Sample records for window systems effects

  1. Active noise attenuation in ventilation windows.

    PubMed

    Huang, Huahua; Qiu, Xiaojun; Kang, Jian

    2011-07-01

    The feasibility of applying active noise control techniques to attenuate low frequency noise transmission through a natural ventilation window into a room is investigated analytically and experimentally. The window system is constructed by staggering the opening sashes of a spaced double glazing window to allow ventilation and natural light. An analytical model based on the modal expansion method is developed to calculate the low frequency sound field inside the window and the room and to be used in the active noise control simulations. The effectiveness of the proposed analytical model is validated by using the finite element method. The performance of the active control system for a window with different source and receiver configurations are compared, and it is found that the numerical and experimental results are in good agreement and the best result is achieved when the secondary sources are placed in the center at the bottom of the staggered window. The extra attenuation at the observation points in the optimized window system is almost equivalent to the noise reduction at the error sensor and the frequency range of effective control is up to 390 Hz in the case of a single channel active noise control system. © 2011 Acoustical Society of America

  2. Effects of window size and shape on accuracy of subpixel centroid estimation of target images

    NASA Technical Reports Server (NTRS)

    Welch, Sharon S.

    1993-01-01

    A new algorithm is presented for increasing the accuracy of subpixel centroid estimation of (nearly) point target images in cases where the signal-to-noise ratio is low and the signal amplitude and shape vary from frame to frame. In the algorithm, the centroid is calculated over a data window that is matched in width to the image distribution. Fourier analysis is used to explain the dependency of the centroid estimate on the size of the data window, and simulation and experimental results are presented which demonstrate the effects of window size for two different noise models. The effects of window shape were also investigated for uniform and Gaussian-shaped windows. The new algorithm was developed to improve the dynamic range of a close-range photogrammetric tracking system that provides feedback for control of a large gap magnetic suspension system (LGMSS).

  3. Independent Orbiter Assessment (IOA): Analysis of the purge, vent and drain subsystem

    NASA Technical Reports Server (NTRS)

    Bynum, M. C., III

    1987-01-01

    The results of the Independent Orbiter Assessment (IOA) of the Failure Modes and Effects Analysis (FMEA) and Critical Items List (CIL) are presented. The IOA approach features a top-down analysis of the hardware to determine failure modes, criticality, and potential critical items. To preserve independence, this analysis was accomplished without reliance upon the results contained within the NASA FMEA/CIL documentation. This report documents the independent analysis results corresponding to the Orbiter PV and D (Purge, Vent and Drain) Subsystem hardware. The PV and D Subsystem controls the environment of unpressurized compartments and window cavities, senses hazardous gases, and purges Orbiter/ET Disconnect. The subsystem is divided into six systems: Purge System (controls the environment of unpressurized structural compartments); Vent System (controls the pressure of unpressurized compartments); Drain System (removes water from unpressurized compartments); Hazardous Gas Detection System (HGDS) (monitors hazardous gas concentrations); Window Cavity Conditioning System (WCCS) (maintains clear windows and provides pressure control of the window cavities); and External Tank/Orbiter Disconnect Purge System (prevents cryo-pumping/icing of disconnect hardware). Each level of hardware was evaluated and analyzed for possible failure modes and effects. Criticality was assigned based upon the severity of the effect for each failure mode. Four of the sixty-two failure modes analyzed were determined as single failures which could result in the loss of crew or vehicle. A possible loss of mission could result if any of twelve single failures occurred. Two of the criticality 1/1 failures are in the Window Cavity Conditioning System (WCCS) outer window cavity, where leakage and/or restricted flow will cause failure to depressurize/repressurize the window cavity. Two criticality 1/1 failures represent leakage and/or restricted flow in the Orbiter/ET disconnect purge network which prevent cryopumping/icing of disconnect hardware. Each level of hardware was evaluated and analyzed for possible failure modes and effects. Criticality was assigned based upon the severity of the effect for each failure mode.

  4. Photorefractive-based adaptive optical windows

    NASA Astrophysics Data System (ADS)

    Liu, Yuexin; Yang, Yi; Wang, Bo; Fu, John Y.; Yin, Shizhuo; Guo, Ruyan; Yu, Francis T.

    2004-10-01

    Optical windows have been widely used in optical spectrographic processing system. In this paper, various window profiles, such as rectangular, triangular, Hamming, Hanning, and Blackman etc., have been investigated in detail, regarding their effect on the generated spectrograms, such as joint time-frequency resolution ΔtΔw, the sidelobe amplitude attenuation etc.. All of these windows can be synthesized in a photorefractive crystal by angular multiplexing holographic technique, which renders the system more adaptive. Experimental results are provided.

  5. Windows of sensitivity to toxic chemicals in the motor effects development.

    PubMed

    Ingber, Susan Z; Pohl, Hana R

    2016-02-01

    Many chemicals currently used are known to elicit nervous system effects. In addition, approximately 2000 new chemicals introduced annually have not yet undergone neurotoxicity testing. This review concentrated on motor development effects associated with exposure to environmental neurotoxicants to help identify critical windows of exposure and begin to assess data needs based on a subset of chemicals thoroughly reviewed by the Agency for Toxic Substances and Disease Registry (ATSDR) in Toxicological Profiles and Addenda. Multiple windows of sensitivity were identified that differed based on the maturity level of the neurological system at the time of exposure, as well as dose and exposure duration. Similar but distinct windows were found for both motor activity (GD 8-17 [rats], GD 12-14 and PND 3-10 [mice]) and motor function performance (insufficient data for rats, GD 12-17 [mice]). Identifying specific windows of sensitivity in animal studies was hampered by study designs oriented towards detection of neurotoxicity that occurred at any time throughout the developmental process. In conclusion, while this investigation identified some critical exposure windows for motor development effects, it demonstrates a need for more acute duration exposure studies based on neurodevelopmental windows, particularly during the exposure periods identified in this review. Published by Elsevier Inc.

  6. Windows of sensitivity to toxic chemicals in the motor effects development✩

    PubMed Central

    Ingber, Susan Z.; Pohl, Hana R.

    2017-01-01

    Many chemicals currently used are known to elicit nervous system effects. In addition, approximately 2000 new chemicals introduced annually have not yet undergone neurotoxicity testing. This review concentrated on motor development effects associated with exposure to environmental neurotoxicants to help identify critical windows of exposure and begin to assess data needs based on a subset of chemicals thoroughly reviewed by the Agency for Toxic Substances and Disease Registry (ATSDR) in Toxicological Profiles and Addenda. Multiple windows of sensitivity were identified that differed based on the maturity level of the neurological system at the time of exposure, as well as dose and exposure duration. Similar but distinct windows were found for both motor activity (GD 8–17 [rats], GD 12–14 and PND 3–10 [mice]) and motor function performance (insufficient data for rats, GD 12–17 [mice]). Identifying specific windows of sensitivity in animal studies was hampered by study designs oriented towards detection of neurotoxicity that occurred at any time throughout the developmental process. In conclusion, while this investigation identified some critical exposure windows for motor development effects, it demonstrates a need for more acute duration exposure studies based on neurodevelopmental windows, particularly during the exposure periods identified in this review. PMID:26686904

  7. Sunlight Responsive Thermochromic Window System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Millett, F,A; Byker,H, J

    2006-10-27

    Pleotint has embarked on a novel approach with our Sunlight Responsive Thermochromic, SRT™, windows. We are integrating dynamic sunlight control, high insulation values and low solar heat gain together in a high performance window. The Pleotint SRT window is dynamic because it reversibly changes light transmission based on thermochromics activated directly by the heating effect of sunlight. We can achieve a window package with low solar heat gain coefficient (SHGC), a low U value and high insulation. At the same time our windows provide good daylighting. Our innovative window design offers architects and building designers the opportunity to choose theirmore » desired energy performance, excellent sound reduction, external pane can be self-cleaning, or a resistance to wind load, blasts, bullets or hurricanes. SRT windows would provide energy savings that are estimated at up to 30% over traditional window systems. Glass fabricators will be able to use existing equipment to make the SRT window while adding value and flexibility to the basic design. Glazing installers will have the ability to fit the windows with traditional methods without wires, power supplies and controllers. SRT windows can be retrofit into existing buildings,« less

  8. Using multimedia technology to help combat the negative effects of protective isolation on patients: the Open Window project--an engineering challenge.

    PubMed

    Hegarty, F; Roche, D; McCabe, C; McCann, S

    2009-01-01

    The Open Window project was established with the aim of creating a "virtual window" for each patient who is confined to protective isolation due to treatment for illness. This virtual window as developed provides a range of media or experiences. This paper describes the approach taken to the system design and discusses initial experiences with implementing such a system in a critical care setting. The system design was predicated on two guiding principles. Firstly it should be intuitive to use and the technology used to create the virtual window hidden from patient view. Secondly the system must be able to be installed at the point of care in a way that delivers the experience under the patient's control, without compromising the function or safety of the clinical environment. Patient acceptance of the system is being measured as part of an on-going trial and at this interim phase of data analysis 100% (n=55) of participants in the intervention group have reported that the technology was easy to use. We conclude that the system as designed and installed is an effective, robust and reliable system upon which to base a multimedia interventions in a critical care room.

  9. Medical Information Management System (MIMS) CareWindows.

    PubMed Central

    Stiphout, R. M.; Schiffman, R. M.; Christner, M. F.; Ward, R.; Purves, T. M.

    1991-01-01

    The demonstration of MIMS/CareWindows will include: (1) a review of the application environment and development history, (2) a demonstration of a very large, comprehensive clinical information system with a cost effective graphic user server and communications interface. PMID:1807755

  10. Effect of smoothing on robust chaos.

    PubMed

    Deshpande, Amogh; Chen, Qingfei; Wang, Yan; Lai, Ying-Cheng; Do, Younghae

    2010-08-01

    In piecewise-smooth dynamical systems, situations can arise where the asymptotic attractors of the system in an open parameter interval are all chaotic (e.g., no periodic windows). This is the phenomenon of robust chaos. Previous works have established that robust chaos can occur through the mechanism of border-collision bifurcation, where border is the phase-space region where discontinuities in the derivatives of the dynamical equations occur. We investigate the effect of smoothing on robust chaos and find that periodic windows can arise when a small amount of smoothness is present. We introduce a parameter of smoothing and find that the measure of the periodic windows in the parameter space scales linearly with the parameter, regardless of the details of the smoothing function. Numerical support and a heuristic theory are provided to establish the scaling relation. Experimental evidence of periodic windows in a supposedly piecewise linear dynamical system, which has been implemented as an electronic circuit, is also provided.

  11. IR window design for hypersonic missile seekers: thermal shock and cooling systems

    NASA Astrophysics Data System (ADS)

    Hingst, Uwe; Koerber, Stefan

    2001-10-01

    Infra-red (IR) seekers on missiles at high Mach-numbers in the lower tier air defence often suffer from degradation in performance due to aerothermodynamic effects. The kind and rate of degradation depends on the geometric design (shape) and location of the IR-window. Optimal design may reduce those effects but still misses to totally withstand the imposed thermal stresses (thermal shock). Proper thermal protection systems and/or window cooling systems will be needed. The first part of this paper deals particularly with passive IR- window design features to reduce the thermal stresses. A series of wind-tunnel testings focused on the thermal shock behavior of different IR-window shapes under critical flight conditions. The variation of typical design parameters demonstrates the available features to reduce thermal shock by passive ways. The second part presents active thermal stress reduction devices, e.g. an active cooling system. Among others the most efficient reduction of thermal heating is based on three components: A partial coverage of the IR-dome to protect most parts against heating effects, a rotating system bearing the IR-dome and a liquid spray-cooling system in the gap between the cover and the IR-dome. The hemispherical or pyramidal dome can be located either midways in the missile nose section or sideways on the structure. The liquid spray cooling system combines both, a heat exchange by fluid evaporation and a heat transfer by fluid and gas cross flow (convection), causing a low fluid consumption. Such a cooling system along with their driving parameters and the resulting analytical performance will be presented.

  12. Economic efficiency of application of solar window

    NASA Astrophysics Data System (ADS)

    Shapoval, Stepan

    2017-12-01

    Priority and qualitatively new direction in the fuel and energy sector is renewable energy. This paper describes a feasibility study of using solar window in the system of solar heat supply. The article presents literature data about the effectiveness of the use of solar systems in other countries. The results confirm a sufficient efficiency of solar heat supply with using solar Windows. Insights based on practical experience and mathematical calculations, which are aimed at a detailed explanation of economic efficiency of the proposed construction.

  13. New machining method of high precision infrared window part

    NASA Astrophysics Data System (ADS)

    Yang, Haicheng; Su, Ying; Xu, Zengqi; Guo, Rui; Li, Wenting; Zhang, Feng; Liu, Xuanmin

    2016-10-01

    Most of the spherical shell of the photoelectric multifunctional instrument was designed as multi optical channel mode to adapt to the different band of the sensor, there were mainly TV, laser and infrared channels. Without affecting the optical diameter, wind resistance and pneumatic performance of the optical system, the overall layout of the spherical shell was optimized to save space and reduce weight. Most of the shape of the optical windows were special-shaped, each optical window directly participated in the high resolution imaging of the corresponding sensor system, and the optical axis parallelism of each sensor needed to meet the accuracy requirement of 0.05mrad.Therefore precision machining of optical window parts quality will directly affect the photoelectric system's pointing accuracy and interchangeability. Processing and testing of the TV and laser window had been very mature, while because of the special nature of the material, transparent and high refractive rate, infrared window parts had the problems of imaging quality and the control of the minimum focal length and second level parallel in the processing. Based on years of practical experience, this paper was focused on how to control the shape and parallel difference precision of infrared window parts in the processing. Single pass rate was increased from 40% to more than 95%, the processing efficiency was significantly enhanced, an effective solution to the bottleneck problem in the actual processing, which effectively solve the bottlenecks in research and production.

  14. Combined Pressure and Thermal Window System for Space Vehicles

    NASA Technical Reports Server (NTRS)

    Svartstrom, Kirk Nils (Inventor)

    2015-01-01

    A window system for a vehicle comprising a pressure and thermal window pane, a seal system, and a retainer system. The pressure and thermal window pane may be configured to provide desired pressure protection and desired thermal protection when exposed to an environment around the vehicle during operation of the vehicle. The pressure and thermal window pane may have a desired ductility. The seal system may be configured to contact the pressure and thermal window pane to seal the pressure and thermal window pane. The retainer system may be configured to hold the seal system and the pressure and thermal window pane.

  15. Combined Pressure and Thermal Window System for Space Vehicles

    NASA Technical Reports Server (NTRS)

    Svartstrom, Kirk Nils (Inventor)

    2017-01-01

    A window system for a vehicle comprising a pressure and thermal window pane, a seal system, and a retainer system. The pressure and thermal window pane may be configured to provide desired pressure protection and desired thermal protection when exposed to an environment around the vehicle during operation of the vehicle. The pressure and thermal window pane may have a desired ductility. The seal system may be configured to contact the pressure and thermal window pane to seal the pressure and thermal window pane. The retainer system may be configured to hold the seal system and the pressure and thermal window pane.

  16. Side-by-Side Field Evaluation of Highly Insulating Windows in the PNNL Lab Homes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Widder, Sarah H.; Parker, Graham B.; Baechler, Michael C.

    2012-08-01

    To examine the energy, air leakage, and thermal performance of highly insulating windows, a field evaluation was undertaken in a matched pair of all-electric, factory-built “Lab Homes” located on the Pacific Northwest National Laboratory (PNNL) campus in Richland, Washington. The “baseline” Lab Home B was retrofitted with “standard” double-pane clear aluminum-frame slider windows and patio doors, while the “experimental” Lab Home A was retrofitted with Jeld-Wen® triple-pane vinyl-frame slider windows and patio doors with a U-factor of 0.2 and solar heat gain coefficient of 0.19. To assess the window, the building shell air leakage, energy use, and interior temperatures ofmore » each home were compared during the 2012 winter heating and summer cooling seasons. The measured energy savings in Lab Home B averaged 5,821 watt-hours per day (Wh/day) during the heating season and 6,518 Wh/day during the cooling season. The overall whole-house energy savings of Lab Home B compared to Lab Home A are 11.6% ± 1.53% for the heating season and 18.4 ± 2.06% for the cooling season for identical occupancy conditions with no window coverings deployed. Extrapolating these energy savings numbers based on typical average heating degree days and cooling degree days per year yields an estimated annual energy savings of 12.2%, or 1,784 kWh/yr. The data suggest that highly insulating windows are an effective energy-saving measure that should be considered for high-performance new homes and in existing retrofits. However, the cost effectiveness of the measure, as determined by the simple payback period, suggests that highly insulating window costs continue to make windows difficult to justify on a cost basis alone. Additional reductions in costs via improvements in manufacturing and/or market penetration that continue to drive down costs will make highly insulating windows much more viable as a cost-effective energy efficiency measure. This study also illustrates that highly insulating windows have important impacts on peak load, occupant comfort, and condensation potential, which are not captured in the energy savings calculation. More consistent and uniform interior temperature distributions suggest that highly insulated windows, as part of a high performance building envelope, may enable more centralized duct design and downsized HVAC systems. Shorter, more centralized duct systems and smaller HVAC systems to yield additional cost savings, making highly insulating windows more cost effective as part of a package of new construction or retrofit measures which achieve significant reductions in home energy use.« less

  17. Stand-alone photovoltaic (PV) powered electrochromic window

    DOEpatents

    Benson, David K.; Crandall, Richard S.; Deb, Satyendra K.; Stone, Jack L.

    1995-01-01

    A variable transmittance double pane window includes an electrochromic material that has been deposited on one pane of the window in conjunction with an array of photovoltaic cells deposited along an edge of the pane to produce the required electric power necessary to vary the effective transmittance of the window. A battery is placed in a parallel fashion to the array of photovoltaic cells to allow the user the ability to manually override the system when a desired transmittance is desired.

  18. Stand-alone photovoltaic (PV) powered electrochromic window

    DOEpatents

    Benson, D.K.; Crandall, R.S.; Deb, S.K.; Stone, J.L.

    1995-01-24

    A variable transmittance double pane window includes an electrochromic material that has been deposited on one pane of the window in conjunction with an array of photovoltaic cells deposited along an edge of the pane to produce the required electric power necessary to vary the effective transmittance of the window. A battery is placed in a parallel fashion to the array of photovoltaic cells to allow the user the ability to manually override the system when a desired transmittance is desired. 11 figures.

  19. Removable Window System for Space Vehicles

    NASA Technical Reports Server (NTRS)

    Grady, James P. (Inventor)

    2015-01-01

    A window system for a platform comprising a window pane, a retention frame, and a biasing system. The window pane may be configured to contact a sealing system. The retention frame may be configured to contact the sealing system and hold the window pane against the support frame. The biasing system may be configured to bias the retention frame toward the support frame while the support frame and the retention frame are in a configuration that holds the window pane. Removal of the biasing system may cause the retention frame and the window pane to be removable.

  20. Windowed time-reversal music technique for super-resolution ultrasound imaging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, Lianjie; Labyed, Yassin

    Systems and methods for super-resolution ultrasound imaging using a windowed and generalized TR-MUSIC algorithm that divides the imaging region into overlapping sub-regions and applies the TR-MUSIC algorithm to the windowed backscattered ultrasound signals corresponding to each sub-region. The algorithm is also structured to account for the ultrasound attenuation in the medium and the finite-size effects of ultrasound transducer elements.

  1. Low-E Retrofit Demonstration and Educational Program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Culp, Thomas D; Wiehagen, Joseph; Drumheller, S Craig

    The objective of this project was to demonstrate the capability of low-emissivity (low-E) storm windows / panels and low-E retrofit glazing systems to significantly and cost effectively improve the energy efficiency of both existing residential and commercial buildings. The key outcomes are listed below: RESIDENTIAL CASE STUDIES: (a) A residential case study in two large multifamily apartment buildings in Philadelphia showed a substantial 18-22% reduction in heating energy use and a 9% reduction in cooling energy use by replacing old clear glass storm windows with modern low-E storm windows. Furthermore, the new low-E storm windows reduced the overall apartment airmore » leakage by an average of 10%. (b) Air leakage testing on interior low-E panels installed in a New York City multifamily building over windows with and without AC units showed that the effective leakage area of the windows was reduced by 77-95%. (c) To study the use of low-E storm windows in a warmer mixed climate with a balance of both heating and cooling, 10 older homes near Atlanta with single pane windows were tested with three types of exterior storm windows: clear glass, low-E glass with high solar heat gain, and low-E glass with lower solar heat gain. The storm windows significantly reduced the overall home air leakage by an average of 17%, or 3.7 ACH50. Considerably high variability in the data made it difficult to draw strong conclusions about the overall energy usage, but for heating periods, the low-E storm windows showed approximately 15% heating energy savings, whereas clear storm windows were neutral in performance. For cooling periods, the low-E storm windows showed a wide range of performance from 2% to over 30% cooling energy savings. Overall, the study showed the potential for significantly more energy savings from using low-E glass versus no storm window or clear glass storm windows in warmer mixed climates, but it is difficult to conclusively say whether one type of low-E performed better than the other. COMMERCIAL CASE STUDIES: (a) A 12-story office building in Philadelphia was retrofitted by adding a double-pane low-E insulating glass unit to the existing single pane windows, to create a triple glazed low-E system. A detailed side-by-side comparison in two pairs of perimeter offices facing north and east showed a 39-60% reduction in heating energy use, a 9-36% reduction in cooling energy use, and a 10% reduction in peak electrical cooling demand. An analysis of utility bills estimated the whole building heating and cooling energy use was reduced by over 25%. Additionally, the retrofit window temperatures were commonly 20 degrees warmer on winter days, and 10-20 degrees cooler on summer days, leading to increased occupant comfort. (b) Two large 4-story office buildings in New Jersey were retrofitted with a similar system, but using two low-E coatings in the retrofit system. The energy savings are being monitored by a separate GPIC project; this work quantified the changes in glass surface temperatures, thermal comfort, and potential glass thermal stress. The low-E retrofit panels greatly reduced daily variations in the interior window surface temperatures, lowering the maximum temperature and raising the minimum temperature by over 20F compared to the original single pane windows with window film. The number of hours of potential thermal discomfort, as measured by deviation between mean radiant temperature and ambient air temperature by more than 3F, were reduced by 93 percent on the south orientation and over two-thirds on the west orientation. Overall, the low-E retrofit led to substantially improved occupant comfort with less periods of both overheating and feeling cold. (c) No significant thermal stress was observed in the New Jersey office building test window when using the low-E retrofit system over a variety of weather conditions. The surface temperature difference only exceeded 10F (500 psi thermal stress) for less than 1.5% of the monitored time, and in all cases, the maximum surface temperature difference never exceeded 35F (1,750 psi thermal stress). LOW-E STORM WINDOW OUTREACH AND EDUCATION PROGRAM: (a) The project team assisted the State of Pennsylvania in adding low-E storm windows as a cost effective weatherization measure on its priority list for the state weatherization assistance program. (b) No technical barriers that could hinder widespread application were identified in the case studies. However, educational barriers have been identified, in that weatherization personnel commonly misunderstand how the application of low-E storm windows is very different than much more expensive full window replacement. (c) A package of educational materials was developed to help communicate the benefits of low-E storm windows and retrofits as a cost effective tool for weatherization personnel. (d) Using detailed thermal simulations, more accurate U-factor and solar heat gain coefficient (SHGC) values were determined for low-E storm windows installed over different primary windows. IN SUMMARY, this work confirmed the potential for low-E storm windows, panels, and retrofit systems to provide significant energy savings, reductions in air leakage, and improvements in thermal comfort in both residential and commercial existing buildings.« less

  2. Difference of auditory brainstem responses by stimulating to round and oval window in animal experiments.

    PubMed

    Lee, Jyung Hyun; Park, Hyo Soon; Wei, Qun; Kim, Myoung Nam; Cho, Jin-Ho

    2017-01-02

    ABSTACT To ensure the safety and efficacy of implantable hearing aids, animal experiments are an essential developmental procedure, in particular, auditory brainstem responses (ABRs) can be used to verify the objective effectiveness of implantable hearing aids. This study measured and compared the ABRs generated when applying the same vibration stimuli to an oval window and round window. The ABRs were measured using a TDT system 3 (TDT, USA), while the vibration stimuli were applied to a round window and oval window in 4 guinea pigs using a piezo-electric transducer with a proper contact tip. A paired t-test was used to determine any differences between the ABR amplitudes when applying the stimulation to an oval window and round window. The paired t-test revealed a significant difference between the ABR amplitudes generated by the round and oval window stimulation (t = 10.079, α < .0001). Therefore, the results confirmed that the biological response to round window stimulation was not the same as that to oval window stimulation.

  3. Using applet-servlet communication for optimizing window, level and crop for DICOM to JPEG conversion.

    PubMed

    Kamauu, Aaron W C; DuVall, Scott L; Wiggins, Richard H; Avrin, David E

    2008-09-01

    In the creation of interesting radiological cases in a digital teaching file, it is necessary to adjust the window and level settings of an image to effectively display the educational focus. The web-based applet described in this paper presents an effective solution for real-time window and level adjustments without leaving the picture archiving and communications system workstation. Optimized images are created, as user-defined parameters are passed between the applet and a servlet on the Health Insurance Portability and Accountability Act-compliant teaching file server.

  4. Modelling the regulatory system for diabetes mellitus with a threshold window

    NASA Astrophysics Data System (ADS)

    Yang, Jin; Tang, Sanyi; Cheke, Robert A.

    2015-05-01

    Piecewise (or non-smooth) glucose-insulin models with threshold windows for type 1 and type 2 diabetes mellitus are proposed and analyzed with a view to improving understanding of the glucose-insulin regulatory system. For glucose-insulin models with a single threshold, the existence and stability of regular, virtual, pseudo-equilibria and tangent points are addressed. Then the relations between regular equilibria and a pseudo-equilibrium are studied. Furthermore, the sufficient and necessary conditions for the global stability of regular equilibria and the pseudo-equilibrium are provided by using qualitative analysis techniques of non-smooth Filippov dynamic systems. Sliding bifurcations related to boundary node bifurcations were investigated with theoretical and numerical techniques, and insulin clinical therapies are discussed. For glucose-insulin models with a threshold window, the effects of glucose thresholds or the widths of threshold windows on the durations of insulin therapy and glucose infusion were addressed. The duration of the effects of an insulin injection is sensitive to the variation of thresholds. Our results indicate that blood glucose level can be maintained within a normal range using piecewise glucose-insulin models with a single threshold or a threshold window. Moreover, our findings suggest that it is critical to individualise insulin therapy for each patient separately, based on initial blood glucose levels.

  5. A FORTRAN code for the calculation of probe volume geometry changes in a laser anemometry system caused by window refraction

    NASA Technical Reports Server (NTRS)

    Owen, Albert K.

    1987-01-01

    A computer code was written which utilizes ray tracing techniques to predict the changes in position and geometry of a laser Doppler velocimeter probe volume resulting from refraction effects. The code predicts the position change, changes in beam crossing angle, and the amount of uncrossing that occur when the beams traverse a region with a changed index of refraction, such as a glass window. The code calculates the changes for flat plate, cylinder, general axisymmetric and general surface windows and is currently operational on a VAX 8600 computer system.

  6. Radiation heat transfer simulation in a window for a small particle solar receiver using the Monte Carlo method

    NASA Astrophysics Data System (ADS)

    Whitmore, Alexander Jason

    Concentrating solar power systems are currently the predominant solar power technology for generating electricity at the utility scale. The central receiver system, which is a concentrating solar power system, uses a field of mirrors to concentrate solar radiation onto a receiver where a working fluid is heated to drive a turbine. Current central receiver systems operate on a Rankine cycle, which has a large demand for cooling water. This demand for water presents a challenge for the current central receiver systems as the ideal locations for solar power plants have arid climates. An alternative to the current receiver technology is the small particle receiver. The small particle receiver has the potential to produce working fluid temperatures suitable for use in a Brayton cycle which can be more efficient when pressurized to 0.5 MPa. Using a fused quartz window allows solar energy into the receiver while maintaining a pressurized small particle receiver. In this thesis, a detailed numerical investigation for a spectral, three dimensional, cylindrical glass window for a small particle receiver was performed. The window is 1.7 meters in diameter and 0.0254 meters thick. There are three Monte Carlo Ray Trace codes used within this research. The first MCRT code, MIRVAL, was developed by Sandia National Laboratory and modified by a fellow San Diego State University colleague Murat Mecit. This code produces the solar rays on the exterior surface of the window. The second MCRT code was developed by Steve Ruther and Pablo Del Campo. This code models the small particle receiver, which creates the infrared spectral direction flux on the interior surface of the window used in this work. The third MCRT, developed for this work, is used to model radiation heat transfer within the window itself and is coupled to an energy equation solver to produce a temperature distribution. The MCRT program provides a source term to the energy equation. This in turn, produces a new temperature field for the MCRT program; together the equations are solved iteratively. These iterations repeat until convergence is reached for a steady state temperature field. The energy equation was solved using a finite volume method. The window's thermal conductivity is modeled as a function of temperature. This thermal model is used to investigate the effects of different materials, receiver geometries, interior convection coefficients and exterior convection coefficients. To prevent devitrification and the ultimate failure of the window, the window needs to stay below the devitrification temperature of the material. In addition, the temperature gradients within the window need to be kept to a minimum to prevent thermal stresses. A San Diego State University colleague E-Fann Saung uses these temperature maps to insure that the mounting of the window does not produce thermal stresses which can cause cracking in the brittle fused quartz. The simulations in this thesis show that window temperatures are below the devitrification temperature of the window when there are cooling jets on both surfaces of the window. Natural convection on the exterior window surface was explored and it does not provide adequate cooling; therefore forced convection is required. Due to the low thermal conductivity of the window, the edge mounting thermal boundary condition has little effect on the maximum temperature of the window. The simulations also showed that the solar input flux absorbed less than 1% of the incoming radiation while the window absorbed closer to 20% of the infrared radiation emitted by the receiver. The main source of absorbed power in the window is located directly on the interior surface of the window where the infrared radiation is absorbed. The geometry of the receiver has a large impact on the amount of emitted power which reached the interior surface of the window, and using a conical shaped receiver dramatically reduced the receiver's infrared flux on the window. The importance of internal emission is explored within this research. Internal emission produces a more even emission field throughout the receiver than applying radiation surface emission only. Due to a majority of the infrared receiver re-radiation being absorbed right at the interior surface, the surface emission only approximation method produces lower maximum temperatures.

  7. Design considerations of CareWindows, a Windows 3.0-based graphical front end to a Medical Information Management System using a pass-through-requester architecture.

    PubMed Central

    Ward, R. E.; Purves, T.; Feldman, M.; Schiffman, R. M.; Barry, S.; Christner, M.; Kipa, G.; McCarthy, B. D.; Stiphout, R.

    1991-01-01

    The Care Windows development project demonstrated the feasibility of an approach designed to add the benefits of an event-driven, graphically-oriented user interface to an existing Medical Information Management System (MIMS) without overstepping economic and logistic constraints. The design solution selected for the Care Windows project incorporates three important design features: (1) the effective de-coupling of severs from requesters, permitting the use of an extensive pre-existing library of MIMS servers, (2) the off-loading of program control functions of the requesters to the workstation processor, reducing the load per transaction on central resources and permitting the use of object-oriented development environments available for microcomputers, (3) the selection of a low end, GUI-capable workstation consisting of a PC-compatible personal computer running Microsoft Windows 3.0, and (4) the development of a highly layered, modular workstation application, permitting the development of interchangeable modules to insure portability and adaptability. PMID:1807665

  8. An Introduction to X Window Application Development

    DTIC Science & Technology

    1992-03-23

    Acquisition and Policy Evaluation program using Cognitive Feed- back ( ESKAPE /CF) from the SunView windowing system to X Window. The new application...the generic X Window System. This thesis converts an Expert System Knowledge Acquisition and Policy Evaluation program using Cognitive Feedback ( ESKAPE ...15 IV. XESKAPE/CF: THE X WINDOW VERSION OF ESKAPE /CF ........................ 16 A. FUNCTIONAL COMPARISON TO

  9. SU-E-T-350: Verification of Gating Performance of a New Elekta Gating Solution: Response Kit and Catalyst System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xie, X; Cao, D; Housley, D

    2014-06-01

    Purpose: In this work, we have tested the performance of new respiratory gating solutions for Elekta linacs. These solutions include the Response gating and the C-RAD Catalyst surface mapping system.Verification measurements have been performed for a series of clinical cases. We also examined the beam on latency of the system and its impact on delivery efficiency. Methods: To verify the benefits of tighter gating windows, a Quasar Respiratory Motion Platform was used. Its vertical-motion plate acted as a respiration surrogate and was tracked by the Catalyst system to generate gating signals. A MatriXX ion-chamber array was mounted on its longitudinal-movingmore » platform. Clinical plans are delivered to a stationary and moving Matrix array at 100%, 50% and 30% gating windows and gamma scores were calculated comparing moving delivery results to the stationary result. It is important to note that as one moves to tighter gating windows, the delivery efficiency will be impacted by the linac's beam-on latency. Using a specialized software package, we generated beam-on signals of lengths of 1000ms, 600ms, 450ms, 400ms, 350ms and 300ms. As the gating windows get tighter, one can expect to reach a point where the dose rate will fall to nearly zero, indicating that the gating window is close to beam-on latency. A clinically useful gating window needs to be significantly longer than the latency for the linac. Results: As expected, the use of tighter gating windows improved delivery accuracy. However, a lower limit of the gating window, largely defined by linac beam-on latency, exists at around 300ms. Conclusion: The Response gating kit, combined with the C-RAD Catalyst, provides an effective solution for respiratorygated treatment delivery. Careful patient selection, gating window design, even visual/audio coaching may be necessary to ensure both delivery quality and efficiency. This research project is funded by Elekta.« less

  10. Effects of a Longer Detection Window in VHF Time-of-Arrival Lightning Detection Systems

    NASA Astrophysics Data System (ADS)

    Murphy, M.; Holle, R.; Demetriades, N.

    2003-12-01

    Lightning detection systems that operate by measuring the times of arrival (TOA) of short bursts of radiation at VHF can produce huge volumes of data. The first automated system of this kind, the NASA Kennedy Space Center LDAR network, is capable of producing one detection every 100 usec from each of seven sensors (Lennon and Maier, 1991), where each detection consists of the time and amplitude of the highest-amplitude peak observed within the 100 usec window. More modern systems have been shown to produce very detailed information with one detection every 10 usec (Rison et al., 2001). Operating such systems in real time, however, can become expensive because of the large data communications rates required. One solution to this problem is to use a longer detection window, say 500 usec. In principle, this has little or no effect on the flash detection efficiency because each flash typically produces a very large number of these VHF bursts (known as sources). By simply taking the largest-amplitude peak from every 500-usec interval instead of every 100-usec interval, we should detect the largest 20{%} of the sources that would have been detected using the 100-usec window. However, questions remain about the exact effect of a longer detection window on the source detection efficiency with distance from the network, its effects on how well flashes are represented in space, and how well the reduced information represents the parent thunderstorm. The latter issue is relevant for automated location and tracking of thunderstorm cells using data from VHF TOA lightning detection networks, as well as for understanding relationships between lightning and severe weather. References Lennon, C.L. and L.M. Maier, Lightning mapping system. Proceedings, Intl. Aerospace and Ground Conf. on Lightning and Static Elec., Cocoa Beach, Fla., NASA Conf. Pub. 3106, vol. II, pp. 89-1 - 89-10, 1991. Rison, W., P. Krehbiel, R. Thomas, T. Hamlin, J. Harlin, High time resolution lightning mapping observations of a small thunderstorm during STEPS. Eos Trans. AGU, 82 (47), Fall Meet. Suppl., Abstract AE12A-83, 2001.

  11. Solving the chemical master equation using sliding windows

    PubMed Central

    2010-01-01

    Background The chemical master equation (CME) is a system of ordinary differential equations that describes the evolution of a network of chemical reactions as a stochastic process. Its solution yields the probability density vector of the system at each point in time. Solving the CME numerically is in many cases computationally expensive or even infeasible as the number of reachable states can be very large or infinite. We introduce the sliding window method, which computes an approximate solution of the CME by performing a sequence of local analysis steps. In each step, only a manageable subset of states is considered, representing a "window" into the state space. In subsequent steps, the window follows the direction in which the probability mass moves, until the time period of interest has elapsed. We construct the window based on a deterministic approximation of the future behavior of the system by estimating upper and lower bounds on the populations of the chemical species. Results In order to show the effectiveness of our approach, we apply it to several examples previously described in the literature. The experimental results show that the proposed method speeds up the analysis considerably, compared to a global analysis, while still providing high accuracy. Conclusions The sliding window method is a novel approach to address the performance problems of numerical algorithms for the solution of the chemical master equation. The method efficiently approximates the probability distributions at the time points of interest for a variety of chemically reacting systems, including systems for which no upper bound on the population sizes of the chemical species is known a priori. PMID:20377904

  12. State-of-the-art software for window energy-efficiency rating and labeling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arasteh, D.; Finlayson, E.; Huang, J.

    1998-07-01

    Measuring the thermal performance of windows in typical residential buildings is an expensive proposition. Not only is laboratory testing expensive, but each window manufacturer typically offers hundreds of individual products, each of which has different thermal performance properties. With over a thousand window manufacturers nationally, a testing-based rating system would be prohibitively expensive to the industry and to consumers. Beginning in the early 1990s, simulation software began to be used as part of a national program for rating window U-values. The rating program has since been expanded to include Solar Hear Gain Coefficients and is now being extended to annualmore » energy performance. This paper describes four software packages available to the public from Lawrence Berkeley National Laboratory (LBNL). These software packages are used to evaluate window thermal performance: RESFEN (for evaluating annual energy costs), WINDOW (for calculating a product`s thermal performance properties), THERM (a preprocessor for WINDOW that determines two-dimensional heat-transfer effects), and Optics (a preprocessor for WINDOW`s glass database). Software not only offers a less expensive means than testing to evaluate window performance, it can also be used during the design process to help manufacturers produce windows that will meet target specifications. In addition, software can show small improvements in window performance that might not be detected in actual testing because of large uncertainties in test procedures.« less

  13. A comparison of dehydration effects of V2-antagonist (OPC-31260) on the inner ear between systemic and round window applications.

    PubMed

    Takeda, Taizo; Takeda, Setsuko; Kakigi, Akinobu; Okada, Teruhiko; Nishioka, Rie; Taguchi, Daizo

    2006-08-01

    V2-antagonist (OPC-31260 (OPC)) application to the scala tympani reduced endolymphatic hydrops. In the present study, we investigated whether systemic administration or local infusion via the round window (RW application) of OPC would be more suitable for clinical use. In Experiment 1, the increase ratios of the cross-sectional area of the scala media of experimentally induced endolymphatic hydrops were quantitatively assessed among four groups of non-OPC application, RW application of xanthan gum, systemic application of OPC and RW application of OPC. In Experiment 2, the effects of systemic and RW applications of OPC on plasma vasopressin (p-VP) concentrations and plasma osmolality (p-OSM) were investigated. In Experiment 3, endocochlear DC potential (EP) was measured in guinea pigs with the RW application of OPC. Electron microscopic observations of the stria vascularis and the hair cells were also made. Both systemic and RW applications of OPC significantly reduced endolymphatic hydrops. However, systemic application resulted in the distension of the Reissner's membrane in the non-operated ear, which seemed to be caused by elevated p-VP levels resulting from the systemic application of OPC. In contrast, RW application of OPC produced no apparent toxic effects in the inner ear, as indicated electrophysiological or morphological changes. Thus, drug delivery via the round window is more useful for the clinical application of OPC for medical decompression.

  14. Effect of Data Assimilation Parameters on The Optimized Surface CO2 Flux in Asia

    NASA Astrophysics Data System (ADS)

    Kim, Hyunjung; Kim, Hyun Mee; Kim, Jinwoong; Cho, Chun-Ho

    2018-02-01

    In this study, CarbonTracker, an inverse modeling system based on the ensemble Kalman filter, was used to evaluate the effects of data assimilation parameters (assimilation window length and ensemble size) on the estimation of surface CO2 fluxes in Asia. Several experiments with different parameters were conducted, and the results were verified using CO2 concentration observations. The assimilation window lengths tested were 3, 5, 7, and 10 weeks, and the ensemble sizes were 100, 150, and 300. Therefore, a total of 12 experiments using combinations of these parameters were conducted. The experimental period was from January 2006 to December 2009. Differences between the optimized surface CO2 fluxes of the experiments were largest in the Eurasian Boreal (EB) area, followed by Eurasian Temperate (ET) and Tropical Asia (TA), and were larger in boreal summer than in boreal winter. The effect of ensemble size on the optimized biosphere flux is larger than the effect of the assimilation window length in Asia, but the importance of them varies in specific regions in Asia. The optimized biosphere flux was more sensitive to the assimilation window length in EB, whereas it was sensitive to the ensemble size as well as the assimilation window length in ET. The larger the ensemble size and the shorter the assimilation window length, the larger the uncertainty (i.e., spread of ensemble) of optimized surface CO2 fluxes. The 10-week assimilation window and 300 ensemble size were the optimal configuration for CarbonTracker in the Asian region based on several verifications using CO2 concentration measurements.

  15. Error analysis and new dual-cosine window for estimating the sensor frequency response function from the step response data

    NASA Astrophysics Data System (ADS)

    Yang, Shuang-Long; Liang, Li-Ping; Liu, Hou-De; Xu, Ke-Jun

    2018-03-01

    Aiming at reducing the estimation error of the sensor frequency response function (FRF) estimated by the commonly used window-based spectral estimation method, the error models of interpolation and transient errors are derived in the form of non-parameter models. Accordingly, window effects on the errors are analyzed and reveal that the commonly used hanning window leads to smaller interpolation error which can also be significantly eliminated by the cubic spline interpolation method when estimating the FRF from the step response data, and window with smaller front-end value can restrain more transient error. Thus, a new dual-cosine window with its non-zero discrete Fourier transform bins at -3, -1, 0, 1, and 3 is constructed for FRF estimation. Compared with the hanning window, the new dual-cosine window has the equivalent interpolation error suppression capability and better transient error suppression capability when estimating the FRF from the step response; specifically, it reduces the asymptotic property of the transient error from O(N-2) of the hanning window method to O(N-4) while only increases the uncertainty slightly (about 0.4 dB). Then, one direction of a wind tunnel strain gauge balance which is a high order, small damping, and non-minimum phase system is employed as the example for verifying the new dual-cosine window-based spectral estimation method. The model simulation result shows that the new dual-cosine window method is better than the hanning window method for FRF estimation, and compared with the Gans method and LPM method, it has the advantages of simple computation, less time consumption, and short data requirement; the actual data calculation result of the balance FRF is consistent to the simulation result. Thus, the new dual-cosine window is effective and practical for FRF estimation.

  16. Empowering open systems through cross-platform interoperability

    NASA Astrophysics Data System (ADS)

    Lyke, James C.

    2014-06-01

    Most of the motivations for open systems lie in the expectation of interoperability, sometimes referred to as "plug-and-play". Nothing in the notion of "open-ness", however, guarantees this outcome, which makes the increased interest in open architecture more perplexing. In this paper, we explore certain themes of open architecture. We introduce the concept of "windows of interoperability", which can be used to align disparate portions of architecture. Such "windows of interoperability", which concentrate on a reduced set of protocol and interface features, might achieve many of the broader purposes assigned as benefits in open architecture. Since it is possible to engineer proprietary systems that interoperate effectively, this nuanced definition of interoperability may in fact be a more important concept to understand and nurture for effective systems engineering and maintenance.

  17. VETA x ray data acquisition and control system

    NASA Technical Reports Server (NTRS)

    Brissenden, Roger J. V.; Jones, Mark T.; Ljungberg, Malin; Nguyen, Dan T.; Roll, John B., Jr.

    1992-01-01

    We describe the X-ray Data Acquisition and Control System (XDACS) used together with the X-ray Detection System (XDS) to characterize the X-ray image during testing of the AXAF P1/H1 mirror pair at the MSFC X-ray Calibration Facility. A variety of X-ray data were acquired, analyzed and archived during the testing including: mirror alignment, encircled energy, effective area, point spread function, system housekeeping and proportional counter window uniformity data. The system architecture is presented with emphasis placed on key features that include a layered UNIX tool approach, dedicated subsystem controllers, real-time X-window displays, flexibility in combining tools, network connectivity and system extensibility. The VETA test data archive is also described.

  18. HPC in a HEP lab: lessons learned from setting up cost-effective HPC clusters

    NASA Astrophysics Data System (ADS)

    Husejko, Michal; Agtzidis, Ioannis; Baehler, Pierre; Dul, Tadeusz; Evans, John; Himyr, Nils; Meinhard, Helge

    2015-12-01

    In this paper we present our findings gathered during the evaluation and testing of Windows Server High-Performance Computing (Windows HPC) in view of potentially using it as a production HPC system for engineering applications. The Windows HPC package, an extension of Microsofts Windows Server product, provides all essential interfaces, utilities and management functionality for creating, operating and monitoring a Windows-based HPC cluster infrastructure. The evaluation and test phase was focused on verifying the functionalities of Windows HPC, its performance, support of commercial tools and the integration with the users work environment. We describe constraints imposed by the way the CERN Data Centre is operated, licensing for engineering tools and scalability and behaviour of the HPC engineering applications used at CERN. We will present an initial set of requirements, which were created based on the above constraints and requests from the CERN engineering user community. We will explain how we have configured Windows HPC clusters to provide job scheduling functionalities required to support the CERN engineering user community, quality of service, user- and project-based priorities, and fair access to limited resources. Finally, we will present several performance tests we carried out to verify Windows HPC performance and scalability.

  19. Effect of Round Window Reinforcement on Hearing: A Temporal Bone Study With Clinical Implications for Surgical Reinforcement of the Round Window.

    PubMed

    Wegner, Inge; Eldaebes, Mostafa M A S; Landry, Thomas G; Adamson, Robert B; Grolman, Wilko; Bance, Manohar L

    2016-06-01

    Round window reinforcement leads to conductive hearing loss. The round window is stiffened surgically as therapy for various conditions, including perilymphatic fistula and superior semicircular canal dehiscence. Round window reinforcement reduces symptoms in these patients. However, it also reduces fluid displacement in the cochlea and might therefore increase conductive hearing loss. Perichondrium was applied to the round window membrane in nine fresh-frozen, nonpathologic temporal bones. In four temporal bones cartilage was applied subsequently. Acoustic stimuli in the form of frequency sweeps from 250 to 8000 Hz were generated at 110 dB sound pressure level. A total of 16 frequencies in a 1/3-octave series were used. Stapes velocities in response to the acoustic stimuli were measured at equally spaced multiple points covering the stapes footplate using a scanning laser Doppler interferometry system. Measurements were made at baseline, after applying perichondrium, and after applying cartilage. At frequencies up to 1000 Hz perichondrium reinforcement decreased stapes velocities by 1.5 to 2.9 dB compared with no reinforcement (p value = 0.003). Reinforcement with cartilage led to a further deterioration of stapes velocities by 2.6 to 4.2 dB at frequencies up to 1000 Hz (p value = 0.050). The higher frequencies were not affected by perichondrium reinforcement (p value = 0.774) or cartilage reinforcement (p value = 0.644). Our results seem to suggest a modest, clinically negligible effect of reinforcement with perichondrium. Placing cartilage on the round window resulted in a graded effect on stapes velocities in keeping with the increased stiffness of cartilage compared with perichondrium. Even so, the effect was relatively small.

  20. Determining the optimal window length for pattern recognition-based myoelectric control: balancing the competing effects of classification error and controller delay.

    PubMed

    Smith, Lauren H; Hargrove, Levi J; Lock, Blair A; Kuiken, Todd A

    2011-04-01

    Pattern recognition-based control of myoelectric prostheses has shown great promise in research environments, but has not been optimized for use in a clinical setting. To explore the relationship between classification error, controller delay, and real-time controllability, 13 able-bodied subjects were trained to operate a virtual upper-limb prosthesis using pattern recognition of electromyogram (EMG) signals. Classification error and controller delay were varied by training different classifiers with a variety of analysis window lengths ranging from 50 to 550 ms and either two or four EMG input channels. Offline analysis showed that classification error decreased with longer window lengths (p < 0.01 ). Real-time controllability was evaluated with the target achievement control (TAC) test, which prompted users to maneuver the virtual prosthesis into various target postures. The results indicated that user performance improved with lower classification error (p < 0.01 ) and was reduced with longer controller delay (p < 0.01 ), as determined by the window length. Therefore, both of these effects should be considered when choosing a window length; it may be beneficial to increase the window length if this results in a reduced classification error, despite the corresponding increase in controller delay. For the system employed in this study, the optimal window length was found to be between 150 and 250 ms, which is within acceptable controller delays for conventional multistate amplitude controllers.

  1. The design and implementation of a windowing interface pinch force measurement system

    NASA Astrophysics Data System (ADS)

    Ho, Tze-Yee; Chen, Yuanu-Joan; Chung, Chin-Teng; Hsiao, Ming-Heng

    2010-02-01

    This paper presents a novel windowing interface pinch force measurement system that is basically based on an USB (Universal Series Bus) microcontroller which mainly processes the sensing data from the force sensing resistance sensors mounted on five digits. It possesses several friendly functions, such as the value and curve trace of the applied force by a hand injured patient displayed in real time on a monitoring screen, consequently, not only the physician can easily evaluate the effect of hand injury rehabilitation, but also the patients get more progressive during the hand physical therapy by interacting with the screen of pinch force measurement. In order to facilitate the pinch force measurement system and make it friendly, the detail hardware design and software programming flowchart are described in this paper. Through a series of carefully and detailed experimental tests, first of all, the relationship between the applying force and the FSR sensors are measured and verified. Later, the different type of pinch force measurements are verified by the oscilloscope and compared with the corresponding values and waveform traces in the window interface display panel to obtain the consistency. Finally, a windowing interface pinch force measurement system based on the USB microcontroller is implemented and demonstrated. The experimental results show the verification and feasibility of the designed system.

  2. Dynamically re-configurable CMOS imagers for an active vision system

    NASA Technical Reports Server (NTRS)

    Yang, Guang (Inventor); Pain, Bedabrata (Inventor)

    2005-01-01

    A vision system is disclosed. The system includes a pixel array, at least one multi-resolution window operation circuit, and a pixel averaging circuit. The pixel array has an array of pixels configured to receive light signals from an image having at least one tracking target. The multi-resolution window operation circuits are configured to process the image. Each of the multi-resolution window operation circuits processes each tracking target within a particular multi-resolution window. The pixel averaging circuit is configured to sample and average pixels within the particular multi-resolution window.

  3. Waveguide transition with vacuum window for multiband dynamic nuclear polarization systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rybalko, Oleksandr; Bowen, Sean; Zhurbenko, Vitaliy

    2016-05-15

    A low loss waveguide transition section and oversized microwave vacuum window covering several frequency bands (94 GHz, 140 GHz, 188 GHz) is presented. The transition is compact and was optimized for multiband Dynamic Nuclear Polarization (DNP) systems in a full-wave simulator. The window is more broadband than commercially available windows, which are usually optimized for single band operation. It is demonstrated that high-density polyethylene with urethane adhesive can be used as a low loss microwave vacuum window in multiband DNP systems. The overall assembly performance and dimensions are found using full-wave simulations. The practical aspects of the window implementation inmore » the waveguide are discussed. To verify the design and simulation results, the window is tested experimentally at the three frequencies of interest.« less

  4. Model MTF for the mosaic window

    NASA Astrophysics Data System (ADS)

    Xing, Zhenchong; Hong, Yongfeng; Zhang, Bao

    2017-10-01

    An electro-optical targeting system mounted either within an airframe or housed in separate pods requires a window to form an environmental barrier to the outside world. In current practice, such windows usually use a mosaic or segmented window. When scanning the target, internally gimbaled systems sweep over the window, which can affect the modulation transfer function (MTF) due to wave-front division and optical path differences arising from the thickness/wedge differences between panes. In this paper, a mathematical model of the MTF of the mosaic window is presented that allows an analysis of influencing factors; we show how the model may be integrated into ZEMAX® software for optical design. The model can be used to guide both the design and the tolerance analysis of optical systems that employ a mosaic window.

  5. Qualitative mechanism models and the rationalization of procedures

    NASA Technical Reports Server (NTRS)

    Farley, Arthur M.

    1989-01-01

    A qualitative, cluster-based approach to the representation of hydraulic systems is described and its potential for generating and explaining procedures is demonstrated. Many ideas are formalized and implemented as part of an interactive, computer-based system. The system allows for designing, displaying, and reasoning about hydraulic systems. The interactive system has an interface consisting of three windows: a design/control window, a cluster window, and a diagnosis/plan window. A qualitative mechanism model for the ORS (Orbital Refueling System) is presented to coordinate with ongoing research on this system being conducted at NASA Ames Research Center.

  6. Differential Immunotoxicity Induced by Two Different Windows of Developmental Trichloroethylene Exposure

    PubMed Central

    Gilbert, Kathleen M.; Woodruff, William; Blossom, Sarah J.

    2014-01-01

    Developmental exposure to environmental toxicants may induce immune system alterations that contribute to adult stage autoimmune disease. We have shown that continuous exposure of MRL+/+ mice to trichloroethylene (TCE) from gestational day (GD) 0 to postnatal day (PND) 49 alters several aspects of CD4+ T cell function. This window of exposure corresponds to conception-adolescence/young adulthood in humans. More narrowly defining the window of TCE developmental exposure causes immunotoxicity that would establish the stage at which avoidance and/or intervention would be most effective. The current study divided continuous TCE exposure into two separate windows, namely, gestation only (GD0 to birth (PND0)) and early-life only (PND0-PND49). The mice were examined for specific alterations in CD4+ T cell function at PND49. One potentially long-lasting effect of developmental exposure, alterations in retrotransposon expression indicative of epigenetic alterations, was found in peripheral CD4+ T cells from both sets of developmentally exposed mice. Interestingly, certain other effects, such as alterations in thymus cellularity, were only found in mice exposed to TCE during gestation. In contrast, expansion of memory/activation cell subset of peripheral CD4+ T cells were only found in mice exposed to TCE during early life. Different windows of developmental TCE exposure can have different functional consequences. PMID:24696780

  7. 49 CFR 571.118 - Standard No. 118; Power-operated window, partition, and roof panel systems.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ...-operated window, partition, and roof panel systems. S1. Purpose and scope. This standard specifies requirements for power operated window, partition, and roof panel systems to minimize the likelihood of death... Figure 2. Power operated roof panel systems mean moveable panels in the vehicle roof which close by...

  8. 49 CFR 571.118 - Standard No. 118; Power-operated window, partition, and roof panel systems.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ...-operated window, partition, and roof panel systems. S1. Purpose and scope. This standard specifies requirements for power operated window, partition, and roof panel systems to minimize the likelihood of death... Figure 2. Power operated roof panel systems mean moveable panels in the vehicle roof which close by...

  9. 49 CFR 571.118 - Standard No. 118; Power-operated window, partition, and roof panel systems.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ...-operated window, partition, and roof panel systems. S1. Purpose and scope. This standard specifies requirements for power operated window, partition, and roof panel systems to minimize the likelihood of death... Figure 2. Power operated roof panel systems mean moveable panels in the vehicle roof which close by...

  10. 49 CFR 571.118 - Standard No. 118; Power-operated window, partition, and roof panel systems.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ...-operated window, partition, and roof panel systems. S1. Purpose and scope. This standard specifies requirements for power operated window, partition, and roof panel systems to minimize the likelihood of death... Figure 2. Power operated roof panel systems mean moveable panels in the vehicle roof which close by...

  11. 49 CFR 571.118 - Standard No. 118; Power-operated window, partition, and roof panel systems.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ...-operated window, partition, and roof panel systems. S1. Purpose and scope. This standard specifies requirements for power operated window, partition, and roof panel systems to minimize the likelihood of death... Figure 2. Power operated roof panel systems mean moveable panels in the vehicle roof which close by...

  12. Infrared sensor and window system issues

    NASA Astrophysics Data System (ADS)

    Hargraves, Charles H., Jr.; Martin, James M.

    1992-12-01

    EO/IR windows are a significant challenge for the weapon system sensor designer who must design for high EO performance, low radar cross section (RCS), supersonic flight, durability, producibility and affordable initial and life cycle costs. This is particularly true in the 8 to 12 micron IR band at which window materials and coating choices are limited by system design requirements. The requirements also drive the optimization of numerous mechanical, optical, materials, and electrical parameters. This paper addresses the EO/IR window as a system design challenge. The interrelationship of the optical, mechanical, and system design processes are examined. This paper presents a summary of the test results, trade studies and analyses that were performed for multi-segment, flight-worthy optical windows with superior optical performance at subsonic and supersonic aircraft velocities and reduced radar cross section. The impact of the window assembly on EO system modulation transfer function (MTF) and sensitivity will be discussed. The use of conductive coatings for shielding/signature control will be discussed.

  13. Effect of the time window on the heat-conduction information filtering model

    NASA Astrophysics Data System (ADS)

    Guo, Qiang; Song, Wen-Jun; Hou, Lei; Zhang, Yi-Lu; Liu, Jian-Guo

    2014-05-01

    Recommendation systems have been proposed to filter out the potential tastes and preferences of the normal users online, however, the physics of the time window effect on the performance is missing, which is critical for saving the memory and decreasing the computation complexity. In this paper, by gradually expanding the time window, we investigate the impact of the time window on the heat-conduction information filtering model with ten similarity measures. The experimental results on the benchmark dataset Netflix indicate that by only using approximately 11.11% recent rating records, the accuracy could be improved by an average of 33.16% and the diversity could be improved by 30.62%. In addition, the recommendation performance on the dataset MovieLens could be preserved by only considering approximately 10.91% recent records. Under the circumstance of improving the recommendation performance, our discoveries possess significant practical value by largely reducing the computational time and shortening the data storage space.

  14. Bayesian distributed lag interaction models to identify perinatal windows of vulnerability in children's health.

    PubMed

    Wilson, Ander; Chiu, Yueh-Hsiu Mathilda; Hsu, Hsiao-Hsien Leon; Wright, Robert O; Wright, Rosalind J; Coull, Brent A

    2017-07-01

    Epidemiological research supports an association between maternal exposure to air pollution during pregnancy and adverse children's health outcomes. Advances in exposure assessment and statistics allow for estimation of both critical windows of vulnerability and exposure effect heterogeneity. Simultaneous estimation of windows of vulnerability and effect heterogeneity can be accomplished by fitting a distributed lag model (DLM) stratified by subgroup. However, this can provide an incomplete picture of how effects vary across subgroups because it does not allow for subgroups to have the same window but different within-window effects or to have different windows but the same within-window effect. Because the timing of some developmental processes are common across subpopulations of infants while for others the timing differs across subgroups, both scenarios are important to consider when evaluating health risks of prenatal exposures. We propose a new approach that partitions the DLM into a constrained functional predictor that estimates windows of vulnerability and a scalar effect representing the within-window effect directly. The proposed method allows for heterogeneity in only the window, only the within-window effect, or both. In a simulation study we show that a model assuming a shared component across groups results in lower bias and mean squared error for the estimated windows and effects when that component is in fact constant across groups. We apply the proposed method to estimate windows of vulnerability in the association between prenatal exposures to fine particulate matter and each of birth weight and asthma incidence, and estimate how these associations vary by sex and maternal obesity status in a Boston-area prospective pre-birth cohort study. © The Author 2017. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  15. The mammalian respiratory system and critical windows of exposure for children's health.

    PubMed Central

    Pinkerton, K E; Joad, J P

    2000-01-01

    The respiratory system is a complex organ system composed of multiple cell types involved in a variety of functions. The development of the respiratory system occurs from embryogenesis to adult life, passing through several distinct stages of maturation and growth. We review embryonic, fetal, and postnatal phases of lung development. We also discuss branching morphogenesis and cellular differentiation of the respiratory system, as well as the postnatal development of xenobiotic metabolizing systems within the lungs. Exposure of the respiratory system to a wide range of chemicals and environmental toxicants during perinatal life has the potential to significantly affect the maturation, growth, and function of this organ system. Although the potential targets for exposure to toxic factors are currently not known, they are likely to affect critical molecular signals expressed during distinct stages of lung development. The effects of exposure to environmental tobacco smoke during critical windows of perinatal growth are provided as an example leading to altered cellular and physiological function of the lungs. An understanding of critical windows of exposure of the respiratory system on children's health requires consideration that lung development is a multistep process and cannot be based on studies in adults. Images Figure 1 Figure 4 PMID:10852845

  16. Holographic daylighting

    NASA Astrophysics Data System (ADS)

    Ludman, Jacques E.; Riccobono, Juanita R.; Savant, Gajendra D.; Jannson, Joanna L.; Campbell, Eugene W.; Hall, Robyn

    1995-09-01

    Daylighting techniques are an effective means of reducing both lighting and cooling costs; however, many of the standard techniques have flaws which reduce their effectiveness. Daylighting holograms are an efficient and effective method for diffracting sunlight up onto the ceiling, deep in a room, without diffracting the light at eye-level. They need only cover the top half of a window to produce significant energy savings. They may be used as part of a new glazing system or as a retrofit to existing windows. These holograms are broadband and are able to passively track the movement of the sun across the sky, throughout the day and year.

  17. Conformal ALON® and spinel windows

    NASA Astrophysics Data System (ADS)

    Goldman, Lee M.; Smith, Mark; Ramisetty, Mohan; Jha, Santosh; Sastri, Suri

    2017-05-01

    The requirements for modern aircraft based reconnaissance systems are driving the need for conformal windows for future sensor systems. However, limitations on optical systems and the ability to produce windows in complex geometries currently limit the geometry of existing windows and window assemblies to faceted assemblies of flat windows. ALON consists primarily of aluminum and oxygen, similar to that of alumina, with a small amount of nitrogen added to help stabilize the cubic gamma-AlON phase. ALON's chemical similarity to alumina, translates into a robust manufacturing process. This ease of processing has allowed Surmet to produce ALON windows and domes in a wide variety of geometries and sizes. Spinel (MgAl2O4) contains equal molar amounts of MgO and Al2O3, and is a cubic material, that transmits further into the Infrared than ALON. Spinel is produced via powder processing techniques similar to those used to produce ALON. Surmet is now applying the lessons learned with ALON to produce conformal spinel windows and domes as well.

  18. Vibro-acoustic model of an active aircraft cabin window

    NASA Astrophysics Data System (ADS)

    Aloufi, Badr; Behdinan, Kamran; Zu, Jean

    2017-06-01

    This paper presents modeling and design of an active structural acoustic control (ASAC) system for controlling the low frequency sound field transmitted through an aircraft cabin window. The system uses stacked piezoelectric elements arranged in a manner to generate out-of-plane actuation point forces acting on the window panel boundaries. A theoretical vibro-acoustic model for an active quadruple-panel system is developed to characterize the dynamic behavior of the system and achieve a good understanding of the active control performance and the physical phenomena of the sound transmission loss (STL) characteristics. The quadruple-panel system represents the passenger window design used in some classes of modern aircraft with an exterior double pane of Plexiglas, an interior dust cover pane and a glazed dimmable pane, all separated by thin air cavities. The STL characteristics of identical pane window configurations with different piezoelectric actuator sets are analyzed. A parametric study describes the influence of important active parameters, such as the input voltage, number and location of the actuator elements, on the STL is investigated. In addition, a mathematical model for obtaining the optimal input voltage is developed to improve the acoustic attenuation capability of the control system. In general, the achieved results indicate that the proposed ASAC design offers a considerable improvement in the passive sound loss performance of cabin window design without significant effects, such as weight increase, on the original design. Also, the results show that the acoustic control of the active model with piezoelectric actuators bonded to the dust cover pane generates high structural vibrations in the radiating panel (dust cover) and an increase in sound power radiation. High active acoustic attenuation can be achieved by designing the ASAC system to apply active control forces on the inner Plexiglas panel or dimmable panel by installing the actuators on the boundaries of one of the two panels. In some cases, increasing the actuator numbers in the structure advances the active control performance by controlling more structural modes; however, this decreases the STL of the passive control system because of the increase in structure-borne sound transmission paths of the stiffer piezoelectric actuators.

  19. Advances in low-cost long-wave infrared polymer windows

    NASA Astrophysics Data System (ADS)

    Weimer, Wayne A.; Klocek, Paul

    1999-07-01

    Recent improvements in engineered polymeric material compositions and advances in processing methodologies developed and patented at Raytheon Systems Company have produced long wave IR windows at exceptionally low costs. These UV stabilized, high strength windows incorporating subwavelength structured antireflection surfaces are enabling IR imaging systems to penetrate commercial markets and will reduce the cost of systems delivered to the military. The optical and mechanical properties of these windows will be discussed in detail with reference to the short and long-term impact on military IR imaging systems.

  20. Proceedings of the Ship Control Systems Symposium (6th) Held in Ottawa, Canada on 26-30 October 1981. Volume 2.

    DTIC Science & Technology

    1981-10-30

    cumulative effects of wooding on visibility, as shown in Fig. 3b, it is clear that no more than five windows should lie in the same plane. Two principles...012000/ / 25300 0 / 3000 n3% 20 25 30 WOODING AS PERCENT Of IONIZONTAL FIELD OF VIEW FIG. 3a. Percent of Wooding in Forward 1800 Field of View for...Effect of Wooding on Horizontal Field of View with Increasing Distance from Window. El 2-11 voice communication among bridge personnel at expected levels

  1. High performance sapphire windows

    NASA Technical Reports Server (NTRS)

    Bates, Stephen C.; Liou, Larry

    1993-01-01

    High-quality, wide-aperture optical access is usually required for the advanced laser diagnostics that can now make a wide variety of non-intrusive measurements of combustion processes. Specially processed and mounted sapphire windows are proposed to provide this optical access to extreme environment. Through surface treatments and proper thermal stress design, single crystal sapphire can be a mechanically equivalent replacement for high strength steel. A prototype sapphire window and mounting system have been developed in a successful NASA SBIR Phase 1 project. A large and reliable increase in sapphire design strength (as much as 10x) has been achieved, and the initial specifications necessary for these gains have been defined. Failure testing of small windows has conclusively demonstrated the increased sapphire strength, indicating that a nearly flawless surface polish is the primary cause of strengthening, while an unusual mounting arrangement also significantly contributes to a larger effective strength. Phase 2 work will complete specification and demonstration of these windows, and will fabricate a set for use at NASA. The enhanced capabilities of these high performance sapphire windows will lead to many diagnostic capabilities not previously possible, as well as new applications for sapphire.

  2. High performance sapphire windows

    NASA Astrophysics Data System (ADS)

    Bates, Stephen C.; Liou, Larry

    1993-02-01

    High-quality, wide-aperture optical access is usually required for the advanced laser diagnostics that can now make a wide variety of non-intrusive measurements of combustion processes. Specially processed and mounted sapphire windows are proposed to provide this optical access to extreme environment. Through surface treatments and proper thermal stress design, single crystal sapphire can be a mechanically equivalent replacement for high strength steel. A prototype sapphire window and mounting system have been developed in a successful NASA SBIR Phase 1 project. A large and reliable increase in sapphire design strength (as much as 10x) has been achieved, and the initial specifications necessary for these gains have been defined. Failure testing of small windows has conclusively demonstrated the increased sapphire strength, indicating that a nearly flawless surface polish is the primary cause of strengthening, while an unusual mounting arrangement also significantly contributes to a larger effective strength. Phase 2 work will complete specification and demonstration of these windows, and will fabricate a set for use at NASA. The enhanced capabilities of these high performance sapphire windows will lead to many diagnostic capabilities not previously possible, as well as new applications for sapphire.

  3. Research on Vehicle Temperature Regulation System Based on Air Convection Principle

    NASA Astrophysics Data System (ADS)

    Zhuge, Muzi; Li, Xiang; Liang, Caifeng

    2018-03-01

    The long time parking outdoors in the summer will lead to too high temperature in the car, and the harmful gas produced by the vehicle engine will stay in the confined space for a long time during the parking process, which will do great harm to the human body. If the air conditioning system is turned on before driving, the cooling rate is slow and the battery loss is large. To solve the above problems, we designed a temperature adjusting system based on the principle of air convection. We can choose the automatic mode or manual mode to achieve control of a convection window. In the automatic mode, the system will automatically detect the environmental temperature, through the sensor to complete the detection, and the signal is transmitted to the microcontroller to control the window open or close, in manual mode, the remote control of the window can be realized by Bluetooth. Therefore, the system has important practical significance to effectively regulate temperature, prolong battery life, and improve the safety and comfort of traffic vehicles.

  4. Performance evaluation and optimization of the MiniPET-II scanner

    NASA Astrophysics Data System (ADS)

    Lajtos, Imre; Emri, Miklos; Kis, Sandor A.; Opposits, Gabor; Potari, Norbert; Kiraly, Beata; Nagy, Ferenc; Tron, Lajos; Balkay, Laszlo

    2013-04-01

    This paper presents results of the performance of a small animal PET system (MiniPET-II) installed at our Institute. MiniPET-II is a full ring camera that includes 12 detector modules in a single ring comprised of 1.27×1.27×12 mm3 LYSO scintillator crystals. The axial field of view and the inner ring diameter are 48 mm and 211 mm, respectively. The goal of this study was to determine the NEMA-NU4 performance parameters of the scanner. In addition, we also investigated how the calculated parameters depend on the coincidence time window (τ=2, 3 and 4 ns) and the low threshold settings of the energy window (Elt=250, 350 and 450 keV). Independent measurements supported optimization of the effective system radius and the coincidence time window of the system. We found that the optimal coincidence time window and low threshold energy window are 3 ns and 350 keV, respectively. The spatial resolution was close to 1.2 mm in the center of the FOV with an increase of 17% at the radial edge. The maximum value of the absolute sensitivity was 1.37% for a point source. Count rate tests resulted in peak values for the noise equivalent count rate (NEC) curve and scatter fraction of 14.2 kcps (at 36 MBq) and 27.7%, respectively, using the rat phantom. Numerical values of the same parameters obtained for the mouse phantom were 55.1 kcps (at 38.8 MBq) and 12.3%, respectively. The recovery coefficients of the image quality phantom ranged from 0.1 to 0.87. Altering the τ and Elt resulted in substantial changes in the NEC peak and the sensitivity while the effect on the image quality was negligible. The spatial resolution proved to be, as expected, independent of the τ and Elt. The calculated optimal effective system radius (resulting in the best image quality) was 109 mm. Although the NEC peak parameters do not compare favorably with those of other small animal scanners, it can be concluded that under normal counting situations the MiniPET-II imaging capability assures remarkably good image quality, sensitivity and spatial resolution.

  5. IDG - INTERACTIVE DIF GENERATOR

    NASA Technical Reports Server (NTRS)

    Preheim, L. E.

    1994-01-01

    The Interactive DIF Generator (IDG) utility is a tool used to generate and manipulate Directory Interchange Format files (DIF). Its purpose as a specialized text editor is to create and update DIF files which can be sent to NASA's Master Directory, also referred to as the International Global Change Directory at Goddard. Many government and university data systems use the Master Directory to advertise the availability of research data. The IDG interface consists of a set of four windows: (1) the IDG main window; (2) a text editing window; (3) a text formatting and validation window; and (4) a file viewing window. The IDG main window starts up the other windows and contains a list of valid keywords. The keywords are loaded from a user-designated file and selected keywords can be copied into any active editing window. Once activated, the editing window designates the file to be edited. Upon switching from the editing window to the formatting and validation window, the user has options for making simple changes to one or more files such as inserting tabs, aligning fields, and indenting groups. The viewing window is a scrollable read-only window that allows fast viewing of any text file. IDG is an interactive tool and requires a mouse or a trackball to operate. IDG uses the X Window System to build and manage its interactive forms, and also uses the Motif widget set and runs under Sun UNIX. IDG is written in C-language for Sun computers running SunOS. This package requires the X Window System, Version 11 Revision 4, with OSF/Motif 1.1. IDG requires 1.8Mb of hard disk space. The standard distribution medium for IDG is a .25 inch streaming magnetic tape cartridge in UNIX tar format. It is also available on a 3.5 inch diskette in UNIX tar format. The program was developed in 1991 and is a copyrighted work with all copyright vested in NASA. SunOS is a trademark of Sun Microsystems, Inc. X Window System is a trademark of Massachusetts Institute of Technology. OSF/Motif is a trademark of the Open Software Foundation, Inc. UNIX is a trademark of Bell Laboratories.

  6. The impact of different climates on window and skylight design for daylighting and passive cooling and heating in residential buildings: A comparative study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Al-Sallal, K.A.

    1999-07-01

    The study aims to explore the effect of different climates on window and skylight design in residential buildings. The study house is evaluated against climates that have design opportunities for passive systems, with emphasis on passive cooling. The study applies a variety of methods to evaluate the design. It has found that earth sheltering and night ventilation have the potential to provide 12--29% and 25--77% of the cooling requirements respectively for the study house in the selected climates. The reduction of the glazing area from 174 ft{sup 2} to 115 ft{sup 2} has different impacts on the cooling energy costmore » in the different climates. In climates such Fresno and Tucson, one should put the cooling energy savings as a priority for window design, particularly when determining the window size. In other climates such as Albuquerque, the priority of window design should be first given to heating savings requirements.« less

  7. Rashba-Zeeman-effect-induced spin filtering energy windows in a quantum wire

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xiao, Xianbo, E-mail: xxb-11@hotmail.com; Nie, Wenjie; Chen, Zhaoxia

    2014-06-14

    We perform a numerical study on the spin-resolved transport in a quantum wire (QW) under the modulation of both Rashba spin-orbit coupling (SOC) and a perpendicular magnetic field by using the developed Usuki transfer-matrix method in combination with the Landauer-Büttiker formalism. Wide spin filtering energy windows can be achieved in this system for unpolarized spin injection. In addition, both the width of energy window and the magnitude of spin conductance within these energy windows can be tuned by varying Rashba SOC strength, which can be apprehended by analyzing the energy dispersions and spin-polarized density distributions inside the QW, respectively. Furthermore » study also demonstrates that these Rashba-SOC-controlled spin filtering energy windows show a strong robustness against disorders. These findings may not only benefit to further understand the spin-dependent transport properties of a QW in the presence of external fields but also provide a theoretical instruction to design a spin filter device.« less

  8. Assessing Thermal Comfort Due to a Ventilated Double Window

    NASA Astrophysics Data System (ADS)

    Carlos, Jorge S.; Corvacho, Helena

    2017-10-01

    Building design and its components are the result of a complex process, which should provide pleasant conditions to its inhabitants. Therefore, indoor acceptable comfort is influenced by the architectural design. ISO and ASHRAE standards define thermal comfort as the condition of mind that expresses satisfaction with the thermal environment. The energy demand for heating, beside the building’s physical properties, also depend on human behaviour, like opening or closing windows. Generally, windows are the weakest façade element concerning to thermal performance. A lower thermal resistance allows higher thermal conduction through it. When a window is very hot or cold, and the occupant is very close to it, it may result in thermal discomfort. The functionality of a ventilated double window introduces new physical considerations to a traditional window. In consequence, it is necessary to study the local effect on human comfort in function of the boundary conditions. Wind, solar availability, air temperature and therefore heating and indoor air quality conditions will affect the relationship between this passive system and the indoor environment. In the present paper, the influence of thermal performance and ventilation on human comfort resulting from the construction and geometry solutions is shown, helping to choose the best solution. The presented approach shows that in order to save energy it is possible to reduce the air changes of a room to the minimum, without compromising air quality, enhancing simultaneously local thermal performance and comfort. The results of the study on the effect of two parallel windows with a ventilated channel in the same fenestration on comfort conditions for several different room dimensions, are also presented. As the room dimensions’ rate changes so does the window to floor rate; therefore, under the same climatic conditions and same construction solution, different results are obtained.

  9. OPTMAIN- A FORTRAN CODE FOR THE CALCULATION OF PROBE VOLUME GEOMETRY CHANGES IN A LASER ANEMOMETRY SYSTEM CAUSED BY WINDOW REFRACTION

    NASA Technical Reports Server (NTRS)

    Owen, A. K.

    1994-01-01

    The laser anemometer has provided the fluid dynamicist with a powerful tool for nonintrusively measuring fluid velocities. One of the more common types of laser anemometers, the laser fringe anemometer, divides a single laser beam into two parallel beams and then focuses them on a point in space called the "probe volume" (PV) where the fluid velocity is measured. Many applications using this method for measuring fluid velocities require the observation of fluids through a window. The passage of the laser beams through materials having different indices of refraction has the following effects: 1) the position of the probe volume will change; 2) the beams will uncross, i.e., no longer lie in the same plane at the probe volume location; and 3) for nonflat plate windows, the crossing angle of the two beams will change. OPTMAIN uses a ray tracing technique, which is not restricted to special cases, to study the changes in probe volume geometry and position due to refraction effects caused by both flat and general smooth windows. Input parameters are the indices of refraction on both sides of the window and of the window itself, the window shape, the assumed position of the probe volume and the actual position of the focusing lens relative to the window, the orientation of the plane which contains the laser beams, the beam crossing angle, and the laser beam wavelength. OPTMAIN is written in FORTRAN 77 for interactive execution. It has been implemented on a DEC VAX 11/780 under VMS 5.0 with a virtual memory requirement of 50K. OPTMAIN was developed in 1987.

  10. Time reversal and phase coherent music techniques for super-resolution ultrasound imaging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, Lianjie; Labyed, Yassin

    Systems and methods for super-resolution ultrasound imaging using a windowed and generalized TR-MUSIC algorithm that divides the imaging region into overlapping sub-regions and applies the TR-MUSIC algorithm to the windowed backscattered ultrasound signals corresponding to each sub-region. The algorithm is also structured to account for the ultrasound attenuation in the medium and the finite-size effects of ultrasound transducer elements. A modified TR-MUSIC imaging algorithm is used to account for ultrasound scattering from both density and compressibility contrasts. The phase response of ultrasound transducer elements is accounted for in a PC-MUSIC system.

  11. Interoperability through standardization: Electronic mail, and X Window systems

    NASA Technical Reports Server (NTRS)

    Amin, Ashok T.

    1993-01-01

    Since the introduction of computing machines, there has been continual advances in computer and communication technologies and approaching limits. The user interface has evolved from a row of switches, character based interface using teletype terminals and then video terminals, to present day graphical user interface. It is expected that next significant advances will come in the availability of services, such as electronic mail and directory services, as the standards for applications are developed and in the 'easy to use' interfaces, such as Graphical User Interface for example Window and X Window, which are being standardized. Various proprietary electronic mail (email) systems are in use within organizations at each center of NASA. Each system provides email services to users within an organization, however the support for email services across organizations and across centers exists at centers to a varying degree and is often easy to use. A recent NASA email initiative is intended 'to provide a simple way to send email across organizational boundaries without disruption of installed base.' The initiative calls for integration of existing organizational email systems through gateways connected by a message switch, supporting X.400 and SMTP protocols, to create a NASA wide email system and for implementation of NASA wide email directory services based on OSI standard X.500. A brief overview of MSFC efforts as a part of this initiative are described. Window based graphical user interfaces make computers easy to use. X window protocol has been developed at Massachusetts Institute of Technology in 1984/1985 to provide uniform window based interface in a distributed computing environment with heterogenous computers. It has since become a standard supported by a number of major manufacturers. Z Windows systems, terminals and workstations, and X Window applications are becoming available. However impact of its use in the Local Area Network environment on the network traffic are not well understood. It is expected that the use of X Windows systems will increase at MSFC especially for Unix based systems. An overview of X Window protocol is presented and its impact on the network traffic is examined. It is proposed that an analytical model of X Window systems in the network environment be developed and validated through the use of measurements to generate application and user profiles.

  12. Two-Band, Low-Loss Microwave Window

    NASA Technical Reports Server (NTRS)

    Britcliffe, Michael; Franco, Manuel

    2007-01-01

    A window for a high-sensitivity microwave receiving system allows microwave radiation to pass through to a cryogenically cooled microwave feed system in a vacuum chamber, while keeping ambient air out of the chamber and helping to keep the interior of the chamber cold. The microwave feed system comprises a feed horn and a low-noise amplifier, both of which are required to be cooled to a temperature of 15 K during operation. The window is designed to exhibit very little microwave attenuation in two frequency bands: 8 to 9 GHz and 30 to 40 GHz. The window is 15 cm in diameter. It includes three layers (see figure): 1) The outer layer is made of a poly(tetrafluoroethylene) film 0.025 mm thick. This layer serves primarily to reflect and absorb solar ultraviolet radiation to prolong the life of the underlying main window layer, which is made of a polyimide that becomes weakened when exposed to ultraviolet. The poly(tetrafluoroethylene) layer also protects the main window layer against abrasion. Moreover, the inherent hydrophobicity of poly(tetrafluoroethylene) helps to prevent the highly undesirable accumulation of water on the outer surface. 2) The polyimide main window layer is 0.08 mm thick. This layer provides the vacuum seal for the window. 3) A 20-mm-thick layer of ethylene/ propylene copolymer foam underlies the main polyimide window layer. This foam layer acts partly as a thermal insulator: it limits radiational heating of the microwave feed horn and, concomitantly, limits radiational cooling of the window. This layer has high compressive strength and provides some mechanical support for the main window layer, reducing the strength required of the main window layer. The ethylene/propylene copolymer foam layer is attached to an aluminum window ring by means of epoxy. The outer poly(tetrafluoroethylene) film and the main polyimide window layer are sandwiched together and pressed against the window ring by use of a bolted clamp ring. The window has been found to introduce a microwave loss of only about 0.4 percent. The contribution of the window to the noise temperature of the microwave feed system has been found to be less than 1 K at 32 GHz and 0.2 K at 8.4 GHz.

  13. Performance analysis of sliding window filtering of two dimensional signals based on stream data processing systems

    NASA Astrophysics Data System (ADS)

    Kazanskiy, Nikolay; Protsenko, Vladimir; Serafimovich, Pavel

    2016-03-01

    This research article contains an experiment with implementation of image filtering task in Apache Storm and IBM InfoSphere Streams stream data processing systems. The aim of presented research is to show that new technologies could be effectively used for sliding window filtering of image sequences. The analysis of execution was focused on two parameters: throughput and memory consumption. Profiling was performed on CentOS operating systems running on two virtual machines for each system. The experiment results showed that IBM InfoSphere Streams has about 1.5 to 13.5 times lower memory footprint than Apache Storm, but could be about 2.0 to 2.5 slower on a real hardware.

  14. NEURODEVELOPMENTAL EFFECTS OF ENVIRONMENTAL EXPOSURES

    EPA Science Inventory

    Neurodevelopmental Effects of Environmental Exposures
    Sherry G. Selevan, Pauline Mendola, Deborah C. Rice (US EPA, Washington,
    DC)

    The nervous system starts development early in gestation and continues to develop through adolescence. Thus, critical windows of vuln...

  15. Opto-mechanical design of optical window for aero-optics effect simulation instruments

    NASA Astrophysics Data System (ADS)

    Wang, Guo-ming; Dong, Dengfeng; Zhou, Weihu; Ming, Xing; Zhang, Yan

    2016-10-01

    A complete theory is established for opto-mechanical systems design of the window in this paper, which can make the design more rigorous .There are three steps about the design. First, the universal model of aerodynamic environment is established based on the theory of Computational Fluid Dynamics, and the pneumatic pressure distribution and temperature data of optical window surface is obtained when aircraft flies in 5-30km altitude, 0.5-3Ma speed and 0-30°angle of attack. The temperature and pressure distribution values for the maximum constraint is selected as the initial value of external conditions on the optical window surface. Then, the optical window and mechanical structure are designed, which is also divided into two parts: First, mechanical structure which meet requirements of the security and tightness is designed. Finally, rigorous analysis and evaluation are given about the structure of optics and mechanics we have designed. There are two parts to be analyzed. First, the Fluid-Solid-Heat Coupled Model is given based on finite element analysis. And the deformation of the glass and structure can be obtained by the model, which can assess the feasibility of the designed optical windows and ancillary structure; Second, the new optical surface is fitted by Zernike polynomials according to the deformation of the surface of the optical window, which can evaluate imaging quality impact of spectral camera by the deformation of window.

  16. Effect of magnetic field on the optical properties of an inhomogeneously broadened multilevel Λ-system in Rb vapor

    NASA Astrophysics Data System (ADS)

    Kaur, Paramjit; Wasan, Ajay

    2017-03-01

    We present a theoretical model, using density matrix approach, to study the effect of external longitudinal and transverse magnetic fields on the optical properties of an inhomogeneously broadened multilevel Λ-system using the D2 line in 85Rb and 87Rb atoms. The presence of closely spaced multiple excited states causes asymmetry in the absorption and dispersion profiles. We observe a wide EIT window with a positive slope at the line center for a stationary atom. While for a moving atom, the linewidth of EIT window reduces and positive dispersion becomes steeper. When magnetic field is applied, our calculations show multiple EIT subwindows that are significantly narrower and shallow than single EIT window. The number of EIT subwindows depend on the orientation of the magnetic field. We also obtain multiple positive dispersive regions for subluminal propagation in the medium. The anomalous dispersion exists in between two subwindows showing the superluminal light propagation. Our theoretical analysis explain the experiments performed by Wei et al. [Phys. Rev. A 72, 023806 (2005)] and Iftiquar et al. [Phys. Rev. A 79, 013808 (2009)].

  17. Tuneable complementary metamaterial structures based on graphene for single and multiple transparency windows

    PubMed Central

    Ding, Jun; Arigong, Bayaner; Ren, Han; Zhou, Mi; Shao, Jin; Lu, Meng; Chai, Yang; Lin, Yuankun; Zhang, Hualiang

    2014-01-01

    Novel graphene-based tunable plasmonic metamaterials featuring single and multiple transparency windows are numerically studied in this paper. The designed structures consist of a graphene layer perforated with quadrupole slot structures and dolmen-like slot structures printed on a substrate. Specifically, the graphene-based quadrupole slot structure can realize a single transparency window, which is achieved without breaking the structure symmetry. Further investigations have shown that the single transparency window in the proposed quadrupole slot structure is more likely originated from the quantum effect of Autler-Townes splitting. Then, by introducing a dipole slot to the quadrupole slot structure to form the dolmen-like slot structure, an additional transmission dip could occur in the transmission spectrum, thus, a multiple-transparency-window system can be achieved (for the first time for graphene-based devices). More importantly, the transparency windows for both the quadrupole slot and the dolmen-like slot structures can be dynamically controlled over a broad frequency range by varying the Fermi energy levels of the graphene layer (through electrostatic gating). The proposed slot metamaterial structures with tunable single and multiple transparency windows could find potential applications in many areas such as multiple-wavelength slow-light devices, active plasmonic switching, and optical sensing. PMID:25146672

  18. Tuneable complementary metamaterial structures based on graphene for single and multiple transparency windows.

    PubMed

    Ding, Jun; Arigong, Bayaner; Ren, Han; Zhou, Mi; Shao, Jin; Lu, Meng; Chai, Yang; Lin, Yuankun; Zhang, Hualiang

    2014-08-22

    Novel graphene-based tunable plasmonic metamaterials featuring single and multiple transparency windows are numerically studied in this paper. The designed structures consist of a graphene layer perforated with quadrupole slot structures and dolmen-like slot structures printed on a substrate. Specifically, the graphene-based quadrupole slot structure can realize a single transparency window, which is achieved without breaking the structure symmetry. Further investigations have shown that the single transparency window in the proposed quadrupole slot structure is more likely originated from the quantum effect of Autler-Townes splitting. Then, by introducing a dipole slot to the quadrupole slot structure to form the dolmen-like slot structure, an additional transmission dip could occur in the transmission spectrum, thus, a multiple-transparency-window system can be achieved (for the first time for graphene-based devices). More importantly, the transparency windows for both the quadrupole slot and the dolmen-like slot structures can be dynamically controlled over a broad frequency range by varying the Fermi energy levels of the graphene layer (through electrostatic gating). The proposed slot metamaterial structures with tunable single and multiple transparency windows could find potential applications in many areas such as multiple-wavelength slow-light devices, active plasmonic switching, and optical sensing.

  19. Design and comparison of laser windows for high-power lasers

    NASA Astrophysics Data System (ADS)

    Niu, Yanxiong; Liu, Wenwen; Liu, Haixia; Wang, Caili; Niu, Haisha; Man, Da

    2014-11-01

    High-power laser systems are getting more and more widely used in industry and military affairs. It is necessary to develop a high-power laser system which can operate over long periods of time without appreciable degradation in performance. When a high-energy laser beam transmits through a laser window, it is possible that the permanent damage is caused to the window because of the energy absorption by window materials. So, when we design a high-power laser system, a suitable laser window material must be selected and the laser damage threshold of the window must be known. In this paper, a thermal analysis model of high-power laser window is established, and the relationship between the laser intensity and the thermal-stress field distribution is studied by deducing the formulas through utilizing the integral-transform method. The influence of window radius, thickness and laser intensity on the temperature and stress field distributions is analyzed. Then, the performance of K9 glass and the fused silica glass is compared, and the laser-induced damage mechanism is analyzed. Finally, the damage thresholds of laser windows are calculated. The results show that compared with K9 glass, the fused silica glass has a higher damage threshold due to its good thermodynamic properties. The presented theoretical analysis and simulation results are helpful for the design and selection of high-power laser windows.

  20. A probabilistic method for the estimation of residual risk in donated blood.

    PubMed

    Bish, Ebru K; Ragavan, Prasanna K; Bish, Douglas R; Slonim, Anthony D; Stramer, Susan L

    2014-10-01

    The residual risk (RR) of transfusion-transmitted infections, including the human immunodeficiency virus and hepatitis B and C viruses, is typically estimated by the incidence[Formula: see text]window period model, which relies on the following restrictive assumptions: Each screening test, with probability 1, (1) detects an infected unit outside of the test's window period; (2) fails to detect an infected unit within the window period; and (3) correctly identifies an infection-free unit. These assumptions need not hold in practice due to random or systemic errors and individual variations in the window period. We develop a probability model that accurately estimates the RR by relaxing these assumptions, and quantify their impact using a published cost-effectiveness study and also within an optimization model. These assumptions lead to inaccurate estimates in cost-effectiveness studies and to sub-optimal solutions in the optimization model. The testing solution generated by the optimization model translates into fewer expected infections without an increase in the testing cost. © The Author 2014. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  1. Demonstration Program for Low-Cost, High-Energy-Saving Dynamic Windows

    DTIC Science & Technology

    2014-09-01

    Design The scope of this project was to demonstrate the impact of dynamic windows via energy savings and HVAC peak-load reduction; to validate the...temperature and glare. While the installed dynamic window system does not directly control the HVAC or lighting of the facility, those systems are designed ...optimize energy efficiency and HVAC load management. The conversion to inoperable windows caused an unforeseen reluctance to accept the design and

  2. Building technolgies program. 1994 annual report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Selkowitz, S.E.

    1995-04-01

    The objective of the Building Technologies program is to assist the U.S. building industry in achieving substantial reductions in building sector energy use and associated greenhouse gas emissions while improving comfort, amenity, health, and productivity in the building sector. We have focused our past efforts on two major building systems, windows and lighting, and on the simulation tools needed by researchers and designers to integrate the full range of energy efficiency solutions into achievable, cost-effective design solutions for new and existing buildings. In addition, we are now taking more of an integrated systems and life cycle perspective to create cost-effectivemore » solutions for more energy efficient, comfortable, and productive work and living environments. More than 30% of all energy use in buildings is attributable to two sources: windows and lighting. Together they account for annual consumer energy expenditures of more than $50 billion. Each affects not only energy use by other major building systems, but also comfort and productivity-factors that influence building economics far more than does direct energy consumption alone. Windows play a unique role in the building envelope, physically separating the conditioned space from the world outside without sacrificing vital visual contact. Throughout every space in a building, lighting systems facilitate a variety of tasks associated with a wide range of visual requirements while defining the luminous qualities of the indoor environment. Window and lighting systems are thus essential components of any comprehensive building science program.« less

  3. Oscillatory integration windows in neurons

    PubMed Central

    Gupta, Nitin; Singh, Swikriti Saran; Stopfer, Mark

    2016-01-01

    Oscillatory synchrony among neurons occurs in many species and brain areas, and has been proposed to help neural circuits process information. One hypothesis states that oscillatory input creates cyclic integration windows: specific times in each oscillatory cycle when postsynaptic neurons become especially responsive to inputs. With paired local field potential (LFP) and intracellular recordings and controlled stimulus manipulations we directly test this idea in the locust olfactory system. We find that inputs arriving in Kenyon cells (KCs) sum most effectively in a preferred window of the oscillation cycle. With a computational model, we show that the non-uniform structure of noise in the membrane potential helps mediate this process. Further experiments performed in vivo demonstrate that integration windows can form in the absence of inhibition and at a broad range of oscillation frequencies. Our results reveal how a fundamental coincidence-detection mechanism in a neural circuit functions to decode temporally organized spiking. PMID:27976720

  4. Performance Optimization of the Gasdynamic Mirror Propulsion System

    NASA Technical Reports Server (NTRS)

    Emrich, William J., Jr.; Kammash, Terry

    1999-01-01

    Nuclear fusion appears to be a most promising concept for producing extremely high specific impulse rocket engines. Engines such as these would effectively open up the solar system to human exploration and would virtually eliminate launch window restrictions. A preliminary vehicle sizing and mission study was performed based on the conceptual design of a Gasdynamic Mirror (GDM) fusion propulsion system. This study indicated that the potential specific impulse for this engine is approximately 142,000 sec. with about 22,100 N of thrust using a deuterium-tritium fuel cycle. The engine weight inclusive of the power conversion system was optimized around an allowable engine mass of 1500 Mg assuming advanced superconducting magnets and a Field Reversed Configuration (FRC) end plug at the mirrors. The vehicle habitat, lander, and structural weights are based on a NASA Mars mission study which assumes the use of nuclear thermal propulsion' Several manned missions to various planets were analyzed to determine fuel requirements and launch windows. For all fusion propulsion cases studied, the fuel weight remained a minor component of the total system weight regardless of when the missions commenced. In other words, the use of fusion propulsion virtually eliminates all mission window constraints and effectively allows unlimited manned exploration of the entire solar system. It also mitigates the need to have a large space infrastructure which would be required to support the transfer of massive amounts of fuel and supplies to lower a performing spacecraft.

  5. WinHPC System | High-Performance Computing | NREL

    Science.gov Websites

    System WinHPC System NREL's WinHPC system is a computing cluster running the Microsoft Windows operating system. It allows users to run jobs requiring a Windows environment such as ANSYS and MATLAB

  6. Evaluation of sampling frequency, window size and sensor position for classification of sheep behaviour.

    PubMed

    Walton, Emily; Casey, Christy; Mitsch, Jurgen; Vázquez-Diosdado, Jorge A; Yan, Juan; Dottorini, Tania; Ellis, Keith A; Winterlich, Anthony; Kaler, Jasmeet

    2018-02-01

    Automated behavioural classification and identification through sensors has the potential to improve health and welfare of the animals. Position of a sensor, sampling frequency and window size of segmented signal data has a major impact on classification accuracy in activity recognition and energy needs for the sensor, yet, there are no studies in precision livestock farming that have evaluated the effect of all these factors simultaneously. The aim of this study was to evaluate the effects of position (ear and collar), sampling frequency (8, 16 and 32 Hz) of a triaxial accelerometer and gyroscope sensor and window size (3, 5 and 7 s) on the classification of important behaviours in sheep such as lying, standing and walking. Behaviours were classified using a random forest approach with 44 feature characteristics. The best performance for walking, standing and lying classification in sheep (accuracy 95%, F -score 91%-97%) was obtained using combination of 32 Hz, 7 s and 32 Hz, 5 s for both ear and collar sensors, although, results obtained with 16 Hz and 7 s window were comparable with accuracy of 91%-93% and F -score 88%-95%. Energy efficiency was best at a 7 s window. This suggests that sampling at 16 Hz with 7 s window will offer benefits in a real-time behavioural monitoring system for sheep due to reduced energy needs.

  7. Evaluation of sampling frequency, window size and sensor position for classification of sheep behaviour

    PubMed Central

    Walton, Emily; Casey, Christy; Mitsch, Jurgen; Vázquez-Diosdado, Jorge A.; Yan, Juan; Dottorini, Tania; Ellis, Keith A.; Winterlich, Anthony

    2018-01-01

    Automated behavioural classification and identification through sensors has the potential to improve health and welfare of the animals. Position of a sensor, sampling frequency and window size of segmented signal data has a major impact on classification accuracy in activity recognition and energy needs for the sensor, yet, there are no studies in precision livestock farming that have evaluated the effect of all these factors simultaneously. The aim of this study was to evaluate the effects of position (ear and collar), sampling frequency (8, 16 and 32 Hz) of a triaxial accelerometer and gyroscope sensor and window size (3, 5 and 7 s) on the classification of important behaviours in sheep such as lying, standing and walking. Behaviours were classified using a random forest approach with 44 feature characteristics. The best performance for walking, standing and lying classification in sheep (accuracy 95%, F-score 91%–97%) was obtained using combination of 32 Hz, 7 s and 32 Hz, 5 s for both ear and collar sensors, although, results obtained with 16 Hz and 7 s window were comparable with accuracy of 91%–93% and F-score 88%–95%. Energy efficiency was best at a 7 s window. This suggests that sampling at 16 Hz with 7 s window will offer benefits in a real-time behavioural monitoring system for sheep due to reduced energy needs. PMID:29515862

  8. Lower HVAC Costs | Efficient Windows Collaborative

    Science.gov Websites

    system. Smaller HVAC systems cost less and as such can offset some of the cost of the efficient windows dehumidification. First cost savings - Smaller HVAC units cost less. If, for example, down-sizing the HVAC system by half a ton saves $275, the cost premium of energy-efficient windows does not present as big an up

  9. Transplant Image Processing Technology under Windows into the Platform Based on MiniGUI

    NASA Astrophysics Data System (ADS)

    Gan, Lan; Zhang, Xu; Lv, Wenya; Yu, Jia

    MFC has a large number of digital image processing-related API functions, object-oriented and class mechanisms which provides image processing technology strong support in Windows. But in embedded systems, image processing technology dues to the restrictions of hardware and software do not have the environment of MFC in Windows. Therefore, this paper draws on the experience of image processing technology of Windows and transplants it into MiniGUI embedded systems. The results show that MiniGUI/Embedded graphical user interface applications about image processing which used in embedded image processing system can be good results.

  10. Viewing region maximization of an integral floating display through location adjustment of viewing window.

    PubMed

    Kim, Joowhan; Min, Sung-Wook; Lee, Byoungho

    2007-10-01

    Integral floating display is a recently proposed three-dimensional (3D) display method which provides a dynamic 3D image in the vicinity to an observer. It has a viewing window only through which correct 3D images can be observed. However, the positional difference between the viewing window and the floating image causes limited viewing zone in integral floating system. In this paper, we provide the principle and experimental results of the location adjustment of the viewing window of the integral floating display system by modifying the elemental image region for integral imaging. We explain the characteristics of the viewing window and propose how to move the viewing window to maximize the viewing zone.

  11. A performance comparison of nuclear electric and nuclear thermal propulsion for Mars cargo missions across the 15-17 year synodic cycle

    NASA Technical Reports Server (NTRS)

    Sponaugle, Steven J.; Davis, Steven F.; Everett, Shonn F.

    1992-01-01

    This paper examines the effects of the Earth-Mars synodic cycle on Mars cargo missions. Cargo vehicles that use nuclear thermal propulsion are compared with those that use nuclear electric propulsion. It will be shown that for low energy class cargo missions, nuclear electric systems exhibit far less variation in peak performance over the synodic cycle than comparable nuclear thermal systems. Performance is measured by the amount of usable mass delivered to Mars, as well as the initial mass requirements in nuclear safe orbit. Nuclear electric propulsion systems also have significantly longer injection window opportunities for a given 26 month synodic period, resulting in much greater mission design flexibility. Injection window opportunities over a 20 year period from 2010 to 2030 are examined. This covers a complete synodic cycle and shows its effects on performance for Mars cargo missions.

  12. Effect of color on pilot performance and transfer functions using a full-spectrum, calligraphic, color display system

    NASA Technical Reports Server (NTRS)

    Chase, W. D.

    1976-01-01

    The use of blue and red color in out-of-window cockpit displays, in full-spectrum calligraphic computer-generated display systems, is studied with attention given to pilot stereographic depth perception and response to visual cues. Displays for vertical approach, with dynamic and frozen-range landing approach and perspective arrays, are analyzed. Pilot transfer function and the transfer function associated with the contrasted approach and perspective arrays are discussed. Out-of-window blue lights are perceived by pilots as indicating greater distance depth, red lights as indicating proximity. The computer-generated chromatic display was adapted to flight simulators for the tests.

  13. Rugged sensor window materials for harsh environments

    NASA Astrophysics Data System (ADS)

    Bayya, Shyam; Villalobos, Guillermo; Kim, Woohong; Sanghera, Jasbinger; Hunt, Michael; Aggarwal, Ishwar D.

    2014-09-01

    There are several military or commercial systems operating in very harsh environments that require rugged windows. On some of these systems, windows become the single point of failure. These applications include sensor or imaging systems, high-energy laser weapons systems, submarine photonic masts, IR countermeasures and missiles. Based on the sea or land or air based platforms the window or dome on these systems must withstand wave slap, underwater or ground based explosions, or survive flight through heavy rain and sand storms while maintaining good optical transmission in the desired wavelength range. Some of these applications still use softer ZnS or fused silica windows because of lack of availability of rugged materials in shapes or sizes required. Sapphire, ALON and spinel are very rugged materials with significantly higher strengths compared to ZnS and fused silica. There have been recent developments in spinel, ALON and sapphire materials to fabricate in large sizes and conformal shapes. We have been developing spinel ceramics for several of these applications. We are also developing β-SiC as a transparent window material as it has higher hardness, strength, and toughness than sapphire, ALON and spinel. This paper gives a summary of our recent findings.

  14. Interface cloning and sharing: Interaction designs for conserving labor and maintaining state across 24X7 sensor operations teams

    NASA Astrophysics Data System (ADS)

    Ganter, John H.; Reeves, Paul C.

    2017-05-01

    Processing remote sensing data is the epitome of computation, yet real-time collection systems remain human-labor intensive. Operator labor is consumed by both overhead tasks (cost) and value-added production (benefit). In effect, labor is taxed and then lost. When an operator comes on-shift, they typically duplicate setup work that their teammates have already performed many times. "Pass down" of state information can be difficult if security restrictions require total logouts and blank screens - hours or even days of valuable history and context are lost. As work proceeds, duplicative effort is common because it is typically easier for operators to "do it over" rather than share what others have already done. As we begin a major new system version, we are refactoring the user interface to reduce time and motion losses. Working with users, we are developing "click budgets" to streamline interface use. One basic function is shared clipboards to reduce the use of sticky notes and verbal communication of data strings. We illustrate two additional designs to share work: window copying and window sharing. Copying (technically, shallow or deep object cloning) allows any system user to duplicate a window and configuration for themselves or another to use. Sharing allows a window to have multiple users: shareholders with read-write functionality and viewers with read-only. These solutions would allow windows to persist across multiple shifts, with a rotating cast of shareholders and viewers. Windows thus become durable objects of shared effort and persistent state. While these are low-tech functions, the cumulative labor savings in a 24X7 crew position (525,000 minutes/year spread over multiple individuals) would be significant. New design and implementation is never free and these investments typically do not appeal to government acquisition officers with short-term acquisition-cost concerns rather than a long-term O and M (operations and maintenance) perspective. We share some successes in educating some officers, in collaboration with system users, about the human capital involved in operating the systems they are acquiring.

  15. Early Risk Reduction Phase 1 FLIR/Laser Designator Window. Revision

    DTIC Science & Technology

    1991-12-31

    Sandwich-Type FLIR Windows," Air Force AFWAL-TR-83- 4122, Nov 1983. 4-1 Hughes Danbury Optical Systems Final Report, "ATA Window Technology Program," PRBll...Risk Reduction -- Phase I, Optical Properties Measurement Techniques of Three Wide Band Window Materials," 22 August 1991. xii I i 86PR0869 30... Optical Systems, Lexington, MA, 02173, 1 Feb 1991. 5-7 McDonnell Aircraft Company Technical Memorandum TM 256.91.0056.01, "Early Risk Reduction -- Phase

  16. Preliminary study of TEC application in cooling system

    NASA Astrophysics Data System (ADS)

    Sulaiman, A. C.; Amin, N. A. M.; Saidon, M. S.; Majid, M. S. A.; Rahman, M. T. A.; Kazim, M. N. F. M.

    2017-10-01

    Integration of thermoelectric cooling (TEC) within a space cooling system in the lecturer room is studied. The studied area (air conditioned surrounding) is encapsulated with wall, floor, roof, and glass window. TEC module is placed on the glass window. The prototype of the studied compartment is designed using cabin container. The type and number of TEC module are studied and the effects on the cooling performance are analyzed as it is assumed to be tested within an air conditioned lecturer room. The experimental and mathematical modeling of the cooling system developed. It is expected that the mathematical modeling derived from this study will be used to estimate the use of the number of TEC module to be integrated with air conditioner unit where possible.

  17. Effects of long-duration exposure on optical system components

    NASA Technical Reports Server (NTRS)

    Harvey, Gale A.

    1991-01-01

    The optical materials and UV detectors experiment (SOO50-1) was a set of 18 optical windows, filters, and ultraviolet detectors. The optical specimens were all retrieved in excellent condition. No delamination or blistering of the filters occurred. No discoloration of the optical window materials occurred, but the MgF2 window did experience roughing. The most notable degradation of the optics were the deposition of an organic film on the exposed surfaces. The film absorption was measured using a Fourier transform infrared spectrometer and a UV spectrometer. The 6 percent absorption at 3.4 microns corresponds to about 100 mgm/sq ft of organic film. The UV absorption was almost 100 percent at 200 nm and about 50 percent at 380 nm.

  18. High-temperature, high-pressure optical port for rocket engine applications

    NASA Technical Reports Server (NTRS)

    Delcher, Ray; Nemeth, ED; Powers, W. T.

    1993-01-01

    This paper discusses the design, fabrication, and test of a window assembly for instrumentation of liquid-fueled rocket engine hot gas systems. The window was designed to allow optical measurements of hot gas in the SSME fuel preburner and appears to be the first window designed for application in a rocket engine hot gas system. Such a window could allow the use of a number of remote optical measurement technologies including: Raman temperature and species concentration measurement, Raleigh temperature measurements, flame emission monitoring, flow mapping, laser-induced florescence, and hardware imaging during engine operation. The window assembly has been successfully tested to 8,000 psi at 1000 F and over 11,000 psi at room temperature. A computer stress analysis shows the window will withstand high temperature and cryogenic thermal shock.

  19. Polyphase-discrete Fourier transform spectrum analysis for the Search for Extraterrestrial Intelligence sky survey

    NASA Technical Reports Server (NTRS)

    Zimmerman, G. A.; Gulkis, S.

    1991-01-01

    The sensitivity of a matched filter-detection system to a finite-duration continuous wave (CW) tone is compared with the sensitivities of a windowed discrete Fourier transform (DFT) system and an ideal bandpass filter-bank system. These comparisons are made in the context of the NASA Search for Extraterrestrial Intelligence (SETI) microwave observing project (MOP) sky survey. A review of the theory of polyphase-DFT filter banks and its relationship to the well-known windowed-DFT process is presented. The polyphase-DFT system approximates the ideal bandpass filter bank by using as few as eight filter taps per polyphase branch. An improvement in sensitivity of approx. 3 dB over a windowed-DFT system can be obtained by using the polyphase-DFT approach. Sidelobe rejection of the polyphase-DFT system is vastly superior to the windowed-DFT system, thereby improving its performance in the presence of radio frequency interference (RFI).

  20. [Computerized monitoring system in the operating center with UNIX and X-window].

    PubMed

    Tanaka, Y; Hashimoto, S; Chihara, E; Kinoshita, T; Hirose, M; Nakagawa, M; Murakami, T

    1992-01-01

    We previously reported the fully automated data logging system in the operating center. Presently, we revised the system using a highly integrated operating system, UNIX instead of OS/9. With this multi-task and multi-window (X-window) system, we could monitor all 12 rooms in the operating center at a time. The system in the operating center consists of 2 computers, SONY NEWS1450 (UNIX workstation) and Sord M223 (CP/M, data logger). On the bitmapped display of the workstation, using X-window, the data of all the operating rooms can be visualized. Furthermore, 2 other minicomputers (Fujitsu A50 in the conference room, and A60 in the ICU) and a workstation (Sun3-80 in the ICU) were connected with ethernet. With the remote login function (NFS), we could easily obtain the data during the operation from outside the operating center. This system works automatically and needs no routine maintenance.

  1. 77 FR 46803 - Notice of Receipt of Petition for Decision That Nonconforming 2005 Chevrolet Suburban Multi...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-06

    ... Transmission Braking Effect, 103 Windshield Defrosting and Defogging Systems, 104 Windshield Wiping and Washing..., 113 Hood Latch System, 114 Theft Protection, 116 Motor Vehicle Brake Fluids, Standard No. 118 Power-Operated Window, Partition, and Roof Panel Systems, 119 New Pneumatic Tires for Vehicles other than...

  2. Three-dimensional laser window formation

    NASA Technical Reports Server (NTRS)

    Verhoff, Vincent G.

    1992-01-01

    The NASA Lewis Research Center has developed and implemented a unique process for forming flawless three-dimensional laser windows. These windows represent a major part of specialized, nonintrusive laser data acquisition systems used in a variety of compressor and turbine research test facilities. This report discusses in detail the aspects of three-dimensional laser window formation. It focuses on the unique methodology and the peculiarities associated with the formation of these windows. Included in this discussion are the design criteria, bonding mediums, and evaluation testing for three-dimensional laser windows.

  3. Compound curvature laser window development

    NASA Technical Reports Server (NTRS)

    Verhoff, Vincent G.

    1993-01-01

    The NASA Lewis Research Center has developed and implemented a unique process for forming flawless compound curvature laser windows. These windows represent a major part of specialized, nonintrusive laser data acquisition systems used in a variety of compressor and turbine research test facilities. This report summarizes the main aspects of compound curvature laser window development. It is an overview of the methodology and the peculiarities associated with the formulation of these windows. Included in this discussion is new information regarding procedures for compound curvature laser window development.

  4. Correlates of avian building strikes at a glass façade museum surrounded by avian habitat

    NASA Astrophysics Data System (ADS)

    Kahle, L.; Flannery, M.; Dumbacher, J. P.

    2013-12-01

    Bird window collisions are the second largest anthropogenic cause of bird deaths in the world. Effective mitigation requires an understanding of which birds are most likely to strike, when, and why. Here, we examine five years of avian window strike data from the California Academy of Sciences - a relatively new museum with significant glass façade situated in Golden Gate Park, San Francisco. We examine correlates of window-killed birds, including age, sex, season, and migratory or sedentary tendencies of the birds. We also examine correlates of window kills such as presence of habitat surrounding the building and overall window area. We found that males are almost three times more likely than females to mortally strike windows, and immature birds are three times more abundant than adults in our window kill dataset. Among seasons, strikes were not notably different in spring, summer, and fall; however they were notably reduced in winter. There was no statistical effect of building orientation (north, south, east, or west), and the presence of avian habitat directly adjacent to windows had a minor effect. We also report ongoing studies examining various efforts to reduce window kill (primarily external decals and large electronic window blinds.) We hope that improving our understanding of the causes of the window strikes will help us strategically reduce window strikes.

  5. Mitigating reentry radio blackout by using a traveling magnetic field

    NASA Astrophysics Data System (ADS)

    Zhou, Hui; Li, Xiaoping; Xie, Kai; Liu, Yanming; Yu, Yuanyuan

    2017-10-01

    A hypersonic flight or a reentry vehicle is surrounded by a plasma layer that prevents electromagnetic wave transmission, which results in radio blackout. The magnetic-window method is considered a promising means to mitigate reentry communication blackout. However, the real application of this method is limited because of the need for strong magnetic fields. To reduce the required magnetic field strength, a novel method that applies a traveling magnetic field (TMF) is proposed in this study. A mathematical model based on magneto-hydrodynamic theory is adopted to analyze the effect of TMF on plasma. The mitigating effects of the TMF on the blackout of typical frequency bands, including L-, S-, and C-bands, are demonstrated. Results indicate that a significant reduction of plasma density occurs in the magnetic-window region by applying a TMF, and the reduction ratio is positively correlated with the velocity of the TMF. The required traveling velocities for eliminating the blackout of the Global Positioning System (GPS) and the typical telemetry system are also discussed. Compared with the constant magnetic-window method, the TMF method needs lower magnetic field strength and is easier to realize in the engineering field.

  6. Graphical Analysis of B-737 Airplane Pathloss Data for GPS and Evaluation of Coupling Mitigation Techniques

    NASA Technical Reports Server (NTRS)

    Jafri, Madiha J.; Ely, Jay J.; Vahala, Linda

    2004-01-01

    The use of Portable Electronic Devices (PEDs) onboard commercial airliners is considered to be desirable for many passengers, However, the possibility of Electromagnetic Interference (EMI) caused by these devices may affect flight safety. PEDs may act as transmitters, both intentional and unintentional, and their signals may be detected by the various navigation and communication radios onboard the aircraft. Interference Pathloss (IPL) is defined as the measurement of the radiated field coupling between passenger cabin locations and aircraft communication and navigation receivers, via their antennas. This paper first focuses on IPL measurements for GPS, taken on an out-of-service United Airlines B-737-200. IPL pattern symmetry is verified by analyzing data obtained on the windows of the Port as well as the Starboard side of the aircraft. Further graphical analysis is performed with the door and exit seams sealed with conductive tape in order to better understand the effects of shielding on IPL patterns. Shielding effects are analyzed from window data for VHF and LOC systems. In addition the shielding benefit of applying electrically conductive film to aircraft windows is evaluated for GPS and TCAS systems.

  7. Window performance and building energy use: Some technical options for increasing energy efficiency

    NASA Astrophysics Data System (ADS)

    Selkowitz, Stephen

    1985-11-01

    Window system design and operation has a major impact on energy use in buildings as well as on occupants' thermal and visual comfort. Window performance will be a function of optical and thermal properties, window management strategies, climate and orientation, and building type and occupancy. In residences, heat loss control is a primary concern, followed by sun control in more southerly climates. In commercial buildings, the daylight provided by windows may be the major energy benefits but solar gain must be controlled so that increased cooling loads do not exceed daylighting savings. Reductions in peak electrical demand and HVAC system size may also be possible in well-designed daylighted buildings.

  8. A Limited-Vocabulary, Multi-Speaker Automatic Isolated Word Recognition System.

    ERIC Educational Resources Information Center

    Paul, James E., Jr.

    Techniques for automatic recognition of isolated words are investigated, and a computer simulation of a word recognition system is effected. Considered in detail are data acquisition and digitizing, word detection, amplitude and time normalization, short-time spectral estimation including spectral windowing, spectral envelope approximation,…

  9. Varying behavior of different window sizes on the classification of static and dynamic physical activities from a single accelerometer.

    PubMed

    Fida, Benish; Bernabucci, Ivan; Bibbo, Daniele; Conforto, Silvia; Schmid, Maurizio

    2015-07-01

    Accuracy of systems able to recognize in real time daily living activities heavily depends on the processing step for signal segmentation. So far, windowing approaches are used to segment data and the window size is usually chosen based on previous studies. However, literature is vague on the investigation of its effect on the obtained activity recognition accuracy, if both short and long duration activities are considered. In this work, we present the impact of window size on the recognition of daily living activities, where transitions between different activities are also taken into account. The study was conducted on nine participants who wore a tri-axial accelerometer on their waist and performed some short (sitting, standing, and transitions between activities) and long (walking, stair descending and stair ascending) duration activities. Five different classifiers were tested, and among the different window sizes, it was found that 1.5 s window size represents the best trade-off in recognition among activities, with an obtained accuracy well above 90%. Differences in recognition accuracy for each activity highlight the utility of developing adaptive segmentation criteria, based on the duration of the activities. Copyright © 2015 IPEM. Published by Elsevier Ltd. All rights reserved.

  10. A de-noising algorithm based on wavelet threshold-exponential adaptive window width-fitting for ground electrical source airborne transient electromagnetic signal

    NASA Astrophysics Data System (ADS)

    Ji, Yanju; Li, Dongsheng; Yu, Mingmei; Wang, Yuan; Wu, Qiong; Lin, Jun

    2016-05-01

    The ground electrical source airborne transient electromagnetic system (GREATEM) on an unmanned aircraft enjoys considerable prospecting depth, lateral resolution and detection efficiency, etc. In recent years it has become an important technical means of rapid resources exploration. However, GREATEM data are extremely vulnerable to stationary white noise and non-stationary electromagnetic noise (sferics noise, aircraft engine noise and other human electromagnetic noises). These noises will cause degradation of the imaging quality for data interpretation. Based on the characteristics of the GREATEM data and major noises, we propose a de-noising algorithm utilizing wavelet threshold method and exponential adaptive window width-fitting. Firstly, the white noise is filtered in the measured data using the wavelet threshold method. Then, the data are segmented using data window whose step length is even logarithmic intervals. The data polluted by electromagnetic noise are identified within each window based on the discriminating principle of energy detection, and the attenuation characteristics of the data slope are extracted. Eventually, an exponential fitting algorithm is adopted to fit the attenuation curve of each window, and the data polluted by non-stationary electromagnetic noise are replaced with their fitting results. Thus the non-stationary electromagnetic noise can be effectively removed. The proposed algorithm is verified by the synthetic and real GREATEM signals. The results show that in GREATEM signal, stationary white noise and non-stationary electromagnetic noise can be effectively filtered using the wavelet threshold-exponential adaptive window width-fitting algorithm, which enhances the imaging quality.

  11. REPRODUCTIVE AND DEVELOPMENTAL EFFECTS OF CONTAMINANTS IN OVIPAROUS VERTEBRATES: WORKSHOP SUMMARY, CONCLUSIONS, AND RECOMMENDATIONS

    EPA Science Inventory

    Oviparous vertebrates generally occupy important niches in aquatic as well as terrestrial systems, and reproductive and developmental effects on these species can be of relatively great ecological significance. Because these organisms have critical windows of development, they ma...

  12. ENVIRONMENTAL FACTORS ASSOCIATED WITH MENTAL RETARDATION AND DEVELOPMENT DISABILITY

    EPA Science Inventory

    Abstract

    A number of environmental agents have been shown to demonstrate neurotoxic effects either in human or laboratory animal studies. Critical windows of vulnerability to the effects of these agents occur both pre- and postnatally. The nervous system is relatively un...

  13. Protective broadband window coatings

    NASA Astrophysics Data System (ADS)

    Askinazi, Joel; Narayanan, Authi A.

    1997-06-01

    Optical windows employed in current and future airborne and ground based optical sensor systems are required to provide long service life under extreme environmental conditions including blowing sand and high speed rain. State of the art sensor systems are employing common aperture windows which must provide optical bandpasses from the TV to the LWIR. Operation Desert Storm experience indicates that current optical coatings provide limited environmental protection which adversely affects window life cycle cost. Most of these production coatings also have limited optical bandpasses (LWIR, MWIR, or TV-NIR). A family of optical coatings has been developed which provide a significant increase in rain and sand impact protection to current optical window materials. These coatings can also be tailored to provide either narrow optical bandwidth (e.g., LWIR) or broadband transmittance (TV- LWIR). They have been applied to a number of standard optical window materials. These coating have successfully completed airborne rain and sand abrasion test with minimal impact on optical window performance. Test results are presented. Low cost service life is anticipated as well as the ability to operate windows in even more taxing environments than currently feasible.

  14. Sensitivity distribution of a vibration sensor based on Mach-Zehnder interferometer designed inside the window system

    NASA Astrophysics Data System (ADS)

    Zboril, Ondrej; Nedoma, Jan; Cubik, Jakub; Novak, Martin; Bednarek, Lukas; Fajkus, Marcel; Vasinek, Vladimir

    2016-04-01

    Interferometric sensors are very accurate and sensitive sensors that due to the extreme sensitivity allow sensing vibration and acoustic signals. This paper describes a new method of implementation of Mach-Zehnder interferometer for sensing of vibrations caused by touching on the window panes. Window panes are part of plastic windows, in which the reference arm of the interferometer is mounted and isolated inside the frame, a measuring arm of the interferometer is fixed to the window pane and it is mounted under the cover of the window frame. It prevents visibility of the optical fiber and this arrangement is the basis for the safety system. For the construction of the vibration sensor standard elements of communication networks are used - optical fiber according to G.652D and 1x2 splitters with dividing ratio 1:1. Interferometer operated at a wavelength of 1550 nm. The paper analyses the sensitivity of the window in a 12x12 measuring points matrix, there is specified sensitivity distribution of the window pane.

  15. Occupant-responsive optimal control of smart facade systems

    NASA Astrophysics Data System (ADS)

    Park, Cheol-Soo

    Windows provide occupants with daylight, direct sunlight, visual contact with the outside and a feeling of openness. Windows enable the use of daylighting and offer occupants a outside view. Glazing may also cause a number of problems: undesired heat gain/loss in winter. An over-lit window can cause glare, which is another major complaint by occupants. Furthermore, cold or hot window surfaces induce asymmetric thermal radiation which can result in thermal discomfort. To reduce the potential problems of window systems, double skin facades and airflow window systems have been introduced in the 1970s. They typically contain interstitial louvers and ventilation openings. The current problem with double skin facades and airflow windows is that their operation requires adequate dynamic control to reach their expected performance. Many studies have recognized that only an optimal control enables these systems to truly act as active energy savers and indoor environment controllers. However, an adequate solution for this dynamic optimization problem has thus far not been developed. The primary objective of this study is to develop occupant responsive optimal control of smart facade systems. The control could be implemented as a smart controller that operates the motorized Venetian blind system and the opening ratio of ventilation openings. The objective of the control is to combine the benefits of large windows with low energy demands for heating and cooling, while keeping visual well-being and thermal comfort at an optimal level. The control uses a simulation model with an embedded optimization routine that allows occupant interaction via the Web. An occupant can access the smart controller from a standard browser and choose a pre-defined mode (energy saving mode, visual comfort mode, thermal comfort mode, default mode, nighttime mode) or set a preferred mode (user-override mode) by moving preference sliders on the screen. The most prominent feature of these systems is the capability of dynamically reacting to the environmental input data through real-time optimization. The proposed occupant responsive optimal control of smart facade systems could provide a breakthrough in this under-developed area and lead to a renewed interest in smart facade systems.

  16. Atomistic Simulation and Electronic Structure of Lithium Doped Ionic Liquids: Structure, Transport, and Electrochemical Stability

    NASA Technical Reports Server (NTRS)

    Haskins, Justin B.; Bauschlicher, Charles W.; Lawson, John W.

    2015-01-01

    Zero-temperature density functional theory (DFT), density functional theory molecular dynamics (DFT-MD), and classical molecular dynamics using polarizable force fields (PFF-MD) are employed to evaluate the influence of Lithium ion on the structure, transport, and electrochemical stability of three potential ionic liquid electrolytes: N--methyl-N-butylpyrrolidinium bis(trifluoromethanesulfonyl)imide ([pyr14][TFSI]), N--methyl-N-propylpyrrolidinium bis(fluorosulfonyl)imide ([pyr13][FSI]), and 1-ethyl-3--methylimidazolium boron tetrafluoride ([EMIM][BF4]). We characterize the Lithium ion solvation shell through zero-temperature DFT simulations of [Li(Anion)sub n](exp n-1) -clusters, DFT-MD simulations of isolated lithium ions in small ionic liquid systems, and PFF-MD simulations with high Li-doping levels in large ionic liquid systems. At low levels of Li-salt doping, highly stable solvation shells having 2-3 anions are seen in both [pyr14][TFSI] and [pyr13][FSI], while solvation shells with 4 anions dominate in [EMIM][BF sub 4]. At higher levels of doping, we find the formation of complex Li-network structures that increase the frequency of 4 anion-coordinated solvation shells. A comparison of computational and experimental Raman spectra for a wide range of [Li(Anion) sub n](exp n -1) - clusters shows that our proposed structures are consistent with experiment. We estimate the ion diffusion coefficients and quantify both size and simulation time effects. We find estimates of lithium ion diffusion are a reasonable order of magnitude and can be corrected for simulation time effects. Simulation size, on the other hand, is also important, with diffusion coefficients from long PFF-MD simulations of small cells having 20-40% error compared to large-cell values. Finally, we compute the electrochemical window using differences in electronic energy levels of both isolated cation/anion pairs and small ionic liquid systems with Li-salt doping. The single pair and liquid-phase systems provide similar estimates of electrochemical window, while Li-doping in the liquid-phase systems results in electrochemical windows little changed from the neat systems. Pure and hybrid functionals systematically provide an upper and lower bound, respectively, to the experimental electrochemical window for the systems studied here.

  17. The Temporal Courses of Phonological and Orthographic Encoding in Handwritten Production in Chinese: An ERP Study

    PubMed Central

    Zhang, Qingfang; Wang, Cheng

    2016-01-01

    A central issue in written production concerns how phonological codes influence the output of orthographic codes. We used a picture-word interference paradigm combined with the event-related potential technique to investigate the temporal courses of phonological and orthographic activation and their interplay in Chinese writing. Distractors were orthographically related, phonologically related, orthographically plus phonologically related, or unrelated to picture names. The behavioral results replicated the classic facilitation effect for all three types of relatedness. The ERP results indicated an orthographic effect in the time window of 370–500 ms (onset latency: 370 ms), a phonological effect in the time window of 460–500 ms (onset latency: 464 ms), and an additive pattern of both effects in both time windows, thus indicating that orthographic codes were accessed earlier than, and independent of, phonological codes in written production. The orthographic activation originates from the semantic system, whereas the phonological effect results from the activation spreading from the orthographic lexicon to the phonological lexicon. These findings substantially strengthen the existing evidence that shows that access to orthographic codes is not mediated by phonological information, and they provide important support for the orthographic autonomy hypothesis. PMID:27605911

  18. Implementation of Pilot Protection System for Large Scale Distribution System like The Future Renewable Electric Energy Distribution Management Project

    NASA Astrophysics Data System (ADS)

    Iigaya, Kiyohito

    A robust, fast and accurate protection system based on pilot protection concept was developed previously and a few alterations in that algorithm were made to make it faster and more reliable and then was applied to smart distribution grids to verify the results for it. The new 10 sample window method was adapted into the pilot protection program and its performance for the test bed system operation was tabulated. Following that the system comparison between the hardware results for the same algorithm and the simulation results were compared. The development of the dual slope percentage differential method, its comparison with the 10 sample average window pilot protection system and the effects of CT saturation on the pilot protection system are also shown in this thesis. The implementation of the 10 sample average window pilot protection system is done to multiple distribution grids like Green Hub v4.3, IEEE 34, LSSS loop and modified LSSS loop. Case studies of these multi-terminal model are presented, and the results are also shown in this thesis. The result obtained shows that the new algorithm for the previously proposed protection system successfully identifies fault on the test bed and the results for both hardware and software simulations match and the response time is approximately less than quarter of a cycle which is fast as compared to the present commercial protection system and satisfies the FREEDM system requirement.

  19. On the temporal window of auditory-brain system in connection with subjective responses

    NASA Astrophysics Data System (ADS)

    Mouri, Kiminori

    2003-08-01

    The human auditory-brain system processes information extracted from autocorrelation function (ACF) of the source signal and interaural cross correlation function (IACF) of binaural sound signals which are associated with the left and right cerebral hemispheres, respectively. The purpose of this dissertation is to determine the desirable temporal window (2T: integration interval) for ACF and IACF mechanisms. For the ACF mechanism, the visual change of Φ(0), i.e., the power of ACF, was associated with the change of loudness, and it is shown that the recommended temporal window is given as about 30(τe)min [s]. The value of (τe)min is the minimum value of effective duration of the running ACF of the source signal. It is worth noticing from the experiment of EEG that the most preferred delay time of the first reflection sound is determined by the piece indicating (τe)min in the source signal. For the IACF mechanism, the temporal window is determined as below: The measured range of τIACC corresponding to subjective angle for the moving image sound depends on the temporal window. Here, the moving image was simulated by the use of two loudspeakers located at +/-20° in the horizontal plane, reproducing amplitude modulated band-limited noise alternatively. It is found that the temporal window has a wide range of values from 0.03 to 1 [s] for the modulation frequency below 0.2 Hz. Thesis advisor: Yoichi Ando Copies of this thesis written in English can be obtained from Kiminori Mouri, 5-3-3-1110 Harayama-dai, Sakai city, Osaka 590-0132, Japan. E-mail address: km529756@aol.com

  20. [Preventive effects of sound insulation windows on the indoor noise levels in a street residential building in Beijing].

    PubMed

    Guo, Bin; Huang, Jing; Guo, Xin-biao

    2015-06-18

    To evaluate the preventive effects of sound insulation windows on traffic noise. Indoor noise levels of the residential rooms (on both the North 4th ring road side and the campus side) with closed sound insulation windows were measured using the sound level meter, and comparisons with the simultaneously measured outdoor noise levels were made. In addition, differences of indoor noise levels between rooms with closed sound insulation windows and open sound insulation windows were also compared. The average outdoor noise levels of the North 4th ring road was higher than 70 dB(A), which exceeded the limitation stated in the "Environmental Quality Standard for Noise" (GB 3096-2008) in our country. However, with the sound insulation windows closed, the indoor noise levels reduced significantly to the level under 35 dB(A) (P<0.05), which complied with the indoor noise level standards in our country. The closed or open states of the sound insulation windows had significant influence on the indoor noise levels (P<0.05). Compared with the open state of the sound insulation window, when the sound insulation windows were closed, the indoor noise levels reduced 18.8 dB(A) and 8.3 dB(A) in residential rooms facing North 4th ring road side and campus side, respectively. The results indicated that installation of insulation windows had significant noise reduction effects on street residential buildings especially on the rooms facing major traffic roads. Installation of the sound insulation windows has significant preventive effects on indoor noise in the street residential building.

  1. Statistical Determination of the Gating Windows for Respiratory-Gated Radiotherapy Using a Visible Guiding System.

    PubMed

    Oh, Se An; Yea, Ji Woon; Kim, Sung Kyu

    2016-01-01

    Respiratory-gated radiation therapy (RGRT) is used to minimize the radiation dose to normal tissue in lung-cancer patients. Although determining the gating window in the respiratory phase of patients is important in RGRT, it is not easy. Our aim was to determine the optimal gating window when using a visible guiding system for RGRT. Between April and October 2014, the breathing signals of 23 lung-cancer patients were recorded with a real-time position management (RPM) respiratory gating system (Varian, USA). We performed statistical analysis with breathing signals to find the optimal gating window for guided breathing in RGRT. When we compared breathing signals before and after the breathing training, 19 of the 23 patients showed statistically significant differences (p < 0.05). The standard deviation of the respiration signals after breathing training was lowest for phases of 30%-70%. The results showed that the optimal gating window in RGRT is 40% (30%-70%) with respect to repeatability for breathing after respiration training with the visible guiding system. RGRT was performed with the RPM system to confirm the usefulness of the visible guiding system. The RPM system and our visible guiding system improve the respiratory regularity, which in turn should improve the accuracy and efficiency of RGRT.

  2. Calibration of the Total and Static Pressure Transducers in the DSTO Transonic Wind Tunnel

    DTIC Science & Technology

    2010-08-01

    handled by the ActiveX control MSCOMM32.OCX which is not part of the Microsoft Windows operating system. It is, however, included as part of the...implemented new measures to register ActiveX controls in its Windows suite of operating systems, which has made the above file obsolete and it could no...longer be used if the Windows operating system were updated. If this is the case, then the new version of ActiveX control files can be installed using

  3. Structural Design of Glass and Ceramic Components for Space System Safety

    NASA Technical Reports Server (NTRS)

    Bernstein, Karen S.

    2007-01-01

    Manned space flight programs will always have windows as part of the structural shell of the crew compartment. Astronauts and cosmonauts need to and enjoy looking out of the spacecraft windows at Earth, at approaching vehicles, at scientific objectives and at the stars. With few exceptions spacecraft windows have been made of glass, and the lessons learned over forty years of manned space flight have resulted in a well-defined approach for using this brittle, unforgiving material in NASA's vehicles, in windows and other structural applications. This chapter will outline the best practices that have developed at NASA for designing, verifying and accepting glass (and ceramic) windows and other components for safe and reliable use in any space system.

  4. Defining the flexibility window in ordered aluminosilicate zeolites

    PubMed Central

    Wells, Stephen A.; Leung, Ka Ming; Edwards, Peter P.; Tucker, Matt G.

    2017-01-01

    The flexibility window in zeolites was originally identified using geometric simulation as a hypothetical property of SiO2 systems. The existence of the flexibility window in hypothetical structures may help us to identify those we might be able to synthesize in the future. We have previously found that the flexibility window in silicates is connected to phase transitions under pressure, structure amorphization and other physical behaviours and phenomena. We here extend the concept to ordered aluminosilicate systems using softer ‘bar’ constraints that permit additional flexibility around aluminium centres. Our experimental investigation of pressure-induced amorphization in sodalites is consistent with the results of our modelling. The softer constraints allow us to identify a flexibility window in the anomalous case of goosecreekite. PMID:28989777

  5. Air change rates of motor vehicles and in-vehicle pollutant concentrations from secondhand smoke.

    PubMed

    Ott, Wayne; Klepeis, Neil; Switzer, Paul

    2008-05-01

    The air change rates of motor vehicles are relevant to the sheltering effect from air pollutants entering from outside a vehicle and also to the interior concentrations from any sources inside its passenger compartment. We made more than 100 air change rate measurements on four motor vehicles under moving and stationary conditions; we also measured the carbon monoxide (CO) and fine particle (PM(2.5)) decay rates from 14 cigarettes smoked inside the vehicle. With the vehicle stationary and the fan off, the ventilation rate in air changes per hour (ACH) was less than 1 h(-1) with the windows closed and increased to 6.5 h(-1) with one window fully opened. The vehicle speed, window position, ventilation system, and air conditioner setting was found to affect the ACH. For closed windows and passive ventilation (fan off and no recirculation), the ACH was linearly related to the vehicle speed over the range from 15 to 72 mph (25 to 116 km h(-1)). With a vehicle moving, windows closed, and the ventilation system off (or the air conditioner set to AC Max), the ACH was less than 6.6 h(-1) for speeds ranging from 20 to 72 mph (32 to 116 km h(-1)). Opening a single window by 3'' (7.6 cm) increased the ACH by 8-16 times. For the 14 cigarettes smoked in vehicles, the deposition rate k and the air change rate a were correlated, following the equation k=1.3a (R(2)=82%; n=14). With recirculation on (or AC Max) and closed windows, the interior PM(2.5) concentration exceeded 2000 microg m(-3) momentarily for all cigarettes tested, regardless of speed. The concentration time series measured inside the vehicle followed the mathematical solutions of the indoor mass balance model, and the 24-h average personal exposure to PM(2.5) could exceed 35 microg m(-3) for just two cigarettes smoked inside the vehicle.

  6. Energy-Conscious Design. Part 1.

    ERIC Educational Resources Information Center

    Lawrence, Jerry

    1984-01-01

    Practical energy-design elements adaptable for schools include building orientation and shape, inclusion of an energy-storage system, window placement, double or triple window glazing, air-curtain windows, and the use of earth berms and trees as wind breaks. (MLF)

  7. BERKELEY LAB WINDOW

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Curcija, Dragan Charlie; Zhu, Ling; Czarnecki, Stephen

    WINDOW features include: - Microsoft Windows TM interface - algorithms for the calculation of total fenestration product U-values and Solar Heat Gain Coefficient consistent with ASHRAE SPC 142, ISO 15099, and the National Fenestration Rating Council - a Condensation Resistance Index in accordance with the NFRC 500 Standard - and integrated database of properties - imports data from other LBNL window analysis software: - Import THERM file into the Frame Library - Import records from IGDB and OPtics5 into the Glass Library for the optical properties of coated and uncoated glazings, laminates, and applied films. Program Capabilities WINDOW 7.2 offersmore » the following features: The ability to analyze products made from any combination of glazing layers, gas layers, frames, spacers, and dividers under any environmental conditions and at any tilt; The ability to model complex glazing systems such as venetian blinds and roller shades. Directly accessible libraries of window system components, (glazing systems, glazing layers, gas fills, frame and divider elements), and environmental conditions; The choice of working in English (IP), or Systeme International (SI) units; The ability to specify the dimensions and thermal properties of each frame element (header, sills, jamb, mullion) in a window; A multi-band (wavelength-by-wavelength) spectral model; A Glass Library which can access spectral data files for many common glazing materials from the Optics5database; A night-sky radiative model; A link with the DOE-2.1E and Energy Plus building energy analysis program. Performance Indices and Other Results For a user-defined fenestration system and user-defined environmental conditions, WINDOW calculates: The U-value, solar heat gain coefficient, shading coefficient, and visible transmittance for the complete window system; The U-value, solar heat gain coefficient, shading coefficient, and visible transmittance for the glazing system (center-of-glass values); The U-values of the frame and divider elements and corresponding edge-of-glass areas (based on generic correlations); The total solar and visible transmittance and reflectances of the glazing system. Color properties, i.e. L*, a*, and b* color coordinates, dominant wavelength, and purity for transmitted and reflected (outdoor) solar radiation; The damage-weighted transmittance of the glazing system between 0.3 an 0.38 microns; The angular dependence of the solar and visible transmittances, solar and visible reflectances, solar absorptance, and solar heat gain coefficient of the glazing system; The percent relative humidity of the inside and outside air for which condensation will occur on the interior and exterior glazing surfaces respectively; The center-of-glass temperature distribution.« less

  8. Valence interacts with the early ERP old/new effect and arousal with the sustained ERP old/new effect for affective pictures.

    PubMed

    Van Strien, Jan W; Langeslag, Sandra J E; Strekalova, Nadja J; Gootjes, Liselotte; Franken, Ingmar H A

    2009-01-28

    To examine whether valence and arousal influence recognition memory during early automatic or during more sustained processes, event-related brain potentials (ERPs) of 21 women were recorded while they made old/new judgments in a continuous recognition task with pictures from the International Affective Picture System. The pictures were presented twice and differed in emotional valence and arousal. The P1 peak and four time windows were investigated: 200-300 ms, 300-400 ms, 400-600 ms, and 750-1000 ms after stimulus onset. There was a robust old/new effect starting in the 200-300 ms epoch and lasting all time windows. The valence effect was mainly present in the P1 peak and the 200-400 ms epoch, whereas the arousal effect was found in the 300-1000 ms epoch. Exploratory sLORETA analyses dissociated valence-dependent ventromedial prefrontal activity and arousal-dependent occipital activity in the 350-380 ms time window. Valence interacted with the 200-400 ms old/new effect at central and frontal sites. Arousal interacted with the 750-1000 ms old/new effect at posterior sites. It is concluded that valence influences fast recognition memory, while arousal may influence sustained encoding.

  9. Chaotic Behaviour of a Driven P-N Junction

    NASA Astrophysics Data System (ADS)

    Perez, Jose Maria

    The chaotic behavior of a driven p-n junction is experimentally examined. Bifurcation diagrams for the system are measured, showing period doubling bifurcations up to f/32, onset of chaos, reverse bifurcations of chaotic bands, and periodic windows. Some of the measured bifurcation diagrams are similar to the bifurcation diagram of the logistic map x(,n+1) = (lamda)x(,n)(1 - x(,n)). A return map is also measured showing approximately a one-dimensional map with a single extremum at low driving voltages. The intermittency route to chaos is experimentally observed to occur near a tangent bifurcation as the system approaches a period 5 window at (lamda) = (lamda)(,5). Data are presented for the dependence of the average laminar length on (epsilon) = (lamda)(,5) - (lamda), and for the probability distribution P(l) vs. l. The effects of additive stochastic noise on period doubling, chaos, windows, and intermittency are examined and are found to agree with the logistic model and universal predictions. Three examples of crisis of the attractor are observed. The crises occur when an unstable orbit intersects the chaotic attractor. A period adding sequence is reported in which wide periodic windows of period 2, 3, 4, ... are observed for increasing driving voltage. The initial period doubling cascade and the period adding sequence are compared to two theoretical models, with reasonable success.

  10. DSA process window expansion with novel DSA track hardware

    NASA Astrophysics Data System (ADS)

    Harumoto, Masahiko; Stokes, Harold; Tanaka, Yuji; Kaneyama, Koji; Pieczulewski, Chalres; Asai, Masaya; Argoud, Maxime; Servin, Isabelle; Chamiot-Maitral, Gaëlle; Claveau, Guillaume; Tiron, Raluca; Cayrefourcq, Ian

    2017-03-01

    PS-b-PMMA block copolymer is a well-known DSA material, and there are many DSA patterning methods that make effective the use of such 1st generation materials. Consequently, this variety of patterning methods opens a wide array of possibilities for DSA application[1-4]. Last year, during the inaugural International DSA Symposium, researchers and lithographers concurred on common key issues for DSA patterning methods such as: defect density, LWR, placement error, etc. Defect density was specifically expressed as the biggest obstacle for new processes. Coat-Develop track systems contribute to the DSA pattern fabrication and also influence the DSA pattern performances[4]. In this study, defectivity was investigated using an atmosphere-controlled chamber on the SOKUDO DUO track. As an initial step for expanding the DSA process window, fingerprint patterns were used for various atmospheric conditions during DSA self-assembly annealing. In this study, we will demonstrate an improved DSA process window, and then we will discuss the mechanism for this atmospheric effect.

  11. Due-Window Assignment Scheduling with Variable Job Processing Times

    PubMed Central

    Wu, Yu-Bin

    2015-01-01

    We consider a common due-window assignment scheduling problem jobs with variable job processing times on a single machine, where the processing time of a job is a function of its position in a sequence (i.e., learning effect) or its starting time (i.e., deteriorating effect). The problem is to determine the optimal due-windows, and the processing sequence simultaneously to minimize a cost function includes earliness, tardiness, the window location, window size, and weighted number of tardy jobs. We prove that the problem can be solved in polynomial time. PMID:25918745

  12. Integrated self-cleaning window assembly for optical transmission in combustion environments

    DOEpatents

    Kass, Michael D [Oak Ridge, TN

    2007-07-24

    An integrated window design for optical transmission in combustion environments is described. The invention consists of an integrated optical window design that prevents and removes the accumulation of carbon-based particulate matter and gaseous hydrocarbons through a combination of heat and catalysis. These windows will enable established optical technologies to be applied to combustion environments and their exhaust systems.

  13. A thesis investigating the impact of energy related environmental factors on domestic window design

    NASA Astrophysics Data System (ADS)

    McEvoy, Michael Edward

    In recent years the extent of glazing in houses has been tightly controlled by the Building Regulations in order to save energy. In addition guidelines derived from passive solar principles prescribe the distribution of domestic windows between elevations according to their orientation. This thesis studies the impact of these energy-related environmental factors on domestic window design. The first of these investigations determined the degree to which limitations on the area and arrangement of windows are significant in terms of daylighting. The experiments measured the effect that passive solar requirements and detailed aspects of window design have on the quality of daylighting in houses. The volume of background ventilation required for domestic accommodation has recently been increased. As a result, in a well-sealed construction, heat loss due to background ventilation becomes a larger part of the total heat loss and larger air movements become a potential cause of draughts. The ventilation experiment sought to establish the impact of these more onerous requirements on comfort within rooms. The third experiment combines these factors and asks the question: Could windows be actively involved in overcoming some of these difficulties by being used to preheat ventilation air in order to diminish the extent of heat loss and to alleviate the problem of cold draughts? Also by designing the window to reclaim heat from the room might it be possible to offset the window's thermal inadequacy? Through analysis of responses to a questionnaire and the use of optimisation techniques, scenarios were suggested for the future modification of windows in relation to energy and health expectations. The conclusions form a commentary on recent and future revisions to the Building Regulations and determine whether or not the Regulations facilitate the environmental engineering of windows as an active component of a building's whole environmental system.

  14. High-Power X-Band Semiconductor RF Switch for Pulse Compression Systems of Future Colliders

    NASA Astrophysics Data System (ADS)

    Tantawi, Sami G.; Tamura, Fumihiko

    2000-04-01

    We describe the potential of semiconductor X-band RF switch arrays as a means of developing high power RF pulse compression systems for future linear colliders. The switch systems described here have two designs. Both designs consist of two 3dB hybrids and active modules. In the first design the module is composed of a cascaded active phase shifter. In the second design the module uses arrays of SPST (Single Pole Single Throw) switches. Each cascaded element of the phase shifter and the SPST switch has similar design. The active element consists of symmetrical three-port tee-junctions and an active waveguide window in the symmetrical arm of the tee-junction. The design methodology of the elements and the architecture of the whole switch system are presented. We describe the scaling law that governs the relation between power handling capability and number of elements. The design of the active waveguide window is presented. The waveguide window is a silicon wafer with an array of four hundred PIN/NIP diodes covering the surface of the window. This waveguide window is located in an over-moded TE01 circular waveguide. The results of high power RF measurements of the active waveguide window are presented. The experiment is performed at power levels of tens of megawatts at X-band.

  15. Mind the Gap: Summary of Window Residential Retrofit Solutions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Petersen, Joseph M.; Cort, Katherine A.; Widder, Sarah H.

    Improving the insulation, solar heat gain, and infiltration characteristics of windows in a home has the potential to significantly improve the overall thermal performance by reducing heat transfer through the window and also by decreasing infiltration of outdoor air into the home. As approximately 43% of existing homes still have single-pane clear windows (~50 million houses) and millions of other homes have only double-pane clear windows (Cort 2013), improving window performance also presents a significant opportunity for energy savings in the residential sector. Today, various energy-saving window retrofit opportunities are available to homeowners, ranging from window coverings and storm panelsmore » to highly-insulating triple-pane R-5 window replacements. Many of these technologies have been evaluated in the field, in the “Lab Homes” at Pacific Northwest National Laboratory, and through modeling to prove their cost-effectiveness and performance in different climate regions. Recently, the Pacific Northwest’s Regional Technical Forum approved a utility measure for low- emissivity storm windows based on such data. This action represents a watershed moment for increasing the variety and prevalence of fenestration options in utility programs, especially for the low-income demographic. This paper will review various window retrofit options, the most recent field test and modeling data regarding their performance and cost-effectiveness, and discuss future rating efforts. This information is useful for utilities and energy-efficiency program managers to help effectively implement incentive measures for these technologies.« less

  16. Strong anisotropic optical conductivity in two-dimensional puckered structures: The role of the Rashba effect

    NASA Astrophysics Data System (ADS)

    Saberi-Pouya, S.; Vazifehshenas, T.; Salavati-fard, T.; Farmanbar, M.; Peeters, F. M.

    2017-08-01

    We calculate the optical conductivity of an anisotropic two-dimensional system with Rashba spin-flip excitation within the Kubo formalism. We show that the anisotropic Rashba effect caused by an external field significantly changes the magnitude of the spin splitting. Furthermore, we obtain an analytical expression for the longitudinal optical conductivity associated with interband transitions as a function of the frequency for arbitrary polarization angle. We find that the diagonal components of the optical conductivity tensor are direction dependent and the optical absorption spectrum exhibits a strongly anisotropic absorption window. The height and width of this absorption window are very sensitive to the anisotropy of the system. While the height of absorption peak increases with increasing effective mass anisotropy ratio, the peak intensity is larger when the light polarization is along the armchair direction. Moreover, the absorption peak width becomes broader as the density-of-states mass or Rashba interaction is enhanced. These features in the optical absorption spectrum can be used to determine parameters relevant for spintronics.

  17. KSC-2009-3683

    NASA Image and Video Library

    2009-06-10

    CAPE CANAVERAL, Fla. – A new window is lowered toward the existing Firing Room windows in the Launch Control Center at NASA's Kennedy Space Center in Florida. New, hurricane-rated window systems for the four Firing Rooms and the vestibule areas between Firing Rooms 1 & 2 and Firing Rooms 3 & 4 are being installed. In order to avoid operational impacts the new windows are being installed on the outside of the existing windows, enclosing the space formerly occupied by the louvers. The old windows will remain in place until the new windows are completely installed and leak tested. This approach will continue to keep the firing rooms from being exposed to the elements. Photo credit: NASA/Jack Pfaller

  18. KSC-2009-3682

    NASA Image and Video Library

    2009-06-10

    CAPE CANAVERAL, Fla. – A new window is lowered toward the existing Firing Room windows in the Launch Control Center at NASA's Kennedy Space Center in Florida. New, hurricane-rated window systems for the four Firing Rooms and the vestibule areas between Firing Rooms 1 & 2 and Firing Rooms 3 & 4 are being installed. In order to avoid operational impacts the new windows are being installed on the outside of the existing windows, enclosing the space formerly occupied by the louvers. The old windows will remain in place until the new windows are completely installed and leak tested. This approach will continue to keep the firing rooms from being exposed to the elements. Photo credit: NASA/Jack Pfaller

  19. KSC-2009-3681

    NASA Image and Video Library

    2009-06-10

    CAPE CANAVERAL, Fla. – Work continues on removing the louvers and replacing the windows on the Firing Room windows in the Launch Control Center at NASA's Kennedy Space Center in Florida. New, hurricane-rated window systems for the four Firing Rooms and the vestibule areas between Firing Rooms 1 & 2 and Firing Rooms 3 & 4 are being installed. In order to avoid operational impacts the new windows are being installed on the outside of the existing windows, enclosing the space formerly occupied by the louvers. The old windows will remain in place until the new windows are completely installed and leak tested. This approach will continue to keep the firing rooms from being exposed to the elements. Photo credit: NASA/Jack Pfaller

  20. KSC-2009-3684

    NASA Image and Video Library

    2009-06-10

    CAPE CANAVERAL, Fla. – Alongside the Launch Control Center at NASA's Kennedy Space Center in Florida, a new window is prepared to be lifted up to the existing Firing Room windows. New, hurricane-rated window systems for the four Firing Rooms and the vestibule areas between Firing Rooms 1 & 2 and Firing Rooms 3 & 4 are being installed. In order to avoid operational impacts the new windows are being installed on the outside of the existing windows, enclosing the space formerly occupied by the louvers. The old windows will remain in place until the new windows are completely installed and leak tested. This approach will continue to keep the firing rooms from being exposed to the elements. Photo credit: NASA/Jack Pfaller

  1. KSC-2009-3685

    NASA Image and Video Library

    2009-06-10

    CAPE CANAVERAL, Fla. – A new window is raised toward the existing Firing Room windows in the Launch Control Center at NASA's Kennedy Space Center in Florida. New, hurricane-rated window systems for the four Firing Rooms and the vestibule areas between Firing Rooms 1 & 2 and Firing Rooms 3 & 4 are being installed. In order to avoid operational impacts the new windows are being installed on the outside of the existing windows, enclosing the space formerly occupied by the louvers. The old windows will remain in place until the new windows are completely installed and leak tested. This approach will continue to keep the firing rooms from being exposed to the elements. Photo credit: NASA/Jack Pfaller

  2. ACHP | News | ACHP Issues Program Comment for GSA on Select Repairs and

    Science.gov Websites

    to windows, lighting, roofing, and heating, ventilating, and air-conditioning (HVAC) systems within Upgrades Windows Lighting Roofing Heating, Ventilation, and Air Conditioning (HVAC) Systems Updated March

  3. An Empirical Measure of Computer Security Strength for Vulnerability Remediation

    ERIC Educational Resources Information Center

    Villegas, Rafael

    2010-01-01

    Remediating all vulnerabilities on computer systems in a timely and cost effective manner is difficult given that the window of time between the announcement of a new vulnerability and an automated attack has decreased. Hence, organizations need to prioritize the vulnerability remediation process on their computer systems. The goal of this…

  4. Towards developing robust algorithms for solving partial differential equations on MIMD machines

    NASA Technical Reports Server (NTRS)

    Saltz, Joel H.; Naik, Vijay K.

    1988-01-01

    Methods for efficient computation of numerical algorithms on a wide variety of MIMD machines are proposed. These techniques reorganize the data dependency patterns to improve the processor utilization. The model problem finds the time-accurate solution to a parabolic partial differential equation discretized in space and implicitly marched forward in time. The algorithms are extensions of Jacobi and SOR. The extensions consist of iterating over a window of several timesteps, allowing efficient overlap of computation with communication. The methods increase the degree to which work can be performed while data are communicated between processors. The effect of the window size and of domain partitioning on the system performance is examined both by implementing the algorithm on a simulated multiprocessor system.

  5. Towards developing robust algorithms for solving partial differential equations on MIMD machines

    NASA Technical Reports Server (NTRS)

    Saltz, J. H.; Naik, V. K.

    1985-01-01

    Methods for efficient computation of numerical algorithms on a wide variety of MIMD machines are proposed. These techniques reorganize the data dependency patterns to improve the processor utilization. The model problem finds the time-accurate solution to a parabolic partial differential equation discretized in space and implicitly marched forward in time. The algorithms are extensions of Jacobi and SOR. The extensions consist of iterating over a window of several timesteps, allowing efficient overlap of computation with communication. The methods increase the degree to which work can be performed while data are communicated between processors. The effect of the window size and of domain partitioning on the system performance is examined both by implementing the algorithm on a simulated multiprocessor system.

  6. Constructing complex graphics applications with CLIPS and the X window system

    NASA Technical Reports Server (NTRS)

    Faul, Ben M.

    1990-01-01

    This article will demonstrate how the artificial intelligence concepts in CLIPS used to solve problems encountered in the design and implementation of graphics applications within the UNIX-X Window System environment. The design of an extended version of CLIPS, called XCLIPS, is presented to show how the X Windows System graphics can be incorporated without losing DOS compatibility. Using XCLIPS, a sample scientific application is built that applies solving capabilities of both two and three dimensional graphics presentations in conjunction with the standard CLIPS features.

  7. Thermal and Optical Properties of Low-E Storm Windows and Panels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Culp, Thomas D.; Widder, Sarah H.; Cort, Katherine A.

    Installing low-emissivity (low-E) storm windows and panels over existing windows has been identified as a cost-effective new approach for improving the energy efficiency of existing buildings where window replacement is impractical or too expensive. As such, it is desirable to characterize the key energy performance properties of low-E storm windows and panels when installed over different types of existing primary windows. this paper presents the representative U-factors, solar heat gain coefficients (SGHCs) and visible transmittance properties of the combined assemblies of various storm windows and panel types installed over different primary windows.

  8. The Effect of Systemic Steroid on Hearing Preservation After Cochlear Implantation via Round Window Approach: A Guinea Pig Model.

    PubMed

    Chang, Mun Young; Rah, Yoon Chan; Choi, Jun Jae; Woo, Shin Wook; Hwang, Yu-Jung; Eastwood, Hayden; O'Leary, Stephen J; Lee, Jun Ho

    2017-08-01

    When administered perioperatively, systemic dexamethasone will reduce the hearing loss associated with cochlear implantation (CI) performed via the round window approach. The benefits of electroacoustic stimulation have led to interest in pharmacological interventions to preserve hearing after CI. Thirty guinea pigs were randomly divided into three experimental groups: a control group; a 3-day infusion group; and a 7-day infusion group. Dexamethasone was delivered via a mini-osmotic pump for either 3 or 7 days after CI via the round window. Pure tone-evoked auditory brainstem response (ABR) thresholds were monitored for a period of 12 weeks after CI. The cochleae were then collected for histology. At 4 and 12 weeks after CI, ABR threshold shifts were significantly reduced in both 7-day and 3-day infusion groups compared with the control group. Furthermore, the 7-day infusion group has significantly reduced ABR threshold shifts compared with the 3-day infusion group. The total tissue response, including fibrosis and ossification, was significantly reduced in the 7-day infusion group compared with the control group. On multiple regression the extent of fibrosis predicted hearing loss across most frequencies, while hair cell counts predicted ABR thresholds at 32 kHz. Hearing protection after systemic administration of steroids is more effective when continued for at least a week after CI. Similarly, this treatment approach was more effective in reducing the fibrosis that encapsulates the CI electrode. Reduced fibrosis seemed to be the most likely explanation for the hearing protection.

  9. Investigation of high temperature antennas for space shuttle

    NASA Technical Reports Server (NTRS)

    Kuhlman, E. A.

    1973-01-01

    The design and development of high temperature antennas for the space shuttle orbiter are discussed. The antenna designs were based on three antenna types, an annular slot (L-Band), a linear slot (C-Band), and a horn (C-Band). The design approach was based on combining an RF window, which provides thermal protection, with an off-the-shelf antenna. Available antenna window materials were reviewed and compared, and the materials most compatible with the design requirements were selected. Two antenna window design approaches were considered: one employed a high temperature dielectric material and a low density insulation material, and the other an insulation material usable for the orbiter thermal protection system. Preliminary designs were formulated and integrated into the orbiter structure. Simple electrical models, with a series of window configurations, were constructed and tested. The results of tests and analyses for the final antenna system designs are given and show that high temperature antenna systems consisting of off-the-shelf antennas thermally protected by RF windows can be designed for the Space Shuttle Orbiter.

  10. Vehicle cabin cooling system for capturing and exhausting heated boundary layer air from inner surfaces of solar heated windows

    DOEpatents

    Farrington, Robert B.; Anderson, Ren

    2001-01-01

    The cabin cooling system includes a cooling duct positioned proximate and above upper edges of one or more windows of a vehicle to exhaust hot air as the air is heated by inner surfaces of the windows and forms thin boundary layers of heated air adjacent the heated windows. The cabin cooling system includes at least one fan to draw the hot air into the cooling duct at a flow rate that captures the hot air in the boundary layer without capturing a significant portion of the cooler cabin interior air and to discharge the hot air at a point outside the vehicle cabin, such as the vehicle trunk. In a preferred embodiment, the cooling duct has a cross-sectional area that gradually increases from a distal point to a proximal point to the fan inlet to develop a substantially uniform pressure drop along the length of the cooling duct. Correspondingly, this cross-sectional configuration develops a uniform suction pressure and uniform flow rate at the upper edge of the window to capture the hot air in the boundary layer adjacent each window.

  11. An Environmental Decision Support System for Spatial Assessment and Selective Remediation

    EPA Science Inventory

    Spatial Analysis and Decision Assistance (SADA) is a Windows freeware program that incorporates environmental assessment tools for effective problem-solving. The software integrates modules for GIS, visualization, geospatial analysis, statistical analysis, human health and ecolog...

  12. Detection of License Plate using Sliding Window, Histogram of Oriented Gradient, and Support Vector Machines Method

    NASA Astrophysics Data System (ADS)

    Astawa, INGA; Gusti Ngurah Bagus Caturbawa, I.; Made Sajayasa, I.; Dwi Suta Atmaja, I. Made Ari

    2018-01-01

    The license plate recognition usually used as part of system such as parking system. License plate detection considered as the most important step in the license plate recognition system. We propose methods that can be used to detect the vehicle plate on mobile phone. In this paper, we used Sliding Window, Histogram of Oriented Gradient (HOG), and Support Vector Machines (SVM) method to license plate detection so it will increase the detection level even though the image is not in a good quality. The image proceed by Sliding Window method in order to find plate position. Feature extraction in every window movement had been done by HOG and SVM method. Good result had shown in this research, which is 96% of accuracy.

  13. Actions of the dual FAAH/MAGL inhibitor JZL195 in a murine neuropathic pain model

    PubMed Central

    Adamson Barnes, Nicholas S.; Mitchell, Vanessa A.; Kazantzis, Nicholas P.

    2015-01-01

    Background and Purpose While cannabinoids have been proposed as a potential treatment for neuropathic pain, they have limitations. Cannabinoid receptor agonists have good efficacy in animal models of neuropathic pain; they have a poor therapeutic window. Conversely, selective fatty acid amide hydrolase (FAAH) inhibitors that enhance the endocannabinoid system have a better therapeutic window, but lesser efficacy. We examined whether JZL195, a dual inhibitor of FAAH and monacylglycerol lipase (MAGL), could overcome these limitations. Experimental Approach C57BL/6 mice underwent the chronic constriction injury (CCI) model of neuropathic pain. Mechanical and cold allodynia, plus cannabinoid side effects, were assessed in response to systemic drug application. Key Results JZL195 and the cannabinoid receptor agonist WIN55212 produced dose‐dependent reductions in CCI‐induced mechanical and cold allodynia, plus side effects including motor incoordination, catalepsy and sedation. JZL195 reduced allodynia with an ED50 at least four times less than that at which it produced side effects. By contrast, WIN55212 reduced allodynia and produce side effects with similar ED50s. The maximal anti‐allodynic effect of JZL195 was greater than that produced by selective FAAH, or MAGL inhibitors. The JZL195‐induced anti‐allodynia was maintained during repeated treatment. Conclusions and Implications These findings suggest that JZL195 has greater anti‐allodynic efficacy than selective FAAH, or MAGL inhibitors, plus a greater therapeutic window than a cannabinoid receptor agonist. Thus, dual FAAH/MAGL inhibition may have greater potential in alleviating neuropathic pain, compared with selective FAAH and MAGL inhibitors, or cannabinoid receptor agonists. PMID:26398331

  14. Tony Magri | NREL

    Science.gov Websites

    Windows System Engineer with the Computational Science Center. He implements, supports, and integrates Windows-based technology solutions at the ESIF and manages a portion of the VMware infrastructure . Throughout his career, Tony has built a strong skillset in enterprise Windows Engineering and Active

  15. Radiation-transparent windows, method for imaging fluid transfers

    DOEpatents

    Shu, Deming [Darien, IL; Wang, Jin [Burr Ridge, IL

    2011-07-26

    A thin, x-ray-transparent window system for environmental chambers involving pneumatic pressures above 40 bar is presented. The window allows for x-ray access to such phenomena as fuel sprays injected into a pressurized chamber that mimics realistic internal combustion engine cylinder operating conditions.

  16. Exclusive queueing model including the choice of service windows

    NASA Astrophysics Data System (ADS)

    Tanaka, Masahiro; Yanagisawa, Daichi; Nishinari, Katsuhiro

    2018-01-01

    In a queueing system involving multiple service windows, choice behavior is a significant concern. This paper incorporates the choice of service windows into a queueing model with a floor represented by discrete cells. We contrived a logit-based choice algorithm for agents considering the numbers of agents and the distances to all service windows. Simulations were conducted with various parameters of agent choice preference for these two elements and for different floor configurations, including the floor length and the number of service windows. We investigated the model from the viewpoint of transit times and entrance block rates. The influences of the parameters on these factors were surveyed in detail and we determined that there are optimum floor lengths that minimize the transit times. In addition, we observed that the transit times were determined almost entirely by the entrance block rates. The results of the presented model are relevant to understanding queueing systems including the choice of service windows and can be employed to optimize facility design and floor management.

  17. Development of a collapsible reinforced cylindrical space observation window

    NASA Technical Reports Server (NTRS)

    Khan, A. Q.

    1971-01-01

    Existing material technology was applied to the development of a collapsible transparent window suitable for manned spacecraft structures. The effort reported encompasses the evaluation of flame retardants intended for use in the window matrix polymer, evaluation of reinforcement angle which would allow for a twisting pantographing motion as the cylindrical window is mechanically collapsed upon itself, and evaluation of several reinforcement embedment methods. A fabrication technique was developed to produce a reinforced cylindrical space window of 45.7 cm diameter and 61.0 cm length. The basic technique involved the application of a clear film on a male-section mold; winding axial and girth reinforcements and vacuum casting the outer layer. The high-strength transparent window composite consisted of a polyether urethane matrix reinforced with an orthogonal pattern of black-coated carbon steel wire cable. A thin film of RTV silicone rubber was applied to both surfaces of the urethane. The flexibility, retraction system, and installation system are described.

  18. Air transparent soundproof window

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Sang-Hoon, E-mail: shkim@mmu.ac.kr; Lee, Seong-Hyun

    2014-11-15

    A soundproof window or wall which is transparent to airflow is presented. The design is based on two wave theories: the theory of diffraction and the theory of acoustic metamaterials. It consists of a three-dimensional array of strong diffraction-type resonators with many holes centered on each individual resonator. The negative effective bulk modulus of the resonators produces evanescent wave, and at the same time the air holes with subwavelength diameter existed on the surfaces of the window for macroscopic air ventilation. The acoustic performance levels of two soundproof windows with air holes of 20mm and 50mm diameters were measured. Themore » sound level was reduced by about 30 - 35dB in the frequency range of 400 - 5,000Hz with the 20mm window, and by about 20 - 35dB in the frequency range of 700 - 2,200Hz with the 50mm window. Multi stop-band was created by the multi-layers of the window. The attenuation length or the thickness of the window was limited by background noise. The effectiveness of the soundproof window with airflow was demonstrated by a real installation.« less

  19. KSC-2009-3687

    NASA Image and Video Library

    2009-06-10

    CAPE CANAVERAL, Fla. – Workers at NASA's Kennedy Space Center in Florida secure a new window on the Firing Room in the Launch Control Center. New, hurricane-rated window systems for the four Firing Rooms and the vestibule areas between Firing Rooms 1 & 2 and Firing Rooms 3 & 4 are being installed. In order to avoid operational impacts the new windows are being installed on the outside of the existing windows, enclosing the space formerly occupied by the louvers. The old windows will remain in place until the new windows are completely installed and leak tested. This approach will continue to keep the firing rooms from being exposed to the elements. Photo credit: NASA/Jack Pfaller

  20. Displacement and frequency analyses of vibratory systems

    NASA Astrophysics Data System (ADS)

    Low, K. H.

    1995-02-01

    This paper deals with the frequency and response studies of vibratory systems, which are represented by a set of n coupled second-order differential equations. The following numerical methods are used in the response analysis: central difference, fourth-order Runge-Kutta and modal methods. Data generated in the response analysis are processed to obtain the system frequencies by using the fast Fourier transform (FFT) or harmonic response methods. Two types of the windows are used in the FFT analysis: rectangular and Hanning windows. Examples of two, four and seven degrees of freedom systems are considered, to illustrate the proposed algorithms. Comparisons with those existing results confirm the validity of the proposed methods. The Hanning window attenuates the results that give a narrower bandwidth around the peak if compared with those using the rectangular window. It is also found that in free vibrations of a multi-mass system, the masses will vibrate in a manner that is the superposition of the natural frequencies of the system, while the system will vibrate at the driving frequency in forced vibrations.

  1. Planetary Transits of the Trans-Atlantic Exoplanet Survey Candidate TrES-1b

    NASA Astrophysics Data System (ADS)

    Price, A.; Bissinger, R.; Laughlin, G. P.; Gary, B. L.; Vanmunster, T.; Henden, A. A.; Starkey, D. R.; Kaiser, D. H.; Holtzman, J. A.; Marschall, L. A.; Michalik, T.; Wellington, T.; Paakkonen, P.

    2005-08-01

    The AAVSO compiled 10,560 CCD observations of the suspected exoplanet transit object TrES-1b covering seven complete transit windows, three windows of partial coverage, and coverage of baseline non-transit periods. Visual inspection of the light curves reveals the presence of slight humps at the egress points of some transits. A boot strap Monte Carlo simulation was applied to the data to confirm that the humps exist to a statistically significant degree. However, it does not rule out systemic effects which will be tested with campaigns in the 2005 observing season.

  2. KSC-2009-6634

    NASA Image and Video Library

    2009-11-30

    CAPE CANAVERAL, Fla. – The Launch Control Center at NASA's Kennedy Space Center in Florida is ready to support NASA's 21st century space program. The louvered windows installed during the Apollo era have been replaced with new, hurricane-rated window systems in the four firing rooms and vestibule areas between the firing rooms. To avoid operational impacts and protect the firing rooms from the elements, the new windows were installed on the outside of the original windows, enclosing the space formerly occupied by the louvers until the new windows were leak tested. Photo credit: NASA/Jack Pfaller

  3. KSC-2009-6631

    NASA Image and Video Library

    2009-11-30

    CAPE CANAVERAL, Fla. – The Launch Control Center at NASA's Kennedy Space Center in Florida is ready to support NASA's 21st century space program. The louvered windows installed during the Apollo era have been replaced with new, hurricane-rated window systems in the four firing rooms and vestibule areas between the firing rooms. To avoid operational impacts and protect the firing rooms from the elements, the new windows were installed on the outside of the original windows, enclosing the space formerly occupied by the louvers until the new windows were leak tested. Photo credit: NASA/Jack Pfaller

  4. KSC-2009-6632

    NASA Image and Video Library

    2009-11-30

    CAPE CANAVERAL, Fla. – The Launch Control Center at NASA's Kennedy Space Center in Florida is ready to support NASA's 21st century space program. The louvered windows installed during the Apollo era have been replaced with new, hurricane-rated window systems in the four firing rooms and vestibule areas between the firing rooms. To avoid operational impacts and protect the firing rooms from the elements, the new windows were installed on the outside of the original windows, enclosing the space formerly occupied by the louvers until the new windows were leak tested. Photo credit: NASA/Jack Pfaller

  5. KSC-2009-6633

    NASA Image and Video Library

    2009-11-30

    CAPE CANAVERAL, Fla. – The Launch Control Center at NASA's Kennedy Space Center in Florida is ready to support NASA's 21st century space program. The louvered windows installed during the Apollo era have been replaced with new, hurricane-rated window systems in the four firing rooms and vestibule areas between the firing rooms. To avoid operational impacts and protect the firing rooms from the elements, the new windows were installed on the outside of the original windows, enclosing the space formerly occupied by the louvers until the new windows were leak tested. Photo credit: NASA/Jack Pfaller

  6. A Numerical Study of the Thermal Characteristics of an Air Cavity Formed by Window Sashes in a Double Window

    NASA Astrophysics Data System (ADS)

    Kang, Jae-sik; Oh, Eun-Joo; Bae, Min-Jung; Song, Doo-Sam

    2017-12-01

    Given that the Korean government is implementing what has been termed the energy standards and labelling program for windows, window companies will be required to assign window ratings based on the experimental results of their product. Because this has added to the cost and time required for laboratory tests by window companies, the simulation system for the thermal performance of windows has been prepared to compensate for time and cost burdens. In Korea, a simulator is usually used to calculate the thermal performance of a window through WINDOW/THERM, complying with ISO 15099. For a single window, the simulation results are similar to experimental results. A double window is also calculated using the same method, but the calculation results for this type of window are unreliable. ISO 15099 should not recommend the calculation of the thermal properties of an air cavity between window sashes in a double window. This causes a difference between simulation and experimental results pertaining to the thermal performance of a double window. In this paper, the thermal properties of air cavities between window sashes in a double window are analyzed through computational fluid dynamics (CFD) simulations with the results compared to calculation results certified by ISO 15099. The surface temperature of the air cavity analyzed by CFD is compared to the experimental temperatures. These results show that an appropriate calculation method for an air cavity between window sashes in a double window should be established for reliable thermal performance results for a double window.

  7. Software Intensive Systems

    DTIC Science & Technology

    2006-07-01

    Architect, Developer and Platform Evangelism • Microsoft Dynamic Systems Initiative-- John Wilson, Architect Windows Management • Windows Lifecycle...Presentations • Aegis--Reuben Pitts & CDR John Ailes, Program Executive Office, Integrated Warfare Systems • Long Term Mine Reconnaissance (LMRS)--CAPT...Paul Imes • Joint Tactical Radio System (JTRS)--Richard North, JPEO JTRS & Leonard Schiavone , MITRE • Single Integrated Air Picture (SIAP)--CAPT

  8. 9. INTERIOR OF LIVING ROOM SHOWING ALUMINUM SLIDING GLASS WINDOW ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    9. INTERIOR OF LIVING ROOM SHOWING ALUMINUM SLIDING GLASS WINDOW FRONT DOOR, AND ORIGINAL 6-LIGHT OVER 1-LIGHT, DOUBLE-HUNG WINDOWS IN SINGLE AND DOUBLE ARRANGEMENTS. VIEW TO NORTHWEST. - Bishop Creek Hydroelectric System, Plant 4, Worker Cottage, Bishop Creek, Bishop, Inyo County, CA

  9. Critical Windows of Cardiovascular Susceptibility to Developmental Hypoxia in Common Snapping Turtle (Chelydra serpentina) Embryos.

    PubMed

    Tate, Kevin B; Kohl, Zachary F; Eme, John; Rhen, Turk; Crossley, Dane A

    2015-01-01

    Environmental conditions fluctuate dramatically in some reptilian nests. However, critical windows of environmental sensitivity for cardiovascular development have not been identified. Continuous developmental hypoxia has been shown to alter cardiovascular form and function in embryonic snapping turtles (Chelydra serpentina), and we used this species to identify critical periods during which hypoxia modifies the cardiovascular phenotype. We hypothesized that incubation in 10% O2 during specific developmental periods would have differential effects on the cardiovascular system versus overall somatic growth. Two critical windows were identified with 10% O2 from 50% to 70% of incubation, resulting in relative heart enlargement, either via preservation of or preferential growth of this tissue, while exposure to 10% O2 from 20% to 70% of incubation resulted in a reduction in arterial pressure. The deleterious or advantageous aspects of these embryonic phenotypes in posthatching snapping turtles have yet to be explored. However, identification of these critical windows has provided insight into how the developmental environment alters the phenotype of reptiles and will also be pivotal in understanding its impact on the fitness of egg-laying reptiles.

  10. Novel hermetic packaging methods for MOEMS

    NASA Astrophysics Data System (ADS)

    Stark, David

    2003-01-01

    Hermetic packaging of micro-optoelectromechanical systems (MOEMS) is an immature technology, lacking industry-consensus methods and standards. Off-the-shelf, catalog window assemblies are not yet available. Window assemblies are in general custom designed and manufactured for each new product, resulting in longer than acceptable cycle times, high procurement costs and questionable reliability. There are currently two dominant window-manufacturing methods wherein a metal frame is attached to glass, as well as a third, less-used method. The first method creates a glass-to-metal seal by heating the glass above its Tg to fuse it to the frame. The second method involves first metallizing the glass where it is to be attached to the frame, and then soldering the glass to the frame. The third method employs solder-glass to bond the glass to the frame. A novel alternative with superior features compared to the three previously described window-manufacturing methods is proposed. The new approach lends itself to a plurality of glass-to-metal attachment techniques. Benefits include lower temperature processing than two of the current methods and potentially more cost-effective manufacturing than all three of today"s attachment methods.

  11. A 640-MHz 32-megachannel real-time polyphase-FFT spectrum analyzer

    NASA Technical Reports Server (NTRS)

    Zimmerman, G. A.; Garyantes, M. F.; Grimm, M. J.; Charny, B.

    1991-01-01

    A polyphase fast Fourier transform (FFT) spectrum analyzer being designed for NASA's Search for Extraterrestrial Intelligence (SETI) Sky Survey at the Jet Propulsion Laboratory is described. By replacing the time domain multiplicative window preprocessing with polyphase filter processing, much of the processing loss of windowed FFTs can be eliminated. Polyphase coefficient memory costs are minimized by effective use of run length compression. Finite word length effects are analyzed, producing a balanced system with 8 bit inputs, 16 bit fixed point polyphase arithmetic, and 24 bit fixed point FFT arithmetic. Fixed point renormalization midway through the computation is seen to be naturally accommodated by the matrix FFT algorithm proposed. Simulation results validate the finite word length arithmetic analysis and the renormalization technique.

  12. In-car countermeasures open window and music revisited on the real road: popular but hardly effective against driver sleepiness.

    PubMed

    Schwarz, Johanna F A; Ingre, Michael; Fors, Carina; Anund, Anna; Kecklund, Göran; Taillard, Jacques; Philip, Pierre; Åkerstedt, Torbjörn

    2012-10-01

    This study investigated the effects of two very commonly used countermeasures against driver sleepiness, opening the window and listening to music, on subjective and physiological sleepiness measures during real road driving. In total, 24 individuals participated in the study. Sixteen participants received intermittent 10-min intervals of: (i) open window (2 cm opened); and (ii) listening to music, during both day and night driving on an open motorway. Both subjective sleepiness and physiological sleepiness (blink duration) was estimated to be significantly reduced when subjects listened to music, but the effect was only minor compared with the pronounced effects of night driving and driving duration. Open window had no attenuating effect on either sleepiness measure. No significant long-term effects beyond the actual countermeasure application intervals occurred, as shown by comparison to the control group (n = 8). Thus, despite their popularity, opening the window and listening to music cannot be recommended as sole countermeasures against driver sleepiness. © 2012 European Sleep Research Society.

  13. Bird-Window Collisions at a West-Coast Urban Park Museum: Analyses of Bird Biology and Window Attributes from Golden Gate Park, San Francisco.

    PubMed

    Kahle, Logan Q; Flannery, Maureen E; Dumbacher, John P

    2016-01-01

    Bird-window collisions are a major and poorly-understood generator of bird mortality. In North America, studies of this topic tend to be focused east of the Mississippi River, resulting in a paucity of data from the Western flyways. Additionally, few available data can critically evaluate factors such as time of day, sex and age bias, and effect of window pane size on collisions. We collected and analyzed 5 years of window strike data from a 3-story building in a large urban park in San Francisco, California. To evaluate our window collision data in context, we collected weekly data on local bird abundance in the adjacent parkland. Our study asks two overarching questions: first-what aspects of a bird's biology might make them more likely to fatally strike windows; and second, what characteristics of a building's design contribute to bird-window collisions. We used a dataset of 308 fatal bird strikes to examine the relationships of strikes relative to age, sex, time of day, time of year, and a variety of other factors, including mitigation efforts. We found that actively migrating birds may not be major contributors to collisions as has been found elsewhere. We found that males and young birds were both significantly overrepresented relative to their abundance in the habitat surrounding the building. We also analyzed the effect of external window shades as mitigation, finding that an overall reduction in large panes, whether covered or in some way broken up with mullions, effectively reduced window collisions. We conclude that effective mitigation or design will be required in all seasons, but that breeding seasons and migratory seasons are most critical, especially for low-rise buildings and other sites away from urban migrant traps. Finally, strikes occur throughout the day, but mitigation may be most effective in the morning and midday.

  14. Bird-Window Collisions at a West-Coast Urban Park Museum: Analyses of Bird Biology and Window Attributes from Golden Gate Park, San Francisco

    PubMed Central

    Kahle, Logan Q.; Flannery, Maureen E.; Dumbacher, John P.

    2016-01-01

    Bird-window collisions are a major and poorly-understood generator of bird mortality. In North America, studies of this topic tend to be focused east of the Mississippi River, resulting in a paucity of data from the Western flyways. Additionally, few available data can critically evaluate factors such as time of day, sex and age bias, and effect of window pane size on collisions. We collected and analyzed 5 years of window strike data from a 3-story building in a large urban park in San Francisco, California. To evaluate our window collision data in context, we collected weekly data on local bird abundance in the adjacent parkland. Our study asks two overarching questions: first–what aspects of a bird’s biology might make them more likely to fatally strike windows; and second, what characteristics of a building’s design contribute to bird-window collisions. We used a dataset of 308 fatal bird strikes to examine the relationships of strikes relative to age, sex, time of day, time of year, and a variety of other factors, including mitigation efforts. We found that actively migrating birds may not be major contributors to collisions as has been found elsewhere. We found that males and young birds were both significantly overrepresented relative to their abundance in the habitat surrounding the building. We also analyzed the effect of external window shades as mitigation, finding that an overall reduction in large panes, whether covered or in some way broken up with mullions, effectively reduced window collisions. We conclude that effective mitigation or design will be required in all seasons, but that breeding seasons and migratory seasons are most critical, especially for low-rise buildings and other sites away from urban migrant traps. Finally, strikes occur throughout the day, but mitigation may be most effective in the morning and midday. PMID:26731417

  15. TRUST: TDRSS Resource User Support Tool

    NASA Technical Reports Server (NTRS)

    Sparn, Thomas P.; Gablehouse, R. Daniel

    1991-01-01

    TRUST-TDRSS (Tracking Data and Relay Satellite System) Resource User Support Tool is presented in the form of the viewgraphs. The following subject areas are covered: TRUST development cycle; the TRUST system; scheduling window; ODM/GCMR window; TRUST architecture; surpass; and summary.

  16. Digital PIV (DPIV) Software Analysis System

    NASA Technical Reports Server (NTRS)

    Blackshire, James L.

    1997-01-01

    A software package was developed to provide a Digital PIV (DPIV) capability for NASA LaRC. The system provides an automated image capture, test correlation, and autocorrelation analysis capability for the Kodak Megaplus 1.4 digital camera system for PIV measurements. The package includes three separate programs that, when used together with the PIV data validation algorithm, constitutes a complete DPIV analysis capability. The programs are run on an IBM PC/AT host computer running either Microsoft Windows 3.1 or Windows 95 using a 'quickwin' format that allows simple user interface and output capabilities to the windows environment.

  17. On Time Delay Margin Estimation for Adaptive Control and Optimal Control Modification

    NASA Technical Reports Server (NTRS)

    Nguyen, Nhan T.

    2011-01-01

    This paper presents methods for estimating time delay margin for adaptive control of input delay systems with almost linear structured uncertainty. The bounded linear stability analysis method seeks to represent an adaptive law by a locally bounded linear approximation within a small time window. The time delay margin of this input delay system represents a local stability measure and is computed analytically by three methods: Pade approximation, Lyapunov-Krasovskii method, and the matrix measure method. These methods are applied to the standard model-reference adaptive control, s-modification adaptive law, and optimal control modification adaptive law. The windowing analysis results in non-unique estimates of the time delay margin since it is dependent on the length of a time window and parameters which vary from one time window to the next. The optimal control modification adaptive law overcomes this limitation in that, as the adaptive gain tends to infinity and if the matched uncertainty is linear, then the closed-loop input delay system tends to a LTI system. A lower bound of the time delay margin of this system can then be estimated uniquely without the need for the windowing analysis. Simulation results demonstrates the feasibility of the bounded linear stability method for time delay margin estimation.

  18. Subcarrier multiplexing tolerant dispersion transmission system employing optical broadband sources.

    PubMed

    Grassi, Fulvio; Mora, José; Ortega, Beatriz; Capmany, José

    2009-03-16

    This paper presents a novel SCM optical transmission system for next-generation WDM-PONs combining broadband optical sources and a Mach-Zehnder interferometric structure. The approach leeds to transport RF signals up to 50 GHz being compatible with RoF systems since a second configuration has been proposed in order to overcome dispersion carrier suppression effect using DSB modulation. The theoretical analysis validates the potentiality of the system also considering the effects of the dispersion slope over the transmission window. (c) 2009 Optical Society of America

  19. Design and implementation of laser target simulator in hardware-in-the-loop simulation system based on LabWindows/CVI and RTX

    NASA Astrophysics Data System (ADS)

    Tong, Qiujie; Wang, Qianqian; Li, Xiaoyang; Shan, Bin; Cui, Xuntai; Li, Chenyu; Peng, Zhong

    2016-11-01

    In order to satisfy the requirements of the real-time and generality, a laser target simulator in semi-physical simulation system based on RTX+LabWindows/CVI platform is proposed in this paper. Compared with the upper-lower computers simulation platform architecture used in the most of the real-time system now, this system has better maintainability and portability. This system runs on the Windows platform, using Windows RTX real-time extension subsystem to ensure the real-time performance of the system combining with the reflective memory network to complete some real-time tasks such as calculating the simulation model, transmitting the simulation data, and keeping real-time communication. The real-time tasks of simulation system run under the RTSS process. At the same time, we use the LabWindows/CVI to compile a graphical interface, and complete some non-real-time tasks in the process of simulation such as man-machine interaction, display and storage of the simulation data, which run under the Win32 process. Through the design of RTX shared memory and task scheduling algorithm, the data interaction between the real-time tasks process of RTSS and non-real-time tasks process of Win32 is completed. The experimental results show that this system has the strongly real-time performance, highly stability, and highly simulation accuracy. At the same time, it also has the good performance of human-computer interaction.

  20. SAGE FOR WINDOWS (WSAGE) VERSION 1.0 SOLVENT ALTERNATIVES GUIDE - USER'S GUIDE

    EPA Science Inventory

    The guide provides instructions for using the Solvent Alternatives Guide (SAGE) for Windows, version 1.0. The guide assumes that the user is familiar with the fundamentals of operating Windows 3.1 (or higher) on a personal computer under the DOS 5.0 (or higher) operating system. ...

  1. A CASE STUDY USING THE EPA'S WATER QUALITY MODELING SYSTEM, THE WINDOWS INTERFACE FOR SIMULATING PLUMES (WISP)

    EPA Science Inventory

    Wisp, the Windows Interface for Simulating Plumes, is designed to be an easy-to-use windows platform program for aquatic modeling. Wisp inherits many of its capabilities from its predecessor, the DOS-based PLUMES (Baumgartner, Frick, Roberts, 1994). These capabilities have been ...

  2. Mouse Driven Window Graphics for Network Teaching.

    ERIC Educational Resources Information Center

    Makinson, G. J.; And Others

    Computer enhanced teaching of computational mathematics on a network system driving graphics terminals is being redeveloped for a mouse-driven, high resolution, windowed environment of a UNIX work station. Preservation of the features of networked access by heterogeneous terminals is provided by the use of the X Window environment. A dmonstrator…

  3. Open path measurements of carbon dioxide and water vapor under foggy conditions - technical problems, approaches and effects on flux measurements and budget calculations

    NASA Astrophysics Data System (ADS)

    El-Madany, T.; Griessbaum, F.; Maneke, F.; Chu, H.-S.; Wu, C.-C.; Chang, S. C.; Hsia, Y.-J.; Juang, J.-Y.; Klemm, O.

    2010-07-01

    To estimate carbon dioxide or water vapor fluxes with the Eddy Covariance method high quality data sets are necessary. Under foggy conditions this is challenging, because open path measurements are influenced by the water droplets that cross the measurement path as well as deposit on the windows of the optical path. For the LI-7500 the deposition of droplets on the window results in an intensity reduction of the infrared beam. To keep the strength of the infrared beam under these conditions, the energy is increased. A measure for the increased energy is given by the AGC value (Automatic Gain Control). Up to a AGC threshold value of 70 % the data from the LI-7500 is assumed to be of good quality (personal communication with LICOR). Due to fog deposition on the windows, the AGC value rises above 70 % and stays there until the fog disappears and the water on the windows evaporates. To gain better data quality during foggy conditions, a blower system was developed that blows the deposited water droplets off the window. The system is triggered if the AGC value rises above 70 %. Then a pneumatic jack will lift the blower system towards the LI-7500 and the water-droplets get blown off with compressed air. After the AGC value drops below 70 %, the pneumatic jack will move back to the idle position. Using this technique showed that not only the fog droplets on the window causing significant problems to the measurement, but also the fog droplets inside the measurement path. Under conditions of very dense fog the measured values of carbon dioxide can get unrealistically high, and for water vapor, negative values can be observed even if the AGC value is below 70 %. The negative values can be explained by the scatter of the infrared beam on the fog droplets. It is assumed, that different types of fog droplet spectra are causing the various error patterns observed. For high quality flux measurements, not only the AGC threshold value of 70 % is important, but also the fluctuation of the AGC value in a flux averaging interval. Such AGC value fluctuations can cause severe jumps in the concentration measurements that can hardly be corrected for. Results of fog effects on the LI-7500 performance and its consequences for flux measurements and budget calculations will be presented.

  4. 76 FR 11415 - Federal Motor Vehicle Safety Standards; Power-Operated Window, Partition, and Roof Panel Systems

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-02

    ... automatic reversal systems (ARS) for power windows and to make a final decision. The agency has decided not... requirements for automatic reversal systems (ARS) and are withdrawing our 2009 proposal regarding ARS. This... of proposed rulemaking (NPRM) proposing new requirements for ARS. The proposal discussed the agency's...

  5. MONO FOR CROSS-PLATFORM CONTROL SYSTEM ENVIRONMENT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nishimura, Hiroshi; Timossi, Chris

    2006-10-19

    Mono is an independent implementation of the .NET Frameworkby Novell that runs on multiple operating systems (including Windows,Linux and Macintosh) and allows any .NET compatible application to rununmodified. For instance Mono can run programs with graphical userinterfaces (GUI) developed with the C# language on Windows with VisualStudio (a full port of WinForm for Mono is in progress). We present theresults of tests we performed to evaluate the portability of our controlssystem .NET applications from MS Windows to Linux.

  6. KSC-2009-3686

    NASA Image and Video Library

    2009-06-10

    CAPE CANAVERAL, Fla. – Workers at NASA's Kennedy Space Center in Florida carefully place a new window on the Firing Room in the Launch Control Center. New, hurricane-rated window systems for the four Firing Rooms and the vestibule areas between Firing Rooms 1 & 2 and Firing Rooms 3 & 4 are being installed. In order to avoid operational impacts the new windows are being installed on the outside of the existing windows, enclosing the space formerly occupied by the louvers. The old windows will remain in place until the new windows are completely installed and leak tested. This approach will continue to keep the firing rooms from being exposed to the elements. Photo credit: NASA/Jack Pfaller

  7. KSC-2009-5806

    NASA Image and Video Library

    2009-10-23

    CAPE CANAVERAL, Fla. – This aerial view of the Launch Control Center at NASA's Kennedy Space Center in Florida shows the installation of new windows nearing completion. New, hurricane-rated window systems for the four Firing Rooms and the vestibule areas between Firing Rooms 1 and 2 and Firing Rooms 3 and 4 are being installed. In order to avoid operational impacts the new windows are being installed on the outside of the existing windows, enclosing the space formerly occupied by the louvers. The old windows will remain in place until the new windows are completely installed and leak tested. This approach will continue to keep the firing rooms from being exposed to the elements. Photo credit: NASA/Kim Shiflett

  8. Continuation of research into software for space operations support: Conversion of the display manager to X Windows/Motif, volume 2

    NASA Technical Reports Server (NTRS)

    Collier, Mark D.; Killough, Ronnie; Martin, Nancy L.

    1990-01-01

    NASA is currently using a set of applications called the Display Builder and Display Manager. They run on Concurrent systems and heavily depend on the Graphic Kernel System (GKS). At this time however, these two applications would more appropriately be developed in X Windows, in which a low X is used for all actual text and graphics display and a standard widget set (such as Motif) is used for the user interface. Use of the X Windows will increase performance, improve the user interface, enhance portability, and improve reliability. Prototype of X Window/Motif based Display Manager provides the following advantages over a GKS based application: improved performance by using a low level X Windows, display of graphic and text will be more efficient; improved user interface by using Motif; Improved portability by operating on both Concurrent and Sun workstations; and Improved reliability.

  9. XVD Image Display Program

    NASA Technical Reports Server (NTRS)

    Deen, Robert G.; Andres, Paul M.; Mortensen, Helen B.; Parizher, Vadim; McAuley, Myche; Bartholomew, Paul

    2009-01-01

    The XVD [X-Windows VICAR (video image communication and retrieval) Display] computer program offers an interactive display of VICAR and PDS (planetary data systems) images. It is designed to efficiently display multiple-GB images and runs on Solaris, Linux, or Mac OS X systems using X-Windows.

  10. Effects of Spatio-Temporal Aliasing on Out-the-Window Visual Systems

    NASA Technical Reports Server (NTRS)

    Sweet, Barbara T.; Stone, Leland S.; Liston, Dorion B.; Hebert, Tim M.

    2014-01-01

    Designers of out-the-window visual systems face a challenge when attempting to simulate the outside world as viewed from a cockpit. Many methodologies have been developed and adopted to aid in the depiction of particular scene features, or levels of static image detail. However, because aircraft move, it is necessary to also consider the quality of the motion in the simulated visual scene. When motion is introduced in the simulated visual scene, perceptual artifacts can become apparent. A particular artifact related to image motion, spatiotemporal aliasing, will be addressed. The causes of spatio-temporal aliasing will be discussed, and current knowledge regarding the impact of these artifacts on both motion perception and simulator task performance will be reviewed. Methods of reducing the impact of this artifact are also addressed

  11. Realization of magnetostructural coupling by modifying structural transitions in MnNiSi-CoNiGe system with a wide Curie-temperature window.

    PubMed

    Liu, Jun; Gong, Yuanyuan; Xu, Guizhou; Peng, Guo; Shah, Ishfaq Ahmad; Ul Hassan, Najam; Xu, Feng

    2016-03-16

    The magnetostructural coupling between structural and magnetic transitions leads to magneto-multifunctionalities of phase-transition alloys. Due to the increasing demands of multifunctional applications, to search for the new materials with tunable magnetostructural transformations in a large operating temperature range is important. In this work, we demonstrate that by chemically alloying MnNiSi with CoNiGe, the structural transformation temperature of MnNiSi (1200 K) is remarkably decreased by almost 1000 K. A tunable magnetostructural transformation between the paramagnetic hexagonal and ferromagnetic orthorhombic phase over a wide temperature window from 425 to 125 K is realized in (MnNiSi)1-x(CoNiGe)x system. The magnetic-field-induced magnetostructural transformation is accompanied by the high-performance magnetocaloric effect, proving that MnNiSi-CoNiGe system is a promising candidate for magnetic cooling refrigerant.

  12. Blurred image restoration using knife-edge function and optimal window Wiener filtering.

    PubMed

    Wang, Min; Zhou, Shudao; Yan, Wei

    2018-01-01

    Motion blur in images is usually modeled as the convolution of a point spread function (PSF) and the original image represented as pixel intensities. The knife-edge function can be used to model various types of motion-blurs, and hence it allows for the construction of a PSF and accurate estimation of the degradation function without knowledge of the specific degradation model. This paper addresses the problem of image restoration using a knife-edge function and optimal window Wiener filtering. In the proposed method, we first calculate the motion-blur parameters and construct the optimal window. Then, we use the detected knife-edge function to obtain the system degradation function. Finally, we perform Wiener filtering to obtain the restored image. Experiments show that the restored image has improved resolution and contrast parameters with clear details and no discernible ringing effects.

  13. Blurred image restoration using knife-edge function and optimal window Wiener filtering

    PubMed Central

    Zhou, Shudao; Yan, Wei

    2018-01-01

    Motion blur in images is usually modeled as the convolution of a point spread function (PSF) and the original image represented as pixel intensities. The knife-edge function can be used to model various types of motion-blurs, and hence it allows for the construction of a PSF and accurate estimation of the degradation function without knowledge of the specific degradation model. This paper addresses the problem of image restoration using a knife-edge function and optimal window Wiener filtering. In the proposed method, we first calculate the motion-blur parameters and construct the optimal window. Then, we use the detected knife-edge function to obtain the system degradation function. Finally, we perform Wiener filtering to obtain the restored image. Experiments show that the restored image has improved resolution and contrast parameters with clear details and no discernible ringing effects. PMID:29377950

  14. Tunable far-infrared plasmonically induced transparency in graphene based nano-structures

    NASA Astrophysics Data System (ADS)

    Dolatabady, Alireza; Granpayeh, Nosrat

    2018-07-01

    In this paper, a structure is proposed to show the phenomenon of tunable far-infrared plasmonically induced transparency. The structure includes a nano-ribbon waveguide side-coupled to nano-stub resonators. The realized effect is due to the coupling between the consecutive nano-stub resonators spaced in properly designed distances, providing a constructive interference in the virtually created Fabry–Perot cavity. Due to the Fabry–Perot like cavity created between two consecutive nano-stubs, periodic values of nano-stubs separation can produce transparency windows. Increasing the number of nano-stubs would increase the number of transparency windows in different frequencies. The structure is theoretically investigated and numerically simulated by using the finite difference time domain method. Owing to the chemical potential dependency of graphene conductivity, the transparency windows can be actively tuned. The proposed component can be extensively utilized in nano-scale switching and slow-light systems.

  15. A general method to determine sampling windows for nonlinear mixed effects models with an application to population pharmacokinetic studies.

    PubMed

    Foo, Lee Kien; McGree, James; Duffull, Stephen

    2012-01-01

    Optimal design methods have been proposed to determine the best sampling times when sparse blood sampling is required in clinical pharmacokinetic studies. However, the optimal blood sampling time points may not be feasible in clinical practice. Sampling windows, a time interval for blood sample collection, have been proposed to provide flexibility in blood sampling times while preserving efficient parameter estimation. Because of the complexity of the population pharmacokinetic models, which are generally nonlinear mixed effects models, there is no analytical solution available to determine sampling windows. We propose a method for determination of sampling windows based on MCMC sampling techniques. The proposed method attains a stationary distribution rapidly and provides time-sensitive windows around the optimal design points. The proposed method is applicable to determine sampling windows for any nonlinear mixed effects model although our work focuses on an application to population pharmacokinetic models. Copyright © 2012 John Wiley & Sons, Ltd.

  16. Method and apparatus for monitoring the flow of mercury in a system

    DOEpatents

    Grossman, Mark W.

    1987-01-01

    An apparatus and method for monitoring the flow of mercury in a system. The equipment enables the entrainment of the mercury in a carrier gas e.g., an inert gas, which passes as mercury vapor between a pair of optically transparent windows. The attenuation of the emission is indicative of the quantity of mercury (and its isotopes) in the system. A 253.7 nm light is shone through one of the windows and the unabsorbed light is detected through the other window. The absorption of the 253.7 nm light is thereby measured whereby the quantity of mercury passing between the windows can be determined. The apparatus includes an in-line sensor for measuring the quantity of mercury. It includes a conduit together with a pair of apertures disposed in a face to face relationship and arranged on opposite sides of the conduit. A pair of optically transparent windows are disposed upon a pair of viewing tubes. A portion of each of the tubes is disposed inside of the conduit and within each of the apertures. The two windows are disposed in a face to face relationship on the ends of the viewing tubes and the entire assembly is hermetically sealed from the atmosphere whereby when 253.7 nm ultraviolet light is shone through one of the windows and detected through the other, the quantity of mercury which is passing by can be continuously monitored due to absorption which is indicated by attenuation of the amplitude of the observed emission.

  17. KSC-2009-3553

    NASA Image and Video Library

    2009-06-05

    CAPE CANAVERAL, Fla. – At NASA's Kennedy Space Center in Florida, new, hurricane-rated window systems for the Launch Control Center's four Firing Rooms and the vestibule areas between Firing Rooms 1 & 2 and Firing Rooms 3 & 4 are being installed. In order to avoid operational impacts, the new windows are being installed on the outside of the existing windows, enclosing the space formerly occupied by the louvers, and the old windows will remain in place until the new windows are completely installed and leak tested. This approach will continue to keep the firing rooms from being exposed to the elements. Photo credit: NASA/Tim Jacobs

  18. KSC-2009-3548

    NASA Image and Video Library

    2009-06-05

    CAPE CANAVERAL, Fla. – At NASA's Kennedy Space Center in Florida, new, hurricane-rated window systems for the Launch Control Center's four Firing Rooms and the vestibule areas between Firing Rooms 1 & 2 and Firing Rooms 3 & 4 are being installed. In order to avoid operational impacts, the new windows are being installed on the outside of the existing windows, enclosing the space formerly occupied by the louvers, and the old windows will remain in place until the new windows are completely installed and leak tested. This approach will continue to keep the firing rooms from being exposed to the elements. Photo credit: NASA/Tim Jacobs

  19. KSC-2009-3550

    NASA Image and Video Library

    2009-06-05

    CAPE CANAVERAL, Fla. – At NASA's Kennedy Space Center in Florida, new, hurricane-rated window systems for the Launch Control Center's four Firing Rooms and the vestibule areas between Firing Rooms 1 & 2 and Firing Rooms 3 & 4 are being installed. In order to avoid operational impacts, the new windows are being installed on the outside of the existing windows, enclosing the space formerly occupied by the louvers, and the old windows will remain in place until the new windows are completely installed and leak tested. This approach will continue to keep the firing rooms from being exposed to the elements. Photo credit: NASA/Tim Jacobs

  20. KSC-2009-3547

    NASA Image and Video Library

    2009-06-05

    CAPE CANAVERAL, Fla. – At NASA's Kennedy Space Center in Florida, new, hurricane-rated window systems for the four Firing Rooms and the vestibule areas between Firing Rooms 1 & 2 and Firing Rooms 3 & 4 are being installed. In order to avoid operational impacts, the new windows are being installed on the outside of the existing windows, enclosing the space formerly occupied by the louvers, and the old windows will remain in place until the new windows are completely installed and leak tested. This approach will continue to keep the firing rooms from being exposed to the elements. Photo credit: NASA/Tim Jacobs

  1. KSC-2009-3551

    NASA Image and Video Library

    2009-06-05

    CAPE CANAVERAL, Fla. – At NASA's Kennedy Space Center in Florida, new, hurricane-rated window systems for the Launch Control Center's four Firing Rooms and the vestibule areas between Firing Rooms 1 & 2 and Firing Rooms 3 & 4 are being installed. In order to avoid operational impacts, the new windows are being installed on the outside of the existing windows, enclosing the space formerly occupied by the louvers, and the old windows will remain in place until the new windows are completely installed and leak tested. This approach will continue to keep the firing rooms from being exposed to the elements. Photo credit: NASA/Tim Jacobs

  2. KSC-2009-3549

    NASA Image and Video Library

    2009-06-05

    CAPE CANAVERAL, Fla. – At NASA's Kennedy Space Center in Florida, new, hurricane-rated window systems for the Launch Control Center's four Firing Rooms and the vestibule areas between Firing Rooms 1 & 2 and Firing Rooms 3 & 4 are being installed. In order to avoid operational impacts, the new windows are being installed on the outside of the existing windows, enclosing the space formerly occupied by the louvers, and the old windows will remain in place until the new windows are completely installed and leak tested. This approach will continue to keep the firing rooms from being exposed to the elements. Photo credit: NASA/Tim Jacobs

  3. KSC-2009-3552

    NASA Image and Video Library

    2009-06-05

    CAPE CANAVERAL, Fla. – At NASA's Kennedy Space Center in Florida, new, hurricane-rated window systems for the Launch Control Center's four Firing Rooms and the vestibule areas between Firing Rooms 1 & 2 and Firing Rooms 3 & 4 are being installed. In order to avoid operational impacts, the new windows are being installed on the outside of the existing windows, enclosing the space formerly occupied by the louvers, and the old windows will remain in place until the new windows are completely installed and leak tested. This approach will continue to keep the firing rooms from being exposed to the elements. Photo credit: NASA/Tim Jacobs

  4. Purged window apparatus. [On-line spectroscopic analysis of gas flow systems

    DOEpatents

    Ballard, E.O.

    1982-04-05

    A purged window apparatus is described which utilizes tangentially injected heated purge gases in the vicinity of electromagnetic radiation transmitting windows and a tapered external mounting tube to accelerate these gases to provide a vortex flow on the window surface and a turbulent flow throughout the mounting tube thereby preventing backstreaming of flowing gases under investigation in a chamber to which a plurality of similar purged apparatus is attached with the consequent result that spectroscopic analyses can be undertaken for lengthy periods without the necessity of interrupting the flow for cleaning or replacing the windows due to contamination.

  5. Data in support of energy performance of double-glazed windows.

    PubMed

    Shakouri, Mahmoud; Banihashemi, Saeed

    2016-06-01

    This paper provides the data used in a research project to propose a new simplified windows rating system based on saved annual energy ("Developing an empirical predictive energy-rating model for windows by using Artificial Neural Network" (Shakouri Hassanabadi and Banihashemi Namini, 2012) [1], "Climatic, parametric and non-parametric analysis of energy performance of double-glazed windows in different climates" (Banihashemi et al., 2015) [2]). A full factorial simulation study was conducted to evaluate the performance of 26 different types of windows in a four-story residential building. In order to generalize the results, the selected windows were tested in four climates of cold, tropical, temperate, and hot and arid; and four different main orientations of North, West, South and East. The accompanied datasets include the annual saved cooling and heating energy in different climates and orientations by using the selected windows. Moreover, a complete dataset is provided that includes the specifications of 26 windows, climate data, month, and orientation of the window. This dataset can be used to make predictive models for energy efficiency assessment of double glazed windows.

  6. Complete wavelength mismatching effect in a Doppler broadened Y-type six-level EIT atomic medium

    NASA Astrophysics Data System (ADS)

    Bharti, Vineet; Wasan, Ajay

    We present a theoretical study of the Doppler broadened Y-type six-level atomic system, using a density matrix approach, to investigate the effect of varying control field wavelengths and closely spaced hyperfine levels in the 5P state of 87Rb. The closely spaced hyperfine levels in our six-level system affect the optical properties of Y-type system and cause asymmetry in absorption profiles. Depending upon the choices of π-probe, σ+-control and σ--control fields transitions, we consider three regimes: (i) perfect wavelength matching regime (λp=λ=λ), (ii) partial wavelength mismatching regime (λp≠λ=λ), and (iii) complete wavelength mismatching regime (λp≠λ≠λ). The complete wavelength mismatching regime is further distinguished into two situations, i.e., λ<λ and λ>λ. We have shown that in the room temperature atomic vapor, the asymmetric transparency window gets broadened in the partial wavelength mismatching regime as compared to the perfect wavelength matching regime. This broad transparency window also splits at the line center in the complete wavelength mismatching regime.

  7. Proceedings of the Antenna Applications Symposium (32nd) Held in Monticello, Illinois on 16-18 September 2008. Volume 2

    DTIC Science & Technology

    2008-12-20

    operational concepts. The adaptation or translations of these systems can provide an effective means of addressing many current and emerging challenges . The...providing stealth, cloaking, mimicry and other capabilities such as EM windowing to these platforms presents many challenges as their operational role...physical insight into a complex system or emerging technological challenges . A bio-system that shares synergistic goals with this complex system

  8. Systems design study of the Pioneer Venus spacecraft. Appendices to volume 1, sections 3-6 (part 1 of 3). [design of Venus probe windows

    NASA Technical Reports Server (NTRS)

    1973-01-01

    The design is described of the Venus probe windows, which are required to measure solar flux, infrared flux, aureole, and cloud particles. Window heating and structural materials for the probe window assemblies are discussed along with the magnetometer. The command lists for science, power and communication requirements, telemetry sign characteristics, mission profile summary, mass properties of payloads, and failure modes are presented.

  9. Development of new S-band RF window for stable high-power operation in linear accelerator RF system

    NASA Astrophysics Data System (ADS)

    Joo, Youngdo; Lee, Byung-Joon; Kim, Seung-Hwan; Kong, Hyung-Sup; Hwang, Woonha; Roh, Sungjoo; Ryu, Jiwan

    2017-09-01

    For stable high-power operation, a new RF window is developed in the S-band linear accelerator (Linac) RF systems of the Pohang Light Source-II (PLS-II) and the Pohang Accelerator Laboratory X-ray Free-Electron Laser (PAL-XFEL). The new RF window is designed to mitigate the strength of the electric field at the ceramic disk and also at the waveguide-cavity coupling structure of the conventional RF window. By replacing the pill-box type cavity in the conventional RF window with an overmoded cavity, the electric field component perpendicular to the ceramic disk that caused most of the multipacting breakdowns in the ceramic disk was reduced by an order of magnitude. The reduced electric field at the ceramic disk eliminated the Ti-N coating process on the ceramic surface in the fabrication procedure of the new RF window, preventing the incomplete coating from spoiling the RF transmission and lowering the fabrication cost. The overmoded cavity was coupled with input and output waveguides through dual side-wall coupling irises to reduce the electric field strength at the waveguide-cavity coupling structure and the possibility of mode competitions in the overmoded cavity. A prototype of the new RF window was fabricated and fully tested with the Klystron peak input power, pulse duration and pulse repetition rate of 75 MW, 4.5 μs and 10 Hz, respectively, at the high-power test stand. The first mass-produced new RF window installed in the PLS-II Linac is running in normal operation mode. No fault is reported to date. Plans are being made to install the new RF window to all S-band accelerator RF modules of the PLS-II and PAL-XFEL Linacs. This new RF window may be applied to the output windows of S-band power sources like Klystron as wells as the waveguide windows of accelerator facilities which operate in S-band.

  10. Design and Implementation of an Intelligent Windowsill System Using Smart Handheld Device and Fuzzy Microcontroller

    PubMed Central

    Wang, Jing-Min; Yang, Ming-Ta; Chen, Po-Lin

    2017-01-01

    With the advance of science and technology, people have a desire for convenient and comfortable living. Creating comfortable and healthy indoor environments is a major consideration for designing smart homes. As handheld devices become increasingly powerful and ubiquitous, this paper proposes an innovative use of smart handheld devices (SHD), using MIT App Inventor and fuzzy control, to perform the real-time monitoring and smart control of the designed intelligent windowsill system (IWS) in a smart home. A compact weather station that consists of environment sensors was constructed in the IWS for measuring of indoor illuminance, temperature-humidity, carbon dioxide (CO2) concentration and outdoor rain and wind direction. According to the measured environment information, the proposed system can automatically send a command to a fuzzy microcontroller performed by Arduino UNO to fully or partly open the electric curtain and electric window for adapting to climate changes in the indoor and outdoor environment. Moreover, the IWS can automatically close windows for rain splashing on the window. The presented novel control method for the windowsill not only expands the SHD applications, but greatly enhances convenience to users. To validate the feasibility and effectiveness of the IWS, a laboratory prototype was built and confirmed experimentally. PMID:28398266

  11. Stimulation research on the measurement of the IRW pneumatic thermal radiation

    NASA Astrophysics Data System (ADS)

    Wei, Yifang; Liu, Xiaohua; Liu, Ming; Dong, Liquan; Zhao, Yuejin

    2018-01-01

    When an aircraft flies at a hypersonic speed within the atmosphere, the temperature of the infrared window (IRW) on the aircraft will rise rapidly due to the high-speed incoming flow will produce a severe aerodynamic heating to its optical detection window. The infrared (IR) radiation of the high-temperature gas and optical window will generate severe pneumatic thermal radiation effect upon the detection system, with the performance of the IR detector possibly being reduced or even destroyed. To evaluate the influence on the target imaging made by the IRW radiation, the experiment on the basis of building a simulating model is conducted by the means of ray tracing so that the accurate transmittance of the IRW can be observed under the different temperature. And then the radiation distribution of the thermal radiation on the detector generated by the IRW radiation noise and target signal can finally be obtained. This paper also records the different parameters in the detection system being set in the experiment, and analyzes the different influences brought by various factors to the Signal to Noise Ratio (SNR). It is also expected that it will provide a data reference to the following research of radiation noise suppression and design of IR detection system.

  12. Design and Implementation of an Intelligent Windowsill System Using Smart Handheld Device and Fuzzy Microcontroller.

    PubMed

    Wang, Jing-Min; Yang, Ming-Ta; Chen, Po-Lin

    2017-04-11

    With the advance of science and technology, people have a desire for convenient and comfortable living. Creating comfortable and healthy indoor environments is a major consideration for designing smart homes. As handheld devices become increasingly powerful and ubiquitous, this paper proposes an innovative use of smart handheld devices (SHD), using MIT App Inventor and fuzzy control, to perform the real-time monitoring and smart control of the designed intelligent windowsill system (IWS) in a smart home. A compact weather station that consists of environment sensors was constructed in the IWS for measuring of indoor illuminance, temperature-humidity, carbon dioxide (CO₂) concentration and outdoor rain and wind direction. According to the measured environment information, the proposed system can automatically send a command to a fuzzy microcontroller performed by Arduino UNO to fully or partly open the electric curtain and electric window for adapting to climate changes in the indoor and outdoor environment. Moreover, the IWS can automatically close windows for rain splashing on the window. The presented novel control method for the windowsill not only expands the SHD applications, but greatly enhances convenience to users. To validate the feasibility and effectiveness of the IWS, a laboratory prototype was built and confirmed experimentally.

  13. High-impact resistance optical sensor windows

    NASA Astrophysics Data System (ADS)

    Askinazi, Joel; Ceccorulli, Mark L.; Goldman, Lee

    2011-06-01

    Recent field experience with optical sensor windows on both ground and airborne platforms has shown a significant increase in window fracturing from foreign object debris (FOD) impacts and as a by-product of asymmetrical warfare. Common optical sensor window materials such as borosilicate glass do not typically have high impact resistance. Emerging advanced optical window materials such as aluminum oxynitride offer the potential for a significant improvement in FOD impact resistance due to their superior surface hardness, fracture toughness and strength properties. To confirm the potential impact resistance improvement achievable with these emerging materials, Goodrich ISR Systems in collaboration with Surmet Corporation undertook a set of comparative FOD impact tests of optical sensor windows made from borosilicate glass and from aluminum oxynitride. It was demonstrated that the aluminum oxynitride windows could withstand up to three times the FOD impact velocity (as compared with borosilicate glass) before fracture would occur. These highly encouraging test results confirm the utility of this new highly viable window solution for use on new ground and airborne window multispectral applications as well as a retrofit to current production windows. We believe that this solution can go a long way to significantly reducing the frequency and life cycle cost of window replacement.

  14. BE-PLUS: a new base editing tool with broadened editing window and enhanced fidelity.

    PubMed

    Jiang, Wen; Feng, Songjie; Huang, Shisheng; Yu, Wenxia; Li, Guanglei; Yang, Guang; Liu, Yajing; Zhang, Yu; Zhang, Lei; Hou, Yu; Chen, Jia; Chen, Jieping; Huang, Xingxu

    2018-06-06

    Base editor (BE), containing a cytidine deaminase and catalytically defective Cas9, has been widely used to perform base editing. However, the narrow editing window of BE limits its utility. Here, we developed a new editing technology named as base editor for programming larger C to U (T) scope (BE-PLUS) by fusing 10 copies of GCN4 peptide to nCas9(D10A) for recruiting scFv-APOBEC-UGI-GB1 to the target sites. The new system achieves base editing with a broadened window, resulting in an increased genome-targeting scope. Interestingly, the new system yielded much fewer unwanted indels and non-C-to-T conversions. We also demonstrated its potential use in gene disruption across the whole genome through induction of stop codons (iSTOP). Taken together, the BE-PLUS system offers a new editing tool with increased editing window and enhanced fidelity.

  15. Millisecond timing on PCs and Macs.

    PubMed

    MacInnes, W J; Taylor, T L

    2001-05-01

    A real-time, object-oriented solution for displaying stimuli on Windows 95/98, MacOS and Linux platforms is presented. The program, written in C++, utilizes a special-purpose window class (GLWindow), OpenGL, and 32-bit graphics acceleration; it avoids display timing uncertainty by substituting the new window class for the default window code for each system. We report the outcome of tests for real-time capability across PC and Mac platforms running a variety of operating systems. The test program, which can be used as a shell for programming real-time experiments and testing specific processors, is available at http://www.cs.dal.ca/~macinnwj. We propose to provide researchers with a sense of the usefulness of our program, highlight the ability of many multitasking environments to achieve real time, as well as caution users about systems that may not achieve real time, even under optimal conditions.

  16. The battle between Unix and Windows NT.

    PubMed

    Anderson, H J

    1997-02-01

    For more than a decade, Unix has been the dominant back-end operating system in health care. But that prominent position is being challenged by Windows NT, touted by its developer, Microsoft Corp., as the operating system of the future. CIOs and others are attempting to figure out which system is the best choice in the long run.

  17. Determination of Vertical Borehole and Geological Formation Properties using the Crossed Contour Method.

    PubMed

    Leyde, Brian P; Klein, Sanford A; Nellis, Gregory F; Skye, Harrison

    2017-03-01

    This paper presents a new method called the Crossed Contour Method for determining the effective properties (borehole radius and ground thermal conductivity) of a vertical ground-coupled heat exchanger. The borehole radius is used as a proxy for the overall borehole thermal resistance. The method has been applied to both simulated and experimental borehole Thermal Response Test (TRT) data using the Duct Storage vertical ground heat exchanger model implemented in the TRansient SYstems Simulation software (TRNSYS). The Crossed Contour Method generates a parametric grid of simulated TRT data for different combinations of borehole radius and ground thermal conductivity in a series of time windows. The error between the average of the simulated and experimental bore field inlet and outlet temperatures is calculated for each set of borehole properties within each time window. Using these data, contours of the minimum error are constructed in the parameter space of borehole radius and ground thermal conductivity. When all of the minimum error contours for each time window are superimposed, the point where the contours cross (intersect) identifies the effective borehole properties for the model that most closely represents the experimental data in every time window and thus over the entire length of the experimental data set. The computed borehole properties are compared with results from existing model inversion methods including the Ground Property Measurement (GPM) software developed by Oak Ridge National Laboratory, and the Line Source Model.

  18. Vacuum system for the SAMURAI spectrometer

    NASA Astrophysics Data System (ADS)

    Shimizu, Y.; Otsu, H.; Kobayashi, T.; Kubo, T.; Motobayashi, T.; Sato, H.; Yoneda, K.

    2013-12-01

    The first commissioning experiment of the SAMURAI spectrometer and its beam line was performed in March, 2012. The vacuum system for the SAMURAI spectrometer includes its beam line and the SAMURAI vacuum chamber with the windows for detecting neutrons and charged particles. The window for neutrons was made of stainless steel with a thickness of 3 mm and was designed with a shape of partial cylinder to support itself against the atmospheric pressure. The window for charged particles was of the combination of Kevlar and Mylar with the thickness of 280 and 75 μm, respectively. The pressure in the vacuum system was at a few Pa throughout the commissioning experiment.

  19. Short-term airing by natural ventilation - implication on IAQ and thermal comfort.

    PubMed

    Heiselberg, P; Perino, M

    2010-04-01

    The need to improve the energy efficiency of buildings requires new and more efficient ventilation systems. It has been demonstrated that innovative operating concepts that make use of natural ventilation seem to be more appreciated by occupants. Among the available ventilation strategies that are currently available, buoyancy driven, single-sided natural ventilation has proved to be very effective and can provide high air change rates for temperature and Indoor Air Quality (IAQ) control. However, to promote a wider distribution of these systems an improvement in the knowledge of their working principles is necessary. The present study analyses and presents the results of an experimental evaluation of airing performance in terms of ventilation characteristics, IAQ and thermal comfort. It includes investigations of the consequences of opening time, opening frequency, opening area and expected airflow rate, ventilation efficiency, thermal comfort and dynamic temperature conditions. A suitable laboratory test rig was developed to perform extensive experimental analyses of the phenomenon under controlled and repeatable conditions. The results showed that short-term window airing is very effective and can provide both acceptable IAQ and thermal comfort conditions in buildings. Practical Implications This study gives the necessary background and in-depth knowledge of the performance of window airing by single-sided natural ventilation necessary for the development of control strategies for window airing (length of opening period and opening frequency) for optimum IAQ and thermal comfort in naturally ventilated buildings.

  20. OAST-Flyer is deployed by the Remote Manipulator System (RMS) as viewed from the flight deck

    NASA Image and Video Library

    1996-01-14

    STS072-320-014 (17 Jan. 1996) --- The end effect of the Space Shuttle Endeavour's Remote Manipulator System (RMS) is about to grapple the Office of Aeronautics and Space Technology's (OAST) -- Flyer satellite. The view was recorded with a 35mm camera aimed through one of Endeavour's overheard windows on the aft flight deck.

  1. Research on the honeycomb restrain layer application to the high power microwave dielectric window

    NASA Astrophysics Data System (ADS)

    Zhang, Qingyuan; Shao, Hao; Huang, Wenhua; Guo, Letian

    2018-01-01

    Dielectric window breakdown is an important problem of high power microwave radiation. A honeycomb layer can suppress the multipactor in two directions to restrain dielectric window breakdown. This paper studies the effect of the honeycomb restrain layer on improving the dielectric window power capability. It also studies the multipactor suppression mechanism by using the electromagnetic particle-in-cell software, gives the design method, and accomplishes the test experiment. The experimental results indicated that the honeycomb restrain layer can effectively improve the power capability twice.

  2. Research on the honeycomb restrain layer application to the high power microwave dielectric window.

    PubMed

    Zhang, Qingyuan; Shao, Hao; Huang, Wenhua; Guo, Letian

    2018-01-01

    Dielectric window breakdown is an important problem of high power microwave radiation. A honeycomb layer can suppress the multipactor in two directions to restrain dielectric window breakdown. This paper studies the effect of the honeycomb restrain layer on improving the dielectric window power capability. It also studies the multipactor suppression mechanism by using the electromagnetic particle-in-cell software, gives the design method, and accomplishes the test experiment. The experimental results indicated that the honeycomb restrain layer can effectively improve the power capability twice.

  3. Portable sandblaster cleans small areas

    NASA Technical Reports Server (NTRS)

    Severin, H. J.

    1966-01-01

    Portable sandblasting unit rapidly and effectively cleans localized areas on a metal surface. The unit incorporates a bellows enclosure, masking plate, sand container, and used sand accummulator connected to a vacuum system. The bellows is equipped with an inspection window and light for observation of the sanding operation.

  4. Early Warning for Large Magnitude Earthquakes: Is it feasible?

    NASA Astrophysics Data System (ADS)

    Zollo, A.; Colombelli, S.; Kanamori, H.

    2011-12-01

    The mega-thrust, Mw 9.0, 2011 Tohoku earthquake has re-opened the discussion among the scientific community about the effectiveness of Earthquake Early Warning (EEW) systems, when applied to such large events. Many EEW systems are now under-testing or -development worldwide and most of them are based on the real-time measurement of ground motion parameters in a few second window after the P-wave arrival. Currently, we are using the initial Peak Displacement (Pd), and the Predominant Period (τc), among other parameters, to rapidly estimate the earthquake magnitude and damage potential. A well known problem about the real-time estimation of the magnitude is the parameter saturation. Several authors have shown that the scaling laws between early warning parameters and magnitude are robust and effective up to magnitude 6.5-7; the correlation, however, has not yet been verified for larger events. The Tohoku earthquake occurred near the East coast of Honshu, Japan, on the subduction boundary between the Pacific and the Okhotsk plates. The high quality Kik- and K- networks provided a large quantity of strong motion records of the mainshock, with a wide azimuthal coverage both along the Japan coast and inland. More than 300 3-component accelerograms have been available, with an epicentral distance ranging from about 100 km up to more than 500 km. This earthquake thus presents an optimal case study for testing the physical bases of early warning and to investigate the feasibility of a real-time estimation of earthquake size and damage potential even for M > 7 earthquakes. In the present work we used the acceleration waveform data of the main shock for stations along the coast, up to 200 km epicentral distance. We measured the early warning parameters, Pd and τc, within different time windows, starting from 3 seconds, and expanding the testing time window up to 30 seconds. The aim is to verify the correlation of these parameters with Peak Ground Velocity and Magnitude, respectively, as a function of the length of the P-wave window. The entire rupture process of the Tohoku earthquake lasted more than 120 seconds, as shown by the source time functions obtained by several authors. When a 3 second window is used to measure Pd and τc the result is an obvious underestimation of the event size and final PGV. However, as the time window increases up to 27-30 seconds, the measured values of Pd and τc become comparable with those expected for a magnitude M≥8.5 earthquake, according to the τc vs. M and the PGV vs. Pd relationships obtained in a previous work. Since we did not observe any saturation effect for the predominant period and peak displacement measured within a P-wave, 30-seconds window, we infer that, at least from a theoretical point of view, the estimation of earthquake damage potential through the early warning parameters is still feasible for large events, provided that a longer time window is used for parameter measurement. The off-line analysis of the Tohoku event records shows that reliable estimations of the damage potential could have been obtained 40-50 seconds after the origin time, by updating the measurements of the early warning parameters in progressively enlarged P-wave time windows from 3 to 30 seconds.

  5. Impact of coupling techniques of an active middle ear device to the round window membrane for the backward stimulation of the cochlea.

    PubMed

    Gostian, Antoniu-Oreste; Pazen, David; Ortmann, Magdalene; Luers, Jan-Christoffer; Anagiotos, Andreas; Hüttenbrink, Karl-Bernd; Beutner, Dirk

    2015-01-01

    Interposed cartilage and the round window coupler (RWC) increase the efficiency of cochlea stimulation with the floating mass transducer (FMT) of a single active middle ear implant (AMEI) placed against the round window membrane. Treatment of mixed and conductive hearing loss with an AMEI attached to the round window is effective, yet the best placement technique of its FMT for the most efficient stimulation of the cochlea remains to be determined. Experimental study on human temporal bones with the FMT placed against firstly the unaltered round window niche and then subsequently against the fully exposed round window membrane with and without interposed cartilage and the RWC. Cochlea stimulation is measured by the volume velocities of the stapes footplate using LASER vibrometry. At the undrilled round window niche, placement of the FMT by itself and with the RWC resulted in similar volume velocities. The response was significantly raised by interposing cartilage into the undrilled round window niche. Complete exposure of the round window membrane allowed for significantly increased volume velocities. Among these, coupling of the FMT with interposed cartilage yielded responses of similar magnitude compared with the RWC but significantly higher compared with the FMT by itself. Good contact to the round window membrane is essential for efficient stimulation of the cochlea. Therefore, interposing cartilage into the undrilled round window niche is a viable option. At the drilled round window membrane, the FMT with interposed cartilage and attached to the RWC are similarly effective.

  6. Nonuniform Effects of Reinstatement within the Time Window

    ERIC Educational Resources Information Center

    Galluccio, Llissa; Rovee-Collier, Carolyn

    2006-01-01

    A time window is a limited period after an event initially occurs in which additional information can be integrated with the memory of that event. It shuts when the memory is forgotten. The time window hypothesis holds that the impact of a manipulation at different points within the time window is nonuniform. In two operant conditioning…

  7. Recognition of the Multi Specularity Objects using the Eigen-Window,

    DTIC Science & Technology

    1996-02-29

    analysis to each eigen-window [21]. The basic idea is that, even if some of the windows are occluded, the remaining windows are still effective and can...K.Ikeuchi, “The Machanical Manipulation of Randomly Oriented Parts”, Scientific American, Vol.251, No.2, pp.100-111, 1984. [5] S.A.Hutchinson and A.C.Kak

  8. Extended Horizon Liftings for Periodic Gain Adjustments in Control Systems, and for Equalization of Communication Channels

    NASA Technical Reports Server (NTRS)

    Bayard, David S. (Inventor)

    1996-01-01

    Periodic gain adjustment in plants of irreducible order, n, or for equalization of communications channels is effected in such a way that the plant (system) appears to be minimum phase by choosing a horizon time N greater then n of liftings in periodic input and output windows Pu and Py, respectively, where N is an integer chosen to define the extent (length) of each of the windows Pu and Py, and n is the order of an irreducible input/output plant. The plant may be an electrical, mechanical or chemical system, in which case output tracking (OT) is carried out for feedback control or a communication channel, in which case input tracking (IT) is carried out. Conditions for OT are distinct from IT in terms of zero annihilation, namely for OT and of IT, where the OT conditions are intended for gain adjustments in the control system, and IT conditions are intended for equalization for communication channels.

  9. Symmetrical windowing for quantum states in quasi-classical trajectory simulations: Application to electronically non-adiabatic processes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cotton, Stephen J.; Miller, William H., E-mail: millerwh@berkeley.edu

    A recently described symmetrical windowing methodology [S. J. Cotton and W. H. Miller, J. Phys. Chem. A 117, 7190 (2013)] for quasi-classical trajectory simulations is applied here to the Meyer-Miller [H.-D. Meyer and W. H. Miller, J. Chem. Phys. 70, 3214 (1979)] model for the electronic degrees of freedom in electronically non-adiabatic dynamics. Results generated using this classical approach are observed to be in very good agreement with accurate quantum mechanical results for a variety of test applications, including problems where coherence effects are significant such as the challenging asymmetric spin-boson system.

  10. Effect of partial covering of the visitor viewing area window on positioning and orientation of zoo orangutans: A preference test.

    PubMed

    Bloomfield, Rachel C; Gillespie, Graeme R; Kerswell, Keven J; Butler, Kym L; Hemsworth, Paul H

    2015-01-01

    The window of the visitor viewing area adjacent to an animal platform in an orangutan enclosure was altered to produce three viewing treatments in a randomized controlled experiment. These treatments were window uncovered, left side of the window covered or right side of the window covered. Observations were conducted on the orangutans present on the platform, and on their location (left or right side), and orientation (towards or away from the window) while on the platform. The partial covering of the window had little effect on the proportion of time orangutans spent on the viewing platform, or on the direction they faced when on the platform. When the orangutans were facing towards the window, and the right side was uncovered, irrespective of whether the left side was covered, they spent about three quarters of the time on the right side, suggesting a preference for the right side of the platform. However, when the right side was covered and the left side uncovered, the animals facing towards the window spent only about a quarter of the time on the right side, that is, they spent more time on the uncovered side. The results suggest that the orangutans have a preference to position themselves to face the window of the visitor viewing area. © 2015 Wiley Periodicals, Inc.

  11. Modeling of Cloud/Radiation Processes for Tropical Anvils

    DTIC Science & Technology

    1992-11-30

    absorption assumption. The band 800-980 cm-l is located in the atmospheric window, where the greenhouse effect of clouds is most pronounced. It can be...9a) is always positive, corresponding to the heating of the earth-atmosphere system due to the greenhouse effect of clouds, while the solar cloud...observed midlatitude cirrus cases, the IR greenhouse effect outweighs the solar albedo effect. The degree of the greenhouse effect involving cirrus

  12. Temperature measurement using infrared imaging systems during turbine engine altitude testing

    NASA Technical Reports Server (NTRS)

    Burns, Maureen E.

    1994-01-01

    This report details the use of infrared imaging for temperature measurement and thermal pattern determination during simulated altitude engine testing in the NASA Lewis Propulsion Systems Laboratory. Three identical argon-cooled imaging systems were installed in the facility exhaust collector behind sapphire windows to look at engine internal surfaces. The report describes the components of each system, presents the specifics of the complicated installation, and explains the operation of the systems during engine testing. During the program, several problems emerged, such as argon contamination system, component overheating, cracked sapphire windows, and other unexplained effects. This report includes a summary of the difficulties as well as the solutions developed. The systems performed well, considering they were in an unusually harsh exhaust environment. Both video and digital data were recorded, and the information provided valuable material for the engineers and designers to quickly make any necessary design changes to the engine hardware cooling system. The knowledge and experience gained during this program greatly simplified the installation and use of the systems during later test programs in the facility. The infrared imaging systems have significantly enhanced the measurement capabilities of the facility, and have become an outstanding and versatile testing resource in the Propulsion Systems Laboratory.

  13. The effects of motor vehicle window tinting on traffic safety and enforcement : final report : a report to the Governor and General Assembly in response to Senate Joint Resolution 293, 1993 Session.

    DOT National Transportation Integrated Search

    1994-01-01

    The 1993 Session of the Virginia General Assembly lessened restrictions relating to the application of aftermarket tinted window films to motor vehicle glass. Effective July 1, 1993, vehicles are allowed to have window tinting treatments that do not ...

  14. High durability antireflection coatings for silicon and multispectral ZnS

    NASA Astrophysics Data System (ADS)

    Joseph, Shay; Marcovitch, Orna; Yadin, Ygal; Klaiman, Dror; Koren, Nitzan; Zipin, Hedva

    2007-04-01

    In the current complex battle field, military platforms are required to operate on land, at sea and in the air in all weather conditions both day and night. In order to achieve such capabilities, advanced electro-optical systems are being constantly developed and improved. These systems such as missile seeker heads, reconnaissance and target acquisition pods and tracking, monitoring and alert systems have external optical components (window or dome) which must remain operational even at extreme environmental conditions. Depending on the intended use of the system, there are a few choices of window and dome materials. Amongst the more common materials one can point out sapphire, ZnS, germanium and silicon. Other materials such as spinel, ALON and yittria may also be considered. Most infrared materials have high indices of refraction and therefore they reflect a large part of radiation. To minimize the reflection and increase the transmission, antireflection (AR) coatings are the most common choice. Since these systems operate at different environments and weather conditions, the coatings must be made durable to withstand these extreme conditions. In cases where the window or dome is made of relatively soft materials such as multispectral ZnS, the coating may also serve as protection for the window or dome. In this work, several antireflection coatings have been designed and manufactured for silicon and multispectral ZnS. The coating materials were chosen to be either oxides or fluorides which are known to have high durability. Ellipsometry measurements were used to characterize the optical constants of the thin films. The effects of the deposition conditions on the optical constants of the deposited thin films and durability of the coatings will be discussed. The coatings were tested according to MIL-STD-810E and were also subjected to rain erosion tests at the University of Dayton Research Institute (UDRI) whirling arm apparatus in which one of the coatings showed no rain drop impact damage at all.

  15. Issues in visual support to real-time space system simulation solved in the Systems Engineering Simulator

    NASA Technical Reports Server (NTRS)

    Yuen, Vincent K.

    1989-01-01

    The Systems Engineering Simulator has addressed the major issues in providing visual data to its real-time man-in-the-loop simulations. Out-the-window views and CCTV views are provided by three scene systems to give the astronauts their real-world views. To expand the window coverage for the Space Station Freedom workstation a rotating optics system is used to provide the widest field of view possible. To provide video signals to as many viewpoints as possible, windows and CCTVs, with a limited amount of hardware, a video distribution system has been developed to time-share the video channels among viewpoints at the selection of the simulation users. These solutions have provided the visual simulation facility for real-time man-in-the-loop simulations for the NASA space program.

  16. Pyrolaser Operating System

    NASA Technical Reports Server (NTRS)

    Roberts, Floyd E., III

    1994-01-01

    Software provides for control and acquisition of data from optical pyrometer. There are six individual programs in PYROLASER package. Provides quick and easy way to set up, control, and program standard Pyrolaser. Temperature and emisivity measurements either collected as if Pyrolaser in manual operating mode or displayed on real-time strip charts and stored in standard spreadsheet format for posttest analysis. Shell supplied to allow macros, which are test-specific, added to system easily. Written using Labview software for use on Macintosh-series computers running System 6.0.3 or later, Sun Sparc-series computers running Open-Windows 3.0 or MIT's X Window System (X11R4 or X11R5), and IBM PC or compatible computers running Microsoft Windows 3.1 or later.

  17. Real-time camera-based face detection using a modified LAMSTAR neural network system

    NASA Astrophysics Data System (ADS)

    Girado, Javier I.; Sandin, Daniel J.; DeFanti, Thomas A.; Wolf, Laura K.

    2003-03-01

    This paper describes a cost-effective, real-time (640x480 at 30Hz) upright frontal face detector as part of an ongoing project to develop a video-based, tetherless 3D head position and orientation tracking system. The work is specifically targeted for auto-stereoscopic displays and projection-based virtual reality systems. The proposed face detector is based on a modified LAMSTAR neural network system. At the input stage, after achieving image normalization and equalization, a sub-window analyzes facial features using a neural network. The sub-window is segmented, and each part is fed to a neural network layer consisting of a Kohonen Self-Organizing Map (SOM). The output of the SOM neural networks are interconnected and related by correlation-links, and can hence determine the presence of a face with enough redundancy to provide a high detection rate. To avoid tracking multiple faces simultaneously, the system is initially trained to track only the face centered in a box superimposed on the display. The system is also rotationally and size invariant to a certain degree.

  18. Eye movements and the span of the effective stimulus in visual search.

    PubMed

    Bertera, J H; Rayner, K

    2000-04-01

    The span of the effective stimulus during visual search through an unstructured alphanumeric array was investigated by using eye-contingent-display changes while the subjects searched for a target letter. In one condition, a window exposing the search array moved in synchrony with the subjects' eye movements, and the size of the window was varied. Performance reached asymptotic levels when the window was 5 degrees. In another condition, a foveal mask moved in synchrony with each eye movement, and the size of the mask was varied. The foveal mask conditions were much more detrimental to search behavior than the window conditions, indicating the importance of foveal vision during search. The size of the array also influenced performance, but performance reached asymptote for all array sizes tested at the same window size, and the effect of the foveal mask was the same for all array sizes. The results indicate that both acuity and difficulty of the search task influenced the span of the effective stimulus during visual search.

  19. GlastCam: A Telemetry-Driven Spacecraft Visualization Tool

    NASA Technical Reports Server (NTRS)

    Stoneking, Eric T.; Tsai, Dean

    2009-01-01

    Developed for the GLAST project, which is now the Fermi Gamma-ray Space Telescope, GlastCam software ingests telemetry from the Integrated Test and Operations System (ITOS) and generates four graphical displays of geometric properties in real time, allowing visual assessment of the attitude, configuration, position, and various cross-checks. Four windows are displayed: a "cam" window shows a 3D view of the satellite; a second window shows the standard position plot of the satellite on a Mercator map of the Earth; a third window displays star tracker fields of view, showing which stars are visible from the spacecraft in order to verify star tracking; and the fourth window depicts

  20. Detection of Temporally and Spatially Limited Periodic Earthquake Recurrence in Synthetic Seismic Records

    NASA Astrophysics Data System (ADS)

    Zielke, O.; Arrowsmith, R. J.

    2005-12-01

    The nonlinear dynamics of fault behavior are dominated by complex interactions among the multiple processes controlling the system. For example, temporal and spatial variations in pore pressure, healing effects, and stress transfer cause significant heterogeneities in fault properties and the stress-field at the sub-fault level. Numerical and laboratory fault models show that the interaction of large systems of fault elements causes the entire system to develop into a state of self-organized criticality. Once in this state, small perturbations of the system may result in chain reactions (i.e., earthquakes) which can affect any number of fault segments. This sensitivity to small perturbations is strong evidence for chaotic fault behavior, which implies that exact event prediction is not possible. However, earthquake prediction with a useful accuracy is nevertheless possible. Studies of other natural chaotic systems have shown that they may enter states of metastability, in which the system's behavior is predictable. Applying this concept to earthquake faults, these windows of metastable behavior should be characterized by periodic earthquake recurrence. The observed periodicity of the Parkfield, CA (M= 6) events may resemble such a window of metastability. I am statistically analyzing numerically generated seismic records to study these phases of periodic behavior. In this preliminary study, seismic records were generated using a model introduced by Nakanishi [Phys. Rev. A, 43, 6613-6621, 1991]. It consists of a one-dimensional chain of blocks (interconnected by springs) with a relaxation function that mimics velocity-weakened frictional behavior. The earthquakes occurring in this model show generally a power-law frequency-size distribution. However, for large events the distribution has a shoulder where the frequency of events is higher than expected from the power law. I have analyzed time-series of single block motions within the system. These time-series include noticeable periodicity during certain intervals in an otherwise aperiodic record. The observed periodic signal is not equally distributed over the range of offsets but shows a multi-modal distribution with increased periodicity for the smallest events and for large events that show a specific offset. These large events also form a shoulder in the frequency-size distribution. Apparently, the model exhibits characteristic earthquakes (defined by similar coseismic slip) that occur more frequently than expected from a power law distribution, and also are significantly more periodic. The wavelength of the periodic signal generally equals the minimum loading time, which is related to the loading velocity and the amount of coseismic slip (i.e., stress drop). No significant event occurs between the characteristic events as long as the system stays in a window of periodic behavior. Within the windows of periodic behavior, earthquake prediction is straightforward. Therefore, recognition of these windows not only in synthetic data but also in real seismic records, may improve the intra-window forecast of earthquakes. Further studies will attempt to determine the characteristics of onset, duration, and end of these windows of periodic earthquake recurrence. Only the motion of a single block within a bigger system was analyzed so far. Going from a zero dimensional scenario to a two dimensional case where the offsets not only of a single block but the displacement patterns caused by a certain event are analyzed will increase the verisimilitude of the detection of periodic earthquake recurrence within an otherwise chaotic seismic record.

  1. Method and apparatus for monitoring the flow of mercury in a system

    DOEpatents

    Grossman, M.W.

    1987-12-15

    An apparatus and method for monitoring the flow of mercury in a system are disclosed. The equipment enables the entrainment of the mercury in a carrier gas e.g., an inert gas, which passes as mercury vapor between a pair of optically transparent windows. The attenuation of the emission is indicative of the quantity of mercury (and its isotopes) in the system. A 253.7 nm light is shone through one of the windows and the unabsorbed light is detected through the other window. The absorption of the 253.7 nm light is thereby measured whereby the quantity of mercury passing between the windows can be determined. The apparatus includes an in-line sensor for measuring the quantity of mercury. It includes a conduit together with a pair of apertures disposed in a face to face relationship and arranged on opposite sides of the conduit. A pair of optically transparent windows are disposed upon a pair of viewing tubes. A portion of each of the tubes is disposed inside of the conduit and within each of the apertures. The two windows are disposed in a face to face relationship on the ends of the viewing tubes and the entire assembly is hermetically sealed from the atmosphere whereby when 253.7 nm ultraviolet light is shone through one of the windows and detected through the other, the quantity of mercury which is passing by can be continuously monitored due to absorption which is indicated by attenuation of the amplitude of the observed emission. 4 figs.

  2. Centralized Monitoring of the Microsoft Windows-based computers of the LHC Experiment Control Systems

    NASA Astrophysics Data System (ADS)

    Varela Rodriguez, F.

    2011-12-01

    The control system of each of the four major Experiments at the CERN Large Hadron Collider (LHC) is distributed over up to 160 computers running either Linux or Microsoft Windows. A quick response to abnormal situations of the computer infrastructure is crucial to maximize the physics usage. For this reason, a tool was developed to supervise, identify errors and troubleshoot such a large system. Although the monitoring of the performance of the Linux computers and their processes was available since the first versions of the tool, it is only recently that the software package has been extended to provide similar functionality for the nodes running Microsoft Windows as this platform is the most commonly used in the LHC detector control systems. In this paper, the architecture and the functionality of the Windows Management Instrumentation (WMI) client developed to provide centralized monitoring of the nodes running different flavour of the Microsoft platform, as well as the interface to the SCADA software of the control systems are presented. The tool is currently being commissioned by the Experiments and it has already proven to be very efficient optimize the running systems and to detect misbehaving processes or nodes.

  3. Theoretical vibro-acoustic modeling of acoustic noise transmission through aircraft windows

    NASA Astrophysics Data System (ADS)

    Aloufi, Badr; Behdinan, Kamran; Zu, Jean

    2016-06-01

    In this paper, a fully vibro-acoustic model for sound transmission across a multi-pane aircraft window is developed. The proposed model is efficiently applied for a set of window models to perform extensive theoretical parametric studies. The studied window configurations generally simulate the passenger window designs of modern aircraft classes which have an exterior multi-Plexiglas pane, an interior single acrylic glass pane and a dimmable glass ("smart" glass), all separated by thin air cavities. The sound transmission loss (STL) characteristics of three different models, triple-, quadruple- and quintuple-paned windows identical in size and surface density, are analyzed for improving the acoustic insulation performances. Typical results describing the influence of several system parameters, such as the thicknesses, number and spacing of the window panes, on the transmission loss are then investigated. In addition, a comparison study is carried out to evaluate the acoustic reduction capability of each window model. The STL results show that the higher frequencies sound transmission loss performance can be improved by increasing the number of window panels, however, the low frequency performance is decreased, particularly at the mass-spring resonances.

  4. Apparatus and filtering systems relating to combustors in combustion turbine engines

    DOEpatents

    Johnson, Thomas Edward [Greer, SC; Zuo, Baifang [Simpsonville, SC; Stevenson, Christian Xavier [Inman, SC

    2012-03-27

    A combustor for a combustion turbine engine that includes: a chamber defined by an outer wall and forming a channel between windows defined through the outer wall toward a forward end of the chamber and at least one fuel injector positioned toward an aft end of the chamber; and a multilayer screen filter comprising at least two layers of screen over at least a portion of the windows and at least one layer of screen over the remaining portion of the windows. The windows include a forward end and a forward portion, and an aft end and an aft portion. The multilayer screen filter is positioned over the windows such that, in operation, a supply of compressed air entering the chamber through the windows passes through at least one layer of screen. The multilayer screen filter is configured such that the aft portion of the windows include at least two layers of screen, and the forward portion of the windows includes one less layer of screen than the aft portion of the windows.

  5. Design of penicillin fermentation process simulation system

    NASA Astrophysics Data System (ADS)

    Qi, Xiaoyu; Yuan, Zhonghu; Qi, Xiaoxuan; Zhang, Wenqi

    2011-10-01

    Real-time monitoring for batch process attracts increasing attention. It can ensure safety and provide products with consistent quality. The design of simulation system of batch process fault diagnosis is of great significance. In this paper, penicillin fermentation, a typical non-linear, dynamic, multi-stage batch production process, is taken as the research object. A visual human-machine interactive simulation software system based on Windows operation system is developed. The simulation system can provide an effective platform for the research of batch process fault diagnosis.

  6. Vertical Field of View Reference Point Study for Flight Path Control and Hazard Avoidance

    NASA Technical Reports Server (NTRS)

    Comstock, J. Raymond, Jr.; Rudisill, Marianne; Kramer, Lynda J.; Busquets, Anthony M.

    2002-01-01

    Researchers within the eXternal Visibility System (XVS) element of the High-Speed Research (HSR) program developed and evaluated display concepts that will provide the flight crew of the proposed High-Speed Civil Transport (HSCT) with integrated imagery and symbology to permit path control and hazard avoidance functions while maintaining required situation awareness. The challenge of the XVS program is to develop concepts that would permit a no-nose-droop configuration of an HSCT and expanded low visibility HSCT operational capabilities. This study was one of a series of experiments exploring the 'design space' restrictions for physical placement of an XVS display. The primary experimental issues here was 'conformality' of the forward display vertical position with respect to the side window in simulated flight. 'Conformality' refers to the case such that the horizon and objects appear in the same relative positions when viewed through the forward windows or display and the side windows. This study quantified the effects of visual conformality on pilot flight path control and hazard avoidance performance. Here, conformality related to the positioning and relationship of the artificial horizon line and associated symbology presented on the forward display and the horizon and associated ground, horizon, and sky textures as they would appear in the real view through a window presented in the side window display. No significant performance consequences were found for the non-conformal conditions.

  7. PM2.5-bound metal metabolic distribution and coupled lipid abnormality at different developmental windows.

    PubMed

    Ku, Tingting; Zhang, Yingying; Ji, Xiaotong; Li, Guangke; Sang, Nan

    2017-09-01

    Atmospheric fine particulate matter (PM 2.5 ) is a serious threat to human health. As a toxicant constituent, metal leads to significant health risks in a population, but exposure to PM 2.5 -bound metals and their biological impacts are not fully understood. In this study, we determined the metal contents of PM 2.5 samples collected from a typical coal-burning city and then investigated the metabolic distributions of six metals (Zn, Pb, Mn, As, Cu, and Cd) following PM 2.5 inhalation in mice in different developmental windows. The results indicate that fine particles were mainly deposited in the lung, but PM 2.5 -bound metals could reach and gather in secondary off-target tissues (the lung, liver, heart and brain) with a developmental window-dependent property. Furthermore, elevations in triglycerides and cholesterol levels in sensitive developmental windows (the young and elderly stages) occurred, and significant associations between metals (Pb, Mn, As and Cd) and cholesterol in the heart, brain, liver and lung were observed. These findings suggest that PM 2.5 inhalation caused selective metal metabolic distribution in tissues with a developmental window-dependent property and that the effects were associated with lipid alterations. This provides a foundation for the underlying systemic toxicity following PM 2.5 exposure based on metal components. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. ToF-SIMS characterization of robust window material for use in diode pumped alkali lasers

    NASA Astrophysics Data System (ADS)

    Fletcher, Aaron; Turner, David; Fairchild, Steven; Rice, Christopher; Pitz, Gregory

    2018-03-01

    Developments in diode pumped alkali laser (DPAL) systems have been impeded because of the catastrophic failure of laser windows. The window's failure is caused by localized laser-induced heating of window material. This heating is believed to occur due to increases in absorption on or near the surface of the window. This increase is believed to be caused by either adsorption of carbon-based soot from the collisional gas or by the diffusion of rubidium into the bulk material. The work presented here will focus on the diffusion of Rb into the bulk window materials and will strive to identify a superior material to use as windows. The results of this research indicate that aluminum oxynitride (ALON), sapphire, MgAl2O4 (spinel), and ZrO2 are resistant to alkali-induced changes in optical properties.

  9. Justification of Natural Lighting Management for Workplaces with Displays

    NASA Astrophysics Data System (ADS)

    Kudryashov, A. V.; Erunova, A. V.; Kalinina, A. S.

    2017-11-01

    The article is devoted to the study of the influence of the orientation of light apertures (windows) on the distribution of illumination in a room inside the workplaces equipped with displays. The measurements of natural light were carried out in two similar rooms, in the first room the windows are oriented to the north and in the second - to the south. The normative illumination value in a workplace equipped with a personal computer or display must be between 300 and 500 lux. However, during the daytime, the value of natural illumination at the workplace can exceed the normalized value by several times, and in the morning and evening hours is not sufficient. Such distribution of illumination involves the use a combined lighting control system (with daylight time control and switching on artificial lighting in the morning and evening hours). In the article it is justified that the orientation of the windows in the room does not have a significant effect on the distribution of illumination throughout the room which makes it possible not to take into account the restrictions concerning the orientation of the room’s light apertures when combined lighting control systems are used.

  10. Automotive Airbag Safety Enhancement Final Report CRADA No. TSB-1165-95

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cutting, Jack; Durrell, Robert

    The Vehicle Safety systems (VSS) Division of Quantic Industries, Inc. (QII) manufactured automotive airbag components. When both the driver and the passenger side airbags inflated in a tightly sealed passenger compartment, the compression of the surrounding air could and, in some instances, would cause damage to the eardrums of the occupants. The Aerospace and Division (ADD) of QII had partially developed the technology to fracture the canopy of a jet aircraft at the time of pilot ejection. The technical problem was how to adapt the canopy fracturing technology to the rear window of a motor vehicle in a safe andmore » cost effective manner. The existing approach was to replace the embedded rear window defroster with a series-parallel network of exploding bridge wires (EBWs). This would still provide the defrost function at low voltage/ current, but would cause fracturing of the window when a high current/voltage pulse was applied without pyrotechnics or explosives. The elements of this system were the embedded EBW network and a trunk-mounted fireset. The fireset would store the required energy to fire the network upon the receipt of a trigger signal from the existing air bag crash sensor.« less

  11. Validity and validation of expert (Q)SAR systems.

    PubMed

    Hulzebos, E; Sijm, D; Traas, T; Posthumus, R; Maslankiewicz, L

    2005-08-01

    At a recent workshop in Setubal (Portugal) principles were drafted to assess the suitability of (quantitative) structure-activity relationships ((Q)SARs) for assessing the hazards and risks of chemicals. In the present study we applied some of the Setubal principles to test the validity of three (Q)SAR expert systems and validate the results. These principles include a mechanistic basis, the availability of a training set and validation. ECOSAR, BIOWIN and DEREK for Windows have a mechanistic or empirical basis. ECOSAR has a training set for each QSAR. For half of the structural fragments the number of chemicals in the training set is >4. Based on structural fragments and log Kow, ECOSAR uses linear regression to predict ecotoxicity. Validating ECOSAR for three 'valid' classes results in predictivity of > or = 64%. BIOWIN uses (non-)linear regressions to predict the probability of biodegradability based on fragments and molecular weight. It has a large training set and predicts non-ready biodegradability well. DEREK for Windows predictions are supported by a mechanistic rationale and literature references. The structural alerts in this program have been developed with a training set of positive and negative toxicity data. However, to support the prediction only a limited number of chemicals in the training set is presented to the user. DEREK for Windows predicts effects by 'if-then' reasoning. The program predicts best for mutagenicity and carcinogenicity. Each structural fragment in ECOSAR and DEREK for Windows needs to be evaluated and validated separately.

  12. Ordered Effects of Technology Education Units on Higher-Order Critical Thinking Skills of Middle School Students

    ERIC Educational Resources Information Center

    Mojica, Kern D.

    2010-01-01

    In this quasi-experimental quantitative study, 105 eighth grade students at a suburban middle school in New York State participated in a seven month-long project involving the ordered effects of the technology education units of Lego[R] Mindstorms(TM) NXT Robotics System, Digital Storytelling with Microsoft Windows Movie Maker, and the Marble Maze…

  13. 'Broken hospital windows': debating the theory of spreading disorder and its application to healthcare organizations.

    PubMed

    Churruca, Kate; Ellis, Louise A; Braithwaite, Jeffrey

    2018-03-22

    Research in criminology and social-psychology supports the idea that visible signs of disorder, both physical and social, may perpetuate further disorder, leading to neighborhood incivilities, petty violations, and potentially criminal behavior. This theory of 'broken windows' has now also been applied to more enclosed environments, such as organizations. This paper debates whether the premise of broken windows theory, and the concept of 'disorder', might also have utility in the context of health services. There is already a body of work on system migration, which suggests a role for violations and workarounds in normalizing unwarranted deviations from safe practices in healthcare organizations. Studies of visible disorder may be needed in healthcare, where the risks of norm violations and disorderly environments, and potential for harm to patients, are considerable. Everyday adjustments and flexibility is mostly beneficial, but in this paper, we ask: how might deviations from the norm escalate from necessary workarounds to risky violations in care settings? Does physical or social disorder in healthcare contexts perpetuate further disorder, leading to downstream effects, including increased risk of harm to patients? We advance a model of broken windows in healthcare, and a proposal to study this phenomenon.

  14. Size and Location of Defects at the Coupling Interface Affect Lithotripter Performance

    PubMed Central

    Li, Guangyan; Williams, James C.; Pishchalnikov, Yuri A.; Liu, Ziyue; McAteer, James A.

    2012-01-01

    OBJECTIVE To determine how the size and location of coupling defects caught between the therapy head of a lithotripter and the skin of a surrogate patient (acoustic window of a test chamber) affect the features of shock waves responsible for stone breakage. METHODS Model defects were placed in the coupling gel between the therapy head of a Dornier Compact-S electromagnetic lithotripter and the Mylar window of a water-filled coupling test system. A fiber-optic hydrophone was used to measure acoustic pressures and map the lateral dimensions of the focal zone of the lithotripter. The effect of coupling conditions on stone breakage was assessed using Gypsum model stones. RESULTS Stone breakage decreased in proportion to the area of the coupling defect; a centrally located defect blocking only 18% of the transmission area reduced stone breakage by an average of almost 30%. The effect on stone breakage was greater for defects located on-axis and decreased as the defect was moved laterally; an 18% defect located near the periphery of the coupling window (2.0 cm off-axis) reduced stone breakage by only ~15% compared to when coupling was completely unobstructed. Defects centered within the coupling window acted to narrow the focal width of the lithotripter; an 8.2% defect reduced the focal width ~30% compared to no obstruction (4.4 mm versus 6.5 mm). Coupling defects located slightly off center disrupted the symmetry of the acoustic field; an 18% defect positioned 1.0 cm off-axis shifted the focus of maximum positive pressure ~1.0 mm laterally. Defects on and off-axis imposed a significant reduction in the energy density of shock waves across the focal zone. CONCLUSIONS In addition to blocking the transmission of shock wave energy, coupling defects also disrupt the properties of shock waves that play a role in stone breakage, including the focal width of the lithotripter and the symmetry of the acoustic field; the effect is dependent on the size and location of defects, with defects near the center of the coupling window having the greatest effect. These data emphasize the importance of eliminating air pockets from the coupling interface, particularly defects located near the center of the coupling window. PMID:22938566

  15. A new RF window designed for high-power operation in an S-band LINAC RF system

    NASA Astrophysics Data System (ADS)

    Joo, Youngdo; Kim, Seung-Hwan; Hwang, Woonha; Ryu, Jiwan; Roh, Sungjoo

    2016-09-01

    A new RF window is designed for high-power operation at the Pohang Light Source-II (PLSII) S-band linear accelerator (LINAC) RF system. In order to reduce the strength of the electric field component perpendicular to the ceramic disk, which is commonly known as the main cause of most discharge breakdowns in ceramic disk, we replace the pill-box type cavity in the conventional RF window with an overmoded cavity. The overmoded cavity is coupled with input and output waveguides through dual side-wall coupling irises to reduce the electric field strength at the iris and the number of possible mode competitions. The finite-difference time-domain (FDTD) simulation, CST MWS, was used in the design process. The simulated maximum electric field component perpendicular to the ceramic for the new RF window is reduced by an order of magnitude compared with taht for the conventional RF window, which holds promise for stable high-power operation.

  16. Web interfaces to relational databases

    NASA Technical Reports Server (NTRS)

    Carlisle, W. H.

    1996-01-01

    This reports on a project to extend the capabilities of a Virtual Research Center (VRC) for NASA's Advanced Concepts Office. The work was performed as part of NASA's 1995 Summer Faculty Fellowship program and involved the development of a prototype component of the VRC - a database system that provides data creation and access services within a room of the VRC. In support of VRC development, NASA has assembled a laboratory containing the variety of equipment expected to be used by scientists within the VRC. This laboratory consists of the major hardware platforms, SUN, Intel, and Motorola processors and their most common operating systems UNIX, Windows NT, Windows for Workgroups, and Macintosh. The SPARC 20 runs SUN Solaris 2.4, an Intel Pentium runs Windows NT and is installed on a different network from the other machines in the laboratory, a Pentium PC runs Windows for Workgroups, two Intel 386 machines run Windows 3.1, and finally, a PowerMacintosh and a Macintosh IIsi run MacOS.

  17. Illusory displacement of equiluminous kinetic edges.

    PubMed

    Ramachandran, V S; Anstis, S M

    1990-01-01

    A stationary window was cut out of a stationary random-dot pattern. When a field of dots was moved continuously behind the window (a) the window appeared to move in the same direction even though it was stationary, (b) the position of the 'kinetic edges' defining the window was also displaced along the direction of dot motion, and (c) the edges of the window tended to fade on steady fixation even though the dots were still clearly visible. The illusory displacement was enhanced considerably if the kinetic edge was equiluminous and if the 'window' region was seen as 'figure' rather than 'ground'. Since the extraction of kinetic edges probably involves the use of direction-selective cells, the illusion may provide insights into how the visual system uses the output of these cells to localize the kinetic edges.

  18. Multi-Window Controllers for Autonomous Space Systems

    NASA Technical Reports Server (NTRS)

    Lurie, B, J.; Hadaegh, F. Y.

    1997-01-01

    Multi-window controllers select between elementary linear controllers using nonlinear windows based on the amplitude and frequency content of the feedback error. The controllers are relatively simple to implement and perform much better than linear controllers. The commanders for such controllers only order the destination point and are freed from generating the command time-profiles. The robotic missions rely heavily on the tasks of acquisition and tracking. For autonomous and optimal control of the spacecraft, the control bandwidth must be larger while the feedback can (and, therefore, must) be reduced.. Combining linear compensators via multi-window nonlinear summer guarantees minimum phase character of the combined transfer function. It is shown that the solution may require using several parallel branches and windows. Several examples of multi-window nonlinear controller applications are presented.

  19. Impact of Hypokalemia on Electromechanical Window, Excitation Wavelength and Repolarization Gradients in Guinea-Pig and Rabbit Hearts

    PubMed Central

    Osadchii, Oleg E.

    2014-01-01

    Normal hearts exhibit a positive time difference between the end of ventricular contraction and the end of QT interval, which is referred to as the electromechanical (EM) window. Drug-induced prolongation of repolarization may lead to the negative EM window, which was proposed to be a novel proarrhythmic marker. This study examined whether abnormal changes in the EM window may account for arrhythmogenic effects produced by hypokalemia. Left ventricular pressure, electrocardiogram, and epicardial monophasic action potentials were recorded in perfused hearts from guinea-pig and rabbit. Hypokalemia (2.5 mM K+) was found to prolong repolarization, reduce the EM window, and promote tachyarrhythmia. Nevertheless, during both regular pacing and extrasystolic excitation, the increased QT interval invariably remained shorter than the duration of mechanical systole, thus yielding positive EM window values. Hypokalemia-induced arrhythmogenicity was associated with slowed ventricular conduction, and shortened effective refractory periods, which translated to a reduced excitation wavelength index. Hypokalemia also evoked non-uniform prolongation of action potential duration in distinct epicardial regions, which resulted in increased spatial variability in the repolarization time. These findings suggest that arrhythmogenic effects of hypokalemia are not accounted for by the negative EM window, and are rather attributed to abnormal changes in ventricular conduction times, refractoriness, excitation wavelength, and spatial repolarization gradients. PMID:25141124

  20. Demand-type gas supply system for rocket borne thin-window proportional counters

    NASA Technical Reports Server (NTRS)

    Acton, L. W.; Caravalho, R.; Catura, R. C.; Joki, E. G.

    1977-01-01

    A simple closed loop control system has been developed to maintain the gas pressure in thin-window proportional counters during rocket flights. This system permits convenient external control of detector pressure and system flushing rate. The control system is activated at launch with the sealing of a reference volume at the existing system pressure. Inflight control to plus or minus 2 torr at a working pressure of 760 torr has been achieved on six rocket flights.

  1. Field repair of AH-16 helicopter window cutting assemblies

    NASA Technical Reports Server (NTRS)

    Bement, L. J.

    1984-01-01

    The U.S. Army uses explosively actuated window cutting assemblies to provide emergency crew ground egress. Gaps between the system's explosive cords and acrylic windows caused a concern about functional reliability for a fleet of several hundred aircraft. A field repair method, using room temperature vulcanizing silicone compound (RTV), was developed and demonstrated to fill gaps as large as 0.250 inch.

  2. Nanoparticles that reshape the tumor milieu create a therapeutic window for effective T cell therapy in solid malignancies.

    PubMed

    Zhang, Fan; Stephan, Sirkka B; Ene, Chibawanye I; Smith, Tyrel T; Holland, Eric C; Stephan, Matthias T

    2018-05-14

    A major obstacle to the success rate of chimeric antigen receptor (CAR-) T cell therapy against solid tumors is the microenvironment antagonistic to T cells that solid tumors create. Conventional checkpoint blockade can silence lymphocyte anti-survival pathways activated by tumors, but because they are systemic, these treatments disrupt immune homeostasis and induce autoimmune side effects. Thus, new technologies are required to remodel the tumor milieu without causing systemic toxicities. Here we demonstrate that targeted nanocarriers that deliver a combination of immune-modulatory agents can remove pro-tumor cell populations and simultaneously stimulate anti-tumor effector cells. We administered repeated infusions of lipid nanoparticles coated with the tumor-targeting peptide iRGD and loaded with a combination of a PI3K inhibitor to inhibit immune-suppressive tumor cells and an alpha-GalCer agonist of therapeutic T cells to synergistically sway the tumor microenvironment of solid tumors from suppressive to stimulatory. This treatment created a therapeutic window of two weeks, enabling tumor-specific CAR-T cells to home to the lesion, undergo robust expansion, and trigger tumor regression. CAR-T cells administered outside this therapeutic window had no curative effect. The lipid nanoparticles we used are easy to manufacture in substantial amounts, and we demonstrate that repeated infusions of them are safe. Our technology may therefore provide a practical and low-cost strategy to potentiate many cancer immunotherapies used to treat solid tumors, including T cell therapy, vaccines, and BITE platforms. Copyright ©2018, American Association for Cancer Research.

  3. Numerical and Experimental Evaluation of Blast Retrofit of Windows

    DTIC Science & Technology

    2013-07-18

    Retrofitting windows against blast load environments is a topic under considerable investigation. The retrofits added to existing buildings need the strength...experimentally survived the desired loading environment. Two views of the posttest vertical blind system can be seen in Figure 8. Although the vertical...vertica Figure 8: Posttest views l blind system and the connections Both the numerical and experimental systems deformed in a similar

  4. Windows 8: What Educators Need to Know

    ERIC Educational Resources Information Center

    Vedder, Richard G.

    2012-01-01

    In October 2012, Microsoft will release the commercial version of its next operating system, presently called "Windows 8." This version represents a significant departure from the past. Microsoft wants this operating system to meet user needs regardless of physical platform (e.g., desktop, notebook, tablet, mobile phone). As part of this mission,…

  5. Schools Facing the Expiration of Windows XP

    ERIC Educational Resources Information Center

    Cavanagh, Sean

    2013-01-01

    Microsoft's plans to end support for Windows XP, believed to be the dominant computer operating system in K-12 education, could pose big technological and financial challenges for districts nationwide--issues that many school systems have yet to confront. The giant software company has made it clear for years that it plans to stop supporting XP…

  6. Design and implementation of face recognition system based on Windows

    NASA Astrophysics Data System (ADS)

    Zhang, Min; Liu, Ting; Li, Ailan

    2015-07-01

    In view of the basic Windows login password input way lacking of safety and convenient operation, we will introduce the biometrics technology, face recognition, into the computer to login system. Not only can it encrypt the computer system, also according to the level to identify administrators at all levels. With the enhancement of the system security, user input can neither be a cumbersome nor worry about being stolen password confidential.

  7. Cloud computing for comparative genomics with windows azure platform.

    PubMed

    Kim, Insik; Jung, Jae-Yoon; Deluca, Todd F; Nelson, Tristan H; Wall, Dennis P

    2012-01-01

    Cloud computing services have emerged as a cost-effective alternative for cluster systems as the number of genomes and required computation power to analyze them increased in recent years. Here we introduce the Microsoft Azure platform with detailed execution steps and a cost comparison with Amazon Web Services.

  8. Advances in EPG for Treatment and Research: An Illustrative Case Study

    ERIC Educational Resources Information Center

    Scobbie, James M.; Wood, Sara E.; Wrench, Alan A.

    2004-01-01

    Electropalatography (EPG), a technique which reveals tongue-palate contact patterns over time, is a highly effective tool for speech research. We report here on recent developments by Articulate Instruments Ltd. These include hardware for Windows-based computers, backwardly compatible (with Reading EPG3) software systems for clinical intervention…

  9. Cloud Computing for Comparative Genomics with Windows Azure Platform

    PubMed Central

    Kim, Insik; Jung, Jae-Yoon; DeLuca, Todd F.; Nelson, Tristan H.; Wall, Dennis P.

    2012-01-01

    Cloud computing services have emerged as a cost-effective alternative for cluster systems as the number of genomes and required computation power to analyze them increased in recent years. Here we introduce the Microsoft Azure platform with detailed execution steps and a cost comparison with Amazon Web Services. PMID:23032609

  10. Orion Hatch Window Testing

    NASA Image and Video Library

    2018-04-09

    Mark Nurge, Ph.D., a physicist in the Applied Physics Lab with the Exploration Research and Technology Programs at NASA's Kennedy Space Center in Florida, looks at data during the first optical quality test on a full window stack that is ready for installation in the docking hatch of NASA's Orion spacecraft. The data from the tests will help improve the requirements for manufacturing tolerances on Orion's windows and verify how the window should perform in space. Orion is being prepared for its first integrated uncrewed flight atop NASA's Space Launch System rocket on Exploration Mission-1.

  11. Thermal/structural/optical integrated design for optical sensor mounted on unmanned aerial vehicle

    NASA Astrophysics Data System (ADS)

    Zhang, Gaopeng; Yang, Hongtao; Mei, Chao; Wu, Dengshan; Shi, Kui

    2016-01-01

    With the rapid development of science and technology and the promotion of many local wars in the world, altitude optical sensor mounted on unmanned aerial vehicle is more widely applied in the airborne remote sensing, measurement and detection. In order to obtain high quality image of the aero optical remote sensor, it is important to analysis its thermal-optical performance on the condition of high speed and high altitude. Especially for the key imaging assembly, such as optical window, the temperature variation and temperature gradient can result in defocus and aberrations in optical system, which will lead to the poor quality image. In order to improve the optical performance of a high speed aerial camera optical window, the thermal/structural/optical integrated design method is developed. Firstly, the flight environment of optical window is analyzed. Based on the theory of aerodynamics and heat transfer, the convection heat transfer coefficient is calculated. The temperature distributing of optical window is simulated by the finite element analysis software. The maximum difference in temperature of the inside and outside of optical window is obtained. Then the deformation of optical window under the boundary condition of the maximum difference in temperature is calculated. The optical window surface deformation is fitted in Zernike polynomial as the interface, the calculated Zernike fitting coefficients is brought in and analyzed by CodeV Optical Software. At last, the transfer function diagrams of the optical system on temperature field are comparatively analyzed. By comparing and analyzing the result, it can be obtained that the optical path difference caused by thermal deformation of the optical window is 138.2 nm, which is under PV ≤1 4λ . The above study can be used as an important reference for other optical window designs.

  12. Phase locking route behind complex periodic windows in a forced oscillator

    NASA Astrophysics Data System (ADS)

    Jan, Hengtai; Tsai, Kuo-Ting; Kuo, Li-wei

    2013-09-01

    Chaotic systems have complex reactions against an external driving force; even in cases with low-dimension oscillators, the routes to synchronization are diverse. We proposed a stroboscope-based method for analyzing driven chaotic systems in their phase space. According to two statistic quantities generated from time series, we could realize the system state and the driving behavior simultaneously. We demonstrated our method in a driven bi-stable system, which showed complex period windows under a proper driving force. With increasing periodic driving force, a route from interior periodic oscillation to phase synchronization through the chaos state could be found. Periodic windows could also be identified and the circumstances under which they occurred distinguished. Statistical results were supported by conditional Lyapunov exponent analysis to show the power in analyzing the unknown time series.

  13. Borromean Windows for Three-Particle Systems under Screened Coulomb Interactions

    NASA Astrophysics Data System (ADS)

    Jiang, Zi-Shi; Song, Xiu-Dan; Zhou, Lin; Kar, Sabyasachi

    2017-05-01

    We have carried out calculations to search Borromean windows (BWs) for 11 different three-body systems interacting with screened Coulomb (Yukawa-type) potentials using Hylleraas-type wave functions within the framework of a variational approach. The critical values of the screening parameters for the ground states of the systems under consideration are reported for which the three-body systems are stable, while all the possible fragments are unbound; that is, it shows windows for Borromean binding. Supported by the National Natural Science Foundation of China under Grant No. 11304086, the University Nursing Program for Young Scholars with Creative Talents in Heilongjiang Province of China under Grant No. UNPYSCT-2015019, and the Natural Science Foundation for Distinguished Young Scholars in Heilongjiang University under Grant No. JCL201503

  14. Development of a graphical user interface for the global land information system (GLIS)

    USGS Publications Warehouse

    Alstad, Susan R.; Jackson, David A.

    1993-01-01

    The process of developing a Motif Graphical User Interface for the Global Land Information System (GLIS) involved incorporating user requirements, in-house visual and functional design requirements, and Open Software Foundation (OSF) Motif style guide standards. Motif user interface windows have been developed using the software to support Motif window functions war written using the C programming language. The GLIS architecture was modified to support multiple servers and remote handlers running the X Window System by forming a network of servers and handlers connected by TCP/IP communications. In April 1993, prior to release the GLIS graphical user interface and system architecture modifications were test by developers and users located at the EROS Data Center and 11 beta test sites across the country.

  15. Window-closing safety system

    DOEpatents

    McEwan, Thomas E.

    1997-01-01

    A safety device includes a wire loop embedded in the glass of a passenger car window and routed near the closing leading-edge of the window. The wire loop carries microwave pulses around the loop to and from a transceiver with separate output and input ports. An evanescent field only and inch or two in radius is created along the wire loop by the pulses. Just about any object coming within the evanescent field will dramatically reduce the energy of the microwave pulses received back by the transceiver. Such a loss in energy is interpreted as a closing area blockage, and electrical interlocks are provided to halt or reverse a power window motor that is actively trying to close the window.

  16. Window-closing safety system

    DOEpatents

    McEwan, T.E.

    1997-08-26

    A safety device includes a wire loop embedded in the glass of a passenger car window and routed near the closing leading-edge of the window. The wire loop carries microwave pulses around the loop to and from a transceiver with separate output and input ports. An evanescent field only an inch or two in radius is created along the wire loop by the pulses. Just about any object coming within the evanescent field will dramatically reduce the energy of the microwave pulses received back by the transceiver. Such a loss in energy is interpreted as a closing area blockage, and electrical interlocks are provided to halt or reverse a power window motor that is actively trying to close the window. 5 figs.

  17. Multi-robot control interface

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bruemmer, David J; Walton, Miles C

    Methods and systems for controlling a plurality of robots through a single user interface include at least one robot display window for each of the plurality of robots with the at least one robot display window illustrating one or more conditions of a respective one of the plurality of robots. The user interface further includes at least one robot control window for each of the plurality of robots with the at least one robot control window configured to receive one or more commands for sending to the respective one of the plurality of robots. The user interface further includes amore » multi-robot common window comprised of information received from each of the plurality of robots.« less

  18. The impact of windows and daylight on acute-care nurses' physiological, psychological, and behavioral health.

    PubMed

    Zadeh, Rana Sagha; Shepley, Mardelle McCuskey; Williams, Gary; Chung, Susan Sung Eun

    2014-01-01

    To investigate the physiological and psychological effects of windows and daylight on registered nurses. To date, evidence has indicated that appropriate environmental lighting with characteristics similar to natural light can improve mood, alertness, and performance. The restorative effects of windows also have been documented. Hospital workspaces generally lack windows and daylight, and the impact of the lack of windows and daylight on healthcare employees' well being has not been thoroughly investigated. Data were collected using multiple methods with a quasi-experimental approach (i.e., biological measurements, behavioral mapping, and analysis of archival data) in an acute-care nursing unit with two wards that have similar environmental and organizational conditions, and similar patient populations and acuity, but different availability of windows in the nursing stations. Findings indicated that blood pressure (p < 0.0001) decreased and body temperature increased (p = 0.03). Blood oxygen saturation increased (p = 0.02), but the difference was clinically insignificant. Communication (p < 0.0001) and laughter (p = 0.03) both increased, and the subsidiary behavior indicators of sleepiness and deteriorated mood (p = 0.02) decreased. Heart rate (p = 0.07), caffeine intake (p = 0.3), self-reported sleepiness (p = 0.09), and the frequency of medication errors (p = 0.14) also decreased, but insignificantly. The findings support evidence from laboratory and field settings of the benefits of windows and daylight. A possible micro-restorative effect of windows and daylight may result in lowered blood pressure and increased oxygen saturation and a positive effect on circadian rhythms (as suggested by body temperature) and morning sleepiness. Critical care/intensive care, lighting, nursing, quality care, work environment.

  19. Optical Characterization of Window Materials for Aerospace Applications

    NASA Technical Reports Server (NTRS)

    Tedjojuwono, Ken K.; Clark, Natalie; Humphreys, William M., Jr.

    2013-01-01

    An optical metrology laboratory has been developed to characterize the optical properties of optical window materials to be used for aerospace applications. Several optical measurement systems have been selected and developed to measure spectral transmittance, haze, clarity, birefringence, striae, wavefront quality, and wedge. In addition to silica based glasses, several optical lightweight polymer materials and transparent ceramics have been investigated in the laboratory. The measurement systems and selected empirical results for non-silica materials are described. These measurements will be used to form the basis of acceptance criteria for selection of window materials for future aerospace vehicle and habitat designs.

  20. Wrap-Around Out-the-Window Sensor Fusion System

    NASA Technical Reports Server (NTRS)

    Fox, Jeffrey; Boe, Eric A.; Delgado, Francisco; Secor, James B.; Clark, Michael R.; Ehlinger, Kevin D.; Abernathy, Michael F.

    2009-01-01

    The Advanced Cockpit Evaluation System (ACES) includes communication, computing, and display subsystems, mounted in a van, that synthesize out-the-window views to approximate the views of the outside world as it would be seen from the cockpit of a crewed spacecraft, aircraft, or remote control of a ground vehicle or UAV (unmanned aerial vehicle). The system includes five flat-panel display units arranged approximately in a semicircle around an operator, like cockpit windows. The scene displayed on each panel represents the view through the corresponding cockpit window. Each display unit is driven by a personal computer equipped with a video-capture card that accepts live input from any of a variety of sensors (typically, visible and/or infrared video cameras). Software running in the computers blends the live video images with synthetic images that could be generated, for example, from heads-up-display outputs, waypoints, corridors, or from satellite photographs of the same geographic region. Data from a Global Positioning System receiver and an inertial navigation system aboard the remote vehicle are used by the ACES software to keep the synthetic and live views in registration. If the live image were to fail, the synthetic scenes could still be displayed to maintain situational awareness.

  1. Determination of Vertical Borehole and Geological Formation Properties using the Crossed Contour Method

    PubMed Central

    Leyde, Brian P.; Klein, Sanford A; Nellis, Gregory F.; Skye, Harrison

    2017-01-01

    This paper presents a new method called the Crossed Contour Method for determining the effective properties (borehole radius and ground thermal conductivity) of a vertical ground-coupled heat exchanger. The borehole radius is used as a proxy for the overall borehole thermal resistance. The method has been applied to both simulated and experimental borehole Thermal Response Test (TRT) data using the Duct Storage vertical ground heat exchanger model implemented in the TRansient SYstems Simulation software (TRNSYS). The Crossed Contour Method generates a parametric grid of simulated TRT data for different combinations of borehole radius and ground thermal conductivity in a series of time windows. The error between the average of the simulated and experimental bore field inlet and outlet temperatures is calculated for each set of borehole properties within each time window. Using these data, contours of the minimum error are constructed in the parameter space of borehole radius and ground thermal conductivity. When all of the minimum error contours for each time window are superimposed, the point where the contours cross (intersect) identifies the effective borehole properties for the model that most closely represents the experimental data in every time window and thus over the entire length of the experimental data set. The computed borehole properties are compared with results from existing model inversion methods including the Ground Property Measurement (GPM) software developed by Oak Ridge National Laboratory, and the Line Source Model. PMID:28785125

  2. Safety shield for vacuum/pressure-chamber windows

    NASA Technical Reports Server (NTRS)

    Shimansky, R. A.; Spencer, R.

    1980-01-01

    Optically-clear shatter-resistant safety shield protects workers from implosion and explosion of vacuum and pressure windows. Plastic shield is inexpensive and may be added to vacuum chambers, pressure chambers, and gas-filling systems.

  3. The effects of window shape and reticle presence on performance in a vertical alignment task

    NASA Technical Reports Server (NTRS)

    Rosenberg, Erika L.; Haines, Richard F.; Jordan, Kevin

    1989-01-01

    This study was conducted to evaluate the effect of selected interior work-station orientational cuing upon the ability to align a target image with local vertical in the frontal plane. Angular error from gravitational vertical in an alignment task was measured for 20 observers viewing through two window shapes (square, round), two initial orientations of a computer-generated space shuttle image, and the presence or absence of a stabilized optical alignment reticle. In terms of overall accuracy, it was found that observer error was significantly smaller for the square window and reticle-present conditions than for the round window and reticle-absent conditions. Response bias data reflected an overall tendency to undershoot and greater variability of response in the round window/no reticle condition. These results suggest that environmental cuing information, such as that provided by square window frames and alignment reticles, may aid in subjective orientation and increase accuracy of response in a Space Station proximity operations alignment task.

  4. Optical performance of segmented aperture windows for solar tower receivers

    NASA Astrophysics Data System (ADS)

    Buck, Reiner

    2017-06-01

    Segmented quartz windows are a concept to build larger windows for receivers that require a closed aperture. Reflection losses are a significant loss factor for such solar receivers. Without any additional measures, the reflection loss can reach about 12%. One important measure to improve transmission is the application of anti-reflective coatings, which is beneficial in any case. Another option is modifying the window geometry, especially the edge surfaces of the glass segments. A certain fraction of the reflection losses are caused by a light-guide effect in the glass body, for rays entering through the front surface. Changing the cut surfaces in a way reducing the light-guide effect can significantly improve transmission of a segmented window. Several possible configurations are evaluated and discussed. The results of ray-tracing simulations verify the improvement. The final selection of the window configuration depends on the optical properties and on mechanical strength, manufacturing and cost considerations. This has to be evaluated for any specific receiver design.

  5. Field-cycling NMR with high-resolution detection under magic-angle spinning: determination of field-window for nuclear hyperpolarization in a photosynthetic reaction center.

    PubMed

    Gräsing, Daniel; Bielytskyi, Pavlo; Céspedes-Camacho, Isaac F; Alia, A; Marquardsen, Thorsten; Engelke, Frank; Matysik, Jörg

    2017-09-21

    Several parameters in NMR depend on the magnetic field strength. Field-cycling NMR is an elegant way to explore the field dependence of these properties. The technique is well developed for solution state and in relaxometry. Here, a shuttle system with magic-angle spinning (MAS) detection is presented to allow for field-dependent studies on solids. The function of this system is demonstrated by exploring the magnetic field dependence of the solid-state photochemically induced nuclear polarization (photo-CIDNP) effect. The effect allows for strong nuclear spin-hyperpolarization in light-induced spin-correlated radical pairs (SCRPs) under solid-state conditions. To this end, 13 C MAS NMR is applied to a photosynthetic reaction center (RC) of the purple bacterium Rhodobacter (R.) sphaeroides wildtype (WT). For induction of the effect in the stray field of the magnet and its subsequent observation at 9.4 T under MAS NMR conditions, the sample is shuttled by the use of an aerodynamically driven sample transfer technique. In the RC, we observe the effect down to 0.25 T allowing to determine the window for the occurrence of the effect to be between about 0.2 and 20 T.

  6. Views supporting the Window Experiment (WINDEX) of shuttle environment

    NASA Image and Video Library

    1995-08-03

    STS070-386-027 (13-22 JULY 1995) --- High-speed film provided this close-up view of the Space Shuttle Discovery’s aft, featuring the ignition of one of the primary thrusters. Note the impact of the firing on the starboard side of the vertical stabilizer. Crew members told a August 11, 1995, gathering of Johnson Space Center (JSC) employees that the Window Experiment (WINDEX) paid close attention to surface glow, jet plumes, water dumps, aurora and airglow. The data collection is part of an effort to avoid misinterpretation of measurements of Earth, the solar system and starts taken from satellites in low Earth-orbits and prevent damage to sensitive systems and solar arrays during rendezvous and docking. Such firings of the thrusters increase local densities of gases in the atmosphere dramatically and introduce non-natural elements that react with the atmosphere dramatically and spacecraft systems enveloped by the thruster plume. WINDEX recorded phenomena associated with thruster start-up and shut-down transients and observed the effect of the transients on Shuttle glow phenomenon.

  7. A CMOS-Compatible Poly-Si Nanowire Device with Hybrid Sensor/Memory Characteristics for System-on-Chip Applications

    PubMed Central

    Chen, Min-Cheng; Chen, Hao-Yu; Lin, Chia-Yi; Chien, Chao-Hsin; Hsieh, Tsung-Fan; Horng, Jim-Tong; Qiu, Jian-Tai; Huang, Chien-Chao; Ho, Chia-Hua; Yang, Fu-Liang

    2012-01-01

    This paper reports a versatile nano-sensor technology using “top-down” poly-silicon nanowire field-effect transistors (FETs) in the conventional Complementary Metal-Oxide Semiconductor (CMOS)-compatible semiconductor process. The nanowire manufacturing technique reduced nanowire width scaling to 50 nm without use of extra lithography equipment, and exhibited superior device uniformity. These n type polysilicon nanowire FETs have positive pH sensitivity (100 mV/pH) and sensitive deoxyribonucleic acid (DNA) detection ability (100 pM) at normal system operation voltages. Specially designed oxide-nitride-oxide buried oxide nanowire realizes an electrically Vth-adjustable sensor to compensate device variation. These nanowire FETs also enable non-volatile memory application for a large and steady Vth adjustment window (>2 V Programming/Erasing window). The CMOS-compatible manufacturing technique of polysilicon nanowire FETs offers a possible solution for commercial System-on-Chip biosensor application, which enables portable physiology monitoring and in situ recording. PMID:22666012

  8. The Design and Realization of Radio Telescope Control Software in Windows XP System with VC++

    NASA Astrophysics Data System (ADS)

    Zhao, Rong-Bing; Aili, Yu; Zhang, Jin; Yu, Yun

    2007-03-01

    The main function of the radio telescope control software is to drive the radio telescope to track the target accurately. The design of radio telescope control software is based on Windows XP system with VC++. The functions of the software, communication mode and the user interface is introduced in this article.

  9. SBexpert users guide (version 1.0): a knowledge-based decision-support system for spruce beetle management.

    Treesearch

    Keith M. Reynolds; Edward H. Holsten; Richard A. Werner

    1994-01-01

    SBexpert version 1.0 is a knowledge-based decision-support system for spruce beetle (Dendroctonus rutipennis (Kby.)) management developed for use in Microsoft Windows with the KnowledgePro Windows development language. The SBexpert users guide provides detailed instructions on the use of all SBexpert features. SBexpert has four main topics (...

  10. An anticipative escape system for vehicles in water crashes

    NASA Astrophysics Data System (ADS)

    Shen, Chuanliang; Wang, Jiawei; Yin, Qi; Zhu, Yantao; Yang, Jiawei; Liao, Mengdi; Yang, Liming

    2017-07-01

    In this article, it designs an escape system for vehicles in water crashes. The structure mainly contains sensors, control organs and actuating mechanism for both doors and windows. Sensors judge whether the vehicle falls into water or is in the falling process. The actuating mechanism accepts the signal delivered by the control organs, then open the electronic central lock on doors and meanwhile lower the window. The water escape system is able to anticipate drowning situations for vehicles and controls both doors and windows in such an emergency. Under the premise of doors staying in an undamaged state, it is for sure that people in the vehicle can open the door while drowning in the water and safely escape.

  11. Integrating environmental monitoring with cumulative effects management and decision making.

    PubMed

    Cronmiller, Joshua G; Noble, Bram F

    2018-05-01

    Cumulative effects (CE) monitoring is foundational to emerging regional and watershed CE management frameworks, yet monitoring is often poorly integrated with CE management and decision-making processes. The challenges are largely institutional and organizational, more so than scientific or technical. Calls for improved integration of monitoring with CE management and decision making are not new, but there has been limited research on how best to integrate environmental monitoring programs to ensure credible CE science and to deliver results that respond to the more immediate questions and needs of regulatory decision makers. This paper examines options for the integration of environmental monitoring with CE frameworks. Based on semistructured interviews with practitioners, regulators, and other experts in the Lower Athabasca, Alberta, Canada, 3 approaches to monitoring system design are presented. First, a distributed monitoring system, reflecting the current approach in the Lower Athabasca, where monitoring is delegated to different external programs and organizations; second, a 1-window system in which monitoring is undertaken by a single, in-house agency for the purpose of informing management and regulatory decision making; third, an independent system driven primarily by CE science and understanding causal relationships, with knowledge adopted for decision support where relevant to specific management questions. The strengths and limitations of each approach are presented. A hybrid approach may be optimal-an independent, nongovernment, 1-window model for CE science, monitoring, and information delivery-capitalizing on the strengths of distributed, 1-window, and independent monitoring systems while mitigating their weaknesses. If governments are committed to solving CE problems, they must invest in the long-term science needed to do so; at the same time, if science-based monitoring programs are to be sustainable over the long term, they must be responsive to the more immediate, often shorter term needs and CE information requirements of decision makers. Integr Environ Assess Manag 2018;14:407-417. © 2018 SETAC. © 2018 SETAC.

  12. Three-dimensional laser window formation for industrial application

    NASA Technical Reports Server (NTRS)

    Verhoff, Vincent G.; Kowalski, David

    1993-01-01

    The NASA Lewis Research Center has developed and implemented a unique process for forming flawless three-dimensional, compound-curvature laser windows to extreme accuracies. These windows represent an integral component of specialized nonintrusive laser data acquisition systems that are used in a variety of compressor and turbine research testing facilities. These windows are molded to the flow surface profile of turbine and compressor casings and are required to withstand extremely high pressures and temperatures. This method of glass formation could also be used to form compound-curvature mirrors that would require little polishing and for a variety of industrial applications, including research view ports for testing devices and view ports for factory machines with compound-curvature casings. Currently, sodium-alumino-silicate glass is recommended for three-dimensional laser windows because of its high strength due to chemical strengthening and its optical clarity. This paper discusses the main aspects of three-dimensional laser window formation. It focuses on the unique methodology and the peculiarities that are associated with the formation of these windows.

  13. USB Storage Device Forensics for Windows 10.

    PubMed

    Arshad, Ayesha; Iqbal, Waseem; Abbas, Haider

    2018-05-01

    Significantly increased use of USB devices due to their user-friendliness and large storage capacities poses various threats for many users/companies in terms of data theft that becomes easier due to their efficient mobility. Investigations for such data theft activities would require gathering critical digital information capable of recovering digital forensics artifacts like date, time, and device information. This research gathers three sets of registry and logs data: first, before insertion; second, during insertion; and the third, after removal of a USB device. These sets are analyzed to gather evidentiary information from Registry and Windows Event log that helps in tracking a USB device. This research furthers the prior research on earlier versions of Microsoft Windows and compares it with latest Windows 10 system. Comparison of Windows 8 and Windows 10 does not show much difference except for new subkey under USB Key in registry. However, comparison of Windows 7 with latest version indicates significant variances. © 2017 American Academy of Forensic Sciences.

  14. Strong generalized synchronization with a particular relationship R between the coupled systems

    NASA Astrophysics Data System (ADS)

    Grácio, Clara; Fernandes, Sara; Mário Lopes, Luís

    2018-03-01

    The question of the chaotic synchronization of two coupled dynamical systems is an issue that interests researchers in many fields, from biology to psychology, through economics, chemistry, physics, and many others. The different forms of couplings and the different types of synchronization, give rise to many problems, most of them little studied. In this paper we deal with general couplings of two dynamical systems and we study strong generalized synchronization with a particular relationship R between them. Our results include the definition of a window in the domain of the coupling strength, where there is an exponentially stable solution, and the explicit determination of this window. In the case of unidirectional or symmetric couplings, this window is presented in terms of the maximum Lyapunov exponent of the systems. Examples of applications to chaotic systems of dimension one and two are presented.

  15. Updated System-Availability and Resource-Allocation Program

    NASA Technical Reports Server (NTRS)

    Viterna, Larry

    2004-01-01

    A second version of the Availability, Cost and Resource Allocation (ACARA) computer program has become available. The first version was reported in an earlier tech brief. To recapitulate: ACARA analyzes the availability, mean-time-between-failures of components, life-cycle costs, and scheduling of resources of a complex system of equipment. ACARA uses a statistical Monte Carlo method to simulate the failure and repair of components while complying with user-specified constraints on spare parts and resources. ACARA evaluates the performance of the system on the basis of a mathematical model developed from a block-diagram representation. The previous version utilized the MS-DOS operating system and could not be run by use of the most recent versions of the Windows operating system. The current version incorporates the algorithms of the previous version but is compatible with Windows and utilizes menus and a file-management approach typical of Windows-based software.

  16. Investigation of the effects of long duration space exposure on active optical system components

    NASA Technical Reports Server (NTRS)

    Blue, M. D.

    1994-01-01

    This experiment was exposed to the space environment for 6 years on the Long Duration Exposure Facility (LDEF). It investigated quantitatively the effects of the long-duration space exposure on the relevant performance parameters of a representative set of electron-optic system components, including lasers, radiation detectors, filters, modulators, windows, and other related components. It evaluated the results and implications of the measurements indicating real or suspected degradation mechanisms. This information will be used to establish guidelines for the selection and use of components for space-based, electro-optic systems.

  17. Evaluation of sliding window correlation performance for characterizing dynamic functional connectivity and brain states

    PubMed Central

    Shakil, Sadia; Lee, Chin-Hui; Keilholz, Shella Dawn

    2016-01-01

    A promising recent development in the study of brain function is the dynamic analysis of resting-state functional MRI scans, which can enhance understanding of normal cognition and alterations that result from brain disorders. One widely used method of capturing the dynamics of functional connectivity is sliding window correlation (SWC). However, in the absence of a “gold standard” for comparison, evaluating the performance of the SWC in typical resting-state data is challenging. This study uses simulated networks (SNs) with known transitions to examine the effects of parameters such as window length, window offset, window type, noise, filtering, and sampling rate on the SWC performance. The SWC time course was calculated for all node pairs of each SN and then clustered using the k-means algorithm to determine how resulting brain states match known configurations and transitions in the SNs. The outcomes show that the detection of state transitions and durations in the SWC is most strongly influenced by the window length and offset, followed by noise and filtering parameters. The effect of the image sampling rate was relatively insignificant. Tapered windows provide less sensitivity to state transitions than rectangular windows, which could be the result of the sharp transitions in the SNs. Overall, the SWC gave poor estimates of correlation for each brain state. Clustering based on the SWC time course did not reliably reflect the underlying state transitions unless the window length was comparable to the state duration, highlighting the need for new adaptive window analysis techniques. PMID:26952197

  18. Mitigation of time-varying distortions in Nyquist-WDM systems using machine learning

    NASA Astrophysics Data System (ADS)

    Granada Torres, Jhon J.; Varughese, Siddharth; Thomas, Varghese A.; Chiuchiarelli, Andrea; Ralph, Stephen E.; Cárdenas Soto, Ana M.; Guerrero González, Neil

    2017-11-01

    We propose a machine learning-based nonsymmetrical demodulation technique relying on clustering to mitigate time-varying distortions derived from several impairments such as IQ imbalance, bias drift, phase noise and interchannel interference. Experimental results show that those impairments cause centroid movements in the received constellations seen in time-windows of 10k symbols in controlled scenarios. In our demodulation technique, the k-means algorithm iteratively identifies the cluster centroids in the constellation of the received symbols in short time windows by means of the optimization of decision thresholds for a minimum BER. We experimentally verified the effectiveness of this computationally efficient technique in multicarrier 16QAM Nyquist-WDM systems over 270 km links. Our nonsymmetrical demodulation technique outperforms the conventional QAM demodulation technique, reducing the OSNR requirement up to ∼0.8 dB at a BER of 1 × 10-2 for signals affected by interchannel interference.

  19. Context Switching with Multiple Register Windows: A RISC Performance Study

    NASA Technical Reports Server (NTRS)

    Konsek, Marion B.; Reed, Daniel A.; Watcharawittayakul, Wittaya

    1987-01-01

    Although previous studies have shown that a large file of overlapping register windows can greatly reduce procedure call/return overhead, the effects of register windows in a multiprogramming environment are poorly understood. This paper investigates the performance of multiprogrammed, reduced instruction set computers (RISCs) as a function of window management strategy. Using an analytic model that reflects context switch and procedure call overheads, we analyze the performance of simple, linearly self-recursive programs. For more complex programs, we present the results of a simulation study. These studies show that a simple strategy that saves all windows prior to a context switch, but restores only a single window following a context switch, performs near optimally.

  20. Influence of coatings on the thermal and mechanical processes at insulating glass units

    NASA Astrophysics Data System (ADS)

    Penkova, Nina; Krumov, Kalin; Surleva, Andriana; Geshkova, Zlatka

    2017-09-01

    Different coatings on structural glass are used in the advances transparent facades and window systems in order to increase the thermal performance of the glass units and to regulate their optical properties. Coated glass has a higher absorptance in the solar spectrum which leads to correspondent higher temperature in the presence of solar load compared to the uncoated one. That process results in higher climatic loads at the insulating glass units (IGU) and in thermal stresses in the coated glass elements. Temperature fields and gradients in glass panes and climatic loads at IGU in window systems are estimated at different coating of glazed system. The study is implemented by numerical simulation of conjugate heat transfer in the window systems at summer time and presence of solar irradiation, as well as during winter night time.

  1. Optimal pulse design for communication-oriented slow-light pulse detection.

    PubMed

    Stenner, Michael D; Neifeld, Mark A

    2008-01-21

    We present techniques for designing pulses for linear slow-light delay systems which are optimal in the sense that they maximize the signal-to-noise ratio (SNR) and signal-to-noise-plus-interference ratio (SNIR) of the detected pulse energy. Given a communication model in which input pulses are created in a finite temporal window and output pulse energy in measured in a temporally-offset output window, the SNIR-optimal pulses achieve typical improvements of 10 dB compared to traditional pulse shapes for a given output window offset. Alternatively, for fixed SNR or SNIR, window offset (detection delay) can be increased by 0.3 times the window width. This approach also invites a communication-based model for delay and signal fidelity.

  2. Orion Hatch Window Testing

    NASA Image and Video Library

    2018-04-09

    The first optical quality testing on a full window stack that is ready for installation in the docking hatch of NASA's Orion spacecraft is underway inside a laboratory in the Neil Armstrong Operations and Checkout Building at the agency's Kennedy Space Center in Florida. The test is being performed by a team from the center's Exploration Research and Technology Programs. The data from the tests will help improve the requirements for manufacturing tolerances on Orion's windows and verify how the window should perform in space. Orion is being prepared for its first integrated uncrewed flight atop NASA's Space Launch System rocket on Exploration Mission-1.

  3. Modeling and experimental investigation of x-ray spectra from a liquid metal anode x-ray tube

    NASA Astrophysics Data System (ADS)

    David, Bernd R.; Thran, Axel; Eckart, Rainer

    2004-11-01

    This paper presents simulated and measured spectra of a novel type of x-ray tube. The bremsstrahlung generating principle of this tube is based on the interaction of high energetic electrons with a turbulently flowing liquid metal separated from the vacuum by a thin window. We simulated the interaction of 50-150 keV electrons with liquid metal targets composed of the elements Ga, In, Sn, as well as the solid elements C, W and Re used for the electron windows. We obtained x-ray spectra and energy loss curves for various liquid metal/window combinations and thicknesses of the window material. In terms of optimum heat transport a thin diamond window in combination with the liquid metal GaInSn is the best suited system. If photon flux is the optimization criteria, thin tungsten/rhenium windows cooled by GaInSn should be preferred.

  4. Light and Cool

    ERIC Educational Resources Information Center

    Kennedy, Mike

    2010-01-01

    When the subject of buildings and daylighting arises, most people's thoughts will turn first to windows. To the uninitiated, it seems a simple formula: more windows, more daylight; fewer windows, less daylight. But designers know that effective use of daylighting in a building design involves more than just letting in light to otherwise darkened…

  5. Evaluating the operations capability of Freedom's Data Management System

    NASA Technical Reports Server (NTRS)

    Sowizral, Henry A.

    1990-01-01

    Three areas of Data Management System (DMS) performance are examined: raw processor speed, the subjective speed of the Lynx OS X-Window system, and the operational capacity of the Runtime Object Database (RODB). It is concluded that the proposed processor will operate at its specified rate of speed and that the X-Window system operates within users' subjective needs. It is also concluded that the RODB cannot provide the required level of service, even with a two-order of magnitude (100 fold) improvement in speed.

  6. Extended horizon lifting for periodic gain adjustment in control systems, and for equalization of communication channels

    NASA Technical Reports Server (NTRS)

    Bayard, David S. (Inventor)

    1994-01-01

    Periodic gain adjustment in plants of irreducible order, n, or for equalization of communications channels is effected in such a way that the plant (system) appears to be minimum phase by choosing a horizon time N is greater than n of liftings in periodic input and output windows rho sub u and rho sub y, respectively, where N is an integer chosen to define the extent (length) of each of the windows rho sub u and rho sub y, and n is the order of an irreducible input/output plant. The plant may be an electrical, mechanical, or chemical system, in which case output tracking (OT) is carried out for feedback control or a communication channel, in which case input tracking (IT) is performed. Conditions for OT are distinct from IT in terms of zero annihilation, namely H(sub s)H(sub s)(sup +) = I for OT and H(sub s)H(sub s)(sup +) = I of IT, where the OT conditions are intended for gain adjustments in the control system, and IT conditions are intended for equalization for communication channels.

  7. Windows NT Attacks for the Evaluation of Intrusion Detection Systems

    DTIC Science & Technology

    2000-06-01

    their passwords never expire. Their privileges allow telnet access and FTP access to the system, but do not allow local logins . Each user can...default: • Administrator: This root account allows remote and local logins and full control of system software. • Guest: This default account, setup by...realizing that the Netbus server was installed. The attack also edits the Windows NT Registry so the Netbus server restarts at every login . This

  8. 24. INTERIOR OF BEDROOM NO. 2 SHOWING ALUMINUMFRAMED SLIDINGGLASS WINDOWS ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    24. INTERIOR OF BEDROOM NO. 2 SHOWING ALUMINUM-FRAMED SLIDING-GLASS WINDOWS ON NORTH AND EAST WALLS. VIEW TO NORTHEAST. - Bishop Creek Hydroelectric System, Plant 6, Cashbaugh-Kilpatrick House, Bishop Creek, Bishop, Inyo County, CA

  9. Design and RF measurements of a 5 GHz 500 kW window for the ITER LHCD system

    NASA Astrophysics Data System (ADS)

    Hillairet, J.; Achard, J.; Bae, Y. S.; Bernard, J. M.; Dechambre, N.; Delpech, L.; Ekedahl, A.; Faure, N.; Goniche, M.; Kim, J.; Larroque, S.; Magne, R.; Marfisi, L.; Namkung, W.; Park, H.; Park, S.; Poli, S.; Vulliez, K.

    2014-02-01

    CEA/IRFM is conducting R&D efforts in order to validate the critical RF components of the 5 GHz ITER LHCD system, which is expected to transmit 20 MW of RF power to the plasma. Two 5 GHz 500 kW BeO pill-box type window prototypes have been manufactured in 2012 by the PMB Company, in close collaboration with CEA/IRFM. Both windows have been validated at low power, showing good agreement between measured and modeling, with a return loss better than 32 dB and an insertion loss below 0.05 dB. This paper reports on the window RF design and the low power measurements. The high power tests up to 500kW have been carried out in March 2013 in collaboration with NFRI. Results of these tests are also reported.

  10. Development and performance test of a new high power RF window in S-band PLS-II LINAC

    NASA Astrophysics Data System (ADS)

    Hwang, Woon-Ha; Joo, Young-Do; Kim, Seung-Hwan; Choi, Jae-Young; Noh, Sung-Ju; Ryu, Ji-Wan; Cho, Young-Ki

    2017-12-01

    A prototype of RF window was developed in collaboration with the Pohang Accelerator Laboratory (PAL) and domestic companies. High power performance tests of the single RF window were conducted at PAL to verify the operational characteristics for its application in the Pohang Light Source-II (PLS-II) linear accelerator (Linac). The tests were performed in the in-situ facility consisting of a modulator, klystron, waveguide network, vacuum system, cooling system, and RF analyzing equipment. The test results with Stanford linear accelerator energy doubler (SLED) have shown no breakdown up to 75 MW peak power with 4.5 μs RF pulse width at a repetition rate of 10 Hz. The test results with the current operation level of PLS-II Linac confirm that the RF window well satisfies the criteria for PLS-II Linac operation.

  11. Sapphire Viewports for a Venus Probe

    NASA Technical Reports Server (NTRS)

    Bates, Stephen

    2012-01-01

    A document discusses the creation of a viewport suitable for use on the surface of Venus. These viewports are rated for 500 C and 100 atm pressure with appropriate safety factors and reliability required for incorporation into a Venus Lander. Sapphire windows should easily withstand the chemical, pressure, and temperatures of the Venus surface. Novel fixture designs and seals appropriate to the environment are incorporated, as are materials compatible with exploration vessels. A test cell was fabricated, tested, and leak rate measured. The window features polish specification of the sides and corners, soft metal padding of the sapphire, and a metal C-ring seal. The system safety factor is greater than 2, and standard mechanical design theory was used to size the window, flange, and attachment bolts using available material property data. Maintenance involves simple cleaning of the window aperture surfaces. The only weakness of the system is its moderate rather than low leak rate for vacuum applications.

  12. Human Factors Feedback: Brain Acoustic Monitor

    DTIC Science & Technology

    2012-02-01

    Microsoft Office Excel .................................................................12  iv 4.  Conclusions 13  5.  References 15  Appendix A...Panasonic Toughbook system. †Toughbook is registered trademark of Panasonic Corporation. ‡Windows is a registered trademark of Microsoft Corporation. 4...was preloaded with Microsoft Windows XP service pack 2 OS. This OS is widely used on IBM-style personal computers, and the BAM system did not

  13. PCS: a pallet costing system for wood pallet manufacturers (version 1.0 for Windows®)

    Treesearch

    A. Jefferson, Jr. Palmer; Cynthia D. West; Bruce G. Hansen; Marshall S. White; Hal L. Mitchell

    2002-01-01

    The Pallet Costing System (PCS) is a computer-based, Microsoft Windows® application that computes the total and per-unit cost of manufacturing an order of wood pallets. Information about the manufacturing facility, along with the pallet-order requirements provided by the customer, is used in determining production cost. The major cost factors addressed by PCS...

  14. SBexpert users guide (version 2.0): a knowledge-based decision-support system for spruce beetle management.

    Treesearch

    Keith M. Reynolds; Edward H. Holsten

    1997-01-01

    SBexpert version 2.0 is a knowledge-based decision-support system for spruce beetle (Dendroctonus rufipennis (Kby.)) management developed for use in Microsoft (MS) Windows with the KnowledgePro Windows development language. Version 2.0 is a significant enhancement of version 1.0. The SBexpert users guide provides detailed instructions on the use of...

  15. Robert Sylwester on Electronic Media and Brain Development. Windows to the Mind, Volume 2. [Videotape].

    ERIC Educational Resources Information Center

    Sylwester, Robert

    This videotape explores the influence of electronic media on children's cognitive development. Posing the "cyberworld" as both a window to the greater world and a mirror to the students' world, the first part of the video examines electronic media and the brain's response systems. This part notes the brain's two response systems--the…

  16. Cell segmentation in histopathological images with deep learning algorithms by utilizing spatial relationships.

    PubMed

    Hatipoglu, Nuh; Bilgin, Gokhan

    2017-10-01

    In many computerized methods for cell detection, segmentation, and classification in digital histopathology that have recently emerged, the task of cell segmentation remains a chief problem for image processing in designing computer-aided diagnosis (CAD) systems. In research and diagnostic studies on cancer, pathologists can use CAD systems as second readers to analyze high-resolution histopathological images. Since cell detection and segmentation are critical for cancer grade assessments, cellular and extracellular structures should primarily be extracted from histopathological images. In response, we sought to identify a useful cell segmentation approach with histopathological images that uses not only prominent deep learning algorithms (i.e., convolutional neural networks, stacked autoencoders, and deep belief networks), but also spatial relationships, information of which is critical for achieving better cell segmentation results. To that end, we collected cellular and extracellular samples from histopathological images by windowing in small patches with various sizes. In experiments, the segmentation accuracies of the methods used improved as the window sizes increased due to the addition of local spatial and contextual information. Once we compared the effects of training sample size and influence of window size, results revealed that the deep learning algorithms, especially convolutional neural networks and partly stacked autoencoders, performed better than conventional methods in cell segmentation.

  17. Novel windowing technique realized in FPGA for radar system

    NASA Astrophysics Data System (ADS)

    Escamilla-Hernandez, E.; Kravchenko, V. F.; Ponomaryov, V. I.; Ikuo, Arai

    2006-02-01

    To improve the weak target detection ability in radar applications a pulse compression is usually used that in the case linear FM modulation can improve the SNR. One drawback in here is that it can add the range side-lobes in reflectivity measurements. Using weighting window processing in time domain it is possible to decrease significantly the side-lobe level (SLL) and resolve small or low power targets those are masked by powerful ones. There are usually used classical windows such as Hamming, Hanning, etc. in window processing. Additionally to classical ones in this paper we also use a novel class of windows based on atomic functions (AF) theory. For comparison of simulation and experimental results we applied the standard parameters, such as coefficient of amplification, maximum level of side-lobe, width of main lobe, etc. To implement the compression-windowing model on hardware level it has been employed FPGA. This work aims at demonstrating a reasonably flexible implementation of FM-linear signal, pulse compression and windowing employing FPGA's. Classical and novel AF window technique has been investigated to reduce the SLL taking into account the noise influence and increasing the detection ability of the small or weak targets in the imaging radar. Paper presents the experimental hardware results of windowing in pulse compression radar resolving several targets for rectangular, Hamming, Kaiser-Bessel, (see manuscript for formula) functions windows. The windows created by use the atomic functions offer sufficiently better decreasing of the SLL in case of noise presence and when we move away of the main lobe in comparison with classical windows.

  18. Towards component-based validation of GATE: aspects of the coincidence processor

    PubMed Central

    Moraes, Eder R.; Poon, Jonathan K.; Balakrishnan, Karthikayan; Wang, Wenli; Badawi, Ramsey D.

    2014-01-01

    GATE is public domain software widely used for Monte Carlo simulation in emission tomography. Validations of GATE have primarily been performed on a whole-system basis, leaving the possibility that errors in one sub-system may be offset by errors in others. We assess the accuracy of the GATE PET coincidence generation sub-system in isolation, focusing on the options most closely modeling the majority of commercially available scanners. Independent coincidence generators were coded by teams at Toshiba Medical Research Unit (TMRU) and UC Davis. A model similar to the Siemens mCT scanner was created in GATE. Annihilation photons interacting with the detectors were recorded. Coincidences were generated using GATE, TMRU and UC Davis code and results compared to “ground truth” obtained from the history of the photon interactions. GATE was tested twice, once with every qualified single event opening a time window and initiating a coincidence check (the “multiple window method”), and once where a time window is opened and a coincidence check initiated only by the first single event to occur after the end of the prior time window (the “single window method”). True, scattered and random coincidences were compared. Noise equivalent count rates were also computed and compared. The TMRU and UC Davis coincidence generators agree well with ground truth. With GATE, reasonable accuracy can be obtained if the single window method option is chosen and random coincidences are estimated without use of the delayed coincidence option. However in this GATE version, other parameter combinations can result in significant errors. PMID:25240897

  19. Techniques Analysis of the Interference Suppression Algorithm in Broadband Aeronautical Multi-carrier Communication System

    NASA Astrophysics Data System (ADS)

    Li, Dong-xia; Ye, Qian-wen

    Out-of-band radiation suppression algorithm must be used efficiently for broadband aeronautical communication system in order not to interfere the operation of the existing systems in aviation L-Band. Based on the simple introduction of the broadband aeronautical multi-carrier communication (B-AMC) system model, several sidelobe suppression techniques in orthogonal frequency multiplexing (OFDM) system are presented and analyzed so as to find a suitable algorithm for B-AMC system in this paper. Simulation results show that raise-cosine function windowing can suppress the out-of-band radiation of B-AMC system effectively.

  20. Thermal performance of complex fenestration systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carpenter, S.C.; Elmahdy, A.H.

    1994-12-31

    The thermal performance (i.e., U-factor) of four complex fenestration systems is examined using computer simulation tools and guarded hot box testing. The systems include a flat glazed skylight, a domed or bubble skylight, a greenhouse window, and a curtain wall. The extra care required in performing simulation and testing of these complex products is described. There was good agreement (within 10%) between test and simulation for two of the four products. The agreement was slightly poorer (maximum difference of 16%) for the two high-heat-transfer products: the domed skylight and the greenhouse window. Possible causes for the larger discrepancy in thesemore » projecting window products are uncertainties in the inside and outside film coefficients and lower warm-side air temperatures because of stagnant airflow.« less

  1. A general graphical user interface for automatic reliability modeling

    NASA Technical Reports Server (NTRS)

    Liceaga, Carlos A.; Siewiorek, Daniel P.

    1991-01-01

    Reported here is a general Graphical User Interface (GUI) for automatic reliability modeling of Processor Memory Switch (PMS) structures using a Markov model. This GUI is based on a hierarchy of windows. One window has graphical editing capabilities for specifying the system's communication structure, hierarchy, reconfiguration capabilities, and requirements. Other windows have field texts, popup menus, and buttons for specifying parameters and selecting actions. An example application of the GUI is given.

  2. Documentation of Source Code.

    DTIC Science & Technology

    1988-05-12

    the "load IC" menu option. A prompt will appear in the typescript window requesting the name of the knowledge base to be loaded. Enter...highlighted and then a prompt will appear in the typescript window. The prompt will be requesting the name of the file containing the message to be read in...the file name, the system will begin reading in the message. The listified message is echoed back in the typescript window. After that, the screen

  3. A Trusted Path Design and Implementation for Security Enhanced Linux

    DTIC Science & Technology

    2004-09-01

    functionality by a member of the team? Witten, et al., [21] provides an excellent discussion of some aspects of the subject. Ultimately, open vs ...terminal window is a program like gnome - terminal that provides a TTY-like environment as a window inside an X Windows session. The phrase computer...Editors selected No sound or video No graphics Check all development boxes except KDE Administrative tools System tools No printing support

  4. NASA Glenn Steady-State Heat Pipe Code GLENHP: Compilation for 64- and 32-Bit Windows Platforms

    NASA Technical Reports Server (NTRS)

    Tower, Leonard K.; Geng, Steven M.

    2016-01-01

    A new version of the NASA Glenn Steady State Heat Pipe Code, designated "GLENHP," is introduced here. This represents an update to the disk operating system (DOS) version LERCHP reported in NASA/TM-2000-209807. The new code operates on 32- and 64-bit Windows-based platforms from within the 32-bit command prompt window. An additional evaporator boundary condition and other features are provided.

  5. Evaluation of Energy Efficiency Performance of Heated Windows

    NASA Astrophysics Data System (ADS)

    Jammulamadaka, Hari Swarup

    The study about the evaluation of the performance of the heated windows was funded by the WVU Research Office as a technical assistance award at the 2014 TransTech Energy Business Development Conference to the Green Heated Glass company/project owned by Frank Dlubak. The award supports a WVU researcher to conduct a project important for commercialization. This project was awarded to the WVU Industrial Assessment Center in 2015. The current study attempted to evaluate the performance of the heated windows by developing an experimental setup to test the window at various temperatures by varying the current input to the window. The heated double pane window was installed in an insulated box. A temperature gradient was developed across the window by cooling one side of the window using gel based ice packs. The other face of the window was heated by passing current at different wattages through the window. The temperature of the inside and outside panes, current and voltage input, room and box temperature were recorded, and used to calculate the apparent R-value of the window when not being heated vs when being heated. It has been concluded from the study that the heated double pane window is more effective in reducing heat losses by as much as 50% than a non-heated double pane window, if the window temperature is maintained close to the room temperature. If the temperature of the window is much higher than the room temperature, the losses through the window appear to increase beyond that of a non-heated counterpart. The issues encountered during the current round of experiments are noted, and recommendations provided for future studies.

  6. CRITICAL WINDOWS FOR REPRODUCTIVE HEALTH IN CHILDREN AND ADOLESCENTS

    EPA Science Inventory

    This workgroup report addresses the central question: what are the critical windows during development (pre-conception through puberty) when exposure to xenobiotics may have the greatest adverse impact on subsequent reproductive health. The reproductive system develops in stages...

  7. Effects of the window openings on the micro-environmental condition in a school bus

    NASA Astrophysics Data System (ADS)

    Li, Fei; Lee, Eon S.; Zhou, Bin; Liu, Junjie; Zhu, Yifang

    2017-10-01

    School bus is an important micro-environment for children's health because the level of in-cabin air pollution can increase due to its own exhaust in addition to on-road traffic emissions. However, it has been challenging to understand the in-cabin air quality that is associated with complex airflow patterns inside and outside a school bus. This study conducted Computational Fluid Dynamics (CFD) modeling analyses to determine the effects of window openings on the self-pollution for a school bus. Infiltration through the window gaps is modeled by applying variable numbers of active computational cells as a function of the effective area ratio of the opening. The experimental data on ventilation rates from the literature was used to validate the model. Ultrafine particles (UFPs) and black carbon (BC) concentrations were monitored in ;real world; field campaigns using school buses. This modeling study examined the airflow pattern inside the school bus under four different types of side-window openings at 20, 40, and 60 mph (i.e., a total of 12 cases). We found that opening the driver's window could allow the infiltration of exhaust through window/door gaps in the back of school bus; whereas, opening windows in the middle of the school bus could mitigate this phenomenon. We also found that an increased driving speed (from 20 mph to 60 mph) could result in a higher ventilation rate (up to 3.4 times) and lower mean age of air (down to 0.29 time) inside the bus.

  8. Switchable skin window induced by optical clearing method for dermal blood flow imaging

    NASA Astrophysics Data System (ADS)

    Wang, Jing; Shi, Rui; Zhu, Dan

    2013-06-01

    Optical imaging techniques have shown tremendous potential for assessing cutaneous microcirculation, but the imaging depth and contrast is limited by the strong scattering of skin. Current skin windows have to be fulfilled by surgical operation and suffer from some side effects. In this study, a switchable skin window was developed by topical application of an optical clearing agent (OCA) and saline on rat skin in vivo. The validity of the skin window was evaluated by the laser speckle contrast imaging technique, and the safety of OCA to the body was tested through histologic examinations. The results indicated that administration of OCA or saline on rat skin in vivo can open or close the window of skin repeatedly for three days. With the repair effect of hyaluronic acid and Vaseline, it is able to repeatedly visualize the dermal blood vessels and flow distribution. Long-term observation shows that there is no abnormal reflection in micro-structure, body weight, organ coefficients, histopathologic lesions, or toxic reactions compared with a control group. This switchable window will provide an effective tool not only for cutaneous microcirculation with laser speckle contrast imaging, but also for diagnosis and treatment of peripheral vascular diseases, including tumor research with various optical imaging techniques.

  9. Optimization of finite difference forward modeling for elastic waves based on optimum combined window functions

    NASA Astrophysics Data System (ADS)

    Jian, Wang; Xiaohong, Meng; Hong, Liu; Wanqiu, Zheng; Yaning, Liu; Sheng, Gui; Zhiyang, Wang

    2017-03-01

    Full waveform inversion and reverse time migration are active research areas for seismic exploration. Forward modeling in the time domain determines the precision of the results, and numerical solutions of finite difference have been widely adopted as an important mathematical tool for forward modeling. In this article, the optimum combined of window functions was designed based on the finite difference operator using a truncated approximation of the spatial convolution series in pseudo-spectrum space, to normalize the outcomes of existing window functions for different orders. The proposed combined window functions not only inherit the characteristics of the various window functions, to provide better truncation results, but also control the truncation error of the finite difference operator manually and visually by adjusting the combinations and analyzing the characteristics of the main and side lobes of the amplitude response. Error level and elastic forward modeling under the proposed combined system were compared with outcomes from conventional window functions and modified binomial windows. Numerical dispersion is significantly suppressed, which is compared with modified binomial window function finite-difference and conventional finite-difference. Numerical simulation verifies the reliability of the proposed method.

  10. Measured Rattle Threshold of Residential House Windows

    NASA Technical Reports Server (NTRS)

    Sizov, Natalia; Schultz, Troy; Hobbs, Christopher; Klos, Jacob

    2008-01-01

    Window rattle is a common indoor noise effect in houses exposed to low frequency noise from such sources as railroads, blast noise and sonic boom. Human perception of rattle can be negative that is a motivating factor of the current research effort to study sonic boom induced window rattle. A rattle study has been conducted on residential houses containing windows of different construction at a variety of geographic locations within the United States. Windows in these houses were excited by a portable, high-powered loudspeaker and enclosure specifically designed to be mounted on the house exterior to cover an entire window. Window vibration was measured with accelerometers placed on different window components. Reference microphones were also placed inside the house and inside of the loudspeaker box. Swept sine excitation was used to identify the vibration threshold at which the response of the structure becomes non-linear and begins to rattle. Initial results from this study are presented and discussed. Future efforts will continue to explore the rattle occurrence in windows of residential houses exposed to sonic booms.

  11. Suppressing the Coffee-Ring Effect in Semitransparent MnO2 Film for a High-Performance Solar-Powered Energy Storage Window.

    PubMed

    Jin, Huanyu; Qian, Jiasheng; Zhou, Limin; Yuan, Jikang; Huang, Haitao; Wang, Yu; Tang, Wing Man; Chan, Helen Lai Wa

    2016-04-13

    We introduce a simple and effective method to deposit a highly uniform and semitransparent MnO2 film without coffee-ring effect (CRE) by adding ethanol into MnO2 ink for transparent capacitive energy storage devices. By carefully controlling the amount of ethanol added in the MnO2 droplet, we could significantly reduce the CRE and thus improve the film uniformity. The electrochemical properties of supercapacitor (SC) devices using semitransparent MnO2 film electrodes with or without CRE were measured and compared. The SC device without CRE shows a superior capacitance, high rate capability, and lower contact resistance. The CRE-free device could achieve a considerable volumetric capacitance of 112.2 F cm(-3), resulting in a high volumetric energy density and power density of 10 mWh cm(-3) and 8.6 W cm(-3), respectively. For practical consideration, both flexible SC and large-area rigid SC devices were fabricated to demonstrate their potential for flexible transparent electronic application and capacitive energy-storage window application. Moreover, a solar-powered energy storage window which consists of a commercial solar cell and our studied semitransparent MnO2-film-based SCs was assembled. These SCs could be charged by the solar cell and light up a light emitting diode (LED), demonstrating their potential for self-powered systems and energy-efficient buildings.

  12. InP solar cell with window layer

    NASA Technical Reports Server (NTRS)

    Jain, Raj K. (Inventor); Landis, Geoffrey A. (Inventor)

    1994-01-01

    The invention features a thin light transmissive layer of the ternary semiconductor indium aluminum arsenide (InAlAs) as a front surface passivation or 'window' layer for p-on-n InP solar cells. The window layers of the invention effectively reduce front surface recombination of the object semiconductors thereby increasing the efficiency of the cells.

  13. 47 CFR 73.9008 - Interim approval of authorized digital output protection technologies and authorized recording...

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... certification pursuant to § 0.459 of this chapter. (b) Initial certification window. Following the effective... window for digital output protection technologies or recording methods. Within thirty (30) days after the... certification window, the Commission shall issue a public notice identifying the certifications received and...

  14. A test of multiple correlation temporal window characteristic of non-Markov processes

    NASA Astrophysics Data System (ADS)

    Arecchi, F. T.; Farini, A.; Megna, N.

    2016-03-01

    We introduce a sensitive test of memory effects in successive events. The test consists of a combination K of binary correlations at successive times. K decays monotonically from K = 1 for uncorrelated events as a Markov process. For a monotonic memory fading, K<1 always. Here we report evidence of a K>1 temporal window in cognitive tasks consisting of the visual identification of the front face of the Necker cube after a previous presentation of the same. We speculate that memory effects provide a temporal window with K>1 and this experiment could be a possible first step towards a better comprehension of this phenomenon. The K>1 behaviour is maximal at an inter-measurement time τ around 2s with inter-subject differences. The K>1 persists over a time window of 1s around τ; outside this window the K<1 behaviour is recovered. The universal occurrence of a K>1 window in pairs of successive perceptions suggests that, at variance with single visual stimuli eliciting a suitable response, a pair of stimuli shortly separated in time displays mutual correlations.

  15. Improving the phase measurement by the apodization filter in the digital holography

    NASA Astrophysics Data System (ADS)

    Chang, Shifeng; Wang, Dayong; Wang, Yunxin; Zhao, Jie; Rong, Lu

    2012-11-01

    Due to the finite size of the hologram aperture in digital holography, high frequency intensity and phase fluctuations along the edges of the images, which reduce the precision of phase measurement. In this paper, the apodization filters are applied to improve the phase measurement in the digital holography. Firstly, the experimental setup of the lensless Fourier transform digital holography is built, where the sample is a standard phase grating with the grating constant of 300μm and the depth of 150nm. Then, apodization filters are applied to phase measurement of the sample with three kinds of the window functions: Tukey window, Hanning window and Blackman window, respectively. Finally, the results were compared to the detection data given by the commercial white-light interferometer. It is shown that aperture diffraction effects can be reduced by the digital apodization, and the phase measurement with the apodization is more accurate than in the unapodized case. Meanwhile, the Blackman window function produces better effect than the other two window functions in the measurement of the standard phase grating.

  16. Effect of window length on performance of the elbow-joint angle prediction based on electromyography

    NASA Astrophysics Data System (ADS)

    Triwiyanto; Wahyunggoro, Oyas; Adi Nugroho, Hanung; Herianto

    2017-05-01

    The high performance of the elbow joint angle prediction is essential on the development of the devices based on electromyography (EMG) control. The performance of the prediction depends on the feature of extraction parameters such as window length. In this paper, we evaluated the effect of the window length on the performance of the elbow-joint angle prediction. The prediction algorithm consists of zero-crossing feature extraction and second order of Butterworth low pass filter. The feature was used to extract the EMG signal by varying window length. The EMG signal was collected from the biceps muscle while the elbow was moved in the flexion and extension motion. The subject performed the elbow motion by holding a 1-kg load and moved the elbow in different periods (12 seconds, 8 seconds and 6 seconds). The results indicated that the window length affected the performance of the prediction. The 250 window lengths yielded the best performance of the prediction algorithm of (mean±SD) root mean square error = 5.68%±1.53% and Person’s correlation = 0.99±0.0059.

  17. Active two-phase cooling of an IR window for a hypersonic interceptor

    NASA Astrophysics Data System (ADS)

    Burzlaff, B. H.; Chivian, Jay S.; Cotten, W. D.; Hemphill, R. B.; Huhlein, Michael A.

    1993-06-01

    A novel actively cooled window for an IR sensor on a hypersonic interceptor is envisioned which achieves an IR window with high transmittance, low emittance, and low image distortion under high aerodynamic heat flux. The cooling concept employs two-phase convective boiling of liquid ammonia. Coolant is confined to narrow, parallel channels within the window to minimize obscuration of the aperture. The high latent heat of vaporization of ammonia minimizes coolant mass-flow requirements. Low boiling temperatures at projected operating pressures promote high thermal conductivity and low emissivity in the window. The concept was tested with thermal measurements on sub-mm width coolant channels in Si. High values for heat transfer coefficient and critical heat flux were obtained. Thermal gradients within the window can be controlled by the coolant channel configuration. Design options are investigated by predicting the effect of aerodynamic heat flux on the image produced by an IR sensor with a cooled window. Ammonia-cooled IR windows will function in the anticipated aerothermal environment.

  18. Methods and systems for detection of ice formation on surfaces

    NASA Technical Reports Server (NTRS)

    Alfano, Robert R. (Inventor); Wang, Wubao (Inventor); Sztul, Henry (Inventor); Budansky, Yury (Inventor)

    2007-01-01

    A system for detecting ice formation on metal, painted metal and other material surfaces can include a transparent window having an exterior surface upon which ice can form; a light source and optics configured and arranged to illuminate the exterior surface of the window from behind the exterior surface; and a detector and optics configured and arranged to receive light backscattered by the exterior surface and any ice disposed on the exterior surface and determine the thickness of the ice layer. For example, the system can be used with aircraft by placing one or more windows in the wings of the aircraft. The system is used for a novel optical method for real-time on-board detection and warning of ice formation on surfaces of airplanes, unmanned aerial vehicles (UAVs), and other vehicles and stationary structures to improve their safety and operation.

  19. Model Analyst’s Toolkit User Guide, Version 7.1.0

    DTIC Science & Technology

    2015-08-01

    Help > About)  Environment details ( operating system )  metronome.log file, located in your MAT 7.1.0 installation folder  Any log file that...requirements to run the Model Analyst’s Toolkit:  Windows XP operating system (or higher) with Service Pack 2 and all critical Windows updates installed...application icon on your desktop  Create a Quick Launch icon – Creates a MAT application icon on the taskbar for operating systems released

  20. Triple tailored nonlinear dispersion of dressed four- and six-wave mixing

    NASA Astrophysics Data System (ADS)

    Sun, Yanyong; Wang, Zhiguo; Zhang, Zhaoyang; Gu, Bingling; Wang, Kun; Yang, Gaoguo; Zhang, Yanpeng

    2018-06-01

    We investigate the spectral signals and spatial images of a probe transmission signal, four-wave mixing (FWM), and six-wave mixing (SWM) under double dressing effects in an inverted Y-type system. Especially, we get the triple tailored nonlinear dispersion (about 60 MHz) of the dressed FWM and SWM through the interaction between electromagnetically induced transparency (EIT) windows and the Kerr nonlinearity. Moreover, SWM and dressed FWM with narrow linewidth are obtained through the tailoring of the three EIT windows, which is much narrower than the EIT. In addition, we first elaborate the modulation effect from the self-Kerr coefficient of FWM on the spot. We also investigate the spatial characteristics (defocusing, shifting, and splitting) of FWM and SWM induced by tailored self-Kerr and cross-Kerr effects among the relative fields. Such spatial shifting, splitting induced by the tailored nonlinear dispersion can be used for a higher contrast and high speed switch as well as a high resolution router.

  1. Aging and the Effects of Exploratory Behavior on Spatial Memory.

    PubMed

    Varner, Kaitlin M; Dopkins, Stephen; Philbeck, John W

    2016-03-01

    The present research examined the effect of encoding from multiple viewpoints on scene recall in a group of younger (18-22 years) and older (65-80 years) adults. Participants completed a visual search task, during which they were given the opportunity to examine a room using two sets of windows that partitioned the room differently. Their choice of window set was recorded, to determine whether an association between these choices and spatial memory performance existed. Subsequently, participants were tested for spatial memory of the domain in which the search task was completed. Relative to younger adults, older adults demonstrated an increased tendency to use a single set of windows as well as decreased spatial memory for the domain. Window-set usage was associated with spatial memory, such that older adults who relied more heavily on a single set of windows also had better performance on the spatial memory task. These findings suggest that, in older adults, moderation in exploratory behavior may have a positive effect on memory for the domain of exploration. © The Author(s) 2016.

  2. Window classification of brain CT images in biomedical articles.

    PubMed

    Xue, Zhiyun; Antani, Sameer; Long, L Rodney; Demner-Fushman, Dina; Thoma, George R

    2012-01-01

    Effective capability to search biomedical articles based on visual properties of article images may significantly augment information retrieval in the future. In this paper, we present a new method to classify the window setting types of brain CT images. Windowing is a technique frequently used in the evaluation of CT scans, and is used to enhance contrast for the particular tissue or abnormality type being evaluated. In particular, it provides radiologists with an enhanced view of certain types of cranial abnormalities, such as the skull lesions and bone dysplasia which are usually examined using the " bone window" setting and illustrated in biomedical articles using "bone window images". Due to the inherent large variations of images among articles, it is important that the proposed method is robust. Our algorithm attained 90% accuracy in classifying images as bone window or non-bone window in a 210 image data set.

  3. Adaptive Liquid Crystal Windows

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Taheri, Bahman; Bodnar, Volodymyr

    2011-12-31

    Energy consumption by private and commercial sectors in the U.S. has steadily grown over the last decade. The uncertainty in future availability of imported oil, on which the energy consumption relies strongly, resulted in a dramatic increase in the cost of energy. About 20% of this consumption are used to heat and cool houses and commercial buildings. To reduce dependence on the foreign oil and cut down emission of greenhouse gases, it is necessary to eliminate losses and reduce total energy consumption by buildings. To achieve this goal it is necessary to redefine the role of the conventional windows. Atmore » a minimum, windows should stop being a source for energy loss. Ideally, windows should become a source of energy, providing net gain to reduce energy used to heat and cool homes. It is possible to have a net energy gain from a window if its light transmission can be dynamically altered, ideally electronically without the need of operator assistance, providing optimal control of the solar gain that varies with season and climate in the U.S. In addition, the window must not require power from the building for operation. Resolution of this problem is a societal challenge and of national interest and will have a broad global impact. For this purpose, the year-round, allclimate window solution to provide an electronically variable solar heat gain coefficient (SHGC) with a wide dynamic range is needed. AlphaMicron, Inc. (AMI) developed and manufactured 1ft × 1ft prototype panels for the world’s first auto-adjusting Adaptive Liquid Crystal Windows (ALCWs) that can operate from sunlight without the need for external power source and demonstrate an electronically adjustable SHGC. This novel windows are based on AlphaMicron’s patented e-Tint® technology, a guesthost liquid crystal system implemented on flexible, optically clear plastic films. This technology is suitable both for OEM and aftermarket (retro-fitting) lamination to new and existing windows. Low level of power consumption by ALCWs allows for on-board power electronics for automatic matching of transmission through windows to varying climate conditions without drawing the power from the power grid. ALCWs are capable of transmitting more sunlight in winters to assist in heating and less sunlight in summers to minimize overheating. As such, they can change the window from being a source of energy loss to a source of energy gain. In addition, the scalable AMI’s roll-to-roll process, proved by making 1ft × 1ftALCW prototype panels, allows for cost-effective production of large-scale window panels along with capability to change easily their color and shape. In addition to architectural glazing in houses and commercial buildings, ALCWs can be used in other applications where control of sunlight is needed, such as green houses, used by commercial produce growers and botanical gardens, cars, aircrafts, etc.« less

  4. Errors in the estimation method for the rejection of vibrations in adaptive optics systems

    NASA Astrophysics Data System (ADS)

    Kania, Dariusz

    2017-06-01

    In recent years the problem of the mechanical vibrations impact in adaptive optics (AO) systems has been renewed. These signals are damped sinusoidal signals and have deleterious effect on the system. One of software solutions to reject the vibrations is an adaptive method called AVC (Adaptive Vibration Cancellation) where the procedure has three steps: estimation of perturbation parameters, estimation of the frequency response of the plant, update the reference signal to reject/minimalize the vibration. In the first step a very important problem is the estimation method. A very accurate and fast (below 10 ms) estimation method of these three parameters has been presented in several publications in recent years. The method is based on using the spectrum interpolation and MSD time windows and it can be used to estimate multifrequency signals. In this paper the estimation method is used in the AVC method to increase the system performance. There are several parameters that affect the accuracy of obtained results, e.g. CiR - number of signal periods in a measurement window, N - number of samples in the FFT procedure, H - time window order, SNR, b - number of ADC bits, γ - damping ratio of the tested signal. Systematic errors increase when N, CiR, H decrease and when γ increases. The value for systematic error is approximately 10^-10 Hz/Hz for N = 2048 and CiR = 0.1. This paper presents equations that can used to estimate maximum systematic errors for given values of H, CiR and N before the start of the estimation process.

  5. Experimental and Numerical Examination of the Thermal Transmittance of High Performance Window Frames

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gustavsen Ph.D., Arild; Goudey, Howdy; Kohler, Christian

    2010-06-17

    While window frames typically represent 20-30percent of the overall window area, their impact on the total window heat transfer rates may be much larger. This effect is even greater in low-conductance (highly insulating) windows which incorporate very low conductance glazings. Developing low-conductance window frames requires accurate simulation tools for product research and development. The Passivhaus Institute in Germany states that windows (glazing and frames, combined) should have U-values not exceeding 0.80 W/(m??K). This has created a niche market for highly insulating frames, with frame U-values typically around 0.7-1.0 W/(m2 cdot K). The U-values reported are often based on numerical simulationsmore » according to international simulation standards. It is prudent to check the accuracy of these calculation standards, especially for high performance products before more manufacturers begin to use them to improve other product offerings. In this paper the thermal transmittance of five highly insulating window frames (three wooden frames, one aluminum frame and one PVC frame), found from numerical simulations and experiments, are compared. Hot box calorimeter results are compared with numerical simulations according to ISO 10077-2 and ISO 15099. In addition CFD simulations have been carried out, in order to use the most accurate tool available to investigate the convection and radiation effects inside the frame cavities. Our results show that available tools commonly used to evaluate window performance, based on ISO standards, give good overall agreement, but specific areas need improvement.« less

  6. Evaluation of Building Energy Saving Through the Development of Venetian Blinds' Optimal Control Algorithm According to the Orientation and Window-to-Wall Ratio

    NASA Astrophysics Data System (ADS)

    Kwon, Hyuk Ju; Yeon, Sang Hun; Lee, Keum Ho; Lee, Kwang Ho

    2018-02-01

    As various studies focusing on building energy saving have been continuously conducted, studies utilizing renewable energy sources, instead of fossil fuel, are needed. In particular, studies regarding solar energy are being carried out in the field of building science; in order to utilize such solar energy effectively, solar radiation being brought into the indoors should be acquired and blocked properly. Blinds are a typical solar radiation control device that is capable of controlling indoor thermal and light environments. However, slat-type blinds are manually controlled, giving a negative effect on building energy saving. In this regard, studies regarding the automatic control of slat-type blinds have been carried out for the last couple of decades. Therefore, this study aims to provide preliminary data for optimal control research through the controlling of slat angle in slat-type blinds by comprehensively considering various input variables. The window area ratio and orientation were selected as input variables. It was found that an optimal control algorithm was different among each window-to-wall ratio and window orientation. In addition, through comparing and analyzing the building energy saving performance for each condition by applying the developed algorithms to simulations, up to 20.7 % energy saving was shown in the cooling period and up to 12.3 % energy saving was shown in the heating period. In addition, building energy saving effect was greater as the window area ratio increased given the same orientation, and the effects of window-to-wall ratio in the cooling period were higher than those of window-to-wall ratio in the heating period.

  7. PHREEQCI; a graphical user interface for the geochemical computer program PHREEQC

    USGS Publications Warehouse

    Charlton, Scott R.; Macklin, Clifford L.; Parkhurst, David L.

    1997-01-01

    PhreeqcI is a Windows-based graphical user interface for the geochemical computer program PHREEQC. PhreeqcI provides the capability to generate and edit input data files, run simulations, and view text files containing simulation results, all within the framework of a single interface. PHREEQC is a multipurpose geochemical program that can perform speciation, inverse, reaction-path, and 1D advective reaction-transport modeling. Interactive access to all of the capabilities of PHREEQC is available with PhreeqcI. The interface is written in Visual Basic and will run on personal computers under the Windows(3.1), Windows95, and WindowsNT operating systems.

  8. Apparatus and filtering systems relating to combustors in combustion turbine engines

    DOEpatents

    Johnson, Thomas Edward [Greer, SC; Zuo, Baifang [Simpsonville, SC; Stevenson, Christian Xavier [Inman, SC

    2012-07-24

    A combustor for a combustion turbine engine, the combustor that includes: a chamber defined by an outer wall and forming a channel between windows defined through the outer wall toward a forward end of the chamber and at least one fuel injector positioned toward an aft end of the chamber; a screen; and a standoff comprising a raised area on an outer surface of the outer wall near the periphery of the windows; wherein the screen extends over the windows and is supported by the standoff in a raised position in relation to the outer surface of the outer wall and the windows.

  9. Enhanced networks operations using the X Window System

    NASA Technical Reports Server (NTRS)

    Linares, Irving

    1993-01-01

    We propose an X Window Graphical User Interface (GUI) which is tailored to the operations of NASA GSFC's Network Control Center (NCC), the NASA Ground Terminal (NGT), the White Sands Ground Terminal (WSGT), and the Second Tracking and Data Relay Satellite System (TDRSS) Ground Terminal (STGT). The proposed GUI can also be easily extended to other Ground Network (GN) Tracking Stations due to its standardized nature.

  10. Review of Collaborative Tools for Planning and Engineering

    DTIC Science & Technology

    2007-10-01

    including PDAs) and Operating Systems 1 In general, should support laptops, desktops, Windows OS, Mac OS, Palm OS, Windows CE, Blackberry , Sun...better), voting (to establish operating parameters), reactor design, wind tunnel simulation Display same material on every computer, synchronisation

  11. 30. BEDROOM #3 INTERIOR SHOWING 1 LIGHT OVER 1 LIGHT ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    30. BEDROOM #3 INTERIOR SHOWING 1 LIGHT OVER 1 LIGHT WINDOW ON EAST WALL AND PARTIALLY OPENED DOOR TO WINDOWED CLOSET. VIEW TO EAST. - Big Creek Hydroelectric System, Powerhouse 8, Operator Cottage, Big Creek, Big Creek, Fresno County, CA

  12. Effects of stocking density and string provision on welfare-related measures in commercial broiler chickens in windowed houses.

    PubMed

    Bailie, C L; Ijichi, C; O'Connell, N E

    2018-05-01

    Lower stocking densities (SD) are sometimes used in windowed houses for broilers as part of systems designed to produce high-welfare products. However, there is little scientific information on the effects of SD on welfare-related measures in broilers in windowed houses, and on whether these effects are influenced by environmental enrichment. Commercial windowed broiler chicken houses were assigned to 4 target SD (30, 32, 34, and 36 kg/m2) and 2 levels of access to string [+S (one piece per 1,000 birds/house), -S] in a 4 × 2 factorial arrangement. Treatments were applied in one of 4 houses on each of 2 farms, and replicated over 10 production cycles. Levels of lying behavior, apparent fear-related behavior, and gait score were observed in wk 3 to 5. The incidence and severity of dermatitis lesions were assessed at d 30 and at slaughter. Environmental and production performance parameters also were measured. No significant treatment effects were obtained for levels of lying or fear-related behavior, final body weight, presence of dermatitis lesions at slaughter, or percentage of downgraded carcasses. There were no significant treatment effects on measures of gait, but the percentage of birds with a gait score of ≥2 tended to increase at higher SD. The severity of dermatitis lesions at d 30 increased with increasing SD, and was significantly greater at densities of 34 and 36 kg/m2 than of 30 kg/m2. Litter moisture content was not significantly affected by treatment, which may have reflected a numerical decline in water consumption with increasing SD. Results suggest that increasing SD is a risk factor for more severe dermatitis; however, increasing density from 30 to 32 kg/m2 did not significantly affect this variable. In addition, the proportion of lame birds, levels of lying behavior, and performance were not significantly affected by increasing SD. Providing suspended string at typical commercial levels did not have beneficial effects on welfare-related measures, and further research should perhaps investigate effects of greater levels of provision.

  13. A cross-sectional evaluation of meditation experience on electroencephalography data by artificial neural network and support vector machine classifiers

    PubMed Central

    Lee, Yu-Hao; Hsieh, Ya-Ju; Shiah, Yung-Jong; Lin, Yu-Huei; Chen, Chiao-Yun; Tyan, Yu-Chang; GengQiu, JiaCheng; Hsu, Chung-Yao; Chen, Sharon Chia-Ju

    2017-01-01

    Abstract To quantitate the meditation experience is a subjective and complex issue because it is confounded by many factors such as emotional state, method of meditation, and personal physical condition. In this study, we propose a strategy with a cross-sectional analysis to evaluate the meditation experience with 2 artificial intelligence techniques: artificial neural network and support vector machine. Within this analysis system, 3 features of the electroencephalography alpha spectrum and variant normalizing scaling are manipulated as the evaluating variables for the detection of accuracy. Thereafter, by modulating the sliding window (the period of the analyzed data) and shifting interval of the window (the time interval to shift the analyzed data), the effect of immediate analysis for the 2 methods is compared. This analysis system is performed on 3 meditation groups, categorizing their meditation experiences in 10-year intervals from novice to junior and to senior. After an exhausted calculation and cross-validation across all variables, the high accuracy rate >98% is achievable under the criterion of 0.5-minute sliding window and 2 seconds shifting interval for both methods. In a word, the minimum analyzable data length is 0.5 minute and the minimum recognizable temporal resolution is 2 seconds in the decision of meditative classification. Our proposed classifier of the meditation experience promotes a rapid evaluation system to distinguish meditation experience and a beneficial utilization of artificial techniques for the big-data analysis. PMID:28422856

  14. A cross-sectional evaluation of meditation experience on electroencephalography data by artificial neural network and support vector machine classifiers.

    PubMed

    Lee, Yu-Hao; Hsieh, Ya-Ju; Shiah, Yung-Jong; Lin, Yu-Huei; Chen, Chiao-Yun; Tyan, Yu-Chang; GengQiu, JiaCheng; Hsu, Chung-Yao; Chen, Sharon Chia-Ju

    2017-04-01

    To quantitate the meditation experience is a subjective and complex issue because it is confounded by many factors such as emotional state, method of meditation, and personal physical condition. In this study, we propose a strategy with a cross-sectional analysis to evaluate the meditation experience with 2 artificial intelligence techniques: artificial neural network and support vector machine. Within this analysis system, 3 features of the electroencephalography alpha spectrum and variant normalizing scaling are manipulated as the evaluating variables for the detection of accuracy. Thereafter, by modulating the sliding window (the period of the analyzed data) and shifting interval of the window (the time interval to shift the analyzed data), the effect of immediate analysis for the 2 methods is compared. This analysis system is performed on 3 meditation groups, categorizing their meditation experiences in 10-year intervals from novice to junior and to senior. After an exhausted calculation and cross-validation across all variables, the high accuracy rate >98% is achievable under the criterion of 0.5-minute sliding window and 2 seconds shifting interval for both methods. In a word, the minimum analyzable data length is 0.5 minute and the minimum recognizable temporal resolution is 2 seconds in the decision of meditative classification. Our proposed classifier of the meditation experience promotes a rapid evaluation system to distinguish meditation experience and a beneficial utilization of artificial techniques for the big-data analysis.

  15. Effect of windowing on lithosphere elastic thickness estimates obtained via the coherence method: Results from northern South America

    NASA Astrophysics Data System (ADS)

    Ojeda, GermáN. Y.; Whitman, Dean

    2002-11-01

    The effective elastic thickness (Te) of the lithosphere is a parameter that describes the flexural strength of a plate. A method routinely used to quantify this parameter is to calculate the coherence between the two-dimensional gravity and topography spectra. Prior to spectra calculation, data grids must be "windowed" in order to avoid edge effects. We investigated the sensitivity of Te estimates obtained via the coherence method to mirroring, Hanning and multitaper windowing techniques on synthetic data as well as on data from northern South America. These analyses suggest that the choice of windowing technique plays an important role in Te estimates and may result in discrepancies of several kilometers depending on the selected windowing method. Te results from mirrored grids tend to be greater than those from Hanning smoothed or multitapered grids. Results obtained from mirrored grids are likely to be over-estimates. This effect may be due to artificial long wavelengths introduced into the data at the time of mirroring. Coherence estimates obtained from three subareas in northern South America indicate that the average effective elastic thickness is in the range of 29-30 km, according to Hanning and multitaper windowed data. Lateral variations across the study area could not be unequivocally determined from this study. We suggest that the resolution of the coherence method does not permit evaluation of small (i.e., ˜5 km), local Te variations. However, the efficiency and robustness of the coherence method in rendering continent-scale estimates of elastic thickness has been confirmed.

  16. Real-time image sequence segmentation using curve evolution

    NASA Astrophysics Data System (ADS)

    Zhang, Jun; Liu, Weisong

    2001-04-01

    In this paper, we describe a novel approach to image sequence segmentation and its real-time implementation. This approach uses the 3D structure tensor to produce a more robust frame difference signal and uses curve evolution to extract whole objects. Our algorithm is implemented on a standard PC running the Windows operating system with video capture from a USB camera that is a standard Windows video capture device. Using the Windows standard video I/O functionalities, our segmentation software is highly portable and easy to maintain and upgrade. In its current implementation on a Pentium 400, the system can perform segmentation at 5 frames/sec with a frame resolution of 160 by 120.

  17. Low-Emissivity, Energy-Control, Retrofit Window Film: Final Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Winckler, Lisa

    Solutia Performance Films, utilizing funding from the U.S. Department of Energy's Buildings Technologies Program, completed research to develop, validate, and commercialize a range of cost-effective, low-emissivity energy-control retrofit window films with significantly improved emissivity over current technology. These films, sold under the EnerLogic® trade name, offer the energy-saving properties of modern low-e windows, with several advantages over replacement windows, such as: lower initial installation cost, a significantly lower product carbon footprint, and an ability to provide a much faster return on investment. EnerLogic® window films also offer significantly greater energy savings than previously available with window films with similar visiblemore » light transmissions. EnerLogic® window films offer these energy-saving advantages over other window films due to its ability to offer both summer cooling and winter heating savings. Unlike most window films, that produce savings only during the cooling season, EnerLogic® window film is an all-season, low-emissivity (low-e) film that produces both cooling and heating season savings. This paper will present technical information on the development hurdles as well as details regarding the following claims being made about EnerLogic® window film, which can be found at www.EnerLogicfilm.com: 1. Other window film technologies save energy. EnerLogic® window film's patent-pending coating delivers excellent energy efficiency in every season, so no other film can match its annual dollar or energy consumption savings. 2. EnerLogic® window film is a low-cost, high-return technology that compares favorably to other popular energy-saving measures both in terms of energy efficiency and cost savings. In fact, EnerLogic® window film typically outperforms most of the alternatives in terms of simple payback. 3. EnerLogic® window film provides unparalleled glass insulating capabilities for window film products. With its patent-pending low-e technology, EnerLogic® window film has the best insulating performance of any film product available. The insulating power of EnerLogic® window film gives single-pane windows the annual insulating performance of double-pane windows - and gives double-pane windows the annual insulating performance of triple-pane windows.« less

  18. Prediction of inertial effects due to bone conduction in a 2D box model of the cochlea

    NASA Astrophysics Data System (ADS)

    Halpin, Alice A.; Elliott, Stephen J.; Ni, Guangjian

    2015-12-01

    A 2D box model of the cochlea has been used to predict the basilar membrane, BM, velocity and the fluid flow caused by two components of bone conduction: due to inertia of the middle ear and due to inertia of the cochlear fluids. A finite difference approach has been used with asymmetric fluid chambers, that enables an investigation of the effect of varying window stiffness, due to otosclerosis for example. The BM is represented as a series of locally reacting single degree of freedom systems, with graded stiffness along the cochlea to represent the distribution of natural frequencies and with a damping representative of the passive cochlea. The velocity distributions along the passive BM are similar for harmonic excitation via the middle ear inertia or via the fluid inertia, but the variation of the BM velocity magnitude with excitation frequency is different in the two cases. Excitation via the middle ear is suppressed if the oval window is assumed to be blocked, but the excitation via the cochlear fluids is still possible. By assuming a combined excitation due to both middle ear and fluid excitation, the difference between the overall response can be calculated with a flexible and a blocked oval window, which gives a reasonable prediction of Carhart's notch.

  19. Individual Differences in the Multisensory Temporal Binding Window Predict Susceptibility to Audiovisual Illusions

    ERIC Educational Resources Information Center

    Stevenson, Ryan A.; Zemtsov, Raquel K.; Wallace, Mark T.

    2012-01-01

    Human multisensory systems are known to bind inputs from the different sensory modalities into a unified percept, a process that leads to measurable behavioral benefits. This integrative process can be observed through multisensory illusions, including the McGurk effect and the sound-induced flash illusion, both of which demonstrate the ability of…

  20. Finite Element Analysis of Fluid-Structure Interaction in a Blast-Resistant Window System (PREPRINT)

    DTIC Science & Technology

    2008-03-01

    membrane effects that only become significant at large out-of-plane deflection levels ( Ugural 1981). Similarly, the mass of each panel, and therefore the...Forum, 465, 143-150. Ugural A.C. (1981). Stresses in Plates and Shells, McGraw-Hill, New York. 30 TABLE CAPTIONS Table 1. Properties of air (at

  1. Real-time operating system timing jitter and its impact on motor control

    NASA Astrophysics Data System (ADS)

    Proctor, Frederick M.; Shackleford, William P.

    2001-12-01

    General-purpose microprocessors are increasingly being used for control applications due to their widespread availability and software support for non-control functions like networking and operator interfaces. Two classes of real-time operating systems (RTOS) exist for these systems. The traditional RTOS serves as the sole operating system, and provides all OS services. Examples include ETS, LynxOS, QNX, Windows CE and VxWorks. RTOS extensions add real-time scheduling capabilities to non-real-time OSes, and provide minimal services needed for the time-critical portions of an application. Examples include RTAI and RTL for Linux, and HyperKernel, OnTime and RTX for Windows NT. Timing jitter is an issue in these systems, due to hardware effects such as bus locking, caches and pipelines, and software effects from mutual exclusion resource locks, non-preemtible critical sections, disabled interrupts, and multiple code paths in the scheduler. Jitter is typically on the order of a microsecond to a few tens of microseconds for hard real-time operating systems, and ranges from milliseconds to seconds in the worst case for soft real-time operating systems. The question of its significance on the performance of a controller arises. Naturally, the smaller the scheduling period required for a control task, the more significant is the impact of timing jitter. Aside from this intuitive relationship is the greater significance of timing on open-loop control, such as for stepper motors, than for closed-loop control, such as for servo motors. Techniques for measuring timing jitter are discussed, and comparisons between various platforms are presented. Techniques to reduce jitter or mitigate its effects are presented. The impact of jitter on stepper motor control is analyzed.

  2. RMS upper boom framed by aft flight deck viewing window W10

    NASA Technical Reports Server (NTRS)

    1983-01-01

    Remote Manipulator System (RMS) upper arm boom (tear in multilayer beta cloth) deployed during dynamic interaction test using Payload Flight Test Article (PFTA) is visible outside aft viewing window W10. RMS 'Canada' insignia or logo appears on boom.

  3. Switchable Materials for Smart Windows.

    PubMed

    Wang, Yang; Runnerstrom, Evan L; Milliron, Delia J

    2016-06-07

    This article reviews the basic principles of and recent developments in electrochromic, photochromic, and thermochromic materials for applications in smart windows. Compared with current static windows, smart windows can dynamically modulate the transmittance of solar irradiation based on weather conditions and personal preferences, thus simultaneously improving building energy efficiency and indoor human comfort. Although some smart windows are commercially available, their widespread implementation has not yet been realized. Recent advances in nanostructured materials provide new opportunities for next-generation smart window technology owing to their unique structure-property relations. Nanomaterials can provide enhanced coloration efficiency, faster switching kinetics, and longer lifetime. In addition, their compatibility with solution processing enables low-cost and high-throughput fabrication. This review also discusses the importance of dual-band modulation of visible and near-infrared (NIR) light, as nearly 50% of solar energy lies in the NIR region. Some latest results show that solution-processable nanostructured systems can selectively modulate the NIR light without affecting the visible transmittance, thus reducing energy consumption by air conditioning, heating, and artificial lighting.

  4. VA's Integrated Imaging System on three platforms.

    PubMed

    Dayhoff, R E; Maloney, D L; Majurski, W J

    1992-01-01

    The DHCP Integrated Imaging System provides users with integrated patient data including text, image and graphics data. This system has been transferred from its original two screen DOS-based MUMPS platform to an X window workstation and a Microsoft Windows-based workstation. There are differences between these various platforms that impact on software design and on software development strategy. Data structures and conventions were used to isolate hardware, operating system, imaging software, and user-interface differences between platforms in the implementation of functionality for text and image display and interaction. The use of an object-oriented approach greatly increased system portability.

  5. VA's Integrated Imaging System on three platforms.

    PubMed Central

    Dayhoff, R. E.; Maloney, D. L.; Majurski, W. J.

    1992-01-01

    The DHCP Integrated Imaging System provides users with integrated patient data including text, image and graphics data. This system has been transferred from its original two screen DOS-based MUMPS platform to an X window workstation and a Microsoft Windows-based workstation. There are differences between these various platforms that impact on software design and on software development strategy. Data structures and conventions were used to isolate hardware, operating system, imaging software, and user-interface differences between platforms in the implementation of functionality for text and image display and interaction. The use of an object-oriented approach greatly increased system portability. PMID:1482983

  6. Helicopter TEM parameters analysis and system optimization based on time constant

    NASA Astrophysics Data System (ADS)

    Xiao, Pan; Wu, Xin; Shi, Zongyang; Li, Jutao; Liu, Lihua; Fang, Guangyou

    2018-03-01

    Helicopter transient electromagnetic (TEM) method is a kind of common geophysical prospecting method, widely used in mineral detection, underground water exploration and environment investigation. In order to develop an efficient helicopter TEM system, it is necessary to analyze and optimize the system parameters. In this paper, a simple and quantitative method is proposed to analyze the system parameters, such as waveform, power, base frequency, measured field and sampling time. A wire loop model is used to define a comprehensive 'time constant domain' that shows a range of time constant, analogous to a range of conductance, after which the characteristics of the system parameters in this domain is obtained. It is found that the distortion caused by the transmitting base frequency is less than 5% when the ratio of the transmitting period to the target time constant is greater than 6. When the sampling time window is less than the target time constant, the distortion caused by the sampling time window is less than 5%. According to this method, a helicopter TEM system, called CASHTEM, is designed, and flight test has been carried out in the known mining area. The test results show that the system has good detection performance, verifying the effectiveness of the method.

  7. Feedback Flow Control for a Pitching Turret (Part II) (POSTPRINT)

    DTIC Science & Technology

    2010-01-01

    FL, 2007. 2S. Gordeyev , T. E. Hayden, and E. J. Jumper , “Aero-Optical and Flow Measurements Over a Flat-Windowed Turret,” AIAA Journal, Vol. 45, No...public release; distribution unlimited. 13. SUPPLEMENTARY NOTES Conference presentation published in the Proceedings of the 48th AIAA Aerospace...Compressible effects are not present at this speed, but systems for controlling velocity fluctuations in incompressible flows will be effective in controlling

  8. Time and timing in the acoustic recognition system of crickets

    PubMed Central

    Hennig, R. Matthias; Heller, Klaus-Gerhard; Clemens, Jan

    2014-01-01

    The songs of many insects exhibit precise timing as the result of repetitive and stereotyped subunits on several time scales. As these signals encode the identity of a species, time and timing are important for the recognition system that analyzes these signals. Crickets are a prominent example as their songs are built from sound pulses that are broadcast in a long trill or as a chirped song. This pattern appears to be analyzed on two timescales, short and long. Recent evidence suggests that song recognition in crickets relies on two computations with respect to time; a short linear-nonlinear (LN) model that operates as a filter for pulse rate and a longer integration time window for monitoring song energy over time. Therefore, there is a twofold role for timing. A filter for pulse rate shows differentiating properties for which the specific timing of excitation and inhibition is important. For an integrator, however, the duration of the time window is more important than the precise timing of events. Here, we first review evidence for the role of LN-models and integration time windows for song recognition in crickets. We then parameterize the filter part by Gabor functions and explore the effects of duration, frequency, phase, and offset as these will correspond to differently timed patterns of excitation and inhibition. These filter properties were compared with known preference functions of crickets and katydids. In a comparative approach, the power for song discrimination by LN-models was tested with the songs of over 100 cricket species. It is demonstrated how the acoustic signals of crickets occupy a simple 2-dimensional space for song recognition that arises from timing, described by a Gabor function, and time, the integration window. Finally, we discuss the evolution of recognition systems in insects based on simple sensory computations. PMID:25161622

  9. Robotic Attention Processing And Its Application To Visual Guidance

    NASA Astrophysics Data System (ADS)

    Barth, Matthew; Inoue, Hirochika

    1988-03-01

    This paper describes a method of real-time visual attention processing for robots performing visual guidance. This robot attention processing is based on a novel vision processor, the multi-window vision system that was developed at the University of Tokyo. The multi-window vision system is unique in that it only processes visual information inside local area windows. These local area windows are quite flexible in their ability to move anywhere on the visual screen, change their size and shape, and alter their pixel sampling rate. By using these windows for specific attention tasks, it is possible to perform high speed attention processing. The primary attention skills of detecting motion, tracking an object, and interpreting an image are all performed at high speed on the multi-window vision system. A basic robotic attention scheme using the attention skills was developed. The attention skills involved detection and tracking of salient visual features. The tracking and motion information thus obtained was utilized in producing the response to the visual stimulus. The response of the attention scheme was quick enough to be applicable to the real-time vision processing tasks of playing a video 'pong' game, and later using an automobile driving simulator. By detecting the motion of a 'ball' on a video screen and then tracking the movement, the attention scheme was able to control a 'paddle' in order to keep the ball in play. The response was faster than that of a human's, allowing the attention scheme to play the video game at higher speeds. Further, in the application to the driving simulator, the attention scheme was able to control both direction and velocity of a simulated vehicle following a lead car. These two applications show the potential of local visual processing in its use for robotic attention processing.

  10. Towards component-based validation of GATE: aspects of the coincidence processor.

    PubMed

    Moraes, Eder R; Poon, Jonathan K; Balakrishnan, Karthikayan; Wang, Wenli; Badawi, Ramsey D

    2015-02-01

    GATE is public domain software widely used for Monte Carlo simulation in emission tomography. Validations of GATE have primarily been performed on a whole-system basis, leaving the possibility that errors in one sub-system may be offset by errors in others. We assess the accuracy of the GATE PET coincidence generation sub-system in isolation, focusing on the options most closely modeling the majority of commercially available scanners. Independent coincidence generators were coded by teams at Toshiba Medical Research Unit (TMRU) and UC Davis. A model similar to the Siemens mCT scanner was created in GATE. Annihilation photons interacting with the detectors were recorded. Coincidences were generated using GATE, TMRU and UC Davis code and results compared to "ground truth" obtained from the history of the photon interactions. GATE was tested twice, once with every qualified single event opening a time window and initiating a coincidence check (the "multiple window method"), and once where a time window is opened and a coincidence check initiated only by the first single event to occur after the end of the prior time window (the "single window method"). True, scattered and random coincidences were compared. Noise equivalent count rates were also computed and compared. The TMRU and UC Davis coincidence generators agree well with ground truth. With GATE, reasonable accuracy can be obtained if the single window method option is chosen and random coincidences are estimated without use of the delayed coincidence option. However in this GATE version, other parameter combinations can result in significant errors. Copyright © 2014 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

  11. Changes in mammary histology and transcriptome profiles by low-dose exposure to environmental phenols at critical windows of development.

    PubMed

    Gopalakrishnan, Kalpana; Teitelbaum, Susan L; Lambertini, Luca; Wetmur, James; Manservisi, Fabiana; Falcioni, Laura; Panzacchi, Simona; Belpoggi, Fiorella; Chen, Jia

    2017-01-01

    Exposure to environmental chemicals has been linked to altered mammary development and cancer risk at high doses using animal models. Effects at low doses comparable to human exposure remain poorly understood, especially during critical developmental windows. We investigated the effects of two environmental phenols commonly used in personal care products - methyl paraben (MPB) and triclosan (TCS) - on the histology and transcriptome of normal mammary glands at low doses mimicking human exposure during critical windows of development. Sprague-Dawley rats were exposed during perinatal, prepubertal and pubertal windows, as well as from birth to lactation. Low-dose exposure to MPB and TCS induced measurable changes in both mammary histology (by Masson's Trichrome Stain) and transcriptome (by microarrays) in a window-specific fashion. Puberty represented a window of heightened sensitivity to MPB, with increased glandular tissue and changes of expression in 295 genes with significant enrichment in functions such as DNA replication and cell cycle regulation. Long-term exposure to TCS from birth to lactation was associated with increased adipose and reduced glandular and secretory tissue, with expression alterations in 993 genes enriched in pathways such as cholesterol synthesis and adipogenesis. Finally, enrichment analyses revealed that genes modified by MPB and TCS were over-represented in human breast cancer gene signatures, suggesting possible links with breast carcinogenesis. These findings highlight the issues of critical windows of susceptibility that may confer heightened sensitivity to environmental insults and implicate the potential health effects of these ubiquitous environmental chemicals in breast cancer. Copyright © 2016 Elsevier Inc. All rights reserved.

  12. Changes in Mammary Histology and Transcriptome Profiles by Low-Dose Exposure to Environmental Phenols at Critical Windows of Development1

    PubMed Central

    Gopalakrishnan, Kalpana; Teitelbaum, Susan L.; Lambertini, Luca; Wetmur, James; Manservisi, Fabiana; Falcioni, Laura; Panzacchi, Simona; Belpoggi, Fiorella; Chen, Jia

    2016-01-01

    Exposure to environmental chemicals has been linked to altered mammary development and cancer risk at high doses using animal models. Effects at low doses comparable to human exposure remain poorly understood, especially during critical developmental windows. We investigated the effects of two environmental phenols commonly used in personal care products – methyl paraben (MPB) and triclosan (TCS) – on the histology and transcriptome of normal mammary glands at low doses mimicking human exposure during critical windows of development. Sprague-Dawley rats were exposed during perinatal, prepubertal and pubertal windows, as well as from birth to lactation. Low-dose exposure to MPB and TCS induced measurable changes in both mammary histology (by Masson’s Trichrome Stain) and transcriptome (by microarrays) in a window-specific fashion. Puberty represented a window of heightened sensitivity to MPB, with increased glandular tissue and changes of expression in 295 genes with significant enrichment in functions such as DNA replication and cell cycle regulation. Long-term exposure to TCS from birth to lactation was associated with increased adipose and reduced glandular and secretory tissue, with expression alterations in 993 genes enriched in pathways such as cholesterol synthesis and adipogenesis. Finally, enrichment analyses revealed that genes modified by MPB and TCS were over-represented in human breast cancer gene signatures, suggesting possible links with breast carcinogenesis. These findings highlight the issues of critical windows of susceptibility that may confer heightened sensitivity to environmental insults and implicate the potential health effects of these ubiquitous environmental chemicals in breast cancer. PMID:27810681

  13. Short-term use of glucocorticoids and risk of peptic ulcer bleeding: a nationwide population-based case-crossover study.

    PubMed

    Tseng, C-L; Chen, Y-T; Huang, C-J; Luo, J-C; Peng, Y-L; Huang, D-F; Hou, M-C; Lin, H-C; Lee, F-Y

    2015-09-01

    Controversy exists regarding glucocorticoids therapy and the risk of peptic ulcer bleeding (PUB). The present study was undertaken to determine whether short-term use of glucocorticoids is associated with the occurrence of peptic ulcer bleeding. The records of adult patients hospitalised for newly diagnosed peptic ulcer bleeding from 2000 to 2012 were retrieved from the Taiwan National Health Insurance Research Database, a nationwide population-based registry system. The association between systemic glucocorticoids usage and peptic ulcer bleeding was determined with a conditional logistic regression model comparing cases and controls during time windows of 7, 14 and 28 days using a case-crossover design. Of the 8894 enrolled patients, the adjusted self-matched odds ratios for peptic ulcer bleeding after exposure to the glucocorticoids were 1.37 (95% CI: 1.12-1.68, P = 0.003) for the 7-day window, 1.66 (95% CI: 1.38-2.00, P < 0.001) for the 14-day window and 1.84 (95% CI: 1.57-2.16, P < 0.001) for the 28-day window. Moderate to high, but not low dose glucocorticoids (methylprednisolone <4 mg/day or its equivalence) were associated with an increased risk of peptic ulcer bleeding. Concomitant use of a nonselective nonsteroidal anti-inflammatory drug (NSAID) or aspirin further elevated the risk. However, it does not eliminate the effect of underlying diseases flare-up that may have placed the patients at risk for peptic ulcer bleeding in this kind of study design. Short-term (7-28 days) exposure to glucocorticoids is significantly associated with peptic ulcer bleeding; this risk seems dose-dependent and is higher when nonselective NSAIDs or aspirin are used concurrently. © 2015 John Wiley & Sons Ltd.

  14. [Prediction of round window visibility in cochlear implantation with temporal bone high resolution computed tomography].

    PubMed

    Sun, S P; Lu, W; Lei, Y B; Men, X M; Zuo, B; Ding, S G

    2017-08-07

    Objective: To discuss the prediction of round window(RW) visibility in cochlear implantation(CI) with temporal bone high resolution computed tomography(HRCT). Methods: From January 2013 to January 2017, 130 cases underwent both HRCT and CI in our hospital were analyzed. The distance from facial nerve to posterior canal wall(FWD), the angle between facial nerve and inner margin of round window(FRA), and the angle between facial nerve and tympanic anulus to inner margin of round window(FRAA) were detected at the level of round window on axial temporal bone HRCT. A line parallel to the posterior wall of ear canal was drawn from the anterior wall of facial nerve at the level of round window on axial temporal bone HRCT and its relationship with round window was detected (facial-round window line, FRL): type0-posterior to the round window, type1-between the round window, type2-anterior to the round window. Their(FWD, FRA, FRAA, FRL) relationships with intra-operative round window visibility were analyzed by SPSS 17.0 software. Results: FWD( F =18.76, P =0.00), FRA( F =34.57, P =0.00), FRAA ( F =14.24, P =0.00) could affect the intra-operative RW visibility significantly. RW could be exposed completely during CI when preoperative HRCT showing type0 FRL. RW might be partly exposed and not exposed when preoperative HRCT showing type1 and type2 FRL respectively. Conclusion: FWD, FRA, FRAA and FRL of temporal bone HRCT can predict intra-operative round window visibility effectively in CI surgery.

  15. Exponential smoothing weighted correlations

    NASA Astrophysics Data System (ADS)

    Pozzi, F.; Di Matteo, T.; Aste, T.

    2012-06-01

    In many practical applications, correlation matrices might be affected by the "curse of dimensionality" and by an excessive sensitiveness to outliers and remote observations. These shortcomings can cause problems of statistical robustness especially accentuated when a system of dynamic correlations over a running window is concerned. These drawbacks can be partially mitigated by assigning a structure of weights to observational events. In this paper, we discuss Pearson's ρ and Kendall's τ correlation matrices, weighted with an exponential smoothing, computed on moving windows using a data-set of daily returns for 300 NYSE highly capitalized companies in the period between 2001 and 2003. Criteria for jointly determining optimal weights together with the optimal length of the running window are proposed. We find that the exponential smoothing can provide more robust and reliable dynamic measures and we discuss that a careful choice of the parameters can reduce the autocorrelation of dynamic correlations whilst keeping significance and robustness of the measure. Weighted correlations are found to be smoother and recovering faster from market turbulence than their unweighted counterparts, helping also to discriminate more effectively genuine from spurious correlations.

  16. An Evaluation of Potential Operating Systems for Autonomous Underwater Vehicles

    DTIC Science & Technology

    2013-02-01

    Remotely Operated Vehicle RTOS Real-Time Operating System SAUC -E Student Autonomous Underwater Vehicle Challenge - Europe TCP Transmission Control Protocol...popularity, with examples including the Student Autonomous Underwater Vehicle Challenge - Europe ( SAUC -E) [7] and the AUVSI robosub competition [8]. For...28] for entry into AUV competitions such as SAUC -E [7], and AUVSI [8]. 8 UNCLASSIFIED UNCLASSIFIED DSTO–TN–1194 3.4 Windows CE Windows CE

  17. Imaging System

    NASA Technical Reports Server (NTRS)

    1995-01-01

    The 1100C Virtual Window is based on technology developed under NASA Small Business Innovation (SBIR) contracts to Ames Research Center. For example, under one contract Dimension Technologies, Inc. developed a large autostereoscopic display for scientific visualization applications. The Virtual Window employs an innovative illumination system to deliver the depth and color of true 3D imaging. Its applications include surgery and Magnetic Resonance Imaging scans, viewing for teleoperated robots, training, and in aviation cockpit displays.

  18. Evaluation of Computational Codes for Underwater Hull Analysis Model Applications

    DTIC Science & Technology

    2014-02-05

    desirable that the code can be run on a Windows operating system on the laptop, desktop, or workstation. The focus on Windows machines allows for...transition to such systems as operated on the Navy-Marine Corp Internet (NMCI). For each code the initial cost and yearly maintenance are identified...suggestions for reducing this burden to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports

  19. Carbon Nanotube Thin Films for Active Noise Cancellation, Solar Energy Harvesting, and Energy Storage in Building Windows

    NASA Astrophysics Data System (ADS)

    Hu, Shan

    This research explores the application of carbon nanotube (CNT) films for active noise cancellation, solar energy harvesting and energy storage in building windows. The CNT-based components developed herein can be integrated into a solar-powered active noise control system for a building window. First, the use of a transparent acoustic transducer as both an invisible speaker for auxiliary audio playback and for active noise cancellation is accomplished in this work. Several challenges related to active noise cancellation in the window are addressed. These include secondary path estimation and directional cancellation of noise so as to preserve auxiliary audio and internal sounds while preventing transmission of external noise into the building. Solar energy can be harvested at a low rate of power over long durations while acoustic sound cancellation requires short durations of high power. A supercapacitor based energy storage system is therefore considered for the window. Using CNTs as electrode materials, two generations of flexible, thin, and fully solid-state supercapacitors are developed that can be integrated into the window frame. Both generations consist of carbon nanotube films coated on supporting substrates as electrodes and a solid-state polymer gel layer for the electrolyte. The first generation is a single-cell parallel-plate supercapacitor with a working voltage of 3 Volts. Its energy density is competitive with commercially available supercapacitors (which use liquid electrolyte). For many applications that will require higher working voltage, the second-generation multi-cell supercapacitor is developed. A six-cell device with a working voltage as high as 12 Volts is demonstrated here. Unlike the first generation's 3D structure, the second generation has a novel planar (2D) architecture, which makes it easy to integrate multiple cells into a thin and flexible supercapacitor. The multi-cell planar supercapacitor has energy density exceeding that of other planar supercapacitors in literature by more than one order of magnitude. All-solution fabrication processes were developed for both generations to achieve economical and scalable production. In addition to carbon nanotubes, nickel/nickel oxide core-shell nanowires were also studied as electrode materials for supercapacitors, for which high specific capacitance but low working voltage were obtained. Semi-transparent solar cells with carbon nanotube counter electrodes are developed to power the active noise cancellation system. They can be directly mounted on the glass panes and become part of the home window. The 2.67% efficiency achieved is higher than the 1.8% efficiency required for harvesting adequate energy to cancel noise of 70dB Day-Night-Level, which impacts on a north-facing window. In summary, this project develops several fundamental technologies that together can contribute to a solar-powered active noise cancellation system for a building window. At the same time, since the component technologies being developed are fundamental, it is also likely that they will have wider applications in other domains beyond building windows.

  20. Calculating the Effect of External Shading on the Solar Heat Gain Coefficient of Windows

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kohler, Christian; Shukla, Yash; Rawal, Rajan

    Current prescriptive building codes have limited ways to account for the effect of solar shading, such as overhangs and awnings, on window solar heat gains. We propose two new indicators, the adjusted Solar Heat Gain Coefficient (aSHGC) which accounts for external shading while calculating the SHGC of a window, and a weighted SHGC (SHGCw) which provides a seasonal SHGC weighted by solar intensity. We demonstrate a method to calculate these indices using existing tools combined with additional calculations. The method is demonstrated by calculating the effect of an awning on a clear double glazing in New Delhi.

  1. Building-Integrated Solar Energy Devices based on Wavelength Selective Films

    NASA Astrophysics Data System (ADS)

    Ulavi, Tejas

    A potentially attractive option for building integrated solar is to employ hybrid solar collectors which serve dual purposes, combining solar thermal technology with either thin film photovoltaics or daylighting. In this study, two hybrid concepts, a hybrid photovoltaic/thermal (PV/T) collector and a hybrid 'solar window', are presented and analyzed to evaluate technical performance. In both concepts, a wavelength selective film is coupled with a compound parabolic concentrator (CPC) to reflect and concentrate the infrared portion of the solar spectrum onto a tubular absorber. The visible portion of the spectrum is transmitted through the concentrator to either a thin film Cadmium Telluride (CdTe) solar panel for electricity generation or into the interior space for daylighting. Special attention is given to the design of the hybrid devices for aesthetic building integration. An adaptive concentrator design based on asymmetrical truncation of CPCs is presented for the hybrid solar window concept. The energetic and spectral split between the solar thermal module and the PV or daylighting module are functions of the optical properties of the wavelength selective film and the concentrator geometry, and are determined using a Monte Carlo Ray-Tracing (MCRT) model. Results obtained from the MCRT can be used in conjugation with meteorological data for specific applications to study the impact of CPC design parameters including the half-acceptance angle thetac, absorber diameter D and truncation on the annual thermal and PV/daylighting efficiencies. The hybrid PV/T system is analyzed for a rooftop application in Phoenix, AZ. Compared to a system of the same area with independent solar thermal and PV modules, the hybrid PV/T provides 20% more energy, annually. However, the increase in total delivered energy is due solely to the addition of the thermal module and is achieved at an expense of a decrease in the annual electrical efficiency from 8.8% to 5.8% due to shading by the absorber tubes. For this reason, the PV/T hybrid is not recommended over other options in new installations. The hybrid solar window is evaluated for a horizontal skylight and south and east facing vertical windows in Minneapolis, MN. The predicted visible transmittance for the solar window is 0.66 to 0.73 for single glazed systems and 0.61 to 0.67 for double glazed systems. The solar heat gain coefficient and the U-factor for the window are comparable to existing glazing technology. Annual thermal efficiencies of up to 24% and 26% are predicted for the vertical window and the horizontal skylight respectively. Experimental measurements of the solar thermal component of the window confirm the trends of the model. In conclusion, the hybrid solar window combines the functionality of an energy efficient fenestration system with hybrid thermal energy generation to provide a compelling solution towards sustainable design of the built environment.

  2. Bacterial burden in the operating room: impact of airflow systems.

    PubMed

    Hirsch, Tobias; Hubert, Helmine; Fischer, Sebastian; Lahmer, Armin; Lehnhardt, Marcus; Steinau, Hans-Ulrich; Steinstraesser, Lars; Seipp, Hans-Martin

    2012-09-01

    Wound infections present one of the most prevalent and frequent complications associated with surgical procedures. This study analyzes the impact of currently used ventilation systems in the operating room to reduce bacterial contamination during surgical procedures. Four ventilation systems (window-based ventilation, supported air nozzle canopy, low-turbulence displacement airflow, and low-turbulence displacement airflow with flow stabilizer) were analyzed. Two hundred seventy-seven surgical procedures in 6 operating rooms of 5 different hospitals were analyzed for this study. Window-based ventilation showed the highest intraoperative contamination (13.3 colony-forming units [CFU]/h) followed by supported air nozzle canopy (6.4 CFU/h; P = .001 vs window-based ventilation) and low-turbulence displacement airflow (3.4 and 0.8 CFU/h; P < .001 vs window-based ventilation and supported air nozzle canopy). The highest protection was provided by the low-turbulence displacement airflow with flow stabilizer (0.7 CFU/h), which showed a highly significant difference compared with the best supported air nozzle canopy theatre (3.9 CFU/h; P < .001). Furthermore, this system showed no increase of contamination in prolonged durations of surgical procedures. This study shows that intraoperative contamination can be significantly reduced by the use of adequate ventilation systems. Copyright © 2012 Association for Professionals in Infection Control and Epidemiology, Inc. Published by Mosby, Inc. All rights reserved.

  3. Mobile User Objective System (MUOS) Multi-Service Operational Test and Evaluation-2 Report (with Classified Annex)

    DTIC Science & Technology

    2016-06-01

    an effective system monitoring and display capability. The SOM, C-SSE, and resource managers access MUOS via a web portal called the MUOS Planning...and Provisioning Application (PlanProvApp). This web portal is their window into MUOS and is designed to provide them with a shared understanding of...including page loading errors, partially loaded web pages, incomplete reports, and inaccurate reports. For example, MUOS reported that there were

  4. Decompression from Saturation Using Oxygen: Its Effect on DCS and RNA in Large Swine

    DTIC Science & Technology

    2010-01-01

    mask. The external jugular vein was catheter- ized with a 14-Ga., 30-cm single lumen catheter ( Central Venous Catheterization Set; Arrow... venous catheterization for sequential blood sampling from the pig. J Invest Surg 1991; 4:103-7. 3. Behnke AR. The isobaric (oxygen window) principle of...pressures may lead to toxicity that involves the pulmonary system and/ or the central nervous system (CNS). There is evidence that 100% oxygen in

  5. The positional relationship between facial nerve and round window niche in patients with congenital aural atresia and stenosis.

    PubMed

    Chen, Keguang; Lyu, Huiying; Xie, Youzhou; Yang, Lin; Zhang, Tianyu; Dai, Peidong

    2016-03-01

    To investigate whether differences existing in the distance between facial nerve (FN) and round window niche opening among congenital aural atresia (CAA), congenital aural stenosis (CAS) and a normal control group and to assess its effect on the round window implantation of vibrant soundbridge, CT images of 10 normal subjects (20 ears), 27 CAS patients (30 ears) and 25 CAA patients (30 ears) were analyzed. The distances from the central point of round window niche opening to the terminal point of the horizontal segment, the salient point of pyramidal segment, the beginning point of the vertical segment, and the vertical segment of the facial nerve (abbreviate as OA, OB, OC, OE, respectively) were calculated based on three-dimensional reconstruction using mimics software. The results suggested that the pyramidal segment of the FN was positioned more closely to round window niche opening in patients with both CAA and CAS groups than that in control group, whereas there was no significant difference between CAA and CAS group (P < 0.05). The vertical portion of the FN was positioned more closely to round window niche opening in the CAA group than those in both the CAS and control groups with statistical significance (P < 0.05). Furthermore, the vertical portion of the FN was positioned more closely to round window niche opening in the CAS group than that in control group (P < 0.05). In conclusion, the dislocation between facial nerve and round window niche in patients with congenital auditory canal malformations could have significant effects on the round window implantation of vibrant soundbridge. Moreover, three-dimensional measurements and assessments before surgery might be helpful for a safer surgical approach and implantation of vibrant soundbridge.

  6. The Effect of Heart Rate on Exposure Window and Best Phase for Stress Perfusion Computed Tomography: Lessons From the CORE320 Study.

    PubMed

    Steveson, Chloe; Schuijf, Joanne D; Vavere, Andrea L; Mather, Richard T; Caton, Teresa; Mehra, Vishal; Betoko, Aisha; Cox, Christopher; Lima, Joao Ac; George, Richard T

    The aim of this study is to evaluate the effect of heart rate on exposure window, best phase, and image quality for stress computed tomography perfusion (CTP) in the CORE320 study. The CTP data sets were analyzed to determine the best phase for perfusion analysis. A predefined exposure window covering 75% to 95% of the R-R cycle was used. Of the 368 patients included in the analysis, 93% received oral β blockade before the rest scan. The median heart rate during the stress acquisition was 69 bpm (interquartile range [IQR], 60-77). The median best phase was 81% (IQR, 76-90), and length of exposure window was 22% (IQR, 19-24). The best phase was significantly later in the cardiac cycle with higher heart rates (P < 0.001), and higher heart rates resulted in a small, but higher number of poor quality scans (6%, P < 0.001). The median effective dose of the stress scan was 5.3 mSv (IQR, 3.8-6.1). Stress myocardial CTP imaging can be performed using prospective electrocardiography triggering, an exposure window of 75% to 95%, and β-blockade resulting in good or excellent image quality in the majority (80%) of patients while maintaining a low effective radiation dose.

  7. Total Library Computerization for Windows.

    ERIC Educational Resources Information Center

    Combs, Joseph, Jr.

    1999-01-01

    Presents a general review of features of version 2.1 of Total Library Computerization (TLC) for Windows from On Point, Inc. Includes information about pricing, hardware and operating systems, modules/functions available, user interface, security, on-line catalog functions, circulation, cataloging, and documentation and online help. A table…

  8. Considerations When Upgrading and Renovating Window Systems

    ERIC Educational Resources Information Center

    Gille, Steve

    2010-01-01

    Today's educational facilities managers face many challenges. As stewards of their campus' physical assets, these professionals are charged with improving students' learning environments, saving money, and maintaining the historical and aesthetic integrity of their buildings. For schools and universities that have not replaced their windows in…

  9. Photonic microstructures for energy-generating clear glass and net-zero energy buildings

    NASA Astrophysics Data System (ADS)

    Vasiliev, Mikhail; Alghamedi, Ramzy; Nur-E-Alam, Mohammad; Alameh, Kamal

    2016-08-01

    Transparent energy-harvesting windows are emerging as practical building-integrated photovoltaics (BIPV), capable of generating electricity while simultaneously reducing heating and cooling demands. By incorporating spectrally-selective diffraction gratings as light deflecting structures of high visible transparency into lamination interlayers and using improved spectrally-selective thin-film coatings, most of the visible solar radiation can be transmitted through the glass windows with minimum attenuation. At the same time, the ultraviolet (UV) and a part of incident solar infrared (IR) radiation energy are converted and/or deflected geometrically towards the panel edge for collection by CuInSe2 solar cells. Experimental results show power conversion efficiencies in excess of 3.04% in 10 cm × 10 cm vertically-placed clear glass panels facing direct sunlight, and up to 2.08% in 50 cm × 50 cm installation-ready framed window systems. These results confirm the emergence of a new class of solar window system ready for industrial application.

  10. Photonic microstructures for energy-generating clear glass and net-zero energy buildings.

    PubMed

    Vasiliev, Mikhail; Alghamedi, Ramzy; Nur-E-Alam, Mohammad; Alameh, Kamal

    2016-08-23

    Transparent energy-harvesting windows are emerging as practical building-integrated photovoltaics (BIPV), capable of generating electricity while simultaneously reducing heating and cooling demands. By incorporating spectrally-selective diffraction gratings as light deflecting structures of high visible transparency into lamination interlayers and using improved spectrally-selective thin-film coatings, most of the visible solar radiation can be transmitted through the glass windows with minimum attenuation. At the same time, the ultraviolet (UV) and a part of incident solar infrared (IR) radiation energy are converted and/or deflected geometrically towards the panel edge for collection by CuInSe2 solar cells. Experimental results show power conversion efficiencies in excess of 3.04% in 10 cm × 10 cm vertically-placed clear glass panels facing direct sunlight, and up to 2.08% in 50 cm × 50 cm installation-ready framed window systems. These results confirm the emergence of a new class of solar window system ready for industrial application.

  11. Photonic microstructures for energy-generating clear glass and net-zero energy buildings

    PubMed Central

    Vasiliev, Mikhail; Alghamedi, Ramzy; Nur-E-Alam, Mohammad; Alameh, Kamal

    2016-01-01

    Transparent energy-harvesting windows are emerging as practical building-integrated photovoltaics (BIPV), capable of generating electricity while simultaneously reducing heating and cooling demands. By incorporating spectrally-selective diffraction gratings as light deflecting structures of high visible transparency into lamination interlayers and using improved spectrally-selective thin-film coatings, most of the visible solar radiation can be transmitted through the glass windows with minimum attenuation. At the same time, the ultraviolet (UV) and a part of incident solar infrared (IR) radiation energy are converted and/or deflected geometrically towards the panel edge for collection by CuInSe2 solar cells. Experimental results show power conversion efficiencies in excess of 3.04% in 10 cm × 10 cm vertically-placed clear glass panels facing direct sunlight, and up to 2.08% in 50 cm × 50 cm installation-ready framed window systems. These results confirm the emergence of a new class of solar window system ready for industrial application. PMID:27550827

  12. Exclusion of particulate allergens by window air conditioners.

    PubMed

    Solomon, W R; Burge, H A; Boise, J R

    1980-04-01

    Effects of window air-conditioner operation on intramural particle levels were assessed in the bedrooms of 20 homes and in 10 outpatient clinic examining rooms during late summer periods. At each site, pollen and spore collections in the mechanically cooled room and a normally ventilated counterpart were compared using volumetric impactors. Substantially lower particle recoveries (median = 16/m3) were found in air-conditioned rooms than in those with open windows alone (median = 253 particles/m3). Furthermore, substantial exclusion of small (e.g., Ganoderma spores) as well as large (ragweed pollens) aerosol components were found by window units. Control studies within normally ventilated rooms and outside their open windows showed a marked but variable inward flux of particles. Window units appear to substantially reduce indoor allergan levels by maintaining the isolation of enclosed spaces from particle-bearing outdoor air.

  13. The suppression effect of a periodic surface with semicircular grooves on the high power microwave long pill-box window multipactor phenomenon

    NASA Astrophysics Data System (ADS)

    Zhang, Xue; Wang, Yong; Fan, Junjie; Zhong, Yong; Zhang, Rui

    2014-09-01

    To improve the transmitting power in an S-band klystron, a long pill-box window that has a disk with grooves with a semicircular cross section is theoretically investigated and simulated. A Monte-Carlo algorithm is used to track the secondary electron trajectories and analyze the multipactor scenario in the long pill-box window and on the grooved surface. Extending the height of the long-box window can decrease the normal electric field on the surface of the window disk, but the single surface multipactor still exists. It is confirmed that the window disk with periodic semicircular grooves can explicitly suppress the multipactor and predominantly depresses the local field enhancement and the bottom continuous multipactor. The difference between semicircular and sharp boundary grooves is clarified numerically and analytically.

  14. An Analysis of Peer-Reviewed Scores and Impact Factors with Different Citation Time Windows: A Case Study of 28 Ophthalmologic Journals

    PubMed Central

    Liu, Xue-Li; Gai, Shuang-Shuang; Zhang, Shi-Le; Wang, Pu

    2015-01-01

    Background An important attribute of the traditional impact factor was the controversial 2-year citation window. So far, several scholars have proposed using different citation time windows for evaluating journals. However, there is no confirmation whether a longer citation time window would be better. How did the journal evaluation effects of 3IF, 4IF, and 6IF comparing with 2IF and 5IF? In order to understand these questions, we made a comparative study of impact factors with different citation time windows with the peer-reviewed scores of ophthalmologic journals indexed by Science Citation Index Expanded (SCIE) database. Methods The peer-reviewed scores of 28 ophthalmologic journals were obtained through a self-designed survey questionnaire. Impact factors with different citation time windows (including 2IF, 3IF, 4IF, 5IF, and 6IF) of 28 ophthalmologic journals were computed and compared in accordance with each impact factor’s definition and formula, using the citation analysis function of the Web of Science (WoS) database. An analysis of the correlation between impact factors with different citation time windows and peer-reviewed scores was carried out. Results Although impact factor values with different citation time windows were different, there was a high level of correlation between them when it came to evaluating journals. In the current study, for ophthalmologic journals’ impact factors with different time windows in 2013, 3IF and 4IF seemed the ideal ranges for comparison, when assessed in relation to peer-reviewed scores. In addition, the 3-year and 4-year windows were quite consistent with the cited peak age of documents published by ophthalmologic journals. Research Limitations Our study is based on ophthalmology journals and we only analyze the impact factors with different citation time window in 2013, so it has yet to be ascertained whether other disciplines (especially those with a later cited peak) or other years would follow the same or similar patterns. Originality/ Value We designed the survey questionnaire ourselves, specifically to assess the real influence of journals. We used peer-reviewed scores to judge the journal evaluation effect of impact factors with different citation time windows. The main purpose of this study was to help researchers better understand the role of impact factors with different citation time windows in journal evaluation. PMID:26295157

  15. An Analysis of Peer-Reviewed Scores and Impact Factors with Different Citation Time Windows: A Case Study of 28 Ophthalmologic Journals.

    PubMed

    Liu, Xue-Li; Gai, Shuang-Shuang; Zhang, Shi-Le; Wang, Pu

    2015-01-01

    An important attribute of the traditional impact factor was the controversial 2-year citation window. So far, several scholars have proposed using different citation time windows for evaluating journals. However, there is no confirmation whether a longer citation time window would be better. How did the journal evaluation effects of 3IF, 4IF, and 6IF comparing with 2IF and 5IF? In order to understand these questions, we made a comparative study of impact factors with different citation time windows with the peer-reviewed scores of ophthalmologic journals indexed by Science Citation Index Expanded (SCIE) database. The peer-reviewed scores of 28 ophthalmologic journals were obtained through a self-designed survey questionnaire. Impact factors with different citation time windows (including 2IF, 3IF, 4IF, 5IF, and 6IF) of 28 ophthalmologic journals were computed and compared in accordance with each impact factor's definition and formula, using the citation analysis function of the Web of Science (WoS) database. An analysis of the correlation between impact factors with different citation time windows and peer-reviewed scores was carried out. Although impact factor values with different citation time windows were different, there was a high level of correlation between them when it came to evaluating journals. In the current study, for ophthalmologic journals' impact factors with different time windows in 2013, 3IF and 4IF seemed the ideal ranges for comparison, when assessed in relation to peer-reviewed scores. In addition, the 3-year and 4-year windows were quite consistent with the cited peak age of documents published by ophthalmologic journals. Our study is based on ophthalmology journals and we only analyze the impact factors with different citation time window in 2013, so it has yet to be ascertained whether other disciplines (especially those with a later cited peak) or other years would follow the same or similar patterns. We designed the survey questionnaire ourselves, specifically to assess the real influence of journals. We used peer-reviewed scores to judge the journal evaluation effect of impact factors with different citation time windows. The main purpose of this study was to help researchers better understand the role of impact factors with different citation time windows in journal evaluation.

  16. A method for energy window optimization for quantitative tasks that includes the effects of model-mismatch on bias: application to Y-90 bremsstrahlung SPECT imaging.

    PubMed

    Rong, Xing; Du, Yong; Frey, Eric C

    2012-06-21

    Quantitative Yttrium-90 ((90)Y) bremsstrahlung single photon emission computed tomography (SPECT) imaging has shown great potential to provide reliable estimates of (90)Y activity distribution for targeted radionuclide therapy dosimetry applications. One factor that potentially affects the reliability of the activity estimates is the choice of the acquisition energy window. In contrast to imaging conventional gamma photon emitters where the acquisition energy windows are usually placed around photopeaks, there has been great variation in the choice of the acquisition energy window for (90)Y imaging due to the continuous and broad energy distribution of the bremsstrahlung photons. In quantitative imaging of conventional gamma photon emitters, previous methods for optimizing the acquisition energy window assumed unbiased estimators and used the variance in the estimates as a figure of merit (FOM). However, for situations, such as (90)Y imaging, where there are errors in the modeling of the image formation process used in the reconstruction there will be bias in the activity estimates. In (90)Y bremsstrahlung imaging this will be especially important due to the high levels of scatter, multiple scatter, and collimator septal penetration and scatter. Thus variance will not be a complete measure of reliability of the estimates and thus is not a complete FOM. To address this, we first aimed to develop a new method to optimize the energy window that accounts for both the bias due to model-mismatch and the variance of the activity estimates. We applied this method to optimize the acquisition energy window for quantitative (90)Y bremsstrahlung SPECT imaging in microsphere brachytherapy. Since absorbed dose is defined as the absorbed energy from the radiation per unit mass of tissues in this new method we proposed a mass-weighted root mean squared error of the volume of interest (VOI) activity estimates as the FOM. To calculate this FOM, two analytical expressions were derived for calculating the bias due to model-mismatch and the variance of the VOI activity estimates, respectively. To obtain the optimal acquisition energy window for general situations of interest in clinical (90)Y microsphere imaging, we generated phantoms with multiple tumors of various sizes and various tumor-to-normal activity concentration ratios using a digital phantom that realistically simulates human anatomy, simulated (90)Y microsphere imaging with a clinical SPECT system and typical imaging parameters using a previously validated Monte Carlo simulation code, and used a previously proposed method for modeling the image degrading effects in quantitative SPECT reconstruction. The obtained optimal acquisition energy window was 100-160 keV. The values of the proposed FOM were much larger than the FOM taking into account only the variance of the activity estimates, thus demonstrating in our experiment that the bias of the activity estimates due to model-mismatch was a more important factor than the variance in terms of limiting the reliability of activity estimates.

  17. Intranasal guanosine administration presents a wide therapeutic time window to reduce brain damage induced by permanent ischemia in rats.

    PubMed

    Ramos, Denise Barbosa; Muller, Gabriel Cardozo; Rocha, Guilherme Botter Maio; Dellavia, Gustavo Hirata; Almeida, Roberto Farina; Pettenuzzo, Leticia Ferreira; Loureiro, Samanta Oliveira; Hansel, Gisele; Horn, Ângelo Cássio Magalhães; Souza, Diogo Onofre; Ganzella, Marcelo

    2016-03-01

    In addition to its intracellular roles, the nucleoside guanosine (GUO) also has extracellular effects that identify it as a putative neuromodulator signaling molecule in the central nervous system. Indeed, GUO can modulate glutamatergic neurotransmission, and it can promote neuroprotective effects in animal models involving glutamate neurotoxicity, which is the case in brain ischemia. In the present study, we aimed to investigate a new in vivo GUO administration route (intranasal, IN) to determine putative improvement of GUO neuroprotective effects against an experimental model of permanent focal cerebral ischemia. Initially, we demonstrated that IN [(3)H] GUO administration reached the brain in a dose-dependent and saturable pattern in as few as 5 min, presenting a higher cerebrospinal GUO level compared with systemic administration. IN GUO treatment started immediately or even 3 h after ischemia onset prevented behavior impairment. The behavior recovery was not correlated to decreased brain infarct volume, but it was correlated to reduced mitochondrial dysfunction in the penumbra area. Therefore, we showed that the IN route is an efficient way to promptly deliver GUO to the CNS and that IN GUO treatment prevented behavioral and brain impairment caused by ischemia in a therapeutically wide time window.

  18. Implementing Audio-CASI on Windows’ Platforms

    PubMed Central

    Cooley, Philip C.; Turner, Charles F.

    2011-01-01

    Audio computer-assisted self interviewing (Audio-CASI) technologies have recently been shown to provide important and sometimes dramatic improvements in the quality of survey measurements. This is particularly true for measurements requiring respondents to divulge highly sensitive information such as their sexual, drug use, or other sensitive behaviors. However, DOS-based Audio-CASI systems that were designed and adopted in the early 1990s have important limitations. Most salient is the poor control they provide for manipulating the video presentation of survey questions. This article reports our experiences adapting Audio-CASI to Microsoft Windows 3.1 and Windows 95 platforms. Overall, our Windows-based system provided the desired control over video presentation and afforded other advantages including compatibility with a much wider array of audio devices than our DOS-based Audio-CASI technologies. These advantages came at the cost of increased system requirements --including the need for both more RAM and larger hard disks. While these costs will be an issue for organizations converting large inventories of PCS to Windows Audio-CASI today, this will not be a serious constraint for organizations and individuals with small inventories of machines to upgrade or those purchasing new machines today. PMID:22081743

  19. Iconic Meaning in Music: An Event-Related Potential Study.

    PubMed

    Cai, Liman; Huang, Ping; Luo, Qiuling; Huang, Hong; Mo, Lei

    2015-01-01

    Although there has been extensive research on the processing of the emotional meaning of music, little is known about other aspects of listeners' experience of music. The present study investigated the neural correlates of the iconic meaning of music. Event-related potentials (ERP) were recorded while a group of 20 music majors and a group of 20 non-music majors performed a lexical decision task in the context of implicit musical iconic meaning priming. ERP analysis revealed a significant N400 effect of congruency in time window 260-510 ms following the onset of the target word only in the group of music majors. Time-course analysis using 50 ms windows indicated significant N400 effects both within the time window 410-460 ms and 460-510 ms for music majors, whereas only a partial N400 effect during time window 410-460 ms was observed for non-music majors. There was also a trend for the N400 effects in the music major group to be stronger than those in the non-major group in the sub-windows of 310-360 ms and 410-460 ms. Especially in the sub-window of 410-460 ms, the topographical map of the difference waveforms between congruent and incongruent conditions revealed different N400 distribution between groups; the effect was concentrated in bilateral frontal areas for music majors, but in central-parietal areas for non-music majors. These results imply probable neural mechanism differences underlying automatic iconic meaning priming of music. Our findings suggest that processing of the iconic meaning of music can be accomplished automatically and that musical training may facilitate the understanding of the iconic meaning of music.

  20. Iconic Meaning in Music: An Event-Related Potential Study

    PubMed Central

    Luo, Qiuling; Huang, Hong; Mo, Lei

    2015-01-01

    Although there has been extensive research on the processing of the emotional meaning of music, little is known about other aspects of listeners’ experience of music. The present study investigated the neural correlates of the iconic meaning of music. Event-related potentials (ERP) were recorded while a group of 20 music majors and a group of 20 non-music majors performed a lexical decision task in the context of implicit musical iconic meaning priming. ERP analysis revealed a significant N400 effect of congruency in time window 260-510 ms following the onset of the target word only in the group of music majors. Time-course analysis using 50 ms windows indicated significant N400 effects both within the time window 410-460 ms and 460-510 ms for music majors, whereas only a partial N400 effect during time window 410-460 ms was observed for non-music majors. There was also a trend for the N400 effects in the music major group to be stronger than those in the non-major group in the sub-windows of 310-360ms and 410-460ms. Especially in the sub-window of 410-460 ms, the topographical map of the difference waveforms between congruent and incongruent conditions revealed different N400 distribution between groups; the effect was concentrated in bilateral frontal areas for music majors, but in central-parietal areas for non-music majors. These results imply probable neural mechanism differences underlying automatic iconic meaning priming of music. Our findings suggest that processing of the iconic meaning of music can be accomplished automatically and that musical training may facilitate the understanding of the iconic meaning of music. PMID:26161561

  1. Night-time naturally ventilated offices: Statistical simulations of window-use patterns from field monitoring

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yun, Geun Young; Steemers, Koen

    2010-07-15

    This paper investigates occupant behaviour of window-use in night-time naturally ventilated offices on the basis of a pilot field study, conducted during the summers of 2006 and 2007 in Cambridge, UK, and then demonstrates the effects of employing night-time ventilation on indoor thermal conditions using predictive models of occupant window-use. A longitudinal field study shows that occupants make good use of night-time natural ventilation strategies when provided with openings that allow secure ventilation, and that there is a noticeable time of day effect in window-use patterns (i.e. increased probability of action on arrival and departure). We develop logistic models ofmore » window-use for night-time naturally ventilated offices, which are subsequently applied to a behaviour algorithm, including Markov chains and Monte Carlo methods. The simulations using the behaviour algorithm demonstrate a good agreement with the observational data of window-use, and reveal how building design and occupant behaviour collectively affect the thermal performance of offices. They illustrate that the provision of secure ventilation leads to more frequent use of the window, and thus contributes significantly to the achievement of a comfortable indoor environment during the daytime occupied period. For example, the maximum temperature for a night-time ventilated office is found to be 3 C below the predicted value for a daytime-only ventilated office. (author)« less

  2. An interactive program for computer-aided map design, display, and query: EMAPKGS2

    USGS Publications Warehouse

    Pouch, G.W.

    1997-01-01

    EMAPKGS2 is a user-friendly, PC-based electronic mapping tool for use in hydrogeologic exploration and appraisal. EMAPKGS2 allows the analyst to construct maps interactively from data stored in a relational database, perform point-oriented spatial queries such as locating all wells within a specified radius, perform geographic overlays, and export the data to other programs for further analysis. EMAPKGS2 runs under Microsoft?? Windows??? 3.1 and compatible operating systems. EMAPKGS2 is a public domain program available from the Kansas Geological Survey. EMAPKGS2 is the centerpiece of WHEAT, the Windows-based Hydrogeologic Exploration and Appraisal Toolkit, a suite of user-friendly Microsoft?? Windows??? programs for natural resource exploration and management. The principal goals in development of WHEAT have been ease of use, hardware independence, low cost, and end-user extensibility. WHEAT'S native data format is a Microsoft?? Access?? database. WHEAT stores a feature's geographic coordinates as attributes so they can be accessed easily by the user. The WHEAT programs are designed to be used in conjunction with other Microsoft?? Windows??? software to allow the natural resource scientist to perform work easily and effectively. WHEAT and EMAPKGS have been used at several of Kansas' Groundwater Management Districts and the Kansas Geological Survey on groundwater management operations, groundwater modeling projects, and geologic exploration projects. ?? 1997 Elsevier Science Ltd.

  3. ESDAPT - APT PROGRAMMING EDITOR AND INTERPRETER

    NASA Technical Reports Server (NTRS)

    Premack, T.

    1994-01-01

    ESDAPT is a graphical programming environment for developing APT (Automatically Programmed Tool) programs for controlling numerically controlled machine tools. ESDAPT has a graphical user interface that provides the user with an APT syntax sensitive text editor and windows for displaying geometry and tool paths. APT geometry statement can also be created using menus and screen picks. ESDAPT interprets APT geometry statements and displays the results in its view windows. Tool paths are generated by batching the APT source to an APT processor (COSMIC P-APT recommended). The tool paths are then displayed in the view windows. Hardcopy output of the view windows is in color PostScript format. ESDAPT is written in C-language, yacc, lex, and XView for use on Sun4 series computers running SunOS. ESDAPT requires 4Mb of disk space, 7Mb of RAM, and MIT's X Window System, Version 11 Release 4, or OpenWindows version 3 for execution. Program documentation in PostScript format and an executable for OpenWindows version 3 are provided on the distribution media. The standard distribution medium for ESDAPT is a .25 inch streaming magnetic tape cartridge (Sun QIC-24) in UNIX tar format. This program was developed in 1992.

  4. Is There a Critical Period for the Developmental Neurotoxicity of Low-Level Tobacco Smoke Exposure?

    PubMed

    Slotkin, Theodore A; Stadler, Ashley; Skavicus, Samantha; Card, Jennifer; Ruff, Jonathan; Levin, Edward D; Seidler, Frederic J

    2017-01-01

    Secondhand tobacco smoke exposure in pregnancy increases the risk of neurodevelopmental disorders. We evaluated in rats whether there is a critical period during which tobacco smoke extract (TSE) affects the development of acetylcholine and serotonin systems, prominent targets for adverse effects of nicotine and tobacco smoke. We simulated secondhand smoke exposure by administering TSE so as to produce nicotine concentrations one-tenth those in active smoking, with 3 distinct, 10-day windows: premating, early gestation or late gestation. We conducted longitudinal evaluations in multiple brain regions, starting in early adolescence (postnatal day 30) and continued to full adulthood (day 150). TSE exposure in any of the 3 windows impaired presynaptic cholinergic activity, exacerbated by a decrement in nicotinic cholinergic receptor concentrations. Although the adverse effects were seen for all 3 treatment windows, there was a distinct progression, with lowest sensitivity for premating exposure and higher sensitivity for gestational exposures. Serotonin receptors were also reduced by TSE exposure with the same profile: little effect with premating exposure, intermediate effect with early gestational exposure and large effect with late gestational exposure. As serotonergic circuits can offset the neurobehavioral impact of cholinergic deficits, these receptor changes were maladaptive. Thus, there is no single 'critical period' for effects of low-level tobacco smoke but there is differential sensitivity dependent upon the developmental stage at the time of exposure. Our findings reinforce the need to avoid secondhand smoke exposure not only during pregnancy, but also in the period prior to conception, or generally for women of childbearing age. © The Author 2016. Published by Oxford University Press on behalf of the Society of Toxicology. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  5. Evaluation of Honeywell Recoverable Computer System (RCS) in Presence of Electromagnetic Effects

    NASA Technical Reports Server (NTRS)

    Malekpour, Mahyar

    1997-01-01

    The design and development of a Closed-Loop System to study and evaluate the performance of the Honeywell Recoverable Computer System (RCS) in electromagnetic environments (EME) is presented. The development of a Windows-based software package to handle the time critical communication of data and commands between the RCS and flight simulation code in real-time, while meeting the stringent hard deadlines is also presented. The performance results of the RCS while exercising flight control laws under ideal conditions as well as in the presence of electromagnetic fields is also discussed.

  6. SWUIS - Robinson works with telescope mounted in the side hatch window

    NASA Image and Video Library

    1997-08-12

    S85-E-5046 (12 August 1997) --- Astronaut Stephen K. Robinson, mission specialist, makes observations with the Southwest Ultraviolet Imaging System (SWUIS) through the Space Shuttle Discovery's hatch window during flight day six. The photograph was taken with the Electronic Still Camera (ESC).

  7. Bandgap and pseudohelicity effects over conductance in gapped graphene junctures

    NASA Astrophysics Data System (ADS)

    Navarro-Giraldo, J. A.; Quimbay, C. J.

    2018-07-01

    We study the conductance in gapped single-layer graphene junctures as a function of bangap, pseudohelicity and charge carriers density. To do it, we first calculate the transmission coefficients of massive charge carries for p–n and n–p–n junctures of gapped single-layer graphene. Next, we calculate the conductance for these two systems using the Landauer formula. Only for the p–n juncture case and non-zero bandgap values, we find the existence of a contribution to the conductance from pseudohelicity inversion states, which is small compared to the contribution from pseudohelicity conservation states. Also, we find for both type of junctures that there exists a window of charge carriers densities values where the conductance is zero (conductance gap), in such a way that the size of this window depends on the squared of the bandgap. We observe that the existence of a bandgap in the system leads to valley mixing and this fact could be useful for the future design of devices based on single-layer graphene.

  8. Applications of graphics to support a testbed for autonomous space vehicle operations

    NASA Technical Reports Server (NTRS)

    Schmeckpeper, K. R.; Aldridge, J. P.; Benson, S.; Horner, S.; Kullman, A.; Mulder, T.; Parrott, W.; Roman, D.; Watts, G.; Bochsler, Daniel C.

    1989-01-01

    Researchers describe their experience using graphics tools and utilities while building an application, AUTOPS, that uses a graphical Machintosh (TM)-like interface for the input and display of data, and animation graphics to enhance the presentation of results of autonomous space vehicle operations simulations. AUTOPS is a test bed for evaluating decisions for intelligent control systems for autonomous vehicles. Decisions made by an intelligent control system, e.g., a revised mission plan, might be displayed to the user in textual format or he can witness the effects of those decisions via out of window graphics animations. Although a textual description conveys essentials, a graphics animation conveys the replanning results in a more convincing way. Similarily, iconic and menu-driven screen interfaces provide the user with more meaningful options and displays. Presented here are experiences with the SunView and TAE Plus graphics tools used for interface design, and the Johnson Space Center Interactive Graphics Laboratory animation graphics tools used for generating out out of the window graphics.

  9. In pursuit of resilience: stress, epigenetics, and brain plasticity.

    PubMed

    McEwen, Bruce S

    2016-06-01

    The brain is the central organ for adaptation to experiences, including stressors, which are capable of changing brain architecture as well as altering systemic function through neuroendocrine, autonomic, immune, and metabolic systems. Because the brain is the master regulator of these systems, as well as of behavior, alterations in brain function by chronic stress can have direct and indirect effects on cumulative allostatic overload, which refers to the cost of adaptation. There is much new knowledge on the neural control of systemic physiology and the feedback actions of physiologic mediators on brain regions regulating higher cognitive function, emotional regulation, and self-regulation. The healthy brain has a considerable capacity for resilience, based upon its ability to respond to interventions designed to open "windows of plasticity" and redirect its function toward better health. As a result, plasticity-facilitating treatments should be given within the framework of a positive behavioral intervention; negative experiences during this window may even make matters worse. Indeed, there are no magic bullets and drugs cannot substitute for targeted interventions that help an individual become resilient, of which mindfulness-based stress reduction and meditation are emerging as useful tools. © 2016 New York Academy of Sciences.

  10. Sustainability Engineering and Maintenance - Plan, Design, and Construct for Maintainability: Sustainable Lighting Systems

    DTIC Science & Technology

    2011-01-01

    Window film should be considered to control heat gain. Skylights when positioned and spaced properly with the proper lens systems, admit more light...per unit area than windows, and distribute the light more evenly over the space. Skylights are mainly recommended in single floor high bay...facilities such as warehouses, hangars, gymnasiums, and big box stores.  The optimum material to use for skylights is either glass or acrylic. Double

  11. Breaking through with Thin-Client Technologies: A Cost Effective Approach for Academic Libraries.

    ERIC Educational Resources Information Center

    Elbaz, Sohair W.; Stewart, Christofer

    This paper provides an overview of thin-client/server computing in higher education. Thin-clients are like PCs in appearance, but they do not house hard drives or localized operating systems and cannot function without being connected to a server. Two types of thin-clients are described: the Network Computer (NC) and the Windows Terminal (WT).…

  12. Diagnosing and ranking retinopathy disease level using diabetic fundus image recuperation approach.

    PubMed

    Somasundaram, K; Rajendran, P Alli

    2015-01-01

    Retinal fundus images are widely used in diagnosing different types of eye diseases. The existing methods such as Feature Based Macular Edema Detection (FMED) and Optimally Adjusted Morphological Operator (OAMO) effectively detected the presence of exudation in fundus images and identified the true positive ratio of exudates detection, respectively. These mechanically detected exudates did not include more detailed feature selection technique to the system for detection of diabetic retinopathy. To categorize the exudates, Diabetic Fundus Image Recuperation (DFIR) method based on sliding window approach is developed in this work to select the features of optic cup in digital retinal fundus images. The DFIR feature selection uses collection of sliding windows with varying range to obtain the features based on the histogram value using Group Sparsity Nonoverlapping Function. Using support vector model in the second phase, the DFIR method based on Spiral Basis Function effectively ranks the diabetic retinopathy disease level. The ranking of disease level on each candidate set provides a much promising result for developing practically automated and assisted diabetic retinopathy diagnosis system. Experimental work on digital fundus images using the DFIR method performs research on the factors such as sensitivity, ranking efficiency, and feature selection time.

  13. Diagnosing and Ranking Retinopathy Disease Level Using Diabetic Fundus Image Recuperation Approach

    PubMed Central

    Somasundaram, K.; Alli Rajendran, P.

    2015-01-01

    Retinal fundus images are widely used in diagnosing different types of eye diseases. The existing methods such as Feature Based Macular Edema Detection (FMED) and Optimally Adjusted Morphological Operator (OAMO) effectively detected the presence of exudation in fundus images and identified the true positive ratio of exudates detection, respectively. These mechanically detected exudates did not include more detailed feature selection technique to the system for detection of diabetic retinopathy. To categorize the exudates, Diabetic Fundus Image Recuperation (DFIR) method based on sliding window approach is developed in this work to select the features of optic cup in digital retinal fundus images. The DFIR feature selection uses collection of sliding windows with varying range to obtain the features based on the histogram value using Group Sparsity Nonoverlapping Function. Using support vector model in the second phase, the DFIR method based on Spiral Basis Function effectively ranks the diabetic retinopathy disease level. The ranking of disease level on each candidate set provides a much promising result for developing practically automated and assisted diabetic retinopathy diagnosis system. Experimental work on digital fundus images using the DFIR method performs research on the factors such as sensitivity, ranking efficiency, and feature selection time. PMID:25945362

  14. Select Components and Finish System Design of a Window Air Conditioner with Propane

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shen, Bo; Abdelaziz, Omar

    This report describes the technical targets for developing a high efficiency window air conditioner (WAC) using propane (R-290). The baseline unit selected for this activity is a GE R-410A WAC. We established collaboration with a Chinese rotary compressor manufacturer, to select an R-290 compressor. We first modelled and calibrated the WAC system model using R-410A. Next, we applied the calibrated system model to design the R-290 WAC, and decided the strategies to reduce the system charge below 260 grams and achieve the capacity and efficiency targets.

  15. Arcjet exploratory tests of ARC optical window design for the AFE vehicle

    NASA Technical Reports Server (NTRS)

    Whiting, Ellis E.; Terrazas-Salinas, Imelda; Craig, Roger A.; Sobeck, Charles K.; Sarver, George L., III; Salerno, Louis J.; Love, Wendell; Maa, Scott; Covington, AL

    1991-01-01

    Tests were made in the 20 MW arc jet facility at the NASA ARC to determine the suitability of sapphire and fused silica as window materials for the Aeroassist Flight Experiment (AFE) entry vehicle. Twenty nine tests were made; 25 at a heating rate about 80 percent of that expected during the AFE entry and 4 at approximately the full, 100 percent AFE heating rate profile, that produces a temperature of about 2900 F on the surface of the tiles that protect the vehicle. These tests show that a conductively cooled window design using mechanical thermal contacts and sapphire is probably not practical. Cooling the window using mechanical thermal contacts produces thermal stresses in the sapphire that cause the window to crack. An insulated design using sapphire, that cools the window as little as possible, appears promising although some spectral data in the vacuum-ultra-violet (VUV) will be lost due to the high temperature reached by the sapphire. The surface of the insulated sapphire windows, tested at the 100 percent AFE heating rate, showed some slight ablation, and cracks appeared in two of three test windows. One small group of cracks were obviously caused by mechanical binding of the window in the assembly, which can be eliminated with improved design. Other cracks were long, straight, thin crystallographic cracks that have very little effect on the optical transmission of the window. Also, the windows did not fall apart along these crystallographic cracks when the windows were removed from their assemblies. Theoretical results from the thermal analysis computer program SINDA indicate that increasing the window thickness from 4 to 8 mm may enable surface ablation to be avoided. An insulated design using a fused silica window tested at the nominal AFE heating rate experienced severe ablation, thus fused silica is not considered to be an acceptable window material.

  16. Automated Liquid-Level Control of a Nutrient Reservoir for a Hydroponic System

    NASA Technical Reports Server (NTRS)

    Smith, Boris; Asumadu, Johnson A.; Dogan, Numan S.

    1997-01-01

    A microprocessor-based system for control of the liquid level of a nutrient reservoir for a plant hydroponic growing system has been developed. The system uses an ultrasonic transducer to sense the liquid level or height. A National Instruments' Multifunction Analog and Digital Input/Output PC Kit includes NI-DAQ DOS/Windows driver software for an IBM 486 personal computer. A Labview Full Development system for Windows is the graphical programming system being used. The system allows liquid level control to within 0.1 cm for all levels tried between 8 and 36 cm in the hydroponic system application. The detailed algorithms have been developed and a fully automated microprocessor based nutrient replenishment system has been described for this hydroponic system.

  17. Thermal Analysis for Monitoring Effects of Shock-Induced Physical, Mechanical, and Chemical Changes in Materials

    DTIC Science & Technology

    2015-01-19

    MS WINDOWS platform, which enables multitasking with simultaneous evaluation and operation 1. REPORT DATE (DD-MM-YYYY) 4. TITLE AND SUBTITLE 13...measurement and analysis software for data acquisition, storage and evaluation with MS WINDOWS platform, which enables multitasking with simultaneous...Proteus measurement and analysis software for data acquisition, storage and evaluation with MS WINDOWS platform, which enables multitasking with

  18. Efficient Windows Collaborative

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nils Petermann

    2010-02-28

    The project goals covered both the residential and commercial windows markets and involved a range of audiences such as window manufacturers, builders, homeowners, design professionals, utilities, and public agencies. Essential goals included: (1) Creation of 'Master Toolkits' of information that integrate diverse tools, rating systems, and incentive programs, customized for key audiences such as window manufacturers, design professionals, and utility programs. (2) Delivery of education and outreach programs to multiple audiences through conference presentations, publication of articles for builders and other industry professionals, and targeted dissemination of efficient window curricula to professionals and students. (3) Design and implementation of mechanismsmore » to encourage and track sales of more efficient products through the existing Window Products Database as an incentive for manufacturers to improve products and participate in programs such as NFRC and ENERGY STAR. (4) Development of utility incentive programs to promote more efficient residential and commercial windows. Partnership with regional and local entities on the development of programs and customized information to move the market toward the highest performing products. An overarching project goal was to ensure that different audiences adopt and use the developed information, design and promotion tools and thus increase the market penetration of energy efficient fenestration products. In particular, a crucial success criterion was to move gas and electric utilities to increase the promotion of energy efficient windows through demand side management programs as an important step toward increasing the market share of energy efficient windows.« less

  19. Stress within a Restricted Time Window Selectively Affects the Persistence of Long-Term Memory

    PubMed Central

    Fang, Qin; Chai, Ning; Zhao, Li-Yan; Xue, Yan-Xue; Luo, Yi-Xiao; Jian, Min; Han, Ying; Shi, Hai-Shui; Lu, Lin; Wu, Ping; Wang, Ji-Shi

    2013-01-01

    The effects of stress on emotional memory are distinct and depend on the stages of memory. Memory undergoes consolidation and reconsolidation after acquisition and retrieval, respectively. Stress facilitates the consolidation but disrupts the reconsolidation of emotional memory. Previous research on the effects of stress on memory have focused on long-term memory (LTM) formation (tested 24 h later), but the effects of stress on the persistence of LTM (tested at least 1 week later) are unclear. Recent findings indicated that the persistence of LTM requires late-phase protein synthesis in the dorsal hippocampus. The present study investigated the effect of stress (i.e., cold water stress) during the late phase after the acquisition and retrieval of contextual fear memory in rats. We found that stress and corticosterone administration during the late phase (12 h) after acquisition, referred to as late consolidation, selectively enhanced the persistence of LTM, whereas stress during the late phase (12 h) after retrieval, referred to as late reconsolidation, selectively disrupted the restabilized persistence of LTM. Moreover, the effects of stress on the persistence of LTM were blocked by the corticosterone synthesis inhibitor metyrapone, which was administered before stress, suggesting that the glucocorticoid system is involved in the effects of stress on the persistence of LTM. We conclude that stress within a restricted time window after acquisition or retrieval selectively affects the persistence of LTM and depends on the glucocorticoid system. PMID:23544051

  20. Using the Fish Larvae and Egg Exposure System (FLEES) to Generate Effects Data for Informing Environmental Windows

    DTIC Science & Technology

    2017-03-01

    complete a specific part of its life cycle due to resuspended sediment. However, there is limited information concerning species-specific biological...and to determine its effects on the early life stages of aquatic organisms. Studies using FLEES use fine-grained sediment particles which are most...the dredge to areas where the critical life stages of the species of concern may be exposed. Target endpoints were project specific, including

  1. Standards for efficient employment of wide-area motion imagery (WAMI) sensors

    NASA Astrophysics Data System (ADS)

    Randall, L. Scott; Maenner, Paul F.

    2013-05-01

    Airborne Wide Area Motion Imagery (WAMI) sensors provide the opportunity for continuous high-resolution surveillance of geographic areas covering tens of square kilometers. This is both a blessing and a curse. Data volumes from "gigapixel-class" WAMI sensors are orders of magnitude greater than for traditional "megapixel-class" video sensors. The amount of data greatly exceeds the capacities of downlinks to ground stations, and even if this were not true, the geographic coverage is too large for effective human monitoring. Although collected motion imagery is recorded on the platform, typically only small "windows" of the full field of view are transmitted to the ground; the full set of collected data can be retrieved from the recording device only after the mission has concluded. Thus, the WAMI environment presents several difficulties: (1) data is too massive for downlink; (2) human operator selection and control of the video windows may not be effective; (3) post-mission storage and dissemination may be limited by inefficient file formats; and (4) unique system implementation characteristics may thwart exploitation by available analysis tools. To address these issues, the National Geospatial-Intelligence Agency's Motion Imagery Standards Board (MISB) is developing relevant standard data exchange formats: (1) moving target indicator (MTI) and tracking metadata to support tipping and cueing of WAMI windows using "watch boxes" and "trip wires"; (2) control channel commands for positioning the windows within the full WAMI field of view; and (3) a full-field-of-view spatiotemporal tiled file format for efficient storage, retrieval, and dissemination. The authors previously provided an overview of this suite of standards. This paper describes the latest progress, with specific concentration on a detailed description of the spatiotemporal tiled file format.

  2. Safety of intraparenchymal convection-enhanced delivery of cintredekin besudotox in early-phase studies.

    PubMed

    Kunwar, Sandeep; Chang, Susan M; Prados, Michael D; Berger, Mitchel S; Sampson, John H; Croteau, David; Sherman, Jeffrey W; Grahn, Amy Y; Shu, Vince S; Dul, Jeanne L; Husain, Syed R; Joshi, Bharat H; Pedain, Christoph; Puri, Raj K

    2006-04-15

    Convection-enhanced delivery (CED) is an increasingly used novel local/regional delivery method targeted directly to tissue. It relies on a continuous pressure gradient for distribution of therapeutic agents into the interstitial space, with administration of the infusate over a few days. Cintredekin besudotox (also known as IL13- PE38QQR) is a recombinant chimeric cytotoxin consisting of interleukin-13 and a truncated exotoxin produced by the Pseudomonas aeruginosa bacterium, which targets malignant glioma cells. Cintredekin besudotox was administered via intraparenchymal CED after resection of supratentorial recurrent malignant glioma. The safety and toxicity profile was reviewed for 53 patients in whom infusion catheters had been placed; 51 of them received CED of the study drug. Adverse events were categorized based on time of onset in relation to CED, and the causal relationship with catheter placement or delivery of cintredekin besudotox. Catheters were placed in 53 patients, although only 51 of them received cintredekin besudotox. Most adverse events related to catheter placement or the study drug originated from the central nervous system. Three symptomatic windows were defined: the first one was between surgical procedure and CED; the second was during CED and up to 1 week after its completion; and the third window was 2 to 10 weeks after treatment. Those windows generally reflected adverse events related to surgical procedures, mass effect from infusate, and drug effect on tumor-infiltrated and normal brain parenchyma, respectively. The symptomatic windows identified in this study apply to any CED clinical trials, particularly those in which chimeric cytotoxins are used, and will help to determine the most likely underlying pathophysiological process causing symptoms. This information, in turn, will help to prevent adverse events or minimize their severity. Those events also have implications for dose escalation and outcome measures.

  3. Computer-Based Medical System

    NASA Technical Reports Server (NTRS)

    1998-01-01

    SYMED, Inc., developed a unique electronic medical records and information management system. The S2000 Medical Interactive Care System (MICS) incorporates both a comprehensive and interactive medical care support capability and an extensive array of digital medical reference materials in either text or high resolution graphic form. The system was designed, in cooperation with NASA, to improve the effectiveness and efficiency of physician practices. The S2000 is a MS (Microsoft) Windows based software product which combines electronic forms, medical documents, records management, and features a comprehensive medical information system for medical diagnostic support and treatment. SYMED, Inc. offers access to its medical systems to all companies seeking competitive advantages.

  4. Preoperative evaluation of cochlear implantation through the round window membrane in the facial recess using high-resolution computed tomography.

    PubMed

    Xie, Li-Hong; Tang, Jie; Miao, Wen-Jie; Tang, Xiang-Long; Li, Heng; Tang, An-Zhou

    2018-06-01

    We evaluated the risk of cochlear implantation through the round window membrane in the facial recess through a preoperative analysis of the angle between the facial nerve-round window and the cranial midline using high-resolution temporal bone CT. Temporal bone CT films of 176 patients with profound sensorineural hearing loss at our hospital from 2013 to 2015 were reviewed. The preoperative temporal bone CT scans of the patients were retrospectively analysed. The vertical distance (d value) from the leading edge of the facial nerve to the posterior wall of the external auditory canal and the angle (α value) between the line from the leading edge of the facial nerve to the midpoint of the round window membrane and the median sagittal line on the round window membrane plane were measured. Based on intraoperative observation, the round window membrane was divided into complete round window membrane exposure (group A), partial exposure (group B), and unexposed (group C) groups, and statistical analysis was performed. The α value could be effectively measured for all 176 patients (62.60 ± 7.12), and the d value could be effectively measured for 95 cases (5.53 ± 1.00). An analysis of the correlation between the α and d values of these 95 cases found a negative correlation. Of the 176 cases, one-way analysis of variance (ANOVA) showed that the differences among the groups were significant [P = 0.000 (< 0.05)]. The angle (α value) between the line connecting the leading edge of the facial nerve to the midpoint of the round window and the median sagittal line measured in preoperative CT scans was associated with the difficulty of intraoperatively exposing the round window membrane. When the α value was larger than a certain degree, the difficulty of exposing the round window membrane was increased. In such cases, the surgeon should fully expose the round window membrane during surgery, which could result decrease the likelihood of complications.

  5. Graphene Reinforced Glassy Carbon (GRGC) Beam Windows

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Renomeron, Lynda L.

    Secondary particle beams require beam windows that isolate the target (usually in air) from the primary particle beam vacuum. Advanced beam window solutions are needed that can withstand anticipated increases in beam power and intensity that will result in higher thermal shock on the window and increased oxidative erosion rates on the air-side caused by increased temperatures. Carbon-based windows, in particular, glassy carbon windows are of interest to minimize interaction with the beam. The attractive properties of glassy carbon are: 1. Low atomic number 2. Low thermal expansion 3. High strength and low Young's modulus 4. Low gas permeability andmore » low outgassing for ultrahigh vacuum use The one liability of glassy carbon is its low thermal conductivity, nominally 5 W/mK, which will exacerbate temperature rise, oxidation, and thermal shock concerns as beam powers increase. TA&T proposes the development of graphene reinforced glassy carbon (GRGC) composites to increase the thermal conductivity and address this Achilles heel of glassy carbon. Graphene as a reinforcing phase has shown the capability to increase the thermal conductivity of the matrix material by up to two orders of magnitude. For beam windows this would substantially increase heat spreading away from the beam zone of the window and improve thermal shock resistance, and reduce maximum temperature and air-side oxidation of the window. Increased thermal conductivity would also improve the effectiveness of edge-cooling schemes to minimize temperature increase. In the Phase I effort, graphene oxide (GO) particles were dispersed into glassy carbon precursor at different content levels and cast into solid shapes. The goal was to determine the effect of graphene concentration on the mechanical properties (flexure strength), and thermal (thermal conductivity). The Phase I results indicated that addition of graphene did have a significant effect on thermal conductivity; however the microstructural properties of the composite need further improvement. The Phase II work is designed to address the processing issues found during Phase I, so as to fully realize the benefits of GO within the glassy carbon In addition to enabling improved windows for high energy particle beam experiments, the reinforced glassy carbon material will find various other applications such as thruster bodies for rocket propulsion, more durable carbon-based electrodes for electrochemistry applications, bi-polar plates for advanced batteries, catalyst support structures, and structural bio-implants.« less

  6. Impact of the round window membrane accessibility on hearing preservation in adult cochlear implantation.

    PubMed

    Mirsalehi, Marjan; Mohebbi, Saleh; Ghajarzadeh, Mahsa; Lenarz, Thomas; Majdani, Omid

    2017-08-01

    This study was conducted to evaluate the effect of the round window membrane accessibility on the residual hearing after cochlear implantation surgery in adults. Moreover, the effects of the other demographics and intra-operative factors on the residual hearing loss have been evaluated. The hearing preservation cochlear implantation surgery was performed on 64 adults with residual hearing thresholds ≤80 dB at 250 and 500 Hz, who had referred to our tertiary academic center. All the patients underwent a standardized surgical approach with the same straight electrode inserted through the round window membrane. The hearing thresholds at 250, 500, and 1000 Hz were compared in pre-operative and 1 month postoperative pure-tone audiograms. The average hearing threshold shifts at these frequencies was used to evaluate the hearing preservation. The effects of the round window accessibility and other factors (including gender, age, side of the surgery, necessity of anterior-inferior drilling of the round window margin and average insertion speed) on hearing threshold shifts were analyzed. The mean low-frequency hearing threshold shift was found to be 17.5 dB for all the patients. The hearing preservation goal (threshold shifts ≤30 dB) was achieved in 58 patients. Among the evaluated parameters, only accessibility of the round window membrane could change the hearing threshold shifts significantly (p = 0.026), and was a predictor for the hearing loss (B coefficient = 7.5, p = 0.006). Incomplete accessibility of the round window membrane may be a predictor for increased hearing threshold shifts in short-term evaluations after cochlear implantation.

  7. Lagged kernel machine regression for identifying time windows of susceptibility to exposures of complex mixtures.

    PubMed

    Liu, Shelley H; Bobb, Jennifer F; Lee, Kyu Ha; Gennings, Chris; Claus Henn, Birgit; Bellinger, David; Austin, Christine; Schnaas, Lourdes; Tellez-Rojo, Martha M; Hu, Howard; Wright, Robert O; Arora, Manish; Coull, Brent A

    2018-07-01

    The impact of neurotoxic chemical mixtures on children's health is a critical public health concern. It is well known that during early life, toxic exposures may impact cognitive function during critical time intervals of increased vulnerability, known as windows of susceptibility. Knowledge on time windows of susceptibility can help inform treatment and prevention strategies, as chemical mixtures may affect a developmental process that is operating at a specific life phase. There are several statistical challenges in estimating the health effects of time-varying exposures to multi-pollutant mixtures, such as: multi-collinearity among the exposures both within time points and across time points, and complex exposure-response relationships. To address these concerns, we develop a flexible statistical method, called lagged kernel machine regression (LKMR). LKMR identifies critical exposure windows of chemical mixtures, and accounts for complex non-linear and non-additive effects of the mixture at any given exposure window. Specifically, LKMR estimates how the effects of a mixture of exposures change with the exposure time window using a Bayesian formulation of a grouped, fused lasso penalty within a kernel machine regression (KMR) framework. A simulation study demonstrates the performance of LKMR under realistic exposure-response scenarios, and demonstrates large gains over approaches that consider each time window separately, particularly when serial correlation among the time-varying exposures is high. Furthermore, LKMR demonstrates gains over another approach that inputs all time-specific chemical concentrations together into a single KMR. We apply LKMR to estimate associations between neurodevelopment and metal mixtures in Early Life Exposures in Mexico and Neurotoxicology, a prospective cohort study of child health in Mexico City.

  8. Oxygen effects on the performance of XeCl excimer lasers

    NASA Astrophysics Data System (ADS)

    Jeon, S. H.; Soh, B. S.; Kim, Y. P.

    2018-03-01

    We have investigated the degradation of window transmittance of XeCl excimer laser with oxygen, from which it was analyzed the laser performances such as stability of output energy, pre-ionization voltage, and spatial shift of laser beam. We found that oxygen suppressed the generation of by-products due to the chemical reactions between electrode material and chlorine. The degradation of transmittance ratio of laser window with oxygen improved from 10.4% to 1.4% after 20 million shots compared to without oxygen. Analyzing XPS spectrum for the contaminated window, we have confirmed that W and Cu on window surface were reduced in case of with oxygen, which means oxygen has a role to suppress the contamination on window surface.

  9. The suppression effect of a periodic surface with semicircular grooves on the high power microwave long pill-box window multipactor phenomenon

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Xue, E-mail: zhangxue.iecas@yahoo.com; Wang, Yong; Fan, Junjie

    2014-09-15

    To improve the transmitting power in an S-band klystron, a long pill-box window that has a disk with grooves with a semicircular cross section is theoretically investigated and simulated. A Monte-Carlo algorithm is used to track the secondary electron trajectories and analyze the multipactor scenario in the long pill-box window and on the grooved surface. Extending the height of the long-box window can decrease the normal electric field on the surface of the window disk, but the single surface multipactor still exists. It is confirmed that the window disk with periodic semicircular grooves can explicitly suppress the multipactor and predominantlymore » depresses the local field enhancement and the bottom continuous multipactor. The difference between semicircular and sharp boundary grooves is clarified numerically and analytically.« less

  10. Application of Thinned-Skull Cranial Window to Mouse Cerebral Blood Flow Imaging Using Optical Microangiography

    PubMed Central

    Wang, Ruikang K.

    2014-01-01

    In vivo imaging of mouse brain vasculature typically requires applying skull window opening techniques: open-skull cranial window or thinned-skull cranial window. We report non-invasive 3D in vivo cerebral blood flow imaging of C57/BL mouse by the use of ultra-high sensitive optical microangiography (UHS-OMAG) and Doppler optical microangiography (DOMAG) techniques to evaluate two cranial window types based on their procedures and ability to visualize surface pial vessel dynamics. Application of the thinned-skull technique is found to be effective in achieving high quality images for pial vessels for short-term imaging, and has advantages over the open-skull technique in available imaging area, surgical efficiency, and cerebral environment preservation. In summary, thinned-skull cranial window serves as a promising tool in studying hemodynamics in pial microvasculature using OMAG or other OCT blood flow imaging modalities. PMID:25426632

  11. Radial inlet guide vanes for a combustor

    DOEpatents

    Zuo, Baifang; Simons, Derrick; York, William; Ziminsky, Willy S

    2013-02-12

    A combustor may include an interior flow path therethrough, a number of fuel nozzles in communication with the interior flow path, and an inlet guide vane system positioned about the interior flow path to create a swirled flow therein. The inlet guide vane system may include a number of windows positioned circumferentially around the fuel nozzles. The inlet guide vane system may also include a number of inlet guide vanes positioned circumferentially around the fuel nozzles and adjacent to the windows to create a swirled flow within the interior flow path.

  12. WORKSHOP TO IDENTIFY CRITICAL WINDOWS OF EXPOSURE FOR CHILDREN'S HEALTH: REPRODUCTIVE HEALTH IN CHILDREN AND ADOLESCENTS WORK GROUP SUMMARY

    EPA Science Inventory

    This workgroup report addresses the central question: what are the critical windows during development (pre-conception through puberty) when exposure to xenobiotics may have the greatest adverse impact on subsequent reproductive health. The reproductive system develops in stages...

  13. 13. INTERIOR OF LIVING ROOM SHOWING 2LIGHT OVER 2LIGHT, DOUBLEHUNG, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    13. INTERIOR OF LIVING ROOM SHOWING 2-LIGHT OVER 2-LIGHT, DOUBLE-HUNG, WOOD-FRAMED WINDOWS ON SOUTHEAST WALL, AND UNUSUAL 1-LIGHT SASH WINDOW WITH TRANSOM AT PHOTO LEFT. VIEW TO SOUTHEAST. - Bishop Creek Hydroelectric System, Plant 4, Worker Cottage, Bishop Creek, Bishop, Inyo County, CA

  14. climwin: An R Toolbox for Climate Window Analysis.

    PubMed

    Bailey, Liam D; van de Pol, Martijn

    2016-01-01

    When studying the impacts of climate change, there is a tendency to select climate data from a small set of arbitrary time periods or climate windows (e.g., spring temperature). However, these arbitrary windows may not encompass the strongest periods of climatic sensitivity and may lead to erroneous biological interpretations. Therefore, there is a need to consider a wider range of climate windows to better predict the impacts of future climate change. We introduce the R package climwin that provides a number of methods to test the effect of different climate windows on a chosen response variable and compare these windows to identify potential climate signals. climwin extracts the relevant data for each possible climate window and uses this data to fit a statistical model, the structure of which is chosen by the user. Models are then compared using an information criteria approach. This allows users to determine how well each window explains variation in the response variable and compare model support between windows. climwin also contains methods to detect type I and II errors, which are often a problem with this type of exploratory analysis. This article presents the statistical framework and technical details behind the climwin package and demonstrates the applicability of the method with a number of worked examples.

  15. Timing of favorable conditions, competition and fertility interact to govern recruitment of invasive Chinese tallow tree in stressful environments.

    PubMed

    Gabler, Christopher A; Siemann, Evan

    2013-01-01

    The rate of new exotic recruitment following removal of adult invaders (reinvasion pressure) influences restoration outcomes and costs but is highly variable and poorly understood. We hypothesize that broad variation in average reinvasion pressure of Triadica sebifera (Chinese tallow tree, a major invader) arises from differences among habitats in spatiotemporal availability of realized recruitment windows. These windows are periods of variable duration long enough to permit establishment given local environmental conditions. We tested this hypothesis via a greenhouse mesocosm experiment that quantified how the duration of favorable moisture conditions prior to flood or drought stress (window duration), competition and nutrient availability influenced Triadica success in high stress environments. Window duration influenced pre-stress seedling abundance and size, growth during stress and final abundance; it interacted with other factors to affect final biomass and germination during stress. Stress type and competition impacted final size and biomass, plus germination, mortality and changes in size during stress. Final abundance also depended on competition and the interaction of window duration, stress type and competition. Fertilization interacted with competition and stress to influence biomass and changes in height, respectively, but did not affect Triadica abundance. Overall, longer window durations promoted Triadica establishment, competition and drought (relative to flood) suppressed establishment, and fertilization had weak effects. Interactions among factors frequently produced different effects in specific contexts. Results support our 'outgrow the stress' hypothesis and show that temporal availability of abiotic windows and factors that influence growth rates govern Triadica recruitment in stressful environments. These findings suggest that native seed addition can effectively suppress superior competitors in stressful environments. We also describe environmental scenarios where specific management methods may be more or less effective. Our results enable better niche-based estimates of local reinvasion pressure, which can improve restoration efficacy and efficiency by informing site selection and optimal management.

  16. Timing of Favorable Conditions, Competition and Fertility Interact to Govern Recruitment of Invasive Chinese Tallow Tree in Stressful Environments

    PubMed Central

    Gabler, Christopher A.; Siemann, Evan

    2013-01-01

    The rate of new exotic recruitment following removal of adult invaders (reinvasion pressure) influences restoration outcomes and costs but is highly variable and poorly understood. We hypothesize that broad variation in average reinvasion pressure of Triadica sebifera (Chinese tallow tree, a major invader) arises from differences among habitats in spatiotemporal availability of realized recruitment windows. These windows are periods of variable duration long enough to permit establishment given local environmental conditions. We tested this hypothesis via a greenhouse mesocosm experiment that quantified how the duration of favorable moisture conditions prior to flood or drought stress (window duration), competition and nutrient availability influenced Triadica success in high stress environments. Window duration influenced pre-stress seedling abundance and size, growth during stress and final abundance; it interacted with other factors to affect final biomass and germination during stress. Stress type and competition impacted final size and biomass, plus germination, mortality and changes in size during stress. Final abundance also depended on competition and the interaction of window duration, stress type and competition. Fertilization interacted with competition and stress to influence biomass and changes in height, respectively, but did not affect Triadica abundance. Overall, longer window durations promoted Triadica establishment, competition and drought (relative to flood) suppressed establishment, and fertilization had weak effects. Interactions among factors frequently produced different effects in specific contexts. Results support our ‘outgrow the stress’ hypothesis and show that temporal availability of abiotic windows and factors that influence growth rates govern Triadica recruitment in stressful environments. These findings suggest that native seed addition can effectively suppress superior competitors in stressful environments. We also describe environmental scenarios where specific management methods may be more or less effective. Our results enable better niche-based estimates of local reinvasion pressure, which can improve restoration efficacy and efficiency by informing site selection and optimal management. PMID:23967212

  17. 14 CFR 25.801 - Ditching.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... considered as buoyancy volume. (e) Unless the effects of the collapse of external doors and windows are... prescribed in paragraphs (c) and (d) of this section), the external doors and windows must be designed to...

  18. 14 CFR 417.229 - Far-field overpressure blast effects analysis.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... characteristics; (2) The potential for broken windows due to peak incident overpressures below 1.0 psi and related... the potentially affected windows, including their size, location, orientation, glazing material, and...

  19. Tunnel field-effect transistor charge-trapping memory with steep subthreshold slope and large memory window

    NASA Astrophysics Data System (ADS)

    Kino, Hisashi; Fukushima, Takafumi; Tanaka, Tetsu

    2018-04-01

    Charge-trapping memory requires the increase of bit density per cell and a larger memory window for lower-power operation. A tunnel field-effect transistor (TFET) can achieve to increase the bit density per cell owing to its steep subthreshold slope. In addition, a TFET structure has an asymmetric structure, which is promising for achieving a larger memory window. A TFET with the N-type gate shows a higher electric field between the P-type source and the N-type gate edge than the conventional FET structure. This high electric field enables large amounts of charges to be injected into the charge storage layer. In this study, we fabricated silicon-oxide-nitride-oxide-semiconductor (SONOS) memory devices with the TFET structure and observed a steep subthreshold slope and a larger memory window.

  20. Noise normalization and windowing functions for VALIDAR in wind parameter estimation

    NASA Astrophysics Data System (ADS)

    Beyon, Jeffrey Y.; Koch, Grady J.; Li, Zhiwen

    2006-05-01

    The wind parameter estimates from a state-of-the-art 2-μm coherent lidar system located at NASA Langley, Virginia, named VALIDAR (validation lidar), were compared after normalizing the noise by its estimated power spectra via the periodogram and the linear predictive coding (LPC) scheme. The power spectra and the Doppler shift estimates were the main parameter estimates for comparison. Different types of windowing functions were implemented in VALIDAR data processing algorithm and their impact on the wind parameter estimates was observed. Time and frequency independent windowing functions such as Rectangular, Hanning, and Kaiser-Bessel and time and frequency dependent apodized windowing function were compared. The briefing of current nonlinear algorithm development for Doppler shift correction subsequently follows.

  1. Orion Hatch Window Testing

    NASA Image and Video Library

    2018-04-09

    Inside a laboratory in the Neil Armstrong Operations and Checkout Building at NASA's Kennedy Space Center in Florida, Mark Nurge, Ph.D., at left, a physicist in the Applied Physics Lab with the center's Exploration Research and Technology Programs, and Bence Bartha, Ph.D., a specialist in non-destructive testing with URS Federal Services, are performing the first optical quality testing on a full window stack that is ready for installation in the docking hatch of NASA's Orion spacecraft. The data from the tests will help improve the requirements for manufacturing tolerances on Orion's windows and verify how the window should perform in space. Orion is being prepared for its first integrated uncrewed flight atop NASA's Space Launch System rocket on Exploration Mission-1.

  2. Improved Statistical Fault Detection Technique and Application to Biological Phenomena Modeled by S-Systems.

    PubMed

    Mansouri, Majdi; Nounou, Mohamed N; Nounou, Hazem N

    2017-09-01

    In our previous work, we have demonstrated the effectiveness of the linear multiscale principal component analysis (PCA)-based moving window (MW)-generalized likelihood ratio test (GLRT) technique over the classical PCA and multiscale principal component analysis (MSPCA)-based GLRT methods. The developed fault detection algorithm provided optimal properties by maximizing the detection probability for a particular false alarm rate (FAR) with different values of windows, and however, most real systems are nonlinear, which make the linear PCA method not able to tackle the issue of non-linearity to a great extent. Thus, in this paper, first, we apply a nonlinear PCA to obtain an accurate principal component of a set of data and handle a wide range of nonlinearities using the kernel principal component analysis (KPCA) model. The KPCA is among the most popular nonlinear statistical methods. Second, we extend the MW-GLRT technique to one that utilizes exponential weights to residuals in the moving window (instead of equal weightage) as it might be able to further improve fault detection performance by reducing the FAR using exponentially weighed moving average (EWMA). The developed detection method, which is called EWMA-GLRT, provides improved properties, such as smaller missed detection and FARs and smaller average run length. The idea behind the developed EWMA-GLRT is to compute a new GLRT statistic that integrates current and previous data information in a decreasing exponential fashion giving more weight to the more recent data. This provides a more accurate estimation of the GLRT statistic and provides a stronger memory that will enable better decision making with respect to fault detection. Therefore, in this paper, a KPCA-based EWMA-GLRT method is developed and utilized in practice to improve fault detection in biological phenomena modeled by S-systems and to enhance monitoring process mean. The idea behind a KPCA-based EWMA-GLRT fault detection algorithm is to combine the advantages brought forward by the proposed EWMA-GLRT fault detection chart with the KPCA model. Thus, it is used to enhance fault detection of the Cad System in E. coli model through monitoring some of the key variables involved in this model such as enzymes, transport proteins, regulatory proteins, lysine, and cadaverine. The results demonstrate the effectiveness of the proposed KPCA-based EWMA-GLRT method over Q , GLRT, EWMA, Shewhart, and moving window-GLRT methods. The detection performance is assessed and evaluated in terms of FAR, missed detection rates, and average run length (ARL 1 ) values.

  3. A Noise Reduction Method for Dual-Mass Micro-Electromechanical Gyroscopes Based on Sample Entropy Empirical Mode Decomposition and Time-Frequency Peak Filtering

    PubMed Central

    Shen, Chong; Li, Jie; Zhang, Xiaoming; Shi, Yunbo; Tang, Jun; Cao, Huiliang; Liu, Jun

    2016-01-01

    The different noise components in a dual-mass micro-electromechanical system (MEMS) gyroscope structure is analyzed in this paper, including mechanical-thermal noise (MTN), electronic-thermal noise (ETN), flicker noise (FN) and Coriolis signal in-phase noise (IPN). The structure equivalent electronic model is established, and an improved white Gaussian noise reduction method for dual-mass MEMS gyroscopes is proposed which is based on sample entropy empirical mode decomposition (SEEMD) and time-frequency peak filtering (TFPF). There is a contradiction in TFPS, i.e., selecting a short window length may lead to good preservation of signal amplitude but bad random noise reduction, whereas selecting a long window length may lead to serious attenuation of the signal amplitude but effective random noise reduction. In order to achieve a good tradeoff between valid signal amplitude preservation and random noise reduction, SEEMD is adopted to improve TFPF. Firstly, the original signal is decomposed into intrinsic mode functions (IMFs) by EMD, and the SE of each IMF is calculated in order to classify the numerous IMFs into three different components; then short window TFPF is employed for low frequency component of IMFs, and long window TFPF is employed for high frequency component of IMFs, and the noise component of IMFs is wiped off directly; at last the final signal is obtained after reconstruction. Rotation experimental and temperature experimental are carried out to verify the proposed SEEMD-TFPF algorithm, the verification and comparison results show that the de-noising performance of SEEMD-TFPF is better than that achievable with the traditional wavelet, Kalman filter and fixed window length TFPF methods. PMID:27258276

  4. A Noise Reduction Method for Dual-Mass Micro-Electromechanical Gyroscopes Based on Sample Entropy Empirical Mode Decomposition and Time-Frequency Peak Filtering.

    PubMed

    Shen, Chong; Li, Jie; Zhang, Xiaoming; Shi, Yunbo; Tang, Jun; Cao, Huiliang; Liu, Jun

    2016-05-31

    The different noise components in a dual-mass micro-electromechanical system (MEMS) gyroscope structure is analyzed in this paper, including mechanical-thermal noise (MTN), electronic-thermal noise (ETN), flicker noise (FN) and Coriolis signal in-phase noise (IPN). The structure equivalent electronic model is established, and an improved white Gaussian noise reduction method for dual-mass MEMS gyroscopes is proposed which is based on sample entropy empirical mode decomposition (SEEMD) and time-frequency peak filtering (TFPF). There is a contradiction in TFPS, i.e., selecting a short window length may lead to good preservation of signal amplitude but bad random noise reduction, whereas selecting a long window length may lead to serious attenuation of the signal amplitude but effective random noise reduction. In order to achieve a good tradeoff between valid signal amplitude preservation and random noise reduction, SEEMD is adopted to improve TFPF. Firstly, the original signal is decomposed into intrinsic mode functions (IMFs) by EMD, and the SE of each IMF is calculated in order to classify the numerous IMFs into three different components; then short window TFPF is employed for low frequency component of IMFs, and long window TFPF is employed for high frequency component of IMFs, and the noise component of IMFs is wiped off directly; at last the final signal is obtained after reconstruction. Rotation experimental and temperature experimental are carried out to verify the proposed SEEMD-TFPF algorithm, the verification and comparison results show that the de-noising performance of SEEMD-TFPF is better than that achievable with the traditional wavelet, Kalman filter and fixed window length TFPF methods.

  5. Gradient heating protocol for a diode-pumped alkali laser

    NASA Astrophysics Data System (ADS)

    Cai, He; Wang, You; Han, Juhong; Yu, Hang; Rong, Kepeng; Wang, Shunyan; An, Guofei; Wang, Hongyuan; Zhang, Wei; Wu, Peng; Yu, Qiang

    2018-06-01

    A diode-pumped alkali laser (DPAL) has gained rapid development in the recent years. Until now, the structure with single heater has been widely utilized to adjust the temperature of an alkali vapor cell in most of the literatures about DPALs. However, for an end-pumped DPAL using single heater, most pump energy is absorbed by the gain media near the entrance cell window because of the large absorption cross section of atomic alkali. As a result, the temperature in the pumping area around the entrance window will go up rapidly, especially in a case of high pumping density. The temperature rise would bring about some negative influences such as thermal effects and variations in population density. In addition, light scattering and window contamination aroused by the chemical reaction between the alkali vapor and the buffer gas will also affect the output performance of a DPAL system. To find a solution to these problems, we propose a gradient heating approach in which several heaters are tandem-set along the optical axis to anneal an alkali vapor cell. The temperature at the entrance window is adjusted to be lower than that of the other side. By using this novel scheme, one can not only achieve a homogeneous absorption of the pump energy along the cell axis, but also decrease the possibility of the window damage in a DPAL configuration. The theoretical simulation of the laser output features has been carried out for a configuration of multiple heaters. Additionally, the DPAL output performance under different gradient temperatures is also discussed in this paper. The conclusions might be helpful for development of a high-powered and high-beam-quality DPAL.

  6. Preliminary Investigation of Longitudinal Differences in TEC and Scintillation at Transition Latitudes

    DTIC Science & Technology

    1991-04-04

    AIR. j NO ABSOLUTE TEC. C: NEW SATELITE WINDOWS INSERTED. j - IAPEDRIVE PROBLEM. D: SOME DATA ON CHART NOT RECORDED ON TAPE. H = NPIB INTERFASE...PROBLEM. E: SOME DATA BROKEN UP. V 2 FLOPPY DISK/DRIVE PROBLEM. F: TAPE CHANGE. W - WRONG SATELITE WINDOWS. TOTAL HOURS OF ACTIVITY LEVEL 1:300 P - POWER...0 1 0 31 1 COMMENT’S: ADDITIONAL COMMENT’S. A: TAPE STOP * L1/L2 SCINTILLATION. B: GPS SYSTEM OFF THE AIR. O= N ABSOLUTE TEC. C: NEW SATELITE WINDOWS

  7. Passive microfluidic array card and reader

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dugan, Lawrence Christopher; Coleman, Matthew A

    A microfluidic array card and reader system for analyzing a sample. The microfluidic array card includes a sample loading section for loading the sample onto the microfluidic array card, a multiplicity of array windows, and a transport section or sections for transporting the sample from the sample loading section to the array windows. The microfluidic array card reader includes a housing, a receiving section for receiving the microfluidic array card, a viewing section, and a light source that directs light to the array window of the microfluidic array card and to the viewing section.

  8. KENNEDY SPACE CENTER, FLA. - The Window Observational Research Facility (WORF), seen in the Space Station Processing Facility, was designed and built by the Boeing Co. at NASA’s Marshall Space Flight Center in Huntsville, Ala. WORF will be delivered to the International Space Station and placed in the rack position in front of the Destiny lab window, providing locations for attaching cameras, multi-spectral scanners and other instruments. WORF will support a variety of scientific and commercial experiments in areas of Earth systems and processes, global ecological changes in Earth’s biosphere, lithosphere, hydrosphere and climate system, Earth resources, natural hazards, and education. After installation, it will become a permanent focal point for Earth Science research aboard the space station.

    NASA Image and Video Library

    2003-09-08

    KENNEDY SPACE CENTER, FLA. - The Window Observational Research Facility (WORF), seen in the Space Station Processing Facility, was designed and built by the Boeing Co. at NASA’s Marshall Space Flight Center in Huntsville, Ala. WORF will be delivered to the International Space Station and placed in the rack position in front of the Destiny lab window, providing locations for attaching cameras, multi-spectral scanners and other instruments. WORF will support a variety of scientific and commercial experiments in areas of Earth systems and processes, global ecological changes in Earth’s biosphere, lithosphere, hydrosphere and climate system, Earth resources, natural hazards, and education. After installation, it will become a permanent focal point for Earth Science research aboard the space station.

  9. KENNEDY SPACE CENTER, FLA. - Workers in the Space Station Processing Facility check out the Window Observational Research Facility (WORF), designed and built by the Boeing Co. at NASA’s Marshall Space Flight Center in Huntsville, Ala. WORF will be delivered to the International Space Station and placed in the rack position in front of the Destiny lab window, providing locations for attaching cameras, multi-spectral scanners and other instruments. WORF will support a variety of scientific and commercial experiments in areas of Earth systems and processes, global ecological changes in Earth’s biosphere, lithosphere, hydrosphere and climate system, Earth resources, natural hazards, and education. After installation, it will become a permanent focal point for Earth Science research aboard the space station.

    NASA Image and Video Library

    2003-09-08

    KENNEDY SPACE CENTER, FLA. - Workers in the Space Station Processing Facility check out the Window Observational Research Facility (WORF), designed and built by the Boeing Co. at NASA’s Marshall Space Flight Center in Huntsville, Ala. WORF will be delivered to the International Space Station and placed in the rack position in front of the Destiny lab window, providing locations for attaching cameras, multi-spectral scanners and other instruments. WORF will support a variety of scientific and commercial experiments in areas of Earth systems and processes, global ecological changes in Earth’s biosphere, lithosphere, hydrosphere and climate system, Earth resources, natural hazards, and education. After installation, it will become a permanent focal point for Earth Science research aboard the space station.

  10. Modelling the effect of round window stiffness on residual hearing after cochlear implantation.

    PubMed

    Elliott, Stephen J; Ni, Guangjian; Verschuur, Carl A

    2016-11-01

    Preservation of residual hearing after cochlear implantation is now considered an important goal of surgery. However, studies indicate an average post-operative hearing loss of around 20 dB at low frequencies. One factor which may contribute to post-operative hearing loss, but which has received little attention in the literature to date, is the increased stiffness of the round window, due to the physical presence of the cochlear implant, and to its subsequent thickening or to bone growth around it. A finite element model was used to estimate that there is approximately a 100-fold increase in the round window stiffness due to a cochlear implant passing through it. A lumped element model was then developed to study the effects of this change in stiffness on the acoustic response of the cochlea. As the round window stiffness increases, the effects of the cochlear and vestibular aqueducts become more important. An increase of round window stiffness by a factor of 10 is predicted to have little effect on residual hearing, but increasing this stiffness by a factor of 100 reduces the acoustic sensitivity of the cochlea by about 20 dB, below 1 kHz, in reasonable agreement with the observed loss in residual hearing after implantation. It is also shown that the effect of this stiffening could be reduced by incorporating a small gas bubble within the cochlear implant. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  11. Evolution of policies on human resources for health: opportunities and constraints in four post-conflict and post-crisis settings.

    PubMed

    Witter, Sophie; Bertone, Maria Paola; Chirwa, Yotamu; Namakula, Justine; So, Sovannarith; Wurie, Haja R

    2016-01-01

    Few studies look at policy making in the health sector in the aftermath of a conflict or crisis and even fewer specifically focus on Human Resources for Health, which is a critical domain for health sector performance. The main objective of the article is to shed light on the patterns and drivers of post-conflict policy-making. In particular, we explore whether the post -conflict period offers increased chances for the opening of 'windows for opportunity' for change and reform and the potential to reset health systems. This article uses a comparative policy analysis framework. It is based on qualitative data, collected using three main tools - stakeholder mapping, key informant interviews and document reviews - in Uganda, Sierra Leone, Cambodia and Zimbabwe. We found that HRH challenges were widely shared across the four cases in the post-conflict period but that the policy trajectories were different - driven by the nature of the conflicts but also the wider context. Our findings suggest that there is no formula for whether or when a 'window of opportunity' will arise which allows health systems to be reset. Problems are well understood in all four cases but core issues - such as adequate pay, effective distribution and HRH management - are to a greater or lesser degree unresolved. These problems are not confined to post-conflict settings, but underlying challenges to addressing them - including fiscal space, political consensus, willingness to pursue public objectives over private, and personal and institutional capacity to manage technical solutions - are liable to be even more acute in these settings. The role of the MoH emerged as weaker than expected, while the shift from donor dependence was clearly not linear and can take a considerable time. Windows of opportunity for change and reform can occur but are by no means guaranteed by a crisis - rather they depend on a constellation of leadership, financing, and capacity. Recognition of urgency is certainly a facilitator but not sufficient alone. Post-conflict environments face particularly severe challenges to evidence-based policy making and policy implementation, which also constrain their ability to effectively use the windows which are presented.

  12. A Monte Carlo simulation study of an improved K-edge log-subtraction X-ray imaging using a photon counting CdTe detector

    NASA Astrophysics Data System (ADS)

    Lee, Youngjin; Lee, Amy Candy; Kim, Hee-Joung

    2016-09-01

    Recently, significant effort has been spent on the development of photons counting detector (PCD) based on a CdTe for applications in X-ray imaging system. The motivation of developing PCDs is higher image quality. Especially, the K-edge subtraction (KES) imaging technique using a PCD is able to improve image quality and useful for increasing the contrast resolution of a target material by utilizing contrast agent. Based on above-mentioned technique, we presented an idea for an improved K-edge log-subtraction (KELS) imaging technique. The KELS imaging technique based on the PCDs can be realized by using different subtraction energy width of the energy window. In this study, the effects of the KELS imaging technique and subtraction energy width of the energy window was investigated with respect to the contrast, standard deviation, and CNR with a Monte Carlo simulation. We simulated the PCD X-ray imaging system based on a CdTe and polymethylmethacrylate (PMMA) phantom which consists of the various iodine contrast agents. To acquired KELS images, images of the phantom using above and below the iodine contrast agent K-edge absorption energy (33.2 keV) have been acquired at different energy range. According to the results, the contrast and standard deviation were decreased, when subtraction energy width of the energy window is increased. Also, the CNR using a KELS imaging technique is higher than that of the images acquired by using whole energy range. Especially, the maximum differences of CNR between whole energy range and KELS images using a 1, 2, and 3 mm diameter iodine contrast agent were acquired 11.33, 8.73, and 8.29 times, respectively. Additionally, the optimum subtraction energy width of the energy window can be acquired at 5, 4, and 3 keV for the 1, 2, and 3 mm diameter iodine contrast agent, respectively. In conclusion, we successfully established an improved KELS imaging technique and optimized subtraction energy width of the energy window, and based on our results, we recommend using this technique for high image quality.

  13. Effect of water repellent preservatives and other wood treatments on restoration and durability of millwork

    Treesearch

    R. Sam Williams

    2001-01-01

    This report describes the long-term performance of painted window units that were placed outdoors near Madison, Wisconsin, in 1956. Covered in this report are the effects of the initial water repellent preservative (WRP) treatment during the first 6 years of exposure, a comparison of the water repellent effectiveness (WRE) ofthe WRP with the condition of the windows...

  14. Microwave window breakdown experiments and simulations on the UM/L-3 relativistic magnetron

    NASA Astrophysics Data System (ADS)

    Hoff, B. W.; Mardahl, P. J.; Gilgenbach, R. M.; Haworth, M. D.; French, D. M.; Lau, Y. Y.; Franzi, M.

    2009-09-01

    Experiments have been performed on the UM/L-3 (6-vane, L-band) relativistic magnetron to test a new microwave window configuration designed to limit vacuum side breakdown. In the baseline case, acrylic microwave windows were mounted between three of the waveguide coupling cavities in the anode block vacuum housing and the output waveguides. Each of the six 3 cm deep coupling cavities is separated from its corresponding anode cavity by a 1.75 cm wide aperture. In the baseline case, vacuum side window breakdown was observed to initiate at single waveguide output powers close to 20 MW. In the new window configuration, three Air Force Research Laboratory-designed, vacuum-rated directional coupler waveguide segments were mounted between the coupling cavities and the microwave windows. The inclusion of the vacuum side power couplers moved the microwave windows an additional 30 cm away from the anode apertures. Additionally, the Lucite microwave windows were replaced with polycarbonate windows and the microwave window mounts were redesigned to better maintain waveguide continuity in the region around the microwave windows. No vacuum side window breakdown was observed in the new window configuration at single waveguide output powers of 120+MW (a factor of 3 increase in measured microwave pulse duration and factor of 3 increase in measured peak power over the baseline case). Simulations were performed to investigate likely causes for the window breakdown in the original configuration. Results from these simulations have shown that in the original configuration, at typical operating voltage and magnetic field ranges, electrons emitted from the anode block microwave apertures strike the windows with a mean kinetic energy of 33 keV with a standard deviation of 14 keV. Calculations performed using electron impact angle and energy data predict a first generation secondary electron yield of 65% of the primary electron population. The effects of the primary aperture electron impacts, combined with multiplication of the secondary populations, were determined to be the likely causes of the poor microwave window performance in the original configuration.

  15. International Conference on Infrared and Millimeter Waves, 18th, Univ. of Essex, Colchester, United Kingdom, Sept. 6-10, 1993, Conference Digest

    NASA Astrophysics Data System (ADS)

    Birch, James R.; Parker, Terence J.

    Papers presented in these proceedings are grouped under the topics of FEL, detectors and sources, gas lasers, spectroscopy, windows for high-power applications, scattering, plasma diagnostics, waveguides, gyrotron, quasi-optical components, biological effects of IR and millimeter waves, and astronomical and atmospheric systems. Particular attention is given to the ENEA compact millimeter wave FEL, excitonic detectors of IR and submm waves, identification of submm CD2O lines, a two-frequency quasi-optical radiospectrometer for substance investigations, the effect of window tolerances on gyrotron performance, and analysis of scattering of the open resonator field from the cavity-backed aperture. Other papers are on submm laser interferometer-polarimeter for plasma diagnostics, the characteristics of the closed circular groove guide, a kW sixth-harmonic gyrofrequency multiplier, rugged FIR bandpass filters, millimeter waves and quantum medicines, and a horizontal atmospheric temperature sounder based on the 60-GHz oxygen absorptions.

  16. Experimental validation of spatial Fourier transform-based multiple sound zone generation with a linear loudspeaker array.

    PubMed

    Okamoto, Takuma; Sakaguchi, Atsushi

    2017-03-01

    Generating acoustically bright and dark zones using loudspeakers is gaining attention as one of the most important acoustic communication techniques for such uses as personal sound systems and multilingual guide services. Although most conventional methods are based on numerical solutions, an analytical approach based on the spatial Fourier transform with a linear loudspeaker array has been proposed, and its effectiveness has been compared with conventional acoustic energy difference maximization and presented by computer simulations. To describe the effectiveness of the proposal in actual environments, this paper investigates the experimental validation of the proposed approach with rectangular and Hann windows and compared it with three conventional methods: simple delay-and-sum beamforming, contrast maximization, and least squares-based pressure matching using an actually implemented linear array of 64 loudspeakers in an anechoic chamber. The results of both the computer simulations and the actual experiments show that the proposed approach with a Hann window more accurately controlled the bright and dark zones than the conventional methods.

  17. Observations on the effects of image processing functions on fingermark data in the Fourier domain

    NASA Astrophysics Data System (ADS)

    Bramble, Simon K.; Fabrizi, Paola M.

    1995-09-01

    One of the image processing functions used for the enhancement of laten fingermark images is the Fourier transform. This paper describes some effects of spatial resolution, zero-filling and windowing on fingermark data in the Fourier domain. It is shown that with an understanding of the fingermark structure it is possible to determine the approximate prosition of the frequency data in the Fourier domain corresponding to the fingermark image detail. The effect of attenuation of frequency data on a zero-filled image is shown to be different to the same attenuation on a non-zero-filled image. The effects of windowing spatial data on the frequency data are also highlighted and compared with the same data after the application of a Hanning window.

  18. Effects of temperature-dependent molecular absorption coefficients on the thermal infrared remote sensing of the earth surface

    NASA Technical Reports Server (NTRS)

    Wan, Zhengming; Dozier, Jeff

    1992-01-01

    The effect of temperature-dependent molecular absorption coefficients on thermal infrared spectral signatures measured from satellite sensors is investigated by comparing results from the atmospheric transmission and radiance codes LOWTRAN and MODTRAN and the accurate multiple scattering radiative transfer model ATRAD for different atmospheric profiles. The sensors considered include the operational NOAA AVHRR and two research instruments planned for NASA's Earth Observing System (EOS): MODIS-N (Moderate Resolution Imaging Spectrometer-Nadir-Mode) and ASTER (Advanced Spaceborne Thermal Emission and Reflection Radiometer). The difference in band transmittance is as large as 6 percent for some thermal bands within atmospheric windows and more than 30 percent near the edges of these atmospheric windows. The effect of temperature-dependent molecular absorption coefficients on satellite measurements of sea-surface temperature can exceed 0.6 K. Quantitative comparison and factor analysis indicate that more accurate measurements of molecular absorption coefficients and better radiative transfer simulation methods are needed to achieve SST accuracy of 0.3 K, as required for global numerical models of climate, and to develop land-surface temperature algorithms at the 1-K accuracy level.

  19. Control of an Estuarine Microfouling Sequence on Optical Surfaces Using Low-Intensity Ultraviolet Irradiation

    PubMed Central

    DiSalvo, L. H.; Cobet, A. B.

    1974-01-01

    Ultraviolet light has been investigated as an active energy input for the control of slime film formation on optical surfaces submerged in San Francisco Bay for periods up to 6 weeks. Irradiation of quartz underwater windows was carried out from three positions: (i) exterior to the window, (ii) from directly behind the window, and (iii) from the edge of the window with the ultraviolet (UV) energy refracted through the front of the window. Internally administered irradiation reaching levels of 10 to 30 μW per cm2 measurable at the glass surface was effective in preventing bacterial slime film formation and settlement of metazoan larvae. When administered from the external position, over one order of magnitude more (500 to 600 μW/cm2) UV energy was required to accomplish the same result. Irradiation from the edge position was most promising logistically and was effective in fouling control for 6 weeks. The results provide a preliminary quantitation of the energy requirement for control of the marine microfouling sequence which precedes development of macrofouling communities. Images PMID:16349978

  20. The effect of exit beam phase aberrations on parallel beam coherent x-ray reconstructions

    NASA Astrophysics Data System (ADS)

    Hruszkewycz, S. O.; Harder, R.; Xiao, X.; Fuoss, P. H.

    2010-12-01

    Diffraction artifacts from imperfect x-ray windows near the sample are an important consideration in the design of coherent x-ray diffraction measurements. In this study, we used simulated and experimental diffraction patterns in two and three dimensions to explore the effect of phase imperfections in a beryllium window (such as a void or inclusion) on the convergence behavior of phasing algorithms and on the ultimate reconstruction. A predictive relationship between beam wavelength, sample size, and window position was derived to explain the dependence of reconstruction quality on beryllium defect size. Defects corresponding to this prediction cause the most damage to the sample exit wave and induce signature error oscillations during phasing that can be used as a fingerprint of experimental x-ray window artifacts. The relationship between x-ray window imperfection size and coherent x-ray diffractive imaging reconstruction quality explored in this work can play an important role in designing high-resolution in situ coherent imaging instrumentation and will help interpret the phasing behavior of coherent diffraction measured in these in situ environments.

  1. The effect of exit beam phase aberrations on parallel beam coherent x-ray reconstructions.

    PubMed

    Hruszkewycz, S O; Harder, R; Xiao, X; Fuoss, P H

    2010-12-01

    Diffraction artifacts from imperfect x-ray windows near the sample are an important consideration in the design of coherent x-ray diffraction measurements. In this study, we used simulated and experimental diffraction patterns in two and three dimensions to explore the effect of phase imperfections in a beryllium window (such as a void or inclusion) on the convergence behavior of phasing algorithms and on the ultimate reconstruction. A predictive relationship between beam wavelength, sample size, and window position was derived to explain the dependence of reconstruction quality on beryllium defect size. Defects corresponding to this prediction cause the most damage to the sample exit wave and induce signature error oscillations during phasing that can be used as a fingerprint of experimental x-ray window artifacts. The relationship between x-ray window imperfection size and coherent x-ray diffractive imaging reconstruction quality explored in this work can play an important role in designing high-resolution in situ coherent imaging instrumentation and will help interpret the phasing behavior of coherent diffraction measured in these in situ environments.

  2. Engine starting and stopping

    NASA Astrophysics Data System (ADS)

    Curnock, Barry

    Different starter systems for jet engines are discussed: electric, cartridge, iso-propyl-nitrate, air, gas turbine, and hydraulic. The fuel system, ignition system, air flow control system, and actual starting mechanism of an air starter motor system are considered. The variation of engine parameters throughout a typical starting sequence are described, with reference to examples for an RB211-535 engine. Physical constraints on engine starting are considered: rotating stall, light up, the window between hang and stall, hang, compressor stall, and the effects of ambient conditions. The following are also discussed: contractual and airworthiness requirements; windmilling; inflight relighting; afterburning light up; combustion stability; and broken shafts. Graphics illustrating the above are presented.

  3. Global field synchronization in gamma range of the sleep EEG tracks sleep depth: Artifact introduced by a rectangular analysis window.

    PubMed

    Rusterholz, Thomas; Achermann, Peter; Dürr, Roland; Koenig, Thomas; Tarokh, Leila

    2017-06-01

    Investigating functional connectivity between brain networks has become an area of interest in neuroscience. Several methods for investigating connectivity have recently been developed, however, these techniques need to be applied with care. We demonstrate that global field synchronization (GFS), a global measure of phase alignment in the EEG as a function of frequency, must be applied considering signal processing principles in order to yield valid results. Multichannel EEG (27 derivations) was analyzed for GFS based on the complex spectrum derived by the fast Fourier transform (FFT). We examined the effect of window functions on GFS, in particular of non-rectangular windows. Applying a rectangular window when calculating the FFT revealed high GFS values for high frequencies (>15Hz) that were highly correlated (r=0.9) with spectral power in the lower frequency range (0.75-4.5Hz) and tracked the depth of sleep. This turned out to be spurious synchronization. With a non-rectangular window (Tukey or Hanning window) these high frequency synchronization vanished. Both, GFS and power density spectra significantly differed for rectangular and non-rectangular windows. Previous papers using GFS typically did not specify the applied window and may have used a rectangular window function. However, the demonstrated impact of the window function raises the question of the validity of some previous findings at higher frequencies. We demonstrated that it is crucial to apply an appropriate window function for determining synchronization measures based on a spectral approach to avoid spurious synchronization in the beta/gamma range. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Method of high speed flow field influence and restrain on laser communication

    NASA Astrophysics Data System (ADS)

    Meng, Li-xin; Wang, Chun-hui; Qian, Cun-zhu; Wang, Shuo; Zhang, Li-zhong

    2013-08-01

    For laser communication performance which carried by airplane or airship, due to high-speed platform movement, the air has two influences in platform and laser communication terminal window. The first influence is that aerodynamic effect causes the deformation of the optical window; the second one is that a shock wave and boundary layer would be generated. For subsonic within the aircraft, the boundary layer is the main influence. The presence of a boundary layer could change the air density and the temperature of the optical window, which causes the light deflection and received beam spot flicker. Ultimately, the energy hunting of the beam spot which reaches receiving side increases, so that the error rate increases. In this paper, aerodynamic theory is used in analyzing the influence of the optical window deformation due to high speed air. Aero-optics theory is used to analyze the influence of the boundary layer in laser communication link. Based on this, we focused on working on exploring in aerodynamic and aero-optical effect suppression method in the perspective of the optical window design. Based on planning experimental aircraft types and equipment installation location, we optimized the design parameters of the shape and thickness of the optical window, the shape and size of air-management kit. Finally, deformation of the optical window and air flow distribution were simulated by fluid simulation software in the different mach and different altitude fly condition. The simulation results showed that the optical window can inhibit the aerodynamic influence after optimization. In addition, the boundary layer is smoothed; the turbulence influence is reduced, which meets the requirements of the airborne laser communication.

  5. A frequency-based window width optimized two-dimensional S-Transform profilometry

    NASA Astrophysics Data System (ADS)

    Zhong, Min; Chen, Feng; Xiao, Chao

    2017-11-01

    A new scheme is proposed to as a frequency-based window width optimized two-dimensional S-Transform profilometry, in which parameters pu and pv are introduced to control the width of a two-dimensional Gaussian window. Unlike the standard two-dimensional S-transform using the Gaussian window with window width proportional to the reciprocal local frequency of the tested signal, the size of window width for the optimized two-dimensional S-Transform varies with the pu th (pv th) power of the reciprocal local frequency fx (fy) in x (y) direction. The paper gives a detailed theoretical analysis of optimized two-dimensional S-Transform in fringe analysis as well as the characteristics of the modified Gauss window. Simulations are applied to evaluate the proposed scheme, the results show that the new scheme has better noise reduction ability and can extract phase distribution more precise in comparison with the standard two-dimensional S-transform even though the surface of the measured object varies sharply. Finally, the proposed scheme is demonstrated on three-dimensional surface reconstruction for a complex plastic cat mask to show its effectiveness.

  6. Next generation smart window display using transparent organic display and light blocking screen.

    PubMed

    Kim, Gyeong Woo; Lampande, Raju; Choe, Dong Cheol; Ko, Ik Jang; Park, Jin Hwan; Pode, Ramchandra; Kwon, Jang Hyuk

    2018-04-02

    Transparent organic light emitting diodes (TOLED) have widespread applications in the next-generation display devices particularly in the large size transparent window and interactive displays. Herein, we report high performance and stable attractive smart window displays using facile process. Advanced smart window display is realized by integrating the high performance light blocking screen and highly transparent white OLED panel. The full smart window display reveals a maximum transmittance as high as 64.2% at the wavelength of 600 nm and extremely good along with tunable ambient contrast ratio (171.94:1) compared to that of normal TOLED (4.54:1). Furthermore, the performance decisive light blocking screen has demonstrated an excellent optical and electrical characteristics such as i) high transmittance (85.56% at 562nm) at light-penetrating state, ii) superior absorbance (2.30 at 562nm) in light interrupting mode, iii) high optical contrast (85.50 at 562 nm), iv) high optical stability for more than 25,000 cycle of driving, v) fast switching time of 1.9 sec, and vi) low driving voltage of 1.7 V. The experimental results of smart window display are also validated using optical simulation. The proposed smart window display technology allows us to adjust the intensity of daylight entering the system quickly and conveniently.

  7. Empirical assessment of a prismatic daylight-redirecting window film in a full-scale office testbed

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thanachareonkit, Anothai; Lee, Eleanor S.; McNeil, Andrew

    2013-08-31

    Daylight redirecting systems with vertical windows have the potential to offset lighting energy use in deep perimeter zones. Microstructured prismatic window films can be manufactured using low-cost, roll-to-roll fabrication methods and adhered to the inside surface of existing windows as a retrofit measure or installed as a replacement insulating glass unit in the clerestory portion of the window wall. A clear film patterned with linear, 50-250 micrometer high, four-sided asymmetrical prisms was fabricated and installed in the south-facing, clerestory low-e, clear glazed windows of a full-scale testbed facility. Views through the film were distorted. The film was evaluated in amore » sunny climate over a two-year period to gauge daylighting and visual comfort performance. The daylighting aperture was small (window-towall ratio of 0.18) and the lower windows were blocked off to isolate the evaluation to the window film. Workplane illuminance measurements were made in the 4.6 m (15 ft) deep room furnished as a private office. Analysis of discomfort glare was conducted using high dynamic range imaging coupled with the evalglare software tool, which computes the daylight glare probability and other metrics used to evaluate visual discomfort. The window film was found to result in perceptible levels of discomfort glare on clear sunny days from the most conservative view point in the rear of the room looking toward the window. Daylight illuminance levels at the rear of the room were significantly increased above the reference window condition, which was defined as the same glazed clerestory window but with an interior Venetian blind (slat angle set to the cut-off angle), for the equinox to winter solstice period on clear sunny days. For partly cloudy and overcast sky conditions, daylight levels were improved slightly. To reduce glare, the daylighting film was coupled with a diffusing film in an insulating glazing unit. The diffusing film retained the directionality of the redirected light spreading it within a small range of outgoing angles. This solution was found to reduce glare to imperceptible levels while retaining for the most part the illuminance levels achieved solely by the daylighting film.« less

  8. 3. VIEW OF THE NORTH FACADE, LOOKING SOUTH. NOTE THE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    3. VIEW OF THE NORTH FACADE, LOOKING SOUTH. NOTE THE OPENINGS FOR THE THREE VERTICAL FOUR-LIGHT WINDOWS ARE COVERED BY PLYWOOD. ALSO NOTE THE LEAF MOTIFS ABOVE THE WINDOWS. - Wyoming Valley Flood Control System, Woodward Pumping Station, East of Toby Creek crossing by Erie-Lackawanna Railroad, Edwardsville, Luzerne County, PA

  9. Main control room, showing original sixpane windows and doors to ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Main control room, showing original six-pane windows and doors to pump motor room at left. The main control cabinets and switchgear, visible on right, were replaced in 2003. View to the south - Wellton-Mohawk Irrigation System, Pumping Plant No. 2, Bounded by Interstate 8 to south, Wellton, Yuma County, AZ

  10. MOST PROBABLE NUMBER (MPN) CALCULATOR Version 2.0 User and System Installation and Administration Manual

    EPA Science Inventory

    The new MPN Calculator is an easy-to-use stand alone Windows application built by Avineon, Inc. for the EPA. The calculator was built using Microsoft .NET (dot NET) version 3.5 SP1 (C#) and Windows Presentation Foundation technologies. The new calculator not only combines the mai...

  11. 30 CFR 27.38 - Tests to determine adequacy of windows and lenses.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Tests to determine adequacy of windows and lenses. 27.38 Section 27.38 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR TESTING, EVALUATION, AND APPROVAL OF MINING PRODUCTS METHANE-MONITORING SYSTEMS Test Requirements § 27.38...

  12. Reed-Muller Codes in Error Correction in Wireless Adhoc Networks

    DTIC Science & Technology

    2004-03-01

    resulting spectrum is the spectrum of the windowed signal. Therefore, the window width is an important pa- rameter that affects the BER performanceof ... compare the results, the same random message was used. The seed value in msg.m was changed only for comparing the PAPR values of the system with

  13. Project Teaches Students to Diagnose an Ailing Windows OS

    ERIC Educational Resources Information Center

    Yang, Baijan

    2007-01-01

    Troubleshooting a corrupted Windows operating system (OS) is a must-learn experience for computer technology students. To teach OS troubleshooting, the simplest approach involves introducing the available tools followed by the "how-to's." But how does a teacher teach his or her students to apply their knowledge in real-life scenarios and help them…

  14. 5. EXTERIOR OF SOUTH END OF HOUSE SHOWING OPEN DOOR ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    5. EXTERIOR OF SOUTH END OF HOUSE SHOWING OPEN DOOR TO BASEMENT BELOW KITCHEN, ORIGINAL PAIRED WOODFRAMED SLIDING-GLASS WINDOWS ON KITCHEN WALL AND 1LIGHT OVER 1-LIGHT DOUBLE-HUNG WINDOW ON STORM PORCH ADDITION. VIEW TO WEST. - Rush Creek Hydroelectric System, Clubhouse Cottage, Rush Creek, June Lake, Mono County, CA

  15. 76 FR 51344 - Notice of Funds Availability for Section 514 Farm Labor Housing Loans and Section 516 Farm Labor...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-18

    ...). Replacement of heating, ventilation and air conditioning (HVAC) equipment with Energy Star qualified heating, HVAC equipment. (3 points). Replacement of windows and doors with Energy Star qualified windows and... the third-party program's rating and verification systems. (2 points). Dated: August 11, 2011. Robert...

  16. Restoration of severely weathered wood

    Treesearch

    R. Sam Williams; Mark Knaebe

    2000-01-01

    Severely weathered window units were used to test various restoration methods and pretreatments. Sanded and unsanded units were pretreated with a consolidant or water repellent preservative, finished with an oil- or latex-based paint system, and exposed outdoors near Madison, WI, for five years. Pretreatments were applied to both window sashes (stiles and rails) and...

  17. 30 CFR 27.38 - Tests to determine adequacy of windows and lenses.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Tests to determine adequacy of windows and lenses. 27.38 Section 27.38 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR TESTING, EVALUATION, AND APPROVAL OF MINING PRODUCTS METHANE-MONITORING SYSTEMS Test Requirements § 27.38...

  18. The Effect of a Constant Level Lighting Control System on Small Offices With Windows

    DTIC Science & Technology

    1992-01-01

    Scientific 2101 Digital Power Analyzer. The power factor was calculated by dividing the real power by the apparent power (current multiplied by voltage...CBNSC-TT-P 22060 INSODM - Cb. huad. Div. Delace Tockslcol to. C 2M30 US Arm Bo~kuau Disvriaw Pt Dalvoir VA 22M6 AWN: DTIC-AB (2) ATTN: Libary (41) ATmN

  19. Aero-Optics Measurement System for the AEDC Aero-Optics Test Facility

    DTIC Science & Technology

    1991-02-01

    Pulse Energy Statistics , 150 Pulses ........................................ 41 AEDC-TR-90-20 APPENDIXES A. Optical Performance of Heated Windows...hypersonic wind tunnel, where the requisite extensive statistical database can be developed in a cost- and time-effective manner. Ground testing...At the present time at AEDC, measured AO parameter statistics are derived from sets of image-spot recordings with a set containing as many as 150

  20. Switching times of nanoscale FePt: Finite size effects on the linear reversal mechanism

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ellis, M. O. A.; Chantrell, R. W.

    2015-04-20

    The linear reversal mechanism in FePt grains ranging from 2.316 nm to 5.404 nm has been simulated using atomistic spin dynamics, parametrized from ab-initio calculations. The Curie temperature and the critical temperature (T{sup *}), at which the linear reversal mechanism occurs, are observed to decrease with system size whilst the temperature window T{sup *}

  1. Physical effects of mechanical design parameters on photon sensitivity and spatial resolution performance of a breast-dedicated PET system.

    PubMed

    Spanoudaki, V C; Lau, F W Y; Vandenbroucke, A; Levin, C S

    2010-11-01

    This study aims to address design considerations of a high resolution, high sensitivity positron emission tomography scanner dedicated to breast imaging. The methodology uses a detailed Monte Carlo model of the system structures to obtain a quantitative evaluation of several performance parameters. Special focus was given to the effect of dense mechanical structures designed to provide mechanical robustness and thermal regulation to the minuscule and temperature sensitive detectors. For the energies of interest around the photopeak (450-700 keV energy window), the simulation results predict a 6.5% reduction in the single photon detection efficiency and a 12.5% reduction in the coincidence photon detection efficiency in the case that the mechanical structures are interspersed between the detectors. However for lower energies, a substantial increase in the number of detected events (approximately 14% and 7% for singles at a 100-200 keV energy window and coincidences at a lower energy threshold of 100 keV, respectively) was observed with the presence of these structures due to backscatter. The number of photon events that involve multiple interactions in various crystal elements is also affected by the presence of the structures. For photon events involving multiple interactions among various crystal elements, the coincidence photon sensitivity is reduced by as much as 20% for a point source at the center of the field of view. There is no observable effect on the intrinsic and the reconstructed spatial resolution and spatial resolution uniformity. Mechanical structures can have a considerable effect on system sensitivity, especially for systems processing multi-interaction photon events. This effect, however, does not impact the spatial resolution. Various mechanical structure designs are currently under evaluation in order to achieve optimum trade-off between temperature stability, accurate detector positioning, and minimum influence on system performance.

  2. Physical effects of mechanical design parameters on photon sensitivity and spatial resolution performance of a breast-dedicated PET system

    PubMed Central

    Spanoudaki, V. C.; Lau, F. W. Y.; Vandenbroucke, A.; Levin, C. S.

    2010-01-01

    Purpose: This study aims to address design considerations of a high resolution, high sensitivity positron emission tomography scanner dedicated to breast imaging. Methods: The methodology uses a detailed Monte Carlo model of the system structures to obtain a quantitative evaluation of several performance parameters. Special focus was given to the effect of dense mechanical structures designed to provide mechanical robustness and thermal regulation to the minuscule and temperature sensitive detectors. Results: For the energies of interest around the photopeak (450–700 keV energy window), the simulation results predict a 6.5% reduction in the single photon detection efficiency and a 12.5% reduction in the coincidence photon detection efficiency in the case that the mechanical structures are interspersed between the detectors. However for lower energies, a substantial increase in the number of detected events (approximately 14% and 7% for singles at a 100–200 keV energy window and coincidences at a lower energy threshold of 100 keV, respectively) was observed with the presence of these structures due to backscatter. The number of photon events that involve multiple interactions in various crystal elements is also affected by the presence of the structures. For photon events involving multiple interactions among various crystal elements, the coincidence photon sensitivity is reduced by as much as 20% for a point source at the center of the field of view. There is no observable effect on the intrinsic and the reconstructed spatial resolution and spatial resolution uniformity. Conclusions: Mechanical structures can have a considerable effect on system sensitivity, especially for systems processing multi-interaction photon events. This effect, however, does not impact the spatial resolution. Various mechanical structure designs are currently under evaluation in order to achieve optimum trade-off between temperature stability, accurate detector positioning, and minimum influence on system performance. PMID:21158296

  3. Innovative Imagery System for Enhanced Habitability Onboard ISS: Desired Features and Possible Hardware Applications

    NASA Technical Reports Server (NTRS)

    Whitmore, Mihriban; Baggerman, Susan; Byrne, Vicky

    2004-01-01

    With the advent of the ISS and the experience of Russian, European, and US crewmembers on Mir, the importance of the psychological element in long duration missions is increasingly recognized. An integrated imagery system or Magic Window System could enhance the habitability, performance, and productivity for long term stays in space. Because this is type of system is a new concept for space, functional and technical requirements need to be determined. As part of a three-year project, the functional and technical requirements for an Imagery System onboard the International Space Station (ISS) have been explored. Valuable information was gathered from a survey completed by participants that had been in analog environments (remote/isolated) such as Antarctica, Aquarius, ISS crewmember debriefs, and crew support meetings to identify key functions desired for an integrated Magic Window System. Exercise and medical care activities were identified as areas that could benefit from such a system. It was determined that for exercise, it was worth exploring the concept of displaying a dynamic screen that changes as the crewmember's speed changes while showing physiological measures in a combined display. In terms of enhancing the interfaces for medical care activities, the Magic Window System could show video clips along side procedures for just-in-time training scenarios through a heads-up display. In addition, the portability, usability, and reliability were stressed as important considerations for an integrated system of technologies or Magic Window System. In addition, a review of state-of-the-art screens and other existing technologies such as tablet PCs and Personal Digital Assistants (PDAs) was conducted and contributed to defining technical requirements and feasibility of systems. Some heuristic evaluations of large displays and PDAs were conducted. Finally, feasibility for implementation onboard ISS has been considered. Currently, specific headset units are undergoing usability testing. The outcome of these activities will be valuable to determine the best candidates for an integrated system that could accommodate different needs depending on task.

  4. Calculation of Retention Time Tolerance Windows with Absolute Confidence from Shared Liquid Chromatographic Retention Data

    PubMed Central

    Boswell, Paul G.; Abate-Pella, Daniel; Hewitt, Joshua T.

    2015-01-01

    Compound identification by liquid chromatography-mass spectrometry (LC-MS) is a tedious process, mainly because authentic standards must be run on a user’s system to be able to confidently reject a potential identity from its retention time and mass spectral properties. Instead, it would be preferable to use shared retention time/index data to narrow down the identity, but shared data cannot be used to reject candidates with an absolute level of confidence because the data are strongly affected by differences between HPLC systems and experimental conditions. However, a technique called “retention projection” was recently shown to account for many of the differences. In this manuscript, we discuss an approach to calculate appropriate retention time tolerance windows for projected retention times, potentially making it possible to exclude candidates with an absolute level of confidence, without needing to have authentic standards of each candidate on hand. In a range of multi-segment gradients and flow rates run among seven different labs, the new approach calculated tolerance windows that were significantly more appropriate for each retention projection than global tolerance windows calculated for retention projections or linear retention indices. Though there were still some small differences between the labs that evidently were not taken into account, the calculated tolerance windows only needed to be relaxed by 50% to make them appropriate for all labs. Even then, 42% of the tolerance windows calculated in this study without standards were narrower than those required by WADA for positive identification, where standards must be run contemporaneously. PMID:26292624

  5. Calculation of retention time tolerance windows with absolute confidence from shared liquid chromatographic retention data.

    PubMed

    Boswell, Paul G; Abate-Pella, Daniel; Hewitt, Joshua T

    2015-09-18

    Compound identification by liquid chromatography-mass spectrometry (LC-MS) is a tedious process, mainly because authentic standards must be run on a user's system to be able to confidently reject a potential identity from its retention time and mass spectral properties. Instead, it would be preferable to use shared retention time/index data to narrow down the identity, but shared data cannot be used to reject candidates with an absolute level of confidence because the data are strongly affected by differences between HPLC systems and experimental conditions. However, a technique called "retention projection" was recently shown to account for many of the differences. In this manuscript, we discuss an approach to calculate appropriate retention time tolerance windows for projected retention times, potentially making it possible to exclude candidates with an absolute level of confidence, without needing to have authentic standards of each candidate on hand. In a range of multi-segment gradients and flow rates run among seven different labs, the new approach calculated tolerance windows that were significantly more appropriate for each retention projection than global tolerance windows calculated for retention projections or linear retention indices. Though there were still some small differences between the labs that evidently were not taken into account, the calculated tolerance windows only needed to be relaxed by 50% to make them appropriate for all labs. Even then, 42% of the tolerance windows calculated in this study without standards were narrower than those required by WADA for positive identification, where standards must be run contemporaneously. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. 11 Foot Unitary Plan Tunnel Facility Optical Improvement Large Window Analysis

    NASA Technical Reports Server (NTRS)

    Hawke, Veronica M.

    2015-01-01

    The test section of the 11 by 11-foot Unitary Plan Transonic Wind Tunnel (11-foot UPWT) may receive an upgrade of larger optical windows on both the North and South sides. These new larger windows will provide better access for optical imaging of test article flow phenomena including surface and off body flow characteristics. The installation of these new larger windows will likely produce a change to the aerodynamic characteristics of the flow in the Test Section. In an effort understand the effect of this change, a computational model was employed to predict the flows through the slotted walls, in the test section and around the model before and after the tunnel modification. This report documents the solid CAD model that was created and the inviscid computational analysis that was completed as a preliminary estimate of the effect of the changes.

  7. Information Management Functional Economic Analysis for Finance Workstations to the Defense Information Technology Services Organization

    DTIC Science & Technology

    1993-03-01

    values themselves. The Wools perform risk-adjusted present-value comparisons and compute the ROI using discount factors. The assessment of risk in a...developed X Window system, the de facto industry standard window system in the UNIX environment. An X- terminal’s use is limited to display. It has no...2.1 IT HARDWARE The DOS-based PC used in this analysis costs $2,060. It includes an ASL 486DX-33 Industry Standard Architecture (ISA) computer with 8

  8. Defense Information Systems Agency Technical Integration Support (DISA- TIS). MUMPS Study.

    DTIC Science & Technology

    1993-01-01

    usable in DoD, MUMPS must continue to improve in its support of DoD and OSE standards such as SQL , X-Windows, POSIX, PHIGS, etc. MUMPS and large AlSs...Language ( SQL ), X-Windows, and Graphical Kernel Services (GKS)) 2.2.2.3 FIPS Adoption by NIST The National Institute of Standards and Technology (NIST...many of the performance tuning mechanisms that must be performed explicitly with other systems. The VA looks forward to the SQL binding (1993 ANS) that

  9. Investigating the Naval Logistics Role in Humanitarian Assistance Activities

    DTIC Science & Technology

    2015-03-01

    transportation means. E. BASE CASE RESULTS The computations were executed on a MacBook Pro , 3 GHz Intel Core i7-4578U processor with 8 GB. The...MacBook Pro was partitioned to also contain a Windows 7, 64-bit operating system. The computations were run in the Windows 7 operating system using the...it impacts the types of metamodels that can be developed as a result of data farming (Lucas et al., 2015). Using a metamodel, one can closely

  10. Vertical Stabilizer and OMS pods from the aft FD window during STS-123 mission

    NASA Image and Video Library

    2008-03-11

    S123-E-005073 (11 Mar. 2008) --- This view out the aft windows on Endeavour's flight deck was one of a series of images recorded by the STS-123 crewmembers during their first full day in space. The end of the Canadian-built remote manipulator system's robot arm (right edge) along with the shuttle's vertical stabilizer and its two orbital maneuvering system (OMS) pods are visible. A heavily cloud-covered area of Earth fills the top half of the frame.

  11. Noise and Sonic Boom Impact Technology. Sonic Boom Damage to Conventional Structures

    DTIC Science & Technology

    1989-02-01

    Pallant (21) reported on tests on leaded glass windows conducted in England. Tests were conducted to investigate the effect of repeated booms and to...changes can cause considerable deflections in the window due to the thermal expansion of the lead. However, Pallant also found that these...RD-775-118, July , 1975. 10. Abiassi, J.J., "The Strength of Weathered Window Glass Using Surface Characteristics," Institute For Disaster Research

  12. Closeup view of the exterior of the starboard side of ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Close-up view of the exterior of the starboard side of the forward fuselage of the Orbiter Discovery looking at the forward facing observation windows of the flight deck. Note the High-temperature Reusable Surface Insulation (HRSI) surrounding the window openings, the Low-temperature Reusable Surface Insulation (LRSI) immediately beyond the HRSI tiles and the Advanced Flexible Reusable Surface Insulation blankets just beyond the LRSI tiles. The holes in the tiles are injection points for the application of waterproofing material. The windows are composed of redundant pressure window panes of thermal glass. This image was taken from a service platform in the Orbiter Processing Facility at Kennedy Space Center - Space Transportation System, Orbiter Discovery (OV-103), Lyndon B. Johnson Space Center, 2101 NASA Parkway, Houston, Harris County, TX

  13. ECRH launching scenario in FFHR-d1

    NASA Astrophysics Data System (ADS)

    Yanagihara, Kota; Kubo, Shin; Shimozuma, Takashi; Yoshimura, Yasuo; Igami, Hiroe; Takahashi, Hiromi; Tsujimura, Tohru; Makino, Ryohhei

    2016-10-01

    ECRH is promising as a principal heating system in a prototype helical reactor FFHR-d1 where the heating power of 80 MW is required to bring the plasma parameter to break even condition. To generate the plasma and bring it to ignition condition in FFHR-d1, it is effective to heat the under/over-dense plasma with normal ECRH or Electron Bernstein Wave (EBW). Normal ECRH is well established but heating via EBW need sophisticated injection control. EBW can be excited via the O(ordinary)-X(extraordinary)-B(EBW) mode conversion process by launching the ordinary wave from the low field side to plasma cut-off layer with optimum injection angle, and the range of injection angle to get high OXB mode conversion rate is called OXB mode conversion window. Since the window position can change as the plasma parameter, it is necessary to optimize the injection angle so as to aim the window in response to the plasma parameters. Candidates of antenna positions are determined by optimum injection points on the plasma facing wall calculated by the injection angle. Given such picked up area, detailed analysis using ray-tracing calculations and engineering antenna design will be performed.

  14. Noncovalent Pi-Pi Stacking at the Carbon-Electrolyte Interface: Controlling the Voltage Window of Electrochemical Supercapacitors.

    PubMed

    Li, Mengya; Westover, Andrew S; Carter, Rachel; Oakes, Landon; Muralidharan, Nitin; Boire, Timothy C; Sung, Hak-Joon; Pint, Cary L

    2016-08-03

    A key parameter in the operation of an electrochemical double-layer capacitor is the voltage window, which dictates the device energy density and power density. Here we demonstrate experimental evidence that π-π stacking at a carbon-ionic liquid interface can modify the operation voltage of a supercapacitor device by up to 30%, and this can be recovered by steric hindrance at the electrode-electrolyte interface introduced by poly(ethylene oxide) polymer electrolyte additives. This observation is supported by Raman spectroscopy, electrochemical impedance spectroscopy, and differential scanning calorimetry that each independently elucidates the signature of π-π stacking between imidazole groups in the ionic liquid and the carbon surface and the role this plays to lower the energy barrier for charge transfer at the electrode-electrolyte interface. This effect is further observed universally across two separate ionic liquid electrolyte systems and is validated by control experiments showing an invariant electrochemical window in the absence of a carbon-ionic liquid electrode-electrolyte interface. As interfacial or noncovalent interactions are usually neglected in the mechanistic picture of double-layer capacitors, this work highlights the importance of understanding chemical properties at supercapacitor interfaces to engineer voltage and energy capability.

  15. Electrochemical performance of C4O6H4KNa aqueous electrolytes

    NASA Astrophysics Data System (ADS)

    Zhang, Jianqiang; Song, Senyang; Chen, Yanzheng; Huang, Siyun; Li, Ping; Luo, Heming

    2018-06-01

    The paper is devoted in the study of the simple method to study the performance of aqueous electrolytes, whereas the custom-made FBNC-700 (FB represents FAC-brown, N represents "nitrogen-self-doped," C represents mesoporous-carbon materials, and 700 represents carbonization temperature.) was utilized as the electrode material, where the C4O6H4KNa solution was utilized as an aqueous electrolyte. The polarization curves was be used in the three-electrode system to conduct the voltage window preliminary selection of the C4O6H4KNa solution, the voltage window was 1.3 V (-0.8 V to 0.5 V). The concentration had minimal effects on the voltage window. The method is faster and more efficient way to study the performance of aqueous electrolytes for supercapacitors. In the 2 M C4O6H4KNa solution, the FBNC-700 displayed a 97 F g-1 specific capacitance at the current density of 0.5 A g-1 in the two-electrodes tests. Also, following 5000 cycles at a current density of 1 A g-1, the FBNC-700 had good stability with 76.22% capacitance retention.

  16. Low-E Storm Windows Gain Acceptance as a Home Weatherization Measure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gilbride, Theresa L.; Cort, Katherine A.

    This article for Home Energy Magazine describes work by the U.S. Department of Energy to develop low-emissivity storm windows as an energy efficiency-retrofit option for existing homes. The article describes the low-emissivity invisible silver metal coatings on the glass, which reflect heat back into the home in winter or back outside in summer and the benefits of low-e storm windows including insulation, air sealing, noise blocking, protection of antique windows, etc. The article also describes Pacific Northwest National Laboratory's efforts on behalf of DOE to overcome market barriers to adoption of the technology, including performance validation studies in the PNNLmore » Lab Homes, cost effectiveness analysis, production of reports, brochures, how-to guides on low-e storm window installation for the Building America Solution Center, and a video posted on YouTube. PNNL's efforts were reviewed by the Pacific Northwest Regional Technical Forum (RTF), which serves as the advisory board to the Pacific Northwest Electric Power Planning Council and Bonneville Power Administration. In late July 2015, the RTF approved the low-e storm window measure’s savings and specifications, a critical step in integrating low-e storm windows into energy-efficiency planning and utility weatherization and incentive programs. PNNL estimates that more than 90 million homes in the United States with single-pane or low-performing double-pane windows would benefit from the technology. Low-e storm windows are suitable not only for private residences but also for small commercial buildings, historic properties, and facilities that house residents, such as nursing homes, dormitories, and in-patient facilities. To further assist in the market transformation of low-e storm windows and other high-efficiency window attachments, DOE helped found the window Attachment Energy Rating Council (AERC) in 2015. AERC is an independent, public interest, non-profit organization whose mission is to rate, label, and certify the performance of window attachments.« less

  17. Robust Timing Synchronization in Aeronautical Mobile Communication Systems

    NASA Technical Reports Server (NTRS)

    Xiong, Fu-Qin; Pinchak, Stanley

    2004-01-01

    This work details a study of robust synchronization schemes suitable for satellite to mobile aeronautical applications. A new scheme, the Modified Sliding Window Synchronizer (MSWS), is devised and compared with existing schemes, including the traditional Early-Late Gate Synchronizer (ELGS), the Gardner Zero-Crossing Detector (GZCD), and the Sliding Window Synchronizer (SWS). Performance of the synchronization schemes is evaluated by a set of metrics that indicate performance in digital communications systems. The metrics are convergence time, mean square phase error (or root mean-square phase error), lowest SNR for locking, initial frequency offset performance, midstream frequency offset performance, and system complexity. The performance of the synchronizers is evaluated by means of Matlab simulation models. A simulation platform is devised to model the satellite to mobile aeronautical channel, consisting of a Quadrature Phase Shift Keying modulator, an additive white Gaussian noise channel, and a demodulator front end. Simulation results show that the MSWS provides the most robust performance at the cost of system complexity. The GZCD provides a good tradeoff between robustness and system complexity for communication systems that require high symbol rates or low overall system costs. The ELGS has a high system complexity despite its average performance. Overall, the SWS, originally designed for multi-carrier systems, performs very poorly in single-carrier communications systems. Table 5.1 in Section 5 provides a ranking of each of the synchronization schemes in terms of the metrics set forth in Section 4.1. Details of comparison are given in Section 5. Based on the results presented in Table 5, it is safe to say that the most robust synchronization scheme examined in this work is the high-sample-rate Modified Sliding Window Synchronizer. A close second is its low-sample-rate cousin. The tradeoff between complexity and lowest mean-square phase error determines the rankings of the Gardner Zero-Crossing Detector and both versions of the Early-Late Gate Synchronizer. The least robust models are the high and low-sample-rate Sliding Window Synchronizers. Consequently, the recommended replacement synchronizer for NASA's Advanced Air Transportation Technologies mobile aeronautical communications system is the high-sample-rate Modified Sliding Window Synchronizer. By incorporating this synchronizer into their system, NASA can be assured that their system will be operational in extremely adverse conditions. The quick convergence time of the MSWS should allow the use of high-level protocols. However, if NASA feels that reduced system complexity is the most important aspect of their replacement synchronizer, the Gardner Zero-Crossing Detector would be the best choice.

  18. Windows Instant Messaging App Forensics: Facebook and Skype as Case Studies

    PubMed Central

    Yang, Teing Yee; Dehghantanha, Ali; Choo, Kim-Kwang Raymond; Muda, Zaiton

    2016-01-01

    Instant messaging (IM) has changed the way people communicate with each other. However, the interactive and instant nature of these applications (apps) made them an attractive choice for malicious cyber activities such as phishing. The forensic examination of IM apps for modern Windows 8.1 (or later) has been largely unexplored, as the platform is relatively new. In this paper, we seek to determine the data remnants from the use of two popular Windows Store application software for instant messaging, namely Facebook and Skype on a Windows 8.1 client machine. This research contributes to an in-depth understanding of the types of terrestrial artefacts that are likely to remain after the use of instant messaging services and application software on a contemporary Windows operating system. Potential artefacts detected during the research include data relating to the installation or uninstallation of the instant messaging application software, log-in and log-off information, contact lists, conversations, and transferred files. PMID:26982207

  19. Windows Instant Messaging App Forensics: Facebook and Skype as Case Studies.

    PubMed

    Yang, Teing Yee; Dehghantanha, Ali; Choo, Kim-Kwang Raymond; Muda, Zaiton

    2016-01-01

    Instant messaging (IM) has changed the way people communicate with each other. However, the interactive and instant nature of these applications (apps) made them an attractive choice for malicious cyber activities such as phishing. The forensic examination of IM apps for modern Windows 8.1 (or later) has been largely unexplored, as the platform is relatively new. In this paper, we seek to determine the data remnants from the use of two popular Windows Store application software for instant messaging, namely Facebook and Skype on a Windows 8.1 client machine. This research contributes to an in-depth understanding of the types of terrestrial artefacts that are likely to remain after the use of instant messaging services and application software on a contemporary Windows operating system. Potential artefacts detected during the research include data relating to the installation or uninstallation of the instant messaging application software, log-in and log-off information, contact lists, conversations, and transferred files.

  20. STS-43 MS Adamson checks OCTW experiment on OV-104's aft flight deck

    NASA Image and Video Library

    1991-08-11

    STS043-04-038 (2-11 Aug 1991) --- Astronaut James C. Adamson, STS-43 mission specialist, checks on an experiment on Atlantis? flight deck. Part of the experiment, Optical Communications Through the Shuttle Window (OCTW), can be seen mounted in upper right. The OCTW system consists of two modules, one inside the orbiter crew cabin (as pictured here) and one in the payload bay. The crew compartment version houses an optoelectronic transmitter/receiver pair for video and digital subsystems, test circuitry and interface circuitry. The payload bay module serves as a repeater station. During operation a signal is transmitted through the shuttle window to a bundle of optical fiber cables mounted in the payload bay near an aft window. The cables carry optical signals from the crew compartment equipment to the OCTW payload bay module. The signals are returned via optical fiber cable to the aft flight deck window, retransmitted through the window, and received by the crew compartment equipment.

Top