2011-01-01
Background Heliconius butterflies are an excellent system for studies of adaptive convergent and divergent phenotypic traits. Wing colour patterns are used as signals to both predators and potential mates and are inherited in a Mendelian manner. The underlying genetic mechanisms of pattern formation have been studied for many years and shed light on broad issues, such as the repeatability of evolution. In Heliconius melpomene, the yellow hindwing bar is controlled by the HmYb locus. MicroRNAs (miRNAs) are important post-transcriptional regulators of gene expression that have key roles in many biological processes, including development. miRNAs could act as regulators of genes involved in wing development, patterning and pigmentation. For this reason we characterised miRNAs in developing butterfly wings and examined differences in their expression between colour pattern races. Results We sequenced small RNA libraries from two colour pattern races and detected 142 Heliconius miRNAs with homology to others found in miRBase. Several highly abundant miRNAs were differentially represented in the libraries between colour pattern races. These candidates were tested further using Northern blots, showing that differences in expression were primarily due to developmental stage rather than colour pattern. Assembly of sequenced reads to the HmYb region identified hme-miR-193 and hme-miR-2788; located 2380 bp apart in an intergenic region. These two miRNAs are expressed in wings and show an upregulation between 24 and 72 hours post-pupation, indicating a potential role in butterfly wing development. A search for miRNAs in all available H. melpomene BAC sequences (~ 2.5 Mb) did not reveal any other miRNAs and no novel miRNAs were predicted. Conclusions Here we describe the first butterfly miRNAs and characterise their expression in developing wings. Some show differences in expression across developing pupal stages and may have important functions in butterfly wing development. Two miRNAs were located in the HmYb region and were expressed in developing pupal wings. Future work will examine the expression of these miRNAs in different colour pattern races and identify miRNA targets among wing patterning genes. PMID:21266089
Surridge, Alison K; Lopez-Gomollon, Sara; Moxon, Simon; Maroja, Luana S; Rathjen, Tina; Nadeau, Nicola J; Dalmay, Tamas; Jiggins, Chris D
2011-01-26
Heliconius butterflies are an excellent system for studies of adaptive convergent and divergent phenotypic traits. Wing colour patterns are used as signals to both predators and potential mates and are inherited in a Mendelian manner. The underlying genetic mechanisms of pattern formation have been studied for many years and shed light on broad issues, such as the repeatability of evolution. In Heliconius melpomene, the yellow hindwing bar is controlled by the HmYb locus. MicroRNAs (miRNAs) are important post-transcriptional regulators of gene expression that have key roles in many biological processes, including development. miRNAs could act as regulators of genes involved in wing development, patterning and pigmentation. For this reason we characterised miRNAs in developing butterfly wings and examined differences in their expression between colour pattern races. We sequenced small RNA libraries from two colour pattern races and detected 142 Heliconius miRNAs with homology to others found in miRBase. Several highly abundant miRNAs were differentially represented in the libraries between colour pattern races. These candidates were tested further using Northern blots, showing that differences in expression were primarily due to developmental stage rather than colour pattern. Assembly of sequenced reads to the HmYb region identified hme-miR-193 and hme-miR-2788; located 2380 bp apart in an intergenic region. These two miRNAs are expressed in wings and show an upregulation between 24 and 72 hours post-pupation, indicating a potential role in butterfly wing development. A search for miRNAs in all available H. melpomene BAC sequences (~2.5 Mb) did not reveal any other miRNAs and no novel miRNAs were predicted. Here we describe the first butterfly miRNAs and characterise their expression in developing wings. Some show differences in expression across developing pupal stages and may have important functions in butterfly wing development. Two miRNAs were located in the HmYb region and were expressed in developing pupal wings. Future work will examine the expression of these miRNAs in different colour pattern races and identify miRNA targets among wing patterning genes.
Iwata, Masaki; Hiyama, Atsuki; Otaki, Joji M.
2013-01-01
Developmental studies on wing colour patterns have been performed in nymphalid butterflies, but efficient genetic manipulations, including mutagenesis, have not been well established. Here, we have performed mutagenesis experiments in a lycaenid butterfly, the pale grass blue Zizeeria maha, to produce colour-pattern mutants. We fed the P-generation larvae an artificial diet containing the mutagen ethyl methane sulfonate (EMS), and the F1- and F2-generation adults showed various aberrant colour patterns: dorsoventral transformation, anterioposterior background colouration gap, weak contrast, disarrangement of spots, reduction of the size of spots, loss of spots, fusion of spots, and ectopic spots. Among them, the disarrangement, reduction, and loss of spots were likely produced by the coordinated changes of many spots of a single wing around the discal spot in a system-dependent manner, demonstrating the existence of the central symmetry system. The present study revealed multiple genetic regulations for system-dependent and wing-wide colour-pattern determination in lycaenid butterflies. PMID:23917124
Yoshioka, Shinya; Kinoshita, Shuichi
2006-01-22
A few species of Morpho butterflies have a distinctive white stripe pattern on their structurally coloured blue wings. Since the colour pattern of a butterfly wing is formed as a mosaic of differently coloured scales, several questions naturally arise: are the microstructures the same between the blue and white scales? How is the distinctive whiteness produced, structurally or by means of pigmentation? To answer these questions, we have performed structural and optical investigations of the stripe pattern of a butterfly, Morpho cypris. It is found that besides the dorsal and ventral scale layers, the wing substrate also has the corresponding stripe pattern. Quantitative optical measurements and analysis using a simple model for the wing structure reveal the origin of the higher reflectance which makes the white stripe brighter.
Morehouse, Nathan I; Vukusic, Peter; Rutowski, Ron
2006-01-01
A small but growing literature indicates that many animal colours are produced by combinations of structural and pigmentary mechanisms. We investigated one such complex colour phenotype: the highly chromatic wing colours of pierid butterflies including oranges, yellows and patterns which appear white to the human eye, but strongly absorb the ultraviolet (UV) wavelengths visible to butterflies. Pierids produce these bright colours using wing scales that contain collections of minute granules. However, to date, no work has directly characterized the molecular composition or optical properties of these granules. We present results that indicate these granules contain pterin pigments. We also find that pterin granules increase light reflection from single wing scales, such that wing scales containing denser granule arrays reflect more light than those with less dense granule collections. As male wing scales contain more pterin granules than those of females, the sexual dichromatism found in many pierid species can be explained by differences in wing scale pterin deposition. Additionally, the colour pattern elements produced by these pterins are known to be important during mating interactions in a number of pierid species. Therefore, we discuss the potential relevance of our results within the framework of sexual selection and colour signal evolution. PMID:17164199
Spectrally tuned structural and pigmentary coloration of birdwing butterfly wing scales.
Wilts, Bodo D; Matsushita, Atsuko; Arikawa, Kentaro; Stavenga, Doekele G
2015-10-06
The colourful wing patterns of butterflies play an important role for enhancing fitness; for instance, by providing camouflage, for interspecific mate recognition, or for aposematic display. Closely related butterfly species can have dramatically different wing patterns. The phenomenon is assumed to be caused by ecological processes with changing conditions, e.g. in the environment, and also by sexual selection. Here, we investigate the birdwing butterflies, Ornithoptera, the largest butterflies of the world, together forming a small genus in the butterfly family Papilionidae. The wings of these butterflies are marked by strongly coloured patches. The colours are caused by specially structured wing scales, which act as a chirped multilayer reflector, but the scales also contain papiliochrome pigments, which act as a spectral filter. The combined structural and pigmentary effects tune the coloration of the wing scales. The tuned colours are presumably important for mate recognition and signalling. By applying electron microscopy, (micro-)spectrophotometry and scatterometry we found that the various mechanisms of scale coloration of the different birdwing species strongly correlate with the taxonomical distribution of Ornithoptera species. © 2015 The Author(s).
Spectrally tuned structural and pigmentary coloration of birdwing butterfly wing scales
Wilts, Bodo D.; Matsushita, Atsuko; Arikawa, Kentaro; Stavenga, Doekele G.
2015-01-01
The colourful wing patterns of butterflies play an important role for enhancing fitness; for instance, by providing camouflage, for interspecific mate recognition, or for aposematic display. Closely related butterfly species can have dramatically different wing patterns. The phenomenon is assumed to be caused by ecological processes with changing conditions, e.g. in the environment, and also by sexual selection. Here, we investigate the birdwing butterflies, Ornithoptera, the largest butterflies of the world, together forming a small genus in the butterfly family Papilionidae. The wings of these butterflies are marked by strongly coloured patches. The colours are caused by specially structured wing scales, which act as a chirped multilayer reflector, but the scales also contain papiliochrome pigments, which act as a spectral filter. The combined structural and pigmentary effects tune the coloration of the wing scales. The tuned colours are presumably important for mate recognition and signalling. By applying electron microscopy, (micro-)spectrophotometry and scatterometry we found that the various mechanisms of scale coloration of the different birdwing species strongly correlate with the taxonomical distribution of Ornithoptera species. PMID:26446560
apterous A specifies dorsal wing patterns and sexual traits in butterflies
2018-01-01
Butterflies have evolved different colour patterns on their dorsal and ventral wing surfaces to serve different signalling functions, yet the developmental mechanisms controlling surface-specific patterning are still unknown. Here, we mutate both copies of the transcription factor apterous in Bicyclus anynana butterflies using CRISPR/Cas9 and show that apterous A, expressed dorsally, functions both as a repressor and modifier of ventral wing colour patterns, as well as a promoter of dorsal sexual ornaments in males. We propose that the surface-specific diversification of wing patterns in butterflies proceeded via the co-option of apterous A or its downstream effectors into various gene regulatory networks involved in the differentiation of discrete wing traits. Further, interactions between apterous and sex-specific factors such as doublesex may have contributed to the origin of sexually dimorphic surface-specific patterns. Finally, we discuss the evolution of eyespot number diversity in the family Nymphalidae within the context of developmental constraints due to apterous regulation. PMID:29467265
Reed, Robert D; McMillan, W Owen; Nagy, Lisa M
2008-01-07
Geographical variation in the mimetic wing patterns of the butterfly Heliconius erato is a textbook example of adaptive polymorphism; however, little is known about how this variation is controlled developmentally. Using microarrays and qPCR, we identified and compared expression of candidate genes potentially involved with a red/yellow forewing band polymorphism in H. erato. We found that transcripts encoding the pigment synthesis enzymes cinnabar and vermilion showed pattern- and polymorphism-related expression patterns, respectively. cinnabar expression was associated with the forewing band regardless of pigment colour, providing the first gene expression pattern known to be correlated with a major Heliconius colour pattern. In contrast, vermilion expression changed spatially over time in red-banded butterflies, but was not expressed at detectable levels in yellow-banded butterflies, suggesting that regulation of this gene may be involved with the red/yellow polymorphism. Furthermore, we found that the yellow pigment, 3-hydroxykynurenine, is incorporated into wing scales from the haemolymph rather than being synthesized in situ. We propose that some aspects of Heliconius colour patterns are determined by spatio-temporal overlap of pigment gene transcription prepatterns and speculate that evolutionary changes in vermilion regulation may in part underlie an adaptive colour pattern polymorphism.
Pirih, Primož; Wilts, Bodo D; Stavenga, Doekele G
2011-10-01
The males of many pierid butterflies have iridescent wings, which presumably function in intraspecific communication. The iridescence is due to nanostructured ridges of the cover scales. We have studied the iridescence in the males of a few members of Coliadinae, Gonepteryx aspasia, G. cleopatra, G. rhamni, and Colias croceus, and in two members of the Colotis group, Hebomoia glaucippe and Colotis regina. Imaging scatterometry demonstrated that the pigmentary colouration is diffuse whereas the structural colouration creates a directional, line-shaped far-field radiation pattern. Angle-dependent reflectance measurements demonstrated that the directional iridescence distinctly varies among closely related species. The species-dependent scale curvature determines the spatial properties of the wing iridescence. Narrow beam illumination of flat scales results in a narrow far-field iridescence pattern, but curved scales produce broadened patterns. The restricted spatial visibility of iridescence presumably plays a role in intraspecific signalling.
A major gene controls mimicry and crypsis in butterflies and moths
Nadeau, Nicola J.; Pardo-Diaz, Carolina; Whibley, Annabel; Supple, Megan; Saenko, Suzanne V.; Wallbank, Richard W. R.; Wu, Grace C.; Maroja, Luana; Ferguson, Laura; Hanly, Joseph J.; Hines, Heather; Salazar, Camilo; Merrill, Richard; Dowling, Andrea; ffrench-Constant, Richard; Llaurens, Violaine; Joron, Mathieu; McMillan, W. Owen; Jiggins, Chris D.
2016-01-01
The wing patterns of butterflies and moths (Lepidoptera) are diverse and striking examples of evolutionary diversification by natural selection1,2. Lepidopteran wing colour patterns are a key innovation, consisting of arrays of coloured scales. We still lack a general understanding of how these patterns are controlled and if there is any commonality across the 160,000 moth and 17,000 butterfly species. Here, we identify a gene, cortex, through fine-scale mapping using population genomics and gene expression analyses, which regulates pattern switches in multiple species across the mimetic radiation in Heliconius butterflies. cortex belongs to a fast evolving subfamily of the otherwise highly conserved fizzy family of cell cycle regulators3, suggesting that it most likely regulates pigmentation patterning through regulation of scale cell development. In parallel with findings in the peppered moth (Biston betularia)4, our results suggest that this mechanism is common within Lepidoptera and that cortex has become a major target for natural selection acting on colour and pattern variation in this group of insects. PMID:27251285
The gene cortex controls mimicry and crypsis in butterflies and moths.
Nadeau, Nicola J; Pardo-Diaz, Carolina; Whibley, Annabel; Supple, Megan A; Saenko, Suzanne V; Wallbank, Richard W R; Wu, Grace C; Maroja, Luana; Ferguson, Laura; Hanly, Joseph J; Hines, Heather; Salazar, Camilo; Merrill, Richard M; Dowling, Andrea J; ffrench-Constant, Richard H; Llaurens, Violaine; Joron, Mathieu; McMillan, W Owen; Jiggins, Chris D
2016-06-02
The wing patterns of butterflies and moths (Lepidoptera) are diverse and striking examples of evolutionary diversification by natural selection. Lepidopteran wing colour patterns are a key innovation, consisting of arrays of coloured scales. We still lack a general understanding of how these patterns are controlled and whether this control shows any commonality across the 160,000 moth and 17,000 butterfly species. Here, we use fine-scale mapping with population genomics and gene expression analyses to identify a gene, cortex, that regulates pattern switches in multiple species across the mimetic radiation in Heliconius butterflies. cortex belongs to a fast-evolving subfamily of the otherwise highly conserved fizzy family of cell-cycle regulators, suggesting that it probably regulates pigmentation patterning by regulating scale cell development. In parallel with findings in the peppered moth (Biston betularia), our results suggest that this mechanism is common within Lepidoptera and that cortex has become a major target for natural selection acting on colour and pattern variation in this group of insects.
2017-01-01
The evolution of wing pattern in Lepidoptera is a popular area of inquiry but few studies have examined microlepidoptera, with fewer still focusing on intraspecific variation. The tineid genus Moerarchis Durrant, 1914 includes two species with high intraspecific variation of wing pattern. A subset of the specimens examined here provide, to my knowledge, the first examples of wing patterns that follow both the ‘alternating wing-margin’ and ‘uniform wing-margin’ models in different regions along the costa. These models can also be evaluated along the dorsum of Moerarchis, where a similar transition between the two models can be seen. Fusion of veins is shown not to effect wing pattern, in agreement with previous inferences that the plesiomorphic location of wing veins constrains the development of colour pattern. The significant correlation between wing length and number of wing pattern elements in Moerarchis australasiella shows that wing size can act as a major determinant of wing pattern complexity. Lastly, some M. australasiella specimens have wing patterns that conform entirely to the ‘uniform wing-margin’ model and contain more than six bands, providing new empirical insight into the century-old question of how wing venation constrains wing patterns with seven or more bands. PMID:28405390
Keeping the band together: evidence for false boundary disruptive coloration in a butterfly.
Seymoure, B M; Aiello, A
2015-09-01
There is a recent surge of evidence supporting disruptive coloration, in which patterns break up the animal's outline through false edges or boundaries, increasing survival in animals by reducing predator detection and/or preventing recognition. Although research has demonstrated that false edges are successful for reducing predation of prey, research into the role of internal false boundaries (i.e. stripes and bands) in reducing predation remains warranted. Many animals have stripes and bands that may function disruptively. Here, we test the possible disruptive function of wing band patterning in a butterfly, Anartia fatima, using artificial paper and plasticine models in Panama. We manipulated the band so that one model type had the band shifted to the wing margin (nondisruptive treatment) and another model had a discontinuous band located on the wing margin (discontinuous edge treatment). We kept the natural wing pattern to represent the false boundary treatment. Across all treatment groups, we standardized the area of colour and used avian visual models to confirm a match between manipulated and natural wing colours. False boundary models had higher survival than either the discontinuous edge model or the nondisruptive model. There was no survival difference between the discontinuous edge model and the nondisruptive model. Our results demonstrate the importance of wing bands in reducing predation on butterflies and show that markings set in from the wing margin can reduce predation more effectively than marginal bands and discontinuous marginal patterns. This study demonstrates an adaptive benefit of having stripes and bands. © 2015 European Society For Evolutionary Biology.
Abbasi, R; Marcus, J M
2015-11-01
Ocelli are serially repeated colour patterns on the wings of many butterflies. Eyespots are elaborate ocelli that function in predator avoidance and deterrence as well as in mate choice. A phylogenetic approach was used to study ocelli and eyespot evolution in Vanessa butterflies, a genus exhibiting diverse phenotypes among these serial homologs. Forty-four morphological characters based on eyespot number, arrangement, shape and the number of elements in each eyespot were defined and scored. Ocelli from eight wing cells on the dorsal and ventral surfaces of the forewing and hindwing were evaluated. The evolution of these characters was traced over a phylogeny of Vanessa based on 7750 DNA base pairs from 10 genes. Our reconstruction predicts that the ancestral Vanessa had 5 serially arranged ocelli on all four wing surfaces. The ancestral state on the dorsal forewing and ventral hindwing was ocelli arranged in two heterogeneous groups. On the dorsal hindwing, the ancestral state was either homogenous or ocelli arranged in two heterogeneous groups. On the ventral forewing, we determined that the ancestral state was organized into three heterogeneous groups. In Vanessa, almost all ocelli are individuated and capable of independent evolution relative to other colour patterns except for the ocelli in cells -1 and 0 on the dorsal and ventral forewings, which appear to be constrained to evolve in parallel. The genus Vanessa is a good model system for the study of serial homology and the interaction of selective forces with developmental architecture to produce diversity in butterfly colour patterns. © 2015 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2015 European Society For Evolutionary Biology.
Extensive transcriptional response associated with seasonal plasticity of butterfly wing patterns.
Daniels, Emily V; Murad, Rabi; Mortazavi, Ali; Reed, Robert D
2014-12-01
In the eastern United States, the buckeye butterfly, Junonia coenia, shows seasonal wing colour plasticity where adults emerging in the spring are tan, while those emerging in the autumn are dark red. This variation can be artificially induced in laboratory colonies, thus making J. coenia a useful model system to examine the mechanistic basis of plasticity. To better understand the developmental basis of seasonal plasticity, we used RNA-seq to quantify transcription profiles associated with development of alternative seasonal wing morphs. Depending on the developmental stage, between 547 and 1420 transfrags were significantly differentially expressed between morphs. These extensive differences in gene expression stand in contrast to the much smaller numbers of differentially expressed transcripts identified in previous studies of genetic wing pattern variation in other species and suggest that environmentally induced phenotypic shifts arise from very broad systemic processes. Analyses of candidate endocrine and pigmentation transcripts revealed notable genes upregulated in the red morph, including several ecdysone-associated genes, and cinnabar, an ommochrome pigmentation gene implicated in colour pattern variation in other butterflies. We also found multiple melanin-related transcripts strongly upregulated in the red morph, including tan and yellow-family genes, leading us to speculate that dark red pigmentation in autumn J. coenia may involve nonommochrome pigments. While we identified several endocrine and pigmentation genes as obvious candidates for seasonal colour morph differentiation, we speculate that the majority of observed expression differences were due to thermal stress response. The buckeye transcriptome provides a basis for further developmental studies of phenotypic plasticity. © 2014 John Wiley & Sons Ltd.
Character displacement in the fighting colours of Hetaerina damselflies.
Anderson, Christopher N; Grether, Gregory F
2010-12-07
Aggression between species is a seldom-considered but potentially widespread mechanism of character displacement in secondary sexual characters. Based on previous research showing that similarity in wing coloration directly influences interspecific territorial aggression in Hetaerina damselflies, we predicted that wing coloration would show a pattern of character displacement (divergence in sympatry). A geographical survey of four Hetaerina damselfly species in Mexico and Texas showed evidence for character displacement in both species pairs that regularly occurs sympatrically. Hetaerina titia, a species that typically has large black wing spots and small red wing spots, shifted to having even larger black spots and smaller red wing spots at sites where a congener with large red wing spots is numerically dominant (Hetaerina americana or Hetaerina occisa). Hetaerina americana showed the reverse pattern, shifting towards larger red wing spots where H. titia is numerically dominant. This pattern is consistent with the process of agonistic character displacement, but the ontogenetic basis of the shift remains to be demonstrated.
Stavenga, Doekele G; Leertouwer, Hein L; Wilts, Bodo D
2014-06-15
The coloration of the common butterflies Aglais urticae (small tortoiseshell), Aglais io (peacock) and Vanessa atalanta (red admiral), belonging to the butterfly subfamily Nymphalinae, is due to the species-specific patterning of differently coloured scales on their wings. We investigated the scales' structural and pigmentary properties by applying scanning electron microscopy, (micro)spectrophotometry and imaging scatterometry. The anatomy of the wing scales appears to be basically identical, with an approximately flat lower lamina connected by trabeculae to a highly structured upper lamina, which consists of an array of longitudinal, parallel ridges and transversal crossribs. Isolated scales observed at the abwing (upper) side are blue, yellow, orange, red, brown or black, depending on their pigmentation. The yellow, orange and red scales contain various amounts of 3-OH-kynurenine and ommochrome pigment, black scales contain a high density of melanin, and blue scales have a minor amount of melanin pigment. Observing the scales from their adwing (lower) side always revealed a structural colour, which is blue in the case of blue, red and black scales, but orange for orange scales. The structural colours are created by the lower lamina, which acts as an optical thin film. Its reflectance spectrum, crucially determined by the lamina thickness, appears to be well tuned to the scales' pigmentary spectrum. The colours observed locally on the wing are also due to the degree of scale stacking. Thin films, tuned pigments and combinations of stacked scales together determine the wing coloration of nymphaline butterflies. © 2014. Published by The Company of Biologists Ltd.
Adaptive introgression across species boundaries in Heliconius butterflies.
Pardo-Diaz, Carolina; Salazar, Camilo; Baxter, Simon W; Merot, Claire; Figueiredo-Ready, Wilsea; Joron, Mathieu; McMillan, W Owen; Jiggins, Chris D
2012-01-01
It is widely documented that hybridisation occurs between many closely related species, but the importance of introgression in adaptive evolution remains unclear, especially in animals. Here, we have examined the role of introgressive hybridisation in transferring adaptations between mimetic Heliconius butterflies, taking advantage of the recent identification of a gene regulating red wing patterns in this genus. By sequencing regions both linked and unlinked to the red colour locus, we found a region that displays an almost perfect genotype by phenotype association across four species, H. melpomene, H. cydno, H. timareta, and H. heurippa. This particular segment is located 70 kb downstream of the red colour specification gene optix, and coalescent analysis indicates repeated introgression of adaptive alleles from H. melpomene into the H. cydno species clade. Our analytical methods complement recent genome scale data for the same region and suggest adaptive introgression has a crucial role in generating adaptive wing colour diversity in this group of butterflies.
Classical lepidopteran wing scale colouration in the giant butterfly-moth Paysandisia archon.
Stavenga, Doekele G; Leertouwer, Hein L; Meglič, Andrej; Drašlar, Kazimir; Wehling, Martin F; Pirih, Primož; Belušič, Gregor
2018-01-01
The palm borer moth Paysandisia archon (Castniidae; giant butterfly-moths) has brown dorsal forewings and strikingly orange-coloured dorsal hindwings with white spots surrounded by black margins. Here, we have studied the structure and pigments of the wing scales in the various coloured wing areas, applying light and electron microscopy and (micro)spectrophotometry, and we analysed the spatial reflection properties with imaging scatterometry. The scales in the white spots are unpigmented, those in the black and brown wing areas contain various amounts of melanin, and the orange wing scales contain a blue-absorbing ommochrome pigment. In all scale types, the upper lamina acts as a diffuser and the lower lamina as a thin film interference reflector, with thickness of about 200 nm. Scale stacking plays an important role in creating the strong visual signals: the colour of the white eyespots is created by stacks of unpigmented blue scales, while the orange wing colour is strongly intensified by stacking the orange scales.
Structural colours of nickel bioreplicas of butterfly wings
NASA Astrophysics Data System (ADS)
Tolenis, Tomas; Swiontek, Stephen E.; Lakhtakia, Akhlesh
2017-04-01
The two-angle conformally evaporated-film-by-rotation technique (TA-CEFR) was devised to coat the wings of the monarch butterfly with nickel in order to form a 500-nm thick bioreplica thereof. The bioreplica exhibits structural colours that are completely obscured in actual wings by pigmental colours. Thus, the TA-CEFR technique provides a way to replicate, study and exploit hidden morphologies of biological surfaces.
Study of structural colour of Hebomoia glaucippe butterfly wing scales
NASA Astrophysics Data System (ADS)
Shur, V. Ya; Kuznetsov, D. K.; Pryakhina, V. I.; Kosobokov, M. S.; Zubarev, I. V.; Boymuradova, S. K.; Volchetskaya, K. V.
2017-10-01
Structural colours of Hebomoia glaucippe butterfly wing scales have been studied experimentally using high resolution scanning electron microscopy. Visualization of scales structures and computer simulation allowed distinguishing correlation between nanostructures on the scales and their colour.
Germline transformation of the butterfly Bicyclus anynana.
Marcus, Jeffrey M; Ramos, Diane M; Monteiro, Antónia
2004-08-07
Ecological and evolutionary theory has frequently been inspired by the diversity of colour patterns on the wings of butterflies. More recently, these varied patterns have also become model systems for studying the evolution of developmental mechanisms. A technique that will facilitate our understanding of butterfly colour-pattern development is germline transformation. Germline transformation permits functional tests of candidate gene products and of cis-regulatory regions, and provides a means of generating new colour-pattern mutants by insertional mutagenesis. We report the successful transformation of the African satyrid butterfly Bicyclus anynana with two different transposable element vectors, Hermes and piggyBac, each carrying EGFP coding sequences driven by the 3XP3 synthetic enhancer that drives gene expression in the eyes. Candidate lines identified by screening for EGFP in adult eyes were later confirmed by PCR amplification of a fragment of the EGFP coding sequence from genomic DNA. Flanking DNA surrounding the insertions was amplified by inverse PCR and sequenced. Transformation rates were 5% for piggyBac and 10.2% for Hermes. Ultimately, the new data generated by these techniques may permit an integrated understanding of the developmental genetics of colour-pattern formation and of the ecological and evolutionary processes in which these patterns play a role.
Adaptive Introgression across Species Boundaries in Heliconius Butterflies
Pardo-Diaz, Carolina; Salazar, Camilo; Baxter, Simon W.; Merot, Claire; Figueiredo-Ready, Wilsea; Joron, Mathieu; McMillan, W. Owen; Jiggins, Chris D.
2012-01-01
It is widely documented that hybridisation occurs between many closely related species, but the importance of introgression in adaptive evolution remains unclear, especially in animals. Here, we have examined the role of introgressive hybridisation in transferring adaptations between mimetic Heliconius butterflies, taking advantage of the recent identification of a gene regulating red wing patterns in this genus. By sequencing regions both linked and unlinked to the red colour locus, we found a region that displays an almost perfect genotype by phenotype association across four species, H. melpomene, H. cydno, H. timareta, and H. heurippa. This particular segment is located 70 kb downstream of the red colour specification gene optix, and coalescent analysis indicates repeated introgression of adaptive alleles from H. melpomene into the H. cydno species clade. Our analytical methods complement recent genome scale data for the same region and suggest adaptive introgression has a crucial role in generating adaptive wing colour diversity in this group of butterflies. PMID:22737081
Colour formation on the wings of the butterfly Hypolimnas salmacis by scale stacking
NASA Astrophysics Data System (ADS)
Siddique, Radwanul Hasan; Vignolini, Silvia; Bartels, Carolin; Wacker, Irene; Hölscher, Hendrik
2016-11-01
The butterfly genus Hypolimnas features iridescent blue colouration in some areas of its dorsal wings. Here, we analyse the mechanisms responsible for such colouration on the dorsal wings of Hypolimnas salmacis and experimentally demonstrate that the lower thin lamina in the white cover scales causes the blue iridescence. This outcome contradicts other studies reporting that the radiant blue in Hypolimnas butterflies is caused by complex ridge-lamellar architectures in the upper lamina of the cover scales. Our comprehensive optical study supported by numerical calculation however shows that scale stacking primarily induces the observed colour appearance of Hypolimnas salmacis.
Colour formation on the wings of the butterfly Hypolimnas salmacis by scale stacking.
Siddique, Radwanul Hasan; Vignolini, Silvia; Bartels, Carolin; Wacker, Irene; Hölscher, Hendrik
2016-11-02
The butterfly genus Hypolimnas features iridescent blue colouration in some areas of its dorsal wings. Here, we analyse the mechanisms responsible for such colouration on the dorsal wings of Hypolimnas salmacis and experimentally demonstrate that the lower thin lamina in the white cover scales causes the blue iridescence. This outcome contradicts other studies reporting that the radiant blue in Hypolimnas butterflies is caused by complex ridge-lamellar architectures in the upper lamina of the cover scales. Our comprehensive optical study supported by numerical calculation however shows that scale stacking primarily induces the observed colour appearance of Hypolimnas salmacis.
De Keyser, Rien; Breuker, Casper J.; Hails, Rosemary S.; Dennis, Roger L. H.; Shreeve, Tim G.
2015-01-01
We examined the roles of wing melanisation, weight, and basking posture in thermoregulation in Polyommatus Icarus, a phenotypically variable and protandrous member of the diverse Polyommatinae (Lycaenidae). Under controlled experimental conditions, approximating to marginal environmental conditions for activity in the field (= infrequent flight, long duration basking periods), warming rates are maximised with fully open wings and maximum body temperatures are dependent on weight. Variation in wing melanisation within and between sexes has no effect on warming rates; males and females which differ in melanisation had similar warming rates. Posture also affected cooling rates, consistent with cooling being dependent on convective heat loss. We hypothesise that for this small sized butterfly, melanisation has little or no effect on thermoregulation. This may be a factor contributing to the diversity of wing colours in the Polyommatinae. Because of the importance of size for thermoregulation in this small butterfly, requirements for attaining a suitable size to confer thermal stability in adults may also be a factor influencing larval feeding rates, development time and patterns of voltinism. Our findings indicate that commonly accepted views of the importance of melanisation, posture and size to thermoregulation, developed using medium and large sized butterflies, are not necessarily applicable to small sized butterflies. PMID:25923738
De Keyser, Rien; Breuker, Casper J; Hails, Rosemary S; Dennis, Roger L H; Shreeve, Tim G
2015-01-01
We examined the roles of wing melanisation, weight, and basking posture in thermoregulation in Polyommatus Icarus, a phenotypically variable and protandrous member of the diverse Polyommatinae (Lycaenidae). Under controlled experimental conditions, approximating to marginal environmental conditions for activity in the field (= infrequent flight, long duration basking periods), warming rates are maximised with fully open wings and maximum body temperatures are dependent on weight. Variation in wing melanisation within and between sexes has no effect on warming rates; males and females which differ in melanisation had similar warming rates. Posture also affected cooling rates, consistent with cooling being dependent on convective heat loss. We hypothesise that for this small sized butterfly, melanisation has little or no effect on thermoregulation. This may be a factor contributing to the diversity of wing colours in the Polyommatinae. Because of the importance of size for thermoregulation in this small butterfly, requirements for attaining a suitable size to confer thermal stability in adults may also be a factor influencing larval feeding rates, development time and patterns of voltinism. Our findings indicate that commonly accepted views of the importance of melanisation, posture and size to thermoregulation, developed using medium and large sized butterflies, are not necessarily applicable to small sized butterflies.
Biomimicry of optical microstructures of Papilio palinurus
NASA Astrophysics Data System (ADS)
Crne, Matija; Sharma, Vivek; Blair, John; Park, Jung Ok; Summers, Christopher J.; Srinivasarao, Mohan
2011-01-01
The brilliant coloration of animals in nature is sometimes based on their structure rather than on pigments. The green colour on the wings of a butterfly Papilio palinurus originates from the hierarchical microstructure of individual wing scales that are tiled on the wing. The hierarchical structure gives rise to two coloured reflections of visible light, blue and yellow which when additively mixed, produce the perception of green colour on the wing scales. We used breath figure templated assembly as the starting point for the structure and, combining it with atomic layer deposition for the multilayers necessary for the production of interference colors, we have faithfully mimicked the structure and the optical effects found on the wing scale of the butterfly Papilio palinurus.
Colour formation on the wings of the butterfly Hypolimnas salmacis by scale stacking
Siddique, Radwanul Hasan; Vignolini, Silvia; Bartels, Carolin; Wacker, Irene; Hölscher, Hendrik
2016-01-01
The butterfly genus Hypolimnas features iridescent blue colouration in some areas of its dorsal wings. Here, we analyse the mechanisms responsible for such colouration on the dorsal wings of Hypolimnas salmacis and experimentally demonstrate that the lower thin lamina in the white cover scales causes the blue iridescence. This outcome contradicts other studies reporting that the radiant blue in Hypolimnas butterflies is caused by complex ridge-lamellar architectures in the upper lamina of the cover scales. Our comprehensive optical study supported by numerical calculation however shows that scale stacking primarily induces the observed colour appearance of Hypolimnas salmacis. PMID:27805005
Mimicking the colourful wing scale structure of the Papilio blumei butterfly.
Kolle, Mathias; Salgard-Cunha, Pedro M; Scherer, Maik R J; Huang, Fumin; Vukusic, Pete; Mahajan, Sumeet; Baumberg, Jeremy J; Steiner, Ullrich
2010-07-01
The brightest and most vivid colours in nature arise from the interaction of light with surfaces that exhibit periodic structure on the micro- and nanoscale. In the wings of butterflies, for example, a combination of multilayer interference, optical gratings, photonic crystals and other optical structures gives rise to complex colour mixing. Although the physics of structural colours is well understood, it remains a challenge to create artificial replicas of natural photonic structures. Here we use a combination of layer deposition techniques, including colloidal self-assembly, sputtering and atomic layer deposition, to fabricate photonic structures that mimic the colour mixing effect found on the wings of the Indonesian butterfly Papilio blumei. We also show that a conceptual variation to the natural structure leads to enhanced optical properties. Our approach offers improved efficiency, versatility and scalability compared with previous approaches.
2012-01-01
Background To explain eyespot colour-pattern determination in butterfly wings, the induction model has been discussed based on colour-pattern analyses of various butterfly eyespots. However, a detailed structural analysis of eyespots that can serve as a foundation for future studies is still lacking. In this study, fundamental structural rules related to butterfly eyespots are proposed, and the induction model is elaborated in terms of the possible dynamics of morphogenic signals involved in the development of eyespots and parafocal elements (PFEs) based on colour-pattern analysis of the nymphalid butterfly Junonia almana. Results In a well-developed eyespot, the inner black core ring is much wider than the outer black ring; this is termed the inside-wide rule. It appears that signals are wider near the focus of the eyespot and become narrower as they expand. Although fundamental signal dynamics are likely to be based on a reaction-diffusion mechanism, they were described well mathematically as a type of simple uniformly decelerated motion in which signals associated with the outer and inner black rings of eyespots and PFEs are released at different time points, durations, intervals, and initial velocities into a two-dimensional field of fundamentally uniform or graded resistance; this produces eyespots and PFEs that are diverse in size and structure. The inside-wide rule, eyespot distortion, structural differences between small and large eyespots, and structural changes in eyespots and PFEs in response to physiological treatments were explained well using mathematical simulations. Natural colour patterns and previous experimental findings that are not easily explained by the conventional gradient model were also explained reasonably well by the formal mathematical simulations performed in this study. Conclusions In a mode free from speculative molecular interactions, the present study clarifies fundamental structural rules related to butterfly eyespots, delineates a theoretical basis for the induction model, and proposes a mathematically simple mode of long-range signalling that may reflect developmental mechanisms associated with butterfly eyespots. PMID:22409965
Otaki, Joji M
2012-03-13
To explain eyespot colour-pattern determination in butterfly wings, the induction model has been discussed based on colour-pattern analyses of various butterfly eyespots. However, a detailed structural analysis of eyespots that can serve as a foundation for future studies is still lacking. In this study, fundamental structural rules related to butterfly eyespots are proposed, and the induction model is elaborated in terms of the possible dynamics of morphogenic signals involved in the development of eyespots and parafocal elements (PFEs) based on colour-pattern analysis of the nymphalid butterfly Junonia almana. In a well-developed eyespot, the inner black core ring is much wider than the outer black ring; this is termed the inside-wide rule. It appears that signals are wider near the focus of the eyespot and become narrower as they expand. Although fundamental signal dynamics are likely to be based on a reaction-diffusion mechanism, they were described well mathematically as a type of simple uniformly decelerated motion in which signals associated with the outer and inner black rings of eyespots and PFEs are released at different time points, durations, intervals, and initial velocities into a two-dimensional field of fundamentally uniform or graded resistance; this produces eyespots and PFEs that are diverse in size and structure. The inside-wide rule, eyespot distortion, structural differences between small and large eyespots, and structural changes in eyespots and PFEs in response to physiological treatments were explained well using mathematical simulations. Natural colour patterns and previous experimental findings that are not easily explained by the conventional gradient model were also explained reasonably well by the formal mathematical simulations performed in this study. In a mode free from speculative molecular interactions, the present study clarifies fundamental structural rules related to butterfly eyespots, delineates a theoretical basis for the induction model, and proposes a mathematically simple mode of long-range signalling that may reflect developmental mechanisms associated with butterfly eyespots.
Nixon, M R; Orr, A G; Vukusic, P
2017-05-01
The damselfly Pseudolestes mirabilis reflects brilliant white on the ventral side of its hindwings and a copper-gold colour on the dorsal side. Unlike many previous investigations of odonate wings, in which colour appearances arise either from multilayer interference or from wing-membrane pigmentation, the whiteness on the wings of P. mirabilis results from light scattered by a specialized arrangement of flattened waxy fibres and the copper-gold colour is produced by pigment-based filtering of this light scatter. The waxy fibres responsible for this optical signature effectively form a structure that is disordered in two dimensions and this also gives rise to distinct optical linear polarization. It is a structure that provides a mechanism enabling P. mirabilis to display its bright wing colours efficiently for territorial signalling, both passively while perched, in which the sunlit copper-gold upperside is presented against a highly contrasting background of foliage, and actively in territorial contests in which the white underside is also presented. It also offers a template for biomimetic high-intensity broadband reflectors that have a pronounced polarization signature. © 2017 The Author(s).
Spectral reflectance properties of iridescent pierid butterfly wings.
Wilts, Bodo D; Pirih, Primož; Stavenga, Doekele G
2011-06-01
The wings of most pierid butterflies exhibit a main, pigmentary colouration: white, yellow or orange. The males of many species have in restricted areas of the wing upper sides a distinct structural colouration, which is created by stacks of lamellae in the ridges of the wing scales, resulting in iridescence. The amplitude of the reflectance is proportional to the number of lamellae in the ridge stacks. The angle-dependent peak wavelength of the observed iridescence is in agreement with classical multilayer theory. The iridescence is virtually always in the ultraviolet wavelength range, but some species have a blue-peaking iridescence. The spectral properties of the pigmentary and structural colourations are presumably tuned to the spectral sensitivities of the butterflies' photoreceptors.
Briolat, Emmanuelle Sophie; Zagrobelny, Mika; Olsen, Carl Erik; Blount, Jonathan D; Stevens, Martin
2018-05-16
The distinctive black and red wing pattern of six-spot burnet moths (Zygaena filipendulae, L.) is a classic example of aposematism, advertising their potent cyanide-based defences. While such warning signals provide a qualitatively honest signal of unprofitability, the evidence for quantitative honesty, whereby variation in visual traits could provide accurate estimates of individual toxicity, is more equivocal. Combining measures of cyanogenic glucoside content and wing colour from the perspective of avian predators, we investigate the relationship between coloration and defences in Z. filipendulae, to test signal honesty both within and across populations. There were no significant relationships between mean cyanogenic glucoside concentration and metrics of wing coloration across populations in males, yet in females higher cyanogenic glucoside levels were associated with smaller and lighter red forewing markings. Trends within populations were similarly inconsistent with quantitative honesty, and persistent differences between the sexes were apparent: larger females, carrying a greater total cyanogenic glucoside load, displayed larger but less conspicuous markings than smaller males, according to several colour metrics. The overall high aversiveness of cyanogenic glucosides and fluctuations in colour and toxin levels during an individual's lifetime may contribute to these results, highlighting generally important reasons why signal honesty should not always be expected in aposematic species. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.
Butterfly wing colours: scale beads make white pierid wings brighter.
Stavenga, D. G.; Stowe, S.; Siebke, K.; Zeil, J.; Arikawa, K.
2004-01-01
The wing-scale morphologies of the pierid butterflies Pieris rapae (small white) and Delias nigrina (common jezabel), and the heliconine Heliconius melpomene are compared and related to the wing-reflectance spectra. Light scattering at the wing scales determines the wing reflectance, but when the scales contain an absorbing pigment, reflectance is suppressed in the absorption wavelength range of the pigment. The reflectance of the white wing areas of P. rapae, where the scales are studded with beads, is considerably higher than that of the white wing areas of H. melpomene, which has scales lacking beads. The beads presumably cause the distinct matt-white colour of the wings of pierids and function to increase the reflectance amplitude. This will improve the visual discrimination between conspecific males and females. PMID:15306303
Coincident disruptive coloration
Cuthill, Innes C.; Székely, Aron
2008-01-01
Even if an animal matches its surroundings perfectly in colour and texture, any mismatch between the spatial phase of its pattern and that of the background, or shadow created by its three-dimensional relief, is potentially revealing. Nevertheless, for camouflage to be fully broken, the shape must be recognizable. Disruptive coloration acts against object recognition by the use of high-contrast internal colour boundaries to break up shape and form. As well as the general outline, characteristic features such as eyes and limbs must also be concealed; this can be achieved by having the colour patterns on different, but adjacent, body parts aligned to match each other (i.e. in phase). Such ‘coincident disruptive coloration’ ensures that there is no phase disjunction where body parts meet, and causes different sections of the body to blend perceptually. We tested this theory using field experiments with predation by wild birds on artificial moth-like targets, whose wings and (edible pastry) bodies had colour patterns that were variously coincident or not. We also carried out an experiment with humans searching for analogous targets on a computer screen. Both experiments show that coincident disruptive coloration is an effective mechanism for concealing an otherwise revealing body form. PMID:18990668
Yellow and the Novel Aposematic Signal, Red, Protect Delias Butterflies from Predators
Wee, Jocelyn Liang Qi
2017-01-01
Butterflies of the South Asian and Australian genus Delias possess striking colours on the ventral wings that are presumed to serve as warning signals to predators. However, this has not been shown empirically. Here we experimentally tested whether the colours of one member of this diverse genus, Delias hyparete, function as aposematic signals. We constructed artificial paper models with either a faithful colour representation of D. hyparete, or with all of its colours converted to grey scale. We also produced models where single colours were left intact, while others were converted to grey-scale or removed entirely. We placed all model types simultaneously in the field, attached to a live mealworm, and measured relative attack rates at three separate field sites. Faithful models of D. hyparete, suffered the least amount of attacks, followed by grey-scale models with unaltered red patches, and by grey-scale models with unaltered yellow patches. We conclude that red and yellow colours function as warning signals. By mapping dorsal and ventral colouration onto a phylogeny of Delias, we observed that yellow and red colours appear almost exclusively on the ventral wing surfaces, and that basal lineages have mostly yellow, white, and black wings, whereas derived lineages contain red colour in addition to the other colours. Red appears to be, thus, a novel adaptive trait in this lineage of butterflies. PMID:28060944
Yellow and the Novel Aposematic Signal, Red, Protect Delias Butterflies from Predators.
Wee, Jocelyn Liang Qi; Monteiro, Antónia
2017-01-01
Butterflies of the South Asian and Australian genus Delias possess striking colours on the ventral wings that are presumed to serve as warning signals to predators. However, this has not been shown empirically. Here we experimentally tested whether the colours of one member of this diverse genus, Delias hyparete, function as aposematic signals. We constructed artificial paper models with either a faithful colour representation of D. hyparete, or with all of its colours converted to grey scale. We also produced models where single colours were left intact, while others were converted to grey-scale or removed entirely. We placed all model types simultaneously in the field, attached to a live mealworm, and measured relative attack rates at three separate field sites. Faithful models of D. hyparete, suffered the least amount of attacks, followed by grey-scale models with unaltered red patches, and by grey-scale models with unaltered yellow patches. We conclude that red and yellow colours function as warning signals. By mapping dorsal and ventral colouration onto a phylogeny of Delias, we observed that yellow and red colours appear almost exclusively on the ventral wing surfaces, and that basal lineages have mostly yellow, white, and black wings, whereas derived lineages contain red colour in addition to the other colours. Red appears to be, thus, a novel adaptive trait in this lineage of butterflies.
Disruptive ecological selection on a mating cue.
Merrill, Richard M; Wallbank, Richard W R; Bull, Vanessa; Salazar, Patricio C A; Mallet, James; Stevens, Martin; Jiggins, Chris D
2012-12-22
Adaptation to divergent ecological niches can result in speciation. Traits subject to disruptive selection that also contribute to non-random mating will facilitate speciation with gene flow. Such 'magic' or 'multiple-effect' traits may be widespread and important for generating biodiversity, but strong empirical evidence is still lacking. Although there is evidence that putative ecological traits are indeed involved in assortative mating, evidence that these same traits are under divergent selection is considerably weaker. Heliconius butterfly wing patterns are subject to positive frequency-dependent selection by predators, owing to aposematism and Müllerian mimicry, and divergent colour patterns are used by closely related species to recognize potential mates. The amenability of colour patterns to experimental manipulation, independent of other traits, presents an excellent opportunity to test their role during speciation. We conducted field experiments with artificial butterflies, designed to match natural butterflies with respect to avian vision. These were complemented with enclosure trials with live birds and real butterflies. Our experiments showed that hybrid colour-pattern phenotypes are attacked more frequently than parental forms. For the first time, we demonstrate disruptive ecological selection on a trait that also acts as a mating cue.
Exploring structural colour in uni- and multi-coloured butterfly wings and Ag+ uptake by scales
NASA Astrophysics Data System (ADS)
Aideo, Swati N.; Haloi, Rajib; Mohanta, Dambarudhar
2017-09-01
We discuss the origin of the structural colour of different butterfly wings in the light of the typical built-in microstructural arrangement of scales that are comprised of chitin-melanin layer and air-gaps. Three specimens of butterfly wings namely, Papilio Liomedon (black), Catopsilia Pyranthe (light green) and Vanessa Cardui (multi-coloured) were chosen and diffuse reflectance characteristics have been aquired for normal incidence of p-polarized light. Moreover, the time-dependent uptake of Ag+ into scales has led to swelling and spread of the chitinous ridges and ribs, with revelation of micro-beads in Catopsilia Pyranthe specimen. The reduction of the number of air-gaps between any two parallel ridges is attributed to the merging of adjacent gaps possessing a common boundary. The availability of Ag at the centre of a chosen ridge, for every wing type, follows an exponential growing trend, ∼e0.36t . Precise inclusion of nanoscale metals into natural photonic systems would provide new insight, while applying principles of photonics and plasmonics simultaneously.
NASA Astrophysics Data System (ADS)
Guillermo-Ferreira, Rhainer; Gorb, Stanislav N.; Appel, Esther; Kovalev, Alexander; Bispo, Pitágoras C.
2015-04-01
Wing pigmentation is a trait that predicts the outcome of male contests in some damselflies. Thus, it is reasonable to suppose that males would have the ability to assess wing pigmentation and adjust investment in a fight according to the costs that the rival may potentially impose. Males of the damselfly Mnesarete pudica exhibit red-coloured wings and complex courtship behaviour and engage in striking male-male fights. In this study, we investigated male assessment behaviour during aerial contests. Theory suggests that the relationship between male resource-holding potential (RHP) and contest duration describes the kind of assessment adopted by males: self-assessment, opponent-only assessment or mutual assessment. A recent theory also suggests that weak and strong males exhibit variations in the assessment strategies adopted. We estimated male RHP through male body size and wing colouration (i.e. pigmentation, wing reflectance spectra and transmission spectra) and studied the relationship between male RHP and contest duration from video-documented behavioural observations of naturally occurring individual contests in the field. The results showed that males with more opaque wings and larger red spots were more likely to win contests. The relationships between RHP and contest durations partly supported the self-assessment and the mutual assessment models. We then experimentally augmented the pigmented area of the wings, in order to evaluate whether strong and weak males assess rivals' RHP through wing pigmentation. Our experimental manipulation, however, clearly demonstrated that strong males assess rivals' wing pigmentation. We finally suggest that there is a variation in the assessment strategy adopted by males.
Guillermo-Ferreira, Rhainer; Gorb, Stanislav N; Appel, Esther; Kovalev, Alexander; Bispo, Pitágoras C
2015-04-01
Wing pigmentation is a trait that predicts the outcome of male contests in some damselflies. Thus, it is reasonable to suppose that males would have the ability to assess wing pigmentation and adjust investment in a fight according to the costs that the rival may potentially impose. Males of the damselfly Mnesarete pudica exhibit red-coloured wings and complex courtship behaviour and engage in striking male-male fights. In this study, we investigated male assessment behaviour during aerial contests. Theory suggests that the relationship between male resource-holding potential (RHP) and contest duration describes the kind of assessment adopted by males: self-assessment, opponent-only assessment or mutual assessment. A recent theory also suggests that weak and strong males exhibit variations in the assessment strategies adopted. We estimated male RHP through male body size and wing colouration (i.e. pigmentation, wing reflectance spectra and transmission spectra) and studied the relationship between male RHP and contest duration from video-documented behavioural observations of naturally occurring individual contests in the field. The results showed that males with more opaque wings and larger red spots were more likely to win contests. The relationships between RHP and contest durations partly supported the self-assessment and the mutual assessment models. We then experimentally augmented the pigmented area of the wings, in order to evaluate whether strong and weak males assess rivals' RHP through wing pigmentation. Our experimental manipulation, however, clearly demonstrated that strong males assess rivals' wing pigmentation. We finally suggest that there is a variation in the assessment strategy adopted by males.
Rutowski, R.L; Macedonia, J.M; Morehouse, N; Taylor-Taft, L
2005-01-01
Animal colouration is typically the product of nanostructures that reflect or scatter light and pigments that absorb it. The interplay between these colour-producing mechanisms may influence the efficacy and potential information content of colour signals, but this notion has received little empirical attention. Wing scales in the male orange sulphur butterfly (Colias eurytheme) possess ridges with lamellae that produce a brilliant iridescent ultraviolet (UV) reflectance via thin-film interference. Curiously, these same scales contain pterin pigments that strongly absorb wavelengths below 550 nm. Given that male UV reflectance functions as a sexual signal in C. eurytheme, it is paradoxical that pigments in the wing scales are highly UV absorbing. We present spectrophotometric analyses of the wings before and after pterin removal that show that pterins both depress the amplitude of UV iridescence and suppress a diffuse UV reflectance that emanates from the scales. This latter effect enhances the directionality and spectral purity of the iridescence, and increases the signal's chromaticity and potential signal content. Our findings also suggest that pterins amplify the contrast between iridescent UV reflectance and scale background colour as a male's wings move during flight. PMID:16191648
Rutowski, R L; Macedonia, J M; Morehouse, N; Taylor-Taft, L
2005-11-07
Animal colouration is typically the product of nanostructures that reflect or scatter light and pigments that absorb it. The interplay between these colour-producing mechanisms may influence the efficacy and potential information content of colour signals, but this notion has received little empirical attention. Wing scales in the male orange sulphur butterfly (Colias eurytheme) possess ridges with lamellae that produce a brilliant iridescent ultraviolet (UV) reflectance via thin-film interference. Curiously, these same scales contain pterin pigments that strongly absorb wavelengths below 550 nm. Given that male UV reflectance functions as a sexual signal in C. eurytheme, it is paradoxical that pigments in the wing scales are highly UV absorbing. We present spectrophotometric analyses of the wings before and after pterin removal that show that pterins both depress the amplitude of UV iridescence and suppress a diffuse UV reflectance that emanates from the scales. This latter effect enhances the directionality and spectral purity of the iridescence, and increases the signal's chromaticity and potential signal content. Our findings also suggest that pterins amplify the contrast between iridescent UV reflectance and scale background colour as a male's wings move during flight.
Camouflage through an active choice of a resting spot and body orientation in moths.
Kang, C-K; Moon, J-Y; Lee, S-I; Jablonski, P G
2012-09-01
Cryptic colour patterns in prey are classical examples of adaptations to avoid predation, but we still know little about behaviours that reinforce the match between animal body and the background. For example, moths avoid predators by matching their colour patterns with the background. Active choice of a species-specific body orientation has been suggested as an important function of body positioning behaviour performed by moths after landing on the bark. However, the contribution of this behaviour to moths' crypticity has not been directly measured. From observations of geometrid moths, Hypomecis roboraria and Jankowskia fuscaria, we determined that the positioning behaviour, which consists of walking and turning the body while repeatedly lifting and lowering the wings, resulted in new resting spots and body orientations in J. fuscaria and in new resting spots in H. roboraria. The body positioning behaviour of the two species significantly decreased the probability of visual detection by humans, who viewed photographs of the moths taken before and after the positioning behaviour. This implies that body positioning significantly increases the camouflage effect provided by moth's cryptic colour pattern regardless of whether the behaviour involves a new body orientation or not. Our study demonstrates that the evolution of morphological adaptations, such as colour pattern of moths, cannot be fully understood without taking into account a behavioural phenotype that coevolved with the morphology for increasing the adaptive value of the morphological trait. © 2012 The Authors. Journal of Evolutionary Biology © 2012 European Society For Evolutionary Biology.
Nixon, M R; Orr, A G; Vukusic, P
2013-01-28
The hind wings of males of the damselfly Matronoides cyaneipennis exhibit iridescence that is blue dorsally and green ventrally. These structures are used semiotically in agonistic and courtship display. Transmission electron microscopy reveals these colours are due to two near-identical 5-layer distributed Bragg reflectors, one placed either side of the wing membrane. Interestingly the thicknesses of corresponding layers in each distributed Bragg reflector are very similar for all but the second layer from each outer surface. This one key difference creates the significant disparity between the reflected spectra from the distributed Bragg reflectors and the observed colours of either side of the wing. Modelling indicates that modifications to the thickness of this layer alone create a greater change in the peak reflected wavelength than is observed for similar modifications to the thickness of any other layer. This results in an optimised and highly effective pair of semiotic reflector systems, based on extremely comparable design parameters, with relatively low material and biomechanical costs.
Waterproof and translucent wings at the same time: problems and solutions in butterflies.
Goodwyn, Pablo Perez; Maezono, Yasunori; Hosoda, Naoe; Fujisaki, Kenji
2009-07-01
Although the colour of butterflies attracts the most attention, the waterproofing properties of their wings are also extremely interesting. Most butterfly wings are considered "super-hydrophobic" because the contact angle (CA) with a water drop exceeds 150 degrees. Usually, butterfly wings are covered with strongly overlapping scales; however, in the case of transparent or translucent wings, scale cover is reduced; thus, the hydrophobicity could be affected. Here, we present a comparative analysis of wing hydrophobicity and its dependence on morphology for two species with translucent wings Parantica sita (Nymphalidae) and Parnassius glacialis (Papilionidae). These species have very different life histories: P. sita lives for up to 6 months as an adult and migrates over long distance, whereas P. glacialis lives for less than 1 month and does not migrate. We measured the water CA and analysed wing morphology with scanning electron microscopy and atomic force microscopy. P. sita has super-hydrophobic wing surfaces, with CA > 160 degrees, whereas P. glacialis did not (CA = 100-135 degrees). Specialised scales were found on the translucent portions of P. sita wings. These scales were ovoid and much thinner than common scales, erect at about 30 degrees, and leaving up to 80% of the wing surface uncovered. The underlying bare wing surface had a remarkable pattern of ridges and knobs. P. glacialis also had over 80% of the wing surface uncovered, but the scales were either setae-like or spade-like. The bare surface of the wing had an irregular wavy smooth pattern. We suggest a mode of action that allows this super-hydrophobic effect with an incompletely covered wing surface. The scales bend, but do not collapse, under the pressure of a water droplet, and the elastic recovery of the structure at the borders of the droplet allows a high apparent CA. Thus, P. sita can be translucent without losing its waterproof properties. This characteristic is likely necessary for the long life and migration of this species. This is the first study of some of the effects on the hydrophobicity of translucency through scales' cover reduction in butterfly wings and on the morphology associated with improved waterproofing.
NASA Astrophysics Data System (ADS)
Lu, Tao; Zhu, Shenmin; Chen, Zhixin; Wang, Wanlin; Zhang, Wang; Zhang, Di
2016-05-01
Hierarchical photonic structures in nature are of special interest because they can be used as templates for fabrication of stimuli-responsive photonic crystals (PCs) with unique structures beyond man-made synthesis. The current stimuli-responsive PCs templated directly from natural PCs showed a very weak external stimuli response and poor durability due to the limitations of natural templates. Herein, we tackle this problem by chemically coating functional polymers, polyacrylamide, on butterfly wing scales which have hierarchical photonic structures. As a result of the combination of the strong water absorption properties of the polyacrylamide and the PC structures of the butterfly wing scales, the designed materials demonstrated excellent humidity responsive properties and a tremendous colour change. The colour change is induced by the refractive index change which is in turn due to the swollen nature of the polymer when the relative humidity changes. The butterfly wing scales also showed an excellent durability which is due to the chemical bonds formed between the polymer and wing scales. The synthesis strategy provides an avenue for the promising applications of stimuli-responsive PCs with hierarchical structures.Hierarchical photonic structures in nature are of special interest because they can be used as templates for fabrication of stimuli-responsive photonic crystals (PCs) with unique structures beyond man-made synthesis. The current stimuli-responsive PCs templated directly from natural PCs showed a very weak external stimuli response and poor durability due to the limitations of natural templates. Herein, we tackle this problem by chemically coating functional polymers, polyacrylamide, on butterfly wing scales which have hierarchical photonic structures. As a result of the combination of the strong water absorption properties of the polyacrylamide and the PC structures of the butterfly wing scales, the designed materials demonstrated excellent humidity responsive properties and a tremendous colour change. The colour change is induced by the refractive index change which is in turn due to the swollen nature of the polymer when the relative humidity changes. The butterfly wing scales also showed an excellent durability which is due to the chemical bonds formed between the polymer and wing scales. The synthesis strategy provides an avenue for the promising applications of stimuli-responsive PCs with hierarchical structures. Electronic supplementary information (ESI) available. See DOI: 10.1039/c6nr01875k
A conserved supergene locus controls colour pattern diversity in Heliconius butterflies.
Joron, Mathieu; Papa, Riccardo; Beltrán, Margarita; Chamberlain, Nicola; Mavárez, Jesús; Baxter, Simon; Abanto, Moisés; Bermingham, Eldredge; Humphray, Sean J; Rogers, Jane; Beasley, Helen; Barlow, Karen; ffrench-Constant, Richard H; Mallet, James; McMillan, W Owen; Jiggins, Chris D
2006-10-01
We studied whether similar developmental genetic mechanisms are involved in both convergent and divergent evolution. Mimetic insects are known for their diversity of patterns as well as their remarkable evolutionary convergence, and they have played an important role in controversies over the respective roles of selection and constraints in adaptive evolution. Here we contrast three butterfly species, all classic examples of Müllerian mimicry. We used a genetic linkage map to show that a locus, Yb, which controls the presence of a yellow band in geographic races of Heliconius melpomene, maps precisely to the same location as the locus Cr, which has very similar phenotypic effects in its co-mimic H. erato. Furthermore, the same genomic location acts as a "supergene", determining multiple sympatric morphs in a third species, H. numata. H. numata is a species with a very different phenotypic appearance, whose many forms mimic different unrelated ithomiine butterflies in the genus Melinaea. Other unlinked colour pattern loci map to a homologous linkage group in the co-mimics H. melpomene and H. erato, but they are not involved in mimetic polymorphism in H. numata. Hence, a single region from the multilocus colour pattern architecture of H. melpomene and H. erato appears to have gained control of the entire wing-pattern variability in H. numata, presumably as a result of selection for mimetic "supergene" polymorphism without intermediates. Although we cannot at this stage confirm the homology of the loci segregating in the three species, our results imply that a conserved yet relatively unconstrained mechanism underlying pattern switching can affect mimicry in radically different ways. We also show that adaptive evolution, both convergent and diversifying, can occur by the repeated involvement of the same genomic regions.
Drury, J. P.; Grether, G. F.
2014-01-01
Traits that mediate intraspecific social interactions may overlap in closely related sympatric species, resulting in costly between-species interactions. Such interactions have principally interested investigators studying the evolution of reproductive isolation via reproductive character displacement (RCD) or reinforcement, yet in addition to reproductive interference, interspecific trait overlap can lead to costly between-species aggression. Previous research on rubyspot damselflies (Hetaerina spp.) demonstrated that sympatric shifts in male wing colour patterns and competitor recognition reduce interspecific aggression, supporting the hypothesis that agonistic character displacement (ACD) drove trait shifts. However, a recent theoretical model shows that RCD overshadows ACD if the same male trait is used for both female mate recognition and male competitor recognition. To determine whether female mate recognition is based on male wing coloration in Hetaerina, we conducted a phenotype manipulation experiment. Compared to control males, male H. americana with wings manipulated to resemble a sympatric congener (H. titia) suffered no reduction in mating success. Thus, female mate recognition is not based on species differences in male wing coloration. Experimental males did, however, experience higher interspecific fighting rates and reduced survival compared to controls. These results greatly strengthen the case for ACD and highlight the mechanistic distinction between ACD and RCD. PMID:25339724
Evolutionary Novelty in a Butterfly Wing Pattern through Enhancer Shuffling
Pardo-Diaz, Carolina; Hanly, Joseph J.; Martin, Simon H.; Mallet, James; Dasmahapatra, Kanchon K.; Salazar, Camilo; Joron, Mathieu; Nadeau, Nicola; McMillan, W. Owen; Jiggins, Chris D.
2016-01-01
An important goal in evolutionary biology is to understand the genetic changes underlying novel morphological structures. We investigated the origins of a complex wing pattern found among Amazonian Heliconius butterflies. Genome sequence data from 142 individuals across 17 species identified narrow regions associated with two distinct red colour pattern elements, dennis and ray. We hypothesise that these modules in non-coding sequence represent distinct cis-regulatory loci that control expression of the transcription factor optix, which in turn controls red pattern variation across Heliconius. Phylogenetic analysis of the two elements demonstrated that they have distinct evolutionary histories and that novel adaptive morphological variation was created by shuffling these cis-regulatory modules through recombination between divergent lineages. In addition, recombination of modules into different combinations within species further contributes to diversity. Analysis of the timing of diversification in these two regions supports the hypothesis of introgression moving regulatory modules between species, rather than shared ancestral variation. The dennis phenotype introgressed into Heliconius melpomene at about the same time that ray originated in this group, while ray introgressed back into H. elevatus much more recently. We show that shuffling of existing enhancer elements both within and between species provides a mechanism for rapid diversification and generation of novel morphological combinations during adaptive radiation. PMID:26771987
Evolutionary Novelty in a Butterfly Wing Pattern through Enhancer Shuffling.
Wallbank, Richard W R; Baxter, Simon W; Pardo-Diaz, Carolina; Hanly, Joseph J; Martin, Simon H; Mallet, James; Dasmahapatra, Kanchon K; Salazar, Camilo; Joron, Mathieu; Nadeau, Nicola; McMillan, W Owen; Jiggins, Chris D
2016-01-01
An important goal in evolutionary biology is to understand the genetic changes underlying novel morphological structures. We investigated the origins of a complex wing pattern found among Amazonian Heliconius butterflies. Genome sequence data from 142 individuals across 17 species identified narrow regions associated with two distinct red colour pattern elements, dennis and ray. We hypothesise that these modules in non-coding sequence represent distinct cis-regulatory loci that control expression of the transcription factor optix, which in turn controls red pattern variation across Heliconius. Phylogenetic analysis of the two elements demonstrated that they have distinct evolutionary histories and that novel adaptive morphological variation was created by shuffling these cis-regulatory modules through recombination between divergent lineages. In addition, recombination of modules into different combinations within species further contributes to diversity. Analysis of the timing of diversification in these two regions supports the hypothesis of introgression moving regulatory modules between species, rather than shared ancestral variation. The dennis phenotype introgressed into Heliconius melpomene at about the same time that ray originated in this group, while ray introgressed back into H. elevatus much more recently. We show that shuffling of existing enhancer elements both within and between species provides a mechanism for rapid diversification and generation of novel morphological combinations during adaptive radiation.
Chromosomal rearrangements maintain a polymorphic supergene controlling butterfly mimicry
Joron, Mathieu; Frezal, Lise; Jones, Robert T.; Chamberlain, Nicola L.; Lee, Siu F.; Haag, Christoph R.; Whibley, Annabel; Becuwe, Michel; Baxter, Simon W.; Ferguson, Laura; Wilkinson, Paul A.; Salazar, Camilo; Davidson, Claire; Clark, Richard; Quail, Michael A.; Beasley, Helen; Glithero, Rebecca; Lloyd, Christine; Sims, Sarah; Jones, Matthew C.; Rogers, Jane; Jiggins, Chris D.; ffrench-Constant, Richard H.
2013-01-01
Supergenes are tight clusters of loci that facilitate the co-segregation of adaptive variation, providing integrated control of complex adaptive phenotypes1. Polymorphic supergenes, in which specific combinations of traits are maintained within a single population, were first described for ‘pin’ and ‘thrum’ floral types in Primula1 and Fagopyrum2, but classic examples are also found in insect mimicry3–5 and snail morphology6. Understanding the evolutionary mechanisms that generate these co-adapted gene sets, as well as the mode of limiting the production of unfit recombinant forms, remains a substantial challenge7–10. Here we show that individual wing-pattern morphs in the polymorphic mimetic butterfly Heliconius numata are associated with different genomic rearrangements at the supergene locus P. These rearrangements tighten the genetic linkage between at least two colour-pattern loci that are known to recombine in closely related species9–11, with complete suppression of recombination being observed in experimental crosses across a 400-kilobase interval containing at least 18 genes. In natural populations, notable patterns of linkage disequilibrium (LD) are observed across the entire P region. The resulting divergent haplotype clades and inversion breakpoints are found in complete association with wing-pattern morphs. Our results indicate that allelic combinations at known wing-patterning loci have become locked together in a polymorphic rearrangement at the Plocus, forming a supergene that acts as a simple switch between complex adaptive phenotypes found in sympatry. These findings highlight how genomic rearrangements can have a central role in the coexistence of adaptive phenotypes involving several genes acting in concert, by locally limiting recombination and gene flow. PMID:21841803
2017-01-01
Lycaenid butterflies from the genera Callophrys, Cyanophrys and Thecla have evolved remarkable biophotonic gyroid nanostructures within their wing scales that have only recently been replicated by nanoscale additive manufacturing. These nanostructures selectively reflect parts of the visible spectrum to give their characteristic non-iridescent, matte-green appearance, despite a distinct blue–green–yellow iridescence predicted for individual crystals from theory. It has been hypothesized that the organism must achieve its uniform appearance by growing crystals with some restrictions on the possible distribution of orientations, yet preferential orientation observed in Callophrys rubi confirms that this distribution need not be uniform. By analysing scanning electron microscope and optical images of 912 crystals in three wing scales, we find no preference for their rotational alignment in the plane of the scales. However, crystal orientation normal to the scale was highly correlated to their colour at low (conical) angles of view and illumination. This correlation enabled the use of optical images, each containing up to 104–105 crystals, for concluding the preferential alignment seen along the at the level of single scales, appears ubiquitous. By contrast, orientations were found to occur at no greater rate than that expected by chance. Above a critical cone angle, all crystals reflected bright green light indicating the dominant light scattering is due to the predicted band gap along the direction, independent of the domain orientation. Together with the natural variation in scale and wing shapes, we can readily understand the detailed mechanism of uniform colour production and iridescence suppression in these butterflies. It appears that the combination of preferential alignment normal to the wing scale, and uniform distribution within the plane is a near optimal solution for homogenizing the angular distribution of the band gap relative to the wings. Finally, the distributions of orientations, shapes, sizes and degree of order of crystals within single scales provide useful insights for understanding the mechanisms at play in the formation of these biophotonic nanostructures. PMID:28630678
Kinoshita, Shuichi; Yoshioka, Shinya; Kawagoe, Kenji
2002-01-01
Structural colour in the Morpho butterfly originates from submicron structure within a scale and, for over a century, its colour and reflectivity have been explained as interference of light due to the multilayer of cuticle and air. However, this model fails to explain the extraordinarily uniform colour of the wing with respect to the observation direction. We have performed microscopic, optical and theoretical investigations, and have found that the separate lamellar structure with irregular heights is extremely important. Using a simple model, we have shown that the combined action of interference and diffraction is essential for the structural colour of the Morpho butterfly. PMID:12137569
Kurina, Olavi; Oliveira, Sarah Siqueira
2015-01-01
Abstract Three new species of Mycetophilidae – Cordyla monticola sp. n., Cordyla pseudopusilla sp. n. and Cordyla reducta sp. n. – are described from the Colombian Andes, representing the first described species of Cordyla Meigen from the Neotropical region. Colour photos of their habitus, wing and terminalia are provided. The morphological affinities of male terminalia are discussed in a worldwide context. The distributional pattern of the genus clearly indicates a case of northern elements reaching the north-western region of the Neotropics that corresponds to a secondary extension of a Holarctic clade to the south. PMID:26445929
Colour and pattern change against visually heterogeneous backgrounds in the tree frog Hyla japonica.
Kang, Changku; Kim, Ye Eun; Jang, Yikweon
2016-03-02
Colour change in animals can be adaptive phenotypic plasticity in heterogeneous environments. Camouflage through background colour matching has been considered a primary force that drives the evolution of colour changing ability. However, the mechanism to which animals change their colour and patterns under visually heterogeneous backgrounds (i.e. consisting of more than one colour) has only been identified in limited taxa. Here, we investigated the colour change process of the Japanese tree frog (Hyla japonica) against patterned backgrounds and elucidated how the expression of dorsal patterns changes against various achromatic/chromatic backgrounds with/without patterns. Our main findings are i) frogs primarily responded to the achromatic differences in background, ii) their contrasting dorsal patterns were conditionally expressed dependent on the brightness of backgrounds, iii) against mixed coloured background, frogs adopted intermediate forms between two colours. Using predator (avian and snake) vision models, we determined that colour differences against different backgrounds yielded perceptible changes in dorsal colours. We also found substantial individual variation in colour changing ability and the levels of dorsal pattern expression between individuals. We discuss the possibility of correlational selection on colour changing ability and resting behaviour that maintains the high variation in colour changing ability within population.
Corkery, Robert W; Tyrode, Eric C
2017-08-06
Lycaenid butterflies from the genera Callophrys , Cyanophrys and Thecla have evolved remarkable biophotonic gyroid nanostructures within their wing scales that have only recently been replicated by nanoscale additive manufacturing. These nanostructures selectively reflect parts of the visible spectrum to give their characteristic non-iridescent, matte-green appearance, despite a distinct blue-green-yellow iridescence predicted for individual crystals from theory. It has been hypothesized that the organism must achieve its uniform appearance by growing crystals with some restrictions on the possible distribution of orientations, yet preferential orientation observed in Callophrys rubi confirms that this distribution need not be uniform. By analysing scanning electron microscope and optical images of 912 crystals in three wing scales, we find no preference for their rotational alignment in the plane of the scales. However, crystal orientation normal to the scale was highly correlated to their colour at low (conical) angles of view and illumination. This correlation enabled the use of optical images, each containing up to 10 4 -10 5 crystals, for concluding the preferential alignment seen along the [Formula: see text] at the level of single scales, appears ubiquitous. By contrast, [Formula: see text] orientations were found to occur at no greater rate than that expected by chance. Above a critical cone angle, all crystals reflected bright green light indicating the dominant light scattering is due to the predicted band gap along the [Formula: see text] direction, independent of the domain orientation. Together with the natural variation in scale and wing shapes, we can readily understand the detailed mechanism of uniform colour production and iridescence suppression in these butterflies. It appears that the combination of preferential alignment normal to the wing scale, and uniform distribution within the plane is a near optimal solution for homogenizing the angular distribution of the [Formula: see text] band gap relative to the wings. Finally, the distributions of orientations, shapes, sizes and degree of order of crystals within single scales provide useful insights for understanding the mechanisms at play in the formation of these biophotonic nanostructures.
Colour and pattern change against visually heterogeneous backgrounds in the tree frog Hyla japonica
Kang, Changku; Kim, Ye Eun; Jang, Yikweon
2016-01-01
Colour change in animals can be adaptive phenotypic plasticity in heterogeneous environments. Camouflage through background colour matching has been considered a primary force that drives the evolution of colour changing ability. However, the mechanism to which animals change their colour and patterns under visually heterogeneous backgrounds (i.e. consisting of more than one colour) has only been identified in limited taxa. Here, we investigated the colour change process of the Japanese tree frog (Hyla japonica) against patterned backgrounds and elucidated how the expression of dorsal patterns changes against various achromatic/chromatic backgrounds with/without patterns. Our main findings are i) frogs primarily responded to the achromatic differences in background, ii) their contrasting dorsal patterns were conditionally expressed dependent on the brightness of backgrounds, iii) against mixed coloured background, frogs adopted intermediate forms between two colours. Using predator (avian and snake) vision models, we determined that colour differences against different backgrounds yielded perceptible changes in dorsal colours. We also found substantial individual variation in colour changing ability and the levels of dorsal pattern expression between individuals. We discuss the possibility of correlational selection on colour changing ability and resting behaviour that maintains the high variation in colour changing ability within population. PMID:26932675
Wing scale microstructures and nanostructures in butterflies--natural photonic crystals.
Vértesy, Z; Bálint, Zs; Kertész, K; Vigneron, J P; Lousse, V; Biró, L P
2006-10-01
The aim of our study was to investigate the correlation between structural colour and scale morphology in butterflies. Detailed correlations between blue colour and structure were investigated in three lycaenid subfamilies, which represent a monophylum in the butterfly family Lycaenidae (Lepidoptera): the Coppers (Lycaeninae), the Hairstreaks (Theclinae) and the Blues (Polyommatinae). Complex investigations such as spectral measurements and characterization by means of light microscopy, scanning electron microscopy and transmission electron microscopy enabled us to demonstrate that: (i) a wide array of nanostructures generate blue colours; (ii) monophyletic groups use qualitatively similar structures; and (iii) the hue of the blue colour is characteristic for the microstructure and nanostructure of the body of the scales.
Parnell, Andrew J; Bradford, James E; Curran, Emma V; Washington, Adam L; Adams, Gracie; Brien, Melanie N; Burg, Stephanie L; Morochz, Carlos; Fairclough, J Patrick A; Vukusic, Pete; Martin, Simon J; Doak, Scott; Nadeau, Nicola J
2018-04-01
Iridescence is an optical phenomenon whereby colour changes with the illumination and viewing angle. It can be produced by thin film interference or diffraction. Iridescent optical structures are fairly common in nature, but relatively little is known about their production or evolution. Here we describe the structures responsible for producing blue-green iridescent colour in Heliconius butterflies. Overall the wing scale structures of iridescent and non-iridescent Heliconius species are very similar, both having longitudinal ridges joined by cross-ribs. However, iridescent scales have ridges composed of layered lamellae, which act as multilayer reflectors. Differences in brightness between species can be explained by the extent of overlap of the lamellae and their curvature as well as the density of ridges on the scale. Heliconius are well known for their Müllerian mimicry. We find that iridescent structural colour is not closely matched between co-mimetic species. Differences appear less pronounced in models of Heliconius vision than models of avian vision, suggesting that they are not driven by selection to avoid heterospecific courtship by co-mimics. Ridge profiles appear to evolve relatively slowly, being similar between closely related taxa, while ridge density evolves faster and is similar between distantly related co-mimics. © 2018 The Authors.
Bradford, James E.; Curran, Emma V.; Washington, Adam L.; Adams, Gracie; Brien, Melanie N.; Burg, Stephanie L.; Morochz, Carlos; Fairclough, J. Patrick A.; Vukusic, Pete; Martin, Simon J.; Doak, Scott
2018-01-01
Iridescence is an optical phenomenon whereby colour changes with the illumination and viewing angle. It can be produced by thin film interference or diffraction. Iridescent optical structures are fairly common in nature, but relatively little is known about their production or evolution. Here we describe the structures responsible for producing blue-green iridescent colour in Heliconius butterflies. Overall the wing scale structures of iridescent and non-iridescent Heliconius species are very similar, both having longitudinal ridges joined by cross-ribs. However, iridescent scales have ridges composed of layered lamellae, which act as multilayer reflectors. Differences in brightness between species can be explained by the extent of overlap of the lamellae and their curvature as well as the density of ridges on the scale. Heliconius are well known for their Müllerian mimicry. We find that iridescent structural colour is not closely matched between co-mimetic species. Differences appear less pronounced in models of Heliconius vision than models of avian vision, suggesting that they are not driven by selection to avoid heterospecific courtship by co-mimics. Ridge profiles appear to evolve relatively slowly, being similar between closely related taxa, while ridge density evolves faster and is similar between distantly related co-mimics. PMID:29669892
Structural and optical investigation on the wings of Idea malabarica (Moore, 1877).
Sackey, Juliet; Nuru, Zebib Y; Sone, Bertrand Tumbain; Maaza, Malik
2017-02-01
The nanostructures on the wings of Idea malabarica (Moore, 1877) were analysed using scanning electron microscopy, energy dispersive X-ray spectroscopy, atomic force microscopy, Fourier transform-infrared spectroscopy, and reflectance measurements. The chemical and morphological analyses revealed the chitin-based intricate nanostructures. The influence of the nanostructures on the wetting characteristics of the wing was investigated using optical imaging. Applying the Maxwell-Garnet approximation to the porosities within the nanostructures, the refractive indices, which relate the reflectance response, were estimated. It was concluded that the colour seen on the wings of the Idea malabarica originate from the nanostructural configurations of the chitin-based structures and the embedded pigment.
NASA Astrophysics Data System (ADS)
Pecháček, Pavel; Stella, David; Keil, Petr; Kleisner, Karel
2014-12-01
The males of the Brimstone butterfly ( Gonepteryx rhamni) have ultraviolet pattern on the dorsal surfaces of their wings. Using geometric morphometrics, we have analysed correlations between environmental variables (climate, productivity) and shape variability of the ultraviolet pattern and the forewing in 110 male specimens of G. rhamni collected in the Palaearctic zone. To start with, we subjected the environmental variables to principal component analysis (PCA). The first PCA axis (precipitation, temperature, latitude) significantly correlated with shape variation of the ultraviolet patterns across the Palaearctic. Additionally, we have performed two-block partial least squares (PLS) analysis to assess co-variation between intraspecific shape variation and the variation of 11 environmental variables. The first PLS axis explained 93 % of variability and represented the effect of precipitation, temperature and latitude. Along this axis, we observed a systematic increase in the relative area of ultraviolet colouration with increasing temperature and precipitation and decreasing latitude. We conclude that the shape variation of ultraviolet patterns on the forewings of male Brimstones is correlated with large-scale environmental factors.
"Experience Is Our Great and Only Teacher": A Peircean Reading of Wim Wenders' "Wings of Desire"
ERIC Educational Resources Information Center
Strand, Torill
2014-01-01
Wim Wenders' film "Wings of Desire" tells the story of an angel who wishes to become mortal in order to know the simple joy of human life. Told from the angel's point of view, the film is shot in black and white. But at the very instant the angel perceives the realities of human experience, the film blossoms into colour. In…
The phylogenetic significance of colour patterns in marine teleost larvae
Baldwin, Carole C
2013-01-01
Ichthyologists, natural-history artists, and tropical-fish aquarists have described, illustrated, or photographed colour patterns in adult marine fishes for centuries, but colour patterns in marine fish larvae have largely been neglected. Yet the pelagic larval stages of many marine fishes exhibit subtle to striking, ephemeral patterns of chromatophores that warrant investigation into their potential taxonomic and phylogenetic significance. Colour patterns in larvae of over 200 species of marine teleosts, primarily from the western Caribbean, were examined from digital colour photographs, and their potential utility in elucidating evolutionary relationships at various taxonomic levels was assessed. Larvae of relatively few basal marine teleosts exhibit erythrophores, xanthophores, or iridophores (i.e. nonmelanistic chromatophores), but one or more of those types of chromatophores are visible in larvae of many basal marine neoteleosts and nearly all marine percomorphs. Whether or not the presence of nonmelanistic chromatophores in pelagic marine larvae diagnoses any major teleost taxonomic group cannot be determined based on the preliminary survey conducted, but there is a trend toward increased colour from elopomorphs to percomorphs. Within percomorphs, patterns of nonmelanistic chromatophores may help resolve or contribute evidence to existing hypotheses of relationships at multiple levels of classification. Mugilid and some beloniform larvae share a unique ontogenetic transformation of colour pattern that lends support to the hypothesis of a close relationship between them. Larvae of some tetraodontiforms and lophiiforms are strikingly similar in having the trunk enclosed in an inflated sac covered with xanthophores, a character that may help resolve the relationships of these enigmatic taxa. Colour patterns in percomorph larvae also appear to diagnose certain groups at the interfamilial, familial, intergeneric, and generic levels. Slight differences in generic colour patterns, including whether the pattern comprises xanthophores or erythrophores, often distinguish species. The homology, ontogeny, and possible functional significance of colour patterns in larvae are discussed. Considerably more investigation of larval colour patterns in marine teleosts is needed to assess fully their value in phylogenetic reconstruction. PMID:24039297
Zhang, Yu; Xu, Weizhong; Wu, Xiaoqin; Zhang, Xiaoling; Zhang, Ying
2007-03-01
The efficiency of antioxidant from bamboo leaves on the reduction of acrylamide during thermal processing and optimization of levels of addition of antioxidant from bamboo leaves applied to fried chicken wings are reported. The authors optimized the method of the addition of antioxidant from bamboo leaves to fried chicken wings and the frying processing parameters, and also compared the relationship between the content of total flavonoids in three extracts (EBL(971), EBL(972) and antioxidant from bamboo leaves) and the extent of the reduction of acrylamide. The acrylamide levels were quantified by a validated liquid chromatography coupled with tandem mass spectrometry detection method and the sensory evaluation was performed in a double-blind manner. The results showed that nearly 57.8 and 59.0% of acrylamide in fried chicken wings were reduced when the antioxidant from bamboo leaves addition ratios were 0.1 and 0.5% (w/w), respectively. The maximum inhibitory rate was achieved when antioxidant from bamboo leaves was chosen as the additive with a total flavonoid content of 32% compared with other two extracts and antioxidant from bamboo leaves mixed with flour was selected as the method of addition. Sensory evaluation results showed that the odour and flavour of fried chicken wings with antioxidant from bamboo leaves treatments had no significant difference compared with normal food matrixes (p > 0.05) when the antioxidant from bamboo leaves addition ratio was <0.5% (w/w). Colour acceptability in the study of sensory evaluation was in good correspondence with colour formation of fried chicken wings in each test group. These results suggest that antioxidant from bamboo leaves could significantly reduce acrylamide formation in fried chicken wings and yet still retain the original flavour and odour of the fried products. This study could be regarded as a pioneer contribution to the reduction of acrylamide in various foods by natural antioxidants.
Pérez I de Lanuza, G; Font, E
2016-05-01
Many animals display complex colour patterns that comprise several adjacent, often contrasting colour patches. Combining patches of complementary colours increases the overall conspicuousness of the complex pattern, enhancing signal detection. Therefore, selection for conspicuousness may act not only on the design of single colour patches, but also on their combination. Contrasting long- and short-wavelength colour patches are located on the ventral and lateral surfaces of many lacertid lizards. As the combination of long- and short-wavelength-based colours generates local chromatic contrast, we hypothesized that selection may favour the co-occurrence of lateral and ventral contrasting patches, resulting in complex colour patterns that maximize the overall conspicuousness of the signal. To test this hypothesis, we performed a comparative phylogenetic study using a categorical colour classification based on spectral data and descriptive information on lacertid coloration collected from the literature. Our results demonstrate that conspicuous ventral (long-wavelength-based) and lateral (short-wavelength-based) colour patches co-occur throughout the lacertid phylogeny more often than expected by chance, especially in the subfamily Lacertini. These results suggest that selection promotes the evolution of the complex pattern rather than the acquisition of a single conspicuous colour patch, possibly due to the increased conspicuousness caused by the combination of colours with contrasting spectral properties. © 2016 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2016 European Society For Evolutionary Biology.
Structural colour printing from a reusable generic nanosubstrate masked for the target image
NASA Astrophysics Data System (ADS)
Rezaei, M.; Jiang, H.; Kaminska, B.
2016-02-01
Structural colour printing has advantages over traditional pigment-based colour printing. However, the high fabrication cost has hindered its applications in printing large-area images because each image requires patterning structural pixels in nanoscale resolution. In this work, we present a novel strategy to print structural colour images from a pixelated substrate which is called a nanosubstrate. The nanosubstrate is fabricated only once using nanofabrication tools and can be reused for printing a large quantity of structural colour images. It contains closely packed arrays of nanostructures from which red, green, blue and infrared structural pixels can be imprinted. To print a target colour image, the nanosubstrate is first covered with a mask layer to block all the structural pixels. The mask layer is subsequently patterned according to the target colour image to make apertures of controllable sizes on top of the wanted primary colour pixels. The masked nanosubstrate is then used as a stamp to imprint the colour image onto a separate substrate surface using nanoimprint lithography. Different visual colours are achieved by properly mixing the red, green and blue primary colours into appropriate ratios controlled by the aperture sizes on the patterned mask layer. Such a strategy significantly reduces the cost and complexity of printing a structural colour image from lengthy nanoscale patterning into high throughput micro-patterning and makes it possible to apply structural colour printing in personalized security features and data storage. In this paper, nanocone array grating pixels were used as the structural pixels and the nanosubstrate contains structures to imprint the nanocone arrays. Laser lithography was implemented to pattern the mask layer with submicron resolution. The optical properties of the nanocone array gratings are studied in detail. Multiple printed structural colour images with embedded covert information are demonstrated.
Mueller matrix microscopy on a Morpho butterfly
NASA Astrophysics Data System (ADS)
Arteaga, Oriol; Kuntman, Ertan; Antó, Joan; Pascual, Esther; Canillas, Adolf; Bertran, Enric
2015-04-01
The brilliant iridescent colouring in male Morpho butterflies is due to the microstrutures and nanostructures present in the wing scales, rather than pigments. In this work Mueller matrix microscopy is used to investigate the polarization properties of butterfly wing scales in reflection and transmission. It is found that the top layer of more transparent scales (cover scales) have very different polarimetric properties from the ground iridescent scales. Images with high spatial resolution showing the retarding and diattenuating optical properties for both types of scales are provided.
NASA Astrophysics Data System (ADS)
Chekalin, S. V.; Kompanets, V. O.; Dormidonov, A. E.; Kandidov, V. P.
2017-04-01
The influence of the occurrence of a structure consisting of long-lived colour centres, formed in an LiF crystal upon filamentation of femtosecond mid-IR radiation, on the supercontinuum characteristics is investigated. With an increase in the number of incident pulses, the length and transverse size of the structure of colour centres induced in LiF increase, and the supercontinuum spectrum in the short-wavelength region is markedly transformed due to the occurrence of the waveguide propagation regime, absorption, and scattering of radiation from the newly formed structure of colour centres. Under these conditions, the intensity of the anti-Stokes wing decreases by two orders of magnitude after several tens of pulses. Spectral components arise in the visible range, the angular divergence of which increases with increasing wavelength.
NASA Astrophysics Data System (ADS)
Seino, M.; Kakazu, Y.
The vein and cell patterns for the fore and hind wing of Lepidoptera, Hemiptera, Orthoptera and Odonata are analyzed and discussed. For vein patterns of them, the fractal properties are shown and the inequality between four orders is obtained. The nature of wings observed by mass distributions for fractal dimensions of the vein pattern is presented.
Stable structural color patterns displayed on transparent insect wings.
Shevtsova, Ekaterina; Hansson, Christer; Janzen, Daniel H; Kjærandsen, Jostein
2011-01-11
Color patterns play central roles in the behavior of insects, and are important traits for taxonomic studies. Here we report striking and stable structural color patterns--wing interference patterns (WIPs)--in the transparent wings of small Hymenoptera and Diptera, patterns that have been largely overlooked by biologists. These extremely thin wings reflect vivid color patterns caused by thin film interference. The visibility of these patterns is affected by the way the insects display their wings against various backgrounds with different light properties. The specific color sequence displayed lacks pure red and matches the color vision of most insects, strongly suggesting that the biological significance of WIPs lies in visual signaling. Taxon-specific color patterns are formed by uneven membrane thickness, pigmentation, venation, and hair placement. The optically refracted pattern is also stabilized by microstructures of the wing such as membrane corrugations and spherical cell structures that reinforce the pattern and make it essentially noniridescent over a large range of light incidences. WIPs can be applied to map the micromorphology of wings through direct observation and are useful in several fields of biology. We demonstrate their usefulness as identification patterns to solve cases of cryptic species complexes in tiny parasitic wasps, and indicate their potentials for research on the genetic control of wing development through direct links between the transregulatory wing landscape and interference patterns we observe in Drosophila model species. Some species display sexually dimorphic WIPs, suggesting sexual selection as one of the driving forces for their evolution.
Stable structural color patterns displayed on transparent insect wings
Shevtsova, Ekaterina; Hansson, Christer; Janzen, Daniel H.; Kjærandsen, Jostein
2011-01-01
Color patterns play central roles in the behavior of insects, and are important traits for taxonomic studies. Here we report striking and stable structural color patterns—wing interference patterns (WIPs)—in the transparent wings of small Hymenoptera and Diptera, patterns that have been largely overlooked by biologists. These extremely thin wings reflect vivid color patterns caused by thin film interference. The visibility of these patterns is affected by the way the insects display their wings against various backgrounds with different light properties. The specific color sequence displayed lacks pure red and matches the color vision of most insects, strongly suggesting that the biological significance of WIPs lies in visual signaling. Taxon-specific color patterns are formed by uneven membrane thickness, pigmentation, venation, and hair placement. The optically refracted pattern is also stabilized by microstructures of the wing such as membrane corrugations and spherical cell structures that reinforce the pattern and make it essentially noniridescent over a large range of light incidences. WIPs can be applied to map the micromorphology of wings through direct observation and are useful in several fields of biology. We demonstrate their usefulness as identification patterns to solve cases of cryptic species complexes in tiny parasitic wasps, and indicate their potentials for research on the genetic control of wing development through direct links between the transregulatory wing landscape and interference patterns we observe in Drosophila model species. Some species display sexually dimorphic WIPs, suggesting sexual selection as one of the driving forces for their evolution. PMID:21199954
Caze, Bruno; Merle, Didier; Schneider, Simon
2015-01-01
Viewed under UV light the diverse and exceptionally well-preserved molluscs from the Late Jurassic Cordebugle Konservat Lagerstätte (Calvados, Normandy, France) reveal fluorescent fossil shell colour patterns predating the oldest previously known instance of such patterns by 100 Myr. Evidently, residual colour patterns are observable in Mesozoic molluscs by application of this non-destructive method, provided the shells are not decalcified or recrystallized. Among 46 species which are assigned to twelve gastropod families and eight bivalve families, no less than 25 species yielded positive results. Out of nine colour pattern morphologies that have been distinguished six occur in gastropods and three in bivalves. The presence of these variant morphologies clearly indicates a significant pre-Cenozoic diversification of colour patterns, especially in gastropods. In addition, the occurrence of two distinct types of fluorescence highlights a major difference in the chemical composition of the pigments involved in colour pattern formation in gastropods. This discovery enables us to discriminate members of higher clades, i.e. the Vetigastropoda emitting red fluorescence from the Caenogastropoda and Heterobranchia emitting whitish-beige to yellow fluorescence. Consequently, fluorescent colour patterns may help to allocate part of the numerous enigmatic Mesozoic gastropod taxa to their correct systematic position. PMID:26039592
Behavioural, ecological, and evolutionary aspects of diversity in frog colour patterns.
Rojas, Bibiana
2017-05-01
The role of colours and colour patterns in behavioural ecology has been extensively studied in a variety of contexts and taxa, while almost overlooked in many others. For decades anurans have been the focus of research on acoustic signalling due to the prominence of vocalisations in their communication. Much less attention has been paid to the enormous diversity of colours, colour patterns, and other types of putative visual signals exhibited by frogs. With the exception of some anecdotal observations and studies, the link between colour patterns and the behavioural and evolutionary ecology of anurans had not been addressed until approximately two decades ago. Since then, there has been ever-increasing interest in studying how colouration is tied to different aspects of frog behaviour, ecology and evolution. Here I review the literature on three different contexts in which frog colouration has been recently studied: predator-prey interactions, intraspecific communication, and habitat use; and I highlight those aspects that make frogs an excellent, yet understudied, group to examine the role of colour in the evolution of anti-predation strategies and animal communication systems. Further, I argue that in addition to natural-history observations, more experiments are needed in order to elucidate the functions of anuran colouration and the selective pressures involved in its diversity. To conclude, I encourage researchers to strengthen current experimental approaches, and suggest future directions that may broaden our current understanding of the adaptive value of anuran colour pattern diversity. © 2016 Cambridge Philosophical Society.
Michielsen, K; De Raedt, H; Stavenga, D G
2010-05-06
We present a comparison of the computer simulation data of gyroid nanostructures with optical measurements (reflectivity spectra and scattering diagrams) of ventral wing scales of the Green Hairstreak butterfly, Callophrys rubi. We demonstrate that the omnidirectional green colour arises from the gyroid cuticular structure grown in the domains of different orientation. We also show that this three-dimensional structure, operating as a biophotonic crystal, gives rise to various polarization effects. We briefly discuss the possible biological utility of the green coloration and polarization effects.
Santana, Sharlene E.; Dobson, Seth D.; Diogo, Rui
2014-01-01
Facial colour patterns and facial expressions are among the most important phenotypic traits that primates use during social interactions. While colour patterns provide information about the sender's identity, expressions can communicate its behavioural intentions. Extrinsic factors, including social group size, have shaped the evolution of facial coloration and mobility, but intrinsic relationships and trade-offs likely operate in their evolution as well. We hypothesize that complex facial colour patterning could reduce how salient facial expressions appear to a receiver, and thus species with highly expressive faces would have evolved uniformly coloured faces. We test this hypothesis through a phylogenetic comparative study, and explore the underlying morphological factors of facial mobility. Supporting our hypothesis, we find that species with highly expressive faces have plain facial colour patterns. The number of facial muscles does not predict facial mobility; instead, species that are larger and have a larger facial nucleus have more expressive faces. This highlights a potential trade-off between facial mobility and colour patterning in primates and reveals complex relationships between facial features during primate evolution. PMID:24850898
Connahs, Heidi; Rhen, Turk; Simmons, Rebecca B
2016-03-31
Butterfly wing color patterns are an important model system for understanding the evolution and development of morphological diversity and animal pigmentation. Wing color patterns develop from a complex network composed of highly conserved patterning genes and pigmentation pathways. Patterning genes are involved in regulating pigment synthesis however the temporal expression dynamics of these interacting networks is poorly understood. Here, we employ next generation sequencing to examine expression patterns of the gene network underlying wing development in the nymphalid butterfly, Vanessa cardui. We identified 9, 376 differentially expressed transcripts during wing color pattern development, including genes involved in patterning, pigmentation and gene regulation. Differential expression of these genes was highest at the pre-ommochrome stage compared to early pupal and late melanin stages. Overall, an increasing number of genes were down-regulated during the progression of wing development. We observed dynamic expression patterns of a large number of pigment genes from the ommochrome, melanin and also pteridine pathways, including contrasting patterns of expression for paralogs of the yellow gene family. Surprisingly, many patterning genes previously associated with butterfly pattern elements were not significantly up-regulated at any time during pupation, although many other transcription factors were differentially expressed. Several genes involved in Notch signaling were significantly up-regulated during the pre-ommochrome stage including slow border cells, bunched and pebbles; the function of these genes in the development of butterfly wings is currently unknown. Many genes involved in ecdysone signaling were also significantly up-regulated during early pupal and late melanin stages and exhibited opposing patterns of expression relative to the ecdysone receptor. Finally, a comparison across four butterfly transcriptomes revealed 28 transcripts common to all four species that have no known homologs in other metazoans. This study provides a comprehensive list of differentially expressed transcripts during wing development, revealing potential candidate genes that may be involved in regulating butterfly wing patterns. Some differentially expressed genes have no known homologs possibly representing genes unique to butterflies. Results from this study also indicate that development of nymphalid wing patterns may arise not only from melanin and ommochrome pigments but also the pteridine pigment pathway.
Jiggins, Chris D; Wallbank, Richard W R; Hanly, Joseph J
2017-02-05
A major challenge is to understand how conserved gene regulatory networks control the wonderful diversity of form that we see among animals and plants. Butterfly wing patterns are an excellent example of this diversity. Butterfly wings form as imaginal discs in the caterpillar and are constructed by a gene regulatory network, much of which is conserved across the holometabolous insects. Recent work in Heliconius butterflies takes advantage of genomic approaches and offers insights into how the diversification of wing patterns is overlaid onto this conserved network. WntA is a patterning morphogen that alters spatial information in the wing. Optix is a transcription factor that acts later in development to paint specific wing regions red. Both of these loci fit the paradigm of conserved protein-coding loci with diverse regulatory elements and developmental roles that have taken on novel derived functions in patterning wings. These discoveries offer insights into the 'Nymphalid Ground Plan', which offers a unifying hypothesis for pattern formation across nymphalid butterflies. These loci also represent 'hotspots' for morphological change that have been targeted repeatedly during evolution. Both convergent and divergent evolution of a great diversity of patterns is controlled by complex alleles at just a few genes. We suggest that evolutionary change has become focused on one or a few genetic loci for two reasons. First, pre-existing complex cis-regulatory loci that already interact with potentially relevant transcription factors are more likely to acquire novel functions in wing patterning. Second, the shape of wing regulatory networks may constrain evolutionary change to one or a few loci. Overall, genomic approaches that have identified wing patterning loci in these butterflies offer broad insight into how gene regulatory networks evolve to produce diversity.This article is part of the themed issue 'Evo-devo in the genomics era, and the origins of morphological diversity'. © 2016 The Author(s).
Wallbank, Richard W. R.; Hanly, Joseph J.
2017-01-01
A major challenge is to understand how conserved gene regulatory networks control the wonderful diversity of form that we see among animals and plants. Butterfly wing patterns are an excellent example of this diversity. Butterfly wings form as imaginal discs in the caterpillar and are constructed by a gene regulatory network, much of which is conserved across the holometabolous insects. Recent work in Heliconius butterflies takes advantage of genomic approaches and offers insights into how the diversification of wing patterns is overlaid onto this conserved network. WntA is a patterning morphogen that alters spatial information in the wing. Optix is a transcription factor that acts later in development to paint specific wing regions red. Both of these loci fit the paradigm of conserved protein-coding loci with diverse regulatory elements and developmental roles that have taken on novel derived functions in patterning wings. These discoveries offer insights into the ‘Nymphalid Ground Plan’, which offers a unifying hypothesis for pattern formation across nymphalid butterflies. These loci also represent ‘hotspots’ for morphological change that have been targeted repeatedly during evolution. Both convergent and divergent evolution of a great diversity of patterns is controlled by complex alleles at just a few genes. We suggest that evolutionary change has become focused on one or a few genetic loci for two reasons. First, pre-existing complex cis-regulatory loci that already interact with potentially relevant transcription factors are more likely to acquire novel functions in wing patterning. Second, the shape of wing regulatory networks may constrain evolutionary change to one or a few loci. Overall, genomic approaches that have identified wing patterning loci in these butterflies offer broad insight into how gene regulatory networks evolve to produce diversity. This article is part of the themed issue ‘Evo-devo in the genomics era, and the origins of morphological diversity’. PMID:27994126
Genetic Basis of Melanin Pigmentation in Butterfly Wings
Zhang, Linlin; Martin, Arnaud; Perry, Michael W.; van der Burg, Karin R. L.; Matsuoka, Yuji; Monteiro, Antónia; Reed, Robert D.
2017-01-01
Despite the variety, prominence, and adaptive significance of butterfly wing patterns, surprisingly little is known about the genetic basis of wing color diversity. Even though there is intense interest in wing pattern evolution and development, the technical challenge of genetically manipulating butterflies has slowed efforts to functionally characterize color pattern development genes. To identify candidate wing pigmentation genes, we used RNA sequencing to characterize transcription across multiple stages of butterfly wing development, and between different color pattern elements, in the painted lady butterfly Vanessa cardui. This allowed us to pinpoint genes specifically associated with red and black pigment patterns. To test the functions of a subset of genes associated with presumptive melanin pigmentation, we used clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 genome editing in four different butterfly genera. pale, Ddc, and yellow knockouts displayed reduction of melanin pigmentation, consistent with previous findings in other insects. Interestingly, however, yellow-d, ebony, and black knockouts revealed that these genes have localized effects on tuning the color of red, brown, and ochre pattern elements. These results point to previously undescribed mechanisms for modulating the color of specific wing pattern elements in butterflies, and provide an expanded portrait of the insect melanin pathway. PMID:28193726
Michielsen, K.; De Raedt, H.; Stavenga, D. G.
2010-01-01
We present a comparison of the computer simulation data of gyroid nanostructures with optical measurements (reflectivity spectra and scattering diagrams) of ventral wing scales of the Green Hairstreak butterfly, Callophrys rubi. We demonstrate that the omnidirectional green colour arises from the gyroid cuticular structure grown in the domains of different orientation. We also show that this three-dimensional structure, operating as a biophotonic crystal, gives rise to various polarization effects. We briefly discuss the possible biological utility of the green coloration and polarization effects. PMID:19828506
Colour mimicry and sexual deception by Tongue orchids ( Cryptostylis)
NASA Astrophysics Data System (ADS)
Gaskett, A. C.; Herberstein, M. E.
2010-01-01
Typically, floral colour attracts pollinators by advertising rewards such as nectar, but how does colour function when pollinators are deceived, unrewarded, and may even suffer fitness costs? Sexually deceptive orchids are pollinated only by male insects fooled into mating with orchid flowers and inadvertently transferring orchid pollinia. Over long distances, sexually deceptive orchids lure pollinators with counterfeit insect sex pheromones, but close-range deception with colour mimicry is a tantalising possibility. Here, for the first time, we analyse the colours of four sexually deceptive Cryptostylis orchid species and the female wasp they mimic ( Lissopimpla excelsa, Ichneumonidae), from the perspective of the orchids’ single, shared pollinator, male Lissopimpla excelsa. Despite appearing different to humans, the colours of the orchids and female wasps were effectively identical when mapped into a hymenopteran hexagonal colour space. The orchids and wasps reflected predominantly red-orange wavelengths, but UV was also reflected by raised bumps on two orchid species and by female wasp wings. The orchids’ bright yellow pollinia contrasted significantly with their overall red colour. Orchid deception may therefore involve accurate and species-specific mimicry of wavelengths reflected by female wasps, and potentially, exploitation of insects’ innate attraction to UV and yellow wavelengths. In general, mimicry may be facilitated by exploiting visual vulnerabilities and evolve more readily at the peripheries of sensory perception. Many sexually deceptive orchids are predominantly red, green or white: colours that are all potentially difficult for hymenoptera to detect or distinguish from the background.
Colour mimicry and sexual deception by Tongue orchids (Cryptostylis).
Gaskett, A C; Herberstein, M E
2010-01-01
Typically, floral colour attracts pollinators by advertising rewards such as nectar, but how does colour function when pollinators are deceived, unrewarded, and may even suffer fitness costs? Sexually deceptive orchids are pollinated only by male insects fooled into mating with orchid flowers and inadvertently transferring orchid pollinia. Over long distances, sexually deceptive orchids lure pollinators with counterfeit insect sex pheromones, but close-range deception with colour mimicry is a tantalising possibility. Here, for the first time, we analyse the colours of four sexually deceptive Cryptostylis orchid species and the female wasp they mimic (Lissopimpla excelsa, Ichneumonidae), from the perspective of the orchids' single, shared pollinator, male Lissopimpla excelsa. Despite appearing different to humans, the colours of the orchids and female wasps were effectively identical when mapped into a hymenopteran hexagonal colour space. The orchids and wasps reflected predominantly red-orange wavelengths, but UV was also reflected by raised bumps on two orchid species and by female wasp wings. The orchids' bright yellow pollinia contrasted significantly with their overall red colour. Orchid deception may therefore involve accurate and species-specific mimicry of wavelengths reflected by female wasps, and potentially, exploitation of insects' innate attraction to UV and yellow wavelengths. In general, mimicry may be facilitated by exploiting visual vulnerabilities and evolve more readily at the peripheries of sensory perception. Many sexually deceptive orchids are predominantly red, green or white: colours that are all potentially difficult for hymenoptera to detect or distinguish from the background.
Nijhout, H Frederik; Cinderella, Margaret; Grunert, Laura W
2014-03-01
The wings of butterflies and moths develop from imaginal disks whose structure is always congruent with the final adult wing. It is therefore possible to map every point on the imaginal disk to a location on the adult wing throughout ontogeny. We studied the growth patterns of the wings of two distantly related species with very different adult wing shapes, Junonia coenia and Manduca sexta. The shape of the wing disks change throughout their growth phase in a species-specific pattern. We measured mitotic densities and mitotic orientation in successive stages of wing development approximately one cell division apart. Cell proliferation was spatially patterned, and the density of mitoses was highly correlated with local growth. Unlike other systems in which the direction of mitoses has been viewed as the primary determinant of directional growth, we found that in these two species the direction of growth was only weakly correlated with the orientation of mitoses. Directional growth appears to be imposed by a constantly changing spatial pattern of cell division coupled with a weak bias in the orientation of cell division. Because growth and cell division in imaginal disk require ecdysone and insulin signaling, the changing spatial pattern of cell division may due to a changing pattern of expression of receptors or downstream elements in the signaling pathways for one or both of these hormones. Evolution of wing shape comes about by changes in the progression of spatial patterns of cell division. © 2014 Wiley Periodicals, Inc.
Mechanisms, functions and ecology of colour vision in the honeybee.
Hempel de Ibarra, N; Vorobyev, M; Menzel, R
2014-06-01
Research in the honeybee has laid the foundations for our understanding of insect colour vision. The trichromatic colour vision of honeybees shares fundamental properties with primate and human colour perception, such as colour constancy, colour opponency, segregation of colour and brightness coding. Laborious efforts to reconstruct the colour vision pathway in the honeybee have provided detailed descriptions of neural connectivity and the properties of photoreceptors and interneurons in the optic lobes of the bee brain. The modelling of colour perception advanced with the establishment of colour discrimination models that were based on experimental data, the Colour-Opponent Coding and Receptor Noise-Limited models, which are important tools for the quantitative assessment of bee colour vision and colour-guided behaviours. Major insights into the visual ecology of bees have been gained combining behavioural experiments and quantitative modelling, and asking how bee vision has influenced the evolution of flower colours and patterns. Recently research has focussed on the discrimination and categorisation of coloured patterns, colourful scenes and various other groupings of coloured stimuli, highlighting the bees' behavioural flexibility. The identification of perceptual mechanisms remains of fundamental importance for the interpretation of their learning strategies and performance in diverse experimental tasks.
Wnt signaling underlies evolution and development of the butterfly wing pattern symmetry systems.
Martin, Arnaud; Reed, Robert D
2014-11-15
Most butterfly wing patterns are proposed to be derived from a set of conserved pattern elements known as symmetry systems. Symmetry systems are so-named because they are often associated with parallel color stripes mirrored around linear organizing centers that run between the anterior and posterior wing margins. Even though the symmetry systems are the most prominent and diverse wing pattern elements, their study has been confounded by a lack of knowledge regarding the molecular basis of their development, as well as the difficulty of drawing pattern homologies across species with highly derived wing patterns. Here we present the first molecular characterization of symmetry system development by showing that WntA expression is consistently associated with the major basal, discal, central, and external symmetry system patterns of nymphalid butterflies. Pharmacological manipulations of signaling gradients using heparin and dextran sulfate showed that pattern organizing centers correspond precisely with WntA, wingless, Wnt6, and Wnt10 expression patterns, thus suggesting a role for Wnt signaling in color pattern induction. Importantly, this model is supported by recent genetic and population genomic work identifying WntA as the causative locus underlying wing pattern variation within several butterfly species. By comparing the expression of WntA between nymphalid butterflies representing a range of prototypical symmetry systems, slightly deviated symmetry systems, and highly derived wing patterns, we were able to infer symmetry system homologies in several challenging cases. Our work illustrates how highly divergent morphologies can be derived from modifications to a common ground plan across both micro- and macro-evolutionary time scales. Copyright © 2014 Elsevier Inc. All rights reserved.
Genetic Basis of Melanin Pigmentation in Butterfly Wings.
Zhang, Linlin; Martin, Arnaud; Perry, Michael W; van der Burg, Karin R L; Matsuoka, Yuji; Monteiro, Antónia; Reed, Robert D
2017-04-01
Despite the variety, prominence, and adaptive significance of butterfly wing patterns, surprisingly little is known about the genetic basis of wing color diversity. Even though there is intense interest in wing pattern evolution and development, the technical challenge of genetically manipulating butterflies has slowed efforts to functionally characterize color pattern development genes. To identify candidate wing pigmentation genes, we used RNA sequencing to characterize transcription across multiple stages of butterfly wing development, and between different color pattern elements, in the painted lady butterfly Vanessa cardui This allowed us to pinpoint genes specifically associated with red and black pigment patterns. To test the functions of a subset of genes associated with presumptive melanin pigmentation, we used clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 genome editing in four different butterfly genera. pale , Ddc , and yellow knockouts displayed reduction of melanin pigmentation, consistent with previous findings in other insects. Interestingly, however, yellow-d , ebony , and black knockouts revealed that these genes have localized effects on tuning the color of red, brown, and ochre pattern elements. These results point to previously undescribed mechanisms for modulating the color of specific wing pattern elements in butterflies, and provide an expanded portrait of the insect melanin pathway. Copyright © 2017 by the Genetics Society of America.
Shape matters: animal colour patterns as signals of individual quality
2017-01-01
Colour patterns (e.g. irregular, spotted or barred forms) are widespread in the animal kingdom, yet their potential role as signals of quality has been mostly neglected. However, a review of the published literature reveals that pattern itself (irrespective of its size or colour intensity) is a promising signal of individual quality across species of many different taxa. We propose at least four main pathways whereby patterns may reliably reflect individual quality: (i) as conventional signals of status, (ii) as indices of developmental homeostasis, (iii) by amplifying cues of somatic integrity and (iv) by amplifying individual investment in maintenance activities. Methodological constraints have traditionally hampered research on the signalling potential of colour patterns. To overcome this, we report a series of tools (e.g. colour adjacency and pattern regularity analyses, Fourier and granularity approaches, fractal geometry, geometric morphometrics) that allow objective quantification of pattern variability. We discuss how information provided by these methods should consider the visual system of the model species and behavioural responses to pattern metrics, in order to allow biologically meaningful conclusions. Finally, we propose future challenges in this research area that will require a multidisciplinary approach, bringing together inputs from genetics, physiology, behavioural ecology and evolutionary-developmental biology. PMID:28228513
Lucas, Lauren K; Nice, Chris C; Gompert, Zachariah
2018-03-13
Patterns of phenotypic variation within and among species can be shaped and constrained by trait genetic architecture. This is particularly true for complex traits, such as butterfly wing patterns, that consist of multiple elements. Understanding the genetics of complex trait variation across species boundaries is difficult, as it necessitates mapping in structured populations and can involve many loci with small or variable phenotypic effects. Here, we investigate the genetic architecture of complex wing pattern variation in Lycaeides butterflies as a case study of mapping multivariate traits in wild populations that include multiple nominal species or groups. We identify conserved modules of integrated wing pattern elements within populations and species. We show that trait covariances within modules have a genetic basis and thus represent genetic constraints that can channel evolution. Consistent with this, we find evidence that evolutionary changes in wing patterns among populations and species occur in the directions of genetic covariances within these groups. Thus, we show that genetic constraints affect patterns of biological diversity (wing pattern) in Lycaeides, and we provide an analytical template for similar work in other systems. © 2018 John Wiley & Sons Ltd.
NASA Technical Reports Server (NTRS)
Parsons-Wingerter, Patricia A.; Hosamani, Ravikumar; Bhattacharya, Sharmila
2015-01-01
Imaginal wing discs of Drosophila melanogaster (fruit fly) defined during embryogenesis ultimately result in mature wings of stereotyped (specific) venation patterning. Major regulators of wing disc development are the epidermal growth factor receptor (EGF), Notch, Hedgehog (Hh), Wingless (Wg), and Dpp signaling pathways. Highly stereotyped vascular patterning is also characteristic of tissues in other organisms flown in space such as the mouse retina and leaves of Arabidopsis thaliana. Genetic and other adaptations of vascular patterning to space environmental factors have not yet been systematically quantified, despite widespread recognition of their critical importance for terrestrial and microgravity applications. Here we report changes in gene expression with space flight related to Drosophila wing morphogenesis and vein patterning. In addition, genetically modified phenotypes of increasingly abnormal ectopic wing venation in the Drosophila wing1 were analyzed by NASA's VESsel GENeration Analysis (VESGEN) software2. Our goal is to further develop insightful vascular mappings associated with bioinformatic dimensions of genetic or other molecular phenotypes for correlation with genetic and other molecular profiling relevant to NASA's GeneLab and other Space Biology exploration initiatives.
Plumage brightness as an indicator of parental care in northern cardinals
Linville; Breitwisch; Schilling
1998-01-01
Good parent and differential allocation models predict relationships between degree of sexual ornamentation and parental care, but relatively few studies have tested these models. The northern cardinal, Cardinalis cardinalis, is a sexually dichromatic species in which both sexes are ornamented. Males have red plumage, and females have tan plumage with limited areas of red feathering. Cardinals were used to address the two models and determine whether plumage brightness signals level of parental care by both sexes. Absolute effort in feeding nestlings by males was not correlated with male breast plumage colour, but effort by females was positively correlated with female underwing plumage colour. Absolute feeding effort by females was also inversely related to brightness of the mate's breast colour. As a consequence, the proportion of a pair's total feedings provided by the male was positively correlated with male breast colour. Proportion of total feedings provided by the female was positively correlated with female wing colour. Feeding efforts (both per nest and per nestling) were correlated between mates, but birds did not mate assortatively in relation to colour. These results support the good parent hypothesis, suggesting colour brightness is a signal of parental care. The results also indicate that ornamentation of both members of the pair may be important determinants of relative efforts in provisioning nestlings by parent birds. Copyright 1998 The Association for the Study of Animal Behaviour.
Potapov, Mikhail; Porco, David; Deharveng, Louis
2018-03-14
Colour pattern is the most common character to identify species in several large genera of Collembola. Its use often raises problems due to various and poorly investigated extent of chromatic variability among species. Isotomurus festus sp. nov. is here described from Kunashir Isl. (the Kuriles, the Far East of Russia). The species, a member of the 'antennalis' group, is characterized by the lack of trichobothria and slender claws, but is greatly variable in coloration. DNA barcoding (COI) results supports that all the colour forms encountered belong to the same species. While colour pattern has been shown to be the most reliable character for species identification in several Entomobryidae genera, it might not be the case in Isotomurus Börner, 1903, the sole large Isotomidae genus where colour pattern is routinely used for taxonomy.
Bowsher, Julia H; Wray, Gregory A; Abouheif, Ehab
2007-12-15
Over the last decade, it has become clear that organismal form is largely determined by developmental and evolutionary changes in the growth and pattern formation of tissues. Yet, there is little known about how these two integrated processes respond to environmental cues or how they evolve relative to one another. Here, we present the discovery of vestigial wing imaginal discs in worker larvae of the red imported fire ant, Solenopsis invicta. These vestigial wing discs are present in all worker larvae, which is uncommon for a species with a large worker size distribution. Furthermore, the growth trajectory of these vestigial discs is distinct from all of the ant species examined to date because they grow at a rate slower than the leg discs. We predicted that the growth trajectory of the vestigial wing discs would be mirrored by evolutionary changes in their patterning. We tested this prediction by examining the expression of three patterning genes, extradenticle, ultrabithorax, and engrailed, known to underlie the wing polyphenism in ants. Surprisingly, the expression patterns of these three genes in the vestigial wing discs was the same as those found in ant species with different worker size distributions and wing disc growth than fire ants. We conclude that growth and patterning are evolutionarily dissociated in the vestigial wing discs of S. invicta because patterning in these discs is conserved, whereas their growth trajectories are not. The evolutionary dissociation of growth and patterning may be an important feature of gene networks that underlie polyphenic traits. 2007 Wiley-Liss, Inc
Bees, birds and yellow flowers: pollinator-dependent convergent evolution of UV patterns.
Papiorek, S; Junker, R R; Alves-Dos-Santos, I; Melo, G A R; Amaral-Neto, L P; Sazima, M; Wolowski, M; Freitas, L; Lunau, K
2016-01-01
Colour is one of the most obvious advertisements of flowers, and occurs in a huge diversity among the angiosperms. Flower colour is responsible for attraction from a distance, whereas contrasting colour patterns within flowers aid orientation of flower visitors after approaching the flowers. Due to the striking differences in colour vision systems and neural processing across animal taxa, flower colours evoke specific behavioural responses by different flower visitors. We tested whether and how yellow flowers differ in their spectral reflectance depending on the main pollinator. We focused on bees and birds and examined whether the presence or absence of the widespread UV reflectance pattern of yellow flowers predicts the main pollinator. Most bee-pollinated flowers displayed a pattern with UV-absorbing centres and UV-reflecting peripheries, whereas the majority of bird-pollinated flowers are entirely UV- absorbing. In choice experiments we found that bees did not show consistent preferences for any colour or pattern types. However, all tested bee species made their first antennal contact preferably at the UV-absorbing area of the artificial flower, irrespective of its spatial position within the flower. The appearance of UV patterns within flowers is the main difference in spectral reflectance between yellow bee- and bird-pollinated flowers, and affects the foraging behaviour of flower visitors. The results support the hypothesis that flower colours and the visual capabilities of their efficient pollinators are adapted to each other. © 2015 German Botanical Society and The Royal Botanical Society of the Netherlands.
Worldwide patterns of bird colouration on islands.
Doutrelant, Claire; Paquet, Matthieu; Renoult, Julien P; Grégoire, Arnaud; Crochet, Pierre-André; Covas, Rita
2016-05-01
Island environments share distinctive characteristics that offer unique opportunities to investigate parallel evolution. Previous research has produced evidence of an island syndrome for morphological traits, life-history strategies and ecological niches, but little is known about the response to insularity of other important traits such as animal signals. Here, we tested whether birds' plumage colouration is part of the island syndrome. We analysed with spectrophotometry the colouration of 116 species endemic to islands and their 116 closest mainland relatives. We found a pattern of reduced brightness and colour intensity for both sexes on islands. In addition, we found a decrease in the number of colour patches on islands that, in males, was associated with a decrease in the number of same-family sympatric species. These results demonstrate a worldwide pattern of parallel colour changes on islands and suggest that a relaxation of selection on species recognition may be one of the mechanisms involved. © 2016 John Wiley & Sons Ltd/CNRS.
Integration of wings and their eyespots in the speckled wood butterfly Pararge aegeria.
Breuker, Casper J; Gibbs, Melanie; Van Dyck, Hans; Brakefield, Paul M; Klingenberg, Christian Peter; Van Dongen, Stefan
2007-07-15
We investigated both the phenotypic and developmental integration of eyespots on the fore- and hindwings of speckled wood butterflies Pararge aegeria. Eyespots develop within a framework of wing veins, which may not only separate eyespots developmentally, but may at the same time also integrate them by virtue of being both signalling sources and barriers during eyespot development. We therefore specifically investigated the interaction between wing venation patterns and eyespot integration. Phenotypic covariation among eyespots was very high, but only eyespots in neighbouring wing cells and in homologous wing cells on different wing surfaces were developmentally integrated. This can be explained by the fact that the wing cells of these eyespots share one or more wing veins. The wing venation patterns of fore- and hindwings were highly integrated, both phenotypically and developmentally. This did not affect overall developmental integration of the eyespots. The adaptive significance of integration patterns is discussed and more specifically we stress the need to conduct studies on phenotypic plasticity of integration.
2013-01-01
Background One of the most intriguing questions in evolutionary developmental biology is how an insect acquires a mimicry pattern within its body parts. A striking example of pattern mimicry is found in the pattern diversity of moth and butterfly wings, which is thought to evolve from preexisting elements illustrated by the nymphalid ground plan (NGP). Previous studies demonstrated that individuality of the NGP facilitates the decoupling of associated common elements, leading to divergence. In contrast, recent studies on the concept of modularity have argued the importance of a combination of coupling and decoupling of the constituent elements. Here, we examine the modularity of a mimicry wing pattern in a moth and explore an evolvable characteristic of the NGP. Results This study examined the wings of the noctuid moth Oraesia excavata, which closely resemble leaves with a leaf venation pattern. Based on a comparative morphological procedure, we found that this leaf pattern was formed by the NGP common elements. Using geometric morphometrics combined with network analysis, we found that each of the modules in the leaf pattern integrates the constituent components of the leaf venation pattern (i.e., the main and lateral veins). Moreover, the detected modules were established by coupling different common elements and decoupling even a single element into different modules. The modules of the O. excavata wing pattern were associated with leaf mimicry, not with the individuality of the NGP common elements. For comparison, we also investigated the modularity of a nonmimetic pattern in the noctuid moth Thyas juno. Quantitative analysis demonstrated that the modules of the T. juno wing pattern regularly corresponded to the individuality of the NGP common elements, unlike those in the O. excavata wing pattern. Conclusions This study provides the first evidence for modularity in a leaf mimicry pattern. The results suggest that the evolution of this pattern involves coupling and decoupling processes to originate these modules, free from the individuality of the NGP system. We propose that this evolution has been facilitated by a versatile characteristic of the NGP, allowing the association of freely modifiable subordinate common elements to make modules. PMID:23890367
Yoshioka, S; Matsuhana, B; Tanaka, S; Inouye, Y; Oshima, N; Kinoshita, S
2011-01-06
The structural colour of the neon tetra is distinguishable from those of, e.g., butterfly wings and bird feathers, because it can change in response to the light intensity of the surrounding environment. This fact clearly indicates the variability of the colour-producing microstructures. It has been known that an iridophore of the neon tetra contains a few stacks of periodically arranged light-reflecting platelets, which can cause multilayer optical interference phenomena. As a mechanism of the colour variability, the Venetian blind model has been proposed, in which the light-reflecting platelets are assumed to be tilted during colour change, resulting in a variation in the spacing between the platelets. In order to quantitatively evaluate the validity of this model, we have performed a detailed optical study of a single stack of platelets inside an iridophore. In particular, we have prepared a new optical system that can simultaneously measure both the spectrum and direction of the reflected light, which are expected to be closely related to each other in the Venetian blind model. The experimental results and detailed analysis are found to quantitatively verify the model.
NASA Astrophysics Data System (ADS)
Jiang, Hao; Rezaei, Mohamad; Abdolahi, Mahssa; Kaminska, Bozena
2017-09-01
Optical digital information storage media, despite their ever-increasing storage capacity and data transfer rate, are vulnerable to the potential risk of turning inaccessible. For this reason, long-term eye-readable full-colour optical archival storage is in high demand for preserving valuable information from cultural, intellectual, and scholarly resources. However, the concurrent requirements in recording colours inexpensively and precisely, and preserving colours for the very long term (for at least 100 years), have not yet been met by existing storage techniques. Structural colours hold the promise to overcome such challenges. However, there is still the lack of an inexpensive, rapid, reliable, and solvent-free optical patterning technique for recording structural colours. In this paper, we introduce an enabling technique based on optical and thermal patterning of nanoimprinted SU-8 nanocone arrays. Using photocrosslinking and thermoplastic flow of SU-8, diffractive structural colours of nanocone arrays are recorded using ultra-violet (UV) exposure followed by the thermal development and reshaping of nanocones. Different thermal treatment procedures in reshaping nanocones are investigated and compared, and two-step progressive baking is found to allow the controllable reshaping of nanocones. The height of the nanocones and brightness of diffractive colours are modulated by varying the UV exposure dose to enable grey-scale patterning. An example of recorded full-colour image through half-tone patterning is also demonstrated. The presented technique requires only low-power continuous-wave UV light and is very promising to be adopted for professional and consumer archival storage applications.
Convergent evolution in the genetic basis of Müllerian mimicry in heliconius butterflies.
Baxter, Simon W; Papa, Riccardo; Chamberlain, Nicola; Humphray, Sean J; Joron, Mathieu; Morrison, Clay; ffrench-Constant, Richard H; McMillan, W Owen; Jiggins, Chris D
2008-11-01
The neotropical butterflies Heliconius melpomene and H. erato are Müllerian mimics that display the same warningly colored wing patterns in local populations, yet pattern diversity between geographic regions. Linkage mapping has previously shown convergent red wing phenotypes in these species are controlled by loci on homologous chromosomes. Here, AFLP bulk segregant analysis using H. melpomene crosses identified genetic markers tightly linked to two red wing-patterning loci. These markers were used to screen a H. melpomene BAC library and a tile path was assembled spanning one locus completely and part of the second. Concurrently, a similar strategy was used to identify a BAC clone tightly linked to the locus controlling the mimetic red wing phenotypes in H. erato. A methionine rich storage protein (MRSP) gene was identified within this BAC clone, and comparative genetic mapping shows red wing color loci are in homologous regions of the genome of H. erato and H. melpomene. Subtle differences in these convergent phenotypes imply they evolved independently using somewhat different developmental routes, but are nonetheless regulated by the same switch locus. Genetic mapping of MRSP in a third related species, the "tiger" patterned H. numata, has no association with wing patterning and shows no evidence for genomic translocation of wing-patterning loci.
Delhey, Kaspar; Burger, Claudia; Fiedler, Wolfgang; Peters, Anne
2010-01-01
Background Plumage coloration is important for bird communication, most notably in sexual signalling. Colour is often considered a good quality indicator, and the expression of exaggerated colours may depend on individual condition during moult. After moult, plumage coloration has been deemed fixed due to the fact that feathers are dead structures. Still, many plumage colours change after moult, although whether this affects signalling has not been sufficiently assessed. Methodology/Principal Findings We studied changes in coloration after moult in four passerine birds (robin, Erithacus rubecula; blackbird, Turdus merula; blue tit, Cyanistes caeruleus; and great tit, Parus major) displaying various coloration types (melanin-, carotenoid-based and structural). Birds were caught regularly during three years to measure plumage reflectance. We used models of avian colour vision to derive two variables, one describing chromatic and the other achromatic variation over the year that can be compared in magnitude among different colour types. All studied plumage patches but one (yellow breast of the blue tit) showed significant chromatic changes over the year, although these were smaller than for a typical dynamic trait (bill colour). Overall, structural colours showed a reduction in relative reflectance at shorter wavelengths, carotenoid-based colours the opposite pattern, while no general pattern was found for melanin-based colours. Achromatic changes were also common, but there were no consistent patterns of change for the different types of colours. Conclusions/Significance Changes of plumage coloration independent of moult are probably widespread; they should be perceivable by birds and have the potential to affect colour signalling. PMID:20644723
Ferguson, Laura C; Maroja, Luana; Jiggins, Chris D
2011-12-01
The evolution of pigmentation in vertebrates and flies has involved repeated divergence at a small number of genes related to melanin synthesis. Here, we study insect melanin synthesis genes in Heliconius butterflies, a group characterised by its diversity of wing patterns consisting of black (melanin), and yellow and red (ommochrome) pigmented scales. Consistent with their respective biochemical roles in Drosophila melanogaster, ebony is upregulated in non-melanic wing regions destined to be pigmented red whilst tan is upregulated in melanic regions. Wing regions destined to be pigmented yellow, however, are downregulated for both genes. This pattern is conserved across multiple divergent and convergent phenotypes within the Heliconii, suggesting a conserved mechanism for the development of black, red and yellow pattern elements across the genus. Linkage mapping of five melanin biosynthesis genes showed that, in contrast to other organisms, these genes do not control pattern polymorphism. Thus, the pigmentation genes themselves are not the locus of evolutionary change but lie downstream of a wing pattern regulatory factor. The results suggest a modular system in which particular combinations of genes are switched on whenever red, yellow or black pattern elements are favoured by natural selection for diverse and mimetic wing patterns. © Springer-Verlag 2011
Distal-less induces elemental color patterns in Junonia butterfly wings.
Dhungel, Bidur; Ohno, Yoshikazu; Matayoshi, Rie; Iwasaki, Mayo; Taira, Wataru; Adhikari, Kiran; Gurung, Raj; Otaki, Joji M
2016-01-01
The border ocellus, or eyespot, is a conspicuous color pattern element in butterfly wings. For two decades, it has been hypothesized that transcription factors such as Distal-less (Dll) are responsible for eyespot pattern development in butterfly wings, based on their expression in the prospective eyespots. In particular, it has been suggested that Dll is a determinant for eyespot size. However, functional evidence for this hypothesis has remained incomplete, due to technical difficulties. Here, we show that ectopically expressed Dll induces ectopic elemental color patterns in the adult wings of the blue pansy butterfly, Junonia orithya (Lepidoptera, Nymphalidae). Using baculovirus-mediated gene transfer, we misexpressed Dll protein fused with green fluorescent protein (GFP) in pupal wings, resulting in ectopic color patterns, but not the formation of intact eyespots. Induced changes included clusters of black and orange scales (a basic feature of eyespot patterns), black and gray scales, and inhibition of cover scale development. In contrast, ectopic expression of GFP alone did not induce any color pattern changes using the same baculovirus-mediated gene transfer system. These results suggest that Dll plays an instructive role in the development of color pattern elements in butterfly wings, although Dll alone may not be sufficient to induce a complete eyespot. This study thus experimentally supports the hypothesis of Dll function in eyespot development.
A neo-W chromosome in a tropical butterfly links colour pattern, male-killing, and speciation.
Smith, David A S; Gordon, Ian J; Traut, Walther; Herren, Jeremy; Collins, Steve; Martins, Dino J; Saitoti, Kennedy; Ireri, Piera; Ffrench-Constant, Richard
2016-07-27
Sexually antagonistic selection can drive both the evolution of sex chromosomes and speciation itself. The tropical butterfly the African Queen, Danaus chrysippus, shows two such sexually antagonistic phenotypes, the first being sex-linked colour pattern, the second, susceptibility to a male-killing, maternally inherited mollicute, Spiroplasma ixodeti, which causes approximately 100% mortality in male eggs and first instar larvae. Importantly, this mortality is not affected by the infection status of the male parent and the horizontal transmission of Spiroplasma is unknown. In East Africa, male-killing of the Queen is prevalent in a narrow hybrid zone centred on Nairobi. This hybrid zone separates otherwise allopatric subspecies with different colour patterns. Here we show that a neo-W chromosome, a fusion between the W (female) chromosome and an autosome that controls both colour pattern and male-killing, links the two phenotypes thereby driving speciation across the hybrid zone. Studies of the population genetics of the neo-W around Nairobi show that the interaction between colour pattern and male-killer susceptibility restricts gene flow between two subspecies of D. chrysippus Our results demonstrate how a complex interplay between sex, colour pattern, male-killing, and a neo-W chromosome, has set up a genetic 'sink' that keeps the two subspecies apart. The association between the neo-W and male-killing thus provides a 'smoking gun' for an ongoing speciation process. © 2016 The Authors.
Asymmetric hindwing foldings in rove beetles.
Saito, Kazuya; Yamamoto, Shuhei; Maruyama, Munetoshi; Okabe, Yoji
2014-11-18
Foldable wings of insects are the ultimate deployable structures and have attracted the interest of aerospace engineering scientists as well as entomologists. Rove beetles are known to fold their wings in the most sophisticated ways that have right-left asymmetric patterns. However, the specific folding process and the reason for this asymmetry remain unclear. This study reveals how these asymmetric patterns emerge as a result of the folding process of rove beetles. A high-speed camera was used to reveal the details of the wing-folding movement. The results show that these characteristic asymmetrical patterns emerge as a result of simultaneous folding of overlapped wings. The revealed folding mechanisms can achieve not only highly compact wing storage but also immediate deployment. In addition, the right and left crease patterns are interchangeable, and thus each wing internalizes two crease patterns and can be folded in two different ways. This two-way folding gives freedom of choice for the folding direction to a rove beetle. The use of asymmetric patterns and the capability of two-way folding are unique features not found in artificial structures. These features have great potential to extend the design possibilities for all deployable structures, from space structures to articles of daily use.
Investigation of Surface Enhanced Coherent Raman Scattering on Nano-patterned Insect Wings
NASA Astrophysics Data System (ADS)
Ujj, Laszlo; Lawhead, Carlos
2015-03-01
Many insect wings (cicadas, butterflies, mosquitos) poses nano-patterned surface structure. Characterization of surface morphology and chemical composition of insect wings is important to understand the extreme mechanical properties and the biophysical functionalities of the wings. We have measured the image of the membrane of a cicada's wing with the help of Scanning Electron Microscopy (SEM). The results confirm the existing periodic structure of the wing measured previously. In order to identify the chemical composition of the wing, we have deposited silver nanoparticles on it and applied Coherent anti-Stokes Raman Spectroscopy to measure the vibrational spectra of the molecules comprising the wing for the first time. The measured spectra are consistent with the original assumption that the wing membrane is composed of protein, wax, and chitin. The results of these studies can be used to measure other nano-patterned surfaces and to make artificial materials in the future. Authors grateful for financial support from the Department of Physics of the College of Sciences Engineering and Health of UWF and the Pall Corporation for SEM imaging.
Mummified precocial bird wings in mid-Cretaceous Burmese amber
Xing, Lida; McKellar, Ryan C.; Wang, Min; Bai, Ming; O'Connor, Jingmai K.; Benton, Michael J.; Zhang, Jianping; Wang, Yan; Tseng, Kuowei; Lockley, Martin G.; Li, Gang; Zhang, Weiwei; Xu, Xing
2016-01-01
Our knowledge of Cretaceous plumage is limited by the fossil record itself: compression fossils surrounding skeletons lack the finest morphological details and seldom preserve visible traces of colour, while discoveries in amber have been disassociated from their source animals. Here we report the osteology, plumage and pterylosis of two exceptionally preserved theropod wings from Burmese amber, with vestiges of soft tissues. The extremely small size and osteological development of the wings, combined with their digit proportions, strongly suggests that the remains represent precocial hatchlings of enantiornithine birds. These specimens demonstrate that the plumage types associated with modern birds were present within single individuals of Enantiornithes by the Cenomanian (99 million years ago), providing insights into plumage arrangement and microstructure alongside immature skeletal remains. This finding brings new detail to our understanding of infrequently preserved juveniles, including the first concrete examples of follicles, feather tracts and apteria in Cretaceous avialans. PMID:27352215
Mummified precocial bird wings in mid-Cretaceous Burmese amber.
Xing, Lida; McKellar, Ryan C; Wang, Min; Bai, Ming; O'Connor, Jingmai K; Benton, Michael J; Zhang, Jianping; Wang, Yan; Tseng, Kuowei; Lockley, Martin G; Li, Gang; Zhang, Weiwei; Xu, Xing
2016-06-28
Our knowledge of Cretaceous plumage is limited by the fossil record itself: compression fossils surrounding skeletons lack the finest morphological details and seldom preserve visible traces of colour, while discoveries in amber have been disassociated from their source animals. Here we report the osteology, plumage and pterylosis of two exceptionally preserved theropod wings from Burmese amber, with vestiges of soft tissues. The extremely small size and osteological development of the wings, combined with their digit proportions, strongly suggests that the remains represent precocial hatchlings of enantiornithine birds. These specimens demonstrate that the plumage types associated with modern birds were present within single individuals of Enantiornithes by the Cenomanian (99 million years ago), providing insights into plumage arrangement and microstructure alongside immature skeletal remains. This finding brings new detail to our understanding of infrequently preserved juveniles, including the first concrete examples of follicles, feather tracts and apteria in Cretaceous avialans.
Triggerfish uses chromaticity and lightness for object segregation
2017-01-01
Humans group components of visual patterns according to their colour, and perceive colours separately from shape. This property of human visual perception is the basis behind the Ishihara test for colour deficiency, where an observer is asked to detect a pattern made up of dots of similar colour with variable lightness against a background of dots made from different colour(s) and lightness. To find out if fish use colour for object segregation in a similar manner to humans, we used stimuli inspired by the Ishihara test. Triggerfish (Rhinecanthus aculeatus) were trained to detect a cross constructed from similarly coloured dots against various backgrounds. Fish detected this cross even when it was camouflaged using either achromatic or chromatic noise, but fish relied more on chromatic cues for shape segregation. It remains unknown whether fish may switch to rely primarily on achromatic cues in scenarios where target objects have higher achromatic contrast and lower chromatic contrast. Fish were also able to generalize between stimuli of different colours, suggesting that colour and shape are processed by fish independently. PMID:29308267
Wang, Hui; Talavera, María; Min, Ya; Flaven, Elodie; Imbert, Eric
2016-01-01
Background and Aims Flower colour polymorphism in plants has been used as a classic model for understanding the importance of neutral processes vs. natural selection in population differentiation. However, current explanations for the maintenance of flower colour polymorphism mainly rely on balancing selection, while neutral processes have seldom been championed. Iris lutescens (Iridaceae) is a widespread species in the northern Mediterranean basin, which shows a stable and striking purple–yellow flower colour polymorphism. To evaluate the roles of neutral processes in the spatial variation for flower colour in this species, patterns of neutral genetic variation across its distribution range were quantified, and phenotypic differentiation was compared with neutral genetic differentiation. Methods Genetic diversity levels and population genetic structure were investigated through the genotyping of a collection of 1120 individuals in 41 populations ranging from Spain to France, using a set of eight newly developed microsatellite markers. In addition, phenotypic differentiation for flower colour was also quantified by counting colour morph frequency in each population, and measuring the reflectance spectra of sampled individuals. Key Results Populations in Spain present a sharp colour transition from solely purple to solely yellow. The results provide evidence that genetic drift through limited gene flow is important in the evolution of monomorphic populations. In contrast, most populations in France are polymorphic with both phenotypes, and the colour frequencies vary geographically without any spatial gradients observed. A pattern of isolation by distance is detected in France, and gene flow between adjacent populations seems to be an important factor maintaining populations polymorphic. Conclusions Overall, neutral processes contribute to patterns of spatial variation for flower colour in I. lutescens, but it cannot be excluded that natural selection is also operating. An interaction between neutral processes and natural selection is suggested to explain the spatial variation for flower colour in I. lutescens. PMID:27084922
Wang, Hui; Talavera, María; Min, Ya; Flaven, Elodie; Imbert, Eric
2016-05-01
Flower colour polymorphism in plants has been used as a classic model for understanding the importance of neutral processes vs. natural selection in population differentiation. However, current explanations for the maintenance of flower colour polymorphism mainly rely on balancing selection, while neutral processes have seldom been championed. Iris lutescens (Iridaceae) is a widespread species in the northern Mediterranean basin, which shows a stable and striking purple-yellow flower colour polymorphism. To evaluate the roles of neutral processes in the spatial variation for flower colour in this species, patterns of neutral genetic variation across its distribution range were quantified, and phenotypic differentiation was compared with neutral genetic differentiation. Genetic diversity levels and population genetic structure were investigated through the genotyping of a collection of 1120 individuals in 41 populations ranging from Spain to France, using a set of eight newly developed microsatellite markers. In addition, phenotypic differentiation for flower colour was also quantified by counting colour morph frequency in each population, and measuring the reflectance spectra of sampled individuals. Populations in Spain present a sharp colour transition from solely purple to solely yellow. The results provide evidence that genetic drift through limited gene flow is important in the evolution of monomorphic populations. In contrast, most populations in France are polymorphic with both phenotypes, and the colour frequencies vary geographically without any spatial gradients observed. A pattern of isolation by distance is detected in France, and gene flow between adjacent populations seems to be an important factor maintaining populations polymorphic. Overall, neutral processes contribute to patterns of spatial variation for flower colour in I. lutescens, but it cannot be excluded that natural selection is also operating. An interaction between neutral processes and natural selection is suggested to explain the spatial variation for flower colour in I. lutescens. © The Author 2016. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Mühlenbeck, Cordelia; Liebal, Katja; Pritsch, Carla; Jacobsen, Thomas
2015-01-01
Research on colour preferences in humans and non-human primates suggests similar patterns of biases for and avoidance of specific colours, indicating that these colours are connected to a psychological reaction. Similarly, in the acoustic domain, approach reactions to consonant sounds (considered as positive) and avoidance reactions to dissonant sounds (considered as negative) have been found in human adults and children, and it has been demonstrated that non-human primates are able to discriminate between consonant and dissonant sounds. Yet it remains unclear whether the visual and acoustic approach-avoidance patterns remain consistent when both types of stimuli are combined, how they relate to and influence each other, and whether these are similar for humans and other primates. Therefore, to investigate whether gaze duration biases for colours are similar across primates and whether reactions to consonant and dissonant sounds cumulate with reactions to specific colours, we conducted an eye-tracking study in which we compared humans with one species of great apes, the orangutans. We presented four different colours either in isolation or in combination with consonant and dissonant sounds. We hypothesised that the viewing time for specific colours should be influenced by dissonant sounds and that previously existing avoidance behaviours with regard to colours should be intensified, reflecting their association with negative acoustic information. The results showed that the humans had constant gaze durations which were independent of the auditory stimulus, with a clear avoidance of yellow. In contrast, the orangutans did not show any clear gaze duration bias or avoidance of colours, and they were also not influenced by the auditory stimuli. In conclusion, our findings only partially support the previously identified pattern of biases for and avoidance of specific colours in humans and do not confirm such a pattern for orangutans.
Mühlenbeck, Cordelia; Liebal, Katja; Pritsch, Carla; Jacobsen, Thomas
2015-01-01
Research on colour preferences in humans and non-human primates suggests similar patterns of biases for and avoidance of specific colours, indicating that these colours are connected to a psychological reaction. Similarly, in the acoustic domain, approach reactions to consonant sounds (considered as positive) and avoidance reactions to dissonant sounds (considered as negative) have been found in human adults and children, and it has been demonstrated that non-human primates are able to discriminate between consonant and dissonant sounds. Yet it remains unclear whether the visual and acoustic approach–avoidance patterns remain consistent when both types of stimuli are combined, how they relate to and influence each other, and whether these are similar for humans and other primates. Therefore, to investigate whether gaze duration biases for colours are similar across primates and whether reactions to consonant and dissonant sounds cumulate with reactions to specific colours, we conducted an eye-tracking study in which we compared humans with one species of great apes, the orangutans. We presented four different colours either in isolation or in combination with consonant and dissonant sounds. We hypothesised that the viewing time for specific colours should be influenced by dissonant sounds and that previously existing avoidance behaviours with regard to colours should be intensified, reflecting their association with negative acoustic information. The results showed that the humans had constant gaze durations which were independent of the auditory stimulus, with a clear avoidance of yellow. In contrast, the orangutans did not show any clear gaze duration bias or avoidance of colours, and they were also not influenced by the auditory stimuli. In conclusion, our findings only partially support the previously identified pattern of biases for and avoidance of specific colours in humans and do not confirm such a pattern for orangutans. PMID:26466351
Angle-independent pH-sensitive composites with natural gyroid structure
Xue, Ruiyang; Zhang, Wang; Sun, Peng; Zada, Imran; Guo, Cuiping; Liu, Qinglei; Gu, Jiajun; Su, Huilan; Zhang, Di
2017-01-01
pH sensor is an important and practical device with a wide application in environmental protection field and biomedical industries. An efficient way to enhance the practicability of intelligent polymer composed pH sensor is to subtilize the three-dimensional microstructure of the materials, adding measurable features to visualize the output signal. In this work, C. rubi wing scales were combined with pH-responsive smart polymer polymethylacrylic acid (PMAA) through polymerization to achieve a colour-tunable pH sensor with nature gyroid structure. Morphology and reflection characteristics of the novel composites, named G-PMAA, are carefully investigated and compared with the original biotemplate, C. rubi wing scales. The most remarkable property of G-PMAA is a single-value corresponding relationship between pH value and the reflection peak wavelength (λmax), with a colour distinction degree of 18 nm/pH, ensuring the accuracy and authenticity of the output. The pH sensor reported here is totally reversible, which is able to show the same results after several detection circles. Besides, G-PMAA is proved to be not influenced by the detection angle, which makes it a promising pH sensor with superb sensitivity, stability, and angle-independence. PMID:28165044
Modelling vehicle colour and pattern for multiple deployment environments
NASA Astrophysics Data System (ADS)
Liggins, Eric; Moorhead, Ian R.; Pearce, Daniel A.; Baker, Christopher J.; Serle, William P.
2016-10-01
Military land platforms are often deployed around the world in very different climate zones. Procuring vehicles in a large range of camouflage patterns and colour schemes is expensive and may limit the environments in which they can be effectively used. As such this paper reports a modelling approach for use in the optimisation and selection of a colour palette, to support operations in diverse environments and terrains. Three different techniques were considered based upon the differences between vehicle and background in L*a*b* colour space, to predict the optimum (initially single) colour to reduce the vehicle signature in the visible band. Calibrated digital imagery was used as backgrounds and a number of scenes were sampled. The three approaches used, and reported here are a) background averaging behind the vehicle b) background averaging in the area surrounding the vehicle and c) use of the spatial extension to CIE L*a*b*; S-CIELAB (Zhang and Wandell, Society for Information Display Symposium Technical Digest, vol. 27, pp. 731-734, 1996). Results are compared with natural scene colour statistics. The models used showed good agreement in the colour predictions for individual and multiple terrains or climate zones. A further development of the technique examines the effect of different patterns and colour combinations on the S-CIELAB spatial colour difference metric, when scaled for appropriate viewing ranges.
How Bees Discriminate a Pattern of Two Colours from Its Mirror Image
Horridge, Adrian
2015-01-01
A century ago, in his study of colour vision in the honeybee (Apis mellifera), Karl von Frisch showed that bees distinguish between a disc that is half yellow, half blue, and a mirror image of the same. Although his inference of colour vision in this example has been accepted, some discrepancies have prompted a new investigation of the detection of polarity in coloured patterns. In new experiments, bees restricted to their blue and green receptors by exclusion of ultraviolet could learn patterns of this type if they displayed a difference in green contrast between the two colours. Patterns with no green contrast required an additional vertical black line as a landmark. Tests of the trained bees revealed that they had learned two inputs; a measure and the retinotopic position of blue with large field tonic detectors, and the measure and position of a vertical edge or line with small-field phasic green detectors. The angle between these two was measured. This simple combination was detected wherever it occurred in many patterns, fitting the definition of an algorithm, which is defined as a method of processing data. As long as they excited blue receptors, colours could be any colour to human eyes, even white. The blue area cue could be separated from the green receptor modulation by as much as 50°. When some blue content was not available, the bees learned two measures of the modulation of the green receptors at widely separated vertical edges, and the angle between them. There was no evidence that the bees reconstructed the lay-out of the pattern or detected a tonic input to the green receptors. PMID:25617892
Pauers, Michael J; McKinnon, Jeffrey S; Ehlinger, Timothy J
2004-12-07
Speciation via intersexual selection on male nuptial colour pattern is thought to have been a major force in promoting the explosive speciation of African haplochromine cichlids, yet there is very little direct empirical evidence of directional preferences within populations. In this study, we used objective spectrophotometry and analyses based on visual physiology to determine whether females of the Katale population of Labeotropheus fuelleborni, a Lake Malawi haplochromine, prefer males that have higher chroma and more within-pattern colour contrast. In paired male preference tests, female Katale L. fuelleborni showed increasing preferences for males with more relatively saturated colours on their flanks. They also showed increasing preferences for males with relatively higher contrast levels among flank elements. This is the first empirical evidence, to our knowledge, for male colour as a directionally sexually selected trait within a haplochromine cichlid population.
Pauers, Michael J; McKinnon, Jeffrey S; Ehlinger, Timothy J
2004-01-01
Speciation via intersexual selection on male nuptial colour pattern is thought to have been a major force in promoting the explosive speciation of African haplochromine cichlids, yet there is very little direct empirical evidence of directional preferences within populations. In this study, we used objective spectrophotometry and analyses based on visual physiology to determine whether females of the Katale population of Labeotropheus fuelleborni, a Lake Malawi haplochromine, prefer males that have higher chroma and more within-pattern colour contrast. In paired male preference tests, female Katale L. fuelleborni showed increasing preferences for males with more relatively saturated colours on their flanks. They also showed increasing preferences for males with relatively higher contrast levels among flank elements. This is the first empirical evidence, to our knowledge, for male colour as a directionally sexually selected trait within a haplochromine cichlid population. PMID:15801599
[Transverse folding and the evolution of hind wings in beetles (Insecta, Coleoptera)].
Fedorenko, D N
2013-01-01
Strong intensification of the protective function of the fore wing in Coleoptera has made their flight apparatus a posteromotoric one and invited an apparatus responsible for folding the hindwings beneath the elytra to develop. Folding apparatus could hardly develop without higher deformability of veins or their parts, which diminished strength properties of the wing support. The effect was stressed by folds that intersected veins. Organization of the folds into a system confined this negative influence to a few wing regions and some veinal sections. This having happened, wing support and folding pattern evolved interrelated, the former into being more flexible, with no or minimum loss of rigidity, and the latter towards being less harmful for the supporting elements, especially axial ones. Monofunctionality, together with very simple structure and little specialization of constituent parts, made the folding pattern very labile during evolution. The folding pattern evolved more rapidly than wing venation, thus defining transformations of the latter. Evolutionary conservatism of wing venation stemmed from that many veins were strongly specialized in performing two conflicting functions. An adaptive compromise was necessary for the conflict to be solved, which determined the wing to orthogenetic development. The main evolutionary trends for wing venation and folding pattern were those towards simplification and a higher complexity, respectively. The beetle wing has passed through two main evolutionary stages. Among them, the first resulted in the development of the "Archostemata" wing type, the second started from the "cantharoid" structural plan. The main evolutionary factors were the infancies of wing posteromotorism at the first stage while the wing strongly influenced by size evolution, with the main trend towards miniaturization, at the second. The archostematan and "cantharoid" morphofunctional wing types differ fundamentally. In the wing of the former kind, folding and flight apparatus, because of considerably overlapping supporting systems, constitute a lasting coadaptive ensemble, with only minor deviations from the ground-plan occurring through evolution. The uprise of the "cantharoid" wing type was an upgrade of morpho-functional organization. The region of maximum transverse deformations having been extruded from the remigium basal part, chief supporting axes of the wing increased their rigid properties. The supporting systems of the two wing apparatus became more autonomous, having been separated. This expanded the adaptive zone for the wing strongly, which a great variety of derived wing types have emerged from.
Distance-dependent pattern blending can camouflage salient aposematic signals.
Barnett, James B; Cuthill, Innes C; Scott-Samuel, Nicholas E
2017-07-12
The effect of viewing distance on the perception of visual texture is well known: spatial frequencies higher than the resolution limit of an observer's visual system will be summed and perceived as a single combined colour. In animal defensive colour patterns, distance-dependent pattern blending may allow aposematic patterns, salient at close range, to match the background to distant observers. Indeed, recent research has indicated that reducing the distance from which a salient signal can be detected can increase survival over camouflage or conspicuous aposematism alone. We investigated whether the spatial frequency of conspicuous and cryptically coloured stripes affects the rate of avian predation. Our results are consistent with pattern blending acting to camouflage salient aposematic signals effectively at a distance. Experiments into the relative rate of avian predation on edible model caterpillars found that increasing spatial frequency (thinner stripes) increased survival. Similarly, visual modelling of avian predators showed that pattern blending increased the similarity between caterpillar and background. These results show how a colour pattern can be tuned to reveal or conceal different information at different distances, and produce tangible survival benefits. © 2017 The Author(s).
Willmott, Keith R; Robinson Willmott, Julia C; Elias, Marianne; Jiggins, Chris D
2017-05-31
Mimicry is one of the best-studied examples of adaptation, and recent studies have provided new insights into the role of mimicry in speciation and diversification. Classical Müllerian mimicry theory predicts convergence in warning signal among protected species, yet tropical butterflies are exuberantly diverse in warning colour patterns, even within communities. We tested the hypothesis that microhabitat partitioning in aposematic butterflies and insectivorous birds can lead to selection for different colour patterns in different microhabitats and thus help maintain mimicry diversity. We measured distribution across flight height and topography for 64 species of clearwing butterflies (Ithomiini) and their co-mimics, and 127 species of insectivorous birds, in an Amazon rainforest community. For the majority of bird species, estimated encounter rates were non-random for the two most abundant mimicry rings. Furthermore, most butterfly species in these two mimicry rings displayed the warning colour pattern predicted to be optimal for anti-predator defence in their preferred microhabitats. These conclusions were supported by a field trial using butterfly specimens, which showed significantly different predation rates on colour patterns in two microhabitats. We therefore provide the first direct evidence to support the hypothesis that different mimicry patterns can represent stable, community-level adaptations to differing biotic environments. © 2017 The Author(s).
Robinson Willmott, Julia C.
2017-01-01
Mimicry is one of the best-studied examples of adaptation, and recent studies have provided new insights into the role of mimicry in speciation and diversification. Classical Müllerian mimicry theory predicts convergence in warning signal among protected species, yet tropical butterflies are exuberantly diverse in warning colour patterns, even within communities. We tested the hypothesis that microhabitat partitioning in aposematic butterflies and insectivorous birds can lead to selection for different colour patterns in different microhabitats and thus help maintain mimicry diversity. We measured distribution across flight height and topography for 64 species of clearwing butterflies (Ithomiini) and their co-mimics, and 127 species of insectivorous birds, in an Amazon rainforest community. For the majority of bird species, estimated encounter rates were non-random for the two most abundant mimicry rings. Furthermore, most butterfly species in these two mimicry rings displayed the warning colour pattern predicted to be optimal for anti-predator defence in their preferred microhabitats. These conclusions were supported by a field trial using butterfly specimens, which showed significantly different predation rates on colour patterns in two microhabitats. We therefore provide the first direct evidence to support the hypothesis that different mimicry patterns can represent stable, community-level adaptations to differing biotic environments. PMID:28539522
A living mesoscopic cellular automaton made of skin scales.
Manukyan, Liana; Montandon, Sophie A; Fofonjka, Anamarija; Smirnov, Stanislav; Milinkovitch, Michel C
2017-04-12
In vertebrates, skin colour patterns emerge from nonlinear dynamical microscopic systems of cell interactions. Here we show that in ocellated lizards a quasi-hexagonal lattice of skin scales, rather than individual chromatophore cells, establishes a green and black labyrinthine pattern of skin colour. We analysed time series of lizard scale colour dynamics over four years of their development and demonstrate that this pattern is produced by a cellular automaton (a grid of elements whose states are iterated according to a set of rules based on the states of neighbouring elements) that dynamically computes the colour states of individual mesoscopic skin scales to produce the corresponding macroscopic colour pattern. Using numerical simulations and mathematical derivation, we identify how a discrete von Neumann cellular automaton emerges from a continuous Turing reaction-diffusion system. Skin thickness variation generated by three-dimensional morphogenesis of skin scales causes the underlying reaction-diffusion dynamics to separate into microscopic and mesoscopic spatial scales, the latter generating a cellular automaton. Our study indicates that cellular automata are not merely abstract computational systems, but can directly correspond to processes generated by biological evolution.
A living mesoscopic cellular automaton made of skin scales
NASA Astrophysics Data System (ADS)
Manukyan, Liana; Montandon, Sophie A.; Fofonjka, Anamarija; Smirnov, Stanislav; Milinkovitch, Michel C.
2017-04-01
In vertebrates, skin colour patterns emerge from nonlinear dynamical microscopic systems of cell interactions. Here we show that in ocellated lizards a quasi-hexagonal lattice of skin scales, rather than individual chromatophore cells, establishes a green and black labyrinthine pattern of skin colour. We analysed time series of lizard scale colour dynamics over four years of their development and demonstrate that this pattern is produced by a cellular automaton (a grid of elements whose states are iterated according to a set of rules based on the states of neighbouring elements) that dynamically computes the colour states of individual mesoscopic skin scales to produce the corresponding macroscopic colour pattern. Using numerical simulations and mathematical derivation, we identify how a discrete von Neumann cellular automaton emerges from a continuous Turing reaction-diffusion system. Skin thickness variation generated by three-dimensional morphogenesis of skin scales causes the underlying reaction-diffusion dynamics to separate into microscopic and mesoscopic spatial scales, the latter generating a cellular automaton. Our study indicates that cellular automata are not merely abstract computational systems, but can directly correspond to processes generated by biological evolution.
Lallas, A; Reggiani, C; Argenziano, G; Kyrgidis, A; Bakos, R; Masiero, N C M S; Scheibe, A B; Cabo, H; Ozdemir, F; Sortino-Rachou, A M; Turk, B Gerceker; Moscarella, E; Longo, C; Zalaudek, I
2014-11-01
Most of the knowledge on the prevailing dermoscopic patterns of acquired melanocytic nevi (AMV) is based on studies in Caucasians, while little research focuses on the dermoscopic variability in nevi in skin of colour. To analyse the prevalent dermoscopic nevus patterns in subjects with a skin type (ST) V and VI. Prospective, cross-sectional, morphological study was conducted in six clinics with enrolment of consecutive individuals with a ST V or VI. Digital dermoscopic images of selected representative AMN were assessed for dermoscopic colours, morphological patterns and pigment distribution. Analysis of 300 nevi from subjects with ST V and VI revealed significant differences in the nevus pattern between these two groups. The majority of nevi in ST V revealed a reticular pattern, whereas persons with ST VI more frequently exhibited a structureless pattern. Black, blue and grey were more frequent in ST VI, whereas the vast majority of nevi in ST V individuals showed dark brown colour. Our study provides new insights into the nevus pattern in individuals with a dark pigmentary trait, which may aid the diagnosis and management of nevi in this patients group. © 2013 European Academy of Dermatology and Venereology.
Rosser, Neil; Kozak, Krzysztof M; Phillimore, Albert B; Mallet, James
2015-06-30
Sympatric speciation is today generally viewed as plausible, and some well-supported examples exist, but its relative contribution to biodiversity remains to be established. We here quantify geographic overlap of sister species of heliconiine butterflies, and use age-range correlations and spatial simulations of the geography of speciation to infer the frequency of sympatric speciation. We also test whether shifts in mimetic wing colour pattern, host plant use and climate niche play a role in speciation, and whether such shifts are associated with sympatry. Approximately a third of all heliconiine sister species pairs exhibit near complete range overlap, and analyses of the observed patterns of range overlap suggest that sympatric speciation contributes 32%-95% of speciation events. Müllerian mimicry colour patterns and host plant choice are highly labile traits that seem to be associated with speciation, but we find no association between shifts in these traits and range overlap. In contrast, climatic niches of sister species are more conserved. Unlike birds and mammals, sister species of heliconiines are often sympatric and our inferences using the most recent comparative methods suggest that sympatric speciation is common. However, if sister species spread rapidly into sympatry (e.g. due to their similar climatic niches), then assumptions underlying our methods would be violated. Furthermore, although we find some evidence for the role of ecology in speciation, ecological shifts did not show the associations with range overlap expected under sympatric speciation. We delimit species of heliconiines in three different ways, based on "strict and " "relaxed" biological species concepts (BSC), as well as on a surrogate for the widely-used "diagnostic" version of the phylogenetic species concept (PSC). We show that one reason why more sympatric speciation is inferred in heliconiines than in birds may be due to a different culture of species delimitation in the two groups. To establish whether heliconiines are exceptional will require biogeographic comparative studies for a wider range of animal taxa including many more invertebrates.
Independently Controlled Wing Stroke Patterns in the Fruit Fly Drosophila melanogaster
Chakraborty, Soma; Bartussek, Jan; Fry, Steven N.; Zapotocky, Martin
2015-01-01
Flies achieve supreme flight maneuverability through a small set of miniscule steering muscles attached to the wing base. The fast flight maneuvers arise from precisely timed activation of the steering muscles and the resulting subtle modulation of the wing stroke. In addition, slower modulation of wing kinematics arises from changes in the activity of indirect flight muscles in the thorax. We investigated if these modulations can be described as a superposition of a limited number of elementary deformations of the wing stroke that are under independent physiological control. Using a high-speed computer vision system, we recorded the wing motion of tethered flying fruit flies for up to 12 000 consecutive wing strokes at a sampling rate of 6250 Hz. We then decomposed the joint motion pattern of both wings into components that had the minimal mutual information (a measure of statistical dependence). In 100 flight segments measured from 10 individual flies, we identified 7 distinct types of frequently occurring least-dependent components, each defining a kinematic pattern (a specific deformation of the wing stroke and the sequence of its activation from cycle to cycle). Two of these stroke deformations can be associated with the control of yaw torque and total flight force, respectively. A third deformation involves a change in the downstroke-to-upstroke duration ratio, which is expected to alter the pitch torque. A fourth kinematic pattern consists in the alteration of stroke amplitude with a period of 2 wingbeat cycles, extending for dozens of cycles. Our analysis indicates that these four elementary kinematic patterns can be activated mutually independently, and occur both in isolation and in linear superposition. The results strengthen the available evidence for independent control of yaw torque, pitch torque, and total flight force. Our computational method facilitates systematic identification of novel patterns in large kinematic datasets. PMID:25710715
Independently controlled wing stroke patterns in the fruit fly Drosophila melanogaster.
Chakraborty, Soma; Bartussek, Jan; Fry, Steven N; Zapotocky, Martin
2015-01-01
Flies achieve supreme flight maneuverability through a small set of miniscule steering muscles attached to the wing base. The fast flight maneuvers arise from precisely timed activation of the steering muscles and the resulting subtle modulation of the wing stroke. In addition, slower modulation of wing kinematics arises from changes in the activity of indirect flight muscles in the thorax. We investigated if these modulations can be described as a superposition of a limited number of elementary deformations of the wing stroke that are under independent physiological control. Using a high-speed computer vision system, we recorded the wing motion of tethered flying fruit flies for up to 12,000 consecutive wing strokes at a sampling rate of 6250 Hz. We then decomposed the joint motion pattern of both wings into components that had the minimal mutual information (a measure of statistical dependence). In 100 flight segments measured from 10 individual flies, we identified 7 distinct types of frequently occurring least-dependent components, each defining a kinematic pattern (a specific deformation of the wing stroke and the sequence of its activation from cycle to cycle). Two of these stroke deformations can be associated with the control of yaw torque and total flight force, respectively. A third deformation involves a change in the downstroke-to-upstroke duration ratio, which is expected to alter the pitch torque. A fourth kinematic pattern consists in the alteration of stroke amplitude with a period of 2 wingbeat cycles, extending for dozens of cycles. Our analysis indicates that these four elementary kinematic patterns can be activated mutually independently, and occur both in isolation and in linear superposition. The results strengthen the available evidence for independent control of yaw torque, pitch torque, and total flight force. Our computational method facilitates systematic identification of novel patterns in large kinematic datasets.
Wickham, Shelley; Large, Maryanne C.J; Poladian, Leon; Jermiin, Lars S
2005-01-01
Many butterfly species possess ‘structural’ colour, where colour is due to optical microstructures found in the wing scales. A number of such structures have been identified in butterfly scales, including three variations on a simple multi-layer structure. In this study, we optically characterize examples of all three types of multi-layer structure, as found in 10 species. The optical mechanism of the suppression and exaggeration of the angle-dependent optical properties (iridescence) of these structures is described. In addition, we consider the phylogeny of the butterflies, and are thus able to relate the optical properties of the structures to their evolutionary development. By applying two different types of analysis, the mechanism of adaptation is addressed. A simple parsimony analysis, in which all evolutionary changes are given an equal weighting, suggests convergent evolution of one structure. A Dollo parsimony analysis, in which the evolutionary ‘cost’ of losing a structure is less than that of gaining it, implies that ‘latent’ structures can be reused. PMID:16849221
USDA-ARS?s Scientific Manuscript database
The nymphalid groundplan (NGP) is an idealized system used to classify and interpret wing pattern elements of butterflies. Nearly a century ago, the principles of the NGP were applied to the wing patterns of higher moths (Macroheterocera). Recent advances in phylogeny and in the comparative morpholo...
Tsukamoto fuzzy implementation to identify the pond water quality of koi
NASA Astrophysics Data System (ADS)
Qur'ania, A.; Verananda, D. I.
2017-01-01
The colour quality of koi was affected by the water quality in the pond. Koi fish have a diversity of types differentiated based on the body colour groups, such as one colour pattern, two colour patterns, three colours patterns and even more. Each colour characteristic of the koi have different handling, particularly in the handling of water quality, this is because the colour pigments in the body was affected by the composition of water quality include temperature, pH, TDS, do and salinity. The data of koi fish used were sanke, sowa, kohaku, shiro, yamabuki, ogon and chagoi. The aim of this study is to make an application to inform the condition of the pool water quality that can help breeders to know the water quality that will improve the handling strategies through water media. Tsukamoto Fuzzy method used to produce the three outputs namely water quality, water grade, and water conditions. The output of water quality consists of four categories, namely optimal, moderate, poor, and very poor. The output of water grade consists of grade A to D, while the output of water conditions consist of an excellent, good, bad, and very bad. Input to the application consists of five parameters, namely water temperature, pH, TDS, do and salinity.
Koch, P Bernhardt; Nijhout, H Frederik
1990-05-01
A set of stage specific proteins of approximally 86 to 90 kDal are synthesized by isolated wings ofPrecis coenia on day 5 of the pupal stage. They are named "B proteins". They are synthesized in presumptive black wing areas in higher amounts than in presumptive white wing areas and are the major proteins synthesized on day 5. Wings from 5 days old pupae, which were incubated with 35 S-methionine for 2 or 4 hours, incorporate radiolabel into presumptive black pattern elements. This is probably due to the localized synthesis of the above mentioned proteins. Injection of 35 S-methionine into whole pupae on day 5 resulted in the labelling of the mature black and grey scales but not white scales. This radiolabel incorporation pattern corresponds exactly to the incorporation of the melanin precursor 14 C-tyrosine into the scales. The results indicate that the "B proteins" are specifically related to the formation of black and grey portions of thePrecis wing pattern. Injection of 35 S-methionine into whole pupae on day 6 resulted in the labelling of the mature red scales probably due to labelling of "R proteins", which may be involved in the formation of red pattern elements.
Bischoff, Kara; Ballew, Anna C.; Simon, Michael A.; O'Reilly, Alana M.
2009-01-01
Background The coordinated action of genes that control patterning, cell fate determination, cell size, and cell adhesion is required for proper wing formation in Drosophila. Defects in any of these basic processes can lead to wing aberrations, including blisters. The xenicid mutation was originally identified in a screen designed to uncover regulators of adhesion between wing surfaces [1]. Principal Findings Here, we demonstrate that expression of the βPS integrin or the patterning protein Engrailed are not affected in developing wing imaginal discs in xenicid mutants. Instead, expression of the homeotic protein Ultrabithorax (Ubx) is strongly increased in xenicid mutant cells. Conclusion Our results suggest that upregulation of Ubx transforms cells from a wing blade fate to a haltere fate, and that the presence of haltere cells within the wing blade is the primary defect leading to the adult wing phenotypes observed. PMID:19956620
Variable coloration is associated with dampened population fluctuations in noctuid moths
Forsman, Anders; Betzholtz, Per-Eric; Franzén, Markus
2015-01-01
Theory and recent reviews state that greater genetic and phenotypic variation should be beneficial for population abundance and stability. Experimental evaluations of this prediction are rare, of short duration and conducted under controlled environmental settings. The question whether greater diversity in functionally important traits stabilizes populations under more complex ecological conditions in the wild has not been systematically evaluated. Moths are mainly nocturnal, with a large variation in colour patterns among species, and constitute an important food source for many types of organisms. Here, we report the results of a long-term (2003–2013) monitoring study of 115 100 noctuid moths from 246 species. Analysis of time-series data provide rare evidence that species with higher levels of inter-individual variation in colour pattern have higher average abundances and undergo smaller between-year fluctuations compared with species having less variable colour patterns. The signature of interspecific temporal synchronization of abundance fluctuations was weak, suggesting that the dynamics were driven by species-specific biotic interactions rather than by some common, density-independent factor(s). We conclude that individual variation in colour patterns dampens population abundance fluctuations, and suggest that this may partly reflect that colour pattern polymorphism provides protection from visually oriented predators and parasitoids. PMID:25972462
Negro, Juan J.; Finlayson, Clive; Galván, Ismael
2018-01-01
Paleo-colour scientists have recently made the transition from describing melanin-based colouration in fossil specimens to inferring life-history traits of the species involved. Two such cases correspond to counter-shaded dinosaurs: dark-coloured due to melanins dorsally, and light-coloured ventrally. We believe that colour reconstruction of fossils based on the shape of preserved microstructures—the majority of paleo-colour studies involve melanin granules—is not without risks. In addition, animals with contrasting dorso-ventral colouration may be under different selection pressures beyond the need for camouflage, including, for instance, visual communication or ultraviolet (UV) protection. Melanin production is costly, and animals may invest less in areas of the integument where pigments are less needed. In addition, melanocytes exposed to UV radiation produce more melanin than unexposed melanocytes. Pigment economization may thus explain the colour pattern of some counter-shaded animals, including extinct species. Even in well-studied extant species, their diversity of hues and patterns is far from being understood; inferring colours and their functions in species only known from one or few specimens from the fossil record should be exerted with special prudence. PMID:29360744
Comparative population genetics of a mimicry locus among hybridizing Heliconius butterfly species.
Chamberlain, N L; Hill, R I; Baxter, S W; Jiggins, C D; Kronforst, M R
2011-09-01
The comimetic Heliconius butterfly species pair, H. erato and H. melpomene, appear to use a conserved Mendelian switch locus to generate their matching red wing patterns. Here we investigate whether H. cydno and H. pachinus, species closely related to H. melpomene, use this same switch locus to generate their highly divergent red and brown color pattern elements. Using an F2 intercross between H. cydno and H. pachinus, we first map the genomic positions of two novel red/brown wing pattern elements; the G locus, which controls the presence of red vs brown at the base of the ventral wings, and the Br locus, which controls the presence vs absence of a brown oval pattern on the ventral hind wing. The results reveal that the G locus is tightly linked to markers in the genomic interval that controls red wing pattern elements of H. erato and H. melpomene. Br is on the same linkage group but approximately 26 cM away. Next, we analyze fine-scale patterns of genetic differentiation and linkage disequilibrium throughout the G locus candidate interval in H. cydno, H. pachinus and H. melpomene, and find evidence for elevated differentiation between H. cydno and H. pachinus, but no localized signature of association. Overall, these results indicate that the G locus maps to the same interval as the locus controlling red patterning in H. melpomene and H. erato. This, in turn, suggests that the genes controlling red pattern elements may be homologous across Heliconius, supporting the hypothesis that Heliconius butterflies use a limited suite of conserved genetic switch loci to generate both convergent and divergent wing patterns.
2013-01-01
Background Animal colour patterns offer good model systems for studies of biodiversity and evolution of local adaptations. An increasingly popular approach to study the role of selection for camouflage for evolutionary trajectories of animal colour patterns is to present images of prey on paper or computer screens to human ‘predators’. Yet, few attempts have been made to confirm that rates of detection by humans can predict patterns of selection and evolutionary modifications of prey colour patterns in nature. In this study, we first analyzed encounters between human ‘predators’ and images of natural black, grey and striped colour morphs of the polymorphic Tetrix subulata pygmy grasshoppers presented on background images of unburnt, intermediate or completely burnt natural habitats. Next, we compared detection rates with estimates of capture probabilities and survival of free-ranging grasshoppers, and with estimates of relative morph frequencies in natural populations. Results The proportion of grasshoppers that were detected and time to detection depended on both the colour pattern of the prey and on the type of visual background. Grasshoppers were detected more often and faster on unburnt backgrounds than on 50% and 100% burnt backgrounds. Striped prey were detected less often than grey or black prey on unburnt backgrounds; grey prey were detected more often than black or striped prey on 50% burnt backgrounds; and black prey were detected less often than grey prey on 100% burnt backgrounds. Rates of detection mirrored previously reported rates of capture by humans of free-ranging grasshoppers, as well as morph specific survival in the wild. Rates of detection were also correlated with frequencies of striped, black and grey morphs in samples of T. subulata from natural populations that occupied the three habitat types used for the detection experiment. Conclusions Our findings demonstrate that crypsis is background-dependent, and implicate visual predation as an important driver of evolutionary modifications of colour polymorphism in pygmy grasshoppers. Our study provides the clearest evidence to date that using humans as ‘predators’ in detection experiments may provide reliable information on the protective values of prey colour patterns and of natural selection and microevolution of camouflage in the wild. PMID:23639215
Martínez, Celestino; Chavarría, Carmen; Sharpe, Diana M. T.; De León, Luis Fernando
2016-01-01
Colour polymorphism is a recurrent feature of natural populations, and its maintenance has been studied in a range of taxa in their native ranges. However, less is known about whether (and how) colour polymorphism is maintained when populations are removed from their native environments, as in the case of introduced species. We here address this issue by analyzing variation in colour patterns in recently-discovered introduced populations of the guppy (Poecilia reticulata) in Panama. Specifically, we use classic colour analysis to estimate variation in the number and the relative area of different colour spots across low predation sites in the introduced Panamanian range of the species. We then compare this variation to that found in the native range of the species under low- and high predation regimes. We found aspects of the colour pattern that were both consistent and inconsistent with the classical paradigm of colour evolution in guppies. On one hand, the same colours that dominated in native populations (orange, iridescent and black) were also the most dominant in the introduced populations in Panama. On the other, there were no clear differences between either introduced-low and native low- and high predation populations. Our results are therefore only partially consistent with the traditional role of female preference in the absence of predators, and suggest that additional factors could influence colour patterns when populations are removed from their native environments. Future research on the interaction between female preference and environmental variability (e.g. multifarious selection), could help understand adaptive variation in this widely-introduced species, and the contexts under which variation in adaptive traits parallels (or not) variation in the native range. PMID:26863538
Martínez, Celestino; Chavarría, Carmen; Sharpe, Diana M T; De León, Luis Fernando
2016-01-01
Colour polymorphism is a recurrent feature of natural populations, and its maintenance has been studied in a range of taxa in their native ranges. However, less is known about whether (and how) colour polymorphism is maintained when populations are removed from their native environments, as in the case of introduced species. We here address this issue by analyzing variation in colour patterns in recently-discovered introduced populations of the guppy (Poecilia reticulata) in Panama. Specifically, we use classic colour analysis to estimate variation in the number and the relative area of different colour spots across low predation sites in the introduced Panamanian range of the species. We then compare this variation to that found in the native range of the species under low- and high predation regimes. We found aspects of the colour pattern that were both consistent and inconsistent with the classical paradigm of colour evolution in guppies. On one hand, the same colours that dominated in native populations (orange, iridescent and black) were also the most dominant in the introduced populations in Panama. On the other, there were no clear differences between either introduced-low and native low- and high predation populations. Our results are therefore only partially consistent with the traditional role of female preference in the absence of predators, and suggest that additional factors could influence colour patterns when populations are removed from their native environments. Future research on the interaction between female preference and environmental variability (e.g. multifarious selection), could help understand adaptive variation in this widely-introduced species, and the contexts under which variation in adaptive traits parallels (or not) variation in the native range.
Some observations of separated flow on finite wings
NASA Technical Reports Server (NTRS)
Winkelmann, A. E.; Ngo, H. T.; De Seife, R. C.
1982-01-01
Wind tunnel test results for aspects of flow over airfoils exhibiting single and multiple trailing edge stall 'mushroom' cells are reported. Rectangular wings with aspect ratios of 4.0 and 9.0 were tested at Reynolds numbers of 480,000 and 257,000, respectively. Surface flow patterns were visualized by means of a fluorescent oil flow technique, separated flow was observed with a tuft wand and a water probe, spanwise flow was studied with hot-wire anemometry, smoke flow and an Ar laser illuminated the centerplane flow, and photographs were made of the oil flow patterns. Swirl patterns on partially and fully stalled wings suggested vortex flow attachments in those regions, and a saddle point on the fully stalled AR=4.0 wing indicated a secondary vortex flow at the forward region of the separation bubble. The separation wake decayed downstream, while the tip vortex interacted with the separation bubble on the fully stalled wing. Three mushroom cells were observed on the AR=9.0 wing.
Yoshioka, S.; Fujita, H.; Kinoshita, S.; Matsuhana, B.
2014-01-01
It is known that the wing scales of the emerald-patched cattleheart butterfly, Parides sesostris, contain gyroid-type photonic crystals, which produce a green structural colour. However, the photonic crystal is not a single crystal that spreads over the entire scale, but it is separated into many small domains with different crystal orientations. As a photonic crystal generally has band gaps at different frequencies depending on the direction of light propagation, it seems mysterious that the scale is observed to be uniformly green under an optical microscope despite the multi-domain structure. In this study, we have carefully investigated the structure of the wing scale and discovered that the crystal orientations of different domains are not perfectly random, but there is a preferred crystal orientation that is aligned along the surface normal of the scale. This finding suggests that there is an additional factor during the developmental process of the microstructure that regulates the crystal orientation. PMID:24352678
ISO observations of obscured Asymptotic Giant Branch stars in the Large Magellanic Cloud
NASA Astrophysics Data System (ADS)
Trams, N. R.; van Loon, J. Th.; Waters, L. B. F. M.; Zijlstra, A. A.; Loup, C.; Whitelock, P. A.; Groenewegen, M. A. T.; Blommaert, J. A. D. L.; Siebenmorgen, R.; Heske, A.; Feast, M. W.
1999-06-01
We present ISO photometric and spectroscopic observations of a sample of 57 bright Asymptotic Giant Branch stars and red supergiants in the Large Magellanic Cloud, selected on the basis of IRAS colours indicative of high mass-loss rates. PHOT-P and PHOT-C photometry at 12, 25 and 60 mu m and CAM photometry at 12 mu m are used in combination with quasi-simultaneous ground-based near-IR photometry to construct colour-colour diagrams for all stars in our sample. PHOT-S and CAM-CVF spectra in the 3 to 14 mu m region are presented for 23 stars. From the colour-colour diagrams and the spectra, we establish the chemical types of the dust around 49 stars in this sample. Many stars have carbon-rich dust. The most luminous carbon star in the Magellanic Clouds has also a (minor) oxygen-rich component. OH/IR stars have silicate absorption with emission wings. The unique dataset presented here allows a detailed study of a representative sample of thermal-pulsing AGB stars with well-determined luminosities. This paper is based on observations with the Infrared Space Observatory (ISO). ISO is an ESA project with instruments funded by ESA member states (especially the PI countries: France, Germany, The Netherlands and the United Kingdom) and with the participation of ISAS and NASA.
A Matter of Contrast: Yellow Flower Colour Constrains Style Length in Crocus species.
Lunau, Klaus; Konzmann, Sabine; Bossems, Jessica; Harpke, Doerte
2016-01-01
Most flowers display distinct colour patterns comprising two different areas. The peripheral large-area component of floral colour patterns attracts flower visitors from some distance and the central small-area component guides flower visitors towards landing sites. Whereas the peripheral colour is largely variable among species, the central colour, produced mostly by anthers and pollen or pollen mimicking floral guides, is predominantly yellow and UV-absorbing. This holds also for yellow flowers that regularly display a UV bull's eye pattern. Here we show that yellow-flowering Crocus species are a noticeable exception, since yellow-flowering Crocus species-being entirely UV-absorbing-exhibit low colour contrast between yellow reproductive organs and yellow tepals. The elongated yellow or orange-yellow style of Crocus flowers is a stamen-mimicking structure promoting cross-pollination by facilitating flower visitors' contact with the apical stigma before the flower visitors are touching the anthers. Since Crocus species possess either yellow, violet or white tepals, the colour contrast between the stamen-mimicking style and the tepals varies among species. In this study comprising 106 Crocus species, it was tested whether the style length of Crocus flowers is dependent on the corolla colour. The results show that members of the genus Crocus with yellow tepals have evolved independently up to twelve times in the genus Crocus and that yellow-flowering Crocus species possess shorter styles as compared to violet- and white-flowering ones. The manipulation of flower visitors by anther-mimicking elongated styles in Crocus flowers is discussed.
Colour vision and response bias in a coral reef fish.
Cheney, Karen L; Newport, Cait; McClure, Eva C; Marshall, N Justin
2013-08-01
Animals use coloured signals for a variety of communication purposes, including to attract potential mates, recognize individuals, defend territories and warn predators of secondary defences (aposematism). To understand the mechanisms that drive the evolution and design of such visual signals, it is important to understand the visual systems and potential response biases of signal receivers. Here, we provide raw data on the spectral capabilities of a coral reef fish, the Picasso triggerfish Rhinecanthus aculeatus, which is potentially trichromatic with three cone sensitivities of 413 nm (single cone), 480 nm (double cone, medium sensitivity) and 528 nm (double cone, long sensitivity), and a rod sensitivity of 498 nm. The ocular media have a 50% transmission cut off at 405 nm. Behavioural experiments confirmed colour vision over their spectral range; triggerfish were significantly more likely to choose coloured stimuli over grey distractors, irrespective of luminance. We then examined whether response biases existed towards coloured and patterned stimuli to provide insight into how visual signals - in particular, aposematic colouration - may evolve. Triggerfish showed a preferential foraging response bias to red and green stimuli, in contrast to blue and yellow, irrespective of pattern. There was no response bias to patterned over monochromatic non-patterned stimuli. A foraging response bias towards red in fish differs from that of avian predators, who often avoid red food items. Red is frequently associated with warning colouration in terrestrial environments (ladybirds, snakes, frogs), whilst blue is used in aquatic environments (blue-ringed octopus, nudibranchs); whether the design of warning (aposematic) displays is a cause or consequence of response biases is unclear.
Dhungel, Bidur; Otaki, Joji M
2009-11-01
Butterfly wing color patterns can be changed by the application of a temperature shock or pharmacological agents such as tungstate, producing a distinctive type of elemental modification called the TS (temperature shock) type. Heterochronic uncoupling between the signaling and reception steps during the color-pattern determination process has been proposed as a mechanism for TS-type changes. As an extension of this hypothesis, both the parafocal element (PFE) and the eyespot in the same wing compartment are considered to be determined by morphogenic signal(s) emitted from the same eyespot focus. However, these models need to be examined with additional experimental data. Furthermore, there is controversy as to whether the action of tungstate on wing color patterns is direct or Indirect. Using a species of nymphalid butterfly (Junonia orithya), we have devised a simple method for the local application of pharmacological agents directly on developing wings of pupae. Local tungstate application resulted in reduced eyespots and circular dislocated PFEs in the eyespot-less compartments only on the treated wing, demonstrating that tungstate directly induces color-pattern changes on wings. We further examined the eyespot-PFE relationship in normal and cold-shocked Individuals, showing that an eyespot can be superimposed on a PFE and vice versa, probably depending on the timing of their fate determination. Taken together, we propose a two-morphogen model for the normal color-pattern determination, in which the morphogenic signals for the eyespot and PFE are different from each other despite their Identical origin. This two-morphogen model is compatible with the heterochronic uncoupling model for TS-type changes.
Otaki, Joji M; Ogasawara, Tsuyoshi; Yamamoto, Haruhiko
2005-06-01
Systemic injections of sodium tungstate, a protein-tyrosine phosphatase (PTPase) inhibitor, to pupae immediately after pupation have been shown to efficiently produce characteristic color-pattern modifications on the wings of many species of butterflies. Here we demonstrated that the tungstate-induced modification pattern was entirely different from other chemically-induced ones in a species of nymphalid butterfly Junonia (Precis) orithya. In this species, the systemic injections of tungstate produced characteristic expansion of black area and shrinkage of white area together with the move of parafocal elements toward the wing base. Overall, pattern boundaries became obscure. In contrast, an entirely different modification pattern, overall darkening of wings, was observed by the injections of stress-inducing chemicals, thapsigargin, ionomycin, or geldanamycin, to pupae under the rearing conditions for the adult summer form. On the ventral wings, this darkening was due to an increase of the proportion of peppered dark scales, which was reminiscent of the natural fall form of this species. Under the same rearing conditions, the injections of ecdysteroid, which is a well-known hormone being responsible for the seasonal polyphenism of nymphalid butterflies, yielded overall expansion of orange area especially around eyespots. Taken together, we conclude that the tungstate-induced modifications are clearly distinguishable from those of stress response and ecdysteroid effect. This conclusion then suggests that the putative PTPase signaling pathway that is sensitive to tungstate uniquely contributes to the wing-wide color-pattern development in butterflies.
Fric, Z; Konvicka, M; Zrzavy, J
2004-03-01
Phylogeny of the butterfly genera Araschnia, Mynes, Symbrenthia and Brensymthia (Lepidoptera: Nymphalidae: Nymphalini) is reconstructed, based on 140 morphological and ecological characters. The resulting tree shows that Araschnia is a sister group of the clade including Symbrenthia, Mynes and Brensymthia (Symbrenthia is paraphyletic in the respect of remaining genera; Symbrenthia hippalus is a derived species of Mynes). The species-level relationships within Araschnia are robustly supported as follows: (A. davidis (prorsoides ((zhangi doris) (dohertyi (levana burejana))))). Analysis of the wing colour-pattern characters linked with the seasonal polyphenism in the Araschnia species suggests that the black and white coloration of the long-day (summer) generation is apomorphic. Biogeographically, the origin of polyphenism in Araschnia predates the dispersal of some Araschnia species towards the Palaearctic temperate zone, and the ecological cause of the polyphenism itself is then probably not linked with thermoregulation. The possible mimetic/cryptic scenarios for the origin of Araschnia polyphenism are discussed.
Sánchez Herrera, Melissa; Kuhn, William R; Lorenzo-Carballa, Maria Olalla; Harding, Kathleen M; Ankrom, Nikole; Sherratt, Thomas N; Hoffmann, Joachim; Van Gossum, Hans; Ware, Jessica L; Cordero-Rivera, Adolfo; Beatty, Christopher D
2015-01-01
The study of color polymorphisms (CP) has provided profound insights into the maintenance of genetic variation in natural populations. We here offer the first evidence for an elaborate wing polymorphism in the Neotropical damselfly genus Polythore, which consists of 21 described species, distributed along the eastern slopes of the Andes in South America. These damselflies display highly complex wing colors and patterning, incorporating black, white, yellow, and orange in multiple wing bands. Wing colors, along with some components of the male genitalia, have been the primary characters used in species description; few other morphological traits vary within the group, and so there are few useful diagnostic characters. Previous research has indicated the possibility of a cryptic species existing in P. procera in Colombia, despite there being no significant differences in wing color and pattern between the populations of the two putative species. Here we analyze the complexity and diversity of wing color patterns of individuals from five described Polythore species in the Central Amazon Basin of Peru using a novel suite of morphological analyses to quantify wing color and pattern: geometric morphometrics, chromaticity analysis, and Gabor wavelet transformation. We then test whether these color patterns are good predictors of species by recovering the phylogenetic relationships among the 5 species using the barcode gene (COI). Our results suggest that, while highly distinct and discrete wing patterns exist in Polythore, these "wingforms" do not represent monophyletic clades in the recovered topology. The wingforms identified as P. victoria and P. ornata are both involved in a polymorphism with P. neopicta; also, cryptic speciation may have taking place among individuals with the P. victoria wingform. Only P. aurora and P. spateri represent monophyletic species with a single wingform in our molecular phylogeny. We discuss the implications of this polymorphism, and the potential evolutionary mechanisms that could maintain it.
Harding, Kathleen M.; Ankrom, Nikole; Sherratt, Thomas N.; Hoffmann, Joachim; Van Gossum, Hans; Ware, Jessica L.; Cordero-Rivera, Adolfo
2015-01-01
The study of color polymorphisms (CP) has provided profound insights into the maintenance of genetic variation in natural populations. We here offer the first evidence for an elaborate wing polymorphism in the Neotropical damselfly genus Polythore, which consists of 21 described species, distributed along the eastern slopes of the Andes in South America. These damselflies display highly complex wing colors and patterning, incorporating black, white, yellow, and orange in multiple wing bands. Wing colors, along with some components of the male genitalia, have been the primary characters used in species description; few other morphological traits vary within the group, and so there are few useful diagnostic characters. Previous research has indicated the possibility of a cryptic species existing in P. procera in Colombia, despite there being no significant differences in wing color and pattern between the populations of the two putative species. Here we analyze the complexity and diversity of wing color patterns of individuals from five described Polythore species in the Central Amazon Basin of Peru using a novel suite of morphological analyses to quantify wing color and pattern: geometric morphometrics, chromaticity analysis, and Gabor wavelet transformation. We then test whether these color patterns are good predictors of species by recovering the phylogenetic relationships among the 5 species using the barcode gene (COI). Our results suggest that, while highly distinct and discrete wing patterns exist in Polythore, these “wingforms” do not represent monophyletic clades in the recovered topology. The wingforms identified as P. victoria and P. ornata are both involved in a polymorphism with P. neopicta; also, cryptic speciation may have taking place among individuals with the P. victoria wingform. Only P. aurora and P. spateri represent monophyletic species with a single wingform in our molecular phylogeny. We discuss the implications of this polymorphism, and the potential evolutionary mechanisms that could maintain it. PMID:25923455
Schunk, Cosima; Swartz, Sharon M; Breuer, Kenneth S
2017-02-06
Aspect ratio (AR) is one parameter used to predict the flight performance of a bat species based on wing shape. Bats with high AR wings are thought to have superior lift-to-drag ratios and are therefore predicted to be able to fly faster or to sustain longer flights. By contrast, bats with lower AR wings are usually thought to exhibit higher manoeuvrability. However, the half-span ARs of most bat wings fall into a narrow range of about 2.5-4.5. Furthermore, these predictions do not take into account the wide variation in flapping motion observed in bats. To examine the influence of different stroke patterns, we measured lift and drag of highly compliant membrane wings with different bat-relevant ARs. A two degrees of freedom shoulder joint allowed for independent control of flapping amplitude and wing sweep. We tested five models with the same variations of stroke patterns, flapping frequencies and wind speed velocities. Our results suggest that within the relatively small AR range of bat wings, AR has no clear effect on force generation. Instead, the generation of lift by our simple model mostly depends on wingbeat frequency, flapping amplitude and freestream velocity; drag is mostly affected by the flapping amplitude.
Nanostructured Antireflective and Thermoisolative Cicada Wings.
Morikawa, Junko; Ryu, Meguya; Seniutinas, Gediminas; Balčytis, Armandas; Maximova, Ksenia; Wang, Xuewen; Zamengo, Massimiliano; Ivanova, Elena P; Juodkazis, Saulius
2016-05-10
Inter-related mechanical, thermal, and optical macroscopic properties of biomaterials are defined at the nanoscale by their constituent structures and patterns, which underpin complex functions of an entire bio-object. Here, the temperature diffusivity of a cicada (Cyclochila australasiae) wing with nanotextured surfaces was measured using two complementary techniques: a direct contact method and IR imaging. The 4-6-μm-thick wing section was shown to have a thermal diffusivity of α⊥ = (0.71 ± 0.15) × 10(-7) m(2)/s, as measured by the contact temperature wave method along the thickness of the wing; it corresponds to the inherent thermal property of the cuticle. The in-plane thermal diffusivity value of the wing was determined by IR imaging and was considerably larger at α∥ = (3.6 ± 0.2) × 10(-7) m(2)/s as a result of heat transport via air. Optical properties of wings covered with nanospikes were numerically simulated using an accurate 3D model of the wing pattern and showed that light is concentrated between spikes where intensity is enhanced by up to 3- to 4-fold. The closely packed pattern of nanospikes reduces the reflectivity of the wing throughout the visible light spectrum and over a wide range of incident angles, hence acting as an antireflection coating.
The influence of aspect ratio and stroke pattern on force generation of a bat-inspired membrane wing
Swartz, Sharon M.; Breuer, Kenneth S.
2017-01-01
Aspect ratio (AR) is one parameter used to predict the flight performance of a bat species based on wing shape. Bats with high AR wings are thought to have superior lift-to-drag ratios and are therefore predicted to be able to fly faster or to sustain longer flights. By contrast, bats with lower AR wings are usually thought to exhibit higher manoeuvrability. However, the half-span ARs of most bat wings fall into a narrow range of about 2.5–4.5. Furthermore, these predictions do not take into account the wide variation in flapping motion observed in bats. To examine the influence of different stroke patterns, we measured lift and drag of highly compliant membrane wings with different bat-relevant ARs. A two degrees of freedom shoulder joint allowed for independent control of flapping amplitude and wing sweep. We tested five models with the same variations of stroke patterns, flapping frequencies and wind speed velocities. Our results suggest that within the relatively small AR range of bat wings, AR has no clear effect on force generation. Instead, the generation of lift by our simple model mostly depends on wingbeat frequency, flapping amplitude and freestream velocity; drag is mostly affected by the flapping amplitude. PMID:28163875
Genetics and evolution of colour patterns in reptiles.
Olsson, Mats; Stuart-Fox, Devi; Ballen, Cissy
2013-01-01
The study of coloration in the polyphyletic reptilians has flourished in the last two decades, in particular with respect to the underlying genetics of colour traits, the function of colours in social interactions, and ongoing selection on these traits in the wild. The taxonomic bias, however, is profound: at this level of resolution almost all available information is for diurnal lizards. Therefore, we focus on case studies, for which there are as complete causal sequences of colour evolution as possible, from phenotypic expression of variation in colour, to ongoing selection in the wild. For work prior to 1992 and for a broader coverage of reptilian coloration we refer the readers to Cooper and Greenburg's (Biology of the Reptilia, 1992) review. There are seven major conclusions we would like to emphasise: (a) visual systems in diurnal lizards are broadly conserved but among the wider range of reptiles in general, there is functionally important variation in the number and type of photoreceptors, spectral tuning of photopigments and optical properties of the eye; (b) coloration in reptiles is a function of complex interactions between structural and pigmentary components, with implications for both proximate control and condition dependence of colour expression; (c) studies of colour-variable species have enabled estimates of heritability of colour and colour patterns, which often show a simple Mendelian pattern of inheritance; (d) colour-polymorphic lizard species sometimes, but not always, show striking differences in genetically encoded reproductive tactics and provide useful models for studying the evolution and maintenance of polymorphism; (e) both male and female colours are sometimes, but not always, a significant component of socio-sexual signalling, often based on multiple traits; (f) evidence for effects of hormones and condition on colour expression, and trade-offs with immunocompetence and parasite load, is variable; (g) lizards show fading of colours in response to physiological stress and ageing and are hence likely to be appropriate models for work on the interactions between handicaps, indicator traits, parasitology and immunoecology. Copyright © 2013 Elsevier Ltd. All rights reserved.
Gweon, Hye Mi; Youk, Ji Hyun; Son, Eun Ju; Kim, Jeong-Ah
2013-03-01
To determine whether colour overlay features can be quantified by the standard deviation (SD) of the elasticity measured in shear-wave elastography (SWE) and to evaluate the diagnostic performance for breast masses. One hundred thirty-three breast lesions in 119 consecutive women who underwent SWE before US-guided core needle biopsy or surgical excision were analysed. SWE colour overlay features were assessed using two different colour overlay pattern classifications. Quantitative SD of the elasticity value was measured with the region of interest including the whole breast lesion. For the four-colour overlay pattern, the area under the ROC curve (Az) was 0.947; with a cutoff point between pattern 2 and 3, sensitivity and specificity were 94.4 % and 81.4 %. According to the homogeneity of the elasticity, the Az was 0.887; with a cutoff point between reasonably homogeneous and heterogeneous, sensitivity and specificity were 86.1 % and 82.5 %. For the SD of the elasticity, the Az was 0.944; with a cutoff point of 12.1, sensitivity and specificity were 88.9 % and 89.7 %. The colour overlay features showed significant correlations with the quantitative SD of the elasticity (P < 0.001). The colour overlay features and the SD of the elasticity in SWE showed excellent diagnostic performance and showed good correlations between them.
Ancient Wings: animating the evolution of butterfly wing patterns.
Arbesman, Samuel; Enthoven, Leo; Monteiro, Antónia
2003-10-01
Character optimization methods can be used to reconstruct ancestral states at the internal nodes of phylogenetic trees. However, seldom are these ancestral states visualized collectively. Ancient Wings is a computer program that provides a novel method of visualizing the evolution of several morphological traits simultaneously. It allows users to visualize how the ventral hindwing pattern of 54 butterflies in the genus Bicyclus may have changed over time. By clicking on each of the nodes within the evolutionary tree, the user can see an animation of how wing size, eyespot size, and eyespot position relative the wing margin, have putatively evolved as a collective whole. Ancient Wings may be used as a pedagogical device as well as a research tool for hypothesis-generation in the fields of evolutionary, ecological, and developmental biology.
Circadian timed episodic-like memory - a bee knows what to do when, and also where.
Pahl, Mario; Zhu, Hong; Pix, Waltraud; Tautz, Juergen; Zhang, Shaowu
2007-10-01
This study investigates how the colour, shape and location of patterns could be memorized within a time frame. Bees were trained to visit two Y-mazes, one of which presented yellow vertical (rewarded) versus horizontal (non-rewarded) gratings at one site in the morning, while another presented blue horizontal (rewarded) versus vertical (non-rewarded) gratings at another site in the afternoon. The bees could perform well in the learning tests and various transfer tests, in which (i) all contextual cues from the learning test were present; (ii) the colour cues of the visual patterns were removed, but the location cue, the orientation of the visual patterns and the temporal cue still existed; (iii) the location cue was removed, but other contextual cues, i.e. the colour and orientation of the visual patterns and the temporal cue still existed; (iv) the location cue and the orientation cue of the visual patterns were removed, but the colour cue and temporal cue still existed; (v) the location cue, and the colour cue of the visual patterns were removed, but the orientation cue and the temporal cue still existed. The results reveal that the honeybee can recall the memory of the correct visual patterns by using spatial and/or temporal information. The relative importance of different contextual cues is compared and discussed. The bees' ability to integrate elements of circadian time, place and visual stimuli is akin to episodic-like memory; we have therefore named this kind of memory circadian timed episodic-like memory.
Heterospecific aggression bias towards a rarer colour morph.
Lehtonen, Topi K; Sowersby, Will; Wong, Bob B M
2015-09-22
Colour polymorphisms are a striking example of phenotypic diversity, yet the sources of selection that allow different morphs to persist within populations remain poorly understood. In particular, despite the importance of aggression in mediating social dominance, few studies have considered how heterospecific aggression might contribute to the maintenance or divergence of different colour morphs. To redress this gap, we carried out a field-based study in a Nicaraguan crater lake to investigate patterns of heterospecific aggression directed by the cichlid fish, Hypsophrys nicaraguensis, towards colour polymorphic cichlids in the genus Amphilophus. We found that H. nicaraguensis was the most frequent territorial neighbour of the colour polymorphic A. sagittae. Furthermore, when manipulating territorial intrusions using models, H. nicaraguensis were more aggressive towards the gold than dark colour morph of the sympatric Amphilophus species, including A. sagittae. Such a pattern of heterospecific aggression should be costly to the gold colour morph, potentially accounting for its lower than expected frequency and, more generally, highlighting the importance of considering heterospecific aggression in the context of morph frequencies and coexistence in the wild. © 2015 The Author(s).
NASA Astrophysics Data System (ADS)
Spinner, Marlene; Kovalev, Alexander; Gorb, Stanislav N.; Westhoff, Guido
2013-05-01
The West African Gaboon viper (Bitis rhinoceros) is a master of camouflage due to its colouration pattern. Its skin is geometrically patterned and features black spots that purport an exceptional spatial depth due to their velvety surface texture. Our study shades light on micromorphology, optical characteristics and principles behind such a velvet black appearance. We revealed a unique hierarchical pattern of leaf-like microstructures striated with nanoridges on the snake scales that coincides with the distribution of black colouration. Velvet black sites demonstrate four times lower reflectance and higher absorbance than other scales in the UV - near IR spectral range. The combination of surface structures impeding reflectance and absorbing dark pigments, deposited in the skin material, provides reflecting less than 11% of the light reflected by a polytetrafluoroethylene diffuse reflectance standard in any direction. A view-angle independent black structural colour in snakes is reported here for the first time.
Spinner, Marlene; Kovalev, Alexander; Gorb, Stanislav N; Westhoff, Guido
2013-01-01
The West African Gaboon viper (Bitis rhinoceros) is a master of camouflage due to its colouration pattern. Its skin is geometrically patterned and features black spots that purport an exceptional spatial depth due to their velvety surface texture. Our study shades light on micromorphology, optical characteristics and principles behind such a velvet black appearance. We revealed a unique hierarchical pattern of leaf-like microstructures striated with nanoridges on the snake scales that coincides with the distribution of black colouration. Velvet black sites demonstrate four times lower reflectance and higher absorbance than other scales in the UV-near IR spectral range. The combination of surface structures impeding reflectance and absorbing dark pigments, deposited in the skin material, provides reflecting less than 11% of the light reflected by a polytetrafluoroethylene diffuse reflectance standard in any direction. A view-angle independent black structural colour in snakes is reported here for the first time.
Spontaneous long-range calcium waves in developing butterfly wings.
Ohno, Yoshikazu; Otaki, Joji M
2015-03-25
Butterfly wing color patterns emerge as the result of a regular arrangement of scales produced by epithelial scale cells at the pupal stage. These color patterns and scale arrangements are coordinated throughout the wing. However, the mechanism by which the development of scale cells is controlled across the entire wing remains elusive. In the present study, we used pupal wings of the blue pansy butterfly, Junonia orithya, which has distinct eyespots, to examine the possible involvement of Ca(2+) waves in wing development. Here, we demonstrate that the developing pupal wing tissue of the blue pansy butterfly displayed spontaneous low-frequency Ca(2+) waves in vivo that propagated slowly over long distances. Some waves appeared to be released from the immediate peripheries of the prospective eyespot and discal spot, though it was often difficult to identify the specific origins of these waves. Physical damage, which is known to induce ectopic eyespots, led to the radiation of Ca(2+) waves from the immediate periphery of the damaged site. Thapsigargin, which is a specific inhibitor of Ca(2+)-ATPases in the endoplasmic reticulum, induced an acute increase in cytoplasmic Ca(2+) levels and halted the spontaneous Ca(2+) waves. Additionally, thapsigargin-treated wings showed incomplete scale development as well as other scale and color pattern abnormalities. We identified a novel form of Ca(2+) waves, spontaneous low-frequency slow waves, which travel over exceptionally long distances. Our results suggest that spontaneous Ca(2+) waves play a critical role in the coordinated development of scale arrangements and possibly in color pattern formation in butterflies.
Neighboring genes shaping a single adaptive mimetic trait.
Pardo-Diaz, Carolina; Jiggins, Chris D
2014-01-01
The colorful wing patterns of Heliconius butterflies represent an excellent system in which to study the genetic and developmental control of adaptation and convergence. Using qRT-PCR and in situ hybridization on developing wings of the co-mimic species Heliconius melpomene and Heliconius erato, we have profiled the expression of three candidate genes located in the genomic locus controlling red color pattern variation. We found convergent domains of gene expression in H. melpomene and H. erato associated with red wing elements in the two genes optix and kinesin. During early pupal development of both species, the expression of optix perfectly associated with all red pattern elements whereas that of kinesin was specifically correlated with the presence of the red forewing band. These results provide evidence for the use of these two tightly linked patterning genes, acting together to create convergent wing phenotypes in Heliconius and constituting a hotspot of adaptation. © 2013 Wiley Periodicals, Inc.
Dhungel, Bidur; Ohno, Yoshikazu; Matayoshi, Rie; Otaki, Joji M
2013-03-25
Candidate genes for color pattern formation in butterfly wings have been known based on gene expression patterns since the 1990s, but their functions remain elusive due to a lack of a functional assay. Several methods of transferring and expressing a foreign gene in butterfly wings have been reported, but they have suffered from low success rates or low expression levels. Here, we developed a simple, practical method to efficiently deliver and express a foreign gene using baculovirus-mediated gene transfer in butterfly wings in vivo. A recombinant baculovirus containing a gene for green fluorescent protein (GFP) was injected into pupae of the blue pansy butterfly Junonia orithya (Nymphalidae). GFP fluorescence was detected in the pupal wings and other body parts of the injected individuals three to five days post-injection at various degrees of fluorescence. We obtained a high GFP expression rate at relatively high virus titers, but it was associated with pupal death before color pattern formation in wings. To reduce the high mortality rate caused by the baculovirus treatment, we administered an anti-gp64 antibody, which was raised against baculovirus coat protein gp64, to infected pupae after the baculovirus injection. This treatment greatly reduced the mortality rate of the infected pupae. GFP fluorescence was observed in pupal and adult wings and other body parts of the antibody-treated individuals at various degrees of fluorescence. Importantly, we obtained completely developed wings with a normal color pattern, in which fluorescent signals originated directly from scales or the basal membrane after the removal of scales. GFP fluorescence in wing tissues spatially coincided with anti-GFP antibody staining, confirming that the fluorescent signals originated from the expressed GFP molecules. Our baculovirus-mediated gene transfer system with an anti-gp64 antibody is reasonably efficient, and it can be an invaluable tool to transfer, express, and functionally examine foreign genes in butterfly wings and also in other non-model insect systems.
Diurnal lighting patterns and habitat alter opsin expression and colour preferences in a killifish
Johnson, Ashley M.; Stanis, Shannon; Fuller, Rebecca C.
2013-01-01
Spatial variation in lighting environments frequently leads to population variation in colour patterns, colour preferences and visual systems. Yet lighting conditions also vary diurnally, and many aspects of visual systems and behaviour vary over this time scale. Here, we use the bluefin killifish (Lucania goodei) to compare how diurnal variation and habitat variation (clear versus tannin-stained water) affect opsin expression and the preference to peck at different-coloured objects. Opsin expression was generally lowest at midnight and dawn, and highest at midday and dusk, and this diurnal variation was many times greater than variation between habitats. Pecking preference was affected by both diurnal and habitat variation but did not correlate with opsin expression. Rather, pecking preference matched lighting conditions, with higher preferences for blue at noon and for red at dawn/dusk, when these wavelengths are comparatively scarce. Similarly, blue pecking preference was higher in tannin-stained water where blue wavelengths are reduced. In conclusion, L. goodei exhibits strong diurnal cycles of opsin expression, but these are not tightly correlated with light intensity or colour. Temporally variable pecking preferences probably result from lighting environment rather than from opsin production. These results may have implications for the colour pattern diversity observed in these fish. PMID:23698009
Layton, Kara K S; Gosliner, Terrence M; Wilson, Nerida G
2018-07-01
Chromodoris is a genus of colourful nudibranchs that feed on sponges and is found across the Indo-Pacific. While this was once the most diverse chromodorid genus, recent work has shown that the genus should be restricted to a monophyletic lineage that contains only 22 species, all of which exhibit black pigmentation and planar spawning behaviour. Earlier phylogenies of this group are poorly resolved and thus additional work is needed to clarify species boundaries within Chromodoris. This study presents a maximum-likelihood phylogeny based on mitochondrial loci (COI, 16S) for 345 Chromodoris specimens, including data from 323 new specimens and 22 from GenBank, from across the Indo-Pacific. Species hypotheses and phylogenetic analysis uncovered 39 taxa in total containing 18 undescribed species, with only five of 39 taxa showing stable colour patterns and distinct morphotypes. This study also presents the first evidence for regional mimicry in this genus, with C. colemani and C. joshi displaying geographically-based variation in colour patterns which appear to match locally abundant congenerics, highlighting the flexibility of these colour patterns in Chromodoris nudibranchs. The current phylogeny contains short branch lengths, polytomies and poor support at interior nodes, which is indicative of a recent radiation. As such, future work will employ a transcriptome-based exon capture approach for resolving the phylogeny of this group. In all, this study included 21 of the 22 described species in the Chromodoris sensu stricto group with broad sampling coverage from across the Indo-Pacific, constituting the most comprehensive sampling of this group to date. This work highlights several cases of undocumented diversity, ultimately expanding our knowledge of species boundaries in this group, while also demonstrating the limitations of colour patterns for species identification in this genus. Copyright © 2018 Elsevier Inc. All rights reserved.
Is colour modulation an independent factor in human visual photosensitivity?
Parra, Jaime; Lopes da Silva, Fernando H; Stroink, Hans; Kalitzin, Stiliyan
2007-06-01
Considering that the role of colour in photosensitive epilepsy (PSE) remains unclear, we designed a study to determine the potential of different colours, colour combinations and white light to trigger photoparoxysmal responses (PPRs) under stringent controlled conditions. After assessing their photosensitivity to stroboscopic white light and black and white patterns, we studied 43 consecutive PSE patients (mean age 19 years, 34 women), using a specially designed colour stimulator. Stimuli included: pulse trains between 10 and 30 Hz of white light and of all primary colours, and also isoluminant alternating time-sequences of colours. Illuminance was kept constant at 100 lux. A progressive stepwise increase of the modulation-depth (MD) of the stimuli was used to determine PPRs threshold. Whereas all the 43 patients were found to be sensitive during the stroboscopic and pattern protocol, only 25 showed PPRs (Waltz's score >2) at least in one session when studied with the colour stimulator. Coloured stimuli elicited PPRs in all these patients, whereas white light did so only in 17 patients. Of the primary colours, red elicited more PPRs (54 in 22 patients) and at a lower MD (max Z-score 0.93 at 10 Hz). Of the alternating sequences, the red-blue was the most provocative stimulus, especially below 30 Hz (100% of patients, max Z-score: 1.65 at 15 Hz). Blue-green was the least provocative stimulus, since it elicited only seven PPRs in seven (28%) patients (max Z-score 0.44 at 10 Hz). Sensitivity to alternating colours was not correlated to sensitivity to individual colours. We conclude that colour sensitivity follows two different mechanisms: one, dependent on colour modulation, plays a role at lower frequencies (<30 Hz). Another, dependent on single-colour light intensity modulation correlates to white light sensitivity and is activated at higher frequencies. Our results suggest that the prescription of spectacles with coloured lenses, tailored to the patient, can be an effective preventative measure against visually induced seizures.
Parejo, M; Wragg, D; Henriques, D; Vignal, A; Neuditschko, M
2017-12-01
Human-mediated selection has left signatures in the genomes of many domesticated animals, including the European dark honeybee, Apis mellifera mellifera, which has been selected by apiculturists for centuries. Using whole-genome sequence information, we investigated selection signatures in spatially separated honeybee subpopulations (Switzerland, n = 39 and France, n = 17). Three different test statistics were calculated in windows of 2 kb (fixation index, cross-population extended haplotype homozygosity and cross-population composite likelihood ratio) and combined into a recently developed composite selection score. Applying a stringent false discovery rate of 0.01, we identified six significant selective sweeps distributed across five chromosomes covering eight genes. These genes are associated with multiple molecular and biological functions, including regulation of transcription, receptor binding and signal transduction. Of particular interest is a selection signature on chromosome 1, which corresponds to the WNT4 gene, the family of which is conserved across the animal kingdom with a variety of functions. In Drosophila melanogaster, WNT4 alleles have been associated with differential wing, cross vein and abdominal phenotypes. Defining phenotypic characteristics of different Apis mellifera ssp., which are typically used as selection criteria, include colour and wing venation pattern. This signal is therefore likely to be a good candidate for human mediated-selection arising from different applied breeding practices in the two managed populations. © 2017 The Authors. Animal Genetics published by John Wiley & Sons Ltd on behalf of Stichting International Foundation for Animal Genetics.
Grigore, M; Furtunescu, F; Minca, D; Costache, M; Garbe, C; Simionescu, O
2018-03-10
Eye and skin share the embryological origin. Both are established risk factors in epidermal skin cancer. There are few reports using iris colour classification scales, most of them analyse colour in general or are too complex to use in daily practice. To investigate which iris colour pattern is associated with epidermal skin cancer in a S-E European Caucasian population. A case-control study was conducted on 480 patients: 229 skin cancers patients and 251 controls (dermatological patients free of skin cancers) admitted in two medical clinics of Dermatology in Bucharest, between October 2011 and May 2014. High-resolution iris photographs were taken for each patient. Three parameters of the iris were analysed individually and in association patterns for each patient: periphery, collaret and freckles. The most frequent iris colour pattern associated with epidermal skin cancer was blue periphery with light brown collaret and freckles present. In terms of individual parameters, the strongest indicators for skin cancer patients were blue periphery and blue collaret. The results of this study sustain the hypothesis that blue periphery with light brown collaret and freckles iris pattern is a reliable phenotypic marker for epidermal skin cancer. The results of this study differ from previous reports in which skin cancer risk was associated with a homogeneous blue iris. We account these differences in the characteristics of the recruited patients (S-E European, skin type II and III). The assessment of iris colour patterns is an easy and inexpensive detection tool in skin cancer risk assessment. © 2018 European Academy of Dermatology and Venereology.
Baxter, S W; Hoffman, J I; Tregenza, T; Wedell, N; Hosken, D J
2017-01-01
Understanding selection in the wild remains a major aim of evolutionary ecology and work by Ford and colleagues on the meadow brown butterfly Maniola jurtina did much to ignite this agenda. A great deal of their work was conducted during the 1950s on the Isles of Scilly. They documented island-specific wing-spot patterns that remained consistent over about a decade, but patterns on some islands changed after environmental perturbation. It was suggested that these wing-spot patterns reflected island-specific selection and that there was little migration between islands. However, genetic studies to test the underlying assumption of restricted migration are lacking and it is also unknown whether the originally described wing-spot patterns have persisted over time. We therefore collected female butterflies from five of Ford's original study locations, including three large islands (St Mary's, St Martin's and Tresco) and two small islands (Tean and St Helen's). Wing-spot patterns had not changed appreciably over time on three of the islands (two large and one small), but were significantly different on the other two. Furthermore, analysis of 176 amplified fragment length polymorphisms revealed significant genome-wide differentiation among the five islands. Our findings are consistent with Ford's conclusions that despite the close proximity of these islands, there is restricted gene flow among them. PMID:27804964
Spots and stripes: ecology and colour pattern evolution in butterflyfishes
Kelley, Jennifer L.; Fitzpatrick, John L.; Merilaita, Sami
2013-01-01
The incredible diversity of colour patterns in coral reef fishes has intrigued biologists for centuries. Yet, despite the many proposed explanations for this diversity in coloration, definitive tests of the role of ecological factors in shaping the evolution of particular colour pattern traits are absent. Patterns such as spots and eyespots (spots surrounded by concentric rings of contrasting colour) have often been assumed to function for predator defence by mimicking predators' enemies' eyes, deflecting attacks or intimidating predators, but the evolutionary processes underlying these functions have never been addressed. Striped body patterns have been suggested to serve for both social communication and predator defence, but the impact of ecological constraints remains unclear. We conducted the first comparative analysis of colour pattern diversity in butterflyfishes (Family: Chaetodontidae), fishes with conspicuous spots, eyespots and wide variation in coloration. Using a dated molecular phylogeny of 95 species (approx. 75% of the family), we tested whether spots and eyespots have evolved characteristics that are consistent with their proposed defensive function and whether the presence of spots and body stripes is linked with species' body length, dietary complexity, habitat diversity or social behaviour. Contrary to our expectations, spots and eyespots appeared relatively recently in butterflyfish evolution and are highly evolutionarily labile, suggesting that they are unlikely to have played an important part in the evolutionary history of the group. Striped body patterns showed correlated evolution with a number of ecological factors including habitat type, sociality and dietary complexity. Our findings question the prevailing view that eyespots are an evolutionary response to predation pressure, providing a valuable counter example to the role of these markings as revealed in other taxa. PMID:23427170
Color pattern analysis of nymphalid butterfly wings: revision of the nymphalid groundplan.
Otaki, Joji M
2012-09-01
To better understand the developmental mechanisms of color pattern variation in butterfly wings, it is important to construct an accurate representation of pattern elements, known as the "nymphalid groundplan". However, some aspects of the current groundplan remain elusive. Here, I examined wing-wide elemental patterns of various nymphalid butterflies and confirmed that wing-wide color patterns are composed of the border, central, and basal symmetry systems. The central and basal symmetry systems can express circular patterns resembling eyespots, indicating that these systems have developmental mechanisms similar to those of the border symmetry system. The wing root band commonly occurs as a distinct symmetry system independent from the basal symmetry system. In addition, the marginal and submarginal bands are likely generated as a single system, referred to as the "marginal band system". Background spaces between two symmetry systems are sometimes light in coloration and can produce white bands, contributing significantly to color pattern diversity. When an element is enlarged with a pale central area, a visually similar (yet developmentally distinct) white band is produced. Based on the symmetric relationships of elements, I propose that both the central and border symmetry systems are comprised of "core elements" (the discal spot and the border ocelli, respectively) and a pair of "paracore elements" (the distal and proximal bands and the parafocal elements, respectively). Both core and paracore elements can be doubled, or outlined. Developmentally, this system configuration is consistent with the induction model, but not with the concentration gradient model for positional information.
What shapes the continuum of reproductive isolation? Lessons from Heliconius butterflies.
Mérot, C; Salazar, C; Merrill, R M; Jiggins, C D; Joron, M
2017-06-14
The process by which species evolve can be illuminated by investigating barriers that limit gene flow between taxa. Recent radiations, such as Heliconius butterflies, offer the opportunity to compare isolation between pairs of taxa at different stages of ecological, geographical, and phylogenetic divergence. Here, we report a comparative analysis of existing and novel data in order to quantify the strength and direction of isolating barriers within a well-studied clade of Heliconius Our results highlight that increased divergence is associated with the accumulation of stronger and more numerous barriers to gene flow. Wing pattern is both under natural selection for Müllerian mimicry and involved in mate choice, and therefore underlies several isolating barriers. However, pairs which share a similar wing pattern also display strong reproductive isolation mediated by traits other than wing pattern. This suggests that, while wing pattern is a key factor for early stages of divergence, it may become facultative at later stages of divergence. Additional factors including habitat partitioning, hybrid sterility, and chemically mediated mate choice are associated with complete speciation. Therefore, although most previous work has emphasized the role of wing pattern, our comparative results highlight that speciation is a multi-dimensional process, whose completion is stabilized by many factors. © 2017 The Author(s).
Parker, T H; Wilkin, T A; Barr, I R; Sheldon, B C; Rowe, L; Griffith, S C
2011-07-01
Avian plumage colours are some of the most conspicuous sexual ornaments, and yet standardized selection gradients for plumage colour have rarely been quantified. We examined patterns of fecundity selection on plumage colour in blue tits (Cyanistes caeruleus L.). When not accounting for environmental heterogeneity, we detected relatively few cases of selection. We found significant disruptive selection on adult male crown colour and yearling female chest colour and marginally nonsignificant positive linear selection on adult female crown colour. We discovered no new significant selection gradients with canonical rotation of the matrix of nonlinear selection. Next, using a long-term data set, we identified territory-level environmental variables that predicted fecundity to determine whether these variables influenced patterns of plumage selection. The first of these variables, the density of oaks within 50 m of the nest, influenced selection gradients only for yearling males. The second variable, an inverse function of nesting density, interacted with a subset of plumage selection gradients for yearling males and adult females, although the strength and direction of selection did not vary predictably with population density across these analyses. Overall, fecundity selection on plumage colour in blue tits appeared rare and inconsistent among sexes and age classes. © 2011 The Authors. Journal of Evolutionary Biology © 2011 European Society For Evolutionary Biology.
Interplay of cell dynamics and epithelial tension during morphogenesis of the Drosophila pupal wing
Etournay, Raphaël; Popović, Marko; Merkel, Matthias; Nandi, Amitabha; Blasse, Corinna; Aigouy, Benoît; Brandl, Holger; Myers, Gene; Salbreux, Guillaume; Jülicher, Frank; Eaton, Suzanne
2015-01-01
How tissue shape emerges from the collective mechanical properties and behavior of individual cells is not understood. We combine experiment and theory to study this problem in the developing wing epithelium of Drosophila. At pupal stages, the wing-hinge contraction contributes to anisotropic tissue flows that reshape the wing blade. Here, we quantitatively account for this wing-blade shape change on the basis of cell divisions, cell rearrangements and cell shape changes. We show that cells both generate and respond to epithelial stresses during this process, and that the nature of this interplay specifies the pattern of junctional network remodeling that changes wing shape. We show that patterned constraints exerted on the tissue by the extracellular matrix are key to force the tissue into the right shape. We present a continuum mechanical model that quantitatively describes the relationship between epithelial stresses and cell dynamics, and how their interplay reshapes the wing. DOI: http://dx.doi.org/10.7554/eLife.07090.001 PMID:26102528
Color pattern evolution in Vanessa butterflies (Nymphalidae: Nymphalini): non-eyespot characters.
Abbasi, Roohollah; Marcus, Jeffrey M
2015-01-01
A phylogenetic approach was used to study color pattern evolution in Vanessa butterflies. Twenty-four color pattern elements from the Nymphalid ground plan were identified on the dorsal and ventral surfaces of the fore- and hind wings. Eyespot characters were excluded and will be examined elsewhere. The evolution of each character was traced over a Bayesian phylogeny of Vanessa reconstructed from 7750 DNA base pairs from 10 genes. Generally, the correspondence between character states on the same surface of the two wings is stronger on the ventral side compared to the dorsal side. The evolution of character states on both sides of a wing correspond with each other in most extant species, but the correspondence between dorsal and ventral character states is much stronger in the forewing than in the hindwing. The dorsal hindwing of many species of Vanessa is covered with an extended Basal Symmetry System and the Discalis I pattern element is highly variable between species, making this wing surface dissimilar to the other wing surfaces. The Basal Symmetry System and Discalis I may contribute to behavioral thermoregulation in Vanessa. Overall, interspecific directional character state evolution of non-eyespot color patterns is relatively rare in Vanessa, with a majority of color pattern elements showing non-variable, non-directional, or ambiguous character state evolution. The ease with which the development of color patterns can be modified, including character state reversals, has likely made important contributions to the production of color pattern diversity in Vanessa and other butterfly groups. © 2014 Wiley Periodicals, Inc.
Patterning of a compound eye on an extinct dipteran wing.
Dinwiddie, April; Rachootin, Stan
2011-04-23
We have discovered unexpected similarities between a novel and characteristic wing organ in an extinct biting midge from Baltic amber, Eohelea petrunkevitchi, and the surface of a dipteran's compound eye. Scanning electron microscope images now reveal vestigial mechanoreceptors between the facets of the organ. We interpret Eohelea's wing organ as the blending of these two developmental systems: the formation and patterning of the cuticle in the eye and of the wing. Typically, only females in the genus carry this distinctive, highly organized structure. Two species were studied (E. petrunkevitchi and E. sinuosa), and the structure differs in form between them. We examine Eohelea's wing structures for modes of fabrication, material properties and biological functions, and the effective ecological environment in which these midges lived. We argue that the current view of the wing organ's function in stridulation has been misconstrued since it was described half a century ago.
New neotropical species of Trupanea (Diptera: Tephritidae) with unusual wing patterns
USDA-ARS?s Scientific Manuscript database
Four species of Trupanea (Diptera: Tephritidae) with unusual wing patterns are described from the Neotropical Region: T. dimorphica (Argentina), T. fasciata (Argentina), T. polita (Argentina and Bolivia), and T. trivittata (Argentina). Celidosphenella Hendel, 1914 and Melanotrypana Hering, 1944 are ...
Does contrast between eggshell ground and spot coloration affect egg rejection?
Dainson, Miri; Hauber, Mark E; López, Analía V; Grim, Tomáš; Hanley, Daniel
2017-08-01
Obligate avian brood parasitic species impose the costs of incubating foreign eggs and raising young upon their unrelated hosts. The most common host defence is the rejection of parasitic eggs from the nest. Both egg colours and spot patterns influence egg rejection decisions in many host species, yet no studies have explicitly examined the role of variation in spot coloration. We studied the American robin Turdus migratorius, a blue-green unspotted egg-laying host of the brown-headed cowbird Molothrus ater, a brood parasite that lays non-mimetic spotted eggs. We examined host responses to model eggs with variable spot coloration against a constant robin-mimetic ground colour to identify patterns of rejection associated with perceived contrast between spot and ground colours. By using avian visual modelling, we found that robins were more likely to reject eggs whose spots had greater chromatic (hue) but not achromatic (brightness) contrast. Therefore, egg rejection decision rules in the American robin may depend on the colour contrast between parasite eggshell spot and host ground coloration. Our study also suggests that egg recognition in relation to spot coloration, like ground colour recognition, is tuned to the natural variation of avian eggshell spot colours but not to unnatural spot colours.
Conservatism and novelty in the genetic architecture of adaptation in Heliconius butterflies.
Huber, B; Whibley, A; Poul, Y L; Navarro, N; Martin, A; Baxter, S; Shah, A; Gilles, B; Wirth, T; McMillan, W O; Joron, M
2015-05-01
Understanding the genetic architecture of adaptive traits has been at the centre of modern evolutionary biology since Fisher; however, evaluating how the genetic architecture of ecologically important traits influences their diversification has been hampered by the scarcity of empirical data. Now, high-throughput genomics facilitates the detailed exploration of variation in the genome-to-phenotype map among closely related taxa. Here, we investigate the evolution of wing pattern diversity in Heliconius, a clade of neotropical butterflies that have undergone an adaptive radiation for wing-pattern mimicry and are influenced by distinct selection regimes. Using crosses between natural wing-pattern variants, we used genome-wide restriction site-associated DNA (RAD) genotyping, traditional linkage mapping and multivariate image analysis to study the evolution of the architecture of adaptive variation in two closely related species: Heliconius hecale and H. ismenius. We implemented a new morphometric procedure for the analysis of whole-wing pattern variation, which allows visualising spatial heatmaps of genotype-to-phenotype association for each quantitative trait locus separately. We used the H. melpomene reference genome to fine-map variation for each major wing-patterning region uncovered, evaluated the role of candidate genes and compared genetic architectures across the genus. Our results show that, although the loci responding to mimicry selection are highly conserved between species, their effect size and phenotypic action vary throughout the clade. Multilocus architecture is ancestral and maintained across species under directional selection, whereas the single-locus (supergene) inheritance controlling polymorphism in H. numata appears to have evolved only once. Nevertheless, the conservatism in the wing-patterning toolkit found throughout the genus does not appear to constrain phenotypic evolution towards local adaptive optima.
Peabody, Nathan C.; Pohl, Jascha B.; Diao, Fengqiu; Vreede, Andrew P.; Sandstrom, David J.; Wang, Howard; Zelensky, Paul K.; White, Benjamin H.
2009-01-01
After emergence, adult flies and other insects select a suitable perch and expand their wings. Wing expansion is governed by the hormone bursicon and can be delayed under adverse environmental conditions. How environmental factors delay bursicon release and alter perch selection and expansion behaviors has not been investigated in detail. Here we provide evidence that in Drosophila the motor programs underlying perch selection and wing expansion have different environmental dependencies. Using physical manipulations, we demonstrate that the decision to perch is based primarily on environmental valuations and is incrementally delayed under conditions of increasing perturbation and confinement. In contrast, the all-or-none motor patterns underlying wing expansion are relatively invariant in length regardless of environmental conditions. Using a novel technique for targeted activation of neurons, we show that the highly stereotyped wing expansion motor patterns can be initiated by stimulation of NCCAP, a small network of central neurons that regulates the release of bursicon. Activation of this network using the cold-sensitive rat TRPM8 channel is sufficient to trigger all essential behavioral and somatic processes required for wing expansion. The delay of wing expansion under adverse circumstances thus couples an environmentally-sensitive decision network to a command-like network that initiates a fixed action pattern. Because NCCAP mediates environmentally-insensitive ecdysis-related behaviors in Drosophila development prior to adult emergence, the study of wing expansion promises insights not only into how networks mediate behavioral choices, but also into how decision networks develop. PMID:19295141
Vallotto, Davide; Bresseel, Joachim; Heitzmann, Thierry; Gottardo, Marco
2016-01-01
Abstract A new stick insect of the genus Orthomeria Kirby, 1904 (Phasmatodea, Aschiphasmatidae) is described from the Philippines. Orthomeria (Orthomeria) kangi sp. n. is readily distinguished from all other congeners by the distinctive blood red colouration of the costal region of the hind wings. Major features of the external morphology of adults, eggs, and first-instar nymphs are illustrated. Locomotory attachment pads are of the smooth type with irregular microgrooves on the contact surface. An unusual condition of male terminalia is the absence of tergal thorn pads on segment 10. The male clasping organs are represented by an elongated vomer terminating in a prominent spine, and by incurved cerci featuring a bilobed apex equipped with a sharp blade-like ridge. Intraspecific variation in body colouration and hind wing length occurs in females. The new species lives at 400-650 m elevation in the surroundings of the Sablang and Tuba regions, in the Benguet Province of Luzon island. Host plants include Ficus spp. (Moraceae), and Pipturus spp. and Leucosyke spp. (Urticaceae). Observations on the mating and defensive behaviour are presented. Orthomeria (Orthomeria) catadromus (Westwood, 1859) is recognised as a junior synonym of Orthomeria (Orthomeria) pandora (Westwood, 1859), syn. n. A lectotype is designated for both species. Finally, an updated identification key to the species of the subgenus Orthomeria is provided. PMID:27006604
Vallotto, Davide; Bresseel, Joachim; Heitzmann, Thierry; Gottardo, Marco
2016-01-01
A new stick insect of the genus Orthomeria Kirby, 1904 (Phasmatodea, Aschiphasmatidae) is described from the Philippines. Orthomeria (Orthomeria) kangi sp. n. is readily distinguished from all other congeners by the distinctive blood red colouration of the costal region of the hind wings. Major features of the external morphology of adults, eggs, and first-instar nymphs are illustrated. Locomotory attachment pads are of the smooth type with irregular microgrooves on the contact surface. An unusual condition of male terminalia is the absence of tergal thorn pads on segment 10. The male clasping organs are represented by an elongated vomer terminating in a prominent spine, and by incurved cerci featuring a bilobed apex equipped with a sharp blade-like ridge. Intraspecific variation in body colouration and hind wing length occurs in females. The new species lives at 400-650 m elevation in the surroundings of the Sablang and Tuba regions, in the Benguet Province of Luzon island. Host plants include Ficus spp. (Moraceae), and Pipturus spp. and Leucosyke spp. (Urticaceae). Observations on the mating and defensive behaviour are presented. Orthomeria (Orthomeria) catadromus (Westwood, 1859) is recognised as a junior synonym of Orthomeria (Orthomeria) pandora (Westwood, 1859), syn. n. A lectotype is designated for both species. Finally, an updated identification key to the species of the subgenus Orthomeria is provided.
Villegas-Ríos, David; Alonso-Fernández, Alexandre; Fabeiro, Mariña; Bañón, Rafael; Saborido-Rey, Fran
2013-01-01
Fish populations are often treated as homogeneous units in typical fishery management, thereby tacitly ignoring potential intraspecific variation which can lead to imprecise management rules. However, intraspecific variation in life-history traits is widespread and related to a variety of factors. We investigated the comparative age-based demography of the two main colour patterns of Labrus bergylta (plain and spotted, which coexist in sympatry), a commercially valuable resource in the NE Atlantic. Individuals were aged based on otolith readings after validating the annual periodicity of annuli deposition. The relationships between the otolith weight and fish age and between otolith length and fish length were strong but differed between colour patterns. The fit of the growth models to the age and length data resulted in divergent growth curves between colour morphotypes and between sexes. Males and spotted individuals attained larger mean asymptotic sizes (Linf) than females and plain individuals, respectively, but converged to them more slowly (smaller k). Estimates of mortality based on catch curves from two independent datasets provided a global total mortality (Z) of 0.35 yr–1, although Z was larger in plain and female individuals. Overall, the results of this research have direct implications for management of L. bergylta and, as a precautionary measure, we recommend considering both colour patterns as two different management units. PMID:24058404
Zhang, Linlin
2017-01-01
The optix gene has been implicated in butterfly wing pattern adaptation by genetic association, mapping, and expression studies. The actual developmental function of this gene has remained unclear, however. Here we used CRISPR/Cas9 genome editing to show that optix plays a fundamental role in nymphalid butterfly wing pattern development, where it is required for determination of all chromatic coloration. optix knockouts in four species show complete replacement of color pigments with melanins, with corresponding changes in pigment-related gene expression, resulting in black and gray butterflies. We also show that optix simultaneously acts as a switch gene for blue structural iridescence in some butterflies, demonstrating simple regulatory coordination of structural and pigmentary coloration. Remarkably, these optix knockouts phenocopy the recurring “black and blue” wing pattern archetype that has arisen on many independent occasions in butterflies. Here we demonstrate a simple genetic basis for structural coloration, and show that optix plays a deeply conserved role in butterfly wing pattern development. PMID:28923944
Zhang, Linlin; Mazo-Vargas, Anyi; Reed, Robert D
2017-10-03
The optix gene has been implicated in butterfly wing pattern adaptation by genetic association, mapping, and expression studies. The actual developmental function of this gene has remained unclear, however. Here we used CRISPR/Cas9 genome editing to show that optix plays a fundamental role in nymphalid butterfly wing pattern development, where it is required for determination of all chromatic coloration. optix knockouts in four species show complete replacement of color pigments with melanins, with corresponding changes in pigment-related gene expression, resulting in black and gray butterflies. We also show that optix simultaneously acts as a switch gene for blue structural iridescence in some butterflies, demonstrating simple regulatory coordination of structural and pigmentary coloration. Remarkably, these optix knockouts phenocopy the recurring "black and blue" wing pattern archetype that has arisen on many independent occasions in butterflies. Here we demonstrate a simple genetic basis for structural coloration, and show that optix plays a deeply conserved role in butterfly wing pattern development.
Wing shape allometry and aerodynamics in calopterygid damselflies: a comparative approach.
Outomuro, David; Adams, Dean C; Johansson, Frank
2013-06-07
Wing size and shape have important aerodynamic implications on flight performance. We explored how wing size was related to wing shape in territorial males of 37 taxa of the damselfly family Calopterygidae. Wing coloration was also included in the analyses because it is sexually and naturally selected and has been shown to be related to wing shape. We studied wing shape using both the non-dimensional radius of the second moment of wing area (RSM) and geometric morphometrics. Lower values of the RSM result in less energetically demanding flight and wider ranges of flight speed. We also re-analyzed previously published data on other damselflies and dragonflies. The RSM showed a hump-shaped relationship with wing size. However, after correcting for phylogeny using independent contrast, this pattern changed to a negative linear relationship. The basal genus of the study family, Hetaerina, was mainly driving that change. The obtained patterns were specific for the study family and differed from other damselflies and dragonflies. The relationship between the RSM and wing shape measured by geometric morphometrics was linear, but relatively small changes along the RSM axis can result in large changes in wing shape. Our results also showed that wing coloration may have some effect on RSM. We found that RSM showed a complex relationship with size in calopterygid damselflies, probably as a result of other selection pressures besides wing size per se. Wing coloration and specific behavior (e.g. courtship) are potential candidates for explaining the complexity. Univariate measures of wing shape such as RSM are more intuitive but lack the high resolution of other multivariate techniques such as geometric morphometrics. We suggest that the relationship between wing shape and size are taxa-specific and differ among closely-related insect groups.
Morpho peleides butterfly wing imprints as structural colour stamp.
Zobl, Sigrid; Salvenmoser, Willi; Schwerte, Thorsten; Gebeshuber, Ille C; Schreiner, Manfred
2016-02-02
This study presents the replication of a color-causing nanostructure based on the upper laminae of numerous cover scales of Morpho peleides butterfly wings and obtained solely by imprinting their upper-wing surfaces. Our results indicate that a simple casting technique using a novel integrated release agent can obtain a large positive replica using negative imprints via Polyvinylsiloxane. The developed method is low-tech and high-yield and is thus substantially easier and less expensive than previous methods. The microstructures were investigated with light microscopy, the nanostructures with both scanning and transmission electron microscopy, and the reflections with UV visible spectrometry. The influence of the release agent and the quality of the master stamp were determined by comparing measurements of the cover-scale sizes and their chromaticity values obtained by their images and with their positive imprints. The master stamp provided multiple positive replicas up to 3 cm(2) in just 1 h with structural coloration effects visible to the naked eye. Thus, the developed method proves the accuracy of the replicated nanostructure and its potential industrial application as a color-producing nanostamp.
An odorant congruent with a colour cue is selectively perceived in an odour mixture.
Arao, Mari; Suzuki, Maya; Katayama, Jun'ich; Akihiro, Yagi
2012-01-01
Odour identification can be influenced by colour cues. This study examined the mechanism underlying this colour context effect. We hypothesised that a specific odour component congruent with a colour would be selectively perceived in preference to another odour component in a binary odour mixture. We used a ratio estimation method under two colour conditions, a binary odour mixture (experiment 1) and single chemicals presented individually (experiment 2). Each colour was congruent with one of the odour components. Participants judged the perceived mixture ratio in each odour container on which a colour patch was pasted. An influence of colour was not observed when the odour stimulus did not contain the odour component congruent with the colour (experiment 2); however, the odour component congruent with the colour was perceived as more dominant when the odour stimulus did contain the colour-congruent odorant (experiment 1). This pattern indicates that a colour-congruent odour component is selectively perceived in an odour mixture. This finding suggests that colours can enhance the perceptual representation of the colour-associated component in an odour mixture.
The colour of domestication and the designer chicken
NASA Astrophysics Data System (ADS)
Sheppy, Andrew
2011-03-01
Colour is an important feature of most living organisms. In the wild, colour has great significance affecting the survival and reproductive success of the species. The environmental constraints which lead to the specific colours of birds and animals are very strong and individuals of novel colours tend not to survive. Under domestication, mankind has transformed all the species involved which have thus been freed from environmental pressures to a large extent. Early colour variants were mostly selected for utility reasons or religious practices. In more recent centuries colour varieties have been created purely for ornament and pleasure, fashion playing a surprisingly large part in their development. A bewildering array of colours and patterns can now be found in all our commensal species, especially the Domestic Fowl ( Gallus gallus domesticus).
Köhler, Günter; Samietz, Jörg; Schielzeth, Holger
2017-01-01
Many animals show altitudinal clines in size, shape and body colour. Increases in body size and reduction in the length of body appendices in colder habitats are usually attributed to improved heat conservation at lower surface-to-volume ratios (known as Bergmann's and Allen's rule, respectively). However, the patterns are more variable and sometimes reversed in small ectotherms that are affected by shortened growing seasons. Altitude can also affect colouration. The thermal melanism hypothesis predicts darker colours under cooler conditions because of a thermoregulatory advantage. Darker colours may also be favoured at high altitudes for reasons of UV protection or habitat-dependent crypsis. We studied altitudinal variation in morphology and colour in the colour-polymorphic meadow grasshopper Pseudochorthippus parallelus based on 563 individuals from 17 populations sampled between 450 and 2,500 m asl. Pronotum length did not change with altitude, while postfemur length decreased significantly in both sexes. Tegmen (forewing) length decreased in males, but not in females. The results indicate that while body size, as best quantified by pronotum length, was remarkably constant, extended appendices were reduced at high altitudes. The pattern thus follows Allen's rule, but neither Bergmann's nor converse Bergmann's rule. These results indicate that inference of converse Bergmann's rule based on measurements from appendices should be treated with some caution. Colour morph ratios showed significant changes in both sexes from lowland populations dominated by green individuals to high-altitude populations dominated by brown ones. The increase of brown morphs was particularly steep between 1,500 and 2,000 m asl. The results suggest shared control of colour in males and females and local adaptation along the altitudinal gradient following the predictions of the thermal melanism hypothesis. Interestingly, both patterns, the reduction of body appendices and the higher frequency of brown individuals, may be explained by a need for efficient thermoregulation under high-altitude conditions.
Schöneich, Stefan; Hedwig, Berthold
2012-01-01
The singing behavior of male crickets allows analyzing a central pattern generator (CPG) that was shaped by sexual selection for reliable production of species-specific communication signals. After localizing the essential ganglia for singing in Gryllus bimaculatus, we now studied the calling song CPG at the cellular level. Fictive singing was initiated by pharmacological brain stimulation. The motor pattern underlying syllables and chirps was recorded as alternating spike bursts of wing-opener and wing-closer motoneurons in a truncated wing nerve; it precisely reflected the natural calling song. During fictive singing, we intracellularly recorded and stained interneurons in thoracic and abdominal ganglia and tested their impact on the song pattern by intracellular current injections. We identified three interneurons of the metathoracic and first unfused abdominal ganglion that rhythmically de- and hyperpolarized in phase with the syllable pattern and spiked strictly before the wing-opener motoneurons. Depolarizing current injection in two of these opener interneurons caused additional rhythmic singing activity, which reliably reset the ongoing chirp rhythm. The closely intermeshing arborizations of the singing interneurons revealed the dorsal midline neuropiles of the metathoracic and three most anterior abdominal neuromeres as the anatomical location of singing pattern generation. In the same neuropiles, we also recorded several closer interneurons that rhythmically hyper- and depolarized in the syllable rhythm and spiked strictly before the wing-closer motoneurons. Some of them received pronounced inhibition at the beginning of each chirp. Hyperpolarizing current injection in the dendrite revealed postinhibitory rebound depolarization as one functional mechanism of central pattern generation in singing crickets. PMID:23170234
2013-01-01
Background Candidate genes for color pattern formation in butterfly wings have been known based on gene expression patterns since the 1990s, but their functions remain elusive due to a lack of a functional assay. Several methods of transferring and expressing a foreign gene in butterfly wings have been reported, but they have suffered from low success rates or low expression levels. Here, we developed a simple, practical method to efficiently deliver and express a foreign gene using baculovirus-mediated gene transfer in butterfly wings in vivo. Results A recombinant baculovirus containing a gene for green fluorescent protein (GFP) was injected into pupae of the blue pansy butterfly Junonia orithya (Nymphalidae). GFP fluorescence was detected in the pupal wings and other body parts of the injected individuals three to five days post-injection at various degrees of fluorescence. We obtained a high GFP expression rate at relatively high virus titers, but it was associated with pupal death before color pattern formation in wings. To reduce the high mortality rate caused by the baculovirus treatment, we administered an anti-gp64 antibody, which was raised against baculovirus coat protein gp64, to infected pupae after the baculovirus injection. This treatment greatly reduced the mortality rate of the infected pupae. GFP fluorescence was observed in pupal and adult wings and other body parts of the antibody-treated individuals at various degrees of fluorescence. Importantly, we obtained completely developed wings with a normal color pattern, in which fluorescent signals originated directly from scales or the basal membrane after the removal of scales. GFP fluorescence in wing tissues spatially coincided with anti-GFP antibody staining, confirming that the fluorescent signals originated from the expressed GFP molecules. Conclusions Our baculovirus-mediated gene transfer system with an anti-gp64 antibody is reasonably efficient, and it can be an invaluable tool to transfer, express, and functionally examine foreign genes in butterfly wings and also in other non-model insect systems. PMID:23522444
Interaction of a trailing vortex with an oscillating wing
NASA Astrophysics Data System (ADS)
McKenna, C.; Fishman, G.; Rockwell, D.
2018-01-01
A technique of particle image velocimetry is employed to characterize the flow structure of a trailing vortex incident upon the tip region of an oscillating wing (plate). The amplitude and velocity of the wing are nearly two orders of magnitude smaller than the wing chord and free stream velocity, respectively. Depending upon the outboard displacement of the incident vortex relative to the wing tip, distinctive patterns of upwash, downwash, and shed vorticity are observed. These patterns are a strong function of the phase of the wing motion during its oscillation cycle. At a given phase, the wing oscillation induces upwash that is reinforced by the upwash of the incident vortex, giving a maximum net upwash. Conversely, when these two origins of upwash counteract, rather than reinforce, one another during the oscillation cycle, the net upwash attains minimum value. Analogous interpretations hold for regions of maximum and minimum net downwash located outboard of the regions of upwash. The magnitude and scale of the vorticity shed from the tip of the wing are directly correlated with the net upwash, which takes different forms related to the outboard displacement of the incident vortex. As the location of the incident vortex is displaced towards the wing tip, both the maximum upwash and the maximum vorticity of the tip vortex initially increase and then decrease. For the limiting case where the incident vortex impinges directly upon the tip of the wing, there is no tip vortex or induced region of upwash. Furthermore, at small values of vortex displacement from the wing tip, the position of the incident vortex varies significantly from its nominal position during the oscillation cycle. All of the foregoing features are interpreted in conjunction with the flow topology in the form of streamlines and critical points, superposed on patterns of vorticity. It is shown that despite the small amplitude of the wing motion, the flow topology is fundamentally different at maximum positive and negative values of the velocity of the wing tip, that is, they are not symmetric.
Patterns of Variation in Teaching the Colour of Light to Primary 3 Students
ERIC Educational Resources Information Center
Ling, Lo Mun; Chik, Pakey; Pang, Ming Fai
2006-01-01
This paper shows how the patterns of variation created in the teaching were critical in helping a class of Primary 3 students in Hong Kong to learn about the colour of light, so that the students attained conceptual rather than procedural knowledge. A "Learning Study" approach was adopted, which is a Lesson Study grounded in a particular…
6. DETAIL OF MASONRY ON SOUTHWEST WING WALL. MASONRY ON ...
6. DETAIL OF MASONRY ON SOUTHWEST WING WALL. MASONRY ON WING WALLS IS LAID IN A RANDOM RUBBLE PATTERN. - Core Creek County Bridge, Spanning Core Creek, approximately 1 mile South of State Route 332 (Newtown Bypass), Newtown, Bucks County, PA
Whorfian effects on colour memory are not reliable.
Wright, Oliver; Davies, Ian R L; Franklin, Anna
2015-01-01
The Whorfian hypothesis suggests that differences between languages cause differences in cognitive processes. Support for this idea comes from studies that find that patterns of colour memory errors made by speakers of different languages align with differences in colour lexicons. The current study provides a large-scale investigation of the relationship between colour language and colour memory, adopting a cross-linguistic and developmental approach. Colour memory on a delayed matching-to-sample (XAB) task was investigated in 2 language groups with differing colour lexicons, for 3 developmental stages and 2 regions of colour space. Analyses used a Bayesian technique to provide simultaneous assessment of two competing hypotheses (H1-Whorfian effect present, H0-Whorfian effect absent). Results of the analyses consistently favoured H0. The findings suggest that Whorfian effects on colour memory are not reliable and that the importance of such effects should not be overestimated.
Jonauskaite, Domicele; Mohr, Christine; Antonietti, Jean-Philippe; Spiers, Peter M.; Althaus, Betty; Anil, Selin; Dael, Nele
2016-01-01
Humans like some colours and dislike others, but which particular colours and why remains to be understood. Empirical studies on colour preferences generally targeted most preferred colours, but rarely least preferred (disliked) colours. In addition, findings are often based on general colour preferences leaving open the question whether results generalise to specific objects. Here, 88 participants selected the colours they preferred most and least for three context conditions (general, interior walls, t-shirt) using a high-precision colour picker. Participants also indicated whether they associated their colour choice to a valenced object or concept. The chosen colours varied widely between individuals and contexts and so did the reasons for their choices. Consistent patterns also emerged, as most preferred colours in general were more chromatic, while for walls they were lighter and for t-shirts they were darker and less chromatic compared to least preferred colours. This meant that general colour preferences could not explain object specific colour preferences. Measures of the selection process further revealed that, compared to most preferred colours, least preferred colours were chosen more quickly and were less often linked to valenced objects or concepts. The high intra- and inter-individual variability in this and previous reports furthers our understanding that colour preferences are determined by subjective experiences and that most and least preferred colours are not processed equally. PMID:27022909
Jonauskaite, Domicele; Mohr, Christine; Antonietti, Jean-Philippe; Spiers, Peter M; Althaus, Betty; Anil, Selin; Dael, Nele
2016-01-01
Humans like some colours and dislike others, but which particular colours and why remains to be understood. Empirical studies on colour preferences generally targeted most preferred colours, but rarely least preferred (disliked) colours. In addition, findings are often based on general colour preferences leaving open the question whether results generalise to specific objects. Here, 88 participants selected the colours they preferred most and least for three context conditions (general, interior walls, t-shirt) using a high-precision colour picker. Participants also indicated whether they associated their colour choice to a valenced object or concept. The chosen colours varied widely between individuals and contexts and so did the reasons for their choices. Consistent patterns also emerged, as most preferred colours in general were more chromatic, while for walls they were lighter and for t-shirts they were darker and less chromatic compared to least preferred colours. This meant that general colour preferences could not explain object specific colour preferences. Measures of the selection process further revealed that, compared to most preferred colours, least preferred colours were chosen more quickly and were less often linked to valenced objects or concepts. The high intra- and inter-individual variability in this and previous reports furthers our understanding that colour preferences are determined by subjective experiences and that most and least preferred colours are not processed equally.
Sweet, Andrew D.; Chesser, R. Terry; Johnson, Kevin P.
2017-01-01
Host–parasite coevolutionary histories can differ among multiple groups of parasites associated with the same group of hosts. For example, parasitic wing and body lice (Insecta: Phthiraptera) of New World pigeons and doves (Aves: Columbidae) differ in their cophylogenetic patterns, with body lice exhibiting higher phylogenetic congruence with their hosts than wing lice. In this study, we focus on the wing and body lice of Australian phabine pigeons and doves to determine whether the patterns in New World pigeons and doves are consistent with those of pigeons and doves from other regions. Using molecular sequence data for most phabine species and their lice, we estimated phylogenetic trees for all three groups (pigeons and doves, wing lice and body lice), and compared the phabine (host) tree with both parasite trees using multiple cophylogenetic methods. We found a pattern opposite to that found for New World pigeons and doves, with Australian wing lice showing congruence with their hosts, and body lice exhibiting a lack of congruence. There are no documented records of hippoboscid flies associated with Australian phabines, thus these lice may lack the opportunity to disperse among host species by attaching to hippoboscid flies (phoresis), which could explain these patterns. However, additional sampling for flies is needed to confirm this hypothesis. Large differences in body size among phabine pigeons and doves may also help to explain the congruence of the wing lice with their hosts. It may be more difficult for wing lice than body lice to switch among hosts that vary more dramatically in size. The results from this study highlight how host–parasite coevolutionary histories can vary by region, and how local factors can shape the relationship.
Sweet, Andrew D; Chesser, R Terry; Johnson, Kevin P
2017-05-01
Host-parasite coevolutionary histories can differ among multiple groups of parasites associated with the same group of hosts. For example, parasitic wing and body lice (Insecta: Phthiraptera) of New World pigeons and doves (Aves: Columbidae) differ in their cophylogenetic patterns, with body lice exhibiting higher phylogenetic congruence with their hosts than wing lice. In this study, we focus on the wing and body lice of Australian phabine pigeons and doves to determine whether the patterns in New World pigeons and doves are consistent with those of pigeons and doves from other regions. Using molecular sequence data for most phabine species and their lice, we estimated phylogenetic trees for all three groups (pigeons and doves, wing lice and body lice), and compared the phabine (host) tree with both parasite trees using multiple cophylogenetic methods. We found a pattern opposite to that found for New World pigeons and doves, with Australian wing lice showing congruence with their hosts, and body lice exhibiting a lack of congruence. There are no documented records of hippoboscid flies associated with Australian phabines, thus these lice may lack the opportunity to disperse among host species by attaching to hippoboscid flies (phoresis), which could explain these patterns. However, additional sampling for flies is needed to confirm this hypothesis. Large differences in body size among phabine pigeons and doves may also help to explain the congruence of the wing lice with their hosts. It may be more difficult for wing lice than body lice to switch among hosts that vary more dramatically in size. The results from this study highlight how host-parasite coevolutionary histories can vary by region, and how local factors can shape the relationship. Copyright © 2017 Australian Society for Parasitology. All rights reserved.
2014-01-01
Background The colorful wing patterns of butterflies, a prime example of biodiversity, can change dramatically within closely related species. Wing pattern diversity is specifically present among papilionid butterflies. Whether a correlation between color and the evolution of these butterflies exists so far remained unsolved. Results We here investigate the Cattlehearts, Parides, a small Neotropical genus of papilionid butterflies with 36 members, the wings of which are marked by distinctly colored patches. By applying various physical techniques, we investigate the coloration toolkit of the wing scales. The wing scales contain two different, wavelength-selective absorbing pigments, causing pigmentary colorations. Scale ridges with multilayered lamellae, lumen multilayers or gyroid photonic crystals in the scale lumen create structural colors that are variously combined with these pigmentary colors. Conclusions The pigmentary and structural traits strongly correlate with the taxonomical distribution of Parides species. The experimental findings add crucial insight into the evolution of butterfly wing scales and show the importance of morphological parameter mapping for butterfly phylogenetics. PMID:25064167
Wu, Jun; Yu, Zhijing; Wang, Tao; Zhuge, Jingchang; Ji, Yue; Xue, Bin
2017-06-01
Airplane wing deformation is an important element of aerodynamic characteristics, structure design, and fatigue analysis for aircraft manufacturing, as well as a main test content of certification regarding flutter for airplanes. This paper presents a novel real-time detection method for wing deformation and flight flutter detection by using three-dimensional speckle image correlation technology. Speckle patterns whose positions are determined through the vibration characteristic of the aircraft are coated on the wing; then the speckle patterns are imaged by CCD cameras which are mounted inside the aircraft cabin. In order to reduce the computation, a matching technique based on Geodetic Systems Incorporated coded points combined with the classical epipolar constraint is proposed, and a displacement vector map for the aircraft wing can be obtained through comparing the coordinates of speckle points before and after deformation. Finally, verification experiments containing static and dynamic tests by using an aircraft wing model demonstrate the accuracy and effectiveness of the proposed method.
Otaki, Joji M
2008-07-01
A mechanistic understanding of the butterfly wing color-pattern determination can be facilitated by experimental pattern changes. Here I review physiologically induced color-pattern changes in nymphalid butterflies and their mechanistic and evolutionary implications. A type of color-pattern change can be elicited by elemental changes in size and position throughout the wing, as suggested by the nymphalid groundplan. These changes of pattern elements are bi-directional and bi-sided dislocation toward or away from eyespot foci and in both proximal and distal sides of the foci. The peripheral elements are dislocated even in the eyespot-less compartments. Anterior spots are more severely modified, suggesting the existence of an anterior-posterior gradient. In one species, eyespots are transformed into white spots with remnant-like orange scales, and such patterns emerge even at the eyespot-less "imaginary" foci. A series of these color-pattern modifications probably reveal "snap-shots" of a dynamic morphogenic signal due to heterochronic uncoupling between the signaling and reception steps. The conventional gradient model can be revised to account for these observed color-pattern changes.
Dynamic camouflage by Nassau groupers Epinephelus striatus on a Caribbean coral reef.
Watson, A C; Siemann, L A; Hanlon, R T
2014-11-01
This field study describes the camouflage pattern repertoire, associated behaviours and speed of pattern change of Nassau groupers Epinephelus striatus at Little Cayman Island, British West Indies. Three basic camouflaged body patterns were observed under natural conditions and characterized quantitatively. The mean speed of pattern change across the entire body was 4.44 s (range = 0.97-9.87 s); the fastest pattern change as well as contrast change within a fixed pattern occurred within 1 s. Aside from apparent defensive camouflage, E. striatus used camouflage offensively to approach crustacean or fish prey, and three successful predation events were recorded. Although animal camouflage is a widespread tactic, dynamic camouflage is relatively uncommon and has been studied rarely in marine teleosts under natural conditions. The rapid changes observed in E. striatus suggest direct neural control of some skin colouration elements, and comparative studies of functional morphology and behaviour of colour change in other coral-reef teleosts are likely to reveal new mechanisms and adaptations of dynamic colouration. © 2014 The Fisheries Society of the British Isles.
Digital colour management system for colour parameters reconstruction
NASA Astrophysics Data System (ADS)
Grudzinski, Karol; Lasmanowicz, Piotr; Assis, Lucas M. N.; Pawlicka, Agnieszka; Januszko, Adam
2013-10-01
Digital Colour Management System (DCMS) and its application to new adaptive camouflage system are presented in this paper. The DCMS is a digital colour rendering method which would allow for transformation of a real image into a set of colour pixels displayed on a computer monitor. Consequently, it can analyse pixels' colour which comprise images of the environment such as desert, semi-desert, jungle, farmland or rocky mountain in order to prepare an adaptive camouflage pattern most suited for the terrain. This system is described in present work as well as the use the subtractive colours mixing method to construct the real time colour changing electrochromic window/pixel (ECD) for camouflage purpose. The ECD with glass/ITO/Prussian Blue(PB)/electrolyte/CeO2-TiO2/ITO/glass configuration was assembled and characterized. The ECD switched between green and yellow after +/-1.5 V application and the colours have been controlled by Digital Colour Management System and described by CIE LAB parameters.
Rogers, Timothy T; Graham, Kim S; Patterson, Karalyn
2015-09-01
To investigate how basic aspects of perception are shaped by acquired knowledge about the world, we assessed colour perception and cognition in patients with semantic dementia (SD), a disorder that progressively erodes conceptual knowledge. We observed a previously undocumented pattern of impairment to colour perception and cognition characterized by: (i) a normal ability to discriminate between only subtly different colours but an impaired ability to group different colours into categories, (ii) normal perception and memory for the colours red, green, and blue but impaired perception and memory for colours lying between these regions of a fully-saturated and luminant spectrum, and (iii) normal naming of polar colours in the opponent-process colour system (red, green, blue, yellow, white, and black) but impaired naming of other basic colours (brown, gray, pink, and orange). The results suggest that fundamental aspects of perception can be shaped by acquired knowledge about the world, but only within limits. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.
Semantic impairment disrupts perception, memory, and naming of secondary but not primary colours.
Rogers, Timothy T.; Graham, Kim S.; Patterson, Karalyn
2015-01-01
To investigate how basic aspects of perception are shaped by acquired knowledge about the world, we assessed colour perception and cognition in patients with semantic dementia (SD), a disorder that progressively erodes conceptual knowledge. We observed a previously undocumented pattern of impairment to colour perception and cognition characterized by: (i) a normal ability to discriminate between only subtly different colours but an impaired ability to group different colours into categories, (ii) normal perception and memory for the colours red, green, and blue but impaired perception and memory for colours lying between these regions of a fully-saturated and luminant spectrum, and (iii) normal naming of polar colours in the opponent-process colour system (red, green, blue, yellow, white, and black) but impaired naming of other basic colours (brown, gray, pink, and orange). The results suggest that fundamental aspects of perception can be shaped by acquired knowledge about the world, but only within limits. PMID:25637227
Semantic impairment disrupts perception, memory, and naming of secondary but not primary colours.
Rogers, Timothy T; Graham, Kim S; Patterson, Karalyn
2015-04-01
To investigate how basic aspects of perception are shaped by acquired knowledge about the world, we assessed colour perception and cognition in patients with semantic dementia (SD), a disorder that progressively erodes conceptual knowledge. We observed a previously undocumented pattern of impairment to colour perception and cognition characterized by: (i) a normal ability to discriminate between only subtly different colours but an impaired ability to group different colours into categories, (ii) normal perception and memory for the colours red, green, and blue but impaired perception and memory for colours lying between these regions of a fully-saturated and luminant spectrum, and (iii) normal naming of polar colours in the opponent-process colour system (red, green, blue, yellow, white, and black) but impaired naming of other basic colours (brown, gray, pink, and orange). The results suggest that fundamental aspects of perception can be shaped by acquired knowledge about the world, but only within limits. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.
NASA Astrophysics Data System (ADS)
Pérez i de Lanuza, Guillem; Font, Enrique; Carretero, Miguel Ángel
2016-10-01
Previous work with a colour polymorphic population of Podarcis muralis (Lacertidae) revealed that lizards pair by ventral colour, favouring the same colour (i.e. homomorphic) pairs. Such assortative pairing, which probably results in colour assortative mating, can have consequences for the genetic structure of the population and potentially promote speciation. The population previously studied, located in the Pyrenees, encompasses white, yellow and orange animals, as well as intermediate white-orange and yellow-orange morphs. However, other Pyrenean populations of P. muralis have less ventral colour morphs. Our aim in this study is to test the generality of the assortative colour pairing system, extending our previous analyses to populations with different morph compositions and frequencies. The results show that the assortative pattern of pairing is similar in all the populations analysed and, hence, independent of morph composition and not restricted to pentamorphic populations. This suggests that assortative pairing by colour is a general phenomenon for colour polymorphic populations of P. muralis.
Evolution of antero‐posterior patterning of the limb: Insights from the chick
2017-01-01
Summary The developing limbs of chicken embryos have served as pioneering models for understanding pattern formation for over a century. The ease with which chick wing and leg buds can be experimentally manipulated, while the embryo is still in the egg, has resulted in the discovery of important developmental organisers, and subsequently, the signals that they produce. Sonic hedgehog (Shh) is produced by mesenchyme cells of the polarizing region at the posterior margin of the limb bud and specifies positional values across the antero‐posterior axis (the axis running from the thumb to the little finger). Detailed experimental embryology has revealed the fundamental parameters required to specify antero‐posterior positional values in response to Shh signaling in chick wing and leg buds. In this review, the evolution of the avian wing and leg will be discussed in the broad context of tetrapod paleontology, and more specifically, ancestral theropod dinosaur paleontology. How the parameters that dictate antero‐posterior patterning could have been modulated to produce the avian wing and leg digit patterns will be considered. Finally, broader speculations will be made regarding what the antero‐posterior patterning of chick limbs can tell us about the evolution of other digit patterns, including those that were found in the limbs of the earliest tetrapods. PMID:28734068
Duarte, Rafael C; Stevens, Martin; Flores, Augusto A V
2016-10-18
Colour and shape polymorphisms are important features of many species and may allow individuals to exploit a wider array of habitats, including through behavioural differences among morphs. In addition, differences among individuals in behaviour and morphology may reflect different strategies, for example utilising different approaches to camouflage. Hippolyte obliquimanus is a small shrimp species inhabiting different shallow-water vegetated habitats. Populations comprise two main morphs: homogeneous shrimp of variable colour (H) and transparent individuals with coloured stripes (ST). These morphs follow different distribution patterns between their main algal habitats; the brown weed Sargassum furcatum and the pink-red weed Galaxaura marginata. In this study, we first investigated morph-specific colour change and habitat selection, as mechanisms underlying camouflage and spatial distribution patterns in nature. Then, we examined habitat fidelity, mobility, and morphological traits, further indicating patterns of habitat use. H shrimp are capable of changing colour in just a few days towards their algal background, achieving better concealment in the more marginal, and less preferred, red weed habitat. Furthermore, laboratory trials showed that habitat fidelity is higher for H shrimp, whereas swimming activity is higher for the ST morph, aligned to morphological evidence indicating these two morphs comprise a more benthic (H) and a more pelagic (ST) life-style, respectively. Results suggest that H shrimp utilise a camouflage strategy specialised to a limited number of backgrounds at any one time, whereas ST individuals comprise a phenotype with more generalist camouflage (transparency) linked to a more generalist background utilisation. The coexistence within a population of distinct morphotypes with apparently alternative strategies of habitat use and camouflage may reflect differential responses to substantial seasonal changes in macroalgal cover. Our findings also demonstrate how colour change, behaviour, morphology, and background use all interact in achieving camouflage.
Carotenoid-based bill colour is an integrative signal of multiple parasite infection in blackbird
NASA Astrophysics Data System (ADS)
Biard, Clotilde; Saulnier, Nicolas; Gaillard, Maria; Moreau, Jérôme
2010-11-01
In the study of parasite-mediated sexual selection, there has been controversial evidence for the prediction that brighter males should have fewer parasites. Most of these studies have focused on one parasite species. Our aim was to investigate the expression of carotenoid-based coloured signals in relation to patterns of multiple parasite infections, to determine whether colour reflects parasite load of all parasite species, or whether different relationships might be found when looking at each parasite species independently. We investigated the relationship between bill colour, body mass and plasma carotenoids and parasite load (feather chewing lice, blood parasite Plasmodium sp., intestinal parasites cestodes and coccidia) in the blackbird ( Turdus merula). Bill colour on its own appeared to be a poor predictor of parasite load when investigating its relationships with individual parasite species. Variation in parasite intensities at the community level was summarised using principal component analysis to derive synthetic indexes of relative parasite species abundance and absolute parasite load. The relative abundance of parasite species was strongly related to bill colour, plasma carotenoid levels and body mass: birds with relatively more cestodes and chewing lice and relatively less Plasmodium and coccidia had a more colourful bill, circulated more carotenoids and were heavier. These results suggest that bill colour more accurately reflects the relative intensities of parasite infection, rather than one-by-one relationships with parasites or absolute parasite burden. Investigating patterns of multiple parasite infection would thus improve our understanding of the information conveyed by coloured signals on parasite load.
The marginal band system in nymphalid butterfly wings.
Taira, Wataru; Kinjo, Seira; Otaki, Joji M
2015-01-01
Butterfly wing color patterns are highly complex and diverse, but they are believed to be derived from the nymphalid groundplan, which is composed of several color pattern systems. Among these pattern systems, the marginal band system, including marginal and submarginal bands, has rarely been studied. Here, we examined the color pattern diversity of the marginal band system among nymphalid butterflies. Marginal and submarginal bands are usually expressed as a pair of linear bands aligned with the wing margin. However, a submarginal band can be expressed as a broken band, an elongated oval, or a single dot. The marginal focus, usually a white dot at the middle of a wing compartment along the wing edge, corresponds to the pupal edge spot, one of the pupal cuticle spots that signify the locations of color pattern organizing centers. A marginal band can be expressed as a semicircle, an elongated oval, or a pair of eyespot-like structures, which suggest the organizing activity of the marginal focus. Physical damage at the pupal edge spot leads to distal dislocation of the submarginal band in Junonia almana and in Vanessa indica, suggesting that the marginal focus functions as an organizing center for the marginal band system. Taken together, we conclude that the marginal band system is developmentally equivalent to other symmetry systems. Additionally, the marginal band is likely a core element and the submarginal band a paracore element of the marginal band system, and both bands are primarily specified by the marginal focus organizing center.
Appel, Esther; Heepe, Lars; Lin, Chung-Ping; Gorb, Stanislav N
2015-01-01
Dragonflies count among the most skilful of the flying insects. Their exceptional aerodynamic performance has been the subject of various studies. Morphological and kinematic investigations have showed that dragonfly wings, though being rather stiff, are able to undergo passive deformation during flight, thereby improving the aerodynamic performance. Resilin, a rubber-like protein, has been suggested to be a key component in insect wing flexibility and deformation in response to aerodynamic loads, and has been reported in various arthropod locomotor systems. It has already been found in wing vein joints, connecting longitudinal veins to cross veins, and was shown to endow the dragonfly wing with chordwise flexibility, thereby most likely influencing the dragonfly’s flight performance. The present study revealed that resilin is not only present in wing vein joints, but also in the internal cuticle layers of veins in wings of Sympetrum vulgatum (SV) and Matrona basilaris basilaris (MBB). Combined with other structural features of wing veins, such as number and thickness of cuticle layers, material composition, and cross-sectional shape, resilin most probably has an effect on the vein′s material properties and the degree of elastic deformations. In order to elucidate the wing vein ultrastructure and the exact localisation of resilin in the internal layers of the vein cuticle, the approaches of bright-field light microscopy, wide-field fluorescence microscopy, confocal laser-scanning microscopy, scanning electron microscopy and transmission electron microscopy were combined. Wing veins were shown to consist of up to six different cuticle layers and a single row of underlying epidermal cells. In wing veins of MBB, the latter are densely packed with light-scattering spheres, previously shown to produce structural colours in the form of quasiordered arrays. Longitudinal and cross veins differ significantly in relative thickness of exo- and endocuticle, with cross veins showing a much thicker exocuticle. The presence of resilin in the unsclerotised endocuticle suggests its contribution to an increased energy storage and material flexibility, thus to the prevention of vein damage. This is especially important in the highly stressed longitudinal veins, which have much lower possibility to yield to applied loads with the aid of vein joints, as the cross veins do. These results may be relevant not only for biologists, but may also contribute to optimise the design of micro-air vehicles. PMID:26352411
An analysis of aircrew communication patterns and content
NASA Astrophysics Data System (ADS)
Oser, Randall L.; Prince, Carolyn; Morgan, Ben B., Jr.; Simpson, Steven S.
1991-09-01
The findings reported here represent a detailed analysis of tactical rotary-wing aircrew communication patterns and content. This research is part of an extensive effort to investigate the nature of tactical aircrew coordination and to develop effective mission-oriented aircrew coordination training. The primary objectives of this research were to answer the following questions: (1) What specific communication patterns and content are demonstrated by different helicopter crewmembers (i.e., Helicopter Aircraft Commander - HAC and Helicopter 2nd Pilot - H2P)? (2) Do tactical aircrew communication patterns and content vary as a function of the performance demands and requirements of different flight conditions (i.e., routine and non-routine)? (3) Are the communication patterns and content of more effective aircrews different from those of less effective aircrews? (4) What similarities exist between the communication patterns and content of military rotary-wing aircrews and commercial fixed-wing aircrews? and (5) Can the results of the communication analyses have an impact on aircrew coordination training?
Torquato, Libéria Souza; Mattos, Daniel; Matta, Bruna Palma; Bitner-Mathé, Blanche Christine
2014-12-01
Organ shape evolves through cross-generational changes in developmental patterns at cellular and/or tissue levels that ultimately alter tissue dimensions and final adult proportions. Here, we investigated the cellular basis of an artificially selected divergence in the outline shape of Drosophila melanogaster wings, by comparing flies with elongated or rounded wing shapes but with remarkably similar wing sizes. We also tested whether cellular plasticity in response to developmental temperature was altered by such selection. Results show that variation in cellular traits is associated with wing shape differences, and that cell number may play an important role in wing shape response to selection. Regarding the effects of developmental temperature, a size-related plastic response was observed, in that flies reared at 16 °C developed larger wings with larger and more numerous cells across all intervein regions relative to flies reared at 25 °C. Nevertheless, no conclusive indication of altered phenotypic plasticity was found between selection strains for any wing or cellular trait. We also described how cell area is distributed across different intervein regions. It follows that cell area tends to decrease along the anterior wing compartment and increase along the posterior one. Remarkably, such pattern was observed not only in the selected strains but also in the natural baseline population, suggesting that it might be canalized during development and was not altered by the intense program of artificial selection for divergent wing shapes.
Patterned mist deposition of tri-colour CdSe/ZnS quantum dot films toward RGB LED devices
NASA Astrophysics Data System (ADS)
Pickering, S.; Kshirsagar, A.; Ruzyllo, J.; Xu, J.
2012-06-01
In this experiment a technique of mist deposition was explored as a way to form patterned ultra-thin-films of CdSe/ZnS core/shell nanocrystalline quantum dots using colloidal solutions. The objective of this study was to investigate the feasibility of mist deposition as a patterning method for creating multicolour quantum dot light emitting diodes. Mist deposition was used to create three rows of quantum dot light emitting diodes on a single device with each row having a separate colour. The colours chosen were red, green and yellow with corresponding peak wavelengths of 620 nm, 558 nm, and 587 nm. The results obtained from this experiment show that it is possible to create multicolour devices on a single substrate. The peak brightnesses obtained in this experiment for the red, green, and yellow were 508 cd/m, 507 cd/m, and 665 cd/m, respectively. The similar LED brightness is important in display technologies using colloidal quantum dots in a precursor solution to ensure one colour does not dominate the emitted spectrum. Results obtained in-terms of brightness were superior to those achieved with inkjet deposition. This study has shown that mist deposition is a viable method for patterned deposition applied to quantum dot light emitting diode display technologies.
NASA Astrophysics Data System (ADS)
Kolejka, Jaromír; Plánka, Ladislav
2018-02-01
The use of unmanned aerial vehicles in a number of fields of human activity represents the second wave of interest in the development and application of automated flying remotely controlled machines to collect aerial data. The former Czechoslovakia was one of the world's leading countries in the 1960s-1990s in terms of an unprecedented boom of development and applications of flying machines for imaging the Earth's surface. The reasons for their use were the same as today. Since the mid-1960s, radio-controlled (RC) models of aircraft carrying various types of photographic cameras have been developed. In spite of many administrative constraints, kite helicopters, fixed-wing aircrafts, and rogallo-wing aircrafts gradually began to be used in research. The photographic cameras for 1, 2, 4, and 6 bands carried by RC-aircraft models were developed in cooperation with leading Czech companies. These cameras used colour and black-and-white films, positive and negative films, and panchromatic, spectrozonal, and multispectral films. The general methodology and the RC-aircraft model application rules were both developed. The dominant processing method was the visual image interpretation, with and without the assistance of instruments. Optical and digital image mixers were used in Czechoslovakia, so it was possible to use natural and unnatural colour composites to highlight the studied phenomenon. A number of examples of the techniques and the scientific applications are presented in the article.
Inkjet printing-based volumetric display projecting multiple full-colour 2D patterns
NASA Astrophysics Data System (ADS)
Hirayama, Ryuji; Suzuki, Tomotaka; Shimobaba, Tomoyoshi; Shiraki, Atsushi; Naruse, Makoto; Nakayama, Hirotaka; Kakue, Takashi; Ito, Tomoyoshi
2017-04-01
In this study, a method to construct a full-colour volumetric display is presented using a commercially available inkjet printer. Photoreactive luminescence materials are minutely and automatically printed as the volume elements, and volumetric displays are constructed with high resolution using easy-to-fabricate means that exploit inkjet printing technologies. The results experimentally demonstrate the first prototype of an inkjet printing-based volumetric display composed of multiple layers of transparent films that yield a full-colour three-dimensional (3D) image. Moreover, we propose a design algorithm with 3D structures that provide multiple different 2D full-colour patterns when viewed from different directions and experimentally demonstrate prototypes. It is considered that these types of 3D volumetric structures and their fabrication methods based on widely deployed existing printing technologies can be utilised as novel information display devices and systems, including digital signage, media art, entertainment and security.
Hypothesis testing in evolutionary developmental biology: a case study from insect wings.
Jockusch, E L; Ober, K A
2004-01-01
Developmental data have the potential to give novel insights into morphological evolution. Because developmental data are time-consuming to obtain, support for hypotheses often rests on data from only a few distantly related species. Similarities between these distantly related species are parsimoniously inferred to represent ancestral aspects of development. However, with limited taxon sampling, ancestral similarities in developmental patterning can be difficult to distinguish from similarities that result from convergent co-option of developmental networks, which appears to be common in developmental evolution. Using a case study from insect wings, we discuss how these competing explanations for similarity can be evaluated. Two kinds of developmental data have recently been used to support the hypothesis that insect wings evolved by modification of limb branches that were present in ancestral arthropods. This support rests on the assumption that aspects of wing development in Drosophila, including similarities to crustacean epipod patterning, are ancestral for winged insects. Testing this assumption requires comparisons of wing development in Drosophila and other winged insects. Here we review data that bear on this assumption, including new data on the functions of wingless and decapentaplegic during appendage allocation in the red flour beetle Tribolium castaneum.
Live Cell Imaging of Butterfly Pupal and Larval Wings In Vivo
Ohno, Yoshikazu; Otaki, Joji M.
2015-01-01
Butterfly wing color patterns are determined during the late larval and early pupal stages. Characterization of wing epithelial cells at these stages is thus critical to understand how wing structures, including color patterns, are determined. Previously, we successfully recorded real-time in vivo images of developing butterfly wings over time at the tissue level. In this study, we employed similar in vivo fluorescent imaging techniques to visualize developing wing epithelial cells in the late larval and early pupal stages 1 hour post-pupation. Both larval and pupal epithelial cells were rich in mitochondria and intracellular networks of endoplasmic reticulum, suggesting high metabolic activities, likely in preparation for cellular division, polyploidization, and differentiation. Larval epithelial cells in the wing imaginal disk were relatively large horizontally and tightly packed, whereas pupal epithelial cells were smaller and relatively loosely packed. Furthermore, larval cells were flat, whereas pupal cells were vertically elongated as deep as 130 μm. In pupal cells, many endosome-like or autophagosome-like structures were present in the cellular periphery down to approximately 10 μm in depth, and extensive epidermal feet or filopodia-like processes were observed a few micrometers deep from the cellular surface. Cells were clustered or bundled from approximately 50 μm in depth to deeper levels. From 60 μm to 80 μm in depth, horizontal connections between these clusters were observed. The prospective eyespot and marginal focus areas were resistant to fluorescent dyes, likely because of their non-flat cone-like structures with a relatively thick cuticle. These in vivo images provide important information with which to understand processes of epithelial cell differentiation and color pattern determination in butterfly wings. PMID:26107809
Live Cell Imaging of Butterfly Pupal and Larval Wings In Vivo.
Ohno, Yoshikazu; Otaki, Joji M
2015-01-01
Butterfly wing color patterns are determined during the late larval and early pupal stages. Characterization of wing epithelial cells at these stages is thus critical to understand how wing structures, including color patterns, are determined. Previously, we successfully recorded real-time in vivo images of developing butterfly wings over time at the tissue level. In this study, we employed similar in vivo fluorescent imaging techniques to visualize developing wing epithelial cells in the late larval and early pupal stages 1 hour post-pupation. Both larval and pupal epithelial cells were rich in mitochondria and intracellular networks of endoplasmic reticulum, suggesting high metabolic activities, likely in preparation for cellular division, polyploidization, and differentiation. Larval epithelial cells in the wing imaginal disk were relatively large horizontally and tightly packed, whereas pupal epithelial cells were smaller and relatively loosely packed. Furthermore, larval cells were flat, whereas pupal cells were vertically elongated as deep as 130 μm. In pupal cells, many endosome-like or autophagosome-like structures were present in the cellular periphery down to approximately 10 μm in depth, and extensive epidermal feet or filopodia-like processes were observed a few micrometers deep from the cellular surface. Cells were clustered or bundled from approximately 50 μm in depth to deeper levels. From 60 μm to 80 μm in depth, horizontal connections between these clusters were observed. The prospective eyespot and marginal focus areas were resistant to fluorescent dyes, likely because of their non-flat cone-like structures with a relatively thick cuticle. These in vivo images provide important information with which to understand processes of epithelial cell differentiation and color pattern determination in butterfly wings.
Male ruff colour as a rank signal in a monomorphic-horned mammal: behavioural correlates
NASA Astrophysics Data System (ADS)
Lovari, S.; Fattorini, N.; Boesi, R.; Bocci, A.
2015-08-01
Coexistence of individuals within a social group is possible through the establishment of a hierarchy. Social dominance is achieved through aggressive interactions, and, in wild sheep and goats, it is related mainly to age, body size and weapon size as rank signals. Adult male Himalayan tahr are much larger than females and subadult males. They have a prominent neck ruff, ranging in colour from yellow (5.5-9.5 years old, i.e. young adults, golden males) to brown (7.5-14.5 years old, i.e. older individuals, pale and dark brown males), with golden males being the most dominant. We investigated the social behaviour of male tahr and analysed the relationships between ruff colour, courtship and agonistic behaviour patterns during the rut. Colour classes varied in their use of several behaviour patterns (male dominance: approach, stare, horning vegetation; courtship: low stretch, naso- genital contact, rush). Golden-ruffed males used more threats than darker ones. Pale brown and dark brown males addressed threats significantly more often to males of lower or their own colour classes, respectively, whereas golden ones addressed threats to all colour classes, including their own. The courtship of dominant males was characterised by the assertive rush, whereas that of subordinates did not. Ruff colour of male Himalayan tahr may have evolved as a rank signal, homologous to horn size in wild sheep and goats.
Ramey, Andrew M.; Poulson, Rebecca L.; González-Reiche, Ana S.; Wilcox, Benjamin R.; Walther, Patrick; Link, Paul; Carter, Deborah L.; Newsome, George M.; Müller, Maria L.; Berghaus, Roy D.; Perez, Daniel R.; Hall, Jeffrey S.; Stallknecht, David E.
2014-01-01
Seasonal dynamics of influenza A viruses (IAVs) are driven by host density and population immunity. Through an analysis of subtypic data for IAVs isolated from Blue-winged Teal (Anas discors), we present evidence for seasonal patterns in the relative abundance of viral subtypes in spring and summer/autumn.
Fukutomi, Yuichi; Matsumoto, Keiji; Agata, Kiyokazu; Funayama, Noriko; Koshikawa, Shigeyuki
2017-06-01
Various organisms have color patterns on their body surfaces, and these color patterns are thought to contribute to physiological regulation, communication with conspecifics, and signaling with the environment. An adult fly of Drosophila guttifera (Insecta: Diptera: Drosophilidae) has melanin pigmentation patterns on its body and wings. Though D. guttifera has been used for research into color pattern formation, how its pupal development proceeds and when the pigmentation starts have not been well studied. In this study, we defined the pupal stages of D. guttifera and measured the pigment content of wing spots from the pupal period to the period after eclosion. Using a transgenic line which carries eGFP connected with an enhancer of yellow, a gene necessary for melanin synthesis, we analyzed the timing at which the yellow enhancer starts to drive eGFP. We also analyzed the distribution of Yellow-producing cells, as indicated by the expression of eGFP during pupal and young adult periods. The results suggested that Yellow-producing cells were removed from wings within 3 h after eclosion, and wing pigmentation continued without epithelial cells. Furthermore, the results of vein cutting experiments showed that the transport of melanin precursors through veins was necessary for wing pigmentation. These results showed the importance of melanin precursors transported through veins and of extracellular factors which were secreted from epithelial cells and left in the cuticle.
Garcia, Jair E; Rohr, Detlef; Dyer, Adrian G
2013-11-15
Colour patterns displayed by animals may result from the balance of the opposing requirements of sexual selection through display and natural selection through camouflage. Currently, little is known about the possibility of the dual purpose of an animal colour pattern in the UV region of the spectrum, which is potentially perceivable by both predators and conspecifics for detection or communication purposes. Here, we implemented linearised digital UV photography to characterise and quantify the colour pattern of an endemic Australian Agamid lizard classically regarded as monomorphic when considering data from the visible region of the spectrum. Our results indicate a widespread presence of UV elements across the entire body of the lizards and these patterns vary significantly in intensity, size and frequency between sexes. These results were modelled considering either lizard or avian visual characteristics, revealing that UV reflectance represents a trade-off between the requirements of sexual displaying to conspecifics and concealment from avian predators.
2015-01-01
Geographical patterns in body size have been described across a wide range of species, leading to the development of a series of fundamental biological rules. However, shape variables are less well-described despite having substantial consequences for organism performance. Wing aspect ratio (AR) has been proposed as a key shape parameter that determines function in flying animals, with high AR corresponding to longer, thinner wings that promote high manoeuvrability, low speed flight, and low AR corresponding to shorter, broader wings that promote high efficiency long distance flight. From this principle it might be predicted that populations living in cooler areas would exhibit low AR wings to compensate for reduced muscle efficiency at lower temperatures. I test this hypothesis using the riverine damselfly, Calopteryx maculata, sampled from 34 sites across its range margin in North America. Nine hundred and seven male specimens were captured from across the 34 sites (mean = 26.7 ± 2.9 SE per site), dissected and measured to quantify the area and length of all four wings. Geometric morphometrics were employed to investigate geographical variation in wing shape. The majority of variation in wing shape involved changes in wing aspect ratio, confirmed independently by geometric morphometrics and wing measurements. There was a strong negative relationship between wing aspect ratio and the maximum temperature of the warmest month which varies from west-east in North America, creating a positive relationship with longitude. This pattern suggests that higher aspect ratio may be associated with areas in which greater flight efficiency is required: regions of lower temperatures during the flight season. I discuss my findings in light of research of the functional ecology of wing shape across vertebrate and invertebrate taxa. PMID:26336648
Johnson, Haley; Solensky, Michelle J.; Satterfield, Dara A.; Davis, Andrew K.
2014-01-01
In animals with complex life cycles, all resources needed to form adult tissues are procured at the larval stage. For butterflies, the proper development of wings involves synthesizing tissue during metamorphosis based on the raw materials obtained by larvae. Similarly, manufacture of pigment for wing scales also requires resources acquired by larvae. We conducted an experiment to test the effects of food deprivation in the larval stage on multiple measures of adult wing morphology and coloration of monarch butterflies (Danaus plexippus), a species in which long-distance migration makes flight efficiency critical. In a captive setting, we restricted food (milkweed) from late-stage larvae for either 24 hrs or 48 hrs, then after metamorphosis we used image analysis methods to measure forewing surface area and elongation (length/width), which are both important for migration. We also measured the brightness of orange pigment and the intensity of black on the wing. There were correlations between several wing features, including an unexpected association between wing elongation and melanism, which will require further study to fully understand. The clearest effect of food restriction was a reduction in adult wing size in the high stress group (by approximately 2%). Patterns observed for other wing traits were ambiguous: monarchs in the low stress group (but not the high) had less elongated and paler orange pigmentation. There was no effect on wing melanism. Although some patterns obtained in this study were unclear, our results concerning wing size have direct bearing on the monarch migration. We show that if milkweed is limited for monarch larvae, their wings become stunted, which could ultimately result in lower migration success. PMID:24695643
Johnson, Haley; Solensky, Michelle J; Satterfield, Dara A; Davis, Andrew K
2014-01-01
In animals with complex life cycles, all resources needed to form adult tissues are procured at the larval stage. For butterflies, the proper development of wings involves synthesizing tissue during metamorphosis based on the raw materials obtained by larvae. Similarly, manufacture of pigment for wing scales also requires resources acquired by larvae. We conducted an experiment to test the effects of food deprivation in the larval stage on multiple measures of adult wing morphology and coloration of monarch butterflies (Danaus plexippus), a species in which long-distance migration makes flight efficiency critical. In a captive setting, we restricted food (milkweed) from late-stage larvae for either 24 hrs or 48 hrs, then after metamorphosis we used image analysis methods to measure forewing surface area and elongation (length/width), which are both important for migration. We also measured the brightness of orange pigment and the intensity of black on the wing. There were correlations between several wing features, including an unexpected association between wing elongation and melanism, which will require further study to fully understand. The clearest effect of food restriction was a reduction in adult wing size in the high stress group (by approximately 2%). Patterns observed for other wing traits were ambiguous: monarchs in the low stress group (but not the high) had less elongated and paler orange pigmentation. There was no effect on wing melanism. Although some patterns obtained in this study were unclear, our results concerning wing size have direct bearing on the monarch migration. We show that if milkweed is limited for monarch larvae, their wings become stunted, which could ultimately result in lower migration success.
Fine structures of wing scales in Sasakia charonda butterflies as photonic crystals.
Matejková-Plskova, J; Shiojiri, S; Shiojiri, M
2009-11-01
We investigate the microstructure of scales in the wings of male Sasakia charonda charonda butterflies by scanning electron microscopy with the aid of optical microscopy. Six types of scales are identified: B1, W1 and R1 in brown background yellow spots and red spots, respectively; B2 in iridescent purple-blue and W2 in white pearl, both of which characterize the male and B3 in the wing edges. The B1, W1 and R1 scales are almost the same in structure and the B2 and W2 scales are almost the same. The difference among the B, W and R scales is in species and content of pigment. The B1, W1 and R1 scales have only two layers of cuticle lapped on the ridges. In contrast with them, the B2 and W2 scales have seven multilayers of cuticle piled on the ridge. The multiple interference of light that occurs among these cuticle layers, spaced with air layers, generates the significant iridescence of the B2 and W2 scales. Thus, the characteristic purple-blue of the male wings is ascribed to the combination of the structural and chemical colouration in the B2 scales with melanin. The photonic crystals of these scales may be applicable to fine light manipulators such as reflection elements in laser diodes. B3 has many holes between the ridges and no multilayers of cuticle on the ridges. These structures may play any role in aerodynamically easy flight and/or in drainage of wet wings.
Ito, S.; Wakamatsu, K.; Goral, T.; Edwards, N. P.; Wogelius, R. A.; Henkel, T.; de Oliveira, L. F. C.; Maia, L. F.; Strekopytov, S.; Speiser, D. I.; Marsden, J. T.
2016-01-01
Colour and pattern are key traits with important roles in camouflage, warning and attraction. Ideally, in order to begin to understand the evolution and ecology of colour in nature, it is important to identify and, where possible, fully characterise pigments using biochemical methods. The phylum Mollusca includes some of the most beautiful exemplars of biological pigmentation, with the vivid colours of sea shells particularly prized by collectors and scientists alike. Biochemical studies of molluscan shell colour were fairly common in the last century, but few of these studies have been confirmed using modern methods and very few shell pigments have been fully characterised. Here, we use modern chemical and multi-modal spectroscopic techniques to identify two porphyrin pigments and eumelanin in the shell of marine snails Clanculus pharaonius and C margaritarius. The same porphyrins were also identified in coloured foot tissue of both species. We use high performance liquid chromatography (HPLC) to show definitively that these porphyrins are uroporphyrin I and uroporphyrin III. Evidence from confocal microscopy analyses shows that the distribution of porphyrin pigments corresponds to the striking pink-red of C. pharaonius shells, as well as pink-red dots and lines on the early whorls of C. margaritarius and yellow-brown colour of later whorls. Additional HPLC results suggest that eumelanin is likely responsible for black spots. We refer to the two differently coloured porphyrin pigments as trochopuniceus (pink-red) and trochoxouthos (yellow-brown) in order to distinguish between them. Trochopuniceus and trochoxouthos were not found in the shell of a third species of the same superfamily, Calliostoma zizyphinum, despite its superficially similar colouration, suggesting that this species has different shell pigments. These findings have important implications for the study of colour and pattern in molluscs specifically, but in other taxa more generally, since this study shows that homology of visible colour cannot be assumed without identification of pigments. PMID:27367426
Williams, S T; Ito, S; Wakamatsu, K; Goral, T; Edwards, N P; Wogelius, R A; Henkel, T; de Oliveira, L F C; Maia, L F; Strekopytov, S; Jeffries, T; Speiser, D I; Marsden, J T
2016-01-01
Colour and pattern are key traits with important roles in camouflage, warning and attraction. Ideally, in order to begin to understand the evolution and ecology of colour in nature, it is important to identify and, where possible, fully characterise pigments using biochemical methods. The phylum Mollusca includes some of the most beautiful exemplars of biological pigmentation, with the vivid colours of sea shells particularly prized by collectors and scientists alike. Biochemical studies of molluscan shell colour were fairly common in the last century, but few of these studies have been confirmed using modern methods and very few shell pigments have been fully characterised. Here, we use modern chemical and multi-modal spectroscopic techniques to identify two porphyrin pigments and eumelanin in the shell of marine snails Clanculus pharaonius and C margaritarius. The same porphyrins were also identified in coloured foot tissue of both species. We use high performance liquid chromatography (HPLC) to show definitively that these porphyrins are uroporphyrin I and uroporphyrin III. Evidence from confocal microscopy analyses shows that the distribution of porphyrin pigments corresponds to the striking pink-red of C. pharaonius shells, as well as pink-red dots and lines on the early whorls of C. margaritarius and yellow-brown colour of later whorls. Additional HPLC results suggest that eumelanin is likely responsible for black spots. We refer to the two differently coloured porphyrin pigments as trochopuniceus (pink-red) and trochoxouthos (yellow-brown) in order to distinguish between them. Trochopuniceus and trochoxouthos were not found in the shell of a third species of the same superfamily, Calliostoma zizyphinum, despite its superficially similar colouration, suggesting that this species has different shell pigments. These findings have important implications for the study of colour and pattern in molluscs specifically, but in other taxa more generally, since this study shows that homology of visible colour cannot be assumed without identification of pigments.
NASA Astrophysics Data System (ADS)
Badás, E. P.; Martínez, J.; Rivero-de Aguilar, J.; Ponce, C.; Stevens, M.; Merino, S.
2018-02-01
Carry-over effects refer to processes that occur in one season and influence fitness in the following. In birds, two costly activities, namely reproduction and moult, are restricted to a small time window, and sometimes overlap. Thus, colour in newly moulted feathers is likely to be affected by the costs of reproduction. Using models of bird vision we investigated male colour change in a free-living population of blue tits ( Cyanistes caeruleus) in three sampling occasions: spring 1, winter and spring 2. We related crown, tail, breast and cheek feather colouration after the moult (winter) to the intensity of infections by blood parasites during reproduction (spring 1). In the following spring (spring 2), we explored mating patterns with respect to changes in feather colour (springs 1 vs. 2). Males that were less intensely infected by the malaria parasite Plasmodium while breeding showed purer white cheek feathers in winter, which may indicate higher feather quality. Increased brightness in the white cheek was associated with better body condition during reproduction. In the following season, males with brighter cheeks paired with females that had noticeably brighter cheek patches compared to the male's previous mate. These results suggest that the conditions experienced during reproduction are likely to affect moult and thus feather colouration, at least in the white patch. High quality individuals may allocate resources efficiently during reproduction increasing future reproductive success through variation in mating patterns. Carry-over effects from reproduction might extend not only to the non-breeding phase, but also to the following breeding season.
Badás, E P; Martínez, J; Rivero-de Aguilar, J; Ponce, C; Stevens, M; Merino, S
2018-02-06
Carry-over effects refer to processes that occur in one season and influence fitness in the following. In birds, two costly activities, namely reproduction and moult, are restricted to a small time window, and sometimes overlap. Thus, colour in newly moulted feathers is likely to be affected by the costs of reproduction. Using models of bird vision we investigated male colour change in a free-living population of blue tits (Cyanistes caeruleus) in three sampling occasions: spring 1, winter and spring 2. We related crown, tail, breast and cheek feather colouration after the moult (winter) to the intensity of infections by blood parasites during reproduction (spring 1). In the following spring (spring 2), we explored mating patterns with respect to changes in feather colour (springs 1 vs. 2). Males that were less intensely infected by the malaria parasite Plasmodium while breeding showed purer white cheek feathers in winter, which may indicate higher feather quality. Increased brightness in the white cheek was associated with better body condition during reproduction. In the following season, males with brighter cheeks paired with females that had noticeably brighter cheek patches compared to the male's previous mate. These results suggest that the conditions experienced during reproduction are likely to affect moult and thus feather colouration, at least in the white patch. High quality individuals may allocate resources efficiently during reproduction increasing future reproductive success through variation in mating patterns. Carry-over effects from reproduction might extend not only to the non-breeding phase, but also to the following breeding season.
How temporal cues can aid colour constancy
Foster, David H.; Amano, Kinjiro; Nascimento, Sérgio M. C.
2007-01-01
Colour constancy assessed by asymmetric simultaneous colour matching usually reveals limited levels of performance in the unadapted eye. Yet observers can readily discriminate illuminant changes on a scene from changes in the spectral reflectances of the surfaces making up the scene. This ability is probably based on judgements of relational colour constancy, in turn based on the physical stability of spatial ratios of cone excitations under illuminant changes. Evidence is presented suggesting that the ability to detect violations in relational colour constancy depends on temporal transient cues. Because colour constancy and relational colour constancy are closely connected, it should be possible to improve estimates of colour constancy by introducing similar transient cues into the matching task. To test this hypothesis, an experiment was performed in which observers made surface-colour matches between patterns presented in the same position in an alternating sequence with period 2 s or, as a control, presented simultaneously, side-by-side. The degree of constancy was significantly higher for sequential presentation, reaching 87% for matches averaged over 20 observers. Temporal cues may offer a useful source of information for making colour-constancy judgements. PMID:17515948
Colour distributions in E-S0 galaxies . IV. Colour data and dust in E's from Nieto's B, R frames
NASA Astrophysics Data System (ADS)
Michard, R.
1999-06-01
The B-R colours distributions (with R in Cousins's system) have been measured in 44 E classified galaxies in the Local Supercluster, from pairs of frames collected by Nieto and co-workers in 1989-91. These are nearly all from the CFHT, and of sub-arsec resolution. Great attention has been given to the effects of unequal PSF's in the B and R frames upon colour distributions near centre; such effects are illustrated from model calculations and from pseudo-colours obtained from pairs of frames taken in the same band but with different seeing conditions. Appropriate corrections were systematically applied in order to derive central colours and inner gradients, although still affected by the limited resolution of the frames. The radial colour distributions have been measured in more detail than usual, considering separately the near major axis and near minor axis regions of the isophotal contours. Azimuthal colour distributions, in rings limited by selected isophotes, were also obtained. Dust ``patterns", i.e. patches, lanes, arcs, ..., have been detected and mapped from the colour distributions. An ad hoc dust pattern importance index (or DPII) in a scale of 0 to 3, has been introduced to qualify their size and contrast. We have tried to find evidence of a diffuse dust concentration towards the disk, if one is apparent. Positive results (noted by the dd symbol) have been obtained for disky E's, whenever the inclination of their disk to the line of sight is large enough, and eventually also in the small isolated disks sometimes present in both boxy and disky galaxies. The red central peak occurring in many E-galaxies might be the signature of a central concentration of dust, also in cases where this peak is isolated rather than embedded in some extensive colour pattern. The properties of the near centre colour profiles have been related to a classification of nuclear photometric profiles into ``flat topped" and ``sharply peaked" (equivalent to ``core-like" and ``power-law" in the terminology of te[Faber et al. 1997).]{fab97} The published here data include the following: . Short descriptions and codes for the characters of the B-R distribution of each object, and comparison to the results of recent surveys. . A table of the mean B-R at the centre and at two selected isophotes, a ``core colour gradient" and the usual logarithmic gradient. . Maps of near core B-R isochromes and B isophotes for comparison. Images of the B-R colour distribution are made available in electronic form. Based on observations collected at the Canada-France-Hawaii Telescope and at the Observatoire du Pic du Midi.
The Functional Basis of Wing Patterning in Heliconius Butterflies: The Molecules Behind Mimicry
Kronforst, Marcus R.; Papa, Riccardo
2015-01-01
Wing-pattern mimicry in butterflies has provided an important example of adaptation since Charles Darwin and Alfred Russell Wallace proposed evolution by natural selection >150 years ago. The neotropical butterfly genus Heliconius played a central role in the development of mimicry theory and has since been studied extensively in the context of ecology and population biology, behavior, and mimicry genetics. Heliconius species are notable for their diverse color patterns, and previous crossing experiments revealed that much of this variation is controlled by a small number of large-effect, Mendelian switch loci. Recent comparative analyses have shown that the same switch loci control wing-pattern diversity throughout the genus, and a number of these have now been positionally cloned. Using a combination of comparative genetic mapping, association tests, and gene expression analyses, variation in red wing patterning throughout Heliconius has been traced back to the action of the transcription factor optix. Similarly, the signaling ligand WntA has been shown to control variation in melanin patterning across Heliconius and other butterflies. Our understanding of the molecular basis of Heliconius mimicry is now providing important insights into a variety of additional evolutionary phenomena, including the origin of supergenes, the interplay between constraint and evolvability, the genetic basis of convergence, the potential for introgression to facilitate adaptation, the mechanisms of hybrid speciation in animals, and the process of ecological speciation. PMID:25953905
Duftner, Nina; Sefc, Kristina M; Koblmüller, Stephan; Salzburger, Walter; Taborsky, Michael; Sturmbauer, Christian
2007-11-01
Colour pattern diversity can be due to random processes or to natural or sexual selection. Consequently, similarities in colour patterns are not always correlated with common ancestry, but may result from convergent evolution under shared selection pressures or drift. Neolamprologus brichardi and Neolamprologus pulcher have been described as two distinct species based on differences in the arrangement of two dark bars on the operculum. Our study uses DNA sequences of the mitochondrial control region to show that relatedness of haplotypes disagrees with species assignment based on head colour pattern. This suggests repeated parallel evolution of particular stripe patterns. The complete lack of shared haplotypes between populations of the same or different phenotypes reflects strong philopatric behaviour, possibly induced by the cooperative breeding mode in which offspring remain in their natal territory and serve as helpers until they disperse to nearby territories or take over a breeding position. Concordant phylogeographic patterns between N. brichardi/N. pulcher populations and other rock-dwelling cichlids suggest that the same colonization routes have been taken by sympatric species and that these routes were affected by lake level fluctuations in the past.
Kang, Chang-ku; Moon, Jong-yeol; Lee, Sang-im; Jablonski, Piotr G.
2013-01-01
Many moths have wing patterns that resemble bark of trees on which they rest. The wing patterns help moths to become camouflaged and to avoid predation because the moths are able to assume specific body orientations that produce a very good match between the pattern on the bark and the pattern on the wings. Furthermore, after landing on a bark moths are able to perceive stimuli that correlate with their crypticity and are able to re-position their bodies to new more cryptic locations and body orientations. However, the proximate mechanisms, i.e. how a moth finds an appropriate resting position and orientation, are poorly studied. Here, we used a geometrid moth Jankowskia fuscaria to examine i) whether a choice of resting orientation by moths depends on the properties of natural background, and ii) what sensory cues moths use. We studied moths’ behavior on natural (a tree log) and artificial backgrounds, each of which was designed to mimic one of the hypothetical cues that moths may perceive on a tree trunk (visual pattern, directional furrow structure, and curvature). We found that moths mainly used structural cues from the background when choosing their resting position and orientation. Our findings highlight the possibility that moths use information from one type of sensory modality (structure of furrows is probably detected through tactile channel) to achieve crypticity in another sensory modality (visual). This study extends our knowledge of how behavior, sensory systems and morphology of animals interact to produce crypsis. PMID:24205118
Kang, Chang-Ku; Moon, Jong-Yeol; Lee, Sang-Im; Jablonski, Piotr G
2013-01-01
Many moths have wing patterns that resemble bark of trees on which they rest. The wing patterns help moths to become camouflaged and to avoid predation because the moths are able to assume specific body orientations that produce a very good match between the pattern on the bark and the pattern on the wings. Furthermore, after landing on a bark moths are able to perceive stimuli that correlate with their crypticity and are able to re-position their bodies to new more cryptic locations and body orientations. However, the proximate mechanisms, i.e. how a moth finds an appropriate resting position and orientation, are poorly studied. Here, we used a geometrid moth Jankowskia fuscaria to examine i) whether a choice of resting orientation by moths depends on the properties of natural background, and ii) what sensory cues moths use. We studied moths' behavior on natural (a tree log) and artificial backgrounds, each of which was designed to mimic one of the hypothetical cues that moths may perceive on a tree trunk (visual pattern, directional furrow structure, and curvature). We found that moths mainly used structural cues from the background when choosing their resting position and orientation. Our findings highlight the possibility that moths use information from one type of sensory modality (structure of furrows is probably detected through tactile channel) to achieve crypticity in another sensory modality (visual). This study extends our knowledge of how behavior, sensory systems and morphology of animals interact to produce crypsis.
Coherence across consciousness levels: Symmetric visual displays spare working memory resources.
Dumitru, Magda L
2015-12-15
Two studies demonstrate that the need for coherence could nudge individuals to use structural similarities between binary visual displays and two concurrent cognitive tasks to unduly solve the latter in similar fashion. In an overt truth-judgement task, participants decided whether symmetric colourful displays matched conjunction or disjunction descriptions (e.g., "the black and/or the orange"). In the simultaneous covert categorisation task, they decided whether a colour name (e.g., "black") described a two-colour object or half of a single-colour object. Two response patterns emerged as follows. Participants either acknowledged or rejected matches between disjunction descriptions and two visual stimuli and, similarly, either acknowledged or rejected matches between single colour names and two-colour objects or between single colour names and half of single-colour objects. These findings confirm the coherence hypothesis, highlight the role of coherence in preserving working-memory resources, and demonstrate an interaction between high-level and low-level consciousness. Copyright © 2015 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Su, Yonggang; Tang, Chen; Li, Biyuan; Lei, Zhenkun
2018-05-01
This paper presents a novel optical colour image watermarking scheme based on phase-truncated linear canonical transform (PT-LCT) and image decomposition (ID). In this proposed scheme, a PT-LCT-based asymmetric cryptography is designed to encode the colour watermark into a noise-like pattern, and an ID-based multilevel embedding method is constructed to embed the encoded colour watermark into a colour host image. The PT-LCT-based asymmetric cryptography, which can be optically implemented by double random phase encoding with a quadratic phase system, can provide a higher security to resist various common cryptographic attacks. And the ID-based multilevel embedding method, which can be digitally implemented by a computer, can make the information of the colour watermark disperse better in the colour host image. The proposed colour image watermarking scheme possesses high security and can achieve a higher robustness while preserving the watermark’s invisibility. The good performance of the proposed scheme has been demonstrated by extensive experiments and comparison with other relevant schemes.
Supra-galactic colour patterns in globular cluster systems
NASA Astrophysics Data System (ADS)
Forte, Juan C.
2017-07-01
An analysis of globular cluster systems associated with galaxies included in the Virgo and Fornax Hubble Space Telescope-Advanced Camera Surveys reveals distinct (g - z) colour modulation patterns. These features appear on composite samples of globular clusters and, most evidently, in galaxies with absolute magnitudes Mg in the range from -20.2 to -19.2. These colour modulations are also detectable on some samples of globular clusters in the central galaxies NGC 1399 and NGC 4486 (and confirmed on data sets obtained with different instruments and photometric systems), as well as in other bright galaxies in these clusters. After discarding field contamination, photometric errors and statistical effects, we conclude that these supra-galactic colour patterns are real and reflect some previously unknown characteristic. These features suggest that the globular cluster formation process was not entirely stochastic but included a fraction of clusters that formed in a rather synchronized fashion over large spatial scales, and in a tentative time lapse of about 1.5 Gy at redshifts z between 2 and 4. We speculate that the putative mechanism leading to that synchronism may be associated with large scale feedback effects connected with violent star-forming events and/or with supermassive black holes.
Dynamics of colour polymorphism in a changing environment: fire melanism and then what?
Karlsson, Magnus; Caesar, Sofia; Ahnesjö, Jonas; Forsman, Anders
2008-01-01
Studies of whether disturbance events are associated with the changing genetic compositions of natural populations may provide insights into the importance of local selection events in maintaining diversity, and might inform plans for the conservation and protection of that diversity. We examined the dynamics of a colour pattern polymorphism in a natural population of pygmy grasshoppers Tetrix subulata (Orthoptera: Tetrigidae) inhabiting a previously burnt clear-cut area. Data on morph frequencies for wild-caught and captive-reared individuals indicated that the initial dominance of black phenotypes following the fire event was followed by an increased diversity of the polymorphism. This was manifested as the appearance of a novel morph, a decreased incidence of the black morph, and a more even distribution of individuals across alternative morphs following the recurrence of vegetation. We also found that the colour patterns of captive-reared individuals resembled those of their parents and that the degree of within-clutch diversity increased between generations. Our comparisons of morph frequencies across generations and between environments within generations point to a genetic determination of colour pattern, and indicate that the polymorphism is influenced more strongly by selection than by plasticity or migration.
Molecular basis of wing coloration in a Batesian mimic butterfly, Papilio polytes
Nishikawa, Hideki; Iga, Masatoshi; Yamaguchi, Junichi; Saito, Kazuki; Kataoka, Hiroshi; Suzuki, Yutaka; Sugano, Sumio; Fujiwara, Haruhiko
2013-01-01
Batesian mimicry protects animals from predators through resemblance with distasteful models in shape, color pattern, or behavior. To elucidate the wing coloration mechanisms involved in the mimicry, we investigated chemical composition and gene expression of the pale yellow and red pigments of a swallowtail butterfly, Papilio polytes, whose females mimic the unpalatable butterfly Pachliopta aristolochiae. Using LC/MS, we showed that the pale yellow wing regions in non-mimetic females consist of kynurenine and N-β-alanyldopamine (NBAD). Moreover, qRT-PCR showed that kynurenine/NBAD biosynthetic genes were upregulated in these regions in non-mimetic females. However, these pigments were absent in mimetic females. RNA-sequencing showed that kynurenine/NBAD synthesis and Toll signaling genes were upregulated in the red spots specific to mimetic female wings. These results demonstrated that drastic changes in gene networks in the red and pale yellow regions can switch wing color patterns between non-mimetic and mimetic females of P. polytes. PMID:24212474
Molecular basis of wing coloration in a Batesian mimic butterfly, Papilio polytes.
Nishikawa, Hideki; Iga, Masatoshi; Yamaguchi, Junichi; Saito, Kazuki; Kataoka, Hiroshi; Suzuki, Yutaka; Sugano, Sumio; Fujiwara, Haruhiko
2013-11-11
Batesian mimicry protects animals from predators through resemblance with distasteful models in shape, color pattern, or behavior. To elucidate the wing coloration mechanisms involved in the mimicry, we investigated chemical composition and gene expression of the pale yellow and red pigments of a swallowtail butterfly, Papilio polytes, whose females mimic the unpalatable butterfly Pachliopta aristolochiae. Using LC/MS, we showed that the pale yellow wing regions in non-mimetic females consist of kynurenine and N-β-alanyldopamine (NBAD). Moreover, qRT-PCR showed that kynurenine/NBAD biosynthetic genes were upregulated in these regions in non-mimetic females. However, these pigments were absent in mimetic females. RNA-sequencing showed that kynurenine/NBAD synthesis and Toll signaling genes were upregulated in the red spots specific to mimetic female wings. These results demonstrated that drastic changes in gene networks in the red and pale yellow regions can switch wing color patterns between non-mimetic and mimetic females of P. polytes.
Rowland, Hannah M.; Edmonds, Nicola; Saccheri, Ilik J.
2017-01-01
Camouflage, and in particular background-matching, is one of the most common anti-predator strategies observed in nature. Animals can improve their match to the colour/pattern of their surroundings through background selection, and/or by plastic colour change. Colour change can occur rapidly (a few seconds), or it may be slow, taking hours to days. Many studies have explored the cues and mechanisms behind rapid colour change, but there is a considerable lack of information about slow colour change in the context of predation: the cues that initiate it, and the range of phenotypes that are produced. Here we show that peppered moth (Biston betularia) larvae respond to colour and luminance of the twigs they rest on, and exhibit a continuous reaction norm of phenotypes. When presented with a heterogeneous environment of mixed twig colours, individual larvae specialise crypsis towards one colour rather than developing an intermediate colour. Flexible colour change in this species has likely evolved in association with wind dispersal and polyphagy, which result in caterpillars settling and feeding in a diverse range of visual environments. This is the first example of visually induced slow colour change in Lepidoptera that has been objectively quantified and measured from the visual perspective of natural predators. PMID:29158965
Eacock, Amy; Rowland, Hannah M; Edmonds, Nicola; Saccheri, Ilik J
2017-01-01
Camouflage, and in particular background-matching, is one of the most common anti-predator strategies observed in nature. Animals can improve their match to the colour/pattern of their surroundings through background selection, and/or by plastic colour change. Colour change can occur rapidly (a few seconds), or it may be slow, taking hours to days. Many studies have explored the cues and mechanisms behind rapid colour change, but there is a considerable lack of information about slow colour change in the context of predation: the cues that initiate it, and the range of phenotypes that are produced. Here we show that peppered moth ( Biston betularia ) larvae respond to colour and luminance of the twigs they rest on, and exhibit a continuous reaction norm of phenotypes. When presented with a heterogeneous environment of mixed twig colours, individual larvae specialise crypsis towards one colour rather than developing an intermediate colour. Flexible colour change in this species has likely evolved in association with wind dispersal and polyphagy, which result in caterpillars settling and feeding in a diverse range of visual environments. This is the first example of visually induced slow colour change in Lepidoptera that has been objectively quantified and measured from the visual perspective of natural predators.
Van Truong, Tien; Byun, Doyoung; Kim, Min Jun; Yoon, Kwang Joon; Park, Hoon Cheol
2013-09-01
The aim of this work is to provide an insight into the aerodynamic performance of the beetle during takeoff, which has been estimated in previous investigations. We employed a scaled-up electromechanical model flapping wing to measure the aerodynamic forces and the three-dimensional flow structures on the flapping wing. The ground effect on the unsteady forces and flow structures were also characterized. The dynamically scaled wing model could replicate the general stroke pattern of the beetle's hind wing kinematics during takeoff flight. Two wing kinematic models have been studied to examine the influences of wing kinematics on unsteady aerodynamic forces. In the first model, the angle of attack is asymmetric and varies during the translational motion, which is the flapping motion of the beetle's hind wing. In the second model, the angle of attack is constant during the translational motion. The instantaneous aerodynamic forces were measured for four strokes during the beetle's takeoff by the force sensor attached at the wing base. Flow visualization provided a general picture of the evolution of the three-dimensional leading edge vortex (LEV) on the beetle hind wing model. The LEV is stable during each stroke, and increases radically from the root to the tip, forming a leading-edge spiral vortex. The force measurement results show that the vertical force generated by the hind wing is large enough to lift the beetle. For the beetle hind wing kinematics, the total vertical force production increases 18.4% and 8.6% for the first and second strokes, respectively, due to the ground effect. However, for the model with a constant angle of attack during translation, the vertical force is reduced during the first stroke. During the third and fourth strokes, the ground effect is negligible for both wing kinematic patterns. This finding suggests that the beetle's flapping mechanism induces a ground effect that can efficiently lift its body from the ground during takeoff.
Chazot, Nicolas; Panara, Stephen; Zilbermann, Nicolas; Blandin, Patrick; Le Poul, Yann; Cornette, Raphaël; Elias, Marianne; Debat, Vincent
2016-01-01
Butterfly wings harbor highly diverse phenotypes and are involved in many functions. Wing size and shape result from interactions between adaptive processes, phylogenetic history, and developmental constraints, which are complex to disentangle. Here, we focus on the genus Morpho (Nymphalidae: Satyrinae, 30 species), which presents a high diversity of sizes, shapes, and color patterns. First, we generate a comprehensive molecular phylogeny of these 30 species. Next, using 911 collection specimens, we quantify the variation of wing size and shape across species, to assess the importance of shared ancestry, microhabitat use, and sexual selection in the evolution of the wings. While accounting for phylogenetic and allometric effects, we detect a significant difference in wing shape but not size among microhabitats. Fore and hindwings covary at the individual and species levels, and the covariation differs among microhabitats. However, the microhabitat structure in covariation disappears when phylogenetic relationships are taken into account. Our results demonstrate that microhabitat has driven wing shape evolution, although it has not strongly affected forewing and hindwing integration. We also found that sexual dimorphism of forewing shape and color pattern are coupled, suggesting a common selective force. © 2015 The Author(s). Evolution © 2015 The Society for the Study of Evolution.
Decapentaplegic and growth control in the developing Drosophila wing.
Akiyama, Takuya; Gibson, Matthew C
2015-11-19
As a central model for morphogen action during animal development, the bone morphogenetic protein 2/4 (BMP2/4)-like ligand Decapentaplegic (Dpp) is proposed to form a long-range signalling gradient that directs both growth and pattern formation during Drosophila wing disc development. While the patterning role of Dpp secreted from a stripe of cells along the anterior-posterior compartmental boundary is well established, the mechanism by which a Dpp gradient directs uniform cell proliferation remains controversial and poorly understood. Here, to determine the precise spatiotemporal requirements for Dpp during wing disc development, we use CRISPR-Cas9-mediated genome editing to generate a flippase recognition target (FRT)-dependent conditional null allele. By genetically removing Dpp from its endogenous stripe domain, we confirm the requirement of Dpp for the activation of a downstream phospho-Mothers against dpp (p-Mad) gradient and the regulation of the patterning targets spalt (sal), optomotor blind (omb; also known as bifid) and brinker (brk). Surprisingly, however, third-instar wing blade primordia devoid of compartmental dpp expression maintain relatively normal rates of cell proliferation and exhibit only mild defects in growth. These results indicate that during the latter half of larval development, the Dpp morphogen gradient emanating from the anterior-posterior compartment boundary is not directly required for wing disc growth.
Wing shape variation associated with mimicry in butterflies.
Jones, Robert T; Le Poul, Yann; Whibley, Annabel C; Mérot, Claire; ffrench-Constant, Richard H; Joron, Mathieu
2013-08-01
Mimetic resemblance in unpalatable butterflies has been studied by evolutionary biologists for over a century, but has largely focused on the convergence in wing color patterns. In Heliconius numata, discrete color-pattern morphs closely resemble comimics in the distantly related genus Melinaea. We examine the possibility that the shape of the butterfly wing also shows adaptive convergence. First, simple measures of forewing dimensions were taken of individuals in a cross between H. numata morphs, and showed quantitative differences between two of the segregating morphs, f. elegans and f. silvana. Second, landmark-based geometric morphometric and elliptical Fourier outline analyses were used to more fully characterize these shape differences. Extension of these techniques to specimens from natural populations suggested that, although many of the coexisting morphs could not be discriminated by shape, the differences we identified between f. elegans and f. silvana hold in the wild. Interestingly, despite extensive overlap, the shape variation between these two morphs is paralleled in their respective Melinaea comimics. Our study therefore suggests that wing-shape variation is associated with mimetic resemblance, and raises the intriguing possibility that the supergene responsible for controlling the major switch in color pattern between morphs also contributes to wing shape differences in H. numata. © 2013 The Author(s). Evolution © 2013 The Society for the Study of Evolution.
Ahmad, Farooq; Richardson, Michael K
2013-01-01
This study aimed to develop and characterize a novel (standard) open field test adapted for larval zebrafish. We also developed and characterized a variant of the same assay consisting of a colour-enriched open field; this was used to assess the impact of environmental complexity on patterns of exploratory behaviours as well to determine natural colour preference/avoidance. We report the following main findings: (1) zebrafish larvae display characteristic patterns of exploratory behaviours in the standard open field, such as thigmotaxis/centre avoidance; (2) environmental complexity (i.e. presence of colours) differentially affects patterns of exploratory behaviours and greatly attenuates natural zone preference; (3) larvae displayed the ability to discriminate colours. As reported previously in adult zebrafish, larvae showed avoidance towards blue and black; however, in contrast to the reported adult behaviour, larvae displayed avoidance towards red. Avoidance towards yellow and preference for green and orange are shown for the first time, (4) compared to standard open field tests, exposure to the colour-enriched open field resulted in an enhanced expression of anxiety-like behaviours. To conclude, we not only developed and adapted a traditional rodent behavioural assay that serves as a gold standard in preclinical drug screening, but we also provide a version of the same test that affords the possibility to investigate the impact of environmental stress on behaviour in larval zebrafish while representing the first test for assessment of natural colour preference/avoidance in larval zebrafish. In the future, these assays will improve preclinical drug screening methodologies towards the goal to uncover novel drugs. This article is part of a Special Issue entitled: insert SI title. Copyright © 2012 Elsevier B.V. All rights reserved.
Recent advances in the biomimicry of structural colours.
Dumanli, Ahu Gümrah; Savin, Thierry
2016-12-21
Nature has mastered the construction of nanostructures with well-defined macroscopic effects and purposes. Structural colouration is a visible consequence of the particular patterning of a reflecting surface with regular structures at submicron length scales. Structural colours usually appear bright, shiny, iridescent or with a metallic look, as a result of physical processes such as diffraction, interference, or scattering with a typically small dissipative loss. These features have recently attracted much research effort in materials science, chemistry, engineering and physics, in order to understand and produce structural colours. In these early stages of photonics, researchers facing an infinite array of possible colour-producing structures are heavily inspired by the elaborate architectures they find in nature. We review here the recent technological strategies employed to artificially mimic the structural colours found in nature, as well as some of their current and potential applications.
Dual mode operation, highly selective nanohole array-based plasmonic colour filters
NASA Astrophysics Data System (ADS)
Fouladi Mahani, Fatemeh; Mokhtari, Arash; Mehran, Mahdiyeh
2017-09-01
Taking advantage of nanostructured metal films as plasmonic colour filters (PCFs) has been evolved remarkably as an alternative to the conventional technologies of chemical colour filtering. However, most of the proposed PCFs depict a poor colour purity focusing on generating either the additive or subtractive colours. In this paper, we present dual mode operation PCFs employing an opaque aluminium film patterned with sub-wavelength holes. Subtractive colours like cyan, magenta, and yellow are the results of reflection mode of these filters yielding optical efficiencies as high as 70%-80% and full width at half maximum of the stop-bands up to 40-50 nm. The colour selectivity of the transmission mode for the additive colours is also significant due to their enhanced performance through the utilization of a relatively thick aluminium film in contact with a modified dielectric environment. These filters provide a simple design with one-step lithography in addition to compatibility with the conventional CMOS processes. Moreover, they are polarization insensitive due to their symmetric geometry. A complete palette of pure subtractive and additive colours has been realized with potential applications, such as multispectral imaging, CMOS image sensors, displays, and colour printing.
Dual mode operation, highly selective nanohole array-based plasmonic colour filters.
Mahani, Fatemeh Fouladi; Mokhtari, Arash; Mehran, Mahdiyeh
2017-09-20
Taking advantage of nanostructured metal films as plasmonic colour filters (PCFs) has been evolved remarkably as an alternative to the conventional technologies of chemical colour filtering. However, most of the proposed PCFs depict a poor colour purity focusing on generating either the additive or subtractive colours. In this paper, we present dual mode operation PCFs employing an opaque aluminium film patterned with sub-wavelength holes. Subtractive colours like cyan, magenta, and yellow are the results of reflection mode of these filters yielding optical efficiencies as high as 70%-80% and full width at half maximum of the stop-bands up to 40-50 nm. The colour selectivity of the transmission mode for the additive colours is also significant due to their enhanced performance through the utilization of a relatively thick aluminium film in contact with a modified dielectric environment. These filters provide a simple design with one-step lithography in addition to compatibility with the conventional CMOS processes. Moreover, they are polarization insensitive due to their symmetric geometry. A complete palette of pure subtractive and additive colours has been realized with potential applications, such as multispectral imaging, CMOS image sensors, displays, and colour printing.
The effect of skin reflectance on thermal traits in a small heliothermic ectotherm.
Matthews, Genevieve; Goulet, Celine T; Delhey, Kaspar; Chapple, David G
2016-08-01
Variation in colour patterning is prevalent among and within species. A number of theories have been proposed in explaining its evolution. Because solar radiation interacts with the pigmentation of the integument causing light to either be reflected or absorbed into the body, thermoregulation has been considered to be a primary selective agent, particularly among ectotherms. Accordingly, the colour-mediated thermoregulatory hypothesis states that darker individuals will heat faster and reach higher thermal equilibria while paler individuals will have the opposite traits. It was further predicted that dark colouration would promote slower cooling rates and higher thermal performance temperatures. To test these hypotheses we quantified the reflectance, selected body temperatures, performance optima, as well as heating and cooling rates of an ectothermic vertebrate, Lampropholis delicata. Our results indicated that colour had no influence on thermal physiology, as all thermal traits were uncorrelated with reflectance. We suggest that crypsis may instead be the stronger selective agent as it may have a more direct impact on fitness. Our study has improved our knowledge of the functional differences among individuals with different colour patterns, and the evolutionary significance of morphological variation within species. Copyright © 2016 Elsevier Ltd. All rights reserved.
Optical diffraction by the microstructure of the wing of a moth
NASA Astrophysics Data System (ADS)
Brink, D. J.; Smit, J. E.; Lee, M. E.; Möller, A.
1995-09-01
On the wing of the moth Trichoplusia orichalcea a prominent, apparently highly reflective, golden spot can be seen. Scales from this area of the wing exhibit a regular microstructure resembling a submicrometer herringbone pattern. We show that a diffraction process from this structure is responsible for the observed optical properties, such as directionality, brightness variations, polarization, and color.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-08-10
... 1993, p. 134). Wings of males are blue above (dorsally), with a narrow black outer border and white... Krizek 1984, p. 112). Seasonal wing pattern variation may be caused by changes in humidity, temperature... the wings (Minno and Emmel 1994, p. 647). The Miami blue can be distinguished from the ceraunus blue...
Federal Register 2010, 2011, 2012, 2013, 2014
2012-04-06
.... 134). Wings of males are blue above (dorsally), with a narrow black outer border and white fringes... Krizek 1984, p. 112). Seasonal wing pattern variation may be caused by changes in humidity, temperature... on the undersides of the wings (Minno and Emmel 1994, p. 647). The Miami blue can be distinguished...
Flow Modulation and Force Control of Flapping Wings
2014-10-29
evolution of which reflect the wing morphology and kinematics. While the near-wake vortex system directly reflects the action of the wing on the...at 8 different stroke positions, which demonstrate the evolution of the vortex wake structure. The contour plot of Z vorticity at X-Y plane (Z...20 Figure 14. Smoke patterns showing the evolution of the flow structure in an
Beneficial aerodynamic effect of wing scales on the climbing flight of butterflies.
Slegers, Nathan; Heilman, Michael; Cranford, Jacob; Lang, Amy; Yoder, John; Habegger, Maria Laura
2017-01-30
It is hypothesized that butterfly wing scale geometry and surface patterning may function to improve aerodynamic efficiency. In order to investigate this hypothesis, a method to measure butterfly flapping kinematics optically over long uninhibited flapping sequences was developed. Statistical results for the climbing flight flapping kinematics of 11 butterflies, based on a total of 236 individual flights, both with and without their wing scales, are presented. Results show, that for each of the 11 butterflies, the mean climbing efficiency decreased after scales were removed. Data was reduced to a single set of differences of climbing efficiency using are paired t-test. Results show a mean decrease in climbing efficiency of 32.2% occurred with a 95% confidence interval of 45.6%-18.8%. Similar analysis showed that the flapping amplitude decreased by 7% while the flapping frequency did not show a significant difference. Results provide strong evidence that butterfly wing scale geometry and surface patterning improve butterfly climbing efficiency. The authors hypothesize that the wing scale's effect in measured climbing efficiency may be due to an improved aerodynamic efficiency of the butterfly and could similarly be used on flapping wing micro air vehicles to potentially achieve similar gains in efficiency.
NASA Technical Reports Server (NTRS)
Razak, K.
1980-01-01
The question of the effect of distribution and magnitude of spanwise circulation and shed vorticity from an airplane wing on the distribution pattern of agricultural products distributed from an airplane was studied. The first step in an analysis of this question is the determination of the actual distribution of lift along an airplane wing, from which the pattern of shed vorticity can be determined. A procedure is developed to calculate the span loading for flapped and unflapped wings of arbitrary aspect ratio and taper ratio. The procedure was programmed on a small programmable calculator, the Hewlett Packard HP-97, and also was programmed in BASIC language. They could be used to explore the variations in span loading that can be secured by variable flap deflections or the effect of flying at varying air speeds at different airplane gross weights. Either an absolute evaluation of span loading can be secured or comparative span loading can be evaluated to determine their effect on swath width and swath distribution pattern. The programs are intended to assist the user in evaluating the effect of a given spanload distribution.
Observation of the wing deformation and the CFD study of cicada
NASA Astrophysics Data System (ADS)
Dai, Hu; Mohd Adam Das, Shahrizan; Luo, Haoxiang
2011-11-01
We studied the wing properties and kinematics of cicada when the 13-year species emerged in amazingly large numbers in middle Tennessee during May 2011. Using a high-speed camera, we recorded the wing motion of the insect and then reconstructed the three-dimensional wing kinematics using a video digitization software. Like many other insects, the deformation of the cicada wing is asymmetric between the downstroke and upstroke half cycles, and this particular deformation pattern would benefit production of the lift and propulsive forces. Both two-dimensional and three-dimensional CFD studies are carried out based on the reconstructed wing motion. The implication of the study on the role of the aerodynamic force in the wing deformation will be discussed. This work is sponsored by the NSF.
Cultural evolution of military camouflage.
Talas, Laszlo; Baddeley, Roland J; Cuthill, Innes C
2017-07-05
While one has evolved and the other been consciously created, animal and military camouflage are expected to show many similar design principles. Using a unique database of calibrated photographs of camouflage uniform patterns, processed using texture and colour analysis methods from computer vision, we show that the parallels with biology are deeper than design for effective concealment. Using two case studies we show that, like many animal colour patterns, military camouflage can serve multiple functions. Following the dissolution of the Warsaw Pact, countries that became more Western-facing in political terms converged on NATO patterns in camouflage texture and colour. Following the break-up of the former Yugoslavia, the resulting states diverged in design, becoming more similar to neighbouring countries than the ancestral design. None of these insights would have been obtained using extant military approaches to camouflage design, which focus solely on concealment. Moreover, our computational techniques for quantifying pattern offer new tools for comparative biologists studying animal coloration.This article is part of the themed issue 'Animal coloration: production, perception, function and application'. © 2017 The Author(s).
Harbison, Christopher W.; Clayton, Dale H.
2011-01-01
Reciprocal selective effects between coevolving species are often influenced by interactions with the broader ecological community. Community-level interactions may also influence macroevolutionary patterns of coevolution, such as cospeciation, but this hypothesis has received little attention. We studied two groups of ecologically similar feather lice (Phthiraptera: Ischnocera) that differ in their patterns of association with a single group of hosts. The two groups, “body lice” and “wing lice,” are both parasites of pigeons and doves (Columbiformes). Body lice are more host-specific and show greater population genetic structure than wing lice. The macroevolutionary history of body lice also parallels that of their columbiform hosts more closely than does the evolutionary history of wing lice. The closer association of body lice with hosts, compared with wing lice, can be explained if body lice are less capable of switching hosts than wing lice. Wing lice sometimes disperse phoretically on parasitic flies (Diptera: Hippoboscidae), but body lice seldom engage in this behavior. We tested the hypothesis that wing lice switch host species more often than body lice, and that the difference is governed by phoresis. Our results show that, where flies are present, wing lice switch to novel host species in sufficient numbers to establish viable populations on the new host. Body lice do not switch hosts, even where flies are present. Thus, differences in the coevolutionary history of wing and body lice can be explained by differences in host-switching, mediated by a member of the broader parasite community. PMID:21606369
Melanosome evolution indicates a key physiological shift within feathered dinosaurs.
Li, Quanguo; Clarke, Julia A; Gao, Ke-Qin; Zhou, Chang-Fu; Meng, Qingjin; Li, Daliang; D'Alba, Liliana; Shawkey, Matthew D
2014-03-20
Inference of colour patterning in extinct dinosaurs has been based on the relationship between the morphology of melanin-containing organelles (melanosomes) and colour in extant bird feathers. When this relationship evolved relative to the origin of feathers and other novel integumentary structures, such as hair and filamentous body covering in extinct archosaurs, has not been evaluated. Here we sample melanosomes from the integument of 181 extant amniote taxa and 13 lizard, turtle, dinosaur and pterosaur fossils from the Upper-Jurassic and Lower-Cretaceous of China. We find that in the lineage leading to birds, the observed increase in the diversity of melanosome morphologies appears abruptly, near the origin of pinnate feathers in maniraptoran dinosaurs. Similarly, mammals show an increased diversity of melanosome form compared to all ectothermic amniotes. In these two clades, mammals and maniraptoran dinosaurs including birds, melanosome form and colour are linked and colour reconstruction may be possible. By contrast, melanosomes in lizard, turtle and crocodilian skin, as well as the archosaurian filamentous body coverings (dinosaur 'protofeathers' and pterosaur 'pycnofibres'), show a limited diversity of form that is uncorrelated with colour in extant taxa. These patterns may be explained by convergent changes in the key melanocortin system of mammals and birds, which is known to affect pleiotropically both melanin-based colouration and energetic processes such as metabolic rate in vertebrates, and may therefore support a significant physiological shift in maniraptoran dinosaurs.
Friederichs, Edgar; Wahl, Siegfried
2017-08-01
The present investigation examined whether changes of electrophysiological late event related potential pattern could be used to reflect clinical changes from therapeutic intervention with coloured glasses in a group of patients with symptoms of central visual processing disorder. Subjects consisted of 13 patients with average age 16years (range 6-51years) with attention problems and learning disability, respectively. These patients were provided with specified coloured glasses which were required to be used during day time. Results indicated that specified coloured glasses significantly improved attention performance. Furthermore electrophysiological parameters revealed a significant change in the late event related potential distribution pattern (latency, amplitudes). This reflects a synchronization of together firing wired neural assemblies responsible for visual processing, suggesting an accelerated neuromaturation process when using coloured glasses. Our results suggest that the visual event related potentials measures are sensitive to changes in clinical development of patients with deficits of visual processing wearing appropriate coloured glasses. It will be discussed whether such a device might be useful for a clinical improvement of distraction symptoms caused by visual processing deficits. A model is presented explaining these effects by inducing the respiratory chain of the mitochondria such increasing the low energy levels of ATP of our patients. Copyright © 2017 Elsevier Ltd. All rights reserved.
Kauffman, S A; Goodwin, B C
1990-06-07
We review the evidence presented in Part I showing that transcripts and protein products of maternal, gap, pair-rule, and segment polarity genes exhibit increasingly complex, multipeaked longitudinal waveforms in the early Drosophila embryo. The central problem we address in Part II is the use the embryo makes of these wave forms to specify longitudinal pattern. Based on the fact that mutants of many of these genes generate deletions and mirror symmetrical duplications of pattern elements on length scales ranging from about half the egg to within segments, we propose that position is specified by measuring a "phase angle" by use of the ratios of two or more variables. Pictorially, such a phase angle can be thought of as a colour on a colour wheel. Any such model contains a phaseless singularity where all or many phases, or colours, come together. We suppose as well that positional values sufficiently close to the singularity are meaningless, hence a "dead zone". Duplications and deletions are accounted for by deformation of the cycle of morphogen values occurring along the antero-posterior axis. If the cycle of values surrounds the singularity and lies outside the dead zone, pattern is normal. If the curve transects the dead zone, pattern elements are deleted. If the curve lies entirely on one side of the singularity, pattern elements are deleted and others are duplicated with mirror symmetry. The existence of different wavelength transcript patterns in maternal, gap, pair-rule, and segment polarity genes and the roles of those same genes in generating deletions and mirror symmetrical duplications on a variety of length scales lead us to propose that position is measured simultaneously on at least four colour wheels, which cycle different numbers of times along the anterior-posterior axis. These yield progressively finer grained positional information. Normal pattern specification requires a unique angle, outside of the dead zone, from each of the four wheels. Deformations of the cycle of gene product concentrations yield the deletions and mirror symmetric duplications observed in the mutants discussed. The alternative familiar hypothesis that longitudinal position is specified in an "on" "off" combinatorial code does not readily account for the duplication deletion phenomena.
Iwata, Masaki; Otaki, Joji M
2016-02-01
Complex butterfly wing color patterns are coordinated throughout a wing by unknown mechanisms that provide undifferentiated immature scale cells with positional information for scale color. Because there is a reasonable level of correspondence between the color pattern element and scale size at least in Junonia orithya and Junonia oenone, a single morphogenic signal may contain positional information for both color and size. However, this color-size relationship has not been demonstrated in other species of the family Nymphalidae. Here, we investigated the distribution patterns of scale size in relation to color pattern elements on the hindwings of the peacock pansy butterfly Junonia almana, together with other nymphalid butterflies, Vanessa indica and Danaus chrysippus. In these species, we observed a general decrease in scale size from the basal to the distal areas, although the size gradient was small in D. chrysippus. Scales of dark color in color pattern elements, including eyespot black rings, parafocal elements, and submarginal bands, were larger than those of their surroundings. Within an eyespot, the largest scales were found at the focal white area, although there were exceptional cases. Similarly, ectopic eyespots that were induced by physical damage on the J. almana background area had larger scales than in the surrounding area. These results are consistent with the previous finding that scale color and size coordinate to form color pattern elements. We propose a ploidy hypothesis to explain the color-size relationship in which the putative morphogenic signal induces the polyploidization (genome amplification) of immature scale cells and that the degrees of ploidy (gene dosage) determine scale color and scale size simultaneously in butterfly wings. Copyright © 2015 Elsevier Ltd. All rights reserved.
An experimental investigation of the subcritical and supercritical flow about a swept semispan wing
NASA Technical Reports Server (NTRS)
Lockman, W. K.; Seegmiller, H. L.
1983-01-01
An experimental investigation of the turbulent, subcritical and supercritical flow over a swept, semispan wing in a solid wall wind tunnel is described. The program was conducted over a range of Mach numbers, Reynolds numbers, and angles of attack to provide a variety of test cases for assessment of wing computer codes and tunnel wall interference effects. Wing flows both without and with three dimensional flow separation are included. Data include mean surface pressures for both the wing and tunnel walls; surface oil flow patterns on the wing; and mean velocity, flow field surveys. The results are given in tabular form and presented graphically to illustrate some of the effects of the test parameters. Comparisons of the wing pressure data with the results from two inviscid wing codes are also shown to assess the importance of viscous flow and tunnel wall effects.
Multiple scaled disorder in the photonic structure of Morpho rhetenor butterfly
NASA Astrophysics Data System (ADS)
Boulenguez, J.; Berthier, S.; Leroy, F.
2012-03-01
The iridescence of Morpho rhetenor butterfly is known to result from a photonic structure on wing scales, where multilayer interference and grating diffraction occur simultaneously. We characterize the disorder at the photonic structure length scale and at the butterfly scale. We measure the scattering pattern of the wing. Through RCWA and 1st Born approximation models, we link the different disorders to different features in the scattering patterns.
Flies compensate for unilateral wing damage through modular adjustments of wing and body kinematics
Iwasaki, Nicole A.; Elzinga, Michael J.; Melis, Johan M.; Dickinson, Michael H.
2017-01-01
Using high-speed videography, we investigated how fruit flies compensate for unilateral wing damage, in which loss of area on one wing compromises both weight support and roll torque equilibrium. Our results show that flies control for unilateral damage by rolling their body towards the damaged wing and by adjusting the kinematics of both the intact and damaged wings. To compensate for the reduction in vertical lift force due to damage, flies elevate wingbeat frequency. Because this rise in frequency increases the flapping velocity of both wings, it has the undesired consequence of further increasing roll torque. To compensate for this effect, flies increase the stroke amplitude and advance the timing of pronation and supination of the damaged wing, while making the opposite adjustments on the intact wing. The resulting increase in force on the damaged wing and decrease in force on the intact wing function to maintain zero net roll torque. However, the bilaterally asymmetrical pattern of wing motion generates a finite lateral force, which flies balance by maintaining a constant body roll angle. Based on these results and additional experiments using a dynamically scaled robotic fly, we propose a simple bioinspired control algorithm for asymmetric wing damage. PMID:28163885
Flies compensate for unilateral wing damage through modular adjustments of wing and body kinematics.
Muijres, Florian T; Iwasaki, Nicole A; Elzinga, Michael J; Melis, Johan M; Dickinson, Michael H
2017-02-06
Using high-speed videography, we investigated how fruit flies compensate for unilateral wing damage, in which loss of area on one wing compromises both weight support and roll torque equilibrium. Our results show that flies control for unilateral damage by rolling their body towards the damaged wing and by adjusting the kinematics of both the intact and damaged wings. To compensate for the reduction in vertical lift force due to damage, flies elevate wingbeat frequency. Because this rise in frequency increases the flapping velocity of both wings, it has the undesired consequence of further increasing roll torque. To compensate for this effect, flies increase the stroke amplitude and advance the timing of pronation and supination of the damaged wing, while making the opposite adjustments on the intact wing. The resulting increase in force on the damaged wing and decrease in force on the intact wing function to maintain zero net roll torque. However, the bilaterally asymmetrical pattern of wing motion generates a finite lateral force, which flies balance by maintaining a constant body roll angle. Based on these results and additional experiments using a dynamically scaled robotic fly, we propose a simple bioinspired control algorithm for asymmetric wing damage.
4D metrology of flapping-wing micro air vehicle based on fringe projection
NASA Astrophysics Data System (ADS)
Zhang, Qican; Huang, Lei; Chin, Yao-Wei; Keong, Lau-Gih; Asundi, Anand
2013-06-01
Inspired by dominant flight of the natural flyers and driven by civilian and military purposes, micro air vehicle (MAV) has been developed so far by passive wing control but still pales in aerodynamic performance. Better understanding of flapping wing flight mechanism is eager to improve MAV's flight performance. In this paper, a simple and effective 4D metrology technique to measure full-field deformation of flapping membrane wing is presented. Based on fringe projection and 3D Fourier analysis, the fast and complex dynamic deformation, including wing rotation and wing stroke, of a flapping wing during its flight can be accurately reconstructed from the deformed fringe patterns recorded by a highspeed camera. An experiment was carried on a flapping-wing MAV with 5-cm span membrane wing beating at 30 Hz, and the results show that this method is effective and will be useful to the aerodynamicist or micro aircraft designer for visualizing high-speed complex wing deformation and consequently aid the design of flapping wing mechanism to enhanced aerodynamic performance.
Colourful parrot feathers resist bacterial degradation
Burtt, Edward H.; Schroeder, Max R.; Smith, Lauren A.; Sroka, Jenna E.; McGraw, Kevin J.
2011-01-01
The brilliant red, orange and yellow colours of parrot feathers are the product of psittacofulvins, which are synthetic pigments known only from parrots. Recent evidence suggests that some pigments in bird feathers function not just as colour generators, but also preserve plumage integrity by increasing the resistance of feather keratin to bacterial degradation. We exposed a variety of colourful parrot feathers to feather-degrading Bacillus licheniformis and found that feathers with red psittacofulvins degraded at about the same rate as those with melanin and more slowly than white feathers, which lack pigments. Blue feathers, in which colour is based on the microstructural arrangement of keratin, air and melanin granules, and green feathers, which combine structural blue with yellow psittacofulvins, degraded at a rate similar to that of red and black feathers. These differences in resistance to bacterial degradation of differently coloured feathers suggest that colour patterns within the Psittaciformes may have evolved to resist bacterial degradation, in addition to their role in communication and camouflage. PMID:20926430
Kusaba, Kiseki; Otaki, Joji M
2009-02-01
Butterfly wing color-patterns are a phenotypically coordinated array of scales whose color is determined as cellular interpretation outputs for morphogenic signals. Here we investigated distribution patterns of scale shape and size in relation to position and coloration on the hindwings of a nymphalid butterfly Junonia orithya. Most scales had a smooth edge but scales at and near the natural and ectopic eyespot foci and in the postbasal area were jagged. Scale size decreased regularly from the postbasal to distal areas, and eyespots occasionally had larger scales than the background. Reasonable correlations were obtained between the eyespot size and focal scale size in females. Histological and real-time individual observations of the color-pattern developmental sequence showed that the background brown and blue colors expanded from the postbasal to distal areas independently from the color-pattern elements such as eyespots. These data suggest that morphogenic signals for coloration directly or indirectly influence the scale shape and size and that the blue "background" is organized by a long-range signal from an unidentified organizing center in J. orithya.
A preliminary investigation of bird classification by Doppler radar
NASA Technical Reports Server (NTRS)
Martinson, L. W.
1973-01-01
A preliminary study of the application of Doppler radar to the classification of birds is reported. The desirability for improvements in bird classification stems primarily from the hazards they present to jet aircraft in flight and in the vicinity of airports. A secondary need exists in the study of bird migration. The wing body and tail motion of a bird in flight reflect signals which, when analyzed properly present a signature of wing beat pattern which is unique for each bird species. Although the results of this investigation did not validate the feasibility of classifying bird species, they do indicate that a more thorough investigation is warranted. Certain gross characteristics such as wing beat rates, multiple bird patterns, and bird maneuverability, were indicated clearly in the results. Large birds with slow wing beat rates appear to be the most optimum subject for further study with the X-band Doppler radar used in this investigation.
Zoppoth, P; Koblmüller, S; Sefc, K M
2013-01-01
Whether premating isolation is achieved by male-specific, female-specific or sex-independent assortative preferences often depends on the underlying evolutionary processes. Here we test mate preferences of males presented with females of different allopatric colour variants of the cichlid fish Tropheus sp., a Lake Tanganyika endemic with rich geographical colour pattern variation, in which the strength of sexual isolation varies between populations. We conducted two-way mate choice experiments to compare behaviour of males of a red-bodied morph (population Moliro) towards females from their own population with behaviour towards females from four allopatric populations at different stages of phylogenetic and phenotypic divergence. Males courted same-population females significantly more intensely than females of other populations, and reduced their heteromorphic courtship efforts both with increasing genetic and increasing phenotypic distinctness of the females. In particular, females of a closely related red-bodied population received significantly more courtship than either genetically distinct, similarly coloured females (‘Kirschfleck’ morph) or genetically related, differently coloured females (‘yellow-blotch’ morph), both of which were courted similarly. Genetically and phenotypically distinct females (Tropheus polli) were not courted at all. Consistent with previous female-choice experiments, female courtship activity also decreased with increasing genetic distance from the males’ population. Given successful experimental and natural introgression between colour morphs and the pervasive allopatry of related variants, we consider it unlikely that assortative preferences of both sexes were driven by direct selection during periods of secondary contact or, in turn, drove colour pattern differentiation in allopatry. Rather, we suggest that sexual isolation evolved as by-product of allopatric divergence. PMID:23405907
Akkaynak, Derya; Siemann, Liese A.; Barbosa, Alexandra
2017-01-01
Flounder change colour and pattern for camouflage. We used a spectrometer to measure reflectance spectra and a digital camera to capture body patterns of two flounder species camouflaged on four natural backgrounds of different spatial scale (sand, small gravel, large gravel and rocks). We quantified the degree of spectral match between flounder and background relative to the situation of perfect camouflage in which flounder and background were assumed to have identical spectral distribution. Computations were carried out for three biologically relevant observers: monochromatic squid, dichromatic crab and trichromatic guitarfish. Our computations present a new approach to analysing datasets with multiple spectra that have large variance. Furthermore, to investigate the spatial match between flounder and background, images of flounder patterns were analysed using a custom program originally developed to study cuttlefish camouflage. Our results show that all flounder and background spectra fall within the same colour gamut and that, in terms of different observer visual systems, flounder matched most substrates in luminance and colour contrast. Flounder matched the spatial scales of all substrates except for rocks. We discuss findings in terms of flounder biology; furthermore, we discuss our methodology in light of hyperspectral technologies that combine high-resolution spectral and spatial imaging. PMID:28405370
Akkaynak, Derya; Siemann, Liese A; Barbosa, Alexandra; Mäthger, Lydia M
2017-03-01
Flounder change colour and pattern for camouflage. We used a spectrometer to measure reflectance spectra and a digital camera to capture body patterns of two flounder species camouflaged on four natural backgrounds of different spatial scale (sand, small gravel, large gravel and rocks). We quantified the degree of spectral match between flounder and background relative to the situation of perfect camouflage in which flounder and background were assumed to have identical spectral distribution. Computations were carried out for three biologically relevant observers: monochromatic squid, dichromatic crab and trichromatic guitarfish. Our computations present a new approach to analysing datasets with multiple spectra that have large variance. Furthermore, to investigate the spatial match between flounder and background, images of flounder patterns were analysed using a custom program originally developed to study cuttlefish camouflage. Our results show that all flounder and background spectra fall within the same colour gamut and that, in terms of different observer visual systems, flounder matched most substrates in luminance and colour contrast. Flounder matched the spatial scales of all substrates except for rocks. We discuss findings in terms of flounder biology; furthermore, we discuss our methodology in light of hyperspectral technologies that combine high-resolution spectral and spatial imaging.
Adhikari, Kiran; Otaki, Joji M
2016-02-01
It is often desirable but difficult to retrieve information on the mature phenotype of an immature tissue sample that has been subjected to gene expression analysis. This problem cannot be ignored when individual variation within a species is large. To circumvent this problem in the butterfly wing system, we developed a new surgical method for removing a single forewing from a pupa using Junonia orithya; the operated pupa was left to develop to an adult without eclosion. The removed right forewing was subjected to gene expression analysis, whereas the non-removed left forewing was examined for color patterns. As a test case, we focused on Distal-less (Dll), which likely plays an active role in inducing elemental patterns, including eyespots. The Dll expression level in forewings was paired with eyespot size data from the same individual. One third of the operated pupae survived and developed wing color patterns. Dll expression levels were significantly higher in males than in females, although male eyespots were smaller in size than female eyespots. Eyespot size data showed weak but significant correlations with the Dll expression level in females. These results demonstrate that a single-wing removal method was successfully applied to the butterfly wing system and suggest the weak and non-exclusive contribution of Dll to eyespot size determination in this butterfly. Our novel methodology for establishing correspondence between gene expression and phenotype can be applied to other candidate genes for color pattern development in butterflies. Conceptually similar methods may also be applicable in other developmental systems.
The evolutionary history of colour polymorphism in Ischnura damselflies.
Sánchez-Guillén, Rosa A; Cordero-Rivera, Adolfo; Rivas-Torres, Anais; Wellenreuther, Maren; Bybee, Seth; Hansson, Bengt; Velasquez-Vélez, María I; Realpe, Emilio; Chávez-Ríos, Jesús R; Villalobos, Fabricio; Dumont, Henri
2018-05-10
A major challenge in evolutionary biology consists of understanding how genetic and phenotypic variation is created and maintained. In the present study, we investigated the origin(s) and evolutionary patterns of the female-limited colour polymorphism in ischnuran damselflies. These consist of the presence of one to three colour morphs: one androchrome morph with a colouration that is similar to the male, and two gynochrome morphs (infuscans and aurantiaca) with female-specific colouration. We (i) documented the colour and mating system of 44 of the 75 taxa within the genus Ischnura, (ii) reconstructed the evolutionary history of colour and mating system to identify the ancestral state, (iii) evaluated the stability of the colour morph status over time, and (iv) tested for a correlation between colour and mating system. We found that the ances tral female colour of Ischnura was monomorphic and aurantiaca and that colour morph status changed over time; characterised by many gains and losses across the species tree. Our results further showed that colour polymorphism is significantly more frequent among polyandric species, whereas monandric species tend to be monomorphic. Research on some Ischnura species has shown that colour morphs have evolved to reduce male mating harassment, and our finding that the same phenotypic morphs have evolved multiple times (convergent evolution) suggests that several species in this genus might be experiencing similar selective pressures. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.
Colour Polymorphism Protects Prey Individuals and Populations Against Predation.
Karpestam, Einat; Merilaita, Sami; Forsman, Anders
2016-02-23
Colour pattern polymorphism in animals can influence and be influenced by interactions between predators and prey. However, few studies have examined whether polymorphism is adaptive, and there is no evidence that the co-occurrence of two or more natural prey colour variants can increase survival of populations. Here we show that visual predators that exploit polymorphic prey suffer from reduced performance, and further provide rare evidence in support of the hypothesis that prey colour polymorphism may afford protection against predators for both individuals and populations. This protective effect provides a probable explanation for the longstanding, evolutionary puzzle of the existence of colour polymorphisms. We also propose that this protective effect can provide an adaptive explanation for search image formation in predators rather than search image formation explaining polymorphism.
Colour Polymorphism Protects Prey Individuals and Populations Against Predation
Karpestam, Einat; Merilaita, Sami; Forsman, Anders
2016-01-01
Colour pattern polymorphism in animals can influence and be influenced by interactions between predators and prey. However, few studies have examined whether polymorphism is adaptive, and there is no evidence that the co-occurrence of two or more natural prey colour variants can increase survival of populations. Here we show that visual predators that exploit polymorphic prey suffer from reduced performance, and further provide rare evidence in support of the hypothesis that prey colour polymorphism may afford protection against predators for both individuals and populations. This protective effect provides a probable explanation for the longstanding, evolutionary puzzle of the existence of colour polymorphisms. We also propose that this protective effect can provide an adaptive explanation for search image formation in predators rather than search image formation explaining polymorphism. PMID:26902799
Moreno, Antonio Mauricio; de Souza, Deisy das Graças; Reinhard, Judith
2012-01-01
Background Learning of arbitrary relations is the capacity to acquire knowledge about associations between events or stimuli that do not share any similarities, and use this knowledge to make behavioural choices. This capacity is well documented in humans and vertebrates, and there is some evidence it exists in the honeybee (Apis mellifera). However, little is known about whether the ability for relational learning extends to other invertebrates, although many insects have been shown to possess excellent learning capacities in spite of their small brains. Methodology/Principal Findings Using a symbolic matching-to-sample procedure, we show that the honeybee Apis mellifera rapidly learns arbitrary relations between colours and patterns, reaching 68.2% correct choice for pattern-colour relations and 73.3% for colour-pattern relations. However, Apis mellifera does not transfer this knowledge to the symmetrical relations when the stimulus order is reversed. A second bee species, the stingless bee Melipona rufiventris from Brazil, seems unable to learn the same arbitrary relations between colours and patterns, although it exhibits excellent discrimination learning. Conclusions/Significance Our results confirm that the capacity for learning arbitrary relations is not limited to vertebrates, but even insects with small brains can perform this learning task. Interestingly, it seems to be a species-specific ability. The disparity in relational learning performance between the two bee species we tested may be linked to their specific foraging and recruitment strategies, which evolved in adaptation to different environments. PMID:23251542
Moreno, Antonio Mauricio; de Souza, Deisy das Graças; Reinhard, Judith
2012-01-01
Learning of arbitrary relations is the capacity to acquire knowledge about associations between events or stimuli that do not share any similarities, and use this knowledge to make behavioural choices. This capacity is well documented in humans and vertebrates, and there is some evidence it exists in the honeybee (Apis mellifera). However, little is known about whether the ability for relational learning extends to other invertebrates, although many insects have been shown to possess excellent learning capacities in spite of their small brains. Using a symbolic matching-to-sample procedure, we show that the honeybee Apis mellifera rapidly learns arbitrary relations between colours and patterns, reaching 68.2% correct choice for pattern-colour relations and 73.3% for colour-pattern relations. However, Apis mellifera does not transfer this knowledge to the symmetrical relations when the stimulus order is reversed. A second bee species, the stingless bee Melipona rufiventris from Brazil, seems unable to learn the same arbitrary relations between colours and patterns, although it exhibits excellent discrimination learning. Our results confirm that the capacity for learning arbitrary relations is not limited to vertebrates, but even insects with small brains can perform this learning task. Interestingly, it seems to be a species-specific ability. The disparity in relational learning performance between the two bee species we tested may be linked to their specific foraging and recruitment strategies, which evolved in adaptation to different environments.
Control of Flow Structure on Low Swept Delta Wing with Steady Leading Edge Blowing
NASA Astrophysics Data System (ADS)
Ozturk, Ilhan; Zharfa, Mohammadreza; Yavuz, Mehmet Metin
2014-11-01
Interest in unmanned combat air vehicles (UCAVs) and micro air vehicles (MAVs) has stimulated investigation of the flow structure, as well as its control, on delta wings having low and moderate values of sweep angle. In the present study, the flow structure is characterized on a delta wing of low sweep 35-degree angle, which is subjected to steady leading edge blowing. The techniques of laser illuminated smoke visualization, laser Doppler anemometry (LDA), and surface pressure measurements are employed to investigate the steady and unsteady nature of the flow structure on delta wing, in relation to the dimensionless magnitude of the blowing coefficient. Using statistics and spectral analysis, unsteadiness of the flow structure is studied in detail. Different injection locations are utilized to apply different blowing patterns in order to identify the most efficient control, which provides the upmost change in the flow structure with the minimum energy input. The study aims to find the optimum flow control strategy to delay or to prevent the stall and possibly to reduce the buffeting on the wing surface. Since the blowing set-up is computer controlled, the unsteady blowing patterns compared to the present steady blowing patterns will be studied next. This project was supported by the Scientific and Technological Research Council of Turkey (Project Number: 3501 111M732).
Colour thresholds in a coral reef fish
Vorobyev, M.; Marshall, N. J.
2016-01-01
Coral reef fishes are among the most colourful animals in the world. Given the diversity of lifestyles and habitats on the reef, it is probable that in many instances coloration is a compromise between crypsis and communication. However, human observation of this coloration is biased by our primate visual system. Most animals have visual systems that are ‘tuned’ differently to humans; optimized for different parts of the visible spectrum. To understand reef fish colours, we need to reconstruct the appearance of colourful patterns and backgrounds as they are seen through the eyes of fish. Here, the coral reef associated triggerfish, Rhinecanthus aculeatus, was tested behaviourally to determine the limits of its colour vision. This is the first demonstration of behavioural colour discrimination thresholds in a coral reef species and is a critical step in our understanding of communication and speciation in this vibrant colourful habitat. Fish were trained to discriminate between a reward colour stimulus and series of non-reward colour stimuli and the discrimination thresholds were found to correspond well with predictions based on the receptor noise limited visual model and anatomy of the eye. Colour discrimination abilities of both reef fish and a variety of animals can therefore now be predicted using the parameters described here. PMID:27703704
Baier, David B; Gatesy, Stephen M; Dial, Kenneth P
2013-01-01
Past studies have shown that birds use their wings not only for flight, but also when ascending steep inclines. Uphill flap-running or wing-assisted incline running (WAIR) is used by both flight-incapable fledglings and flight-capable adults to retreat to an elevated refuge. Despite the broadly varying direction of travel during WAIR, level, and descending flight, recent studies have found that the basic wing path remains relatively invariant with reference to gravity. If so, joints undergo disparate motions to maintain a consistent wing path during those specific flapping modes. The underlying skeletal motions, however, are masked by feathers and skin. To improve our understanding of the form-functional relationship of the skeletal apparatus and joint morphology with a corresponding locomotor behavior, we used XROMM (X-ray Reconstruction of Moving Morphology) to quantify 3-D skeletal kinematics in chukars (Alectoris chukar) during WAIR (ascending with legs and wings) and ascending flight (AF, ascending with wings only) along comparable trajectories. Evidence here from the wing joints demonstrates that the glenohumeral joint controls the vast majority of wing movements. More distal joints are primarily involved in modifying wing shape. All bones are in relatively similar orientations at the top of upstroke during both behaviors, but then diverge through downstroke. Total excursion of the wing is much smaller during WAIR and the tip of the manus follows a more vertical path. The WAIR stroke appears "truncated" relative to ascending flight, primarily stemming from ca. 50% reduction in humeral depression. Additionally, the elbow and wrist exhibit reduced ranges of angular excursions during WAIR. The glenohumeral joint moves in a pattern congruent with being constrained by the acrocoracohumeral ligament. Finally, we found pronounced lateral bending of the furcula during the wingbeat cycle during ascending flight only, though the phasic pattern in chukars is opposite of that observed in starlings (Sturnus vulgaris).
Perceiving colour at a glimpse: the relevance of where one fixates.
Brenner, Eli; Granzier, Jeroen J M; Smeets, Jeroen B J
2007-09-01
We used classification images to examine whether certain parts of a surface are particularly important when judging its colour, such as its centre, its edges, or where one is looking. The scene consisted of a regular pattern of square tiles with random colours from along a short line in colour space. Targets defined by a square array of brighter tiles were presented for 200ms. The colours of the tiles within the target were biased by an amount that led to about 70% of the responses being correct. Subjects fixated a point that fell within the target's lower left quadrant and reported each target's colour. They tended to report the colour of the tiles near the fixation point. The influence of the tiles' colour reversed at the target's border and was weaker outside the target. The colour at the border itself was not particularly important. When coloured tiles were also presented before (and after) target presentation they had an opposite (but weaker) effect, indicating that the change in colour is important. Comparing the influence of tiles outside the target with that of tiles at the position at which the target would soon appear suggests that when judging surface colours during the short "glimpses" between saccades, temporal comparisons can be at least as important as spatial ones. We conclude that eye movements are important for colour vision, both because they determine which part of the surface of interest will be given most weight and because the perceived colour of such a surface also depends on what one looked at last.
McCarthy, Elizabeth W.; Arnold, Sarah E. J.; Chittka, Lars; Le Comber, Steven C.; Verity, Robert; Dodsworth, Steven; Knapp, Sandra; Kelly, Laura J.; Chase, Mark W.; Baldwin, Ian T.; Kovařík, Aleš; Mhiri, Corinne; Taylor, Lin; Leitch, Andrew R.
2015-01-01
Background and Aims Speciation in angiosperms can be accompanied by changes in floral colour that may influence pollinator preference and reproductive isolation. This study investigates whether changes in floral colour can accompany polyploid and homoploid hybridization, important processes in angiosperm evolution. Methods Spectral reflectance of corolla tissue was examined for 60 Nicotiana (Solanaceae) accessions (41 taxa) based on spectral shape (corresponding to pigmentation) as well as bee and hummingbird colour perception in order to assess patterns of floral colour evolution. Polyploid and homoploid hybrid spectra were compared with those of their progenitors to evaluate whether hybridization has resulted in floral colour shifts. Key Results Floral colour categories in Nicotiana seem to have arisen multiple times independently during the evolution of the genus. Most younger polyploids displayed an unexpected floral colour, considering those of their progenitors, in the colour perception of at least one pollinator type, whereas older polyploids tended to resemble one or both of their progenitors. Conclusions Floral colour evolution in Nicotiana is weakly constrained by phylogeny, and colour shifts do occur in association with both polyploid and homoploid hybrid divergence. Transgressive floral colour in N. tabacum has arisen by inheritance of anthocyanin pigmentation from its paternal progenitor while having a plastid phenotype like its maternal progenitor. Potentially, floral colour evolution has been driven by, or resulted in, pollinator shifts. However, those polyploids that are not sympatric (on a regional scale) with their progenitor lineages are typically not divergent in floral colour from them, perhaps because of a lack of competition for pollinators. PMID:25979919
Farran, Emily K; Courbois, Yannick; Van Herwegen, Jo; Cruickshank, Alice G; Blades, Mark
2012-01-01
Typically developing (TD) 6-year-olds and 9-year-olds, and older children and adults with Williams syndrome (WS) navigated through brick-wall mazes in a virtual environment. Participants were shown a route through three mazes, each with 6 turns. In each maze the floor of each path section was a different colour such that colour acted as an environmental cue. The colours employed were either easy to verbalise (focal colours) or difficult to verbalise (non-focal colours). We investigated whether participants would verbally code the colour information in the focal colour condition only, and whether this facilitated route-learning. All groups could learn the routes; the WS group required more learning trials to learn the route and achieved lower memory scores than both of the TD groups. Despite this, all groups showed the same pattern of results. There was no effect of condition on the ability to learn the maze. However, when asked which colours featured in each route, higher memory scores were achieved for the focal colour (verbalisable) than the non-focal colour (non-verbalisable) condition. This suggests that, in both young children and individuals with WS, once a route has been learnt, the nature of the environmental cues within it can impact an individual's representation of that route. Copyright © 2011 Elsevier Ltd. All rights reserved.
Marcus, Jeffrey M.; Evans, Travis M.
2008-01-01
The color patterns on the wings of butterflies have been an important model system in evolutionary developmental biology. A recent computational model tested genetic regulatory hierarchies hypothesized to underlie the formation of butterfly eyespot foci (Evans and Marcus, 2006). The computational model demonstrated that one proposed hierarchy was incapable of reproducing the known patterns of gene expression associated with eyespot focus determination in wild-type butterflies, but that two slightly modified alternative hierarchies were capable of reproducing all of the known gene expressions patterns. Here we extend the computational models previously implemented in Delphi 2.0 to two mutants derived from the squinting bush brown butterfly (Bicyclus anynana). These two mutants, comet and Cyclops, have aberrantly shaped eyespot foci that are produced by different mechanisms. The comet mutation appears to produce a modified interaction between the wing margin and the eyespot focus that results in a series of comet-shaped eyespot foci. The Cyclops mutation causes the failure of wing vein formation between two adjacent wing-cells and the fusion of two adjacent eyespot foci to form a single large elongated focus in their place. The computational approach to modeling pattern formation in these mutants allows us to make predictions about patterns of gene expression, which are largely unstudied in butterfly mutants. It also suggests a critical experiment that will allow us to distinguish between two hypothesized genetic regulatory hierarchies that may underlie all butterfly eyespot foci. PMID:18586070
About the unidirectionality of interference: insight from the musical Stroop effect.
Grégoire, Laurent; Perruchet, Pierre; Poulin-Charronnat, Bénédicte
2014-01-01
The asymmetry of interference in a Stroop task usually refers to the well-documented result that incongruent colour words slow colour naming (Stroop effect) but incongruent colours do not slow colour word reading (no reverse Stroop effect). A few other studies have suggested that, more generally, a reverse Stroop effect can be occasionally observed but at the expense of the Stroop effect itself, as if interference was inherently unidirectional, from the stronger to the weaker of the two competing processes. We describe here a situation conducive to a pervasive mutual interference effect. Musicians were exposed to congruent and incongruent note name/note position patterns, and they were asked either to read the word while ignoring the location of the note within the staff, or to name the note while ignoring the note name written inside the note picture. Most of the participants exhibited interference in the two tasks. Overall, this result pattern runs against the still prevalent model of the Stroop phenomenon [Cohen, J. D., Dunbar, K., & McClelland, J. L. (1990). On the control of automatic processes: A parallel distributed processing account of the Stroop effect. Psychological Review, 97(3), 332-361]. However, further analyses lend support to one of the key tenets of the model, namely that the pattern of interference depends on the relative strength of the two competing pathways. The reasons for the impressive differences between the results collected in the present study and in the standard colour-word (or picture-word) paradigms are also examined. We suggest that these differences reveal the importance of stimulus-response contingency in the formation of automatisms.
Pyrowolakis, George; Bergmann, Sven; Affolter, Markus
2011-01-01
The wing of the fruit fly, Drosophila melanogaster, with its simple, two-dimensional structure, is a model organ well suited for a systems biology approach. The wing arises from an epithelial sac referred to as the wing imaginal disc, which undergoes a phase of massive growth and concomitant patterning during larval stages. The Decapentaplegic (Dpp) morphogen plays a central role in wing formation with its ability to co-coordinately regulate patterning and growth. Here, we asked whether the Dpp signaling activity scales, i.e. expands proportionally, with the growing wing imaginal disc. Using new methods for spatial and temporal quantification of Dpp activity and its scaling properties, we found that the Dpp response scales with the size of the growing tissue. Notably, scaling is not perfect at all positions in the field and the scaling of target gene domains is ensured specifically where they define vein positions. We also found that the target gene domains are not defined at constant concentration thresholds of the downstream Dpp activity gradients P-Mad and Brinker. Most interestingly, Pentagone, an important secreted feedback regulator of the pathway, plays a central role in scaling and acts as an expander of the Dpp gradient during disc growth. PMID:22039350
Flow Structure on a Flapping Wing: Quasi-Steady Limit
NASA Astrophysics Data System (ADS)
Ozen, Cem; Rockwell, Donald
2011-11-01
The flapping motion of an insect wing typically involves quasi-steady motion between extremes of unsteady motion. This investigation characterizes the flow structure for the quasi-steady limit via a rotating wing in the form of a thin rectangular plate having a low aspect ratio (AR =1). Particle Image Velocimetry (PIV) is employed, in order to gain insight into the effects of centripetal and Coriolis forces. Vorticity, velocity and streamline patterns are used to describe the overall flow structure with an emphasis on the leading-edge vortex. A stable leading-edge vortex is maintained over effective angles of attack from 30° to 75° and it is observed that at each angle of attack the flow structure remains relatively same over the Reynolds number range from 3,600 to 14,500. The dimensionless circulation of the leading edge vortex is found to be proportional to the effective angle of attack. Quasi-three-dimensional construction of the flow structure is used to identify the different regimes along the span of the wing which is then complemented by patterns on cross flow planes to demonstrate the influence of root and tip swirls on the spanwise flow. The rotating wing results are also compared with the equivalent of translating wing to further illustrate the effects of the rotation.
Unique wing scale photonics of male Rajah Brooke's birdwing butterflies.
Wilts, Bodo D; Giraldo, Marco A; Stavenga, Doekele G
2016-01-01
Ultrastructures in butterfly wing scales can take many shapes, resulting in the often striking coloration of many butterflies due to interference of light. The plethora of coloration mechanisms is dazzling, but often only single mechanisms are described for specific animals. We have here investigated the male Rajah Brooke's birdwing, Trogonoptera brookiana, a large butterfly from Malaysia, which is marked by striking, colorful wing patterns. The dorsal side is decorated with large, iridescent green patterning, while the ventral side of the wings is primarily brown-black with small white, blue and green patches on the hindwings. Dense arrays of red hairs, creating a distinct collar as well as contrasting areas ventrally around the thorax, enhance the butterfly's beauty. The remarkable coloration is realized by a diverse number of intricate and complicated nanostructures in the hairs as well as the wing scales. The red collar hairs contain a broad-band absorbing pigment as well as UV-reflecting multilayers resembling the photonic structures of Morpho butterflies; the white wing patches consist of scales with prominent thin film reflectors; the blue patches have scales with ridge multilayers and these scales also have centrally concentrated melanin. The green wing areas consist of strongly curved scales, which possess a uniquely arranged photonic structure consisting of multilayers and melanin baffles that produces highly directional reflections. Rajah Brooke's birdwing employs a variety of structural and pigmentary coloration mechanisms to achieve its stunning optical appearance. The intriguing usage of order and disorder in related photonic structures in the butterfly wing scales may inspire novel optical materials as well as investigations into the development of these nanostructures in vivo.
Differential involvement of Hedgehog signaling in butterfly wing and eyespot development.
Tong, Xiaoling; Lindemann, Anna; Monteiro, Antónia
2012-01-01
Butterfly eyespots may have evolved from the recruitment of pre-existent gene circuits or regulatory networks into novel locations on the wing. Gene expression data suggests one such circuit, the Hedgehog (Hh) signaling pathway and its target gene engrailed (en), was recruited from a role in patterning the anterior-posterior insect wing axis to a role patterning butterfly eyespots. However, while Junonia coenia expresses hh and en both in the posterior compartment of the wing and in eyespot centers, Bicyclus anynana lacks hh eyespot-specific expression. This suggests that Hh signaling may not be functioning in eyespot development in either species or that it functions in J. coenia but not in B. anynana. In order to test these hypotheses, we performed functional tests of Hh signaling in these species. We investigated the effects of Hh protein sequestration during the larval stage on en expression levels, and on wing size and eyespot size in adults. Hh sequestration led to significantly reduced en expression and to significantly smaller wings and eyespots in both species. But while eyespot size in B. anynana was reduced proportionately to wing size, in J. coenia, eyespots were reduced disproportionately, indicating an independent role of Hh signaling in eyespot development in J. coenia. We conclude that while Hh signaling retains a conserved role in promoting wing growth across nymphalid butterflies, it plays an additional role in eyespot development in some, but not all, lineages of nymphalid butterflies. We discuss our findings in the context of alternative evolutionary scenarios that led to the differential expression of hh and other Hh pathway signaling members across nymphalid species.
Genetic mosaic in a marine species flock.
McCartney, Michael A; Acevedo, Jenny; Heredia, Christine; Rico, Ciro; Quenoville, Brice; Bermingham, Eldredge; McMillan, W Owen
2003-11-01
We used molecular approaches to study the status of speciation in coral reef fishes known as hamlets (Serranidae: Hypoplectrus). Several hamlet morphospecies coexist on Caribbean reefs, and mate assortatively with respect to their strikingly distinct colour patterns. We provide evidence that, genetically, the hamlets display characteristics common in species flocks on land and in freshwaters. Substitutions within two mitochondrial DNA (mtDNA) protein-coding genes place hamlets within a monophyletic group relative to members of two related genera (Serranus and Diplectrum), and establish that the hamlet radiation must have been very recent. mtDNA distances separating hamlet morphospecies were slight (0.6 +/- 0.04%), yielding a coalescent estimate for the age of the hamlet flock of approximately 430 000 years. Morphospecies did not sort into distinct mtDNA haplotype phylogroups, and alleles at five hypervariable microsatellite loci were shared broadly across species boundaries. None the less, molecular variation was not distributed at random. Analyses of mtDNA haplotype frequencies and nested clades in haplotype networks revealed significant genetic differences between geographical regions and among colour morphospecies. We also observed significant microsatellite differentiation between geographical regions and in Puerto Rico, among colour morphospecies; the latter providing evidence for reproductive isolation between colour morphospecies at this locale. In our Panama collection, however, colour morphospecies were mostly genetically indistinguishable. This mosaic pattern of DNA differentiation implies a complex interaction between population history, mating behaviour and geography and suggests that porous boundaries separate species in this flock of brilliantly coloured coral reef fishes.
Artificial insect wings of diverse morphology for flapping-wing micro air vehicles.
Shang, J K; Combes, S A; Finio, B M; Wood, R J
2009-09-01
The development of flapping-wing micro air vehicles (MAVs) demands a systematic exploration of the available design space to identify ways in which the unsteady mechanisms governing flapping-wing flight can best be utilized for producing optimal thrust or maneuverability. Mimicking the wing kinematics of biological flight requires examining the potential effects of wing morphology on flight performance, as wings may be specially adapted for flapping flight. For example, insect wings passively deform during flight, leading to instantaneous and potentially unpredictable changes in aerodynamic behavior. Previous studies have postulated various explanations for insect wing complexity, but there lacks a systematic approach for experimentally examining the functional significance of components of wing morphology, and for determining whether or not natural design principles can or should be used for MAVs. In this work, a novel fabrication process to create centimeter-scale wings of great complexity is introduced; via this process, a wing can be fabricated with a large range of desired mechanical and geometric characteristics. We demonstrate the versatility of the process through the creation of planar, insect-like wings with biomimetic venation patterns that approximate the mechanical properties of their natural counterparts under static loads. This process will provide a platform for studies investigating the effects of wing morphology on flight dynamics, which may lead to the design of highly maneuverable and efficient MAVs and insight into the functional morphology of natural wings.
Polymorphism at a mimicry supergene maintained by opposing frequency-dependent selection pressures.
Chouteau, Mathieu; Llaurens, Violaine; Piron-Prunier, Florence; Joron, Mathieu
2017-08-01
Explaining the maintenance of adaptive diversity within populations is a long-standing goal in evolutionary biology, with important implications for conservation, medicine, and agriculture. Adaptation often leads to the fixation of beneficial alleles, and therefore it erodes local diversity so that understanding the coexistence of multiple adaptive phenotypes requires deciphering the ecological mechanisms that determine their respective benefits. Here, we show how antagonistic frequency-dependent selection (FDS), generated by natural and sexual selection acting on the same trait, maintains mimicry polymorphism in the toxic butterfly Heliconius numata Positive FDS imposed by predators on mimetic signals favors the fixation of the most abundant and best-protected wing-pattern morph, thereby limiting polymorphism. However, by using mate-choice experiments, we reveal disassortative mate preferences of the different wing-pattern morphs. The resulting negative FDS on wing-pattern alleles is consistent with the excess of heterozygote genotypes at the supergene locus controlling wing-pattern variation in natural populations of H. numata The combined effect of positive and negative FDS on visual signals is sufficient to maintain a diversity of morphs displaying accurate mimicry with other local prey, although some of the forms only provide moderate protection against predators. Our findings help understand how alternative adaptive phenotypes can be maintained within populations and emphasize the need to investigate interactions between selective pressures in other cases of puzzling adaptive polymorphism.
Polymorphism at a mimicry supergene maintained by opposing frequency-dependent selection pressures
Chouteau, Mathieu; Llaurens, Violaine; Piron-Prunier, Florence; Joron, Mathieu
2017-01-01
Explaining the maintenance of adaptive diversity within populations is a long-standing goal in evolutionary biology, with important implications for conservation, medicine, and agriculture. Adaptation often leads to the fixation of beneficial alleles, and therefore it erodes local diversity so that understanding the coexistence of multiple adaptive phenotypes requires deciphering the ecological mechanisms that determine their respective benefits. Here, we show how antagonistic frequency-dependent selection (FDS), generated by natural and sexual selection acting on the same trait, maintains mimicry polymorphism in the toxic butterfly Heliconius numata. Positive FDS imposed by predators on mimetic signals favors the fixation of the most abundant and best-protected wing-pattern morph, thereby limiting polymorphism. However, by using mate-choice experiments, we reveal disassortative mate preferences of the different wing-pattern morphs. The resulting negative FDS on wing-pattern alleles is consistent with the excess of heterozygote genotypes at the supergene locus controlling wing-pattern variation in natural populations of H. numata. The combined effect of positive and negative FDS on visual signals is sufficient to maintain a diversity of morphs displaying accurate mimicry with other local prey, although some of the forms only provide moderate protection against predators. Our findings help understand how alternative adaptive phenotypes can be maintained within populations and emphasize the need to investigate interactions between selective pressures in other cases of puzzling adaptive polymorphism. PMID:28673971
Structural analysis and testing of a carbon-composite wing using fiber Bragg gratings
NASA Astrophysics Data System (ADS)
Nicolas, Matthew James
The objective of this study was to determine the deflected wing shape and the out-of-plane loads of a large-scale carbon-composite wing of an ultralight aerial vehicle using Fiber Bragg Grating (FBG) technology. The composite wing was instrumented with an optical fiber on its top and bottom surfaces positioned over the main spar, resulting in approximately 780 strain sensors bonded to the wings. The strain data from the FBGs was compared to that obtained from four conventional strain gages, and was used to obtain the out-of-plane loads as well as the wing shape at various load levels using NASA-developed real-time load and displacement algorithms. The composite wing measured 5.5 meters and was fabricated from laminated carbon uniaxial and biaxial prepreg fabric with varying laminate ply patterns and wall thickness dimensions. A three-tier whiffletree system was used to load the wing in a manner consistent with an in-flight loading condition.
Williams, Paul H.; Byvaltsev, Alexandr M.; Cederberg, Björn; Berezin, Mikhail V.; Ødegaard, Frode; Rasmussen, Claus; Richardson, Leif L.; Huang, Jiaxing; Sheffield, Cory S.; Williams, Suzanne T.
2015-01-01
Our grasp of biodiversity is fine-tuned through the process of revisionary taxonomy. If species do exist in nature and can be discovered with available techniques, then we expect these revisions to converge on broadly shared interpretations of species. But for the primarily arctic bumblebees of the subgenus Alpinobombus of the genus Bombus, revisions by some of the most experienced specialists are unusual for bumblebees in that they have all reached different conclusions on the number of species present. Recent revisions based on skeletal morphology have concluded that there are from four to six species, while variation in colour pattern of the hair raised questions as to whether at least seven species might be present. Even more species are supported if we accept the recent move away from viewing species as morphotypes to viewing them instead as evolutionarily independent lineages (EILs) using data from genes. EILs are recognised here in practice from the gene coalescents that provide direct evidence for their evolutionary independence. We show from fitting both general mixed Yule/coalescent (GMYC) models and Poisson-tree-process (PTP) models to data for the mitochondrial COI gene that there is support for nine species in the subgenus Alpinobombus. Examination of the more slowly evolving nuclear PEPCK gene shows further support for a previously unrecognised taxon as a new species in northwestern North America. The three pairs of the most morphologically similar sister species are separated allopatrically and prevented from interbreeding by oceans. We also find that most of the species show multiple shared colour patterns, giving the appearance of mimicry among parts of the different species. However, reconstructing ancestral colour-pattern states shows that speciation is likely to have cut across widespread ancestral polymorphisms, without or largely without convergence. In the particular case of Alpinobombus, morphological, colour-pattern, and genetic groups show little agreement, which may help to explain the lack of agreement among previous taxonomic revisions. PMID:26657658
Williams, Paul H; Byvaltsev, Alexandr M; Cederberg, Björn; Berezin, Mikhail V; Ødegaard, Frode; Rasmussen, Claus; Richardson, Leif L; Huang, Jiaxing; Sheffield, Cory S; Williams, Suzanne T
2015-01-01
Our grasp of biodiversity is fine-tuned through the process of revisionary taxonomy. If species do exist in nature and can be discovered with available techniques, then we expect these revisions to converge on broadly shared interpretations of species. But for the primarily arctic bumblebees of the subgenus Alpinobombus of the genus Bombus, revisions by some of the most experienced specialists are unusual for bumblebees in that they have all reached different conclusions on the number of species present. Recent revisions based on skeletal morphology have concluded that there are from four to six species, while variation in colour pattern of the hair raised questions as to whether at least seven species might be present. Even more species are supported if we accept the recent move away from viewing species as morphotypes to viewing them instead as evolutionarily independent lineages (EILs) using data from genes. EILs are recognised here in practice from the gene coalescents that provide direct evidence for their evolutionary independence. We show from fitting both general mixed Yule/coalescent (GMYC) models and Poisson-tree-process (PTP) models to data for the mitochondrial COI gene that there is support for nine species in the subgenus Alpinobombus. Examination of the more slowly evolving nuclear PEPCK gene shows further support for a previously unrecognised taxon as a new species in northwestern North America. The three pairs of the most morphologically similar sister species are separated allopatrically and prevented from interbreeding by oceans. We also find that most of the species show multiple shared colour patterns, giving the appearance of mimicry among parts of the different species. However, reconstructing ancestral colour-pattern states shows that speciation is likely to have cut across widespread ancestral polymorphisms, without or largely without convergence. In the particular case of Alpinobombus, morphological, colour-pattern, and genetic groups show little agreement, which may help to explain the lack of agreement among previous taxonomic revisions.
Iwata, Masaki; Ohno, Yoshikazu; Otaki, Joji M.
2014-01-01
Butterfly wings are covered with regularly arranged single-colored scales that are formed at the pupal stage. Understanding pupal wing development is therefore crucial to understand wing color pattern formation. Here, we successfully employed real-time in vivo imaging techniques to observe pupal hindwing development over time in the blue pansy butterfly, Junonia orithya. A transparent sheet of epithelial cells that were not yet regularly arranged was observed immediately after pupation. Bright-field imaging and autofluorescent imaging revealed free-moving hemocytes and tracheal branches of a crinoid-like structure underneath the epithelium. The wing tissue gradually became gray-white, epithelial cells were arranged regularly, and hemocytes disappeared, except in the bordering lacuna, after which scales grew. The dynamics of the epithelial cells and scale growth were also confirmed by fluorescent imaging. Fluorescent in vivo staining further revealed that these cells harbored many mitochondria at the surface of the epithelium. Organizing centers for the border symmetry system were apparent immediately after pupation, exhibiting a relatively dark optical character following treatment with fluorescent dyes, as well as in autofluorescent images. The wing tissue exhibited slow and low-frequency contraction pulses with a cycle of approximately 10 to 20 minutes, mainly occurring at 2 to 3 days postpupation. The pulses gradually became slower and weaker and eventually stopped. The wing tissue area became larger after contraction, which also coincided with an increase in the autofluorescence intensity that might have been caused by scale growth. Examination of the pattern of color development revealed that the black pigment was first deposited in patches in the central areas of an eyespot black ring and a parafocal element. These results of live in vivo imaging that covered wide wing area for a long time can serve as a foundation for studying the cellular dynamics of living wing tissues in butterflies. PMID:24586829
Iwata, Masaki; Ohno, Yoshikazu; Otaki, Joji M
2014-01-01
Butterfly wings are covered with regularly arranged single-colored scales that are formed at the pupal stage. Understanding pupal wing development is therefore crucial to understand wing color pattern formation. Here, we successfully employed real-time in vivo imaging techniques to observe pupal hindwing development over time in the blue pansy butterfly, Junonia orithya. A transparent sheet of epithelial cells that were not yet regularly arranged was observed immediately after pupation. Bright-field imaging and autofluorescent imaging revealed free-moving hemocytes and tracheal branches of a crinoid-like structure underneath the epithelium. The wing tissue gradually became gray-white, epithelial cells were arranged regularly, and hemocytes disappeared, except in the bordering lacuna, after which scales grew. The dynamics of the epithelial cells and scale growth were also confirmed by fluorescent imaging. Fluorescent in vivo staining further revealed that these cells harbored many mitochondria at the surface of the epithelium. Organizing centers for the border symmetry system were apparent immediately after pupation, exhibiting a relatively dark optical character following treatment with fluorescent dyes, as well as in autofluorescent images. The wing tissue exhibited slow and low-frequency contraction pulses with a cycle of approximately 10 to 20 minutes, mainly occurring at 2 to 3 days postpupation. The pulses gradually became slower and weaker and eventually stopped. The wing tissue area became larger after contraction, which also coincided with an increase in the autofluorescence intensity that might have been caused by scale growth. Examination of the pattern of color development revealed that the black pigment was first deposited in patches in the central areas of an eyespot black ring and a parafocal element. These results of live in vivo imaging that covered wide wing area for a long time can serve as a foundation for studying the cellular dynamics of living wing tissues in butterflies.
Hoyal Cuthill, Jennifer F; Charleston, Michael
2015-12-01
Examples of long-term coevolution are rare among free-living organisms. Müllerian mimicry in Heliconius butterflies had been suggested as a key example of coevolution by early genetic studies. However, research over the last two decades has been dominated by the idea that the best-studied comimics, H. erato and H. melpomene, did not coevolve at all. Recently sequenced genes associated with wing color pattern phenotype offer a new opportunity to resolve this controversy. Here, we test the hypothesis of coevolution between H. erato and H. melpomene using Bayesian multilocus analysis of five color pattern genes and five neutral genetic markers. We first explore the extent of phylogenetic agreement versus conflict between the different genes. Coevolution is then tested against three aspects of the mimicry diversifications: phylogenetic branching patterns, divergence times, and, for the first time, phylogeographic histories. We show that all three lines of evidence are compatible with strict coevolution of the diverse mimicry wing patterns, contrary to some recent suggestions. Instead, these findings tally with a coevolutionary diversification driven primarily by the ecological force of Müllerian mimicry. © 2015 The Author(s). Evolution © 2015 The Society for the Study of Evolution.
McCarthy, Elizabeth W; Arnold, Sarah E J; Chittka, Lars; Le Comber, Steven C; Verity, Robert; Dodsworth, Steven; Knapp, Sandra; Kelly, Laura J; Chase, Mark W; Baldwin, Ian T; Kovařík, Aleš; Mhiri, Corinne; Taylor, Lin; Leitch, Andrew R
2015-06-01
Speciation in angiosperms can be accompanied by changes in floral colour that may influence pollinator preference and reproductive isolation. This study investigates whether changes in floral colour can accompany polyploid and homoploid hybridization, important processes in angiosperm evolution. Spectral reflectance of corolla tissue was examined for 60 Nicotiana (Solanaceae) accessions (41 taxa) based on spectral shape (corresponding to pigmentation) as well as bee and hummingbird colour perception in order to assess patterns of floral colour evolution. Polyploid and homoploid hybrid spectra were compared with those of their progenitors to evaluate whether hybridization has resulted in floral colour shifts. Floral colour categories in Nicotiana seem to have arisen multiple times independently during the evolution of the genus. Most younger polyploids displayed an unexpected floral colour, considering those of their progenitors, in the colour perception of at least one pollinator type, whereas older polyploids tended to resemble one or both of their progenitors. Floral colour evolution in Nicotiana is weakly constrained by phylogeny, and colour shifts do occur in association with both polyploid and homoploid hybrid divergence. Transgressive floral colour in N. tabacum has arisen by inheritance of anthocyanin pigmentation from its paternal progenitor while having a plastid phenotype like its maternal progenitor. Potentially, floral colour evolution has been driven by, or resulted in, pollinator shifts. However, those polyploids that are not sympatric (on a regional scale) with their progenitor lineages are typically not divergent in floral colour from them, perhaps because of a lack of competition for pollinators. © The Author 2015. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Cross-Modal Correspondences Enhance Performance on a Colour-to-Sound Sensory Substitution Device.
Hamilton-Fletcher, Giles; Wright, Thomas D; Ward, Jamie
Visual sensory substitution devices (SSDs) can represent visual characteristics through distinct patterns of sound, allowing a visually impaired user access to visual information. Previous SSDs have avoided colour and when they do encode colour, have assigned sounds to colour in a largely unprincipled way. This study introduces a new tablet-based SSD termed the ‘Creole’ (so called because it combines tactile scanning with image sonification) and a new algorithm for converting colour to sound that is based on established cross-modal correspondences (intuitive mappings between different sensory dimensions). To test the utility of correspondences, we examined the colour–sound associative memory and object recognition abilities of sighted users who had their device either coded in line with or opposite to sound–colour correspondences. Improved colour memory and reduced colour-errors were made by users who had the correspondence-based mappings. Interestingly, the colour–sound mappings that provided the highest improvements during the associative memory task also saw the greatest gains for recognising realistic objects that also featured these colours, indicating a transfer of abilities from memory to recognition. These users were also marginally better at matching sounds to images varying in luminance, even though luminance was coded identically across the different versions of the device. These findings are discussed with relevance for both colour and correspondences for sensory substitution use.
The effect of wing flexibility on sound generation of flapping wings.
Geng, Biao; Xue, Qian; Zheng, Xudong; Liu, Geng; Ren, Yan; Dong, Haibo
2017-12-13
In this study, the unsteady flow and acoustic characteristics of a three-dimensional (3D) flapping wing model of a Tibicen linnei cicada in forward-flight are numerically investigated. A single cicada wing is modelled as a membrane with a prescribed motion reconstructed from high-speed videos of a live insect. The numerical solution takes a hydrodynamic/acoustic splitting approach: the flow field is solved with an incompressible Navier-Stokes flow solver based on an immersed boundary method, and the acoustic field is solved with linearized perturbed compressible equations. The 3D simulation allows for the examination of both the directivity and frequency compositions of the flapping wing sound in a full space. Along with the flexible wing model, a rigid wing model that is extracted from real motion is also simulated to investigate the effects of wing flexibility. The simulation results show that the flapping sound is directional; the dominant frequency varies around the wing. The first and second frequency harmonics show different radiation patterns in the rigid and flexible wing cases, which are demonstrated to be highly associated with wing kinematics and loadings. Furthermore, the rotation and deformation in the flexible wing is found to help lower the sound strength in all directions.
An introgressed wing pattern acts as a mating cue.
Sánchez, Angela P; Pardo-Diaz, Carolina; Enciso-Romero, Juan; Muñoz, Astrid; Jiggins, Chris D; Salazar, Camilo; Linares, Mauricio
2015-06-01
Heliconius butterflies provide good examples of both homoploid hybrid speciation and ecological speciation. In particular, examples of adaptive introgression have been detected among the subspecies of Heliconius timareta, which acquired red color pattern elements from H. melpomene. We tested whether the introgression of red wing pattern elements into H. timareta florencia might also be associated with incipient reproductive isolation (RI) from its close relative, H. timareta subsp. nov., found in the eastern Andes. No choice experiments show a 50% reduction in mating between females of H. t. subsp. nov. and males of H .t. florencia, but not in the reciprocal direction. In choice experiments using wing models, males of H. timareta subsp. nov. approach and court red phenotypes less than their own, whereas males of H. t. florencia prefer models with a red phenotype. Intrinsic postzygotic isolation was not detected in crosses between these H. timareta races. These results suggest that a color pattern trait gained by introgression is triggering RI between H. timareta subsp. nov. and H. t. florencia. © 2015 The Author(s). Evolution © 2015 The Society for the Study of Evolution.
Camouflage, communication and thermoregulation: lessons from colour changing organisms.
Stuart-Fox, Devi; Moussalli, Adnan
2009-02-27
Organisms capable of rapid physiological colour change have become model taxa in the study of camouflage because they are able to respond dynamically to the changes in their visual environment. Here, we briefly review the ways in which studies of colour changing organisms have contributed to our understanding of camouflage and highlight some unique opportunities they present. First, from a proximate perspective, comparison of visual cues triggering camouflage responses and the visual perception mechanisms involved can provide insight into general visual processing rules. Second, colour changing animals can potentially tailor their camouflage response not only to different backgrounds but also to multiple predators with different visual capabilities. We present new data showing that such facultative crypsis may be widespread in at least one group, the dwarf chameleons. From an ultimate perspective, we argue that colour changing organisms are ideally suited to experimental and comparative studies of evolutionary interactions between the three primary functions of animal colour patterns: camouflage; communication; and thermoregulation.
Camouflage, communication and thermoregulation: lessons from colour changing organisms
Stuart-Fox, Devi; Moussalli, Adnan
2008-01-01
Organisms capable of rapid physiological colour change have become model taxa in the study of camouflage because they are able to respond dynamically to the changes in their visual environment. Here, we briefly review the ways in which studies of colour changing organisms have contributed to our understanding of camouflage and highlight some unique opportunities they present. First, from a proximate perspective, comparison of visual cues triggering camouflage responses and the visual perception mechanisms involved can provide insight into general visual processing rules. Second, colour changing animals can potentially tailor their camouflage response not only to different backgrounds but also to multiple predators with different visual capabilities. We present new data showing that such facultative crypsis may be widespread in at least one group, the dwarf chameleons. From an ultimate perspective, we argue that colour changing organisms are ideally suited to experimental and comparative studies of evolutionary interactions between the three primary functions of animal colour patterns: camouflage; communication; and thermoregulation. PMID:19000973
How to look like a mallow: evidence of floral mimicry between Turneraceae and Malvaceae.
Benitez-Vieyra, Santiago; Hempel de Ibarra, Natalie; Wertlen, Anna M; Cocucci, Andrea A
2007-09-22
Abundant, many-flowered plants represent reliable and rich food sources for animal pollinators, and may even sustain guilds of specialized pollinators. Contrastingly, rare plants need alternative strategies to ensure pollinators' visitation and faithfulness. Flower mimicry, i.e. the sharing of a similar flower colour and display pattern by different plant species, is a means by which a rare species can exploit a successful model and increase its pollination services. The relationship between two or more rewarding flower mimic species, or Müllerian mimicry, has been proposed as mutualistic, in contrast to the unilaterally beneficial Batesian floral mimicry. In this work, we show that two different geographical colour phenotypes of Turnera sidoides ssp. pinnatifida resemble co-flowering Malvaceae in colour as seen by bees' eyes, and that these pollinators do not distinguish between them when approaching flowers in choice tests. Main pollinators of T. sidoides are bees specialized for collecting pollen in Malvaceae. We demonstrate that the similarity between at least one of the geographical colour phenotypes of T. sidoides and co-flowering Malvaceae is adaptive, since the former obtains more pollination services when growing together with its model than when growing alone. Instead of the convergent evolution pattern attributed to Müllerian mimicry, our data rather suggest an advergent evolution pattern, because only T. sidoides seems to have evolved to be more similar to its malvaceous models.
The wing and the eye: a parsimonious theory for scaling and growth control?
Romanova-Michaelides, Maria; Aguilar-Hidalgo, Daniel; Jülicher, Frank; Gonzalez-Gaitan, Marcos
2015-01-01
How a developing organ grows and patterns to its final shape is an important question in developmental biology. Studies of growth and patterning in the Drosophila wing imaginal disc have identified a key player, the morphogen Decapentaplegic (Dpp). These studies provided insights into our understanding of growth control and scaling: expansion of the Dpp gradient correlated with the growth of the tissue. A recent report on growth of a Drosophila organ other than the wing, the eye imaginal disc, prompts a reconsideration of our models of growth control. Despite striking differences between the two, the Dpp gradient scales with the target tissues of both organs and the growth of both the wing and the eye is controlled by Dpp. The goal of this review is to discuss whether a parsimonious model of scaling and growth control can explain the relationship between the Dpp gradient and growth in these two different developmental systems. © 2015 Wiley Periodicals, Inc.
Water Tunnel Flow Visualization Study Through Poststall of 12 Novel Planform Shapes
NASA Technical Reports Server (NTRS)
Gatlin, Gregory M.; Neuhart, Dan H.
1996-01-01
To determine the flow field characteristics of 12 planform geometries, a flow visualization investigation was conducted in the Langley 16- by 24-Inch Water Tunnel. Concepts studied included flat plate representations of diamond wings, twin bodies, double wings, cutout wing configurations, and serrated forebodies. The off-surface flow patterns were identified by injecting colored dyes from the model surface into the free-stream flow. These dyes generally were injected so that the localized vortical flow patterns were visualized. Photographs were obtained for angles of attack ranging from 10' to 50', and all investigations were conducted at a test section speed of 0.25 ft per sec. Results from the investigation indicate that the formation of strong vortices on highly swept forebodies can improve poststall lift characteristics; however, the asymmetric bursting of these vortices could produce substantial control problems. A wing cutout was found to significantly alter the position of the forebody vortex on the wing by shifting the vortex inboard. Serrated forebodies were found to effectively generate multiple vortices over the configuration. Vortices from 65' swept forebody serrations tended to roll together, while vortices from 40' swept serrations were more effective in generating additional lift caused by their more independent nature.
NASA Astrophysics Data System (ADS)
Vincent, Peggy; Allemand, Rémi; Taylor, Paul D.; Suan, Guillaume; Maxwell, Erin E.
2017-06-01
The Posidonienschiefer Formation (Toarcian) of Holzmaden, Baden-Württemberg in southwestern Germany has yielded several excellently preserved plesiosaurian specimens and received considerable research attention. The plesiosaurians found within these deposits are always significantly outnumbered by ichthyosaurs, and close examination of these rare specimens is crucial to a better understanding of the diversity and palaeoecology of Plesiosauria in this very peculiar ecosystem. The plesiosaurian specimen SMNS 51945 found in this area is a juvenile individual consisting of a partial, crushed skull and an exquisitely preserved post-cranial skeleton. Its anatomical characters seem to differ from the long-necked plesiosauroids Microcleidus brachypterygius and Seeleyosaurus guilelmiimperatoris that are the most abundant taxa within the plesiosaurian assemblage. The post-cranial skeleton preserves very likely soft tissues composed of buff-coloured and dark-coloured structures around the vertebral column and hindlimb of the animal. A network of buff-coloured fibres located posterior to the hindlimb most likely represents phosphatised collagen fibres as already found in some ichthyosaur specimens, confirming that wing area in plesiosaurians was much larger than that suggested by skeletal remains alone. The specimen also contains gastroliths (sand-sized grains mainly composed of quartz) in the stomach cavity suggesting the animal spent at least some of its time in shallow coastal waters, tens or hundreds of kilometres from the final place of burial.
Identifying the optical phenomena responsible for the blue appearance of veins
NASA Astrophysics Data System (ADS)
Van Leeuwen, Spencer R.; Baranoski, Gladimir V. G.
2017-09-01
Blue in nature is often associated with beauty. It can be observed all around us, from captivating blue eyes to iridescent blue butterfly wings. While colours in nature are often the result of pigmentation, the majority of natural blue is produced by structural coloration. The colour of the sky, for example, is primarily caused by Rayleigh scattering. In this paper, we examine a single occurrence of blue in nature, specifically the blue appearance of veins near the surface of human skin. The most comprehensive investigation of this coloration to date showed that it arises from a combination of the scattering properties of skin and the absorptance of venous blood. However, that work only considered broad optical properties of these mediums and did not identify the source of the colour. In this paper, we employ in silico experiments, performed using first-principles light interaction models for skin and blood, to investigate the net effect of skin and vein optical properties on their aggregate reflectance across the visible range. We show that the contribution of skin to the distinct appearance of veins primarily results from Rayleigh scattering occurring within the papillary dermis, a sublayer of the skin. The results of this paper, in addition to addressing an old open scientific question, may have practical implications for performing non-invasive measurements of the physiological properties of skin and blood.
Gradual and contingent evolutionary emergence of leaf mimicry in butterfly wing patterns.
Suzuki, Takao K; Tomita, Shuichiro; Sezutsu, Hideki
2014-11-25
Special resemblance of animals to natural objects such as leaves provides a representative example of evolutionary adaptation. The existence of such sophisticated features challenges our understanding of how complex adaptive phenotypes evolved. Leaf mimicry typically consists of several pattern elements, the spatial arrangement of which generates the leaf venation-like appearance. However, the process by which leaf patterns evolved remains unclear. In this study we show the evolutionary origin and process for the leaf pattern in Kallima (Nymphalidae) butterflies. Using comparative morphological analyses, we reveal that the wing patterns of Kallima and 45 closely related species share the same ground plan, suggesting that the pattern elements of leaf mimicry have been inherited across species with lineage-specific changes of their character states. On the basis of these analyses, phylogenetic comparative methods estimated past states of the pattern elements and enabled reconstruction of the wing patterns of the most recent common ancestor. This analysis shows that the leaf pattern has evolved through several intermediate patterns. Further, we use Bayesian statistical methods to estimate the temporal order of character-state changes in the pattern elements by which leaf mimesis evolved, and show that the pattern elements changed their spatial arrangement (e.g., from a curved line to a straight line) in a stepwise manner and finally establish a close resemblance to a leaf venation-like appearance. Our study provides the first evidence for stepwise and contingent evolution of leaf mimicry. Leaf mimicry patterns evolved in a gradual, rather than a sudden, manner from a non-mimetic ancestor. Through a lineage of Kallima butterflies, the leaf patterns evolutionarily originated through temporal accumulation of orchestrated changes in multiple pattern elements.
A Model for Selection of Eyespots on Butterfly Wings.
Sekimura, Toshio; Venkataraman, Chandrasekhar; Madzvamuse, Anotida
2015-01-01
The development of eyespots on the wing surface of butterflies of the family Nympalidae is one of the most studied examples of biological pattern formation.However, little is known about the mechanism that determines the number and precise locations of eyespots on the wing. Eyespots develop around signaling centers, called foci, that are located equidistant from wing veins along the midline of a wing cell (an area bounded by veins). A fundamental question that remains unsolved is, why a certain wing cell develops an eyespot, while other wing cells do not. We illustrate that the key to understanding focus point selection may be in the venation system of the wing disc. Our main hypothesis is that changes in morphogen concentration along the proximal boundary veins of wing cells govern focus point selection. Based on previous studies, we focus on a spatially two-dimensional reaction-diffusion system model posed in the interior of each wing cell that describes the formation of focus points. Using finite element based numerical simulations, we demonstrate that variation in the proximal boundary condition is sufficient to robustly select whether an eyespot focus point forms in otherwise identical wing cells. We also illustrate that this behavior is robust to small perturbations in the parameters and geometry and moderate levels of noise. Hence, we suggest that an anterior-posterior pattern of morphogen concentration along the proximal vein may be the main determinant of the distribution of focus points on the wing surface. In order to complete our model, we propose a two stage reaction-diffusion system model, in which an one-dimensional surface reaction-diffusion system, posed on the proximal vein, generates the morphogen concentrations that act as non-homogeneous Dirichlet (i.e., fixed) boundary conditions for the two-dimensional reaction-diffusion model posed in the wing cells. The two-stage model appears capable of generating focus point distributions observed in nature. We therefore conclude that changes in the proximal boundary conditions are sufficient to explain the empirically observed distribution of eyespot focus points on the entire wing surface. The model predicts, subject to experimental verification, that the source strength of the activator at the proximal boundary should be lower in wing cells in which focus points form than in those that lack focus points. The model suggests that the number and locations of eyespot foci on the wing disc could be largely controlled by two kinds of gradients along two different directions, that is, the first one is the gradient in spatially varying parameters such as the reaction rate along the anterior-posterior direction on the proximal boundary of the wing cells, and the second one is the gradient in source values of the activator along the veins in the proximal-distal direction of the wing cell.
Dynamics of F-actin prefigure the structure of butterfly wing scales.
Dinwiddie, April; Null, Ryan; Pizzano, Maria; Chuong, Lisa; Leigh Krup, Alexis; Ee Tan, Hwei; Patel, Nipam H
2014-08-15
The wings of butterflies and moths consist of dorsal and ventral epidermal surfaces that give rise to overlapping layers of scales and hairs (Lepidoptera, "scale wing"). Wing scales (average length ~200 µm) are homologous to insect bristles (macrochaetes), and their colors create the patterns that characterize lepidopteran wings. The topology and surface sculpture of wing scales vary widely, and this architectural complexity arises from variations in the developmental program of the individual scale cells of the wing epithelium. One of the more striking features of lepidopteran wing scales are the longitudinal ridges that run the length of the mature (dead) cell, gathering the cuticularized scale cell surface into pleats on the sides of each scale. While also present around the periphery of other insect bristles and hairs, longitudinal ridges in lepidopteran wing scales gain new significance for their creation of iridescent color through microribs and lamellae. Here we show the dynamics of the highly organized F-actin filaments during scale cell development, and present experimental manipulations of actin polymerization that reveal the essential role of this cytoskeletal component in wing scale elongation and the positioning of longitudinal ribs. Copyright © 2014 Elsevier Inc. All rights reserved.
An Examination of Ethnic and Gender Differences in the Raven Coloured Progressive Matrices Test.
ERIC Educational Resources Information Center
Kluever, Raymond C.; Green, Kathy E.
Response patterns to the Raven Coloured Progressive Matrices (CPM) were analyzed for a sample of 203 Hispanic and 254 Anglo first- through fifth-grade children from a rural school district in southern Colorado. Gender distributions were nearly equal. Gender and ethnic differences were examined within the context of determining whether the CPM…
Marcus, Jeffrey M; Evans, Travis M
2008-09-01
The color patterns on the wings of butterflies have been an important model system in evolutionary developmental biology. A recent computational model tested genetic regulatory hierarchies hypothesized to underlie the formation of butterfly eyespot foci [Evans, T.M., Marcus, J.M., 2006. A simulation study of the genetic regulatory hierarchy for butterfly eyespot focus determination. Evol. Dev. 8, 273-283]. The computational model demonstrated that one proposed hierarchy was incapable of reproducing the known patterns of gene expression associated with eyespot focus determination in wild-type butterflies, but that two slightly modified alternative hierarchies were capable of reproducing all of the known gene expressions patterns. Here we extend the computational models previously implemented in Delphi 2.0 to two mutants derived from the squinting bush brown butterfly (Bicyclus anynana). These two mutants, comet and Cyclops, have aberrantly shaped eyespot foci that are produced by different mechanisms. The comet mutation appears to produce a modified interaction between the wing margin and the eyespot focus that results in a series of comet-shaped eyespot foci. The Cyclops mutation causes the failure of wing vein formation between two adjacent wing-cells and the fusion of two adjacent eyespot foci to form a single large elongated focus in their place. The computational approach to modeling pattern formation in these mutants allows us to make predictions about patterns of gene expression, which are largely unstudied in butterfly mutants. It also suggests a critical experiment that will allow us to distinguish between two hypothesized genetic regulatory hierarchies that may underlie all butterfly eyespot foci.
NASA Technical Reports Server (NTRS)
Phillips, W. H. (Inventor)
1983-01-01
A cruciform wing structure for a solar powered aircraft is disclosed. Solar cells are mounted on horizontal wing surfaces. Wing surfaces with spanwise axis perpendicular to surfaces maintain these surfaces normal to the Sun's rays by allowing aircraft to be flown in a controlled pattern at a large bank angle. The solar airplane may be of conventional design with respect to fuselage, propeller and tail, or may be constructed around a core and driven by propeller mechanisms attached near the tips of the airfoils.
Simulation of Cell Patterning Triggered by Cell Death and Differential Adhesion in Drosophila Wing.
Nagai, Tatsuzo; Honda, Hisao; Takemura, Masahiko
2018-02-27
The Drosophila wing exhibits a well-ordered cell pattern, especially along the posterior margin, where hair cells are arranged in a zigzag pattern in the lateral view. Based on an experimental result observed during metamorphosis of Drosophila, we considered that a pattern of initial cells autonomously develops to the zigzag pattern through cell differentiation, intercellular communication, and cell death (apoptosis) and performed computer simulations of a cell-based model of vertex dynamics for tissues. The model describes the epithelial tissue as a monolayer cell sheet of polyhedral cells. Their vertices move according to equations of motion, minimizing the sum total of the interfacial and elastic energies of cells. The interfacial energy densities between cells are introduced consistently with an ideal zigzag cell pattern, extracted from the experimental result. The apoptosis of cells is modeled by gradually reducing their equilibrium volume to zero and by assuming that the hair cells prohibit neighboring cells from undergoing apoptosis. Based on experimental observations, we also assumed wing elongation along the proximal-distal axis. Starting with an initial cell pattern similar to the micrograph experimentally obtained just before apoptosis, we carried out the simulations according to the model mentioned above and successfully reproduced the ideal zigzag cell pattern. This elucidates a physical mechanism of patterning triggered by cell apoptosis theoretically and exemplifies, to our knowledge, a new framework to study apoptosis-induced patterning. We conclude that the zigzag cell pattern is formed by an autonomous communicative process among the participant cells. Copyright © 2018 Biophysical Society. All rights reserved.
Goodhew, Stephanie C; Kidd, Evan
2017-02-01
Synaesthesia is the neuropsychological phenomenon in which individuals experience unusual sensory associations, such as experiencing particular colours in response to particular words. While it was once thought the particular pairings between stimuli were arbitrary and idiosyncratic to particular synaesthetes, there is now growing evidence for a systematic psycholinguistic basis to the associations. Here we sought to assess the explanatory value of quantifiable lexical association measures (via latent semantic analysis; LSA) in the pairings observed between words and colours in synaesthesia. To test this, we had synaesthetes report the particular colours they experienced in response to given concept words, and found that language association between the concept and colour words provided highly reliable predictors of the reported pairings. These results provide convergent evidence for a psycholinguistic basis to synaesthesia, but in a novel way, showing that exposure to particular patterns of associations in language can predict the formation of particular synaesthetic lexical-colour associations. Consistent with previous research, the prototypical synaesthetic colour for the first letter of the word also played a role in shaping the colour for the whole word, and this effect also interacted with language association, such that the effect of the colour for the first letter was stronger as the association between the concept word and the colour word in language increased. Moreover, when a group of non-synaesthetes were asked what colours they associated with the concept words, they produced very similar reports to the synaesthetes that were predicted by both language association and prototypical synaesthetic colour for the first letter of the word. This points to a shared linguistic experience generating the associations for both groups. Copyright © 2016 Elsevier B.V. All rights reserved.
Gender differences in colour naming performance for gender specific body shape images.
Elliman, N A; Green, M W; Wan, W K
1998-03-01
Males are increasingly subjected to pressures to conform to aesthetic body stereotypes. There is, however, comparatively little published research on the aetiology of male body shape concerns. Two experiments are presented, which investigate the relationship between gender specific body shape concerns and colour-naming performance. Each study comprised a between subject design, in which each subject was tested on a single occasion. A pictorial version of a modified Stroop task was used in both studies. Subjects colour-named gender specific obese and thin body shape images and semantically homogeneous neutral images (birds) presented in a blocked format. The first experiment investigated female subjects (N = 68) and the second investigated males (N = 56). Subjects also completed a self-report measure of eating behaviour. Currently dieting female subjects exhibited significant colour-naming differences between obese and neutral images. A similar pattern of colour-naming performance was found to be related to external eating in the male subjects.
Edges, colour and awareness in blindsight.
Alexander, Iona; Cowey, Alan
2010-06-01
It remains unclear what is being processed in blindsight in response to faces, colours, shapes, and patterns. This was investigated in two hemianopes with chromatic and achromatic stimuli with sharp or shallow luminance or chromatic contrast boundaries or temporal onsets. Performance was excellent only when stimuli had sharp spatial boundaries. When discrimination between isoluminant coloured Gaussians was good it declined to chance levels if stimulus onset was slow. The ability to discriminate between instantaneously presented colours in the hemianopic field depended on their luminance, indicating that wavelength discrimination totally independent of other stimulus qualities is absent. When presented with narrow-band colours the hemianopes detected a stimulus maximally effective for S-cones but invisible to M- and L-cones, indicating that blindsight is mediated not just by the mid-brain, which receives no S-cone input, or that the rods contribute to blindsight. The results show that only simple stimulus features are processed in blindsight. 2010 Elsevier Inc. All rights reserved.
Development of Bird-like Micro Aerial Vehicle with Flapping and Feathering Wing Motions
NASA Astrophysics Data System (ADS)
Maglasang, Jonathan; Goto, Norihiro; Isogai, Koji
To investigate the feasibility of a highly efficient flapping system capable of avian maneuvers, such as rapid takeoff, hover and gliding, a full scale bird-like (ornithopter) flapping-wing micro aerial vehicle (MAV) shaped and patterned after a typical pigeon (Columba livia) has been designed and constructed. Both numerical and experimental methods have been used in the development of this vehicle. This flapping-wing micro aerial vehicle utilizes both the flapping and feathering motions of an avian wing by employing a novel flapping-feathering mechanism, which has been synthesized and constructed so as to best describe the properly coordinated flapping and feathering wing motions at phase angle difference of 90° in a horizontal steady level flight condition. This design allows high flapping and feathering amplitudes and is configurable for asymmetric wing motions which are desirable in high-speed flapping flight and maneuvering. The preliminary results indicate its viability as a practical and an efficient flapping-wing micro aerial vehicle.
Ge, Dengteng; Wu, Gaoxiang; Yang, Lili; Kim, Hye-Na; Hallwachs, Winnie; Burns, John M; Janzen, Daniel H; Yang, Shu
2017-07-11
Whiteness, although frequently apparent on the wings, legs, antennae, or bodies of many species of moths and butterflies, along with other colors and shades, has often escaped our attention. Here, we investigate the nanostructure and microstructure of white spots on the wings of Carystoides escalantei , a dusk-active and shade-inhabiting Costa Rican rain forest butterfly (Hesperiidae). On both males and females, two types of whiteness occur: angle dependent (dull or bright) and angle independent, which differ in the microstructure, orientation, and associated properties of their scales. Some spots on the male wings are absent from the female wings. Whether the angle-dependent whiteness is bright or dull depends on the observation directions. The angle-dependent scales also show enhanced retro-reflection. We speculate that the biological functions and evolution of Carystoides spot patterns, scale structures, and their varying whiteness are adaptations to butterfly's low light habitat and to airflow experienced on the wing base vs. wing tip.
Cicada-Wing-Inspired Self-Cleaning Antireflection Coatings on Polymer Substrates.
Chen, Ying-Chu; Huang, Zhe-Sheng; Yang, Hongta
2015-11-18
The cicada has transparent wings with remarkable self-cleaning properties and high transmittance over the whole visible spectral range, which is derived from periodic conical structures covering the wing surface. Here we report a scalable self-assembly technique for fabricating multifunctional optical coatings that mimic cicada-wing structures. Spin-coated two-dimensional non-close-packed colloidal crystals are utilized as etching masks to pattern subwavelength-structured cone arrays directly on polymer substrates. The resulting gratings exhibit broadband antireflection performance and superhydrophobic properties after surface modification. The dependence of the cone shape and size on the antireflective and self-cleaning properties has also been investigated in this study.
Sri Lankan Villagers' Attitudes toward Winged Bean, New Third World Food Source.
ERIC Educational Resources Information Center
Hacklander, Effie H.
1984-01-01
Discusses a survey on the acquisition, preparation, and consumption patterns of the winged bean as a food source in various parts of Sri Lanka. It was found that expanding the knowledge and production of indigenous legumes can help satisfy food needs of Third World countries. (JOW)
Slender wing theory including regions of embedded total pressure loss
NASA Technical Reports Server (NTRS)
Mccune, James E.; Tavares, T. Sean; Lee, Norman K. W.; Weissbein, David
1988-01-01
An aerodynamic theory of the flow about slender delta wings is described. The theory includes a treatment of the self-consistent development of the vortex wake patterns above the wing necessary to maintain smooth flow at the wing edges. The paper focuses especially on the formation within the wake of vortex 'cores' as embedded regions of total pressure loss, fed and maintained by umbilical vortex sheets emanating from the wing edges. Criteria are developed for determining the growing size and location of these cores, as well as the distribution and strength of the vorticity within them. In this paper, however, the possibility of vortex breakup is omitted. The aerodynamic consequences of the presence and evolution of the cores and the associated wake structure are illustrated and discussed. It is noted that wake history effects can have substantial influence on the distribution of normal force on the wing as well as on its magnitude.
The effects of leading edge modifications on the post-stall characteristics of wings
NASA Technical Reports Server (NTRS)
Winkelmann, A. E.; Barlow, J. B.; Saini, J. K.; Anderson, J. D., Jr.; Jones, E.
1980-01-01
An investigation of the effects of leading edge modifications on the post-stall characteristics of two rectangular planform wings in a series of low speed wind tunnel tests is presented. Abrupt discontinuities in the leading edge shape of the wings were produced by placing a nose glove over a portion of the span or by deflecting sections of a segmented leading edge flap. Six component balance data, oil flow visualization photographs, and pressure distribution measurements were obtained, and tests made to study the development of flow separation at stall on small scale planform wing models. Results of oil flow visualization tests at and beyond stall showed the formation of counter-rotating swirl patterns on the upper surface of the '2-D' and '3-D' wings, and results of a numerical lifting line technique applied to wings with leading edge modifications are included.
The Colour Test for drug susceptibility testing of Mycobacterium tuberculosis strains.
Toit, K; Mitchell, S; Balabanova, Y; Evans, C A; Kummik, T; Nikolayevskyy, V; Drobniewski, F
2012-08-01
Tartu, Estonia. To assess the performance and feasibility of the introduction of the thin-layer agar MDR/XDR-TB Colour Test (Colour Test) as a non-commercial method of drug susceptibility testing (DST). The Colour Test combines the thin-layer agar technique with a simple colour-coded quadrant format, selective medium to reduce contamination and colorimetric indication of bacterial growth to simplify interpretation. DST patterns for isoniazid (INH), rifampicin (RMP) and ciprofloxacin (CFX) were determined using the Colour Test for 201 archived Mycobacterium tuberculosis isolates. Susceptibilities were compared to blinded DST results obtained routinely using the BACTEC™ Mycobacteria Growth Indicator Tube™ (MGIT) 960 to assess performance characteristics. In all, 98% of the isolates produced interpretable results. The average time to positivity was 13 days, and all results were interpretable. The Colour Test detected drug resistance with 98% sensitivity for INH, RMP and CFX and 99% for multidrug-resistant tuberculosis. Specificities were respectively 100% (95%CI 82-100), 88% (95%CI 69-97) and 91% (95%CI 83-96) and 90% (95%CI 74-98). Agreement between the Colour Test and BACTEC MGIT 960 were respectively 98%, 96%, 94% and 97%. The Colour Test could be an economical, accurate and simple technique for testing tuberculosis strains for drug resistance. As it requires little specialist equipment, it may be particularly useful in resource-constrained settings with growing drug resistance rates.
Flavanol binding of nuclei from tree species.
Feucht, W; Treutter, D; Polster, J
2004-01-01
Light microscopy was used to examine the nuclei of five tree species with respect to the presence of flavanols. Flavanols develop a blue colouration in the presence of a special p-dimethylaminocinnamaldehyde (DMACA) reagent that enables those nuclei loaded with flavanols to be recognized. Staining of the nuclei was most pronounced in both Tsuga canadensis and Taxus baccata, variable in Metasequoia glyptostroboides, faint in Coffea arabica and minimal in Prunus avium. HPLC analysis showed that the five species contained substantial amounts of different flavanols such as catechin, epicatechin and proanthocyanidins. Quantitatively, total flavanols were quite different among the species. The nuclei themselves, as studied in Tsuga seed wings, were found to contain mainly catechin, much lower amounts of epicatechin and traces of proanthocyanidins. Blue-coloured nuclei located centrally in small cells were often found to maximally occupy up to 90% of a cell's radius, and the surrounding small rim of cytoplasm was visibly free of flavanols. A survey of 34 gymnosperm and angiosperm species indicated that the first group has much higher nuclear binding capacities for flavanols than the second group.
NASA Technical Reports Server (NTRS)
Mann, M. J.; Mercer, C. E.
1986-01-01
A transonic computational analysis method and a transonic design procedure have been used to design the wing and the canard of a forward-swept-wing fighter configuration for good transonic maneuver performance. A model of this configuration was tested in the Langley 16-Foot Transonic Tunnel. Oil-flow photographs were obtained to examine the wind flow patterns at Mach numbers from 0.60 to 0.90. The transonic theory gave a reasonably good estimate of the wing pressure distributions at transonic maneuver conditions. Comparison of the forward-swept-wing configuration with an equivalent aft-swept-wing-configuration showed that, at a Mach number of 0.90 and a lift coefficient of 0.9, the two configurations have the same trimmed drag. The forward-swept wing configuration was also found to have trimmed drag levels at transonic maneuver conditions which are comparable to those of the HiMAT (highly maneuverable aircraft technology) configuration and the X-29 forward-swept-wing research configuration. The configuration of this study was also tested with a forebody strake.
Qualitative skeletal correlates of wing shape in extant birds (Aves: Neoaves).
Hieronymus, Tobin L
2015-02-27
Among living fliers (birds, bats, and insects), birds display relatively high aspect ratios, a dimensionless shape variable that distinguishes long and narrow vs. short and broad wings. Increasing aspect ratio results in a functional tradeoff between low induced drag (efficient cruise) and increased wing inertia (difficult takeoff). Given the wide scope of its functional effects, the pattern of aspect ratio evolution is an important factor that contributes to the substantial ecological and phylogenetic diversity of living birds. However, because the feathers that define the wingtip (and hence wingspan and aspect ratio) often do not fossilize, resolution in the pattern of avian wing shape evolution is obscured by missing information. Here I use a comparative approach to investigate the relationship between skeletal proxies of flight feather attachment and wing shape. An accessory lobe of the internal index process of digit II-1, a bony correlate of distal primary attachment, shows weak but statistically significant relationships to aspect ratio and mass independent of other skeletal morphology. The dorsal phalangeal fossae of digit II-1, which house distal primaries VIII and IX, also show a trend of increased prominence with higher aspect ratio. Quill knobs on the ulna are examined concurrently, but do not show consistent signal with respect to wing shape. Although quill knobs are cited as skeletal correlates of flight performance in birds, their relationship to wing shape is inconsistent among extant taxa, and may reflect diverging selection pressures acting on a conserved architecture. In contrast, correlates of distal primary feather attachment on the major digit show convergent responses to increasing aspect ratio. In light of the diversity of musculoskeletal and integumentary mophology that underlies wing shape in different avian clades, it is unlikely that a single skeletal feature will show consistent predictive power across Neoaves. Confident inference of wing shape in basal ornithurine birds will require multiple lines of evidence, together with an understanding of clade-specific evolutionary trends within the crown.
NASA Astrophysics Data System (ADS)
Wang, Qiming; Gossweiler, Gregory R.; Craig, Stephen L.; Zhao, Xuanhe
2014-09-01
Cephalopods can display dazzling patterns of colours by selectively contracting muscles to reversibly activate chromatophores - pigment-containing cells under their skins. Inspired by this novel colouring strategy found in nature, we design an electro-mechano-chemically responsive elastomer system that can exhibit a wide variety of fluorescent patterns under the control of electric fields. We covalently couple a stretchable elastomer with mechanochromic molecules, which emit strong fluorescent signals if sufficiently deformed. We then use electric fields to induce various patterns of large deformation on the elastomer surface, which displays versatile fluorescent patterns including lines, circles and letters on demand. Theoretical models are further constructed to predict the electrically induced fluorescent patterns and to guide the design of this class of elastomers and devices. The material and method open promising avenues for creating flexible devices in soft/wet environments that combine deformation, colorimetric and fluorescent response with topological and chemical changes in response to a single remote signal.
Item and Error Analysis on Raven's Coloured Progressive Matrices in Williams Syndrome
ERIC Educational Resources Information Center
Van Herwegen, Jo; Farran, Emily; Annaz, Dagmara
2011-01-01
Raven's Coloured Progressive Matrices (RCPM) is a standardised test that is commonly used to obtain a non-verbal reasoning score for children. As the RCPM involves the matching of a target to a pattern it is also considered to be a visuo-spatial perception task. RCPM is therefore frequently used in studies in Williams Syndrome (WS), in order to…
2012-01-01
16.64 Figure 3. Venation map of Manduca sexta forewing [11]. 2.4. Venation Insect wings are formed from a complex makeup of polymer based chains, Chitin ...for coloration, but may subtly influence flow patterns and boundary layer structure over wings [4, 24]. There is significant understanding of chitin ...biological specimen to vary the bonding chains, assemblage of nanofibers and crystalline structure, the material properties of chitin can vary over a
Application of Sensor Fusion to Improve Uav Image Classification
NASA Astrophysics Data System (ADS)
Jabari, S.; Fathollahi, F.; Zhang, Y.
2017-08-01
Image classification is one of the most important tasks of remote sensing projects including the ones that are based on using UAV images. Improving the quality of UAV images directly affects the classification results and can save a huge amount of time and effort in this area. In this study, we show that sensor fusion can improve image quality which results in increasing the accuracy of image classification. Here, we tested two sensor fusion configurations by using a Panchromatic (Pan) camera along with either a colour camera or a four-band multi-spectral (MS) camera. We use the Pan camera to benefit from its higher sensitivity and the colour or MS camera to benefit from its spectral properties. The resulting images are then compared to the ones acquired by a high resolution single Bayer-pattern colour camera (here referred to as HRC). We assessed the quality of the output images by performing image classification tests. The outputs prove that the proposed sensor fusion configurations can achieve higher accuracies compared to the images of the single Bayer-pattern colour camera. Therefore, incorporating a Pan camera on-board in the UAV missions and performing image fusion can help achieving higher quality images and accordingly higher accuracy classification results.
Triatoma jatai sp. nov. in the state of Tocantins, Brazil (Hemiptera: Reduviidae: Triatominae)
Gonçalves, Teresa Cristina Monte; Teves-Neves, Simone Caldas; dos Santos-Mallet, Jacenir Reis; Carbajal-de-la-Fuente, Ana Laura; Lopes, Catarina Macedo
2013-01-01
Triatoma jatai sp. nov. is the first new species of triatomine to be described in the state of Tocantins, in the northern region of Brazil. It was caught on rock outcrops in the wild environment and, more recently, invading homes. While T. jatai sp. nov. is morphologically similar to Triatoma costalimai, it is distinguished by its general colouring, differences in the blotches on the connexivum, wing size in females and external structures of the male genitalia. The type series has been deposited in the Entomological Collection and Herman Lent Collection, Oswaldo Cruz Institute-Oswaldo Cruz Foundation, Rio de Janeiro, Brazil. PMID:23828010
Experimental and numerical studies of beetle-inspired flapping wing in hovering flight.
Van Truong, Tien; Le, Tuyen Quang; Park, Hoon Cheol; Byun, Doyoung
2017-05-17
In this paper, we measure unsteady forces and visualize 3D vortices around a beetle-like flapping wing model in hovering flight by experiment and numerical simulation. The measurement of unsteady forces and flow patterns around the wing were conducted using a dynamically scaled wing model in the mineral-oil tank. The wing kinematics were directly derived from the experiment of a real beetle. The 3D flow structures of the flapping wing were captured by using air bubble visualization while forces were measured by a sensor attached at the wing base. In comparison, the size and topology of spiral leading edge vortex, trailing edge vortex and tip vortex are well matched from experimental and numerical studies. In addition, the time history of forces calculated from numerical simulation is also similar to that from theforce measurement. A difference of average force is in order of 10 percent. The results indicate that the leading edge vortex due to rotational acceleration at the end of the stroke during flapping wing causes significant reduction of lift. The present study provides useful information on hover flight to develop a beetle-like flapping wing Micro Air Vehicle.
Global-Local Analysis and Optimization of a Composite Civil Tilt-Rotor Wing
NASA Technical Reports Server (NTRS)
Rais-Rohani, Masound
1999-01-01
This report gives highlights of an investigation on the design and optimization of a thin composite wing box structure for a civil tilt-rotor aircraft. Two different concepts are considered for the cantilever wing: (a) a thin monolithic skin design, and (b) a thick sandwich skin design. Each concept is examined with three different skin ply patterns based on various combinations of 0, +/-45, and 90 degree plies. The global-local technique is used in the analysis and optimization of the six design models. The global analysis is based on a finite element model of the wing-pylon configuration while the local analysis uses a uniformly supported plate representing a wing panel. Design allowables include those on vibration frequencies, panel buckling, and material strength. The design optimization problem is formulated as one of minimizing the structural weight subject to strength, stiffness, and d,vnamic constraints. Six different loading conditions based on three different flight modes are considered in the design optimization. The results of this investigation reveal that of all the loading conditions the one corresponding to the rolling pull-out in the airplane mode is the most stringent. Also the frequency constraints are found to drive the skin thickness limits, rendering the buckling constraints inactive. The optimum skin ply pattern for the monolithic skin concept is found to be (((0/+/-45/90/(0/90)(sub 2))(sub s))(sub s), while for the sandwich skin concept the optimal ply pattern is found to be ((0/+/-45/90)(sub 2s))(sub s).
Youk, Ji Hyun; Gweon, Hye Mi; Son, Eun Ju; Han, Kyung Hwa; Kim, Jeong-Ah
2013-10-01
To evaluate the diagnostic performance of shear-wave elastography (SWE) for breast cancer and to determine whether the integration of SWE into BI-RADS with subcategories of category 4 improves the diagnostic performance. A total of 389 breast masses (malignant 120, benign 269) in 324 women who underwent SWE before ultrasound-guided core biopsy or surgery were included. The qualitative SWE feature was assessed using a four-colour overlay pattern. Quantitative elasticity values including the lesion-to-fat elasticity ratio (Eratio) were measured. Diagnostic performance of B-mode ultrasound, SWE, or their combined studies was compared using the area under the ROC curve (AUC). AUC of Eratio (0.952) was the highest among elasticity values (mean, maximum, and minimum elasticity, 0.949, 0.939, and 0.928; P = 0.04) and AUC of colour pattern was 0.947. AUC of combined studies was significantly higher than for a single study (P < 0.0001). When adding SWE to category 4 lesions, lesions were dichotomised according to % of malignancy: 2.1 % vs. 43.2 % (category 4a) and 0 % vs. 100 % (category 4b) for Eratio and 2.4 % vs. 25.8 % (category 4a) for colour pattern (P < 0.05). Shear-wave elastography showed a good diagnostic performance. Adding SWE features to BI-RADS improved the diagnostic performance and may be helpful to stratify category 4 lesions. • Quantitative and qualitative shear-wave elastography provides further diagnostic information during breast ultrasound. • The elasticity ratio (E ratio ) showed the best diagnostic performance in SWE. • E ratio and four-colour overlay pattern significantly differed between benign and malignant lesions. • SWE features allowed further stratification of BI-RADS category 4 lesions.
Inhibition of Shh signalling in the chick wing gives insights into digit patterning and evolution.
Pickering, Joseph; Towers, Matthew
2016-10-01
In an influential model of pattern formation, a gradient of Sonic hedgehog (Shh) signalling in the chick wing bud specifies cells with three antero-posterior positional values, which give rise to three morphologically different digits by a self-organizing mechanism with Turing-like properties. However, as four of the five digits of the mouse limb are morphologically similar in terms of phalangeal pattern, it has been suggested that self-organization alone could be sufficient. Here, we show that inhibition of Shh signalling at a specific stage of chick wing development results in a pattern of four digits, three of which can have the same number of phalanges. These patterning changes are dependent on a posterior extension of the apical ectodermal ridge, and this also allows the additional digit to arise from the Shh-producing cells of the polarizing region - an ability lost in ancestral theropod dinosaurs. Our analyses reveal that, if the specification of antero-posterior positional values is curtailed, self-organization can then produce several digits with the same number of phalanges. We present a model that may give important insights into how the number of digits and phalanges has diverged during the evolution of avian and mammalian limbs. © 2016. Published by The Company of Biologists Ltd.
Flow structure of vortex-wing interaction
NASA Astrophysics Data System (ADS)
McKenna, Christopher K.
Impingement of a streamwise-oriented vortex upon a fin, tail, blade or wing represents a fundamental class of flow-structure interaction that extends across a range of applications. This interaction can give rise to time-averaged loading, as well as unsteady loading known as buffeting. The loading is sensitive to parameters of the incident vortex as well as the location of vortex impingement on the downstream aerodynamic surface, generically designated as a wing. Particle image velocimetry is employed to determine patterns of velocity, vorticity, swirl ratio, and streamlines on successive cross-flow planes upstream of and along the wing, which lead to volume representations and thereby characterization of the interaction. At locations upstream of the leading edge of the wing, the evolution of the incident vortex is affected by the presence of the wing, and is highly dependent on the spanwise location of vortex impingement. Even at spanwise locations of impingement well outboard of the wing tip, a substantial influence on the structure of the incident vortex at locations significantly upstream of the leading edge of the wing was observed. For spanwise locations close to or intersecting the vortex core, the effects of upstream influence of the wing on the vortex are to: decrease the swirl ratio; increase the streamwise velocity deficit; decrease the streamwise vorticity; increase the azimuthal vorticity; increase the upwash; decrease the downwash; and increase the root-mean-square fluctuations of both streamwise velocity and vorticity. The interrelationship between these effects is addressed, including the rapid attenuation of axial vorticity in presence of an enhanced defect of axial velocity in the central region of the vortex. Moreover, when the incident vortex is aligned with, or inboard of, the tip of the wing, the swirl ratio decreases to values associated with instability of the vortex, giving rise to enhanced values of azimuthal vorticity relative to the streamwise (axial) vorticity, as well as relatively large root-mean-square values of streamwise velocity and vorticity. Along the chord of the wing, the vortex interaction gives rise to distinct modes, which may involve either enhancement or suppression of the vortex generated at the tip of the wing. These modes are classified and interpreted in conjunction with computed modes at the Air Force Research Laboratory. Occurrence of a given mode of interaction is predominantly determined by the dimensionless location of the incident vortex relative to the tip of the wing and is generally insensitive to the Reynolds number and dimensionless circulation of the incident vortex. The genesis of the basic modes of interaction is clarified using streamline topology with associated critical points. Whereas formation of an enhanced tip vortex involves a region of large upwash in conjunction with localized flow separation, complete suppression of the tip vortex is associated with a small-scale separation-attachment bubble bounded by downwash at the wing tip. Oscillation of the wing at an amplitude and velocity nearly two orders of magnitude smaller than the wing chord and free stream velocity respectively can give rise to distinctive patterns of upwash, downwash, and shed vorticity, which are dependent on the outboard displacement of the incident vortex relative to the wing tip. Moreover, these patterns are a strong function of the phase of the wing motion during its oscillation cycle. At a given value of phase, the wing oscillation induces upwash that is reinforced by the upwash of the incident vortex, giving a maximum value of net upwash. Conversely, when these two origins of upwash counteract, rather than reinforce, one another during the oscillation cycle, the net upwash has its minimum value. Analogous interpretations hold for regions of maximum and minimum net downwash located outboard of the regions of upwash. During the oscillation cycle of the wing, the magnitude and scale of the vorticity shed from the tip of the wing are directly correlated with the net upwash, which takes different forms related to the outboard displacement of the incident vortex. As the location of the incident vortex is displaced towards the wing tip, both the maximum upwash and the maximum vorticity of the tip vortex initially increase, then decrease. For the limiting case where the incident vortex impinges directly upon the tip of the wing, there is no tip vortex or induced region of upwash. Furthermore, at small values of vortex displacement from the wing tip, the position of the incident vortex varies significantly from its nominal position during the oscillation cycle. For all locations of the incident vortex, it is shown that, despite the small amplitude of the wing motion, the flow topology is fundamentally different at maximum positive and negative values of the wing velocity, that is, they are not symmetric.
Historical analysis of Newfoundland dog fur colour genetics
Bondeson, J.
2015-01-01
This article makes use of digitized historic newspapers to analyze Newfoundland dog fur colour genetics, and fur colour variations over time. The results indicate that contrary to the accepted view, the ‘Solid’ gene was introduced into the British population of Newfoundland dogs in the 1840s. Prior to that time, the dogs were white and black (Landseer) or white and brown, and thus spotted/spotted homozygotes. Due to ‘Solid’ being dominant over ‘spotted’, and selective breeding, today the majority of Newfoundland dogs are solid black. Whereas small white marks on the chest and/or paw appears to be a random event, the historical data supports the existence of an ‘Irish spotted’ fur colour pattern, with white head blaze, breast, paws and tail tip, in spotted/spotted homozygotes. PMID:26623371
Structural dynamics and aerodynamics measurements of biologically inspired flexible flapping wings.
Wu, P; Stanford, B K; Sällström, E; Ukeiley, L; Ifju, P G
2011-03-01
Flapping wing flight as seen in hummingbirds and insects poses an interesting unsteady aerodynamic problem: coupling of wing kinematics, structural dynamics and aerodynamics. There have been numerous studies on the kinematics and aerodynamics in both experimental and computational cases with both natural and artificial wings. These studies tend to ignore wing flexibility; however, observation in nature affirms that passive wing deformation is predominant and may be crucial to the aerodynamic performance. This paper presents a multidisciplinary experimental endeavor in correlating a flapping micro air vehicle wing's aeroelasticity and thrust production, by quantifying and comparing overall thrust, structural deformation and airflow of six pairs of hummingbird-shaped membrane wings of different properties. The results show that for a specific spatial distribution of flexibility, there is an effective frequency range in thrust production. The wing deformation at the thrust-productive frequencies indicates the importance of flexibility: both bending and twisting motion can interact with aerodynamic loads to enhance wing performance under certain conditions, such as the deformation phase and amplitude. By measuring structural deformations under the same aerodynamic conditions, beneficial effects of passive wing deformation can be observed from the visualized airflow and averaged thrust. The measurements and their presentation enable observation and understanding of the required structural properties for a thrust effective flapping wing. The intended passive responses of the different wings follow a particular pattern in correlation to their aerodynamic performance. Consequently, both the experimental technique and data analysis method can lead to further studies to determine the design principles for micro air vehicle flapping wings.
Localised JAK/STAT Pathway Activation Is Required for Drosophila Wing Hinge Development
Johnstone, Kirsty; Wells, Richard E.; Strutt, David; Zeidler, Martin P.
2013-01-01
Extensive morphogenetic remodelling takes place during metamorphosis from a larval to an adult insect body plan. These changes are particularly intricate in the generation of the dipteran wing hinge, a complex structure that is derived from an apparently simple region of the wing imaginal disc. Using the characterisation of original outstretched alleles of the unpaired locus as a starting point, we demonstrate the role of JAK/STAT pathway signalling in the process of wing hinge development. We show that differences in JAK/STAT signalling within the proximal most of three lateral folds present in the wing imaginal disc is required for fold morphology and the subsequent differentiation of the first and second auxiliary sclerites as well as the posterior notal wing process. Changes in these domains are consistent with the established fate map of the wing disc. We show that outstretched wing posture phenotypes arise from the loss of a region of Unpaired expression in the proximal wing fold and demonstrate that this results in a decrease in JAK/STAT pathway activity. Finally we show that reduction of JAK/STAT pathway activity within the proximal wing fold is sufficient to phenocopy the outstretched phenotype. Taken together, we suggest that localised Unpaired expression and hence JAK/STAT pathway activity, is required for the morphogenesis of the adult wing hinge, providing new insights into the link between signal transduction pathways, patterning and development. PMID:23741461
Husak, J F; Ribak, G; Baker, R H; Rivera, G; Wilkinson, G S; Swallow, J G
2013-06-01
Exaggerated male ornaments are predicted to be costly to their bearers, but these negative effects may be offset by the correlated evolution of compensatory traits. However, when locomotor systems, such as wings in flying species, evolve to decrease such costs, it remains unclear whether functional changes across related species are achieved via the same morphological route or via alternate changes that have similar function. We conducted a comparative analysis of wing shape in relation to eye-stalk elongation across 24 species of stalk-eyed flies, using geometric morphometrics to determine how species with increased eye span, a sexually selected trait, have modified wing morphology as a compensatory mechanism. Using traditional and phylogenetically informed multivariate analyses of shape in combination with phenotypic trajectory analysis, we found a strong phylogenetic signal in wing shape. However, dimorphic species possessed shifted wing veins with the result of lengthening and narrowing wings compared to monomorphic species. Dimorphic species also had changes that seem unrelated to wing size, but instead may govern wing flexion. Nevertheless, the lack of a uniform, compensatory pattern suggests that stalk-eyed flies used alternative modifications in wing structure to increase wing area and aspect ratio, thus taking divergent morphological routes to compensate for exaggerated eye stalks. © 2013 The Authors. Journal of Evolutionary Biology © 2013 European Society For Evolutionary Biology.
Promoting Repeating Patterns with Young Children--More than Just Alternating Colours!
ERIC Educational Resources Information Center
Papic, Marina
2007-01-01
Patterning is an essential skill in early mathematics learning, particularly in the development of spatial awareness, sequencing and ordering, comparison, and classification. This includes the ability to identify and describe attributes of objects and similarities and differences between them. Patterning is also integral to the development of…
Display Parameters and Requirements
NASA Astrophysics Data System (ADS)
Bahadur, Birendra
The following sections are included: * INTRODUCTION * HUMAN FACTORS * Anthropometry * Sensory * Cognitive * Discussions * THE HUMAN VISUAL SYSTEM - CAPABILITIES AND LIMITATIONS * Cornea * Pupil and Iris * Lens * Vitreous Humor * Retina * RODS - NIGHT VISION * CONES - DAY VISION * RODS AND CONES - TWILIGHT VISION * VISUAL PIGMENTS * MACULA * BLOOD * CHOROID COAT * Visual Signal Processing * Pathways to the Brain * Spatial Vision * Temporal Vision * Colour Vision * Colour Blindness * DICHROMATISM * Protanopia * Deuteranopia * Tritanopia * ANOMALOUS TRICHROMATISM * Protanomaly * Deuteranomaly * Tritanomaly * CONE MONOCHROMATISM * ROD MONOCHROMATISM * Using Colour Effectively * COLOUR MIXTURES AND THE CHROMATICITY DIAGRAM * Colour Matching Functions and Chromaticity Co-ordinates * CIE 1931 Colour Space * CIE PRIMARIES * CIE COLOUR MATCHING FUNCTIONS AND CHROMATICITY CO-ORDINATES * METHODS FOR DETERMINING TRISTIMULUS VALUES AND COLOUR CO-ORDINATES * Spectral Power Distribution Method * Filter Method * CIE 1931 CHROMATICITY DIAGRAM * ADDITIVE COLOUR MIXTURE * CIE 1976 Chromaticity Diagram * CIE Uniform Colour Spaces and Colour Difference Formulae * CIELUV OR L*u*v* * CIELAB OR L*a*b* * CIE COLOUR DIFFERENCE FORMULAE * Colour Temperature and CIE Standard Illuminants and source * RADIOMETRIC AND PHOTOMETRIC QUANTITIES * Photopic (Vλ and Scotopic (Vλ') Luminous Efficiency Function * Photometric and Radiometric Flux * Luminous and Radiant Intensities * Incidence: Illuminance and Irradiance * Exitance or Emittance (M) * Luminance and Radiance * ERGONOMIC REQUIREMENTS OF DISPLAYS * ELECTRO-OPTICAL PARAMETERS AND REQUIREMENTS * Contrast and Contrast Ratio * Luminance and Brightness * Colour Contrast and Chromaticity * Glare * Other Aspects of Legibility * SHAPE AND SIZE OF CHARACTERS * DEFECTS AND BLEMISHES * FLICKER AND DISTORTION * ANGLE OF VIEW * Switching Speed * Threshold and Threshold Characteristic * Measurement Techniques For Electro-optical Parameters * RADIOMETRIC MEASUREMENTS * Broadband Radiometry or Filtered Photodetector Radiometric Method * Spectroradiometric Method * PHOTOMETRIC MEASUREMENTS * COLOUR MEASUREMENTS * LUMINANCE, CONTRAST RATIO, THRESHOLD CHARACTERISTIC AND POLAR PLOT * SWITCHING SPEED * ELECTRICAL AND LIFE PARAMETERS AND REQUIREMENTS * Operating Voltage, Current Drainage and Power Consumption * Operating Frequency * Life Expectancy * LCD FAILURE MODES * Liquid Crystal Materials * Substrate Glass * Electrode Patterns * Alignment and Aligning Material * Peripheral and End Plug Seal * Spacers * Crossover Material * Polarizers and Reflectors * Connectors * Heater * Colour Filters * Backlighting System * Explanation For Some of the Observed Defects * BLOOMING PIXELS * POLARIZER RELATED DEFECTS * DIFFERENTIAL THERMAL EXPANSION RELATED DEFECTS * ELECTROCHEMICAL AND ELECTROHYDRODYNAMIC RELATED DEFECTS * REVERSE TWIST AND REVERSE TILT * MEMORY OR REMINISCENT CONTRAST * LCD RELIABILRY AND ACCELERATED LIFE TESTING * ACKNOWLEDGEMENTS * REFERENCES * APPENDIX
Tseng, Hui-Yun; Lin, Chung-Ping; Hsu, Jung-Ya; Pike, David A.; Huang, Wen-San
2014-01-01
Conspicuous colouration can evolve as a primary defence mechanism that advertises unprofitability and discourages predatory attacks. Geographic overlap is a primary determinant of whether individual predators encounter, and thus learn to avoid, such aposematic prey. We experimentally tested whether the conspicuous colouration displayed by Old World pachyrhynchid weevils (Pachyrhynchus tobafolius and Kashotonus multipunctatus) deters predation by visual predators (Swinhoe’s tree lizard; Agamidae, Japalura swinhonis). During staged encounters, sympatric lizards attacked weevils without conspicuous patterns at higher rates than weevils with intact conspicuous patterns, whereas allopatric lizards attacked weevils with intact patterns at higher rates than sympatric lizards. Sympatric lizards also attacked masked weevils at lower rates, suggesting that other attributes of the weevils (size/shape/smell) also facilitate recognition. Allopatric lizards rapidly learned to avoid weevils after only a single encounter, and maintained aversive behaviours for more than three weeks. The imperfect ability of visual predators to recognize potential prey as unpalatable, both in the presence and absence of the aposematic signal, may help explain how diverse forms of mimicry exploit the predator’s visual system to deter predation. PMID:24614681
Renoult, J P; Thomann, M; Schaefer, H M; Cheptou, P-O
2013-11-01
Even though the importance of selection for trait evolution is well established, we still lack a functional understanding of the mechanisms underlying phenotypic selection. Because animals necessarily use their sensory system to perceive phenotypic traits, the model of sensory bias assumes that sensory systems are the main determinant of signal evolution. Yet, it has remained poorly known how sensory systems contribute to shaping the fitness surface of selected individuals. In a greenhouse experiment, we quantified the strength and direction of selection on floral coloration in a population of cornflowers exposed to bumblebees as unique pollinators during 4 days. We detected significant selection on the chromatic and achromatic (brightness) components of floral coloration. We then studied whether these patterns of selection are explicable by accounting for the visual system of the pollinators. Using data on bumblebee colour vision, we first showed that bumblebees should discriminate among quantitative colour variants. The observed selection was then compared to the selection predicted by psychophysical models of bumblebee colour vision. The achromatic but not the chromatic channel of the bumblebee's visual system could explain the observed pattern of selection. These results highlight that (i) pollinators can select quantitative variation in floral coloration and could thus account for a gradual evolution of flower coloration, and (ii) stimulation of the visual system represents, at least partly, a functional mechanism potentially explaining pollinators' selection on floral colour variants. © 2013 The Authors. Journal of Evolutionary Biology © 2013 European Society For Evolutionary Biology.
Dai, Mengyao; Wang, Yao; Fang, Lu; Irwin, David M; Zhu, Tengteng; Zhang, Junpeng; Zhang, Shuyi; Wang, Zhe
2014-01-01
Bats are the only mammals capable of self-powered flight using wings. Differing from mouse or human limbs, four elongated digits within a broad wing membrane support the bat wing, and the foot of the bat has evolved a long calcar that spread the interfemoral membrane. Our recent mRNA sequencing (mRNA-Seq) study found unique expression patterns for genes at the 5' end of the Hoxd gene cluster and for Tbx3 that are associated with digit elongation and wing membrane growth in bats. In this study, we focused on two additional genes, Meis2 and Mab21l2, identified from the mRNA-Seq data. Using whole-mount in situ hybridization (WISH) we validated the mRNA-Seq results for differences in the expression patterns of Meis2 and Mab21l2 between bat and mouse limbs, and further characterize the timing and location of the expression of these two genes. These analyses suggest that Meis2 may function in wing membrane growth and Mab21l2 may have a role in AP and DV axial patterning. In addition, we found that Tbx3 is uniquely expressed in the unique calcar structure found in the bat hindlimb, suggesting a role for this gene in calcar growth and elongation. Moreover, analysis of the coding sequences for Meis2, Mab21l2 and Tbx3 showed that Meis2 and Mab21l2 have high sequence identity, consistent with the functions of genes being conserved, but that Tbx3 showed accelerated evolution in bats. However, evidence for positive selection in Tbx3 was not found, which would suggest that the function of this gene has not been changed. Together, our findings support the hypothesis that the modulation of the spatiotemporal expression patterns of multiple functional conserved genes control limb morphology and drive morphological change in the diversification of mammalian limbs.
Fang, Lu; Irwin, David M.; Zhu, Tengteng; Zhang, Junpeng; Zhang, Shuyi; Wang, Zhe
2014-01-01
Bats are the only mammals capable of self-powered flight using wings. Differing from mouse or human limbs, four elongated digits within a broad wing membrane support the bat wing, and the foot of the bat has evolved a long calcar that spread the interfemoral membrane. Our recent mRNA sequencing (mRNA-Seq) study found unique expression patterns for genes at the 5′ end of the Hoxd gene cluster and for Tbx3 that are associated with digit elongation and wing membrane growth in bats. In this study, we focused on two additional genes, Meis2 and Mab21l2, identified from the mRNA-Seq data. Using whole-mount in situ hybridization (WISH) we validated the mRNA-Seq results for differences in the expression patterns of Meis2 and Mab21l2 between bat and mouse limbs, and further characterize the timing and location of the expression of these two genes. These analyses suggest that Meis2 may function in wing membrane growth and Mab21l2 may have a role in AP and DV axial patterning. In addition, we found that Tbx3 is uniquely expressed in the unique calcar structure found in the bat hindlimb, suggesting a role for this gene in calcar growth and elongation. Moreover, analysis of the coding sequences for Meis2, Mab21l2 and Tbx3 showed that Meis2 and Mab21l2 have high sequence identity, consistent with the functions of genes being conserved, but that Tbx3 showed accelerated evolution in bats. However, evidence for positive selection in Tbx3 was not found, which would suggest that the function of this gene has not been changed. Together, our findings support the hypothesis that the modulation of the spatiotemporal expression patterns of multiple functional conserved genes control limb morphology and drive morphological change in the diversification of mammalian limbs. PMID:25166052
Lehmann, Fritz-Olaf; Pick, Simon
2007-04-01
Flying insects may enhance their flight force production by contralateral wing interaction during dorsal stroke reversal ('clap-and-fling'). In this study, we explored the forces and moments due to clap-and-fling at various wing tip trajectories, employing a dynamically scaled electromechanical flapping device. The 17 tested bio-inspired kinematic patterns were identical in stroke amplitude, stroke frequency and angle of attack with respect to the horizontal stroke plane but varied in heaving motion. Clap-and-fling induced vertical force augmentation significantly decreased with increasing vertical force production averaged over the entire stroke cycle, whereas total force augmentation was independent from changes in force produced by a single wing. Vertical force augmentation was also largely independent of forces produced due to wing rotation at the stroke reversals, the sum of rotational circulation and wake capture force. We obtained maximum (17.4%) and minimum (1.4%) vertical force augmentation in two types of figure-eight stroke kinematics whereby rate and direction of heaving motion during fling may explain 58% of the variance in vertical force augmentation. This finding suggests that vertical wing motion distinctly alters the flow regime at the beginning of the downstroke. Using an analytical model, we determined pitching moments acting on an imaginary body of the flapping device from the measured time course of forces, the changes in length of the force vector's moment arm, the position of the centre of mass and body angle. The data show that pitching moments are largely independent from mean vertical force; however, clap-and-fling reinforces mean pitching moments by approximately 21%, compared to the moments produced by a single flapping wing. Pitching moments due to clap-and-fling significantly increase with increasing vertical force augmentation and produce nose-down moments in most of the tested patterns. The analytical model, however, shows that algebraic sign and magnitude of these moments may vary distinctly depending on both body angle and the distance between the wing hinge and the animal's centre of mass. Altogether, the data suggest that the benefit of clap-and-fling wing beat for vertical force enhancement and pitch balance may change with changing heaving motion and thus wing tip trajectory during manoeuvring flight. We hypothesize that these dependencies may have shaped the evolution of wing kinematics in insects that are limited by aerodynamic lift rather than by mechanical power of their flight musculature.
Montgomery, E M; Hamel, J-F; Mercier, A
Egg pigmentation is proposed to serve numerous ecological, physiological, and adaptive functions in egg-laying animals. Despite the predominance and taxonomic diversity of egg layers, syntheses reviewing the putative functions and drivers of egg pigmentation have been relatively narrow in scope, centring almost exclusively on birds. Nonvertebrate and aquatic species are essentially overlooked, yet many of them produce maternally provisioned eggs in strikingly varied colours, from pale yellow to bright red or green. We explore the ways in which these colour patterns correlate with behavioural, morphological, geographic and phylogenetic variables in extant classes of Echinodermata, a phylum that has close phylogenetic ties with chordates and representatives in nearly all marine environments. Results of multivariate analyses show that intensely pigmented eggs are characteristic of pelagic or external development whereas pale eggs are commonly brooded internally. Of the five egg colours catalogued, orange and yellow are the most common. Yellow eggs are a primitive character, associated with all types of development (predominant in internal brooders), whereas green eggs are always pelagic, occur in the most derived orders of each class and are restricted to the Indo-Pacific Ocean. Orange eggs are geographically ubiquitous and may represent a 'universal' egg pigment that functions well under a diversity of environmental conditions. Finally, green occurs chiefly in the classes Holothuroidea and Ophiuroidea, orange in Asteroidea, yellow in Echinoidea, and brown in Holothuroidea. By examining an unprecedented combination of egg colours/intensities and reproductive strategies, this phylum-wide study sheds new light on the role and drivers of egg pigmentation, drawing parallels with theories developed from the study of more derived vertebrate taxa. The primary use of pigments (of any colour) to protect externally developing eggs from oxidative damage and predation is supported by the comparatively pale colour of equally large, internally brooded eggs. Secondarily, geographic location drives the evolution of egg colour diversity, presumably through the selection of better-adapted, more costly pigments in response to ecological pressure. © 2017 Elsevier Ltd. All rights reserved.
Lokemoen, John T.; Johnson, Douglas H.; Sharp, David E.
1990-01-01
During 1976-81 we weighed several thousands of wild Mallard, Gadwall, and Blue-winged Teal in central North Dakota to examine duckling growth patterns, adult weights, and the factors influencing them. One-day-old Mallard and Gadwall averaged 32.4 and 30.4 g, respectively, a reduction of 34% and 29% from fresh egg weights. In all three species, the logistic growth curve provided a good fit for duckling growth patterns. Except for the asymptote, there was no difference in growth curves between males and females of a species. Mallard and Gadwall ducklings were heavier in years when wetland area was extensive or had increased from the previous year. Weights of after-second-year females were greater than yearlings for Mallard but not for Gadwall or Blue-winged Teal. Adult Mallard females lost weight continuously from late March to early July. Gadwall and Blue-winged Teal females, which nest later than Mallard, gained weight after spring arrival, lost weight from the onset of nesting until early July, and then regained some weight. Females of all species captured on nests were lighter than those captured off nests at the same time. Male Mallard weights decreased from spring arrival until late May. Male Gadwall and Blue-winged Teal weights increased after spring arrival, then declined until early June. Males of all three species then gained weight until the end of June. Among adults, female Gadwall and male Mallard and Blue-winged Teal were heavier in years when wetland area had increased from the previous year; female Blue-winged Teal were heavier in years with more wetland area.
Nattero, Julieta; Dujardin, Jean-Pierre; Del Pilar Fernández, María; Gürtler, Ricardo E
2015-12-01
Fluctuating asymmetry (FA), a slight and random departure from bilateral symmetry that is normally distributed around a 0 mean, has been widely used to infer developmental instability. We investigated whether habitats (ecotopes) and host-feeding sources influenced wing FA of the hematophagous bug Triatoma infestans. Because bug populations occupying distinct habitats differed substantially and consistently in various aspects such as feeding rates, engorgement status and the proportion of gravid females, we predicted that bugs from more open peridomestic habitats (i.e., goat corrals) were more likely to exhibit higher FA than bugs from domiciles. We examined patterns of asymmetry and the amount of wing size and shape FA in 196 adult T. infestans collected across a gradient of habitat suitability and stability that decreased from domiciles, storerooms, kitchens, chicken coops, pig corrals, to goat corrals in a well-defined area of Figueroa, northwestern Argentina. The bugs had unmixed blood meals on human, chicken, pig and goat depending on the bug collection ecotope. We documented the occurrence of FA in wing shape for bugs fed on all host-feeding sources and in all ecotopes except for females from domiciles or fed on humans. FA indices for wing shape differed significantly among host-feeding sources, ecotopes and sexes. The patterns of wing asymmetry in females from domiciles and from goat corrals were significantly different; differences in male FA were congruent with evidence showing that they had higher mobility than females across habitats. The host-feeding sources and habitats of T. infestans affected wing developmental stability depending on sex. Copyright © 2015 Elsevier B.V. All rights reserved.
Lindborg, PerMagnus; Friberg, Anders K.
2015-01-01
Crossmodal associations may arise at neurological, perceptual, cognitive, or emotional levels of brain processing. Higher-level modal correspondences between musical timbre and visual colour have been previously investigated, though with limited sets of colour. We developed a novel response method that employs a tablet interface to navigate the CIE Lab colour space. The method was used in an experiment where 27 film music excerpts were presented to participants (n = 22) who continuously manipulated the colour and size of an on-screen patch to match the music. Analysis of the data replicated and extended earlier research, for example, that happy music was associated with yellow, music expressing anger with large red colour patches, and sad music with smaller patches towards dark blue. Correlation analysis suggested patterns of relationships between audio features and colour patch parameters. Using partial least squares regression, we tested models for predicting colour patch responses from audio features and ratings of perceived emotion in the music. Parsimonious models that included emotion robustly explained between 60% and 75% of the variation in each of the colour patch parameters, as measured by cross-validated R 2. To illuminate the quantitative findings, we performed a content analysis of structured spoken interviews with the participants. This provided further evidence of a significant emotion mediation mechanism, whereby people tended to match colour association with the perceived emotion in the music. The mixed method approach of our study gives strong evidence that emotion can mediate crossmodal association between music and visual colour. The CIE Lab interface promises to be a useful tool in perceptual ratings of music and other sounds. PMID:26642050
Li, M-H; Tiirikka, T; Kantanen, J
2014-01-01
In sheep, coat colour (and pattern) is one of the important traits of great biological, economic and social importance. However, the genetics of sheep coat colour has not yet been fully clarified. We conducted a genome-wide association study of sheep coat colours by genotyping 47 303 single-nucleotide polymorphisms (SNPs) in the Finnsheep population in Finland. We identified 35 SNPs associated with all the coat colours studied, which cover genomic regions encompassing three known pigmentation genes (TYRP1, ASIP and MITF) in sheep. Eighteen of these associations were confirmed in further tests between white versus non-white individuals, but none of the 35 associations were significant in the analysis of only non-white colours. Across the tests, the s66432.1 in ASIP showed significant association (P=4.2 × 10−11 for all the colours; P=2.3 × 10−11 for white versus non-white colours) with the variation in coat colours and strong linkage disequilibrium with other significant variants surrounding the ASIP gene. The signals detected around the ASIP gene were explained by differences in white versus non-white alleles. Further, a genome scan for selection for white coat pigmentation identified a strong and striking selection signal spanning ASIP. Our study identified the main candidate gene for the coat colour variation between white and non-white as ASIP, an autosomal gene that has been directly implicated in the pathway regulating melanogenesis. Together with ASIP, the two other newly identified genes (TYRP1 and MITF) in the Finnsheep, bordering associated SNPs, represent a new resource for enriching sheep coat-colour genetics and breeding. PMID:24022497
Lindborg, PerMagnus; Friberg, Anders K
2015-01-01
Crossmodal associations may arise at neurological, perceptual, cognitive, or emotional levels of brain processing. Higher-level modal correspondences between musical timbre and visual colour have been previously investigated, though with limited sets of colour. We developed a novel response method that employs a tablet interface to navigate the CIE Lab colour space. The method was used in an experiment where 27 film music excerpts were presented to participants (n = 22) who continuously manipulated the colour and size of an on-screen patch to match the music. Analysis of the data replicated and extended earlier research, for example, that happy music was associated with yellow, music expressing anger with large red colour patches, and sad music with smaller patches towards dark blue. Correlation analysis suggested patterns of relationships between audio features and colour patch parameters. Using partial least squares regression, we tested models for predicting colour patch responses from audio features and ratings of perceived emotion in the music. Parsimonious models that included emotion robustly explained between 60% and 75% of the variation in each of the colour patch parameters, as measured by cross-validated R2. To illuminate the quantitative findings, we performed a content analysis of structured spoken interviews with the participants. This provided further evidence of a significant emotion mediation mechanism, whereby people tended to match colour association with the perceived emotion in the music. The mixed method approach of our study gives strong evidence that emotion can mediate crossmodal association between music and visual colour. The CIE Lab interface promises to be a useful tool in perceptual ratings of music and other sounds.
Filling schemes of silver dots inkjet-printed on pixelated nanostructured surfaces
NASA Astrophysics Data System (ADS)
Alan, Sheida; Jiang, Hao; Shahbazbegian, Haleh; Patel, Jasbir N.; Kaminska, Bozena
2017-03-01
Recently, our group demonstrated an inkjet-based technique to enable high-throughput, versatile and full-colour printing of structural colours on generic pixelated nanostructures, termed as molded ink on nanostructured surfaces. The printed colours are controlled by the area of printed silver on the pixelated red, green and blue polymer nanostructure arrays. This paper investigates the behaviour of jetted silver ink droplets on nanostructured surfaces and the microscale dot patterns implemented during printing process, for achieving accurate and consistent colours in the printed images. The surface wettability and the schemes of filling silver dots inside the subpixels are crucial to the quality of printed images. Several related concepts and definitions are introduced, such as filling ratio, full dots per subpixel (DPSP), number of printable colours, colour leaking and dot merging. In our experiments, we first chemically modified the surface to control the wettability and dot size. From each type of modified surface, various filling schemes were experimented and the printed results were evaluated with comprehensive considerations on the number of printable colours and the negative effects of colour leaking and dot merging. Rational selection of the best filling scheme resulted in a 2-line filling scheme using 20 μm dot spacing and line spacing capable of printing 9261 different colours with 121 pixel per inch display resolution, on low-wettability surface. This study is of vital importance for scaling up the printing technique in industrial applications and provides meaningful insights for inkjet-printing on nanostructures.
Dermoscopic 'Chaos and Clues' in the diagnosis of melanoma in situ.
Ramji, Rajan; Valdes-Gonzalez, Guillermo; Oakley, Amanda; Rademaker, Marius
2017-11-02
To describe the dermoscopic features of melanoma in situ using the Chaos and Clues method. Histologically proven primary melanoma in situ (MIS) diagnosed through a specialist teledermoscopy clinic were reviewed by three dermatologists. By consensus they agreed on the global dermoscopic pattern, colours, presence of chaos (asymmetry of colour and structure and more than one pattern), and each of the nine clues described for malignancy. One hundred MIS in 92 patients of European ethnicity (45 males) were assessed. Mean age was 67.3 years (range 20-95). The mean dimensions of the lesions were 11.1 × 12.0 mm (range 2.5-31.3 × 2.3-32.3 mm). Using pattern analysis, 82% of the lesions had three or more patterns (multicomponent) and the rest had 2 patterns. Colours included light brown (100%), dark brown (98%) and grey (75%). All MIS demonstrated chaos. The most prevalent clues were thick lines (88%), eccentric structureless areas (88%), and grey or blue structures (75%). Dermoscopy can be very helpful in the early diagnosis of melanoma and MIS. The Chaos and Clues method is simple to use. Its unambiguous descriptors can be successfully used to describe MIS. The presence of chaos and clues to malignancy (including thick lines, eccentric structureless areas, and blue/grey structures) should raise a red flag and lead to referral or excision. © 2017 The Australasian College of Dermatologists.
Genomic architecture of adaptive color pattern divergence and convergence in Heliconius butterflies
Supple, Megan A.; Hines, Heather M.; Dasmahapatra, Kanchon K.; Lewis, James J.; Nielsen, Dahlia M.; Lavoie, Christine; Ray, David A.; Salazar, Camilo; McMillan, W. Owen; Counterman, Brian A.
2013-01-01
Identifying the genetic changes driving adaptive variation in natural populations is key to understanding the origins of biodiversity. The mosaic of mimetic wing patterns in Heliconius butterflies makes an excellent system for exploring adaptive variation using next-generation sequencing. In this study, we use a combination of techniques to annotate the genomic interval modulating red color pattern variation, identify a narrow region responsible for adaptive divergence and convergence in Heliconius wing color patterns, and explore the evolutionary history of these adaptive alleles. We use whole genome resequencing from four hybrid zones between divergent color pattern races of Heliconius erato and two hybrid zones of the co-mimic Heliconius melpomene to examine genetic variation across 2.2 Mb of a partial reference sequence. In the intergenic region near optix, the gene previously shown to be responsible for the complex red pattern variation in Heliconius, population genetic analyses identify a shared 65-kb region of divergence that includes several sites perfectly associated with phenotype within each species. This region likely contains multiple cis-regulatory elements that control discrete expression domains of optix. The parallel signatures of genetic differentiation in H. erato and H. melpomene support a shared genetic architecture between the two distantly related co-mimics; however, phylogenetic analysis suggests mimetic patterns in each species evolved independently. Using a combination of next-generation sequencing analyses, we have refined our understanding of the genetic architecture of wing pattern variation in Heliconius and gained important insights into the evolution of novel adaptive phenotypes in natural populations. PMID:23674305
Williams, Suzanne T
2017-05-01
The phylum Mollusca is highly speciose, and is the largest phylum in the marine realm. The great majority of molluscs are shelled, including nearly all bivalves, most gastropods and some cephalopods. The fabulous and diverse colours and patterns of molluscan shells are widely recognised and have been appreciated for hundreds of years by collectors and scientists alike. They serve taxonomists as characters that can be used to recognise and distinguish species, however their function for the animal is sometimes less clear and has been the focus of many ecological and evolutionary studies. Despite these studies, almost nothing is known about the evolution of colour in molluscan shells. This review summarises for the first time major findings of disparate studies relevant to the evolution of shell colour in Mollusca and discusses the importance of colour, including the effects of visual and non-visual selection, diet and abiotic factors. I also summarise the evidence for the heritability of shell colour in some taxa and recent efforts to understand the molecular mechanisms underpinning synthesis of shell colours. I describe some of the main shell pigments found in Mollusca (carotenoids, melanin and tetrapyrroles, including porphyrins and bile pigments), and their durability in the fossil record. Finally I suggest that pigments appear to be distributed in a phylogenetically relevant manner and that the synthesis of colour is likely to be energetically costly. © 2016 Cambridge Philosophical Society.
Murillo-Maldonado, Juan M; Zeineddine, Fouad Bou; Stock, Rachel; Thackeray, Justin; Riesgo-Escovar, Juan R
2011-01-01
Coordination between growth and patterning/differentiation is critical if appropriate final organ structure and size is to be achieved. Understanding how these two processes are regulated is therefore a fundamental and as yet incompletely answered question. Here we show through genetic analysis that the phospholipase C-γ (PLC-γ) encoded by small wing (sl) acts as such a link between growth and patterning/differentiation by modulating some MAPK outputs once activated by the insulin pathway; particularly, sl promotes growth and suppresses ectopic differentiation in the developing eye and wing, allowing cells to attain a normal size and differentiate properly. sl mutants have previously been shown to have a combination of both growth and patterning/differentiation phenotypes: small wings, ectopic wing veins, and extra R7 photoreceptor cells. We show here that PLC-γ activated by the insulin pathway participates broadly and positively during cell growth modulating EGF pathway activity, whereas in cell differentiation PLC-γ activated by the insulin receptor negatively regulates the EGF pathway. These roles require different SH2 domains of PLC-γ, and act via classic PLC-γ signaling and EGF ligand processing. By means of PLC-γ, the insulin receptor therefore modulates differentiation as well as growth. Overall, our results provide evidence that PLC-γ acts during development at a time when growth ends and differentiation begins, and is important for proper coordination of these two processes.
Why the leopard got its spots: relating pattern development to ecology in felids
Allen, William L.; Cuthill, Innes C.; Scott-Samuel, Nicholas E.; Baddeley, Roland
2011-01-01
A complete explanation of the diversity of animal colour patterns requires an understanding of both the developmental mechanisms generating them and their adaptive value. However, only two previous studies, which involved computer-generated evolving prey, have attempted to make this link. This study examines variation in the camouflage patterns displayed on the flanks of many felids. After controlling for the effects of shared ancestry using a fully resolved molecular phylogeny, this study shows how phenotypes from plausible felid coat pattern generation mechanisms relate to ecology. We found that likelihood of patterning and pattern attributes, such as complexity and irregularity, were related to felids' habitats, arboreality and nocturnality. Our analysis also indicates that disruptive selection is a likely explanation for the prevalence of melanistic forms in Felidae. Furthermore, we show that there is little phylogenetic signal in the visual appearance of felid patterning, indicating that camouflage adapts to ecology over relatively short time scales. Our method could be applied to any taxon with colour patterns that can reasonably be matched to reaction–diffusion and similar models, where the kinetics of the reaction between two or more initially randomly dispersed morphogens determines the outcome of pattern development. PMID:20961899
Novel method for measuring a dense 3D strain map of robotic flapping wings
NASA Astrophysics Data System (ADS)
Li, Beiwen; Zhang, Song
2018-04-01
Measuring dense 3D strain maps of the inextensible membranous flapping wings of robots is of vital importance to the field of bio-inspired engineering. Conventional high-speed 3D videography methods typically reconstruct the wing geometries through measuring sparse points with fiducial markers, and thus cannot obtain the full-field mechanics of the wings in detail. In this research, we propose a novel system to measure a dense strain map of inextensible membranous flapping wings by developing a superfast 3D imaging system and a computational framework for strain analysis. Specifically, first we developed a 5000 Hz 3D imaging system based on the digital fringe projection technique using the defocused binary patterns to precisely measure the dynamic 3D geometries of rapidly flapping wings. Then, we developed a geometry-based algorithm to perform point tracking on the precisely measured 3D surface data. Finally, we developed a dense strain computational method using the Kirchhoff-Love shell theory. Experiments demonstrate that our method can effectively perform point tracking and measure a highly dense strain map of the wings without many fiducial markers.
Torres-Dowdall, Julián; Golcher-Benavides, Jimena; Machado-Schiaffino, Gonzalo; Meyer, Axel
2017-09-01
Genetically based stable colour polymorphisms provide a unique opportunity to study the evolutionary processes that preserve genetic variability in the wild. Different mechanisms are proposed to promote the stability of polymorphisms, but only few empirical examples have been documented, resulting in an incomplete understanding of these mechanisms. A remarkable genetically determined stable colour polymorphism is found in the Nicaraguan Midas cichlid species complex (Amphilophus cf. citrinellus). All Midas cichlids start their life with a dark-grey coloration (dark morph), but individuals carrying the dominant "gold" allele (c. 10%) lose their melanophores later in life, revealing the underlying orange coloration (gold morph). How this polymorphism is maintained remains unclear. Two main hypotheses have been proposed, both suggesting differential predation upon colour morphs as the proximate mechanism. One predicts that the conspicuous gold morph is more likely to be preyed upon, but this disadvantage is balanced by their competitive dominance over the dark morph. The second hypothesis suggests a rare morph advantage where the rarer gold morph experiences less predation. Empirical evidence for either of these mechanisms is still circumstantial and inconclusive. We conducted two field experiments in a Nicaraguan crater lake using wax models simulating both morphs to determine predation pressure upon Midas cichlid colour morphs. First, we tested the interaction of coloration and depth on attack rate. Second, we tested the interaction of fish size and coloration. We contrasted the pattern of attacks from these experiments to the predicted predation patterns from the hypotheses proposed to explain the colour polymorphism's stability. Large models imitating colour morphs were attacked at similar rates irrespectively of their position in the water column. Yet, attacks upon small models resembling juveniles were directed mainly towards dark models. This resulted in a significant size-by-colour interaction. We suggest that gold Midas cichlids experience a rare morph advantage as juveniles when individuals of this morph are extremely uncommon. But this effect is reduced or disappears among adults, where gold individuals are relatively more common. Thus, the interaction of rare morph advantage and conspicuousness, rather than either of those factors alone, is a likely mechanism resulting in the stability of the colour polymorphism in Midas cichlids. © 2017 The Authors. Journal of Animal Ecology © 2017 British Ecological Society.
Squids old and young: Scale-free design for a simple billboard
NASA Astrophysics Data System (ADS)
Packard, Andrew
2011-03-01
Squids employ a large range of brightness-contrast spatial frequencies in their camouflage and signalling displays. The 'billboard' of coloured elements ('spots'=chromatophore organs) in the skin is built autopoietically-probably by lateral inhibitory processes-and enlarges as much as 10,000-fold during development. The resulting two-dimensional array is a fractal-like colour/size hierarchy lying in several layers of a multilayered network. Dynamic control of the array by muscles and nerves produces patterns that recall 'half-tone' processing (cf. ink-jet printer). In the more sophisticated (loliginid) squids, patterns also combine 'continuous tones' (cf. dye-sublimation printer). Physiologists and engineers can exploit the natural colour-coding of the integument to understand nerve and muscle system dynamics, examined here at the level of the ensemble. Integrative functions of the whole (H) are analysed in terms of the power spectrum within and between ensembles and of spontaneous waves travelling through the billboard. Video material may be obtained from the author at the above address.
Photometric calibration of the COMBO-17 survey with the Softassign Procrustes Matching method
NASA Astrophysics Data System (ADS)
Sheikhbahaee, Z.; Nakajima, R.; Erben, T.; Schneider, P.; Hildebrandt, H.; Becker, A. C.
2017-11-01
Accurate photometric calibration of optical data is crucial for photometric redshift estimation. We present the Softassign Procrustes Matching (SPM) method to improve the colour calibration upon the commonly used Stellar Locus Regression (SLR) method for the COMBO-17 survey. Our colour calibration approach can be categorised as a point-set matching method, which is frequently used in medical imaging and pattern recognition. We attain a photometric redshift precision Δz/(1 + zs) of better than 2 per cent. Our method is based on aligning the stellar locus of the uncalibrated stars to that of a spectroscopic sample of the Sloan Digital Sky Survey standard stars. We achieve our goal by finding a correspondence matrix between the two point-sets and applying the matrix to estimate the appropriate translations in multidimensional colour space. The SPM method is able to find the translation between two point-sets, despite the existence of noise and incompleteness of the common structures in the sets, as long as there is a distinct structure in at least one of the colour-colour pairs. We demonstrate the precision of our colour calibration method with a mock catalogue. The SPM colour calibration code is publicly available at https://neuronphysics@bitbucket.org/neuronphysics/spm.git.
Microscopic modulation of mechanical properties in transparent insect wings
DOE Office of Scientific and Technical Information (OSTI.GOV)
Arora, Ashima; Kumar, Pramod; Bhagavathi, Jithin
We report on the measurement of local friction and adhesion of transparent insect wings using an atomic force microscope cantilever down to nanometre length scales. We observe that the wing-surface is decorated with 10 μm long and 2 μm wide islands that have higher topographic height. The friction on the islands is two orders of magnitude higher than the back-ground while the adhesion on the islands is smaller. Furthermore, the high islands are decorated with ordered nano-wire-like structures while the background is full of randomly distributed granular nano-particles. Coherent optical diffraction through the wings produce a stable diffraction pattern revealing a quasi-periodicmore » organization of the high islands over the entire wing. This suggests a long-range order in the modulation of friction and adhesion which is directly correlated with the topography. The measurements unravel novel functional design of complex wing surface and could find application in miniature biomimetic devices.« less
Replication of cicada wing's nano-patterns by hot embossing and UV nanoimprinting.
Hong, Sung-Hoon; Hwang, Jaeyeon; Lee, Heon
2009-09-23
The hydrophobicity of the cicada wing originates from its naturally occurring, surface nano-structure. The nano-structure of the cicada wing consists of an array of nano-sized pillars, 100 nm in diameter and 300 nm in height. In this study, the nano-structure of the cicada wing was successfully duplicated by using hot embossing lithography and UV nanoimprint lithography (NIL). The diameter and pitch of replication were the same as those of the original cicada wing and the height was a little smaller than that of the original master. The transmittance of the hot embossed PVC film was increased by 2-6% compared with that of the bare PVC film. The hydrophobicity was measured by water contact angle measurements. The water contact angle of the replica, made of UV cured polymer, was 132 degrees +/- 2 degrees , which was slightly lower than that of the original cicada wing (138 degrees +/- 2 degrees ), but much higher than that of the UV cured polymer surface without any nano-sized pillars (86 degrees ).
An experimental study of mushroom shaped stall cells. [on finite wings with separated flow
NASA Technical Reports Server (NTRS)
Winkelmann, A. E.
1982-01-01
Surface patterns characterized by a pair of counter-rotating swirls have been observed in connection with the conduction of surface flow visualization experiments involving test geometries with separated flows. An example of this phenomenon occurring on a finite wing with trailing edge stall has been referred to by Winkelmann and Barlow (1980) as 'mushroom shaped'. A description is presented of a collection of experimental results which show or suggest the occurrence of mushroom shaped stall cells on a variety of test geometries. Investigations conducted with finite wings, airfoil models, and flat plates are considered, and attention is given to studies involving the use of bluff models, investigations of shock induced boundary layer separation, and mushroom shaped patterns observed in a number of miscellaneous cases. It is concluded that the mushroom shaped stall cell appears commonly in separated flow regions.
Wingless is a positive regulator of eyespot color patterns in Bicyclus anynana butterflies.
Özsu, Nesibe; Chan, Qian Yi; Chen, Bin; Gupta, Mainak Das; Monteiro, Antónia
2017-09-01
Eyespot patterns of nymphalid butterflies are an example of a novel trait yet, the developmental origin of eyespots is still not well understood. Several genes have been associated with eyespot development but few have been tested for function. One of these genes is the signaling ligand, wingless, which is expressed in the eyespot centers during early pupation and may function in eyespot signaling and color ring differentiation. Here we tested the function of wingless in wing and eyespot development by down-regulating it in transgenic Bicyclus anynana butterflies via RNAi driven by an inducible heat-shock promoter. Heat-shocks applied during larval and early pupal development led to significant decreases in wingless mRNA levels and to decreases in eyespot size and wing size in adult butterflies. We conclude that wingless is a positive regulator of eyespot and wing development in B. anynana butterflies. Copyright © 2017 Elsevier Inc. All rights reserved.
Carlson, Jane E.; Holsinger, Kent E.
2015-01-01
Polymorphic traits are central to many fundamental discoveries in evolution, yet why they are found in some species and not others remains poorly understood. We use the African genus Protea—within which more than 40% of species have co-occurring pink and white floral colour morphs—to ask whether convergent evolution and ecological similarity could explain the genus-wide pattern of polymorphism. First, we identified environmental correlates of pink morph frequency across 28 populations of four species. Second, we determined whether the same correlates could predict species-level polymorphism and monomorphism across 31 species. We found that pink morph frequency increased with elevation in Protea repens and three section Exsertae species, increased eastward in P. repens, and increased with seed predation intensity in section Exsertae. For cross-species comparisons, populations of monomorphic pink species occurred at higher elevations than populations of monomorphic white species, and 18 polymorphic species spanned broader elevational gradients than 13 monomorphic species. These results suggest that divergent selection along elevational clines has repeatedly favoured polymorphism, and that more uniform selection in altitudinally restricted species may promote colour monomorphism. Our findings are, to our knowledge, the first to link selection acting within species to the presence and absence of colour polymorphism at broader phylogenetic scales. PMID:25876847
Jewelled spiders manipulate colour-lure geometry to deceive prey
2017-01-01
Selection is expected to favour the evolution of efficacy in visual communication. This extends to deceptive systems, and predicts functional links between the structure of visual signals and their behavioural presentation. Work to date has primarily focused on colour, however, thereby understating the multicomponent nature of visual signals. Here I examined the relationship between signal structure, presentation behaviour, and efficacy in the context of colour-based prey luring. I used the polymorphic orb-web spider Gasteracantha fornicata, whose yellow- or white-and-black striped dorsal colours have been broadly implicated in prey attraction. In a manipulative assay, I found that spiders actively control the orientation of their conspicuous banded signals in the web, with a distinct preference for near-diagonal bearings. Further field-based study identified a predictive relationship between pattern orientation and prey interception rates, with a local maximum at the spiders' preferred orientation. There were no morph-specific effects on capture success, either singularly or via an interaction with pattern orientation. These results reveal a dynamic element in a traditionally ‘static’ signalling context, and imply differential functions for chromatic and geometric signal components across visual contexts. More broadly, they underscore how multicomponent signal designs and display behaviours may coevolve to enhance efficacy in visual deception. PMID:28356411
Jewelled spiders manipulate colour-lure geometry to deceive prey.
White, Thomas E
2017-03-01
Selection is expected to favour the evolution of efficacy in visual communication. This extends to deceptive systems, and predicts functional links between the structure of visual signals and their behavioural presentation. Work to date has primarily focused on colour, however, thereby understating the multicomponent nature of visual signals. Here I examined the relationship between signal structure, presentation behaviour, and efficacy in the context of colour-based prey luring. I used the polymorphic orb-web spider Gasteracantha fornicata , whose yellow- or white-and-black striped dorsal colours have been broadly implicated in prey attraction. In a manipulative assay, I found that spiders actively control the orientation of their conspicuous banded signals in the web, with a distinct preference for near-diagonal bearings. Further field-based study identified a predictive relationship between pattern orientation and prey interception rates, with a local maximum at the spiders' preferred orientation. There were no morph-specific effects on capture success, either singularly or via an interaction with pattern orientation. These results reveal a dynamic element in a traditionally 'static' signalling context, and imply differential functions for chromatic and geometric signal components across visual contexts. More broadly, they underscore how multicomponent signal designs and display behaviours may coevolve to enhance efficacy in visual deception. © 2017 The Author(s).
The evolution of egg colour and patterning in birds.
Kilner, R M
2006-08-01
Avian eggs differ so much in their colour and patterning from species to species that any attempt to account for this diversity might initially seem doomed to failure. Here I present a critical review of the literature which, when combined with the results of some comparative analyses, suggests that just a few selective agents can explain much of the variation in egg appearance. Ancestrally, bird eggs were probably white and immaculate. Ancient diversification in nest location, and hence in the clutch's vulnerability to attack by predators, can explain basic differences between bird families in egg appearance. The ancestral white egg has been retained by species whose nests are safe from attack by predators, while those that have moved to a more vulnerable nest site are now more likely to lay brown eggs, covered in speckles, just as Wallace hypothesized more than a century ago. Even blue eggs might be cryptic in a subset of nests built in vegetation. It is possible that some species have subsequently turned these ancient adaptations to new functions, for example to signal female quality, to protect eggs from damaging solar radiation, or to add structural strength to shells when calcium is in short supply. The threat of predation, together with the use of varying nest sites, appears to have increased the diversity of egg colouring seen among species within families, and among clutches within species. Brood parasites and their hosts have probably secondarily influenced the diversity of egg appearance. Each drives the evolution of the other's egg colour and patterning, as hosts attempt to avoid exploitation by rejecting odd-looking eggs from their nests, and parasites attempt to outwit their hosts by laying eggs that will escape detection. This co-evolutionary arms race has increased variation in egg appearance both within and between species, in parasites and in hosts, sometimes resulting in the evolution of egg colour polymorphisms. It has also reduced variation in egg appearance within host clutches, although the benefit thus gained by hosts is not clear.
NASA Technical Reports Server (NTRS)
Erickson, Gary E.
1991-01-01
The vortex dominated aerodynamic characteristics of a generic 65 degree cropped delta wing model were studied in a wind tunnel at subsonic through supersonic speeds. The lee-side flow fields over the wing-alone configuration and the wing with leading edge extension (LEX) added were observed at M (infinity) equals 0.40 to 1.60 using a laser vapor screen technique. These results were correlated with surface streamline patterns, upper surface static pressure distributions, and six-component forces and moments. The wing-alone exhibited vortex breakdown and asymmetry of the breakdown location at the subsonic and transonic speeds. An earlier onset of vortex breakdown over the wing occurred at transonic speeds due to the interaction of the leading edge vortex with the normal shock wave. The development of a shock wave between the vortex and wing surface caused an early separation of the secondary boundary layer. With the LEX installed, wing vortex breakdown asymmetry did not occur up to the maximum angle of attack in the present test of 24 degrees. The favorable interaction of the LEX vortex with the wing flow field reduced the effects of shock waves on the wing primary and secondary vortical flows. The direct interaction of the wing and LEX vortex cores diminished with increasing Mach number. The maximum attainable vortex-induced pressure signatures were constrained by the vacuum pressure limit at the transonic and supersonic speeds.
In situ protocol for butterfly pupal wings using riboprobes.
Ramos, Diane; Monteiro, Antonia
2007-01-01
Here we present, in video format, a protocol for in situ hybridizations in pupal wings of the butterfly Bicyclus anynana using riboprobes. In situ hybridizations, a mainstay of developmental biology, are useful to study the spatial and temporal patterns of gene expression in developing tissues at the level of transcription. If antibodies that target the protein products of gene transcription have not yet been developed, and/or there are multiple gene copies of a particular protein in the genome that cannot be differentiated using available antibodies, in situs can be used instead. While an in situ technique for larval wing discs has been available to the butterfly community for several years, the current protocol has been optimized for the larger and more fragile pupal wings.
Boundary Dpp promotes growth of medial and lateral regions of the Drosophila wing.
Barrio, Lara; Milán, Marco
2017-07-04
The gradient of Decapentaplegic (Dpp) in the Drosophila wing has served as a paradigm to characterize the role of morphogens in regulating patterning. However, the role of this gradient in regulating tissue size is a topic of intense debate as proliferative growth is homogenous. Here, we combined the Gal4/UAS system and a temperature-sensitive Gal80 molecule to induce RNAi-mediated depletion of dpp and characterise the spatial and temporal requirement of Dpp in promoting growth. We show that Dpp emanating from the AP compartment boundary is required throughout development to promote growth by regulating cell proliferation and tissue size. Dpp regulates growth and proliferation rates equally in central and lateral regions of the developing wing appendage and reduced levels of Dpp affects similarly the width and length of the resulting wing. We also present evidence supporting the proposal that graded activity of Dpp is not an absolute requirement for wing growth.
An exploratory study of apex fence flaps on a 74 deg delta wing
NASA Technical Reports Server (NTRS)
Wahls, R. A.; Vess, R. J.
1985-01-01
An exploratory wind tunnel investigation was performed to observe the flow field effects produced by vertically deployed apex fences on a planar 74 degree delta wing. The delta shaped fences, each comprising approximately 3.375 percent of the wing area, were affixed along the first 25 percent of the wing leading edge in symmetric as well as asymmetric (i.e., fence on one side only) arrangements. The vortex flow field was visualized at angles of attack from 0 to 20 degrees using helium bubble and oil flow techniques; upper surface pressures were also measured along spanwise rows. The results were used to construct a preliminary description of the vortex patterns and induced pressures associated with vertical apex fence deployment. The objective was to obtain an initial evaluation of the potential of apex fences as vortex devices for subsonic lift modulation as well as lateral directional control of delta wing aircraft.
Balancing selection maintains cryptic colour morphs.
Wellenreuther, Maren
2017-11-01
Animals display incredibly diverse colour patterns, a testament to evolution's endless innovation in shaping life. In many species, the interplay between males and females in the pursuit of mates has driven the evolution of a myriad of colour forms, from the flashy peacock tail feathers to the tiniest colour markings in damselflies. In others, colour provides crypsis by allowing to blend into the background and to escape the eyes of predators. While the obvious benefits of this dazzling diversity for reproduction and survival seem straightforward, its maintenance is not. Theory predicts that genetic drift and various forms of selection reduce variation over time, making the persistence of colour variants over generations a puzzle. In this issue of Molecular Ecology, Lindtke et al. () study the cryptic colour morphs of Timema cristinae walking sticks to shed light on the genetic architecture and mechanisms that allow colour polymorphism maintenance over long timescales. By combining genome-wide data with phenotyping information from natural populations, they were able to map the green and melanistic colour to one genomic region with highly reduced effective recombination rate between two main chromosomal variants, consistent with an inversion polymorphism. These two main chromosomal variants showed geographically widespread heterozygote excess, and genomic signatures consistent with long-term balancing selection. A younger chromosomal variant was detected for the third morph, the green-striped colour morphs, in the same genomic regions as the melanistic and the green-unstriped morphs. Together, these results suggest that the genetic architecture of cryptic T. cristinae morphs is caused by nonrecombining genomic blocks that have been maintained over extended time periods by balancing selection making this study one of the few available empirical examples documenting that balancing selection of various forms may play an important role in maintaining adaptive genetic variation in nature. © 2017 John Wiley & Sons Ltd.
Gastrodia kachinensis (Orchidaceae), a new species from Myanmar
Aung, Ye Lwin; Jin, Xiaohua
2018-01-01
Abstract Gastrodia kachinensis, a new species of Orchidaceae, is described and illustrated from Putao, Kachin State, Myanmar. It is morphologically similar to G. gracilis, presumably its nearest relative, but can be easily distinguished from the latter by having perianth tube with punctate outer surface, verrucose outer surface of sepal lobe, orbicular petals, ovate-elliptic lip with truncate apex and auriculate-clawed base, glabrous lip apex with a pair of twin protuberance-like lamellae and column with a pair of blade-like lateral wings and acute stelidia at apex. Identification key and colour photographs are provided. A preliminary risk-of-extinction assessment, according to the IUCN Red List Categories and Criteria, is given for the new species. PMID:29416417
Gastrodia kachinensis (Orchidaceae), a new species from Myanmar.
Aung, Ye Lwin; Jin, Xiaohua
2018-01-01
Gastrodia kachinensis , a new species of Orchidaceae, is described and illustrated from Putao, Kachin State, Myanmar. It is morphologically similar to G. gracilis , presumably its nearest relative, but can be easily distinguished from the latter by having perianth tube with punctate outer surface, verrucose outer surface of sepal lobe, orbicular petals, ovate-elliptic lip with truncate apex and auriculate-clawed base, glabrous lip apex with a pair of twin protuberance-like lamellae and column with a pair of blade-like lateral wings and acute stelidia at apex. Identification key and colour photographs are provided. A preliminary risk-of-extinction assessment, according to the IUCN Red List Categories and Criteria, is given for the new species.
Neural basis of singing in crickets: central pattern generation in abdominal ganglia
NASA Astrophysics Data System (ADS)
Schöneich, Stefan; Hedwig, Berthold
2011-12-01
The neural mechanisms underlying cricket singing behavior have been the focus of several studies, but the central pattern generator (CPG) for singing has not been localized conclusively. To test if the abdominal ganglia contribute to the singing motor pattern and to analyze if parts of the singing CPG are located in these ganglia, we systematically truncated the abdominal nerve cord of fictively singing crickets while recording the singing motor pattern from a front-wing nerve. Severing the connectives anywhere between terminal ganglion and abdominal ganglion A3 did not preclude singing, although the motor pattern became more variable and failure-prone as more ganglia were disconnected. Singing terminated immediately and permanently after transecting the connectives between the metathoracic ganglion complex and the first unfused abdominal ganglion A3. The contribution of abdominal ganglia for singing pattern generation was confirmed by intracellular interneuron recordings and current injections. During fictive singing, an ascending interneuron with its soma and dendrite in A3 depolarized rhythmically. It spiked 10 ms before the wing-opener activity and hyperpolarized in phase with the wing-closer activity. Depolarizing current injection elicited rhythmic membrane potential oscillations and spike bursts that elicited additional syllables and reliably reset the ongoing chirp rhythm. Our results disclose that the abdominal ganglion A3 is directly involved in generating the singing motor pattern, whereas the more posterior ganglia seem to provide only stabilizing feedback to the CPG circuit. Localizing the singing CPG in the anterior abdominal neuromeres now allows analyzing its circuitry at the level of identified interneurons in subsequent studies.
Preliminary study on 2 colour patterns in Ochlerotatus caspius (Pallas, 1771) (Diptera, Culicidae).
Toma, Luciano; Severini, Francesco; Romi, Roberto; Di Luca, Marco
2016-08-30
Ochlerotatus caspius is a mosquito of medical and veterinary relevance both for its synanthropy and for its potential role in transmission of viruses and nematodes in the areas that it inhabits. Due to its wide range and the marked variability in the adult colour pattern, some authors have recognized Ochlerotatus caspius as a complex of species. In this study, we purposed to evaluate the possible taxonomic heterogeneity between 2 chromatic forms by using both morphological and molecular approaches. The preliminary results based on the identity of the rRNA internal transcribed spacer 2 (ITS-2) lead us to believe the 2 forms as a single species with a chromatic polymorphism.
The sail wing windmill and its adaptation for use in rural India
NASA Technical Reports Server (NTRS)
Sherman, M. M.
1973-01-01
An 8 meter-diameter prototype sail wing windmill is reported that uses a one meter-diameter bullock cartwheel to which three bamboo poles are latched in a triangular pattern with overlapping ends, to form the airframe for cloth sails. This device lifts 300 pounds to a height of 20 feet in one minute in a 10 mph wind.
Waliwitiya, Ranil; Belton, Peter; Nicholson, Russell A; Lowenberger, Carl A
2010-03-01
The effects were evaluated of the plant terpenoid thymol and eight other neuroactive compounds on flight muscle impulses (FMIs) and wing beat frequency (WBF) of tethered blowflies (Phaenicia sericata Meig.). The electrical activity of the dorsolongitudinal flight muscles was closely linked to the WBF of control insects. Topically applied thymol inhibited WBF within 15-30 min and reduced FMI frequency. Octopamine and chlordimeform caused a similar, early-onset bursting pattern that decreased in amplitude with time. Desmethylchlordimeform blocked wing beating within 60 min and generated a profile of continuous but lower-frequency FMIs. Fipronil suppressed wing beating and induced a pattern of continuous, variable-frequency spiking that diminished gradually over 6 h. Cypermethrin- and rotenone-treated flies had initial strong FMIs that declined with time. In flies injected with GABA, the FMIs were generally unidirectional and frequency was reduced, as was seen with thymol. Thymol readily penetrates the cuticle and interferes with flight muscle and central nervous function in the blowfly. The similarity of the action of thymol and GABA suggests that this terpenoid acts centrally in blowflies by mimicking or facilitating GABA action.
NASA Astrophysics Data System (ADS)
Zhao, Guang-yin; Li, Ying-hong; Liang, Hua; Han, Meng-hu; Hua, Wei-zhuo
2015-01-01
Wind tunnel experiments are conducted for improving the aerodynamic performance of delta wing using a leading-edge pulsed nanosecond dielectric barrier discharge (NS-DBD). The whole effects of pulsed NS-DBD on the aerodynamic performance of the delta wing are studied by balanced force measurements. Pressure measurements and particle image velocimetry (PIV) measurements are conducted to investigate the formation of leading-edge vortices affected by the pulsed NS-DBD, compared to completely stalled flow without actuation. Various pulsed actuation frequencies of the plasma actuator are examined with the freestream velocity up to 50 m/s. Stall has been delayed substantially and significant shifts in the aerodynamic forces can be achieved at the post-stall regions when the actuator works at the optimum reduced frequency of F + = 2. The upper surface pressure measurements show that the largest change of static pressure occurs at the forward part of the wing at the stall region. The time-averaged flow pattern obtained from the PIV measurement shows that flow reattachment is promoted with excitation, and a vortex flow pattern develops. The time-averaged locations of the secondary separation line and the center of the vortical region both move outboard with excitation.
Sawada, H; Nakagoshi, M; Reinhardt, R K; Ziegler, I; Koch, P B
2002-06-01
Color patterns of butterfly wings are composed of single color points represented by each scale. In the case of Precis coenia, at the end of pupal development, different types of pigments are synthesized sequentially in the differently colored scales beginning with white (pterins) followed by red (ommatins) and then black (melanin). In order to explain how formation of these different colors is regulated, we examined the expression of an mRNA-encoding guanosine triphosphate-cyclohydrolase I (GTP-CH I; EC 3.5.4.16), the first key enzyme in the biosynthesis of pteridines, during pigment formation in the wings of P. coenia. The strongest positive signal was recognized around pigment formation one day before butterfly emergence. This GTP-CH I gene expression is paralleled by GTP-CH I enzyme activity measured in wing extracts. We also investigated the effect of 20-hydroxyecdysone on the expression of GTP-CH I mRNA and the enzyme activity during color formation. The results strongly suggest that the onset and duration of the expression of a GTP-CH I mRNA is triggered by a declining ecdysteroid hormone titer during late pupal development.
NASA Technical Reports Server (NTRS)
Helms, V. T., III; Bradley, P. F.
1984-01-01
Results are presented for oil flow and phase change paint heat transfer tests conducted on a 0.006 scale model of a proposed single stage to orbit control configured vehicle. The data were taken at angles of attack up to 40 deg at a free stream Mach number of 10 for Reynolds numbers based on model length of 0.5 x 10 to the 6th power, 1.0 x 10 to the 6th power and 2.0 x 10 to the 6th power. The magnitude and distribution of heating are characterized in terms of angle of attack and Reynolds number aided by an analysis of the flow data which are used to suggest the presence of various three dimensional flow structures that produce the observed heating patterns. Of particular interest are streak heating patterns that result in high localized heat transfer rates on the wing windward surface at low to moderate angles of attack. These streaks are caused by the bow-shock/wing-shock interaction and formation of the wing-shock. Embedded vorticity was found to be associated with these interactions.
Caorsi, Valentina Zaffaroni; Colombo, Patrick; Abadie, Michelle; Brack, Ismael Verrastro; Dasoler, Bibiana Terra; Borges-Martins, Márcio
2018-01-01
Aposematic signals as well as body behaviours may be important anti-predator defences. Species of the genus Melanophryniscus are characterised by having toxic lipophilic alkaloids in the skin and for presenting a red ventral colouration, which can be observed when they perform the behaviour called the unken reflex. Both the reflex behaviour and the colouration pattern are described as defence mechanisms. However, there are currently no studies testing their effectiveness against predators. This study aimed to test experimentally if both ventral conspicuous colouration and the unken reflex in Melanophryniscus cambaraensis function as aposematic signals against visually oriented predators (birds). We simulated the species studied using three different clay toad models as follows: (a) in a normal position with green coloured bodies, (b) in the unken reflex position with green coloured body and extremities and (c) in the unken reflex position with a green body and red extremities. Models were distributed on a known M. cambaraensis breeding site and in the adjacent forest. More than half of the attacks on the models were from birds; however, there was no preference for any model type. Thus, just the presence of the red colour associated with the motionless unken reflex position does not seem to prevent attacks from potential predators. It is possible that the effective aposematic signal in Melanophryniscus is achieved through the unken reflex movement together with the subsequent exhibition of the warning colouration and the secretion of toxins. PMID:29596437
Attentional load attenuates synaesthetic priming effects in grapheme-colour synaesthesia.
Mattingley, Jason B; Payne, Jonathan M; Rich, Anina N
2006-02-01
One of the hallmarks of grapheme-colour synaesthesia is that colours induced by letters, digits and words tend to interfere with the identification of coloured targets when the two colours are different, i.e., when they are incongruent. In a previous investigation (Mattingley et al., 2001) we found that this synaesthetic congruency effect occurs when an achromatic-letter prime precedes a coloured target, but that the effect disappears when the letter is pattern masked to prevent conscious recognition of its identity. Here we investigated whether selective attention modulates the synaesthetic congruency effect in a letter-priming task. Fourteen grapheme-colour synaesthetes and 14 matched, non-synaesthetic controls participated. The amount of selective attention available to process the letter-prime was limited by having participants perform a secondary visual task that involved discriminating pairs of gaps in adjacent limbs of a diamond surrounding the prime. In separate blocks of trials the attentional load of the secondary task was systematically varied to yield 'low load' and 'high load' conditions. We found a significant congruency effect for synaesthetes, but not for controls, when they performed a secondary attention-demanding task during presentation of the letter prime. Crucially, however, the magnitude of this priming was significantly reduced under conditions of high-load relative to low-load, indicating that attention plays an important role in modulating synaesthesia. Our findings help to explain the observation that synaesthetic colour experiences are often weak or absent during attention-demanding tasks.
Willkommen, Jana; Hörnschemeyer, Thomas
2007-06-01
The ability to fly is the decisive factor for the evolutionary success of winged insects (Pterygota). Despite this, very little is known about the ground-pattern and evolution of the functionally very important wing base. Here we use the Ephemeroptera, usually regarded as the most ancient flying insects, as a model for the analysis of the flight musculature and the sclerites of the wing base. Morphology and anatomy of the pterothorax of 13 species of Ephemeroptera and five species of Plecoptera were examined and a detailed description of Habroleptoides confusa (Ephemeroptera: Leptophlebiidae) is given. A new homology of the wing base sclerites in Ephemeroptera is proposed. The wing base of Ephemeroptera possesses three axillary sclerites that are homologous to the first axillary, the second axillary and the third axillary of Neoptera. For example, the third axillary possesses the axillary-pleural muscle that mostly is considered as a characteristic feature of the Neoptera. Many of the muscles and sclerites of the flight system of the Ephemeroptera and Neoptera can be readily homologised. In fact, there are indications that a foldable wing base may be a ground plan feature of pterygote insects and that the non-foldable wing base of the Ephemeroptera is a derived state.
Insect Wing Displacement Measurement Using Digital Holography
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aguayo, Daniel D.; Mendoza Santoyo, Fernando; Torre I, Manuel H. de la
2008-04-15
Insects in flight have been studied with optical non destructive techniques with the purpose of using meaningful results in aerodynamics. With the availability of high resolution and large dynamic range CCD sensors the so called interferometric digital holographic technique was used to measure the surface displacement of in flight insect wings, such as butterflies. The wings were illuminated with a continuous wave Verdi laser at 532 nm, and observed with a CCD Pixelfly camera that acquire images at a rate of 11.5 frames per second at a resolution of 1392x1024 pixels and 12 Bit dynamic range. At this frame ratemore » digital holograms of the wings were captured and processed in the usual manner, namely, each individual hologram is Fourier processed in order to find the amplitude and phase corresponding to the digital hologram. The wings displacement is obtained when subtraction between two digital holograms is performed for two different wings position, a feature applied to all consecutive frames recorded. The result of subtracting is seen as a wrapped phase fringe pattern directly related to the wing displacement. The experimental data for different butterfly flying conditions and exposure times are shown as wire mesh plots in a movie of the wings displacement.« less
Aerodynamic Interaction between Delta Wing and Hemisphere-Cylinder in Supersonic Flow
NASA Astrophysics Data System (ADS)
Nishino, Atsuhiro; Ishikawa, Takahumi; Nakamura, Yoshiaki
As future space vehicles, Reusable Launch Vehicle (RLV) needs to be developed, where there are two kinds of RLV: Single Stage To Orbit (SSTO) and Two Stage To Orbit (TSTO). In the latter case, the shock/shock interaction and shock/boundary layer interaction play a key role. In the present study, we focus on the supersonic flow field with aerodynamic interaction between a delta wing and a hemisphere-cylinder, which imitate a TSTO, where the clearance, h, between the delta wing and hemisphere-cylinder is a key parameter. As a result, complicated flow patterns were made clear, including separation bubbles.
Propeller swirl effect on single-engine general-aviation aircraft stall-spin tendencies
NASA Technical Reports Server (NTRS)
Katz, Joseph; Feistel, Terry W.
1987-01-01
An investigation is conducted of the effect of a single engine, untapered low wing general aviation aircraft propeller's swirl on the craft's stall pattern. The asymmetrical character of the propeller's swirl can trigger an early stall of one of the wings, aggravating the spin-entry condition. It is shown that the combination of this propeller-induced effect with adverse sideslip can result in large and abrupt changes in the rolling moment, in such conditions as uncoordinated low speed turning maneuvers where the pilot yaws the aircraft with wings level, rather than rolling it.
Genome of Drosophila suzukii, the Spotted Wing Drosophila
Chiu, Joanna C.; Jiang, Xuanting; Zhao, Li; Hamm, Christopher A.; Cridland, Julie M.; Saelao, Perot; Hamby, Kelly A.; Lee, Ernest K.; Kwok, Rosanna S.; Zhang, Guojie; Zalom, Frank G.; Walton, Vaughn M.; Begun, David J.
2013-01-01
Drosophila suzukii Matsumura (spotted wing drosophila) has recently become a serious pest of a wide variety of fruit crops in the United States as well as in Europe, leading to substantial yearly crop losses. To enable basic and applied research of this important pest, we sequenced the D. suzukii genome to obtain a high-quality reference sequence. Here, we discuss the basic properties of the genome and transcriptome and describe patterns of genome evolution in D. suzukii and its close relatives. Our analyses and genome annotations are presented in a web portal, SpottedWingFlyBase, to facilitate public access. PMID:24142924
Do bees like Van Gogh's Sunflowers?
NASA Astrophysics Data System (ADS)
Chittka, Lars; Walker, Julian
2006-06-01
Flower colours have evolved over 100 million years to address the colour vision of their bee pollinators. In a much more rapid process, cultural (and horticultural) evolution has produced images of flowers that stimulate aesthetic responses in human observers. The colour vision and analysis of visual patterns differ in several respects between humans and bees. Here, a behavioural ecologist and an installation artist present bumblebees with reproductions of paintings highly appreciated in Western society, such as Van Gogh's Sunflowers. We use this unconventional approach in the hope to raise awareness for between-species differences in visual perception, and to provoke thinking about the implications of biology in human aesthetics and the relationship between object representation and its biological connotations.
Faster poleward range shifts in moths with more variable colour patterns
Forsman, Anders; Betzholtz, Per-Eric; Franzén, Markus
2016-01-01
Range shifts have been documented in many organisms, and climate change has been implicated as a contributing driver of latitudinal and altitudinal range modifications. However, little is known about what species trait(s) allow for faster environmental tracking and improved capacity for distribution expansions. We used data for 416 species of moths, and show that range limits in Sweden have shifted to the north by on average 52.4 km per decade between 1973 and 2014. When also including non-expanding species, average expansion rate was 23.2 km per decade. The rate of boundary shifts increased with increasing levels of inter-individual variation in colour patterns and decreased with increasing latitude. The association with colour patterns indicate that variation in this functionally important trait enables species to cope with novel and changing conditions. Northern range limits also increased with average abundance and decreased with increasing year-to-year abundance fluctuations, implicating production of dispersers as a driver of range dynamics. Studies of terrestrial animals show that rates of poleward shifts differ between taxonomic groups, increase over time, and depend on study duration and latitude. Knowledge of how distribution shifts change with time, location, and species characteristics may improve projections of responses to climate change and aid the protection of biodiversity. PMID:27808116
Faster poleward range shifts in moths with more variable colour patterns
NASA Astrophysics Data System (ADS)
Forsman, Anders; Betzholtz, Per-Eric; Franzén, Markus
2016-11-01
Range shifts have been documented in many organisms, and climate change has been implicated as a contributing driver of latitudinal and altitudinal range modifications. However, little is known about what species trait(s) allow for faster environmental tracking and improved capacity for distribution expansions. We used data for 416 species of moths, and show that range limits in Sweden have shifted to the north by on average 52.4 km per decade between 1973 and 2014. When also including non-expanding species, average expansion rate was 23.2 km per decade. The rate of boundary shifts increased with increasing levels of inter-individual variation in colour patterns and decreased with increasing latitude. The association with colour patterns indicate that variation in this functionally important trait enables species to cope with novel and changing conditions. Northern range limits also increased with average abundance and decreased with increasing year-to-year abundance fluctuations, implicating production of dispersers as a driver of range dynamics. Studies of terrestrial animals show that rates of poleward shifts differ between taxonomic groups, increase over time, and depend on study duration and latitude. Knowledge of how distribution shifts change with time, location, and species characteristics may improve projections of responses to climate change and aid the protection of biodiversity.
In-Flight Wing Pressure Distributions for the NASA F/A-18A High Alpha Research Vehicle
NASA Technical Reports Server (NTRS)
Davis, Mark C.; Saltzman, John A.
2000-01-01
Pressure distributions on the wings of the F/A-18A High Alpha Research Vehicle (HARV) were obtained using both flush-mounted pressure orifices and surface-mounted pressure tubing. During quasi-stabilized 1-g flight, data were gathered at ranges for angle of attack from 5 deg to 70 deg, for angle of sideslip from -12 deg to +12 deg, and for Mach from 0.23 to 0.64, at various engine settings, and with and without the leading edge extension fence installed. Angle of attack strongly influenced the wing pressure distribution, as demonstrated by a distinct flow separation pattern that occurred between the range from 15 deg to 30 deg. Influence by the leading edge extension fence was evident on the inboard wing pressure distribution, but little influence was seen on the outboard portion of the wing. Angle-of-sideslip influence on wing pressure distribution was strongest at low angle of attack. Influence of Mach number was observed in the regions of local supersonic flow, diminishing as angle of attack was increased. Engine throttle setting had little influence on the wing pressure distribution.
Evolution of female-specific wingless forms in bagworm moths.
Niitsu, Shuhei; Sugawara, Hirotaka; Hayashi, Fumio
2017-01-01
The evolution of winglessness in insects has been typically interpreted as a consequence of developmental and other adaptations to various environments that are secondarily derived from a winged morph. Several species of bagworm moths (Insecta: Lepidoptera, Psychidae) exhibit a case-dwelling larval life style along with one of the most extreme cases of sexual dimorphism: wingless female adults. While the developmental process that led to these wingless females is well known, the origins and evolutionary transitions are not yet understood. To examine the evolutionary patterns of wing reduction in bagworm females, we reconstruct the molecular phylogeny of over 30 Asian species based on both mitochondrial (cytochrome c oxidase subunit I) and nuclear (28S rRNA) DNA sequences. Under a parsimonious assumption, the molecular phylogeny implies that: (i) the evolutionary wing reduction towards wingless females consisted of two steps: (Step I) from functional wings to vestigial wings (nonfunctional) and (Step II) from vestigial wings to the most specialized vermiform adults (lacking wings and legs); and (ii) vermiform morphs evolved independently at least twice. Based on the results of our study, we suggest that the evolutionary changes in the developmental system are essential for the establishment of different wingless forms in insects. © 2016 Wiley Periodicals, Inc.
Linz, David M; Tomoyasu, Yoshinori
2015-01-01
The amazing array of diversity among insect wings offers a powerful opportunity to study the mechanisms guiding morphological evolution. Studies in Drosophila (the fruit fly) have identified dozens of genes important for wing development. These genes are often called candidate genes, serving as an ideal starting point to study wing development in other insects. However, we also need to explore beyond the candidate genes to gain a more comprehensive view of insect wing evolution. As a first step away from the traditional candidate genes, we utilized Tribolium (the red flour beetle) as a model and assessed the potential involvement of a group of developmental toolkit genes (embryonic patterning genes) in beetle wing development. We hypothesized that the highly pleiotropic nature of these developmental genes would increase the likelihood of finding novel wing genes in Tribolium. Through the RNA interference screening, we found that Tc-cactus has a less characterized (but potentially evolutionarily conserved) role in wing development. We also found that the odd-skipped family genes are essential for the formation of the thoracic pleural plates, including the recently discovered wing serial homologs in Tribolium. In addition, we obtained several novel insights into the function of these developmental genes, such as the involvement of mille-pattes and Tc-odd-paired in metamorphosis. Despite these findings, no gene we examined was found to have novel wing-related roles unique in Tribolium. These results suggest a relatively conserved nature of developmental toolkit genes and highlight the limited degree to which these genes are co-opted during insect wing evolution.
Fiedler, Wolfgang
2005-06-01
An analysis of the external flight apparatus of 700 blackcaps from eight different populations (sedentary to long-distance migrators) is presented. With increasing migration distances of populations, (1) wing length, aspect ratio, and wing pointedness increase; (2) wing load decreases; (3) slots on the wing tips become relatively shorter; (4) the alula tends to be shorter in relation to wing length; and (5) the tail is shorter in relation to wing length. Although body mass increases from southern to northern populations, changes in wing length and wing area are two to three times larger than expected for simple isometric relationships. Regarding the aerodynamic background of these changes, it can be stated that traits for energy-effective flight are more strongly developed and traits for maneuverability are less developed in birds traveling longer distances, presumably as a consequence of trade-offs. Nonmigratory blackcaps from Madeira and the Cape Verde islands do not always show the traits we would expect in view of their sedentary behavior. This can be seen as a result of recent colonization of these islands by migrants or of selection by factors other than migration behavior. In migratory populations, changes between the first and the second set of primaries during first complete molt show almost the same pattern as the changes from nonmigratory to migratory populations. During molt of the primaries, blackcaps of nonmigratory populations do not show these changes. Hybrids between migrating and nonmigrating blackcap populations (Moscow and Madeira) showed intermediate values between parent populations in wing length, wing shape, and wing area; in the other variables they resembled either parent population.
Hummingbirds generate bilateral vortex loops during hovering: evidence from flow visualization
NASA Astrophysics Data System (ADS)
Pournazeri, Sam; Segre, Paolo S.; Princevac, Marko; Altshuler, Douglas L.
2012-12-01
Visualization of the vortex wake of a flying animal provides understanding of how wingbeat kinematics are translated into the aerodynamic forces for powering and controlling flight. Two general vortex flow patterns have been proposed for the wake of hovering hummingbirds: (1) The two wings form a single, merged vortex ring during each wing stroke; and (2) the two wings form bilateral vortex loops during each wing stroke. The second pattern was proposed after a study with particle image velocimetry that demonstrated bilateral source flows in a horizontal measurement plane underneath hovering Anna's hummingbirds ( Calypte anna). Proof of this hypothesis requires a clear perspective of bilateral pairs of vortices. Here, we used high-speed image sequences (500 frames per second) of C. anna hover feeding within a white plume to visualize the vortex wake from multiple perspectives. The films revealed two key structural features: (1) Two distinct jets of downwards airflow are present under each wing; and (2) vortex loops around each jet are shed during each upstroke and downstroke. To aid in the interpretation of the flow visualization data, we analyzed high-speed kinematic data (1,000 frames per second) of wing tips and wing roots as C. anna hovered in normal air. These data were used to refine several simplified models of vortex topology. The observed flow patterns can be explained by either a single loop model with an hourglass shape or a bilateral model, with the latter being more likely. When hovering in normal air, hummingbirds used an average stroke amplitude of 153.6° (range 148.9°-164.4°) and a wingbeat frequency of 38.5 Hz (range 38.1-39.1 Hz). When hovering in the white plume, hummingbirds used shallower stroke amplitudes ( bar{x} = 129.8°, range 116.3°-154.1°) and faster wingbeat frequencies ( bar{x} = 41.1 Hz, range 38.5-44.7 Hz), although the bilateral jets and associated vortices were observed across the full kinematic range. The plume did not significantly alter the air density or constrain the sustained muscle contractile frequency. Instead, higher wingbeat frequencies likely incurred a higher metabolic cost with the possible benefit of allowing the birds to more rapidly escape from the visually disruptive plume.
Hummingbirds generate bilateral vortex loops during hovering: evidence from flow visualization
NASA Astrophysics Data System (ADS)
Pournazeri, Sam; Segre, Paolo S.; Princevac, Marko; Altshuler, Douglas L.
2013-01-01
Visualization of the vortex wake of a flying animal provides understanding of how wingbeat kinematics are translated into the aerodynamic forces for powering and controlling flight. Two general vortex flow patterns have been proposed for the wake of hovering hummingbirds: (1) The two wings form a single, merged vortex ring during each wing stroke; and (2) the two wings form bilateral vortex loops during each wing stroke. The second pattern was proposed after a study with particle image velocimetry that demonstrated bilateral source flows in a horizontal measurement plane underneath hovering Anna's hummingbirds ( Calypte anna). Proof of this hypothesis requires a clear perspective of bilateral pairs of vortices. Here, we used high-speed image sequences (500 frames per second) of C. anna hover feeding within a white plume to visualize the vortex wake from multiple perspectives. The films revealed two key structural features: (1) Two distinct jets of downwards airflow are present under each wing; and (2) vortex loops around each jet are shed during each upstroke and downstroke. To aid in the interpretation of the flow visualization data, we analyzed high-speed kinematic data (1,000 frames per second) of wing tips and wing roots as C. anna hovered in normal air. These data were used to refine several simplified models of vortex topology. The observed flow patterns can be explained by either a single loop model with an hourglass shape or a bilateral model, with the latter being more likely. When hovering in normal air, hummingbirds used an average stroke amplitude of 153.6° (range 148.9°-164.4°) and a wingbeat frequency of 38.5 Hz (range 38.1-39.1 Hz). When hovering in the white plume, hummingbirds used shallower stroke amplitudes ( bar{x} = 129.8°, range 116.3°-154.1°) and faster wingbeat frequencies ( bar{x} = 41.1 Hz, range 38.5-44.7 Hz), although the bilateral jets and associated vortices were observed across the full kinematic range. The plume did not significantly alter the air density or constrain the sustained muscle contractile frequency. Instead, higher wingbeat frequencies likely incurred a higher metabolic cost with the possible benefit of allowing the birds to more rapidly escape from the visually disruptive plume.
Delahaie, Boris; Gautier, Mathieu; Malé, Pierre-Jean G.; Bertrand, Joris A. M.; Cornuault, Josselin; Wakamatsu, Kazumasa; Bouchez, Olivier; Mould, Claire; Bruxaux, Jade; Holota, Hélène; Milá, Borja; Thébaud, Christophe
2017-01-01
Understanding the mechanisms responsible for phenotypic diversification within and among species ultimately rests with linking naturally occurring mutations to functionally and ecologically significant traits. Colour polymorphisms are of great interest in this context because discrete colour patterns within a population are often controlled by just a few genes in a common environment. We investigated how and why phenotypic diversity arose and persists in the Zosterops borbonicus white-eye of Reunion (Mascarene archipelago), a colour polymorphic songbird in which all highland populations contain individuals belonging to either a brown or a grey plumage morph. Using extensive phenotypic and genomic data, we demonstrate that this melanin-based colour polymorphism is controlled by a single locus on chromosome 1 with two large-effect alleles, which was not previously described as affecting hair or feather colour. Differences between colour morphs appear to rely upon complex cis-regulatory variation that either prevents the synthesis of pheomelanin in grey feathers, or increases its production in brown ones. We used coalescent analyses to show that, from a ‘brown’ ancestral population, the dominant ‘grey’ allele spread quickly once it arose from a new mutation. Since colour morphs are always found in mixture, this implies that the selected allele does not go to fixation, but instead reaches an intermediate frequency, as would be expected under balancing selection. PMID:28386436
Fossilized melanosomes and the colour of Cretaceous dinosaurs and birds.
Zhang, Fucheng; Kearns, Stuart L; Orr, Patrick J; Benton, Michael J; Zhou, Zhonghe; Johnson, Diane; Xu, Xing; Wang, Xiaolin
2010-02-25
Spectacular fossils from the Early Cretaceous Jehol Group of northeastern China have greatly expanded our knowledge of the diversity and palaeobiology of dinosaurs and early birds, and contributed to our understanding of the origin of birds, of flight, and of feathers. Pennaceous (vaned) feathers and integumentary filaments are preserved in birds and non-avian theropod dinosaurs, but little is known of their microstructure. Here we report that melanosomes (colour-bearing organelles) are not only preserved in the pennaceous feathers of early birds, but also in an identical manner in integumentary filaments of non-avian dinosaurs, thus refuting recent claims that the filaments are partially decayed dermal collagen fibres. Examples of both eumelanosomes and phaeomelanosomes have been identified, and they are often preserved in life position within the structure of partially degraded feathers and filaments. Furthermore, the data here provide empirical evidence for reconstructing the colours and colour patterning of these extinct birds and theropod dinosaurs: for example, the dark-coloured stripes on the tail of the theropod dinosaur Sinosauropteryx can reasonably be inferred to have exhibited chestnut to reddish-brown tones.
The influence of pigmentation patterning on bumblebee foraging from flowers of Antirrhinum majus
NASA Astrophysics Data System (ADS)
Whitney, Heather M.; Milne, Georgina; Rands, Sean A.; Vignolini, Silvia; Martin, Cathie; Glover, Beverley J.
2013-03-01
Patterns of pigmentation overlying the petal vasculature are common in flowering plants and have been postulated to play a role in pollinator attraction. Previous studies report that such venation patterning is significantly more attractive to bee foragers in the field than ivory or white flowers without veins. To dissect the ways in which venation patterning of pigment can influence bumblebee behaviour, we investigated the response of flower-naïve individuals of Bombus terrestris to veined, ivory and red near-isogenic lines of Antirrhinum majus. We find that red venation shifts flower colour slightly, although the ivory background is the dominant colour. Bees were readily able to discriminate between ivory and veined flowers under differential conditioning but showed no innate preference when presented with a free choice of rewarding ivory and veined flowers. In contrast, both ivory and veined flowers were selected significantly more often than were red flowers. We conclude that advantages conferred by venation patterning might stem from bees learning of their use as nectar guides, rather than from any innate preference for striped flowers.
Cavicchi, Sandro; Guerra, Daniela; Giorgi, Gianfranco; Pezzoli, Cristina
1985-01-01
The effects of environmental temperature on wing size and shape of Drosophila melanogaster were analyzed in populations derived from an Oregon laboratory strain kept at three temperatures (18°, 25°, 28°) for 4 yr. Temperature-directed selection was identified for both wing size and shape. The length of the four longitudinal veins, used as a test for wing size variations in the different populations, appears to be affected by both genetic and maternal influences. Vein expression appears to be dependent upon developmental pattern of the wing: veins belonging to the same compartment are coordinated in their expression and relative position, whereas veins belonging to different compartments are not. Both wing and cell areas show genetic divergence, particularly in the posterior compartment. Cell number seems to compensate for cell size variations. Such compensation is carried out both at the level of single organisms and at the level of population as a whole. The two compartments behave as individual units of selection. PMID:17246257
Replication of cicada wing's nano-patterns by hot embossing and UV nanoimprinting
NASA Astrophysics Data System (ADS)
Hong, Sung-Hoon; Hwang, Jaeyeon; Lee, Heon
2009-09-01
The hydrophobicity of the cicada wing originates from its naturally occurring, surface nano-structure. The nano-structure of the cicada wing consists of an array of nano-sized pillars, 100 nm in diameter and 300 nm in height. In this study, the nano-structure of the cicada wing was successfully duplicated by using hot embossing lithography and UV nanoimprint lithography (NIL). The diameter and pitch of replication were the same as those of the original cicada wing and the height was a little smaller than that of the original master. The transmittance of the hot embossed PVC film was increased by 2-6% compared with that of the bare PVC film. The hydrophobicity was measured by water contact angle measurements. The water contact angle of the replica, made of UV cured polymer, was 132° ± 2°, which was slightly lower than that of the original cicada wing (138° ± 2°), but much higher than that of the UV cured polymer surface without any nano-sized pillars (86°).
Rosetti, Natalia; Remis, Maria I
2018-06-06
Wing dimorphism occurs widely in insects and involves discontinuous variation in a wide variety of traits involved in fight and reproduction. In the current study, we analyzed the spatial pattern of wing dimorphism and intraspecific morphometric variation in nine natural populations of the grasshopper Dichroplus vittatus (Bruner; Orthoptera: Acrididae) in Argentina. Considerable body size differences among populations, between sexes and wing morphs were detected. As a general trend, females were larger than males and macropterous individuals showed increased thorax length over brachypterous which can be explained by the morphological requirements for the development of flight muscles in the thoracic cavity favoring dispersal. Moreover, when comparing wing morphs, a higher phenotypic variability was detected in macropterous females. The frequency of macropterous individuals showed negative correlation with longitude and positive with precipitations, indicating that the macropterous morph is more frequent in the humid eastern part of the studied area. Our results provide valuable about spatial variation of fully winged morph and revealed geographic areas in which the species would experience greater dispersal capacity.
Campana, Lorenzo; Breitbeck, Robert; Bauer-Kreuz, Regula; Buck, Ursula
2016-05-01
This study evaluated the feasibility of documenting patterned injury using three dimensions and true colour photography without complex 3D surface documentation methods. This method is based on a generated 3D surface model using radiologic slice images (CT) while the colour information is derived from photographs taken with commercially available cameras. The external patterned injuries were documented in 16 cases using digital photography as well as highly precise photogrammetry-supported 3D structured light scanning. The internal findings of these deceased were recorded using CT and MRI. For registration of the internal with the external data, two different types of radiographic markers were used and compared. The 3D surface model generated from CT slice images was linked with the photographs, and thereby digital true-colour 3D models of the patterned injuries could be created (Image projection onto CT/IprojeCT). In addition, these external models were merged with the models of the somatic interior. We demonstrated that 3D documentation and visualization of external injury findings by integration of digital photography in CT/MRI data sets is suitable for the 3D documentation of individual patterned injuries to a body. Nevertheless, this documentation method is not a substitution for photogrammetry and surface scanning, especially when the entire bodily surface is to be recorded in three dimensions including all external findings, and when precise data is required for comparing highly detailed injury features with the injury-inflicting tool.
Kaulfuss, Uwe; Moulds, Max
2015-01-01
Abstract A new genus and species of primitive cicada (Hemiptera: Tettigarctidae) is described from the early Miocene of southern New Zealand. Paratettigarcta zealandica gen. et sp. n. is the first cicada (Cicadoidea) fossil from New Zealand and exhibits wing venation patterns typical for the subfamily Tettigarctinae. It differs from other fossil taxa and the extant genus Tettigarcta in the early divergence of CuA2 from the nodal line in the forewing, its parallel-sided subcostal cell, the early bifurcation of vein M and long apical cells of the hindwing, and in wing pigmentation patterns. PMID:25829843
Kaulfuss, Uwe; Moulds, Max
2015-01-01
A new genus and species of primitive cicada (Hemiptera: Tettigarctidae) is described from the early Miocene of southern New Zealand. Paratettigarctazealandica gen. et sp. n. is the first cicada (Cicadoidea) fossil from New Zealand and exhibits wing venation patterns typical for the subfamily Tettigarctinae. It differs from other fossil taxa and the extant genus Tettigarcta in the early divergence of CuA2 from the nodal line in the forewing, its parallel-sided subcostal cell, the early bifurcation of vein M and long apical cells of the hindwing, and in wing pigmentation patterns.
Tight Junction Protein 1a regulates pigment cell organisation during zebrafish colour patterning.
Fadeev, Andrey; Krauss, Jana; Frohnhöfer, Hans Georg; Irion, Uwe; Nüsslein-Volhard, Christiane
2015-04-27
Zebrafish display a prominent pattern of alternating dark and light stripes generated by the precise positioning of pigment cells in the skin. This arrangement is the result of coordinated cell movements, cell shape changes, and the organisation of pigment cells during metamorphosis. Iridophores play a crucial part in this process by switching between the dense form of the light stripes and the loose form of the dark stripes. Adult schachbrett (sbr) mutants exhibit delayed changes in iridophore shape and organisation caused by truncations in Tight Junction Protein 1a (ZO-1a). In sbr mutants, the dark stripes are interrupted by dense iridophores invading as coherent sheets. Immuno-labelling and chimeric analyses indicate that Tjp1a is expressed in dense iridophores but down-regulated in the loose form. Tjp1a is a novel regulator of cell shape changes during colour pattern formation and the first cytoplasmic protein implicated in this process.
The timing of wing molt in tundra swans: energetic and non-energetic constraints
Earnst, S.L.
1992-01-01
Date of wing molt initiation, based on the regression of tenth primary length on capture date, was calculated for breeding and nonbreeding Tundra Swans (Cygnus columbianus columbianus) on the Colville River Delta, Alaska. Breeding females initiated wing molt significantly later than breeding males and nonbreeding males and females; the molt of breeding females was correlated with the date on which their eggs hatched. Breeding males did not differ significantly from nonbreeding males and females in the date of molt initiation. Timing of molt in breeding males and females was consistent with the views that females delay molt while replenishing energy spent on reproduction, but was also consistent with the breeding pair's need for primaries to defend territories and to defend and brood young. Other results, including an increase in an index of female body condition throughout most of the molt period, and a positive correlation between clutch size and female hatch-to-molt interval, were not predicted by the hypothesis that past energy expenditures constrain the timing of molt. Patterns of wing molt within and among other Northern Hemisphere geese and swans are also difficult to explain on the basis of energetics alone. For example, breeding females initiate molt before breeding males in many species. Also, there is extreme asynchrony between mates in two swan species; one of those species also exhibits variation in which sex initiates wing molt first. Both patterns suggest that asynchrony, per se, is important, probably to facilitate brood protection or territory defense. In Tundra Swans and other northern breeding geese and swans, the non-energetic demands of territory defense, brood defense, and brooding are probably important constraints on the timing of wing molt.
The generation and diversification of butterfly eyespot color patterns.
Brunetti, C R; Selegue, J E; Monteiro, A; French, V; Brakefield, P M; Carroll, S B
2001-10-16
A fundamental challenge of evolutionary and developmental biology is understanding how new characters arise and change. The recently derived eyespots on butterfly wings vary extensively in number and pattern between species and play important roles in predator avoidance. Eyespots form through the activity of inductive organizers (foci) at the center of developing eyespot fields. Foci are the proposed source of a morphogen, the levels of which determine the color of surrounding wing scale cells. However, it is unknown how reception of the focal signal translates into rings of different-colored scales, nor how different color schemes arise in different species. We have identified several transcription factors, including butterfly homologs of the Drosophila Engrailed/Invected and Spalt proteins, that are deployed in concentric territories corresponding to the future rings of pigmented scales that compose the adult eyespot. We have isolated a new Bicyclus anynana wing pattern mutant, Goldeneye, in which the scales of one inner color ring become the color of a different ring. These changes correlate with shifts in transcription factor expression, suggesting that Goldeneye affects an early regulatory step in eyespot color patterning. In different butterfly species, the same transcription factors are expressed in eyespot fields, but in different relative spatial domains that correlate with divergent eyespot color schemes. Our results suggest that signaling from the focus induces nested rings of regulatory gene expression that subsequently control the final color pattern. Furthermore, the remarkably plastic regulatory interactions downstream of focal signaling have facilitated the evolution of eyespot diversity.
Van Kleunen, Mark; Nänni, Ingrid; Donaldson, John S; Manning, John C
2007-12-01
A deviation from the classical beetle pollination syndrome of dull-coloured flowers with an unpleasant scent is found in the Greater Cape Floral Region of South Africa. Here, monkey beetles (Scarabaeidae) visit brightly coloured, odourless flowers with conspicuous dark spots and centres (beetle marks). The role of flower colour and markings in attracting monkey beetles is still poorly understood. Artificial model flowers with different marking patterns were used to test the effect of beetle marks on visitation by monkey beetles. To test whether monkey beetles are conditioned to the colour of the local matrix species, model flowers of different colours were placed in populations of three differently coloured species of Iridaceae. Among all three matrix species the presence of dark markings of some kind (either centres or spots) increased visitation rates but the different matrix species differed in whether the effect was due to a dark centre or to dark spots. Monkey beetles were not conditioned for the colour of the matrix species: model colour was not significant in the Hesperantha vaginata and in the Romulea monadelpha matrices, whereas yellow model flowers were preferred over orange ones in the orange-flowered Sparaxis elegans matrix. This study is the first to demonstrate that beetle marks attract pollinating monkey beetles in the Greater Cape Floral Region. In contrast to plants with the classical beetle pollination syndrome that use floral scent as the most important attractant of pollinating beetles, plants with the monkey beetle pollination syndrome rely on visual signals, and, in some areas at least, monkey beetles favour flowers with dark beetle markings over unmarked flowers.
Carlson, Jane E; Holsinger, Kent E
2015-05-07
Polymorphic traits are central to many fundamental discoveries in evolution, yet why they are found in some species and not others remains poorly understood. We use the African genus Protea-within which more than 40% of species have co-occurring pink and white floral colour morphs-to ask whether convergent evolution and ecological similarity could explain the genus-wide pattern of polymorphism. First, we identified environmental correlates of pink morph frequency across 28 populations of four species. Second, we determined whether the same correlates could predict species-level polymorphism and monomorphism across 31 species. We found that pink morph frequency increased with elevation in Protea repens and three section Exsertae species, increased eastward in P. repens, and increased with seed predation intensity in section Exsertae. For cross-species comparisons, populations of monomorphic pink species occurred at higher elevations than populations of monomorphic white species, and 18 polymorphic species spanned broader elevational gradients than 13 monomorphic species. These results suggest that divergent selection along elevational clines has repeatedly favoured polymorphism, and that more uniform selection in altitudinally restricted species may promote colour monomorphism. Our findings are, to our knowledge, the first to link selection acting within species to the presence and absence of colour polymorphism at broader phylogenetic scales. © 2015 The Author(s) Published by the Royal Society. All rights reserved.
Mikó, István; Copeland, Robert S.; Balhoff, James P.; Yoder, Matthew J.; Deans, Andrew R.
2014-01-01
We revise two relatively rare ensign wasp genera, whose species are restricted to Sub-Saharan Africa: Afrevania and Trissevania. Afrevania longipetiolata sp. nov., Trissevania heatherae sp. nov., T. hugoi sp. nov., T. mrimaensis sp. nov. and T. slideri sp. nov. are described, males and females of T. anemotis and Afrevania leroyi are redescribed, and an identification key for Trissevaniini is provided. We argue that Trissevania mrimaensis sp. nov. and T. heatherae sp. nov. populations are vulnerable, given their limited distributions and threats from mining activities in Kenya. We hypothesize that these taxa together comprise a monophyletic lineage, Trissevaniini, tr. nov., the members of which share the ability to fold their fore wings along two intersecting fold lines. Although wing folding of this type has been described for the hind wing of some insects four-plane wing folding of the fore wing has never been documented. The wing folding mechanism and the pattern of wing folds of Trissevaniini is shared only with some cockroach species (Blattodea). It is an interesting coincidence that all evaniids are predators of cockroach eggs. The major wing fold lines of Trissevaniini likely are not homologous to any known longitudinal anatomical structures on the wings of other Evaniidae. Members of the new tribe share the presence of a coupling mechanism between the fore wing and the mesosoma that is composed of a setal patch on the mesosoma and the retinaculum of the fore wing. While the setal patch is an evolutionary novelty, the retinaculum, which originally evolved to facilitate fore and hind wing coupling in Hymenoptera, exemplifies morphological exaptation. We also refine and clarify the Semantic Phenotype approach used in previous taxonomic revisions and explore the consequences of merging new with existing data. The way that semantic statements are formulated can evolve in parallel, alongside improvements to the ontologies themselves. PMID:24787704
Rajabi, H.; Ghoroubi, N.; Malaki, M.; Darvizeh, A.; Gorb, S. N.
2016-01-01
Dragonflies and damselflies, belonging to the order Odonata, are known to be excellent fliers with versatile flight capabilities. The ability to fly over a wide range of speeds, high manoeuvrability and great agility are a few characteristics of their flight. The architecture of the wings and their structural elements have been found to play a major role in this regard. However, the precise influence of individual wing components on the flight performance of these insects remains unknown. The design of the wing basis (so called basal complex) and the venation of this part are responsible for particular deformability and specific shape of the wing blade. However, the wing bases are rather different in representatives of different odonate groups. This presumably reflects the dimensions of the wings on one hand, and different flight characteristics on the other hand. In this article, we develop the first three-dimensional (3D) finite element (FE) models of the proximal part of the wings of typical representatives of five dragonflies and damselflies families. Using a combination of the basic material properties of insect cuticle, a linear elastic material model and a nonlinear geometric analysis, we simulate the mechanical behaviour of the wing bases. The results reveal that although both the basal venation and the basal complex influence the structural stiffness of the wings, it is only the latter which significantly affects their deformation patterns. The use of numerical simulations enabled us to address the role of various wing components such as the arculus, discoidal cell and triangle on the camber formation in flight. Our study further provides a detailed representation of the stress concentration in the models. The numerical analysis presented in this study is not only of importance for understanding structure-function relationship of insect wings, but also might help to improve the design of the wings for biomimetic micro-air vehicles (MAVs). PMID:27513753
Taira, Wataru; Otaki, Joji M
2016-01-01
Butterfly wing color patterns often contain eyespots, which are developmentally determined at the late larval and early pupal stages by organizing activities of focal cells that can later form eyespot foci. In the pupal stage, the focal position of a future eyespot is often marked by a focal spot, one of the pupal cuticle spots, on the pupal surface. Here, we examined the possible relationships of the pupal focal spots with the underneath pupal wing tissues and with the adult wing eyespots using Junonia butterflies. Large pupal focal spots were found in two species with large adult eyespots, J. orithya and J. almana, whereas only small pupal focal spots were found in a species with small adult eyespots, J. hedonia. The size of five pupal focal spots on a single wing was correlated with the size of the corresponding adult eyespots in J. orithya. A pupal focal spot was a three-dimensional bulge of cuticle surface, and the underside of the major pupal focal spot exhibited a hollowed cuticle in a pupal case. Cross sections of a pupal wing revealed that the cuticle layer shows a curvature at a focal spot, and a positional correlation was observed between the cuticle layer thickness and its corresponding cell layer thickness. Adult major eyespots of J. orithya and J. almana exhibited surface elevations and depressions that approximately correspond to the coloration within an eyespot. Our results suggest that a pupal focal spot is produced by the organizing activity of focal cells underneath the focal spot. Probably because the focal cell layer immediately underneath a focal spot is thicker than that of its surrounding areas, eyespots of adult butterfly wings are three-dimensionally constructed. The color-height relationship in adult eyespots might have an implication in the developmental signaling for determining the eyespot color patterns.
Taira, Wataru; Otaki, Joji M.
2016-01-01
Butterfly wing color patterns often contain eyespots, which are developmentally determined at the late larval and early pupal stages by organizing activities of focal cells that can later form eyespot foci. In the pupal stage, the focal position of a future eyespot is often marked by a focal spot, one of the pupal cuticle spots, on the pupal surface. Here, we examined the possible relationships of the pupal focal spots with the underneath pupal wing tissues and with the adult wing eyespots using Junonia butterflies. Large pupal focal spots were found in two species with large adult eyespots, J. orithya and J. almana, whereas only small pupal focal spots were found in a species with small adult eyespots, J. hedonia. The size of five pupal focal spots on a single wing was correlated with the size of the corresponding adult eyespots in J. orithya. A pupal focal spot was a three-dimensional bulge of cuticle surface, and the underside of the major pupal focal spot exhibited a hollowed cuticle in a pupal case. Cross sections of a pupal wing revealed that the cuticle layer shows a curvature at a focal spot, and a positional correlation was observed between the cuticle layer thickness and its corresponding cell layer thickness. Adult major eyespots of J. orithya and J. almana exhibited surface elevations and depressions that approximately correspond to the coloration within an eyespot. Our results suggest that a pupal focal spot is produced by the organizing activity of focal cells underneath the focal spot. Probably because the focal cell layer immediately underneath a focal spot is thicker than that of its surrounding areas, eyespots of adult butterfly wings are three-dimensionally constructed. The color-height relationship in adult eyespots might have an implication in the developmental signaling for determining the eyespot color patterns. PMID:26731532
Frequencies of genes for coat colour and horns in Nordic cattle breeds
Kantanen, Juha; Olsaker, Ingrid; Brusgaard, Klaus; Eythorsdottir, Emma; Holm, Lars-Erik; Lien, Sigbjørn; Danell, Birgitta; Adalsteinsson, Stefan
2000-01-01
Gene frequencies of coat colour and horn types were assessed in 22 Nordic cattle breeds in a project aimed at establishing genetic profiles of the breeds under study. The coat colour loci yielding information on genetic variation were: extension, agouti, spotting, brindle, dun dilution and colour sided. The polled locus was assessed for two alleles. A profound variation between breeds was observed in the frequencies of both colour and horn alleles, with the older breeds generally showing greater variation in observed colour, horn types and segregating alleles than the modern breeds. The correspondence between the present genetic distance matrix and previous molecular marker distance matrices was low (r = 0.08 – 0.12). The branching pattern of a neighbour-joining tree disagreed to some extent with the molecular data structure. The current data indicates that 70% of the total genetic variation could be explained by differences between the breeds, suggesting a much greater breed differentiation than typically found at protein and microsatellite loci. The marked differentiation of the cattle breeds and observed disagreements with the results from the previous molecular data in the topology of the phylogenetic trees are most likely a result of selection on phenotypic characters analysed in this study. PMID:14736370
Visual awareness of objects and their colour.
Pilling, Michael; Gellatly, Angus
2011-10-01
At any given moment, our awareness of what we 'see' before us seems to be rather limited. If, for instance, a display containing multiple objects is shown (red or green disks), when one object is suddenly covered at random, observers are often little better than chance in reporting about its colour (Wolfe, Reinecke, & Brawn, Visual Cognition, 14, 749-780, 2006). We tested whether, when object attributes (such as colour) are unknown, observers still retain any knowledge of the presence of that object at a display location. Experiments 1-3 involved a task requiring two-alternative (yes/no) responses about the presence or absence of a colour-defined object at a probed location. On this task, if participants knew about the presence of an object at a location, responses indicated that they also knew about its colour. A fourth experiment presented the same displays but required a three-alternative response. This task did result in a data pattern consistent with participants' knowing more about the locations of objects within a display than about their individual colours. However, this location advantage, while highly significant, was rather small in magnitude. Results are compared with those of Huang (Journal of Vision, 10(10, Art. 24), 1-17, 2010), who also reported an advantage for object locations, but under quite different task conditions.
Conflict between background matching and social signalling in a colour-changing freshwater fish.
Kelley, Jennifer L; Rodgers, Gwendolen M; Morrell, Lesley J
2016-06-01
The ability to change coloration allows animals to modify their patterning to suit a specific function. Many freshwater fishes, for example, can appear cryptic by altering the dispersion of melanin pigment in the skin to match the visual background. However, melanin-based pigments are also used to signal dominance among competing males; thus colour change for background matching may conflict with colour change for social status signalling. We used a colour-changing freshwater fish to investigate whether colour change for background matching influenced aggressive interactions between rival males. Subordinate males that had recently darkened their skin for background matching received heightened aggression from dominant males, relative to males whose coloration had not changed. We then determined whether the social status of a rival male, the focal male's previous social status, and his previous skin coloration, affected a male's ability to change colour for background matching. Social status influenced skin darkening in the first social encounter, with dominant males darkening more than subordinate males, but there was no effect of social status on colour change in the second social encounter. We also found that the extent of skin colour change (by both dominant and subordinate males) was dependent on previous skin coloration, with dark males displaying a smaller change in coloration than pale males. Our findings suggest that skin darkening for background matching imposes a significant social cost on subordinate males in terms of increased aggression. We also suggest that the use of melanin-based signals during social encounters can impede subsequent changes in skin coloration for other functions, such as skin darkening for background matching.
The Effect of Large Angles of Yaw on the Accuracy of Wing-Tip Yawmeters
NASA Technical Reports Server (NTRS)
Golden, Jacob
1942-01-01
The present method used by the NACA for the measurement of sideslip angles in flight involves the use of a device called the yawmeter. The operation of this instrument depends on the motion of a free-swinging vane which, mounted ahead of the wing tip, alines itself with the local wind direction. Because of the flow pattern about the airplane, the local wind direction at the yaw vane may be slightly different from the direction of the relative wind and the yaw-vane readings may be in error. This error is corrected by using half the difference between the readings of two vanes, one on each wing, for unyawed flight as a calibration constant. It is possible, however, that, because of the change in location of the vane with respect to the flow pattern at large angles of yaw, the constant obtained for unyawed flight may not apply. The present report covers power-off tests made in the free-flight tunnel to check the validity of this method.
Rizzi, Samantha Karlla Lopes de Almeida; Haddad, Cinira Assad Simão; Giron, Patricia Santolia; Pinheiro, Thaís Lúcia; Nazário, Afonso Celso Pinto; Facina, Gil
2016-06-01
The aim of this study was to determine the incidence of winged scapula after breast cancer surgery, its impact on shoulder morbidity and difference in incidence according to surgery type. Patients with breast cancer and surgical indication for axillary dissection were included. A total of 112 patients were surveyed with one physical evaluation before the surgery and others 15, 30, 90, and 180 days after. Winged scapula was assessed with test proposed by Hoppenfeld. Shoulder range of motion (ROM) was assessed with goniometer for flexion, extension, adduction, abduction, internal rotation, and external rotation. A verbal scale from 0 to 10 was used to assess pain. Winged scapula incidence was 8.0 % 15 days after surgery. Two patients recovered from winged scapula 90 days after surgery and four more 180 days after surgery, while three patients still had winged scapula at this time. The incidence after 15 days from surgery was 20.9 and 22.6 % among patients submitted to sentinel node biopsy or axillary lymphadenectomy (AL), respectively (p < 0.01). There was no statistical difference of incidence according to breast surgery type. Operated side shoulder flexion, adduction, and abduction ROM changes were statistically different in patients with or without winged scapula. The mean reduction was higher in patients with winged scapula. Both groups showed the same pattern over time in pain. Winged scapula incidence was 8.0 % and was higher in AL, and prevalence decreased during 6 months after surgery. Patients who developed winged scapula had more shoulder flexion, adduction, and abduction limitation.
NASA Astrophysics Data System (ADS)
Krishnan, Krishnamoorthy; Naqavi, Iftekhar Z.; Gurka, Roi
2017-11-01
Understanding the physics of flapping wings at moderate Reynolds number flows takes on greater importance in the context of avian aerodynamics as well as in the design of miniature-aerial-vehicles. Analyzing the characteristics of wake vortices generated downstream of flapping wings can help to explain the unsteady contribution to the aerodynamics loads. In this study, numerical simulations of flow over a bio-inspired pseudo-2D flapping wing model was conducted to characterize the evolution of unsteady flow structures in the downstream wake of flapping wing. The wing model was based on a European starling's wing and wingbeat kinematics were incorporated to simulate a free-forward flight. The starling's wingbeat kinematics were extracted from experiments conducted in a wind tunnel where freely flying starling was measured using high-speed PIV as well as high-speed imaging yielding a series of kinematic images sampled at 500 Hz. The average chord of the wing section was 6 cm and simulations were carried out at a Reynolds number of 54,000, reduced frequency of 0.17, and Strouhal number of 0.16. Large eddy simulation was performed using a second order, finite difference code ParLES. Characteristics of wake vortex structures during the different phases of the wing strokes were examined. The role of wingbeat kinematics in the configuration of downstream vortex patterns is discussed. Evaluated wake topology and lift-drag characteristics are compared with the starling's wind tunnel results.
Khaksar, Ghazale; Sayed Tabatabaei, Badraldin Ebrahim; Arzani, Ahmad; Ghobadi, Cyrus; Ebrahimie, Esmaeil
2015-01-01
Background Pomegranate fruit (Punica granatum L.) is a rich source of anthocyanin pigments resulting in vibrant colours and anti-oxidant contents. Although the intensity and pattern of anthocyanin biosynthesis in fruit are strongly influenced by R2R3-MYB transcription factors, little is known about the regulation and role of MYB in anthocyanin pathway of pomegranate. Objectives The present study was conducted to elucidate the relationship between the expression of MYB transcription factor and the anthocyanin accumulation during the colour development phase of pomegranate fruits. Materials and Methods In this work, R2R3-MYB transcription factor (PgMYB) was isolated and characterized from pomegranate skin through RACE-PCR. The expression of PgMYB gene was monitored in three distinct pomegranate accessions with distinctive skin colour and pattern by semi-quantitative RT-PCR. Results The results indicated a strong association between skin colour in mature pomegranate fruits with the PgMYB transcripts. The highest expression level of PgMYB gene was observed in Poost Siyah Yazd (dark purple skin) throughout the ripening process. Furthermore, comparison of PgMYB amino acid sequences with those of R2R3-MYB family in grapevine, eucalyptus, peach, cacao, populus and Arabidopsis demonstrated that this protein shares high similarity (75-85% amino acid identity) with their conserved MYB domain. Computational structure prediction of PgMYB showed that the three conserved amino acids (Asn, Lys and Lys) are present in the same position of the MYB domain. Conclusions It is speculated that PgMYB gene influences the fruit colour and could be used to improve the accumula-tion of anthocyanin pigments in the pomegranate fruit. PMID:28959277
Bolton, P E; Rollins, L A; Brazill-Boast, J; Kim, K-W; Burke, T; Griffith, S C
2017-01-01
In socially monogamous species, individuals can use extra-pair paternity and offspring sex allocation as adaptive strategies to ameliorate costs of genetic incompatibility with their partner. Previous studies on domesticated Gouldian finches (Erythrura gouldiae) demonstrated a genetic incompatibility between head colour morphs, the effects of which are more severe in female offspring. Domesticated females use differential sex allocation, and extra-pair paternity with males of compatible head colour, to reduce fitness costs associated with incompatibility in mixed-morph pairings. However, laboratory studies are an oversimplification of the complex ecological factors experienced in the wild and may only reflect the biology of a domesticated species. This study aimed to examine the patterns of parentage and sex ratio bias with respect to colour pairing combinations in a wild population of the Gouldian finch. We utilized a novel PCR assay that allowed us to genotype the morph of offspring before the morph phenotype develops and to explore bias in morph paternity and selection at the nest. Contrary to previous findings in the laboratory, we found no effect of pairing combinations on patterns of extra-pair paternity, offspring sex ratio or selection on morphs in nestlings. In the wild, the effect of morph incompatibility is likely much smaller, or absent, than was observed in the domesticated birds. Furthermore, the previously studied domesticated population is genetically differentiated from the wild population, consistent with the effects of domestication. It is possible that the domestication process fostered the emergence (or enhancement) of incompatibility between colour morphs previously demonstrated in the laboratory. © 2016 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2016 European Society For Evolutionary Biology.
Lin, Xinda; Yao, Yun; Wang, Bo; Emlen, Douglas J; Lavine, Laura Corley
2016-01-01
Crowding and changes in food availability are two critical environmental conditions that impact an animal's trajectory toward either migration or reproduction. Many insects facing this challenge have evolved wing polyphenisms. When conditions favor reproduction, wing polyphenic species produce adults that either have no wings or short, non-functional wings. Facultative wing growth reflects a physiological and evolutionary trade-off between migration and reproduction, triggered by environmental conditions. How environmental cues are transduced to produce these alternative forms, and their associated ecological shift from migration to reproduction, remains an important unsolved problem in evolutionary ecology. The brown planthopper, a wing polymorphic insect exhibiting strong trade-offs in investment between migration and reproduction, is one of the most serious rice pests in Asia. In this study, we investigated the function of four genes in the insulin-signaling pathway known to couple nutrition with growth, PI3 Kinase (PI3K), PDK1, Akt (Protein Kinase B), and the forkhead gene FOXO. Using a combination of RNA interference and pharmacological inhibitor treatment, we show that all four genes contribute to tissue level regulation of wing polymorphic development in this insect. As predicted, silencing of the NlPI3K, NlAkt and NlPDK1 through dsRNA and with the pharmacological inhibitor Perifosine resulted in short-winged brown planthoppers, whereas knockdown of NlFOXO resulted in long-winged planthoppers. Morphometric analyses confirm that phenotypes from our manipulations mimic what would be found in nature, i.e., major parameters such as bristle number, wing area and body weight are not significantly different from non-experimental animals. Taken together, these data implicate the insulin-signaling pathway in the transduction of environmental factors into condition-dependent patterns of wing growth in insects.
Morphogenesis in bat wings: linking development, evolution and ecology.
Adams, Rick A
2008-01-01
The evolution of powered flight in mammals required specific developmental shifts from an ancestral limb morphology to one adapted for flight. Through studies of comparative morphogenesis, investigators have quantified points and rates of divergence providing important insights into how wings evolved in mammals. Herein I compare growth,development and skeletogenesis of forelimbs between bats and the more ancestral state provided by the rat (Rattus norvegicus)and quantify growth trajectories that illustrate morphological divergence both developmentally and evolutionarily. In addition, I discuss how wing shape is controlled during morphogenesis by applying multivariate analyses of wing bones and wing membranes and discuss how flight dynamics are stabilized during flight ontogeny. Further, I discuss the development of flight in bats in relation to the ontogenetic niche and how juveniles effect populational foraging patterns. In addition, I provide a hypothetical ontogenetic landscape model that predicts how and when selection is most intense during juvenile morphogenesis and test this model with data from a population of the little brown bat, Myotis lucifugus. (c) 2007 S. Karger AG, Basel
Boundary Dpp promotes growth of medial and lateral regions of the Drosophila wing
Barrio, Lara; Milán, Marco
2017-01-01
The gradient of Decapentaplegic (Dpp) in the Drosophila wing has served as a paradigm to characterize the role of morphogens in regulating patterning. However, the role of this gradient in regulating tissue size is a topic of intense debate as proliferative growth is homogenous. Here, we combined the Gal4/UAS system and a temperature-sensitive Gal80 molecule to induce RNAi-mediated depletion of dpp and characterise the spatial and temporal requirement of Dpp in promoting growth. We show that Dpp emanating from the AP compartment boundary is required throughout development to promote growth by regulating cell proliferation and tissue size. Dpp regulates growth and proliferation rates equally in central and lateral regions of the developing wing appendage and reduced levels of Dpp affects similarly the width and length of the resulting wing. We also present evidence supporting the proposal that graded activity of Dpp is not an absolute requirement for wing growth. DOI: http://dx.doi.org/10.7554/eLife.22013.001 PMID:28675372
Nectar, not colour, may lure insects to their death
Bennett, Katherine F.; Ellison, Aaron M.
2009-01-01
We experimentally demonstrate in the field that prey of the carnivorous plant Sarracenia purpurea are attracted to sugar, not to colour. Prey capture (either all taxa summed or individual common taxa considered separately) was not associated with total red area or patterning on pitchers of living pitcher plants. We separated effects of nectar availability and coloration using painted ‘pseudopitchers’, half of which were coated with sugar solution. Unsugared pseudopitchers captured virtually no prey, whereas pseudopitchers with sugar solution captured the same amount of prey as living pitchers. In contrast to a recent study that associated red coloration with prey capture but that lacked controls for nectar availability, we infer that nectar, not colour, is the primary means by which pitcher plants attract prey. PMID:19429649
Nectar, not colour, may lure insects to their death.
Bennett, Katherine F; Ellison, Aaron M
2009-08-23
We experimentally demonstrate in the field that prey of the carnivorous plant Sarracenia purpurea are attracted to sugar, not to colour. Prey capture (either all taxa summed or individual common taxa considered separately) was not associated with total red area or patterning on pitchers of living pitcher plants. We separated effects of nectar availability and coloration using painted 'pseudopitchers', half of which were coated with sugar solution. Unsugared pseudopitchers captured virtually no prey, whereas pseudopitchers with sugar solution captured the same amount of prey as living pitchers. In contrast to a recent study that associated red coloration with prey capture but that lacked controls for nectar availability, we infer that nectar, not colour, is the primary means by which pitcher plants attract prey.
An experimental study of separated flow on a finite wing
NASA Technical Reports Server (NTRS)
Winkelmann, A. E.
1981-01-01
The flow field associated with the formation of a mushroom shaped trailing edge stall cell on a low-aspect-ratio (AR = 4.0) wing was investigated in a series of low speed wind tunnel tests (Reynolds number based on 15.2 cm chord = 480,000). Flow field surveys of the separation bubble and wake of a partially stalled and fully stalled wing were completed using a hot-wire probe, a split-film probe, and a directional sensitive pressure probe. A new color video display technique was developed to display the flow field survey data. Photographs were obtained of surface oil flow patterns and smoke flow visualization
Exploring bird aerodynamics using radio-controlled models.
Hoey, Robert G
2010-12-01
A series of radio-controlled glider models was constructed by duplicating the aerodynamic shape of soaring birds (raven, turkey vulture, seagull and pelican). Controlled tests were conducted to determine the level of longitudinal and lateral-directional static stability, and to identify the characteristics that allowed flight without a vertical tail. The use of tail-tilt for controlling small bank-angle changes, as observed in soaring birds, was verified. Subsequent tests, using wing-tip ailerons, inferred that birds use a three-dimensional flow pattern around the wing tip (wing tip vortices) to control adverse yaw and to create a small amount of forward thrust in gliding flight.
Wilts, Bodo D.; Michielsen, Kristel; De Raedt, Hans; Stavenga, Doekele G.
2012-01-01
The cover scales on the wing of the Emerald-patched Cattleheart butterfly, Parides sesostris, contain gyroid-type biological photonic crystals that brightly reflect green light. A pigment, which absorbs maximally at approximately 395 nm, is immersed predominantly throughout the elaborate upper lamina. This pigment acts as a long-pass filter shaping the reflectance spectrum of the underlying photonic crystals. The additional effect of the filtering is that the spatial distribution of the scale reflectance is approximately angle-independent, leading to a stable wing pattern contrast. The spectral tuning of the original reflectance is verified by photonic band structure modelling. PMID:24098853
Saito, Kazuya; Nomura, Shuhei; Yamamoto, Shuhei; Niiyama, Ryuma; Okabe, Yoji
2017-05-30
Ladybird beetles are high-mobility insects and explore broad areas by switching between walking and flying. Their excellent wing transformation systems enabling this lifestyle are expected to provide large potential for engineering applications. However, the mechanism behind the folding of their hindwings remains unclear. The reason is that ladybird beetles close the elytra ahead of wing folding, preventing the observation of detailed processes occurring under the elytra. In the present study, artificial transparent elytra were transplanted on living ladybird beetles, thereby enabling us to observe the detailed wing-folding processes. The result revealed that in addition to the abdominal movements mentioned in previous studies, the edge and ventral surface of the elytra, as well as characteristic shaped veins, play important roles in wing folding. The structures of the wing frames enabling this folding process and detailed 3D shape of the hindwing were investigated using microcomputed tomography. The results showed that the tape spring-like elastic frame plays an important role in the wing transformation mechanism. Compared with other beetles, hindwings in ladybird beetles are characterized by two seemingly incompatible properties: ( i ) the wing rigidity with relatively thick veins and ( ii ) the compactness in stored shapes with complex crease patterns. The detailed wing-folding process revealed in this study is expected to facilitate understanding of the naturally optimized system in this excellent deployable structure.
Nomura, Shuhei; Yamamoto, Shuhei; Niiyama, Ryuma; Okabe, Yoji
2017-01-01
Ladybird beetles are high-mobility insects and explore broad areas by switching between walking and flying. Their excellent wing transformation systems enabling this lifestyle are expected to provide large potential for engineering applications. However, the mechanism behind the folding of their hindwings remains unclear. The reason is that ladybird beetles close the elytra ahead of wing folding, preventing the observation of detailed processes occurring under the elytra. In the present study, artificial transparent elytra were transplanted on living ladybird beetles, thereby enabling us to observe the detailed wing-folding processes. The result revealed that in addition to the abdominal movements mentioned in previous studies, the edge and ventral surface of the elytra, as well as characteristic shaped veins, play important roles in wing folding. The structures of the wing frames enabling this folding process and detailed 3D shape of the hindwing were investigated using microcomputed tomography. The results showed that the tape spring-like elastic frame plays an important role in the wing transformation mechanism. Compared with other beetles, hindwings in ladybird beetles are characterized by two seemingly incompatible properties: (i) the wing rigidity with relatively thick veins and (ii) the compactness in stored shapes with complex crease patterns. The detailed wing-folding process revealed in this study is expected to facilitate understanding of the naturally optimized system in this excellent deployable structure. PMID:28507159
Mun, J-H; Kim, G-W; Jwa, S-W; Song, M; Kim, H-S; Ko, H-C; Kim, B-S; Kim, M-B
2013-06-01
Subungual haemorrhages are characterized by well-circumscribed dots or blotches with a red to red-black pigmentation, but some cases can be difficult to distinguish from subungual melanoma by the naked eye alone. Dermoscopy has proven to be a useful, noninvasive tool in the diagnosis of pigmented lesions in the nail; however, few dermoscopic studies of subungual haemorrhages have been reported. To investigate characteristic dermoscopic patterns of subungual haemorrhages, and to find distinctive features that can differentiate them from nail-unit melanomas. Patients with a confirmed diagnosis of either subungual haemorrhage or nail-unit melanoma at a tertiary university hospital were included in the study. Clinical features and dermoscopic patterns were evaluated. Sixty-four patients with a total of 90 lesions of subungual haemorrhage were enrolled in the study. The majority of cases (84%) showed combinations of more than one colour, while 16% had only one colour. The most common colour of the subungual haemorrhages was purple-black, in 37% of cases. A homogeneous pattern was observed in 92% of cases, globular patterns in 42% and streaks in 39%. Peripheral fading and periungual haemorrhages were found in 54% and 22% of cases, respectively. Destruction or dystrophy of the nail plate was observed in 16% of cases. In the 16 cases of nail-unit melanomas, Hutchinson sign, longitudinal irregular bands or lines, triangular shape of bands, vascular pattern, and ulcerations were found in 100%, 81%, 25%, 6% and 81% of cases, respectively. In contrast, these features were not found in subungual haemorrhages. Dermoscopy provides valuable information for the diagnosis of subungual haemorrhage and aids in the differential diagnosis from nail-unit melanoma. © 2013 The Authors. BJD © 2013 British Association of Dermatologists.
Zhou, Shuang-Shuang; Sun, Ze; Ma, Weihua; Chen, Wei; Wang, Man-Qun
2014-03-01
We sequenced the antenna transcriptome of the brown planthopper (BPH), Nilaparvata lugens (Stål), a global rice pest, and performed transcriptome analysis on BPH antenna. We obtained about 40million 90bp reads that were assembled into 75,874 unigenes with a mean size of 456bp. Among the antenna transcripts, 32,856 (43%) showed significant similarity (E-value <1e(-5)) to known proteins in the NCBI database. Gene ontology and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses were used to classify functions of BPH antenna genes. We identified 10 odorant-binding proteins (OBPs), including 7 previously unidentified, and 11 chemosensory proteins (CSPs), including two new members. The expression profiles of 4 OBPs and 2 CSPs were determined by q-PCR for antenna, abdomen, leg and wing of insects of different age, gender, and mating status including two BPH adult wing-morphology types. NlugCSP10 and 4 OBPs appeared to be antenna-specific because they were highly and differentially expressed in male and female antennae. NlugCSP11 was expressed ubiquitously, with particularly high expression in wings. The transcript levels of several olfactory genes depended on adult wing form, age, gender, and mating status, although no clear expression patterns were determined. Copyright © 2013 Elsevier Inc. All rights reserved.
Preserving and vouchering butterflies and moths for large-scale museum-based molecular research
Epstein, Samantha W.; Mitter, Kim; Hamilton, Chris A.; Plotkin, David; Mitter, Charles
2016-01-01
Butterflies and moths (Lepidoptera) comprise significant portions of the world’s natural history collections, but a standardized tissue preservation protocol for molecular research is largely lacking. Lepidoptera have traditionally been spread on mounting boards to display wing patterns and colors, which are often important for species identification. Many molecular phylogenetic studies have used legs from pinned specimens as the primary source for DNA in order to preserve a morphological voucher, but the amount of available tissue is often limited. Preserving an entire specimen in a cryogenic freezer is ideal for DNA preservation, but without an easily accessible voucher it can make specimen identification, verification, and morphological work difficult. Here we present a procedure that creates accessible and easily visualized “wing vouchers” of individual Lepidoptera specimens, and preserves the remainder of the insect in a cryogenic freezer for molecular research. Wings are preserved in protective holders so that both dorsal and ventral patterns and colors can be easily viewed without further damage. Our wing vouchering system has been implemented at the University of Maryland (AToL Lep Collection) and the University of Florida (Florida Museum of Natural History, McGuire Center of Lepidoptera and Biodiversity), which are among two of the largest Lepidoptera molecular collections in the world. PMID:27366654
Shape matters: improved flight in tapered auto-rotating wings
NASA Astrophysics Data System (ADS)
Liu, Yucen; Vincent, Lionel; Kanso, Eva
2017-11-01
Many plants use gravity and wind to disperse their seeds. The shape of seed pods influence their aerodynamics. For example, Liana seeds form aerodynamic gliders and Sycamore trees release airborne ``helicopters.'' Here, we use carefully-controlled experiments and high-speed photography to examine dispersion by tumbling (auto-rotation) and we focus on the effect of geometry on flight characteristics. We consider four families of shapes: rectangular, elliptic, tapered, and sharp-tip wings, and we vary the span-to-chord ratio. We find that tapered wings exhibit extended flight time and range, that is, better performance. A quasi-steady two-dimensional model is used to highlight the mechanisms by which shape affects flight performance. These findings could have significant implications on linking seedpod designs to seed dispersion patterns as well as on optimizing wing design in active flight problems.
Design and development of flapping wing micro air vehicle
NASA Astrophysics Data System (ADS)
Hynes, N. Rajesh Jesudoss; Solomon, A. Jeffey Markus; Kathiresh, E.; Brighton, D.; Velu, P. Shenbaga
2018-05-01
Birds and insects have different methods of producing lift and thrust for hovering and forward flight. Most birds, however, cannot hover. Wing tips of birds follow simple paths in flight, whereas insects have very complicated wing tip paths, for hovering and forward flight, which vary with each species. FMAV based on avian flight. Development of Flapping Wing Air Vehicle (FWAV) is an on-going quest to master the natural flyers by mechanical means. It is characterized by unsteady aerodynamics, whose knowledge is still developing. The present work aims at include being capable of manoeuvring around and over obstacles by adjusting pitch, yaw, and roll, able to glide for five seconds under its own power, skilful at alternating between flapping and gliding with minimal disruption of flight pattern and being durable enough to withstand impacts with minimal to no damage.
Waliwitiya, Ranil; Belton, Peter; Nicholson, Russell A; Lowenberger, Carl A
2012-02-01
We evaluated the acute toxicities and the physiological effects of plant monoterpenoids (eugenol, pulegone, citronellal and alpha-terpineol) and neuroactive insecticides (malathion, dieldrin and RH3421) on flight muscle impulses (FMI) and wing beat signals (WBS) of the blow fly (Phaenicia sericata). Topically-applied eugenol, pulegone, citronellal, and alpha-terpineol produced neurotoxic symptoms, but were less toxic than malathion, dieldrin, or RH3421. Topical application of eugenol, pulegone, and citronellal reduced spike amplitude in one of the two banks of blow fly dorsolongitudinal flight muscles within 6-8 min, but with citronellal, the amplitude of FMIs reverted to a normal pattern within 1 hr. In contrast to pulegone and citronellal, where impulse frequency remained relatively constant, eugenol caused a gradual increase, then a decline in the frequency of spikes in each muscle bank. Wing beating was blocked permanently within 6-7 min of administering pulegone or citronellal and within 16 mins with eugenol. alpha-Terpineol-treated blow flies could not beat their wings despite normal FMI patterns. The actions of these monoterpenoids on blow fly flight motor patterns are discussed and compared with those of dieldrin, malathion, RH3421, and a variety of other neuroactive substances we have previously investigated in this system. Eugenol, pulegone and citronellal readily penetrate blow fly cuticle and interfere with flight muscle and/or central nervous function. Although there were differences in the effects of these compounds, they mainly depressed flight-associated responses, and acted similarly to compounds that block sodium channels and facilitate GABA action.
Oxford, G S; Gunnarsson, B
2006-01-01
The selective significance, if any, of many invertebrate visible polymorphisms is still not fully understood. Here we examine colour- and black spotting-morph frequencies in the spider Enoplognatha ovata in populations on two Swedish archipelagos with respect to different spatial scales and, in one archipelago, against the background of variation at four putative neutral allozyme marker loci. Every population studied was polymorphic for colour and 28 out of 30 contained all three colour morphs--lineata, redimita and ovata. We found no evidence for a breakdown in the traditional colour morph designation previously suggested for other northern European populations of this species. For colour there is no significant heterogeneity at spatial scales greater than between local populations within islands. Black spotting frequencies show a similar lack of pattern over larger spatial scales except that there are significant differences between the Stockholm and Göteborg archipelagos. Measures of population differentiation (theta) within the Stockholm islands for the two visible systems show them to be significantly more differentiated than the neutral markers, suggesting local selection acting on them in a population-specific manner. On the basis of previous observations and the distribution of spotting phenotypes on a European scale, it is argued that thermal selection might operate on black spotting during the juvenile stages favouring more spots in continental climates. It is not clear what selective forces act on colour.
Alexis, Matamoro-Vidal; Isaac, Salazar-Ciudad; David, Houle
2015-01-01
One of the aims of evolutionary developmental biology is to discover the developmental origins of morphological variation. The discipline has mainly focused on qualitative morphological differences (e.g., presence or absence of a structure) between species. Studies addressing subtle, quantitative variation are less common. The Drosophila wing is a model for the study of development and evolution, making it suitable to investigate the developmental mechanisms underlying the subtle quantitative morphological variation observed in nature. Previous reviews have focused on the processes involved in wing differentiation, patterning and growth. Here, we investigate what is known about how the wing achieves its final shape, and what variation in development is capable of generating the variation in wing shape observed in nature. Three major developmental stages need to be considered: larval development, pupariation, and pupal development. The major cellular processes involved in the determination of tissue size and shape are cell proliferation, cell death, oriented cell division and oriented cell intercalation. We review how variation in temporal and spatial distribution of growth and transcription factors affects these cellular mechanisms, which in turn affects wing shape. We then discuss which aspects of the wing morphological variation are predictable on the basis of these mechanisms. PMID:25619644
Confocal imaging of butterfly tissue.
Brunetti, Craig R
2014-01-01
To understand the molecular events responsible for morphological change requires the ability to examine gene expression in a wide range of organisms in addition to model systems to determine how the differences in gene expression correlate with phenotypic differences. There are approximately 12,000 species of butterflies, most, with distinct patterns on their wings. The most important tool for studying gene expression in butterflies is confocal imaging of butterfly tissue by indirect immunofluorescence using either cross-reactive antibodies from closely related species such as Drosophila or developing butterfly-specific antibodies. In this report, we describe how indirect immunofluorescence protocols can be used to visualize protein expression patterns on the butterfly wing imaginal disc and butterfly embryo.
The embodiment of beauty: Evidence from viewing Chinese concrete words and pictographs.
Zhang, Wei; He, Xianyou; Zhao, Xueru; Lai, Siyan; Lai, Shuxian; Situ, Suiyan
2018-02-01
How is beauty embodied? According to the viewpoint of embodied cognition, the aesthetic processing of words or pictographs has roots in their referential archetypes. Four experiments tested whether the beauty of referential archetypes was routinely activated during the explicit and implicit aesthetic evaluations of the font structures of concrete Chinese words and pictographs in congruent or incongruent font colour. Results showed font structures of simplified Chinese words and pictographs were judged to be more beautiful when they referred to beautiful archetypes; and this pattern was reversed when they referred to ugly archetypes. Moreover, judgement was facilitated when font colour was congruent for Chinese words and pictographs referred to beautiful archetypes. For those referred to ugly archetypes, judgement was inhibited in congruent font colour but facilitated in incongruent font colour, suggesting aesthetic perceptions of the font structures of Chinese words and pictographs were derived from their referential natural objects. The spontaneous generation hypothesis of beauty is proposed to account for these findings. © 2016 International Union of Psychological Science.
From silk to satellite: half a century of ocean colour anomalies in the Northeast Atlantic.
Raitsos, Dionysios E; Pradhan, Yaswant; Lavender, Samantha J; Hoteit, Ibrahim; McQuatters-Gollop, Abigail; Reid, Phillip C; Richardson, Anthony J
2014-07-01
Changes in phytoplankton dynamics influence marine biogeochemical cycles, climate processes, and food webs, with substantial social and economic consequences. Large-scale estimation of phytoplankton biomass was possible via ocean colour measurements from two remote sensing satellites - the Coastal Zone Colour Scanner (CZCS, 1979-1986) and the Sea-viewing Wide Field-of-view Sensor (SeaWiFS, 1998-2010). Due to the large gap between the two satellite eras and differences in sensor characteristics, comparison of the absolute values retrieved from the two instruments remains challenging. Using a unique in situ ocean colour dataset that spans more than half a century, the two satellite-derived chlorophyll-a (Chl-a) eras are linked to assess concurrent changes in phytoplankton variability and bloom timing over the Northeast Atlantic Ocean and North Sea. Results from this unique re-analysis reflect a clear increasing pattern of Chl-a, a merging of the two seasonal phytoplankton blooms producing a longer growing season and higher seasonal biomass, since the mid-1980s. The broader climate plays a key role in Chl-a variability as the ocean colour anomalies parallel the oscillations of the Northern Hemisphere Temperature (NHT) since 1948. © 2013 John Wiley & Sons Ltd.
Anxious mood narrows attention in feature space.
Wegbreit, Ezra; Franconeri, Steven; Beeman, Mark
2015-01-01
Spatial attention can operate like a spotlight whose scope can vary depending on task demands. Emotional states contribute to the spatial extent of attentional selection, with the spotlight focused more narrowly during anxious moods and more broadly during happy moods. In addition to visual space, attention can also operate over features, and we show here that mood states may also influence attentional scope in feature space. After anxious or happy mood inductions, participants focused their attention to identify a central target while ignoring flanking items. Flankers were sometimes coloured differently than targets, so focusing attention on target colour should lead to relatively less interference. Compared to happy and neutral moods, when anxious, participants showed reduced interference when colour isolated targets from flankers, but showed more interference when flankers and targets were the same colour. This pattern reveals that the anxious mood caused these individuals to attend to the irrelevant feature in both cases, regardless of its benefit or detriment. In contrast, participants showed no effect of colour on interference when happy, suggesting that positive mood did not influence attention in feature space. These mood effects on feature-based attention provide a theoretical bridge between previous findings concerning spatial and conceptual attention.
Márquez, E J; Saldamando-Benjumea, C I
2013-09-01
Habitat change in Rhodnius spp may represent an environmental challenge for the development of the species, particularly when feeding frequency and population density vary in nature. To estimate the effect of these variables in stability on development, the degree of directional asymmetry (DA) and fluctuating asymmetry (FA) in the wing size and shape of R. prolixus and R. robustus-like were measured under laboratory controlled conditions. DA and FA in wing size and shape were significant in both species, but their variation patterns showed both inter-specific and sexual dimorphic differences in FA of wing size and shape induced by nutrition stress. These results suggest different abilities of the genotypes and sexes of two sylvatic and domestic genotypes of Rhodnius to buffer these stress conditions. However, both species showed non-significant differences in the levels of FA between treatments that simulated sylvan vs domestic conditions, indicating that the developmental noise did not explain the variation in wing size and shape found in previous studies. Thus, this result confirm that the variation in wing size and shape in response to treatments constitute a plastic response of these genotypes to population density and feeding frequency.
Adaptive technique for matching the spectral response in skin lesions' images
NASA Astrophysics Data System (ADS)
Pavlova, P.; Borisova, E.; Pavlova, E.; Avramov, L.
2015-03-01
The suggested technique is a subsequent stage for data obtaining from diffuse reflectance spectra and images of diseased tissue with a final aim of skin cancer diagnostics. Our previous work allows us to extract patterns for some types of skin cancer, as a ratio between spectra, obtained from healthy and diseased tissue in the range of 380 - 780 nm region. The authenticity of the patterns depends on the tested point into the area of lesion, and the resulting diagnose could also be fixed with some probability. In this work, two adaptations are implemented to localize pixels of the image lesion, where the reflectance spectrum corresponds to pattern. First adapts the standard to the personal patient and second - translates the spectrum white point basis to the relative white point of the image. Since the reflectance spectra and the image pixels are regarding to different white points, a correction of the compared colours is needed. The latest is done using a standard method for chromatic adaptation. The technique follows the steps below: -Calculation the colorimetric XYZ parameters for the initial white point, fixed by reflectance spectrum from healthy tissue; -Calculation the XYZ parameters for the distant white point on the base of image of nondiseased tissue; -Transformation the XYZ parameters for the test-spectrum by obtained matrix; -Finding the RGB values of the XYZ parameters for the test-spectrum according sRGB; Finally, the pixels of the lesion's image, corresponding to colour from the test-spectrum and particular diagnostic pattern are marked with a specific colour.
Otaki, Joji M
2011-06-01
Butterfly wing color patterns consist of many color-pattern elements such as eyespots. It is believed that eyespot patterns are determined by a concentration gradient of a single morphogen species released by diffusion from the prospective eyespot focus in conjunction with multiple thresholds in signal-receiving cells. As alternatives to this single-morphogen model, more flexible multiple-morphogen model and induction model can be proposed. However, the relevance of these conceptual models to actual eyespots has not been examined systematically. Here, representative eyespots from nymphalid butterflies were analyzed morphologically to determine if they are consistent with these models. Measurement of ring widths of serial eyespots from a single wing surface showed that the proportion of each ring in an eyespot is quite different among homologous rings of serial eyespots of different sizes. In asymmetric eyespots, each ring is distorted to varying degrees. In extreme cases, only a portion of rings is expressed remotely from the focus. Similarly, there are many eyespots where only certain rings are deleted, added, or expanded. In an unusual case, the central area of an eyespot is composed of multiple "miniature eyespots," but the overall macroscopic eyespot structure is maintained. These results indicate that each eyespot ring has independence and flexibility to a certain degree, which is less consistent with the single-morphogen model. Considering a "periodic eyespot", which has repeats of a set of rings, damage-induced eyespots in mutants, and a scale-size distribution pattern in an eyespot, the induction model is the least incompatible with the actual eyespot diversity.
Pan, Qifang; Dai, Yuntao; Nuringtyas, Tri Rini; Mustafa, Natali Rianika; Schulte, Anna Elisabeth; Verpoorte, Robert; Choi, Young Hae
2014-01-01
Flower colour is a complex phenomenon that involves a wide range of secondary metabolites of flowers, for example phenolics and carotenoids as well as co-pigments. Biosynthesis of these metabolites, though, occurs through complicated pathways in many other plant organs. The analysis of the metabolic profile of leaves, stems and roots, for example, therefore may allow the identification of chemomarkers related to the final expression of flower colour. To investigate the metabolic profile of leaves, stems, roots and flowers of Catharanthus roseus and the possible correlation with four flower colours (orange, pink, purple and red). (1) H-NMR and multivariate data analysis were used to characterise the metabolites in the organs. The results showed that flower colour is characterised by a special pattern of metabolites such as anthocyanins, flavonoids, organic acids and sugars. The leaves, stems and roots also exhibit differences in their metabolic profiles according to the flower colour. Plants with orange flowers featured a relatively high level of kaempferol analogues in all organs except roots. Red-flowered plants showed a high level of malic acid, fumaric acid and asparagine in both flowers and leaves, and purple and pink flowering plants exhibited high levels of sucrose, glucose and 2,3-dihydroxy benzoic acid. High concentrations of quercetin analogues were detected in flowers and leaves of purple-flowered plants. There is a correlation between the metabolites specifically associated to the expression of different flower colours and the metabolite profile of other plant organs and it is therefore possible to predict the flower colours by detecting specific metabolites in leaves, stems or roots. This may have interesting application in the plant breeding industry. Copyright © 2013 John Wiley & Sons, Ltd.
Conflict between background matching and social signalling in a colour-changing freshwater fish
Rodgers, Gwendolen M.; Morrell, Lesley J.
2016-01-01
The ability to change coloration allows animals to modify their patterning to suit a specific function. Many freshwater fishes, for example, can appear cryptic by altering the dispersion of melanin pigment in the skin to match the visual background. However, melanin-based pigments are also used to signal dominance among competing males; thus colour change for background matching may conflict with colour change for social status signalling. We used a colour-changing freshwater fish to investigate whether colour change for background matching influenced aggressive interactions between rival males. Subordinate males that had recently darkened their skin for background matching received heightened aggression from dominant males, relative to males whose coloration had not changed. We then determined whether the social status of a rival male, the focal male's previous social status, and his previous skin coloration, affected a male's ability to change colour for background matching. Social status influenced skin darkening in the first social encounter, with dominant males darkening more than subordinate males, but there was no effect of social status on colour change in the second social encounter. We also found that the extent of skin colour change (by both dominant and subordinate males) was dependent on previous skin coloration, with dark males displaying a smaller change in coloration than pale males. Our findings suggest that skin darkening for background matching imposes a significant social cost on subordinate males in terms of increased aggression. We also suggest that the use of melanin-based signals during social encounters can impede subsequent changes in skin coloration for other functions, such as skin darkening for background matching. PMID:27429764
NASA Astrophysics Data System (ADS)
García-Resúa, C.; Giráldez, M. J.; Barreira, N.; Penedo, M. G.; Yebra-Pimentel, E.
2011-05-01
Purpose: The lipid layer of the tear film limits evaporation during the inter-blink interval and also affects tear stability. This study was designed to validate a new software application designed to characterize the tear film lipid layer through texture and colour pattern recognition. Methods: Using the Tearscope-plus (slit lamp magnification 200X), the lipid layer was examined in 105 healthy young adults and interference photographs acquired with a Topcon DV-3 digital camera. The photographs were classified by the new software and by 2 further observers (observer 1 and observer 2) with experience in examining the eye surface. Results: Strong correlation was detected between the categories determined by the new application, observer 1 and observer 2 (Cramer's V, from 0.81 to 0.87, p<0.001). Best agreement (96.2%) was noted between the new method and observers 1 and 2 for recognizing meshwork patterns, whereas observers 1 and 2 showed greatest correspondence when classifying colour fringe patterns. Conclusions: The new application can objectively categorize LLPs using the Tearscope-plus.
Infrared Imaging Of Flows Seeded With SF6
NASA Technical Reports Server (NTRS)
Manuel, Gregory S.; Daryabeigi, Kamran; Alderfer, David W.; Obara, Clifford J.
1993-01-01
Novel technique enables repeated measurements of flow patterns during flight. Wing-tip vorticity studied in flight by observing infrared emissions from SF6 gas entrained in wing-tip flow. System makes vortical flows visible throughout all altitude and speed ranges of all subsonic aircraft. Also useful for transonic and supersonic speeds. Primary application is testing of aircraft in flight, also proves useful in testing fast land vehicles and structures or devices subject to strong winds.
Measurements of Flow Rate and Trajectory of Aircraft Tire-Generated Water Spray
NASA Technical Reports Server (NTRS)
Daugherty, Robert H.; Stubbs, Sandy M.
1987-01-01
An experimental investigation was conducted at the NASA Langley Research Center to measure the flow rate and trajectory of water spray generated by an aircraft tire operating on a flooded runway. Tests were conducted in the Hydrodynamics Research Facility and made use of a partial airframe and a nose tire from a general aviation aircraft. Nose tires from a commercial transport aircraft were also used. The effects of forward speed, tire load, and water depth on water spray patterns were evaluated by measuring the amount and location of water captured by an array of tubes mounted behind the test tire. Water ejected from the side of the tire footprint had the most significant potential for ingestion into engine inlets. A lateral wake created on the water surface by the rolling tire can dominate the shape of the spray pattern as the distance aft of the tire is increased. Forward speed increased flow rates and moved the spray pattern inboard. Increased tire load caused the spray to become less dense. Near the tire, increased water depths caused flow rates to increase. Tests using a fuselage and partial wing along with the nose gear showed that for certain configurations, wing aerodynamics can cause a concentration of spray above the wing.
Colour, pleasantness, and consumption behaviour within a meal.
Piqueras-Fiszman, Betina; Spence, Charles
2014-04-01
It is often claimed that colour (e.g., in a meal) affects consumption behaviour. However, just how strong is the evidence in support of this claim, and what are the underlying mechanisms? It has been shown that not only the colour itself, but also the variety and the arrangement of the differently-coloured components in a meal influence consumers' ratings of the pleasantness of a meal (across time) and, to a certain extent, might even affect their consumption behaviour as well. Typically, eating the same food constantly or repeatedly leads to a decrease in its perceived pleasantness, which, as a consequence, might lead to decreased intake of that food. However, variation within a meal (in one or several sensory attributes, or holistically) has been shown to slow down this process. In this review, we first briefly summarize the literature on how general variety in a meal influences these variables and the major theories that have been put forward by researchers to explain them. We then go on to evaluate the evidence of these effects based mainly on the colour of the food explaining the different processes that might affect colour-based sensory-specific satiety and, in more detail, consumption behaviour. In addition, we also discuss the overlap in the definitions of these terms and provide additional hypothesis as to why, in some cases, the opposite pattern of results has been observed. Copyright © 2014 Elsevier Ltd. All rights reserved.
Carotenoid accumulation in orange-pigmented Capsicum annuum fruit, regulated at multiple levels
Rodriguez-Uribe, Laura; Guzman, Ivette; Rajapakse, Wathsala; Richins, Richard D.; O’Connell, Mary A.
2012-01-01
The pericarp of Capsicum fruit is a rich dietary source of carotenoids. Accumulation of these compounds may be controlled, in part, by gene transcription of biosynthetic enzymes. The carotenoid composition in a number of orange-coloured C. annuum cultivars was determined using HPLC and compared with transcript abundances for four carotenogenic enzymes, Psy, LcyB, CrtZ-2, and Ccs determined by qRT-PCR. There were unique carotenoid profiles as well as distinct patterns of transcription of carotenogenic enzymes within the seven orange-coloured cultivars. In one cultivar, ‘Fogo’, carrying the mutant ccs-3 allele, transcripts were detected for this gene, but no CCS protein accumulated. The premature stop termination in ccs-3 prevented expression of the biosynthetic activity to synthesize the capsanthin and capsorubin forms of carotenoids. In two other orange-coloured cultivars, ‘Orange Grande’ and ‘Oriole’, both with wild-type versions of all four carotenogenic enzymes, no transcripts for Ccs were detected and no red pigments accumulated. Finally, in a third case, the orange-coloured cultivar, Canary, transcripts for all four of the wild-type carotenogenic enzymes were readily detected yet no CCS protein appeared to accumulate and no red carotenoids were synthesized. In the past, mutations in Psy and Ccs have been identified as the loci controlling colour in the fruit. Now there is evidence that a non-structural gene may control colour development in Capsicum. PMID:21948863
Carotenoid accumulation in orange-pigmented Capsicum annuum fruit, regulated at multiple levels.
Rodriguez-Uribe, Laura; Guzman, Ivette; Rajapakse, Wathsala; Richins, Richard D; O'Connell, Mary A
2012-01-01
The pericarp of Capsicum fruit is a rich dietary source of carotenoids. Accumulation of these compounds may be controlled, in part, by gene transcription of biosynthetic enzymes. The carotenoid composition in a number of orange-coloured C. annuum cultivars was determined using HPLC and compared with transcript abundances for four carotenogenic enzymes, Psy, LcyB, CrtZ-2, and Ccs determined by qRT-PCR. There were unique carotenoid profiles as well as distinct patterns of transcription of carotenogenic enzymes within the seven orange-coloured cultivars. In one cultivar, 'Fogo', carrying the mutant ccs-3 allele, transcripts were detected for this gene, but no CCS protein accumulated. The premature stop termination in ccs-3 prevented expression of the biosynthetic activity to synthesize the capsanthin and capsorubin forms of carotenoids. In two other orange-coloured cultivars, 'Orange Grande' and 'Oriole', both with wild-type versions of all four carotenogenic enzymes, no transcripts for Ccs were detected and no red pigments accumulated. Finally, in a third case, the orange-coloured cultivar, Canary, transcripts for all four of the wild-type carotenogenic enzymes were readily detected yet no CCS protein appeared to accumulate and no red carotenoids were synthesized. In the past, mutations in Psy and Ccs have been identified as the loci controlling colour in the fruit. Now there is evidence that a non-structural gene may control colour development in Capsicum.
Impaired distractor inhibition on a selective attention task in unmedicated, depressed subjects.
MacQueen, G M; Tipper, S P; Young, L T; Joffe, R T; Levitt, A J
2000-05-01
Impaired distractor inhibition may contribute to the selective attention deficits observed in depressed patients, but studies to date have not tested the distractor inhibition theory against the possibility that processes such as transient memory review processes may account for the observed deficits. A negative priming paradigm can dissociate inhibition from such a potentially confounding process called object review. The negative priming task also isolates features of the distractor such as colour and location for independent examination. A computerized negative priming task was used in which colour, identification and location features of a stimulus and distractor were systematically manipulated across successive prime and probe trials. Thirty-two unmedicated subjects with DSM-IV diagnoses of non-psychotic unipolar depression were compared with 32 age, sex and IQ matched controls. Depressed subjects had reduced levels of negative priming for conditions where the colour feature of the stimulus was repeated across prime and probe trials but not when identity or location was the repeated feature. When both the colour and location feature were the repeated feature across trials, facilitation in response was apparent. The pattern of results supports studies that found reduced distractor inhibition in depressed subjects, and suggests that object review is intact in these subjects. Greater impairment in negative priming for colour versus location suggests that subjects may have greater impairment in the visual stream associated with processing colour features.
NASA Astrophysics Data System (ADS)
Striberger, J.; Bjorck, S.; Ingolfsson, O.; Kjaer, K.; Snowball, I.; Uvo, C. B.
2009-12-01
Properties of varved lake sediments from Lake Lögurinn on eastern Iceland and their link to glacial processes of Eyjabakkajökull, a surging outlet glacier of the Vatnajökull ice cap, is examined. An 18 m long sediment sequence obtained from the lake, covering at least the past ~ 9 200 years, displays a distinct recurring pattern of light-coloured clay dominated laminae sections. The thickness of the light-coloured laminae is mainly controlled by the amount of glacial rock flour transported from Eyjabakkajökull. These light laminae are interlaid by coarser dark-coloured laminae mainly formed by suspended matter transported to the lake by the large non-glacial river Grímsá. During the recent surge of Eyjabakkajökull in 1972, the amount of suspended matter transported to the lake increased significantly. The surge was followed by years of recurring drainages of Lake Háöldulón, an ice-dammed lake that was formed shortly after the surge. As a result, the amount of glacial rock flour transported to Lake Lögurinn was higher than usual as long as Lake Háöldulón continued to drain (i.e. as long as the ice front was in an advanced position enough to dam the lake). This increase in glacially derived rock flour is reflected in the sediments, as the varve that was formed in 1972 constitutes the thickest light-coloured laminae deposited during the 20th century, which is followed by the second thickest light-coloured laminae, deposited in 1973. From there on, the thicknesses of the light-coloured laminae gradually fade out. Based on these modern observations, we suggest that the recurring cyclic pattern of light-coloured clay dominated laminae sections in the sediment sequence is related to past surges of Eyjabakkajökull, followed by drainages of Lake Háöldulón. Recurring cycles of light-coloured clay dominated laminae began to develop close to the Hekla-3 and Hekla-4 tephras (ca. 3000-4000 years BP), which also coincides with the time when the varves became more distinct. Further down in the sequence, the recurring cycles of light-coloured laminae are not found and any varves are in general diffuse or missing. Hypothetically, the reason for this might be that the suspended matter delivered from the glacier was transported elsewhere at this time. However, based on the large-scale morphology of the area, we find it more likely that Eyjabakkajökull, and thus parts of, or the whole Vatnajökull ice cap, was smaller or perhaps not present during the mid-Holocene and thus had little or no influence on the sedimentation in Lake Lögurinn.
Multicolour Multilevel STED nanoscopy of Actin/Spectrin Organization at Synapses
Sidenstein, Sven C.; D’Este, Elisa; Böhm, Marvin J.; Danzl, Johann G.; Belov, Vladimir N.; Hell, Stefan W.
2016-01-01
Superresolution fluorescence microscopy of multiple fluorophores still requires development. Here we present simultaneous three-colour stimulated emission depletion (STED) nanoscopy relying on a single STED beam at 620 nm. Toggling the STED beam between two or more power levels (“multilevelSTED”) optimizes resolution and contrast in all colour channels, which are intrinsically co-aligned and well separated. Three-colour recording is demonstrated by imaging the nanoscale cytoskeletal organization in cultured hippocampal neurons. The down to ~35 nm resolution identified periodic actin/betaII spectrin lattices along dendrites and spines; however, at presynaptic and postsynaptic sites, these patterns were found to be absent. Both our multicolour scheme and the 620 nm STED line should be attractive for routine STED microscopy applications. PMID:27220554
NASA Technical Reports Server (NTRS)
Parsons-Wingerter, Patricia A.; Weitzel, Alexander; Vyas, Ruchi J.; Murray, Matthew C.; Wyatt, Sarah E.
2016-01-01
One fundamental requirement shared by humans with all higher terrestrial life forms, including insect wings, higher land plants and other vertebrates, is a complex, fractally branching vascular system. NASA's VESsel GENeration Analysis (VESGEN) software maps and quantifies vascular trees, networks, and tree-network composites according to weighted physiological rules such as vessel connectivity, tapering and bifurcational branching. According to fluid dynamics, successful vascular transport requires a complex distributed system of highly regulated laminar flow. Microvascular branching rules within vertebrates, dicot leaves and the other organisms therefore display many similarities. One unifying perspective is that vascular patterning offers a useful readout that necessarily integrates complex molecular signaling pathways. VESGEN has elucidated changes in vascular pattern resulting from inflammatory, stress response, developmental and other signaling within numerous tissues and major model organisms studied for Space Biology. For a new VESGEN systems approach, we analyzed differential gene expression in leaves of Arabidopsis thaliana reported by GeneLab (GLDS-7) for spaceflight. Vascular-related changes in leaf gene expression were identified that can potentially be phenocopied by mutants in ground-based experiments. To link transcriptional, protein and other molecular change with phenotype, alterations in the Euclidean and dynamic dimensions (x,y,t) of vascular patterns for Arabidopsis leaves and other model species are being co-localized with signaling patterns of single molecular expression analyzed as information dimensions (i,j,k,...). Previously, Drosophila microarray data returned from space suggested significant changes in genes related to wing venation development that include EGF, Notch, Hedghog, Wingless and Dpp signaling. Phenotypes of increasingly abnormal ectopic wing venation in the (non-spaceflight) Drosophila wing generated by overexpression of a Notch antagonist were analyzed by VESGEN. Other VESGEN research applications include the mouse retina, GI and coronary vessels, avian placental analogs and translational studies in the astronaut retina related to health challenges for long-duration missions.
Traits and evolution of wing venation pattern in paraneopteran insects.
Nel, André; Prokop, Jakub; Nel, Patricia; Grandcolas, Philippe; Huang, Di-Ying; Roques, Patrick; Guilbert, Eric; Dostál, Ondřej; Szwedo, Jacek
2012-05-01
Two different patterns of wing venation are currently supposed to be present in each of the three orders of Paraneoptera. This is unlikely compared with the situation in other insects where only one pattern exists per order. We propose for all Paraneoptera a new and unique interpretation of wing venation pattern, assuming that the convex cubitus anterior gets fused with the common stem of median and radial veins at or very near to wing base, after separation from concave cubitus posterior, and re-emerges more distally from R + M stem. Thereafter, the vein between concave cubitus posterior and CuA is a specialized crossvein called "cua-cup," proximally concave and distally convex. We show that despite some variations, that is, cua-cup can vary from absent to hypertrophic; CuA can re-emerge together with M or not, or even completely disappear, this new interpretation explains all situations among all fossil and recent paraneopteran lineages. We propose that the characters "CuA fused in a common stem with R and M"and "presence of specialized crossvein cua-cup" are venation apomorphies that support the monophyly of the Paraneoptera. In the light of these characters, we reinterpret several Palaeozoic and early Mesozoic fossils that were ascribed to Paraneoptera, and confirm the attribution of several to this superorder as well as possible attribution of Zygopsocidae (Zygopsocus permianus Tillyard, 1935) as oldest Psocodea. We discuss the situation in extinct Hypoperlida and Miomoptera, suggesting that both orders could well be polyphyletic, with taxa related to Archaeorthoptera, Paraneoptera, or even Holometabola. The Carboniferous Protoprosbolidae is resurrected and retransferred into the Paraneoptera. The genus Lithoscytina is restored. The miomopteran Eodelopterum priscum Schmidt, 1962 is newly revised and considered as a fern pinnule. In addition, the new paraneopteran Bruayaphis oudardi gen. nov. et sp. nov. is described fromthe Upper Carboniferous of France (see Supporting Information). Copyright © 2011 Wiley Periodicals, Inc.
Imperfect chemical female mimicry in males of the ant Cardiocondyla obscurior
NASA Astrophysics Data System (ADS)
Cremer, Sylvia; D'Ettorre, Patrizia; Drijfhout, Falko P.; Sledge, Matthew F.; Turillazzi, Stefano; Heinze, Jürgen
2008-11-01
Winged and wingless males coexist in the ant Cardiocondyla obscurior. Wingless (“ergatoid”) males never leave their maternal colony and fight remorselessly among each other for the access to emerging females. The peaceful winged males disperse after about 10 days, but beforehand also mate in the nest. In the first 5 days of their life, winged males perform a chemical female mimicry that protects them against attack and even makes them sexually attractive to ergatoid males. When older, the chemical profile of winged males no longer matches that of virgin females; nevertheless, they are still tolerated, which so far has been puzzling. Contrasting this general pattern, we have identified a single aberrant colony in which all winged males were attacked and killed by the ergatoid males. A comparative analysis of the morphology and chemical profile of these untypical attacked winged males and the tolerated males from several normal colonies revealed that normal old males are still performing some chemical mimicry to the virgin queens, though less perfect than in their young ages. The anomalous attacked winged males, on the other hand, had a very different odour to the females. Our study thus exemplifies that the analysis of rare malfunctioning can add valuable insight on functioning under normal conditions and allows the conclusion that older winged males from normal colonies of the ant C. obscurior are guarded through an imperfect chemical female mimicry, still close enough to protect against attacks by the wingless fighters yet dissimilar enough not to elicit their sexual interest.
Ocular media transmission of coral reef fish--can coral reef fish see ultraviolet light?
Siebeck, U E; Marshall, N J
2001-01-15
Many coral reef fish are beautifully coloured and the reflectance spectra of their colour patterns may include UVa wavelengths (315-400 nm) that are largely invisible to the human eye (Losey, G. S., Cronin, T. W., Goldsmith, T. H., David, H., Marshall, N. J., & McFarland, W.N. (1999). The uv visual world of fishes: a review. Journal of Fish Biology, 54, 921-943; Marshall, N. J. & Oberwinkler, J. (1999). The colourful world of the mantis shrimp. Nature, 401, 873-874). Before the possible functional significance of UV patterns can be investigated, it is of course essential to establish whether coral reef fishes can see ultraviolet light. As a means of tackling this question, in this study the transmittance of the ocular media of 211 coral reef fish species was measured. It was found that the ocular media of 50.2% of the examined species strongly absorb light of wavelengths below 400 nm, which makes the perception of UV in these fish very unlikely. The remaining 49.8% of the species studied possess ocular media that do transmit UV light, making the perception of UV possible.
Optimal background matching camouflage.
Michalis, Constantine; Scott-Samuel, Nicholas E; Gibson, David P; Cuthill, Innes C
2017-07-12
Background matching is the most familiar and widespread camouflage strategy: avoiding detection by having a similar colour and pattern to the background. Optimizing background matching is straightforward in a homogeneous environment, or when the habitat has very distinct sub-types and there is divergent selection leading to polymorphism. However, most backgrounds have continuous variation in colour and texture, so what is the best solution? Not all samples of the background are likely to be equally inconspicuous, and laboratory experiments on birds and humans support this view. Theory suggests that the most probable background sample (in the statistical sense), at the size of the prey, would, on average, be the most cryptic. We present an analysis, based on realistic assumptions about low-level vision, that estimates the distribution of background colours and visual textures, and predicts the best camouflage. We present data from a field experiment that tests and supports our predictions, using artificial moth-like targets under bird predation. Additionally, we present analogous data for humans, under tightly controlled viewing conditions, searching for targets on a computer screen. These data show that, in the absence of predator learning, the best single camouflage pattern for heterogeneous backgrounds is the most probable sample. © 2017 The Authors.
Genome-wide introgression among distantly related Heliconius butterfly species.
Zhang, Wei; Dasmahapatra, Kanchon K; Mallet, James; Moreira, Gilson R P; Kronforst, Marcus R
2016-02-27
Although hybridization is thought to be relatively rare in animals, the raw genetic material introduced via introgression may play an important role in fueling adaptation and adaptive radiation. The butterfly genus Heliconius is an excellent system to study hybridization and introgression but most studies have focused on closely related species such as H. cydno and H. melpomene. Here we characterize genome-wide patterns of introgression between H. besckei, the only species with a red and yellow banded 'postman' wing pattern in the tiger-striped silvaniform clade, and co-mimetic H. melpomene nanna. We find a pronounced signature of putative introgression from H. melpomene into H. besckei in the genomic region upstream of the gene optix, known to control red wing patterning, suggesting adaptive introgression of wing pattern mimicry between these two distantly related species. At least 39 additional genomic regions show signals of introgression as strong or stronger than this mimicry locus. Gene flow has been on-going, with evidence of gene exchange at multiple time points, and bidirectional, moving from the melpomene to the silvaniform clade and vice versa. The history of gene exchange has also been complex, with contributions from multiple silvaniform species in addition to H. besckei. We also detect a signature of ancient introgression of the entire Z chromosome between the silvaniform and melpomene/cydno clades. Our study provides a genome-wide portrait of introgression between distantly related butterfly species. We further propose a comprehensive and efficient workflow for gene flow identification in genomic data sets.
Morphological outcomes of gynandromorphism in Lycaeides butterflies (Lepidoptera: Lycaenidae).
Jahner, Joshua P; Lucas, Lauren K; Wilson, Joseph S; Forister, Matthew L
2015-01-01
The genitalia of male insects have been widely used in taxonomic identification and systematics and are potentially involved in maintaining reproductive isolation between species. Although sexual selection has been invoked to explain patterns of morphological variation in genitalia among populations and species, developmental plasticity in genitalia likely contributes to observed variation but has been rarely examined, particularly in wild populations. Bilateral gynandromorphs are individuals that are genetically male on one side of the midline and genetically female on the other, while mosaic gynandromorphs have only a portion of their body developing as the opposite sex. Gynandromorphs might offer unique insights into developmental plasticity because individuals experience abnormal cellular interactions at the genitalic midline. In this study, we compare the genitalia and wing patterns of gynandromorphic Anna and Melissa blue butterflies, Lycaeides anna (Edwards) (formerly L. idas anna) and L. melissa (Edwards) (Lepidoptera: Lycaenidae), to the morphology of normal individuals from the same populations. Gynandromorph wing markings all fell within the range of variation of normal butterflies; however, a number of genitalic measurements were outliers when compared with normal individuals. From these results, we conclude that the gynandromorphs' genitalia, but not wing patterns, can be abnormal when compared with normal individuals and that the gynandromorphic genitalia do not deviate developmentally in a consistent pattern across individuals. Finally, genetic mechanisms are considered for the development of gynandromorphism in Lycaeides butterflies. © The Author 2015. Published by Oxford University Press on behalf of the Entomological Society of America.
Fowler, Mike S; Ruokolainen, Lasse
2013-01-01
The colour of environmental variability influences the size of population fluctuations when filtered through density dependent dynamics, driving extinction risk through dynamical resonance. Slow fluctuations (low frequencies) dominate in red environments, rapid fluctuations (high frequencies) in blue environments and white environments are purely random (no frequencies dominate). Two methods are commonly employed to generate the coloured spatial and/or temporal stochastic (environmental) series used in combination with population (dynamical feedback) models: autoregressive [AR(1)] and sinusoidal (1/f) models. We show that changing environmental colour from white to red with 1/f models, and from white to red or blue with AR(1) models, generates coloured environmental series that are not normally distributed at finite time-scales, potentially confounding comparison with normally distributed white noise models. Increasing variability of sample Skewness and Kurtosis and decreasing mean Kurtosis of these series alter the frequency distribution shape of the realised values of the coloured stochastic processes. These changes in distribution shape alter patterns in the probability of single and series of extreme conditions. We show that the reduced extinction risk for undercompensating (slow growing) populations in red environments previously predicted with traditional 1/f methods is an artefact of changes in the distribution shapes of the environmental series. This is demonstrated by comparison with coloured series controlled to be normally distributed using spectral mimicry. Changes in the distribution shape that arise using traditional methods lead to underestimation of extinction risk in normally distributed, red 1/f environments. AR(1) methods also underestimate extinction risks in traditionally generated red environments. This work synthesises previous results and provides further insight into the processes driving extinction risk in model populations. We must let the characteristics of known natural environmental covariates (e.g., colour and distribution shape) guide us in our choice of how to best model the impact of coloured environmental variation on population dynamics.
The transcriptional landscape of seasonal coat colour moult in the snowshoe hare.
Ferreira, Mafalda S; Alves, Paulo C; Callahan, Colin M; Marques, João P; Mills, L Scott; Good, Jeffrey M; Melo-Ferreira, José
2017-08-01
Seasonal coat colour change is an important adaptation to seasonally changing environments but the evolution of this and other circannual traits remains poorly understood. In this study, we use gene expression to understand seasonal coat colour moulting in wild snowshoe hares (Lepus americanus). We used hair colour to follow the progression of the moult, simultaneously sampling skin from three moulting stages in hares collected during the peak of the spring moult from white winter to brown summer pelage. Using RNA sequencing, we tested whether patterns of expression were consistent with predictions based on the established phases of the hair growth cycle. We found functionally consistent clustering across skin types, with 766 genes differentially expressed between moult stages. "White" pelage showed more differentially expressed genes that were upregulated relative to other skin types, involved in the transition between late telogen (quiescent stage) and the onset of anagen (proliferative stage). Skin samples from transitional "intermediate" and "brown" pelage were transcriptionally similar and resembled the regressive transition to catagen (regressive stage). We also detected differential expression of several key circadian clock and pigmentation genes, providing important means to dissect the bases of alternate seasonal colour morphs. Our results reveal that pelage colour is a useful biomarker for seasonal change but that there is a consistent lag between the main gene expression waves and change in visible coat colour. These experiments establish that developmental sampling from natural populations of nonmodel organisms can provide a crucial resource to dissect the genetic basis and evolution of complex seasonally changing traits. © 2017 John Wiley & Sons Ltd.
Weir, Jamie C
2018-05-10
Phenotypic polymorphism in cryptic species is widespread. This may evolve in response to search image use by predators exerting negative frequency-dependent selection on intraspecific colour morphs, 'apostatic selection'. Evidence exists to indicate search image formation by predators and apostatic selection operating on wild prey populations, though not to demonstrate search image use directly resulting in apostatic selection. The present study attempted to address this deficiency, using British Lepidoptera active in winter as a model system. It has been proposed that the typically polymorphic wing colouration of these species represents an anti-search image adaptation against birds. To test (a) for search image-driven apostatic selection, dimorphic populations of artificial moth-like models were established in woodland at varying relative morph frequencies and exposed to predation by natural populations of birds. In addition, to test (b) whether abundance and degree of polymorphism are correlated across British winter-active moths, as predicted where search image use drives apostatic selection, a series of phylogenetic comparative analyses were conducted. There was a positive relationship between artificial morph frequency and probability of predation, consistent with birds utilizing search images and exerting apostatic selection. Abundance and degree of polymorphism were found to be positively correlated across British Lepidoptera active in winter, though not across all taxonomic groups analysed. This evidence is consistent with polymorphism in this group having evolved in response to search image-driven apostatic selection and supports the viability of this mechanism as a means by which phenotypic and genetic variation may be maintained in natural populations. © 2018 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2018 European Society For Evolutionary Biology.
Smart wing rotation and trailing-edge vortices enable high frequency mosquito flight
Bomphrey, Richard J.; Nakata, Toshiyuki; Phillips, Nathan; Walker, Simon M.
2017-01-01
Summary Mosquitoes exhibit unique wing kinematics; their long, slender wings flap at remarkably high frequencies for their size (>800 Hz) and with lower stroke amplitudes than any other insect group1. This shifts weight support away from the translation-dominated, aerodynamic mechanisms used by most insects2, as well as by helicopters and aeroplanes, towards poorly understood rotational mechanisms that occur when pitching at the end of each half-stroke. Here we report wing kinematics and solve the full Navier-Stokes equations using computational fluid dynamics with overset grids and validate our results with in vivo flow measurements. We show that, while familiar separated flow patterns are used by mosquitoes, much of the aerodynamic force that supports their weight is generated in a manner unlike any previously described flying animal. In total, there are three key features: leading-edge vortices (a well-known mechanism that appears to be almost ubiquitous in insect flight), trailing-edge vortices caused by a novel form of wake capture at stroke reversal, and rotational drag. The two new elements are largely independent of the wing velocity, instead relying on rapid changes in the pitch angle (wing rotation) at the end of each half stroke, and are therefore relatively immune to the shallow flapping amplitude. Moreover, these mechanisms are particularly well-suited to high-aspect ratio mosquito wings. PMID:28355184
Smart wing rotation and trailing-edge vortices enable high frequency mosquito flight
NASA Astrophysics Data System (ADS)
Bomphrey, Richard J.; Nakata, Toshiyuki; Phillips, Nathan; Walker, Simon M.
2017-03-01
Mosquitoes exhibit unusual wing kinematics; their long, slender wings flap at remarkably high frequencies for their size (>800 Hz)and with lower stroke amplitudes than any other insect group. This shifts weight support away from the translation-dominated, aerodynamic mechanisms used by most insects, as well as by helicopters and aeroplanes, towards poorly understood rotational mechanisms that occur when pitching at the end of each half-stroke. Here we report free-flight mosquito wing kinematics, solve the full Navier-Stokes equations using computational fluid dynamics with overset grids, and validate our results with in vivo flow measurements. We show that, although mosquitoes use familiar separated flow patterns, much of the aerodynamic force that supports their weight is generated in a manner unlike any previously described for a flying animal. There are three key features: leading-edge vortices (a well-known mechanism that appears to be almost ubiquitous in insect flight), trailing-edge vortices caused by a form of wake capture at stroke reversal, and rotational drag. The two new elements are largely independent of the wing velocity, instead relying on rapid changes in the pitch angle (wing rotation) at the end of each half-stroke, and they are therefore relatively immune to the shallow flapping amplitude. Moreover, these mechanisms are particularly well suited to high aspect ratio mosquito wings.
NASA Technical Reports Server (NTRS)
Mineck, Raymond E.; Vijgen, Paul M. H. W.
1993-01-01
Three planar, untwisted wings with the same elliptical chord distribution but with different curvatures of the quarter-chord line were tested in the Langley 8-Foot Transonic Pressure Tunnel (8-ft TPT) and the Langley 7- by 10-Foot High-Speed Tunnel (7 x 10 HST). A fourth wing with a rectangular planform and the same projected area and span was also tested. Force and moment measurements from the 8-ft TPT tests are presented for Mach numbers from 0.3 to 0.5 and angles of attack from -4 degrees to 7 degrees. Sketches of the oil-flow patterns on the upper surfaces of the wings and some force and moment measurements from the 7 x 10 HST tests are presented at a Mach number of 0.5. Increasing the curvature of the quarter-chord line makes the angle of zero lift more negative but has little effect on the drag coefficient at zero lift. The changes in lift-curve slope and in the Oswald efficiency factor with the change in curvature of the quarter-chord line (wingtip location) indicate that the elliptical wing with the unswept quarter-chord line has the lowest lifting efficiency and the elliptical wing with the unswept trailing edge has the highest lifting efficiency; the crescent-shaped planform wing has an efficiency in between.
Shang, Feng; Ding, Bi-Yue; Xiong, Ying; Dou, Wei; Wei, Dong; Jiang, Hong-Bo; Wei, Dan-Dan; Wang, Jin-Jun
2016-01-01
Winged and wingless morphs in insects represent a trade-off between dispersal ability and reproduction. We studied key genes associated with apterous and alate morphs in Toxoptera citricida (Kirkaldy) using RNAseq, digital gene expression (DGE) profiling, and RNA interference. The de novo assembly of the transcriptome was obtained through Illumina short-read sequencing technology. A total of 44,199 unigenes were generated and 27,640 were annotated. The transcriptomic differences between alate and apterous adults indicated that 279 unigenes were highly expressed in alate adults, whereas 5,470 were expressed at low levels. Expression patterns of the top 10 highly expressed genes in alate adults agreed with wing bud development trends. Silencing of the lipid synthesis and degradation gene (3-ketoacyl-CoA thiolase, mitochondrial-like) and glycogen genes (Phosphoenolpyruvate carboxykinase [GTP]-like and Glycogen phosphorylase-like isoform 2) resulted in underdeveloped wings. This suggests that both lipid and glycogen metabolism provide energy for aphid wing development. The large number of sequences and expression data produced from the transcriptome and DGE sequencing, respectively, increases our understanding of wing development mechanisms. PMID:27577531
A Wingless and Notch double-repression mechanism regulates G1–S transition in the Drosophila wing
Herranz, Héctor; Pérez, Lidia; Martín, Francisco A; Milán, Marco
2008-01-01
The control of tissue growth and patterning is orchestrated in various multicellular tissues by the coordinated activity of the signalling molecules Wnt/Wingless (Wg) and Notch, and mutations in these pathways can cause cancer. The role of these molecules in the control of cell proliferation and the crosstalk between their corresponding pathways remain poorly understood. Crosstalk between Notch and Wg has been proposed to organize pattern and growth in the Drosophila wing primordium. Here we report that Wg and Notch act in a surprisingly linear pathway to control G1–S progression. We present evidence that these molecules exert their function by regulating the expression of the dmyc proto-oncogene and the bantam micro-RNA, which positively modulated the activity of the E2F transcription factor. Our results demonstrate that Notch acts in this cellular context as a repressor of cell-cycle progression and Wg has a permissive role in alleviating Notch-mediated repression of G1–S progression in wing cells. PMID:18451803
Environmental heterogeneity, dispersal mode, and co-occurrence in stream macroinvertebrates
Heino, Jani
2013-01-01
Both environmental heterogeneity and mode of dispersal may affect species co-occurrence in metacommunities. Aquatic invertebrates were sampled in 20–30 streams in each of three drainage basins, differing considerably in environmental heterogeneity. Each drainage basin was further divided into two equally sized sets of sites, again differing profoundly in environmental heterogeneity. Benthic invertebrate data were divided into three groups of taxa based on overland dispersal modes: passive dispersers with aquatic adults, passive dispersers with terrestrial winged adults, and active dispersers with terrestrial winged adults. The co-occurrence of taxa in each dispersal mode group, drainage basin, and heterogeneity site subset was measured using the C-score and its standardized effect size. The probability of finding high levels of species segregation tended to increase with environmental heterogeneity across the drainage basins. These patterns were, however, contingent on both dispersal mode and drainage basin. It thus appears that environmental heterogeneity and dispersal mode interact in affecting co-occurrence in metacommunities, with passive dispersers with aquatic adults showing random patterns irrespective of environmental heterogeneity, and active dispersers with terrestrial winged adults showing increasing segregation with increasing environmental heterogeneity. PMID:23467653
The impact of circulation control on rotary aircraft controls systems
NASA Technical Reports Server (NTRS)
Kingloff, R. F.; Cooper, D. E.
1987-01-01
Application of circulation to rotary wing systems is a new development. Efforts to determine the near and far field flow patterns and to analytically predict those flow patterns have been underway for some years. Rotary wing applications present a new set of challenges in circulation control technology. Rotary wing sections must accommodate substantial Mach number, free stream dynamic pressure and section angle of attack variation at each flight condition within the design envelope. They must also be capable of short term circulation blowing modulation to produce control moments and vibration alleviation in addition to a lift augmentation function. Control system design must provide this primary control moment, vibration alleviation and lift augmentation function. To accomplish this, one must simultaneously control the compressed air source and its distribution. The control law algorithm must therefore address the compressor as the air source, the plenum as the air pressure storage and the pneumatic flow gates or valves that distribute and meter the stored pressure to the rotating blades. Also, mechanical collective blade pitch, rotor shaft angle of attack and engine power control must be maintained.
Saison, Tamar; Peroz, Christophe; Chauveau, Vanessa; Berthier, Serge; Sondergard, Elin; Arribart, Hervé
2008-12-01
An original and low cost method for the fabrication of patterned surfaces bioinspired from butterfly wings and lotus leaves is presented. Silica-based sol-gel films are thermally imprinted from elastomeric molds to produce stable structures with superhydrophobicity values as high as 160 degrees water contact angle. The biomimetic surfaces are demonstrated to be tuned from superhydrophobic to superhydrophilic by annealing between 200 degrees C and 500 degrees C.
Prunier, Jérôme G.; Dewulf, Alexandre; Kuhlmann, Michael; Michez, Denis
2017-01-01
Morphological traits can be highly variable over time in a particular geographical area. Different selective pressures shape those traits, which is crucial in evolutionary biology. Among these traits, insect wing morphometry has already been widely used to describe phenotypic variability at the inter-specific level. On the contrary, fewer studies have focused on intra-specific wing morphometric variability. Yet, such investigations are relevant to study potential convergences of variation that could highlight micro-evolutionary processes. The recent sampling and sequencing of three solitary bees of the genus Melitta across their entire species range provides an excellent opportunity to jointly analyse genetic and morphometric variability. In the present study, we first aim to analyse the spatial distribution of the wing shape and centroid size (used as a proxy for body size) variability. Secondly, we aim to test different potential predictors of this variability at both the intra- and inter-population levels, which includes genetic variability, but also geographic locations and distances, elevation, annual mean temperature and precipitation. The comparison of spatial distribution of intra-population morphometric diversity does not reveal any convergent pattern between species, thus undermining the assumption of a potential local and selective adaptation at the population level. Regarding intra-specific wing shape differentiation, our results reveal that some tested predictors, such as geographic and genetic distances, are associated with a significant correlation for some species. However, none of these predictors are systematically identified for the three species as an important factor that could explain the intra-specific morphometric variability. As a conclusion, for the three solitary bee species and at the scale of this study, our results clearly tend to discard the assumption of the existence of a common pattern of intra-specific signal/structure within the intra-specific wing shape and body size variability. PMID:28273178
Effects of Target Attributes on Children's Patterns of Referential Under- and Overspecification
ERIC Educational Resources Information Center
Charest, Monique; Johnston, Judith R.
2016-01-01
We examined the effects of object attributes on children's descriptive patterns in a referential communication task. Thirty preschoolers described object pairs that were selected by the experimenter. The targets were defined by shared size or colour, and differed on the non-target dimension in half of the trials. The children also completed a…