfer correlations for windows with cellular shades. Thermal transmittance was measured experimentally, simulated using computational fluid dynamics (CFD) analysis, and simulated utilizing correlations from ISO 15099 as implemented in Berkeley Lab WINDOW and THERM software. CFD analysis showed ISO 15099 underestimates heat flux of rectangular cavities by up tomore » 60% when aspect ratio (AR) = 1 and overestimates heat flux up to 20% when AR = 0.5. CFD analysis also showed that wave-type surfaces of cellular shades have less than 2% impact on heat flux through the cavities and less than 5% for natural convection of room-side surface. WINDOW was shown to accurately represent heat flux of the measured configurations to a mean relative error of 0.5% and standard deviation of 3.8%. Finally, several shade parameters showed significant influence on correlation accuracy, including distance between shade and glass, inconsistency in cell stretch, size of perimeter gaps, and the mounting hardware.« less
Use of UV-protective windows and window films to aid in the prevention of skin cancer.
Edlich, Richard F; Winters, Kathryne L; Cox, Mary Jude; Becker, Daniel G; Horowitz, Jed H; Nichter, Larry S; Britt, L D; Long, William B; Edlic, Elizabeth C
2004-01-01
People are exposed to ambient solar ultraviolet (UV) radiation throughout their daily routine, intentionally and unintentionally. Cumulative and excessive exposure to UV radiation is the behavioral cause to skin cancers, skin damage, premature skin aging, and sun-related eye disorders. More than one million new cases of skin cancer were diagnosed in the United States this year. UV radiates directly and diffusely scattered by the various environmental and atmospheric conditions and has access to the skin from all directions. Because of this diffuse UV radiation, a person situated under a covering, such as the roof of a car or house, is not completely protected from the sun's rays. Because shade structures do not protect effectively against UV radiation, there have been major advances in photoprotection of glass by the development of specially designed photoprotective windows and films. It is the purpose of this collective review to highlight the photoprotective windows and films that should be incorporated into residential, commercial, and school glass windows to reduce sun exposure. Low-emittence (low-E) coatings are microscopically thin, virtually invisible, metal or metallic oxide layers deposited on a window or skylight glazing surface to reduce the U-factor by suppressing radiative heat flow as well as to limit UV radiation. The exclusive Thermaflect coating uses the most advanced, double-layer soft coat technology to continue to deliver top performance for UV protection as well as prevent heat loss in the home. This product blocks 87% of UV radiation and has an Energy Star certification in all climate zones. Tints and films have been another important advance in glass photoprotection, especially in automobiles. Quality widow film products are high-tech laminates of polyester and metallized coatings bonded by distortion-free adhesives. The International Window Film Association provides members with accreditation in solar control films, safety films, and automotive films in an effort to increase consumer awareness and demand for all professionally installed film window products. The Skin Cancer Foundation has also played a leadership role in certifying window films that limit UV transmission. The Panorama Designer and Safety Films are currently recommended for UV photoprotection by The Skin Cancer Foundation. On the basis of these innovative scientific and industrial advances in window and film photoprotective products, we recommend that they be used in all residential, commercial, and school facilities to provide photoprotection in an effort to reduce skin cancer.
Window Glazing Types | Efficient Windows Collaborative
of glass. Single Clear Single Tint Double Glazing The following sections on high-performance double fills. Double Clear Double Tint Double High-Solar-Gain Low-E Double Medium-Solar-Gain Low-E Double Low -Solar-Gain Low-E Double High-Solar-Gain Low-E with Roomside (4th surface) Low-E Double Medium-Solar-Gain
Window Treatment Phase I and Other Energy II Conservation Measures.
ERIC Educational Resources Information Center
Donohue, Philip E.
Six different energy-saving treatments for large window areas were tested by Tompkins-Cortland Community College (TCCC) to coordinate energy saving with building design. The TCCC building has an open space design with 33,000 square feet of external glass and other features causing heating problems and high energy costs. Phase I of the…
Dale Chihuly: An Inspiration in Art, Science, and Math!
ERIC Educational Resources Information Center
Hubbert, Beth
2009-01-01
Connecting students to the arts in a concrete way can be an effective teaching tool. In this article, the author describes how Dale Chihuly's "Hart Window," which features hand-blown glass disks affixed to the framework of the window, can be an inspiration for interdisciplinary connections in art, science and math. (Contains 4 online resources.)
10. INTERIOR OF LIVING ROOM SHOWING FRONT DOOR FLANKED BY ...
10. INTERIOR OF LIVING ROOM SHOWING FRONT DOOR FLANKED BY SLIDING GLASS WINDOWS AND ELECTRICAL WALL HEATER. ORIGINAL 1-LIGHT OVER 1-LIGHT, DOUBLE-HUNG WINDOW AT PHOTO RIGHT. CEILING VENT TO CHIMNEY AT RIGHT UPPER PHOTO CENTER. VIEW TO SOUTHEAST. - Bishop Creek Hydroelectric System, Plant 4, Worker Cottage, Bishop Creek, Bishop, Inyo County, CA
McEwan, Thomas E.
1997-01-01
A safety device includes a wire loop embedded in the glass of a passenger car window and routed near the closing leading-edge of the window. The wire loop carries microwave pulses around the loop to and from a transceiver with separate output and input ports. An evanescent field only and inch or two in radius is created along the wire loop by the pulses. Just about any object coming within the evanescent field will dramatically reduce the energy of the microwave pulses received back by the transceiver. Such a loss in energy is interpreted as a closing area blockage, and electrical interlocks are provided to halt or reverse a power window motor that is actively trying to close the window.
McEwan, T.E.
1997-08-26
A safety device includes a wire loop embedded in the glass of a passenger car window and routed near the closing leading-edge of the window. The wire loop carries microwave pulses around the loop to and from a transceiver with separate output and input ports. An evanescent field only an inch or two in radius is created along the wire loop by the pulses. Just about any object coming within the evanescent field will dramatically reduce the energy of the microwave pulses received back by the transceiver. Such a loss in energy is interpreted as a closing area blockage, and electrical interlocks are provided to halt or reverse a power window motor that is actively trying to close the window. 5 figs.
Low Dimensional Carbon Materials for Nanooptics and Nanoplasmonics
2015-12-11
structure of the 2D glass supported by a graphene window and identified it as a bi-tetrahedral layer of SiO2 only 3 atoms thick. Our atomic resolution...developed can be directly applied to study other 2D materials such as molybdenum disulfide and 2D glasses . Novel properties in these materials open...up new avenues for studying old and new physics including glass phase transition and valley Hall effect. 15. SUBJECT TERMS graphene, bilayer graphene
Fast Acting Optical Beam Detection and Deflection System.
1987-12-07
should be as low as possible for the same reason. Liquids generally have lower densities and lower acoustic velocities than crystals and glasses . It may...deflection angle. Liquids, with their low sound velocities have higher M values than solids and the best solids are those ( glasses and crystals) which...small glass windows on either side and a thick angled acoustic absorber placed at the back of the cell to absorb most of the forward wave (figure 18
NASA Astrophysics Data System (ADS)
Zhou, Beiming; Rapp, Charles F.; Driver, John K.; Myers, Michael J.; Myers, John D.; Goldstein, Jonathan; Utano, Rich; Gupta, Shantanu
2013-03-01
Heavy metal oxide glasses exhibiting high transmission in the Mid-Wave Infra-Red (MWIR) spectrum are often difficult to manufacture in large sizes with optimized physical and optical properties. In this work, we researched and developed improved tellurium-zinc-barium and lead-bismuth-gallium heavy metal oxide glasses for use in the manufacture of fiber optics, optical components and laser gain materials. Two glass families were investigated, one based upon tellurium and another based on lead-bismuth. Glass compositions were optimized for stability and high transmission in the MWIR. Targeted glass specifications included low hydroxyl concentration, extended MWIR transmission window, and high resistance against devitrification upon heating. Work included the processing of high purity raw materials, melting under controlled dry Redox balanced atmosphere, finning, casting and annealing. Batch melts as large as 4 kilograms were sprue cast into aluminum and stainless steel molds or temperature controlled bronze tube with mechanical bait. Small (100g) test melts were typically processed in-situ in a 5%Au°/95%Pt° crucible. Our group manufactured and evaluated over 100 different experimental heavy metal glass compositions during a two year period. A wide range of glass melting, fining, casting techniques and experimental protocols were employed. MWIR glass applications include remote sensing, directional infrared counter measures, detection of explosives and chemical warfare agents, laser detection tracking and ranging, range gated imaging and spectroscopy. Enhanced long range mid-infrared sensor performance is optimized when operating in the atmospheric windows from ~ 2.0 to 2.4μm, ~ 3.5 to 4.3μm and ~ 4.5 to 5.0μm.
Hasan, Muhammad S.; Parsons, Andrew J.; Furniss, David; Scotchford, Colin A.; Ahmed, Ifty; Rudd, Chris D.
2013-01-01
In this study eight different phosphate-based glass compositions were prepared by melt-quenching: four in the (P2O5)45-(CaO)16-(Na2O)15-x -(MgO)24-(B2O3)x system and four in the system (P2O5)50-(CaO)16-(Na2O)10-x-(MgO)24-(B2O3)x, where x = 0,1, 5 and 10 mol%. The effect of B2O3 addition on the thermal properties, density, molar volume, dissolution rates, and cytocompatibility were studied for both glass systems. Addition of B2O3 increased the glass transition (T g), crystallisation (T c), melting (T m), Liquidus (T L) and dilatometric softening (T d) temperature and molar volume (V m). The thermal expansion coefficient (α) and density (ρ) were seen to decrease. An assessment of the thermal stability of the glasses was made in terms of their processing window (crystallisation onset, T c,ons minus glass transition temperature, T g), and an increase in the processing window was observed with increasing B2O3 content. Degradation studies of the glasses revealed that the rates decreased with increasing B2O3 content and a decrease in degradation rates was also observed as the P2O5 content reduced from 50 to 45 mol%. MG63 osteoblast-like cells cultured in direct contact with the glass samples for 14 days revealed comparative data to the positive control for the cell metabolic activity, proliferation, ALP activity, and morphology for glasses containing up to 5 mol% of B2O3. PMID:23991425
ERIC Educational Resources Information Center
Laird, Shirley
2009-01-01
The author has always liked the look of stained-glass windows. Usually the designs are simplified and the shapes are easier for younger students to draw. This technique seemed to be the perfect place for her fifth-graders to try their hand at color mixing. The smaller spaces and simple shapes were just what she needed for this group. Her students…
NASA Astrophysics Data System (ADS)
Gerasimov, A. V.; Pashkov, S. V.; Khristenko, Yu. F.
2017-10-01
The paper represents the results of a study concerning the high-speed interaction of natural and technogenic particles with aluminum, glass and glass-reinforced laminate targets of finite thickness. These materials are widely used as the structural elements of spacecrafts such as spacecraft bodies, tanks, windows, glass in optical devices, heat shields, etc. This paper considers the impact, deformation and fracture of aluminum, glass and asbestos-reinforced laminate samples with aluminum and steel particles which represent space debris and with ice and granite particles which represent the natural particles of space bodies
Overestimation of the Projected Size of Objects on the Surface of Mirrors and Windows
ERIC Educational Resources Information Center
Lawson, Rebecca; Bertamini, Marco; Liu, Dan
2007-01-01
Four experiments investigated judgments of the size of projections of objects on the glass surface of mirrors and windows. The authors tested different ways of explaining the task to overcome the difficulty that people had in understanding what the projection was, and they varied the distance of the observer and the object to the mirror or window…
46 CFR 116.433 - Windows and air ports in fire control boundaries.
Code of Federal Regulations, 2011 CFR
2011-10-01
... fitted with frames of steel or equivalent material. Glazing beads or angles of steel or equivalent... event of a fire if: (1) Where a steel frame is used, it is not arranged to retain the glass in place; or (2) A frame of aluminum or other material with low melting point is used. (d) A window or air port...
Sunlight Responsive Thermochromic Window System
DOE Office of Scientific and Technical Information (OSTI.GOV)
Millett, F,A; Byker,H, J
2006-10-27
Pleotint has embarked on a novel approach with our Sunlight Responsive Thermochromic, SRT™, windows. We are integrating dynamic sunlight control, high insulation values and low solar heat gain together in a high performance window. The Pleotint SRT window is dynamic because it reversibly changes light transmission based on thermochromics activated directly by the heating effect of sunlight. We can achieve a window package with low solar heat gain coefficient (SHGC), a low U value and high insulation. At the same time our windows provide good daylighting. Our innovative window design offers architects and building designers the opportunity to choose theirmore » desired energy performance, excellent sound reduction, external pane can be self-cleaning, or a resistance to wind load, blasts, bullets or hurricanes. SRT windows would provide energy savings that are estimated at up to 30% over traditional window systems. Glass fabricators will be able to use existing equipment to make the SRT window while adding value and flexibility to the basic design. Glazing installers will have the ability to fit the windows with traditional methods without wires, power supplies and controllers. SRT windows can be retrofit into existing buildings,« less
High Tech Art: Chameleon Glass
NASA Technical Reports Server (NTRS)
1993-01-01
Dichroic Glass is a technology wherein extremely thin films of metal are vacuum deposited on a glass surface. The coated glass shields spacecraft instruments from cosmic radiation and protects human vision from unfiltered sunlight in space. Because the coating process allows some wavelengths of light and color to reflect and others to pass through, a chameleon effect is produced. Murray Schwartz, a former aerospace engineer, has based his business KROMA on this NASA optical technology. He produces dichroic stained glass windows, mobiles and jewelry. The technique involves deposition of super thin layers of metal oxides applied one layer at a time in a specific order and thickness for the desired effect. His product line is unique and has been very successful.
Dispersion of barium gallogermanate glass.
Zelmon, David E; Bayya, Shyam S; Sanghera, Jasbinder S; Aggarwal, Ishwar D
2002-03-01
Gallogermanate glasses are the subject of intense study as a result of their unique combination of physical and optical properties, including transmission from 0.4 to beyond 5.0 microm. These glasses can be easily made into large optics with high-index homogeneity for numerous U.S. Department of Defense and commercial visible-IR window applications such as reconnaissance, missile domes, IR countermeasures, avionics, and collision avoidance on automobiles. These applications require a knowledge of the refractive index of glass throughout the region of transmission. Consequently, we have measured the refractive index of BaO-Ga2O3-GeO2 glass from 0.4 to 5.0 microm and calculated the Sellmeier coefficients required for optical device design.
VO2 thermochromic smart window for energy savings and generation
Zhou, Jiadong; Gao, Yanfeng; Zhang, Zongtao; Luo, Hongjie; Cao, Chuanxiang; Chen, Zhang; Dai, Lei; Liu, Xinling
2013-01-01
The ability to achieve energy saving in architectures and optimal solar energy utilisation affects the sustainable development of the human race. Traditional smart windows and solar cells cannot be combined into one device for energy saving and electricity generation. A VO2 film can respond to the environmental temperature to intelligently regulate infrared transmittance while maintaining visible transparency, and can be applied as a thermochromic smart window. Herein, we report for the first time a novel VO2-based smart window that partially utilises light scattering to solar cells around the glass panel for electricity generation. This smart window combines energy-saving and generation in one device, and offers potential to intelligently regulate and utilise solar radiation in an efficient manner. PMID:24157625
VO₂ thermochromic smart window for energy savings and generation.
Zhou, Jiadong; Gao, Yanfeng; Zhang, Zongtao; Luo, Hongjie; Cao, Chuanxiang; Chen, Zhang; Dai, Lei; Liu, Xinling
2013-10-24
The ability to achieve energy saving in architectures and optimal solar energy utilisation affects the sustainable development of the human race. Traditional smart windows and solar cells cannot be combined into one device for energy saving and electricity generation. A VO2 film can respond to the environmental temperature to intelligently regulate infrared transmittance while maintaining visible transparency, and can be applied as a thermochromic smart window. Herein, we report for the first time a novel VO2-based smart window that partially utilises light scattering to solar cells around the glass panel for electricity generation. This smart window combines energy-saving and generation in one device, and offers potential to intelligently regulate and utilise solar radiation in an efficient manner.
Preliminary study of TEC application in cooling system
NASA Astrophysics Data System (ADS)
Sulaiman, A. C.; Amin, N. A. M.; Saidon, M. S.; Majid, M. S. A.; Rahman, M. T. A.; Kazim, M. N. F. M.
2017-10-01
Integration of thermoelectric cooling (TEC) within a space cooling system in the lecturer room is studied. The studied area (air conditioned surrounding) is encapsulated with wall, floor, roof, and glass window. TEC module is placed on the glass window. The prototype of the studied compartment is designed using cabin container. The type and number of TEC module are studied and the effects on the cooling performance are analyzed as it is assumed to be tested within an air conditioned lecturer room. The experimental and mathematical modeling of the cooling system developed. It is expected that the mathematical modeling derived from this study will be used to estimate the use of the number of TEC module to be integrated with air conditioner unit where possible.
Chemistry, physics and time: the computer modelling of glassmaking.
Martlew, David
2003-01-01
A decade or so ago the remains of an early flat glass furnace were discovered in St Helens. Continuous glass production only became feasible after the Siemens Brothers demonstrated their continuous tank furnace at Dresden in 1870. One manufacturer of flat glass enthusiastically adopted the new technology and secretly explored many variations on this theme during the next fifteen years. Study of the surviving furnace remains using today's computer simulation techniques showed how, in 1887, that technology was adapted to the special demands of window glass making. Heterogeneous chemical reactions at high temperatures are required to convert the mixture of granular raw materials into the homogeneous glass needed for windows. Kinetics (and therefore the economics) of glassmaking is dominated by heat transfer and chemical diffusion as refractory grains are converted to highly viscous molten glass. Removal of gas bubbles in a sufficiently short period of time is vital for profitability, but the glassmaker must achieve this in a reaction vessel which is itself being dissolved by the molten glass. Design and operational studies of today's continuous tank furnaces need to take account of these factors, and good use is made of computer simulation techniques to shed light on the way furnaces behave and how improvements may be made. This paper seeks to show how those same techniques can be used to understand how the early Siemens continuous tank furnaces were designed and operated, and how the Victorian entrepreneurs succeeded in managing the thorny problems of what was, in effect, a vulnerable high temperature continuous chemical reactor.
Sol-gel antireflective spin-coating process for large-size shielding windows
NASA Astrophysics Data System (ADS)
Belleville, Philippe F.; Prene, Philippe; Mennechez, Francoise; Bouigeon, Christian
2002-10-01
The interest of the antireflective coatings applied onto large-area glass components increases everyday for the potential application such as building or shop windows. Today, because of the use of large size components, sol-gel process is a competitive way for antireflective coating mass production. The dip-coating technique commonly used for liquid-deposition, implies a safety hazard due to coating solution handling and storage in the case of large amounts of highly flammable solvent use. On the other hand, spin-coating is a liquid low-consumption technique. Mainly devoted to coat circular small-size substrate, we have developed a spin-coating machine able to coat large-size rectangular windows (up to 1 x 1.7 m2). Both solutions and coating conditions have been optimized to deposit optical layers with accurate and uniform thickness and to highly limit the edge effects. Experimental single layer antireflective coating deposition process onto large-area shielding windows (1000 x 1700 x 20 mm3) is described. Results show that the as-developed process could produce low specular reflection value (down to 1% one side) onto white-glass windows over the visible range (460-750 nm). Low-temperature curing process (120°C) used after sol-gel deposition enables antireflective-coating to withstand abrasion-resistance properties in compliance to US-MIL-C-0675C moderate test.
Optical Evaluation of DMDs with UV-Grade FS, Sapphire, MgF2 Windows and Reflectance of Bare Devices
NASA Technical Reports Server (NTRS)
Quijada, Manuel A.; Heap, Sara; Travinsky, Anton; Vorobiev, Dmitry; Ninkov, Zoran; Raisanen, Alan; Roberto, Massimo
2016-01-01
Digital Micro-mirror Devices (DMDs) have been identified as an alternative to microshutter arrays for space-based multi-object spectrometers (MOS). Specifically, the MOS at the heart of a proposed Galactic Evolution Spectroscopic Explorer (GESE) that uses the DMD as a reprogrammable slit mask. Unfortunately, the protective borosilicate windows limit the use of DMDs in the UV and IR regimes, where the glass has insufficient throughput. In this work, we present our efforts to replace standard DMD windows with custom windows made from UV-grade fused silica, Low Absorption Optical Sapphire (LAOS) and magnesium fluoride. We present reflectance measurements of the antireflection coated windows and a reflectance study of the DMDs active area (window removed). Furthermore, we investigated the long-term stability of the DMD reflectance and recoating device with fresh Al coatings.
View forward of five inch gun mounted in sponson; note ...
View forward of five inch gun mounted in sponson; note glass windows which would be removed in combat, gudgeons below window allowed attachment of armor plate which could be swung up to protect gun crew in battle; also note lower section of flag rack at top left center of photograph. (p39) - USS Olympia, Penn's Landing, 211 South Columbus Boulevard, Philadelphia, Philadelphia County, PA
Production of Bulk and Fiber Glass in Space
NASA Technical Reports Server (NTRS)
Tucker, Dennis S.; Whitaker, Ann F. (Technical Monitor)
2001-01-01
The production of bulk glass and fiber glass in space and on the moon and Mars should lead to superior products. Specifically glass plates for windows and optical elements could be produced with theoretical strengths by production in vacuum. Water vapor is known to decrease glass strength by up to two orders of magnitude from theoretical. A low gravity glass plate apparatus prototype has been designed and built which uses centrifugal force to shape the glass and solar energy to melt the glass. Glass fiber could be produced on the moon or Mars from in-situ materials using standard technologies. This material could then be used as reinforcement in composite materials in construction of bases. Also, it has been shown that processing in reduced gravity suppresses crystallization in certain heavy metal fluoride glasses. It is proposed to reprocess optical fiber preforms on the space station and then pull these into optical fiber. It is estimated that the attenuation coefficient should be reduced by two orders of magnitude.
Chalcogenide glasses and glass-ceramics: Transparent materials in the infrared for dual applications
NASA Astrophysics Data System (ADS)
Calvez, Laurent
2017-05-01
In this paper are described the different research activities that led to the awarding of the Lamb prize by the French Academy of Sciences in order to promote research work on the national defense of France. This research concerns the development of infrared materials for night vision and the development of thermal imagers useful for defense, but also for civilian applications. The contribution has been particularly innovative in different sectors: broadening of chalcogenide glasses window of transparency, IR glass-ceramics with high thermomechanical properties, and the design of a new way of synthesis of these materials by a mechanical process.
Laser streaming: Turning a laser beam into a flow of liquid
Wang, Yanan; Zhang, Qiuhui; Zhu, Zhuan; Lin, Feng; Deng, Jiangdong; Ku, Geng; Dong, Suchuan; Song, Shuo; Alam, Md Kamrul; Liu, Dong; Wang, Zhiming; Bao, Jiming
2017-01-01
Transforming a laser beam into a mass flow has been a challenge both scientifically and technologically. We report the discovery of a new optofluidic principle and demonstrate the generation of a steady-state water flow by a pulsed laser beam through a glass window. To generate a flow or stream in the same path as the refracted laser beam in pure water from an arbitrary spot on the window, we first fill a glass cuvette with an aqueous solution of Au nanoparticles. A flow will emerge from the focused laser spot on the window after the laser is turned on for a few to tens of minutes; the flow remains after the colloidal solution is completely replaced by pure water. Microscopically, this transformation is made possible by an underlying plasmonic nanoparticle-decorated cavity, which is self-fabricated on the glass by nanoparticle-assisted laser etching and exhibits size and shape uniquely tailored to the incident beam profile. Hydrophone signals indicate that the flow is driven via acoustic streaming by a long-lasting ultrasound wave that is resonantly generated by the laser and the cavity through the photoacoustic effect. The principle of this light-driven flow via ultrasound, that is, photoacoustic streaming by coupling photoacoustics to acoustic streaming, is general and can be applied to any liquid, opening up new research and applications in optofluidics as well as traditional photoacoustics and acoustic streaming. PMID:28959726
Laser streaming: Turning a laser beam into a flow of liquid.
Wang, Yanan; Zhang, Qiuhui; Zhu, Zhuan; Lin, Feng; Deng, Jiangdong; Ku, Geng; Dong, Suchuan; Song, Shuo; Alam, Md Kamrul; Liu, Dong; Wang, Zhiming; Bao, Jiming
2017-09-01
Transforming a laser beam into a mass flow has been a challenge both scientifically and technologically. We report the discovery of a new optofluidic principle and demonstrate the generation of a steady-state water flow by a pulsed laser beam through a glass window. To generate a flow or stream in the same path as the refracted laser beam in pure water from an arbitrary spot on the window, we first fill a glass cuvette with an aqueous solution of Au nanoparticles. A flow will emerge from the focused laser spot on the window after the laser is turned on for a few to tens of minutes; the flow remains after the colloidal solution is completely replaced by pure water. Microscopically, this transformation is made possible by an underlying plasmonic nanoparticle-decorated cavity, which is self-fabricated on the glass by nanoparticle-assisted laser etching and exhibits size and shape uniquely tailored to the incident beam profile. Hydrophone signals indicate that the flow is driven via acoustic streaming by a long-lasting ultrasound wave that is resonantly generated by the laser and the cavity through the photoacoustic effect. The principle of this light-driven flow via ultrasound, that is, photoacoustic streaming by coupling photoacoustics to acoustic streaming, is general and can be applied to any liquid, opening up new research and applications in optofluidics as well as traditional photoacoustics and acoustic streaming.
Maintenance Resources by Building Use for U.S. Army Installations. Volume 3. Appendices I through P
1991-05-01
floor I____ ______ __ Solid core (safety 0423230 10 2.78 glass ) painted exterior door Drinking fountain 081 1HOO _______6 1.77 Wood, finished 0415FI0...Concrete, finished 062B200 25 1.15 flooring Solid core wood 0423230 26 1.12 (safety glass ) paint exterior door Safety switch, 1122100 27 1.07 enclosed...exterior, 1st floor Steel frame 0431210 26 1.04 (painted) operable window, 1st floor Steel (w/safety 0421220 27 1.04 glass ) painted exterior door Pipe
Ocular injuries sustained by survivors of the Oklahoma City bombing.
Mines, M; Thach, A; Mallonee, S; Hildebrand, L; Shariat, S
2000-05-01
The purpose of this study is to provide a review of the ocular injuries sustained by survivors of the April 19, 1995, bombing of the Alfred P. Murrah Federal Building in Oklahoma City. Retrospective, noncomparative case series. The authors retrospectively evaluated data collected on all surviving persons receiving ocular injuries during the bombing and on all at-risk occupants of the federal building and four adjacent buildings. Injury data from survivors were collected from multiple sources to include hospital medical records, a physician survey, emergency medical services run reports, written survivor accounts, building occupant survey, telephone interviews, and mail surveys. The types of ocular injuries, the associated systemic injuries, and the location of the injured at the time of the blast were evaluated. Fifty-five (8%) of the 684 injured bombing survivors sustained an ocular injury. Persons injured in the Murrah building were more than three times more likely to sustain an ocular injury than other injured persons. Seventy-one percent of ocular injuries occurred within 300 feet of the point of detonation. The most common serious ocular injuries included lid/brow lacerations (20 patients, 23 eyes), open globe injuries (12 eyes), orbital fractures (6 eyes), and retinal detachment (5 eyes). A retained intraocular foreign body accounted for only two of the injuries (4%). Glass accounted for nearly two thirds of the ocular injuries. Blasts involving explosions inflict severe ocular injury, mostly as a result of secondary blast effects from glass, debris, etc. Eye injuries in bombings can probably be prevented by increasing the distance from and orientation away from windows (i.e., by facing desks away from windows). Use of such products as laminated glass, toughened window glazing, and Mylar curtains may reduce glass projectiles in the blast vicinity.
Energy Conservation Strategies for Windows and Glazed Surfaces
1998-07-01
When activated, photochromies reduce only the visual transmittance, not the infrared, so much of the solar heat gain is unaffected. • Thermochromic ...Strategies Windows and Glazed Surfaces by Brian M. Deal, Robert J. Nemeth, and Lee P. DeBaille for Solar Radiation Reflected Transmitted Absorbed...10 Fenestration Design 12 3 Heat Transfer Fundamentals 14 Mechanisms of Heat Transfer 14 Heat Transfer Process Through Glass 16 Solar Heat Gain
NASA Technical Reports Server (NTRS)
Owen, Albert K.
1987-01-01
A computer code was written which utilizes ray tracing techniques to predict the changes in position and geometry of a laser Doppler velocimeter probe volume resulting from refraction effects. The code predicts the position change, changes in beam crossing angle, and the amount of uncrossing that occur when the beams traverse a region with a changed index of refraction, such as a glass window. The code calculates the changes for flat plate, cylinder, general axisymmetric and general surface windows and is currently operational on a VAX 8600 computer system.
Optical Characterization of Window Materials for Aerospace Applications
NASA Technical Reports Server (NTRS)
Tedjojuwono, Ken K.; Clark, Natalie; Humphreys, William M., Jr.
2013-01-01
An optical metrology laboratory has been developed to characterize the optical properties of optical window materials to be used for aerospace applications. Several optical measurement systems have been selected and developed to measure spectral transmittance, haze, clarity, birefringence, striae, wavefront quality, and wedge. In addition to silica based glasses, several optical lightweight polymer materials and transparent ceramics have been investigated in the laboratory. The measurement systems and selected empirical results for non-silica materials are described. These measurements will be used to form the basis of acceptance criteria for selection of window materials for future aerospace vehicle and habitat designs.
NASA Astrophysics Data System (ADS)
Ediger, Mark
Glasses play an important role in technology as a result of their macroscopic homogeneity (e.g., the clarity of window glass) and our ability to tune properties through composition changes. A problem with liquid-cooled glasses is that they exhibit marginal kinetic stability and slowly evolve towards lower energy glasses and crystalline states. In contrast, we have shown that physical vapor deposition can prepare glasses with very high kinetic stability. These materials have properties expected for ``million-year-old'' glasses, including high density, low enthalpy, and high mechanical moduli. We have used nanocalorimetry to show that these high stability glasses have lower heat capacities than liquid-cooled glasses for a number of molecular systems. Dielectric relaxation has been used to show that the beta relaxation can be suppressed by nearly a factor of four in vapor-deposited toluene glasses, indicating a very tight packing environment. Consistent with this view, computer simulations of high stability glasses indicate reduced Debye-Waller factors. These high stability materials raise interesting questions about the limiting properties of amorphous packing arrangements.
Gao, Wei; Wu, Jing; Wang, Yawei; Jiang, Guibin
2016-02-01
Short-chain chlorinated paraffins (SCCPs) are a group of n-alkanes with carbon chain length of 10-13. In this work, paired indoor/outdoor samples of organic films on window glass surfaces from urban buildings in Beijing, China, were collected to measure the concentrations and congener distributions of SCCPs. The total SCCP levels ranged from 337 ng/m(2) to 114 μg/m(2), with total organic carbon (TOC) normalized concentrations of 365 μg/m(2)-365 mg/m(2). Overall, the concentrations of SCCPs on the interior films were higher than the concentrations on the exterior films, suggesting an important indoor environmental exposure of SCCPs to the general public. A significant linear relationship was found between the SCCP concentrations and TOC, with a correlation coefficient of R = 0.34 (p < 0.01). A film-air partitioning model suggests that the indoor gas-phase SCCPs are related to their corresponding window film levels. Copyright © 2015 Elsevier Ltd. All rights reserved.
2000-04-01
system, 8 - experiments on a study of boundary layer spectrum infrared window). before boiling of glass- silicide coating. This simple 3. SAMPLES AND...dependencies of surface temperature of tested materials and make conclusions concerned joint gllass- silicide coating and anode power of generator...obtained using test stagnation point configuration. glass- silicide coating vs anode power of HF-generator. Temperature peak at constant power
Experimental and Computational Characterization of Combustion Phenomena
2006-05-01
combustors without installing glass , quartz, or sapphire windows when using terahertz radiation. To explore the potential diagnostics utility of T...laser was reduced using a Spectra-Physics Model 3980 pulse selector. This device employs a TeO2 acousto-optic modulator to select subsets of pulses...equipped with a UG-11 and two WG-295 colored glass filters to reduce visible and laser-scattered light, respectively. OH-PLIF images were acquired
Coating and curing apparatus and methods
Brophy, Brenor L; Maghsoodi, Sina; Neyman, Patrick J; Gonsalves, Peter R; Hirsch, Jeffrey G; Yang, Yu S
2015-02-24
Disclosed are coating apparatus including flow coating and roll-coating that may be used for uniform sol-gel coating of substrates such as glass, solar panels, windows or part of an electronic display. Also disclosed are methods for substrate preparation, flow coating and roll coating. Lastly systems and methods for skin curing sol-gel coatings deposited onto the surface of glass substrates using a high temperature air-knife are disclosed.
Subpicosecond pulses from a neodymium-glass laser with a solid-liquid phototropic shutter
NASA Astrophysics Data System (ADS)
Altshuler, G. B.; Dulneva, E. G.; Karasev, V. B.; Okishev, A. V.; Telegin, L. S.
1985-02-01
Subpicosecond, spectrally limited pulses were generated in a mode-locked silicate-Nd-glass laser by means of a phototropic shutter. The shutter featured molecules of an organic dye added to a matrix composed of an isobutyl alcohol-filled quartz micropore glass plate. A coating on the inner surface of one of the cell windows was 0.99 reflective at the lasing wavelength. Single pulses with 0.5-1 psec length were generated, validating the use of a solid-liquid shutter for producing subpicosecond pulses with a Nd-glass laser. Furthermore, the liquid component permitted output powers of up to 5 W/sq cm without eliciting thermooptical effects.
1983-08-02
Research and Development in ’" T. Miyashita and i.. . nabe 34 "Environmental Effects on the Strength of Fluoride Glass Fibers" A. Nakata, J. Lau, and J...continuous optical window. Ujnfortunately YVP3 ony permit’s thin samiples (1 mm) to be synthesized. Vitrco&us domnain ina the ternary sys ~tem TIT "Zni - YbF 4...synthesis methods, quenched glasses have been obtained in the CdF2-ZnF 2-BaF2 and CdF2-MnF2-BaF 2 ternary sys - tems. Binary glasses (Cd0 .5Ba0 .5 )F2 have
Space processing of chalcogenide glasses
NASA Technical Reports Server (NTRS)
Larsen, D. C.; Ali, M. A.
1975-01-01
Chalcogenide glasses are discussed as good infrared transmitters, possessing the strength, corrosion resistance, and scale-up potential necessary for large 10.6-micron windows. The disadvantage of earth-produced chalcogenide glasses is shown to be an infrared absorption coefficient which is unacceptably high relative to alkali halides. This coefficient is traced to optical nonhomogeneities resulting from environmental and container contamination. Space processing is considered as a means of improving the infrared transmission quality of chalcogenides and of eliminating the following problems: optical inhomogeneities caused by thermal currents and density fluctuation in the l-g earth environment; contamination from the earth-melting crucible by oxygen and other elements deleterious to infrared transmission; and, heterogeneous nucleation at the earth-melting crucible-glass interface.
Optical properties of Ag- and AgI-doped Ge-Ga-Te far-infrared chalcogenide glasses
NASA Astrophysics Data System (ADS)
Cheng, Ci; Wang, Xunsi; Xu, Tiefeng; Sun, Lihong; Pan, Zhanghao; Liu, Shuo; Zhu, Qingde; Liao, Fangxing; Nie, Qiuhua; Dai, Shixun; Shen, Xiang; Zhang, Xianghua; Chen, Wei
2016-05-01
Te-based glasses are ideal material for life detection and infrared-sensing applications because of their excellent far-infrared properties. In this study, the influence of Ag- and AgI- doped Te-based glasses were discussed. Thermal and optical properties of the prepared glasses were evaluated using X-ray diffraction, differential scanning calorimetry, and Fourier transform infrared spectroscopy. Results show that these glass samples have good amorphous state and thermal stability. However, Ge-Ga-Te-Ag and Ge-Ga-Te-AgI glass systems exhibit completely different in optical properties. With an increase of Ag content, the absorption cut-off edge of Ge-Ga-Te-Ag glass system has a red shift. On the contrary, a blue shift appears in Ge-Ga-Te-AgI glass system with an increase of AgI content. Moreover, the transmittance of Ge-Ga-Te-Ag glass system deteriorates while that of Ge-Ga-Te-AgI glass system ameliorates. All glass samples have wide infrared transmission windows and the far-infrared cut-off wavelengths of these glasses are beyond 25 μm. The main absorption peaks of these glasses are eliminated through a purifying method.
2011-01-01
Window film should be considered to control heat gain. Skylights when positioned and spaced properly with the proper lens systems, admit more light...per unit area than windows, and distribute the light more evenly over the space. Skylights are mainly recommended in single floor high bay...facilities such as warehouses, hangars, gymnasiums, and big box stores. The optimum material to use for skylights is either glass or acrylic. Double
Hermetic Glass-To-Metal Seal For Instrumentation Window
NASA Technical Reports Server (NTRS)
Hill, Arthur J.
1992-01-01
Proposed mounting scheme for optical element of instrumentation window in pressure vessel ensures truly hermetic seal while minimizing transmission of stress to optical element. Brazed metal seal superior to conventional gaskets of elastomer, carbon, asbestos, or other material compressed between optical element and wall of vessel. Concentric brazed joints in proposed seal bond metal ring to wall of vessel and to optical element. U-shaped cross section allows ring to flex under pressure.
Piñar, Guadalupe; Garcia-Valles, Maite; Gimeno-Torrente, Domingo; Fernandez-Turiel, Jose Luis; Ettenauer, Jörg; Sterflinger, Katja
2013-01-01
We investigated the decayed historical church window glasses of two Catalonian churches, both under Mediterranean climate. Glass surfaces were studied by scanning electron microscopy (SEM), energy dispersive spectrometry (EDS), and X-ray diffraction (XRD). Their chemical composition was determined by wavelength-dispersive spectrometry (WDS) microprobe analysis. The biodiversity was investigated by molecular methods: DNA extraction from glass, amplification by PCR targeting the16S rRNA and ITS regions, and fingerprint analyses by denaturing gradient gel electrophoresis (DGGE). Clone libraries containing either PCR fragments of the bacterial 16S rDNA or the fungal ITS regions were screened by DGGE. Clone inserts were sequenced and compared with the EMBL database. Similarity values ranged from 89 to 100% to known bacteria and fungi. Biological activity in both sites was evidenced in the form of orange patinas, bio-pitting, and mineral precipitation. Analyses revealed complex bacterial communities consisting of members of the phyla Proteobacteria, Bacteroidetes, Firmicutes, and Actinobacteria. Fungi showed less diversity than bacteria, and species of the genera Cladosporium and Phoma were dominant. The detected Actinobacteria and fungi may be responsible for the observed bio-pitting phenomenon. Moreover, some of the detected bacteria are known for their mineral precipitation capabilities. Sequence results also showed similarities with bacteria commonly found on deteriorated stone monuments, supporting the idea that medieval stained glass biodeterioration in the Mediterranean area shows a pattern comparable to that on stone. PMID:24092957
Propensity of bond exchange as a window into the mechanical properties of metallic glasses
NASA Astrophysics Data System (ADS)
Jiao, W.; Wang, X. L.; Lan, S.; Pan, S. P.; Lu, Z. P.
2015-02-01
We investigated the mechanical properties of Zr-Cu-Al bulk metallic glasses, by compression experiment and molecular dynamics simulations. From the simulation, we found that the large, solvent atom, Zr, has high propensity of bond exchange compared to those of the smaller solute atoms. The difference in bond exchange is consistent with the observed disparity in mechanical behaviors: Zr-rich metallic glass exhibits low elastic modulus and large plastic strain. X-ray photoelectron spectroscopy measurements suggest that the increased propensity in bond exchange is related to the softening of Zr bonds with increasing Zr content.
Space Shuttle Orbiter windshield bird impact analysis
NASA Technical Reports Server (NTRS)
Edelstein, Karen S.; Mccarty, Robert E.
1988-01-01
The NASA Space Shuttle Orbiter's windshield employs three glass panes separated by air gaps. The brittleness of the glass offers much less birdstrike energy-absorption capability than the laminated polycarbonate windshields of more conventional aircraft; attention must accordingly be given to the risk of catastrophic bird impact, and to methods of strike prevention that address bird populations around landing sites rather than the modification of the window's design. Bird populations' direct reduction, as well as careful scheduling of Orbiter landing times, are suggested as viable alternatives. The question of birdstrike-resistant glass windshield design for hypersonic aerospacecraft is discussed.
9. Historic American Buildings Survey B. Baxter Matheny, Photographer, Spring, ...
9. Historic American Buildings Survey B. Baxter Matheny, Photographer, Spring, 1973 STAINED GLASS WINDOW IN TOWER (INTERIOR) - First United Methodist Church, 200 North Division Street, Carson City, Carson City, NV
11. Historic American Buildings Survey Marvin Rand, Photographer August 1971 ...
11. Historic American Buildings Survey Marvin Rand, Photographer August 1971 FIRST FLOOR: MUSIC ROOM (Stained Glass Windows Designed by Shepard) - Villa Montezuma, 1925 K Street, San Diego, San Diego County, CA
Architectural Heritage: An Experiment in Montreal's Schools.
ERIC Educational Resources Information Center
Leveille, Chantal
1982-01-01
A museum program in Montreal encourages elementary and secondary school students to examine their surroundings and neighborhoods. Units focus on stained glass windows, houses, history of Montreal, the neighborhood, and architectural heritage. (KC)
Some Notes on Gasoline-Engine Development
NASA Technical Reports Server (NTRS)
Ricardo, H R
1927-01-01
Experiments were carried out using a special engine with small glass windows and a stroboscope to record various aspects of engine performance. Valve position, supercharging, and torque recoil were all investigated with this experimental apparatus.
PERSPECTIVE VIEW FROM SOUTHWEST (STREET SIDE) OF 814 PARKWAY (APARTMENT ...
PERSPECTIVE VIEW FROM SOUTHWEST (STREET SIDE) OF 8-14 PARKWAY (APARTMENT BUILDINGS). NOTE ORIGINAL STEEL CASEMENT WINDOWS AND GLASS BLOCK. - Old Greenbelt, Crescent Road and Southway, Greenbelt, Prince George's County, MD
Northwest corner, showing arcade at ground level, and triple leaded ...
Northwest corner, showing arcade at ground level, and triple leaded glass windows of bender room high on north elevation. - Stanford University Library, Stanford University, Palo Alto, Santa Clara County, CA
15. INTERIOR OF BATHROOM SHOWING COMBINATION TUB/SHOWER, SINK, AND SLIDING ...
15. INTERIOR OF BATHROOM SHOWING COMBINATION TUB/SHOWER, SINK, AND SLIDING GLASS WINDOW. VIEW TO NORTH. - Bishop Creek Hydroelectric System, Plant 4, Worker Cottage, Bishop Creek, Bishop, Inyo County, CA
Coloured Rings Produced on Transparent Plates
ERIC Educational Resources Information Center
Suhr, Wilfried; Schlichting, H. Joachim
2007-01-01
Beautiful colored interference rings can be produced by using transparent plates such as window glass. A simple model explains this effect, which was described by Newton but has almost been forgotten. (Contains 11 figures.)
Hydrothermal growth of VO2 nanoplate thermochromic films on glass with high visible transmittance
Zhang, Jiasong; Li, Jingbo; Chen, Pengwan; Rehman, Fida; Jiang, Yijie; Cao, Maosheng; Zhao, Yongjie; Jin, Haibo
2016-01-01
The preparation of thermochromic vanadium dioxide (VO2) films in an economical way is of interest to realizing the application of smart windows. Here, we reported a successful preparation of self-assembly VO2 nanoplate films on TiO2-buffered glass by a facile hydrothermal process. The VO2 films composed of triangle-shaped plates standing on substrates exhibit a self-generated porous structure, which favors the transmission of solar light. The porosity of films is easily controlled by changing the concentration of precursor solutions. Excellent thermochromic properties are observed with visible light transmittance as high as 70.3% and solar modulating efficiency up to 9.3% in a VO2 film with porosity of ~35.9%. This work demonstrates a promising technique to promote the commercial utilization of VO2 in smart windows. PMID:27296772
Modular packaging concept for MEMS and MOEMS
NASA Astrophysics Data System (ADS)
Stenchly, Vanessa; Reinert, Wolfgang; Quenzer, Hans-Joachim
2017-11-01
Wherever technical systems detect objects in their environment or interact with people, optical devices may play an important role. Light can be relatively easily produced and spatially and temporally modulated. Laser can project sharp images over long distances or cut materials in short distances. Depending on the wavelength an invisible scanning in near infrared for gesture recognition is possible as well as a projection of brilliant colour images. For several years, the Fraunhofer ISIT develops Opto-Packaging processes based on the viscous reshaping of glass wafers: First, hermetically sealed laser micro-mirror scanners WLP with inclined windows deflect in the central light reflex of the window out of the image area. Second, housing with lateral light exit permits hermetic sealing of edge-emitting lasers for highest reliability and durability. Such systems are currently experiencing an extremely high interest of the industry in all segments, from consumer to automotive through to materials processing. Our modular Opto-Packaging platform enables fast product developments. Housing for opto mechanical MEMS devices are equipped with inclined windows to minimize distortion, stray light and reflection losses. The hot viscous glass forming technology is also applied to functionalized substrate wafers which possess areas with high heat dissipation in addition to thermally insulating areas. Electrical contacts may be realized with metal filled vias or TGV (Through Glass Vias). The modular system reduces the development times for new, miniaturized optical systems so that manufacturers can focus on the essentials in their development, namely their product functionalities.
Glass Masonry - Experimental Verification of Bed Joint under Shear
NASA Astrophysics Data System (ADS)
Fíla, J.; Eliášová, M.; Sokol, Z.
2017-10-01
Glass is considered as a traditional material for building industry but was mostly used for glazing of the windows. At present, glass is an integral part of contemporary architecture where glass structural elements such as beams, stairs, railing ribs or columns became popular in the last two decades. However, using glass as structural material started at the beginning of 20th century, when masonry from hollow glass blocks were used. Using solid glass brick is very rare and only a few structures with solid glass bricks walls have been built in the last years. Pillars and walls made from solid glass bricks are mainly loaded by compression and/or bending from the eccentricity of vertical load or wind load. Due to high compressive strength of glass, the limiting factor of the glass masonry is the joint between the glass bricks as the smooth surface requires another type of mortar / glue compared to traditional masonry. Shear resistance and failure modes of brick bed joint was determined during series of tests using various mortars, two types of surface treatment and different thickness of the mortar joint. Shear tests were completed by small scale tests for mortar - determination of flexural and compressive strength of hardened mortar.
The Development of Military Night Aviation to 1919
1991-01-01
aerodrome. At the center of the airfield was positioned a large square glass window, flush with the ground, and sufficiently thick to withstand the...impact of an aircraft landing. At night an electric lamp located beneath the glass continuously radiated white light into the darkened sky, acting as a...to the east would be illuminated. If the wind was blowing in a direction between cardinal points, the two outer lamps closest to the actual wind
Coating and curing apparatus and methods
Brophy, Brenor L.; Gonsalves, Peter R.; Maghsoodi, Sina; Colson, Thomas E.; Yang, Yu S.; Abrams, Ze'ev R.
2016-04-19
Disclosed is a coating apparatus including flow coating and roll-coating that may be used for uniform sol-gel coating of substrates such as glass, solar panels, windows or part of an electronic display. Also disclosed are methods for substrate preparation, flow coating and roll coating. Lastly, systems and methods for curing sol-gel coatings deposited onto the surface of glass substrates using high temperature air-knives, infrared emitters and direct heat applicators are disclosed.
Solar radiation control using nematic curvilinear aligned phase (NCAP) liquid crystal technology
NASA Astrophysics Data System (ADS)
vanKonynenburg, Peter; Marsland, Stephen; McCoy, James
1987-11-01
A new, advanced liquid crystal technology has made economical, large area, electrically-controlled windows a commercial reality. The new technology, Nematic Curvilinear Aligned Phase (NCAP), is based on a polymeric material containing small droplets of nematic liquid crystal which is coated and laminated between transparent electrodes and fabricated into large area field effect devices. NCAP windows feature variable solar transmission and reflection through a voltage-controlled scattering mechanism. Laminated window constructions provide the excellent transmission and visibility of glass in the powered condition. In the unpowered condition, the windows are highly translucent, and provide 1) blocked vision for privacy, security, and obscuration of information, and 2) glare control and solar shading. The stability is excellent during accelerated aging tests. Degradation mechanisms which can limit performance and lifetime are discussed. Maximum long term stability is achieved by product designs that incorporate the appropriate window materials to provide environmental protection.
NASA Astrophysics Data System (ADS)
Jia, Z. X.; Yao, C. F.; Jia, S. J.; Wang, F.; Wang, S. B.; Zhao, Z. P.; Liao, M. S.; Qin, G. S.; Hu, L. L.; Ohishi, Y.; Qin, W. P.
2018-02-01
Enormous efforts have been made to realize supercontinuum (SC) generation covering the entire transmission window of fiber materials for their wide applications in many fields. Here we demonstrate ultra-broadband SC generation from 400 to 5140 nm in a tapered ultra-high numerical aperture (NA) all-solid fluorotellurite fiber pumped by a 1560 nm mode-locked fiber laser. The fluorotellurite fibers are fabricated using a rod-in-tube method. The core and cladding materials are TeO2-BaF2-Y2O3- and TeO2-modified fluoroaluminate glasses, respectively, which have large refractive index contrast and similar thermal expansion coefficients and softening temperatures. The NA at 3200 nm of the fluorotellurite fiber is about 1.11. Furthermore, tapered fluorotellurite fibers are prepared using an elongation machine. SC generation covering the entire 0.4-5 µm transmission window is achieved in a tapered fluorotellurite fiber for a pumping peak power of ~10.5 kW through synergetic control of dispersion, nonlinearity, confinement loss and other unexpected effects (e.g. the attachment of dust or water to the surface of the fiber core) of the fiber. Our results show that tapered ultra-high NA all-solid soft glass fibers have a potential for generating SC light covering their entire transmission window.
20. INTERIOR OF KITCHEN SHOWING UPDATED CABINETS AND ORIGINAL WOODFRAMED ...
20. INTERIOR OF KITCHEN SHOWING UPDATED CABINETS AND ORIGINAL WOOD-FRAMED SLIDING GLASS WINDOWS OVER SINK. VIEW TO SOUTHEAST. - Rush Creek Hydroelectric System, Worker Cottage, Rush Creek, June Lake, Mono County, CA
57. DETAIL OF EAST END OF CHANCEL SHOWING BISHOP'S CHAIR, ...
57. DETAIL OF EAST END OF CHANCEL SHOWING BISHOP'S CHAIR, ALTAR, AND STAINED GLASS WINDOWS; NOTE MINTON TILE MEDALLIONS ON FLOOR - Church of the Holy Cross, State Route 261, Stateburg, Sumter County, SC
16. INTERIOR OF KITCHEN SHOWING UPDATED CABINETS AND ORIGINAL WOODFRAMED ...
16. INTERIOR OF KITCHEN SHOWING UPDATED CABINETS AND ORIGINAL WOOD-FRAMED SLIDING-GLASS WINDOWS OVER SINK. VIEW TO EAST. - Rush Creek Hydroelectric System, Worker Cottage, Rush Creek, June Lake, Mono County, CA
Lee, Jong-Gun; An, Seongpil; Kim, Tae-Gun; Kim, Min-Woo; Jo, Hong-Seok; Swihart, Mark T; Yarin, Alexander L; Yoon, Sam S
2017-10-11
We have sequentially deposited layers of silver nanowires (AgNWs), silicon dioxide (SiO 2 ) nanoparticles, and polystyrene (PS) nanoparticles on uncoated glass by a rapid low-cost supersonic spraying method to create antifrosting, anticondensation, and self-cleaning glass. The conductive silver nanowire network embedded in the coating allows electrical heating of the glass surface. Supersonic spraying is a single-step coating technique that does not require vacuum. The fabricated multifunctional glass was characterized by X-ray diffraction analysis (XRD), scanning electron microscopy (SEM), atomic force microscopy (AFM), ultraviolet-visible spectroscopy, and transmission electron microscopy (TEM). The thermal insulation and antifrosting performance were demonstrated using infrared thermal imaging. The reliability of the electrical heating function was tested through extensive cycling. This transparent multifunctional coating holds great promise for use in various smart window designs.
Evaluation of Cellular Shades in the PNNL Lab Homes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Petersen, Joseph M.; Sullivan, Greg; Cort, Katherine A.
This report examines the energy performance of cellular shade window coverings in a matched pair of all-electric, factory-built “Lab Homes” located on the Pacific Northwest National Laboratory (PNNL) campus in Richland, Washington. The 1500-square-foot homes were identical in construction and baseline performance, which allowed any difference in energy and thermal performance between the baseline home and the experimental home to be attributed to the retrofit technology installed in the experimental home. To assess the performance of high efficiency window attachments in a residential retrofit application, the building shell air leakage, energy use, and interior temperatures of each home were comparedmore » during the 2015 -2016 winter heating and summer cooling seasons. Hunter Douglas Duette® Architella® Trielle™ opaque honeycomb “cellular” shades were installed over double-pane clear-glass, aluminum-frame primary windows in the experimental home and were compared to identical primary windows with no window coverings and with standard typical white vinyl horizontal blind window coverings in the baseline home.« less
State-of-the-art software for window energy-efficiency rating and labeling
DOE Office of Scientific and Technical Information (OSTI.GOV)
Arasteh, D.; Finlayson, E.; Huang, J.
1998-07-01
Measuring the thermal performance of windows in typical residential buildings is an expensive proposition. Not only is laboratory testing expensive, but each window manufacturer typically offers hundreds of individual products, each of which has different thermal performance properties. With over a thousand window manufacturers nationally, a testing-based rating system would be prohibitively expensive to the industry and to consumers. Beginning in the early 1990s, simulation software began to be used as part of a national program for rating window U-values. The rating program has since been expanded to include Solar Hear Gain Coefficients and is now being extended to annualmore » energy performance. This paper describes four software packages available to the public from Lawrence Berkeley National Laboratory (LBNL). These software packages are used to evaluate window thermal performance: RESFEN (for evaluating annual energy costs), WINDOW (for calculating a product`s thermal performance properties), THERM (a preprocessor for WINDOW that determines two-dimensional heat-transfer effects), and Optics (a preprocessor for WINDOW`s glass database). Software not only offers a less expensive means than testing to evaluate window performance, it can also be used during the design process to help manufacturers produce windows that will meet target specifications. In addition, software can show small improvements in window performance that might not be detected in actual testing because of large uncertainties in test procedures.« less
Closeup view of the exterior of the starboard side of ...
Close-up view of the exterior of the starboard side of the forward fuselage of the Orbiter Discovery looking at the forward facing observation windows of the flight deck. Note the High-temperature Reusable Surface Insulation (HRSI) surrounding the window openings, the Low-temperature Reusable Surface Insulation (LRSI) immediately beyond the HRSI tiles and the Advanced Flexible Reusable Surface Insulation blankets just beyond the LRSI tiles. The holes in the tiles are injection points for the application of waterproofing material. The windows are composed of redundant pressure window panes of thermal glass. This image was taken from a service platform in the Orbiter Processing Facility at Kennedy Space Center - Space Transportation System, Orbiter Discovery (OV-103), Lyndon B. Johnson Space Center, 2101 NASA Parkway, Houston, Harris County, TX
Glass-windowed ultrasound transducers.
Yddal, Tostein; Gilja, Odd Helge; Cochran, Sandy; Postema, Michiel; Kotopoulis, Spiros
2016-05-01
In research and industrial processes, it is increasingly common practice to combine multiple measurement modalities. Nevertheless, experimental tools that allow the co-linear combination of optical and ultrasonic transmission have rarely been reported. The aim of this study was to develop and characterise a water-matched ultrasound transducer architecture using standard components, with a central optical window larger than 10 mm in diameter allowing for optical transmission. The window can be used to place illumination or imaging apparatus such as light guides, miniature cameras, or microscope objectives, simplifying experimental setups. Four design variations of a basic architecture were fabricated and characterised with the objective to assess whether the variations influence the acoustic output. The basic architecture consisted of a piezoelectric ring and a glass disc, with an aluminium casing. The designs differed in piezoelectric element dimensions: inner diameter, ID=10 mm, outer diameter, OD=25 mm, thickness, TH=4 mm or ID=20 mm, OD=40 mm, TH=5 mm; glass disc dimensions OD=20-50 mm, TH=2-4 mm; and details of assembly. The transducers' frequency responses were characterised using electrical impedance spectroscopy and pulse-echo measurements, the acoustic propagation pattern using acoustic pressure field scans, the acoustic power output using radiation force balance measurements, and the acoustic pressure using a needle hydrophone. Depending on the design and piezoelectric element dimensions, the resonance frequency was in the range 350-630 kHz, the -6 dB bandwidth was in the range 87-97%, acoustic output power exceeded 1 W, and acoustic pressure exceeded 1 MPa peak-to-peak. 3D stress simulations were performed to predict the isostatic pressure required to induce material failure and 4D acoustic simulations. The pressure simulations indicated that specific design variations could sustain isostatic pressures up to 4.8 MPa.The acoustic simulations were able to predict the behaviour of the fabricated devices. A total of 480 simulations, varying material dimensions (piezoelectric ring ID, glass disc diameter, glass thickness) and drive frequency indicated that the emitted acoustic profile varies nonlinearly with these parameters. Copyright © 2016 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Gerasimov, A. V.; Pashkov, S. V.; Khristenko, Yu. F.
2017-10-01
Space debris formed during the launch and operation of spacecrafts in the circumterrestrial space, and the flows of micrometeoroids from the depths of space pose a real threat to manned and automatic vehicles. Providing the fracture resistance of aluminum, glass and ceramic spacecraft elements is an important practical task. These materials are widely used in spacecraft elements such as bodies, tanks, windows, glass in optical devices, heat shields, etc.
DETAIL VIEW OF BATCH CAR, BUILT BY ATLAS CAR & ...
DETAIL VIEW OF BATCH CAR, BUILT BY ATLAS CAR & MANUFACTURING COMPANY. BATCH STORAGE SILOS IN BACKGROUND - Chambers Window Glass Company, Batch Plant, North of Drey (Nineteenth) Street, West of Constitution Boulevard, Arnold, Westmoreland County, PA
New Material Saves School Dollars.
ERIC Educational Resources Information Center
School Business Affairs, 1984
1984-01-01
Hobbs Window Insulation, an inexpensive polyester material, can reduce heat loss or gain through single-pane glass by 70 percent. The product is translucent, has an insulative value of R-3, and is easy to install and remove. (MCG)
27. INTERIOR OF KITCHEN SHOWING ORIGINAL CABINETS, LATCHES AND PULLS, ...
27. INTERIOR OF KITCHEN SHOWING ORIGINAL CABINETS, LATCHES AND PULLS, AND WOOD-FRAME SLIDING-GLASS WINDOWS ABOVE SINK. VIEW TO EAST. - Rush Creek Hydroelectric System, Clubhouse Cottage, Rush Creek, June Lake, Mono County, CA
5. EXTERIOR OF FRONT AND SOUTHWEST WALL OF HOUSE SHOWING ...
5. EXTERIOR OF FRONT AND SOUTHWEST WALL OF HOUSE SHOWING GABLE-ROOFED 1965 ADDITION WITH SLIDING-GLASS WINDOWS. VIEW TO NORTH. - Bishop Creek Hydroelectric System, Plant 4, Worker Cottage, Bishop Creek, Bishop, Inyo County, CA
13. INTERIOR OF FRONT BEDROOM SHOWING BUILTIN COMBINATION CABINET/SLIDING DOOR ...
13. INTERIOR OF FRONT BEDROOM SHOWING BUILT-IN COMBINATION CABINET/SLIDING DOOR CLOSET AND SLIDING GLASS WINDOW. VIEW TO SOUTHEAST. - Bishop Creek Hydroelectric System, Plant 4, Worker Cottage, Bishop Creek, Bishop, Inyo County, CA
29. SECOND FLOOR EAST SIDE APARTMENT EAST BEDROOM INTERIOR. ALUMINUMFRAME ...
29. SECOND FLOOR EAST SIDE APARTMENT EAST BEDROOM INTERIOR. ALUMINUM-FRAME SLIDING-GLASS WINDOWS ARE REPLACEMENTS. VIEW TO NORTHEAST. - Lee Vining Creek Hydroelectric System, Triplex Cottage, Lee Vining Creek, Lee Vining, Mono County, CA
Browning phenomenon of medieval stained glass windows.
Ferrand, Jessica; Rossano, Stéphanie; Loisel, Claudine; Trcera, Nicolas; van Hullebusch, Eric D; Bousta, Faisl; Pallot-Frossard, Isabelle
2015-04-07
In this work, three pieces of historical on-site glass windows dated from the 13th to 16th century and one archeological sample (8th century) showing Mn-rich brown spots at their surface or subsurface have been characterized by optical microscopy and Scanning Electron Microscopy coupled with Energy Dispersive X-ray spectroscopy. The oxidation state of Mn as well as the Mn environment in the alteration phase have been characterized by X-ray absorption spectroscopy at the Mn K-edge. Results show that the oxidation state of Mn and therefore the nature of the alteration phase varies according to the sample considered and is correlated with the extent of the brown alteration. The larger the brown areas the more oxidized the Mn. However, by contrast with literature, the samples presenting the more extended brown areas are not similar to pyrolusite and contain Mn mainly under a (+III) oxidation state.
Index of Refraction of Shock Loaded Soda-Lime Glass
NASA Astrophysics Data System (ADS)
Alexander, C. S.
2009-12-01
Soda-lime glass (SLG) is a potential low-cost VISAR window for use at moderate shock pressures (up to 2430 GPa) where the material remains transparent. In order for SLG to be practical as a VISAR window, the correction factor, which describes the frequency correction related to the strain dependence of the refractive index, and hence the index of refraction itself, must be characterized as a function of pressure. Characterization data are reported in this paper and compared to previous results. The present data show good agreement with those of Dandekar [J. Appl. Phys. 84, 6614 (1998)] and separate study results by Gibbons and Ahrens [J. Geophys. Res. 76, 5489 (1971)] up to 7 GPa. However, at stresses over 7 GPa, marked discrepancies are evident between the present data and that of Gibbons and Ahrens. Differences in test methods may explain these discrepancies.
Index of Refraction of Shock Loaded Soda-Lime Glass
NASA Astrophysics Data System (ADS)
Alexander, Scott
2009-06-01
Soda-lime glass (SLG) is a potential low-cost VISAR window for use at moderate shock pressures (up to approximately 25 GPa) where the material remains transparent. In order for SLG to be practical as a VISAR window, the correction factor, which describes the frequency correction related to the strain dependence of the refractive index, and hence the index of refraction itself, must be characterized as a function of pressure. Characterization data are reported in this paper and compared to previous results. The present data show good agreement with those of Dandekar [J. App. Physics, 84, 6614 (1998)] and separate study results by Gibbons and Ahrens [J. Geophys. Res., 76, 5489 (1971)] up to 7 GPa. However, at stresses over 7 GPa, marked discrepancies are evident between the present data and that of Gibbons and Ahrens. Differences in test methods may explain these discrepancies.
INDEX OF REFRACTION OF SHOCK LOADED SODA-LIME GLASS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Alexander, C. S.
2009-12-28
Soda-lime glass (SLG) is a potential low-cost VISAR window for use at moderate shock pressures (up to 2430 GPa) where the material remains transparent. In order for SLG to be practical as a VISAR window, the correction factor, which describes the frequency correction related to the strain dependence of the refractive index, and hence the index of refraction itself, must be characterized as a function of pressure. Characterization data are reported in this paper and compared to previous results. The present data show good agreement with those of Dandekar [J. Appl. Phys. 84, 6614 (1998)] and separate study results bymore » Gibbons and Ahrens [J. Geophys. Res. 76, 5489 (1971)] up to 7 GPa. However, at stresses over 7 GPa, marked discrepancies are evident between the present data and that of Gibbons and Ahrens. Differences in test methods may explain these discrepancies.« less
Baity-Jesi, Marco; Calore, Enrico; Cruz, Andres; Fernandez, Luis Antonio; Gil-Narvión, José Miguel; Gordillo-Guerrero, Antonio; Iñiguez, David; Maiorano, Andrea; Marinari, Enzo; Martin-Mayor, Victor; Monforte-Garcia, Jorge; Muñoz Sudupe, Antonio; Navarro, Denis; Parisi, Giorgio; Perez-Gaviro, Sergio; Ricci-Tersenghi, Federico; Ruiz-Lorenzo, Juan Jesus; Schifano, Sebastiano Fabio; Tarancón, Alfonso; Tripiccione, Raffaele; Yllanes, David
2017-01-01
We have performed a very accurate computation of the nonequilibrium fluctuation–dissipation ratio for the 3D Edwards–Anderson Ising spin glass, by means of large-scale simulations on the special-purpose computers Janus and Janus II. This ratio (computed for finite times on very large, effectively infinite, systems) is compared with the equilibrium probability distribution of the spin overlap for finite sizes. Our main result is a quantitative statics-dynamics dictionary, which could allow the experimental exploration of important features of the spin-glass phase without requiring uncontrollable extrapolations to infinite times or system sizes. PMID:28174274
Clark, Carl C.; Yudenfriend, Herbert; Redner, Alex S.
2000-01-01
Glazing types are historically described, with the laceration injuries and ejection deaths associated with present glazing. Sixty tempered glass windows manufactured at nominally four temper levels were tested for uncracked fracture fragment size and weight and length by the American and European standards, which fracture the glass without strain, and our preliminary strain fracture test, which produces longer uncracked fragments and heavier clusters of fragments. Our study relates the results by the three methods to the temper measurements using birefringence, with a discussion of alternate safer glazing and the inadequacy of present standards for reducing laceration and ejection dangers. PMID:11558078
54. The Curtis Music Hall (15 West Park) dates from ...
54. The Curtis Music Hall (15 West Park) dates from 1892. This is one if the more architecturally interesting buildings remaining in Butte, with a variety of window types, a corbelled parapet extending over one bay, a central gable flanked by decorative square towers, a turret, and a richly decorated facade. The storefront has been modernized with plate glass windows and a metal canopy. - Butte Historic District, Bounded by Copper, Arizona, Mercury & Continental Streets, Butte, Silver Bow County, MT
Chen, Zhi; Kang, Shiliang; Zhang, Hang; Wang, Ting; Lv, Shichao; Chen, Qiuqun; Dong, Guoping; Qiu, Jianrong
2017-01-01
Optical modulation is a crucial operation in photonics for network data processing with the aim to overcome information bottleneck in terms of speed, energy consumption, dispersion and cross-talking from conventional electronic interconnection approach. However, due to the weak interactions between photons, a facile physical approach is required to efficiently manipulate photon-photon interactions. Herein, we demonstrate that transparent glass ceramics containing LaF3: Tm3+ (Er3+) nanocrystals can enable fast-slow optical modulation of blue/green up-conversion fluorescence upon two-step excitation of two-wavelengths at telecom windows (0.8–1.8 μm). We show an optical modulation of more than 1500% (800%) of the green (blue) up-conversion fluorescence intensity, and fast response of 280 μs (367 μs) as well as slow response of 5.82 ms (618 μs) in the green (blue) up-conversion fluorescence signal, respectively. The success of manipulating laser at telecom windows for fast-slow optical modulation from rear-earth single-doped glass ceramics may find application in all-optical fiber telecommunication areas. PMID:28368041
Glass injuries seen in the emergency department of a South African district hospital
Nzaumvila, Doudou; Kramer, Efraim B.
2015-01-01
Background The emergency department of Embhuleni Hospital frequently manages patients with glass-related injuries. This study assessed these injuries and the glass that caused them in more detail. Aim The objectives of our study included determining the type of glass causing these injuries and describing the circumstances associated with different types of glass injuries. Setting The emergency department of Embhuleni Hospital in Elukwatini, Mpumalanga province, South Africa. Methods This was a cross-sectional study with a sample size of 104 patients. Descriptive statistics were used to assess the characteristics of the glass injuries. Results Five different types of glass were reported to have caused the injuries, namely car glass (7.69%), glass ampoules (3.85%), glass bottles (82.69%), glass windows (3.85%) and street glass shards (1.92%). Glass bottle injuries were mainly caused by assaults (90.47%) and most victims were mostly young males (80.23%). The assaults occurred at alcohol-licensed premises in 65.11% of cases. These injuries occurred mostly over weekends (83.72%), between 18:00 and 04:00. The face (34.23%) and the scalp (26.84%) were the sites that were injured most often. Conclusion Assault is the most common cause of glass injuries, usually involving young men at alcohol-licensed premises. Glass injuries generally resulted in minor lacerations, with few complications (2.68%). PMID:26466399
INTERIOR VIEW OF MIXER LOCATED ON SECOND FLOOR OF BATCH ...
INTERIOR VIEW OF MIXER LOCATED ON SECOND FLOOR OF BATCH PLANT. RECENTLY PURCHASED TO REPLACE OLD MIXER. USED TO MIX THE BATCH - Chambers-McKee Window Glass Company, Batch Plant, Clay Avenue Extension, Jeannette, Westmoreland County, PA
Federal Register 2010, 2011, 2012, 2013, 2014
2010-04-27
... frames, door frames, solar panels, curtain walls, or furniture. Such parts that otherwise meet the... the time of entry, such as finished windows with glass, doors, picture frames, and solar panels. The...
133. 24 EAST 51ST STREET, FRONT DRAWING ROOM, NORTH WALL, ...
133. 24 EAST 51ST STREET, FRONT DRAWING ROOM, NORTH WALL, LEADED GLASS WINDOW WITH CARVED WOOD REVEAL AND SURROUND - Villard Houses, 451-457 Madison Avenue & 24 East Fifty-first Street, New York County, NY
18. INTERIOR OF BATHROOM SHOWING DOOR TO SOUTH BEDROOM AND ...
18. INTERIOR OF BATHROOM SHOWING DOOR TO SOUTH BEDROOM AND ALUMINUM-FRAMED SLIDING GLASS WINDOW ABOVE BATHTUB AT PHOTO LEFT. VIEW TO SOUTHEAST. - Bishop Creek Hydroelectric System, Plant 4, Worker Cottage, Bishop Creek, Bishop, Inyo County, CA
9. Historic American Buildings Survey, Bill Engdahl for HedrichBlessing, Photographers, ...
9. Historic American Buildings Survey, Bill Engdahl for Hedrich-Blessing, Photographers, February, 1979 TYPICAL SMALL STAINED-GLASS WINDOW IN THE APSE. - Sacred Heart Roman Catholic Church, East Sixth & East Elizabeth Streets, Brownsville, Cameron County, TX
Fused silica windows for solar receiver applications
NASA Astrophysics Data System (ADS)
Hertel, Johannes; Uhlig, Ralf; Söhn, Matthias; Schenk, Christian; Helsch, Gundula; Bornhöft, Hansjörg
2016-05-01
A comprehensive study of optical and mechanical properties of quartz glass (fused silica) with regard to application in high temperature solar receivers is presented. The dependence of rupture strength on different surface conditions as well as high temperature is analyzed, focussing particularly on damage by devitrification and sandblasting. The influence of typical types of contamination in combination with thermal cycling on the optical properties of fused silica is determined. Cleaning methods are compared regarding effectiveness on contamination-induced degradation for samples with and without antireflective coating. The FEM-aided design of different types of receiver windows and their support structure is presented. A large-scale production process has been developed for producing fused silica dome shaped windows (pressurized window) up to a diameter of 816 mm. Prototypes were successfully pressure-tested in a test bench and certified according to the European Pressure Vessel Directive.
Du, Xiaoyong; He, Wen; Zhang, Xudong; Ma, Jinyun; Wang, Chonghai; Li, Chuanshan; Yue, Yuanzheng
2013-04-01
We demonstrate a biomimetic synthesis methodology that allows us to create Li2O-MgO-P2O5-TiO2 nanocrystalline glass with mesoporous structure at lower temperature. We design a 'nanocrystal-glass' configuration to build a nanoarchitecture by means of yeast cell templates self-assembly followed by the controlled in-situ biomineralization of materials on the cell wall. Electrochemically active nanocrystals are used as the lamellar building blocks of mesopores, and the semiconductive glass phase can act both as the 'glue' between nanocrystals and functionalized component. The Li2O-MgO-P2O5-TiO2 nanocrystalline glass exhibits outstanding thermal stability, high conductivity and wide potential window. This approach could be applied to many other multicomponent glass-ceramics to fabricate mesoporous conducting materials for solid-state lithium batteries. Copyright © 2012 Elsevier B.V. All rights reserved.
In Situ Optical Observation of High-Temperature Geological Processes With the Moissanite Cell
NASA Astrophysics Data System (ADS)
Walte, N.; Keppler, H.
2005-12-01
A major drawback of existing techniques in experimental earth and material sciences is the inability to observe ongoing high-temperature processes in situ during an experiment. Examples for important time-dependent processes include the textural development of rocks and oxide systems during melting and crystallization, solid-state and melt-present recrystallization and Ostwald ripening, and bubble nucleation and growth during degassing of glasses and melts. The investigation of these processes by post-mortem analysis of a quenched microstructure is time consuming and often unsatisfactory. Here, we introduce the moissanite cell that allows optical in situ observation of long-term experiments at high temperatures. Moissanite is a transparent gem-quality type of SiC that is characterized by its hardness and superior chemical and thermal resistance. Two moissanite windows with a thickness and diameter of several millimeters are placed into sockets of fired pyrophyllite and fixed onto two opposite metal plates. The sockets are wrapped with heating wire and each window is connected to a thermocouple for temperature control. The sample is placed directly between the moissanite windows and the cell is assembled similarly to a large diamond anvil cell. In situ observation of the sample is done with a microscope through observation windows and movies are recorded with an attached digital camera. Our experiments with the new cell show that temperatures above 1200°C can be maintained and observed in a sample for several days without damaging the cell nor the windows. Time-lapse movies of melting and crystallizing natural and synthetic rocks and of degassing glasses and melts will be presented to show the potential of the new technique for experimental earth and material science.
High Reliability R-10 Windows Using Vacuum Insulating Glass Units
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stark, David
2012-08-16
The objective of this effort was for EverSealed Windows (“EverSealed” or “ESW”) to design, assemble, thermally and environmentally test and demonstrate a Vacuum Insulating Glass Unit (“VIGU” or “VIG”) that would enable a whole window to meet or exceed the an R-10 insulating value (U-factor ≤ 0.1). To produce a VIGU that could withstand any North American environment, ESW believed it needed to design, produce and use a flexible edge seal system. This is because a rigid edge seal, used by all other know VIG producers and developers, limits the size and/or thermal environment of the VIG to where themore » unit is not practical for typical IG sizes and cannot withstand severe outdoor environments. The rigid-sealed VIG’s use would be limited to mild climates where it would not have a reasonable economic payback when compared to traditional double-pane or triple-pane IGs. ESW’s goals, in addition to achieving a sufficiently high R-value to enable a whole window to achieve R-10, included creating a VIG design that could be produced for a cost equal to or lower than a traditional triple-pane IG (low-e, argon filled). ESW achieved these goals. EverSealed produced, tested and demonstrated a flexible edge-seal VIG that had an R-13 insulating value and the edge-seal system durability to operate reliably for at least 40 years in the harshest climates of North America.« less
8. Historic American Buildings Survey, David Aronow, Photographer circa 1924, ...
8. Historic American Buildings Survey, David Aronow, Photographer circa 1924, LIVING ROOM WITH TIFFANY STAINED GLASS WINDOWS INCLUDING 'FEEDING THE FLAMINGOES,' 'THE FOUR SEASONS,' AND 'THE BATHERS'. - Laurelton Hall, Laurel Hollow & Ridge Roads, Oyster Bay, Nassau County, NY
2006-09-25
Ames and Moffett Field (MFA) historical sites and memorials Entry of building N-210 Ames Flight System Research Laboratory architectural detail. Eastside showing NACA brass inset wing over front doors, light fixtures flanking the doors and glass brick window wall above the doors
2006-09-25
Ames and Moffett Field (MFA) historical sites and memorials Entry of building N-210 Ames Flight System Research Laboratory architectural detail. Eastside showing NACA brass inset wing over front doors, light fixtures flanking the doors and glass brick window wall above the doors
5. EXTERIOR OF NORTH SIDE SHOWING ENCLOSED FRONT PORCH AREA, ...
5. EXTERIOR OF NORTH SIDE SHOWING ENCLOSED FRONT PORCH AREA, ALUMINUM SLIDING GLASS WINDOW GLAZING REPLACEMENTS, AND RAILING FOR STAIRS TO BASEMENT. VIEW TO SOUTHWEST. - Bishop Creek Hydroelectric System, Plant 4, Worker Cottage, Bishop Creek, Bishop, Inyo County, CA
17. INTERIOR OF BEDROOM NO. 3 SHOWING MODERN ALUMINUMFRAMED SLIDINGGLASS ...
17. INTERIOR OF BEDROOM NO. 3 SHOWING MODERN ALUMINUM-FRAMED SLIDING-GLASS WINDOWS WITH WOOD SURROUNDS ON SOUTHWEST AND NORTHWEST WALLS. VIEW TO WEST. - Bishop Creek Hydroelectric System, Plant 4, Worker Cottage, Bishop Creek, Bishop, Inyo County, CA
17. INTERIOR OF KITCHEN SHOWING UPDATED CABINETS, SINK, AND FAUCET, ...
17. INTERIOR OF KITCHEN SHOWING UPDATED CABINETS, SINK, AND FAUCET, AND ORIGINAL WOOD-FRAMED SLIDING GLASS WINDOWS ON SOUTH WALL OVER SINK. VIEW TO SOUTHEAST - Rush Creek Hydroelectric System, Worker Cottage, Rush Creek, June Lake, Mono County, CA
16. INTERIOR OF KITCHEN SHOWING UPDATED CABINETS AND COUNTER TOP, ...
16. INTERIOR OF KITCHEN SHOWING UPDATED CABINETS AND COUNTER TOP, AND ORIGINAL WOOD-FRAMED SLIDING GLASS WINDOW IN NORTH WALL OVERLOOKING FRONT ENTRY. VIEW TO NORTHEAST. - Rush Creek Hydroelectric System, Worker Cottage, Rush Creek, June Lake, Mono County, CA
Sheet plastic filters for solar cells
NASA Technical Reports Server (NTRS)
Wizenick, R. J.
1972-01-01
Poly(vinylidene fluoride) (PVF) film protects solar cells on Mars surface from radiation and prevents degradation of solar cell surfaces by Martian dust storms. PVF films may replace glass or quartz windows on solar cell arrays used to generate power on earth.
Window encapsulation in car industry by using the 50 {Omega} RF technology
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bernard, J.P.; Barboteau, M.; Collet, L.
Throughout the world car industry has been using window encapsulation for a few years now. This technology is mainly used in production lines and is called RIM for polyurethane reaction injection moulding. This technology, however brings about some problems such as: glass breaking during mould closure, high production cost, systematic rough edges. The PSA Group (Peugeot-Citroen), a pioneer in this field, in collaboration with SAIREM has launched a new innovating process for window encapsulation by using the 50 {Omega} RF technology for gelling PVC Plastisol. The study was followed by an industrial prototype. Industrial equipment was then installed at WEBASTOmore » HEULIEZ for window encapsulation of the sunshine roof for the Citroen Xantia. The authors describe the principle of window encapsulation and the different existing processes. They describe the 50 {Omega} RF technology, an industrial installation and the constraints of this technology in order to get maximum efficiency. In the conclusion they present a technical and economical analysis of the different solutions for window encapsulation. They also present the advantages of the 50 {Omega} RF technology and the new opportunities it offers.« less
A soft, transparent, freely accessible cranial window for chronic imaging and electrophysiology
Heo, Chaejeong; Park, Hyejin; Kim, Yong-Tae; Baeg, Eunha; Kim, Yong Ho; Kim, Seong-Gi; Suh, Minah
2016-01-01
Chronic in vivo imaging and electrophysiology are important for better understanding of neural functions and circuits. We introduce the new cranial window using soft, penetrable, elastic, and transparent, silicone-based polydimethylsiloxane (PDMS) as a substitute for the skull and dura in both rats and mice. The PDMS can be readily tailored to any size and shape to cover large brain area. Clear and healthy cortical vasculatures were observed up to 15 weeks post-implantation. Real-time hemodynamic responses were successfully monitored during sensory stimulation. Furthermore, the PDMS window allowed for easy insertion of microelectrodes and micropipettes into the cortical tissue for electrophysiological recording and chemical injection at any location without causing any fluid leakage. Longitudinal two-photon microscopic imaging of Cx3Cr1+/− GFP transgenic mice was comparable with imaging via a conventional glass-type cranial window, even immediately following direct intracortical injection. This cranial window will facilitate direct probing and mapping for long-term brain studies. PMID:27283875
Optical characterization of fritted glass for architectural applications
NASA Astrophysics Data System (ADS)
Jonsson, Jacob C.; Rubin, Michael D.; Nilsson, Annica M.; Jonsson, Andreas; Roos, Arne
2009-04-01
Fritted glass is commonly used as a light diffusing element in modern buildings. Traditionally it has been used for aesthetic purposes but it can also be used for energy savings by incorporating it in novel daylighting systems? To answer such questions the light scattering properties must be properly characterized. This paper contains measurements of different varieties of fritted glass, ranging from the simplest direct-hemispherical measurements to angle-resolved goniometer measurements. Modeling the light scattering to obtain the full bidirectional scattering distribution function (BSDF) extends the measured data, making it useful in simulation programs such as Window 6 and Radiance. Surface profilometry results and SEM micrographs are included to demonstrate the surface properties of the samples studied.
Evaluation of Energy Efficiency Performance of Heated Windows
NASA Astrophysics Data System (ADS)
Jammulamadaka, Hari Swarup
The study about the evaluation of the performance of the heated windows was funded by the WVU Research Office as a technical assistance award at the 2014 TransTech Energy Business Development Conference to the Green Heated Glass company/project owned by Frank Dlubak. The award supports a WVU researcher to conduct a project important for commercialization. This project was awarded to the WVU Industrial Assessment Center in 2015. The current study attempted to evaluate the performance of the heated windows by developing an experimental setup to test the window at various temperatures by varying the current input to the window. The heated double pane window was installed in an insulated box. A temperature gradient was developed across the window by cooling one side of the window using gel based ice packs. The other face of the window was heated by passing current at different wattages through the window. The temperature of the inside and outside panes, current and voltage input, room and box temperature were recorded, and used to calculate the apparent R-value of the window when not being heated vs when being heated. It has been concluded from the study that the heated double pane window is more effective in reducing heat losses by as much as 50% than a non-heated double pane window, if the window temperature is maintained close to the room temperature. If the temperature of the window is much higher than the room temperature, the losses through the window appear to increase beyond that of a non-heated counterpart. The issues encountered during the current round of experiments are noted, and recommendations provided for future studies.
Exercise Balikatan 2012 Technology Insertion Quicklook Report
2012-05-15
expanded polystyrene panels covered with a thin layer of cement, sand, fiberglass, and other additives. A permanent 200 sq ft building with windows... Expanded Polystyrene 1.5# density pre-cut panels and GFRC -Glass Fiber Reinforced Concrete Structural coating (Fiberglass Mesh, Portland Cement, Silica
INTERIOR VIEW OF DEBITEUSE ROOM. MONORAIL USED TO MOVE DEBIS ...
INTERIOR VIEW OF DEBITEUSE ROOM. MONORAIL USED TO MOVE DEBIS IS FROM ORIGINAL CLAY HOUSE. VIEW SHOWS WORKER USING AIR HAMMER TO BEGIN FINISH ON DEBI. - Chambers-McKee Window Glass Company, Debiteuse, Clay Avenue Extension, Jeannette, Westmoreland County, PA
15. INTERIOR OF KITCHEN SHOWING UPDATED CABINETS, OUNTER TOP, SINK, ...
15. INTERIOR OF KITCHEN SHOWING UPDATED CABINETS, OUNTER TOP, SINK, AND FAUCET, AND ORIGINAL WOOD FRAMED SLIDING-GLASS WINDOW IN NORTH WALL OVERLOOKING FRONT PORCH. VIEW TO NORTH. - Rush Creek Hydroelectric System, Worker Cottage, Rush Creek, June Lake, Mono County, CA
NASA Technical Reports Server (NTRS)
Ray, C. S.; Sen, S.; Reis, S. T.; Kim, C. W.
2005-01-01
In-situ resource processing and utilization on planetary bodies is an important and integral part of NASA's space exploration program. Within this scope and context, our general effort is primarily aimed at developing glass and glass-ceramic type materials using lunar and martian soils, and exploring various applications of these materials for planetary surface operations. Our preliminary work to date have demonstrated that glasses can be successfully prepared from melts of the simulated composition of both lunar and martian soils, and the melts have a viscosity-temperature window appropriate for drawing continuous glass fibers. The glasses are shown to have the potential for immobilizing certain types of nuclear wastes without deteriorating their chemical durability and thermal stability. This has a direct impact on successfully and economically disposing nuclear waste generated from a nuclear power plant on a planetary surface. In addition, these materials display characteristics that can be manipulated using appropriate processing protocols to develop glassy or glass-ceramic magnets. Also discussed in this presentation are other potential applications along with a few selected thermal, chemical, and structural properties as evaluated up to this time for these materials.
Experimental validation for thermal transmittances of window shading systems with perimeter gaps
Hart, Robert; Goudey, Howdy; Curcija, D. Charlie
2018-02-22
Virtually all residential and commercial windows in the U.S. have some form of window attachment, but few have been designed for energy savings. ISO 15099 presents a simulation framework to determine thermal performance of window attachments, but the model has not been validated for these products. This paper outlines a review and validation of the ISO 15099 centre-of-glass heat transfer correlations for perimeter gaps (top, bottom, and side) in naturally ventilated cavities through measurement and simulation. The thermal transmittance impact due to dimensional variations of these gaps is measured experimentally, simulated using computational fluid dynamics, and simulated utilizing simplified correlationsmore » from ISO 15099. Results show that the ISO 15099 correlations produce a mean error between measured and simulated heat flux of 2.5 ± 7%. These tolerances are similar to those obtained from sealed cavity comparisons and are deemed acceptable within the ISO 15099 framework.« less
Analysis on energy use in reuse cement silo for campus building
NASA Astrophysics Data System (ADS)
Fidiya Nugrahani, Elita; Winda Murti, Izzati; Arifianti, Qurrotin M. O.
2018-03-01
Semen Gresik, the first cement factory in Indonesia owned by the government was operated since 1957 and stopped the operation around 1997. The owner, PT. Semen Indonesia (Persero) intended to reuse cement factory for the campus building, Universitas Internasional Semen Indonesia (UISI). This research proposed to analyze the future Energy Use Intensity (EUI) and recommendation energy efficiency in renovating silo through simulation. The result of future EUI in existing building was 234 kWh/m2.year. The scenarios created to reduce energy use in six sectors: window shades, window material, infiltration, daylighting, plug load, air-conditioning and operation schedule. The lowest EUI estimated at 98.27 by use 2/3 window shades, triple low emission window glass, lighting efficiency at 3.23 W/m2, maximize daylighting and occupancy control, minimize infiltration to 0.17 ACH, and 12/5 for operation schedule.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-02-01
... copper/brass tinklers or tube beads; 1 lot of small fragments of window glass; 1 shell bead; 1 bird bone whistle; 3 fragments of worked animal bone; 5 small pieces of wood; 5 pieces of unmodified animal bone; 1...
Mechanochemistry for shock wave energy dissipation
NASA Astrophysics Data System (ADS)
Shaw, William L.; Ren, Yi; Moore, Jeffrey S.; Dlott, Dana D.
2017-01-01
Using a laser-driven flyer-plate apparatus to launch 75 μm thick Al flyers up to 2.8 km/s, we developed a technique for detecting the attenuation of shock waves by mechanically-driven chemical reactions. The attenuating sample was spread on an ultrathin Au mirror deposited onto a glass window having a known Hugoniot. As shock energy exited the sample and passed through the mirror, into the glass, photonic Doppler velocimetry monitored the velocity profile of the ultrathin mirror. Knowing the window Hugoniot, the velocity profile could be quantitatively converted into a shock energy flux or fluence. The flux gave the temporal profile of the shock front, and showed how the shock front was reshaped by passing through the dissipative medium. The fluence, the time-integrated flux, showed how much shock energy was transmitted through the sample. Samples consisted of microgram quantities of carefully engineered organic compounds selected for their potential to undergo negative-volume chemistry. Post mortem analytical methods were used to confirm that shock dissipation was associated with shock-induced chemical reactions.
Limits of metastability in amorphous ices: the neutron scattering Debye-Waller factor.
Amann-Winkel, Katrin; Löw, Florian; Handle, Philip H; Knoll, Wiebke; Peters, Judith; Geil, Burkhard; Fujara, Franz; Loerting, Thomas
2012-12-21
Recently, it became clear that relaxation effects in amorphous ices play a very important role that has previously been overlooked. The thermodynamic history of amorphous samples strongly affects their transition behavior. In particular, well-relaxed samples show higher thermal stability, thereby providing a larger window to investigate their glass transitions. We here present neutron scattering experiments using fixed elastic window scans on relaxed forms of amorphous ice, namely expanded high density amorphous ice (eHDA), a variant of low density amorphous ice (LDA-II) and hyperquenched glassy water (HGW). These amorphous ices are expected to be true glassy counterparts of deeply supercooled liquid water, therefore fast precursor dynamics of structural relaxation are expected to appear below the calorimetric glass transition temperature. The Debye-Waller factor shows a very weak sub-T(g) anomaly in some of the samples, which might be the signature of such fast precursor dynamics. However, we cannot find this behavior consistently in all samples at all reciprocal length scales of momentum transfer.
NASA Astrophysics Data System (ADS)
Cassir, Michel; Goubin, Fabrice; Bernay, Cécile; Vernoux, Philippe; Lincot, Daniel
2002-06-01
Ultra thin films of ZrO 2 were synthesized on soda lime glass and SnO 2-coated glass, using ZrCl 4 and H 2O precursors by atomic layer deposition (ALD), a sequential CVD technique allowing the formation of dense and homogeneous films. The effect of temperature on the film growth kinetics shows a first temperature window for ALD processing between 280 and 350 °C and a second regime or "pseudo-window" between 380 and 400 °C, with a growth speed of about one monolayer per cycle. The structure and morphology of films of less than 1 μm were characterized by XRD and SEM. From 275 °C, the ZrO 2 film is crystallized in a tetragonal form while a mixture of tetragonal and monoclinic phases appears at 375 °C. Impedance spectroscopy measurements confirmed the electrical properties of ZrO 2 and the very low porosity of the deposited layer.
Cassini Ring Plane Crossings: Hypervelocity Impact Risks to Sun Sensor Assemblies
NASA Technical Reports Server (NTRS)
Lee, Allan Y.
2016-01-01
For both F/G and D-ring crossings: Probability of a penetration damage of the SSH (Sun Sensor Head) window glass is very low; Optical attenuation due to craters on the surface of the window glass caused by direct HVI (Hyper-Velocity Impact) by dust particle is estimated to be less than 1 percent; Optical attenuation due to secondary debris cloud generated by the disintegrated ring dust particles is estimated to be less than 1 percent. To better manage the Sun sensor damage risk during selected proximal orbit crossings, it is highly desirable to follow the contingency procedures mentioned in Section VII of the paper: Details of this contingency procedure are given in the paper entitled "Cassini Operational Sun Sensor Risk Management During Proximal Orbit Saturn Ring Plane Crossings" authored by David M. Bates. Based on results of risk analyses documented in this work and contingency planning work described in the paper mentioned above, we judge that the proximal orbit campaign will be safe from the viewpoint of dust HVI hazard.
Bilican, Doga; Fornell, Jordina; Sort, Jordi; Pellicer, Eva
2017-01-01
Bismuth (Bi) electrodeposition was studied on Si/Ti/Au, FTO-, and ITO-coated glasses from acidic nitrate solutions with and without gluconate within a narrow potential window (ΔE = 80 mV). This potential range was sufficient to observe a change in particle shape, from polyhedrons (including hexagons) to dendrites, the trend being slightly different depending on substrate activity. In all cases, though, the formation of dendrites was favoured as the applied potential was made more negative. Bi particles were more uniformly distributed over the substrate when sodium gluconate was added to the electrolyte. X-ray diffraction analyses of dendrites grown at −0.28 V indicated that they exhibit the rhombohedral phase of Bi and are predominantly oriented along the (003) plane. This orientation is exacerbated at the lowest applied potential (−0.20 V vs. Ag|AgCl) on glass/ITO substrate, for which completed and truncated hexagons are observed from the top view scanning electron microscopy images. PMID:28772402
Activity statistics in a colloidal glass former: Experimental evidence for a dynamical transition
NASA Astrophysics Data System (ADS)
Abou, Bérengère; Colin, Rémy; Lecomte, Vivien; Pitard, Estelle; van Wijland, Frédéric
2018-04-01
In a dense colloidal suspension at a volume fraction below the glass transition, we follow the trajectories of an assembly of tracers over a large time window. We define a local activity, which quantifies the local tendency of the system to rearrange. We determine the statistics of the time integrated activity, and we argue that it develops a low activity tail that comes together with the onset of glassy-like behavior and heterogeneous dynamics. These rare events may be interpreted as the reflection of an underlying dynamic phase transition.
Improvements on the optical properties of Ge-Sb-Se chalcogenide glasses with iodine incorporation
NASA Astrophysics Data System (ADS)
Jiang, Chen; Wang, Xunsi; Zhu, Qingde; Nie, Qiuhua; Zhu, Minming; Zhang, Peiquan; Dai, Shixun; Shen, Xiang; Xu, Tiefeng; Cheng, Ci; Liao, Fangxing; Liu, Zijun; Zhang, Xianghua
2015-11-01
Decreasing glass network defects and improving optical transmittance are essential work for material researchers. We studied the function of halogen iodine (I) acting as a glass network modifier in Ge-Sb-Se-based chalcogenide glass system. A systematic series of Ge20Sb5Se75-xIx (x = 0, 5, 10, 15, 20 at.%) infrared (IR) chalcohalide glasses were investigated to decrease the weak absorption tail (WAT) and improve the mid-IR transparency. The mechanisms of the halogen I affecting the physical, thermal, and optical properties of Se-based chalcogenide glasses were reported. The structural evolutions of these glasses were also revealed by Raman spectroscopy and camera imaging. The progressive substitution of I for Se increased the optical bandgap. The WAT and scatting loss significantly decreased corresponding to the progressive decrease in structural defects caused by dangling bands and structure defects in the original Ge20Sb5Se75 glass. The achieved maximum IR transparency of Ge-Sb-Se-I glasses can reach up to 80% with an effective transmission window between 0.94 μm and 17 μm, whereas the absorption coefficient decreased to 0.029 cm-1 at 10.16 μm. Thus, these materials are promising candidates for developing low-loss IR fibers.
NASA Astrophysics Data System (ADS)
Aytug, Tolga; Simpson, John T.; Lupini, Andrew R.; Trejo, Rosa M.; Jellison, Gerald E.; Ivanov, Ilia N.; Pennycook, Stephen J.; Hillesheim, Daniel A.; Winter, Kyle O.; Christen, David K.; Hunter, Scott R.; Haynes, J. Allen
2013-08-01
We describe the formation and properties of atomically bonded, optical quality, nanostructured thin glass film coatings on glass plates, utilizing phase separation by spinodal decomposition in a sodium borosilicate glass system. Following deposition via magnetron sputtering, thermal processing and differential etching, these coatings are structurally superhydrophilic (i.e., display anti-fogging functionality) and demonstrate robust mechanical properties and superior abrasion resistance. After appropriate chemical surface modification, the surfaces display a stable, non-wetting Cassie-Baxter state and exhibit exceptional superhydrophobic performance, with water droplet contact angles as large as 172°. As an added benefit, in both superhydrophobic and superhydrophilic states these nanostructured surfaces can block ultraviolet radiation and can be engineered to be anti-reflective with broadband and omnidirectional transparency. Thus, the present approach could be tailored toward distinct coatings for numerous markets, such as residential windows, windshields, specialty optics, goggles, electronic and photovoltaic cover glasses, and optical components used throughout the US military.
Aytug, Tolga; Simpson, John T; Lupini, Andrew R; Trejo, Rosa M; Jellison, Gerald E; Ivanov, Ilia N; Pennycook, Stephen J; Hillesheim, Daniel A; Winter, Kyle O; Christen, David K; Hunter, Scott R; Haynes, J Allen
2013-08-09
We describe the formation and properties of atomically bonded, optical quality, nanostructured thin glass film coatings on glass plates, utilizing phase separation by spinodal decomposition in a sodium borosilicate glass system. Following deposition via magnetron sputtering, thermal processing and differential etching, these coatings are structurally superhydrophilic (i.e., display anti-fogging functionality) and demonstrate robust mechanical properties and superior abrasion resistance. After appropriate chemical surface modification, the surfaces display a stable, non-wetting Cassie-Baxter state and exhibit exceptional superhydrophobic performance, with water droplet contact angles as large as 172°. As an added benefit, in both superhydrophobic and superhydrophilic states these nanostructured surfaces can block ultraviolet radiation and can be engineered to be anti-reflective with broadband and omnidirectional transparency. Thus, the present approach could be tailored toward distinct coatings for numerous markets, such as residential windows, windshields, specialty optics, goggles, electronic and photovoltaic cover glasses, and optical components used throughout the US military.
Topological phases in (Na2O)x (P2O5)100-x glasses
NASA Astrophysics Data System (ADS)
Mohanty, Chandi; Chbeir, Ralph; Czaja, Andrew; Chen, Ping; Boolchand, Punit
We have synthesized titled glasses in the 0
Application of large-area chromogenics to architectural glazings
NASA Astrophysics Data System (ADS)
Selkowitz, Stephen E.
1990-03-01
Glass plays a significant role in the design of building envelopes today. Since its emergence during the last century as a major building material, glass has evolved into an ubiquitous and versatile building design element, performing functions today that would have been unimaginable a few years ago. The optical clarity and transparency of glass that we take for granted is one of its most unique features. Glass windows keep out the cold wind and rain without blocking the view, but also perform many more complex functions which require variable properties and tradeoffs between conflicting conditions. The glazing that provides view must also provide visual privacy at other times and must sometimes become totally opaque (for audiovisual shows, for example). Transparent glass admits daylight, providing good color rendition and offsetting electric lighting energy needs, but it can also create discomfort and disability glare conditions. The sun provides desirable warmth in winter but its heat is unwelcome in summer when it contributes to thermal discomfort and cooling energy requirements. And glass is an important element in the appearance and aesthetics of a building, both interior and exterior.
Chalcogenide glass sensors for bio-molecule detection
NASA Astrophysics Data System (ADS)
Lucas, Pierre; Coleman, Garrett J.; Cantoni, Christopher; Jiang, Shibin; Luo, Tao; Bureau, Bruno; Boussard-Pledel, Catherine; Troles, Johann; Yang, Zhiyong
2017-02-01
Chalcogenide glasses constitute the only class of materials that remain fully amorphous while exhibiting broad optical transparency over the full infrared region from 2-20 microns. As such, they can be shaped into complex optical elements while retaining a clear optical window that encompass the vibrational signals of virtually any molecules. Chalcogenide glasses are therefore ideal materials for designing biological and chemical sensors based on vibrational spectroscopy. In this paper we review the properties of these glasses and the corresponding design of optical elements for bio-chemical sensing. Amorphous chalcogenides offer a very wide compositional landscape that permit to tune their physical properties to match specific demands for the production of optical devices. This includes tailoring the infrared window over specific ranges of wavelength such as the long-wave infrared region to capture important vibrational signal including the "signature region" of micro-organisms or the bending mode of CO2 molecules. Additionally, compositional engineering enables tuning the viscosity-temperature dependence of the glass melt in order to control the rheological properties that are fundamental to the production of glass elements. Indeed, exquisite control of the viscosity is key to the fabrication process of many optical elements such as fiber drawing, lens molding, surface embossing or reflow of microresonators. Optimal control of these properties then enables the design and fabrication of optimized infrared sensors such as Fiber Evanescent Wave Spectroscopy (FEWS) sensors, Whispering Gallery Modes (WGM) micro-resonator sensors, nanostructured surfaces for integrated optics and surface-enhanced processes, or lens molding for focused collection of infrared signals. Many of these sensor designs can be adapted to collect and monitor the vibrational signal of live microorganisms to study their metabolism in controlled environmental conditions. Further materials engineering enable the design of opto-electrophoretic sensors that permit simultaneous capture and detection of hazardous bio-molecules such as bacteria, virus and proteins using a conducting glass that serves as both an electrode and an optical elements. Upon adequate spectral analysis such as Principal Component Analysis (PCA) or Partial Least Square (PLS) regression these devices enable highly selective identification of hazardous microorganism such as different strains of bacteria and food pathogens.
INTERIOR VIEW SHOWING BATCH SCALES. SERIES OF FIVE SCALES WITH ...
INTERIOR VIEW SHOWING BATCH SCALES. SERIES OF FIVE SCALES WITH SIX DIFFERENT MATERIALS. MIX SIFTED DOWN FROM SILOS ABOVE. INGREDIENTS: SAND, SODA ASH, DOLOMITE LIMESTONE, NEPHELINE SYENITE, SALT CAKE. - Chambers-McKee Window Glass Company, Batch Plant, Clay Avenue Extension, Jeannette, Westmoreland County, PA
ERIC Educational Resources Information Center
Morris, Barbara H.
2004-01-01
This article describes a geometry project that used the beauty of stained-glass-window designs to teach middle school students about geometric figures and concepts. Three honors prealgebra teachers and a middle school mathematics gifted intervention specialist created a geometry project that covered the curriculum and also assessed students'…
19. INTERIOR OF KITCHEN SHOWING UPDATED CABINETS, COUNTER TOP, SINK, ...
19. INTERIOR OF KITCHEN SHOWING UPDATED CABINETS, COUNTER TOP, SINK, AND FAUCET, AND ORIGINAL WOODFRAMED SLIDING GLASS WINDOW IN NORTH WALL AT PHOTO LEFT CENTER OVERLOOKING FRONT PORCH. VIEW TO NORTHEAST. - Rush Creek Hydroelectric System, Worker Cottage, Rush Creek, June Lake, Mono County, CA
Shaping metallic glasses by electromagnetic pulsing
Kaltenboeck, Georg; Demetriou, Marios D.; Roberts, Scott; Johnson, William L.
2016-01-01
With damage tolerance rivalling advanced engineering alloys and thermoplastic forming capabilities analogous to conventional plastics, metallic glasses are emerging as a modern engineering material. Here, we take advantage of their unique electrical and rheological properties along with the classic Lorentz force concept to demonstrate that electromagnetic coupling of electric current and a magnetic field can thermoplastically shape a metallic glass without conventional heating sources or applied mechanical forces. Specifically, we identify a process window where application of an electric current pulse in the presence of a normally directed magnetic field can ohmically heat a metallic glass to a softened state, while simultaneously inducing a large enough magnetic body force to plastically shape it. The heating and shaping is performed on millisecond timescales, effectively bypassing crystallization producing fully amorphous-shaped parts. This electromagnetic forming approach lays the groundwork for a versatile, time- and energy-efficient manufacturing platform for ultrastrong metals. PMID:26853460
MgZnO High Voltage Thin Film Transistors on Glass for Inverters in Building Integrated Photovoltaics
Hong, Wen-Chiang; Ku, Chieh-Jen; Li, Rui; ...
2016-10-10
Building integrated photovoltaics (BIPV) have attracted considerable interests because of its aesthetically attractive appearance and overall low cost. In BIPV, system integration on a glass substrate like windows is essential to cover a large area of a building with low cost. But, the conventional high voltage devices in inverters have to be built on the specially selected single crystal substrates, limiting its application for large area electronic systems, such as the BIPV. We demonstrate a Magnesium Zinc Oxide (MZO) based high voltage thin film transistor (HVTFT) built on a transparent glass substrate. We designed devices with unique ring-type structures andmore » use modulated Mg doping in the channel - gate dielectric interface, resulting in a blocking voltage of over 600 V. In addition to BIPV, the MZO HVTFT based inverter technology also creates new opportunities for emerging self-powered smart glass.« less
Configurational entropy measurements in extremely supercooled liquids that break the glass ceiling.
Berthier, Ludovic; Charbonneau, Patrick; Coslovich, Daniele; Ninarello, Andrea; Ozawa, Misaki; Yaida, Sho
2017-10-24
Liquids relax extremely slowly on approaching the glass state. One explanation is that an entropy crisis, because of the rarefaction of available states, makes it increasingly arduous to reach equilibrium in that regime. Validating this scenario is challenging, because experiments offer limited resolution, while numerical studies lag more than eight orders of magnitude behind experimentally relevant timescales. In this work, we not only close the colossal gap between experiments and simulations but manage to create in silico configurations that have no experimental analog yet. Deploying a range of computational tools, we obtain four estimates of their configurational entropy. These measurements consistently confirm that the steep entropy decrease observed in experiments is also found in simulations, even beyond the experimental glass transition. Our numerical results thus extend the observational window into the physics of glasses and reinforce the relevance of an entropy crisis for understanding their formation. Published under the PNAS license.
Breaking the glass ceiling: Configurational entropy measurements in extremely supercooled liquids
NASA Astrophysics Data System (ADS)
Berthier, Ludovic
Liquids relax extremely slowly on approaching the glass state. One explanation is that an entropy crisis, due to the rarefaction of available states, makes it increasingly arduous to reach equilibrium in that regime. Validating this scenario is challenging, because experiments offer limited resolution, while numerical studies lag more than eight orders of magnitude behind experimentally-relevant timescales. In this work we not only close the colossal gap between experiments and simulations but manage to create in-silico configurations that have no experimental analog yet. Deploying a range of computational tools, we obtain four independent estimates of their configurational entropy. These measurements consistently indicate that the steep entropy decrease observed in experiments is found in simulations even beyond the experimental glass transition. Our numerical results thus open a new observational window into the physics of glasses and reinforce the relevance of an entropy crisis for understanding their formation.
Hong, Wen-Chiang; Ku, Chieh-Jen; Li, Rui; Abbaslou, Siamak; Reyes, Pavel; Wang, Szu-Ying; Li, Guangyuan; Lu, Ming; Sheng, Kuang; Lu, Yicheng
2016-10-10
Building integrated photovoltaics (BIPV) have attracted considerable interests because of its aesthetically attractive appearance and overall low cost. In BIPV, system integration on a glass substrate like windows is essential to cover a large area of a building with low cost. However, the conventional high voltage devices in inverters have to be built on the specially selected single crystal substrates, limiting its application for large area electronic systems, such as the BIPV. We demonstrate a Magnesium Zinc Oxide (MZO) based high voltage thin film transistor (HVTFT) built on a transparent glass substrate. The devices are designed with unique ring-type structures and use modulated Mg doping in the channel - gate dielectric interface, resulting in a blocking voltage of over 600 V. In addition to BIPV, the MZO HVTFT based inverter technology also creates new opportunities for emerging self-powered smart glass.
Configurational entropy measurements in extremely supercooled liquids that break the glass ceiling
Berthier, Ludovic; Charbonneau, Patrick; Coslovich, Daniele; Ninarello, Andrea; Ozawa, Misaki
2017-01-01
Liquids relax extremely slowly on approaching the glass state. One explanation is that an entropy crisis, because of the rarefaction of available states, makes it increasingly arduous to reach equilibrium in that regime. Validating this scenario is challenging, because experiments offer limited resolution, while numerical studies lag more than eight orders of magnitude behind experimentally relevant timescales. In this work, we not only close the colossal gap between experiments and simulations but manage to create in silico configurations that have no experimental analog yet. Deploying a range of computational tools, we obtain four estimates of their configurational entropy. These measurements consistently confirm that the steep entropy decrease observed in experiments is also found in simulations, even beyond the experimental glass transition. Our numerical results thus extend the observational window into the physics of glasses and reinforce the relevance of an entropy crisis for understanding their formation. PMID:29073056
Configurational entropy measurements in extremely supercooled liquids that break the glass ceiling
NASA Astrophysics Data System (ADS)
Berthier, Ludovic; Charbonneau, Patrick; Coslovich, Daniele; Ninarello, Andrea; Ozawa, Misaki; Yaida, Sho
2017-10-01
Liquids relax extremely slowly on approaching the glass state. One explanation is that an entropy crisis, because of the rarefaction of available states, makes it increasingly arduous to reach equilibrium in that regime. Validating this scenario is challenging, because experiments offer limited resolution, while numerical studies lag more than eight orders of magnitude behind experimentally relevant timescales. In this work, we not only close the colossal gap between experiments and simulations but manage to create in silico configurations that have no experimental analog yet. Deploying a range of computational tools, we obtain four estimates of their configurational entropy. These measurements consistently confirm that the steep entropy decrease observed in experiments is also found in simulations, even beyond the experimental glass transition. Our numerical results thus extend the observational window into the physics of glasses and reinforce the relevance of an entropy crisis for understanding their formation.
Surgical Vision: Google Glass and Surgery.
Chang, Johnny Yau Cheung; Tsui, Lok Yee; Yeung, Keith Siu Kay; Yip, Stefanie Wai Ying; Leung, Gilberto Ka Kit
2016-08-01
Google Glass is, in essence, a smartphone in the form of a pair of spectacles. It has a display system, a bone conduction "speaker," video camera, and connectivity via WiFi or Bluetooth technologies. It can also be controlled by voice command. Seizing Google Glass' capabilities as windows of opportunity, surgeons have been the first group of doctors trying to incorporate the technology into their daily practices. Experiences from different groups have demonstrated Google Glass' potential in improving perioperative care, intraoperative communication and documentation, surgical outcome as well as surgical training. On the other hand, the device has technical limitations, notably suboptimal image qualities and a short battery life. Its operational functions also bring forth concerns on the protection of patient privacy. Nonetheless, the technological advances that this device embodies hold promises in surgical innovations. Further studies are required, and surgeons should explore, investigate, and embrace similar technologies with keen and informed anticipation. © The Author(s) 2016.
MgZnO High Voltage Thin Film Transistors on Glass for Inverters in Building Integrated Photovoltaics
Hong, Wen-Chiang; Ku, Chieh-Jen; Li, Rui; Abbaslou, Siamak; Reyes, Pavel; Wang, Szu-Ying; Li, Guangyuan; Lu, Ming; Sheng, Kuang; Lu, Yicheng
2016-01-01
Building integrated photovoltaics (BIPV) have attracted considerable interests because of its aesthetically attractive appearance and overall low cost. In BIPV, system integration on a glass substrate like windows is essential to cover a large area of a building with low cost. However, the conventional high voltage devices in inverters have to be built on the specially selected single crystal substrates, limiting its application for large area electronic systems, such as the BIPV. We demonstrate a Magnesium Zinc Oxide (MZO) based high voltage thin film transistor (HVTFT) built on a transparent glass substrate. The devices are designed with unique ring-type structures and use modulated Mg doping in the channel - gate dielectric interface, resulting in a blocking voltage of over 600 V. In addition to BIPV, the MZO HVTFT based inverter technology also creates new opportunities for emerging self-powered smart glass. PMID:27721484
2013-01-01
The thermal and dielectric anomalies of window-type glasses at low temperatures (T < 1 K) are rather successfully explained by the two-level systems (2LS) standard tunneling model (STM). However, the magnetic effects discovered in the multisilicate glasses in recent times, magnetic effects in the organic glasses, and also some older data from mixed (SiO2)1−x(K2O)x and (SiO2)1−x(Na2O)x glasses indicate the need for a suitable extension of the 2LS-STM. We show that—not only for the magnetic effects, but also for the mixed glasses in the absence of a field—the right extension of the 2LS-STM is provided by the (anomalous) multilevel tunnelling systems (ATS) proposed by one of us for multicomponent amorphous solids. Though a secondary type of TS, different from the standard 2LS, was invoked long ago already, we clarify their physical origin and mathematical description and show that their contribution considerably improves the agreement with the experimental data. In spite of dealing with low-temperature properties, our work impinges on the structure and statistical physics of glasses at all temperatures. PMID:23861652
High Elastic Moduli of a 54Al2O3-46Ta2O5 Glass Fabricated via Containerless Processing
Rosales-Sosa, Gustavo A.; Masuno, Atsunobu; Higo, Yuji; Inoue, Hiroyuki; Yanaba, Yutaka; Mizoguchi, Teruyasu; Umada, Takumi; Okamura, Kohei; Kato, Katsuyoshi; Watanabe, Yasuhiro
2015-01-01
Glasses with high elastic moduli have been in demand for many years because the thickness of such glasses can be reduced while maintaining its strength. Moreover, thinner and lighter glasses are desired for the fabrication of windows in buildings and cars, cover glasses for smart-phones and substrates in Thin-Film Transistor (TFT) displays. In this work, we report a 54Al2O3-46Ta2O5 glass fabricated by aerodynamic levitation which possesses one of the highest elastic moduli and hardness for oxide glasses also displaying excellent optical properties. The glass was colorless and transparent in the visible region, and its refractive index nd was as high as 1.94. The measured Young’s modulus and Vickers hardness were 158.3 GPa and 9.1 GPa, respectively, which are comparable to the previously reported highest values for oxide glasses. Analysis made using 27Al Magic Angle Spinning Nuclear Magnetic Resonance (MAS NMR) spectroscopy revealed the presence of a significantly large fraction of high-coordinated Al in addition to four-coordinated Al in the glass. The high elastic modulus and hardness are attributed to both the large cationic field strength of Ta5+ ions and the large dissociation energies per unit volume of Al2O3 and Ta2O5. PMID:26468639
Optical, Thermal, and Mechanical Characterization of Ga2 Se3 -Added GLS Glass.
Ravagli, Andrea; Craig, Christopher; Alzaidy, Ghada A; Bastock, Paul; Hewak, Daniel W
2017-07-01
Gallium lanthanum sulfide glass (GLS) has been widely studied in the last 40 years for middle-infrared applications. In this work, the results of the substitution of selenium for sulphur in GLS glass are described. The samples are prepared via melt-quench method in an argon-purged atmosphere. A wide range of compositional substitutions are studied to define the glass-forming region of the modified material. The complete substitution of Ga 2 S 3 by Ga 2 Se 3 is achieved by involving new higher quenching rate techniques compared to those containing only sulfides. The samples exhibiting glassy characteristics are further characterized. In particular, the optical and thermal properties of the sample are investigated in order to understand the role of selenium in the formation of the glass. The addition of selenium to GLS glass generally results in a lower glass transition temperature and an extended transmission window. Particularly, the IR edge is found to be extended from about 9 µm for GLS glass to about 15 µm for Se-added GLS glass defined by the 50% transmission point. Furthermore, the addition of selenium does not affect the UV edge dramatically. The role of selenium is hypothesized in the glass formation to explain these changes. © 2017 University of Southampton. Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Antireflection coatings with SiOx-TiO2 multilayer structures
NASA Astrophysics Data System (ADS)
Lu, Jong-Hong; Luo, Jen-Wei; Chuang, Shiou-Ruei; Chen, Bo-Ying
2014-11-01
In this study, we used SiOx-TiO2 multilayer antireflective coatings to achieve optical average transmittances of 94.93 and 98.07% for one-sided and double-sided coatings on a glass substrate, respectively. A SiOx film was employed as the material with a low refractive index and a TiO2 film as the material with a high refractive index. Results showed that when any layer thickness of the SiOx-TiO2 nano-multilayer (NML) structure is much less than the wavelength of visible light, the SiOx-TiO2 thickness ratio can be used to adjust the optical refractive index of the entire NML film. In this study, we produced dense antireflective coatings of three layers (SiOx, TiO2, and SiOx-TiO2 NML/glass substrate) and four layers (SiOx, TiO2, SiOx, and TiO2/glass substrate) with film thicknesses and refractive indices controlled by reactive magnetron sputtering. Thermal treatment at 600 °C in an air atmosphere was also shown to reduce the absorption of visible light, resolving the issue of degraded transparency caused by increasing sputtering speed. The microhardness of the antireflective film was 8.44 GPa, similar to that of the glass substrate. Process window analysis demonstrated the feasibility of the antireflective coating process window from an engineering standpoint. The thickness of the film deviated by less than 10% from the ideal thickness, corresponding to a 98% transmittance range, and the simulation and experimental results were relatively consistent.
DiSalvo, L. H.; Cobet, A. B.
1974-01-01
Ultraviolet light has been investigated as an active energy input for the control of slime film formation on optical surfaces submerged in San Francisco Bay for periods up to 6 weeks. Irradiation of quartz underwater windows was carried out from three positions: (i) exterior to the window, (ii) from directly behind the window, and (iii) from the edge of the window with the ultraviolet (UV) energy refracted through the front of the window. Internally administered irradiation reaching levels of 10 to 30 μW per cm2 measurable at the glass surface was effective in preventing bacterial slime film formation and settlement of metazoan larvae. When administered from the external position, over one order of magnitude more (500 to 600 μW/cm2) UV energy was required to accomplish the same result. Irradiation from the edge position was most promising logistically and was effective in fouling control for 6 weeks. The results provide a preliminary quantitation of the energy requirement for control of the marine microfouling sequence which precedes development of macrofouling communities. Images PMID:16349978
Opto-mechanical design of optical window for aero-optics effect simulation instruments
NASA Astrophysics Data System (ADS)
Wang, Guo-ming; Dong, Dengfeng; Zhou, Weihu; Ming, Xing; Zhang, Yan
2016-10-01
A complete theory is established for opto-mechanical systems design of the window in this paper, which can make the design more rigorous .There are three steps about the design. First, the universal model of aerodynamic environment is established based on the theory of Computational Fluid Dynamics, and the pneumatic pressure distribution and temperature data of optical window surface is obtained when aircraft flies in 5-30km altitude, 0.5-3Ma speed and 0-30°angle of attack. The temperature and pressure distribution values for the maximum constraint is selected as the initial value of external conditions on the optical window surface. Then, the optical window and mechanical structure are designed, which is also divided into two parts: First, mechanical structure which meet requirements of the security and tightness is designed. Finally, rigorous analysis and evaluation are given about the structure of optics and mechanics we have designed. There are two parts to be analyzed. First, the Fluid-Solid-Heat Coupled Model is given based on finite element analysis. And the deformation of the glass and structure can be obtained by the model, which can assess the feasibility of the designed optical windows and ancillary structure; Second, the new optical surface is fitted by Zernike polynomials according to the deformation of the surface of the optical window, which can evaluate imaging quality impact of spectral camera by the deformation of window.
Comesaña, R; Lusquiños, F; Del Val, J; López-Álvarez, M; Quintero, F; Riveiro, A; Boutinguiza, M; de Carlos, A; Jones, J R; Hill, R G; Pou, J
2011-09-01
Three-dimensional bioactive glass implants were produced by rapid prototyping based on laser cladding without using moulds. CO(2) laser radiation was employed to melt 45S5 and S520 bioactive glass particles and to deposit the material layer by layer following a desired geometry. Controlled thermal input and cooling rate by fine tuning of the processing parameters allowed the production of crack-free fully dense implants. Microstructural characterization revealed chemical composition stability, but crystallization during processing was extensive when 45S5 bioactive glass was used. Improved results were obtained using the S520 bioactive glass, which showed limited surface crystallization due to an expanded sintering window (the difference between the glass transition temperature and crystallization onset temperature). Ion release from the S520 implants in Tris buffer was similar to that of amorphous 45S5 bioactive glass prepared by casting in graphite moulds. Laser processed S520 scaffolds were not cytotoxic in vitro when osteoblast-like MC3T3-E1 cells were cultured with the dissolution products of the glasses; and the MC3T3-E1 cells attached and spread well when cultured on the surface of the materials. Copyright © 2011 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Expert Meeting Report. Windows Options for New and Existing Homes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ojczyck, C.; Carmody, J.; Haglund, K.
2013-05-01
The NorthernSTAR Building America Partnership held an Expert Meeting on Windows Options for New and Existing Homes on November 14, 2011, at the Nolte Building on the campus of the University of Minnesota in Minneapolis, MN. Featured speakers included John Carmody and Pat Huelman of the University of Minnesota, Charlie Curcija of Lawrence Berkeley National Laboratory, Jim Larson of Cardinal Glass Industries, Peter Yost of Building Green, Peter Baker of Building Science Corporation, and Theresa Weston of Du Pont Innovations. Audience participation was actively encouraged during each presentation to uncover need and promote dialog among researchers and industry professionals.
Expert Meeting Report: Windows Options for New and Existing Homes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ojczyk, C.; Carmody, J.; Haglund, K.
2013-05-01
The NorthernSTAR Building America Partnership held an Expert Meeting on Windows Options for New and Existing Homes on November 14, 2011 at the Nolte Building on the campus of the University of Minnesota in Minneapolis, MN. Featured speakers included John Carmody and Pat Huelman of the University of Minnesota, Charlie Curcija of Lawrence Berkeley National Laboratory, Jim Larson of Cardinal Glass Industries, Peter Yost of Building Green, Peter Baker of Building Science Corporation, and Theresa Weston of Du Pont Innovations. Audience participation was actively encouraged during each presentation to uncover need and promote dialog among researchers and industry professionals.
Code of Federal Regulations, 2014 CFR
2014-07-01
... metal and not have a compartment exceeding ten (10) feet in length. Glass or polycarbonate materials... polycarbonate windows and lenses shall not exceed 115 °C (240 °F), in normal operation. Other non-metallic... metallic conduit are not permitted. (H) Unused lead entrances shall be closed with a metal plug that is...
Code of Federal Regulations, 2010 CFR
2010-07-01
... metal and not have a compartment exceeding ten (10) feet in length. Glass or polycarbonate materials... polycarbonate windows and lenses shall not exceed 115 °C (240 °F), in normal operation. Other non-metallic... metallic conduit are not permitted. (H) Unused lead entrances shall be closed with a metal plug that is...
Code of Federal Regulations, 2011 CFR
2011-07-01
... metal and not have a compartment exceeding ten (10) feet in length. Glass or polycarbonate materials... polycarbonate windows and lenses shall not exceed 115 °C (240 °F), in normal operation. Other non-metallic... metallic conduit are not permitted. (H) Unused lead entrances shall be closed with a metal plug that is...
Code of Federal Regulations, 2013 CFR
2013-07-01
... metal and not have a compartment exceeding ten (10) feet in length. Glass or polycarbonate materials... polycarbonate windows and lenses shall not exceed 115 °C (240 °F), in normal operation. Other non-metallic... metallic conduit are not permitted. (H) Unused lead entrances shall be closed with a metal plug that is...
Code of Federal Regulations, 2012 CFR
2012-07-01
... metal and not have a compartment exceeding ten (10) feet in length. Glass or polycarbonate materials... polycarbonate windows and lenses shall not exceed 115 °C (240 °F), in normal operation. Other non-metallic... metallic conduit are not permitted. (H) Unused lead entrances shall be closed with a metal plug that is...
ERIC Educational Resources Information Center
Fradella, Laura
2005-01-01
In this article, the author describes murals as visual storytelling. In times before most people could read or write, pictures were used to tell stories and to teach people. Visual storytelling is most often seen in the form of drawing, painting, collage, printmaking, quilts, stained-glass windows, and murals. The concept of visual storytelling…
Expermental Investigation of Supercavitating Motion of Bodies
2001-02-01
information is ensured by studying of the model motion kinematics and photo- cinematography of its flow pictures. 4-9 Synchronization of work of the...on the depth 0.5 m along the flume axis. Photo- cinematography of the flow pictures was realized through the glass windows in walls of the flume and
False Recognition in DRM Lists with Low Association: A Normative Study
ERIC Educational Resources Information Center
Cadavid, Sara; Beato, María Soledad
2017-01-01
A wide array of studies have explored memory distortions with the Deese/Roediger-McDermott (DRM) paradigm, where participants study lists of words (e.g., "door," "glass," "pane," "shade," "ledge," etc.) that are associated to another nonpresented critical word (e.g., WINDOW). On a subsequent memory…
28. INTERIOR OF BATHROOM SHOWING OPEN DOORWAY TO BEDROOM NO.3 ...
28. INTERIOR OF BATHROOM SHOWING OPEN DOORWAY TO BEDROOM NO.3 AT PHOTO RIGHT, ALUMINUM-FRAMED SLIDING-GLASS WINDOW ABOVE BATHTUB AT PHOTO CENTER, AND BUILT-IN CABINETS AT PHOTO LEFT. VIEW TO NORTHWEST. - Bishop Creek Hydroelectric System, Plant 4, Worker Cottage, Bishop Creek, Bishop, Inyo County, CA
Wide Angle, Color, Holographic Infinity Optics Display. Final Report.
ERIC Educational Resources Information Center
Magarinos, Jose R.; Coleman, Daniel J.
The project described demonstrated not only the feasibility of producing a holographic compound spherical beamspliter mirror with full color response, but the performance and color capabilities of such a beamsplitter when incorporated into a Pancake Window Display system as a replacement for the classical glass spherical beamsplitter. This…
Nondestructive Redox Quantification Reveals Glassmaking of Rare French Gothic Stained Glasses
2017-01-01
The sophisticated colors of medieval glasses arise from their transition metal (TM) impurities and capture information about ancient glassmaking techniques. Beyond the glass chemical composition, the TM redox is also a key factor in the glass color, but its quantification without any sampling is a challenge. We report a combination of nondestructive and noninvasive quantitative analyses of the chemical composition by particle-induced X-ray emission–particle-induced γ-ray emission mappings and of the color and TM element speciation by optical absorption spectroscopy performed on a red-blue-purple striped glass from the stained glass windows of the Sainte-Chapelle in Paris, France, during its restoration. These particular glass pieces must have been produced as a single shot, which guarantees that the chemical variations reflect the recipe in use in a specific medieval workshop. The quantitative elemental mappings demonstrate that the colored glass parts are derived from the same base glass, to which TMs were deliberately added. Optical absorption spectra reveal the origin of the colors: blue from CoII, red from copper nanoparticles, and purple from MnIII. Furthermore, the derivation of the quantitative redox state of each TM in each color shows that the contents of Fe, Cu, and Mn were adjusted to ensure a reducing glass matrix in the red stripe or a metastable overoxidized glass in the purple stripe. We infer that the agility of the medieval glassmaker allowed him to master the redox kinetics in the glass by rapid shaping and cooling to obtain a snapshot of the thermodynamically unstable glass colors. PMID:28494150
Apparatus for testing high pressure injector elements
NASA Technical Reports Server (NTRS)
Myers, William Neill (Inventor); Scott, Ewell M. (Inventor); Forbes, John C. (Inventor); Shadoan, Michael D. (Inventor)
1995-01-01
An apparatus for testing and evaluating the spray pattern of high pressure fuel injector elements for use in supplying fuel to combustion engines is presented. Prior art fuel injector elements were normally tested by use of low pressure apparatuses which did not provide a purge to prevent mist from obscuring the injector element or to prevent frosting of the view windows; could utilize only one fluid during each test; and had their viewing ports positioned one hundred eighty (180 deg) apart, thus preventing optimum use of laser diagnostics. The high pressure fluid injector test apparatus includes an upper hub, an upper weldment or housing, a first clamp and stud/nut assembly for securing the upper hub to the upper weldment, a standoff assembly within the upper weldment, a pair of window housings having view glasses within the upper weldment, an injector block assembly and purge plate within the upper weldment for holding an injector element to be tested and evaluated, a lower weldment or housing, a second clamp and stud/nut assembly for securing the lower weldment to the upper hub, a third clamp and stud/nut assembly for securing the lower hub to the lower weldment, mechanisms for introducing fluid under high pressure for testing an injector element, and mechanisms for purging the apparatus to prevent frosting of view glasses within the window housings and to permit unobstructed viewing of the injector element.
Apparatus for testing high pressure injector elements
NASA Technical Reports Server (NTRS)
Myers, William Neill (Inventor); Scott, Ewell M. (Inventor); Forbes, John C. (Inventor); Shadoan, Michael D. (Inventor)
1993-01-01
An apparatus for testing and evaluating the spray pattern of high pressure fuel injector elements for use in supplying fuel to combustion engines is presented. Prior art fuel injector elements were normally tested by use of low pressure apparatuses which did not provide a purge to prevent mist from obscuring the injector element or to prevent frosting of the view windows; could utilize only one fluid during each test; and had their viewing ports positioned one hundred eighty (180 deg) apart, thus preventing optimum use of laser diagnostics. The high pressure fluid injector test apparatus includes an upper hub, an upper weldment or housing, a first clamp and stud/nut assembly for securing the upper hub to the upper weldment, a standoff assembly within the upper weldment, a pair of window housings having view glasses within the upper weldment, an injector block assembly and purge plate within the upper weldment for holding an injector element to be tested and evaluated, a lower weldment or housing, a second clamp and stud/nut assembly for securing the lower weldment to the upper weldment, a lower hub, a third clamp and stud/nut assembly for securing the lower hub to the lower weldment, mechanisms for introducing fluid under high pressure for testing an injector element, and mechanisms for purging the apparatus to prevent frosting of view glasses within the window housings and to permit unobstructed viewing of the injector element.
Aging, memory, and nonhierarchical energy landscape of spin jam
NASA Astrophysics Data System (ADS)
Samarakoon, Anjana; Sato, Taku J.; Chen, Tianran; Chern, Gai-Wei; Yang, Junjie; Klich, Israel; Sinclair, Ryan; Zhou, Haidong; Lee, Seung-Hun
2016-10-01
The notion of complex energy landscape underpins the intriguing dynamical behaviors in many complex systems ranging from polymers, to brain activity, to social networks and glass transitions. The spin glass state found in dilute magnetic alloys has been an exceptionally convenient laboratory frame for studying complex dynamics resulting from a hierarchical energy landscape with rugged funnels. Here, we show, by a bulk susceptibility and Monte Carlo simulation study, that densely populated frustrated magnets in a spin jam state exhibit much weaker memory effects than spin glasses, and the characteristic properties can be reproduced by a nonhierarchical landscape with a wide and nearly flat but rough bottom. Our results illustrate that the memory effects can be used to probe different slow dynamics of glassy materials, hence opening a window to explore their distinct energy landscapes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Peeler, D; Tommy Edwards, T; Kevin Fox, K
The Savannah River National Laboratory (SRNL) has developed, and continues to enhance, its integrated capability to evaluate the impact of proposed sludge preparation plans on the Defense Waste Processing Facility's (DWPF's) operation. One of the components of this integrated capability focuses on frit development which identifies a viable frit or frits for each sludge option being contemplated for DWPF processing. A frit is considered viable if its composition allows for economic fabrication and if, when it is combined with the sludge option under consideration, the DWPF property/composition models (the models of DWPF's Product Composition Control System (PCCS)) indicate that themore » combination has the potential for an operating window (a waste loading (WL) interval over which the sludge/frit glass system satisfies processability and durability constraints) that would allow DWPF to meet its goals for waste loading and canister production. This report documents the results of SRNL's efforts to identify candidate frit compositions and corresponding predicted operating windows (defined in terms of WL intervals) for the February 2007 compositional projection of Sludge Batch 4 (SB4) developed by the Liquid Waste Organization (LWO). The nominal compositional projection was used to assess projected operating windows (in terms of a waste loading interval over which all predicted properties were classified as acceptable) for various frits, evaluate the applicability of the 0.6 wt% SO{sub 4}{sup =} PCCS limit to the glass systems of interest, and determine the impact (or lack thereof) to the previous SB4 variability studies. It should be mentioned that the information from this report will be coupled with assessments of melt rate to recommend a frit for SB4 processing. The results of this paper study suggest that candidate frits are available to process the nominal SB4 composition over attractive waste loadings of interest to DWPF. Specifically, two primary candidate frits for SB4 processing, Frit 510 and Frit 418, have projected operating windows that should allow for successful processing at DWPF. While Frit 418 has been utilized at DWPF, Frit 510 is a higher B{sub 2}O{sub 3} based frit which could lead to improvements in melt rate. These frits provide relatively large operating windows and demonstrate robustness to possible sludge compositional variation while avoiding potential nepheline formation issues. In addition, assessments of SO{sub 4}{sup =} solubility indicate that the 0.6 wt% SO{sub 4}{sup =} limit in PCCS is applicable for the Frit 418 and the Frit 510 based SB4 glass systems.« less
Absorption and emission spectra of Ga1.7Ge25As8.3S65 glasses doped with rare-earth ions
NASA Astrophysics Data System (ADS)
Lupan, E. V.; Iaseniuc, O. V.; Ciornea, V. I.; Iovu, M. S.
2016-12-01
Excellent optical properties of chalcogenide glasses make them interesting for optoelectronic devices in the visible (VIS) and, especially, in the near- and mid-infrared (NIR and MIR) spectral regions. The rare-earth (RE3+) doped Ga17Ge25As8.3S65 glasses were prepared in evacuated ( 10-5 Pa) silica-glass ampoules which were heated up to 1000 °C at 2-4°C min-1, and then the melt was quenched. The absorption and photoluminescence spectra in the visible and near IR regions for GA1.7Ge25As8.3S65 doped with rare-earth RE+) ions (Sm3+, Nd3+, Pr3+, Dy3+ and co-doped with Ho3++Dy3+) are investigated. The energy transfer of the absorbed light in the broad band Urbach region of the host glass to the RE3+ ions is suggested for increasing the emission efficiency. The investigated Ga17Ge25As8.3S65 glasses doped with RE3+ ions are promising materials for optical amplifiers operating at 1300 and 1500 nm telecommunication windows.
False Windows - Yesterday and Today
NASA Astrophysics Data System (ADS)
Niewitecki, Stefan
2017-10-01
The article is concerned with a very interesting aspect of architectural design, namely, a contradiction between the building functions and the necessity of giving the building a desired external appearance. One of the possibilities of reconciling this contradiction is using pseudo windows that are visible on the elevation and generally have the form of a black painted recess accompanied by frames and sashes and often single glazing. Of course, there are no windows or openings in the corresponding places in the walls inside the building. The article discusses the differences between false windows and blind widows (German: blende), also known as blank windows, which, in fact, are shallow recesses in the wall having the external appearance of an arcade or a window and which had already been used in Gothic architecture mostly for aesthetic reasons and sometimes to reduce the load of the wall. Moreover, the article describes various false windows that appeared later than blind windows because they did not appear until the 17th century. Contemporary false windows are also discussed and it is shown that contrary to the common belief they are widely used. In his research, the author not only used the Internet data but also carried out his own in situ exploration. The false windows constitute very interesting albeit rare elements of the architectural design of buildings. They have been used successfully for a few hundred years. It might seem that they should have been discarded by now but this has not happened. Quite contrary, since the second half of the 20th century there has been a rapid development of glass curtain walls that serve a similar function in contemporary buildings as the false windows once did, only in a more extensive way.
30 CFR 77.1605 - Loading and haulage equipment; installations.
Code of Federal Regulations, 2010 CFR
2010-07-01
...) Mobile equipment shall be provided with audible warning devices. Lights shall be provided on both ends... windows shall be of safety glass or equivalent, in good condition and shall be kept clean. (b) Mobile... passage of wheels. (h) Rocker-bottom or bottom-dump cars shall be equipped with positive locking devices...
Teaching Fractions and Decimals: Fun with Picture Grids.
ERIC Educational Resources Information Center
Stix, Andi
In these two companion papers, a learning activity is introduced that teaches students how mathematics works through the visual aid of picture grids. The picture grids are composed of 60 different acrylic stained-glass window overlays. Each fractional part is represented by a different color: fifths are green, quarters are yellow, etc. The square…
10 CFR 429.53 - Walk-in coolers and walk-in freezers.
Code of Federal Regulations, 2014 CFR
2014-01-01
... insulation, and a declaration that the manufacturer has incorporated the applicable design requirements. In... windows (e.g., double-pane with heat reflective treatment, triple-pane glass with gas fill), and the power...-value of the insulation (except for glazed portions of the doors or structural members) (iii) For WICF...
10 CFR 429.53 - Walk-in coolers and walk-in freezers.
Code of Federal Regulations, 2013 CFR
2013-01-01
... insulation, and a declaration that the manufacturer has incorporated the applicable design requirements. In... windows (e.g., double-pane with heat reflective treatment, triple-pane glass with gas fill), and the power...-value of the insulation (except for glazed portions of the doors or structural members) (iii) For WICF...
10 CFR 429.53 - Walk-in coolers and walk-in freezers.
Code of Federal Regulations, 2012 CFR
2012-01-01
... insulation, and a declaration that the manufacturer has incorporated the applicable design requirements. In... windows (e.g., double-pane with heat reflective treatment, triple-pane glass with gas fill), and the power...-value of the insulation (except for glazed portions of the doors or structural members) (iii) For WICF...
24 CFR 3280.403 - Standard for windows and sliding glass doors used in manufactured homes.
Code of Federal Regulations, 2013 CFR
2013-04-01
... Manufactured Housing, except the exterior and interior pressure tests must be conducted at the design wind... the products, an independent quality assurance agency shall conduct pre-production specimen tests in... meet ANSI Z97.1-1984, “Safety Performance Specifications and Methods of Test for Safety Glazing...
24 CFR 3280.403 - Standard for windows and sliding glass doors used in manufactured homes.
Code of Federal Regulations, 2011 CFR
2011-04-01
... Manufactured Housing, except the exterior and interior pressure tests must be conducted at the design wind... the products, an independent quality assurance agency shall conduct pre-production specimen tests in... meet ANSI Z97.1-1984, “Safety Performance Specifications and Methods of Test for Safety Glazing...
24 CFR 3280.403 - Standard for windows and sliding glass doors used in manufactured homes.
Code of Federal Regulations, 2010 CFR
2010-04-01
... Manufactured Housing, except the exterior and interior pressure tests must be conducted at the design wind... the products, an independent quality assurance agency shall conduct pre-production specimen tests in... meet ANSI Z97.1-1984, “Safety Performance Specifications and Methods of Test for Safety Glazing...
24 CFR 3280.403 - Standard for windows and sliding glass doors used in manufactured homes.
Code of Federal Regulations, 2012 CFR
2012-04-01
... Manufactured Housing, except the exterior and interior pressure tests must be conducted at the design wind... the products, an independent quality assurance agency shall conduct pre-production specimen tests in... meet ANSI Z97.1-1984, “Safety Performance Specifications and Methods of Test for Safety Glazing...
Energy Efficient Window Coatings that Please the Eye - Continuum Magazine
voltage polarity reverses the lithium-ion flow, decreasing the glass tint and allowing more light to be transparent contact layers bookending a counterelectrode layer, ion-conducting layer, and electrochromic layer . Low voltage applied across the stacked layers causes lithium ions to migrate out of the
Multiple capillary biochemical analyzer with barrier member
Dovichi, N.J.; Zhang, J.Z.
1996-10-22
A multiple capillary biochemical analyzer is disclosed for sequencing DNA and performing other analyses, in which a set of capillaries extends from wells in a microtiter plate into a cuvette. In the cuvette the capillaries are held on fixed closely spaced centers by passing through a sandwich construction having a pair of metal shims which squeeze between them a rubber gasket, forming a leak proof seal for an interior chamber in which the capillary ends are positioned. Sheath fluid enters the chamber and entrains filament sample streams from the capillaries. The filament sample streams, and sheath fluid, flow through aligned holes in a barrier member spaced close to the capillary ends, into a collection chamber having a lower glass window. The filament streams are illuminated above the barrier member by a laser, causing them to fluoresce. The fluorescence is viewed end-on by a CCD camera chip located below the glass window. The arrangement ensures an equal optical path length from all fluorescing spots to the CCD chip and also blocks scattered fluorescence illumination, providing more uniform results and an improved signal-to-noise ratio. 12 figs.
Multiple capillary biochemical analyzer with barrier member
Dovichi, Norman J.; Zhang, Jian Z.
1996-01-01
A multiple capillary biochemical analyzer for sequencing DNA and performing other analyses, in which a set of capillaries extends from wells in a microtiter plate into a cuvette. In the cuvette the capillaries are held on fixed closely spaced centers by passing through a sandwich construction having a pair of metal shims which squeeze between them a rubber gasket, forming a leak proof seal for an interior chamber in which the capillary ends are positioned. Sheath fluid enters the chamber and entrains filament sample streams from the capillaries. The filament sample streams, and sheath fluid, flow through aligned holes in a barrier member spaced close to the capillary ends, into a collection chamber having a lower glass window. The filament streams are illuminated above the barrier member by a laser, causing them to fluoresce. The fluorescence is viewed end-on by a CCD camera chip located below the glass window. The arrangement ensures an equal optical path length from all fluorescing spots to the CCD chip and also blocks scattered fluorescence illumination, providing more uniform results and an improved signal to noise ratio.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Eleanor S.; Fernandes, Luis L.; Goudey, Chad Howdy
Chromogenic glazing materials are emerging technologies that tint reversibly from a clear to dark tinted state either passively in response to environmental conditions or actively in response to a command from a switch or building automation system. Switchable coatings on glass manage solar radiation and visible light while enabling unobstructed views to the outdoors. Building energy simulations estimate that actively controlled, near-term chromogenic glazings can reduce perimeter zone heating, ventilation, and airconditioning (HVAC) and lighting energy use by 10-20% and reduce peak electricity demand by 20-30%, achieving energy use levels that are lower than an opaque, insulated wall. This projectmore » demonstrates the use of two types of chromogenic windows: thermochromic and electrochromic windows. By 2013, these windows will begin production in the U.S. by multiple vendors at high-volume manufacturing plants, enabling lower cost and larger area window products to be specified. Both technologies are in the late R&D stage of development, where cost reductions and performance improvements are underway. Electrochromic windows have been installed in numerous buildings over the past four years, but monitored energy-efficiency performance has been independently evaluated in very limited applications. Thermochromic windows have been installed in one other building with an independent evaluation, but results have not yet been made public.« less
NASA Technical Reports Server (NTRS)
Quijada, Manuel A.; Travinsky, Anton; Vorobiev, Dmitry; Ninkov, Zoran; Raisanen, Alan; Robberto, Massimo; Heap, Sara
2016-01-01
Digital micromirror devices (DMDs) are commercial micro-electromechanical systems, consisting of millions of mirrors which can be individually addressed and tilted into one of two states (+/-12deg). These devices were developed to create binary patterns in video projectors, in the visible range. Commercially available DMDs are hermetically sealed and extremely reliable. Recently, DMDs have been identified as an alternative to microshutter arrays for space-based multi-object spectrometers (MOS). Specifically, the MOS at the heart of the proposed Galactic Evolution Spectroscopic Explorer (GESE) uses the DMD as a reprogrammable slit mask. Unfortunately, the protective borosilicate windows limit the use of DMDs in the UV and IR regimes, where the glass has insufficient throughput. In this work, we present our efforts to replace standard DMD windows with custom windows made from UV-grade fused silica, low-absorption optical sapphire (LAOS) and magnesium fluoride (MgF2). We present transmission measurements of the antireflection coated windows and the reflectance of bare (window removed) DMDs. Furthermore, we investigated the long-term stability of the DMD reflectance and experiments for coating DMD active area with a layer of pure aluminum (Al) to boost reflectance performance in the UV spectral range (200-400 nm).
NASA Astrophysics Data System (ADS)
Quijada, Manuel A.; Travinsky, Anton; Vorobiev, Dmitry; Ninkov, Zoran; Raisanen, Alan; Robberto, Massimo; Heap, Sara
2016-07-01
Digital micromirror devices (DMDs) are commercial micro-electromechanical systems, consisting of millions of mirrors which can be individually addressed and tilted into one of two states (+/-12°). These devices were developed to create binary patterns in video projectors, in the visible range. Commercially available DMDs are hermetically sealed and extremely reliable. Recently, DMDs have been identified as an alternative to microshutter arrays for space-based multi-object spectrometers (MOS). Specifically, the MOS at the heart of the proposed Galactic Evolution Spectroscopic Explorer (GESE) uses the DMD as a reprogrammable slit mask. Unfortunately, the protective borosilicate windows limit the use of DMDs in the UV and IR regimes, where the glass has insufficient throughput. In this work, we present our efforts to replace standard DMD windows with custom windows made from UV-grade fused silica, low-absorption optical sapphire (LAOS) and magnesium fluoride (MgF2). We present transmission measurements of the antireflection coated windows and the reflectance of bare (window removed) DMDs. Furthermore, we investigated the long-term stability of the DMD reflectance and experiments for coating DMD active area with a layer of pure aluminum (Al) to boost reflectance performance in the UV spectral range (200-400 nm).
Low-Emissivity, Energy-Control, Retrofit Window Film: Final Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Winckler, Lisa
Solutia Performance Films, utilizing funding from the U.S. Department of Energy's Buildings Technologies Program, completed research to develop, validate, and commercialize a range of cost-effective, low-emissivity energy-control retrofit window films with significantly improved emissivity over current technology. These films, sold under the EnerLogic® trade name, offer the energy-saving properties of modern low-e windows, with several advantages over replacement windows, such as: lower initial installation cost, a significantly lower product carbon footprint, and an ability to provide a much faster return on investment. EnerLogic® window films also offer significantly greater energy savings than previously available with window films with similar visiblemore » light transmissions. EnerLogic® window films offer these energy-saving advantages over other window films due to its ability to offer both summer cooling and winter heating savings. Unlike most window films, that produce savings only during the cooling season, EnerLogic® window film is an all-season, low-emissivity (low-e) film that produces both cooling and heating season savings. This paper will present technical information on the development hurdles as well as details regarding the following claims being made about EnerLogic® window film, which can be found at www.EnerLogicfilm.com: 1. Other window film technologies save energy. EnerLogic® window film's patent-pending coating delivers excellent energy efficiency in every season, so no other film can match its annual dollar or energy consumption savings. 2. EnerLogic® window film is a low-cost, high-return technology that compares favorably to other popular energy-saving measures both in terms of energy efficiency and cost savings. In fact, EnerLogic® window film typically outperforms most of the alternatives in terms of simple payback. 3. EnerLogic® window film provides unparalleled glass insulating capabilities for window film products. With its patent-pending low-e technology, EnerLogic® window film has the best insulating performance of any film product available. The insulating power of EnerLogic® window film gives single-pane windows the annual insulating performance of double-pane windows - and gives double-pane windows the annual insulating performance of triple-pane windows.« less
Aging, memory, and nonhierarchical energy landscape of spin jam
Samarakoon, Anjana; Sato, Taku J.; Chen, Tianran; Chern, Gai-Wei; Yang, Junjie; Klich, Israel; Sinclair, Ryan; Zhou, Haidong; Lee, Seung-Hun
2016-01-01
The notion of complex energy landscape underpins the intriguing dynamical behaviors in many complex systems ranging from polymers, to brain activity, to social networks and glass transitions. The spin glass state found in dilute magnetic alloys has been an exceptionally convenient laboratory frame for studying complex dynamics resulting from a hierarchical energy landscape with rugged funnels. Here, we show, by a bulk susceptibility and Monte Carlo simulation study, that densely populated frustrated magnets in a spin jam state exhibit much weaker memory effects than spin glasses, and the characteristic properties can be reproduced by a nonhierarchical landscape with a wide and nearly flat but rough bottom. Our results illustrate that the memory effects can be used to probe different slow dynamics of glassy materials, hence opening a window to explore their distinct energy landscapes. PMID:27698141
Low-E Storm Windows Gain Acceptance as a Home Weatherization Measure
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gilbride, Theresa L.; Cort, Katherine A.
This article for Home Energy Magazine describes work by the U.S. Department of Energy to develop low-emissivity storm windows as an energy efficiency-retrofit option for existing homes. The article describes the low-emissivity invisible silver metal coatings on the glass, which reflect heat back into the home in winter or back outside in summer and the benefits of low-e storm windows including insulation, air sealing, noise blocking, protection of antique windows, etc. The article also describes Pacific Northwest National Laboratory's efforts on behalf of DOE to overcome market barriers to adoption of the technology, including performance validation studies in the PNNLmore » Lab Homes, cost effectiveness analysis, production of reports, brochures, how-to guides on low-e storm window installation for the Building America Solution Center, and a video posted on YouTube. PNNL's efforts were reviewed by the Pacific Northwest Regional Technical Forum (RTF), which serves as the advisory board to the Pacific Northwest Electric Power Planning Council and Bonneville Power Administration. In late July 2015, the RTF approved the low-e storm window measure’s savings and specifications, a critical step in integrating low-e storm windows into energy-efficiency planning and utility weatherization and incentive programs. PNNL estimates that more than 90 million homes in the United States with single-pane or low-performing double-pane windows would benefit from the technology. Low-e storm windows are suitable not only for private residences but also for small commercial buildings, historic properties, and facilities that house residents, such as nursing homes, dormitories, and in-patient facilities. To further assist in the market transformation of low-e storm windows and other high-efficiency window attachments, DOE helped found the window Attachment Energy Rating Council (AERC) in 2015. AERC is an independent, public interest, non-profit organization whose mission is to rate, label, and certify the performance of window attachments.« less
Using Spectroscopy to Infer the Eruption Style and Volatile History of Volcanic Tephras
NASA Astrophysics Data System (ADS)
McBride, M. J.; Horgan, B. H. N.; Rowe, M. C.; Wall, K. T.; Oxley, B. M.
2017-12-01
The interaction between volatiles and magma strongly influences volcanic eruption styles, and results in an increase in the glass component of volcanic tephra. On Earth, both phreatomagmatic and magmatic explosive eruptions create glassy tephras. Phreatomagmatic eruptions form abundant glass by quickly quenching lava through interaction with meteoric water while magmatic eruptions create less glass through slower cooling within larger pyroclasts or eruption columns. Wall et al. (2014) used X-ray diffraction (XRD) of diverse tephra samples to show that glass content correlates with eruption style, as magmatic samples contain less glass than phreatomagmatic samples. While use of XRD is limited to Earth and the Curiosity rover on Mars, orbital spectroscopy is much a more common technique in the exploration of terrestrial bodies. In this study, we evaluate whether or not spectroscopy can be used to infer eruption style and thus volatile history. Visible/near-infrared (VNIR) and thermal-infrared (TIR) spectra were collected of the Wall et al. (2014) tephra samples, and were analyzed for trends related to glass content and thus eruption style. VNIR spectra can detect glass at high abundances as well as hydrothermal alteration minerals produced during interactions with meteoric water. Using TIR, glass abundances can be derived by deconvolving the spectra with a standard spectral library; however, due to the non-unique spectral shape of glass, intermediate to high glass abundances in tephras are difficult to differentiate using TIR alone. Synthetic mixtures of glass and crystalline minerals verify these results. Therefore, the most effective method for determining glass abundance and thus eruption style from volcanic deposits is a combination of VNIR and TIR spectral analysis. Using standard planetary remote sensing instrumentation to infer eruption styles will provide a new window into the volcanic and volatile histories of terrestrial bodies.
Simulating the energy performance of holographic glazings
NASA Astrophysics Data System (ADS)
Papamichael, K.; Beltran, L.; Furler, Reto; Lee, E. S.; Selkowitz, Steven E.; Rubin, Michael
1994-09-01
The light diffraction properties of holographic diffractive structures present an opportunity to improve the daylight performance in side-lit office spaces by redirecting and reflecting sunlight off the ceiling, providing adequate daylight illumination up to 30 ft (9.14 m) from the window wall. Prior studies of prototypical holographic glazings, installed above conventional `view' windows, have shown increased daylight levels over a deeper perimeter area than clear glass, for selected sun positions. In this study, we report on the simulation of the energy performance of prototypical holographic glazings assuming a commercial office building in the inland Los Angeles climate. The simulation of the energy performance involved determination of both luminous and thermal performance. Since the optical complexity of holographic glazings prevented the use of conventional algorithms for the simulation of their luminous performance, we used a newly developed method that combines experimentally determined directional workplane illuminance coefficients with computer-based analytical routines to determine a comprehensive set of daylight factors for many sun positions. These daylight factors were then used within the DOE-2.1D energy simulation program to determine hourly daylight and energy performance over the course of an entire year for four window orientations. Since the prototypical holographic diffractive structures considered in this study were applied on single pane clear glass, we also simulated the performance of hypothetical glazings, assuming the daylight performance of the prototype holographic glazings and the thermal performance of double-pane and low-e glazings. Finally, we addressed various design and implementation issues towards potential performance improvement.
Apollo 14 crewmembers sealed inside a Mobile Quarantine Facility
NASA Technical Reports Server (NTRS)
1971-01-01
Separated by aluminum and glass of their Mobile Quarantine Facility (MQF), the Apollo 14 crewmen visit with their families and friends upon arriving at Ellington Air Force Base in the early morning hours of February 12, 1971. Looking through the MQF window are Astronats Alan B Shepard Jr. (left); Stuart A Roosa (right); and Edgar D. Mitchell.
Construction-Paper Puzzle Masterpieces
ERIC Educational Resources Information Center
Vance, Shelly
2010-01-01
Creating an appreciation of art history in her junior-high students has always been one of the author's greatest challenges as an art teacher. In this article, the author describes how her eighth-grade students re-created a famous work of art--piece by piece, like a puzzle or a stained-glass window--out of construction paper. (Contains 1 resource.)
Federal Register 2010, 2011, 2012, 2013, 2014
2012-02-14
..., glass windows (uncoated or anti-reflection coated, but with no curvature), lenses with mounts where such... requirements must I meet if I use a substitute opacity monitor? In the event that your certified opacity... the above in the maintenance log or in other appropriate permanently maintained records. 10.7 When do...
4. EXTERIOR OF SOUTH END OF BUILDING 104 SHOWING 1LIGHT ...
4. EXTERIOR OF SOUTH END OF BUILDING 104 SHOWING 1-LIGHT SIDE EXIT DOOR AND ORIGINAL WOOD-FRAMED SLIDING GLASS KITCHEN WINDOWS AT PHOTO CENTER, AND TALL RUSTIC STYLE CHIMNEY WITH GABLE FRAME ON BACK WALL OF HOUSE. VIEW TO NORTHEAST. - Rush Creek Hydroelectric System, Worker Cottage, Rush Creek, June Lake, Mono County, CA
2004-01-01
items are too long or bulky to be stored in the limited number of containers, trailers, or flatbeds that are used to deploy most stocks. • Demand pattern...COVER FRAME; WINDOW; VEHICULAR GLASS LAMINATED FLA GRILLE; RADIATOR; VEH GRILLE; VENTILATION HOOD ASSEMBLY HOOD ENGINE COMPART PAN; DRIP 89 APPENDIX D DCB
Jorna, Siebe; Siebert, Larry D.; Brueckner, Keith A.
1976-11-09
An aperture attenuator for use with high power lasers which includes glass windows shaped and assembled to form an annulus chamber which is filled with a dye solution. The annulus chamber is shaped such that the section in alignment with the axis of the incident beam follows a curve which is represented by the equation y = (r - r.sub.o).sup.n.
Infrared glass fiber cables for CO laser medical applications
NASA Astrophysics Data System (ADS)
Arai, Tsunenori; Mizuno, Kyoichi; Sensaki, Koji; Kikuchi, Makoto; Watanabe, Tamishige; Utsumi, Atsushi; Takeuchi, Kiyoshi; Akai, Yoshiro
1993-05-01
We developed the medical fiber cables which were designed for CO laser therapy, i.e., angioplasty and endoscopic therapy. As-S chalcogenide glass fibers were used for CO laser delivery. A 230 micrometers core-diameter fiber was used for the angioplasty laser cable. The outer diameter of this cable was 600 micrometers . The total length and insertion length of the angioplasty laser cable were 2.5 m and 1.0 m, respectively. Typically, 2.0 W of fiber output was used in the animal experiment in vivo for the ablation of the model plaque which consisted of human atheromatous aorta wall. The transmission of the angioplasty laser cable was approximately 35%, because the reflection loss occurred at both ends of the fiber and window. Meanwhile, the core diameter of the energy delivery fiber for the endoscopic therapy was 450 micrometers . The outer diameter of this cable was 1.7 mm. Approximately 4.5 W of fiber output was used for clinical treatment of pneumothorax through a pneumoscope. Both types of the cables had the ultra-thin thermocouples for temperature monitoring at the tip of the cables. This temperature monitoring was extremely useful to prevent the thermal destruction of the fiber tip. Moreover, the As-S glass fibers were completely sealed by the CaF2 windows and outer tubes. Therefore, these cables were considered to have sufficient safety properties for medical applications. These laser cables were successfully used for the in vivo animal experiments and/or actual clinical therapies.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ballato, John
One binary and three series of ternary non-oxide pure sulfide glasses compositions were investigated with the goal of synthesizing new glasses that exhibit high glass transition (Tg) and crystallization (Tc) temperatures, infrared transparency, and reliable glass formability. The binary glass series consisted of Ges 2 and La 2S 3 and the three glass series in the x(nBaS + mLa2S3) + (1-2x)GeS2 ternary system have BaS:La2S3 modifier ratios of 1:1, 1:2, and 2:1 with . With these glasses, new insights were realized as to how ionic glasses form and how glass modifiers affect both structure and glass formability. All synthesized compositionsmore » were characterized by Infrared (IR) and Raman spectroscopies and differential thermal analysis (DTA) to better understand the fundamental structure, optical, and thermal characteristics of the glasses. After a range of these glasses were synthesized, optimal compositions were formed into glass disks and subjected to gamma irradiation. Glass disks were characterized both before and after irradiation by microscope imaging, measuring the refractive index, density, and UV-VIS-IR transmission spectra. The final total dose the samples were subjected to was ~2.5 MGy. Ternary samples showed a less than 0.4% change in density and refractive index and minimal change in transmission window. The glasses also resisted cracking as seen in microscope images. Overall, many glass compositions were developed that possess operating temperatures above 500 °C, where conventional chalcogenide glasses such as As2S3 and have T gs from ~200-300 °C, and these glasses have a greater than Tc – Tg values larger than 100 °C and this shows that these glasses have good thermal stability of Tg such that they can be fabricated into optical fibers and as such can be considered candidates for high temperature infrared fiber optics. Initial fiber fabrication efforts showed that selected glasses could be drawn but larger samples would be needed for further development and optimization« less
Field Evaluation of Highly Insulating Windows in the Lab Homes: Winter Experiment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Parker, Graham B.; Widder, Sarah H.; Bauman, Nathan N.
2012-06-01
This field evaluation of highly insulating windows was undertaken in a matched pair of 'Lab Homes' located on the Pacific Northwest National Laboratory (PNNL) campus during the 2012 winter heating season. Improving the insulation and solar heat gain characteristics of a home's windows has the potential to significantly improve the home's building envelope and overall thermal performance by reducing heat loss (in the winter), and cooling loss and solar heat gain (in the summer) through the windows. A high quality installation and/or window retrofit will also minimize or reduce air leakage through the window cavity and thus also contribute tomore » reduced heat loss in the winter and cooling loss in the summer. These improvements all contribute to decreasing overall annual home energy use. Occupant comfort (non-quantifiable) can also be increased by minimizing or eliminating the cold 'draft' (temperature) many residents experience at or near window surfaces that are at a noticeably lower temperature than the room air temperature. Lastly, although not measured in this experiment, highly insulating windows (triple-pane in this experiment) also have the potential to significantly reduce the noise transmittance through windows compared to standard double-pane windows. The metered data taken in the Lab Homes and data analysis presented here represent 70 days of data taken during the 2012 heating season. As such, the savings from highly insulating windows in the experimental home (Lab Home B) compared to the standard double-pane clear glass windows in the baseline home (Lab Home A) are only a portion of the energy savings expected from a year-long experiment that would include a cooling season. The cooling season experiment will take place in the homes in the summer of 2012, and results of that experiment will be reported in a subsequent report available to all stakeholders.« less
NASA Technical Reports Server (NTRS)
Yost, William T.; Cramer, K. Elliott; Estes, Linda R.; Salem, Jonathan A.; Lankford, James, Jr.; Lesniak, Jon
2011-01-01
A commercially available grey-field polariscope (GFP) instrument for photoelastic examination is used to assess impact damage inflicted upon the outermost pane of the orbiter windows. Four categories of damage: hyper-velocity impacts that occur during space-flight (HVI); hypervelocity impacts artificially made at the Hypervelocity Impact Technology Facility (HIT-F); impacts made by larger objects falling onto the pane surface to simulate dropped items on the window during service/storage of vehicle (Bruises); and light scratches from dull objects designed to mimic those that might occur by dragging a dull object across the glass surface (Chatter Checks) are examined. The damage sites are cored from fused silica window carcasses, examined with the GFP and other methodologies, and broken using the ASTM Standard C1499-09 to measure the fracture strength. A correlation is made between the fracture strength and damage-site measurements including geometrical measurements and GFP measurements of photoelastic retardation (stress patterns) surrounding the damage sites. An analytical damage model to predict fracture strength from photoelastic retardation measurements is presented and compared with experimental results.
Mixed effects modelling for glass category estimation from glass refractive indices.
Lucy, David; Zadora, Grzegorz
2011-10-10
520 Glass fragments were taken from 105 glass items. Each item was either a container, a window, or glass from an automobile. Each of these three classes of use are defined as glass categories. Refractive indexes were measured both before, and after a programme of re-annealing. Because the refractive index of each fragment could not in itself be observed before and after re-annealing, a model based approach was used to estimate the change in refractive index for each glass category. It was found that less complex estimation methods would be equivalent to the full model, and were subsequently used. The change in refractive index was then used to calculate a measure of the evidential value for each item belonging to each glass category. The distributions of refractive index change were considered for each glass category, and it was found that, possibly due to small samples, members of the normal family would not adequately model the refractive index changes within two of the use types considered here. Two alternative approaches to modelling the change in refractive index were used, one employed more established kernel density estimates, the other a newer approach called log-concave estimation. Either method when applied to the change in refractive index was found to give good estimates of glass category, however, on all performance metrics kernel density estimates were found to be slightly better than log-concave estimates, although the estimates from log-concave estimation prossessed properties which had some qualitative appeal not encapsulated in the selected measures of performance. These results and implications of these two methods of estimating probability densities for glass refractive indexes are discussed. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Salem, Jonathan A.
2006-01-01
Mechanical and physical properties of ZnSe windows to be used with the FEANICS (Flow Enclosure Accommodating Novel Investigations in Combustion of Solids) experiments were measured in order to determine design allowables. The average Young s modulus, Poisson's ratio, equibiaxial fracture strength, flaw size, grain size, Knoop hardness, Vicker s hardness, and branching constant were 74.3 +/- 0.1 GPa, 0.31, 57.8 +/- 6.5 MPa, 21 +/- 4 mm, 43 +/- 9 microns, 0.97 +/- 0.02 GPa, 0.97 +/- 0.02 GPa, and 1.0 +/- 0.1 MPa(square root of)m, respectively. The properties of current ZnSe made by chemical vapor deposition are in good agreement with those measured in the 1970 s. The hardness of CVD ZnSe windows is about one-twentieth of the sapphire window being replaced, and about one-sixth of that of window glass. Thus the ZnSe window must be handled with great care. The large grain size relative to the inherent crack size implies the need to use single crystal crack growth properties in the design process. In order to determine the local failure stresses in one of the test specimens, a solution for the stresses between the support ring and the edge of a circular plate load between concentric rings was derived
Half-value-layer increase owing to tungsten buildup in the x-ray tube: fact or fiction.
Stears, J G; Felmlee, J P; Gray, J E
1986-09-01
The half-value layer (HVL) of an x-ray beam is generally believed to increase with x-ray tube use. This increase in HVL has previously been attributed to the hardening of the x-ray beam as a result of a buildup of tungsten on the x-ray tube glass window. Radiographs and HVL measurements were obtained to determine the effect of tungsten deposited on the x-ray tube windows. This work, along with the HVL data from approximately 200 functioning x-ray tubes used for all applications that were monitored for more than 8 years, indicated there is no significant increase in HVL with diagnostic x-ray tube use.
Fluorescence and phosphorescence of photomultiplier window materials under electron irradiation
NASA Technical Reports Server (NTRS)
Viehmann, W.; Eubanks, A. G.; Bredekamp, J. H.
1974-01-01
The fluorescence and phosphorescence of photomultiplier window materials under electron irradiation were investigated using a Sr-90/Y-90 beta emitter as the electron source. Spectral emission curves of UV grade, optical grade, and electron-irradiated samples of MGF2 and LiF, CaF2, BaF2, sapphire, fused silica, and UV transmitting glasses were obtained over the spectral range of 200 nm to 650 nm. Fluorescence yields, expressed as the number of counts in a solid angle of 2 pi steradian per 1MeV of incident electron energy deposited, were determined on these materials utilizing photomultiplier tubes with cesium telluride, bialkali, and trialkali (S-20) photocathodes, respectively.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tomashuk, A.L.; Dianov, E.M.; Golant, K.M.
Gamma-radiation-induced absorption spectra (2.15 MGy(Si)) are compared in N-doped and pure silica fibers fabricated by surface plasma CVD-process under different regimes with the aim to reveal the chief absorption mechanisms in the telecom spectral windows and to work out an optimum fiber design. The long wavelength absorption edge is shown to be the main absorption mechanism at megagray doses. Its value increases with increasing bonded hydrogen concentration in the fiber glass network and is slightly greater in N-doped fibers. No nitrogen-related color centers have been revealed in the short wavelength loss edge, which is determined by chlorine impurity in silica.
Molecular matter waves - tools and applications
NASA Astrophysics Data System (ADS)
Juffmann, Thomas; Sclafani, Michele; Knobloch, Christian; Cheshnovsky, Ori; Arndt, Markus
2013-05-01
Fluorescence microscopy allows us to visualize the gradual emergence of a deterministic far-field matter-wave diffraction pattern from stochastically arriving single molecules. We create a slow beam of phthalocyanine molecules via laser desorption from a glass window. The small source size provides the transverse coherence required to observe an interference pattern in the far-field behind an ultra-thin nanomachined grating. There the molecules are deposited onto a quartz window and can be imaged in situ and in real time with single molecule sensitivity. This new setup not only allows for a textbook demonstration of quantum interference, but also enables quantitative explorations of the van der Waals interaction between molecules and material gratings.
Controlling sound radiation through an opening with secondary loudspeakers along its boundaries.
Wang, Shuping; Tao, Jiancheng; Qiu, Xiaojun
2017-10-17
We propose a virtual sound barrier system that blocks sound transmission through openings without affecting access, light and air circulation. The proposed system applies active control technique to cancel sound transmission with a double layered loudspeaker array at the edge of the opening. Unlike traditional transparent glass windows, recently invented double-glazed ventilation windows and planar active sound barriers or any other metamaterials designed to reduce sound transmission, secondary loudspeakers are put only along the boundaries of the opening, which provides the possibility to make it invisible. Simulation and experimental results demonstrate its feasibility for broadband sound control, especially for low frequency sound which is usually hard to attenuate with existing methods.
Hunault, Myrtille; Lelong, Gérald; Gauthier, Michel; Gélébart, Frédéric; Ismael, Saindou; Galoisy, Laurence; Bauchau, Fanny; Loisel, Claudine; Calas, Georges
2016-05-01
A new low-cost experimental setup based on two compact dispersive optical spectrometers has been developed to measure optical absorption transmission spectra over the 350-2500 nm energy range. We demonstrate how near-infrared (NIR) data are essential to identify the coloring species in addition to ultraviolet visible data. After calibration with reference glasses, the use of an original sample stage that maintains the window panel in the vertical position enables the comparison of ancient and modern glasses embedded in a panel from the Sainte-Chapelle of Paris, without any sampling. The spectral resolution enables to observe fine resonances arising in the absorption bands of Cr(3+), and the complementary information obtained in the NIR enables to determine the contribution of Fe(2+), a key indicator of glassmaking conditions. © The Author(s) 2016.
Recovery from nonlinear creep provides a window into physics of polymer glasses
NASA Astrophysics Data System (ADS)
Caruthers, James; Medvedev, Grigori
Creep under constant applied stress is one of the most basic mechanical experiments, where it exhibits extremely rich relaxation behavior for polymer glasses. As many as five distinct stages of nonlinear creep are observed, where the rate of creep dramatically slows down, accelerates and then slows down again. Modeling efforts to-date has primarily focused on predicting the intricacies of the nonlinear creep curve. We argue that as much attention should be paid to the creep recovery response, when the stress is removed. The experimental creep recovery curve is smooth, where the rate of recovery is initially quite rapid and then progressively decreases. In contrast, the majority of the traditional constitutive models predict recovery curves that are much too abrupt. A recently developed stochastic constitutive model that takes into account the dynamic heterogeneity of glasses produces a smooth creep recovery response that is consistent with experiment.
Expedition 23 State Commission
2010-03-31
Expedition 23 Soyuz Commander Alexander Skvortsov says a few words during the State Commission meeting to approve the Soyuz launch of Skvortsov, Expedition 23 Flight Engineer Tracy Caldwell Dyson and Flight Engineer Mikhail Kornienko on Thursday, April 1, 2010 in Baikonur, Kazakhstan. The crew is kept in a separate room with a glass window in order to help maintain their health. Photo Credit: (NASA/Bill Ingalls)
10 CFR 431.306 - Energy conservation standards and their effective dates.
Code of Federal Regulations, 2012 CFR
2012-01-01
..., ceiling, and door insulation of at least R-25 for coolers and R-32 for freezers, except that this... insulation of at least R-28 for freezers; (5) For evaporator fan motors of under 1 horsepower and less than... freezers and windows in walk-in freezer doors shall be of triple-pane glass with either heat-reflective...
10 CFR 431.306 - Energy conservation standards and their effective dates.
Code of Federal Regulations, 2013 CFR
2013-01-01
..., ceiling, and door insulation of at least R-25 for coolers and R-32 for freezers, except that this... insulation of at least R-28 for freezers; (5) For evaporator fan motors of under 1 horsepower and less than... freezers and windows in walk-in freezer doors shall be of triple-pane glass with either heat-reflective...
10 CFR 431.306 - Energy conservation standards and their effective dates.
Code of Federal Regulations, 2011 CFR
2011-01-01
..., ceiling, and door insulation of at least R-25 for coolers and R-32 for freezers, except that this... insulation of at least R-28 for freezers; (5) For evaporator fan motors of under 1 horsepower and less than... freezers and windows in walk-in freezer doors shall be of triple-pane glass with either heat-reflective...
10 CFR 431.306 - Energy conservation standards and their effective dates.
Code of Federal Regulations, 2010 CFR
2010-01-01
..., ceiling, and door insulation of at least R-25 for coolers and R-32 for freezers, except that this... insulation of at least R-28 for freezers; (5) For evaporator fan motors of under 1 horsepower and less than... freezers and windows in walk-in freezer doors shall be of triple-pane glass with either heat-reflective...
24 CFR 3280.403 - Standard for windows and sliding glass doors used in manufactured homes.
Code of Federal Regulations, 2014 CFR
2014-04-01
... pressure tests must be conducted at the design wind loads required for components and cladding specified in... certification must be based on tests conducted at the design wind loads specified in § 3280.305(c)(1). (1) All... agency shall conduct pre-production specimen tests in accordance with AAMA 1701.2-95. Further, such...
Astronaut William Readdy on flight deck wearing sun glasses
1993-09-15
STS051-16-012 (12-22 Sept 1993) --- On Discovery's forward flight deck, astronaut William F. Readdy, pilot, wears shades to block out bright sunshine. Much of the sunshine that normally would be coming through forward windows is blocked by an array of portable computers. Readdy was joined by four other NASA astronauts for almost ten full days in space.
Mechanical Properties of ZnSe for the FEANICS Module
NASA Technical Reports Server (NTRS)
Salem, Jon
2006-01-01
Mechanical and physical properties of ZnSe windows to be used with the FEANICS (Flow Enclosure Accommodating Novel Investigations in Combustion of Solids) experiments were measured in order to determine design allowables. In addition, the literature on crack growth properties was summarized. The average Young's modulus, Poisson's ratio, equibiaxial fracture strength, flaw size, grain size, Knoop hardness, Vicker's hardness, and branching constant were 74.3 +/- 0.1 GPa, 0.31, 57.8 +/- 6.5 MPa, 21 4 mm, 43 +/- 9 micron, 0.97 +/- 0.02 GPa, 0.97 +/- 0.02 GPa, and 1.0 +/- 0.1 MPam(exp 0.5), respectively. The properties of current ZnSe made by chemical vapor deposition are in good agreement with those measured in the 1970's. The hardness of CVD ZnSe windows is about one twentieth of the sapphire window being replaced, and about one-sixth of that of window glass. Thus the ZnSe window must be handled with great care. The large grain size relative to the inherent crack size implies the need to use single crystal crack growth properties in the design process. In order to determine the local failure stresses in one of the test specimens, a solution for the stresses between the support ring and the edge of a circular plate load between concentric rings was derived.
Atomic-scale bonding of bulk metallic glass to crystalline aluminum
NASA Astrophysics Data System (ADS)
Liu, K. X.; Liu, W. D.; Wang, J. T.; Yan, H. H.; Li, X. J.; Huang, Y. J.; Wei, X. S.; Shen, J.
2008-08-01
A Ti40Zr25Cu12Ni3Be20 bulk metallic glass (BMG) was welded to a crystalline aluminum by the parallel plate explosive welding method. Experimental evidence and numerical simulation show that atomic-scale bonding between the BMG and the crystalline aluminum can be achieved, and the weldment on the BMG side can retain its amorphous state without any indication of crystallization in the welding process. Nanoindentation tests reveal that the interface of the explosive joints exhibits a significant increase in hardness compared to the matrix on its two sides. The joining of BMG and crystalline materials opens a window to the applications of BMGs in engineering.
New Glass Serves as Window to Cutting-edge Lasers
NASA Technical Reports Server (NTRS)
2004-01-01
Since 1997, Marshall Space Flight Center s Electrostatic Levitator (ESL) facility has been used to study the characteristics of new metals, ceramics, and glass compounds - in both their hot molten states and as they are cooled to form solid materials. The ESL provides a unique way to test such substances without having to make contact with a container or crucible that would contaminate the sample. Simply put, objects analyzed in the levitator's chamber float in mid-air with no visible means of support or containment, suspended only by static electricity. While a sample object is levitated, a laser beam heats it until it melts so that scientists can measure its physical properties without interference from a container.
Trejos, Tatiana; Montero, Shirly; Almirall, José R
2003-08-01
The discrimination potential of Laser Ablation Inductively Coupled Plasma Mass Spectrometry (LA-ICP-MS) is compared with previously reported solution ICP-MS methods using external calibration (EC) with internal standardization and a newly reported solution isotope dilution (ID) method for the analysis of two different glass populations. A total of 91 different glass samples were used for the comparison study; refractive index and elemental composition were measured by the techniques mentioned above. One set consisted of 45 headlamps taken from a variety of automobiles that represents a range of 20 years of manufacturing dates. A second set consisted of 46 automotive glasses (side windows, rear windows, and windshields) representing casework glass from different vehicle manufacturers over several years. The element menu for the LA-ICP-MS and EC-ICP-MS methods include Mg, Al, Ca, Mn, Ce, Ti, Zr, Sb, Ga, Ba, Rb, Sm, Sr, Hf, La, and Pb. The ID method was limited to the analysis of two isotopes each of Mg, Sr, Zr, Sb, Ba, Sm, Hf, and Pb. Laser ablation analyses were performed with a Q switched Nd:YAG, 266 nm, 6 mJ output energy laser. The laser was used in depth profile mode while sampling using a 50 microm spot size for 50 sec at 10 Hz (500 shots). The typical bias for the analysis of NIST 612 by LA-ICP-MS was less than 5% in all cases and typically better than 5% for most isotopes. The precision for the vast majority of the element menu was determined generally less than 10% for all the methods when NIST 612 was measured (40 microg x g(-1)). Method detection limits (MDL) for the EC and LA-ICP-MS methods were similar and generally reported as less than 1 microg x g(-1) for the analysis of NIST 612. While the solution sample introduction methods using EC and ID presented excellent sensitivity and precision, these methods have the disadvantages of destroying the sample, and also involve complex sample preparation. The laser ablation method was simpler, faster, and produced comparable discrimination to the EC-ICP-MS and ID-ICP-MS. LA-ICP-MS can offer an excellent alternative to solution analysis of glass in forensic casework samples.
NASA Astrophysics Data System (ADS)
Almirall, Jose R.; Montero, Shirly; Furton, Kenneth G.
2002-08-01
The importance of glass as evidence of association between a crime event and a suspect has been recognized for some time. Glass is a fragile material that is often found at the scenes of crimes such as burglaries, hit-and-run accidents and violent crime offenses. The physical and chemical properties of glass can be used to differentiate between possible sources and as evidence of association between two fragments of glass thought to originate from the same source. Refractive index (RI) comparisons have been used for this purpose but due to the improved control over glass manufacturing processes, RI values often cannot differentiate glasses, even if the glass originates from different sources. Elemental analysis methods such as NAA, XRF, ICP-AES, and Inductively Coupled Plasma Mass Spectrometry (ICP-MS) have also been used for the comparison of trace elemental compositions and these techniques have been shown to provide an improvement in the discrimination of glass fragments over RI comparisons alone. The multi-element capability and the sensitivity of ICP-MS combined with the simplified sample introduction of laser ablation prior to ion detection provides for an excellent and relatively non-destructive technique for elemental analysis of glass fragments. The methodology for solution analysis (digestion procedure) and solid sample analysis (laser ablation) of glass is reported and the analytical results are compared. An isotope dilution method is also reported as a high precision technique for elemental analysis of glass fragments. The optimum sampling parameters for laser ablation, for semi-quantitative analysis and element ratio comparisons are also presented. Finally, the results of a case involving the breaking of 15 vehicle windows in an airport parking lot and the association of a suspect to the breakings by the glass fragments found on his person are also presented.
Role of oxygen on the optical properties of borate glass doped with ZnO
DOE Office of Scientific and Technical Information (OSTI.GOV)
Abdel-Baki, Manal; El-Diasty, Fouad, E-mail: fdiasty@yahoo.com
2011-10-15
Lithium tungsten borate glass (0.56-x)B{sub 2}O{sub 3}-0.4Li{sub 2}O-xZnO-0.04WO{sub 3} (0{<=}x{<=}0.1 mol%) is prepared by the melt quenching technique for photonic applications. Small relative values of ZnO are used to improve the glass optical dispersion and to probe as well the role of oxygen electronic polarizability on its optical characteristics. The spectroscopic properties of the glass are determined in a wide spectrum range (200-2500 nm) using a Fresnel-based spectrophotometric technique. Based on the Lorentz-Lorenz theory, as ZnO content increases on the expense of B{sub 2}O{sub 3} the glass molar polarizability increased due to an enhanced unshared oxide ion 2p electron density,more » which increases ionicity of the chemical bonds of glass. The role of oxide ion polarizability is explained in accordance with advanced measures and theories such as optical basicity, O 1s binding energy, the outer most cation binding energy in Yamashita-Kurosawa's interionic interaction parameter and Sun's average single bond strength. FT-IR measurements confirm an increase in bridging oxygen bonds, as a result of replacement of ZnO by B{sub 2}O{sub 3}, which increase the UV glass transmission window and transmittance. - Graphical abstract: O1s, Yamashita-Kurosawa's parameter and average single bond strength of charge overlapping between electronic shells are used to explain enhanced oxide ion 2p electron density, which increases refractive index of glasses. Highlights: > New borate glass for photonic application is prepared. > The dispersion property of the glass is effectively controlled using small amounts of ZnO. > ZnO is used to probe the glass structure and investigate the role of oxygen on the obtained optical properties of the glasses. > Modern theories are used to explain enhanced unshared oxide ion 2p electron density, which increases ionicity of chemical bonds of the glass.« less
Optical properties of ITO nanocoatings for photovoltaic and energy building applications
NASA Astrophysics Data System (ADS)
Kaplani, E.; Kaplanis, S.; Panagiotaras, D.; Stathatos, E.
2014-10-01
Targeting energy savings in buildings, photovoltaics and other sectors, significant research activity is nowadays focused on the production of spectral selective nanocoatings. In the present study an ITO coating on glass substrate is prepared from ITO powder, characterized and analysed. The spectral transmittance and reflectance of the ITO coated glass and of two other commercially developed ITO coatings on glass substrate were measured and compared. Furthermore, a simulation algorithm was developed to determine the optical properties of the ITO coatings in the visible, solar and near infrared regions in order to assess the impact of the ITO coatings in the energy performance of buildings, and particularly the application in smart windows. In addition, the current density produced by a PV assuming each of the ITO coated glass served as a cover was computed, in order to assess their effect in PV performance. The preliminary ITO coating prepared and the two other coatings exhibit different optical properties and, thus, have different impact on energy performance. The analysis assists in a better understanding of the desired optical properties of nanocoatings for improved energy performance in PV and buildings.
Physico-chemical characterisation of glass soiling in rural, urban and industrial environments.
Lombardo, T; Chabas, A; Verney-Carron, A; Cachier, H; Triquet, S; Darchy, S
2014-01-01
Glass materials are broadly used in the built environment (windows, facades, roofs, museum showcases, and solar panels) due to their optical (transparency) and thermal properties. Their interaction with the multiphase atmospheric medium results in a more or less pronounced transparency loss called soiling. This phenomenon leads to a loss of amenity of artefacts; consequently, high cleaning costs have to be supported by public and private entities. Complete understanding of the nature of surface deposit appears thus extremely important for addressing strategies to control it. The present research is based on the sheltered exposure, in different environments, of durable glass panels during 1 year. At these different locations, airborne pollutant concentrations have also been monitored. Three environments have been investigated: rural (R), urban (U) and industrial (I). Results show that the mass of the deposit and the optical impairment of the glass (haze) are too spread to allow discriminating between different environments. However, the analyses of soluble species and particulate organic matter allow identifying factors responsible for soiling and highlighted the reactivity of deposit to relative humidity which favours post-deposit evolution.
A PC-based shutter glasses controller for visual stimulation using multithreading in LabWindows/CVI.
Gramatikov, Ivan; Simons, Kurt; Guyton, David; Gramatikov, Boris
2017-05-01
Amblyopia, commonly known as "lazy eye," is poor vision in an eye from prolonged neurologic suppression. It is a major public health problem, afflicting up to 3.6% of children, and will lead to lifelong visual impairment if not identified and treated in early childhood. Traditional treatment methods, such as occluding or penalizing the good eye with eye patches or blurring eye drops, do not always yield satisfactory results. Newer methods have emerged, based on liquid crystal shutter glasses that intermittently occlude the better eye, or alternately occlude the two eyes, thus stimulating vision in the "lazy" eye. As yet there is no technology that allows easy and efficient optimization of the shuttering characteristics for a given individual. The purpose of this study was to develop an inexpensive, computer-based system to perform liquid crystal shuttering in laboratory and clinical settings to help "wake up" the suppressed eye in amblyopic patients, and to help optimize the individual shuttering parameters such as wave shape, level of transparency/opacity, frequency, and duty cycle of the shuttering. We developed a liquid crystal glasses controller connected by USB cable to a PC computer. It generates the voltage waveforms going to the glasses, and has potentiometer knobs for interactive adjustments by the patient. In order to achieve good timing performance in this bidirectional system, we used multithreading programming techniques with data protection, implemented in LabWindows/CVI. The hardware and software developed were assessed experimentally. We achieved an accuracy of ±1Hz for the frequency, and ±2% for the duty cycle of the occlusion pulses. We consider these values to be satisfactory for the purpose of optimizing the visual stimulation by means of shutter glasses. The system can be used for individual optimization of shuttering attributes by clinicians, for training sessions in clinical settings, or even at home, aimed at stimulating vision in the "lazy" eye. Multithreading offers significant benefits for data acquisition and instrument control, making it possible to implement time-efficient algorithms in inexpensive yet versatile medical instrumentation with only minimum requirements on the hardware. Copyright © 2017 Elsevier B.V. All rights reserved.
Empirical assessment of a prismatic daylight-redirecting window film in a full-scale office testbed
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thanachareonkit, Anothai; Lee, Eleanor S.; McNeil, Andrew
2013-08-31
Daylight redirecting systems with vertical windows have the potential to offset lighting energy use in deep perimeter zones. Microstructured prismatic window films can be manufactured using low-cost, roll-to-roll fabrication methods and adhered to the inside surface of existing windows as a retrofit measure or installed as a replacement insulating glass unit in the clerestory portion of the window wall. A clear film patterned with linear, 50-250 micrometer high, four-sided asymmetrical prisms was fabricated and installed in the south-facing, clerestory low-e, clear glazed windows of a full-scale testbed facility. Views through the film were distorted. The film was evaluated in amore » sunny climate over a two-year period to gauge daylighting and visual comfort performance. The daylighting aperture was small (window-towall ratio of 0.18) and the lower windows were blocked off to isolate the evaluation to the window film. Workplane illuminance measurements were made in the 4.6 m (15 ft) deep room furnished as a private office. Analysis of discomfort glare was conducted using high dynamic range imaging coupled with the evalglare software tool, which computes the daylight glare probability and other metrics used to evaluate visual discomfort. The window film was found to result in perceptible levels of discomfort glare on clear sunny days from the most conservative view point in the rear of the room looking toward the window. Daylight illuminance levels at the rear of the room were significantly increased above the reference window condition, which was defined as the same glazed clerestory window but with an interior Venetian blind (slat angle set to the cut-off angle), for the equinox to winter solstice period on clear sunny days. For partly cloudy and overcast sky conditions, daylight levels were improved slightly. To reduce glare, the daylighting film was coupled with a diffusing film in an insulating glazing unit. The diffusing film retained the directionality of the redirected light spreading it within a small range of outgoing angles. This solution was found to reduce glare to imperceptible levels while retaining for the most part the illuminance levels achieved solely by the daylighting film.« less
NASA Astrophysics Data System (ADS)
Zhu, Keyong; Pilon, Laurent
2017-11-01
This study aims to investigate systematically light transfer through semitransparent windows with absorbing cap-shaped droplets condensed on their backside as encountered in greenhouses, solar desalination plants, photobioreactors and covered raceway ponds. The Monte Carlo ray-tracing method was used to predict the normal-hemispherical transmittance, reflectance, and normal absorptance accounting for reflection and refraction at the air/droplet, droplet/window, and window/air interfaces and absorption in both the droplets and the window. The droplets were monodisperse or polydisperse and arranged either in an ordered hexagonal pattern or randomly distributed on the backside with droplet contact angle θc ranging between 0 and 180° The normal-hemispherical transmittance was found to be independent of the spatial distribution of droplets. However, it decreased with increasing droplet diameter and polydispersity. The normal-hemispherical transmittance featured four distinct optical regimes for semitransparent window supporting nonabsorbing droplets. These optical regimes were defined based on contact angle and critical angle for internal reflection at the droplet/air interface. However, for strongly absorbing droplets, the normal-hemispherical transmittance (i) decreased monotonously with increasing contact angle for θc <90° and (ii) remained constant and independent of droplet absorption index kd, droplet mean diameter dm, and contact angle θc for θc ≥ 90° Analytical expressions for the normal-hemispherical transmittance were provided in the asymptotic cases when (1) the window was absorbing but the droplets were nonabsorbing with any contact angles θc, and (2) the droplets were strongly absorbing with contact angle θc >90° Finally, the spectral normal-hemispherical transmittance of a 3 mm-thick glass window supporting condensed water droplets for wavelength between 0.4 and 5 μm was predicted and discussed in light of the earlier parametric study and asymptotic behavior.
NASA Astrophysics Data System (ADS)
Yao, Hua-Dong; Davidson, Lars
2018-03-01
We investigate the interior noise caused by turbulent flows past a generic side-view mirror. A rectangular glass window is placed downstream of the mirror. The window vibration is excited by the surface pressure fluctuations and emits the interior noise in a cuboid cavity. The turbulent flows are simulated using a compressible large eddy simulation method. The window vibration and interior noise are predicted with a finite element method. The wavenumber-frequency spectra of the surface pressure fluctuations are analyzed. The spectra are identified with some new features that cannot be explained by the Chase model for turbulent boundary layers. The spectra contain a minor hydrodynamic domain in addition to the hydrodynamic domain caused by the main convection of the turbulent boundary layer. The minor domain results from the local convection of the recirculating flow. These domains are formed in bent elliptic shapes. The spanwise expansion of the wake is found causing the bending. Based on the wavenumber-frequency relationships in the spectra, the surface pressure fluctuations are decomposed into hydrodynamic and acoustic components. The acoustic component is more efficient in the generation of the interior noise than the hydrodynamic component. However, the hydrodynamic component is still dominant at low frequencies below approximately 250 Hz since it has low transmission losses near the hydrodynamic critical frequency of the window. The structural modes of the window determine the low-frequency interior tonal noise. The combination of the mode shapes of the window and cavity greatly affects the magnitude distribution of the interior noise.
Archeological Applications of XAFS: Prehistorical Paintings And Medieval Glasses
DOE Office of Scientific and Technical Information (OSTI.GOV)
Farges, F.; Chalmin, E.; Vignaud, C.
2006-10-27
High-resolution manganese and iron K-edges XANES spectra were collected on several samples of archeological interest: prehistorical paintings and medieval glasses. XANES spectra were collected at the ID21 facility (ESRF, Grenoble, France) using a micro-beam device and at the 11-2 beamline (SSRL, Stanford, USA) using a submillimetric beam. The medieval glasses studied are from gothic glass windows from Normandy (XIVth century). The aim of this study is to help understand the chemical durability of these materials, exposed to weathering since the XIVth century. They are used as analogues of weathered glasses used to dump metallic wastes. These glasses show surficial enrichmentmore » in manganese, due to its oxidation from II (glass) to III/IV (surface), which precipitates as amorphous oxy-hydroxides. Similarly, iron is oxidized on the surface and forms ferrihydrite-type aggregates. The prehistorical paintings are from Lascaux and Ekain (Basque country). We choose in that study the black ones, rich in manganese to search for potential evidences of some 'savoir-faire' that the Paleolithic men could have used to realize their paint in rock art, as shown earlier for Fe-bearing pigments. A large number of highly valuable samples, micrometric scaled, were extracted from these frescoes and show large variation in the mineralogical nature of the black pigments used, from an amorphous psilomelane-type to a well-crystallized pyrolusite. Correlation with the crystals morphology helps understanding the know-how of these early artists.« less
NASA Astrophysics Data System (ADS)
Cheng, Pan; Zhou, Yaxun; Zhou, Minghan; Su, Xiue; Zhou, Zizhong; Yang, Gaobo
2017-11-01
Pr3+-doped tellurite glasses containing metallic silver NPs were synthesized by the conventional melt-quenching technique. Structural, thermal and optical properties of the synthesized glass samples were characterized by X-Ray diffraction (XRD) curves, Raman spectra, differential scanning calorimeter (DSC) curves, transmission electron microscopy (TEM) images, UV/Vis/NIR absorption and near-infrared fluorescence emission spectra. The XRD curves confirmed the amorphous structural nature of the synthesized glasses, the Raman spectra identified the presence of different vibrational groups, the DSC curves verified the good thermal stability, and the TEM images revealed the nucleated silver NPs with average diameter about 10 nm dispersed in the glass matrix and its surface Plasmon resonance (SPR) absorption band was located at around 510 nm. Besides, Judd-Ofelt intensity parameters Ωt (t = 2, 4, 6) and other important spectroscopic parameters like transition probability, radiative lifetime, branching ratio were calculated to evaluate the radiative properties of Pr3+ levels from the measured optical absorption spectra. It was found that Pr3+-doped tellurite glasses could emit an ultra-broadband fluorescence extending from 1250 to 1650 nm under the 488 nm excitation, and this fluorescence emission increased further with the introduction of silver NPs. The enhanced fluorescence was mainly attributed to the increased local electric field around Pr3+ induced by silver NPs. The present results demonstrate that Pr3+-Ag codoped tellurite glass is a promising candidate for the near-infrared band ultra-broadband fiber amplifiers covering the expanded low-loss communication window.
Zhu, Qing; Shih, Wan Y.; Shih, Wei-Heng
2007-01-01
We have examined non-insulated PZT/gold-coated glass cantilevers for real-time, label-free detection of Salmonella t. by partial dipping at any relative humidity. The PZT/gold-coated glass cantilevers were consisted of a 0.127 mm thick PZT layer about 0.8 mm long, 2 mm wide bonded to a 0.15 mm thick gold-coated glass layer with a 3.0 mm long gold-coated glass tip for detection. We showed that by placing the water level at the nodal point, about 0.8 mm from the free end of the gold-glass tip, there was a 1-hr window in which the resonance frequency was stable despite the water level change by evaporation at 20% relative humidity or higher. By dipping the cantilevers to their nodal point, we were able to do real-time, label-free detection without background resonance frequency corrections at any relative humidity. The partially dipped PZT/gold-coated glass cantilever exhibited mass detection sensitivity, Δm/Δf = −5×10−11g/Hz, and a detection concentration sensitivity, 5×103 cells/ml in 2 ml of liquid, which was about two orders of magnitude lower than that of a 5 MHz QCM. It was also about two orders of magnitude lower than the infection dosage and one order of magnitude lower that the detection limit of a commercial Raptor sensor. PMID:22872784
Bioactive and thermally compatible glass coating on zirconia dental implants.
Kirsten, A; Hausmann, A; Weber, M; Fischer, J; Fischer, H
2015-02-01
The healing time of zirconia implants may be reduced by the use of bioactive glass coatings. Unfortunately, existing glasses are either bioactive like Bioglass 45S5 but thermally incompatible with the zirconia substrate, or they are thermally compatible but exhibit only a very low level of bioactivity. In this study, we hypothesized that a tailored substitution of alkaline earth metals and alkaline metals in 45S5 can lead to a glass composition that is both bioactive and thermally compatible with zirconia implants. A novel glass composition was analyzed using x-ray fluorescence spectroscopy, dilatometry, differential scanning calorimetry, and heating microscopy to investigate its chemical, physical, and thermal properties. Bioactivity was tested in vitro using simulated body fluid (SBF). Smooth and microstructured glass coatings were applied using a tailored spray technique with subsequent thermal treatment. Coating adhesion was tested on implants that were inserted in bovine ribs. The cytocompatibility of the coating was analyzed using L929 mouse fibroblasts. The coefficient of thermal expansion of the novel glass was shown to be slightly lower (11.58 · 10(-6) K(-1)) than that of the zirconia (11.67 · 10(-6) K(-1)). After storage in SBF, the glass showed reaction layers almost identical to the bioactive glass gold standard, 45S5. A process window between 800 °C and 910 °C was found to result in densely sintered and amorphous coatings. Microstructured glass coatings on zirconia implants survived a minimum insertion torque of 60 Ncm in the in vitro experiment on bovine ribs. Proliferation and cytotoxicity of the glass coatings was comparable with the controls. The novel glass composition showed a strong adhesion to the zirconia substrate and a significant bioactive behavior in the SBF in vitro experiments. Therefore, it holds great potential to significantly reduce the healing time of zirconia dental implants. © International & American Associations for Dental Research 2014.
Crystallization kinetics, optical and dielectric properties of Li2OṡCdOṡBi2O3ṡSiO2 glasses
NASA Astrophysics Data System (ADS)
Rani, Saroj; Sanghi, Sujata; Ahlawat, Neetu; Agarwal, Ashish
2015-10-01
Crystallization kinetics, optical absorption and electrical behavior of lithium cadmium silicate glasses with different amount of bismuth oxide were investigated using non-isothermal crystallization approach, UV-VIS-NIR spectroscopy and impedance spectroscopy, respectively. These glasses were synthesized by normal melt quenching technique. Variation in physical properties, viz. density, molar volume with Bi2O3:SiO2 ratio were related to the structural changes occurring in the glasses. The glass transition temperature (Tg), crystalline peak temperature (Tp) and melting temperature (Tm) of these glasses were determined using differential scanning calorimeter at various heating rates. The dependence of Tg and Tp on heating rate has been used for the determination of the activation energy of glass transition and crystallization. Thermal stability parameters have revealed high stability of the glass prepared with 40 mol% of Bi2O3 content. The crystallization kinetics for the glasses was studied by using the Kissinger and modified Ozawa equations. Appearance of a sharp cut-off and a wide and reasonable transmission in VIS-NIR region makes these glasses suitable for IR transmission window. The cut-off wavelength, optical band gap and Urbach's energy have been analyzed and discussed in terms of changes in the glass structure. By analyzing the impedance spectra, the ac and dc conductivities, activation energy for dc conduction (Edc) and for relaxation (EM″) were calculated. The results obtained from dc conductivity confirm the network forming role of Cd2+ ion in the glasses. The scaling of the conductivity spectra has been used to interpret the temperature dependence of the relaxation dynamics. The observed conductivity spectra follows power law with exponent 's' which decreases with temperature and satisfies the correlated barrier hopping (CBH) model. The perfect overlying of normalized plots of electrical modulus on a single 'master curve' depicts temperature as well as composition independent dynamical process at several frequencies.
Bioactive and Thermally Compatible Glass Coating on Zirconia Dental Implants
Kirsten, A.; Hausmann, A.; Weber, M.; Fischer, J.
2015-01-01
The healing time of zirconia implants may be reduced by the use of bioactive glass coatings. Unfortunately, existing glasses are either bioactive like Bioglass 45S5 but thermally incompatible with the zirconia substrate, or they are thermally compatible but exhibit only a very low level of bioactivity. In this study, we hypothesized that a tailored substitution of alkaline earth metals and alkaline metals in 45S5 can lead to a glass composition that is both bioactive and thermally compatible with zirconia implants. A novel glass composition was analyzed using x-ray fluorescence spectroscopy, dilatometry, differential scanning calorimetry, and heating microscopy to investigate its chemical, physical, and thermal properties. Bioactivity was tested in vitro using simulated body fluid (SBF). Smooth and microstructured glass coatings were applied using a tailored spray technique with subsequent thermal treatment. Coating adhesion was tested on implants that were inserted in bovine ribs. The cytocompatibility of the coating was analyzed using L929 mouse fibroblasts. The coefficient of thermal expansion of the novel glass was shown to be slightly lower (11.58·10–6 K–1) than that of the zirconia (11.67·10–6 K–1). After storage in SBF, the glass showed reaction layers almost identical to the bioactive glass gold standard, 45S5. A process window between 800 °C and 910 °C was found to result in densely sintered and amorphous coatings. Microstructured glass coatings on zirconia implants survived a minimum insertion torque of 60 Ncm in the in vitro experiment on bovine ribs. Proliferation and cytotoxicity of the glass coatings was comparable with the controls. The novel glass composition showed a strong adhesion to the zirconia substrate and a significant bioactive behavior in the SBF in vitro experiments. Therefore, it holds great potential to significantly reduce the healing time of zirconia dental implants. PMID:25421839
NASA Astrophysics Data System (ADS)
Schalm, O.; Caluwé, D.; Wouters, H.; Janssens, K.; Verhaeghe, F.; Pieters, M.
2004-10-01
The chemical composition, as determined by electron probe X-ray microanalysis of a series of ca. 100 archaeological glass fragments, excavated at the Raversijde site (Belgium) is discussed. In the 15th-16th century, Raversijde was a flourishing fishermen town located on the shore of the North Sea, close to the city of Ostend. As a consequence of several battles that were fought in its vicinity, the site was abandoned in the 16th century and was not occupied since then. It is one of the rare archaeological sites in Europe that contains a significant amount of information on the daily life inside a small but affluent medieval community. A comparison of the chemical composition of fragments of vessels and window glass encountered in Raversijde to those found in urban centres in Belgium and to literature date on German and French archaeological finds shows that glass made with wood ash dominates. Usually, it concerns artifacts with a predominantly utilitarian use. A few objects made with sodic (i.e., Na-rich) glass were also encountered, likely to have been imported from Venice during the 15th century or in later periods from an urban centre such as Antwerp, where Façon-de-Venice glass manufacturing activities were established near the start of the 16th century.
Expedition 23 State Commission
2010-03-31
Expedition 23 Flight Engineer Mikhail Kornienko says a few words during the State Commission meeting to approve the Soyuz launch of Kornienko, Expedition 23 Soyuz Commander Alexander Skvortsov and Expedition 23 Flight Engineer Tracy Caldwell Dyson on Thursday, April 1, 2010 in Baikonur, Kazakhstan. The crew is kept in a separate room with a glass window in order to help maintain their health. Photo Credit: (NASA/Bill Ingalls)
Expedition 23 State Commission
2010-03-31
Expedition 23 Flight Engineer Tracy Caldwell Dyson says a few words during the State Commission meeting to approve the Soyuz launch of Caldwell Dyson, Expedition 23 Soyuz Commander Alexander Skvortsov and Expedition 23 Flight Engineer Mikhail Kornienko on Thursday, April 1, 2010 in Baikonur, Kazakhstan. The crew is kept in a separate room with a glass window in order to help maintain their health. Photo Credit: (NASA/Bill Ingalls)
Expedition 23 State Commission
2010-03-31
Expedition 23 crew members, from left, NASA's Tracy Caldwell Dyson, Russian Alexander Skvortsov and Russian Mikhail Kornienko are seen during the State Commission meeting to approve the Soyuz launch of Skvortsov, Caldwell Dyson and Mikhail Kornienko on Thursday, April 1, 2010 in Baikonur, Kazakhstan. The crew is kept in a separate room with a glass window in order to help maintain their health. Photo Credit: (NASA/Bill Ingalls)
15. The third floor. A view looking south of a ...
15. The third floor. A view looking south of a typical corridor for these two upper floors. All windows have a single obscure glass light and shoulder high sills which bring sunlight into the corridor. The a/c duct, its laterals and the fluorescent light elements are all retrofit. - John T. Beasley Building, 632 Cherry Street (between Sixth & Seventh Streets), Terre Haute, Vigo County, IN
Religious Radicalism and Security in South Asia
2004-01-01
terrorists from visiting “schools, colleges … theaters, cinemas , fairs, amusement parks, hotels, clubs, restaurants, tea shops … railway stations...captured one Malaysian and one or two supporters from Burma.”45 428 BERTIL LINTNER 41. See also Jim Garamone, “Bin Laden and the Al-Qaeda Network...history, tragedy, drama, comedy, mime, painting, stained glass windows, cinema , comics, news items, and conversation. See Roland Barthes, “Introduction
Comparative U.S.-Israeli Homeland Security
2006-06-01
perception is the economic benefit that the United States receives from such a porous border in the form of inexpensive guest labor. Taking this argument...housing Israeli families have been back-fitted with bulletproof glass in windows that face Palestinian neighborhoods. On a much larger scale, Israel has...without requiring a metal cover; dealing with ceilings ; and creating and enforcing building codes for commercial structures so they can withstand
Electrochromic NiO thin films prepared by spin coating
NASA Astrophysics Data System (ADS)
Özütok, F.; Demiri, S.; Özbek, E.
2017-02-01
Recently, smart windows are very important because they are often being used in smart buildings and car glasses (windows). At this point, producing effective electrochromic materials is so necessary. In this study, we produced NiO thin films by using spin coating technique on In-doped SnO2 (ITO) substrate. Nickel proportions of these nickel oxide (NiO) films are 3, 5 and 7 %. Nickel acetate tetrahydrate is the initial solution and solvents are ethylene gl ycol and n-hexzane. Structural properties and surface images are investigated by using x-ray diffactometer (XRD) and scanning electron microscope (SEM) device, respectively. In addition, electrochemical behavior is investigated by cyclic voltammetry. A correlation between surface morphology and electrochromic performance was observed as well.
Photoluminescence quenching by OH in Er- and Pr-doped glasses for 1.5 and 1.3 μm optical amplifiers
NASA Astrophysics Data System (ADS)
Faber, Anne J.; Simons, Dennis R.; Yan, Yingchao; de Waal, Henk
1994-09-01
In this paper we report on the effect of hydroxyl (OH) groups on the photoluminescence in the near IR (1.5 and 1.3 micrometers ) in rare earth (Er, Pr)-doped glasses. The 1.5 micrometers emission of Er-doped phosphate glasses was studied, before and after a special heat treatment. The luminescent lifetime of the 1.5 micrometers emission increases substantially, typically from 3 ms up to 7.2 ms for a 2 mole% Er2O3-doped phosphate glass, due to the controlled heat treatment. The increase in lifetime is ascribed to a decrease in OH- concentration, which is confirmed by IR-absorption spectroscopy. The quenching by OH is described by a simplified quenching model, which predicts the 1.5 micrometers emission lifetime as a function of Er- concentration with the OH-concentration as parameter. It appears that the larger part of the OH groups is coupled to Er ions and thus acts as quenching center. Photoluminescence quenching by OH groups is also reported for the 1.3 micrometers emission of Pr in GeS2-glasses: In pure OH-free GeS2 glass the 1.3 micrometers emission lifetime is as high as 350 microsecond(s) , for a 400 ppm dopant level. In GeS2 glasses containing only small amounts of OH (approximately 100 ppm), this lifetime is less than 200 microsecond(s) . Both examples demonstrate that for the fabrication of efficient glass optical amplifiers at the telecommunication windows 1.3 and 1.5 micrometers , the OH-impurity level of the host glass must be kept as low as possible.
NASA Astrophysics Data System (ADS)
Yllanes, David
2013-03-01
Spin glasses are a longstanding model for the sluggish dynamics that appears at the glass transition. They enjoy a privileged status in this context, as they provide the simplest model system both for theoretical and experimental studies of glassy dynamics. However, in spite of forty years of intensive investigation, spin glasses still pose a formidable challenge to theoretical, computational and experimental physics. The main difficulty lies in their incredibly slow dynamics. A recent breakthrough has been made possible by our custom-built computer, Janus, designed and built in a collaboration formed by five universities in Spain and Italy. By employing a purpose-driven architecture, capable of fully exploiting the parallelization possibilities intrinsic to these simulations, Janus outperforms conventional computers by several orders of magnitude. After a brief introduction to spin glasses, the talk will focus on the new physics unearthed by Janus. In particular, we recall our numerical study of the nonequilibrium dynamics of the Edwards-Anderson Ising Spin Glass, for a time that spans eleven orders of magnitude, thus approaching the experimentally relevant scale (i.e. seconds). We have also studied the equilibrium properties of the spin-glass phase, with an emphasis on the quantitative matching between non-equilibrium and equilibrium correlation functions, through a time-length dictionary. Last but not least, we have clarified the existence of a glass transition in the presence of a magnetic field for a finite-range spin glass (the so-called de Almeida-Thouless line). We will finally mention some of the currently ongoing work of the collaboration, such as the characterization of the non-equilibrium dynamics in a magnetic field and the existence of a statics-dynamics dictionary in these conditions.
Lang, Augustus W; Li, Yuanyuan; De Keersmaecker, Michel; Shen, D Eric; Österholm, Anna M; Berglund, Lars; Reynolds, John R
2018-03-09
Transparent wood composites, with their high strength and toughness, thermal insulation, and excellent transmissivity, offer a route to replace glass for diffusely transmitting windows. Here, conjugated-polymer-based electrochromic devices (ECDs) that switch on-demand are demonstrated using transparent wood coated with poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) as a transparent conducting electrode. These ECDs exhibit a vibrant magenta-to-clear color change that results from a remarkably colorless bleached state. Furthermore, they require low energy and power inputs of 3 mWh m -2 at 2 W m -2 to switch due to a high coloration efficiency (590 cm 2 C -1 ) and low driving voltage (0.8 V). Each device component is processed with high-throughput methods, which highlights the opportunity to apply this approach to fabricate mechanically robust, energy-efficient smart windows on a large scale. © 2018 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.
REDUCTION OF CONSTRAINTS FOR COUPLED OPERATIONS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Raszewski, F.; Edwards, T.
2009-12-15
The homogeneity constraint was implemented in the Defense Waste Processing Facility (DWPF) Product Composition Control System (PCCS) to help ensure that the current durability models would be applicable to the glass compositions being processed during DWPF operations. While the homogeneity constraint is typically an issue at lower waste loadings (WLs), it may impact the operating windows for DWPF operations, where the glass forming systems may be limited to lower waste loadings based on fissile or heat load limits. In the sludge batch 1b (SB1b) variability study, application of the homogeneity constraint at the measurement acceptability region (MAR) limit eliminated muchmore » of the potential operating window for DWPF. As a result, Edwards and Brown developed criteria that allowed DWPF to relax the homogeneity constraint from the MAR to the property acceptance region (PAR) criterion, which opened up the operating window for DWPF operations. These criteria are defined as: (1) use the alumina constraint as currently implemented in PCCS (Al{sub 2}O{sub 3} {ge} 3 wt%) and add a sum of alkali constraint with an upper limit of 19.3 wt% ({Sigma}M{sub 2}O < 19.3 wt%), or (2) adjust the lower limit on the Al{sub 2}O{sub 3} constraint to 4 wt% (Al{sub 2}O{sub 3} {ge} 4 wt%). Herman et al. previously demonstrated that these criteria could be used to replace the homogeneity constraint for future sludge-only batches. The compositional region encompassing coupled operations flowsheets could not be bounded as these flowsheets were unknown at the time. With the initiation of coupled operations at DWPF in 2008, the need to revisit the homogeneity constraint was realized. This constraint was specifically addressed through the variability study for SB5 where it was shown that the homogeneity constraint could be ignored if the alumina and alkali constraints were imposed. Additional benefit could be gained if the homogeneity constraint could be replaced by the Al{sub 2}O{sub 3} and sum of alkali constraint for future coupled operations processing based on projections from Revision 14 of the High Level Waste (HLW) System Plan. As with the first phase of testing for sludge-only operations, replacement of the homogeneity constraint with the alumina and sum of alkali constraints will ensure acceptable product durability over the compositional region evaluated. Although these study glasses only provide limited data in a large compositional region, the approach and results are consistent with previous studies that challenged the homogeneity constraint for sludge-only operations. That is, minimal benefit is gained by imposing the homogeneity constraint if the other PCCS constraints are satisfied. The normalized boron releases of all of the glasses are well below the Environmental Assessment (EA) glass results, regardless of thermal history. Although one of the glasses had a normalized boron release of approximately 10 g/L and was not predictable, the glass is still considered acceptable. This particular glass has a low Al{sub 2}O{sub 3} concentration, which may have attributed to the anomalous behavior. Given that poor durability has been previously observed in other glasses with low Al{sub 2}O{sub 3} and Fe{sub 2}O{sub 3} concentrations, including the sludge-only reduction of constraints study, further investigations appear to be warranted. Based on the results of this study, it is recommended that the homogeneity constraint (in its entirety with the associated low frit/high frit constraints) be eliminated for coupled operations as defined by Revision 14 of the HLW System Plan with up to 2 wt% TiO{sub 2}. The use of the alumina and sum of alkali constraints should be continued along with the variability study to determine the predictability of the current durability models and/or that the glasses are acceptable with respect to durability. The use of a variability study for each batch is consistent with the glass product control program and it will help to assess new streams or compositional changes. It is also recommended that the influence of alumina and alkali on durability be studied in greater detail. Limited data suggests that there may be a need to adjust the lower Al{sub 2}O{sub 3} limit and/or the upper alkali limit in order to prevent the fabrication of unacceptable glasses. An in-depth evaluation of all previous data as well as any new data would help to better define an alumina and alkali combination that would avoid potential phase separation and ensure glass durability.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Madhukar, M. S.; Martovetsky, N. N.
Large superconducting electromagnets used in fusion reactors utilize a large amount of glass/epoxy composite for electrical insulation and mechanical and thermal strengths. Moreover, the manufacture of these magnets involves wrapping each superconducting cable bundle with dry glass cloth followed by the vacuum-assisted resin transfer molding of the entire magnet. Due to their enormous size (more than 100 tons), it requires more than 40 h for resin impregnation and the subsequent pressure cycles to ensure complete impregnation and removal of any trapped air pockets. Diglycidyl ether of bisphenol F epoxy resin cross-linked with methyltetrahydrophthalic anhydride with an accelerator has been shownmore » to be a good candidate for use in composite parts requiring long impregnation cycles. Viscosity, gel time, and glass transition temperature of four resin-blends of diglycidyl ether of bisphenol F resin system were monitored as a function of time and temperature with an objective to find the blend that provides a working window longer than 40h at low viscosity without lowering its glass transition temperature. A resin-blend in the weight ratios of resin:hardener:accelerator=100:82:0.125 is shown to provide more than 60h at low resin viscosity while maintaining the same glass transition temperature as obtained with previously used resin-blends, based on the results.« less
Tough and deformable glasses with bioinspired cross-ply architectures.
Yin, Zhen; Dastjerdi, Ahmad; Barthelat, Francois
2018-05-15
Glasses are optically transparent, hard materials that have been in sustained demand and usage in architectural windows, optical devices, electronics and solar panels. Despite their outstanding optical qualities and durability, their brittleness and low resistance to impact still limits wider applications. Here we present new laminated glass designs that contain toughening cross-ply architectures inspired from fish scales and arthropod cuticles. This seemingly minor enrichment completely transforms the way laminated glass deforms and fractures, and it turns a traditionally brittle material into a stretchy and tough material with little impact on surface hardness and optical quality. Large ply rotation propagates over large volumes, and localization is delayed in tension, even if a strain softening interlayer is used, in a remarkable mechanism which is generated by the kinematics of the plies and geometrical hardening. Compared to traditional laminated glass which degrades significantly in performance when damaged, our cross-ply architecture glass is damage-tolerant and 50 times tougher in energy terms. Despite the outstanding optical qualities and durability of glass, its brittleness and low resistance to impact still limits its wider application. Here we present new laminated glass designs that contain toughening cross-ply architectures inspired from fish scales and arthropod cuticles. Enriching laminated designs with crossplies completely transforms the material deforms and fractures, and turns a traditionally brittle material into a stretchy and tough material - with little impact on surface hardness and optical quality. Large ply rotation propagates over large volumes and localization is delayed in tension because of a remarkable and unexpected geometrical hardening effect. Compared to traditional laminated glass which degrades significantly in performance when damaged, our cross-ply architecture glass is damage-tolerant and it is 50 times tougher in energy terms. Our glass-based, transparent material is highly innovative and it is the first of its kind. We believe it will have impact in broad range of applications in construction, coatings, chemical engineering, electronics, photovoltaics. Copyright © 2018. Published by Elsevier Ltd.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Berland, Brian; Hollingsworth, Russell
Five Quads of energy are lost through windows annually in the U.S. Low-e coatings are increasingly employed to reduce the wasted energy. Most commonly, the low-e coating is an oxide material applied directly to the glass at high temperature. With over 100,000,000 existing homes, a retrofit product is crucial to achieve widespread energy savings. Low-e films, i.e. coatings on polymeric substrates, are now also available to meet this need. However, the traditional oxide materials and process is incompatible with low temperature plastics. Alternate high performing low-e films typically incorporate materials that limit visible transmission to 35% or less. Further, themore » cost is high. The objective of this award was to develop a retrofit, integrated low-e/electrochromic window film to dramatically reduce energy lost through windows. While field testing of state-of-the-art electrochromic (EC) windows show the energy savings are maximized if a low-e coating is used in conjunction with the EC, available low-e films have a low visible transmission (~70% or less) that limits the achievable clear state and therefore, appearance and energy savings potential. Comprehensive energy savings models were completed at Lawrence Berkeley National Lab (LBNL). A parametric approach was used to project energy usage for windows with a large range of low-e properties across all U.S. climate zones, without limiting the study to materials that had already been produced commercially or made in a lab. The model enables projection of energy savings for low-e films as well as integrated low-e/EC products. This project developed a novel low-e film, optimized for compatibility with EC windows, using low temperature, high deposition rate processes for the growth of low-e coatings on plastic films by microwave plasma enhanced chemical vapor deposition. Silica films with good density and optical properties were demonstrated at deposition rates as high as 130Å/sec. A simple bi-layer low-e stack of silica and a transparent conductive oxide demonstrated 90% visible transmission with high thermal infrared reflectivity characteristic of conventional low-e coatings. A slightly more complex stack provided high solar infrared reflection without sacrificing visible transmission or thermal infrared reflection. Successful completion of the effort produced a prototype integrated low-e, dynamic window film with characterized energy saving potential. Cost modeling for the passive bi-layer, low-e film projects a manufacturing cost of ~$0.50/ft2 for a plant with 10M ft2/yr capacity. The novel thin film processes developed here enable high deposition rate (low cost), optical quality oxide coatings at low temperatures. When combined with engineered materials, ITN’s coating will result in low-cost, low-e films that reflect a high degree of infrared radiation without substantially reducing the visible transmission. The resultant window film will improve the U-value and achieve SHGC improvements over bare glass. The new low-e coating will be particularly attractive when combined with an electrochromic film. Low-e coating design guided by energy savings modeling allows customization of the product for different climate zones.« less
4. EXTERIOR OF SOUTH END OF BUILDING 103 SHOWING 1LIGHT ...
4. EXTERIOR OF SOUTH END OF BUILDING 103 SHOWING 1-LIGHT SIDE EXIT DOOR AND ORIGINAL WOOD-FRAMED SLIDING GLASS KITCHEN WINDOWS AT PHOTO LEFT, CRISS-CROSS WOOD BALUSTRADE AROUND FRONT PORCH WITH OPEN DOOWAY TO BASEMENT BENEATH, AND STONE FACING ALONG ORIGINAL PORTION OF HOUSE FRONT AT PHOTO RIGHT. VIEW TO WEST. - Rush Creek Hydroelectric System, Worker Cottage, Rush Creek, June Lake, Mono County, CA
Electroactive Reactive Oligomers and Polymers as Device Components
2009-02-03
promise to impact the development of reflective and transmissive color-changing systems spanning ’smart’ polyclu’omic glassing technologies and e-papers...mediated cross-coupling reactions. While the first substitution is expected to have the largest impact on the energy gap of the donor-acceptor system, a...transmissive device applications, it is expected that processable black to transmissive analogues will impact the development of EC windows, e- papers and
NASA Astrophysics Data System (ADS)
Katase, Takayoshi; Onozato, Takaki; Hirono, Misako; Mizuno, Taku; Ohta, Hiromichi
2016-05-01
Proton and hydroxyl ion play an essential role for tuning functionality of oxides because their electronic state can be controlled by modifying oxygen off-stoichiometry and/or protonation. Tungsten trioxide (WO3), a well-known electrochromic (EC) material for smart window, is a wide bandgap insulator, whereas it becomes a metallic conductor HxWO3 by protonation. Although one can utilize electrochromism together with metal-insulator (MI) switching for one device, such EC-MI switching cannot be utilized in current EC devices because of their two-terminal structure with parallel-plate configuration. Here we demonstrate a transparent EC-MI switchable device with three-terminal TFT-type structure using amorphous (a-) WO3 channel layer, which was fabricated on glass substrate at room temperature. We used water-infiltrated nano-porous glass, CAN (calcium aluminate with nano-pores), as a liquid-leakage-free solid gate insulator. At virgin state, the device was fully transparent in the visible-light region. For positive gate voltage, the active channel became dark blue, and electrical resistivity of the a-WO3 layer drastically decreased with protonation. For negative gate voltage, deprotonation occurred and the active channel returned to transparent insulator. Good cycleability of the present transparent EC-MI switching device would have potential for the development of advanced smart windows.
High-Performance CuInS 2 Quantum Dot Laminated Glass Luminescent Solar Concentrators for Windows
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bergren, Matthew R.; Makarov, Nikolay S.; Ramasamy, Karthik
Building-integrated sunlight harvesting utilizing laminated glass luminescent solar concentrators (LSCs) is proposed. By incorporating high quantum yield (>90%), NIR-emitting CuInS2/ZnS quantum dots into the polymer interlayer between two sheets of low-iron float glass, a record optical efficiency of 8.1% is demonstrated for a 10 cm x 10 cm device that transmits ~44% visible light. After completing prototypes by attaching silicon solar cells along the perimeter of the device, the electrical power conversion efficiency was certified at 2.2% with a black background and at 2.9% using a reflective substrate. This 'drop-in' LSC solution is particularly attractive because it fits within themore » existing glazing industry value chain with only modest changes to typical glazing products. Performance modeling predicts >1 GWh annual electricity production for a typical urban skyscraper in most major U.S. cities, enabling significant energy cost savings and potentially 'net-zero' buildings.« less
Surface Inspection Tool for Optical Detection of Surface Defects
NASA Technical Reports Server (NTRS)
Nurge, Mark; Youngquist, Robert; Dyer, Dustin
2013-01-01
The Space Shuttle Orbiter windows were damaged both by micrometeor impacts and by handling, and required careful inspection before they could be reused. The launch commit criteria required that no defect be deeper than a critical depth. The shuttle program used a refocus microscope to perform a quick pass/fail determination, and then followed up with mold impressions to better quantify any defect. However, the refocus microscope is slow and tedious to use due to its limited field of view, only focusing on one small area of glass at a time. Additionally, the unit is bulky and unable to be used in areas with tight access, such as defects near the window frame or on the glass inside the Orbiter due to interference with the dashboard. The surface inspection tool is a low-profile handheld instrument that provides two digital video images on a computer for monitoring surface defects. The first image is a wide-angle view to assist the user in locating defects. The second provides an enlarged view of a defect centered in the window of the first image. The focus is adjustable for each of the images. However, the enlarged view was designed to have a focal plane with a short depth. This allows the user to get a feel for the depth of different parts of the defect under inspection as the focus control is varied. A light source is also provided to illuminate the defect, precluding the need for separate lighting tools. The software provides many controls to adjust image quality, along with the ability to zoom digitally the images and to capture and store them for later processing.
Johnson, J A; Fusaro, R M
1992-01-01
Since window glass absorbs sunlight below 320 nm, it provides a means of assessing sensitivity to longer wavelengths, i.e. UVA and visible radiation. Positive responses to the query of whether symptoms develop in the auto with the windows up must now be interpreted with regard to the possible presence of tinted plastic film on side and rear windows. These films block nearly all UVA radiation, as does the plastic interleaf of windshields. Thus, occupants of an auto equipped with plastic film receive photoprotection from UVB radiation and well into the UVA region. We define three classes of topical sunscreens: (1) conventional UVB screens, (2) broad-spectrum preparations containing a UVB screen and a UVA absorber and (3) browning agents such as dihydroxyacetone (DHA) that produce a skin coloration that absorbs in the low end of the visible region, with overlap into long-wavelength UVA. By considering responses of photosensitive persons in autos with tinted or untinted windows, coupled with efficacy of appropriate sunscreens, we produced an algorithm defining three photosensitivity subsets. Persons sensitive to long-wavelength UVA and/or visible radiation will benefit from tinted auto windows. In particular, patients with lupus erythematosus (LE) have actively promoted legislation allowing tinted windows. Support for their position is documented by recent reports of induction of lesions in LE patients by exposure to UVA and visible radiation. The brown color produced by DHA is a useful adjunct to the screening action of broad-spectrum sunscreens. Development of a durable color overnight allows application of the DHA preparation in the evening, thus eliminating possible interference with sunscreen use during the day.
Understanding the mechanisms of Si-K-Ca glass alteration using silicon isotopes
NASA Astrophysics Data System (ADS)
Verney-Carron, Aurélie; Sessegolo, Loryelle; Saheb, Mandana; Valle, Nathalie; Ausset, Patrick; Losno, Rémi; Mangin, Denis; Lombardo, Tiziana; Chabas, Anne; Loisel, Claudine
2017-04-01
It is important to understand glass alteration mechanisms and to determine their associated kinetics in order to develop models able to predict the alteration of nuclear, basaltic or archaeological glasses. Recent studies revealed that the respective contributions of diffusion, dissolution, condensation and precipitation processes in alteration are still a matter for debate. In this work, the alteration of a medieval-type glass (Si-K-Ca) was investigated as it presents a specific composition (without B and with low Al). Experiments were performed using a dynamic device, at 30 °C, at pH 8 and 9 and during 1 month in order to simulate alteration in contact with water (rainfall or condensation). The solution was doped in 29Si to discriminate between the silicon from glass (mainly 28Si) and from solution. The results showed that the external region of the alteration layer is devoid of modifier cations (K, Ca) and presents a 29Si/28Si ratio close to the solution one. This excludes that the alteration layer is a glass skeleton and highlights a progressive hydrolysis/condensation process, even if non-hydrolyzed silica tetrahedra could remain when the Si isotopic equilibrium is not reached. The internal zone appears to be gradually depleted in modifier cations and partly enriched in 29Si, but the thickness of this zone is overestimated using SEM-EDS and SIMS techniques. Even if in these experiments the dissolution mechanism is favored, the contribution of interdiffusion cannot be neglected to explain the weathering of ancient stained glassed windows in the atmosphere. The respective contribution of diffusion and dissolution are also discussed as a function of glass composition and surface texture, as well as of experimental conditions (alkaline pH, renewal of the solution).
Reda, Ibrahim; Andreas, Afshin; Dooraghi, Mike; ...
2017-01-13
Shortwave radiometers such as pyranometers, pyrheliometers, and photovoltaic cells are calibrated with traceability to consensus reference, maintained by Absolute Cavity Radiometers (ACRs). The ACR is an open cavity with no window, and measures the extended broadband spectrum of the terrestrial direct solar beam irradiance, unlike shortwave radiometers that cover a limited range of the spectrum. The difference between the two spectral ranges may lead to calibration bias that can exceed 1%. This paper describes a method to reduce the calibration bias resulting from using broadband ACRs to calibrate shortwave radiometers, by using an ACR with Schott glass window to measuremore » the reference broadband shortwave irradiance in the terrestrial direct solar beam from 0.3 um to 3 um.« less
Research and development of CdTe based thin film PV solar cells
NASA Astrophysics Data System (ADS)
Diso, Dahiru Garba
The motivation behind this research is to bring cheap, low-cost and clean energy technologies to the society. Colossal use of fossil fuel has created noticeable pollution problems contributing to climate change and health hazards. Silicon based solar cells have dominated the market but it is cost is high due to the manufacturing process. Therefore, the way forward is to develop thin films solar cells using low-cost attractive materials, grown by cheaper, scalable and manufacturable techniques.The aim and objectives of this work is to develop low-cost, high efficiency solar cell using electrodeposition (ED) technique. The material layers include CdS and ZnTe as the window materials, while the absorber material is CdTe. Fabricating a suitable devices for solar energy conversion (i.e. glass/conducting glass/window material/absorber material/metal) structure. Traditional way of fabricating this structure is to grow window material (CdS) using chemical bath deposition (CBD) and absorber material (CdTe) using electrodeposition. However, CBD is a batch process and therefore creates large volumes of Cd-containing waste solutions each time adding high cost in manufacturing process. This research programme is therefore on development of an "All ED-solar cells" structure.Material studies were carried out using photoelectrochemical (PEC) studies, UV-Vis spectrophotometry, X-ray diffraction (XRD), X-ray fluorescence (XRF), scanning electron microscopy (SEM), atomic force microscopy (AFM), Raman spectroscopy and X-ray photoelectron spectroscopy (XPS). Furthermore, the electrical characterisation of fully fabricated devices was performed using current-voltage (I-V) and capacitance-voltage (C-V) measurements.This research programme has demonstrated that CdS and ZnTe window materials can be electrodeposited and used in thin film solar cell devices. The CdS electrolytic bath can be used for a period of 7 months without discarding it like in the CBD process which usually has life-time of 2-3 days. Further work should be carried out to increase the life-time of this bath, so that there can be used continuously minimising waste solution production in a manufacturing line.An efficiencies showing up to 7% was achieved for complete devices. However, the consistency and reproducibility remains un-resolved due to production of efficiencies between (2 - 7)% efficient devices varying from batch to batch. One of the reasons has been identified as the growth of CdS nano-rods with spacing between them. This is the first observation of CdS nano-rods and could open up many applications in nanodevices area. In order to improve the consistency of the solar cell efficiency, CdS layers should be grown with nano-rods aligned perpendicular to the glass surface and with tight packing without gaps, or with uniform coverage of CdS over the conducting glass surface.The possibility of growth of CdTe absorber layers with n- and p-type electrical conduction using change of stoichiometry was confirmed using the results presented in this thesis. This is a key finding, important to form multi-layer solar cell structures in the future.
Li, Xinjian; Cao, Vania Y; Zhang, Wenyu; Mastwal, Surjeet S; Liu, Qing; Otte, Stephani; Wang, Kuan Hong
2017-11-01
In vivo optical imaging of neural activity provides important insights into brain functions at the single-cell level. Cranial windows and virally delivered calcium indicators are commonly used for imaging cortical activity through two-photon microscopes in head-fixed animals. Recently, head-mounted one-photon microscopes have been developed for freely behaving animals. However, minimizing tissue damage from the virus injection procedure and maintaining window clarity for imaging can be technically challenging. We used a wide-diameter glass pipette at the cortical surface for infusing the viral calcium reporter AAV-GCaMP6 into the cortex. After infusion, the scalp skin over the implanted optical window was sutured to facilitate postoperative recovery. The sutured scalp was removed approximately two weeks later and a miniature microscope was attached above the window to image neuronal activity in freely moving mice. We found that cortical surface virus infusion efficiently labeled neurons in superficial layers, and scalp skin suturing helped to maintain the long-term clarity of optical windows. As a result, several hundred neurons could be recorded in freely moving animals. Compared to intracortical virus injection and open-scalp postoperative recovery, our methods minimized tissue damage and dura overgrowth underneath the optical window, and significantly increased the experimental success rate and the yield of identified neurons. Our improved cranial surgery technique allows for high-yield calcium imaging of cortical neurons with head-mounted microscopes in freely behaving animals. This technique may be beneficial for other optical applications such as two-photon microscopy, multi-site imaging, and optogenetic modulation. Published by Elsevier B.V.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Raszewski, F; Tommy Edwards, T; David Peeler, D
The Liquid Waste Organization (LWO) has requested that the Savannah River National Laboratory (SRNL) to assess the impact of a 100K gallon decant volume from Tank 40H on the existing sludge-only Sludge Batch 4 (SB4)-Frit 510 flowsheet and the coupled operations flowsheet (SB4 with the Actinide Removal Process (ARP)). Another potential SB4 flowsheet modification of interest includes the addition of 3 wt% sodium (on a calcined oxide basis) to a decanted sludge-only or coupled operations flowsheet. These potential SB4 flowsheet modifications could result in significant compositional shifts to the SB4 system. This paper study provides an assessment of the impactmore » of these compositional changes to the projected glass operating windows and to the variability study for the Frit 510-SB4 system. The influence of the compositional changes on melt rate was not assessed in this study nor was it requested. Nominal Stage paper study assessments were completed using the projected compositions for the various flowsheet options coupled with Frit 510 (i.e., variation was not applied to the sludge and frit compositions). In order to gain insight into the impacts of sludge variation and/or frit variation (due to the procurement specifications) on the projected operating windows, three versions of the Variation Stage assessment were performed: (1) the traditional Variation Stage assessment in which the nominal Frit 510 composition was coupled with the extreme vertices (EVs) of each sludge, (2) an assessment of the impact of possible frit variation (within the accepted frit specification tolerances) on each nominal SB4 option, and (3) an assessment of the impact of possible variation in the Frit 510 composition due to the vendor's acceptance specifications coupled with the EVs of each sludge case. The results of the Nominal Stage assessment indicate very little difference among the various flowsheet options. All of the flowsheets provide DWPF with the possibility of targeting waste loadings (WLs) from the low 30s to the low 40s with Frit 510. In general, the Tank 40H decant has a slight negative impact on the operating window, but DWPF still has the ability to target current WLs (34%) and higher WLs if needed. While the decant does not affect practical WL targets in DWPF, melt rate could be reduced due to the lower Na{sub 2}O content. If true, the addition of 3 wt% Na{sub 2}O to the glass system may regain melt rate, assuming that the source of alkali is independent of the impact on melt rate. Coupled operations with Frit 510 via the addition of ARP to the decanted SB4 flowsheet also appears to be viable based on the projected operating windows. The addition of both ARP and 3 wt% Na{sub 2}O to a decanted Tank 40H sludge may be problematic using Frit 510. Although the Nominal Stage assessments provide reasonable operating windows for the SB4 flowsheets being considered with Frit 510, introduction of potential sludge and/or frit compositional variation does have a negative impact. The magnitude of the impact on the projected operating windows is dependent on the specific flowsheet options as well as the applied variation. The results of the traditional Variation Stage assessments indicate that the three proposed Tank 40H decanted flowsheet options (Case No.2--100K gallon decant, Case No.3--100K gallon decant and 3 wt% Na{sub 2}O addition and Case No.4--100K gallon decant and ARP) demonstrate a relatively high degree of robustness to possible sludge variation over WLs of interest with Frit 510. However, the case where the addition of both ARP and 3 wt% Na{sub 2}O is considered was problematic during the traditional Variation Stage assessment. The impact of coupling the frit specifications with the nominal SB4 flowsheet options on the projected operating windows is highly dependent on whether the upper WLs are low viscosity or liquidus temperature limited in the Nominal Stage assessments. Systems that are liquidus temperature limited exhibit a high degree of robustness to the applied frit and sludge variation, while those that are low viscosity limited show significant reductions (6 percentage points) in the upper WLs that can be obtained. When both frit and sludge variations are applied, the paper study results indicate that DWPF could be severely restricted in terms of projected operating windows for the ARP and Na{sub 2}O addition options. An experimental variability study was not performed using the final SB4 composition and Frit 510 since glasses in the ComPro{trademark} data base were identified that bounded the potential operating window of this system. The bounding ARP case was not considered in that assessment. After the flowsheet cases were identified, an electronic search of ComPro{trademark} identified approximately 12 historical glasses within the compositional regions defined by at least one of the five flowsheet options, but the compositional coverage did not appear adequate to bound all cases.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dameron, Arrelaine
During the duration of this CRADA, V-Glass and NREL will partner in testing, analysis, performance forecasting, costing, and evaluation of V-Glass’s GRIPWELD™ process technology for creating a low cost hermetic seal for conventional and vacuum glazing. Upon successful evaluation of hermeticity, V-Glass’s GRIPWELD™ will be evaluated for its potential use in highly insulating window glazing.
Expedition 23 State Commission
2010-03-31
Expedition 23 prime and backup crew members, from left, NASA's Tracy Caldwell Dyson, Russian Aleksander Skvortsov, Russian Mikhail Kornienko, NASA's Scott Kelly, Russian Alexander Samokutyayev, and Russian Andrei Borisenko are seen during the State Commission meeting to approve the Soyuz launch of Caldwell Dyson, Skvortsov and Kornienko, Thursday, April 1, 2010 in Baikonur, Kazakhstan. The crew is kept in a separate room with a glass window in order to help maintain their health. Photo Credit: (NASA/Bill Ingalls)
USSR Report, Construction and Related Industries, No. 99
1983-11-10
been created and is continuing to be developed in our republic. Many types of contruction materials and products have been delivered to us in large...grade wood with excess moisture content. Most of the window and door frames are delivered unpainted, without glass, and without installation of...reinforced concrete is placed with the aid of cranes, and about 80 percent of concrete work is done with the aid of wood casings. With such
Expedition 21 State Commission
2009-09-28
Spaceflight Participant Guy Laliberté, left, and Expedition 21 Flight Engineer Maxim Suraev smile and laugh during the State Commission meeting to approve the Soyuz launch of Expedition 21 Flight Engineer Jeffrey N. Williams, Expedition 21 Flight Engineer Maxim Suraev, and Spaceflight Participant Guy Laliberté on Tuesday, Sept. 29, 2009 in Baikonur, Kazakhstan. The crew is kept in a separate room with a glass window in order to help maintain their health. Photo Credit: (NASA/Bill Ingalls)
Integration of CW / Radionucleotide Detection Systems to the Fido XT Explosives Detector
2008-07-31
explosives detected by the Fido XT. Additionally, a platform for centralized storage and processing of Fido XT data files collected in house, targeted...fused silica glass wool (obtained from Restek). The fluorescent signal was easily washed out of the flow cell by a nominal amount of buffer...detector with supporting NRE was processed . The Interceptor components were configured to operate under a Windows CE processor environment, and to
Radiological analysis of plutonium glass batches with natural/enriched boron
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rainisch, R.
2000-06-22
The disposition of surplus plutonium inventories by the US Department of Energy (DOE) includes the immobilization of certain plutonium materials in a borosilicate glass matrix, also referred to as vitrification. This paper addresses source terms of plutonium masses immobilized in a borosilicate glass matrix where the glass components include both natural boron and enriched boron. The calculated source terms pertain to neutron and gamma source strength (particles per second), and source spectrum changes. The calculated source terms corresponding to natural boron and enriched boron are compared to determine the benefits (decrease in radiation source terms) for to the use ofmore » enriched boron. The analysis of plutonium glass source terms shows that a large component of the neutron source terms is due to (a, n) reactions. The Americium-241 and plutonium present in the glass emit alpha particles (a). These alpha particles interact with low-Z nuclides like B-11, B-10, and O-17 in the glass to produce neutrons. The low-Z nuclides are referred to as target particles. The reference glass contains 9.4 wt percent B{sub 2}O{sub 3}. Boron-11 was found to strongly support the (a, n) reactions in the glass matrix. B-11 has a natural abundance of over 80 percent. The (a, n) reaction rates for B-10 are lower than for B-11 and the analysis shows that the plutonium glass neutron source terms can be reduced by artificially enriching natural boron with B-10. The natural abundance of B-10 is 19.9 percent. Boron enriched to 96-wt percent B-10 or above can be obtained commercially. Since lower source terms imply lower dose rates to radiation workers handling the plutonium glass materials, it is important to know the achievable decrease in source terms as a result of boron enrichment. Plutonium materials are normally handled in glove boxes with shielded glass windows and the work entails both extremity and whole-body exposures. Lowering the source terms of the plutonium batches will make the handling of these materials less difficult and will reduce radiation exposure to operating workers.« less
Characterization of ZnBr2 solution as a liquid radiation shield for mobile hot cell window
NASA Astrophysics Data System (ADS)
Bahrin, Muhammad Hannan; Ahmad, Megat Harun Al Rashid Megat; Hasan, Hasni; Rahman, Anwar Abdul; Azman, Azraf; Hassan, Mohd Zaid; Mamat, Mohd Rizal B.; Muhamad, Shalina Sheikh; Hamzah, Mohd Arif; Jamro, Rafhayudi; Wo, Yii Mei; Hamssin, Nurliyana
2017-01-01
The Mobile Hot Cell (MHC) has a viewing window which is usually made of almost transparent radiation shield material for the safety of MHC operators. Mobility is the main criterion for MHC; therefore liquid solution that can act as a radiation shield is usually selected as the window for MHC due to ease of transportation instead of a solid glass. As reported, Zinc Bromide (ZnBr2) solution was successfully used in viewing window for MHCs in South Africa and China. It was chosen due to its transparent solution, excellent performance as radiation shielding for gamma radiation, ease in preparation, handling, storage and treatment. Nevertheless, data and baseline studies on ZnBr2 as radiation shield are quite few. Therefore, a study on this matter was carried out. The preparation of ZnBr2 solution was processed at laboratory scale and the radiation shielding experiments were carried out using Cs-137 as radiation source. ZnBr2 solution was prepared by mixing ZnBr2 powder with distilled water. The mixing percentage of ZnBr2 powder, (%wt.) was varied to study the effect of density on the attenuation coefficient. The findings from this study will be used as a guideline in the production and management of ZnBr2 solution for MHC applications.
Adhesion characteristics of VO2 ink film sintered by intense pulsed light for smart window
NASA Astrophysics Data System (ADS)
Youn, Ji Won; Lee, Seok-Jae; Kim, Kwang-Seok; Kim, Dae Up
2018-05-01
Progress in the development of energy-efficient coatings on glass has led to the research of smart windows that can modulate solar energy in response to an external stimulus like light, heat, or electricity. Thermochromic smart windows have attracted great interest because they provide highly visible transparency and intelligently controllable solar heat. VO2 has been widely used as coating material for thermochromism owing to its reversible metal-to-insulator transition near room temperature. However, unstable crystalline phases and expensive fabrication processes of VO2 films limit their facile application in smart windows. To overcome these restrictions, we manufactured nanoinks based on VO2 nanoparticles and fabricated films using spin coating and intense pulsed light (IPL) sintering on a quartz substrate. We examined adhesion between the VO2 nanoink films and the quartz substrate by varying the applied voltages and the number of pulses. The average adhesion of thin films increased to 83 and 108 N/m as the applied voltage during IPL sintering increased from 1400 to 2000 V. By increasing the number of pulses from 5 to 20, the adhesive strength increased from 83 to 94 N/m at 1400 V, and decreased from 108 to 96 N/m at 2000 V voltage.
NASA Astrophysics Data System (ADS)
Oelze, Michael L.; O'Brien, William D.
2004-11-01
Backscattered rf signals used to construct conventional ultrasound B-mode images contain frequency-dependent information that can be examined through the backscattered power spectrum. The backscattered power spectrum is found by taking the magnitude squared of the Fourier transform of a gated time segment corresponding to a region in the scattering volume. When a time segment is gated, the edges of the gated regions change the frequency content of the backscattered power spectrum due to truncating of the waveform. Tapered windows, like the Hanning window, and longer gate lengths reduce the relative contribution of the gate-edge effects. A new gate-edge correction factor was developed that partially accounted for the edge effects. The gate-edge correction factor gave more accurate estimates of scatterer properties at small gate lengths compared to conventional windowing functions. The gate-edge correction factor gave estimates of scatterer properties within 5% of actual values at very small gate lengths (less than 5 spatial pulse lengths) in both simulations and from measurements on glass-bead phantoms. While the gate-edge correction factor gave higher accuracy of estimates at smaller gate lengths, the precision of estimates was not improved at small gate lengths over conventional windowing functions. .
DGEBF epoxy blends for use in the resin impregnation of extremely large composite parts
Madhukar, M. S.; Martovetsky, N. N.
2015-01-16
Large superconducting electromagnets used in fusion reactors utilize a large amount of glass/epoxy composite for electrical insulation and mechanical and thermal strengths. Moreover, the manufacture of these magnets involves wrapping each superconducting cable bundle with dry glass cloth followed by the vacuum-assisted resin transfer molding of the entire magnet. Due to their enormous size (more than 100 tons), it requires more than 40 h for resin impregnation and the subsequent pressure cycles to ensure complete impregnation and removal of any trapped air pockets. Diglycidyl ether of bisphenol F epoxy resin cross-linked with methyltetrahydrophthalic anhydride with an accelerator has been shownmore » to be a good candidate for use in composite parts requiring long impregnation cycles. Viscosity, gel time, and glass transition temperature of four resin-blends of diglycidyl ether of bisphenol F resin system were monitored as a function of time and temperature with an objective to find the blend that provides a working window longer than 40h at low viscosity without lowering its glass transition temperature. A resin-blend in the weight ratios of resin:hardener:accelerator=100:82:0.125 is shown to provide more than 60h at low resin viscosity while maintaining the same glass transition temperature as obtained with previously used resin-blends, based on the results.« less
Strength analysis of welded corners of PVC window profiles
NASA Astrophysics Data System (ADS)
Postawa, P.; Stachowiak, T.; Gnatowski, A.
2017-08-01
The article presents the results of researches which main purpose was to define the influence of welding parameters on strength of welded corners of PVC window profile. PVC profiles of a branded name GENEO® produced by Rehau Company were used for this research. The profiles were made by using a co-extrusion method. The surface of the profile was made of PVC mixture with no additives. Its main task was to get a smooth surface resistant to a smudge. The use of an unfilled polyester provides an aesthetic look and improves the resistance of extrudate to water getting into inner layers. The profile's inner layers have been filled up with glass fibre in order to improve its stiffness and mechanical properties. Window frames with cut corners used for this research, were produced on technological line of EUROCOLOR Company based in Pyskowice (Poland). The main goal of this analysis was to evaluate the influence of the main welding parameter (temperature upsetting) on hardness of welds we received in whole process. A universal testing machine was used for the research.
NASA Technical Reports Server (NTRS)
2002-01-01
Dimension Technologies Inc., developed a line of 2-D/3-D Liquid Crystal Display (LCD) screens, including a 15-inch model priced at consumer levels. DTI's family of flat panel LCD displays, called the Virtual Window(TM), provide real-time 3-D images without the use of glasses, head trackers, helmets, or other viewing aids. Most of the company initial 3-D display research was funded through NASA's Small Business Innovation Research (SBIR) program. The images on DTI's displays appear to leap off the screen and hang in space. The display accepts input from computers or stereo video sources, and can be switched from 3-D to full-resolution 2-D viewing with the push of a button. The Virtual Window displays have applications in data visualization, medicine, architecture, business, real estate, entertainment, and other research, design, military, and consumer applications. Displays are currently used for computer games, protein analysis, and surgical imaging. The technology greatly benefits the medical field, as surgical simulators are helping to increase the skills of surgical residents. Virtual Window(TM) is a trademark of Dimension Technologies Inc.
NASA Astrophysics Data System (ADS)
Muller, David
2014-03-01
Even though glasses are almost ubiquitous--in our windows, on our iPhones, even on our faces--they are also mysterious. Because glasses are notoriously difficult to study, basic questions like: ``How are the atoms arranged? Where and how do glasses break?'' are still under contention. We use aberration corrected transmission electron microscopy (TEM) to image the atoms in a new two-dimensional phase of silica glass - freestanding it becomes the world's thinnest pane of glass at only 3-atoms thick, and take a unique look into these questions. Using atom-by-atom imaging and spectroscopy, we are able to reconstruct the full structure and bonding of this 2D glass and identify it as a bi-tetrahedral layer of SiO2. Our images also strikingly resemble Zachariasen's original cartoon models of glasses, drawn in 1932. As such, our work realizes an 80-year-old vision for easily understandable glassy systems and introduces promising methods to test theoretical predictions against experimental data. We image atoms in the disordered solid and track their motions in response to local strain. We directly obtain ring statistics and pair distribution functions that span short-, medium-, and long-range order, and test these against long-standing theoretical predictions of glass structure and dynamics. We use the electron beam to excite atomic rearrangements, producing surprisingly rich and beautiful videos of how a glass bends and breaks, as well as the exchange of atoms at a solid/liquid interface. Detailed analyses of these videos reveal a complex dance of elastic and plastic deformations, phase transitions, and their interplay. These examples illustrate the wide-ranging and fundamental materials physics that can now be studied at atomic-resolution via transmission electron microscopy of two-dimensional glasses. Work in collaboration with: S. Kurasch, U. Kaiser, R. Hovden, Q. Mao, J. Kotakoski, J. S. Alden, A. Shekhawat, A. A. Alemi, J. P. Sethna, P. L. McEuen, A.V. Krasheninnikov, A. Srivastava, V. Skakalova, J. C. Meyer, and J.H. Smet. This work was supported by the NSF through the Cornell Center for Materials Research (NSF DMR-1120296).
NASA Astrophysics Data System (ADS)
Takahashi, D.; Sawaki, S.; Mu, R.-L.
2016-06-01
A new method for improving the sound insulation performance of double-glazed windows is proposed. This technique uses viscoelastic materials as connectors between the two glass panels to ensure that the appropriate spacing is maintained. An analytical model that makes it possible to discuss the effects of spacing, contact area, and viscoelastic properties of the connectors on the performance in terms of sound insulation is developed. The validity of the model is verified by comparing its results with measured data. The numerical experiments using this analytical model showed the importance of the ability of the connectors to achieve the appropriate spacing and their viscoelastic properties, both of which are necessary for improving the sound insulation performance. In addition, it was shown that the most effective factor is damping: the stronger the damping, the more the insulation performance increases.
NASA Technical Reports Server (NTRS)
1989-01-01
A new class of polyimides, synthesized by Langley Research Center, has been evaluated by the Getty Conservation Institute's Materials Science Group for possible art conservation applications. Polyimides are noted for resistance to high temperature, wear and radiation. They are thermally stable and soluble in some common solvents. After testing under simulated exposures for changes in color, permeability and flexibility, one coating, ODPA-3, 3-ODA may be used to protect bronze statues from corrosion. A test on stained glass windows was unsuccessful.
2010-05-01
Cadet Area. Aluminum would be 35 used on all columns , beam cladding, and window frame trim to provide a visual connection 36 FINAL EA – USAFA INDOOR...and intramural sports played at the Academy. 17 The facility exterior would be white precast concrete, blue polycarbonate, aluminum and 18 glass. The...present there provide a high degree of connectivity between habitat types and 11 maintain migration corridors. Mule deer (Odocoileus hemionus), elk
NASA Astrophysics Data System (ADS)
Khrebtov, A. A.; Fedorenko, E. V.; Reutov, V. A.
2017-11-01
In this paper we investigated polymeric luminescent compositions based on polystyrene doped with beta diketonates boron difluoride. Transparent films with effective absorption in the ultraviolet and blue regions of the spectrum were obtained. Polymeric luminescent compositions based on the mixture of dyes allow expanding the absorption region and increase the radiation shift. A luminescent solar concentrator consisting of a glass plate coated with such film can be used for photovoltaic window application.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gouveia-Neto, A. S.; Vermelho, M. V. D.; Gouveia, E. A.
2015-11-23
Generation of near-infrared light within the first biological optical window via frequency upconversion in Tm{sup 3+}-doped PbGeO{sub 3}-PbF{sub 2}-CdF{sub 2} glass excited within the second biological window at 1.319 μm is reported. The upconversion emission at 800 nm is the sole light signal observed in the entire ultraviolet-visible-near-infrared spectral region making it possible obtaining high contrast imaging. The dependence of the 800 nm signal upon the sample temperature was investigated and results showed an increase by a factor of ×2.5 in the 30–280 °C range. Generation of detectable 690 nm for temperatures above 100 °C in addition to the intense 800 nm main signal was also observed.more » The proposed excitation mechanism for the 800 nm thulium emitting level is assigned to a multiphonon-assisted excitation from the ground-state {sup 3}H{sub 6} to the {sup 3}H{sub 5} excited-state level, a rapid relaxation to the {sup 3}F{sub 4} level and followed by an excited-state absorption of the pump photons mediated by multiphonons connecting the {sup 3}F{sub 4} level to the {sup 3}H{sub 4} emitting level.« less
Desorption of SVOCs from Heated Surfaces in the Form of Ultrafine Particles.
Wallace, Lance A; Ott, Wayne R; Weschler, Charles J; Lai, Alvin C K
2017-02-07
Ultrafine particles (UFP) produced by electric heating of stoves and metal cooking pans, absent food, have been hypothesized to be created from a surface film of semivolatile organic compounds (SVOCs) sorbed from the surrounding air. This study tests that hypothesis by size-resolved measurements extending the lower range of the UFP studied from 10 to 2.3 nm, and including other surfaces (glass, aluminum, and porcelain). Heating glass Petri dishes or squares of aluminum foil to about 350-400 °C for 4-6 min removed all sorbed organic substances completely. Subsequent exposure of these "clean" Petri dishes and foil squares to indoor air in two different residences for successively longer periods (1 h to 281 days), followed by heating the materials for 4-6 min, indicated a strong relationship of the number, size distribution, and mass of the UFP to the time exposed. Estimates of the accumulation rate of SVOCs on surfaces were similar to those in studies of organic film buildup on indoor windows. Transfer of skin oils by touching the glass or foil surfaces, or after washing the glass surface with detergent and bare hands, was also observed, with measured particle production comparable with that produced by long-term exposure to indoor air.
Ion-conduction and rigidity/flexibility of glasses
NASA Astrophysics Data System (ADS)
Novita, D. I.; Boolchand, P.; Malki, M.; Micoulaut, M.
2007-03-01
The (AgI)x(AgPO3)1-x solid electrolyte glass system has been examined extensively although a consensus on the increase of electrical conductivity with x data has been elusive. Here we show that the variability of the data is likely due to water contamination. Our work is on specifically prepared dry samples which display glass transition temperatures Tg(x) that are at least 50 to 100 C higher than those reported hitherto. In Raman scattering the frequency of the P-Ot bonds in PO4 tetrahedra of long chains is found to systematically red-shift with increasing x, and to display thresholds near x= xc(1) =0.095(3)(stress-transition) and x =xc(2) = 0.379(5)(rigidity transition). Calorimetric measurements show a reversibility window in the 0.09 < x < 0.38 range. Room temperature electrical conductivity, σ(x), increases with x to display thresholds near xc(1) and xc(2), and a logarithmic increase at x> xc(2) with a power-law μ = 1.78(10) that is in good agreement with theoretical predictions^1. Properties of flexibility and rigidity of backbones commonplace in covalent systems^2 is a concept that extends to solid electrolyte glasses as well. ^1Richard Zallen, Physics of Amorphous Solids ^2 P. Boolchand et al. Phil. Mag 85, 3823 (2005)
Hyla, M
2017-12-01
Network-forming As 2 (S/Se) m nanoclusters are employed to recognize expected variations in a vicinity of some remarkable compositions in binary As-Se/S glassy systems accepted as signatures of optimally constrained intermediate topological phases in earlier temperature-modulated differential scanning calorimetry experiments. The ab initio quantum chemical calculations performed using the cation-interlinking network cluster approach show similar oscillating character in tendency to local chemical decomposition but obvious step-like behavior in preference to global phase separation on boundary chemical compounds (pure chalcogen and stoichiometric arsenic chalcogenides). The onsets of stability are defined for chalcogen-rich glasses, these being connected with As 2 Se 5 (Z = 2.29) and As 2 S 6 (Z = 2.25) nanoclusters for As-Se and As-S glasses, respectively. The physical aging effects result preferentially from global phase separation in As-S glass system due to high localization of covalent bonding and local demixing on neighboring As 2 Se m+1 and As 2 Se m-1 nanoclusters in As-Se system. These nanoclusters well explain the lower limits of reversibility windows in temperature-modulated differential scanning calorimetry, but they cannot be accepted as signatures of topological phase transitions in respect to the rigidity theory.
Tuning phase transition temperature of VO2 thin films by annealing atmosphere
NASA Astrophysics Data System (ADS)
Liu, Xingxing; Wang, Shao-Wei; Chen, Feiliang; Yu, Liming; Chen, Xiaoshuang
2015-07-01
A simple new way to tune the optical phase transition temperature of VO2 films was proposed by only controlling the pressure of oxygen during the annealing process. Vanadium films were deposited on glass by a large-scale magnetron sputtering coating system and then annealed in appropriate oxygen atmosphere to form the VO2 films. The infrared transmission change (at 2400 nm) is as high as 58% for the VO2 thin film on the glass substrate, which is very good for tuning infrared radiation and energy saving as smart windows. The phase transition temperature of the films can be easily tuned from an intrinsic temperature to 44.7 °C and 40.2 °C on glass and sapphire by annealing oxygen pressure, respectively. The mechanism is: V3+ ions form in the film when under anaerobic conditions, which can interrupt the V4+ chain and reduce the phase transition temperature. The existence of V3+ ions has been observed by x-ray photoelectron spectroscopy (XPS) experiments as proof.
Kleebusch, Enrico; Patzig, Christian; Krause, Michael; Hu, Yongfeng; Höche, Thomas; Rüssel, Christian
2018-02-13
Glass ceramics based on Li 2 O/Al 2 O 3 /SiO 2 are of high economic importance, as they often show very low coefficients of thermal expansion. This enables a number of challenging applications, such as cooktop panels, furnace windows or telescope mirror blanks. Usually, the crystallization of the desired LAS crystal phases within the glasses must be tailored by a careful choice of crystallization schedule and type of nucleation agents to be used. The present work describes the formation of nanocrystalline TiO 2 within an LAS base composition that contains solely TiO 2 as nucleating agent. Using a combination of scanning transmission electron microscopy as well as X-ray absorption spectroscopy, it is found that a mixture of four- and six-fold coordinated Ti 4+ ions exists already within the glass. Heating of the glass to 740 °C immediately changes this ratio towards a high content of six-fold coordinated Ti, which accumulates in liquid-liquid phase-separation droplets. During the course of thermal treatment, these droplets eventually evolve into nanocrystalline TiO 2 precipitations, in which Ti 4+ is six-fold coordinated. Thus, it is shown that the nucleation of nanocrystalline TiO 2 is initiated by a gradual re-arrangement of the Ti ions in the amorphous, glassy matrix, from a four-fold towards a six-fold coordination.
The thermally reversing window in ternary GexPxS1-2x glasses
NASA Astrophysics Data System (ADS)
Vempati, U.; Boolchand, P.
2004-11-01
GexPxS1-2x glasses in the compositional range 0.05 \\le x \\le 0.19 have been synthesized and examined in temperature modulated differential scanning calorimetry (MDSC) and Raman scattering experiments. Trends in the non-reversing enthalpy ΔHnr(x) near Tg show the term to almost vanish in the 0.090(5)
NASA Astrophysics Data System (ADS)
Tang, Chien-Jen; Ye, Jia-Ming; Yang, Yueh-Ting; He, Ju-Liang
2016-05-01
Electrochromic devices (ECDs) have been applied in smart windows to control the transmission of sunlight in green buildings, saving up to 40-50% electricity consumption and ultimately reducing carbon dioxide emissions. However, the high manufacturing costs and difficulty of transportation of conventional massive large area ECDs has limited widespread applications. A unique design replacing the glass substrate commonly used in the ECD windows with inexpensive, light-weight and flexible polymeric substrate materials would accelerate EC adoption allowing them to be supplemented for regular windows without altering window construction. In this study, an ITO/WO3/Nb2O5/NiVOχ/ITO all-solid-state monolithic ECD with an effective area of 24 cm × 18 cm is successfully integrated on a PET substrate by using magnetron sputter deposition. The electrochromic performance and bending durability of the resultant material are also investigated. The experimental results indicate that the ultimate response times for the prepared ECD is 6 s for coloring at an applied voltage of -3 V and 5 s for bleaching at an applied voltage of +3 V, respectively. The optical transmittances for the bleached and colored state at a wavelength of 633 nm are 53% and 11%, respectively. The prepared ECD can sustain over 8000 repeated coloring and bleaching cycles, as well as tolerate a bending radius of curvature of 7.5 cm.
The energy performance of prototype holographic glazings
NASA Astrophysics Data System (ADS)
Papamichael, K.; Beltran, L.; Furler, R.; Lee, E. S.; Selkowitz, S.; Rubin, M.
1993-02-01
We report on the simulation of the energy performance of prototype holographic glazings in commercial office buildings in a California climate. These prototype glazings, installed above conventional side windows, are designed to diffract the transmitted solar radiation and reflect it off the ceiling, providing adequate daylight illumination for typical office tasks up to 10m from the window. In this study, we experimentally determined a comprehensive set of solar-optical properties and characterized the contribution of the prototype holographic glazings to workplane illuminance in a scale model of a typical office space. We then used the scale model measurements to simulate the energy performance of the holographic glazings over the course of an entire year for four window orientations (North, East, South and West) for the inland Los Angeles climate, using the DOE-2.lD building energy analysis computer program. The results of our experimental analyses indicate that these prototype holographic glazings diffract only a small fraction of the incident light. The results of this study indicate that these prototype holographic glazings will not save energy in commercial office buildings. Their performance is very similar to that of clear glass, which, through side windows, cannot efficiently illuminate more than a 4-6 m depth of a building's perimeter, because the cooling penalties due to solar heat gain are greater than the electric lighting savings due to daylighting.
Studies on RF sputtered (WO3)1-x (V2O5)x thin films for smart window applications
NASA Astrophysics Data System (ADS)
Meenakshi, M.; Sivakumar, R.; Perumal, P.; Sanjeeviraja, C.
2016-05-01
V2O5 doped WO3 targets for RF sputtering thin film deposition were prepared for various compositions. Thin films of (WO3)1-x (V2O5)x were deposited on to glass substrates using these targets. Structural characteristics of the prepared targets and thin films were studied using X-ray diffraction. Laser Raman studies were carried out on the thin films to confirm the compound formation.
2017-12-01
description in Figure 9 below 2 Full or partial loss of test data due to instrumentation/triggering failures 3 Gages not included in these tests 4...Table 2. Sample properties. Test Description Dimensions Weight (lbs.) Strength (psi) Notes 17 Fully Tempered Glass Window 4-ft x 6-ft x...an estimate of prism strength for medium weight CMU. The reinforced concrete sample was a 5.5-in thick solid panel. To evaluate its strength
New polymeric materials for designing photoresistors and photodetective assemblies based on CdHgTe
NASA Astrophysics Data System (ADS)
Khitrova, L. M.; Troshkin, Y. S.; Belyaev, V. P.; Popovyan, G. E.; Kiseleva, L. V.
1999-06-01
In order to improve quality of photodetectors and photodetective assemblies two new cryo- and chemically resistant adhesives were developed: epoxy-silico-organic adhesive `(Phi) X-5P' and acrylic `OPHOH-2' adhesive for gluing of CdHgTe wafers to a substrate `XCK-H' vacuum-tight modified adhesive is used for attaching of inlet windows and glass holder elements. `OPUOH-65' vibration damping thixotropic composition was developed for mounting of multi- layer printed circuits.
1989-04-01
strengthened glass. These large parts will be formed in one piece using male and female molds along wit’ pressure tc form the compound curves. The various...shown conclusively that the use of polishing compounds has a detrimental effect on windows and gives rise to many of the initial scratches and embedded... compounds which are perceived to be a cause of premature crazing in service. Alternatively, if polishing is deemed necessary for cosmetic or other
DOE Office of Scientific and Technical Information (OSTI.GOV)
Va'Vra, J.
The publication of the ICFA Instrumentation Bulletin is an activity of the Panel on Future Innovation and Development of ICFA (International Committee for Future Accelerators). The Bulletin reports on research and progress in the field of instrumentation with emphasis on application in the field of high-energy physics. It encourages issues of generic instrumentation. This volume contains the following articles: (1) ''Gaseous Micropattern Detectors: High-Energy Physics and Beyond''; (2) ''DIRC Dreams Redux: Research Directions for the Next Generation of Internally Reflected Imaging Counters''; and (3) ''Corrosion of Glass Windows in DIRC PMTs''.
Microring resonator based modulator made by direct photodefinition of an electro-optic polymer
NASA Astrophysics Data System (ADS)
Balakrishnan, M.; Faccini, M.; Diemeer, M. B. J.; Klein, E. J.; Sengo, G.; Driessen, A.; Verboom, W.; Reinhoudt, D. N.
2008-04-01
A laterally coupled microring resonator was fabricated by direct photodefinition of negative photoresist SU8, containing tricyanovinylidenediphenylaminobenzene chromophore, by exploiting the low ultraviolet absorption window of this chromophore. The ring resonator was first photodefined by slight cross-linking. Thereafter, poling (to align the chromophores) and further cross-linking (to increase the glass transition temperature) were simultaneously carried out. The material showed excellent photostability and the electro-optic modulation with an r33 of 11pm/V was demonstrated at 10MHz.
Skylight book. Capturing the Sun and the Moon: a guide to creating natural light
DOE Office of Scientific and Technical Information (OSTI.GOV)
Burns, A.
1976-01-01
The following topics are covered: planning; essential tools: hand and power; safety hints; curb installation; plexiglas or plate glass skylight; the plexiglas box skylight; tips on working with plexiglas; checking for leaks; framing the shaftway; electric work; shaftwall insulation; covering the shaftway with drywall; other kinds of wall coverings; internal storm windows; plants under your skylight; skylight manufacturers; and places to buy things. There are 38 pages of pictures of the use of skylights. (MHR)
9. NORTHEAST FROM SOUTH ENTRANCE ACROSS RECEIVING AREA OF FACTORY ...
9. NORTHEAST FROM SOUTH ENTRANCE ACROSS RECEIVING AREA OF FACTORY PAST THE GLASS-ENCLOSED OFFICE TOWARD SHOP AREA. BESIDE THE VERTICAL POST ROOF SUPPORT IN THE LEFT FOREGROUND IS A SCALE AND DRAFTING TABLE. BESIDE THE OFFICE WALL ON THE RIGHT IS A SMALL SHOP REPAIR BENCH, WHILE ABOVE THE OFFICE WINDOWS ARE BOXES OF COMPANY MANUSCRIPT BUSINESS RECORDS. THE WELDED METAL PIPE RACK IS A MODERN INTRUSION. - Kregel Windmill Company Factory, 1416 Central Avenue, Nebraska City, Otoe County, NE
Performance characteristics of a laser initiated microdetonator
NASA Technical Reports Server (NTRS)
Yang, L. C.
1981-01-01
The test results of 320 units of a laser initiated microdetonator are summarized. The commercially fabricated units used a lead styphnate/lead azide/HMX (1 mg/13.5 mg) explosive train design contained in a miniature aluminum can that was capped with a glass-metal seal window. The test parameters were the laser energy, temperature, laser pulse duration, laser wavelength and nuclear radiation (5,000,000 rad of 1 MeV gamma rays). The performance parameters were the laser energy for ignition and the actuation response time.
Naval Postgraduate School Research. Volume 10, Number 1, February 2000
2000-02-01
morale waned along with public perceptions of the military; reports of disciplinary problems, drug use, and substandard performance circulated widely...1.78 m long, 0.86 m wide, and 0.61 m deep. Inserted at the center of both sides of the tank, are 37x27x0.6 cm viewing glass windows (Figure 2...potential research directions in multimedia and network- ing. NATIONAL SECURITY AFFAIRS L.J. Roberts, The Lebanese in Ecuador: A History of Emerging
Quantification of Residual Stress from Photonic Signatures of Fused Silica
NASA Technical Reports Server (NTRS)
Cramer, K. Elliott; Hayward, Maurice; Yost, William E.
2013-01-01
A commercially available grey-field polariscope (GFP) instrument for photoelastic examination is used to assess impact damage inflicted upon the outer-most pane of Space Shuttle windows made from fused silica. A method and apparatus for calibration of the stress-optic coefficient using four-point bending is discussed. The results are validated on known material (acrylic) and are found to agree with literature values to within 6%. The calibration procedure is then applied to fused-silica specimens and the stress-optic coefficient is determined to be 2.43 +/- 0.54 x 10(exp -12)/Pa. Fused silica specimens containing impacts artificially made at NASA's Hypervelocity Impact Technology Facility (HIT-F), to simulate damage typical during space flight, are examined. The damage sites are cored from fused silica window carcasses and examined with the GFP. The calibrated GFP measurements of residual stress patterns surrounding the damage sites are presented. Keywords: Glass, fused silica, photoelasticity, residual stress
Imaging alpha particle detector
Anderson, David F.
1985-01-01
A method and apparatus for detecting and imaging alpha particles sources is described. A conducting coated high voltage electrode (1) and a tungsten wire grid (2) constitute a diode configuration discharge generator for electrons dislodged from atoms or molecules located in between these electrodes when struck by alpha particles from a source (3) to be quantitatively or qualitatively analyzed. A thin polyester film window (4) allows the alpha particles to pass into the gas enclosure and the combination of the glass electrode, grid and window is light transparent such that the details of the source which is imaged with high resolution and sensitivity by the sparks produced can be observed visually as well. The source can be viewed directly, electronically counted or integrated over time using photographic methods. A significant increase in sensitivity over other alpha particle detectors is observed, and the device has very low sensitivity to gamma or beta emissions which might otherwise appear as noise on the alpha particle signal.
Multiple objects tracking with HOGs matching in circular windows
NASA Astrophysics Data System (ADS)
Miramontes-Jaramillo, Daniel; Kober, Vitaly; Díaz-Ramírez, Víctor H.
2014-09-01
In recent years tracking applications with development of new technologies like smart TVs, Kinect, Google Glass and Oculus Rift become very important. When tracking uses a matching algorithm, a good prediction algorithm is required to reduce the search area for each object to be tracked as well as processing time. In this work, we analyze the performance of different tracking algorithms based on prediction and matching for a real-time tracking multiple objects. The used matching algorithm utilizes histograms of oriented gradients. It carries out matching in circular windows, and possesses rotation invariance and tolerance to viewpoint and scale changes. The proposed algorithm is implemented in a personal computer with GPU, and its performance is analyzed in terms of processing time in real scenarios. Such implementation takes advantage of current technologies and helps to process video sequences in real-time for tracking several objects at the same time.
Imaging alpha particle detector
Anderson, D.F.
1980-10-29
A method and apparatus for detecting and imaging alpha particles sources is described. A dielectric coated high voltage electrode and a tungsten wire grid constitute a diode configuration discharge generator for electrons dislodged from atoms or molecules located in between these electrodes when struck by alpha particles from a source to be quantitatively or qualitatively analyzed. A thin polyester film window allows the alpha particles to pass into the gas enclosure and the combination of the glass electrode, grid and window is light transparent such that the details of the source which is imaged with high resolution and sensitivity by the sparks produced can be observed visually as well. The source can be viewed directly, electronically counted or integrated over time using photographic methods. A significant increase in sensitivity over other alpha particle detectors is observed, and the device has very low sensitivity to gamma or beta emissions which might otherwise appear as noise on the alpha particle signal.
Eom, Taewoo; Park, Jeong Eun; Park, Sang Yong; Park, Jeong Hoon; Bweupe, Jackson; Lim, Donggun
2018-09-01
Copper indium gallium selenide (CIGS) thin film solar cells have been regarded as a candidate for energy conversion devices owing to their high absorption coefficient, high temperature stability, and low cost. ZnO:Al thin film is commonly used in CIGS solar cells as a window layer. In this study, ZnO:Al films were deposited on glass under various post-heat temperature using RF sputtering to observe the characteristics of ZnO:Al films such as Hall mobility, carrier concentration, and resistivity; subsequently, the ZnO:Al films were applied to a CIGS solar cell as a window. CIGS solar cells fabricated with various ZnO:Al films were analyzed in order to investigate their influence. The test results showed that the improvement of ZnO:Al characteristics affects Jsc and Voc in the solar cell through reduced recombination and increase of optical property.
Structural Color Model Based on Surface Morphology of MORPHO Butterfly Wing Scale
NASA Astrophysics Data System (ADS)
Huang, Zhongjia; Cai, Congcong; Wang, Gang; Zhang, Hui; Huttula, Marko; Cao, Wei
2016-05-01
Color production through structural coloration is created by micrometer and sub-micrometer surface textures which interfere with visible light. The shiny blue of morpho menelaus is a typical example of structural coloring. Modified from morphology of the morpho scale, a structure of regular windows with two side offsets was constructed on glass substrates. Optical properties of the bioinspired structure were studied through numerical simulations of light scattering. Results show that the structure can generate monochromatic light scattering. Wavelength of scattered light is tunable via changing the spacing between window shelves. Compared to original butterfly model, the modified one possesses larger illumination scopes in azimuthal distributions despite being less in polar directions. Present bionic structure is periodically repeated and is easy to fabricate. It is hoped that the computational materials design work can inspire future experimental realizations of such a structure in photonics applications.
Chang, Tianci; Cao, Xun; Li, Ning; Long, Shiwei; Gao, Xiang; Dedon, Liv R; Sun, Guangyao; Luo, Hongjie; Jin, Ping
2017-08-09
In the pursuit of energy efficient materials, vanadium dioxide (VO 2 ) based smart coatings have gained much attention in recent years. For smart window applications, VO 2 thin films should be fabricated at low temperature to reduce the cost in commercial fabrication and solve compatibility problems. Meanwhile, thermochromic performance with high luminous transmittance and solar modulation ability, as well as effective UV shielding function has become the most important developing strategy for ideal smart windows. In this work, facile Cr 2 O 3 /VO 2 bilayer coatings on quartz glasses were designed and fabricated by magnetron sputtering at low temperatures ranging from 250 to 350 °C as compared with typical high growth temperatures (>450 °C). The bottom Cr 2 O 3 layer not only provides a structural template for the growth of VO 2 (R), but also serves as an antireflection layer for improving the luminous transmittance. It was found that the deposition of Cr 2 O 3 layer resulted in a dramatic enhancement of the solar modulation ability (56.4%) and improvement of luminous transmittance (26.4%) when compared to single-layer VO 2 coating. According to optical measurements, the Cr 2 O 3 /VO 2 bilayer structure exhibits excellent optical performances with an enhanced solar modulation ability (ΔT sol = 12.2%) and a high luminous transmittance (T lum,lt = 46.0%), which makes a good balance between ΔT sol and T lum for smart windows applications. As for UV-shielding properties, more than 95.8% UV radiation (250-400 nm) can be blocked out by the Cr 2 O 3 /VO 2 structure. In addition, the visualized energy-efficient effect was modeled by heating a beaker of water using infrared imaging method with/without a Cr 2 O 3 /VO 2 coating glass.
Energy Saving Glass Lamination via Selective Radio Frequency Heating
DOE Office of Scientific and Technical Information (OSTI.GOV)
Allan, Shawn M; Baranova, Inessa; Poley, Joseph
2012-02-27
This project focused on advancing radio-frequency (RF) lamination technology closer to commercial implementation, in order to reduce the energy intensity of glass lamination by up to 90%. Lamination comprises a wide range of products including autoglass, architectural safety and innovative design glass, transparent armor (e.g. bullet proof glass), smart glass, mirrors, and encapsulation of photovoltaics. Lamination is also the fastest growing segment of glass manufacturing, with photovoltaics, architectural needs, and an anticipated transition to laminated side windows in vehicles. The state-of-the-art for glass lamination is to use autoclaves, which apply heat and uniform gas pressure to bond the laminates overmore » the course of 1 to 18 hours. Laminates consist of layers of glass or other materials bonded with vinyl or urethane interlayers. In autoclaving, significant heat energy is lost heating the chamber, pressurized air, glass racks, and the glass. In RF lamination, the heat is generated directly in the vinyl interlayer, causing it to heat and melt quickly, in just 1 to 10 minutes, without significantly heating the glass or the equipment. The main purpose of this project was to provide evidence that low energy, rapid RF lamination quality met the same standards as conventionally autoclaved windows. The development of concepts for laminating curved glass with RF lamination was a major goal. Other primary goals included developing a stronger understanding of the lamination product markets described above, and to refine the potential benefits of commercial implementation. The scope of the project was to complete implementation concept studies in preparation for continuation into advanced development, pilot studies, and commercial implementation. The project consisted of 6 main tasks. The first dealt with lamination with poly-vinyl butyral (PVB) interlayers, which prior work had shown difficulties in achieving good quality laminates, working with Pilkington North America. The second task dealt with a study of current lamination processes in the various laminate industries, and development of concepts for integrating RF lamination into new or existing processes. The third task explored the use of a non-destructive technique for analyzing laminate adhesion with the University of Illinois at Urbana-Champaign. The fourth task focused on developing concepts for curved glass lamination using RF lamination. The fifth and sixth tasks together comprised an analysis of laminate product markets, ranking for applicability and commercialization potential, and the development of commercialization strategies for those products. In addition, throughout the project as new experimental data and conventional process data were obtained, the benefits analysis of RF lamination was refined. The goals of the project described above were achieved, positioning RF lamination for the next stage growth envisioned in the original Industrial Grand Challenge proposal. Working with Pilkington North America, lamination of flat autoglass with PVB was achieved, meeting all 16 stringent industry tests. In particular, PVB laminates made with RF lamination passed environmental tests including the high temperature, 120°C bake test, without significant formation of bubbles (defects). The adhesion of PVB to glass was measured using the pummel method. Adhesion values ranging from 1 to 7 out of 10 were obtained. The significant process parameters affecting the environmental and adhesion performance were identified through a designed experiment. Pre-lamination process variables including PVB storage humidity and the de-airing process (vacuum or nip rolling) were significant, as well as the level of pressure applied to the laminate during the RF process. Analysis of manufacturing with RF lamination equipment, based on the processes developed indicated that 3 RF presses could replace a typical auto-industry autoclave to achieve equal or greater throughput with possibly less capital cost and smaller footprint. Concepts for curved lamination identifying castable molds for prototyping were developed, which allowed Ceralink to obtain commitment to begin curved tooling development. The project significantly helped to advance RF lamination past the feasibility and novelty stage and into the realm of commercial acceptance as a viable alternative to autoclaves. The demonstration of autoclave-quality autoglass produced in just 1 minute with RF lamination, with validation by Pilkington, has fueled industry motivation to seriously consider RF lamination. The industry and other contacts and outreach made in the study of laminate markets (including 3 technical publications and 5 conference presentations), has resulted in a recent surge in RF lamination activity.« less
Energy Saving Glass Lamination via Selective Radio Frequency Heating
DOE Office of Scientific and Technical Information (OSTI.GOV)
Allan, Shawn M.
2012-02-27
This project focused on advancing radio-frequency (RF) lamination technology closer to commercial implementation, in order to reduce the energy intensity of glass lamination by up to 90%. Lamination comprises a wide range of products including autoglass, architectural safety and innovative design glass, transparent armor (e.g. bullet proof glass), smart glass, mirrors, and encapsulation of photovoltaics. Lamination is also the fastest growing segment of glass manufacturing, with photovoltaics, architectural needs, and an anticipated transition to laminated side windows in vehicles. The state-of-the-art for glass lamination is to use autoclaves, which apply heat and uniform gas pressure to bond the laminates overmore » the course of 1 to 18 hours. Laminates consist of layers of glass or other materials bonded with vinyl or urethane interlayers. In autoclaving, significant heat energy is lost heating the chamber, pressurized air, glass racks, and the glass. In RF lamination, the heat is generated directly in the vinyl interlayer, causing it to heat and melt quickly, in just 1 to 10 minutes, without significantly heating the glass or the equipment. The main purpose of this project was to provide evidence that low energy, rapid RF lamination quality met the same standards as conventionally autoclaved windows. The development of concepts for laminating curved glass with RF lamination was a major goal. Other primary goals included developing a stronger understanding of the lamination product markets described above, and to refine the potential benefits of commercial implementation. The scope of the project was to complete implementation concept studies in preparation for continuation into advanced development, pilot studies, and commercial implementation. The project consisted of 6 main tasks. The first dealt with lamination with poly-vinyl butyral (PVB) interlayers, which prior work had shown difficulties in achieving good quality laminates, working with Pilkington North America. The second task dealt with a study of current lamination processes in the various laminate industries, and development of concepts for integrating RF lamination into new or existing processes. The third task explored the use of a non-destructive technique for analyzing laminate adhesion with the University of Illinois at Urbana-Champaign. The fourth task focused on developing concepts for curved glass lamination using RF lamination. The fifth and sixth tasks together comprised an analysis of laminate product markets, ranking for applicability and commercialization potential, and the development of commercialization strategies for those products. In addition, throughout the project as new experimental data and conventional process data were obtained, the benefits analysis of RF lamination was refined. The goals of the project described above were achieved, positioning RF lamination for the next stage growth envisioned in the original Industrial Grand Challenge proposal. Working with Pilkington North America, lamination of flat autoglass with PVB was achieved, meeting all 16 stringent industry tests. In particular, PVB laminates made with RF lamination passed environmental tests including the high temperature, 120 C bake test, without significant formation of bubbles (defects). The adhesion of PVB to glass was measured using the pummel method. Adhesion values ranging from 1 to 7 out of 10 were obtained. The significant process parameters affecting the environmental and adhesion performance were identified through a designed experiment. Pre-lamination process variables including PVB storage humidity and the de-airing process (vacuum or nip rolling) were significant, as well as the level of pressure applied to the laminate during the RF process. Analysis of manufacturing with RF lamination equipment, based on the processes developed indicated that 3 RF presses could replace a typical auto-industry autoclave to achieve equal or greater throughput with possibly less capital cost and smaller footprint. Concepts for curved lamination identifying castable molds for prototyping were developed, which allowed Ceralink to obtain commitment to begin curved tooling development. The project significantly helped to advance RF lamination past the feasibility and novelty stage and into the realm of commercial acceptance as a viable alternative to autoclaves. The demonstration of autoclave-quality autoglass produced in just 1 minute with RF lamination, with validation by Pilkington, has fueled industry motivation to seriously consider RF lamination. The industry and other contacts and outreach made in the study of laminate markets (including 3 technical publications and 5 conference presentations), has resulted in a recent surge in RF lamination activity.« less
Ultrafast time-stretch imaging at 932 nm through a new highly-dispersive fiber
Wei, Xiaoming; Kong, Cihang; Sy, Samuel; Ko, Ho; Tsia, Kevin K.; Wong, Kenneth K. Y.
2016-01-01
Optical glass fiber has played a key role in the development of modern optical communication and attracted the biotechnology researcher’s great attention because of its properties, such as the wide bandwidth, low attenuation and superior flexibility. For ultrafast optical imaging, particularly, it has been utilized to perform MHz time-stretch imaging with diffraction-limited resolutions, which is also known as serial time-encoded amplified microscopy (STEAM). Unfortunately, time-stretch imaging with dispersive fibers has so far mostly been demonstrated at the optical communication window of 1.5 μm due to lack of efficient dispersive optical fibers operating at the shorter wavelengths, particularly at the bio-favorable window, i.e., <1.0 μm. Through fiber-optic engineering, here we demonstrate a 7.6-MHz dual-color time-stretch optical imaging at bio-favorable wavelengths of 932 nm and 466 nm. The sensitivity at such a high speed is experimentally identified in a slow data-streaming manner. To the best of our knowledge, this is the first time that all-optical time-stretch imaging at ultrahigh speed, high sensitivity and high chirping rate (>1 ns/nm) has been demonstrated at a bio-favorable wavelength window through fiber-optic engineering. PMID:28018737
Ultrafast time-stretch imaging at 932 nm through a new highly-dispersive fiber.
Wei, Xiaoming; Kong, Cihang; Sy, Samuel; Ko, Ho; Tsia, Kevin K; Wong, Kenneth K Y
2016-12-01
Optical glass fiber has played a key role in the development of modern optical communication and attracted the biotechnology researcher's great attention because of its properties, such as the wide bandwidth, low attenuation and superior flexibility. For ultrafast optical imaging, particularly, it has been utilized to perform MHz time-stretch imaging with diffraction-limited resolutions, which is also known as serial time-encoded amplified microscopy (STEAM). Unfortunately, time-stretch imaging with dispersive fibers has so far mostly been demonstrated at the optical communication window of 1.5 μm due to lack of efficient dispersive optical fibers operating at the shorter wavelengths, particularly at the bio-favorable window, i.e., <1.0 μm. Through fiber-optic engineering, here we demonstrate a 7.6-MHz dual-color time-stretch optical imaging at bio-favorable wavelengths of 932 nm and 466 nm. The sensitivity at such a high speed is experimentally identified in a slow data-streaming manner. To the best of our knowledge, this is the first time that all-optical time-stretch imaging at ultrahigh speed, high sensitivity and high chirping rate (>1 ns/nm) has been demonstrated at a bio-favorable wavelength window through fiber-optic engineering.
Ultra-broadband amplification properties of Ni2+-doped glass-ceramics amplifiers.
Jiang, Chun
2009-04-13
The energy level, transition configuration and mathematical model of Ni(2+)-doped glass-ceramics amplifiers are presented for the first time, to the best of one's knowledge. A quasi-three-level system is employed to model the gain and noise characteristics of the doped system, and the rate and power propagation equations of the mathematical model are solved to analyze the effect of the active ion concentration, fiber length, pump power as well as thermal-quenching on the gain spectra. It is shown that our model is in agreement with experimental result, and when excited at longer wavelength, the center of gain spectra of the amplifier red shifts, the ultra-broad band room-temperature gain spectra can cover 1.25-1.65 microm range for amplification of signal in the low-loss windows of the all-wave fiber without absorption peak caused by OH group.
Hammer, Julia E.; Coombs, Michelle L.; Shamberger, Patrick J.; Kimura, Jun-Ichi
2006-01-01
Sulfur-rich hawaiite glasses at the base of the elongate ridge may represent the first extant representatives of juvenile alkalic volcanism at Hualalai. They are geochemically distinct from shield tholeiite and post-shield alkalic magmas, but may be related to transitional basalt by high-pressure crystal fractionation of clinopyroxene. Tholeiitic glasses that compose the majority of the exposed outcrop are similar to Mauna Kea tholeiites and other Hualalai tholeiites, but they differ from younger basalts in having greater incompatible element enrichments and higher CaO for a given MgO. These differences could arise from small extents of partial melting during the transition from alkalic to shield stage magmatism. Low sulfur contents of most of the volcaniclastic tholeiites point to early emergence of Hualalai above sea level relative to the development of the midslope slump bench.
Zhang, Dong; Sun, Hong-Jun; Wang, Min-Huan; Miao, Li-Hua; Liu, Hong-Zhu; Zhang, Yu-Zhi; Bian, Ji-Ming
2017-01-01
Vanadium dioxide (VO2) thermochromic thin films with various thicknesses were grown on quartz glass substrates by radio frequency (RF)-plasma assisted oxide molecular beam epitaxy (O-MBE). The crystal structure, morphology and chemical stoichiometry were investigated systemically by X-ray diffraction (XRD), atomic force microscopy (AFM), Raman spectroscopy and X-ray photoelectron spectroscopy (XPS) analyses. An excellent reversible metal-to-insulator transition (MIT) characteristics accompanied by an abrupt change in both electrical resistivity and optical infrared (IR) transmittance was observed from the optimized sample. Remarkably, the transition temperature (TMIT) deduced from the resistivity-temperature curve was reasonably consistent with that obtained from the temperature-dependent IR transmittance. Based on Raman measurement and XPS analyses, the observations were interpreted in terms of residual stresses and chemical stoichiometry. This achievement will be of great benefit for practical application of VO2-based smart windows. PMID:28772673
Compliant glass–polymer hybrid single ion-conducting electrolytes for lithium batteries
Villaluenga, Irune; Wujcik, Kevin H.; Tong, Wei; Devaux, Didier; Wong, Dominica H. C.; DeSimone, Joseph M.; Balsara, Nitash P.
2016-01-01
Despite high ionic conductivities, current inorganic solid electrolytes cannot be used in lithium batteries because of a lack of compliance and adhesion to active particles in battery electrodes as they are discharged and charged. We have successfully developed a compliant, nonflammable, hybrid single ion-conducting electrolyte comprising inorganic sulfide glass particles covalently bonded to a perfluoropolyether polymer. The hybrid with 23 wt% perfluoropolyether exhibits low shear modulus relative to neat glass electrolytes, ionic conductivity of 10−4 S/cm at room temperature, a cation transference number close to unity, and an electrochemical stability window up to 5 V relative to Li+/Li. X-ray absorption spectroscopy indicates that the hybrid electrolyte limits lithium polysulfide dissolution and is, thus, ideally suited for Li-S cells. Our work opens a previously unidentified route for developing compliant solid electrolytes that will address the challenges of lithium batteries. PMID:26699512
Compliant glass–polymer hybrid single ion-conducting electrolytes for lithium batteries
DOE Office of Scientific and Technical Information (OSTI.GOV)
Villaluenga, Irune; Wujcik, Kevin H.; Tong, Wei
2015-12-22
Despite high ionic conductivities, current inorganic solid electrolytes cannot be used in lithium batteries because of a lack of compliance and adhesion to active particles in battery electrodes as they are discharged and charged. Here, we have successfully developed a compliant, nonflammable, hybrid single ion-conducting electrolyte comprising inorganic sulfide glass particles covalently bonded to a perfluoropolyether polymer. The hybrid with 23 wt% perfluoropolyether exhibits low shear modulus relative to neat glass electrolytes, ionic conductivity of 10 -4 S/cm at room temperature, a cation transference number close to unity, and an electrochemical stability window up to 5 V relative to Limore » +/Li. X-ray absorption spectroscopy indicates that the hybrid electrolyte limits lithium polysulfide dissolution and is, thus, ideally suited for Li-S cells. Our work opens a previously unidentified route for developing compliant solid electrolytes that will address the challenges of lithium batteries.« less
New type of x-ray-wafer image intensifier with CsI-CsI/MCP photocathodes: its design and assessment
NASA Astrophysics Data System (ADS)
Xiang, Shiming; Zhao, Hong
1993-04-01
The article introduces a new type of x-ray wafer image intensifier with a double proximity focusing system, (Phi) 50 CsI-CsI/MCP photocathode, and a series of welding constructions of glass window or ceramic components with metal rings. This kind of x-ray image intensifier has been widely used in the field of medical diagnosis and industrial non-destructive detection by means of sophisticated portable x-ray diagnoscopes, featuring a number of satisfactory performances such as low x-ray dosage, miniature x-ray tube and power supply, high output brightness and good resolution, light weight, small volume, low cost, and easy operation without any condition constrained by working environment and illumination. In the paper, the authors have given a series of formulae to determine characteristic parameters of the device, i.e., the quantum detection efficiencies of both reflection mode (CsI/MCP) and transmission mode (glass window CsI/MCP) photocathode, the brightness conversion factor, and resolution. The relations of the mentioned parameters with the performances of constituent components, which include CsI photocathodes layer thickness, MCP bias angle and gain, phosphor screen conversion efficiency, and double proximity focusing distances, are also briefly analyzed. The analysis thought and methods mentioned in the paper have been successfully used for the optimal design and assessment work of our devices and shows that they have a good coincidence with experimental results.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, J.; Yang, D. L.; Gong, H.
Conventional visible and novel infrared (IR) emissions of Sm{sup 3+} in heavy-metal-gallate glasses (Li{sub 2}O-K{sub 2}O-BaO-PbO-Bi{sub 2}O{sub 3}-Ga{sub 2}O{sub 3}, LKBPBG for short) with low phonon energy have been observed. Judd-Ofelt parameters {Omega}{sub 2} (3.00x10{sup -20} cm{sup 2}), {Omega}{sub 4} (5.19x10{sup -20} cm{sup 2}), and {Omega}{sub 6} (1.69x10{sup -20} cm{sup 2}) indicate a higher asymmetry and stronger covalent environment in the optical glasses. For the visible fluorescence bands peaked at 564, 601, 648, and 710 nm, the maximum stimulated emission cross-sections ({sigma}{sub e}) were derived to be 1.35x10{sup -22}, 9.21x10{sup -22}, 9.58x10{sup -22}, and 3.91x10{sup -22} cm{sup 2}, respectively, themore » values are larger than those in phosphate, oxyfluoroborate, tellurite, and calibo glasses obviously. The observed 1185 nm IR emission lies in the low-loss window of telecommunication system, and the maximum value of {sigma}{sub e} for this band was obtained to be 6.09x10{sup -23} cm{sup 2}. The characterization of multichannel radiative transitions of Sm{sup 3+} in LKBPBG glasses is beneficial in exposing its potential applications in visible and IR optoelectronic devices.« less
Degradation of glass artifacts: application of modern surface analytical techniques.
Melcher, Michael; Wiesinger, Rita; Schreiner, Manfred
2010-06-15
A detailed understanding of the stability of glasses toward liquid or atmospheric attack is of considerable importance for preserving numerous objects of our cultural heritage. Glasses produced in the ancient periods (Egyptian, Greek, or Roman glasses), as well as modern glass, can be classified as soda-lime-silica glasses. In contrast, potash was used as a flux in medieval Northern Europe for the production of window panes for churches and cathedrals. The particular chemical composition of these potash-lime-silica glasses (low in silica and rich in alkali and alkaline earth components), in combination with increased levels of acidifying gases (such as SO(2), CO(2), NO(x), or O(3)) and airborne particulate matter in today's urban or industrial atmospheres, has resulted in severe degradation of important cultural relics, particularly over the last century. Rapid developments in the fields of microelectronics and computer sciences, however, have contributed to the development of a variety of nondestructive, surface analytical techniques for the scientific investigation and material characterization of these unique and valuable objects. These methods include scanning electron microscopy in combination with energy- or wavelength-dispersive spectrometry (SEM/EDX or SEM/WDX), secondary ion mass spectrometry (SIMS), and atomic force microscopy (AFM). In this Account, we address glass analysis and weathering mechanisms, exploring the possibilities (and limitations) of modern analytical techniques. Corrosion by liquid substances is well investigated in the glass literature. In a tremendous number of case studies, the basic reaction between aqueous solutions and the glass surfaces was identified as an ion-exchange reaction between hydrogen-bearing species of the attacking liquid and the alkali and alkaline earth ions in the glass, causing a depletion of the latter in the outermost surface layers. Although mechanistic analogies to liquid corrosion are obvious, atmospheric attack on glass ("weathering") is much more complex due to the multiphase system (atmosphere, water film, glass surface, and bulk glass) and added complexities (such as relative humidity and atmospheric pollutant concentration). Weathered medieval stained glass objects, as well as artifacts under controlled museum conditions, typically have less transparent or translucent surfaces, often with a thick weathering crust on top, consisting of sulfates of the glass constituents K, Ca, Na, or Mg. In this Account, we try to answer questions about glass analysis and weathering in three main categories. (i) Which chemical reactions are involved in the weathering of glass surfaces? (ii) Which internal factors (such as the glass composition or surface properties) play a dominant role for the weathering process? Can certain environmental or climatic factors be identified as more harmful for glasses than others? Is it possible to set up a quantitative relationship or at least an approximation between the degree of weathering and the factors described above? (iii) What are the consequences for the restoration and conservation strategies of endangered glass objects? How can a severe threat to precious glass objects be avoided, or at least minimized, to preserve these artifacts of our cultural heritage for future generations?
Tripathy, Satya N; Wojnarowska, Zaneta; Knapik, Justyna; Shirota, Hideaki; Biswas, Ranjit; Paluch, Marian
2015-05-14
A detailed investigation on the molecular dynamics of ionic deep eutectic solvents (acetamide + lithium nitrate/sodium thiocyanate) is reported. The study was carried out employing dielectric relaxation spectroscopy covering seven decades in frequency (10(-1)-10(6) Hz) and in a wide temperature range from 373 K down to 173 K, accessing the dynamic observables both in liquid and glassy state. The dielectric response of the ionic system has been presented in the dynamic window of modulus formalism to understand the conductivity relaxation and its possible connection to the origin of localized motion. Two secondary relaxation processes appear below glass transition temperature. Our findings provide suitable interpretation on the nature of secondary Johari-Goldstein process describing the ion translation and orientation of dipoles in a combined approach using Ngai's coupling model. A nearly constant loss feature is witnessed at shorter times/lower temperatures. We also discuss the ac conductivity scaling behavior using Summerfield approach and random free energy barrier model which establish the time-temperature superposition principle. These experimental observations have fundamental importance on theoretical elucidation of the conductivity relaxation and glass transition phenomena in molten ionic conductors.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jiménez, José A., E-mail: jose.jimenez@unf.edu; Sendova, Mariana
2014-07-21
Optimizing the efficiency of Er{sup 3+} emission in the near-infrared telecommunication window in glass matrices is currently a subject of great interest in photonics research. In this work, Cu{sup +} ions are shown to be successfully stabilized at a high concentration in Er-containing phosphate glass by a single-step melt-quench method, and demonstrated to transfer energy to Er{sup 3+} thereby enhancing the near-infrared emission about 15 times. The spectroscopic data indicate an energy conversion process where Cu{sup +} ions first absorb photons broadly around 360 nm and subsequently transfer energy from the Stokes-shifted emitting states to resonant Er{sup 3+} absorption transitions inmore » the visible. Consequently, the Er{sup 3+} electronic excited states decay and the {sup 4}I{sub 3/2} metastable state is populated, leading to the enhanced emission at 1.53 μm. Monovalent copper ions are thus recognized as sensitizers of Er{sup 3+} ions, suggesting the potential of Cu{sup +} co-doping for applications in the telecommunications, solar cells, and solid-state lasing realizable under broad band near-ultraviolet optical pumping.« less
Titanium Dioxide Films Prepared by Screen-Printing Technique for Self-Powered Electrochromic Windows
NASA Astrophysics Data System (ADS)
Salleh, Muhamad Mat; Yahaya, Muhamad; Mursyidah
Electrochromic windows could reduce air-conditioning costs by being darkened to absorb sunlight and reject unwanted solar heat. These windows change their color and light transmissivity due to the action of an electric field and can change back to the original state by a field reversal. To save the cost, the electrical power may be supplied by a solar cell that integrated with the electrochromic window in a single device. This paper reports the potential of using titanium oxide, TiO2 as solar cells and as electrochromic windows. The TiO2 films were deposited by screen-printing a paste, consisting of TiO2 particles and an organic binder, onto ITO-covered glass substrates. Then the films were tempered at 400 °C to bum out the organic parts. A solar cell of ITO/TiO2/electrolyte/ITO was fabricated using a mixed ammonium iodide and iodine solution as electrolyte. The cell was illuminated through the TiO2 film. The cells showed rectifier properties in the dark and produced electrical current when illuminated. The short circuit photocurrent and the open circuit voltage of the cell in a 100-mW/cm2 tungsten light source were 2.3 μA and 17.0 mV respectively. The electrochromic behavior of the TiO2 films in a lithium perchlorate solution was examined. When the electrochromic film cell was given a forward bias potential of 5.0 V, the original colorless TiO2 film immediately changed to brown. The color of the film bleached to the original when the applied potential was reversed.
NASA Astrophysics Data System (ADS)
Martin, Erwan; Bindeman, Ilya; Balan, Etienne; Palandri, Jim; Seligman, Angela; Villemant, Benoit
2016-04-01
The content, speciation and isotopic composition of water in volcanic glass have been used for decades as recorder of magma degassing or late glass rehydration processes. Magmatic or paleoclimate information are derived depending on the primary (magmatic) or meteoric (secondary) origin of water. In this study, we attempt to discriminate residual magmatic from secondary meteoric water in volcanic glass. Using samples from different geological settings and different climatic conditions, we show that the H-isotope composition and water content measured via a TC/EA-MAT253 system in volcanic glass alone are not always sufficient to provide clear distinction between magmatic and meteoric origin. However, it is quite easy to resolve δD evolution during post-deposit rehydration by meteoric water from magma degassing when volcanic glass have a δD <-100‰ or >-50‰ and [H2O]tot >1.5-2wt.%. Water speciation inferred from near-infrared spectroscopy also provides valuable information complementary to isotopic and total water measurements. During magma degassing (typically with [H2O]tot decreasing from 6wt.% to ~0wt.% water) H2O/OH is expected to decrease from 2 to close to 0. However, our dataset shows the opposite trend with an increase of H2O/OH from 2 to ~5. We interpret it as post deposit rehydration of the volcanic glass. Overall our results show that the discrimination of the water origin is essential to discuss magma degassing processes or paleoclimatic reconstitutions. The present study of hydrous glass supports the use of H-isotopes of volcanic glass to discuss paleoclimate reconstitution in a specific region. To this purpose, the volcanic glass has to be almost fully rehydrated in order to fingerprint the isotopic composition of the rehydration water. A sharp time constrain can be obtained if the full rehydration occurs quickly after the eruption. This is most likely to occur in meters thick volcanic pyroclast deposits that undergo slow cooling rates and thus can stay at few hundreds °C for a time long enough to ensure complete chemical reaction (few to hundreds of years) after the eruption but still short on a geological scale.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Meenakshi, M.; Perumal, P.; Sivakumar, R.
2016-05-23
V{sub 2}O{sub 5} doped WO{sub 3} targets for RF sputtering thin film deposition were prepared for various compositions. Thin films of (WO{sub 3}){sub 1-x} (V{sub 2}O{sub 5}){sub x} were deposited on to glass substrates using these targets. Structural characteristics of the prepared targets and thin films were studied using X-ray diffraction. Laser Raman studies were carried out on the thin films to confirm the compound formation.
2001-04-01
construction, numerous non load- bearing walls, and large windows. Commercial offices and high rise buildings are generally framed with steel girders...Mass buildings are built so exterior walls bear the weight of the structure. The walls of mass structures are usually thick and constructed of...buildings are similar in size to Type 5 office buildings, but with less glass and with load- bearing reinforced concrete walls. They offer greater protection
DOE Office of Scientific and Technical Information (OSTI.GOV)
Peeler, D.; Edwards, T.
High-level waste (HLW) throughput (i.e., the amount of waste processed per unit of time) is primarily a function of two critical parameters: waste loading (WL) and melt rate. For the Defense Waste Processing Facility (DWPF), increasing HLW throughput would significantly reduce the overall mission life cycle costs for the Department of Energy (DOE). Significant increases in waste throughput have been achieved at DWPF since initial radioactive operations began in 1996. Key technical and operational initiatives that supported increased waste throughput included improvements in facility attainment, the Chemical Processing Cell (CPC) flowsheet, process control models and frit formulations. As a resultmore » of these key initiatives, DWPF increased WLs from a nominal 28% for Sludge Batch 2 (SB2) to {approx}34 to 38% for SB3 through SB6 while maintaining or slightly improving canister fill times. Although considerable improvements in waste throughput have been obtained, future contractual waste loading targets are nominally 40%, while canister production rates are also expected to increase (to a rate of 325 to 400 canisters per year). Although implementation of bubblers have made a positive impact on increasing melt rate for recent sludge batches targeting WLs in the mid30s, higher WLs will ultimately make the feeds to DWPF more challenging to process. Savannah River Remediation (SRR) recently requested the Savannah River National Laboratory (SRNL) to perform a paper study assessment using future sludge projections to evaluate whether the current Process Composition Control System (PCCS) algorithms would provide projected operating windows to allow future contractual WL targets to be met. More specifically, the objective of this study was to evaluate future sludge batch projections (based on Revision 16 of the HLW Systems Plan) with respect to projected operating windows using current PCCS models and associated constraints. Based on the assessments, the waste loading interval over which a glass system (i.e., a projected sludge composition with a candidate frit) is predicted to be acceptable can be defined (i.e., the projected operating window) which will provide insight into the ability to meet future contractual WL obligations. In this study, future contractual WL obligations are assumed to be 40%, which is the goal after all flowsheet enhancements have been implemented to support DWPF operations. For a system to be considered acceptable, candidate frits must be identified that provide access to at least 40% WL while accounting for potential variation in the sludge resulting from differences in batch-to-batch transfers into the Sludge Receipt and Adjustment Tank (SRAT) and/or analytical uncertainties. In more general terms, this study will assess whether or not the current glass formulation strategy (based on the use of the Nominal and Variation Stage assessments) and current PCCS models will allow access to compositional regions required to targeted higher WLs for future operations. Some of the key questions to be considered in this study include: (1) If higher WLs are attainable with current process control models, are the models valid in these compositional regions? If the higher WL glass regions are outside current model development or validation ranges, is there existing data that could be used to demonstrate model applicability (or lack thereof)? If not, experimental data may be required to revise current models or serve as validation data with the existing models. (2) Are there compositional trends in frit space that are required by the PCCS models to obtain access to these higher WLs? If so, are there potential issues with the compositions of the associated frits (e.g., limitations on the B{sub 2}O{sub 3} and/or Li{sub 2}O concentrations) as they are compared to model development/validation ranges or to the term 'borosilicate' glass? If limitations on the frit compositional range are realized, what is the impact of these restrictions on other glass properties such as the ability to suppress nepheline formation or influence melt rate? The model based assessments being performed make the assumption that the process control models are applicable over the glass compositional regions being evaluated. Although the glass compositional region of interest is ultimately defined by the specific frit, sludge, and WL interval used, there is no prescreening of these compositional regions with respect to the model development or validation ranges which is consistent with current DWPF operations.« less
Development of a Dual Windowed Test Vehicle for Live Streaming of Cook-Off in Energetic Materials
NASA Astrophysics Data System (ADS)
Cheese, Phil; Reeves, Tom; White, Nathan; Stennett, Christopher; Wood, Andrew; Cook, Malcolm; Syanco Ltd Team; Cranfield University Team; DE&S, MoD Abbey Wood Team
2017-06-01
A modular, axially connected test vehicle for researching the influence of various heating rates (cook-off) on energetic materials and how they fundamentally decompose, leading to a violent reaction has been developed and tested. The vehicle can accommodate samples measuring up to 50 mm in diameter, with thicknesses variable from 0.5 mm up to 50 mm long. A unique feature of this vehicle is the ability to have a live high speed camera view, without compromising confinement during the cook-off process. This is achieved via two special windows that allow artificial backlighting to be provided at one end for clear observation of the test sample; this has allowed unprecedented views of how explosives decompose and runaway to violent reactions, and has given insight into the reaction mechanisms operating, and challenges current theories. Using glass windows, a burst pressure of 20 MPa has been measured. The heating rate is fully adjustable from slow to fast rates, and its design allows for confinement to be varied to study the influence on the violence of reaction during cook-off. In addition to being able to view the test sample during cook-off, embedded thermocouples provide detailed temperature records and the ability to use PDV instrumentation is also incorporated.
NASA Astrophysics Data System (ADS)
Ganguly, S.; Lubetzky, E.; Martinelli, F.
2015-05-01
The East process is a 1 d kinetically constrained interacting particle system, introduced in the physics literature in the early 1990s to model liquid-glass transitions. Spectral gap estimates of Aldous and Diaconis in 2002 imply that its mixing time on L sites has order L. We complement that result and show cutoff with an -window. The main ingredient is an analysis of the front of the process (its rightmost zero in the setup where zeros facilitate updates to their right). One expects the front to advance as a biased random walk, whose normal fluctuations would imply cutoff with an -window. The law of the process behind the front plays a crucial role: Blondel showed that it converges to an invariant measure ν, on which very little is known. Here we obtain quantitative bounds on the speed of convergence to ν, finding that it is exponentially fast. We then derive that the increments of the front behave as a stationary mixing sequence of random variables, and a Stein-method based argument of Bolthausen (`82) implies a CLT for the location of the front, yielding the cutoff result. Finally, we supplement these results by a study of analogous kinetically constrained models on trees, again establishing cutoff, yet this time with an O(1)-window.
A novel facility for 3D micro-irradiation of living cells in a controlled environment by MeV ions.
Mäckel, V; Meissl, W; Ikeda, T; Clever, M; Meissl, E; Kobayashi, T; Kojima, T M; Imamoto, N; Ogiwara, K; Yamazaki, Y
2014-01-01
We present a novel facility for micro-irradiation of living targets with ions from a 1.7 MV tandem accelerator. We show results using 1 MeV protons and 2 MeV He(2+). In contrast to common micro-irradiation facilities, which use electromagnetic or electrostatic focusing and specially designed vacuum windows, we employ a tapered glass capillary with a thin end window, made from polystyrene with a thickness of 1-2 μm, for ion focusing and extraction. The capillary is connected to a beamline tilted vertically by 45°, which allows for easy immersion of the extracted ions into liquid environment within a standard cell culture dish. An inverted microscope is used for simultaneously observing the samples as well as the capillary tip, while a stage-top incubator provides an appropriate environment for the samples. Furthermore, our setup allows to target volumes in cells within a μm(3) resolution, while monitoring the target in real time during and after irradiation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hart, Robert; Goudey, Howdy; Curcija, D. Charlie
Virtually every home in the US has some form of shades, blinds, drapes, or other window attachment, but few have been designed for energy savings. In order to provide a common basis of comparison for thermal performance it is important to have validated simulation tools. This study outlines a review and validation of the ISO 15099 centre-of-glass thermal transmittance correlations for naturally ventilated cavities through measurement and detailed simulations. The focus is on the impacts of room-side ventilated cavities, such as those found with solar screens and horizontal louvred blinds. The thermal transmittance of these systems is measured experimentally, simulatedmore » using computational fluid dynamics analysis, and simulated utilizing simplified correlations from ISO 15099. Finally, correlation coefficients are proposed for the ISO 15099 algorithm that reduces the mean error between measured and simulated heat flux for typical solar screens from 16% to 3.5% and from 13% to 1% for horizontal blinds.« less
Wang, Wei-Qi; Wang, Xiu-Li; Xia, Xin-Hui; Yao, Zhu-Jun; Zhong, Yu; Tu, Jiang-Ping
2018-05-03
Construction of multifunctional photoelectrochemical energy devices is of great importance to energy saving. In this study, we have successfully prepared a mesoporous WO3 film on FTO glass via a facile dip-coating sol-gel method; the designed mesoporous WO3 film exhibited advantages including high transparency, good adhesion and high porosity. Also, multifunctional integrated energy storage and optical modulation ability are simultaneously achieved by the mesoporous WO3 film. Impressively, the mesoporous WO3 film exhibits a noticeable electrochromic energy storage performance with a large optical modulation up to 75.6% at 633 nm, accompanied by energy storage with a specific capacity of 75.3 mA h g-1. Furthermore, a full electrochromic energy storage window assembled with the mesoporous WO3 anode and PANI nanoparticle cathode is demonstrated with large optical modulation and good long-term stability. Our research provides a new route to realize the coincident utilization of optical-electrochemical energy.
Hart, Robert; Goudey, Howdy; Curcija, D. Charlie
2017-05-16
Virtually every home in the US has some form of shades, blinds, drapes, or other window attachment, but few have been designed for energy savings. In order to provide a common basis of comparison for thermal performance it is important to have validated simulation tools. This study outlines a review and validation of the ISO 15099 centre-of-glass thermal transmittance correlations for naturally ventilated cavities through measurement and detailed simulations. The focus is on the impacts of room-side ventilated cavities, such as those found with solar screens and horizontal louvred blinds. The thermal transmittance of these systems is measured experimentally, simulatedmore » using computational fluid dynamics analysis, and simulated utilizing simplified correlations from ISO 15099. Finally, correlation coefficients are proposed for the ISO 15099 algorithm that reduces the mean error between measured and simulated heat flux for typical solar screens from 16% to 3.5% and from 13% to 1% for horizontal blinds.« less
NASA Astrophysics Data System (ADS)
Hossain, Md. Nazmul; Alam, M. Shah; Mohsin, K. M.; Hasan, Dihan Md. Nuruddin
2011-08-01
A liquid crystal infiltrated spiral photonic crystal fiber (LCSPCF) is presented here for electrical tuning of two zero dispersion wavelengths (ZDWs) in the present communication window. The proposed LCSPCF shows tunability of the ZDWs from 1433 nm to 2136 nm due to the rotation of the infiltrated LC mesogen induced by the external electric field. Therefore, the ZDW can easily be shifted towards the available pump wavelength for effective supercontinuum generation (SCG) over a broad wavelength region. By tuning the bandwidth (BW) in between the two ZDWs the extension of the generated supercontinuum (SC) spectrum can also be electrically controlled. This will help the SCG in our desired band with optimum power budget. Moreover, the index guiding mechanism of the proposed soft glass LCSPCF shows improvement over the narrow operational bandwidth and the low nonlinearity of the band-gap guided silica LCPCF. Additionally, the solid core of the proposed LCSPCF is less lossy than the previously proposed liquid crystal core PCF.
The optical and electrochemical properties of electrochromic films: WO3+xV2O5
NASA Astrophysics Data System (ADS)
Li, Zhuying; Liu, Hui; Liu, Ye; Yang, Shaohong; Liu, Yan; Wang, Chong
2010-05-01
Since Deb's experiment in 1973 on the electrochromic effect, transmissive electrochromic films exhibit outstanding potential as energy efficient window controls which allow dynamic control of the solar energy transmission. These films with non-volatile memory, once in the coloured state, remain in the same state even after removal of the field. The optical and electrochemical properties of electrochromic films using magnetron sputter deposition tungsten oxide thin films and vanadium oxide doped tungsten-vanadium oxide thin films on ITO coated glass were investigated. From the UV region of the transmittance spectra, the optical band gap energy from the fundamental absorption edge can be determined. And the Cyclic voltammograms of these thin films in 1 mol LiClO4 propylene carbonate electrolyte (LIPC) were measured and analysed. The anode electrochromic V2O5 doped cathode electrochromic WO3 could make films colour changing while the transmittance of films keeped invariance. These performance characteristics make tungstenvanadium oxide colour changeably thin films are suitable for electrochromic windows applications.
Elaboration and optimization of tellurite-based materials for raman gain application
NASA Astrophysics Data System (ADS)
Guery, Guillaume
Tellurite-based oxide glasses have been investigated as promising materials for Raman gain applications, due to their good linear and nonlinear optical properties and their wide transparency windows in the near- and midwave infrared spectral region. Furthermore, their interesting thermal properties, i.e. low glass transition temperature and ability to be drawn into optical fibers, make tellurite-based glasses excellent candidates for optical fiber amplifiers. The estimation of the strength and spectral distribution of Raman gain in materials is commonly approximated from the spontaneous Raman scattering cross-section measurement. For development of tellurite-based glasses as Raman amplifiers, understanding the relationship between glass structure, vibrational response, and nonlinear optical properties (NLO) represents a key point. This dissertation provides an answer to the fundamental question of the PhD study: "What is the impact of the glass structure on Raman gain properties of tellurite glasses?" This dissertation summarizes findings on different tellurite-based glass families: the TeO2-TaO5/2-ZnO, TeO2-BiO 3/2-ZnO and TeO2-NbO5/2 glass networks. The influence of glass modifiers has been shown on the glass' properties. Introduction of tantalum oxide or zinc oxide has been shown to increase the glass' stability against crystallization, quantified by DeltaT, where DeltaT = Tx -Tg. Added to the variation of the glass viscosity, this attribute is critical in fabricating optical fibers and for the use of these materials in fiber-based Raman gain applications. The role of ZnO in the tellurite network and the mechanism for structural modification has been determined. This addition results in not only the largest DeltaT reported for these highly nonlinear glasses to date, but coincides with a commensurate decrease of the refractive index. A hydroxyl purification has been developed that when employed, resulted in high purity preform materials exhibiting a limited absorption in the transmission bandwidth in the near infrared (NIR). A reduction of 90 % in the OH content in candidate glasses was realized and core-only optical fiber drawn from this glass exhibited optical losses lower than 10 dB/m (either at 1.55 mum or 2.0 mum). This optical attenuation in a high Raman gain material represents a first in the design of both material attributes. The role of the glass modifiers on the glass structure has been investigated by a combination of vibrational spectroscopic methods, including IR absorption, as well as Raman and hyper-Raman scatterings. Following examination of fundamental vibrations present in the paratellurite crystal alpha-TeO2, these results were extended to interpret the structure of multi-component tellurite glasses. It has been verified that the transformation of the tellurite entities TeO4→TeO3+1→TeO3 is directly related to the percentage and type of glass modifiers present in the various tellurite glass matrix. The dramatic disruption in the continuity of Te-O linkages in the tellurite glass backbone's chains during the introduction of the modifier zinc oxide, leads to a systematic reduction in glass network connectivity. This structural change is accompanied by a significant change in the glass' normalized polarization curve (IPsiV/IHV ), a paramter which quantifies directly the depolymerization ratio (DR). This metric provides direct correlation with a reduction in the ternary glass' polarizability/hyperpolarizability and a decrease in the glass' nonlinear optical properties, specifically its Raman gain response. These results have validated and extended our understanding of the important role of Te-O-Te content and short, medium and longer-scale organization of the tellurite glass network and the corresponding impact on linear and nonlinear optical response and properties. Such fundamental knowledge of the relationship between vibrational response and structure, correlated to linear and nonlinear optical properties, allows the extension of this know-how to the development of customized optical components enabled by novel glass and glass ceramic optical materials.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aytug, Tolga
Maintaining clarity and avoiding the accumulation of water and dirt on optically transparent surfaces such as US military vehicle windshields, viewports, periscope optical head windows, and electronic equipment cover glasses are critical to providing a high level of visibility, improved survivability, and much-needed safety for warfighters in the field. Through a combination of physical vapor deposition techniques and the exploitation of metastable phase separation in low-alkali borosilicate, a novel technology was developed for the fabrication of optically transparent, porous nanostructured silica thin film coatings that are strongly bonded to glass platforms. The nanotextured films, initially structurally superhydrophilic, exhibit superior superhydrophobicity,more » hence antisoiling ability, following a simple but robust modification in surface chemistry. The surfaces yield water droplet contact angles as high as 172°. Moreover, the nanostructured nature of these coatings provides increased light scattering in the UV regime and reduced reflectivity (i.e., enhanced transmission) over a broad range of the visible spectrum. In addition to these functionalities, the coatings exhibit superior mechanical resistance to abrasion and are thermally stable to temperatures approaching 500°C. The overall process technology relies on industry standard equipment and inherently scalable manufacturing processes and demands only nontoxic, naturally abundant, and inexpensive base materials. Such coatings, applied to the optical components of current and future combat equipment and military vehicles will provide a significant strategic advantage for warfighters. The inherent self-cleaning properties of such superhydrophobic coatings will also mitigate biofouling of optical windows exposed to high-humidity conditions and can help decrease repair/replacement costs, reduce maintenance, and increase readiness by limiting equipment downtime.« less
NASA Astrophysics Data System (ADS)
Tarrago, Mariona; Gimeno, Domingo; Bazzocchi, Flavia; Garcia-Valles, Maite; Martinez, Salvador
2015-04-01
One of the major and less explored issues in the characterization of historical glasses is the determination of their viscosity as a function of temperature in order to constrain technological aspects of glass production. Until now, assumptions on temperatures have been based on mathematical models based on chemical compositions. Hence, the topic of this work is to explore the technology of stained glass production related to the workability and melting process of the glass by experimental laboratory measurements. This work presents the analysis of viscosity of glasses from different historical sites and chemical compositions: four from Santes Creus (Tarragona, XIII century), two of classical medieval stained glass window from Santa Maria de Pedralbes (Barcelona, mid XIV century), and three of evolved late-medieval type from Santa Maria del Mar (Barcelona first half of XV century), and one sample of soda-lime industrial glass by means of Hot-Stage Microscopy and glass transformation temperature Tg by dilatometry. These data are then compared to the predictions on theoretical viscosity obtained from mathematical models based on chemical composition. These samples are classified according to their major modifier in: Na-rich (12-17% of Na2O, between 65-77% of SiO2 and less than 3 % of K2O); Ca-rich (29% of CaO, 54% of SiO2, 4% of K2O, and 4% of Na2O); K-Ca-rich (17 to 21% of K2O, more than 14% of CaO, 49-55% of SiO2and less than 2% of Na2O); Na-Ca-rich (12-14% of Na2O, 9-15% of CaO, 57-71% of SiO2 and < 6% of K2O). Glass transition temperature (Tg) is correlated to chemical composition: 464-492 °C for Na-rich, 645 °C for Ca-rich, 582-586 °C for K-Ca-rich and 497-542 °C for Na-Ca-rich glasses. Experimental viscosity-temperature curves are traced using Tg and fixed viscosity points measured by Hot-Stage microscopy (according to German standard 51730) in order to provide more accurate insight into the phases of glass production process (melting, working, conditioning and annealing ranges). These results are also compared to mathematical models of glass viscosity based on chemical composition. The annealing range (viscosity between 1013.5 and 1012 Pa-s) is reached at temperatures between 484-633°C (strain point) and 509-664°C (upper limit). The working point (viscosity of 103 Pa-s) has temperature values in the range between 958 and 1097°C.
FONSECA, Rodrigo Borges; BRANCO, Carolina Assaf; QUAGLIATTO, Paulo Sérgio; GONÇALVES, Luciano de Souza; SOARES, Carlos José; CARLO, Hugo Lemes; CORRER-SOBRINHO, Lourenço
2010-01-01
Objective To determine the influence of P/L ratio on the radiodensity and diametral tensile strength (DTS) of glass ionomer cements. Material and Methods There were 2 factors under study: P/L ratio (manufacturer's recommended P/L ratio and a 50% reduced P/L ratio), and materials (Vitro Molar, Vitro Fil, Vitro Cem conventional GICs and Vitro Fil LC, Ortho Glass LC RMGICs). Five 1-mm-thick samples of each material-P/L ratio were produced for radiodensity evaluation. Samples were x-ray exposed onto Digora phosphor plate and radiodensity was obtained using the software Digora for Windows 2.5 Rev 0. For DTS, five (4.0x8.0 mm) cylinder samples of each material were tested (0.5 mm/min). Data were subjected to one- and two-way ANOVA (5x2) followed by Tukey's HSD test, or Kruskal-Wallis and Dunn's method. For paired comparisons, t-test or Mann-Whitney test were used (a=0.05). Results There was a significant interaction (P=0.001) for the studied factors (materials vs. P/L ratio). Reduced P/L ratio resulted in significantly lower DTS for the RMGICs, but radiodensity was affected for all materials (P<0.05). Conclusions Reduced P/L ratio affected properties of the tested glass ionomer cements. RMGICs were more susceptible to lower values of DTS, but radiodensity decreased for all materials following P/L ratio reduction. PMID:21308288
Gao, Guojun; Winterstein-Beckmann, Anja; Surzhenko, Oleksii; Dubs, Carsten; Dellith, Jan; Schmidt, Markus A; Wondraczek, Lothar
2015-03-10
We report on the magneto-optical (MO) properties of heavily Tb(3+)-doped GeO2-B2O3-Al2O3-Ga2O3 glasses towards fiber-integrated paramagnetic MO devices. For a Tb(3+) ion concentration of up to 9.7 × 10(21) cm(-3), the reported glass exhibits an absolute negative Faraday rotation of ~120 rad/T/m at 632.8 nm. The optimum spectral ratio between Verdet constant and light transmittance over the spectral window of 400-1500 nm is found for a Tb(3+) concentration of ~6.5 × 10(21) cm(-3). For this glass, the crystallization stability, expressed as the difference between glass transition temperature and onset temperature of melt crystallization exceeds 100 K, which is a prerequisite for fiber drawing. In addition, a high activation energy of crystallization is achieved at this composition. Optical absorption occurs in the NUV and blue spectral region, accompanied by Tb(3+) photoluminescence. In the heavily doped materials, a UV/blue-to-green photo-conversion gain of ~43% is achieved. The lifetime of photoluminescence is ~2.2 ms at a stimulated emission cross-section σem of ~1.1 × 10(-21) cm(2) for ~ 5.0 × 10(21) cm(-3) Tb(3+). This results in an optical gain parameter σem*τ of ~2.5 × 10(-24) cm(2)s, what could be of interest for implementation of a Tb(3+) fiber laser.
Gao, Guojun; Winterstein-Beckmann, Anja; Surzhenko, Oleksii; Dubs, Carsten; Dellith, Jan; Schmidt, Markus A.; Wondraczek, Lothar
2015-01-01
We report on the magneto-optical (MO) properties of heavily Tb3+-doped GeO2-B2O3-Al2O3-Ga2O3 glasses towards fiber-integrated paramagnetic MO devices. For a Tb3+ ion concentration of up to 9.7 × 1021 cm−3, the reported glass exhibits an absolute negative Faraday rotation of ~120 rad/T/m at 632.8 nm. The optimum spectral ratio between Verdet constant and light transmittance over the spectral window of 400–1500 nm is found for a Tb3+ concentration of ~6.5 × 1021 cm−3. For this glass, the crystallization stability, expressed as the difference between glass transition temperature and onset temperature of melt crystallization exceeds 100 K, which is a prerequisite for fiber drawing. In addition, a high activation energy of crystallization is achieved at this composition. Optical absorption occurs in the NUV and blue spectral region, accompanied by Tb3+ photoluminescence. In the heavily doped materials, a UV/blue-to-green photo-conversion gain of ~43% is achieved. The lifetime of photoluminescence is ~2.2 ms at a stimulated emission cross-section σem of ~1.1 × 10−21 cm2 for ~ 5.0 × 1021 cm−3 Tb3+. This results in an optical gain parameter σem*τ of ~2.5 × 10−24 cm2s, what could be of interest for implementation of a Tb3+ fiber laser. PMID:25754819
Metal-dielectric frequency-selective surface for high performance solar window coatings
NASA Astrophysics Data System (ADS)
Toor, Fatima; Guneratne, Ananda C.; Temchenko, Marina
2016-03-01
We demonstrate a solar control window film consisting of metallic nanoantennas designed to reflect infrared (IR) light while allowing visible light to pass through. The film consists of a capacitive frequency-selective surface (CFSS) which acts as a band-stop filter, reflecting only light at target wavelengths. The designed CFSS when installed on windows will lower air conditioning costs by reflecting undesired wavelengths of light and thus reduce the amount of heat that enters a building. State-of-the-art commercial solar control films consist of a multilayer stack which is costly ( 13/m2 to 40/m2) to manufacture and absorbs IR radiation, causing delamination or glass breakage when attached to windows. Our solar control film consists of a nanostructured metallic layer on a polyethylene terephthalate (PET) substrate that reflects IR radiation instead of absorbing it, solving the delamination problem. The CFSS is also easy to manufacture with roll-to-roll nanoimprint lithography at a cost of <$12/m2. We design the CFSS using the COMSOL Wave Optics module to solve for electromagnetic wave propagation in optical media via the finite element method. The simulation domain is reduced to a single unit cell with periodic boundary conditions to account for the symmetries of the planar, periodic CFSS. The design is optimized using parametric sweeps around the various geometric components of the metallic nanoantenna. Our design achieves peak reflection of 80% at 1000 nm and has a broadband IR response that will allow for optimum solar control without significantly affecting the transmission of visible light.
High quality nitrogen-doped zinc oxide thin films grown on ITO by sol-gel method
NASA Astrophysics Data System (ADS)
Pathak, Trilok Kumar; Kumar, Vinod; Purohit, L. P.
2015-11-01
Highly transparent N-doped ZnO thin films were deposited on ITO coated corning glass substrate by sol-gel method. Ammonium nitrate was used as a dopant source of N with varying the doping concentration 0, 0.5, 1.0, 2.0 and 3.0 at%. The DSC analysis of prepared NZO sols is observed a phase transition at 150 °C. X-ray diffraction pattern showed the preferred (002) peak of ZnO, which was deteriorated with increased N concentrations. The transmittance of NZO thin films was observed to be ~88%. The bandgap of NZO thin films increased from 3.28 to 3.70 eV with increased N concentration from 0 to 3 at%. The maximum carrier concentration 8.36×1017 cm-3 and minimum resistivity 1.64 Ω cm was observed for 3 at% N doped ZnO thin films deposited on glass substrate. These highly transparent ZnO thin films can be used as a window layer in solar cells and optoelectronic devices.
NASA Astrophysics Data System (ADS)
Llordés, Anna; Wang, Yang; Fernandez-Martinez, Alejandro; Xiao, Penghao; Lee, Tom; Poulain, Agnieszka; Zandi, Omid; Saez Cabezas, Camila A.; Henkelman, Graeme; Milliron, Delia J.
2016-12-01
Amorphous transition metal oxides are recognized as leading candidates for electrochromic window coatings that can dynamically modulate solar irradiation and improve building energy efficiency. However, their thin films are normally prepared by energy-intensive sputtering techniques or high-temperature solution methods, which increase manufacturing cost and complexity. Here, we report on a room-temperature solution process to fabricate electrochromic films of niobium oxide glass (NbOx) and `nanocrystal-in-glass’ composites (that is, tin-doped indium oxide (ITO) nanocrystals embedded in NbOx glass) via acid-catalysed condensation of polyniobate clusters. A combination of X-ray scattering and spectroscopic characterization with complementary simulations reveals that this strategy leads to a unique one-dimensional chain-like NbOx structure, which significantly enhances the electrochromic performance, compared to a typical three-dimensional NbOx network obtained from conventional high-temperature thermal processing. In addition, we show how self-assembled ITO-in-NbOx composite films can be successfully integrated into high-performance flexible electrochromic devices.
NASA Astrophysics Data System (ADS)
Su, Yunquan; Yao, Xuefeng; Wang, Shen; Ma, Yinji
2017-03-01
An effective correction model is proposed to eliminate the refraction error effect caused by an optical window of a furnace in digital image correlation (DIC) deformation measurement under high-temperature environment. First, a theoretical correction model with the corresponding error correction factor is established to eliminate the refraction error induced by double-deck optical glass in DIC deformation measurement. Second, a high-temperature DIC experiment using a chromium-nickel austenite stainless steel specimen is performed to verify the effectiveness of the correction model by the correlation calculation results under two different conditions (with and without the optical glass). Finally, both the full-field and the divisional displacement results with refraction influence are corrected by the theoretical model and then compared to the displacement results extracted from the images without refraction influence. The experimental results demonstrate that the proposed theoretical correction model can effectively improve the measurement accuracy of DIC method by decreasing the refraction errors from measured full-field displacements under high-temperature environment.
Structural refinement of vitreous silica bilayers
NASA Astrophysics Data System (ADS)
Sadjadi, Mahdi; Wilson, Mark; Thorpe, M. F.
The importance of glasses resides not only in their applications but in fundamental questions that they put forth. The continuous random network model can successfully describe the glass structure, but determining details, like ring statistics, has always been difficult using only diffraction data. But recent atomic images of 2D vitreous silica bilayers can offer valuable new insights which are hard to be observed directly in 3D silica models/experiments (for references see). However, the experimental results are prone to uncertainty in atomic positions, systematic errors, and being finite. We employ special boundary conditions developed for such networks to refine the experimental structures. We show the best structure can be found by using various potentials to maximize information gained from the experimental samples. We find a range of densities, the so-called flexibility window, in which tetrahedra are perfect. We compare results from simulations using harmonic potentials, MD with atomic polarizabilities included and DFT. We should thank David Drabold and Bishal Bhattarai for useful discussions. Support through NSF Grant # DMS 1564468 is gratefully acknowledged.
Edward Burne-Jones' Heavenly Conception: A Biblical Cosmos
NASA Astrophysics Data System (ADS)
Cheney, L. D. G.
2016-01-01
Edward Burne-Jones was a Pre-Raphaelite artist and designer, who collaborated with William Morris on many decorative arts (stained glass windows, book illustrations, ceramic and tapestry designs). He was a founding partner in the firm Morris, Marshall, Faulkner & Company. Burne-Jones composed The Days of Creation between 1870 and 1876 for the Morris firm. These paintings were executed in gouache and gold paint, and cartoons were made for tile and in stained glass, for the Church of St. Editha at Tamworth in Staffordshire. Burne-Jones' creation was highly praised and elegantly described by Oscar Wilde: “The picture is divided into six compartments, each representing a day in the Creation of the World, under the symbol of an angel holding a crystal globe, within which is shown the work of a day.” This paper will examine how Burne-Jones visualized an unusual celestial creation where angels holding magical spheres unveil the divine manifestation for the creation of a terrestrial realm. He created a cosmic utopia of the natural world.
Measurement of grain wall contact forces in a granular bed using frequency-scanning interferometry
NASA Astrophysics Data System (ADS)
Osman, M. S.; Huntley, J. M.; Wildman, R. D.
2005-07-01
Micro-mechanical theories have recently been developed to model the propagation of force through a granular material based on single grain interactions. We describe here an experimental technique, developed to validate such theories, that is able to measure the individual contact forces between the grains and the wall of the containing vessel, thereby avoiding the spatial averaging effect of conventional pressure transducers. The method involves measuring interferometrically the deflection of an interface within a triple-layer elastic substrate consisting of epoxy, silicone rubber, and glass. A thin coating of gold between the epoxy and rubber acts as a reflective film, with the reference wave provided by the glass/air interface. Phase shifting is carried out by means of a tunable laser. Phase difference maps are calculated using a 15-frame phase-shifting formula based on a Hanning window. The resulting displacement resolution of order 1 nm allows the wall stiffness to be increased by some two orders of magnitude compared to previously described methods in the literature.
Digital colour management system for colour parameters reconstruction
NASA Astrophysics Data System (ADS)
Grudzinski, Karol; Lasmanowicz, Piotr; Assis, Lucas M. N.; Pawlicka, Agnieszka; Januszko, Adam
2013-10-01
Digital Colour Management System (DCMS) and its application to new adaptive camouflage system are presented in this paper. The DCMS is a digital colour rendering method which would allow for transformation of a real image into a set of colour pixels displayed on a computer monitor. Consequently, it can analyse pixels' colour which comprise images of the environment such as desert, semi-desert, jungle, farmland or rocky mountain in order to prepare an adaptive camouflage pattern most suited for the terrain. This system is described in present work as well as the use the subtractive colours mixing method to construct the real time colour changing electrochromic window/pixel (ECD) for camouflage purpose. The ECD with glass/ITO/Prussian Blue(PB)/electrolyte/CeO2-TiO2/ITO/glass configuration was assembled and characterized. The ECD switched between green and yellow after +/-1.5 V application and the colours have been controlled by Digital Colour Management System and described by CIE LAB parameters.
Distinctive glial and neuronal interfacing on nanocrystalline diamond.
Bendali, Amel; Agnès, Charles; Meffert, Simone; Forster, Valérie; Bongrain, Alexandre; Arnault, Jean-Charles; Sahel, José-Alain; Offenhäusser, Andreas; Bergonzo, Philippe; Picaud, Serge
2014-01-01
Direct electrode/neuron interfacing is a key challenge to achieve high resolution of neuronal stimulation required for visual prostheses. Neuronal interfacing on biomaterials commonly requires the presence of glial cells and/or protein coating. Nanocrystalline diamond is a highly mechanically stable biomaterial with a remarkably large potential window for the electrical stimulation of tissues. Using adult retinal cell cultures from rats, we found that glial cells and retinal neurons grew equally well on glass and nanocrystalline diamond. The use of a protein coating increased cell survival, particularly for glial cells. However, bipolar neurons appeared to grow even in direct contact with bare diamond. We investigated whether the presence of glial cells contributed to this direct neuron/diamond interface, by using purified adult retinal ganglion cells to seed diamond and glass surfaces with and without protein coatings. Surprisingly, these fully differentiated spiking neurons survived better on nanocrystalline diamond without any protein coating. This greater survival was indicated by larger cell numbers and the presence of longer neurites. When a protein pattern was drawn on diamond, neurons did not grow preferentially on the coated area, by contrast to their behavior on a patterned glass. This study highlights the interesting biocompatibility properties of nanocrystalline diamond, allowing direct neuronal interfacing, whereas a protein coating was required for glial cell growth.
Distinctive Glial and Neuronal Interfacing on Nanocrystalline Diamond
Bendali, Amel; Agnès, Charles; Meffert, Simone; Forster, Valérie; Bongrain, Alexandre; Arnault, Jean-Charles; Sahel, José-Alain; Offenhäusser, Andreas; Bergonzo, Philippe; Picaud, Serge
2014-01-01
Direct electrode/neuron interfacing is a key challenge to achieve high resolution of neuronal stimulation required for visual prostheses. Neuronal interfacing on biomaterials commonly requires the presence of glial cells and/or protein coating. Nanocrystalline diamond is a highly mechanically stable biomaterial with a remarkably large potential window for the electrical stimulation of tissues. Using adult retinal cell cultures from rats, we found that glial cells and retinal neurons grew equally well on glass and nanocrystalline diamond. The use of a protein coating increased cell survival, particularly for glial cells. However, bipolar neurons appeared to grow even in direct contact with bare diamond. We investigated whether the presence of glial cells contributed to this direct neuron/diamond interface, by using purified adult retinal ganglion cells to seed diamond and glass surfaces with and without protein coatings. Surprisingly, these fully differentiated spiking neurons survived better on nanocrystalline diamond without any protein coating. This greater survival was indicated by larger cell numbers and the presence of longer neurites. When a protein pattern was drawn on diamond, neurons did not grow preferentially on the coated area, by contrast to their behavior on a patterned glass. This study highlights the interesting biocompatibility properties of nanocrystalline diamond, allowing direct neuronal interfacing, whereas a protein coating was required for glial cell growth. PMID:24664111
Authenticity screening of stained glass windows using optical spectroscopy
Meulebroeck, Wendy; Wouters, Hilde; Nys, Karin; Thienpont, Hugo
2016-01-01
Civilized societies should safeguard their heritage as it plays an important role in community building. Moreover, past technologies often inspire new technology. Authenticity is besides conservation and restoration a key aspect in preserving our past, for example in museums when exposing showpieces. The classification of being authentic relies on an interdisciplinary approach integrating art historical and archaeological research complemented with applied research. In recent decades analytical dating tools are based on determining the raw materials used. However, the traditional applied non-portable, chemical techniques are destructive and time-consuming. Since museums oftentimes only consent to research actions which are completely non-destructive, optical spectroscopy might offer a solution. As a case-study we apply this technique on two stained glass panels for which the 14th century dating is nowadays questioned. With this research we were able to identify how simultaneous mapping of spectral signatures measured with a low cost optical spectrum analyser unveils information regarding the production period. The significance of this research extends beyond the re-dating of these panels to the 19th century as it provides an instant tool enabling immediate answering authenticity questions during the conservation process of stained glass, thereby providing the necessary data for solving deontological questions about heritage preservation. PMID:27883056
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tripathy, Satya N., E-mail: satyanarayantripathy@gmail.com; Wojnarowska, Zaneta; Knapik, Justyna
2015-05-14
A detailed investigation on the molecular dynamics of ionic deep eutectic solvents (acetamide + lithium nitrate/sodium thiocyanate) is reported. The study was carried out employing dielectric relaxation spectroscopy covering seven decades in frequency (10{sup −1}-10{sup 6} Hz) and in a wide temperature range from 373 K down to 173 K, accessing the dynamic observables both in liquid and glassy state. The dielectric response of the ionic system has been presented in the dynamic window of modulus formalism to understand the conductivity relaxation and its possible connection to the origin of localized motion. Two secondary relaxation processes appear below glass transitionmore » temperature. Our findings provide suitable interpretation on the nature of secondary Johari-Goldstein process describing the ion translation and orientation of dipoles in a combined approach using Ngai’s coupling model. A nearly constant loss feature is witnessed at shorter times/lower temperatures. We also discuss the ac conductivity scaling behavior using Summerfield approach and random free energy barrier model which establish the time-temperature superposition principle. These experimental observations have fundamental importance on theoretical elucidation of the conductivity relaxation and glass transition phenomena in molten ionic conductors.« less
Authenticity screening of stained glass windows using optical spectroscopy
NASA Astrophysics Data System (ADS)
Meulebroeck, Wendy; Wouters, Hilde; Nys, Karin; Thienpont, Hugo
2016-11-01
Civilized societies should safeguard their heritage as it plays an important role in community building. Moreover, past technologies often inspire new technology. Authenticity is besides conservation and restoration a key aspect in preserving our past, for example in museums when exposing showpieces. The classification of being authentic relies on an interdisciplinary approach integrating art historical and archaeological research complemented with applied research. In recent decades analytical dating tools are based on determining the raw materials used. However, the traditional applied non-portable, chemical techniques are destructive and time-consuming. Since museums oftentimes only consent to research actions which are completely non-destructive, optical spectroscopy might offer a solution. As a case-study we apply this technique on two stained glass panels for which the 14th century dating is nowadays questioned. With this research we were able to identify how simultaneous mapping of spectral signatures measured with a low cost optical spectrum analyser unveils information regarding the production period. The significance of this research extends beyond the re-dating of these panels to the 19th century as it provides an instant tool enabling immediate answering authenticity questions during the conservation process of stained glass, thereby providing the necessary data for solving deontological questions about heritage preservation.