NASA Technical Reports Server (NTRS)
Ko, William L.; Richards, W. Lance; Fleischer, Van Tran
2009-01-01
The Ko displacement theory, formulated for weak nonuniform (slowly changing cross sections) cantilever beams, was applied to the deformed shape analysis of the doubly-tapered wings of the Ikhana unmanned aircraft. The two-line strain-sensing system (along the wingspan) was used for sensing the bending strains needed for the wing-deformed shapes (deflections and cross-sectional twist) analysis. The deflection equation for each strain-sensing line was expressed in terms of the bending strains evaluated at multiple numbers of strain-sensing stations equally spaced along the strain-sensing line. For the preflight shape analysis of the Ikhana wing, the strain data needed for input to the displacement equations for the shape analysis were obtained from the nodal-stress output of the finite-element analysis. The wing deflections and cross-sectional twist angles calculated from the displacement equations were then compared with those computed from the finite-element computer program. The Ko displacement theory formulated for weak nonlinear cantilever beams was found to be highly accurate in the deformed shape predictions of the doubly-tapered Ikhana wing.
Many P-Element Insertions Affect Wing Shape in Drosophila melanogaster
Weber, Kenneth; Johnson, Nancy; Champlin, David; Patty, April
2005-01-01
A screen of random, autosomal, homozygous-viable P-element insertions in D. melanogaster found small effects on wing shape in 11 of 50 lines. The effects were due to single insertions and remained stable and significant for over 5 years, in repeated, high-resolution measurements. All 11 insertions were within or near protein-coding transcription units, none of which were previously known to affect wing shape. Many sites in the genome can affect wing shape. PMID:15545659
Many P-element insertions affect wing shape in Drosophila melanogaster.
Weber, Kenneth; Johnson, Nancy; Champlin, David; Patty, April
2005-03-01
A screen of random, autosomal, homozygous-viable P-element insertions in D. melanogaster found small effects on wing shape in 11 of 50 lines. The effects were due to single insertions and remained stable and significant for over 5 years, in repeated, high-resolution measurements. All 11 insertions were within or near protein-coding transcription units, none of which were previously known to affect wing shape. Many sites in the genome can affect wing shape.
An improved quasistatic line-shape theory: The effects of molecular motion on the line wings
NASA Technical Reports Server (NTRS)
Ma, Q.; Tipping, Richard H.
1994-01-01
A theory is presented for the modification of the line-shape functions and absorption coefficient due to the breakdown of the quasistatic approximation. This breakdown arises from the effects of molecular motion and increases the absorption in the near wings. Numerical calculations for the high-frequency wing of the nu(sub 3) band of CO2 broadened by Ar are reported and it is shown that these effects are significant near the bandhead. The importance of such corrections in other spectral regions and for other systems is discussed briefly.
NASA Technical Reports Server (NTRS)
Ma, Q.; Tipping, R. H.
1992-01-01
The far wing line shape theory developed previously and applied to the calculation of the continuum absorption of pure water vapor is extended to foreign-broadened continua. Explicit results are presented for H2O-N2 and H2O-CO2 in the frequency range from 0 to 10,000/cm. For H2O-N2 the positive and negative resonant frequency average line shape functions and absorption coefficients are computed for a number of temperatures between 296 and 430 K for comparison with available laboratory data. In general the agreement is very good.
NASA Technical Reports Server (NTRS)
Lung, Shun-Fat; Ko, William L.
2016-01-01
In support of the Adaptive Compliant Trailing Edge [ACTE] project at the NASA Armstrong Flight Research Center, displacement transfer functions were applied to the swept wing of a Gulfstream G-III airplane (Gulfstream Aerospace Corporation, Savannah, Georgia) to obtain deformed shape predictions. Four strainsensing lines (two on the lower surface, two on the upper surface) were used to calculate the deformed shape of the G III wing under bending and torsion. There being an insufficient number of surface strain sensors, the existing G III wing box finite element model was used to generate simulated surface strains for input to the displacement transfer functions. The resulting predicted deflections have good correlation with the finite-element generated deflections as well as the measured deflections from the ground load calibration test. The convergence study showed that the displacement prediction error at the G III wing tip can be reduced by increasing the number of strain stations (for each strain-sensing line) down to a minimum error of l.6 percent at 17 strain stations; using more than 17 strain stations yielded no benefit because the error slightly increased to 1.9% when 32 strain stations were used.
Nonplanar wing load-line and slender wing theory
NASA Technical Reports Server (NTRS)
Deyoung, J.
1977-01-01
Nonplanar load line, slender wing, elliptic wing, and infinite aspect ratio limit loading theories are developed. These are quasi two dimensional theories but satisfy wing boundary conditions at all points along the nonplanar spanwise extent of the wing. These methods are applicable for generalized configurations such as the laterally nonplanar wing, multiple nonplanar wings, or wing with multiple winglets of arbitrary shape. Two dimensional theory infers simplicity which is practical when analyzing complicated configurations. The lateral spanwise distribution of angle of attack can be that due to winglet or control surface deflection, wing twist, or induced angles due to multiwings, multiwinglets, ground, walls, jet or fuselage. In quasi two dimensional theory the induced angles due to these extra conditions are likewise determined for two dimensional flow. Equations are developed for the normal to surface induced velocity due to a nonplanar trailing vorticity distribution. Application examples are made using these methods.
Simultaneous optimisation of earwig hindwings for flight and folding
Deiters, Julia; Kowalczyk, Wojciech; Seidl, Tobias
2016-01-01
ABSTRACT Earwig wings are highly foldable structures that lack internal muscles. The behaviour and shape changes of the wings during flight are yet unknown. We assume that they meet a great structural challenge to control the occurring deformations and prevent the wing from collapsing. At the folding structures especially, the wing could easily yield to the pressure. Detailed microscopy studies reveal adaptions in the structure and material which are not relevant for folding purposes. The wing is parted into two structurally different areas with, for example, a different trend or stiffness of the wing veins. The storage of stiff or more flexible material shows critical areas which undergo great changes or stress during flight. We verified this with high-speed video recordings. These reveal the extent of the occurring deformations and their locations, and support our assumptions. The video recordings reveal a dynamical change of a concave flexion line. In the static unfolded state, this flexion line blocks a folding line, so that the wing stays unfolded. However, during flight it extends and blocks a second critical folding line and prevents the wing from collapsing. With these results, more insight in passive wing control, especially within high foldable structures, is gained. PMID:27113958
Extension of the quasistatic far-wing line shape theory to multicomponent anisotropic potentials
NASA Technical Reports Server (NTRS)
Ma, Q.; Tipping, R. H.
1994-01-01
The formalism developed previously for the calculation of the far-wing line shape function and the corresponding absorption coefficient using a single-component anisotropic interaction term and the binary collision and quasistatic approximations is generalized to multicomponent anisotropic potential functions. Explicit expressions are presented for several common cases, including the long-range dipole-dipole plus dipole-quadrupole interaction and a linear molecule interacting with a perturber atom. After determining the multicomponent functional representation for the interaction between the CO2 and Ar from previously published data, we calculate the theoretical line shape function and the corresponding absorption due to the nu(sub 3) band of CO2 in the frequency range 2400-2580 cm(exp -1) and compare our results with previous calculations carried out using a single-component anisotropic interaction, and with the results obtained assuming Lorentzian line shapes. The principal uncertainties in the present results, possible refinements of the theoretical formalism, and the applicability to other systems are discussed briefly.
Jaramillo-O., Nicolás; Fonseca-González, Idalyd; Chaverra-Rodríguez, Duverney
2014-01-01
Aedes aegypti, a mosquito closely associated with humans, is the principal vector of dengue virus which currently infects about 400 million people worldwide. Because there is no way to prevent infection, public health policies focus on vector control; but insecticide-resistance threatens them. However, most insecticide-resistant mosquito populations exhibit fitness costs in absence of insecticides, although these costs vary. Research on components of fitness that vary with insecticide-resistance can help to develop policies for effective integrated management and control. We investigated the relationships in wing size, wing shape, and natural resistance levels to lambda-cyhalothrin of nine field isolates. Also we chose one of these isolates to select in lab for resistance to the insecticide. The main life-traits parameters were assessed to investigate the possible fitness cost and its association with wing size and shape. We found that wing shape, more than wing size, was strongly correlated with resistance levels to lambda-cyhalothrin in field isolates, but founder effects of culture in the laboratory seem to change wing shape (and also wing size) more easily than artificial selection for resistance to that insecticide. Moreover, significant fitness costs were observed in response to insecticide-resistance as proved by the diminished fecundity and survival of females in the selected line and the reversion to susceptibility in 20 generations of the non-selected line. As a practical consequence, we think, mosquito control programs could benefit from this knowledge in implementing efficient strategies to prevent the evolution of resistance. In particular, the knowledge of reversion to susceptibility is important because it can help in planning better strategies of insecticide use to keep useful the few insecticide-molecules currently available. PMID:24801598
NASA Technical Reports Server (NTRS)
Ma, Q.; Tipping, R. H.
1991-01-01
The present theory for the continuous absorption that is due to the far-wing contribution of allowed lines is based on the quasistatic approximation for the far wing limit and the binary collision approximation of one absorber molecule and one bath molecule. The validity of the theory is discussed, and numerical results of the water-continuum absorption in the IR region are presented for comparison with experimental data. Good agreement is obtained for both the magnitude and temperature dependence of the absorption coefficients.
The extreme wings of atomic emission and absorption lines. [in low pressure gases
NASA Technical Reports Server (NTRS)
Dalgarno, A.; Sando, K. M.
1973-01-01
Consideration of the extreme wings of atomic and molecular emission and absorption lines in low pressure gases. Classical and semiclassical results are compared with accurate quantal calculations of the self-broadening of Lyman-alpha in the hydrogen absorption spectrum that arises from quasimolecular transition. The results of classical, quantal, and semiclassical calculations of the absorption coefficient in the red wing are shown for temperatures of 500, 200, and 100 K. The semiclassical and quantal spectra agree well in shape at 500 K. Various other findings are discused.
Calculation of far wing of allowed spectra: The water continuum
NASA Technical Reports Server (NTRS)
Tipping, R. H.; Ma, Q.
1995-01-01
A far-wing line shape theory based on the binary collision and quasistatic approximations that is applicable for both the low- and high-frequency wings of allowed vibrational-rotational lines has been developed. This theory has been applied in order to calculate the frequency and temperature dependence of the continuous absorption coefficient for frequencies up to 10,000 cm(exp -1) for pure H2O and for H2O-N2 mixtures. The calculations are made assuming an interaction potential consisting of an isotropic Lennard-Jones part and the leading long-range anisotropic part, and utilizing the measured line strengths and transition frequencies. The results compare well with existing data, both in magnitude and in temperature dependence. This leads us to the conclusion that although dimer and collision-induced absorptions are present, the primary mechanism responsible for the observed water continuum is the far-wing absorption of allowed lines. Recent progress on near-wing corrections to the theory and validations with recent laboratory measurements are discussed briefly.
Qualitative skeletal correlates of wing shape in extant birds (Aves: Neoaves).
Hieronymus, Tobin L
2015-02-27
Among living fliers (birds, bats, and insects), birds display relatively high aspect ratios, a dimensionless shape variable that distinguishes long and narrow vs. short and broad wings. Increasing aspect ratio results in a functional tradeoff between low induced drag (efficient cruise) and increased wing inertia (difficult takeoff). Given the wide scope of its functional effects, the pattern of aspect ratio evolution is an important factor that contributes to the substantial ecological and phylogenetic diversity of living birds. However, because the feathers that define the wingtip (and hence wingspan and aspect ratio) often do not fossilize, resolution in the pattern of avian wing shape evolution is obscured by missing information. Here I use a comparative approach to investigate the relationship between skeletal proxies of flight feather attachment and wing shape. An accessory lobe of the internal index process of digit II-1, a bony correlate of distal primary attachment, shows weak but statistically significant relationships to aspect ratio and mass independent of other skeletal morphology. The dorsal phalangeal fossae of digit II-1, which house distal primaries VIII and IX, also show a trend of increased prominence with higher aspect ratio. Quill knobs on the ulna are examined concurrently, but do not show consistent signal with respect to wing shape. Although quill knobs are cited as skeletal correlates of flight performance in birds, their relationship to wing shape is inconsistent among extant taxa, and may reflect diverging selection pressures acting on a conserved architecture. In contrast, correlates of distal primary feather attachment on the major digit show convergent responses to increasing aspect ratio. In light of the diversity of musculoskeletal and integumentary mophology that underlies wing shape in different avian clades, it is unlikely that a single skeletal feature will show consistent predictive power across Neoaves. Confident inference of wing shape in basal ornithurine birds will require multiple lines of evidence, together with an understanding of clade-specific evolutionary trends within the crown.
The Frequency Detuning Correction and the Asymmetry of Line Shapes: The Far Wings of H2O-H2O
NASA Technical Reports Server (NTRS)
Ma, Q.; Tipping, R. H.; Hansen, James E. (Technical Monitor)
2002-01-01
A far-wing line shape theory which satisfies the detailed balance principle is applied to the H2O-H2O system. Within this formalism, two line shapes are introduced, corresponding to band-averages over the positive and negative resonance lines, respectively. Using the coordinate representation, the two line shapes can be obtained by evaluating 11-dimensional integrations whose integrands are a product of two factors. One depends on the interaction between the two molecules and is easy to evaluate. The other contains the density matrix of the system and is expressed as a product of two 3-dimensional distributions associated with the density matrices of the absorber and the perturber molecule, respectively. If most of the populated states are included in the averaging process, to obtain these distributions requires extensive computer CPU time, but only have to be computed once for a given temperature. The 11-dimensional integrations are evaluated using the Monte Carlo method, and in order to reduce the variance, the integration variables are chosen such that the sensitivity of the integrands on them is clearly distinguished.
The detailed balance requirement and general empirical formalisms for continuum absorption
NASA Technical Reports Server (NTRS)
Ma, Q.; Tipping, R. H.
1994-01-01
Two general empirical formalisms are presented for the spectral density which take into account the deviations from the Lorentz line shape in the wing regions of resonance lines. These formalisms satisfy the detailed balance requirement. Empirical line shape functions, which are essential to provide the continuum absorption at different temperatures in various frequency regions for atmospheric transmission codes, can be obtained by fitting to experimental data.
NASA Technical Reports Server (NTRS)
Ahmadi, A. R.
1981-01-01
A low frequency unsteady lifting-line theory is developed for a harmonically oscillating wing of large aspect ratio. The wing is assumed to be chordwise rigid but completely flexible in the span direction. The theory is developed by use of the method of matched asymptotic expansions which reduces the problem from a singular integral equation to quadrature. The wing displacements are prescribed and the pressure field, airloads, and unsteady induced downwash are obtained in closed form. The influence of reduced frequency, aspect ratio, planform shape, and mode of oscillation on wing aerodynamics is demonstrated through numerical examples. Compared with lifting-surface theory, computation time is reduced significantly. Using the present theory, the energetic quantities associated with the propulsive performance of a finite wing oscillating in combined pitch and heave are obtained in closed form. Numerical examples are presented for an elliptic wing.
A far wing line shape theory and its application to the water vibrational bands (II)
NASA Technical Reports Server (NTRS)
Ma, Q.; Tipping, R. H.
1992-01-01
Attention is given to a far wing line shape theory based on binary collision and quasi-static approximations. The theory is applicable for both the LF and HF wings of vibrational-rotational bands. It is used to calculate the frequency and temperature dependence of the continuous absorption coefficient for frequencies up to 10,000/cm for pure water vapor. The results are compared with existing laboratory data in the 2400-2700/cm window and in the 3000-4300/cm band center region, with field measurements in the 2000-2225/cm region and with a recent experimental measurement near 9466/cm. It is concluded that both the magnitude and temperature dependence of the water vapor continuum can be accounted for by the present theory without the introduction of any adjustable parameters. Refinements of the theory and extension to foreign-broadened absorption are also discussed.
NASA Technical Reports Server (NTRS)
Mineck, Raymond E.; Vijgen, Paul M. H. W.
1993-01-01
Three planar, untwisted wings with the same elliptical chord distribution but with different curvatures of the quarter-chord line were tested in the Langley 8-Foot Transonic Pressure Tunnel (8-ft TPT) and the Langley 7- by 10-Foot High-Speed Tunnel (7 x 10 HST). A fourth wing with a rectangular planform and the same projected area and span was also tested. Force and moment measurements from the 8-ft TPT tests are presented for Mach numbers from 0.3 to 0.5 and angles of attack from -4 degrees to 7 degrees. Sketches of the oil-flow patterns on the upper surfaces of the wings and some force and moment measurements from the 7 x 10 HST tests are presented at a Mach number of 0.5. Increasing the curvature of the quarter-chord line makes the angle of zero lift more negative but has little effect on the drag coefficient at zero lift. The changes in lift-curve slope and in the Oswald efficiency factor with the change in curvature of the quarter-chord line (wingtip location) indicate that the elliptical wing with the unswept quarter-chord line has the lowest lifting efficiency and the elliptical wing with the unswept trailing edge has the highest lifting efficiency; the crescent-shaped planform wing has an efficiency in between.
Temperature dependence of the water vapor continuum absorption in the 3-5 μm spectral region
NASA Astrophysics Data System (ADS)
Klimeshina, T. E.; Rodimova, O. B.
2013-04-01
Asymptotic line wing theory allows one to construct the line shape describing the frequency and temperature dependence of the self-broadened H2O continuum in the 3-5 μm spectral region obtained experimentally by CAVIAR and NIST. The H2O transmission functions are adequately described as well, using this line shape up to temperatures of ˜675 K and pressures of ˜10 atm.
Low noise wing slat system with rigid cove-filled slat
NASA Technical Reports Server (NTRS)
Shmilovich, Arvin (Inventor); Yadlin, Yoram (Inventor)
2013-01-01
Concepts and technologies described herein provide for a low noise aircraft wing slat system. According to one aspect of the disclosure provided herein, a cove-filled wing slat is used in conjunction with a moveable panel rotatably attached to the wing slat to provide a high lift system. The moveable panel rotates upward against the rear surface of the slat during deployment of the slat, and rotates downward to bridge a gap width between the stowed slat and the lower wing surface, completing the continuous outer mold line shape of the wing, when the cove-filled slat is retracted to the stowed position.
Rapid Parameterization Schemes for Aircraft Shape Optimization
NASA Technical Reports Server (NTRS)
Li, Wu
2012-01-01
A rapid shape parameterization tool called PROTEUS is developed for aircraft shape optimization. This tool can be applied directly to any aircraft geometry that has been defined in PLOT3D format, with the restriction that each aircraft component must be defined by only one data block. PROTEUS has eight types of parameterization schemes: planform, wing surface, twist, body surface, body scaling, body camber line, shifting/scaling, and linear morphing. These parametric schemes can be applied to two types of components: wing-type surfaces (e.g., wing, canard, horizontal tail, vertical tail, and pylon) and body-type surfaces (e.g., fuselage, pod, and nacelle). These schemes permit the easy setup of commonly used shape modification methods, and each customized parametric scheme can be applied to the same type of component for any configuration. This paper explains the mathematics for these parametric schemes and uses two supersonic configurations to demonstrate the application of these schemes.
NASA Technical Reports Server (NTRS)
Queijo, M J; Wolhart, Walter D
1951-01-01
An investigation was made to determine the effects of vertical-tail size and length and of fuselage shape and length on the static lateral stability characteristics of a model with wing and vertical tails having the quarter-chord lines swept back 45 degrees. The results indicate that the directional instability of the various isolated fuselages was about two-thirds as large as that predicted by classical theory.
Gas kinematics in FIRE simulated galaxies compared to spatially unresolved H I observations
NASA Astrophysics Data System (ADS)
El-Badry, Kareem; Bradford, Jeremy; Quataert, Eliot; Geha, Marla; Boylan-Kolchin, Michael; Weisz, Daniel R.; Wetzel, Andrew; Hopkins, Philip F.; Chan, T. K.; Fitts, Alex; Kereš, Dušan; Faucher-Giguère, Claude-André
2018-06-01
The shape of a galaxy's spatially unresolved, globally integrated 21-cm emission line depends on its internal gas kinematics: galaxies with rotationally supported gas discs produce double-horned profiles with steep wings, while galaxies with dispersion-supported gas produce Gaussian-like profiles with sloped wings. Using mock observations of simulated galaxies from the FIRE project, we show that one can therefore constrain a galaxy's gas kinematics from its unresolved 21-cm line profile. In particular, we find that the kurtosis of the 21-cm line increases with decreasing V/σ and that this trend is robust across a wide range of masses, signal-to-noise ratios, and inclinations. We then quantify the shapes of 21-cm line profiles from a morphologically unbiased sample of ˜2000 low-redshift, H I-detected galaxies with Mstar = 107-11 M⊙ and compare to the simulated galaxies. At Mstar ≳ 1010 M⊙, both the observed and simulated galaxies produce double-horned profiles with low kurtosis and steep wings, consistent with rotationally supported discs. Both the observed and simulated line profiles become more Gaussian like (higher kurtosis and less-steep wings) at lower masses, indicating increased dispersion support. However, the simulated galaxies transition from rotational to dispersion support more strongly: at Mstar = 108-10 M⊙, most of the simulations produce more Gaussian-like profiles than typical observed galaxies with similar mass, indicating that gas in the low-mass simulated galaxies is, on average, overly dispersion supported. Most of the lower-mass-simulated galaxies also have somewhat lower gas fractions than the median of the observed population. The simulations nevertheless reproduce the observed line-width baryonic Tully-Fisher relation, which is insensitive to rotational versus dispersion support.
NASA Technical Reports Server (NTRS)
Klunker, E. B.; South, J. C., Jr.; Davis, R. M.
1972-01-01
A user's manual is presented for a program that calculates the supersonic flow on the windward side of conical delta wings with shock attached at the sharp leading edge by the method of lines. The program also has a limited capability for computing the flow about circular and elliptic cones at incidence. It provides information including the shock shape, flow field, isentropic surface-flow properties, and force coefficients. A description of the program operation, a sample computation, and a FORTRAN 4 program listing are included.
NASA Technical Reports Server (NTRS)
Ko, William L.; Fleischer, Van Tran
2009-01-01
The Ko displacement theory previously formulated for deformed shape predictions of nonuniform beam structures is further developed mathematically. The further-developed displacement equations are expressed explicitly in terms of geometrical parameters of the beam and bending strains at equally spaced strain-sensing stations along the multiplexed fiber-optic sensor line installed on the bottom surface of the beam. The bending strain data can then be input into the displacement equations for calculations of local slopes, deflections, and cross-sectional twist angles for generating the overall deformed shapes of the nonuniform beam. The further-developed displacement theory can also be applied to the deformed shape predictions of nonuniform two-point supported beams, nonuniform panels, nonuniform aircraft wings and fuselages, and so forth. The high degree of accuracy of the further-developed displacement theory for nonuniform beams is validated by finite-element analysis of various nonuniform beam structures. Such structures include tapered tubular beams, depth-tapered unswept and swept wing boxes, width-tapered wing boxes, and double-tapered wing boxes, all under combined bending and torsional loads. The Ko displacement theory, combined with the fiber-optic strain-sensing system, provide a powerful tool for in-flight deformed shape monitoring of unmanned aerospace vehicles by ground-based pilots to maintain safe flights.
Shock Location Dominated Transonic Flight Loads on the Active Aeroelastic Wing
NASA Technical Reports Server (NTRS)
Lokos, William A.; Lizotte, Andrew; Lindsley, Ned J.; Stauf, Rick
2005-01-01
During several Active Aeroelastic Wing research flights, the shadow of the over-wing shock could be observed because of natural lighting conditions. As the plane accelerated, the shock location moved aft, and as the shadow passed the aileron and trailing-edge flap hinge lines, their associated hinge moments were substantially affected. The observation of the dominant effect of shock location on aft control surface hinge moments led to this investigation. This report investigates the effect of over-wing shock location on wing loads through flight-measured data and analytical predictions. Wing-root and wing-fold bending moment and torque and leading- and trailing-edge hinge moments have been measured in flight using calibrated strain gages. These same loads have been predicted using a computational fluid dynamics code called the Euler Navier-Stokes Three Dimensional Aeroelastic Code. The computational fluid dynamics study was based on the elastically deformed shape estimated by a twist model, which in turn was derived from in-flight-measured wing deflections provided by a flight deflection measurement system. During level transonic flight, the shock location dominated the wing trailing-edge control surface hinge moments. The computational fluid dynamics analysis based on the shape provided by the flight deflection measurement system produced very similar results and substantially correlated with the measured loads data.
18 CFR 375.103 - Official seal.
Code of Federal Regulations, 2010 CFR
2010-04-01
... protruding from a solid color wing-like shape. Below the eagle shall appear five squares, arranged in a horizontal line. Each of these squares shall contain a circle representing an area of the Commission's responsibility. The first square at the left of the line shall include a stylized representation of a pipeline...
18 CFR 375.103 - Official seal.
Code of Federal Regulations, 2012 CFR
2012-04-01
... protruding from a solid color wing-like shape. Below the eagle shall appear five squares, arranged in a horizontal line. Each of these squares shall contain a circle representing an area of the Commission's responsibility. The first square at the left of the line shall include a stylized representation of a pipeline...
18 CFR 375.103 - Official seal.
Code of Federal Regulations, 2011 CFR
2011-04-01
... protruding from a solid color wing-like shape. Below the eagle shall appear five squares, arranged in a horizontal line. Each of these squares shall contain a circle representing an area of the Commission's responsibility. The first square at the left of the line shall include a stylized representation of a pipeline...
18 CFR 375.103 - Official seal.
Code of Federal Regulations, 2014 CFR
2014-04-01
... protruding from a solid color wing-like shape. Below the eagle shall appear five squares, arranged in a horizontal line. Each of these squares shall contain a circle representing an area of the Commission's responsibility. The first square at the left of the line shall include a stylized representation of a pipeline...
18 CFR 375.103 - Official seal.
Code of Federal Regulations, 2013 CFR
2013-04-01
... protruding from a solid color wing-like shape. Below the eagle shall appear five squares, arranged in a horizontal line. Each of these squares shall contain a circle representing an area of the Commission's responsibility. The first square at the left of the line shall include a stylized representation of a pipeline...
Water-vapor foreign-continuum absorption in the 8-12 and 3-5 μm atmospheric windows
NASA Astrophysics Data System (ADS)
Klimeshina, T. E.; Rodimova, O. B.
2015-08-01
The frequency and temperature dependence of the water vapor-nitrogen continuum in the 8-12 and 3-5 μm spectral regions obtained experimentally by CAVIAR and NIST is described with the use of the line contour constructed on the basis of asymptotic line shape theory. The parameters of the theory found from fitting the calculated values of the absorption coefficient to the pertinent experimental data enter into the expression for the classical potential describing the center-of-mass motion of interacting molecules and into the expression for the quantum potential of two interacting molecules. The frequency behavior of the line wing contours appears to depend on the band the lines of which make a major contribution to the absorption in a given spectral interval. The absorption coefficients in the wings of the band in question calculated with the line contours obtained for other bands are outside of experimental errors. The distinction in the line wing behavior may be explained by the difference in the quantum energies of molecules interacting in different vibrational states.
NASA Astrophysics Data System (ADS)
Gagnon, Hugo
This thesis represents a step forward to bring geometry parameterization and control on par with the disciplinary analyses involved in shape optimization, particularly high-fidelity aerodynamic shape optimization. Central to the proposed methodology is the non-uniform rational B-spline, used here to develop a new geometry generator and geometry control system applicable to the aerodynamic design of both conventional and unconventional aircraft. The geometry generator adopts a component-based approach, where any number of predefined but modifiable (parametric) wing, fuselage, junction, etc., components can be arbitrarily assembled to generate the outer mold line of aircraft geometry. A unique Python-based user interface incorporating an interactive OpenGL windowing system is proposed. Together, these tools allow for the generation of high-quality, C2 continuous (or higher), and customized aircraft geometry with fast turnaround. The geometry control system tightly integrates shape parameterization with volume mesh movement using a two-level free-form deformation approach. The framework is augmented with axial curves, which are shown to be flexible and efficient at parameterizing wing systems of arbitrary topology. A key aspect of this methodology is that very large shape deformations can be achieved with only a few, intuitive control parameters. Shape deformation consumes a few tenths of a second on a single processor and surface sensitivities are machine accurate. The geometry control system is implemented within an existing aerodynamic optimizer comprising a flow solver for the Euler equations and a sequential quadratic programming optimizer. Gradients are evaluated exactly with discrete-adjoint variables. The algorithm is first validated by recovering an elliptical lift distribution on a rectangular wing, and then demonstrated through the exploratory shape optimization of a three-pronged feathered winglet leading to a span efficiency of 1.22 under a height-to-span ratio constraint of 0.1. Finally, unconventional aircraft configurations sized for a regional mission are compared against a conventional baseline. Each aircraft is optimized by varying wing section and wing planform (excluding span) under lift and trim constraints at a single operating point. Based on inviscid pressure drag, the box-wing, C-tip blended-wing-body, and braced-wing configurations considered here are respectively 22%, 25%, and 45% more efficient than the tube-and-wing configuration.
A far-wing line shape theory which satisfies the detailed balance principle
NASA Technical Reports Server (NTRS)
Ma, Q.; Tipping, R. H.; Hartmann, J.-M.; Boulet, C.
1995-01-01
A far-wing theory in which the validity of the detailed balance principle is maintained in each step of the derivation is presented. The role of the total density matrix including the initial correlations is analyzed rigorously. By factoring out the rapidly varying terms in the complex-time development operator in the interaction representation, better approximate expressions can be obtained. As a result, the spectral density can be expressed in terms of the line-coupling functions in which two coupled lines are arranged symmetrically and whose frequency detunings are omega - 1/2(omega(sub ji) + omega (sub j'i'). Using the approximate values omega - omega(sub ji) results in expressions that do not satisfy the detailed balance principle. However, this principle remains satisfied for the symmetrized spectral density in which not only the coupled lines are arranged symmetrically, but also the initial and final states belonging to the same lines are arranged symmetrically as well.
Wing shape allometry and aerodynamics in calopterygid damselflies: a comparative approach.
Outomuro, David; Adams, Dean C; Johansson, Frank
2013-06-07
Wing size and shape have important aerodynamic implications on flight performance. We explored how wing size was related to wing shape in territorial males of 37 taxa of the damselfly family Calopterygidae. Wing coloration was also included in the analyses because it is sexually and naturally selected and has been shown to be related to wing shape. We studied wing shape using both the non-dimensional radius of the second moment of wing area (RSM) and geometric morphometrics. Lower values of the RSM result in less energetically demanding flight and wider ranges of flight speed. We also re-analyzed previously published data on other damselflies and dragonflies. The RSM showed a hump-shaped relationship with wing size. However, after correcting for phylogeny using independent contrast, this pattern changed to a negative linear relationship. The basal genus of the study family, Hetaerina, was mainly driving that change. The obtained patterns were specific for the study family and differed from other damselflies and dragonflies. The relationship between the RSM and wing shape measured by geometric morphometrics was linear, but relatively small changes along the RSM axis can result in large changes in wing shape. Our results also showed that wing coloration may have some effect on RSM. We found that RSM showed a complex relationship with size in calopterygid damselflies, probably as a result of other selection pressures besides wing size per se. Wing coloration and specific behavior (e.g. courtship) are potential candidates for explaining the complexity. Univariate measures of wing shape such as RSM are more intuitive but lack the high resolution of other multivariate techniques such as geometric morphometrics. We suggest that the relationship between wing shape and size are taxa-specific and differ among closely-related insect groups.
The effects of leading edge modifications on the post-stall characteristics of wings
NASA Technical Reports Server (NTRS)
Winkelmann, A. E.; Barlow, J. B.; Saini, J. K.; Anderson, J. D., Jr.; Jones, E.
1980-01-01
An investigation of the effects of leading edge modifications on the post-stall characteristics of two rectangular planform wings in a series of low speed wind tunnel tests is presented. Abrupt discontinuities in the leading edge shape of the wings were produced by placing a nose glove over a portion of the span or by deflecting sections of a segmented leading edge flap. Six component balance data, oil flow visualization photographs, and pressure distribution measurements were obtained, and tests made to study the development of flow separation at stall on small scale planform wing models. Results of oil flow visualization tests at and beyond stall showed the formation of counter-rotating swirl patterns on the upper surface of the '2-D' and '3-D' wings, and results of a numerical lifting line technique applied to wings with leading edge modifications are included.
An experimental study of tip shape effects on the flutter of aft-swept, flat-plate wings
NASA Technical Reports Server (NTRS)
Dansberry, Bryan E.; Rivera, Jose A., Jr.; Farmer, Moses G.
1990-01-01
The effects of tip chord orientation on wing flutter are investigated experimentally using six cantilever-mounted, flat-plate wing models. Experimentally determined flutter characteristics of the six models are presented covering both the subsonic and transonic Mach number ranges. While all models have a 60 degree leading edge sweep, a 40.97 degree trailing edge sweep, and a root chord of 34.75 inches, they are subdivided into two series characterized by a higher aspect ratio and a lower aspect ratio. Each series is made up of three models with tip chord orientations which are parallel to the free-stream flow, perpendicular to the model mid-chord line, and perpendicular to the free-stream flow. Although planform characteristics within each series of models are held constant, structural characteristics such as mode shapes and natural frequencies are allowed to vary.
NASA Astrophysics Data System (ADS)
Gabor, Oliviu Sugar
To increase the aerodynamic efficiency of aircraft, in order to reduce the fuel consumption, a novel morphing wing concept has been developed. It consists in replacing a part of the wing upper and lower surfaces with a flexible skin whose shape can be modified using an actuation system placed inside the wing structure. Numerical studies in two and three dimensions were performed in order to determine the gains the morphing system achieves for the case of an Unmanned Aerial System and for a morphing technology demonstrator based on the wing tip of a transport aircraft. To obtain the optimal wing skin shapes in function of the flight condition, different global optimization algorithms were implemented, such as the Genetic Algorithm and the Artificial Bee Colony Algorithm. To reduce calculation times, a hybrid method was created by coupling the population-based algorithm with a fast, gradient-based local search method. Validations were performed with commercial state-of-the-art optimization tools and demonstrated the efficiency of the proposed methods. For accurately determining the aerodynamic characteristics of the morphing wing, two new methods were developed, a nonlinear lifting line method and a nonlinear vortex lattice method. Both use strip analysis of the span-wise wing section to account for the airfoil shape modifications induced by the flexible skin, and can provide accurate results for the wing drag coefficient. The methods do not require the generation of a complex mesh around the wing and are suitable for coupling with optimization algorithms due to the computational time several orders of magnitude smaller than traditional three-dimensional Computational Fluid Dynamics methods. Two-dimensional and three-dimensional optimizations of the Unmanned Aerial System wing equipped with the morphing skin were performed, with the objective of improving its performances for an extended range of flight conditions. The chordwise positions of the internal actuators, the spanwise number of actuation stations as well as the displacement limits were established. The performance improvements obtained and the limitations of the morphing wing concept were studied. To verify the optimization results, high-fidelity Computational Fluid Dynamics simulations were also performed, giving very accurate indications of the obtained gains. For the morphing model based on an aircraft wing tip, the skin shapes were optimized in order to control laminar flow on the upper surface. An automated structured mesh generation procedure was developed and implemented. To accurately capture the shape of the skin, a precision scanning procedure was done and its results were included in the numerical model. High-fidelity simulations were performed to determine the upper surface transition region and the numerical results were validated using experimental wind tunnel data.
A Quasi-Steady Lifting Line Theory for Insect-Like Hovering Flight
Nabawy, Mostafa R. A.; Crowthe, William J.
2015-01-01
A novel lifting line formulation is presented for the quasi-steady aerodynamic evaluation of insect-like wings in hovering flight. The approach allows accurate estimation of aerodynamic forces from geometry and kinematic information alone and provides for the first time quantitative information on the relative contribution of induced and profile drag associated with lift production for insect-like wings in hover. The main adaptation to the existing lifting line theory is the use of an equivalent angle of attack, which enables capture of the steady non-linear aerodynamics at high angles of attack. A simple methodology to include non-ideal induced effects due to wake periodicity and effective actuator disc area within the lifting line theory is included in the model. Low Reynolds number effects as well as the edge velocity correction required to account for different wing planform shapes are incorporated through appropriate modification of the wing section lift curve slope. The model has been successfully validated against measurements from revolving wing experiments and high order computational fluid dynamics simulations. Model predicted mean lift to weight ratio results have an average error of 4% compared to values from computational fluid dynamics for eight different insect cases. Application of an unmodified linear lifting line approach leads on average to a 60% overestimation in the mean lift force required for weight support, with most of the discrepancy due to use of linear aerodynamics. It is shown that on average for the eight insects considered, the induced drag contributes 22% of the total drag based on the mean cycle values and 29% of the total drag based on the mid half-stroke values. PMID:26252657
Habitat variation and wing coloration affect wing shape evolution in dragonflies.
Outomuro, D; Dijkstra, K-D B; Johansson, F
2013-09-01
Habitats are spatially and temporally variable, and organisms must be able to track these changes. One potential mechanism for this is dispersal by flight. Therefore, we would expect flying animals to show adaptations in wing shape related to habitat variation. In this work, we explored variation in wing shape in relation to preferred water body (flowing water or standing water with tolerance for temporary conditions) and landscape (forested to open) using 32 species of dragonflies of the genus Trithemis (80% of the known species). We included a potential source of variation linked to sexual selection: the extent of wing coloration on hindwings. We used geometric morphometric methods for studying wing shape. We also explored the phenotypic correlation of wing shape between the sexes. We found that wing shape showed a phylogenetic structure and therefore also ran phylogenetic independent contrasts. After correcting for the phylogenetic effects, we found (i) no significant effect of water body on wing shape; (ii) male forewings and female hindwings differed with regard to landscape, being progressively broader from forested to open habitats; (iii) hindwings showed a wider base in wings with more coloration, especially in males; and (iv) evidence for phenotypic correlation of wing shape between the sexes across species. Hence, our results suggest that natural and sexual selection are acting partially independently on fore- and hindwings and with differences between the sexes, despite evidence for phenotypic correlation of wing shape between males and females. © 2013 The Authors. Journal of Evolutionary Biology © 2013 European Society For Evolutionary Biology.
Fiber Optic Wing Shape Sensing on NASA's Ikhana UAV
NASA Technical Reports Server (NTRS)
Richards, Lance; Parker, Allen R.; Ko, William L.; Piazza, Anthony
2008-01-01
This document discusses the development of fiber optic wing shape sensing on NASA's Ikhana vehicle. The Dryden Flight Research Center's Aerostructures Branch initiated fiber-optic instrumentation development efforts in the mid-1990s. Motivated by a failure to control wing dihedral resulting in a mishap with the Helios aircraft, new wing displacement techniques were developed. Research objectives for Ikhana included validating fiber optic sensor measurements and real-time wing shape sensing predictions; the validation of fiber optic mathematical models and design tools; assessing technical viability and, if applicable, developing methodology and approaches to incorporate wing shape measurements within the vehicle flight control system; and, developing and flight validating approaches to perform active wing shape control using conventional control surfaces and active material concepts.
Miniature Trailing Edge Effector for Aerodynamic Control
NASA Technical Reports Server (NTRS)
Lee, Hak-Tae (Inventor); Bieniawski, Stefan R. (Inventor); Kroo, Ilan M. (Inventor)
2008-01-01
Improved miniature trailing edge effectors for aerodynamic control are provided. Three types of devices having aerodynamic housings integrated to the trailing edge of an aerodynamic shape are presented, which vary in details of how the control surface can move. A bucket type device has a control surface which is the back part of a C-shaped member having two arms connected by the back section. The C-shaped section is attached to a housing at the ends of the arms, and is rotatable about an axis parallel to the wing trailing edge to provide up, down and neutral states. A flip-up type device has a control surface which rotates about an axis parallel to the wing trailing edge to provide up, down, neutral and brake states. A rotating type device has a control surface which rotates about an axis parallel to the chord line to provide up, down and neutral states.
NASA Astrophysics Data System (ADS)
González-Alfonso, E.; Armus, L.; Carrera, F. J.; Charmandaris, V.; Efstathiou, A.; Egami, E.; Fernández-Ontiveros, J. A.; Fischer, J.; Granato, G. L.; Gruppioni, C.; Hatziminaoglou, E.; Imanishi, M.; Isobe, N.; Kaneda, H.; Koziel-Wierzbowska, D.; Malkan, M. A.; Martín-Pintado, J.; Mateos, S.; Matsuhara, H.; Miniutti, G.; Nakagawa, T.; Pozzi, F.; Rico-Villas, F.; Rodighiero, G.; Roelfsema, P.; Spinoglio, L.; Spoon, H. W. W.; Sturm, E.; van der Tak, F.; Vignali, C.; Wang, L.
2017-11-01
A far-infrared observatory such as the SPace Infrared telescope for Cosmology and Astrophysics, with its unprecedented spectroscopic sensitivity, would unveil the role of feedback in galaxy evolution during the last 10 Gyr of the Universe (z = 1.5-2), through the use of far- and mid-infrared molecular and ionic fine structure lines that trace outflowing and infalling gas. Outflowing gas is identified in the far-infrared through P-Cygni line shapes and absorption blueshifted wings in molecular lines with high dipolar moments, and through emission line wings of fine-structure lines of ionised gas. We quantify the detectability of galaxy-scale massive molecular and ionised outflows as a function of redshift in AGN-dominated, starburst-dominated, and main-sequence galaxies, explore the detectability of metal-rich inflows in the local Universe, and describe the most significant synergies with other current and future observatories that will measure feedback in galaxies via complementary tracers at other wavelengths.
NASA Technical Reports Server (NTRS)
1981-01-01
Francis M. Rogallo and his wife Gertrude researched flexible controllable fabric airfoils with a delta, V-shaped, configuration for use on inexpensive private aircraft. They were issued a flex-wing patent and refined their designs. Development of Rogallo wings, used by U.S. Moyes, Inc. substantially broadened the flexible airfoil technology base which originated from NASA's reentry parachute. The Rogallo technology, particularly the airfoil frame was incorporated in the design of a kite by John Dickenson. The Dickenson kite served as prototype for the Australian Moyes line of hang gliders. Company no longer exists.
Elastically Shaped Wing Optimization and Aircraft Concept for Improved Cruise Efficiency
NASA Technical Reports Server (NTRS)
Nguyen, Nhan; Trinh, Khanh; Reynolds, Kevin; Kless, James; Aftosmis, Michael; Urnes, James, Sr.; Ippolito, Corey
2013-01-01
This paper presents the findings of a study conducted tn 2010 by the NASA Innovation Fund Award project entitled "Elastically Shaped Future Air Vehicle Concept". The study presents three themes in support of meeting national and global aviation challenges of reducing fuel burn for present and future aviation systems. The first theme addresses the drag reduction goal through innovative vehicle configurations via non-planar wing optimization. Two wing candidate concepts have been identified from the wing optimization: a drooped wing shape and an inflected wing shape. The drooped wing shape is a truly biologically inspired wing concept that mimics a seagull wing and could achieve about 5% to 6% drag reduction, which is aerodynamically significant. From a practical perspective, this concept would require new radical changes to the current aircraft development capabilities for new vehicles with futuristic-looking wings such as this concept. The inflected wing concepts could achieve between 3% to 4% drag reduction. While the drag reduction benefit may be less, the inflected-wing concept could have a near-term impact since this concept could be developed within the current aircraft development capabilities. The second theme addresses the drag reduction goal through a new concept of elastic wing shaping control. By aeroelastically tailoring the wing shape with active control to maintain optimal aerodynamics, a significant drag reduction benefit could be realized. A significant reduction in fuel burn for long-range cruise from elastic wing shaping control could be realized. To realize the potential of the elastic wing shaping control concept, the third theme emerges that addresses the drag reduction goal through a new aerodynamic control effector called a variable camber continuous trailing edge flap. Conventional aerodynamic control surfaces are discrete independent surfaces that cause geometric discontinuities at the trailing edge region. These discontinuities promote vorticities which result in drag rises as well as noise sources. The variable camber trailing edge flap concept could provide a substantial drag reduction benefit over a conventional discrete flap system. Aerodynamic simulations show a drag reduction of over 50% could be achieved with the flap concept over a conventional discrete flap system.
Cruising the rain forest floor: butterfly wing shape evolution and gliding in ground effect.
Cespedes, Ann; Penz, Carla M; DeVries, Philip J
2015-05-01
Flight is a key innovation in the evolutionary success of insects and essential to dispersal, territoriality, courtship and oviposition. Wing shape influences flight performance and selection likely acts to maximize performance for conducting essential behaviours that in turn results in the evolution of wing shape. As wing shape also contributes to fitness, optimal shapes for particular flight behaviours can be assessed with aerodynamic predictions and placed in an ecomorphological context. Butterflies in the tribe Haeterini (Nymphalidae) are conspicuous members of understorey faunas in lowland Neotropical forests. Field observations indicate that the five genera in this clade differ in flight height and behaviour: four use gliding flight at the forest floor level, and one utilizes flapping flight above the forest floor. Nonetheless, the association of ground level gliding flight behaviour and wing shape has never been investigated in this or any other butterfly group. We used landmark-based geometric morphometrics to test whether wing shapes in Haeterini and their close relatives reflected observed flight behaviours. Four genera of Haeterini and some distantly related Satyrinae showed significant correspondence between wing shape and theoretical expectations in performance trade-offs that we attribute to selection for gliding in ground effect. Forewing shape differed between sexes for all taxa, and male wing shapes were aerodynamically more efficient for gliding flight than corresponding females. This suggests selection acts differentially on male and female wing shapes, reinforcing the idea that sex-specific flight behaviours contribute to the evolution of sexual dimorphism. Our study indicates that wing shapes in Haeterini butterflies evolved in response to habitat-specific flight behaviours, namely gliding in ground effect along the forest floor, resulting in ecomorphological partitions of taxa in morphospace. The convergent flight behaviour and wing morphology between tribes of Satyrinae suggest that the flight environment may offset phylogenetic constraints. Overall, this study provides a basis for exploring similar patterns of wing shape evolution in other taxa that glide in ground effect. © 2014 The Authors. Journal of Animal Ecology © 2014 British Ecological Society.
Parametric Experimental Study of the Formation of Glaze Ice Shapes on Swept Wings
NASA Technical Reports Server (NTRS)
Vargas, Mario; Reshotko, Eli
1999-01-01
An experiment was conducted to study the effect of velocity and sweep angle on the critical distance in ice accretion formation on swept wings at glaze ice conditions. The critical distance is defined as the distance from the attachment line to the beginning of the zone where roughness elements develop into glaze ice feathers. Icing runs were performed on a NACA 00 1 2 swept wing tip at velocities of 75, 100, 150, and 200 miles per hour. At each velocity and tunnel condition, the sweep angle was changed from 0 deg to 45 deg at 5 deg increments. Casting data, ice shape tracings, and close-up photographic data were obtained. The results showed that at given velocity and tunnel conditions, as the sweep angle is increased from 0 deg to 25 deg the critical distance slowly decreases. As the sweep angle is increased past 25 deg, the critical distance starts decreasing more rapidly. For 75 and 100 mph it reaches a value of 0 millimeters at 35 deg. For 150 and 200 mph it reaches a value of 0 millimeters at 40 deg. On the ice accretion, as the sweep angle is increased from 0 deg to 25 deg, the extent of the attachment line zone slowly decreases. In the glaze ice feathers zone, the angle that the preferred direction of growth of the feathers makes with respect to the attachment line direction increases. But overall, the ice accretions remain similar to the 0 deg sweep angle case. As the sweep angle is increased above 25 deg, the extent of the attachment line zone decreases rapidly and complete scallops form at 35 deg sweep angle for 75 and 100 mph, and at 40 deg for 150 and 200 mph.
Measurement of shape and deformation of insect wing
NASA Astrophysics Data System (ADS)
Yin, Duo; Wei, Zhen; Wang, Zeyu; Zhou, Changqiu
2018-01-01
To measure the shape and deformation of an insect wing, a scanning setup adopting laser triangulation and image matching was developed. Only one industry camera with two light sources was employed to scan the transparent insect wings. 3D shape and point to point full field deformation of the wings could be obtained even when the wingspan is less than 3 mm. The venation and corrugation could be significantly identified from the results. The deformation of the wing under pin loading could be seen clearly from the results as well. Calibration shows that the shape and deformation measurement accuracies are no lower than 0.01 mm. Laser triangulation and image matching were combined dexterously to adapt wings' complex shape, size, and transparency. It is suitable for insect flight research or flapping wing micro-air vehicle development.
NASA Astrophysics Data System (ADS)
Bach, Kiehunn
2017-01-01
Incorporating the time-dependent second-order perturbation theory for the Lyman scattering cross-section, we investigate the intergalactic absorption profiles of extremely high column density systems near the end of cosmic reionization. Assuming a representative set of the redshift distribution of neutral hydrogen, we quantitatively examined the impact of inhomogeneous density on the intrinsic absorption profiles. The cumulative absorption by neutral patches in the line of sight mainly affects the far off-centre region of the red damping wing, but the effect is not significant. The shape of the line centre can be modified by the near-zone distribution due to high opacities of the near-resonance scattering. On the other hand, the HWHM (half width at half-maximum) as an effective line width is relatively less sensitive to the local inhomogeneity. Specifically, when the two local damping wings of Lyα and Lyβ are close in spectra of the strongly damped systems, accurate profiles of both lines are required. In the case of N_{H I}≲ 10^{21} { cm^{-2}}, the two-level approximation is marginally applicable for the damping wing fit within 5 - 7 per cent errors. However, as the local column density reaches N_{H I}˜ 10^{22.3} { cm^{-2}}, this classical approximation yields a relative error of a 10 per cent overestimation in the red wing and a 20 per cent underestimation in the blue wing of Lyα. If severe extinction by the Lyα forests is carefully subtracted, the intrinsic absorption profile will provide a better constraint on the local ionized states. For practical applications, an analytic fitting function for the Lyβ scattering is derived.
Electron scattering wings on lines in interacting supernovae
NASA Astrophysics Data System (ADS)
Huang, Chenliang; Chevalier, Roger A.
2018-03-01
We consider the effect of electron scattering on lines emitted as a result of supernova interaction with a circumstellar medium, assuming that the scattering occurs in ionized gas in the pre-shock circumstellar medium. The single scattering case gives the broad component in the limit of low optical depth, showing a velocity full width half-maximum that is close to the thermal velocities of electrons. The line shape is approximately exponential at low velocities and steepens at higher velocities. At higher optical depths, the line profile remains exponential at low velocities, but wings strengthen with increasing optical depth. In addition to the line width, the ratio of narrow to broad (scattered) line strength is a possible diagnostic of the gas. The results depend on the density profile of the circumstellar gas, especially if the scattering and photon creation occur in different regions. We apply the scattering model to a number of supernovae, including Type IIn and Type Ia-circumstellar medium (CSM) events. The asymmetry to the red found in some cases can be explained by scattering in a fast wind region that is indicated by observations.
On the quasi-steady aerodynamics of normal hovering flight part I: the induced power factor
Nabawy, Mostafa R. A.; Crowther, William J.
2014-01-01
An analytical treatment to quantify the losses captured in the induced power factor, k, is provided for flapping wings in normal hover, including the effects of non-uniform downwash, tip losses and finite flapping amplitude. The method is based on a novel combination of actuator disc and lifting line blade theories that also takes into account the effect of advance ratio. The model has been evaluated against experimental results from the literature and qualitative agreement obtained for the effect of advance ratio on the lift coefficient of revolving wings. Comparison with quantitative experimental data for the circulation as a function of span for a fruitfly wing shows that the model is able to correctly predict the circulation shape of variation, including both the magnitude of the peak circulation and the rate of decay in circulation towards zero. An evaluation of the contributions to induced power factor in normal hover for eight insects is provided. It is also shown how Reynolds number can be accounted for in the induced power factor, and good agreement is obtained between predicted span efficiency as a function of Reynolds number and numerical results from the literature. Lastly, it is shown that for a flapping wing in hover k owing to the non-uniform downwash effect can be reduced to 1.02 using an arcsech chord distribution. For morphologically realistic wing shapes based on beta distributions, it is shown that a value of 1.07 can be achieved for a radius of first moment of wing area at 40% of wing length. PMID:24522785
On the quasi-steady aerodynamics of normal hovering flight part I: the induced power factor.
Nabawy, Mostafa R A; Crowther, William J
2014-04-06
An analytical treatment to quantify the losses captured in the induced power factor, k, is provided for flapping wings in normal hover, including the effects of non-uniform downwash, tip losses and finite flapping amplitude. The method is based on a novel combination of actuator disc and lifting line blade theories that also takes into account the effect of advance ratio. The model has been evaluated against experimental results from the literature and qualitative agreement obtained for the effect of advance ratio on the lift coefficient of revolving wings. Comparison with quantitative experimental data for the circulation as a function of span for a fruitfly wing shows that the model is able to correctly predict the circulation shape of variation, including both the magnitude of the peak circulation and the rate of decay in circulation towards zero. An evaluation of the contributions to induced power factor in normal hover for eight insects is provided. It is also shown how Reynolds number can be accounted for in the induced power factor, and good agreement is obtained between predicted span efficiency as a function of Reynolds number and numerical results from the literature. Lastly, it is shown that for a flapping wing in hover k owing to the non-uniform downwash effect can be reduced to 1.02 using an arcsech chord distribution. For morphologically realistic wing shapes based on beta distributions, it is shown that a value of 1.07 can be achieved for a radius of first moment of wing area at 40% of wing length.
Projection Moire Interferometry Measurements of Micro Air Vehicle Wings
NASA Technical Reports Server (NTRS)
Fleming, Gary A.; Bartram, Scott M.; Waszak, Martin R.; Jenkins, Luther N.
2001-01-01
Projection Moire Interferometry (PMI) has been used to measure the structural deformation of micro air vehicle (MAV) wings during a series of wind tunnel tests. The MAV wings had a highly flexible wing structure, generically reminiscent of a bat s wing, which resulted in significant changes in wing shape as a function of MAV angle-of-attack and simulated flight speed. This flow-adaptable wing deformation is thought to provide enhanced vehicle stability and wind gust alleviation compared to rigid wing designs. Investigation of the potential aerodynamic benefits of a flexible MAV wing required measurement of the wing shape under aerodynamic loads. PMI was used to quantify the aerodynamically induced changes in wing shape for three MAV wings having different structural designs and stiffness characteristics. This paper describes the PMI technique, its application to MAV testing, and presents a portion of the PMI data acquired for the three different MAV wings tested.
Experimental optimization of wing shape for a hummingbird-like flapping wing micro air vehicle.
Nan, Yanghai; Karásek, Matěj; Lalami, Mohamed Esseghir; Preumont, André
2017-03-06
Flapping wing micro air vehicles (MAVs) take inspiration from natural fliers, such as insects and hummingbirds. Existing designs manage to mimic the wing motion of natural fliers to a certain extent; nevertheless, differences will always exist due to completely different building blocks of biological and man-made systems. The same holds true for the design of the wings themselves, as biological and engineering materials differ significantly. This paper presents results of experimental optimization of wing shape of a flexible wing for a hummingbird-sized flapping wing MAV. During the experiments we varied the wing 'slackness' (defined by a camber angle), the wing shape (determined by the aspect and taper ratios) and the surface area. Apart from the generated lift, we also evaluated the overall power efficiency of the flapping wing MAV achieved with the various wing design. The results indicate that especially the camber angle and aspect ratio have a critical impact on the force production and efficiency. The best performance was obtained with a wing of trapezoidal shape with a straight leading edge and an aspect ratio of 9.3, both parameters being very similar to a typical hummingbird wing. Finally, the wing performance was demonstrated by a lift-off of a 17.2 g flapping wing robot.
Shape memory alloy TiNi actuators for twist control of smart wing designs
NASA Astrophysics Data System (ADS)
Jardine, A. Peter; Kudva, Jayanth N.; Martin, Christopher A.; Appa, Kari
1996-05-01
On high performance military aircraft, small changes in both wing twist and wing camber have the potential to provide substantial payoffs in terms of additional lift and enhanced maneuverability. To achieve the required wing shape, actuators made of smart materials are currently being studied under an ARPA/WL contract for a subscale model of a fighter aircraft. The use of the shape memory alloy TiNi for wing twist actuation was investigated using shape memory effect (SME) torque tube actuator configurations. The actuator configurations were sized to fit inside a 16% scale model of an aircraft wing and the torque's supplied to the wing were similarly calculated from full-scale requirements. The actuator systems were tested in a conventional laboratory setting. Design and calibration of the actuators for wing twist are discussed.
Fiber Optic Wing Shape Sensing on NASA's Ikhana UAV
NASA Technical Reports Server (NTRS)
Richards, Lance; Parker, Allen R.; Ko, William L.; Piazza, Anthony
2008-01-01
Fiber Optic Wing Shape Sensing on Ikhana involves five major areas 1) Algorithm development: Local-strain-to-displacement algorithms have been developed for complex wing shapes for real-time implementation (NASA TP-2007-214612, patent application submitted) 2) FBG system development: Dryden advancements to fiber optic sensing technology have increased data sampling rates to levels suitable for monitoring structures in flight (patent application submitted) 3) Instrumentation: 2880 FBG strain sensors have been successfully installed on the Ikhana wings 4) Ground Testing: Fiber optic wing shape sensing methods for high aspect ratio UAVs have been validated through extensive ground testing in Dryden s Flight Loads Laboratory 5) Flight Testing: Real time fiber Bragg strain measurements successfully acquired and validated in flight (4/28/2008) Real-time fiber optic wing shape sensing successfully demonstrated in flight
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pentlehner, D.; Slenczka, A., E-mail: alkwin.slenczka@chemie.uni-regensburg.de
2015-01-07
Electronic spectra of organic molecules doped into superfluid helium nanodroplets show characteristic features induced by the helium environment. Besides a solvent induced shift of the electronic transition frequency, in many cases, a spectral fine structure can be resolved for electronic and vibronic transitions which goes beyond the expected feature of a zero phonon line accompanied by a phonon wing as known from matrix isolation spectroscopy. The spectral shape of the zero phonon line and the helium induced phonon wing depends strongly on the dopant species. Phonon wings, for example, are reported ranging from single or multiple sharp transitions to broadmore » (Δν > 100 cm{sup −1}) diffuse signals. Despite the large number of example spectra in the literature, a quantitative understanding of the helium induced fine structure of the zero phonon line and the phonon wing is missing. Our approach is a systematic investigation of related molecular compounds, which may help to shed light on this key feature of microsolvation in superfluid helium droplets. This paper is part of a comparative study of the helium induced fine structure observed in electronic spectra of anthracene derivatives with particular emphasis on a spectrally sharp multiplet splitting at the electronic origin. In addition to previously discussed species, 9-cyanoanthracene and 9-chloroanthracene will be presented in this study for the first time.« less
Torquato, Libéria Souza; Mattos, Daniel; Matta, Bruna Palma; Bitner-Mathé, Blanche Christine
2014-12-01
Organ shape evolves through cross-generational changes in developmental patterns at cellular and/or tissue levels that ultimately alter tissue dimensions and final adult proportions. Here, we investigated the cellular basis of an artificially selected divergence in the outline shape of Drosophila melanogaster wings, by comparing flies with elongated or rounded wing shapes but with remarkably similar wing sizes. We also tested whether cellular plasticity in response to developmental temperature was altered by such selection. Results show that variation in cellular traits is associated with wing shape differences, and that cell number may play an important role in wing shape response to selection. Regarding the effects of developmental temperature, a size-related plastic response was observed, in that flies reared at 16 °C developed larger wings with larger and more numerous cells across all intervein regions relative to flies reared at 25 °C. Nevertheless, no conclusive indication of altered phenotypic plasticity was found between selection strains for any wing or cellular trait. We also described how cell area is distributed across different intervein regions. It follows that cell area tends to decrease along the anterior wing compartment and increase along the posterior one. Remarkably, such pattern was observed not only in the selected strains but also in the natural baseline population, suggesting that it might be canalized during development and was not altered by the intense program of artificial selection for divergent wing shapes.
NASA Technical Reports Server (NTRS)
Hodges, G. E.; Mcgehee, C. R.
1981-01-01
The final design and hardware fabrication was completed for an active control system capable of the required flutter suppression, compatible with and ready for installation in the NASA aeroelastic research wing number 1 (ARW-1) on Firebee II drone flight test vehicle. The flutter suppression system uses vertical acceleration at win buttock line 1.930 (76), with fuselage vertical and roll accelerations subtracted out, to drive wing outboard aileron control surfaces through appropriate symmetric and antisymmetric shaping filters. The goal of providing an increase of 20 percent above the unaugmented vehicle flutter velocity but below the maximum operating condition at Mach 0.98 is exceeded by the final flutter suppression system. Results indicate that the flutter suppression system mechanical and electronic components are ready for installation on the DAST ARW-1 wing and BQM-34E/F drone fuselage.
First in...Last Out: History of the U.S. Army Pathfinder (1942-2011)
2014-05-21
Extraction Zone FRAGO Fragmentary Order GMRS Ground Marked Release System GZ Glider Zone HE Heavy Drop HLZ Helicopter Landing Zone LOC Lines of...balloon parachutists to design a parachute suitable to be used by winged aviators. Leo Stevens designed and constructed a cone shape model with a body...pilots with parachutes. These parachutes were static-line-activated; much like Leo Stevens 20 design the pilots wore a canvas body harness over their
The leading-edge vortex of swift wing-shaped delta wings
NASA Astrophysics Data System (ADS)
Muir, Rowan Eveline; Arredondo-Galeana, Abel; Viola, Ignazio Maria
2017-08-01
Recent investigations on the aerodynamics of natural fliers have illuminated the significance of the leading-edge vortex (LEV) for lift generation in a variety of flight conditions. A well-documented example of an LEV is that generated by aircraft with highly swept, delta-shaped wings. While the wing aerodynamics of a manoeuvring aircraft, a bird gliding and a bird in flapping flight vary significantly, it is believed that this existing knowledge can serve to add understanding to the complex aerodynamics of natural fliers. In this investigation, a model non-slender delta-shaped wing with a sharp leading edge is tested at low Reynolds number, along with a delta wing of the same design, but with a modified trailing edge inspired by the wing of a common swift Apus apus. The effect of the tapering swift wing on LEV development and stability is compared with the flow structure over the unmodified delta wing model through particle image velocimetry. For the first time, a leading-edge vortex system consisting of a dual or triple LEV is recorded on a swift wing-shaped delta wing, where such a system is found across all tested conditions. It is shown that the spanwise location of LEV breakdown is governed by the local chord rather than Reynolds number or angle of attack. These findings suggest that the trailing-edge geometry of the swift wing alone does not prevent the common swift from generating an LEV system comparable with that of a delta-shaped wing.
The leading-edge vortex of swift wing-shaped delta wings
Muir, Rowan Eveline; Arredondo-Galeana, Abel
2017-01-01
Recent investigations on the aerodynamics of natural fliers have illuminated the significance of the leading-edge vortex (LEV) for lift generation in a variety of flight conditions. A well-documented example of an LEV is that generated by aircraft with highly swept, delta-shaped wings. While the wing aerodynamics of a manoeuvring aircraft, a bird gliding and a bird in flapping flight vary significantly, it is believed that this existing knowledge can serve to add understanding to the complex aerodynamics of natural fliers. In this investigation, a model non-slender delta-shaped wing with a sharp leading edge is tested at low Reynolds number, along with a delta wing of the same design, but with a modified trailing edge inspired by the wing of a common swift Apus apus. The effect of the tapering swift wing on LEV development and stability is compared with the flow structure over the unmodified delta wing model through particle image velocimetry. For the first time, a leading-edge vortex system consisting of a dual or triple LEV is recorded on a swift wing-shaped delta wing, where such a system is found across all tested conditions. It is shown that the spanwise location of LEV breakdown is governed by the local chord rather than Reynolds number or angle of attack. These findings suggest that the trailing-edge geometry of the swift wing alone does not prevent the common swift from generating an LEV system comparable with that of a delta-shaped wing. PMID:28878968
The leading-edge vortex of swift wing-shaped delta wings.
Muir, Rowan Eveline; Arredondo-Galeana, Abel; Viola, Ignazio Maria
2017-08-01
Recent investigations on the aerodynamics of natural fliers have illuminated the significance of the leading-edge vortex (LEV) for lift generation in a variety of flight conditions. A well-documented example of an LEV is that generated by aircraft with highly swept, delta-shaped wings. While the wing aerodynamics of a manoeuvring aircraft, a bird gliding and a bird in flapping flight vary significantly, it is believed that this existing knowledge can serve to add understanding to the complex aerodynamics of natural fliers. In this investigation, a model non-slender delta-shaped wing with a sharp leading edge is tested at low Reynolds number, along with a delta wing of the same design, but with a modified trailing edge inspired by the wing of a common swift Apus apus . The effect of the tapering swift wing on LEV development and stability is compared with the flow structure over the unmodified delta wing model through particle image velocimetry. For the first time, a leading-edge vortex system consisting of a dual or triple LEV is recorded on a swift wing-shaped delta wing, where such a system is found across all tested conditions. It is shown that the spanwise location of LEV breakdown is governed by the local chord rather than Reynolds number or angle of attack. These findings suggest that the trailing-edge geometry of the swift wing alone does not prevent the common swift from generating an LEV system comparable with that of a delta-shaped wing.
NASA Technical Reports Server (NTRS)
Lung, Shun-Fat; Ko, William L.
2016-01-01
The displacement transfer functions (DTFs) were applied to the GIII swept wing for the deformed shape prediction. The calculated deformed shapes are very close to the correlated finite element results as well as the measured data. The convergence study showed that using 17 strain stations, the wing-tip displacement prediction error was 1.6 percent, and that there is no need to use a large number of strain stations for G-III wing shape predictions.
2014-01-01
Background Recent releases have been carried out with Aedes aegypti mosquitoes infected with the wMelPop mosquito cell-line adapted (wMelPop-CLA) strain of Wolbachia. This infection introduced from Drosophila provides strong blockage of dengue and other arboviruses but also has large fitness costs in laboratory tests. The releases were used to evaluate the fitness of released infected mosquitoes, and (following termination of releases) to test for any effects of wMelPop-CLA on wing size and shape when mosquitoes were reared under field conditions. Methods We monitored gravid females via double sticky traps to assess the reproductive success of wMelPop-CLA-infected females and also sampled the overall mosquito population post-release using Biogent Sentinel traps. Morphometric analyses were used to evaluate infection effects on wing shape as well as size. Results Oviposition success as assessed through double sticky traps was unrelated to size of released mosquitoes. However, released mosquitoes with lower wing loading were more successful. Furthermore, wMelPop-CLA-infected mosquitoes had 38.3% of the oviposition success of uninfected mosquitoes based on the predicted infection frequency after release. Environmental conditions affected wing shape and particularly size across time in uninfected mosquitoes, but not in naturally-reared wMelPop-CLA-infected mosquitoes. Although the overall size and shape do not differ between naturally-reared wMelPop-CLA-infected and uninfected mosquitoes, the infected mosquitoes tended to have smaller wings than uninfected mosquitoes during the cooler November in comparison to December. Conclusion These results confirm the lower fitness of wMelPop-CLA infection under field conditions, helping to explain challenges associated with a successful invasion by this strain. In the long run, invasion may depend on releasing strains carrying insecticide resistance or egg desiccation resistance, combined with an active pre-release population suppression program. PMID:24495395
Interplay of cell dynamics and epithelial tension during morphogenesis of the Drosophila pupal wing
Etournay, Raphaël; Popović, Marko; Merkel, Matthias; Nandi, Amitabha; Blasse, Corinna; Aigouy, Benoît; Brandl, Holger; Myers, Gene; Salbreux, Guillaume; Jülicher, Frank; Eaton, Suzanne
2015-01-01
How tissue shape emerges from the collective mechanical properties and behavior of individual cells is not understood. We combine experiment and theory to study this problem in the developing wing epithelium of Drosophila. At pupal stages, the wing-hinge contraction contributes to anisotropic tissue flows that reshape the wing blade. Here, we quantitatively account for this wing-blade shape change on the basis of cell divisions, cell rearrangements and cell shape changes. We show that cells both generate and respond to epithelial stresses during this process, and that the nature of this interplay specifies the pattern of junctional network remodeling that changes wing shape. We show that patterned constraints exerted on the tissue by the extracellular matrix are key to force the tissue into the right shape. We present a continuum mechanical model that quantitatively describes the relationship between epithelial stresses and cell dynamics, and how their interplay reshapes the wing. DOI: http://dx.doi.org/10.7554/eLife.07090.001 PMID:26102528
Experimental Investigation of Ice Accretion Effects on a Swept Wing
NASA Technical Reports Server (NTRS)
Wong, S. C.; Vargas, M.; Papadakis, M.; Yeong, H. W.; Potapczuk, M.
2005-01-01
An experimental investigation was conducted to study the effects of 2-, 5-, 10-, and 22.5-min ice accretions on the aerodynamic performance of a swept finite wing. The ice shapes tested included castings of ice accretions obtained from icing tests at the NASA Glenn Icing Research Tunnel (IRT) and simulated ice shapes obtained with the LEWICE 2.0 ice accretion code. The conditions used for the icing tests were selected to provide five glaze ice shapes with complete and incomplete scallop features and a small rime ice shape. The LEWICE ice shapes were defined for the same conditions as those used in the icing tests. All aerodynamic performance tests were conducted in the 7- x 10-ft Low-Speed Wind Tunnel Facility at Wichita State University. Six component force and moment measurements, aileron hinge moments, and surface pressures were obtained for a Reynolds number of 1.8 million based on mean aerodynamic chord and aileron deflections in the range of -15o to 20o. Tests were performed with the clean wing, six IRT ice shape castings, seven smooth LEWICE ice shapes, and seven rough LEWICE ice shapes. Roughness for the LEWICE ice shapes was simulated with 36-size grit. The experiments conducted showed that the glaze ice castings reduced the maximum lift coefficient of the clean wing by 11.5% to 93.6%, while the 5-min rime ice casting increased maximum lift by 3.4%. Minimum iced wing drag was 133% to 3533% greater with respect to the clean case. The drag of the iced wing near the clean wing stall angle of attack was 17% to 104% higher than that of the clean case. In general, the aileron remained effective in changing the lift of the clean and iced wings for all angles of attack and aileron deflections tested. Aileron hinge moments for the iced wing cases remained within the maximum and minimum limits defined by the clean wing hinge moments. Tests conducted with the LEWICE ice shapes showed that in general the trends in aerodynamic performance degradation of the wing with the simulated ice shapes were similar to those obtained with the IRT ice shape castings. However, in most cases, the ice castings resulted in greater aerodynamic performance losses than those obtained with the LEWICE ice shapes. For the majority of the LEWICE ice shapes, the addition of 36-size grit roughness to the smooth ice shapes increased aerodynamic performance losses.
NASA Astrophysics Data System (ADS)
Mieloszyk, Magdalena; Krawczuk, Marek; Skarbek, Lukasz; Ostachowicz, Wieslaw
2011-07-01
This paper presents an application of neural networks to determinate the level of activation of shape memory alloy actuators of an adaptive wing. In this concept the shape of the wing can be controlled and altered thanks to the wing design and the use of integrated shape memory alloy actuators. The wing is assumed as assembled from a number of wing sections that relative positions can be controlled independently by thermal activation of shape memory actuators. The investigated wing is employed with an array of Fibre Bragg Grating sensors. The Fibre Bragg Grating sensors with combination of a neural network have been used to Structural Health Monitoring of the wing condition. The FBG sensors are a great tool to control the condition of composite structures due to their immunity to electromagnetic fields as well as their small size and weight. They can be mounted onto the surface or embedded into the wing composite material without any significant influence on the wing strength. The paper concentrates on analysis of the determination of the twisting moment produced by an activated shape memory alloy actuator. This has been analysed both numerically using the finite element method by a commercial code ABAQUS® and experimentally using Fibre Bragg Grating sensor measurements. The results of the analysis have been then used by a neural network to determine twisting moments produced by each shape memory alloy actuator.
Mikac, K M; Douglas, J; Spencer, J L
2013-08-01
The western corn rootworm, Diabrotica virgifera virgifera LeConte, is a major pest of maize in the United States and more recently, Europe. Understanding the dispersal dynamics of this species will provide crucial information for its management. This study used geometric morphometric analysis of hind wing venation based on 13 landmarks in 223 specimens from nine locations in Illinois, Nebraska, Iowa, and Missouri, to assess whether wing shape and size differed between rotated and continuously grown maize where crop rotation-resistant and susceptible individuals are found, respectively. Before assessing differences between rotation-resistant and susceptible individuals, sexual dimorphism was investigated. No significant difference in wing (centroid) size was found between males and females; however, females had significantly different shaped (more elongated) wings compared with males. Wing shape and (centroid) size were significantly larger among individuals from rotated maize where crop-rotation resistance was reported; however, cross-validation of these results revealed that collection site resistance status was an only better than average predictor of shape in males and females. This study provides preliminary evidence of wing shape and size differences in D. v. virgifera from rotated versus continuous maize. Further study is needed to confirm whether wing shape and size can be used to track the movement of rotation-resistant individuals and populations as a means to better inform management strategies.
Constraints on the wing morphology of pterosaurs
Palmer, Colin; Dyke, Gareth
2012-01-01
Animals that fly must be able to do so over a huge range of aerodynamic conditions, determined by weather, wind speed and the nature of their environment. No single parameter can be used to determine—let alone measure—optimum flight performance as it relates to wing shape. Reconstructing the wings of the extinct pterosaurs has therefore proved especially problematic: these Mesozoic flying reptiles had a soft-tissue membranous flight surface that is rarely preserved in the fossil record. Here, we review basic mechanical and aerodynamic constraints that influenced the wing shape of pterosaurs, and, building on this, present a series of theoretical modelling results. These results allow us to predict the most likely wing shapes that could have been employed by these ancient reptiles, and further show that a combination of anterior sweep and a reflexed proximal wing section provides an aerodynamically balanced and efficient theoretical pterosaur wing shape, with clear benefits for their flight stability. PMID:21957137
What Sets the Line Profiles in Tidal Disruption Events?
NASA Astrophysics Data System (ADS)
Roth, Nathaniel; Kasen, Daniel
2018-03-01
We investigate line formation in gas that is outflowing and optically thick to electron scattering, as may be expected following the tidal disruption of a star by a supermassive black hole. Using radiative transfer calculations, we show that the optical line profiles produced by expanding TDE outflows most likely are primarily emission features, rather than the P-Cygni profiles seen in most supernova spectra. This is a result of the high line excitation temperatures in the highly irradiated TDE gas. The outflow kinematics cause the emission peak to be blueshifted and have an asymmetric red wing. Such features have been observed in some TDE spectra, and we propose that these may be signatures of outflows. We also show that non-coherent scattering of hot electrons can broaden the emission lines by ∼10,000 km s‑1, such that the line width in some TDEs may be set by the electron scattering optical depth rather than the gas kinematics. The scattering-broadened line profiles produce distinct, wing-shaped profiles that are similar to those observed in some TDE spectra. The narrowing of the emission lines over time in these observed events may be related to a drop in density rather than a drop in line-of-sight velocity.
Chazot, Nicolas; Panara, Stephen; Zilbermann, Nicolas; Blandin, Patrick; Le Poul, Yann; Cornette, Raphaël; Elias, Marianne; Debat, Vincent
2016-01-01
Butterfly wings harbor highly diverse phenotypes and are involved in many functions. Wing size and shape result from interactions between adaptive processes, phylogenetic history, and developmental constraints, which are complex to disentangle. Here, we focus on the genus Morpho (Nymphalidae: Satyrinae, 30 species), which presents a high diversity of sizes, shapes, and color patterns. First, we generate a comprehensive molecular phylogeny of these 30 species. Next, using 911 collection specimens, we quantify the variation of wing size and shape across species, to assess the importance of shared ancestry, microhabitat use, and sexual selection in the evolution of the wings. While accounting for phylogenetic and allometric effects, we detect a significant difference in wing shape but not size among microhabitats. Fore and hindwings covary at the individual and species levels, and the covariation differs among microhabitats. However, the microhabitat structure in covariation disappears when phylogenetic relationships are taken into account. Our results demonstrate that microhabitat has driven wing shape evolution, although it has not strongly affected forewing and hindwing integration. We also found that sexual dimorphism of forewing shape and color pattern are coupled, suggesting a common selective force. © 2015 The Author(s). Evolution © 2015 The Society for the Study of Evolution.
Theory of the water vapor continuum and validations
NASA Technical Reports Server (NTRS)
Tipping, Richard H.; Ma, Q.
1995-01-01
A far-wing line shape theory based on the binary collision and quasistatic approximations that is applicable for both the low- and high-frequency wings of the vibration-rotational bands has been developed. This theory has been applied in order to calculate the frequency and temperature dependence of the continuous absorption coefficient for frequencies up to 10,000 cm(exp -1) for pure H2O and for H2O-N2 mixtures. The calculations were made assuming an interaction potential consisting of an isotropic Lennard-Jones part with two parameters that are consistent with values obtained from other data, and the leading long-range anisotropic part, together with the measured line strengths and transition frequencies. The results, obtained without the introduction of adjustable parameters, compare well with the existing laboratory data, both in magnitude and in temperature dependence. This leads us to the conclusion that the water continuum can be explained in terms of far-wing absorption. Current work in progress to extend the theory and to validate the theoretically calculated continuum will be discussed briefly.
Computer program analyzes and designs supersonic wing-body combinations
NASA Technical Reports Server (NTRS)
Woodward, F. A.
1968-01-01
Computer program formulates geometric description of the wing body configuration, optimizes wing camber shape, determines wing shape for a given pressure distribution, and calculates pressures, forces, and moments on a given configuration. The program consists of geometry definition, transformation, and paneling, and aerodynamics, and flow visualization.
NASA Technical Reports Server (NTRS)
Lamar, J. E.
1994-01-01
This program represents a subsonic aerodynamic method for determining the mean camber surface of trimmed noncoplaner planforms with minimum vortex drag. With this program, multiple surfaces can be designed together to yield a trimmed configuration with minimum induced drag at some specified lift coefficient. The method uses a vortex-lattice and overcomes previous difficulties with chord loading specification. A Trefftz plane analysis is used to determine the optimum span loading for minimum drag. The program then solves for the mean camber surface of the wing associated with this loading. Pitching-moment or root-bending-moment constraints can be employed at the design lift coefficient. Sensitivity studies of vortex-lattice arrangements have been made with this program and comparisons with other theories show generally good agreement. The program is very versatile and has been applied to isolated wings, wing-canard configurations, a tandem wing, and a wing-winglet configuration. The design problem solved with this code is essentially an optimization one. A subsonic vortex-lattice is used to determine the span load distribution(s) on bent lifting line(s) in the Trefftz plane. A Lagrange multiplier technique determines the required loading which is used to calculate the mean camber slopes, which are then integrated to yield the local elevation surface. The problem of determining the necessary circulation matrix is simplified by having the chordwise shape of the bound circulation remain unchanged across each span, though the chordwise shape may vary from one planform to another. The circulation matrix is obtained by calculating the spanwise scaling of the chordwise shapes. A chordwise summation of the lift and pitching-moment is utilized in the Trefftz plane solution on the assumption that the trailing wake does not roll up and that the general configuration has specifiable chord loading shapes. VLMD is written in FORTRAN for IBM PC series and compatible computers running MS-DOS. This program requires 360K of RAM for execution. The Ryan McFarland FORTRAN compiler and PLINK86 are required to recompile the source code; however, a sample executable is provided on the diskette. The standard distribution medium for VLMD is a 5.25 inch 360K MS-DOS format diskette. VLMD was originally developed for use on CDC 6000 series computers in 1976. It was originally ported to the IBM PC in 1986, and, after minor modifications, the IBM PC port was released in 1993.
The leading-edge vortex of swift-wing shaped delta wings
NASA Astrophysics Data System (ADS)
Muir, Rowan; Arredondo-Galeana, Abel; Viola, Ignazio Maria
2017-11-01
Recent investigations on the aerodynamics of natural fliers have illuminated the significance of the Leading-Edge Vortex (LEV) for lift generation in a variety of flight conditions. In this investigation, a model non-slender delta shaped wing with a sharp leading-edge is tested at low Reynolds Number, along with a delta wing of the same design, but with a modified trailing edge inspired by the wing of a common swift Apus apus. The effect of the tapering swift wing on LEV development and stability is compared with the flow structure over the un-modified delta wing model through particle image velocimetry. For the first time, a leading-edge vortex system consisting of a dual or triple LEV is recorded on a swift-wing shaped delta wing, where such a system is found across all tested conditions. It is shown that the spanwise location of LEV breakdown is governed by the local chord rather than Reynolds Number or angle of attack. These findings suggest that the trailing-edge geometry of the swift wing alone does not prevent the common swift from generating an LEV system comparable with that of a delta shaped wing. This work received funding from the Engineering and Physical Sciences Research Council [EP/M506515/1] and the Consejo Nacional de Ciencia y Tecnología (CONACYT).
Generation of Fullspan Leading-Edge 3D Ice Shapes for Swept-Wing Aerodynamic Testing
NASA Technical Reports Server (NTRS)
Camello, Stephanie C.; Lee, Sam; Lum, Christopher; Bragg, Michael B.
2016-01-01
The deleterious effect of ice accretion on aircraft is often assessed through dry-air flight and wind tunnel testing with artificial ice shapes. This paper describes a method to create fullspan swept-wing artificial ice shapes from partial span ice segments acquired in the NASA Glenn Icing Reserch Tunnel for aerodynamic wind-tunnel testing. Full-scale ice accretion segments were laser scanned from the Inboard, Midspan, and Outboard wing station models of the 65% scale Common Research Model (CRM65) aircraft configuration. These were interpolated and extrapolated using a weighted averaging method to generate fullspan ice shapes from the root to the tip of the CRM65 wing. The results showed that this interpolation method was able to preserve many of the highly three dimensional features typically found on swept-wing ice accretions. The interpolated fullspan ice shapes were then scaled to fit the leading edge of a 8.9% scale version of the CRM65 wing for aerodynamic wind-tunnel testing. Reduced fidelity versions of the fullspan ice shapes were also created where most of the local three-dimensional features were removed. The fullspan artificial ice shapes and the reduced fidelity versions were manufactured using stereolithography.
NASA Astrophysics Data System (ADS)
Hartmann, Jean-Michel; Tran, Ha; Armante, Raymond; Boulet, Christian; Campargue, Alain; Forget, François; Gianfrani, Livio; Gordon, Iouli; Guerlet, Sandrine; Gustafsson, Magnus; Hodges, Joseph T.; Kassi, Samir; Lisak, Daniel; Thibault, Franck; Toon, Geoffrey C.
2018-07-01
We review progress, since publication of the book ``Collisional effects on molecular spectra: Laboratory experiments and models, consequences for applications" (Elsevier, Amsterdam, 2008), on measuring, modeling and predicting the influence of pressure (ie of intermolecular collisions) on the spectra of gas molecules. We first introduce recently developed experimental techniques of high accuracy and sensitivity. We then complement the aforementioned book by presenting the theoretical approaches, results and data proposed (mostly) in the last decade on the topics of isolated line shapes, line-broadening and -shifting, line-mixing, the far wings and associated continua, and collision-induced absorption. Examples of recently demonstrated consequences of the progress in the description of spectral shapes for some practical applications (metrology, probing of gas media, climate predictions) are then given. Remaining issues and directions for future research are finally discussed.
NASA Innovation Fund 2010 Project Elastically Shaped Future Air Vehicle Concept
NASA Technical Reports Server (NTRS)
Nguyen, Nhan
2010-01-01
This report describes a study conducted in 2010 under the NASA Innovation Fund Award to develop innovative future air vehicle concepts. Aerodynamic optimization was performed to produce three different aircraft configuration concepts for low drag, namely drooped wing, inflected wing, and squashed fuselage. A novel wing shaping control concept is introduced. This concept describes a new capability of actively controlling wing shape in-flight to minimize drag. In addition, a novel flight control effector concept is developed to enable wing shaping control. This concept is called a variable camber continuous trailing edge flap that can reduce drag by as much as 50% over a conventional flap. In totality, the potential benefits of fuel savings offered by these concepts can be significant.
Shape control of an adaptive wing for transonic drag reduction
NASA Astrophysics Data System (ADS)
Austin, Fred; Van Nostrand, William C.
1995-05-01
Theory and experiments to control the static shape of flexible structures by employing internal translational actuators are summarized and plants to extend the work to adaptive wings are presented. Significant reductions in the shock-induced drag are achievable during transonic- cruise by small adaptive modifications to the wing cross-sectional profile. Actuators are employed as truss elements of active ribs to deform the wing cross section. An adaptive-rib model was constructed, and experiments validated the shape-control theory. Plans for future development under an ARPA/AFWAL contract include payoff assessments of the method on an actual aircraft, the development of inchworm TERFENOL-D actuators, and the development of a method to optimize the wing cross-sectional shapes by direct-drag measurements.
NASA Astrophysics Data System (ADS)
Rieker, G. B.; Jeffries, J. B.; Hanson, R. K.
2009-01-01
A tunable diode laser (TDL) is used to measure the absorption spectra of the R46 through R54 transitions of the 20012 ←00001 band of CO2 near 2.0 μm (5000 cm-1) at room temperature and pressures to 10 atm (densities to 9.2 amagat). Spectra are recorded using direct absorption spectroscopy and wavelength modulation spectroscopy with second-harmonic detection (WMS-2f) in a mixture containing 11% CO2 in air. The direct absorption spectra are influenced by non-Lorentzian effects including finite-duration collisions which perturb far-wing absorption, and an empirical χ-function correction to the Voigt line shape is shown to greatly reduce error in the spectral model. WMS-2f spectra are shown to be at least a factor of four less-influenced by non-Lorentzian effects in this region, making this approach more resistant to errors in the far-wing line shape model and allowing a comparison between the spectral parameters of HITRAN and a new database which includes pressure-induced shift coefficients. The implications of these measurements on practical, high-pressure CO2 sensor design are discussed.
Three-Dimensional Piecewise-Continuous Class-Shape Transformation of Wings
NASA Technical Reports Server (NTRS)
Olson, Erik D.
2015-01-01
Class-Shape Transformation (CST) is a popular method for creating analytical representations of the surface coordinates of various components of aerospace vehicles. A wide variety of two- and three-dimensional shapes can be represented analytically using only a modest number of parameters, and the surface representation is smooth and continuous to as fine a degree as desired. This paper expands upon the original two-dimensional representation of airfoils to develop a generalized three-dimensional CST parametrization scheme that is suitable for a wider range of aircraft wings than previous formulations, including wings with significant non-planar shapes such as blended winglets and box wings. The method uses individual functions for the spanwise variation of airfoil shape, chord, thickness, twist, and reference axis coordinates to build up the complete wing shape. An alternative formulation parameterizes the slopes of the reference axis coordinates in order to relate the spanwise variation to the tangents of the sweep and dihedral angles. Also discussed are methods for fitting existing wing surface coordinates, including the use of piecewise equations to handle discontinuities, and mathematical formulations of geometric continuity constraints. A subsonic transport wing model is used as an example problem to illustrate the application of the methodology and to quantify the effects of piecewise representation and curvature constraints.
2015-01-01
Geographical patterns in body size have been described across a wide range of species, leading to the development of a series of fundamental biological rules. However, shape variables are less well-described despite having substantial consequences for organism performance. Wing aspect ratio (AR) has been proposed as a key shape parameter that determines function in flying animals, with high AR corresponding to longer, thinner wings that promote high manoeuvrability, low speed flight, and low AR corresponding to shorter, broader wings that promote high efficiency long distance flight. From this principle it might be predicted that populations living in cooler areas would exhibit low AR wings to compensate for reduced muscle efficiency at lower temperatures. I test this hypothesis using the riverine damselfly, Calopteryx maculata, sampled from 34 sites across its range margin in North America. Nine hundred and seven male specimens were captured from across the 34 sites (mean = 26.7 ± 2.9 SE per site), dissected and measured to quantify the area and length of all four wings. Geometric morphometrics were employed to investigate geographical variation in wing shape. The majority of variation in wing shape involved changes in wing aspect ratio, confirmed independently by geometric morphometrics and wing measurements. There was a strong negative relationship between wing aspect ratio and the maximum temperature of the warmest month which varies from west-east in North America, creating a positive relationship with longitude. This pattern suggests that higher aspect ratio may be associated with areas in which greater flight efficiency is required: regions of lower temperatures during the flight season. I discuss my findings in light of research of the functional ecology of wing shape across vertebrate and invertebrate taxa. PMID:26336648
Feedback tracking control for dynamic morphing of piezocomposite actuated flexible wings
NASA Astrophysics Data System (ADS)
Wang, Xiaoming; Zhou, Wenya; Wu, Zhigang
2018-03-01
Aerodynamic properties of flexible wings can be improved via shape morphing using piezocomposite materials. Dynamic shape control of flexible wings is investigated in this study by considering the interactions between structural dynamics, unsteady aerodynamics and piezo-actuations. A novel antisymmetric angle-ply bimorph configuration of piezocomposite actuators is presented to realize coupled bending-torsional shape control. The active aeroelastic model is derived using finite element method and Theodorsen unsteady aerodynamic loads. A time-varying linear quadratic Gaussian (LQG) tracking control system is designed to enhance aerodynamic lift with pre-defined trajectories. Proof-of-concept simulations of static and dynamic shape control are presented for a scaled high-aspect-ratio wing model. Vibrations of the wing and fluctuations in aerodynamic forces are caused by using the static voltages directly in dynamic shape control. The lift response has tracked the trajectories well with favorable dynamic morphing performance via feedback tracking control.
NASA Astrophysics Data System (ADS)
Liu, Yuefeng; Duan, Zhuoyi; Chen, Song
2017-10-01
Aerodynamic shape optimization design aiming at improving the efficiency of an aircraft has always been a challenging task, especially when the configuration is complex. In this paper, a hybrid FFD-RBF surface parameterization approach has been proposed for designing a civil transport wing-body configuration. This approach is simple and efficient, with the FFD technique used for parameterizing the wing shape and the RBF interpolation approach used for handling the wing body junction part updating. Furthermore, combined with Cuckoo Search algorithm and Kriging surrogate model with expected improvement adaptive sampling criterion, an aerodynamic shape optimization design system has been established. Finally, the aerodynamic shape optimization design on DLR F4 wing-body configuration has been carried out as a study case, and the result has shown that the approach proposed in this paper is of good effectiveness.
Husak, J F; Ribak, G; Baker, R H; Rivera, G; Wilkinson, G S; Swallow, J G
2013-06-01
Exaggerated male ornaments are predicted to be costly to their bearers, but these negative effects may be offset by the correlated evolution of compensatory traits. However, when locomotor systems, such as wings in flying species, evolve to decrease such costs, it remains unclear whether functional changes across related species are achieved via the same morphological route or via alternate changes that have similar function. We conducted a comparative analysis of wing shape in relation to eye-stalk elongation across 24 species of stalk-eyed flies, using geometric morphometrics to determine how species with increased eye span, a sexually selected trait, have modified wing morphology as a compensatory mechanism. Using traditional and phylogenetically informed multivariate analyses of shape in combination with phenotypic trajectory analysis, we found a strong phylogenetic signal in wing shape. However, dimorphic species possessed shifted wing veins with the result of lengthening and narrowing wings compared to monomorphic species. Dimorphic species also had changes that seem unrelated to wing size, but instead may govern wing flexion. Nevertheless, the lack of a uniform, compensatory pattern suggests that stalk-eyed flies used alternative modifications in wing structure to increase wing area and aspect ratio, thus taking divergent morphological routes to compensate for exaggerated eye stalks. © 2013 The Authors. Journal of Evolutionary Biology © 2013 European Society For Evolutionary Biology.
Overview of the ARPA/WL Smart Structures and Materials Development-Smart Wing contract
NASA Astrophysics Data System (ADS)
Kudva, Jayanth N.; Jardine, A. Peter; Martin, Christopher A.; Appa, Kari
1996-05-01
While the concept of an adaptive aircraft wing, i.e., a wing whose shape parameters such as camber, wing twist, and thickness can be varied to optimize the wing shape for various flight conditions, has been extensively studied, the complexity and weight penalty of the actuation mechanisms have precluded their practical implementation. Recent development of sensors and actuators using smart materials could potentially alleviate the shortcomings of prior designs, paving the way for a practical, `smart' adaptive wing which responds to changes in flight and environmental conditions by modifying its shape to provide optimal performance. This paper presents a summary of recent work done on adaptive wing designs under an on-going ARPA/WL contract entitled `Smart Structures and Materials Development--Smart Wing.' Specifically, the design, development and planned wind tunnel testing of a 16% model representative of a fighter aircraft wing and incorporating the following features, are discussed: (1) a composite wing torque box whose span-wise twist can be varied by activating built-in shape memory alloy (SMA) torque tubes to provide increased lift and enhanced maneuverability at multiple flight conditions, (2) trailing edge control surfaces deployed using composite SMA actuators to provide smooth, hingeless aerodynamic surfaces, and (3) a suite of fiber optic sensors integrated into the wing skin which provide real-time strain and pressure data to a feedback control system.
Effect of planform and body on supersonic aerodynamics of multibody configurations
NASA Technical Reports Server (NTRS)
Mcmillin, S. Naomi; Bauer, Steven X. S.; Howell, Dorothy T.
1992-01-01
An experimental and theoretical investigation of the effect of the wing planform and bodies on the supersonic aerodynamics of a low-fineness-ratio, multibody configuration has been conducted in the Langley Unitary Plan Wind Tunnel at Mach numbers of 1.60, 1.80, 2.00, and 2.16. Force and moment data, flow-visualization data, and surface-pressure data were obtained on eight low-fineness-ratio, twin-body configurations. These configurations varied in inboard wing planform shape, outboard wing planform shape, outboard wing planform size, and presence of the bodies. The force and moment data showed that increasing the ratio of outboard wing area to total wing area or increasing the leading-edge sweep of the inboard wing influenced the aerodynamic characteristics. The flow-visualization data showed a complex flow-field system of shocks, shock-induced separation, and body vortex systems occurring between the side bodies. This flow field was substantially affected by the inboard wing planform shape but minimally affected by the outboard wing planform shape. The flow-visualization and surface-pressure data showed that flow over the outboard wing developed as expected with changes in angle of attack and Mach number and was affected by the leading-edge sweep of the inboard wing and the presence of the bodies. Evaluation of the linear-theory prediction methods revealed their general inability to consistently predict the characteristics of these multibody configurations.
Relative f-values from interstellar absorption lines: advantages and pitfalls
NASA Astrophysics Data System (ADS)
Jenkins, Edward B.
2009-05-01
Interstellar absorption features seen in the ultraviolet and visible spectra of stars provide opportunities for comparing the strengths of different transitions out of the ground electronic states of atoms, ions and simple molecules. In principle, such measurements are straightforward since the radiative transfer is manifested as a simple exponential absorption law at any given radial velocity. Complications arise when the velocity structures of the lines are not completely resolved, or when the lines are either very strongly saturated or too weak to observe. Dynamic range limitations can compromise the comparisons of two transitions that have very different absorption f-values, but they can be mitigated if there are examples with very different column densities and transitions of intermediate strength that can help to bridge the large gap in line strengths. Attempts to unravel the effects of saturation include the use of a curve of growth when only equivalent widths are available, or the measurements of the 'apparent optical depth' when the line is mostly resolved by the instrument. Unfortunately, the application of the curve of growth for one constituent to that of another can sometimes create systematic errors, since the two may have different velocity structures. Likewise, unresolved fine velocity structures in features that have large optical depths can make the apparent optical depths misrepresent the smoothed versions of the true optical depths. One method to compare the strength of a very weak line to that of a very strong one is to measure the total absorption of the former and compare it with the strength of the damping wings of the latter. However in many circumstances, small amounts of gas at velocities well displaced from the line center can masquerade as damping wings. For this reason, it is important to check that these wings have the proper shape.
NASA Technical Reports Server (NTRS)
Martin, Crystal L.; Dijkstra, Mark; Henry, Alaina L.; Soto, Kurt T.; Danforth, Charles W.; Wong, Joseph
2015-01-01
We present new Hubble Space Telescope Cosmic Origins Spectrograph far-ultraviolet (far-UV) spectroscopy and Keck Echellete optical spectroscopy of 11 ultraluminous infrared galaxies (ULIRGs), a rare population of local galaxies experiencing massive gas inflows, extreme starbursts, and prominent outflows. We detect Ly(alpha) emission from eight ULIRGs and the companion to IRAS09583+4714. In contrast to the P Cygni profiles often seen in galaxy spectra, the Ly(alpha) profiles exhibit prominent, blueshifted emission out to Doppler shifts exceeding -1000 km/s in three H II-dominated and two AGN-dominated ULIRGs. To better understand the role of resonance scattering in shaping the Ly(alpha) line profiles, we directly compare them to non-resonant emission lines in optical spectra. We find that the line wings are already present in the intrinsic nebular spectra, and scattering merely enhances the wings relative to the line core. The Ly(alpha) attenuation (as measured in the COS aperture) ranges from that of the far-UV continuum to over 100 times more. A simple radiative transfer model suggests the Ly(alpha) photons escape through cavities which have low column densities of neutral hydrogen and become optically thin to the Lyman continuum in the most advanced mergers. We show that the properties of the highly blueshifted line wings on the Ly(alpha) and optical emission-line profiles are consistent with emission from clumps of gas condensing out of a fast, hot wind. The luminosity of the Ly(alpha) emission increases nonlinearly with the ULIRG bolometric luminosity and represents about 0.1-1% of the radiative cooling from the hot winds in the H II-dominated ULIRGs.
Large and Small Droplet Impingement Data on Airfoils and Two Simulated Ice Shapes
NASA Technical Reports Server (NTRS)
Papadakis, Michael; Wong, See-Cheuk; Rachman, Arief; Hung, Kuohsing E.; Vu, Giao T.; Bidwell, Colin S.
2007-01-01
Water droplet impingement data were obtained at the NASA Glenn Icing Research Tunnel (IRT) for four wings and one wing with two simulated ice shapes. The wings tested include three 36-in. chord wings (MS(1)-317, GLC-305, and a NACA 652-415) and a 57-in. chord Twin Otter horizontal tail section. The simulated ice shapes were 22.5- and 45-min glaze ice shapes for the Twin Otter horizontal tail section generated using the LEWICE 2.2 ice accretion program. The impingement experiments were performed with spray clouds having median volumetric diameters of 11, 21, 79, 137, and 168 mm. Comparisons to the experimental data were generated which showed good agreement for the clean wings and ice shapes at lower drop sizes. For larger drop sizes LEWICE 2.2 over predicted the collection efficiencies due to droplet splashing effects which were not modeled in the program. Also for the more complex glaze ice shapes interpolation errors resulted in the over prediction of collection efficiencies in cove and shadow regions of ice shapes.
Size and shape in Melipona quadrifasciata anthidioides Lepeletier, 1836 (Hymenoptera; Meliponini).
Nunes, L A; Passos, G B; Carvalho, C A L; Araújo, E D
2013-11-01
This study aimed to identify differences in wing shape among populations of Melipona quadrifasciata anthidioides obtained in 23 locations in the semi-arid region of Bahia state (Brazil). Analysis of the Procrustes distances among mean wing shapes indicated that population structure did not determine shape variation. Instead, populations were structured geographically according to wing size. The Partial Mantel Test between morphometric (shape and size) distance matrices and altitude, taking geographic distances into account, was used for a more detailed understanding of size and shape determinants. A partial Mantel test between morphometris (shape and size) variation and altitude, taking geographic distances into account, revealed that size (but not shape) is largely influenced by altitude (r = 0.54 p < 0.01). These results indicate greater evolutionary constraints for the shape variation, which must be directly associated with aerodynamic issues in this structure. The size, however, indicates that the bees tend to have larger wings in populations located at higher altitudes.
1976-05-01
attached to the wing or under the fuselage.__ DD ’JO77,S 1473 EDITION OF NOV 61 IS OBSOLETE UNICLASSIFILEDV~D.n SEUIYC ASIIAINOFTI -E %inDI I...cruciform fins. 61 7 Shock shape deduced from flow field properties. (a) M D 1. 5. 62 7 Continued. (b) MW = 2.0 63 7 Concluded. (c) M. = 2.5. 64 8 Flow...equation (14) h panel span, figure 2 K constant associated with line source strength function f(•), equation (I-8) SKd constant associated with line
Nijhout, H Frederik; Cinderella, Margaret; Grunert, Laura W
2014-03-01
The wings of butterflies and moths develop from imaginal disks whose structure is always congruent with the final adult wing. It is therefore possible to map every point on the imaginal disk to a location on the adult wing throughout ontogeny. We studied the growth patterns of the wings of two distantly related species with very different adult wing shapes, Junonia coenia and Manduca sexta. The shape of the wing disks change throughout their growth phase in a species-specific pattern. We measured mitotic densities and mitotic orientation in successive stages of wing development approximately one cell division apart. Cell proliferation was spatially patterned, and the density of mitoses was highly correlated with local growth. Unlike other systems in which the direction of mitoses has been viewed as the primary determinant of directional growth, we found that in these two species the direction of growth was only weakly correlated with the orientation of mitoses. Directional growth appears to be imposed by a constantly changing spatial pattern of cell division coupled with a weak bias in the orientation of cell division. Because growth and cell division in imaginal disk require ecdysone and insulin signaling, the changing spatial pattern of cell division may due to a changing pattern of expression of receptors or downstream elements in the signaling pathways for one or both of these hormones. Evolution of wing shape comes about by changes in the progression of spatial patterns of cell division. © 2014 Wiley Periodicals, Inc.
Cañas-Hoyos, N; Márquez, E J; Saldamando-Benjumea, C I
2016-08-01
Spodoptera frugiperda (J.E. Smith) (Lepidoptera: Noctuidae) represents a pest of economic importance in all Western Hemisphere. This polyphagous species has diverged into two populations that have been mainly recognized with various mitochondrial and nuclear molecular markers and named "the rice" and "the corn" strains. In Colombia, both strains have evolved prezygotic and postzygotic isolation. They differ in tolerance to Bacillus thuringiensis (Cry1Ac and Cry1Ab endotoxins) and the insecticides lambda-cyhalothrin and methomyl. In 2014, a wing morphometric analysis made in 159 individuals from a colony showed that both strains significantly differ in wing shape. The species also exhibits sexual dimorphism in the rice strain as in females wing size is larger than in males. Here, we continued this work with another wing morphometric approach in laboratory-reared strains to calculate wing size and shape heritabilities using a full-sib design and in wild populations to determine if this method distinguishes these strains. Our results show that male heritabilities of both traits were higher than female ones. Wild populations were significantly different in wing shape and size. These results suggest that wing morphometrics can be used as an alternative method to molecular markers to differentiate adults from laboratory-reared populations and wild populations of this pest, particularly in males of this species. Finally, Q ST values obtained for wing size and shape further demonstrated that both strains are genetically differentiated in nature.
Moveable Leading Edge Device for a Wing
NASA Technical Reports Server (NTRS)
Pitt, Dale M. (Inventor); Eckstein, Nicholas Stephen (Inventor)
2013-01-01
A method and apparatus for managing a flight control surface system. A leading edge section on a wing of an aircraft is extended into a deployed position. A deformable section connects the leading edge section to a trailing section. The deformable section changes from a deformed shape to an original shape when the leading edge section is moved into the deployed position. The leading edge section on the wing is moved from the deployed position to an undeployed position. The deformable section changes to the deformed shape inside of the wing.
Wing geometry of Culex coronator (Diptera: Culicidae) from South and Southeast Brazil
2014-01-01
Background The Coronator Group encompasses Culex coronator Dyar & Knab, Culex camposi Dyar, Culex covagarciai Forattini, Culex ousqua Dyar, Culex usquatissimus Dyar, Culex usquatus Dyar and Culex yojoae Strickman. Culex coronator has the largest geographic distribution, occurring in North, Central and South America. Moreover, it is a potential vector-borne mosquito species because females have been found naturally infected with several arboviruses, i.e., Saint Louis Encephalitis Virus, Venezuelan Equine Encephalitis Virus and West Nile Virus. Considering the epidemiological importance of Cx. coronator, we investigated the wing shape diversity of Cx. coronator from South and Southeast Brazil, a method to preliminarily estimate population diversity. Methods Field-collected immature stages of seven populations from a large geographical area in Brazil were maintained in the laboratory to obtain both females and males linked with pupal and/or larval exuviae. For each individual female, 18 landmarks of left wings were marked and digitalized. After Procrustes superimposition, discriminant analysis of shape was employed to quantify wing shape variation among populations. The isometric estimator centroid size was calculated to assess the overall wing size and allometry. Results Wing shape was polymorphic among populations of Cx. coronator. However, dissimilarities among populations were higher than those observed within each population, suggesting populational differentiation in Cx. coronator. Morphological distances between populations were not correlated to geographical distances, indicating that other factors may act on wing shape and thus, determining microevolutionary patterns in Cx. coronator. Despite the population differentiation, intrapopulational wing shape variability was equivalent among all seven populations. Conclusion The wing variability found in Cx. coronator populations brings to light a new biological problem to be investigated: the population genetics of Cx. coronator. Because of differences in the male genitalia, we also transferred Cx. yojoae to the Apicinus Subgroup. PMID:24721508
NASA Technical Reports Server (NTRS)
Cebeci, T.; Chen, H. H.; Kaups, K.; Schimke, S.; Shin, J.
1992-01-01
A method for computing ice shapes along the leading edge of a wing and a method for predicting its aerodynamic performance degradation due to icing is described. Ice shapes are computed using an extension of the LEWICE code which was developed for airfoils. The aerodynamic properties of the iced wing are determined with an interactive scheme in which the solutions of the inviscid flow equations are obtained from a panel method and the solutions of the viscous flow equations are obtained from an inverse three-dimensional finite-difference boundary-layer method. A new interaction law is used to couple the inviscid and viscous flow solutions. The application of the LEWICE wing code to the calculation of ice shapes on a MS-317 swept wing shows good agreement with measurements. The interactive boundary-layer method is applied to a tapered ice wing in order to study the effect of icing on the aerodynamic properties of the wing at several angles of attack.
Pirih, Primož; Wilts, Bodo D; Stavenga, Doekele G
2011-10-01
The males of many pierid butterflies have iridescent wings, which presumably function in intraspecific communication. The iridescence is due to nanostructured ridges of the cover scales. We have studied the iridescence in the males of a few members of Coliadinae, Gonepteryx aspasia, G. cleopatra, G. rhamni, and Colias croceus, and in two members of the Colotis group, Hebomoia glaucippe and Colotis regina. Imaging scatterometry demonstrated that the pigmentary colouration is diffuse whereas the structural colouration creates a directional, line-shaped far-field radiation pattern. Angle-dependent reflectance measurements demonstrated that the directional iridescence distinctly varies among closely related species. The species-dependent scale curvature determines the spatial properties of the wing iridescence. Narrow beam illumination of flat scales results in a narrow far-field iridescence pattern, but curved scales produce broadened patterns. The restricted spatial visibility of iridescence presumably plays a role in intraspecific signalling.
Priddy, Tommy G.
1988-01-01
An inflatable wing is formed from a pair of tapered, conical inflatable tubes in bonded tangential contact with each other. The tubes are further connected together by means of top and bottom reinforcement boards having corresponding longitudinal edges lying in the same central diametral plane passing through the associated tube. The reinforcement boards are made of a stiff reinforcement material, such as Kevlar, collapsible in a direction parallel to the spanwise wing axis upon deflation of the tubes. The stiff reinforcement material cooperates with the inflated tubes to impart structural I-beam characteristics to the composite structure for transferring inflation pressure-induced tensile stress from the tubes to the reinforcement boards. A plurality of rigid hoops shaped to provide airfoil definition are spaced from each other along the spanwise axis and are connected to the top and bottom reinforcement boards. Tension lines are employed for stabilizing the hoops along the trailing and leading edges thereof.
VizieR Online Data Catalog: K-H2 line shapes for cool brown dwarfs spectra (Allard+,
NASA Astrophysics Data System (ADS)
Allard, N. F.; Spiegelman, F.; Kielkopf, J. F.
2016-04-01
The relationship between the computed cross section and the normalized absorption coefficient is: I(Δω)=σ(Δω)/π*r0f where r0 is the classical radius of the electron, and f is the oscillator strength of the transition. The far red wing is linearly dependent on H2 density for lower density than 1021cm-3 and can be obtained from the following tables for T=600, 820, 1000, 1500, 2000 and 3000K where n(H2)=1021cm-3. For a more complete profile including the blue wing, opacity tables are available on request from nicole.allard@obspm.fr (2 data files).
Real-time In-Flight Strain and Deflection Monitoring with Fiber Optic Sensors
NASA Technical Reports Server (NTRS)
Richards, Lance; Parker, Allen R.; Ko, William L.; Piazza, Anthony
2008-01-01
This viewgraph presentation reviews Dryden's efforts to develop in-flight monitoring based on Fiber Optics. One of the motivating factors for this development was the breakup of the Helios aircraft. On Ikhana the use of fiber optics for wing shape sensing is being developed. They are being used to flight validate fiber optic sensor measurements and real-time wing shape sensing predictions on NASA's Ikhana vehicle; validate fiber optic mathematical models and design tools; Assess technical viability and, if applicable, develop methodology and approach to incorporate wing shape measurements within the vehicle flight control system, and develop and flight validate advanced approaches to perform active wing shape control.
NASA Technical Reports Server (NTRS)
Nguyen, Nhan; Kaul, Upender; Lebofsky, Sonia; Ting, Eric; Chaparro, Daniel; Urnes, James
2015-01-01
This paper summarizes the recent development of an adaptive aeroelastic wing shaping control technology called variable camber continuous trailing edge flap (VCCTEF). As wing flexibility increases, aeroelastic interactions with aerodynamic forces and moments become an increasingly important consideration in aircraft design and aerodynamic performance. Furthermore, aeroelastic interactions with flight dynamics can result in issues with vehicle stability and control. The initial VCCTEF concept was developed in 2010 by NASA under a NASA Innovation Fund study entitled "Elastically Shaped Future Air Vehicle Concept," which showed that highly flexible wing aerodynamic surfaces can be elastically shaped in-flight by active control of wing twist and bending deflection in order to optimize the spanwise lift distribution for drag reduction. A collaboration between NASA and Boeing Research & Technology was subsequently funded by NASA from 2012 to 2014 to further develop the VCCTEF concept. This paper summarizes some of the key research areas conducted by NASA during the collaboration with Boeing Research and Technology. These research areas include VCCTEF design concepts, aerodynamic analysis of VCCTEF camber shapes, aerodynamic optimization of lift distribution for drag minimization, wind tunnel test results for cruise and high-lift configurations, flutter analysis and suppression control of flexible wing aircraft, and multi-objective flight control for adaptive aeroelastic wing shaping control.
Goddard High-Resolution Spectrograph Observations of Procyon and HR1099
NASA Technical Reports Server (NTRS)
Wood, Brian E.; Harper, Graham M.; Linsky, Jeffrey L.; Dempsey, Robert C.
1996-01-01
Goddard High Resolution Spectrograph (GHRS) observations have revealed the presence of broad wings in the transition-region lines of AU Mic and Capella. It has been proposed that these wings are signatures of microflares in the transition regions of these stars and that the solar analog for this phenomenon might be the 'transition region explosive events' discussed by Dere, Bartoe, & Brueckner. We have analyzed GHRS observations of Procyon (F5 IV-V) and HR 1099 (K1 IV + G5 IV) to search for broad wings in the UV emission lines of these stars. We find that the transition-region lines of HR 1099, which are emitted almost entirely by the K1 star, do indeed have broad wings that are even more prominent than those of AU Mic and Capella. This is consistent with the association of the broad wings with microflaring since HR 1099 is a very active binary system. In contrast, the transition-region lines of Procyon, a relatively inactive star, do not show evidence for broad wings, with the possible exception of N v lambda1239. However, Procyon's lines do appear to have excess emission in their blue wings. Linsky et al. found no evidence for broad wings in Capella's chromospheric lines, but we find that the Mg II resonance lines of HR 1099 do have broad wings. The striking resemblance between HR 1099's Mg II and C iv lines suggests that the Mg II line profiles may be regulated by turbulent processes similar to those that control the transition-region line profiles. If this is the case, microflaring may be occurring in the K1 star's chromosphere as well as in its transition region. However, radiative transfer calculations suggest that the broad wings of the Mg II lines can also result from normal chromospheric opacity effects rather than pure turbulence. The prominence of broad wings in the transition region and perhaps even chromospheric lines of active stars suggests that microflaring is very prevalent in the outer atmospheres of active stars.
Novel deployable morphing wing based on SMP composite
NASA Astrophysics Data System (ADS)
Yu, Kai; Sun, Shouhua; Liu, Liwu; Zhang, Zhen; Liu, Yanju; Leng, Jinsong
2009-07-01
In this paper, a novel kind of deployable morphing wing base on shape memory polymer (SMP) composite is designed and tested. While the deployment of the morphing wing still relies on the mechanisms to ensure the recovery force and the stability performance, the deploying process tends to be more steady and accurate by the application of SMP composite, which overcomes the inherent drawbacks of the traditional one, such as harmful impact to the flight balance, less accuracy during the deployment and complex mechanical masses. On the other hand, SMP composite is also designed as the wing's filler. During its shape recovery process, SMP composite stuffed in the wing helps to form an aerofoil for the wing and withstand the aerodynamic loads, leading to the compressed aerofoil recovering its original shape. To demonstrate the feasibility and the controllability of the designed deployable morphing wing, primary tests are also conducted, including the deploying speed of the morphing wing and SMP filler as the main testing aspects. Finally, Wing's deformation under the air loads is also analyzed by using the finite element method to validate the flight stability.
The Aerodynamics of Deforming Wings at Low Reynolds Number
NASA Astrophysics Data System (ADS)
Medina, Albert
Flapping flight has gained much attention in the past decade driven by the desire to understand capabilities observed in nature and the desire to develop agile small-scale aerial vehicles. Advancing our current understanding of unsteady aerodynamics is an essential component in the development of micro-air vehicles (MAV) intended to utilize flight mechanics akin to insect flight. Thus the efforts undertaken that of bio-mimicry. The complexities of insect wing motion are dissected and simplified to more tractable problems to elucidate the fundamentals of unsteady aerodynamics in biologically inspired kinematics. The MAV's fruition would satisfy long established needs in both the military and civilian sectors. Although recent studies have provided great insight into the lift generating mechanisms of flapping wings the deflection response of such wings remains poorly understood. This dissertation numerically and experimentally investigates the aerodynamic performance of passively and actively deflected wings in hover and rotary kinematics. Flexibility is distilled to discrete lines of flexion which acknowledging major flexion lines in insect wings to be the primary avenue for deformation. Of primary concern is the development of the leading-edge vortex (LEV), a high circulation region of low pressure above the wing to which much of the wing's lift generation is attributed. Two-dimensional simulations of wings with chord-wise flexibility in a freestream reveal a lift generating mechanism unavailable to rigid wings with origins in vortical symmetry breaking. The inclusion of flexibility in translating wings accelerated from rest revealed the formation time of the initial LEV was very weakly dependent on the flexible stiffness of the wing, maintaining a universal time scale of four to five chords of travel before shedding. The frequency of oscillatory shedding of the leading and trailing-edge vortices that develops after the initial vortex shedding was shown to be responsive to flexibility satisfying an inverse proportionality to stiffness. In hover, an effective pitch angle can be defined in a flexible wing that accounts for deflection which shifts results toward trend lines of rigid wings. Three-dimensional simulations examining the effects of two distinct deformation modes undergoing prescribed deformation associated with root and tip deflection demonstrated a greater aerodynamic response to tip deflection in hover. Efficiency gains in flexion wings over rigid wing counterpart were shown to be dependent on Reynolds number with efficiency in both modes increasing with increased Reynolds number. Additionally, while the leading-edge vortex axis proved insensitive to deformation, the shape and orientation of the LEV core is modified. Experiments on three-dimensional dynamically-scaled fruit fly wings with passive deformation operating in the bursting limit Reynolds number regime revealed enhanced leading-edge vortex bursting with tip deflection promoting greater LEV core flow deceleration in stroke. Experimental studies on rotary wings highlights a universal formation time of the leading-edge vortex independent of Reynolds number, acceleration profile and aspect ratio. Efforts to replicate LEV bursting phenomena of higher aspect ratio wings in a unity aspect ratio wing such that LEV growth is no limited by span but by the LEV traversing the chord revealed a flow regime of oscillatory lift generation reminiscent of behavior exhibited in translating wings that also maintains magnitude peak to peak.
Design Improvement for Airplane-Engine Nacelles
NASA Technical Reports Server (NTRS)
Vernon, D. F.; Page, G. S.; Welge, H. R.
1987-01-01
Advanced three-dimensional transonic design routine for wingmounted engine nacelles modified to include effects of propellers and wing sweep. Resulting new nacelle shapes introduce less airflow disturbance and less drag. Improvement consists of introduction of boundary conditions in form of nonuniform onset flow in area of wing washed by propeller slipstream. Routine generates nacelle shape as series of cross sections swept, relatively to unperturbed flow, as function of wing shape.
Aerodynamics of wings at low Reynolds numbers: Boundary layer separation and reattachment
NASA Astrophysics Data System (ADS)
McArthur, John
Due to advances in electronics technology, it is now possible to build small scale flying and swimming vehicles. These vehicles will have size and velocity scales similar to small birds and fish, and their characteristic Reynolds number will be between 104 and 105. Currently, these flying and swimming vehicles do not perform well, and very little research has been done to characterize them, or to explain why they perform so poorly. This dissertation documents three basic investigations into the performance of small scale lifting surfaces, with Reynolds numbers near 104. Part I. Low Reynolds number aerodynamics. Three airfoil shapes were studied at Reynolds numbers of 1 and 2x104: a flat plate airfoil, a circular arc cambered airfoil, and the Eppler 387 airfoil. Lift and drag force measurements were made on both 2D and 3D conditions, with the 3D wings having an aspect ratio of 6, and the 2D condition being approximated by placing end plates at the wing tips. Comparisons to the limited number of previous measurements show adequate agreement. Previous studies have been inconclusive on whether lifting line theory can be applied to this range of Re, but this study shows that lifting line theory can be applied when there are no sudden changes in the slope of the force curves. This is highly dependent on the airfoil shape of the wing, and explains why previous studies have been inconclusive. Part II. The laminar separation bubble. The Eppler 387 airfoil was studied at two higher Reynolds numbers: 3 and 6x10 4. Previous studies at a Reynolds number of 6x104 had shown this airfoil experiences a drag increase at moderate lift, and a subsequent drag decrease at high lift. Previous studies suggested that the drag increase is caused by a laminar separation bubble, but the experiments used to show this were conducted at higher Reynolds numbers and extrapolated down. Force measurements were combined with flow field measurements at Reynolds numbers 3 and 6x104 to determine whether the drag increase is really caused by the formation of a laminar separation bubble. The results clearly indicate that the reverse is true, and that the subsequent drag decrease is caused by the laminar separation bubble. Part III. The leading edge vortex. Four wings with different sweep angles were studied at Reynolds number 5x104: sweep angles of 0, 20, 40, and 60 degrees. The wings had a simple cambered plate airfoil similar to the cambered airfoil of part I above. Each wing was built to have the same aspect ratio, wing area, and streamwise airfoil shape. Previous studies on bird wings speculate that simply sweeping the wings can cause a leading edge vortex to form, which could cause substantial improvements in performance. However, these studies were not well controlled, and were conducted from a biological perspective. Qualitative and quantitative flow field measurements were combined with force measurements to conduct a well controlled engineering experiment on the formation and effect of a leading edge vortex on simple swept wings. A stable vortex was found to form over the 60 degree swept wing at one particular angle of attack, but it was not similar to the traditional notion of a leading edge vortex. The vortex has a small radius, and extends over little of the span. Force measurements indicate that the vortex has no significant impact on the forces measured. Thus, simply sweeping a wing is not sufficient to form a significant leading edge vortex, and other effects must be considered.
An Integrated Approach to Swept Wing Icing Simulation
NASA Technical Reports Server (NTRS)
Potapczuk, Mark G.; Broeren, Andy P.
2017-01-01
This presentation describes the various elements of a simulation approach used to develop a database of ice shape geometries and the resulting aerodynamic performance data for a representative commercial transport wing model exposed to a variety of icing conditions. Methods for capturing full three-dimensional ice shape geometries, geometry interpolation along the span of the wing, and creation of artificial ice shapes based upon that geometric data were developed for this effort. The icing conditions used for this effort were representative of actual ice shape encounter scenarios and run the gamut from ice roughness to full three-dimensional scalloped ice shapes.
Stephens, C. R.; Juliano, S. A.
2012-01-01
Estimating a mosquito’s vector competence, or likelihood of transmitting disease, if it takes an infectious blood meal, is an important aspect of predicting when and where outbreaks of infectious diseases will occur. Vector competence can be affected by rearing temperature and inter- and intraspecific competition experienced by the individual mosquito during its larval development. This research investigates whether a new morphological indicator of larval rearing conditions, wing shape, can be used to distinguish reliably temperature and competitive conditions experienced during larval stages. Aedes albopictus and Aedes aegypti larvae were reared in low intra-specific, high intra-specific, or high inter-specific competition treatments at either 22°C or 32°C. The right wing of each dried female was removed and photographed. Nineteen landmarks and twenty semilandmarks were digitized on each wing. Shape variables were calculated using geometric morphometric software. Canonical variate analysis, randomization multivariate analysis of variance, and visualization of landmark movement using deformation grids provided evidence that although semilandmark position was significantly affected by larval competition and temperature for both species, the differences in position did not translate into differences in wing shape, as shown in deformation grids. Two classification procedures yielded success rates of 26–49%. Accounting for wing size produced no increase in classification success. There appeared to be a significant relationship between shape and size. These results, particularly the low success rate of classification based on wing shape, show that shape is unlikely to be a reliable indicator of larval rearing competition and temperature conditions for Aedes albopictus and Aedes aegypti. PMID:22897054
Vertical distribution, flight behaviour and evolution of wing morphology in Morpho butterflies.
Devries, P J; Penz, Carla M; Hill, Ryan I
2010-09-01
1. Flight is a key innovation in the evolution of insects that is crucial to their dispersal, migration, territoriality, courtship and predator avoidance. Male butterflies have characteristic territoriality and courtship flight behaviours, and females use a characteristic flight behaviour when searching for host plants. This implies that selection acts on wing morphology to maximize flight performance for conducting important behaviours among sexes. 2. Butterflies in the genus Morpho are obvious components of neotropical forests, and many observations indicate that they show two broad categories of flight behaviour and flight height. Although species can be categorized as using gliding or flapping flight, and flying at either canopy or understorey height, the association of flight behaviour and flight height with wing shape evolution has never been explored. 3. Two clades within Morpho differ in flight behaviour and height. Males and females of one clade inhabit the forest understorey and use flapping flight, whereas in the other clade, males use gliding flight at canopy level and females use flapping flight in both canopy and understorey. 4. We used independent contrasts to answer whether wing shape is associated with flight behaviour and height. Given a single switch to canopy habitation and gliding flight, we compared contrasts for the node at which the switch to canopy flight occurred with the distribution of values in the two focal clades. We found significant changes in wing shape at the transition to canopy flight only in males, and no change in size for either sex. A second node within the canopy clade suggests that other factors may also be involved in wing shape evolution. Our results reinforce the hypothesis that natural selection acts differently on male and female butterfly wing shape and indicate that the transition to canopy flight cannot explain all wing shape diversity in Morpho. 5. This study provides a starting point for characterizing evolution of wing morphology in forest butterflies in the contexts of habitat selection and flight behaviour. Further, these observations suggest that exploring wing shape evolution for canopy and understorey species in other insects may help understand the effects of habitat destruction on biological diversity.
Márquez, E J; Saldamando-Benjumea, C I
2013-09-01
Habitat change in Rhodnius spp may represent an environmental challenge for the development of the species, particularly when feeding frequency and population density vary in nature. To estimate the effect of these variables in stability on development, the degree of directional asymmetry (DA) and fluctuating asymmetry (FA) in the wing size and shape of R. prolixus and R. robustus-like were measured under laboratory controlled conditions. DA and FA in wing size and shape were significant in both species, but their variation patterns showed both inter-specific and sexual dimorphic differences in FA of wing size and shape induced by nutrition stress. These results suggest different abilities of the genotypes and sexes of two sylvatic and domestic genotypes of Rhodnius to buffer these stress conditions. However, both species showed non-significant differences in the levels of FA between treatments that simulated sylvan vs domestic conditions, indicating that the developmental noise did not explain the variation in wing size and shape found in previous studies. Thus, this result confirm that the variation in wing size and shape in response to treatments constitute a plastic response of these genotypes to population density and feeding frequency.
Dipole-dipole resonance line shapes in a cold Rydberg gas
NASA Astrophysics Data System (ADS)
Richards, B. G.; Jones, R. R.
2016-04-01
We have explored the dipole-dipole mediated, resonant energy transfer reaction, 32 p3 /2+32 p3 /2→32 s +33 s , in an ensemble of cold 85Rb Rydberg atoms. Stark tuning is employed to measure the population transfer probability as a function of the total electronic energy difference between the initial and final atom-pair states over a range of Rydberg densities, 2 ×108≤ρ ≤3 ×109 cm-3. The observed line shapes provide information on the role of beyond nearest-neighbor interactions, the range of Rydberg atom separations, and the electric field inhomogeneity in the sample. The widths of the resonance line shapes increase approximately linearly with the Rydberg density and are only a factor of 2 larger than expected for two-body, nearest-neighbor interactions alone. These results are in agreement with the prediction [B. Sun and F. Robicheaux, Phys. Rev. A 78, 040701(R) (2008), 10.1103/PhysRevA.78.040701] that beyond nearest-neighbor exchange interactions should not influence the population transfer process to the degree once thought. At low densities, Gaussian rather than Lorentzian line shapes are observed due to electric field inhomogeneities, allowing us to set an upper limit for the field variation across the Rydberg sample. At higher densities, non-Lorentzian, cusplike line shapes characterized by sharp central peaks and broad wings reflect the random distribution of interatomic distances within the magneto-optical trap (MOT). These line shapes are well reproduced by an analytic expression derived from a nearest-neighbor interaction model and may serve as a useful fingerprint for characterizing the position correlation function for atoms within the MOT.
The evolution of avian wing shape and previously unrecognized trends in covert feathering
Wang, Xia; Clarke, Julia A.
2015-01-01
Avian wing shape has been related to flight performance, migration, foraging behaviour and display. Historically, linear measurements of the feathered aerofoil and skeletal proportions have been used to describe this shape. While the distribution of covert feathers, layered over the anterior wing, has long been assumed to contribute to aerofoil properties, to our knowledge no previous studies of trends in avian wing shape assessed their variation. Here, these trends are explored using a geometric–morphometric approach with landmarks describing the wing outline as well as the extent of dorsal and ventral covert feathers for 105 avian species. We find that most of the observed variation is explained by phylogeny and ecology but shows only a weak relationship with previously described flight style categories, wing loading and an investigated set of aerodynamic variables. Most of the recovered variation is in greater primary covert feather extent, followed by secondary feather length and the shape of the wing tip. Although often considered a plastic character strongly linked to flight style, the estimated ancestral wing morphology is found to be generally conservative among basal parts of most major avian lineages. The radiation of birds is characterized by successive diversification into largely distinct areas of morphospace. However, aquatic taxa show convergence in feathering despite differences in flight style, and songbirds move into a region of morphospace also occupied by basal taxa but at markedly different body sizes. These results have implications for the proposed inference of flight style in extinct taxa. PMID:26446812
Ko Displacement Theory for Structural Shape Predictions
NASA Technical Reports Server (NTRS)
Ko, William L.
2010-01-01
The development of the Ko displacement theory for predictions of structure deformed shapes was motivated in 2003 by the Helios flying wing, which had a 247-ft (75-m) wing span with wingtip deflections reaching 40 ft (12 m). The Helios flying wing failed in midair in June 2003, creating the need to develop new technology to predict in-flight deformed shapes of unmanned aircraft wings for visual display before the ground-based pilots. Any types of strain sensors installed on a structure can only sense the surface strains, but are incapable to sense the overall deformed shapes of structures. After the invention of the Ko displacement theory, predictions of structure deformed shapes could be achieved by feeding the measured surface strains into the Ko displacement transfer functions for the calculations of out-of-plane deflections and cross sectional rotations at multiple locations for mapping out overall deformed shapes of the structures. The new Ko displacement theory combined with a strain-sensing system thus created a revolutionary new structure- shape-sensing technology.
An analysis of polygenes affecting wing shape on chromosome 2 in Drosophila melanogaster.
Weber, K; Eisman, R; Higgins, S; Morey, L; Patty, A; Tausek, M; Zeng, Z B
2001-01-01
Genetic effects on an index of wing shape on chromosome 2 of Drosophila melanogaster were mapped using isogenic recombinants with transposable element markers. At least 10 genes with small additive effects are dispersed evenly along the chromosome. Many interactions exist, with only small net effects in homozygous recombinants and little effect on phenotypic variance. Heterozygous chromosome segments show almost no dominance. Pleiotropic effects on leg shape are only minor. At first view, wing shape genes form a rather homogeneous class, but certain complexities remain unresolved. PMID:11729152
NASA Technical Reports Server (NTRS)
Ko, William L.; Fleischer, Van Tran
2010-01-01
The Ko displacement theory is formulated for a cantilever tubular wing spar under bending, torsion, and combined bending and torsion loading. The Ko displacement equations are expressed in terms of strains measured at multiple sensing stations equally spaced on the surface of the wing spar. The bending and distortion strain data can then be input to the displacement equations to calculate slopes, deflections, and cross-sectional twist angles of the wing spar at the strain-sensing stations for generating the deformed shapes of flexible aircraft wing spars. The displacement equations have been successfully validated for accuracy by finite-element analysis. The Ko displacement theory that has been formulated could also be applied to calculate the deformed shape of simple and tapered beams, plates, and tapered cantilever wing boxes. The Ko displacement theory and associated strain-sensing system (such as fiber optic sensors) form a powerful tool for in-flight deformation monitoring of flexible wings and tails, such as those often employed on unmanned aerial vehicles. Ultimately, the calculated displacement data can be visually displayed in real time to the ground-based pilot for monitoring the deformed shape of unmanned aerial vehicles during flight.
Parametric geometric model and shape optimization of an underwater glider with blended-wing-body
NASA Astrophysics Data System (ADS)
Sun, Chunya; Song, Baowei; Wang, Peng
2015-11-01
Underwater glider, as a new kind of autonomous underwater vehicles, has many merits such as long-range, extended-duration and low costs. The shape of underwater glider is an important factor in determining the hydrodynamic efficiency. In this paper, a high lift to drag ratio configuration, the Blended-Wing-Body (BWB), is used to design a small civilian under water glider. In the parametric geometric model of the BWB underwater glider, the planform is defined with Bezier curve and linear line, and the section is defined with symmetrical airfoil NACA 0012. Computational investigations are carried out to study the hydrodynamic performance of the glider using the commercial Computational Fluid Dynamics (CFD) code Fluent. The Kriging-based genetic algorithm, called Efficient Global Optimization (EGO), is applied to hydrodynamic design optimization. The result demonstrates that the BWB underwater glider has excellent hydrodynamic performance, and the lift to drag ratio of initial design is increased by 7% in the EGO process.
de Camargo, Nícholas Ferreira; Corrêa, Danilo do Carmo Vieira; de Camargo, Amabílio J. Aires; Diniz, Ivone Rezende
2015-01-01
Sexual dimorphism is a pronounced pattern of intraspecific variation in Lepidoptera. However, moths of the family Sphingidae (Lepidoptera: Bombycoidea) are considered exceptions to this rule. We used geometric morphometric techniques to detect shape and size sexual dimorphism in the fore and hindwings of seven hawkmoth species. The shape variables produced were then subjected to a discriminant analysis. The allometric effects were measured with a simple regression between the canonical variables and the centroid size. We also used the normalized residuals to assess the nonallometric component of shape variation with a t-test. The deformations in wing shape between sexes per species were assessed with a regression between the nonreduced shape variables and the residuals. We found sexual dimorphism in both wings in all analyzed species, and that the allometric effects were responsible for much of the wing shape variation between the sexes. However, when we removed the size effects, we observed shape sexual dimorphism. It is very common for females to be larger than males in Lepidoptera, so it is expected that the shape of structures such as wings suffers deformations in order to preserve their function. However, sources of variation other than allometry could be a reflection of different reproductive flight behavior (long flights in search for sexual mates in males, and flight in search for host plants in females). PMID:26206895
Recent progress in the analysis of iced airfoils and wings
NASA Technical Reports Server (NTRS)
Cebeci, Tuncer; Chen, Hsun H.; Kaups, Kalle; Schimke, Sue
1992-01-01
Recent work on the analysis of iced airfoils and wings is described. Ice shapes for multielement airfoils and wings are computed using an extension of the LEWICE code that was developed for single airfoils. The aerodynamic properties of the iced wing are determined with an interactive scheme in which the solutions of the inviscid flow equations are obtained from a panel method and the solutions of the viscous flow equations are obtained from an inverse three-dimensional finite-difference boundary-layer method. A new interaction law is used to couple the inviscid and viscous flow solutions. The newly developed LEWICE multielement code is amplified to a high-lift configuration to calculate the ice shapes on the slat and on the main airfoil and on a four-element airfoil. The application of the LEWICE wing code to the calculation of ice shapes on a MS-317 swept wing shows good agreement with measurements. The interactive boundary-layer method is applied to a tapered iced wing in order to study the effect of icing on the aerodynamic properties of the wing at several angles of attack.
Numerical study of rigid and flexible wing shapes in hover
NASA Astrophysics Data System (ADS)
Shahzad, Aamer; Tian, Fang-Bao; Young, John; Lai, Joseph C. S.
2017-04-01
This study is focused on evaluating the aerodynamic performance of rigid and isotropic flexible wing shapes defined by the radius of the first moment of wing area ({\\bar{r}}1) at Reynolds number of 6000. An immersed boundary method was used to solve the 3D, viscous, incompressible Navier-Stokes equations, and coupled with an in-house non-linear finite element solver for fluid structure interaction simulations. Numerical simulations of flexible {\\bar{r}}1=0.43,0.53{and}0.63 wing shapes performed with a single degree of freedom flapping shows that thrust and peak lift coefficients increase with {\\bar{r}}1. Higher thrust in the {\\bar{r}}1=0.63 wing is attributed to the large induced pitch angle, and higher peak lift (compared to the rigid counterpart) results from an increase in the stroke amplitude and spanwise deformation of the wing that anchors the leading edge vortex.
Wind tunnel evaluation of air-foil performance using simulated ice shapes
NASA Technical Reports Server (NTRS)
Bragg, M. B.; Zaguli, R. J.; Gregorek, G. M.
1982-01-01
A two-phase wind tunnel test was conducted in the 6 by 9 foot Icing Research Tunnel (IRT) at NASA Lewis Research Center to evaluate the effect of ice on the performance of a full scale general aviation wing. In the first IRT tests, rime and glaze shapes were carefully documented as functions of angle of attack and free stream conditions. Next, simulated ice shapes were constructed for two rime and two glaze shapes and used in the second IRT tunnel entry. The ice shapes and the clean airfoil were tapped to obtain surface pressures and a probe used to measure the wake characteristics. These data were recorded and processed, on-line, with a minicomputer/digital data acquisition system. The effect of both rime and glaze ice on the pressure distribution, Cl, Cd, and Cm are presented.
Püschel, Thomas A; Espejo, Jaime; Sanzana, María-José; Benítez, Hugo A
2014-01-01
Sophora toromiro (Phil) Skottsb. is a species that has been extinct in its natural habitat Easter Island (Rapa Nui) for over 50 years. However, seed collections carried out before its extinction have allowed its persistence ex-situ in different botanical gardens and private collections around the world. The progenies of these diverse collections have been classified in different lines, most of them exhibiting high similarity as corroborated by molecular markers. In spite of this resemblance observed between the different lines, one of them (Titze) has dissimilar floral elements, thus generating doubts regarding its species classification. The floral elements (wing, standard and keel) belonging to three different S. toromiro lines and two related species were analyzed using geometric morphometrics. This method was applied in order to quantify the floral shape variation of the standard, wing, and keel between the different lines and control species. Geometric morphometrics analyses were able to distinguish the floral elements at both intra (lines) and inter-specific levels. The present results are on line with the cumulative evidence that supports the Titze line as not being a proper member of the S. toromiro species, but probably a hybridization product or even another species of the Edwardsia section. The reintroduction programs of S. toromiro should consider this information when assessing the authenticity and origin of the lines that will be used to repopulate the island.
Wing shape variation associated with mimicry in butterflies.
Jones, Robert T; Le Poul, Yann; Whibley, Annabel C; Mérot, Claire; ffrench-Constant, Richard H; Joron, Mathieu
2013-08-01
Mimetic resemblance in unpalatable butterflies has been studied by evolutionary biologists for over a century, but has largely focused on the convergence in wing color patterns. In Heliconius numata, discrete color-pattern morphs closely resemble comimics in the distantly related genus Melinaea. We examine the possibility that the shape of the butterfly wing also shows adaptive convergence. First, simple measures of forewing dimensions were taken of individuals in a cross between H. numata morphs, and showed quantitative differences between two of the segregating morphs, f. elegans and f. silvana. Second, landmark-based geometric morphometric and elliptical Fourier outline analyses were used to more fully characterize these shape differences. Extension of these techniques to specimens from natural populations suggested that, although many of the coexisting morphs could not be discriminated by shape, the differences we identified between f. elegans and f. silvana hold in the wild. Interestingly, despite extensive overlap, the shape variation between these two morphs is paralleled in their respective Melinaea comimics. Our study therefore suggests that wing-shape variation is associated with mimetic resemblance, and raises the intriguing possibility that the supergene responsible for controlling the major switch in color pattern between morphs also contributes to wing shape differences in H. numata. © 2013 The Author(s). Evolution © 2013 The Society for the Study of Evolution.
Aerodynamic shape optimization of wing and wing-body configurations using control theory
NASA Technical Reports Server (NTRS)
Reuther, James; Jameson, Antony
1995-01-01
This paper describes the implementation of optimization techniques based on control theory for wing and wing-body design. In previous studies it was shown that control theory could be used to devise an effective optimization procedure for airfoils and wings in which the shape and the surrounding body-fitted mesh are both generated analytically, and the control is the mapping function. Recently, the method has been implemented for both potential flows and flows governed by the Euler equations using an alternative formulation which employs numerically generated grids, so that it can more easily be extended to treat general configurations. Here results are presented both for the optimization of a swept wing using an analytic mapping, and for the optimization of wing and wing-body configurations using a general mesh.
Design and aerodynamic characteristics of a span morphing wing
NASA Astrophysics Data System (ADS)
Yu, Yuemin; Liu, Yanju; Leng, Jinsong
2009-03-01
Flight vehicles are often designed to function around a primary operating point such as an efficient cruise or a high maneuverability mode. Performance and efficiency deteriorate rapidly as the airplane moves towards other portions of the flight envelope. One solution to this quandary is to radically change the shape of the aircraft. This yields both improved efficiency and a larger flight envelope. This global shape change is an example of morphing aircraft . One concept of morphing is the span morphing wing in which the wingspan is varied to accommodate multiple flight regimes. This type of design allows for at least two discreet modes of the aircraft. The original configuration, in which the extensible portion of the wing is fully retracted, yields a high speed dash mode. Fully extending the wing provides the aircraft with a low speed mode tailored for fine tracking and loiter tasks. This paper discusses the design of a span morphing wing that permits a change in the aspect ratio while simultaneously supporting structural wing loads. The wing cross section is maintained by NACA 4412 rib sections . The span morphing wing was investigated in different configurations. The wing area and the aspect ratio of the span morphing wing increase as the wings pan increases. Computational aerodynamics are used to estimate the performance and dynamic characteristics of each wing shape of this span morphing wing as its wingspan is changed. Results show that in order to obtain the same lift, the conventional wing requires a larger angle of attach(AOA) than that of the span morphing wing.The lift of the span morphing wing increases as the wing span ,Mach number and AOA increases.
The evolution of avian wing shape and previously unrecognized trends in covert feathering.
Wang, Xia; Clarke, Julia A
2015-10-07
Avian wing shape has been related to flight performance, migration, foraging behaviour and display. Historically, linear measurements of the feathered aerofoil and skeletal proportions have been used to describe this shape. While the distribution of covert feathers, layered over the anterior wing, has long been assumed to contribute to aerofoil properties, to our knowledge no previous studies of trends in avian wing shape assessed their variation. Here, these trends are explored using a geometric-morphometric approach with landmarks describing the wing outline as well as the extent of dorsal and ventral covert feathers for 105 avian species. We find that most of the observed variation is explained by phylogeny and ecology but shows only a weak relationship with previously described flight style categories, wing loading and an investigated set of aerodynamic variables. Most of the recovered variation is in greater primary covert feather extent, followed by secondary feather length and the shape of the wing tip. Although often considered a plastic character strongly linked to flight style, the estimated ancestral wing morphology is found to be generally conservative among basal parts of most major avian lineages. The radiation of birds is characterized by successive diversification into largely distinct areas of morphospace. However, aquatic taxa show convergence in feathering despite differences in flight style, and songbirds move into a region of morphospace also occupied by basal taxa but at markedly different body sizes. These results have implications for the proposed inference of flight style in extinct taxa. © 2015 The Author(s).
Optimal pitching axis location of flapping wings for efficient hovering flight.
Wang, Q; Goosen, J F L; van Keulen, F
2017-09-01
Flapping wings can pitch passively about their pitching axes due to their flexibility, inertia, and aerodynamic loads. A shift in the pitching axis location can dynamically alter the aerodynamic loads, which in turn changes the passive pitching motion and the flight efficiency. Therefore, it is of great interest to investigate the optimal pitching axis for flapping wings to maximize the power efficiency during hovering flight. In this study, flapping wings are modeled as rigid plates with non-uniform mass distribution. The wing flexibility is represented by a linearly torsional spring at the wing root. A predictive quasi-steady aerodynamic model is used to evaluate the lift generated by such wings. Two extreme power consumption scenarios are modeled for hovering flight, i.e. the power consumed by a drive system with and without the capacity of kinetic energy recovery. For wings with different shapes, the optimal pitching axis location is found such that the cycle-averaged power consumption during hovering flight is minimized. Optimization results show that the optimal pitching axis is located between the leading edge and the mid-chord line, which shows close resemblance to insect wings. An optimal pitching axis can save up to 33% of power during hovering flight when compared to traditional wings used by most of flapping wing micro air vehicles (FWMAVs). Traditional wings typically use the straight leading edge as the pitching axis. With the optimized pitching axis, flapping wings show higher pitching amplitudes and start the pitching reversals in advance of the sweeping reversals. These phenomena lead to higher lift-to-drag ratios and, thus, explain the lower power consumption. In addition, the optimized pitching axis provides the drive system higher potential to recycle energy during the deceleration phases as compared to their counterparts. This observation underlines the particular importance of the wing pitching axis location for energy-efficient FWMAVs when using kinetic energy recovery drive systems.
Hatadani, Luciane Mendes; Klaczko, Louis Bernard
2008-07-01
The second chromosome of Drosophila mediopunctata is highly polymorphic for inversions. Previous work reported a significant interaction between these inversions and collecting date on wing size, suggesting the presence of genotype-environment interaction. We performed experiments in the laboratory to test for the joint effects of temperature and chromosome inversions on size and shape of the wing in D. mediopunctata. Size was measured as the centroid size, and shape was analyzed using the generalized least squares Procrustes superimposition followed by discriminant analysis and canonical variates analysis of partial warps and uniform components scores. Our findings show that wing size and shape are influenced by temperature, sex, and karyotype. We also found evidence suggestive of an interaction between the effects of karyotype and temperature on wing shape, indicating the existence of genotype-environment interaction for this trait in D. mediopunctata. In addition, the association between wing size and chromosome inversions is in agreement with previous results indicating that these inversions might be accumulating alleles adapted to different temperatures. However, no significant interaction between temperature and karyotype for size was found--in spite of the significant presence of temperature-genotype (cross) interaction. We suggest that other ecological factors--such as larval crowding--or seasonal variation of genetic content within inversions may explain the previous results.
NASA Technical Reports Server (NTRS)
Spearman, M Leroy; Becht, Robert E
1948-01-01
An investigation has been conducted in the Langley 300 MPH 7- by 10-foot tunnel to determine the effect of negative dihedral, tip droop, and wing-tip shape on the low-speed aerodynamic characteristics of a complete model having a 45 degrees sweptback wing. Longitudinal and lateral stability characteristics were obtained for the model with and without tail surfaces.
Modal Response of Trapezoidal Wing Structures Using Second Order Shape Sensitivities
NASA Technical Reports Server (NTRS)
Liu, Youhua; Kapania, Rakesh K.
2000-01-01
The modal response of wing structures is very important for assessing their dynamic response including dynamic aeroelastic instabilities. Moreover, in a recent study an efficient structural optimization approach was developed using structural modes to represent the static aeroelastic wing response (both displacement and stress). In this paper, the modal response of general trapezoidal wing structures is approximated using shape sensitivities up to the 2nd order. Also different approaches of computing the derivatives are investigated.
de Camargo, Willian Rogers Ferreira; de Camargo, Nícholas Ferreira; Corrêa, Danilo do Carmo Vieira; de Camargo, Amabílio J Aires; Diniz, Ivone Rezende
2015-01-01
Sexual dimorphism is a pronounced pattern of intraspecific variation in Lepidoptera. However, moths of the family Sphingidae (Lepidoptera: Bombycoidea) are considered exceptions to this rule. We used geometric morphometric techniques to detect shape and size sexual dimorphism in the fore and hindwings of seven hawkmoth species. The shape variables produced were then subjected to a discriminant analysis. The allometric effects were measured with a simple regression between the canonical variables and the centroid size. We also used the normalized residuals to assess the nonallometric component of shape variation with a t-test. The deformations in wing shape between sexes per species were assessed with a regression between the nonreduced shape variables and the residuals. We found sexual dimorphism in both wings in all analyzed species, and that the allometric effects were responsible for much of the wing shape variation between the sexes. However, when we removed the size effects, we observed shape sexual dimorphism. It is very common for females to be larger than males in Lepidoptera, so it is expected that the shape of structures such as wings suffers deformations in order to preserve their function. However, sources of variation other than allometry could be a reflection of different reproductive flight behavior (long flights in search for sexual mates in males, and flight in search for host plants in females). © The Author 2015. Published by Oxford University Press on behalf of the Entomological Society of America.
Alexis, Matamoro-Vidal; Isaac, Salazar-Ciudad; David, Houle
2015-01-01
One of the aims of evolutionary developmental biology is to discover the developmental origins of morphological variation. The discipline has mainly focused on qualitative morphological differences (e.g., presence or absence of a structure) between species. Studies addressing subtle, quantitative variation are less common. The Drosophila wing is a model for the study of development and evolution, making it suitable to investigate the developmental mechanisms underlying the subtle quantitative morphological variation observed in nature. Previous reviews have focused on the processes involved in wing differentiation, patterning and growth. Here, we investigate what is known about how the wing achieves its final shape, and what variation in development is capable of generating the variation in wing shape observed in nature. Three major developmental stages need to be considered: larval development, pupariation, and pupal development. The major cellular processes involved in the determination of tissue size and shape are cell proliferation, cell death, oriented cell division and oriented cell intercalation. We review how variation in temporal and spatial distribution of growth and transcription factors affects these cellular mechanisms, which in turn affects wing shape. We then discuss which aspects of the wing morphological variation are predictable on the basis of these mechanisms. PMID:25619644
Three-dimensional aerodynamic shape optimization of supersonic delta wings
NASA Technical Reports Server (NTRS)
Burgreen, Greg W.; Baysal, Oktay
1994-01-01
A recently developed three-dimensional aerodynamic shape optimization procedure AeSOP(sub 3D) is described. This procedure incorporates some of the most promising concepts from the area of computational aerodynamic analysis and design, specifically, discrete sensitivity analysis, a fully implicit 3D Computational Fluid Dynamics (CFD) methodology, and 3D Bezier-Bernstein surface parameterizations. The new procedure is demonstrated in the preliminary design of supersonic delta wings. Starting from a symmetric clipped delta wing geometry, a Mach 1.62 asymmetric delta wing and two Mach 1. 5 cranked delta wings were designed subject to various aerodynamic and geometric constraints.
Properties of oscillating refractive optical wings with one reflective surface
NASA Astrophysics Data System (ADS)
Artusio-Glimpse, Alexandra B.; Swartzlander, Grover A.
2013-09-01
A new modality for optical micromanipulation is under investigation. Optical wings are shaped refractive objects that experience a force and torque owing to the reflection and transmission of uniform light at the object surface. We present wing designs that provide a restoring torque that returns the wing to a source facing orientation while preserving efficient thrust from radiation pressure. The torsional stiffness and orbital period of a set of optical wing cross-sectional shapes are determined from numerical ray-tracing analyses. These results demonstrate the potential to develop an efficient optomechanical device for applications in microbiology and space flight systems.
Shape matters: improved flight in tapered auto-rotating wings
NASA Astrophysics Data System (ADS)
Liu, Yucen; Vincent, Lionel; Kanso, Eva
2017-11-01
Many plants use gravity and wind to disperse their seeds. The shape of seed pods influence their aerodynamics. For example, Liana seeds form aerodynamic gliders and Sycamore trees release airborne ``helicopters.'' Here, we use carefully-controlled experiments and high-speed photography to examine dispersion by tumbling (auto-rotation) and we focus on the effect of geometry on flight characteristics. We consider four families of shapes: rectangular, elliptic, tapered, and sharp-tip wings, and we vary the span-to-chord ratio. We find that tapered wings exhibit extended flight time and range, that is, better performance. A quasi-steady two-dimensional model is used to highlight the mechanisms by which shape affects flight performance. These findings could have significant implications on linking seedpod designs to seed dispersion patterns as well as on optimizing wing design in active flight problems.
NASA Technical Reports Server (NTRS)
Ko, William L.; Fleischer, Van Tran
2013-01-01
Large deformation displacement transfer functions were formulated for deformed shape predictions of highly flexible slender structures like aircraft wings. In the formulation, the embedded beam (depth wise cross section of structure along the surface strain sensing line) was first evenly discretized into multiple small domains, with surface strain sensing stations located at the domain junctures. Thus, the surface strain (bending strains) variation within each domain could be expressed with linear of nonlinear function. Such piecewise approach enabled piecewise integrations of the embedded beam curvature equations [classical (Eulerian), physical (Lagrangian), and shifted curvature equations] to yield closed form slope and deflection equations in recursive forms.
Design of a shape-memory alloy actuated macro-scale morphing aircraft mechanism
NASA Astrophysics Data System (ADS)
Manzo, Justin; Garcia, Ephrahim; Wickenheiser, Adam; Horner, Garnett C.
2005-05-01
As more alternative, lightweight actuators have become available, the conventional fixed-wing configuration seen on modern aircraft is under investigation for efficiency on a broad scale. If an aircraft could be designed with multiple functional equilibria of drastically varying aerodynamic parameters, one craft capable of 'morphing' its shape could be used to replace two or three designed with particular intentions. One proposed shape for large-scale (geometry change on the same order of magnitude as wingspan) morphing is the Hyper-Elliptical Cambered Span (HECS) wing, designed at NASA Langley to be implemented on an unmanned aerial vehicle (UAV). Proposed mechanisms to accomplish the spanwise curvature (in the y-z plane of the craft) that allow near-continuous bending of the wing are narrowed to a tendon-based DC motor actuated system, and a shape memory alloy-based (SMA) mechanism. At Cornell, simulations and wind tunnel experiments assess the validity of the HECS wing as a potential shape for a blended-wing body craft with the potential to effectively serve the needs of two conventional UAVs, and analyze the energetics of actuation associated with a morphing maneuver accomplished with both a DC motor and SMA wire.
Gómez, Giovan F.; Márquez, Edna J.; Gutiérrez, Lina A.; Conn, Jan E.; Correa, Margarita M.
2015-01-01
Anopheles albimanus is a major malaria mosquito vector in Colombia. In the present study, wing variability (size and shape) in An. albimanus populations from Colombian Maracaibo and Chocó bio-geographical eco-regions and the relationship of these phenotypic traits with environmental factors were evaluated. Microsatellite and morphometric data facilitated a comparison of the genetic and phenetic structure of this species. Wing size was influenced by elevation and relative humidity, whereas wing shape was affected by these two variables and also by rainfall, latitude, temperature and eco-region. Significant differences in mean shape between populations and eco-regions were detected, but they were smaller than those at the intra-population level. Correct assignment based on wing shape was low at the population level (<58%) and only slightly higher (>70%) at the eco-regional level, supporting the low population structure inferred from microsatellite data. Wing size was similar among populations with no significant differences between eco-regions. Population relationships in the genetic tree did not agree with those from the morphometric data; however, both datasets consistently reinforced a panmictic population of An. albimanus. Overall, site-specific population differentiation is not strongly supported by wing traits or genotypic data. We hypothesize that the metapopulation structure of An. albimanus throughout these Colombian eco-regions is favoring plasticity in wing traits, a relevant characteristic of species living under variable environmental conditions and colonizing new habitats. PMID:24704285
Investigation on adaptive wing structure based on shape memory polymer composite hinge
NASA Astrophysics Data System (ADS)
Yu, Yuemin; Li, Xinbo; Zhang, Wei; Leng, Jinsong
2007-07-01
This paper describes the design and investigation of the SMP composite hinge and the morphing wing structure. The SMP composite hinge was based on SMP and carbon fiber fabric. The twisting recoverability of it was investigated by heating and then cooling repeatedly above and below the Tg. The twisting recoverability characterized by the twisting angle. Results show that the SMP composite hinge have good shape recoverability, Recovery time has a great influence on the twisting recoverability. The twisting recovery ratio became large with the increment of recovery time. The morphing wing can changes shape for different tasks. For the advantages of great recovery force and stable performances, we adopt SMP composite hinge as actuator to apply into the structure of the wing which can realize draw back wings to change sweep angle according to the speed and other requirements of military airplanes. Finally, a series of simulations and experiments are performed to investigate the deformations of morphing wings have been performed successfully. It can be seen that the sweep angle change became large with the increment of initial angle. The area reduction became large with the increment of initial angle, but after 75° the area reduction became smaller and smaller. The deformations of the triangle wing became large with the increment of temperature. The area and the sweep angle of wings can be controlled by adjusting the stimulate temperature and the initial twisting angle of shape memory polymer composite hinge.
Characterization of a highly efficient chevron-shaped anti-contamination device
NASA Astrophysics Data System (ADS)
Fiore, M.; Vermeersch, O.; Forte, M.; Casalis, G.; François, C.
2016-04-01
This paper is devoted to the characterization of an optimized chevron-shaped anti-contamination device (ACD). This device can prevent efficiently the propagation of turbulence from the fuselage along the attachment line (hypothetical streamline that spreads the flow going to suction side and the one going to pressure side) of swept wings and enables the development of a new laminar boundary layer downstream. More specifically, the aim is to prevent boundary-layer transition along the attachment line by a contamination process. This process is characterized by the typical Reynolds number overline{R} and the associated Poll's criterion. Thus, ACD efficiency will be expressed in terms of overline{R} values. Some experiments performed on a new numerically optimized ACD have shown its ability to prevent leading-edge contamination up to overline{R} values close to the natural transition process of the laminar boundary layer along the attachment line. The corresponding stability analysis of the laminar boundary layer is made using the Görtler-Hämmerlin stability approach. The study is completed with the different transition processes that can occur downstream the attachment line, around the airfoil, especially with crossflow analysis.
Ortega Ancel, Alejandro; Eastwood, Rodney; Vogt, Daniel; Ithier, Carter; Smith, Michael; Wood, Rob; Kovač, Mirko
2017-02-06
Many insects are well adapted to long-distance migration despite the larger energetic costs of flight for small body sizes. To optimize wing design for next-generation flying micro-robots, we analyse butterfly wing shapes and wing orientations at full scale using numerical simulations and in a low-speed wind tunnel at 2, 3.5 and 5 m s -1 . The results indicate that wing orientations which maximize wing span lead to the highest glide performance, with lift to drag ratios up to 6.28, while spreading the fore-wings forward can increase the maximum lift produced and thus improve versatility. We discuss the implications for flying micro-robots and how the results assist in understanding the behaviour of the butterfly species tested.
Eastwood, Rodney; Vogt, Daniel; Ithier, Carter; Smith, Michael; Wood, Rob; Kovač, Mirko
2017-01-01
Many insects are well adapted to long-distance migration despite the larger energetic costs of flight for small body sizes. To optimize wing design for next-generation flying micro-robots, we analyse butterfly wing shapes and wing orientations at full scale using numerical simulations and in a low-speed wind tunnel at 2, 3.5 and 5 m s−1. The results indicate that wing orientations which maximize wing span lead to the highest glide performance, with lift to drag ratios up to 6.28, while spreading the fore-wings forward can increase the maximum lift produced and thus improve versatility. We discuss the implications for flying micro-robots and how the results assist in understanding the behaviour of the butterfly species tested. PMID:28163879
Flight test results from a supercritical mission adaptive wing with smooth variable camber
NASA Technical Reports Server (NTRS)
Powers, Sheryll Goecke; Webb, Lannie D.; Friend, Edward L.; Lokos, William A.
1992-01-01
The mission adaptive wing (MAW) consisted of leading- and trailing-edge variable-camber surfaces that could be deflected in flight to provide a near-ideal wing camber shape for any flight condition. These surfaces featured smooth, flexible upper surfaces and fully enclosed lower surfaces, distinguishing them from conventional flaps that have discontinuous surfaces and exposed or semiexposed mechanisms. Camber shape was controlled by either a manual or automatic flight control system. The wing and aircraft were extensively instrumented to evaluate the local flow characteristics and the total aircraft performance. This paper discusses the interrelationships between the wing pressure, buffet, boundary-layer and flight deflection measurement system analyses and describes the flight maneuvers used to obtain the data. The results are for a wing sweep of 26 deg, a Mach number of 0.85, leading and trailing-edge cambers (delta(sub LE/TE)) of 0/2 and 5/10, and angles of attack from 3.0 deg to 14.0 deg. For the well-behaved flow of the delta(sub LE/TE) = 0/2 camber, a typical cruise camber shape, the local and global data are in good agreement with respect to the flow properties of the wing. For the delta(sub LE/TE) = 5/10 camber, a maneuvering camber shape, the local and global data have similar trends and conclusions, but not the clear-cut agreement observed for cruise camber.
Design and Analysis of Morphing Wing for Unmanned Aerial Vehicles
NASA Astrophysics Data System (ADS)
Galantai, Vlad Paul
This study is concerned with the design and development of a novel wing for UAVs that morphs seamlessly without the use of complex hydraulics, servo motors and controllers. The selected novel design is characterized by a high degree of flight adaptability and improved performance with a limited added weight. These characteristics were attained through the use of shape memory actuators in an antagonistic fashion. Unlike compliant actuators, the antagonistic setup requires the thermal energy to deform the wing but not to maintain its deformed shape. Structural analysis based upon safety factors specified by FAR23 standards and aerodynamic analysis using FLUENT were conducted on the novel design to validate its suitability as a viable wing for UAVs. In addition, thermal conditioning of the shape memory actuators was conducted using a specially designed programmable controller. This thesis does not concern itself with the design of a skin that accommodates the shape changes.
Sumruayphol, Suchada; Chittsamart, Boonruam; Polseela, Raxsina; Sriwichai, Patchara; Samung, Yudthana; Apiwathnasorn, Chamnarn; Dujardin, Jean-Pierre
2017-01-01
Geographic populations of the two main sandflies genera present in Thailand were studied for species and population identification. Size and shape of Phlebotomus stantoni and Sergentomyia hodgsoni from different island and mainland locations were examined by landmark-based geometric morphometrics. Intraspecific and interspecific wing comparison was carried out based on 12 anatomical landmarks. The wing centroid size of P. stantoni was generally larger than that of S. hodgsoni. Within both species, wings from the continent were significantly larger than those from island populations. Size variation could be significant between geographic locations, but could also overlap between genera. The wing venation geometry showed non-overlapping differences between two species. The within-species variation of geometric shape between different geographical locations was highly significant, but it could not interfere with the interspecies difference. The lack of species overlapping in shape, and the high discrimination between geographic populations, make geometric shape a promising character for future taxonomic and epidemiological studies. Copyright © 2016 Académie des sciences. Published by Elsevier SAS. All rights reserved.
NASA Astrophysics Data System (ADS)
Reed, John L., Jr.; Hemmelgarn, Christopher D.; Pelley, Bryan M.; Havens, Ernie
2005-05-01
Cornerstone Research Group, Inc. (CRG) is developing a unique adaptive wing structure intended to enhance the capability of loitering Unmanned Air Vehicles (UAVs). In order to tailor the wing design to a specific application, CRG has developed a wing structure capable of morphing in chord and increasing planform area by 80 percent. With these features, aircraft will be capable of optimizing their flight efficiency throughout the entire mission profile. The key benefit from this morphing design is increased maneuverability, resulting in improved effectiveness over the current design. During the development process CRG has overcome several challenges in the design of such a structure while incorporating advanced materials capable of maintaining aerodynamic shape and transferring aerodynamic loads while enabling crucial changes in planform shape. To overcome some of these challenges, CRG is working on integration of their shape memory polymer materials into the wing skin to enable seamless morphing. This paper will address the challenges associated with the development of a morphing aerospace structure capable of such large shape change, the materials necessary for enabling morphing capabilities, and the current status of the morphing program within CRG.
Scaling law and enhancement of lift generation of an insect-size hovering flexible wing
Kang, Chang-kwon; Shyy, Wei
2013-01-01
We report a comprehensive scaling law and novel lift generation mechanisms relevant to the aerodynamic functions of structural flexibility in insect flight. Using a Navier–Stokes equation solver, fully coupled to a structural dynamics solver, we consider the hovering motion of a wing of insect size, in which the dynamics of fluid–structure interaction leads to passive wing rotation. Lift generated on the flexible wing scales with the relative shape deformation parameter, whereas the optimal lift is obtained when the wing deformation synchronizes with the imposed translation, consistent with previously reported observations for fruit flies and honeybees. Systematic comparisons with rigid wings illustrate that the nonlinear response in wing motion results in a greater peak angle compared with a simple harmonic motion, yielding higher lift. Moreover, the compliant wing streamlines its shape via camber deformation to mitigate the nonlinear lift-degrading wing–wake interaction to further enhance lift. These bioinspired aeroelastic mechanisms can be used in the development of flapping wing micro-robots. PMID:23760300
Charge exchange between two nearest neighbour ions immersed in a dense plasma
NASA Astrophysics Data System (ADS)
Sauvan, P.; Angelo, P.; Derfoul, H.; Leboucher-Dalimier, E.; Devdariani, A.; Calisti, A.; Talin, B.
1999-04-01
In dense plasmas the quasimolecular model is relevant to describe the radiative properties: two nearest neighbor ions remain close to each other during a time scale of the order of the emission time. Within the frame of a quasistatic approach it has been shown that hydrogen-like spectral line shapes can exhibit satellite-like features. In this work we present the effect on the line shapes of the dynamical collision between the two ions exchanging transiently their bound electron. This model is suitable for the description of the core, the wings and the red satellite-like features. It is post-processed to the self consistent code (IDEFIX) giving the adiabatic transition energies and the oscillator strengths for the transient molecule immersed in a dense free electron bath. It is shown that the positions of the satellites are insensitive to the dynamics of the ion-ion collision. Results for fluorine Lyβ are presented.
NASA Astrophysics Data System (ADS)
Li, Y.; Kelly, M.; Ding, M. D.; Qiu, J.; Zhu, X. S.; Gan, W. Q.
2017-10-01
We present observations of distinct UV spectral properties at different locations during an atypical X-shaped flare (SOL2014-11-09T15:32) observed by the Interface Region Imaging Spectrograph (IRIS). In this flare, four chromospheric ribbons appear and converge at an X-point where a separator is anchored. Above the X-point, two sets of non-coplanar coronal loops approach laterally and reconnect at the separator. The IRIS slit was located close to the X-point, cutting across some of the flare ribbons and loops. Near the location of the separator, the Si IV 1402.77 Å line exhibits significantly broadened line wings extending to 200 km s-1 with an unshifted line core. These spectral features suggest the presence of bidirectional flows possibly related to the separator reconnection. While at the flare ribbons, the hot Fe xxi 1354.08 Å line shows blueshifts and the cool Si IV 1402.77 Å, C II 1335.71 Å, and Mg II 2803.52 Å lines show evident redshifts up to a velocity of 80 km s-1, which are consistent with the scenario of chromospheric evaporation/condensation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Y.; Gan, W. Q.; Kelly, M.
We present observations of distinct UV spectral properties at different locations during an atypical X-shaped flare (SOL2014-11-09T15:32) observed by the Interface Region Imaging Spectrograph ( IRIS ). In this flare, four chromospheric ribbons appear and converge at an X-point where a separator is anchored. Above the X-point, two sets of non-coplanar coronal loops approach laterally and reconnect at the separator. The IRIS slit was located close to the X-point, cutting across some of the flare ribbons and loops. Near the location of the separator, the Si iv 1402.77 Å line exhibits significantly broadened line wings extending to 200 km s{supmore » −1} with an unshifted line core. These spectral features suggest the presence of bidirectional flows possibly related to the separator reconnection. While at the flare ribbons, the hot Fe xxi 1354.08 Å line shows blueshifts and the cool Si iv 1402.77 Å, C ii 1335.71 Å, and Mg ii 2803.52 Å lines show evident redshifts up to a velocity of 80 km s{sup −1}, which are consistent with the scenario of chromospheric evaporation/condensation.« less
NASA Technical Reports Server (NTRS)
Urnes, James, Sr.; Nguyen, Nhan; Ippolito, Corey; Totah, Joseph; Trinh, Khanh; Ting, Eric
2013-01-01
Boeing and NASA are conducting a joint study program to design a wing flap system that will provide mission-adaptive lift and drag performance for future transport aircraft having light-weight, flexible wings. This Variable Camber Continuous Trailing Edge Flap (VCCTEF) system offers a lighter-weight lift control system having two performance objectives: (1) an efficient high lift capability for take-off and landing, and (2) reduction in cruise drag through control of the twist shape of the flexible wing. This control system during cruise will command varying flap settings along the span of the wing in order to establish an optimum wing twist for the current gross weight and cruise flight condition, and continue to change the wing twist as the aircraft changes gross weight and cruise conditions for each mission segment. Design weight of the flap control system is being minimized through use of light-weight shape memory alloy (SMA) actuation augmented with electric actuators. The VCCTEF program is developing better lift and drag performance of flexible wing transports with the further benefits of lighter-weight actuation and less drag using the variable camber shape of the flap.
Optimization of entry-vehicle shapes during conceptual design
NASA Astrophysics Data System (ADS)
Dirkx, D.; Mooij, E.
2014-01-01
During the conceptual design of a re-entry vehicle, the vehicle shape and geometry can be varied and its impact on performance can be evaluated. In this study, the shape optimization of two classes of vehicles has been studied: a capsule and a winged vehicle. Their aerodynamic characteristics were analyzed using local-inclination methods, automatically selected per vehicle segment. Entry trajectories down to Mach 3 were calculated assuming trimmed conditions. For the winged vehicle, which has both a body flap and elevons, a guidance algorithm to track a reference heat-rate was used. Multi-objective particle swarm optimization was used to optimize the shape using objectives related to mass, volume and range. The optimizations show a large variation in vehicle performance over the explored parameter space. Areas of very strong non-linearity are observed in the direct neighborhood of the two-dimensional Pareto fronts. This indicates the need for robust exploration of the influence of vehicle shapes on system performance during engineering trade-offs, which are performed during conceptual design. A number of important aspects of the influence of vehicle behavior on the Pareto fronts are observed and discussed. There is a nearly complete convergence to narrow-wing solutions for the winged vehicle. Also, it is found that imposing pitch-stability for the winged vehicle at all angles of attack results in vehicle shapes which require upward control surface deflections during the majority of the entry.
NASA Technical Reports Server (NTRS)
Jutte, Christine V.; Ko, William L.; Stephens, Craig A.; Bakalyar, John A.; Richards, W. Lance
2011-01-01
A ground loads test of a full-scale wing (175-ft span) was conducted using a fiber optic strain-sensing system to obtain distributed surface strain data. These data were input into previously developed deformed shape equations to calculate the wing s bending and twist deformation. A photogrammetry system measured actual shape deformation. The wing deflections reached 100 percent of the positive design limit load (equivalent to 3 g) and 97 percent of the negative design limit load (equivalent to -1 g). The calculated wing bending results were in excellent agreement with the actual bending; tip deflections were within +/- 2.7 in. (out of 155-in. max deflection) for 91 percent of the load steps. Experimental testing revealed valuable opportunities for improving the deformed shape equations robustness to real world (not perfect) strain data, which previous analytical testing did not detect. These improvements, which include filtering methods developed in this work, minimize errors due to numerical anomalies discovered in the remaining 9 percent of the load steps. As a result, all load steps attained +/- 2.7 in. accuracy. Wing twist results were very sensitive to errors in bending and require further development. A sensitivity analysis and recommendations for fiber implementation practices, along with, effective filtering methods are included
Wing planform effects at supersonic speeds for an advanced fighter configuration
NASA Technical Reports Server (NTRS)
Wood, R. M.; Miller, D. S.
1984-01-01
Four advanced fighter configurations, which differed in wing planform and airfoil shape, were investigated in the Langley Unitary Plan Wind Tunnel at Mach numbers of 1.60, 1.80, 2.00, and 2.16. Supersonic data were obtained on the four uncambered wings, which were each attached to a single fighter fuselage. The fuselage geometry varied in cross-sectional shape and had two side-mounted, flow-through, half-axisymmetric inlets. Twin vertical tails were attached to the fuselage. The four planforms tested were a 65 deg delta wing, a combination of a 20 deg trapezoidal wing and a 45 deg horizontal tail, a 70 deg/30 deg cranked wing, and a 70 deg/66 deg crank wing, where the angle values refer to the leading-edge sweep angle of the lifting-surface planform. Planform effects on a single fuselage representative of an advanced fighter aircraft were studied. Results show that the highly swept cranked wings exceeded the aerodynamic performance levels, at low lift coefficients, of the 65 deg delta wing and the 20 deg trapezoidal wing at trimmed and untrimmed conditions.
Displacement Theories for In-Flight Deformed Shape Predictions of Aerospace Structures
NASA Technical Reports Server (NTRS)
Ko, William L.; Richards, W. L.; Tran, Van t.
2007-01-01
Displacement theories are developed for a variety of structures with the goal of providing real-time shape predictions for aerospace vehicles during flight. These theories are initially developed for a cantilever beam to predict the deformed shapes of the Helios flying wing. The main structural configuration of the Helios wing is a cantilever wing tubular spar subjected to bending, torsion, and combined bending and torsion loading. The displacement equations that are formulated are expressed in terms of strains measured at multiple sensing stations equally spaced on the surface of the wing spar. Displacement theories for other structures, such as tapered cantilever beams, two-point supported beams, wing boxes, and plates also are developed. The accuracy of the displacement theories is successfully validated by finite-element analysis and classical beam theory using input-strains generated by finite-element analysis. The displacement equations and associated strain-sensing system (such as fiber optic sensors) create a powerful means for in-flight deformation monitoring of aerospace structures. This method serves multiple purposes for structural shape sensing, loads monitoring, and structural health monitoring. Ultimately, the calculated displacement data can be visually displayed to the ground-based pilot or used as input to the control system to actively control the shape of structures during flight.
Sensitivity Analysis of Flutter Response of a Wing Incorporating Finite-Span Corrections
NASA Technical Reports Server (NTRS)
Issac, Jason Cherian; Kapania, Rakesh K.; Barthelemy, Jean-Francois M.
1994-01-01
Flutter analysis of a wing is performed in compressible flow using state-space representation of the unsteady aerodynamic behavior. Three different expressions are used to incorporate corrections due to the finite-span effects of the wing in estimating the lift-curve slope. The structural formulation is based on a Rayleigh-Pitz technique with Chebyshev polynomials used for the wing deflections. The aeroelastic equations are solved as an eigen-value problem to determine the flutter speed of the wing. The flutter speeds are found to be higher in these cases, when compared to that obtained without accounting for the finite-span effects. The derivatives of the flutter speed with respect to the shape parameters, namely: aspect ratio, area, taper ratio and sweep angle, are calculated analytically. The shape sensitivity derivatives give a linear approximation to the flutter speed curves over a range of values of the shape parameter which is perturbed. Flutter and sensitivity calculations are performed on a wing using a lifting-surface unsteady aerodynamic theory using modules from a system of programs called FAST.
a New Efficient Control Method for Blended Wing Body
NASA Astrophysics Data System (ADS)
Wu, Wenhua; Chen, Dehua; Qin, Ning; Peng, Xin; Tang, Xinwu
The blended wing body (BWB) is the hottest one of the aerodynamic shapes of next generation airliner because of its' high lift-drag ratio, but there are still some flaws that cut down its aerodynamical performance. One of the most harmful flaws is the low efficiency of elevator and direction rudder, this makes the BWB hard to be controlled. In this paper, we proposed a new control method to solve this problem by morphing wing—that is, to control the BWB only by changing its wing shape but without any rudder. The pitching moments, rolling moments and yawing moments are plotted versus the parameters section and the wing shape in figures and are discussed in the paper. The result shows that the morphing wing can control the moments of BWB more precisely and in wider range. The pitching moments, rolling moments and yawing moments increases or decreases linearly or almost linearly, with the value of the selected parameters. These results show that using morphing wing is an excellent aerodynamic control way for a BWB craft.
Cavicchi, Sandro; Guerra, Daniela; Giorgi, Gianfranco; Pezzoli, Cristina
1985-01-01
The effects of environmental temperature on wing size and shape of Drosophila melanogaster were analyzed in populations derived from an Oregon laboratory strain kept at three temperatures (18°, 25°, 28°) for 4 yr. Temperature-directed selection was identified for both wing size and shape. The length of the four longitudinal veins, used as a test for wing size variations in the different populations, appears to be affected by both genetic and maternal influences. Vein expression appears to be dependent upon developmental pattern of the wing: veins belonging to the same compartment are coordinated in their expression and relative position, whereas veins belonging to different compartments are not. Both wing and cell areas show genetic divergence, particularly in the posterior compartment. Cell number seems to compensate for cell size variations. Such compensation is carried out both at the level of single organisms and at the level of population as a whole. The two compartments behave as individual units of selection. PMID:17246257
Design of a composite wing extension for a general aviation aircraft
NASA Technical Reports Server (NTRS)
Adney, P. S.; Horn, W. J.
1984-01-01
A composite wing extension was designed for a typical general aviation aircraft to improve lift curve slope, dihedral effect, and lift to drag ratio. Advanced composite materials were used in the design to evaluate their use as primary structural components in general aviation aircraft. Extensive wind tunnel tests were used to evaluate six extension shapes. The extension shape chosen as the best choice was 28 inches long with a total area of 17 square feet. Subsequent flight tests showed the wing extension's predicted aerodynamic improvements to be correct. The structural design of the wing extension consisted of a hybrid laminate carbon core with outer layers of Kevlar - layed up over a foam interior which acted as an internal support. The laminate skin of the wing extension was designed from strength requirements, and the foam core was included to prevent buckling. A joint lap was recommended to attach the wing extension to the main wing structure.
Deformation Measurements of Smart Aerodynamic Surfaces
NASA Technical Reports Server (NTRS)
Fleming, Gary A.; Burner, Alpheus
2005-01-01
Video Model Deformation (VMD) and Projection Moire Interferometry (PMI) were used to acquire wind tunnel model deformation measurements of the Northrop Grumman-built Smart Wing tested in the NASA Langley Transonic Dynamics Tunnel. The F18-E/F planform Smart Wing was outfitted with embedded shape memory alloys to actuate a seamless trailing edge aileron and flap, and an embedded torque tube to generate wing twist. The VMD system was used to obtain highly accurate deformation measurements at three spanwise locations along the main body of the wing, and at spanwise locations on the flap and aileron. The PMI system was used to obtain full-field wing shape and deformation measurements over the entire wing lower surface. Although less accurate than the VMD system, the PMI system revealed deformations occurring between VMD target rows indistinguishable by VMD. This paper presents the VMD and PMI techniques and discusses their application in the Smart Wing test.
The effect of aspect ratio on the leading-edge vortex over an insect-like flapping wing.
Phillips, Nathan; Knowles, Kevin; Bomphrey, Richard J
2015-10-09
Insect wing shapes are diverse and a renowned source of inspiration for the new generation of autonomous flapping vehicles, yet the aerodynamic consequences of varying geometry is not well understood. One of the most defining and aerodynamically significant measures of wing shape is the aspect ratio, defined as the ratio of wing length (R) to mean wing chord (c). We investigated the impact of aspect ratio, AR, on the induced flow field around a flapping wing using a robotic device. Rigid rectangular wings ranging from AR = 1.5 to 7.5 were flapped with insect-like kinematics in air with a constant Reynolds number (Re) of 1400, and a dimensionless stroke amplitude of 6.5c (number of chords traversed by the wingtip). Pseudo-volumetric, ensemble-averaged, flow fields around the wings were captured using particle image velocimetry at 11 instances throughout simulated downstrokes. Results confirmed the presence of a high-lift, separated flow field with a leading-edge vortex (LEV), and revealed that the conical, primary LEV grows in size and strength with increasing AR. In each case, the LEV had an arch-shaped axis with its outboard end originating from a focus-sink singularity on the wing surface near the tip. LEV detachment was observed for AR > 1.5 around mid-stroke at ~70% span, and initiated sooner over higher aspect ratio wings. At AR > 3 the larger, stronger vortex persisted under the wing surface well into the next half-stroke leading to a reduction in lift. Circulatory lift attributable to the LEV increased with AR up to AR = 6. Higher aspect ratios generated proportionally less lift distally because of LEV breakdown, and also less lift closer to the wing root due to the previous LEV's continuing presence under the wing. In nature, insect wings go no higher than AR ~ 5, likely in part due to architectural and physiological constraints but also because of the reducing aerodynamic benefits of high AR wings.
Acoustic investigation of the engine-over-the-wing concept using a D-shaped nozzle.
NASA Technical Reports Server (NTRS)
Reshotko, M.; Friedman, R.
1973-01-01
Small-model experiments were conducted of the engine-over-the-wing concept using a D-shaped nozzle in order to determine the static-lift and acoustic characteristics at two wing-flap positions. Configurations were tested with the flow attached and unattached to the upper surface of the flaps. Attachment was obtained with a nozzle flow deflector. In both cases, high frequency noise shielding by the wing was obtained. Configurations using the D-shaped nozzle are compared with corresponding ones using a circular nozzle. With flow attached to the flaps, the static lift and acoustic results are almost the same for both nozzles. Without the nozzle flow deflector (unattached flap flow), the D-nozzle is considerably noisier than a circular nozzle in the low and middle frequencies.
Structural analysis and testing of a carbon-composite wing using fiber Bragg gratings
NASA Astrophysics Data System (ADS)
Nicolas, Matthew James
The objective of this study was to determine the deflected wing shape and the out-of-plane loads of a large-scale carbon-composite wing of an ultralight aerial vehicle using Fiber Bragg Grating (FBG) technology. The composite wing was instrumented with an optical fiber on its top and bottom surfaces positioned over the main spar, resulting in approximately 780 strain sensors bonded to the wings. The strain data from the FBGs was compared to that obtained from four conventional strain gages, and was used to obtain the out-of-plane loads as well as the wing shape at various load levels using NASA-developed real-time load and displacement algorithms. The composite wing measured 5.5 meters and was fabricated from laminated carbon uniaxial and biaxial prepreg fabric with varying laminate ply patterns and wall thickness dimensions. A three-tier whiffletree system was used to load the wing in a manner consistent with an in-flight loading condition.
Garzón, Maximiliano J; Schweigmann, Nicolás
2018-06-23
Shape variability among individuals is important to understand some ecological relationships, since it provides the nexus between the genotype and the environment. Geometric morphometrics based on generalized procrustes analysis was applied on 17 landmarks of the wings of Aedes albifasciatus (Macquart 1838) (Diptera: Culicidae) females collected from three ecoregions of Argentina (Delta and islands of the Paraná River, Pampa, and Patagonian steppe). This methodology was used to discriminate the shapes of individuals belonging to different regions. The population of the Patagonian steppe, which was the most geographically distant, showed the most dissimilar shape. Different local variations in wing shape could have been selected according to the environmental characteristics and maintained by geographic isolation. The individuals of the two ecoregions closest to each other (Delta and islands of the Paraná River and Pampa) showed differences in shape that can be explained by a lower gene flow due to the effect of geographic isolation (by the Paraná River) and the limited dispersive capacity of Ae. albifasciatus. The results allow concluding that both environmental diversity and geographic barriers could contribute to local variations in wing shape.
Quantifying the dynamic wing morphing of hovering hummingbird
Nakata, Toshiyuki; Kitamura, Ikuo; Tanaka, Hiroto
2017-01-01
Animal wings are lightweight and flexible; hence, during flapping flight their shapes change. It has been known that such dynamic wing morphing reduces aerodynamic cost in insects, but the consequences in vertebrate flyers, particularly birds, are not well understood. We have developed a method to reconstruct a three-dimensional wing model of a bird from the wing outline and the feather shafts (rachides). The morphological and kinematic parameters can be obtained using the wing model, and the numerical or mechanical simulations may also be carried out. To test the effectiveness of the method, we recorded the hovering flight of a hummingbird (Amazilia amazilia) using high-speed cameras and reconstructed the right wing. The wing shape varied substantially within a stroke cycle. Specifically, the maximum and minimum wing areas differed by 18%, presumably due to feather sliding; the wing was bent near the wrist joint, towards the upward direction and opposite to the stroke direction; positive upward camber and the ‘washout’ twist (monotonic decrease in the angle of incidence from the proximal to distal wing) were observed during both half-strokes; the spanwise distribution of the twist was uniform during downstroke, but an abrupt increase near the wrist joint was found during upstroke. PMID:28989736
NASA Astrophysics Data System (ADS)
Mieloszyk, M.; Krawczuk, M.; Zak, A.; Ostachowicz, W.
2010-08-01
In this paper a concept of an adaptive wing for small-aircraft applications with an array of fibre Bragg grating (FBG) sensors has been presented and discussed. In this concept the shape of the wing can be controlled and altered thanks to the wing design and the use of integrated shape memory alloy actuators. The concept has been tested numerically by the use of the finite element method. For numerical calculations the commercial finite element package ABAQUS® has been employed. A finite element model of the wing has been prepared in order to estimate the values of the wing twisting angles and distributions of the twist for various activation scenarios. Based on the results of numerical analysis the locations and numbers of the FBG sensors have also been determined. The results of numerical calculations obtained by the authors confirmed the usefulness of the assumed wing control strategy. Based on them and the concept developed of the adaptive wing, a wing demonstration stand has been designed and built. The stand has been used to verify experimentally the performance of the adaptive wing and the usefulness of the FBG sensors for evaluation of the wing condition.
Garzón, Maximiliano J; Schweigmann, Nicolás
2018-05-16
Gene flow restrictions between populations of Aedes albifasciatus, the vector of Western equine encephalitis and Dirophilaria immitis, have been described in the central region of Argentina. Genetic and eco-physiological variations usually result in local forms reflecting the climatic regions. Mosquito wings and their different parts have ecological functions in flight and communication. Therefore, wing shape could be considered an aspect of sexual dimorphism, and its eco-physiological responses can be expressed as morphological changes induced by the environment. To compare the geographical and sexual variations with respect to wing shape and size in two Ae. albifasciatus populations from contrasting climates of Argentina (temperate: Buenos Aires, and the arid steppe of Patagonia: Sarmiento), the wings of adults reared in thermal trays at different constant temperatures (10-29 °C) were analyzed. The wing size of Ae. albifasciatus showed inverse linear relationships with the rearing thermal condition and higher slope for Buenos Aires. In the cool range (10-17 °C), geographical size variations responded to the converse Bergmann's rule, where Buenos Aires individuals were larger than those from Sarmiento. Sexual shape dimorphism occurred in both populations while geographical variation in shape was observed in both sexes. Buenos Aires individuals showed greater response sensitivity with respect to the size-temperature relation than those from Sarmiento. The converse Bergmann's rule in size variation could be due to a higher development rate in Sarmiento to produce more cohorts in the limited favorable season. The shape could be more relevant with respect to the size in the study of population structures due to the size being more liable to vary due to changes in the environment. The geographical variations with respect to morphology could be favored by the isolation between populations and adaptations to the environmental conditions. Our results demonstrate that the shape and size of wing provide useful phenotypic information for studies related to sexual and environmental adaptations.
Pressure broadening and frequency shift of the D 1 and D 2 lines of K in the presence of Ne and Kr
NASA Astrophysics Data System (ADS)
Wang, Xulin; Chen, Yao; Quan, Wei; Chi, Haotian; Fang, Jiancheng
2018-02-01
We present the results of pressure broadening and frequency shift of K D 1 and D 2 lines in presence of 1-4 amg of Neon gas and 1-5 amg of Krypton gas by laser absorption spectroscopy. Both pressure broadening and frequency shift are linearly related to gas density with high accuracy. The asymmetry of the absorption line shape caused by van der Waals potential was first found in the near-line wings of large density Kr in the experiment. We have also investigated the temperature dependence of the pressure broadening and frequency shift in a range of 353-403 K in Neon and 373-417 K in Krypton and compared the results of the pressure broadening and frequency shift with previous values.
Monitor Variability of Millimeter Lines in IRC+10216
NASA Astrophysics Data System (ADS)
He, J. H.; Dinh-V-Trung; Hasegawa, T. I.
2017-08-01
A single dish monitoring of millimeter maser lines SiS J = 14-13 and HCN {ν }2={1}f J = 3-2 and several other rotational lines is reported for the archetypal carbon star IRC+10216. Relative line strength variations of 5% ∼ 30% are found for eight molecular line features with respect to selected reference lines. Definite line-shape variations are found in limited velocity intervals of the SiS and HCN line profiles. The asymmetrical line profiles of the two lines are mainly due to the varying components. The dominant varying components of the line profiles have similar periods and phases to the IR light variation, though both quantities show some degree of velocity dependence; there is also variability asymmetry between the blue and red line wings of both lines. Combining the velocities and amplitudes with a wind velocity model, we suggest that the line profile variations are due to SiS and HCN masing lines emanating from the wind acceleration zone. The possible link of the variabilities to thermal, dynamical, and/or chemical processes within or under this region is also discussed.
K-H2 line shapes for the spectra of cool brown dwarfs
NASA Astrophysics Data System (ADS)
Allard, N. F.; Spiegelman, F.; Kielkopf, J. F.
2016-05-01
Observations of cooler and cooler brown dwarfs show that the contribution from broadening at many bars pressure is becoming important. The opacity in the red optical to near-IR region under these conditions is dominated by the extremely pressure-broadened wings of the alkali resonance lines, in particular, the K I resonance doublet at 0.77 μm. Collisions with H2 are preponderant in brown dwarf atmospheres at an effective temperature of about 1000 K; the H2 perturber densities reach several 1019 even in Jupiter-mass planets and exceed 1020 for super-Jupiters and older Y dwarfs. As a consequence, it appears that when the far wing absorption due to alkali atoms in a dense H2 atmosphere is significant, accurate pressure broadened profiles that are valid at high densities of H2 should be incorporated into spectral models. The opacity tables are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/589/A21
Magneto-optical Effects in the Scattering Polarization Wings of the Ca I 4227 Å Resonance Line
NASA Astrophysics Data System (ADS)
Alsina Ballester, E.; Belluzzi, L.; Trujillo Bueno, J.
2018-02-01
The linear polarization pattern produced by scattering processes in the Ca I 4227 Å resonance line is a valuable observable for probing the solar atmosphere. Via the Hanle effect, the very significant Q/I and U/I line-center signals are sensitive to the presence of magnetic fields in the lower chromosphere with strengths between 5 and 125 G, approximately. On the other hand, partial frequency redistribution (PRD) produces sizable signals in the wings of the Q/I profile, which have always been thought to be insensitive to the presence of magnetic fields. Interestingly, novel observations of this line revealed a surprising behavior: fully unexpected signals in the wings of the U/I profile and spatial variability in the wings of both Q/I and U/I. We show that the magneto-optical (MO) terms of the Stokes-vector transfer equation produce sizable signals in the wings of U/I and a clear sensitivity of the Q/I and U/I wings to the presence of photospheric magnetic fields with strengths similar to those that produce the Hanle effect in the line core. This radiative transfer investigation on the joint action of scattering processes and the Hanle and Zeeman effects in the Ca I 4227 Å line should facilitate the development of more reliable techniques for exploring the magnetism of stellar atmospheres. To this end, we can now exploit the circular polarization produced by the Zeeman effect, the magnetic sensitivity caused by the above-mentioned MO effects in the Q/I and U/I wings, and the Hanle effect in the line core.
Shape control of structures with semi-definite stiffness matrices for adaptive wings
NASA Astrophysics Data System (ADS)
Austin, Fred; Van Nostrand, William C.; Rossi, Michael J.
1993-09-01
Maintaining an optimum-wing cross section during transonic cruise can dramatically reduce the shock-induced drag and can result in significant fuel savings and increased range. Our adaptive-wing concept employs actuators as truss elements of active ribs to reshape the wing cross section by deforming the structure. In our previous work, to derive the shape control- system gain matrix, we developed a procedure that requires the inverse of the stiffness matrix of the structure without the actuators. However, this method cannot be applied to designs where the actuators are required structural elements since the stiffness matrices are singular when the actuator are removed. Consequently, a new method was developed, where the order of the problem is reduced and only the inverse of a small nonsingular partition of the stiffness matrix is required to obtain the desired gain matrix. The procedure was experimentally validated by achieving desired shapes of a physical model of an aircraft-wing rib. The theory and test results are presented.
Control Theory based Shape Design for the Incompressible Navier-Stokes Equations
NASA Astrophysics Data System (ADS)
Cowles, G.; Martinelli, L.
2003-12-01
A design method for shape optimization in incompressible turbulent viscous flow has been developed and validated for inverse design. The gradient information is determined using a control theory based algorithm. With such an approach, the cost of computing the gradient is negligible. An additional adjoint system must be solved which requires the cost of a single steady state flow solution. Thus, this method has an enormous advantage over traditional finite-difference based algorithms. The method of artificial compressibility is utilized to solve both the flow and adjoint systems. An algebraic turbulence model is used to compute the eddy viscosity. The method is validated using several inverse wing design test cases. In each case, the program must modify the shape of the initial wing such that its pressure distribution matches that of the target wing. Results are shown for the inversion of both finite thickness wings as well as zero thickness wings which can be considered a model of yacht sails.
Experimental study of a generic high-speed civil transport: Tabulated data
NASA Technical Reports Server (NTRS)
Belton, Pamela S.; Campbell, Richard L.
1992-01-01
An experimental study of a generic high-speed civil transport was conducted in LaRC's 8-Foot Transonic Pressure Tunnel. The data base was obtained for the purpose of assessing the accuracy of various levels of computational analysis. Two models differing only in wing tip geometry were tested with and without flow-through nacelles. The baseline model has a curved or crescent wing tip shape while the second model has a more conventional straight wing tip shape. The study was conducted at Mach numbers from 0.30-1.19. Force data were obtained on both the straight and curved wing tip models. Only the curved wing tip model was instrumented for measuring pressures. Longitudinal and lateral-directional aerodynamic data are presented without analysis in tabulated form. Pressure coefficients for the curved wing tip model are also presented in tabulated form.
Saito, Kazuya; Nomura, Shuhei; Yamamoto, Shuhei; Niiyama, Ryuma; Okabe, Yoji
2017-05-30
Ladybird beetles are high-mobility insects and explore broad areas by switching between walking and flying. Their excellent wing transformation systems enabling this lifestyle are expected to provide large potential for engineering applications. However, the mechanism behind the folding of their hindwings remains unclear. The reason is that ladybird beetles close the elytra ahead of wing folding, preventing the observation of detailed processes occurring under the elytra. In the present study, artificial transparent elytra were transplanted on living ladybird beetles, thereby enabling us to observe the detailed wing-folding processes. The result revealed that in addition to the abdominal movements mentioned in previous studies, the edge and ventral surface of the elytra, as well as characteristic shaped veins, play important roles in wing folding. The structures of the wing frames enabling this folding process and detailed 3D shape of the hindwing were investigated using microcomputed tomography. The results showed that the tape spring-like elastic frame plays an important role in the wing transformation mechanism. Compared with other beetles, hindwings in ladybird beetles are characterized by two seemingly incompatible properties: ( i ) the wing rigidity with relatively thick veins and ( ii ) the compactness in stored shapes with complex crease patterns. The detailed wing-folding process revealed in this study is expected to facilitate understanding of the naturally optimized system in this excellent deployable structure.
Nomura, Shuhei; Yamamoto, Shuhei; Niiyama, Ryuma; Okabe, Yoji
2017-01-01
Ladybird beetles are high-mobility insects and explore broad areas by switching between walking and flying. Their excellent wing transformation systems enabling this lifestyle are expected to provide large potential for engineering applications. However, the mechanism behind the folding of their hindwings remains unclear. The reason is that ladybird beetles close the elytra ahead of wing folding, preventing the observation of detailed processes occurring under the elytra. In the present study, artificial transparent elytra were transplanted on living ladybird beetles, thereby enabling us to observe the detailed wing-folding processes. The result revealed that in addition to the abdominal movements mentioned in previous studies, the edge and ventral surface of the elytra, as well as characteristic shaped veins, play important roles in wing folding. The structures of the wing frames enabling this folding process and detailed 3D shape of the hindwing were investigated using microcomputed tomography. The results showed that the tape spring-like elastic frame plays an important role in the wing transformation mechanism. Compared with other beetles, hindwings in ladybird beetles are characterized by two seemingly incompatible properties: (i) the wing rigidity with relatively thick veins and (ii) the compactness in stored shapes with complex crease patterns. The detailed wing-folding process revealed in this study is expected to facilitate understanding of the naturally optimized system in this excellent deployable structure. PMID:28507159
NASA Technical Reports Server (NTRS)
Wood, Richard M.; Byrd, James E.; Wesselmann, Gary F.
1992-01-01
An assessment of the influence of airfoil geometry on delta wing leading edge vortex flow and vortex induced aerodynamics at supersonic speeds is discussed. A series of delta wing wind tunnel models were tested over a Mach number range from 1.7 to 2.0. The model geometric variables included leading edge sweep and airfoil shape. Surface pressure data, vapor screen, and oil flow photograph data were taken to evaluate the complex structure of the vortices and shocks on the family of wings tested. The data show that airfoil shape has a significant impact on the wing upper surface flow structure and pressure distribution, but has a minimal impact on the integrated upper surface pressure increments.
NASA Technical Reports Server (NTRS)
Bobbitt, Percy J
1957-01-01
The lifting-surface sidewash behind rolling triangular wings has been derived for a range of supersonic Mach numbers for which the wing leading edges remain swept behind the mark cone emanating from the wing apex. Variations of the sidewash with longitudinal distance in the vertical plane of symmetry are presented in graphical form. An approximate expression for the sidewash has been developed by means of an approach using a horseshoe-vortex approximate-lifting-line theory. By use of this approximate expression, sidewash may be computed for wings of arbitrary plan form and span loading. A comparison of the sidewash computed by lifting-surface and lifting-line expressions for the triangular wing showed good agreement except in the vicinity of the trailing edge when the leading edge approached the sonic condition. An illustrative calculation has been made of the force induced by the wing sidewash on a vertical tail located in various longitudinal positions.
Static shape control for adaptive wings
NASA Astrophysics Data System (ADS)
Austin, Fred; Rossi, Michael J.; van Nostrand, William; Knowles, Gareth; Jameson, Antony
1994-09-01
A theoretical method was developed and experimentally validated, to control the static shape of flexible structures by employing internal translational actuators. A finite element model of the structure, without the actuators present, is employed to obtain the multiple-input, multiple-output control-system gain matrices for actuator-load control as well as actuator-displacement control. The method is applied to the quasistatic problem of maintaining an optimum-wing cross section during various transonic-cruise flight conditions to obtain significant reductions in the shock-induced drag. Only small, potentially achievable, adaptive modifications to the profile are required. The adaptive-wing concept employs actuators as truss elements of active ribs to reshape the wing cross section by deforming the structure. Finite element analyses of an adaptive-rib model verify the controlled-structure theory. Experiments on the model were conducted, and arbitrarily selected deformed shapes were accurately achieved.
NASA Technical Reports Server (NTRS)
Ko, William L.; Fleischer, Van Tran
2015-01-01
Variable-Domain Displacement Transfer Functions were formulated for shape predictions of complex wing structures, for which surface strain-sensing stations must be properly distributed to avoid jointed junctures, and must be increased in the high strain gradient region. Each embedded beam (depth-wise cross section of structure along a surface strain-sensing line) was discretized into small variable domains. Thus, the surface strain distribution can be described with a piecewise linear or a piecewise nonlinear function. Through discretization, the embedded beam curvature equation can be piece-wisely integrated to obtain the Variable-Domain Displacement Transfer Functions (for each embedded beam), which are expressed in terms of geometrical parameters of the embedded beam and the surface strains along the strain-sensing line. By inputting the surface strain data into the Displacement Transfer Functions, slopes and deflections along each embedded beam can be calculated for mapping out overall structural deformed shapes. A long tapered cantilever tubular beam was chosen for shape prediction analysis. The input surface strains were analytically generated from finite-element analysis. The shape prediction accuracies of the Variable- Domain Displacement Transfer Functions were then determined in light of the finite-element generated slopes and deflections, and were fofound to be comparable to the accuracies of the constant-domain Displacement Transfer Functions
NASA Astrophysics Data System (ADS)
Booysen, A. J.; Pistorius, C. W. I.; Malherbe, J. A. G.
1991-06-01
The radar cross section of the leading edge of a conducting wing-shaped structure is reduced by replacing part of the structure with a lossless dielectric material. The structure retains its original external shape, thereby ensuring that the aerodynamic properties are not altered by the structural changes needed to reduce the radar cross section.
MADCAT Aircraft Wings Optimize Their Shape For Efficient Flight
2016-11-09
The Mission Adaptive Digital Composites Aerostructures Technology (MADCAT) project is designing an aircraft wing that can change its shape to adapt to changing flight conditions. Constructed of lightweight lattice structures made of carbon fiber materials, the goal is to reduce drag, leading to more efficient airplanes.
Maneuvering control and configuration adaptation of a biologically inspired morphing aircraft
NASA Astrophysics Data System (ADS)
Abdulrahim, Mujahid
Natural flight as a source of inspiration for aircraft design was prominent with early aircraft but became marginalized as aircraft became larger and faster. With recent interest in small unmanned air vehicles, biological inspiration is a possible technology to enhance mission performance of aircraft that are dimensionally similar to gliding birds. Serial wing joints, loosely modeling the avian skeletal structure, are used in the current study to allow significant reconfiguration of the wing shape. The wings are reconfigured to optimize aerodynamic performance and maneuvering metrics related to specific mission tasks. Wing shapes for each mission are determined and related to the seagulls, falcons, albatrosses, and non-migratory African swallows on which the aircraft are based. Variable wing geometry changes the vehicle dynamics, affording versatility in flight behavior but also requiring appropriate compensation to maintain stability and controllability. Time-varying compensation is in the form of a baseline controller which adapts to both the variable vehicle dynamics and to the changing mission requirements. Wing shape is adapted in flight to minimize a cost function which represents energy, temporal, and spatial efficiency. An optimal control architecture unifies the control and adaptation tasks.
Geometric Analysis of Wing Sections
DOT National Transportation Integrated Search
1995-04-01
This paper describes a new geometric analysis procedure for wing sections. This procedure is based on the normal mode analysis for continuous functions. A set of special shape functions is introduced to represent the geometry of the wing section. The...
Aerostructural optimization of a morphing wing for airborne wind energy applications
NASA Astrophysics Data System (ADS)
Fasel, U.; Keidel, D.; Molinari, G.; Ermanni, P.
2017-09-01
Airborne wind energy (AWE) vehicles maximize energy production by constantly operating at extreme wing loading, permitted by high flight speeds. Additionally, the wide range of wind speeds and the presence of flow inhomogeneities and gusts create a complex and demanding flight environment for AWE systems. Adaptation to different flow conditions is normally achieved by conventional wing control surfaces and, in case of ground generator-based systems, by varying the reel-out speed. These control degrees of freedom enable to remain within the operational envelope, but cause significant penalties in terms of energy output. A significantly greater adaptability is offered by shape-morphing wings, which have the potential to achieve optimal performance at different flight conditions by tailoring their airfoil shape and lift distribution at different levels along the wingspan. Hence, the application of compliant structures for AWE wings is very promising. Furthermore, active gust load alleviation can be achieved through morphing, which leads to a lower weight and an expanded flight envelope, thus increasing the power production of the AWE system. This work presents a procedure to concurrently optimize the aerodynamic shape, compliant structure, and composite layup of a morphing wing for AWE applications. The morphing concept is based on distributed compliance ribs, actuated by electromechanical linear actuators, guiding the deformation of the flexible—yet load-carrying—composite skin. The goal of the aerostructural optimization is formulated as a high-level requirement, namely to maximize the average annual power production per wing area of an AWE system by tailoring the shape of the wing, and to extend the flight envelope of the wing by actively alleviating gust loads. The results of the concurrent multidisciplinary optimization show a 50.7% increase of extracted power with respect to a sequentially optimized design, highlighting the benefits of morphing and the potential of the proposed approach.
2011-12-01
deformation is passive, because there are no control muscles to actively change the wing shape[2]. 2 1.2 The Problem The overall...properly under flapping conditions to generate lift. This is key because the insect lacks muscles to actively change the wing shape[2]. For a...millimeters with the origin at the center of the left camera. During these tests, there was still glare off the carbon fiber , although it did not obscure
An experimental study of mushroom shaped stall cells. [on finite wings with separated flow
NASA Technical Reports Server (NTRS)
Winkelmann, A. E.
1982-01-01
Surface patterns characterized by a pair of counter-rotating swirls have been observed in connection with the conduction of surface flow visualization experiments involving test geometries with separated flows. An example of this phenomenon occurring on a finite wing with trailing edge stall has been referred to by Winkelmann and Barlow (1980) as 'mushroom shaped'. A description is presented of a collection of experimental results which show or suggest the occurrence of mushroom shaped stall cells on a variety of test geometries. Investigations conducted with finite wings, airfoil models, and flat plates are considered, and attention is given to studies involving the use of bluff models, investigations of shock induced boundary layer separation, and mushroom shaped patterns observed in a number of miscellaneous cases. It is concluded that the mushroom shaped stall cell appears commonly in separated flow regions.
NASA Technical Reports Server (NTRS)
Graves, E. B.
1972-01-01
A study has been made to determine the aerodynamic characteristics of a low-aspect ratio cruciform missile model with all-movable wings and tails. The configuration was tested at Mach numbers from 1.50 to 4.63 with the wings in the vertical and horizontal planes and with the wings in a 45 deg roll plane with tails in line and interdigitated.
Skin friction fields on delta wings
NASA Astrophysics Data System (ADS)
Woodiga, S. A.; Liu, Tianshu
2009-12-01
The normalized skin friction fields on a 65° delta wing and a 76°/40° double-delta wing are measured by using a global luminescent oil-film skin friction meter. The detailed topological structures of skin friction fields on the wings are revealed for different angles of attack and the important features are detected such as reattachment lines, secondary separation lines, vortex bursting and vortex interaction. The comparisons with the existing flow visualization results are discussed.
Implementation and Validation of 3-D Ice Accretion Measurement Methodology
NASA Technical Reports Server (NTRS)
Lee, Sam; Broeren, Andy P.; Kreeger, Richard E.; Potapczuk, Mark; Utt, Lloyd
2014-01-01
A research program has been implemented to develop and validate the use of a commercial 3-D laser scanning system to record ice accretion geometry in the NASA Icing Research Tunnel. A main component of the program was the geometric assessment of the 3- D laser scanning system on a 2-D (straight wing) and a 3-D (swept wing) airfoil geometries. This exercise consisted of comparison of scanned ice accretion to castings of the same ice accretion. The scan data were also used to create rapid prototype artificial ice shapes that were scanned and compared to the original ice accretion. The results from geometric comparisons on the straight wing showed that the ice shape models generated through the scan/rapid prototype process compared reasonably well with the cast shapes. Similar results were obtained with the geometric comparisons on the swept wing. It was difficult to precisely compare the scans of the cast shapes to the original ice accretion scans because the cast shapes appear to have shrunk during the mold/casting process by as much as 0.10-inch. However the comparison of the local ice-shape features were possible and produced better results. The rapid prototype manufacturing process was shown to reproduce the original ice accretion scan normally within 0.01-inch.
Wing-section optimization for supersonic viscous flow
NASA Technical Reports Server (NTRS)
Item, Cem C.; Baysal, Oktay (Editor)
1995-01-01
To improve the shape of a supersonic wing, an automated method that also includes higher fidelity to the flow physics is desirable. With this impetus, an aerodynamic optimization methodology incorporating thin-layer Navier-Stokes equations and sensitivity analysis had been previously developed. Prior to embarking upon the wind design task, the present investigation concentrated on testing the feasibility of the methodology, and the identification of adequate problem formulations, by defining two-dimensional, cost-effective test cases. Starting with two distinctly different initial airfoils, two independent shape optimizations resulted in shapes with similar features: slightly cambered, parabolic profiles with sharp leading- and trailing-edges. Secondly, the normal section to the subsonic portion of the leading edge, which had a high normal angle-of-attack, was considered. The optimization resulted in a shape with twist and camber which eliminated the adverse pressure gradient, hence, exploiting the leading-edge thrust. The wing section shapes obtained in all the test cases had the features predicted by previous studies. Therefore, it was concluded that the flowfield analyses and sensitivity coefficients were computed and fed to the present gradient-based optimizer correctly. Also, as a result of the present two-dimensional study, suggestions were made for the problem formulations which should contribute to an effective wing shape optimization.
Intelligent design optimization of a shape-memory-alloy-actuated reconfigurable wing
NASA Astrophysics Data System (ADS)
Lagoudas, Dimitris C.; Strelec, Justin K.; Yen, John; Khan, Mohammad A.
2000-06-01
The unique thermal and mechanical properties offered by shape memory alloys (SMAs) present exciting possibilities in the field of aerospace engineering. When properly trained, SMA wires act as linear actuators by contracting when heated and returning to their original shape when cooled. It has been shown experimentally that the overall shape of an airfoil can be altered by activating several attached SMA wire actuators. This shape-change can effectively increase the efficiency of a wing in flight at several different flow regimes. To determine the necessary placement of these wire actuators within the wing, an optimization method that incorporates a fully-coupled structural, thermal, and aerodynamic analysis has been utilized. Due to the complexity of the fully-coupled analysis, intelligent optimization methods such as genetic algorithms have been used to efficiently converge to an optimal solution. The genetic algorithm used in this case is a hybrid version with global search and optimization capabilities augmented by the simplex method as a local search technique. For the reconfigurable wing, each chromosome represents a realizable airfoil configuration and its genes are the SMA actuators, described by their location and maximum transformation strain. The genetic algorithm has been used to optimize this design problem to maximize the lift-to-drag ratio for a reconfigured airfoil shape.
Experimental multiphysical characterization of an SMA driven, camber morphing owl wing section
NASA Astrophysics Data System (ADS)
Stroud, Hannah R.; Leal, Pedro B. C.; Hartl, Darren J.
2018-03-01
In the context of aerospace engineering, morphing structures are useful in their ability to change the outer mold line (OML) while improving or maintaining certain aerodynamic performance metrics. Skin-based morphing is of particular interest in that it minimizes installation volume. Shape memory alloys (SMAs) have a high force to volume ratio that makes them a suitable choice for skin-based morphing. Because the thermomechanical properties of SMAs are coupled, strain can be generated via a temperature variation; this phenomenon is used as the actuation method. Therefore, it is necessary to determine the interaction of the system not only with aerodynamic loads, but with thermal loads as well. This paper describes the wind tunnel testing and in situ thermomechanical analysis of an SMA actuated, avian inspired morphing wing. The morphing wing is embedded with two SMA composite actuators and consists of a foam core enveloped in a fiberglass-epoxy composite. As the SMA wire is heated, the actuator contracts, morphing the wing from the original owl OML to a highly cambered, high lift OML. Configuration characteristics are analyzed in situ using simultaneous three dimensional digital image correlation (DIC) and infrared thermography, thereby coupling strain and thermal measurements. This method of testing allows for the nonintrusive, multiphysical data acquisition of each actuator separately and the system as a whole.
2008-05-01
Ikhana fiber optic wing shape sensor team: clockwise from left, Anthony "Nino" Piazza, Allen Parker, William Ko and Lance Richards. The sensors, located along a fiber the thickness of a human hair, aren't visible in the center of the Ikhana aircraft's left wing. NASA Dryden Flight Research Center is evaluating an advanced fiber optic-based sensing technology installed on the wings of NASA's Ikhana aircraft. The fiber optic system measures and displays the shape of the aircraft's wings in flight. There are other potential safety applications for the technology, such as vehicle structural health monitoring. If an aircraft structure can be monitored with sensors and a computer can manipulate flight control surfaces to compensate for stresses on the wings, structural control can be established to prevent situations that might otherwise result in a loss of control.
The Effect of Changes in the ASCA Calibration on the Fe-K Lines in Active Galaxies
NASA Technical Reports Server (NTRS)
Yaqoob, T.; Padmanabhan, U.; Dotani, T.; Nandra, K.; White, Nicholas E. (Technical Monitor)
2001-01-01
The ASCA calibration has evolved considerably since launch and indeed, is still evolving. There have been concerns in the literature that changes in the ASCA calibration have resulted in the Fe-K lines in active galaxies (AGN) now being systematically narrower than was originally thought. If this were true, a large body of ASCA results would be impacted. In particular, it has been claimed that the broad red wing (when present) of the Fe-K line has been considerably weakened by changes in the ASCA calibration. We demonstrate explicitly that changes in the, ASCA calibration over a period of about eight years have a negligible effect on the width, strength, or shape of the Fe-K lines. The reduction in both width and equivalent width is only approximately 8% or less. We confirm this with simulations and individual sources, as well as sample average profiles. The average profile for type 1 AGN is still very broad, with the red wing extending down to approximately 4 keV. The reason for the claimed, apparently large, discrepancies is that in some sources the Fe-K line is complex, and a single-Gaussian model, being an inadequate description of the line profile, picks up different portions of the profile with different calibration. However, one cannot make inferences about calibration or astrophysics of the sources using models which do not describe the data. Better modeling of the Fe-K in such cases gives completely consistent results with both old and current calibration. Thus, inadequate modeling of the Fe-K line in these sources can seriously underestimate the line width and equivalent width, and therefore lead to incorrect deductions about the astrophysical implications.
Variable Camber Continuous Aerodynamic Control Surfaces and Methods for Active Wing Shaping Control
NASA Technical Reports Server (NTRS)
Nguyen, Nhan T. (Inventor)
2016-01-01
An aerodynamic control apparatus for an air vehicle improves various aerodynamic performance metrics by employing multiple spanwise flap segments that jointly form a continuous or a piecewise continuous trailing edge to minimize drag induced by lift or vortices. At least one of the multiple spanwise flap segments includes a variable camber flap subsystem having multiple chordwise flap segments that may be independently actuated. Some embodiments also employ a continuous leading edge slat system that includes multiple spanwise slat segments, each of which has one or more chordwise slat segment. A method and an apparatus for implementing active control of a wing shape are also described and include the determination of desired lift distribution to determine the improved aerodynamic deflection of the wings. Flap deflections are determined and control signals are generated to actively control the wing shape to approximate the desired deflection.
Computational Optimization of a Natural Laminar Flow Experimental Wing Glove
NASA Technical Reports Server (NTRS)
Hartshom, Fletcher
2012-01-01
Computational optimization of a natural laminar flow experimental wing glove that is mounted on a business jet is presented and discussed. The process of designing a laminar flow wing glove starts with creating a two-dimensional optimized airfoil and then lofting it into a three-dimensional wing glove section. The airfoil design process does not consider the three dimensional flow effects such as cross flow due wing sweep as well as engine and body interference. Therefore, once an initial glove geometry is created from the airfoil, the three dimensional wing glove has to be optimized to ensure that the desired extent of laminar flow is maintained over the entire glove. TRANAIR, a non-linear full potential solver with a coupled boundary layer code was used as the main tool in the design and optimization process of the three-dimensional glove shape. The optimization process uses the Class-Shape-Transformation method to perturb the geometry with geometric constraints that allow for a 2-in clearance from the main wing. The three-dimensional glove shape was optimized with the objective of having a spanwise uniform pressure distribution that matches the optimized two-dimensional pressure distribution as closely as possible. Results show that with the appropriate inputs, the optimizer is able to match the two dimensional pressure distributions practically across the entire span of the wing glove. This allows for the experiment to have a much higher probability of having a large extent of natural laminar flow in flight.
Parametric weight evaluation of joined wings by structural optimization
NASA Technical Reports Server (NTRS)
Miura, Hirokazu; Shyu, Albert T.; Wolkovitch, Julian
1988-01-01
Joined-wing aircraft employ tandem wings having positive and negative sweep and dihedral, arranged to form diamond shapes in both plan and front views. An optimization method was applied to study the effects of joined-wing geometry parameters on structural weight. The lightest wings were obtained by increasing dihedral and taper ratio, decreasing sweep and span, increasing fraction of airfoil chord occupied by structural box, and locating the joint inboard of the front wing tip.
2007-08-14
Boeing Phantom Works' subscale Blended Wing Body technology demonstration aircraft began its initial flight tests from NASA's Dryden Flight Research Center at Edwards Air Force Base, Calif. in the summer of 2007. The 8.5 percent dynamically scaled unmanned aircraft, designated the X-48B by the Air Force, is designed to mimic the aerodynamic characteristics of a full-scale large cargo transport aircraft with the same blended wing body shape. The initial flight tests focused on evaluation of the X-48B's low-speed flight characteristics and handling qualities. About 25 flights were planned to gather data in these low-speed flight regimes. Based on the results of the initial flight test series, a second set of flight tests was planned to test the aircraft's low-noise and handling characteristics at transonic speeds.
NASA Technical Reports Server (NTRS)
Wollner, Bertram C
1949-01-01
Available information on the effects of wing-fuselage-tail and wing-nacelle interference on the distribution of the air load among components of airplanes is analyzed. The effects of wing and nacelle incidence, horizontal andvertical position of wing and nacelle, fuselage shape, wing section and filleting are considered. Where sufficient data were unavailable to determine the distribution of the air load, the change in lift caused by interference between wing and fuselage was found. This increment is affected to the greatest extent by vertical wing position.
Aeroelastic Wing Shaping Using Distributed Propulsion
NASA Technical Reports Server (NTRS)
Nguyen, Nhan T. (Inventor); Reynolds, Kevin Wayne (Inventor); Ting, Eric B. (Inventor)
2017-01-01
An aircraft has wings configured to twist during flight. Inboard and outboard propulsion devices, such as turbofans or other propulsors, are connected to each wing, and are spaced along the wing span. A flight controller independently controls thrust of the inboard and outboard propulsion devices to significantly change flight dynamics, including changing thrust of outboard propulsion devices to twist the wing, and to differentially apply thrust on each wing to change yaw and other aspects of the aircraft during various stages of a flight mission. One or more generators can be positioned upon the wing to provide power for propulsion devices on the same wing, and on an opposite wing.
Ground vibration test of F-16 airplane with initial decoupler pylon
NASA Technical Reports Server (NTRS)
Cazier, F. W., Jr.; Kehoe, M. W.
1984-01-01
A ground vibration test was conducted on an F-16 airplane loaded on each wing with a 370-gal tank mounted on a standard pylon, a GBU-8 store mounted on a decoupler pylon, and an AIM-9J missile mounted on a wing-tip launcher. The decoupler pylon is a passive wing/store flutter-suppression device. The test was conducted prior to initial flight tests to determine the modal frequencies, mode shapes, and structural damping coefficients. The data presented include frequency response plots, force effect plots, and limited mode shape data.
Wing Shaping and Gust Load Controls of Flexible Aircraft: An LPV Approach
NASA Technical Reports Server (NTRS)
Hammerton, Jared R.; Su, Weihua; Zhu, Guoming; Swei, Sean Shan-Min
2018-01-01
In the proposed paper, the optimum wing shape of a highly flexible aircraft under varying flight conditions will be controlled by a linear parameter-varying approach. The optimum shape determined under multiple objectives, including flight performance, ride quality, and control effort, will be determined as well. This work is an extension of work done previously by the authors, and updates the existing optimization and utilizes the results to generate a robust flight controller.
Sensitivity Analysis of Wing Aeroelastic Responses
NASA Technical Reports Server (NTRS)
Issac, Jason Cherian
1995-01-01
Design for prevention of aeroelastic instability (that is, the critical speeds leading to aeroelastic instability lie outside the operating range) is an integral part of the wing design process. Availability of the sensitivity derivatives of the various critical speeds with respect to shape parameters of the wing could be very useful to a designer in the initial design phase, when several design changes are made and the shape of the final configuration is not yet frozen. These derivatives are also indispensable for a gradient-based optimization with aeroelastic constraints. In this study, flutter characteristic of a typical section in subsonic compressible flow is examined using a state-space unsteady aerodynamic representation. The sensitivity of the flutter speed of the typical section with respect to its mass and stiffness parameters, namely, mass ratio, static unbalance, radius of gyration, bending frequency, and torsional frequency is calculated analytically. A strip theory formulation is newly developed to represent the unsteady aerodynamic forces on a wing. This is coupled with an equivalent plate structural model and solved as an eigenvalue problem to determine the critical speed of the wing. Flutter analysis of the wing is also carried out using a lifting-surface subsonic kernel function aerodynamic theory (FAST) and an equivalent plate structural model. Finite element modeling of the wing is done using NASTRAN so that wing structures made of spars and ribs and top and bottom wing skins could be analyzed. The free vibration modes of the wing obtained from NASTRAN are input into FAST to compute the flutter speed. An equivalent plate model which incorporates first-order shear deformation theory is then examined so it can be used to model thick wings, where shear deformations are important. The sensitivity of natural frequencies to changes in shape parameters is obtained using ADIFOR. A simple optimization effort is made towards obtaining a minimum weight design of the wing, subject to flutter constraints, lift requirement constraints for level flight and side constraints on the planform parameters of the wing using the IMSL subroutine NCONG, which uses successive quadratic programming.
Static Aeroelastic Scaling and Analysis of a Sub-Scale Flexible Wing Wind Tunnel Model
NASA Technical Reports Server (NTRS)
Ting, Eric; Lebofsky, Sonia; Nguyen, Nhan; Trinh, Khanh
2014-01-01
This paper presents an approach to the development of a scaled wind tunnel model for static aeroelastic similarity with a full-scale wing model. The full-scale aircraft model is based on the NASA Generic Transport Model (GTM) with flexible wing structures referred to as the Elastically Shaped Aircraft Concept (ESAC). The baseline stiffness of the ESAC wing represents a conventionally stiff wing model. Static aeroelastic scaling is conducted on the stiff wing configuration to develop the wind tunnel model, but additional tailoring is also conducted such that the wind tunnel model achieves a 10% wing tip deflection at the wind tunnel test condition. An aeroelastic scaling procedure and analysis is conducted, and a sub-scale flexible wind tunnel model based on the full-scale's undeformed jig-shape is developed. Optimization of the flexible wind tunnel model's undeflected twist along the span, or pre-twist or wash-out, is then conducted for the design test condition. The resulting wind tunnel model is an aeroelastic model designed for the wind tunnel test condition.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-11-18
... small arms, large arms, bombs, rockets, missiles, and pyrotechnics. All munitions used at BT-11 are... shapes each time. Mine simulation shapes include MK76, MK80 series, and BDU practice bombs ranging from... disabling enemy ships or boats. During training, fixed wing or rotary wing aircraft deliver bombs against...
NASA Technical Reports Server (NTRS)
Silverstein, Abe; White, James A
1937-01-01
The theory of wind tunnel boundary influence on the downwash from a wing has been extended to provide more complete corrections for application to airplane test data. The first section of the report gives the corrections of the lifting line for wing positions above or below the tunnel center line; the second section shows the manner in which the induced boundary influence changes with distance aft of the lifting line. Values of the boundary corrections are given for off-center positions of the wing in circular, square, 2:1 rectangular, and 2:1 elliptical tunnels. Aft of the wing the corrections are presented for only the square and the 2:1 rectangular tunnels, but it is believed that these may be applied to jets of circular and 2:1 elliptical cross sections. In all cases results are included for both open and closed tunnels.
Kang, Chang-kwon; Shyy, Wei
2014-01-01
In the analysis of flexible flapping wings of insects, the aerodynamic outcome depends on the combined structural dynamics and unsteady fluid physics. Because the wing shape and hence the resulting effective angle of attack are a priori unknown, predicting aerodynamic performance is challenging. Here, we show that a coupled aerodynamics/structural dynamics model can be established for hovering, based on a linear beam equation with the Morison equation to account for both added mass and aerodynamic damping effects. Lift strongly depends on the instantaneous angle of attack, resulting from passive pitch associated with wing deformation. We show that both instantaneous wing deformation and lift can be predicted in a much simplified framework. Moreover, our analysis suggests that resulting wing kinematics can be explained by the interplay between acceleration-related and aerodynamic damping forces. Interestingly, while both forces combine to create a high angle of attack resulting in high lift around the midstroke, they offset each other for phase control at the end of the stroke. PMID:25297319
Modeling and development of a twisting wing using inductively heated shape memory alloy actuators
NASA Astrophysics Data System (ADS)
Saunders, Robert N.; Hartl, Darren J.; Boyd, James G.; Lagoudas, Dimitris C.
2015-04-01
Wing twisting has been shown to improve aircraft flight performance. The potential benefits of a twisting wing are often outweighed by the mass of the system required to twist the wing. Shape memory alloy (SMA) actuators repeatedly demonstrate abilities and properties that are ideal for aerospace actuation systems. Recent advances have shown an SMA torsional actuator that can be manufactured and trained with the ability to generate large twisting deformations under substantial loading. The primary disadvantage of implementing large SMA actuators has been their slow actuation time compared to conventional actuators. However, inductive heating of an SMA actuator allows it to generate a full actuation cycle in just seconds rather than minutes while still . The aim of this work is to demonstrate an experimental wing being twisted to approximately 10 degrees by using an inductively heated SMA torsional actuator. This study also considers a 3-D electromagnetic thermo-mechanical model of the SMA-wing system and compare these results to experiments to demonstrate modeling capabilities.
NASA Technical Reports Server (NTRS)
Thompson, D.; Mogili, P.; Chalasani, S.; Addy, H.; Choo, Y.
2004-01-01
Steady-state solutions of the Reynolds-averaged Navier-Stokes (RANS) equations were computed using the Colbalt flow solver for a constant-section, rectangular wing based on an extruded two-dimensional glaze ice shape. The one equation Spalart-Allmaras turbulence model was used. The results were compared with data obtained from a recent wind tunnel test. Computed results indicate that the steady RANS solutions do not accurately capture the recirculating region downstream of the ice accretion, even after a mesh refinement. The resulting predicted reattachment is farther downstream than indicated by the experimental data. Additionally, the solutions computed on a relatively coarse baseline mesh had detailed flow characteristics that were different from those computed on the refined mesh or the experimental data. Steady RANS solutions were also computed to investigate the effects of spanwise variation in the ice shape. The spanwise variation was obtained via a bleeding function that merged the ice shape with the clean wing using a sinusoidal spanwise variation. For these configurations, the results predicted for the extruded shape provided conservative estimates for the performance degradation of the wing. Additionally, the spanwise variation in the ice shape and the resulting differences in the flow fields did not significantly change the location of the primary reattachment.
Intermittent Turbulence in the Attachment Line Flow Formed on an Infinite Swept Wing
NASA Technical Reports Server (NTRS)
Poll, Ian
2007-01-01
The transition process which takes place in the attachment-line boundary layer in the presence of gross contamination is an issue of considerable interest to wing designers. It is well known that this flow is very sensitive to the presence of isolated roughness and that transition can be initiated at a very low value of the local medium thickness Reynolds number.Moreover, once the attachment line is turbulent, the flow over the whole wing chords, top and bottom surface, will be turbulent and this has major implications for wind drag.
An Integrated Approach to Swept Wing Icing Simulation
NASA Technical Reports Server (NTRS)
Potapczuk, Mark G.; Broeren, Andy P.
2017-01-01
This paper describes the various elements of a simulation approach used to develop a database of ice shape geometries and the resulting aerodynamic performance data for a representative commercial transport wing model exposed to a variety of icing conditions. This effort included testing in the NASA Icing Research Tunnel, the Wichita State University Walter H. Beech Wind Tunnel, and the ONERA F1 Subsonic Wind Tunnel as well as the use of ice accretion codes, an inviscid design code, and computational fluid dynamics codes. Additionally, methods for capturing full three-dimensional ice shape geometries, geometry interpolation along the span of the wing, and creation of artificial ice shapes based upon that geometric data were developed for this effort. The icing conditions used for this effort were representative of actual ice shape encounter scenarios and run the gamut from ice roughness to full three-dimensional scalloped ice shapes. The effort is still underway so this paper is a status report of work accomplished to date and a description of the remaining elements of the effort.
NASA Technical Reports Server (NTRS)
Katzoff, S; Faison, M Frances; Dubose, Hugh C
1954-01-01
The field of a uniformly loaded wing in subsonic flow is discussed in terms of the acceleration potential. It is shown that, for the design of such wings, the slope of the mean camber surface at any point can be determined by a line integration around the wing boundary. By an additional line integration around the wing boundary, this method is extended to include the case where the local section lift coefficient varies with spanwise location (the chordwise loading at every section still remaining uniform). For the uniformly loaded wing of polygonal plan form, the integrations necessary to determine the local slope of the surface and the further integration of the slopes to determine the ordinate can be done analytically. An outline of these integrations and the resulting formulas are included. Calculated results are given for a sweptback wing with uniform chordwise loading and a highly tapered spanwise loading, a uniformly loaded delta wing, a uniformly loaded sweptback wing, and the same sweptback wing with uniform chordwise loading but elliptical span load distribution.
NASA Astrophysics Data System (ADS)
Ali, Md. Nesar; Alam, Mahbubul
2017-06-01
A finite wing is a three-dimensional body, and consequently the flow over the finite wing is three-dimensional; that is, there is a component of flow in the span wise direction. The physical mechanism for generating lift on the wing is the existence of a high pressure on the bottom surface and a low pressure on the top surface. The net imbalance of the pressure distribution creates the lift. As a by-product of this pressure imbalance, the flow near the wing tips tends to curl around the tips, being forced from the high-pressure region just underneath the tips to the low-pressure region on top. This flow around the wing tips is shown in the front view of the wing. As a result, on the top surface of the wing, there is generally a span wise component of flow from the tip toward the wing root, causing the streamlines over the top surface to bend toward the root. On the bottom surface of the wing, there is generally a span wise component of flow from the root toward the tip, causing the streamlines over the bottom surface to bend toward the tip. Clearly, the flow over the finite wing is three-dimensional, and therefore we would expect the overall aerodynamic properties of such a wing to differ from those of its airfoil sections. The tendency for the flow to "leak" around the wing tips has another important effect on the aerodynamics of the wing. This flow establishes a circulatory motion that trails downstream of the wing; that is, a trailing vortex is created at each wing tip. The aerodynamics of finite wings is analyzed using the classical lifting line model. This simple model allows a closed-form solution that captures most of the physical effects applicable to finite wings. The model is based on the horseshoe-shaped vortex that introduces the concept of a vortex wake and wing tip vortices. The downwash induced by the wake creates an induced drag that did not exist in the two-dimensional analysis. Furthermore, as wingspan is reduced, the wing lift slope decreases, and the induced drag increases, reducing overall efficiency. To complement the high aspect ratio wing case, a slender wing model is formulated so that the lift and drag can be estimated for this limiting case as well. We analyze the stability performance of F-22 raptor, Supermarine Spitfire, F-7 BG Aircraft wing by using experimental method and simulation software. The experimental method includes fabrication of F-22 raptor, Supermarine Spitfire, F-7 BG Aircraft wing which making material is Gamahr wood. Testing this model wing in wind tunnel test and after getting expected data we also compared this value with analyzing software data for furthermore experiment.
The puzzling spectrum of HD 94509. Sounding out the extremes of Be shell star spectral morphology
NASA Astrophysics Data System (ADS)
Cowley, C. R.; Przybilla, N.; Hubrig, S.
2015-06-01
Context. The spectral features of HD 94509 are highly unusual, adding an extreme to the zoo of Be and shell stars. The shell dominates the spectrum, showing lines typical for spectral types mid-A to early-F, while the presence of a late/mid B-type central star is indicated by photospheric hydrogen line wings and helium lines. Numerous metallic absorption lines have broad wings but taper to narrow cores. They cannot be fit by Voigt profiles. Aims: We describe and illustrate unusual spectral features of this star, and make rough calculations to estimate physical conditions and abundances in the shell. Furthermore, the central star is characterized. Methods: We assume mean conditions for the shell. An electron density estimate is made from the Inglis-Teller formula. Excitation temperatures and column densities for Fe i and Fe ii are derived from curves of growth. The neutral H column density is estimated from high Paschen members. The column densities are compared with calculations made with the photoionization code Cloudy. Atmospheric parameters of the central star are constrained employing non-LTE spectrum synthesis. Results: Overall chemical abundances are close to solar. Column densities of the dominant ions of several elements, as well as excitation temperatures and the mean electron density are well accounted for by a simple model. Several features, including the degree of ionization, are less well described. Conclusions: HD 94509 is a Be star with a stable shell, close to the terminal-age main sequence. The dynamical state of the shell and the unusually shaped, but symmetric line profiles, require a separate study.
Supersonic wing and wing-body shape optimization using an adjoint formulation
NASA Technical Reports Server (NTRS)
Reuther, James; Jameson, Antony
1995-01-01
This paper describes the implementation of optimization techniques based on control theory for wing and wing-body design of supersonic configurations. The work represents an extension of our earlier research in which control theory is used to devise a design procedure that significantly reduces the computational cost by employing an adjoint equation. In previous studies it was shown that control theory could be used toeviseransonic design methods for airfoils and wings in which the shape and the surrounding body-fitted mesh are both generated analytically, and the control is the mapping function. The method has also been implemented for both transonic potential flows and transonic flows governed by the Euler equations using an alternative formulation which employs numerically generated grids, so that it can treat more general configurations. Here results are presented for three-dimensional design cases subject to supersonic flows governed by the Euler equation.
A galactic microquasar mimicking winged radio galaxies.
Martí, Josep; Luque-Escamilla, Pedro L; Bosch-Ramon, Valentí; Paredes, Josep M
2017-11-24
A subclass of extragalactic radio sources known as winged radio galaxies has puzzled astronomers for many years. The wing features are detected at radio wavelengths as low-surface-brightness radio lobes that are clearly misaligned with respect to the main lobe axis. Different models compete to account for these peculiar structures. Here, we report observational evidence that the parsec-scale radio jets in the Galactic microquasar GRS 1758-258 give rise to a Z-shaped radio emission strongly reminiscent of the X and Z-shaped morphologies found in winged radio galaxies. This is the first time that such extended emission features are observed in a microquasar, providing a new analogy for its extragalactic relatives. From our observations, we can clearly favour the hydrodynamic backflow interpretation against other possible wing formation scenarios. Assuming that physical processes are similar, we can extrapolate this conclusion and suggest that this mechanism could also be at work in many extragalactic cases.
Morphing Wings: A Study Using High-Fidelity Aerodynamic Shape Optimization
NASA Astrophysics Data System (ADS)
Curiale, Nathanael J.
With the aviation industry under pressure to reduce fuel consumption, morphing wings have the capacity to improve aircraft performance, thereby making a significant contribution to reversing climate change. Through high-fidelity aerodynamic shape optimization, various forms of morphing wings are assessed for a hypothetical regional-class aircraft. The framework used solves the Reynolds-averaged Navier-Stokes equations and utilizes a gradient-based optimization algorithm. Baseline geometries are developed through multipoint optimization, where the average drag coefficient is minimized over a range of flight conditions with additional dive constraints. Morphing optimizations are then performed, beginning with these baseline shapes. Five distinct types of morphing are investigated and compared. Overall, a theoretical fully adaptable wing produces roughly a 2% improvement in average performance, whereas trailing-edge morphing with a 27-point multipoint baseline results in just over a 1% improvement in average performance. Trailing-edge morphing proves to be more beneficial than leading-edge morphing, upper-surface morphing, and a conventional flap.
NASA Technical Reports Server (NTRS)
Kapania, Rakesh K.; Liu, Youhua
2000-01-01
At the preliminary design stage of a wing structure, an efficient simulation, one needing little computation but yielding adequately accurate results for various response quantities, is essential in the search of optimal design in a vast design space. In the present paper, methods of using sensitivities up to 2nd order, and direct application of neural networks are explored. The example problem is how to decide the natural frequencies of a wing given the shape variables of the structure. It is shown that when sensitivities cannot be obtained analytically, the finite difference approach is usually more reliable than a semi-analytical approach provided an appropriate step size is used. The use of second order sensitivities is proved of being able to yield much better results than the case where only the first order sensitivities are used. When neural networks are trained to relate the wing natural frequencies to the shape variables, a negligible computation effort is needed to accurately determine the natural frequencies of a new design.
Unsteady aerodynamics of membrane wings with adaptive compliance
NASA Astrophysics Data System (ADS)
Kiser, Jillian; Breuer, Kenneth
2016-11-01
Membrane wings are known to provide superior aerodynamic performance at low Reynolds numbers (Re =104 -105), primarily due to passive shape adaptation to flow conditions. In addition to this passive deformation, active control of the fluid-structure interaction and resultant aerodynamic properties can be achieved through the use of dielectric elastomer actuators as the wing membrane material. When actuated, membrane pretension is decreased and wing camber increases. Additionally, actuation at resonance frequencies allows additional control over wing camber. We present results using synchronized (i) time-resolved particle image velocimetry (PIV) to resolve the flow field, (ii) 3D direct linear transformation (DLT) to recover membrane shape, (iii) lift/drag/torque measurements and (iv) near-wake hot wire anemometry measurements to characterize the fluid-structure interactions. Particular attention is paid to cases in which the vortex shedding frequency, the membrane resonance, and the actuation frequency coincide. In quantitatively examining both flow field and membrane shape at a range of actuation frequencies and vortex shedding frequencies, this work seeks to find actuation parameters that allow for active control of boundary layer separation over a range of flow conditions. Also at Naval Undersea Warfare Center, Division Newport.
Observations and NLTE modeling of Ellerman bombs
NASA Astrophysics Data System (ADS)
Berlicki, A.; Heinzel, P.
2014-07-01
Context. Ellerman bombs (EBs) are short-lived, compact, and spatially well localized emission structures that are observed well in the wings of the hydrogen Hα line. EBs are also observed in the chromospheric CaII lines and in UV continua as bright points located within active regions. Hα line profiles of EBs show a deep absorption at the line center and enhanced emission in the line wings with maxima around ±1 Å from the line center. Similar shapes of the line profiles are observed for the CaII IR line at 8542 Å. In CaII H and K lines the emission peaks are much stronger, and EBs emission is also enhanced in the line center. Aims: It is generally accepted that EBs may be considered as compact microflares located in lower solar atmosphere that contribute to the heating of these low-lying regions, close to the temperature minimum of the atmosphere. However, it is still not clear where exactly the emission of EBs is formed in the solar atmosphere. High-resolution spectrophotometric observations of EBs were used for determining of their physical parameters and construction of semi-empirical models. Obtained models allow us to determine the position of EBs in the solar atmosphere, as well as the vertical structure of the activated EB atmosphere Methods: In our analysis we used observations of EBs obtained in the Hα and CaII H lines with the Dutch Open Telescope (DOT). These one-hour long simultaneous sequences obtained with high temporal and spatial resolution were used to determine the line emissions. To analyze them, we used NLTE numerical codes for the construction of grids of 243 semi-empirical models simulating EBs structures. In this way, the observed emission could be compared with the synthetic line spectra calculated for all such models. Results: For a specific model we found reasonable agreement between the observed and theoretical emission and thus we consider such model as a good approximation to EBs atmospheres. This model is characterized by an enhanced temperature in the lower chromosphere and can be considered as a compact structure (hot spot), which is responsible for the emission observed in the wings of chromospheric lines, in particular in the Hα and CaII H lines. Conclusions: For the first time the set of two lines Hα and CaII H was used to construct semi-empirical models of EBs. Our analysis shows that EBs can be described by a "hot spot" model, with the temperature and/or density increase through a few hundred km atmospheric structure. We confirmed that EBs are located close to the temperature minimum or in the lower chromosphere. Two spectral features (lines in our case), observed simultaneously, significantly strengthen the constraints on a realistic model.
An entropy method for induced drag minimization
NASA Technical Reports Server (NTRS)
Greene, George C.
1989-01-01
A fundamentally new approach to the aircraft minimum induced drag problem is presented. The method, a 'viscous lifting line', is based on the minimum entropy production principle and does not require the planar wake assumption. An approximate, closed form solution is obtained for several wing configurations including a comparison of wing extension, winglets, and in-plane wing sweep, with and without a constraint on wing-root bending moment. Like the classical lifting-line theory, this theory predicts that induced drag is proportional to the square of the lift coefficient and inversely proportioinal to the wing aspect ratio. Unlike the classical theory, it predicts that induced drag is Reynolds number dependent and that the optimum spanwise circulation distribution is non-elliptic.
NASA Astrophysics Data System (ADS)
Löhner-Böttcher, J.; Schmidt, W.; Stief, F.; Steinmetz, T.; Holzwarth, R.
2018-03-01
Context. The solar convection manifests as granulation and intergranulation at the solar surface. In the photosphere, convective motions induce differential Doppler shifts to spectral lines. The observed convective blueshift varies across the solar disk. Aim. We focus on the impact of solar convection on the atmosphere and aim to resolve its velocity stratification in the photosphere. Methods: We performed high-resolution spectroscopic observations of the solar spectrum in the 6302 Å range with the Laser Absolute Reference Spectrograph at the Vacuum Tower Telescope. A laser frequency comb enabled the calibration of the spectra to an absolute wavelength scale with an accuracy of 1 m s-1. We systematically scanned the quiet Sun from the disk center to the limb at ten selected heliocentric positions. The analysis included 99 time sequences of up to 20 min in length. By means of ephemeris and reference corrections, we translated wavelength shifts into absolute line-of-sight velocities. A bisector analysis on the line profiles yielded the shapes and convective shifts of seven photospheric lines. Results: At the disk center, the bisector profiles of the iron lines feature a pronounced C-shape with maximum convective blueshifts of up to -450 m s-1 in the spectral line wings. Toward the solar limb, the bisectors change into a "\\"-shape with a saturation in the line core at a redshift of +100 m s-1. The center-to-limb variation of the line core velocities shows a slight increase in blueshift when departing the disk center for larger heliocentric angles. This increase in blueshift is more pronounced for the magnetically less active meridian than for the equator. Toward the solar limb, the blueshift decreases and can turn into a redshift. In general, weaker lines exhibit stronger blueshifts. Conclusions: Best spectroscopic measurements enabled the accurate determination of absolute convective shifts in the solar photosphere. We convolved the results to lower spectral resolution to permit a comparison with observations from other instruments.
Study of lee-side flows over conically cambered Delta wings at supersonic speeds, part 2
NASA Technical Reports Server (NTRS)
Wood, Richard M.; Watson, Carolyn B.
1987-01-01
An experimental investigation was performed in which surface pressure data, flow visualization data, and force and moment data were obtained on four conical delta wing models which differed in leading edge camber only. Wing leading edge camber was achieved through a deflection of the outboard 30% of the local wing semispan of a reference 75 deg swept flat delta wing. The four wing models have leading edge deflection angles delta sub F of 0, 5, 10, and 15 deg measured streamwise. Data for the wings with delta sub F = 10 and 15 deg showed that hinge line separation dominated the lee-side wing loading and prohibited the development of leading edge separation on the deflected portion of wing leading edge. However, data for the wing with delta sub F = 5 deg showed that at an angle of attack of 5 deg, a vortex was positioned on the deflected leading edge with reattachment at the hinge line. Flow visualization results were presented which detail the influence of Mach number, angle of attack, and camber on the lee-side flow characteristics of conically cambered delta wings. Analysis of photographic data identified the existence of 12 distinctive lee-side flow types.
Efficiency of lift production in flapping and gliding flight of swifts.
Henningsson, Per; Hedenström, Anders; Bomphrey, Richard J
2014-01-01
Many flying animals use both flapping and gliding flight as part of their routine behaviour. These two kinematic patterns impose conflicting requirements on wing design for aerodynamic efficiency and, in the absence of extreme morphing, wings cannot be optimised for both flight modes. In gliding flight, the wing experiences uniform incident flow and the optimal shape is a high aspect ratio wing with an elliptical planform. In flapping flight, on the other hand, the wing tip travels faster than the root, creating a spanwise velocity gradient. To compensate, the optimal wing shape should taper towards the tip (reducing the local chord) and/or twist from root to tip (reducing local angle of attack). We hypothesised that, if a bird is limited in its ability to morph its wings and adapt its wing shape to suit both flight modes, then a preference towards flapping flight optimization will be expected since this is the most energetically demanding flight mode. We tested this by studying a well-known flap-gliding species, the common swift, by measuring the wakes generated by two birds, one in gliding and one in flapping flight in a wind tunnel. We calculated span efficiency, the efficiency of lift production, and found that the flapping swift had consistently higher span efficiency than the gliding swift. This supports our hypothesis and suggests that even though swifts have been shown previously to increase their lift-to-drag ratio substantially when gliding, the wing morphology is tuned to be more aerodynamically efficient in generating lift during flapping. Since body drag can be assumed to be similar for both flapping and gliding, it follows that the higher total drag in flapping flight compared with gliding flight is primarily a consequence of an increase in wing profile drag due to the flapping motion, exceeding the reduction in induced drag.
Efficiency of Lift Production in Flapping and Gliding Flight of Swifts
Henningsson, Per; Hedenström, Anders; Bomphrey, Richard J.
2014-01-01
Many flying animals use both flapping and gliding flight as part of their routine behaviour. These two kinematic patterns impose conflicting requirements on wing design for aerodynamic efficiency and, in the absence of extreme morphing, wings cannot be optimised for both flight modes. In gliding flight, the wing experiences uniform incident flow and the optimal shape is a high aspect ratio wing with an elliptical planform. In flapping flight, on the other hand, the wing tip travels faster than the root, creating a spanwise velocity gradient. To compensate, the optimal wing shape should taper towards the tip (reducing the local chord) and/or twist from root to tip (reducing local angle of attack). We hypothesised that, if a bird is limited in its ability to morph its wings and adapt its wing shape to suit both flight modes, then a preference towards flapping flight optimization will be expected since this is the most energetically demanding flight mode. We tested this by studying a well-known flap-gliding species, the common swift, by measuring the wakes generated by two birds, one in gliding and one in flapping flight in a wind tunnel. We calculated span efficiency, the efficiency of lift production, and found that the flapping swift had consistently higher span efficiency than the gliding swift. This supports our hypothesis and suggests that even though swifts have been shown previously to increase their lift-to-drag ratio substantially when gliding, the wing morphology is tuned to be more aerodynamically efficient in generating lift during flapping. Since body drag can be assumed to be similar for both flapping and gliding, it follows that the higher total drag in flapping flight compared with gliding flight is primarily a consequence of an increase in wing profile drag due to the flapping motion, exceeding the reduction in induced drag. PMID:24587260
Experimental Study on the Propulsion Performance of the M-shape flapping wing’s bending angle
NASA Astrophysics Data System (ADS)
Chen, Jingxian; Nie, Xiaofang; Zhou, Ximing
2017-10-01
To study the the effect of flapping wing with different bending angles α on the thrust, in this paper, 9 M-shape flapping wing models with different bending angles, ranging for 0° to 22°, were designed. The rotating arm experiment was adopted to conduct the thrust test on the flapping wing models with different bending angels under the wind speed of 15m/s. The result shows that the span-wise flapping wing’s curvature could rectify the airflow, the proper curvature could prevent the span-wise airflow at the surface the flapping wing and leads the airflow towards backward, the amount of air pushed backwards by the flapping wing is larger, therefore the value of thrust is increased; As well as the rectification of M-shape flapping wing increases the thrust value, the flapping wing’s form drag also increased due to the bending angle. According to the results of the experiment, when the bending angle is less than 12°, the increment of the thrust is larger than the decrease of the form drag, so the thrust value increases gradually. However, when the bending angle is larger than 12°, the increment of the thrust is less than the decrease of the form drag, so the thrust value decreases. The thrust value is the largest when the bending angle is 12°.
Giordani, B F; Andrade, A J; Galati, E A B; Gurgel-Gonçalves, R
2017-12-01
The Lutzomyia subgenus (Diptera: Psychodidae) includes sibling species with morphologically indistinguishable females. The aims of this study were to analyse variations in the size and shape of wings of species within the Lutzomyia subgenus and to assess whether these analyses might be useful in their identification. Wings (n = 733) of 18 species deposited in Brazilian collections were analysed by geometric morphometrics, using other genera and subgenera as outgroups. Shape variation was summarized in multivariate analyses and differences in wing size among species were tested by analysis of variance. The results showed significant variation in the sizes and shapes of wings of different Lutzomyia species. Two clusters within the Lutzomyia subgenus were distinguished in analyses of both males and females. In Cluster 1 (Lutzomyia ischnacantha, Lutzomyia cavernicola, Lutzomyia almerioi, Lutzomyia forattinii, Lutzomyia renei and Lutzomyia battistinii), scores for correct reclassification were high (females, kappa = 0.91; males, kappa = 0.90), whereas in Cluster 2 (Lutzomyia alencari, Lutzomyia ischyracantha, Lutzomyia cruzi, Lutzomyia longipalpis, Lutzomyia gaminarai and Lutzomyia lichyi), scores for correct reclassification were low (females, kappa = 0.42; males, kappa = 0.48). Wing geometry was useful in the identification of some species of the Lutzomyia subgenus, but did not allow the identification of sibling species such as L. longipalpis and L. cruzi. © 2017 The Royal Entomological Society.
Schmidt, Arthur; Riecken, Bettina; Rische, Susanne; Klinger, Christoph; Jakobs, Ralf; Bechtler, Matthias; Kähler, Georg; Dormann, Arno; Caca, Karel
2015-05-01
Previous studies have shown superior patency rates for self-expandable metal stents (SEMS) compared with plastic stents in patients with malignant biliary obstruction. The aim of this study was to compare stent patency, patient survival, and complication rates between a newly designed, wing-shaped, plastic stent and SEMSs in patients with unresectable, malignant, distal, biliary obstruction. A randomized, multicenter trial was conducted at four tertiary care centers in Germany. A total of 37 patients underwent randomization between March 2010 and January 2013. Patients underwent endoscopic retrograde cholangiography with insertion of either a wing-shaped, plastic stent without lumen or an SEMS. Stent failure occurred in 10/16 patients (62.5 %) in the winged-stent group vs. 4/18 patients (22.2 %) in the SEMS group (P = 0.034). The median time to stent failure was 51 days (range 2 - 92 days) for the winged stent and 80 days (range 28 - 266 days) for the SEMS (P = 0.002). Early stent failure (< 8 weeks after placement) occurred in 8 patients (50 %) vs. 2 patients (11.1 %), respectively (P = 0.022). After obtaining the results from this interim analysis, the study was discontinued because of safety concerns. The frequency of stent failure was significantly higher in the winged-stent group compared with the SEMS group. A high incidence of early stent failure within 8 weeks was observed in the winged-stent group. Thus, the winged, plastic stent without central lumen may not be appropriate for mid or long term drainage of malignant biliary obstruction. Study registration ClinicalTrials.gov (NCT01063634). © Georg Thieme Verlag KG Stuttgart · New York.
NASA Astrophysics Data System (ADS)
Patsourakos, S.; Klimchuk, J. A.; Young, P. R.
2014-02-01
Recent solar spectroscopic observations have shown that coronal spectral lines can exhibit asymmetric profiles, with enhanced emissions at their blue wings. These asymmetries correspond to rapidly upflowing plasmas at speeds exceeding ≈50 km s-1. Here, we perform a study of the density of the rapidly upflowing material and compare it with that of the line core that corresponds to the bulk of the plasma. For this task, we use spectroscopic observations of several active regions taken by the Extreme Ultraviolet Imaging Spectrometer of the Hinode mission. The density sensitive ratio of the Fe XIV lines at 264.78 and 274.20 Å is used to determine wing and core densities. We compute the ratio of the blue wing density to the core density and find that most values are of order unity. This is consistent with the predictions for coronal nanoflares if most of the observed coronal mass is supplied by chromospheric evaporation driven by the nanoflares. However, much larger blue wing-to-core density ratios are predicted if most of the coronal mass is supplied by heated material ejected with type II spicules. Our measurements do not rule out a spicule origin for the blue wing emission, but they argue against spicules being a primary source of the hot plasma in the corona. We note that only about 40% of the pixels where line blends could be safely ignored have blue wing asymmetries in both Fe XIV lines. Anticipated sub-arcsecond spatial resolution spectroscopic observations in future missions could shed more light on the origin of blue, red, and mixed asymmetries.
NASA Technical Reports Server (NTRS)
Patsourakos, S.; Klimchuk, J. A.; Young, P. R.
2014-01-01
Recent solar spectroscopic observations have shown that coronal spectral lines can exhibit asymmetric profiles, with enhanced emissions at their blue wings. These asymmetries correspond to rapidly upflowing plasmas at speeds exceeding approximately equal to 50 km per sec. Here, we perform a study of the density of the rapidly upflowing material and compare it with that of the line core that corresponds to the bulk of the plasma. For this task, we use spectroscopic observations of several active regions taken by the Extreme Ultraviolet Imaging Spectrometer of the Hinode mission. The density sensitive ratio of the Fe(sub XIV) lines at 264.78 and 274.20 Angstroms is used to determine wing and core densities.We compute the ratio of the blue wing density to the core density and find that most values are of order unity. This is consistent with the predictions for coronal nanoflares if most of the observed coronal mass is supplied by chromospheric evaporation driven by the nanoflares. However, much larger blue wing-to-core density ratios are predicted if most of the coronal mass is supplied by heated material ejected with type II spicules. Our measurements do not rule out a spicule origin for the blue wing emission, but they argue against spicules being a primary source of the hot plasma in the corona. We note that only about 40% of the pixels where line blends could be safely ignored have blue wing asymmetries in both Fe(sub XIV) lines. Anticipated sub-arcsecond spatial resolution spectroscopic observations in future missions could shed more light on the origin of blue, red, and mixed asymmetries.
NASA Astrophysics Data System (ADS)
Gomez, Thomas; Nagayama, Taisukue; Kilcrease, David; Hansen, Stephanie; Montgomery, Mike; Winget, Don
2018-01-01
The Rosseland-Mean opacity (RMO) is an important quantity in determining radiation transport through stars. The solar-convection-zone boundary predicted by the standard solar model disagrees with helioseismology measurements by many sigma; a 14% increase in the RMO would resolve this discrepancy. Experiments at Sandia National Laboratories are now measuring iron opacity at solar-interior conditions, and significant discrepancies are already observed. Highly-ionized oxygen is one of the dominant contributions to the RMO. The strongest line, Lyman alpha, is at the peak of the Rosseland weighting function. The accuracy of line-broadening calculations has been called into question due to various experimental results and comparisons between theory. We have developed an ab-initio calculation to explore different physical effects, our current focus is treating penetrating collisions explicitly. The equation of motion used to calculate line shapes within the relaxation and unified theories includes a projection operator, which performs an average over plasma electron states; this is neglected due to past calculations approximate treatment of penetrations. We now include this projection term explicitly, which results in a significant broadening of spectral lines from highly-charged ions (low-Z elements are not much affected). The additional broadening raises the O Ly-alpha wing opacity by a factor of 5; we examine the consequences of this additional broadening on the Rosseland mean.
Effect of Ice Shape Fidelity on Swept-Wing Aerodynamic Performance
NASA Technical Reports Server (NTRS)
Camello, Stephanie C.; Bragg, Michael B.; Broeren, Andy P.; Lum, Christopher W.; Woodard, Brian S.; Lee, Sam
2017-01-01
Low-Reynolds number testing was conducted at the 7 ft. x 10 ft. Walter H. Beech Memorial Wind Tunnel at Wichita State University to study the aerodynamic effects of ice shapes on a swept wing. A total of 17 ice shape configurations of varying geometric detail were tested. Simplified versions of an ice shape may help improve current ice accretion simulation methods and therefore aircraft design, certification, and testing. For each configuration, surface pressure, force balance, and fluorescent mini-tuft data were collected and for a selected subset of configurations oil-flow visualization and wake survey data were collected. A comparison of two ice shape geometries and two configurations with simplified geometric detail for each ice shape geometry is presented in this paper.
Prunier, Jérôme G.; Dewulf, Alexandre; Kuhlmann, Michael; Michez, Denis
2017-01-01
Morphological traits can be highly variable over time in a particular geographical area. Different selective pressures shape those traits, which is crucial in evolutionary biology. Among these traits, insect wing morphometry has already been widely used to describe phenotypic variability at the inter-specific level. On the contrary, fewer studies have focused on intra-specific wing morphometric variability. Yet, such investigations are relevant to study potential convergences of variation that could highlight micro-evolutionary processes. The recent sampling and sequencing of three solitary bees of the genus Melitta across their entire species range provides an excellent opportunity to jointly analyse genetic and morphometric variability. In the present study, we first aim to analyse the spatial distribution of the wing shape and centroid size (used as a proxy for body size) variability. Secondly, we aim to test different potential predictors of this variability at both the intra- and inter-population levels, which includes genetic variability, but also geographic locations and distances, elevation, annual mean temperature and precipitation. The comparison of spatial distribution of intra-population morphometric diversity does not reveal any convergent pattern between species, thus undermining the assumption of a potential local and selective adaptation at the population level. Regarding intra-specific wing shape differentiation, our results reveal that some tested predictors, such as geographic and genetic distances, are associated with a significant correlation for some species. However, none of these predictors are systematically identified for the three species as an important factor that could explain the intra-specific morphometric variability. As a conclusion, for the three solitary bee species and at the scale of this study, our results clearly tend to discard the assumption of the existence of a common pattern of intra-specific signal/structure within the intra-specific wing shape and body size variability. PMID:28273178
General Potential Theory of Arbitrary Wing Sections
NASA Technical Reports Server (NTRS)
Theodorsen, T.; Garrick, I. E.
1979-01-01
The problem of determining the two dimensional potential flow around wing sections of any shape is examined. The problem is condensed into the compact form of an integral equation capable of yielding numerical solutions by a direct process. An attempt is made to analyze and coordinate the results of earlier studies relating to properties of wing sections. The existing approximate theory of thin wing sections and the Joukowski theory with its numerous generalizations are reduced to special cases of the general theory of arbitrary sections, permitting a clearer perspective of the entire field. The method which permits the determination of the velocity at any point of an arbitrary section and the associated lift and moments is described. The method is also discussed in terms for developing new shapes of preassigned aerodynamical properties.
Induced drag ideal efficiency factor of arbitrary lateral-vertical wing forms
NASA Technical Reports Server (NTRS)
Deyoung, J.
1980-01-01
A relatively simple equation is presented for estimating the induced drag ideal efficiency factor e for arbitrary cross sectional wing forms. This equation is based on eight basic but varied wing configurations which have exact solutions. The e function which relates the basic wings is developed statistically and is a continuous function of configuration geometry. The basic wing configurations include boxwings shaped as a rectangle, ellipse, and diamond; the V-wing; end-plate wing; 90 degree cruciform; circle dumbbell; and biplane. Example applications of the e equations are made to many wing forms such as wings with struts which form partial span rectangle dumbbell wings; bowtie, cruciform, winglet, and fan wings; and multiwings. Derivations are presented in the appendices of exact closed form solutions found of e for the V-wing and 90 degree cruciform wing and for an asymptotic solution for multiwings.
A new genus of long-legged flies displaying remarkable wing directional asymmetry
Justin B. Runyon; Richard L. Hurley
2004-01-01
A previously unknown group of flies is described whose males exhibit directional asymmetry, in that the left wing is larger than, and of a different shape from, the right wing. To our knowledge, wing asymmetry of this degree has not previously been reported in an animal capable of flight. Such consistent asymmetry must result from a leftÃÂright axis during development...
Did Adult Diurnal Activity Influence the Evolution of Wing Morphology in Opoptera Butterflies?
Penz, C M; Heine, K B
2016-02-01
The butterfly genus Opoptera includes eight species, three of which have diurnal habits while the others are crepuscular (the usual activity period for members of the tribe Brassolini). Although never measured in the field, it is presumed that diurnal Opoptera species potentially spend more time flying than their crepuscular relatives. If a shift to diurnal habits potentially leads to a higher level of activity and energy expenditure during flight, then selection should operate on increased aerodynamic and energetic efficiency, leading to changes in wing shape. Accordingly, we ask whether diurnal habits have influenced the evolution of wing morphology in Opoptera. Using phylogenetically independent contrasts and Wilcoxon rank sum tests, we confirmed our expectation that the wings of diurnal species have higher aspect ratios (ARs) and lower wing centroids (WCs) than crepuscular congeners. These wing shape characteristics are known to promote energy efficiency during flight. Three Opoptera wing morphotypes established a priori significantly differed in AR and WC values. The crepuscular, cloud forest dweller Opoptera staudingeri (Godman & Salvin) was exceptional in having an extended forewing tip and the highest AR and lowest WC within Opoptera, possibly to facilitate flight in a cooler environment. Our study is the first to investigate how butterfly wing morphology might evolve as a response to a behavioral shift in adult time of activity.
Straight-line climbing flight aerodynamics of a fruit bat
NASA Astrophysics Data System (ADS)
Viswanath, K.; Nagendra, K.; Cotter, J.; Frauenthal, M.; Tafti, D. K.
2014-02-01
From flight data obtained on a fruit bat, Cynopterus brachyotis, a kinematic model for straight-line flapping motion is extracted and analyzed in a computational fluid dynamics (CFD) framework to gain insight into the complexity of bat flight. The intricate functional mechanics and architecture of the bat wings set it apart from other vertebrate flight. The extracted kinematic model is simulated for a range of Reynolds numbers, to observe the effect these phenomena have on the unsteady transient mechanisms of the flow produced by the flapping wings. The Strouhal number calculated from the data is high indicating that the oscillatory motion dominates the flow physics. From the obtained data, the bat exhibits fine control of its mechanics by actively varying wing camber, wing area, torsional rotation of the wing, forward and backward translational sweep of the wing, and wing conformation to dictate the fluid dynamics. As is common in flapping flight, the primary force generation is through the attached unsteady vortices on the wing surface. The bat through varying the wing camber and the wing area modulates this force output. The power requirement for the kinematics is analyzed and correlated with the aerodynamic performance.
Transonic Wing Shape Optimization Using a Genetic Algorithm
NASA Technical Reports Server (NTRS)
Holst, Terry L.; Pulliam, Thomas H.; Kwak, Dochan (Technical Monitor)
2002-01-01
A method for aerodynamic shape optimization based on a genetic algorithm approach is demonstrated. The algorithm is coupled with a transonic full potential flow solver and is used to optimize the flow about transonic wings including multi-objective solutions that lead to the generation of pareto fronts. The results indicate that the genetic algorithm is easy to implement, flexible in application and extremely reliable.
Spanwise morphing trailing edge on a finite wing
NASA Astrophysics Data System (ADS)
Pankonien, Alexander M.; Inman, Daniel J.
2015-04-01
Unmanned Aerial Vehicles are prime targets for morphing implementation as they must adapt to large changes in flight conditions associated with locally varying wind or large changes in mass associated with payload delivery. The Spanwise Morphing Trailing Edge concept locally varies the trailing edge camber of a wing or control surface, functioning as a modular replacement for conventional ailerons without altering the spar box. Utilizing alternating active sections of Macro Fiber Composites (MFCs) driving internal compliant mechanisms and inactive sections of elastomeric honeycombs, the SMTE concept eliminates geometric discontinuities associated with shape change, increasing aerodynamic performance. Previous work investigated a representative section of the SMTE concept and investigated the effect of various skin designs on actuation authority. The current work experimentally evaluates the aerodynamic gains for the SMTE concept for a representative finite wing as compared with a conventional, articulated wing. The comparative performance for both wings is evaluated by measuring the drag penalty associated with achieving a design lift coefficient from an off-design angle of attack. To reduce experimental complexity, optimal control configurations are predicted with lifting line theory and experimentally measured control derivatives. Evaluated over a range of off-design flight conditions, this metric captures the comparative capability of both concepts to adapt or "morph" to changes in flight conditions. Even with this simplistic model, the SMTE concept is shown to reduce the drag penalty due to adaptation up to 20% at off-design conditions, justifying the increase in mass and complexity and motivating concepts capable of larger displacement ranges, higher fidelity modelling, and condition-sensing control.
Overview: Performance Adaptive Aeroelastic Wing
NASA Technical Reports Server (NTRS)
Hashemi, Kelley
2017-01-01
An overview of recent aeroelasitc wing-shaping work at the NASA Ames Research Center is presented. The highlight focuses on activity related to the Performance Adaptive Aeroelastic Wing concept and related Variable Camber Continuous Trailing Edge Flap actuation system. Topics covered include drag-reducing configurations and online algorithms, gust and maneuver load techniques, and wind tunnel demonstrations.
The joined wing - An overview. [aircraft tandem wings in diamond configurations
NASA Technical Reports Server (NTRS)
Wolkovitch, J.
1985-01-01
The joined wing is a new type of aircraft configuration which employs tandem wings arranged to form diamond shapes in plan view and front view. Wind-tunnel tests and finite-element structural analyses have shown that the joined wing provides the following advantages over a comparable wing-plus-tail system; lighter weight and higher stiffness, higher span-efficiency factor, higher trimmed maximum lift coefficient, lower wave drag, plus built-in direct lift and direct sideforce control capability. A summary is given of research performed on the joined wing. Calculated joined wing weights are correlated with geometric parameters to provide simple weight estimation methods. The results of low-speed and transonic wind-tunnel tests are summarized, and guidelines for design of joined-wing aircraft are given. Some example joined-wing designs are presented and related configurations having connected wings are reviewed.
Multidisciplinary Shape Optimization of a Composite Blended Wing Body Aircraft
NASA Astrophysics Data System (ADS)
Boozer, Charles Maxwell
A multidisciplinary shape optimization tool coupling aerodynamics, structure, and performance was developed for battery powered aircraft. Utilizing high-fidelity computational fluid dynamics analysis tools and a structural wing weight tool, coupled based on the multidisciplinary feasible optimization architecture; aircraft geometry is modified in the optimization of the aircraft's range or endurance. The developed tool is applied to three geometries: a hybrid blended wing body, delta wing UAS, the ONERA M6 wing, and a modified ONERA M6 wing. First, the optimization problem is presented with the objective function, constraints, and design vector. Next, the tool's architecture and the analysis tools that are utilized are described. Finally, various optimizations are described and their results analyzed for all test subjects. Results show that less computationally expensive inviscid optimizations yield positive performance improvements using planform, airfoil, and three-dimensional degrees of freedom. From the results obtained through a series of optimizations, it is concluded that the newly developed tool is both effective at improving performance and serves as a platform ready to receive additional performance modules, further improving its computational design support potential.
Kang, Chang-kwon; Shyy, Wei
2014-12-06
In the analysis of flexible flapping wings of insects, the aerodynamic outcome depends on the combined structural dynamics and unsteady fluid physics. Because the wing shape and hence the resulting effective angle of attack are a priori unknown, predicting aerodynamic performance is challenging. Here, we show that a coupled aerodynamics/structural dynamics model can be established for hovering, based on a linear beam equation with the Morison equation to account for both added mass and aerodynamic damping effects. Lift strongly depends on the instantaneous angle of attack, resulting from passive pitch associated with wing deformation. We show that both instantaneous wing deformation and lift can be predicted in a much simplified framework. Moreover, our analysis suggests that resulting wing kinematics can be explained by the interplay between acceleration-related and aerodynamic damping forces. Interestingly, while both forces combine to create a high angle of attack resulting in high lift around the midstroke, they offset each other for phase control at the end of the stroke. © 2014 The Author(s) Published by the Royal Society. All rights reserved.
Aerodynamic Design of Integrated Propulsion-Airframe Configuration of the Hybrid Wing-Body Aircraft
NASA Technical Reports Server (NTRS)
Liou, May-Fun; Kim, Hyoungjin; Lee, B. J.; Liou, Meng-Sing
2017-01-01
Hybrid Wing Body (HWB) aircraft is characterized by a flattened and airfoil-shaped body, which produces a substantial portion of the total lift. The body form is composed of distinct and separate wing structures, though the wings are smoothly blended into the body. This concept has been studied widely and results suggest remarkable performance improvements over the conventional tube and wing transport1,2. HWB incorporates design features from both a futuristic fuselage and flying wing design, which houses most of the crew, payload and equipment inside the main centerbody structure.
NASA Technical Reports Server (NTRS)
Love, Eugene S
1955-01-01
The results of tests of 22 triangular wings, representing two leading-edge shapes for each of 11 apex angles, at Mach numbers 1.62, 1.92, and 1.40 are presented and compared with theory. All wings have a common thickness ratio of 8 percent and a common maximum-thickness point at 18 percent chord. Lift, drag, and pitching moment are given for all wings at each Mach number. The relation of transition in the boundary layer, shocks on the wing surfaces, and characteristics of the pressure distributions is discussed for several wings.
Faint CO Line Wings in Four Star-forming (Ultra)luminous Infrared Galaxies
NASA Astrophysics Data System (ADS)
Leroy, Adam K.; Walter, Fabian; Decarli, Roberto; Bolatto, Alberto; Zschaechner, Laura; Weiss, Axel
2015-09-01
We report the results of a search for large velocity width, low-intensity line wings—a commonly used signature of molecular outflows—in four low redshift (ultra)luminous infrared galaxies that appear to be dominated by star formation. The targets were drawn from a sample of fourteen targets presented in Chung et al., who showed the stacked CO spectrum of the sample to exhibit 1000 km s-1-wide line wings. We obtained sensitive, wide bandwidth imaging of our targets using the IRAM Plateau de Bure Interferometer. We detect each target at very high significance but do not find the claimed line wings in these four targets. Instead, we constrain the flux in the line wings to be only a few percent. Casting our results as mass outflow rates following Cicone et al. we show them to be consistent with a picture in which very high mass loading factors preferentially occur in systems with high active galactic nucleus contributions to their bolometric luminosity. We identify one of our targets, IRAS 05083 (VII Zw 31), as a candidate molecular outflow.
Vehicle integration effects on hypersonic waveriders. M.S. Thesis - George Washington Univ.
NASA Technical Reports Server (NTRS)
Cockrell, Charles Edward, Jr.
1994-01-01
The integration of a class of hypersonic high-lift configurations known as waveriders into hypersonic cruise vehicles was evaluated. Waveriders offer advantages in aerodynamic performance and propulsion/airframe integration (PAI) characteristics over conventional hypersonic shapes. A wind-tunnel model was developed which integrates realistic vehicle components with two waverider shapes, referred to as the 'straight-wing' and 'cranked-wing' shapes. Both shapes were conical-flow-derived waveriders at a design Mach number of 4.0. The cranked-wing shape was designed to provide advantages in subsonic performance and directional stability over conventional waveriders. Experimental data and limited computational fluid dynamics (CFD) predictions were obtained over a Mach number range of 2.3 to 4.63 at a Reynolds number of 2.0x10(exp 6) per foot. The CFD predictions and flow visualization data confirmed the shock attachment characteristics of the baseline waverider shapes and illustrated the waverider flow-field properties. Both CFD predictions and experimental data showed that no significant performance degradations occur at off-design Mach numbers for the waverider shapes and the integrated configurations. The experimental data showed that the effects of adding a realistic canopy were minimal. The effects of adding engine components were to increase the drag and thus degrade the aerodynamic performance of the configuration. A significant degradation in aerodynamic performance was observed when 0 degree control surfaces were added to close the blunt base of the waverider to a sharp trailing edge. A comparison of the fully-integrated waverider models to the baseline shapes showed that the performance was significantly degraded when all of the components were added to the waveriders. The fully-integrated configurations studied here do not offer significant performance advantages over conventional hypersonic vehicles, but still offer advantages in air-breathing propulsion integration. Additionally, areas are identified in this study where improvements could be made to enhance the performance. Both fully-integrated configurations are longitudinally unstable over the Mach number range studied for unpowered conditions. The cranked-wing fully-integrated configuration provided significantly better lateral-directional stability characteristics than the straight-wing configuration.
23 CFR Appendix A to Part 658 - National Network-Federally-Designated Routes
Code of Federal Regulations, 2011 CFR
2011-04-01
... Anchorage AK 3 Palmer. AK 2 AK 3 Fairbanks Milepost 1412 Delta Junction. AK 3 AK 1 Palmer AK 2 Fairbanks... Harbors. US 63 I-90 Rochester US 52 Rochester. US 63 MN 58 Red Wing WI State Line. US 71 IA State Line MN... State Line Red Wing MN US 2 W. of Ashland. US 141 US 41 Abrams US 8 Pembine. US 151 IA State Line...
23 CFR Appendix A to Part 658 - National Network-Federally-Designated Routes
Code of Federal Regulations, 2010 CFR
2010-04-01
... Anchorage AK 3 Palmer. AK 2 AK 3 Fairbanks Milepost 1412 Delta Junction. AK 3 AK 1 Palmer AK 2 Fairbanks... Harbors. US 63 I-90 Rochester US 52 Rochester. US 63 MN 58 Red Wing WI State Line. US 71 IA State Line MN... State Line Red Wing MN US 2 W. of Ashland. US 141 US 41 Abrams US 8 Pembine. US 151 IA State Line...
A Non-linear Lifting Line Model for Design and Analysis of Trochoidal Propulsors
NASA Astrophysics Data System (ADS)
Roesler, Bernard; Epps, Brenden
2014-11-01
Flapping wing propulsors may increase the propulsive efficiency of large shipping vessels. A comparison of the design of a notional propulsor for a large shipping vessel with (a) a conventional ducted propeller versus (b) a flapping wing propulsor is presented. Calculations for flapping wing propulsors are performed using an open-source MATLAB software suite developed by the authors, CyROD, implementing an unsteady lifting-line model with free vortex wake roll-up to study the non-linear effects of foil-wake, and foil-foil interactions. Improvements to the traditional lifting line theory are made using further discretization of the wake vortex ring spacing near the trailing edge. Considerations of packaging options for a flapping wing propulsor on a large shipping vessel are presented, and compared with those for a conventional ducted propeller.
2006-12-01
subsystem that drives the active materials to achieve the desired shape changes. As opposed to fixed wing structures in which the aerodynamic and...structures and aerodynamics occur in conjunction with the active material and electronic subsystem interactions that involve transfer of energy from a source...which the aerodynamic and structure integration for the entire wing is the most important interaction mechanism, in the case of a morphing wing
NASA Technical Reports Server (NTRS)
Stone, David G.
1947-01-01
Flight tests were conducted at the Flight Test Station of the Pilotless Aircraft Research Division at Wallop Island, Va., to determine the longitudinal control and stability characteristics of 0.5-scale models of the Fairchild Lark pilotless aircraft with the tail in line with the wings a d with the horizontal wing flaps deflected 60 deg. The data were obtained by the use of a telemeter and by radar tracking.
An aerodynamic assessment of various supersonic fighter airplanes based on Soviet design concepts
NASA Technical Reports Server (NTRS)
Spearman, M. L.
1983-01-01
The aerodynamic, stability, and control characteristics of several supersonic fighter airplane concepts were assessed. The configurations include fixed-wing airplanes having delta wings, swept wings, and trapezoidal wings, and variable wing-sweep airplanes. Each concept employs aft tail controls. The concepts vary from lightweight, single engine, air superiority, point interceptor, or ground attack types to larger twin-engine interceptor and reconnaissance designs. Results indicate that careful application of the transonic or supersonic area rule can provide nearly optimum shaping for minimum drag for a specified Mach number requirement. Through the proper location of components and the exploitation of interference flow fields, the concepts provide linear pitching moment characteristics, high control effectiveness, and reasonably small variations in aerodynamic center location with a resulting high potential for maneuvering capability. By careful attention to component shaping and location and through the exploitation of local flow fields, favorable roll-to-yaw ratios may result and a high degree of directional stability can be achieved.
Minimization theory of induced drag subject to constraint conditions
NASA Technical Reports Server (NTRS)
Deyoung, J.
1979-01-01
Exact analytical solutions in terms of induced drag influence coefficients can be attained which define the spanwise loading with minimized induced drag, subject to specified constraint conditions, for any nonplanar wing shape or number of lift plus wing bending moment about a given wing span station. Example applications of the theory are made to a biplane, a wing in ground effect, a cruciform wing, a V-wing, a planar-wing winglet, and linked wingtips in formation flying. For minimal induced drag, the spanwise loading, relative to elliptic, is outboard for the biplane and is inboard for the wing in ground effect and for the planar-wing winglet. A spinoff of the triplane solution provides mathematically exact equations for downwash and sidewash about a planar vorticity sheet having an arbitrary loading distribution.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Patsourakos, S.; Klimchuk, J. A.; Young, P. R., E-mail: spatsour@cc.uoi.gr, E-mail: james.a.klimchuk@nasa.gov
Recent solar spectroscopic observations have shown that coronal spectral lines can exhibit asymmetric profiles, with enhanced emissions at their blue wings. These asymmetries correspond to rapidly upflowing plasmas at speeds exceeding ≈50 km s{sup –1}. Here, we perform a study of the density of the rapidly upflowing material and compare it with that of the line core that corresponds to the bulk of the plasma. For this task, we use spectroscopic observations of several active regions taken by the Extreme Ultraviolet Imaging Spectrometer of the Hinode mission. The density sensitive ratio of the Fe XIV lines at 264.78 and 274.20more » Å is used to determine wing and core densities. We compute the ratio of the blue wing density to the core density and find that most values are of order unity. This is consistent with the predictions for coronal nanoflares if most of the observed coronal mass is supplied by chromospheric evaporation driven by the nanoflares. However, much larger blue wing-to-core density ratios are predicted if most of the coronal mass is supplied by heated material ejected with type II spicules. Our measurements do not rule out a spicule origin for the blue wing emission, but they argue against spicules being a primary source of the hot plasma in the corona. We note that only about 40% of the pixels where line blends could be safely ignored have blue wing asymmetries in both Fe XIV lines. Anticipated sub-arcsecond spatial resolution spectroscopic observations in future missions could shed more light on the origin of blue, red, and mixed asymmetries.« less
NASA Technical Reports Server (NTRS)
Nielsen, Jack N
1955-01-01
A theoretical method is presented for calculating the flow field about wing-body combinations employing bodies deviating only slightly in shape from a circular cylinder. The method is applied to the calculation of the pressure field acting between a circular cylindrical body and a rectangular wing. The case of zero body angle of attack and variable wing incidence is considered as well as the case of zero wing incidence and variable body angle of attack. An experiment was performed especially for the purpose of checking the calculative examples.
NASA Astrophysics Data System (ADS)
Perez-Rosado, Ariel; Gehlhar, Rachel D.; Nolen, Savannah; Gupta, Satyandra K.; Bruck, Hugh A.
2015-06-01
Currently, flapping wing unmanned aerial vehicles (a.k.a., ornithopters or robotic birds) sustain very short duration flight due to limited on-board energy storage capacity. Therefore, energy harvesting elements, such as flexible solar cells, need to be used as materials in critical components, such as wing structures, to increase operational performance. In this paper, we describe a layered fabrication method that was developed for realizing multifunctional composite wings for a unique robotic bird we developed, known as Robo Raven, by creating compliant wing structure from flexible solar cells. The deformed wing shape and aerodynamic lift/thrust loads were characterized throughout the flapping cycle to understand wing mechanics. A multifunctional performance analysis was developed to understand how integration of solar cells into the wings influences flight performance under two different operating conditions: (1) directly powering wings to increase operation time, and (2) recharging batteries to eliminate need for external charging sources. The experimental data is then used in the analysis to identify a performance index for assessing benefits of multifunctional compliant wing structures. The resulting platform, Robo Raven III, was the first demonstration of a robotic bird that flew using energy harvested from solar cells. We developed three different versions of the wing design to validate the multifunctional performance analysis. It was also determined that residual thrust correlated to shear deformation of the wing induced by torsional twist, while biaxial strain related to change in aerodynamic shape correlated to lift. It was also found that shear deformation of the solar cells induced changes in power output directly correlating to thrust generation associated with torsional deformation. Thus, it was determined that multifunctional solar cell wings may be capable of three functions: (1) lightweight and flexible structure to generate aerodynamic forces, (2) energy harvesting to extend operational time and autonomy, and (3) sensing of an aerodynamic force associated with wing deformation.
NASA Technical Reports Server (NTRS)
Mikkelsen, K. L.; Mcknight, R. C.; Ranaudo, R. J.; Perkins, P. J., Jr.
1985-01-01
Aircraft icing flight research was performed in natural icing conditions. A data base consisting of icing cloud measurements, ice shapes, and aerodynamic measurements is being developed. During research icing encounters the icing cloud was continuously measured. After the encounter, the ice accretion shapes on the wing were documented with a stereo camera system. The increase in wing section drag was measured with a wake survey probe. The overall aircraft performance loss in terms of lift and drag coefficient changes was obtained by steady level speed/power measurements. Selective deicing of the airframe components was performed to determine their contributions to the total drag increase. Engine out capability in terms of power available was analyzed for the iced aircraft. It was shown that the stereo photography system can be used to document ice shapes in flight and that the wake survey probe can measure increases in wing section drag caused by ice. On one flight, the wing section drag coefficient (c sub d) increased approximately 120 percent over the uniced baseline at an aircraft angle of attack of 6 deg. On another flight, the aircraft darg coefficient (c sub d) increased by 75 percent over the uniced baseline at an aircraft lift coefficient (C sub d) of 0.5.
NASA Technical Reports Server (NTRS)
Mikkelsen, K. L.; Mcknight, R. C.; Ranaudo, R. J.; Perkins, P. J., Jr.
1985-01-01
Aircraft icing flight research was performed in natural icing conditions. A data base consisting of icing cloud measurements, ice shapes, and aerodynamic measurements is being developed. During research icing encounters the icing cloud was continuously measured. After the encounter, the ice accretion shapes on the wing were documented with a stereo camera system. The increase in wing section drag was measured with a wake survey probe. The overall aircraft performance loss in terms of lift and drag coefficient changes were obtained by steady level speed/power measurements. Selective deicing of the airframe components was performed to determine their contributions to the total drag increase. Engine out capability in terms of power available was analyzed for the iced aircraft. It was shown that the stereo photography system can be used to document ice shapes in flight and that the wake survey probe can measure increases in wing section drag caused by ice. On one flight, the wing section drag coefficient (c sub d) increased approximately 120 percent over the uniced baseline at an aircraft angle of attack of 6 deg. On another flight, the aircraft drag coefficient (c sub d) increased by 75 percent over the uniced baseline at an aircraft lift coefficient (c sub d) of 0.5.
Host plant affects morphometric variation of Diaphorina citri (Hemiptera: Liviidae).
Paris, Thomson M; Allan, Sandra A; Hall, David G; Hentz, Matthew G; Hetesy, Gabriella; Stansly, Philip A
2016-01-01
The Asian citrus psyllid (ACP), Diaphorina citri Kuwayama, is one of the most serious citrus pests worldwide due to its role as vector of huanglongbing or citrus greening disease. While some optimal plant species for ACP oviposition and development have been identified, little is known of the influence of host plants on ACP size and shape. Our goal was to determine how size and shape of ACP wing and body size varies when development occurs on different host plants in a controlled rearing environment. ACP were reared on six different rutaceous species; Bergera koenigii , Citrus aurantifolia , Citrus macrophylla , Citrus maxima , Citrus taiwanica and Murraya paniculata . Adults were examined for morphometric variation using traditional and geometric analysis based on 12 traits or landmarks. ACP reared on C. taiwanica were consistently smaller than those reared on the other plant species. Wing aspect ratio also differed between C. maxima and C. taiwanica . Significant differences in shape were detected with those reared on M. paniculata having narrower wings than those reared on C. macrophylla . This study provides evidence of wing size and shape differences of ACP based on host plant species which potentially may impact dispersal. Further study is needed to determine if behavioral and physiological differences are associated with the observed phenotypic differences.
Host plant affects morphometric variation of Diaphorina citri (Hemiptera: Liviidae)
Paris, Thomson M.; Hall, David G.; Hentz, Matthew G.; Hetesy, Gabriella; Stansly, Philip A.
2016-01-01
The Asian citrus psyllid (ACP), Diaphorina citri Kuwayama, is one of the most serious citrus pests worldwide due to its role as vector of huanglongbing or citrus greening disease. While some optimal plant species for ACP oviposition and development have been identified, little is known of the influence of host plants on ACP size and shape. Our goal was to determine how size and shape of ACP wing and body size varies when development occurs on different host plants in a controlled rearing environment. ACP were reared on six different rutaceous species; Bergera koenigii, Citrus aurantifolia, Citrus macrophylla, Citrus maxima, Citrus taiwanica and Murraya paniculata. Adults were examined for morphometric variation using traditional and geometric analysis based on 12 traits or landmarks. ACP reared on C. taiwanica were consistently smaller than those reared on the other plant species. Wing aspect ratio also differed between C. maxima and C. taiwanica. Significant differences in shape were detected with those reared on M. paniculata having narrower wings than those reared on C. macrophylla. This study provides evidence of wing size and shape differences of ACP based on host plant species which potentially may impact dispersal. Further study is needed to determine if behavioral and physiological differences are associated with the observed phenotypic differences. PMID:27833820
NASA Technical Reports Server (NTRS)
Kruse, R. L.; Lovette, G. H.; Spencer, B., Jr.
1977-01-01
The subsonic aerodynamic characteristics of a series of irregular planform wings were studied in wind tunnel tests conducted at M = 0.3 over a range of Reynolds numbers from 1.6 million to 26 million/m. The five basic wing planforms varied from a trapezoidal to a delta shape. Leading edge extensions, added to the basic shape, varied in approximately 5 deg increments from the wing leading edge sweep-back angle to a maximum 80 deg. Most of the tests were conducted using an NACA 0008 airfoil section with grit boundary layer trips. Tests were also conducted using an NACA 0012 airfoil section and an 8% thick wedge. In addition, the effect of free transition (no grit) was investigated. A body was used on all models.
NASA Astrophysics Data System (ADS)
Ko, Seung-Hee; Bae, Jae-Sung; Rho, Jin-Ho
2014-07-01
The discontinuous contour of a wing with conventional flaps diminishes the aerodynamic performance of an aircraft. A wing with a continuous contour does not experience extreme flow stream fluctuations during flight, and consequently has good aerodynamic characteristics. In this study, a morphing flap using shape memory alloy actuators is proposed, designed and fabricated, and its aerodynamic characteristics are investigated using aerodynamic analyses and wind tunnel tests. The ribs of the morphing flap are designed and fabricated with multiple elements joined together in a way that allows relative rotations of adjacent elements and forms a smooth contour of the morphing flap. The aerodynamic analyses of this multiple-element morphing-flap wing are performed using XFLR pro; its aerodynamic performance is compared with that of a mechanical-flap wing, and is measured through wind-tunnel tests.
NASA Technical Reports Server (NTRS)
Brandon, J. M.; Murri, D. G.; Nguyen, L. T.
1986-01-01
A series of low-speed wind tunnel tests on a generic airplane model with a cylindrical fuselage were made to investigate the effects of forebody shape and fitness ratio, and fuselage/wing proximity on static and dynamic lateral/directional stability. In addition, some preliminary testing to determine the effectiveness of deflectable forebody strakes for high angle of attack yaw control was conducted. During the stability investigation, 11 forebodies were tested including three different cross-sectional shapes with fineness ratios of 2, 3, and 4. In addition, the wing was tested at two longitudinal positions to provide a substantial variation in forebody/wing proximity. Conventional force tests were conducted to determine static stability characteristics, and single-degree-of-freedom free-to-roll tests were conducted to study the wing rock characteristics of the model with the various forebodies. Flow visualization data were obtained to aid in the analysis of the complex flow phenomena involved. The results show that the forebody cross-sectional shape and fineness ratio and forebody/wing proximity can strongly affect both static and dynamic (roll) stability at high angles of attack. These characteristics result from the impact of these factors on forebody vortex development, the behavior of the vortices in sideslip, and their interaction with the wing flow field. Preliminary results from the deflectable strake investigation indicated that forebody flow control using this concept can provide very large yaw control moments at stall and post-stall angles of attack.
Investigation of certain wing shapes with sections varying progressively along the span
NASA Technical Reports Server (NTRS)
Arsandaux, L
1931-01-01
This investigation has a double object: 1) the calculation of the general characteristics of certain wings with progressively varying sections; 2) the determination of data furnishing, in certain cases, some information on the actual distribution of the external forces acting on a wing. We shall try to show certain advantages belonging to the few wing types of variable section which we shall study and that, even if the general aerodynamic coefficients of these wings are not often clearly superior to those of certain wings of uniform section, the wings of variable section nevertheless have certain advantages over those of uniform section in the distribution of the attainable stresses.
How wing compliance drives the efficiency of self-propelled flapping flyers.
Thiria, Benjamin; Godoy-Diana, Ramiro
2010-07-01
Wing flexibility governs the flying performance of flapping-wing flyers. Here, we use a self-propelled flapping-wing model mounted on a "merry go round" to investigate the effect of wing compliance on the propulsive efficiency of the system. Our measurements show that the elastic nature of the wings can lead not only to a substantial reduction in the consumed power, but also to an increment of the propulsive force. A scaling analysis using a flexible plate model for the wings points out that, for flapping flyers in air, the time-dependent shape of the elastic bending wing is governed by the wing inertia. Based on this prediction, we define the ratio of the inertial forces deforming the wing to the elastic restoring force that limits the deformation as the elastoinertial number N(ei). Our measurements with the self-propelled model confirm that it is the appropriate structural parameter to describe flapping flyers with flexible wings.
A Note about Self-Induced Velocity Generated by a Lifting-Line Wing or Rotor Blade
NASA Technical Reports Server (NTRS)
Harris, Franklin D.
2006-01-01
This report presents an elementary analysis of the induced velocity created by a field of vortices that reside in the wake of a rotor blade. Progress achieved by other researchers in the last 70 years is briefly reviewed. The present work is presented in four stages of complexity that carry a lifting-line representation of a fixed wing into a single-blade rotor. The analysis leads to the conclusion that the lifting rotor's spiraling vortex wake structure has very high induced power when compared to the ideal wing. For an advanced ratio of one-half, induced power is on the order of 10 times that of the wing when the comparison is made at wingspan equal to rotor diameter and wing and rotor having equal lift.
NASA Technical Reports Server (NTRS)
Adams, Gaynor J; DUGAN DUANE W
1952-01-01
A method of analysis based on slender-wing theory is developed to investigate the characteristics in roll of slender cruciform wings and wing-body combinations. The method makes use of the conformal mapping processes of classical hydrodynamics which transform the region outside a circle and the region outside an arbitrary arrangement of line segments intersecting at the origin. The method of analysis may be utilized to solve other slender cruciform wing-body problems involving arbitrarily assigned boundary conditions. (author)
Aeroelastic passive control optimization of supersonic composite wing with external stores
NASA Astrophysics Data System (ADS)
Sulaeman, E.; Abdullah, N. A.; Kashif, S. M.
2017-03-01
This paper provides a study on passive aeroelastic control optimization, by means of aeroelastic tailoring, of a composite supersonic wing equipped with external stores. The objective of the optimization is to minimize wing weight by considering the aeroelastic flutter and divergence instability speeds as constraints at several flight altitudes. The optimization variables are the composite ply angle and skin thickness of the wing box, wing rib and its control surfaces. The aeroelastic instability speed is set as constraint such that it should be higher than the flutter speed of a metallic base line model of supersonic wing having previously published. A finite element analysis is applied to determine the stiffness and mass matric of the wing and its multi stores. The boundary element method in the form of doublet lattice method is used to model the unsteady aerodynamic load. The results indicate that, for the present wing configuration, the high modulus Graphite/Epoxy composite provides a desired higher flutter speed and lower wing weight compare to that of Kevlar/Epoxy composite as well as the base line metallic wing materials. The aeroelastic boundary thus can be enlarged to higher speed zone and in the same time reduce the structural weight which is important for a further optimization process.
Shape Memory Alloy Induced Wing Warping for a Small Unmanned Aerial Vehicle
2003-06-01
strained Nitinol wires are attached to the surface of the wing. When the resistively heated wires pass a transition temperature, a phase change occurs...testing of the Nitinol wire is conducted to determine its modulus of elasticity in both its martensite and austenite phases. In addition, cycle tests are...prototype wings with Nitinol wires attached to determine the actual performance of the actuator. Using epoxy to attach the Nitinol to the wing is
DETAIL VIEW ABOVE THE MAIN ASSEMBLY LEVEL SHOWING HOIST AT ...
DETAIL VIEW ABOVE THE MAIN ASSEMBLY LEVEL SHOWING HOIST AT COLUMN LINE U-6 USED FOR LIFTING WING COMPONENTS FROM THE WING ASSEMBLY ANNEX TO THE B-29 PRODUCTION LINE. - Offutt Air Force Base, Glenn L. Martin-Nebraska Bomber Plant, Building D, Peacekeeper Drive, Bellevue, Sarpy County, NE
Nattero, Julieta; Dujardin, Jean-Pierre; Del Pilar Fernández, María; Gürtler, Ricardo E
2015-12-01
Fluctuating asymmetry (FA), a slight and random departure from bilateral symmetry that is normally distributed around a 0 mean, has been widely used to infer developmental instability. We investigated whether habitats (ecotopes) and host-feeding sources influenced wing FA of the hematophagous bug Triatoma infestans. Because bug populations occupying distinct habitats differed substantially and consistently in various aspects such as feeding rates, engorgement status and the proportion of gravid females, we predicted that bugs from more open peridomestic habitats (i.e., goat corrals) were more likely to exhibit higher FA than bugs from domiciles. We examined patterns of asymmetry and the amount of wing size and shape FA in 196 adult T. infestans collected across a gradient of habitat suitability and stability that decreased from domiciles, storerooms, kitchens, chicken coops, pig corrals, to goat corrals in a well-defined area of Figueroa, northwestern Argentina. The bugs had unmixed blood meals on human, chicken, pig and goat depending on the bug collection ecotope. We documented the occurrence of FA in wing shape for bugs fed on all host-feeding sources and in all ecotopes except for females from domiciles or fed on humans. FA indices for wing shape differed significantly among host-feeding sources, ecotopes and sexes. The patterns of wing asymmetry in females from domiciles and from goat corrals were significantly different; differences in male FA were congruent with evidence showing that they had higher mobility than females across habitats. The host-feeding sources and habitats of T. infestans affected wing developmental stability depending on sex. Copyright © 2015 Elsevier B.V. All rights reserved.
The influence of flight style on the aerodynamic properties of avian wings as fixed lifting surfaces
Dimitriadis, Grigorios; Nudds, Robert L.
2016-01-01
The diversity of wing morphologies in birds reflects their variety of flight styles and the associated aerodynamic and inertial requirements. Although the aerodynamics underlying wing morphology can be informed by aeronautical research, important differences exist between planes and birds. In particular, birds operate at lower, transitional Reynolds numbers than do most aircraft. To date, few quantitative studies have investigated the aerodynamic performance of avian wings as fixed lifting surfaces and none have focused upon the differences between wings from different flight style groups. Dried wings from 10 bird species representing three distinct flight style groups were mounted on a force/torque sensor within a wind tunnel in order to test the hypothesis that wing morphologies associated with different flight styles exhibit different aerodynamic properties. Morphological differences manifested primarily as differences in drag rather than lift. Maximum lift coefficients did not differ between groups, whereas minimum drag coefficients were lowest in undulating flyers (Corvids). The lift to drag ratios were lower than in conventional aerofoils and data from free-flying soaring species; particularly in high frequency, flapping flyers (Anseriformes), which do not rely heavily on glide performance. The results illustrate important aerodynamic differences between the wings of different flight style groups that cannot be explained solely by simple wing-shape measures. Taken at face value, the results also suggest that wing-shape is linked principally to changes in aerodynamic drag, but, of course, it is aerodynamics during flapping and not gliding that is likely to be the primary driver. PMID:27781155
Membrane wing aerodynamics for micro air vehicles
NASA Astrophysics Data System (ADS)
Lian, Yongsheng; Shyy, Wei; Viieru, Dragos; Zhang, Baoning
2003-10-01
The aerodynamic performance of a wing deteriorates considerably as the Reynolds number decreases from 10 6 to 10 4. In particular, flow separation can result in substantial change in effective airfoil shape and cause reduced aerodynamic performance. Lately, there has been growing interest in developing suitable techniques for sustained and robust flight of micro air vehicles (MAVs) with a wingspan of 15 cm or smaller, flight speed around 10 m/ s, and a corresponding Reynolds number of 10 4-10 5. This paper reviews the aerodynamics of membrane and corresponding rigid wings under the MAV flight conditions. The membrane wing is observed to yield desirable characteristics in delaying stall as well as adapting to the unsteady flight environment, which is intrinsic to the designated flight speed. Flow structures associated with the low Reynolds number and low aspect ratio wing, such as pressure distribution, separation bubble and tip vortex are reviewed. Structural dynamics in response to the surrounding flow field is presented to highlight the multiple time-scale phenomena. Based on the computational capabilities for treating moving boundary problems, wing shape optimization can be conducted in automated manners. To enhance the lift, the effect of endplates is evaluated. The proper orthogonal decomposition method is also discussed as an economic tool to describe the flow structure around a wing and to facilitate flow and vehicle control.
Device and method for treatment of openings in vascular and septal walls
DOE Office of Scientific and Technical Information (OSTI.GOV)
Singhal, Pooja; Wilson, Thomas S.; Cosgriff-Hernandez, Elizabeth
A device, system and method for treatment of an opening in vascular and/or septal walls including patent foramen ovale. The device has wings/stops on either end, an axis core covered in a shape memory foam and is deliverable via a catheter to the affected opening, finally expanding into a vascular or septal opening where it is held in place by the expandable shape memory stops or wings.
NASA Astrophysics Data System (ADS)
Popov, Andrei Vladimir
The aerospace industry is motivated to reduce fuel consumption in large transport aircraft, mainly through drag reduction. The main objective of the global project is the development of an active control system of wing airfoil geometry during flight in order to allow drag reduction. Drag reduction on a wing can be achieved through modifications in the laminar-to-turbulent flow transition point position, which should be situated as close as possible to the trailing edge of the airfoil wing. As the transition point plays a crucial part in this project, this work focuses on the control of its position on the airfoil, as an effect of controlling the deflection of a morphing wing airfoil equipped with a flexible skin. The paper presents the modeling and the experimental testing of the aerodynamic performance of a morphing wing, starting from the design concept phase all the way to the bench and wind tunnel tests phases. Several wind tunnel test runs for various Mach numbers and angles of attack were performed in the 6 x 9 ft2 wind tunnel at the Institute for Aerospace Research at the National Research Council Canada. A rectangular finite aspect ratio wing, having a morphing airfoil cross-section due to a flexible skin installed on the upper surface of the wing, was instrumented with Kulite transducers. The Mach number varied from 0.2 to 0.3 and the angle of attack between -1° and 2°. Unsteady pressure signals were recorded and analyzed and a thorough comparison, in terms of mean pressure coefficients and their standard deviations, was performed against theoretical predictions, using the XFoil computational fluid dynamics code. The acquired pressure data was analyzed through custom-made software created with Matlab/Simulink in order to detect the noise magnitude in the surface airflow and to localize the transition point position on the wing upper surface. This signal processing was necessary in order to detect the Tollmien-Schlichting waves responsible for triggering the transition from laminar to turbulent flow. The flexible skin needed to morph its shape through two actuation points in order to obtain an optimized airfoil shape for several flow conditions in the wind tunnel. The two shape memory alloy actuators, having a non-linear behavior, drove the displacement of the two control points of the flexible skin towards the optimized airfoil shape. This thesis presents the methodology used and the results obtained from designing the controller of the two shape memory actuators as well as the methods used for morphing wing control in the wind tunnel tests designed to prove the concept and validity of the system in real time. Keywords: wing, morphing, laminar, turbulent, transition, control, wind tunnel
Patterning of wound-induced intercellular Ca2+ flashes in a developing epithelium
NASA Astrophysics Data System (ADS)
Narciso, Cody; Wu, Qinfeng; Brodskiy, Pavel; Garston, George; Baker, Ruth; Fletcher, Alexander; Zartman, Jeremiah
2015-10-01
Differential mechanical force distributions are increasingly recognized to provide important feedback into the control of an organ’s final size and shape. As a second messenger that integrates and relays mechanical information to the cell, calcium ions (Ca2+) are a prime candidate for providing important information on both the overall mechanical state of the tissue and resulting behavior at the individual-cell level during development. Still, how the spatiotemporal properties of Ca2+ transients reflect the underlying mechanical characteristics of tissues is still poorly understood. Here we use an established model system of an epithelial tissue, the Drosophila wing imaginal disc, to investigate how tissue properties impact the propagation of Ca2+ transients induced by laser ablation. The resulting intercellular Ca2+ flash is found to be mediated by inositol 1,4,5-trisphosphate and depends on gap junction communication. Further, we find that intercellular Ca2+ transients show spatially non-uniform characteristics across the proximal-distal axis of the larval wing imaginal disc, which exhibit a gradient in cell size and anisotropy. A computational model of Ca2+ transients is employed to identify the principle factors explaining the spatiotemporal patterning dynamics of intercellular Ca2+ flashes. The relative Ca2+ flash anisotropy is principally explained by local cell shape anisotropy. Further, Ca2+ velocities are relatively uniform throughout the wing disc, irrespective of cell size or anisotropy. This can be explained by the opposing effects of cell diameter and cell elongation on intercellular Ca2+ propagation. Thus, intercellular Ca2+ transients follow lines of mechanical tension at velocities that are largely independent of tissue heterogeneity and reflect the mechanical state of the underlying tissue.
Aerodynamic tailoring of the Learjet Model 60 wing
NASA Technical Reports Server (NTRS)
Chandrasekharan, Reuben M.; Hawke, Veronica M.; Hinson, Michael L.; Kennelly, Robert A., Jr.; Madson, Michael D.
1993-01-01
The wing of the Learjet Model 60 was tailored for improved aerodynamic characteristics using the TRANAIR transonic full-potential computational fluid dynamics (CFD) code. A root leading edge glove and wing tip fairing were shaped to reduce shock strength, improve cruise drag and extend the buffet limit. The aerodynamic design was validated by wind tunnel test and flight test data.
Viscous Aerodynamic Shape Optimization with Installed Propulsion Effects
NASA Technical Reports Server (NTRS)
Heath, Christopher M.; Seidel, Jonathan A.; Rallabhandi, Sriram K.
2017-01-01
Aerodynamic shape optimization is demonstrated to tailor the under-track pressure signature of a conceptual low-boom supersonic aircraft. Primarily, the optimization reduces nearfield pressure waveforms induced by propulsion integration effects. For computational efficiency, gradient-based optimization is used and coupled to the discrete adjoint formulation of the Reynolds-averaged Navier Stokes equations. The engine outer nacelle, nozzle, and vertical tail fairing are axi-symmetrically parameterized, while the horizontal tail is shaped using a wing-based parameterization. Overall, 48 design variables are coupled to the geometry and used to deform the outer mold line. During the design process, an inequality drag constraint is enforced to avoid major compromise in aerodynamic performance. Linear elastic mesh morphing is used to deform volume grids between design iterations. The optimization is performed at Mach 1.6 cruise, assuming standard day altitude conditions at 51,707-ft. To reduce uncertainty, a coupled thermodynamic engine cycle model is employed that captures installed inlet performance effects on engine operation.
An analytical model and scaling of chordwise flexible flapping wings in forward flight.
Kodali, Deepa; Kang, Chang-Kwon
2016-12-13
Aerodynamic performance of biological flight characterized by the fluid structure interaction of a flapping wing and the surrounding fluid is affected by the wing flexibility. One of the main challenges to predict aerodynamic forces is that the wing shape and motion are a priori unknown. In this study, we derive an analytical fluid-structure interaction model for a chordwise flexible flapping two-dimensional airfoil in forward flight. A plunge motion is imposed on the rigid leading-edge (LE) of teardrop shape and the flexible tail dynamically deforms. The resulting unsteady aeroelasticity is modeled with the Euler-Bernoulli-Theodorsen equation under a small deformation assumption. The two-way coupling is realized by considering the trailing-edge deformation relative to the LE as passive pitch, affecting the unsteady aerodynamics. The resulting wing deformation and the aerodynamic performance including lift and thrust agree well with high-fidelity numerical results. Under the dynamic balance, the aeroelastic stiffness decreases, whereas the aeroelastic stiffness increases with the reduced frequency. A novel aeroelastic frequency ratio is derived, which scales with the wing deformation, lift, and thrust. Finally, the dynamic similarity between flapping in water and air is established.
Effect of wing flexibility in dragonfly hovering flight
NASA Astrophysics Data System (ADS)
Naidu, Vishal; Young, John; Lai, Joseph
2011-11-01
Dragonflies have two pairs of tandem wings, which can be operated independently. Most studies on tandem wings are based on rigid wings, which is in strong contradiction to the natural, flexible dragonfly wings. The effect of wing flexibility in tandem wings is little known. We carry out a comparative, computational study between rigid and flexible, dragonfly shaped wings for hovering flight. In rigid wings during downstroke, a leading edge vortex (LEV) is formed on the upper surface, which forms a low pressure zone. This conical LEV joins the tip vortex and shortly after the mid downstroke when the wing starts to rotate, these vortices are gradually shed resulting in a drop in lift. The vortex system creates a net downwards momentum in the form of a jet. The flexible wings while in motion deform due to aerodynamic and inertial forces. Since there is a strong interaction between wing deformation and air flow around the deformed wings, flexible wing simulations are carried out using a two way fluid structure interaction. The effect of wing flexibility on the flow structure and the subsequent effect on the aerodynamic forces will be studied and presented.
NASA Technical Reports Server (NTRS)
Uden, Edward (Inventor); Bowers, Albion H. (Inventor)
2016-01-01
The present invention is an aircraft wing design that creates a bell shaped span load, which results in a negative induced drag (induced thrust) on the outer portion of the wing; such a design obviates the need for rudder control of an aircraft.
NASA Technical Reports Server (NTRS)
Pena, Francisco; Martins, Benjamin L.; Richards, W. Lance
2018-01-01
Morphing wing technologies have gained research interest in recent years as technological advancements pave the way for such innovations. A key benefit of such a morphing wing concept is the ability of the wing to transition into an optimal configuration at multiple flight conditions. Such a morphing wing will have applications not only in drag reduction but also in flutter suppression and gust alleviation. By manipulating the wing geometry to match a given flight profile it is likely that the wing will yield increases in not just aerodynamic efficiency but also structural efficiency. These structurally efficient designs will likely rely on some type of structural sensing system which will ensure the wing maintains positive margins throughout its flight profile.
NASA Technical Reports Server (NTRS)
Lattanzi, Bernardino; Bellante, Erno
1949-01-01
The present report is concerned with a series of tests on a model airplane fitted with four types of dive flaps of various shapes, positions, and incidence located near the leading edge of the wing (from 5 to 20 percent of the wing chord). Tests were also made on a stub airfoil fitted with a ventral dive (located at 8 percent of the wing chord). The hinge moments of the dive flaps were measured.
NASA Technical Reports Server (NTRS)
Dharamsi, Amin
1999-01-01
Wavelength modulation spectroscopy is used to demonstrate that extremely weak absorption lines can be measured even when these lines suffer from interference from the wings of adjacent stronger lines. It is shown that the use of detection at several harmonics allows such interference to be examined clearly and conveniently. The results of experimental measurements on a weak magnetic dipole driven, spin-forbidden line in the oxygen A band, which experiences interference from the wings of a pair of adjacent lines towards the blue and red regions of line center, are presented. A comparison of the experimental results to theory is given.
Aerostructural Shape and Topology Optimization of Aircraft Wings
NASA Astrophysics Data System (ADS)
James, Kai
A series of novel algorithms for performing aerostructural shape and topology optimization are introduced and applied to the design of aircraft wings. An isoparametric level set method is developed for performing topology optimization of wings and other non-rectangular structures that must be modeled using a non-uniform, body-fitted mesh. The shape sensitivities are mapped to computational space using the transformation defined by the Jacobian of the isoparametric finite elements. The mapped sensitivities are then passed to the Hamilton-Jacobi equation, which is solved on a uniform Cartesian grid. The method is derived for several objective functions including mass, compliance, and global von Mises stress. The results are compared with SIMP results for several two-dimensional benchmark problems. The method is also demonstrated on a three-dimensional wingbox structure subject to fixed loading. It is shown that the isoparametric level set method is competitive with the SIMP method in terms of the final objective value as well as computation time. In a separate problem, the SIMP formulation is used to optimize the structural topology of a wingbox as part of a larger MDO framework. Here, topology optimization is combined with aerodynamic shape optimization, using a monolithic MDO architecture that includes aerostructural coupling. The aerodynamic loads are modeled using a three-dimensional panel method, and the structural analysis makes use of linear, isoparametric, hexahedral elements. The aerodynamic shape is parameterized via a set of twist variables representing the jig twist angle at equally spaced locations along the span of the wing. The sensitivities are determined analytically using a coupled adjoint method. The wing is optimized for minimum drag subject to a compliance constraint taken from a 2 g maneuver condition. The results from the MDO algorithm are compared with those of a sequential optimization procedure in order to quantify the benefits of the MDO approach. While the sequentially optimized wing exhibits a nearly-elliptical lift distribution, the MDO design seeks to push a greater portion of the load toward the root, thus reducing the structural deflection, and allowing for a lighter structure. By exploiting this trade-off, the MDO design achieves a 42% lower drag than the sequential result.
NASA Astrophysics Data System (ADS)
Rogers, Keir K.; Bird, Simeon; Peiris, Hiranya V.; Pontzen, Andrew; Font-Ribera, Andreu; Leistedt, Boris
2018-03-01
We measure the effect of high column density absorbing systems of neutral hydrogen (H I) on the one-dimensional (1D) Lyman α forest flux power spectrum using cosmological hydrodynamical simulations from the Illustris project. High column density absorbers (which we define to be those with H I column densities N(H I) > 1.6 × 10^{17} atoms cm^{-2}) cause broadened absorption lines with characteristic damping wings. These damping wings bias the 1D Lyman α forest flux power spectrum by causing absorption in quasar spectra away from the location of the absorber itself. We investigate the effect of high column density absorbers on the Lyman α forest using hydrodynamical simulations for the first time. We provide templates as a function of column density and redshift, allowing the flexibility to accurately model residual contamination, i.e. if an analysis selectively clips out the largest damping wings. This flexibility will improve cosmological parameter estimation, for example, allowing more accurate measurement of the shape of the power spectrum, with implications for cosmological models containing massive neutrinos or a running of the spectral index. We provide fitting functions to reproduce these results so that they can be incorporated straightforwardly into a data analysis pipeline.
NASA Astrophysics Data System (ADS)
Serov, E. A.; Odintsova, T. A.; Tretyakov, M. Yu.; Semenov, V. E.
2017-05-01
Analysis of the continuum absorption in water vapor at room temperature within the purely rotational and fundamental ro-vibrational bands shows that a significant part (up to a half) of the observed absorption cannot be explained within the framework of the existing concepts of the continuum. Neither of the two most prominent mechanisms of continuum originating, namely, the far wings of monomer lines and the dimers, cannot reproduce the currently available experimental data adequately. We propose a new approach to developing a physically based model of the continuum. It is demonstrated that water dimers and wings of monomer lines may contribute equally to the continuum within the bands, and their contribution should be taken into account in the continuum model. We propose a physical mechanism giving missing justification for the super-Lorentzian behavior of the intermediate line wing. The qualitative validation of the proposed approach is given on the basis of a simple empirical model. The obtained results are directly indicative of the necessity to reconsider the existing line wing theory and can guide this consideration.
NASA Technical Reports Server (NTRS)
Turner, Travis L. (Inventor); Kidd, Reggie T. (Inventor); Lockard, David P (Inventor); Khorrami, Mehdi R. (Inventor); Streett, Craig L. (Inventor); Weber, Douglas Leo (Inventor)
2016-01-01
A slat cove filler is utilized to reduce airframe noise resulting from deployment of a leading edge slat of an aircraft wing. The slat cove filler is preferably made of a super elastic shape memory alloy, and the slat cove filler shifts between stowed and deployed shapes as the slat is deployed. The slat cove filler may be configured such that a separate powered actuator is not required to change the shape of the slat cove filler from its deployed shape to its stowed shape and vice-versa. The outer contour of the slat cove filler preferably follows a profile designed to maintain accelerating flow in the gap between the slat cove filler and wing leading edge to provide for noise reduction.
NASA Technical Reports Server (NTRS)
Schulderfrei, Marvin; Comisarow, Paul; Goodson, Kenneth W
1951-01-01
An investigation has been made of a complete airplane model having a wing with the quarter-chord line swept back 40 degrees, aspect ratio 2.50, and taper ratio 0.42 to determine its low-speed stability and control characteristics. The longitudinal stability investigation included stabilizer and tail-off tests with different wing dihedral angles (Gamma = 0 degrees and Gamma = -10 degrees) over an angle-of-attack range for the cruising and landing configurations and tests. with a high horizontal-tail location (Gamma = -10 degrees) for the cruising configuration. Tests were made of the wing alone and to determine the effect of wing end plates in pitch. Lateral stability characteristics were determined for the airplane with different geometric wing dihedrals, with end plates, and with several dorsal modifications. Tests were made with ailerons and spoilers to determine control characteristics.
NASA Astrophysics Data System (ADS)
Kurt, Melike; Moored, Keith
2016-11-01
Birds, insects, and fish propel themselves by flapping their wings or oscillating their fins in unsteady motions. Many of these animals fly or swim in groups or collectives, typically described as flocks, swarms and schools. The three-dimensional steady flow interactions and the two dimensional unsteady flow interactions that occur in collectives are well characterized. However, the interactions that occur among three-dimensional unsteady propulsors remain relatively unexplored. The aim of the current study is to measure the forces acting on and the energetics of two finite-span pitching wings. The wings are arranged in mixtures of canonical in-line and side-by-side configurations while the phase delay between the pitching wings is varied. The thrust force, fluid-mediated interaction force between the wings and the propulsive efficiency are quantified. The three-dimensional interaction mechanisms are compared and contrasted with previously examined two-dimensional mechanisms. Stereoscopic particle image velocimetry is employed to characterize the three-dimensional flow structures along the span of the pitching wings.
NASA Technical Reports Server (NTRS)
Pao, J. L.; Mehrotra, S. C.; Lan, C. E.
1982-01-01
A computer code base on an improved vortex filament/vortex core method for predicting aerodynamic characteristics of slender wings with edge vortex separations is developed. The code is applicable to camber wings, straked wings or wings with leading edge vortex flaps at subsonic speeds. The prediction of lifting pressure distribution and the computer time are improved by using a pair of concentrated vortex cores above the wing surface. The main features of this computer program are: (1) arbitrary camber shape may be defined and an option for exactly defining leading edge flap geometry is also provided; (2) the side edge vortex system is incorporated.
ERAST Program Proteus Aircraft in Flight
1999-07-26
The unusual design of the Proteus high-altitude aircraft, incorporating a gull-wing shape for its main wing and a long, slender forward canard, is clearly visible in this view of the aircraft in flight over the Mojave Desert in California.
Multi-wavelength analysis of Ellerman Bomb Light Curves
NASA Astrophysics Data System (ADS)
Herlender, M.; Berlicki, A.
We present the results of a multi-wavelength photometric analysis of Ellerman Bomb (EB) observations obtained from the Dutch Open Telescope. In our data we have found 6 EBs located in the super-penumbra of the main spot in the active region NOAA 10781. We present light curves of EB observed in the Hα line centre and wing +0.7 Å, in the Ca II H line centre and wing~+2.35 Å, in the G-band and in the TRACE 1600 Å filter. We have shown that EBs were visible in the G-band and moreover, there was a good correlation between the light curves in the G-band and in the Hα line wings. We also found quasi-periodic oscillations of EBs brightness in the G-band, CaII H line and TRACE 1600 Å filter.
Multiple capacitors for natural genetic variation in Drosophila melanogaster.
Takahashi, Kazuo H
2013-03-01
Cryptic genetic variation (CGV) or a standing genetic variation that is not ordinarily expressed as a phenotype is released when the robustness of organisms is impaired under environmental or genetic perturbations. Evolutionary capacitors modulate the amount of genetic variation exposed to natural selection and hidden cryptically; they have a fundamental effect on the evolvability of traits on evolutionary timescales. In this study, I have demonstrated the effects of multiple genomic regions of Drosophila melanogaster on CGV in wing shape. I examined the effects of 61 genomic deficiencies on quantitative and qualitative natural genetic variation in the wing shape of D. melanogaster. I have identified 10 genomic deficiencies that do not encompass a known candidate evolutionary capacitor, Hsp90, exposing natural CGV differently depending on the location of the deficiencies in the genome. Furthermore, five genomic deficiencies uncovered qualitative CGV in wing morphology. These findings suggest that CGV in wing shape of wild-type D. melanogaster is regulated by multiple capacitors with divergent functions. Future analysis of genes encompassed by these genomic regions would help elucidate novel capacitor genes and better understand the general features of capacitors regarding natural genetic variation. © 2012 Blackwell Publishing Ltd.
Effect of wing mass in free flight by a butterfly-like 3D flapping wing-body model
NASA Astrophysics Data System (ADS)
Suzuki, Kosuke; Okada, Iori; Yoshino, Masato
2016-11-01
The effect of wing mass in free flight of a flapping wing is investigated by numerical simulations based on an immersed boundary-lattice Boltzmann method. We consider a butterfly-like 3D flapping wing-model consisting of two square wings with uniform mass density connected by a rod-shaped body. We simulate free flights of the wing-body model with various mass ratios of the wing to the whole of the model. As a result, it is found that the lift and thrust forces decrease as the mass ratio increases, since the body with a large mass ratio experiences large vertical and horizontal oscillations in one period and consequently the wing tip speed relatively decreases. In addition, we find the critical mass ratio between upward flight and downward flight for various Reynolds numbers. This work was supported by JSPS KAKENHI Grant Number JP16K18012.
Shape sensitivity analysis of flutter response of a laminated wing
NASA Technical Reports Server (NTRS)
Bergen, Fred D.; Kapania, Rakesh K.
1988-01-01
A method is presented for calculating the shape sensitivity of a wing aeroelastic response with respect to changes in geometric shape. Yates' modified strip method is used in conjunction with Giles' equivalent plate analysis to predict the flutter speed, frequency, and reduced frequency of the wing. Three methods are used to calculate the sensitivity of the eigenvalue. The first method is purely a finite difference calculation of the eigenvalue derivative directly from the solution of the flutter problem corresponding to the two different values of the shape parameters. The second method uses an analytic expression for the eigenvalue sensitivities of a general complex matrix, where the derivatives of the aerodynamic, mass, and stiffness matrices are computed using a finite difference approximation. The third method also uses an analytic expression for the eigenvalue sensitivities, but the aerodynamic matrix is computed analytically. All three methods are found to be in good agreement with each other. The sensitivities of the eigenvalues were used to predict the flutter speed, frequency, and reduced frequency. These approximations were found to be in good agreement with those obtained using a complete reanalysis.
NASA Technical Reports Server (NTRS)
Ting, Eric; Nguyen, Nhan; Trinh, Khanh
2014-01-01
This paper presents a static aeroelastic model and longitudinal trim model for the analysis of a flexible wing transport aircraft. The static aeroelastic model is built using a structural model based on finite-element modeling and coupled to an aerodynamic model that uses vortex-lattice solution. An automatic geometry generation tool is used to close the loop between the structural and aerodynamic models. The aeroelastic model is extended for the development of a three degree-of-freedom longitudinal trim model for an aircraft with flexible wings. The resulting flexible aircraft longitudinal trim model is used to simultaneously compute the static aeroelastic shape for the aircraft model and the longitudinal state inputs to maintain an aircraft trim state. The framework is applied to an aircraft model based on the NASA Generic Transport Model (GTM) with wing structures allowed to flexibly deformed referred to as the Elastically Shaped Aircraft Concept (ESAC). The ESAC wing mass and stiffness properties are based on a baseline "stiff" values representative of current generation transport aircraft.
NASA Technical Reports Server (NTRS)
Rorke, J. B.; Moffett, R. C.
1977-01-01
A wind tunnel test was conducted to obtain vortex velocity signatures over a wide parameter range encompassing the data conditions of several previous researchers while maintaining a common instrumentation and test facility. The generating wing panel was configured with both a revolved airfoil tip shape and a square tip shape and had a semispan aspect of 4.05/1.0 with a 121.9 cm span. Free stream velocity was varied from 6.1 m/sec to 76.2 m/sec and the vortex core velocities were measured at locations 3, 6, 12, 24 and 48 chordlengths downstream of the wing trailing edge, yielding vortex ages up to 2.0 seconds. Wing pitch angles of 6, 8, 9 and 12 deg were investigated. Detailed surface pressure distributions and wing force measurements were obtained for each wing tip configuration. Correlation with vortex velocity data taken in previous experiments is good. During the rollup process, vortex core parameters appear to be dependent primarily on vortex age. Trending in the plateau and decay regions is more complex and the machanisms appear to be more unstable.
An Experimental Study of Airfoil Icing Characteristics
NASA Technical Reports Server (NTRS)
Shaw, R. J.; Sotos, R. G.; Solano, F. R.
1982-01-01
A full scale general aviation wing with a NACA 63 sub 2 A415 airfoil section was tested to determine icing characteristics for representative rime and glaze icing conditions. Measurements were made of ice accretion shapes and resultant wing section drag coefficient levels. It was found that the NACA 63 sub 2 A415 wing section was less sensitive to rime and glaze icing encounters for climb conditions.
Shape of LOSVDs in Barred Disks: Implications for Future IFU Surveys
NASA Astrophysics Data System (ADS)
Li, Zhao-Yu; Shen, Juntai; Bureau, Martin; Zhou, Yingying; Du, Min; Debattista, Victor P.
2018-02-01
The shape of line-of-sight velocity distributions (LOSVDs) carries important information about the internal dynamics of galaxies. The skewness of LOSVDs represents their asymmetric deviation from a Gaussian profile. Correlations between the skewness parameter (h 3) and the mean velocity (\\overline{V}) of a Gauss–Hermite series reflect the underlying stellar orbital configurations of different morphological components. Using two self-consistent N-body simulations of disk galaxies with different bar strengths, we investigate {h}3-\\overline{V} correlations at different inclination angles. Similar to previous studies, we find anticorrelations in the disk area, and positive correlations in the bar area when viewed edge-on. However, at intermediate inclinations, the outer parts of bars exhibit anticorrelations, while the core areas dominated by the boxy/peanut-shaped (B/PS) bulges still maintain weak positive correlations. When viewed edge-on, particles in the foreground/background disk (the wing region) in the bar area constitute the main velocity peak, whereas the particles in the bar contribute to the high-velocity tail, generating the {h}3-\\overline{V} correlation. If we remove the wing particles, the LOSVDs of the particles in the outer part of the bar only exhibit a low-velocity tail, resulting in a negative {h}3-\\overline{V} correlation, whereas the core areas in the central region still show weakly positive correlations. We discuss implications for IFU observations on bars, and show that the variation of the {h}3-\\overline{V} correlation in the disk galaxy may be used as a kinematic indicator of the bar and the B/PS bulge.
NASA Technical Reports Server (NTRS)
Savelyev, V. V.
1943-01-01
For computing the critical flutter velocity of a wing among the data required are the position of the line of centers of gravity of the wing sections along the span and the mass moments and radii of inertia of any section of the wing about the axis passing through the center of gravity of the section. A sufficiently detailed computation of these magnitudes even if the weights of all the wing elements are known, requires a great deal of time expenditure. Thus a rapid competent worker would require from 70 to 100 hours for the preceding computations for one wing only, while hundreds of hours would be required if all the weights were included. With the aid of the formulas derived in the present paper, the preceding work can be performed with a degree of accuracy sufficient for practical purposes in from one to two hours, the only required data being the geometric dimensions of the outer wing (tapered part), the position of its longerons, the total weight of the outer wing, and the approximate weight of the longerons, The entire material presented in this paper is applicable mainly to wings of longeron construction of the CAHI type and investigations are therefore being conducted by CAHI for the derivation of formulas for the determination of the preceding data for wings of other types.
77 FR 49705 - Airworthiness Directives; Airbus Airplanes
Federal Register 2010, 2011, 2012, 2013, 2014
2012-08-17
... prompted by reports that some nuts installed on the wing, including on primary structural elements, were... nuts, which could result in the structural integrity of the airplane wings being impaired. DATES: This... states: During structural part assembly in Airbus production line, some [wing] nuts Part Number (P/N...
The Flying Diamond: A joined aircraft configuration design project, volume 1
NASA Technical Reports Server (NTRS)
Ball, Chris; Czech, Joe; Lentz, Bryan; Kobashigawa, Daryl; Oishi, Curtis; Poladian, David
1988-01-01
The results of the analysis conducted on the Joined Wing Configuration study are presented. The joined wing configuration employs a conventional fuselage and incorporates two wings joined together near their tips to form a diamond shape in both plan view and front view. The arrangement of the lifting surfaces uses the rear wing as a horizontal tail and as a forward wing strut. The rear wing has its root at the tip of the vertical stabilizer and is structurally attached to the trailing edge of the forward wing. This arrangement of the two wings forms a truss structure which is inherently resistant to the aerodynamic bending loads generated during flight. This allows for a considerable reduction in the weight of the lifting surfaces. With smaller internal wing structures needed, the Joined Wing may employ thinner wings which are more suitable for supersonic and hypersonic flight, having less induced drag than conventional cantilever winged aircraft. Inherent in the Joined Wing is the capability of the generation of direct lift and side force which enhance the performance parameters.
Determination of Sun Angles for Observations of Shock Waves on a Transport Aircraft
NASA Technical Reports Server (NTRS)
Fisher, David F.; Haering, Edward A., Jr.; Noffz, Gregory K.; Aguilar, Juan I.
1998-01-01
Wing compression shock shadowgraphs were observed on two flights during banked turns of an L-1011 aircraft at a Mach number of 0.85 and an altitude of 35,000 ft (10,700 m). Photos and video recording of the shadowgraphs were taken during the flights to document the shadowgraphs. Bright sunlight on the aircraft was required. The time of day, aircraft position, speed and attitudes were recorded to determine the sun azimuth and elevation relative to the wing quarter chord-line when the shadowgraphs were visible. Sun elevation and azimuth angles were documented for which the wing compression shock shadowgraphs were visible. The shadowgraph was observed for high to low elevation angles relative to the wing, but for best results high sun angles relative to the wing are desired. The procedures and equations to determine the sun azimuth and elevation angle with respect to the quarter chord-line is included in the Appendix.
NASA Technical Reports Server (NTRS)
Sleeman, William C., Jr.
1957-01-01
The present investigation was conducted in the Langley high-speed 7-by 10-foot tunnel to determine the static longitudinal and lateral stability characteristics at high subsonic speeds of two canard airplane configurations previously tested at supersonic speeds. The Mach number range of this investigation extended from 0.60 to 0.94 and a maximum angle-of-attack range of -2dewg to 24deg was obtained at the lowest test Mach number. Two wing plan forms of equal area were studied in the present tests; one was a 60deg delta wing and the other was a trapezoid wing having an aspect ratio of 3, taper ratio of 0.143, and an unswept 80-percent-chord line. The canard control had a trapezoidal plan form and its area was approximately 11.5 percent of the wing area. The model also had a low-aspect-ratio highly swept vertical tail and twin ventral fins. The longitudinal control characteristics of the models were consistent with past experience at low speed on canard configurations in that stalling of the canard surface occurred at moderate and high control deflections for moderate values of angle of attack. This stalling could impose appreciable limitations on the maximum trim-lift coefficient attainable. The control effectiveness and maximum value of trim-lift was significantly increased by addition of a body flap having a conical shape and located slightly behind the canard surface on the bottom of the body. Addition of the canard surface at 0deg deflection had relatively little effect on overall directional stability of the delta-wing configuration; however, deflection of the canard surface from 0deg to 10deg had a large favorable effect on directional stability at high angles of attack for both the trapezoid- and delta-wing configurations.
Diversity in the organization of elastin bundles and intramembranous muscles in bat wings.
Cheney, Jorn A; Allen, Justine J; Swartz, Sharon M
2017-04-01
Unlike birds and insects, bats fly with wings composed of thin skin that envelops the bones of the forelimb and spans the area between the limbs, digits, and sometimes the tail. This skin is complex and unusual; it is thinner than typical mammalian skin and contains organized bundles of elastin and embedded skeletal muscles. These elements are likely responsible for controlling the shape of the wing during flight and contributing to the aerodynamic capabilities of bats. We examined the arrangement of two macroscopic architectural elements in bat wings, elastin bundles and wing membrane muscles, to assess the diversity in bat wing skin morphology. We characterized the plagiopatagium and dactylopatagium of 130 species from 17 families of bats using cross-polarized light imaging. This method revealed structures with distinctive relative birefringence, heterogeneity of birefringence, variation in size, and degree of branching. We used previously published anatomical studies and tissue histology to identify birefringent structures, and we analyzed their architecture across taxa. Elastin bundles, muscles, neurovasculature, and collagenous fibers are present in all species. Elastin bundles are oriented in a predominantly spanwise or proximodistal direction, and there are five characteristic muscle arrays that occur within the plagiopatagium, far more muscle than typically recognized. These results inform recent functional studies of wing membrane architecture, support the functional hypothesis that elastin bundles aid wing folding and unfolding, and further suggest that all bats may use these architectural elements for flight. All species also possess numerous muscles within the wing membrane, but the architecture of muscle arrays within the plagiopatagium varies among families. To facilitate present and future discussion of these muscle arrays, we refine wing membrane muscle nomenclature in a manner that reflects this morphological diversity. The architecture of the constituents of the skin of the wing likely plays a key role in shaping wings during flight. © 2017 Anatomical Society.
High-Speed Surface Reconstruction of Flying Birds Using Structured Light
NASA Astrophysics Data System (ADS)
Deetjen, Marc; Lentink, David
2017-11-01
Birds fly effectively through complex environments, and in order to understand the strategies that enable them to do so, we need to determine the shape and movement of their wings. Previous studies show that even small perturbations in wing shape have dramatic aerodynamic effects, but these shape changes have not been quantified automatically at high temporal and spatial resolutions. Hence, we developed a custom 3D surface mapping method which uses a high-speed camera to view a grid of stripes projected onto a flying bird. Because the light is binary rather than grayscale, and each frame is separately analyzed, this method can function at any frame rate with sufficient light. The method is automated, non-invasive, and able to measure a volume by simultaneously reconstructing from multiple views. We use this technique to reconstruct the 3D shape of the surface of a parrotlet during flapping flight at 3200 fps. We then analyze key dynamic parameters such as wing twist and angle of attack, and compute aerodynamic parameters such as lift and drag. While this novel system is designed to quantify bird wing shape and motion, it is adaptable for tracking other objects such as quickly deforming fish, especially those which are difficult to reconstruct using other 3D tracking methods. The presenter needs to leave by 3 pm on the final day of the conference (11/21) in order to make his flight. Please account for this in the scheduling if possible by scheduling the presentation earlier in the day or a different day.
NASA Astrophysics Data System (ADS)
Bai, Linge; Widmann, Thomas; Jülicher, Frank; Dahmann, Christian; Breen, David
2013-01-01
Quantifying and visualizing the shape of developing biological tissues provide information about the morphogenetic processes in multicellular organisms. The size and shape of biological tissues depend on the number, size, shape, and arrangement of the constituting cells. To better understand the mechanisms that guide tissues into their final shape, it is important to investigate the cellular arrangement within tissues. Here we present a data processing pipeline to generate 3D volumetric surface models of epithelial tissues, as well as geometric descriptions of the tissues' apical cell cross-sections. The data processing pipeline includes image acquisition, editing, processing and analysis, 2D cell mesh generation, 3D contourbased surface reconstruction, cell mesh projection, followed by geometric calculations and color-based visualization of morphological parameters. In their first utilization we have applied these procedures to construct a 3D volumetric surface model at cellular resolution of the wing imaginal disc of Drosophila melanogaster. The ultimate goal of the reported effort is to produce tools for the creation of detailed 3D geometric models of the individual cells in epithelial tissues. To date, 3D volumetric surface models of the whole wing imaginal disc have been created, and the apicolateral cell boundaries have been identified, allowing for the calculation and visualization of cell parameters, e.g. apical cross-sectional area of cells. The calculation and visualization of morphological parameters show position-dependent patterns of cell shape in the wing imaginal disc. Our procedures should offer a general data processing pipeline for the construction of 3D volumetric surface models of a wide variety of epithelial tissues.
Geometry and Reynolds-Number Scaling on an Iced Business-Jet Wing
NASA Technical Reports Server (NTRS)
Lee, Sam; Ratvasky, Thomas P.; Thacker, Michael; Barnhart, Billy P.
2005-01-01
A study was conducted to develop a method to scale the effect of ice accretion on a full-scale business jet wing model to a 1/12-scale model at greatly reduced Reynolds number. Full-scale, 5/12-scale, and 1/12-scale models of identical airfoil section were used in this study. Three types of ice accretion were studied: 22.5-minute ice protection system failure shape, 2-minute initial ice roughness, and a runback shape that forms downstream of a thermal anti-ice system. The results showed that the 22.5-minute failure shape could be scaled from full-scale to 1/12-scale through simple geometric scaling. The 2-minute roughness shape could be scaled by choosing an appropriate grit size. The runback ice shape exhibited greater Reynolds number effects and could not be scaled by simple geometric scaling of the ice shape.
NASA Astrophysics Data System (ADS)
Cantrell, Jason T.
This document outlines in detail the research performed by applying shape memory polymers in a generic unimorph actuator configuration. A set of experiments designed to investigate the influence of transverse curvature, the relative widths of shape memory polymer and composite substrates, and shape memory polymer thickness on actuator recoverability after multiple thermo-mechanical cycles is presented in detail. A theoretical model of the moment required to maintain shape fixity with minimal shape retention loss was developed and experimentally validated for unimorph composite actuators of varying cross-sectional areas. Theoretical models were also developed and evaluated to determine the relationship between the materials neutral axes and thermal stability during a thermo-mechanical cycle. Research was conducted on the incorporation of shape memory polymers on micro air vehicle wings to maximize shape fixity and shape recoverability while minimizing the volume of shape memory polymer on the wing surface. Applications based research also included experimentally evaluating the feasibility of shape memory polymers on deployable satellite antenna ribs both with and without resistance heaters which could be utilized to assist in antenna deployment.
NASA Technical Reports Server (NTRS)
Liu, Tianshu; Kuykendoll, K.; Rhew, R.; Jones, S.
2004-01-01
This paper describes the avian wing geometry (Seagull, Merganser, Teal and Owl) extracted from non-contact surface measurements using a three-dimensional laser scanner. The geometric quantities, including the camber line and thickness distribution of airfoil, wing planform, chord distribution, and twist distribution, are given in convenient analytical expressions. Thus, the avian wing surfaces can be generated and the wing kinematics can be simulated. The aerodynamic characteristics of avian airfoils in steady inviscid flows are briefly discussed. The avian wing kinematics is recovered from videos of three level-flying birds (Crane, Seagull and Goose) based on a two-jointed arm model. A flapping seagull wing in the 3D physical space is re-constructed from the extracted wing geometry and kinematics.
Aerodynamics and Ecomorphology of Flexible Feathers and Morphing Bird Wings
NASA Astrophysics Data System (ADS)
Klaassen van Oorschot, Brett
Birds are talented fliers capable of vertical take-off and landing, navigating turbulent air, and flying thousands of miles without rest. How is this possible? What allows birds to exploit the aerial environment with such ease? In part, it may be because bird wings are unlike any engineered wing. They are flexible, strong, lightweight, and dynamically capable of changes in shape on a nearly instantaneous basis (Rayner, 1988; Tobalske, 2007). Moreover, much of this change is passive, modulated only by changes in airflow angle and velocity. Birds actively morph their wings and their feathers morph passively in response to airflow to meet aerodynamic demands. Wings are highly adapted to myriad aeroecological factors and aerodynamic conditions (e.g. Lockwood et al., 1998; Bowlin and Winkler, 2004). This dissertation contains the results of my research on the complexities of morphing avian wings and feathers. I chose to study three related-but-discrete aspects of the avian wing: 1) the aerodynamics of morphing wings during take-off and gliding flight, 2) the presence and significance of wing tip slots across the avian clade, and 3) the aerodynamic role of the emarginate primary feathers that form these wing tip slots. These experiments ask fundamental questions that have intrigued me since childhood: Why do birds have different wing shapes? And why do some birds have slotted wing tips? It's fair to say that you will not find definitive answers here--rather, you will find the methodical, incremental addition of new hypotheses and empirical evidence which will serve future researchers in their own pursuits of these questions. The first chapter explores active wing morphing in two disparate aerodynamic regimes: low-advance ratio flapping (such as during takeoff) and high-advance ratio gliding. This chapter was published in the Journal of Experimental Biology (Klaassen van Oorschot et al., 2016) with the help of an undergraduate researcher, Emily Mistick. We found that wing shape affected performance during flapping but not gliding flight. Extended wings outperformed swept wings by about a third in flapping flight. This finding contrasts previous work that showed wing shape didn't affect performance in flapping flight (Usherwood and Ellington, 2002a, 2002b). This work provided key insights that inspired the second and third chapters of my dissertation. The second chapter examines the significance of wing tip slots across 135 avian species, ranging from small passerines to large seabirds. This research was completed with the help of an undergraduate international researcher, Ho Kwan Tang, and is currently in press at the Journal of Morphology (Klaassen van Oorschot, in press). These slots are caused by asymmetric emarginations missing from the leading and trailing edge of the primary feathers. We used a novel metric of primary feather emargination that allowed us to show that wing tip slots are nearly ubiquitous across the avian clade. We also showed that emargination is segregated according to habitat and behavioral metrics like flight style. Finally, we showed that emargination scaled with mass. These findings illustrated that wing tip slots may be an adaptation for efficacy during vertical takeoff rather than efficiency during gliding flight. In the third chapter, I sought to better understand the function of these slotted primary feathers. In an effort to bridge biology and aeronautics, I collaborated with Richard Choroszucha, an aeronautical engineer from the University of Michigan, on this work. These feathers deflect under aerodynamic load, and it has been hypothesized that they reduce induced drag during gliding flight (Tucker, 1993, 1995). We exposed individual primary feathers to different speeds in the wind tunnel and measured deflection such as bend, twist, and sweep. We found that feather deflection reoriented force, resulting in increased lateral stability and delayed stall characteristics compared to a rigid airfoil. These findings lay the foundation for future biomimetic applications of passive morphing-wing aircraft. I aim to submit this chapter for publication at Bioinspiration & Biomimetics in the summer of 2017. The following dissertation represents my systematic discovery of avian aerodynamics and follows my progression as a scientist. Combined, the following chapters provide novel insight into the complex nature of morphing avian wings.
Propulsion-airframe integration for commercial and military aircraft
NASA Technical Reports Server (NTRS)
Henderson, William P.
1988-01-01
A significant level of research is ongoing at NASA's Langley Research Center on integrating the propulsion system with the aircraft. This program has included nacelle/pylon/wing integration for turbofan transports, propeller/nacelle/wing integration for turboprop transports, and nozzle/afterbody/empennage integration for high performance aircraft. The studies included in this paper focus more specifically on pylon shaping and nacelle location studies for turbofan transports, nacelle and wing contouring and propeller location effects for turboprop transports, and nozzle shaping and empennage effects for high performance aircraft. The studies were primarily conducted in NASA Langley's 16-Foot Transonic Tunnel at Mach numbers up to 1.20. Some higher Mach number data obtained at NASA's Lewis Research Center is also included.
NASA Astrophysics Data System (ADS)
Slooff, J. W.
1985-05-01
The physical mechanisms governing the hydrodynamics of sailing yacht keels and the parameters that, through these mechanisms, determine keel performance are discussed. It is concluded that due to the presence of the free water surface optimum keel shapes differ from optimum shapes for aircraft wings. Utilizing computational fluid dynamics analysis and optimization it is found that the performance of conventional keels can be improved significantly by reducing taper or even applying inverse taper (upside-down keel) and that decisive improvements in performance can be realized through keels with winglets.
Observations on the Growth of Roughness Elements Into Icing Feathers
NASA Technical Reports Server (NTRS)
Vargas, Mario; Tsao, Jen, Ching
2007-01-01
This work presents the results of an experiment conducted in the Icing Research Tunnel at NASA Glenn Research Center to understand the process by which icing feathers are formed in the initial stages of ice accretion formation on swept wings. Close-up photographic data were taken on an aluminum NACA 0012 swept wing tip airfoil. Two types of photographic data were obtained: time sequence close-up photographic data during the run and close-up photographic data of the ice accretion at the end of each run. Icing runs were conducted for short ice accretion times from 10 to 180 sec. The time sequence close-up photographic data was used to study the process frame by frame and to create movies of how the process developed. The movies confirmed that at glaze icing conditions in the attachment line area icing feathers develop from roughness elements. The close-up photographic data at the end of each run showed that roughness elements change into a pointed shape with an upstream facet and join on the side with other elements having the same change to form ridges with pointed shape and upstream facet. The ridges develop into feathers when the upstream facet grows away to form the stem of the feather. The ridges and their growth into feathers were observed to form the initial scallop tips present in complete scallops.
The long egress of GJ 436b's giant exosphere
NASA Astrophysics Data System (ADS)
Lavie, B.; Ehrenreich, D.; Bourrier, V.; Lecavelier des Etangs, A.; Vidal-Madjar, A.; Delfosse, X.; Gracia Berna, A.; Heng, K.; Thomas, N.; Udry, S.; Wheatley, P. J.
2017-09-01
The M dwarf GJ 436 hosts a transiting warm Neptune known to experience atmospheric escape. Previous observations revealed the presence of a giant hydrogen exosphere transiting the star for more than 5 h, and absorbing up to 56% of the flux in the blue wing of the stellar Lyman-α line of neutral hydrogen (H I Lyα). The unexpected size of this comet-like exosphere prevented observing the full transit of its tail. In this Letter, we present new Lyα observations of GJ 436 obtained with the Space Telescope Imaging Spectrograph (STIS) instrument onboard the Hubble Space Telescope. The stability of the Lyα line over six years allowed us to combine these new observations with archival data sets, substantially expanding the coverage of the exospheric transit. Hydrogen atoms in the tail of the exospheric cloud keep occulting the star for 10-25 h after the transit of the planet, remarkably confirming a previous prediction based on 3D numerical simulations with the EVaporating Exoplanet code (EVE). This result strengthens the interpretation that the exosphere of GJ 436b is shaped by both radiative braking and charge exchanges with the stellar wind. We further report flux decreases of 15 ± 2% and 47 ± 10% in the red wing of the Lyα line and in the line of ionised silicon (Si III). Despite some temporal variability possibly linked with stellar activity, these two signals occur during the exospheric transit and could be of planetary origin. Follow-up observations will be required to assess the possibility that the redshifted Lyα and Si III absorption signatures arise from interactions between the exospheric flow and the magnetic field of the star.
Modal Filtering for Control of Flexible Aircraft
NASA Technical Reports Server (NTRS)
Suh, Peter M.; Mavris, Dimitri N.
2013-01-01
Modal regulators and deformation trackers are designed for an open-loop fluttering wing model. The regulators are designed with modal coordinate and accelerometer inputs respectively. The modal coordinates are estimated with simulated fiber optics. The robust stability of the closed-loop systems is compared in a structured singular-value vector analysis. Performance is evaluated and compared in a gust alleviation and flutter suppression simulation. For the same wing and flight condition two wing-shape-tracking control architectures are presented, which achieve deformation control at any point on the wing.
Application of fibre Bragg grating sensors for structural health monitoring of an adaptive wing
NASA Astrophysics Data System (ADS)
Mieloszyk, M.; Skarbek, L.; Krawczuk, M.; Ostachowicz, W.; Zak, A.
2011-12-01
This paper presents the concept of application of fibre Bragg grating (FBG) sensors for structural health monitoring (SHM) of an adaptive wing. In this concept, the shape of the wing is controlled and altered due to the wing design and the use of integrated shape memory alloy (SMA) actuators. FBG sensors are great tools for controlling the condition of composite structures due to their immunity to electromagnetic fields as well as their small size and weight. They can be mounted onto the surface or embedded into the wing skin without any significant influence on the wing strength. In the first part of the paper a determination of the twisting moments produced by activation of the SMA actuators is presented. As a first step, a numerical analysis using a finite element method (FEM) commercial code ABAQUS® is presented. Then a comparison between strain values measured by FBG sensors and determined numerically is used for determination of the real value of the activation moment of every SMA actuator. Two types of damage scenarios are analysed and discussed in the paper. The first scenario is reduction of the twisting moment values produced by one of the SMA actuators. The second scenario is outer skin damage. In both damage scenarios, a neural network is used for damage detection and localization.
Aerodynamic Classification of Swept-Wing Ice Accretion
NASA Technical Reports Server (NTRS)
Broeren, Andy; Diebold, Jeff; Bragg, Mike
2013-01-01
The continued design, certification and safe operation of swept-wing airplanes in icing conditions rely on the advancement of computational and experimental simulation methods for higher fidelity results over an increasing range of aircraft configurations and performance, and icing conditions. The current state-of-the-art in icing aerodynamics is mainly built upon a comprehensive understanding of two-dimensional geometries that does not currently exist for fundamentally three-dimensional geometries such as swept wings. The purpose of this report is to describe what is known of iced-swept-wing aerodynamics and to identify the type of research that is required to improve the current understanding. Following the method used in a previous review of iced-airfoil aerodynamics, this report proposes a classification of swept-wing ice accretion into four groups based upon unique flowfield attributes. These four groups are: ice roughness, horn ice, streamwise ice, and spanwise-ridge ice. For all of the proposed ice-shape classifications, relatively little is known about the three-dimensional flowfield and even less about the effect of Reynolds number and Mach number on these flowfields. The classifications and supporting data presented in this report can serve as a starting point as new research explores swept-wing aerodynamics with ice shapes. As further results are available, it is expected that these classifications will need to be updated and revised.
Theoretical study of aerodynamic characteristics of wings having vortex flow
NASA Technical Reports Server (NTRS)
Reddy, C. S.
1979-01-01
The aerodynamic characteristics of slender wings having separation induced vortex flows are investigated by employing three different computer codes--free vortex sheet, quasi vortex lattice, and suction analogy methods. Their capabilities and limitations are examined, and modifications are discussed. Flat wings of different configurations: arrow, delta, and diamond shapes, as well as cambered delta wings, are studied. The effect of notch ratio on the load distributions and the longitudinal characteristics of a family of arrow and diamond wings is explored. The sectional lift coefficients and the accumulated span loadings are determined for an arrow wing and are seen to be unusual in comparison with the attached flow results. The theoretically predicted results are compared with the existing experimental values.
Icing Analysis of a Swept NACA 0012 Wing Using LEWICE3D Version 3.48
NASA Technical Reports Server (NTRS)
Bidwell, Colin S.
2014-01-01
Icing calculations were performed for a NACA 0012 swept wing tip using LEWICE3D Version 3.48 coupled with the ANSYS CFX flow solver. The calculated ice shapes were compared to experimental data generated in the NASA Glenn Icing Research Tunnel (IRT). The IRT tests were designed to test the performance of the LEWICE3D ice void density model which was developed to improve the prediction of swept wing ice shapes. Icing tests were performed for a range of temperatures at two different droplet inertia parameters and two different sweep angles. The predicted mass agreed well with the experiment with an average difference of 12%. The LEWICE3D ice void density model under-predicted void density by an average of 30% for the large inertia parameter cases and by 63% for the small inertia parameter cases. This under-prediction in void density resulted in an over-prediction of ice area by an average of 115%. The LEWICE3D ice void density model produced a larger average area difference with experiment than the standard LEWICE density model, which doesn't account for the voids in the swept wing ice shape, (115% and 75% respectively) but it produced ice shapes which were deemed more appropriate because they were conservative (larger than experiment). Major contributors to the overly conservative ice shape predictions were deficiencies in the leading edge heat transfer and the sensitivity of the void ice density model to the particle inertia parameter. The scallop features present on the ice shapes were thought to generate interstitial flow and horse shoe vortices which enhance the leading edge heat transfer. A set of changes to improve the leading edge heat transfer and the void density model were tested. The changes improved the ice shape predictions considerably. More work needs to be done to evaluate the performance of these modifications for a wider range of geometries and icing conditions.
Icing Analysis of a Swept NACA 0012 Wing Using LEWICE3D Version 3.48
NASA Technical Reports Server (NTRS)
Bidwell, Colin S.
2014-01-01
Icing calculations were performed for a NACA 0012 swept wing tip using LEWICE3D Version 3.48 coupled with the ANSYS CFX flow solver. The calculated ice shapes were compared to experimental data generated in the NASA Glenn Icing Research Tunnel (IRT). The IRT tests were designed to test the performance of the LEWICE3D ice void density model which was developed to improve the prediction of swept wing ice shapes. Icing tests were performed for a range of temperatures at two different droplet inertia parameters and two different sweep angles. The predicted mass agreed well with the experiment with an average difference of 12%. The LEWICE3D ice void density model under-predicted void density by an average of 30% for the large inertia parameter cases and by 63% for the small inertia parameter cases. This under-prediction in void density resulted in an over-prediction of ice area by an average of 115%. The LEWICE3D ice void density model produced a larger average area difference with experiment than the standard LEWICE density model, which doesn't account for the voids in the swept wing ice shape, (115% and 75% respectively) but it produced ice shapes which were deemed more appropriate because they were conservative (larger than experiment). Major contributors to the overly conservative ice shape predictions were deficiencies in the leading edge heat transfer and the sensitivity of the void ice density model to the particle inertia parameter. The scallop features present on the ice shapes were thought to generate interstitial flow and horse shoe vortices which enhance the leading edge heat transfer. A set of changes to improve the leading edge heat transfer and the void density model were tested. The changes improved the ice shape predictions considerably. More work needs to be done to evaluate the performance of these modifications for a wider range of geometries and icing conditions
Chromospheres and mass loss in metal-deficient giant stars
NASA Technical Reports Server (NTRS)
Dupree, A. K.; Hartmann, L.; Avrett, E. H.
1984-01-01
Semiempirical atmospheric models indicate that the characteristic emission in the wings of the H-alpha line observed in Population II giant stars can arise naturally within static chromospheres. Radial expansion gives an asymmetric, blueshifted H-alpha core accompanied by greater emission in the red line wing than in the blue wing. Wind models with extended atmospheres suggest mass loss rates much smaller than 2 x 10 to the -9th solar mass per yr. Thus H-alpha provides no evidence that steady mass loss can significantly affect the evolution of stars on the red giant branch of globular clusters.
Geocoronal structure. 3. Optically thin, Doppler-broadened line profiles
NASA Astrophysics Data System (ADS)
Bishop, James; Chamberlain, Joseph W.
1987-11-01
Theoretical line profiles, applicable to the analysis of geocoronal Hα prifile measurements, are presented for illustrative cases. While retaining a number of simplifications (classical exobase and diffusive equilibrium plasmasphere conditions), distinctive spectral signatures of mechanisms governing the geocorona are isolated. Examining the consequences of solar radiation pressure dynamics is the main point here. In the prototype evaporative case, radiation pressure acts to form narrow profiles via the creation of an extensive quasi-satellite component. Comparison with a simple extension of the earlier analytic theory discloses the influence of an exopause in this regard. The main modifications to evaporative spectral shapes in the geocoronal application, for shadow heights greater than 2 RE, are predicted to be (1) a blueward ``shift'' or bias near line center, for look directions parallel to the antisolar axis, generated by loss mechanisms acting over the time of flight of exospheric constituents (for example, solar ionization) and (2) an enhanced redward wing at spectral displacements exceeding that defined by the shadow height escape speed, produced by plasmaspheric charge exchange collisions. Implications of these results for recent observations of geocoronal Hα line profiles are briefly discussed.
Optimal Shape Design of Mail-Slot Nacelle on N3-X Hybrid Wing-Body Configuration
NASA Technical Reports Server (NTRS)
Kim, Hyoungjin; Liou, Meng-Sing
2013-01-01
System studies show that a N3-X hybrid wing-body aircraft with a turboelectric distributed propulsion system using a mail-slot inlet/nozzle nacelle can meet the environmental and performance goals for N+3 generation transports (three generations beyond the current air transport technology level) set by NASA's Subsonic Fixed Wing Project. In this study, a Navier-Stokes flow simulation of N3-X on hybrid unstructured meshes was conducted, including the mail-slot propulsor. The geometry of the mail-slot propulsor was generated by a CAD (Computer-Aided Design)-free shape parameterization. A novel body force model generation approach was suggested for a more realistic and efficient simulation of the flow turning, pressure rise and loss effects of the fan blades and the inlet-fan interactions. Flow simulation results of the N3-X demonstrates the validity of the present approach. An optimal Shape design of the mail-slot nacelle surface was conducted to reduce strength of shock waves and flow separations on the cowl surface.
NASA Technical Reports Server (NTRS)
Nguyen, Nhan; James Urnes, Sr.
2012-01-01
Lightweight aircraft design has received a considerable attention in recent years as a means for improving cruise efficiency. Reducing aircraft weight results in lower lift requirements which directly translate into lower drag, hence reduced engine thrust requirements during cruise. The use of lightweight materials such as advanced composite materials has been adopted by airframe manufacturers in current and future aircraft. Modern lightweight materials can provide less structural rigidity while maintaining load-carrying capacity. As structural flexibility increases, aeroelastic interactions with aerodynamic forces and moments become an increasingly important consideration in aircraft design and aerodynamic performance. Furthermore, aeroelastic interactions with flight dynamics can result in issues with vehicle stability and control. Abstract This paper describes a recent aeroelastic modeling effort for an elastically shaped aircraft concept (ESAC). The aircraft model is based on the rigid-body generic transport model (GTM) originally developed at NASA Langley Research Center. The ESAC distinguishes itself from the GTM in that it is equipped with highly flexible wing structures as a weight reduction design feature. More significantly, the wings are outfitted with a novel control effector concept called variable camber continuous trailing edge (VCCTE) flap system for active control of wing aeroelastic deflections to optimize the local angle of attack of wing sections for improved aerodynamic efficiency through cruise drag reduction and lift enhancement during take-off and landing. The VCCTE flap is a multi-functional and aerodynamically efficient device capable of achieving high lift-to-drag ratios. The flap system is comprised of three chordwise segments that form the variable camber feature of the flap and multiple spanwise segments that form a piecewise continuous trailing edge. By configuring the flap camber and trailing edge shape, drag reduction could be achieved. Moreover, some parts of the flap system can be made to have a high frequency response for roll control, gust load alleviation, and aeroservoelastic (ASE) modal suppression control. Abstract The aeroelastic model of the ESAC is based on one-dimensional structural dynamic theory that captures the aeroelastic deformation of a wing structure in a combined motion that involves flapwise bending, chordwise bending, and torsion. The model includes the effect of aircraft propulsion due to wing flexibility which causes the propulsive forces and moments to couple with the wing elastic motion. Engine mass is also accounted in the model. A fuel management model is developed to describe the wing mass change due to fuel usage in the main tank and wing tanks during cruise. Abstract The model computes both static and dynamic responses of the wing structures. The static aeroelastic deflections are used to estimate the effect of wing flexibility on induced drag and the potential drag reduction by the VCCTE flap system. A flutter analysis is conducted to estimate the flutter speed boundary. Gust load alleviation via adaptive control has been recently investigated to address flexibility of aircraft structures. A multi-objective flight control approach is presented for drag reduction control. The approach is based on an optimal control framework using a multi-objective cost function. Future studies will demonstrate the potential benefits of the approach.
Construction, wind tunnel testing and data analysis for a 1/5 scale ultra-light wing model
NASA Technical Reports Server (NTRS)
James, Michael D.; Smith, Howard W.
1993-01-01
This report documents the construction, wind tunnel testing, and data analysis of a 1/5 scale ultra-light wing section. Wind tunnel testing provided accurate and meaningful lift, drag, and pitching moment data. This data was processed and graphically presented as follows: C(sub L) vs. gamma; C(sub D) vs. gamma; C(sub M) vs. gamma; and C(sub L) vs. C(sub D). The wing fabric flexure was found to be significant and its possible effects on aerodynamic data was discussed. The fabric flexure is directly related to wing angle of attack and airspeed. Different wing section shapes created by fabric flexure are presented with explanations of the types of pressures that act upon the wing surface. This report provides conclusive aerodynamic data for ultra-light wings.
NASA Technical Reports Server (NTRS)
Hoad, D. R.; Meyers, J. F.; Young, W. H., Jr.; Hepner, T. P.
1978-01-01
The flow field at the center line of an unswept wing with an aspect ratio of eight was determined using a two dimensional viscous flow prediction technique for the flow field calculation, and a three dimensional potential flow panel method to evaluate the degree of two dimensionality achieved at the wing center line. The analysis was made to provide an acceptable reference for comparison with velocity measurements obtained from a fringe type laser velocimeter optics systems operating in the backscatter mode in the Langley V/STOL tunnel. Good agreement between laser velocimeter measurements and theoretical results indicate that both methods provide a true representation of the velocity field about the wing at angles of attack of 0.6 and 4.75 deg.
NASA Technical Reports Server (NTRS)
Bobbitt, Percy J.
1959-01-01
Equations for the downwash and sidewash due to supersonic yawed and unswept horseshoe vortices have been utilized in formulating tables and charts to permit a rapid estimation of the flow velocities behind wings performing various steady motions. Tabulations are presented of the downwash and sidewash in the wing vertical plane of symmetry due to a unit-strength yawed horseshoe vortex located at 20 equally spaced spanwise positions along lifting lines of various sweeps. (The bound portion of the yawed vortex is coincident with the lifting line.) Charts are presented for the purpose of estimating the spanwise variations of the flow-field velocities and give longitudinal variations of the downwash and sidewash at a nuMber of vertical and spanwise locations due to a unit-strength unswept horseshoe vortex. Use of the tables and charts to calculate wing downwash or sidewash requires a knowledge of the wing spanwise distribution of circulation. Sample computations for the rolling sidewash and angle-of-attack downwash behind a typical swept wing are presented to demonstrate the use of the tables and charts.
ERAST Program Proteus Aircraft in Flight over the Mojave Desert in California
1999-07-26
The unusual design of the Proteus high-altitude aircraft, incorporating a gull-wing shape for its main wing and a long, slender forward canard, is clearly visible in this view of the aircraft in flight over the Mojave Desert in California.
Near- and far-field aerodynamics in insect hovering flight: an integrated computational study.
Aono, Hikaru; Liang, Fuyou; Liu, Hao
2008-01-01
We present the first integrative computational fluid dynamics (CFD) study of near- and far-field aerodynamics in insect hovering flight using a biology-inspired, dynamic flight simulator. This simulator, which has been built to encompass multiple mechanisms and principles related to insect flight, is capable of 'flying' an insect on the basis of realistic wing-body morphologies and kinematics. Our CFD study integrates near- and far-field wake dynamics and shows the detailed three-dimensional (3D) near- and far-field vortex flows: a horseshoe-shaped vortex is generated and wraps around the wing in the early down- and upstroke; subsequently, the horseshoe-shaped vortex grows into a doughnut-shaped vortex ring, with an intense jet-stream present in its core, forming the downwash; and eventually, the doughnut-shaped vortex rings of the wing pair break up into two circular vortex rings in the wake. The computed aerodynamic forces show reasonable agreement with experimental results in terms of both the mean force (vertical, horizontal and sideslip forces) and the time course over one stroke cycle (lift and drag forces). A large amount of lift force (approximately 62% of total lift force generated over a full wingbeat cycle) is generated during the upstroke, most likely due to the presence of intensive and stable, leading-edge vortices (LEVs) and wing tip vortices (TVs); and correspondingly, a much stronger downwash is observed compared to the downstroke. We also estimated hovering energetics based on the computed aerodynamic and inertial torques, and powers.
NASA Astrophysics Data System (ADS)
Streuber, Gregg Mitchell
Environmental and economic factors motivate the pursuit of more fuel-efficient aircraft designs. Aerodynamic shape optimization is a powerful tool in this effort, but is hampered by the presence of multimodality in many design spaces. Gradient-based multistart optimization uses a sampling algorithm and multiple parallel optimizations to reliably apply fast gradient-based optimization to moderately multimodal problems. Ensuring that the sampled geometries remain physically realizable requires manually developing specialized linear constraints for each class of problem. Utilizing free-form deformation geometry control allows these linear constraints to be written in a geometry-independent fashion, greatly easing the process of applying the algorithm to new problems. This algorithm was used to assess the presence of multimodality when optimizing a wing in subsonic and transonic flows, under inviscid and viscous conditions, and a blended wing-body under transonic, viscous conditions. Multimodality was present in every wing case, while the blended wing-body was found to be generally unimodal.
NASA Astrophysics Data System (ADS)
Kamaruzaman, N. F.; Abdullah, E. J.
2017-12-01
Shape memory alloy (SMA) actuator offers great solution for aerospace applications with low weight being its most attractive feature. A SMA actuation mechanism for the flapping micro unmanned aerial vehicle (MAV) is proposed in this study, where SMA material is the primary system that provides the flapping motion to the wings. Based on several established design criteria, a design prototype has been fabricated to validate the design. As a proof of concept, an experiment is performed using an electrical circuit to power the SMA actuator to evaluate the flapping angle. During testing, several problems have been observed and their solutions for future development are proposed. Based on the experiment, the average recorded flapping wing angle is 14.33° for upward deflection and 12.12° for downward deflection. This meets the required design criteria and objective set forth for this design. The results prove the feasibility of employing SMA actuators in flapping wing MAV.
NASA Technical Reports Server (NTRS)
Kuhlman, J. M.
1979-01-01
The aerodynamic design of a wind-tunnel model of a wing representative of that of a subsonic jet transport aircraft, fitted with winglets, was performed using two recently developed optimal wing-design computer programs. Both potential flow codes use a vortex lattice representation of the near-field of the aerodynamic surfaces for determination of the required mean camber surfaces for minimum induced drag, and both codes use far-field induced drag minimization procedures to obtain the required spanloads. One code uses a discrete vortex wake model for this far-field drag computation, while the second uses a 2-D advanced panel wake model. Wing camber shapes for the two codes are very similar, but the resulting winglet camber shapes differ widely. Design techniques and considerations for these two wind-tunnel models are detailed, including a description of the necessary modifications of the design geometry to format it for use by a numerically controlled machine for the actual model construction.
Artificial insect wings with biomimetic wing morphology and mechanical properties.
Liu, Zhiwei; Yan, Xiaojun; Qi, Mingjing; Zhu, Yangsheng; Huang, Dawei; Zhang, Xiaoyong; Lin, Liwei
2017-09-26
The pursuit of a high lift force for insect-scale flapping-wing micro aerial vehicles (FMAVs) requires that their artificial wings possess biomimetic wing features which are close to those of their natural counterpart. In this work, we present both fabrication and testing methods for artificial insect wings with biomimetic wing morphology and mechanical properties. The artificial cicada (Hyalessa maculaticollis) wing is fabricated through a high precision laser cutting technique and a bonding process of multilayer materials. Through controlling the shape of the wing venation, the fabrication method can achieve three-dimensional wing architecture, including cambers or corrugations. Besides the artificial cicada wing, the proposed fabrication method also shows a promising versatility for diverse wing types. Considering the artificial cicada wing's characteristics of small size and light weight, special mechanical testing systems are designed to investigate its mechanical properties. Flexural stiffness, maximum deformation rate and natural frequency are measured and compared with those of its natural counterpart. Test results reveal that the mechanical properties of the artificial cicada wing depend strongly on its vein thickness, which can be used to optimize an artificial cicada wing's mechanical properties in the future. As such, this work provides a new form of artificial insect wings which can be used in the field of insect-scale FMAVs.
Exploring Titan with Autonomous, Buoyancy Driven Gliders
NASA Astrophysics Data System (ADS)
Morrow, M. T.; Woolsey, C. A.; Hagerman, G. M.
Buoyancy driven underwater gliders are highly efficient winged underwater vehicles which locomote by modifying their internal shape. The concept, which is already well-proven in Earth's oceans, is also an appealing technology for remote terrain exploration and environmental sampling on worlds with dense atmospheres. Because of their high efficiency and their gentle, vertical take-off and landing capability, buoyancy driven gliders might perform long duration, global mapping tasks as well as light-duty, local sampling tasks. Moreover, a sufficiently strong gradient in the planetary boundary layer may enable the vehicles to perform dynamic soaring, achieving even greater locomotive efficiency. Shape Change Actuated, Low Altitude Robotic Soarers (SCALARS) are an appealing alternative to more conventional vehicle technology for exploring planets with dense atmospheres. SCALARS are buoyancy driven atmospheric gliders with a twin-hulled, inboard wing configuration. The inboard wing generates lift, which propels the vehicle forward. Symmetric changes in mass distribution induce gravitational pitch moments that provide longitudinal control. Asymmetric changes in mass distribution induce twist in the inboard wing that provides directional control. The vehicle is actuated solely by internal shape change; there are no external seals and no exposed moving parts, save for the inflatable buoyancy ballonets. Preliminary sizing analysis and dynamic modeling indicate the viability of using SCALARS to map the surface of Titan and to investigate features of interest.
An Improved Red Spectrum of the Methane or T Dwarf SDSS 1624+0029: The Role of the Alkali Metals.
Liebert; Reid; Burrows; Burgasser; Kirkpatrick; Gizis
2000-04-20
A Keck II low-resolution spectrum shortward of 1 µm is presented for SDSS 1624+0029, the first field methane or T dwarf discovered in the Sloan Digital Sky Survey. Significant flux is detected down to the spectrum's short-wavelength limit of 6200 Å. The spectrum exhibits a broad absorption feature centered at 7700 Å, which we interpret as the K i lambdalambda7665, 7699 resonance doublet. The observed flux declines shortward of 7000 Å, most likely owing to the red wing of the Na i doublet. Both Cs i doublet lines are detected more strongly than in an earlier red spectrum. Neither Li i absorption nor Halpha emission are detected. An exploratory model fit to the spectrum suggests that the shape of the red spectrum can be primarily accounted for by the broad wings of the K i and Na i doublets. This behavior is consistent with the argument proffered by Burrows, Marley, & Sharp that strong alkali absorption is principally responsible for depressing T dwarf spectra shortward of 1 µm. In particular, there seems no compelling reason at this time to introduce dust or an additional opacity source in the atmosphere of the Sloan object. The width of the K i and strengths of the Cs i lines also indicate that the Sloan object is warmer than Gl 229B.
Over-the-wing model thrust reverser noise tests
NASA Technical Reports Server (NTRS)
Goodykoontz, J.; Gutierrez, O.
1977-01-01
Static acoustic tests were conducted on a 1/12 scale model over-the-wing target type thrust reverser. The model configuration simulates a design that is applicable to the over-the-wing short-haul advanced technology engine. Aerodynamic screening tests of a variety of reverser designs identified configurations that satisfied a reverse thrust requirement of 35 percent of forward thrust at a nozzle pressure ratio of 1.29. The variations in the reverser configuration included, blocker door angle, blocker door lip angle and shape, and side skirt shape. Acoustic data are presented and compared for the various configurations. The model data scaled to a single full size engine show that peak free field perceived noise (PN) levels at a 152.4 meter sideline distance range from 98 to 104 PNdb.
NASA Astrophysics Data System (ADS)
Braibant, L.; Hutsemékers, D.; Sluse, D.; Anguita, T.
2016-07-01
We investigate the kinematics and ionization structure of the broad emission line region of the gravitationally lensed quasar QSO2237+0305 (the Einstein cross) using differential microlensing in the high- and low-ionization broad emission lines. We combine visible and near-infrared spectra of the four images of the lensed quasar and detect a large-amplitude microlensing effect distorting the high-ionization CIV and low-ionization Hα line profiles in image A. While microlensing only magnifies the red wing of the Balmer line, it symmetrically magnifies the wings of the CIV emission line. Given that the same microlensing pattern magnifies both the high- and low-ionization broad emission line regions, these dissimilar distortions of the line profiles suggest that the high- and low-ionization regions are governed by different kinematics. Since this quasar is likely viewed at intermediate inclination, we argue that the differential magnification of the blue and red wings of Hα favors a flattened, virialized, low-ionization region whereas the symmetric microlensing effect measured in CIV can be reproduced by an emission line formed in a polar wind, without the need of fine-tuned caustic configurations. Based on observations made with the ESO-VLT, Paranal, Chile; Proposals 076.B-0197 and 076.B-0607 (PI: Courbin).
White butterflies as solar photovoltaic concentrators.
Shanks, Katie; Senthilarasu, S; Ffrench-Constant, Richard H; Mallick, Tapas K
2015-07-31
Man's harvesting of photovoltaic energy requires the deployment of extensive arrays of solar panels. To improve both the gathering of thermal and photovoltaic energy from the sun we have examined the concept of biomimicry in white butterflies of the family Pieridae. We tested the hypothesis that the V-shaped posture of basking white butterflies mimics the V-trough concentrator which is designed to increase solar input to photovoltaic cells. These solar concentrators improve harvesting efficiency but are both heavy and bulky, severely limiting their deployment. Here, we show that the attachment of butterfly wings to a solar cell increases its output power by 42.3%, proving that the wings are indeed highly reflective. Importantly, and relative to current concentrators, the wings improve the power to weight ratio of the overall structure 17-fold, vastly expanding their potential application. Moreover, a single mono-layer of scale cells removed from the butterflies' wings maintained this high reflectivity showing that a single layer of scale cell-like structures can also form a useful coating. As predicted, the wings increased the temperature of the butterflies' thorax dramatically, showing that the V-shaped basking posture of white butterflies has indeed evolved to increase the temperature of their flight muscles prior to take-off.
NASA Technical Reports Server (NTRS)
Nguyen, Nhan; Ting, Eric; Nguyen, Daniel; Dao, Tung; Trinh, Khanh
2013-01-01
This paper presents a coupled vortex-lattice flight dynamic model with an aeroelastic finite-element model to predict dynamic characteristics of a flexible wing transport aircraft. The aircraft model is based on NASA Generic Transport Model (GTM) with representative mass and stiffness properties to achieve a wing tip deflection about twice that of a conventional transport aircraft (10% versus 5%). This flexible wing transport aircraft is referred to as an Elastically Shaped Aircraft Concept (ESAC) which is equipped with a Variable Camber Continuous Trailing Edge Flap (VCCTEF) system for active wing shaping control for drag reduction. A vortex-lattice aerodynamic model of the ESAC is developed and is coupled with an aeroelastic finite-element model via an automated geometry modeler. This coupled model is used to compute static and dynamic aeroelastic solutions. The deflection information from the finite-element model and the vortex-lattice model is used to compute unsteady contributions to the aerodynamic force and moment coefficients. A coupled aeroelastic-longitudinal flight dynamic model is developed by coupling the finite-element model with the rigid-body flight dynamic model of the GTM.
Application of the adjoint optimisation of shock control bump for ONERA-M6 wing
NASA Astrophysics Data System (ADS)
Nejati, A.; Mazaheri, K.
2017-11-01
This article is devoted to the numerical investigation of the shock wave/boundary layer interaction (SWBLI) as the main factor influencing the aerodynamic performance of transonic bumped airfoils and wings. The numerical analysis is conducted for the ONERA-M6 wing through a shock control bump (SCB) shape optimisation process using the adjoint optimisation method. SWBLI is analyzed for both clean and bumped airfoils and wings, and it is shown how the modified wave structure originating from upstream of the SCB reduces the wave drag, by improving the boundary layer velocity profile downstream of the shock wave. The numerical simulation of the turbulent viscous flow and a gradient-based adjoint algorithm are used to find the optimum location and shape of the SCB for the ONERA-M6 airfoil and wing. Two different geometrical models are introduced for the 3D SCB, one with linear variations, and another with periodic variations. Both configurations result in drag reduction and improvement in the aerodynamic efficiency, but the periodic model is more effective. Although the three-dimensional flow structure involves much more complexities, the overall results are shown to be similar to the two-dimensional case.
White butterflies as solar photovoltaic concentrators
NASA Astrophysics Data System (ADS)
Shanks, Katie; Senthilarasu, S.; Ffrench-Constant, Richard H.; Mallick, Tapas K.
2015-07-01
Man’s harvesting of photovoltaic energy requires the deployment of extensive arrays of solar panels. To improve both the gathering of thermal and photovoltaic energy from the sun we have examined the concept of biomimicry in white butterflies of the family Pieridae. We tested the hypothesis that the V-shaped posture of basking white butterflies mimics the V-trough concentrator which is designed to increase solar input to photovoltaic cells. These solar concentrators improve harvesting efficiency but are both heavy and bulky, severely limiting their deployment. Here, we show that the attachment of butterfly wings to a solar cell increases its output power by 42.3%, proving that the wings are indeed highly reflective. Importantly, and relative to current concentrators, the wings improve the power to weight ratio of the overall structure 17-fold, vastly expanding their potential application. Moreover, a single mono-layer of scale cells removed from the butterflies’ wings maintained this high reflectivity showing that a single layer of scale cell-like structures can also form a useful coating. As predicted, the wings increased the temperature of the butterflies’ thorax dramatically, showing that the V-shaped basking posture of white butterflies has indeed evolved to increase the temperature of their flight muscles prior to take-off.
Gradient-Based Aerodynamic Shape Optimization Using ADI Method for Large-Scale Problems
NASA Technical Reports Server (NTRS)
Pandya, Mohagna J.; Baysal, Oktay
1997-01-01
A gradient-based shape optimization methodology, that is intended for practical three-dimensional aerodynamic applications, has been developed. It is based on the quasi-analytical sensitivities. The flow analysis is rendered by a fully implicit, finite volume formulation of the Euler equations.The aerodynamic sensitivity equation is solved using the alternating-direction-implicit (ADI) algorithm for memory efficiency. A flexible wing geometry model, that is based on surface parameterization and platform schedules, is utilized. The present methodology and its components have been tested via several comparisons. Initially, the flow analysis for for a wing is compared with those obtained using an unfactored, preconditioned conjugate gradient approach (PCG), and an extensively validated CFD code. Then, the sensitivities computed with the present method have been compared with those obtained using the finite-difference and the PCG approaches. Effects of grid refinement and convergence tolerance on the analysis and shape optimization have been explored. Finally the new procedure has been demonstrated in the design of a cranked arrow wing at Mach 2.4. Despite the expected increase in the computational time, the results indicate that shape optimization, which require large numbers of grid points can be resolved with a gradient-based approach.
NASA Technical Reports Server (NTRS)
Menzies, R. T.; Shumate, M. S.
1976-01-01
Measurements of water vapor absorption were taken with a resonant optoacoustical detector (cylindrical pyrex detector, two BaF2 windows fitted into end plates at slight tilt to suppress Fabry-Perot resonances), for lack of confidence in existing spectral tabular data for the 5-7 micron region, as line shapes in the wing regions of water vapor lines are difficult to characterize. The measurements are required for air pollution studies using a CO laser, to find the differential absorption at the wavelengths in question due to atmospheric constituents other than water vapor. The design and performance of the optoacoustical detector are presented. Effects of absorption by ambient NO are considered, and the fixed-frequency discretely tunable CO laser is found suitable for monitoring urban NO concentrations in a fairly dry climate, using the water vapor absorption data obtained in the study.
Super Lorentzian effects on the wings of self-broadened HCl and of HCl diluted in Ar
NASA Astrophysics Data System (ADS)
Tran, H.; Hartmann, J.-M.; Li, G.; Ebert, V.
2017-02-01
Super-Lorentzian effects in the troughs between HCl lines were observed long time ago [Varanasi et al., J Quant Rad Transfer, Vol. 12, pag. 857, 1972]. The observed spectral shape was then modelled by using an empirical law and there was no explanation about the mechanisms underlying these super-Lorentzian effects. In this work, new spectra of pure HCl and HCl diluted in Ar have been measured using a high resolution Fourier Transform spectrometer, for pressure from 6 to 10 bars. Spectra of pure HCl and HCl in Ar have been also computed using classical molecular dynamics simulations (CMDS). First comparisons between CMDS-calculated spectra and measured ones, for regions at the troughs between HCl lines, show that the observed super-Lorentzian behaviour is correctly reproduced by the calculations. These results thus open the paths for the determination of the origin of these super-Lorentzian effects.
Bidirectional Fusion of the Heart-forming Fields in the Developing Chick Embryo
Moreno-Rodriguez, R.A.; Krug, E.L.; Reyes, L.; Villavicencio, L.; Mjaatvedt, C.H.; Markwald, R.R.
2007-01-01
It is generally thought that the early pre-tubular chick heart is formed by fusion of the anterior or cephalic limits of the paired cardiogenic fields. However, this study shows that the heart fields initially fuse at their midpoint to form a transitory “butterfly”-shaped, cardiogenic structure. Fusion then progresses bi-directionally along the longitudinal axis in both cranial and caudal directions. Using in vivo labeling, we demonstrate that cells along the ventral fusion line are highly motile, crossing future primitive segments. We found that mesoderm cells migrated cephalically from the unfused tips of the anterior/cephalic wings into the head mesenchyme in the region that has been called the secondary heart field. Perturbing the anterior/cranial fusion results in formation of a biconal heart. A theoretical role of the ventral fusion line acting as a “heart organizer” and its role in cardia bifida is discussed. PMID:16252277
Mechanical strain energy shuttle for aircraft morphing via wing twist or structural deformation
NASA Astrophysics Data System (ADS)
Clingman, Dan J.; Ruggeri, Robert T.
2004-07-01
Direct structural deformation to achieve aerodynamic benefit is difficult because large actuators must supply energy for structural strain and aerodynamic loads. This ppaer presents a mechanism that allows most of the energy required to twist or deform a wing to be stored in descrete springs. When this device is used, only sufficient energy is provided to control the position of the wing. This concept allows lightweight actuators to perform wing twisting and other structural distortions, and it reduces the onboard mass of the wing-twist system. The energy shuttle can be used with any actuator and it has been adapted for used with shape memory alloy, piezoelectric, and electromagnetic actuators.
Application of SMP composite in designing a morphing wing
NASA Astrophysics Data System (ADS)
Yu, Kai; Yin, Weilong; Liu, Yanju; Leng, Jinsong
2008-11-01
A new concept of a morphing wing based on shape memory polymer (SMP) and its reinforced composite is proposed in this paper. SMP used in this study is a thermoset styrene-based resin in contrast to normal thermoplastic SMP. In our design, the wing winded on the airframe can be deployed during heating, which provides main lift for a morphing aircraft to realize stable flight. Aerodynamic characteristics of the deployed morphing wing are calculated by using CFD software. The static deformation of the wing under the air loads is also analyzed by using the finite element method. The results show that the used SMP material can provide enough strength and stiffness for the application.
Shock wave interaction with L-shaped structures
NASA Astrophysics Data System (ADS)
Miller, Richard C.
1993-12-01
This study investigated the interaction of shock waves with L-shaped structures using the CTH hydrodynamics code developed by Sandia National Laboratories. Computer models of shock waves traveling through air were developed using techniques similar to shock tube experiments. Models of L-shaped buildings were used to determine overpressures achieved by the reflecting shock versus angle of incidence of the shock front. An L-shaped building model rotated 45 degrees to the planar shock front produced the highest reflected overpressure of 9.73 atmospheres in the corner joining the two wings, a value 9.5 times the incident overpressure of 1.02 atmospheres. The same L-shaped building was modeled with the two wings separated by 4.24 meters to simulate an open courtyard. This open area provided a relief path for the incident shock wave, creating a peak overpressure of only 4.86 atmospheres on the building's wall surfaces from the same 1.02 atmosphere overpressure incident shock wave.
Emission line galaxies and active galactic nuclei in WINGS clusters
NASA Astrophysics Data System (ADS)
Marziani, P.; D'Onofrio, M.; Bettoni, D.; Poggianti, B. M.; Moretti, A.; Fasano, G.; Fritz, J.; Cava, A.; Varela, J.; Omizzolo, A.
2017-03-01
We present the analysis of the emission line galaxies members of 46 low-redshift (0.04 < z < 0.07) clusters observed by WINGS (WIde-field Nearby Galaxy cluster Survey). Emission line galaxies were identified following criteria that are meant to minimize biases against non-star-forming galaxies and classified employing diagnostic diagrams. We examined the emission line properties and frequencies of star-forming galaxies, transition objects, and active galactic nuclei (AGNs: LINERs and Seyferts), unclassified galaxies with emission lines, and quiescent galaxies with no detectable line emission. A deficit of emission line galaxies in the cluster environment is indicated by both a lower frequency, and a systematically lower Balmer emission line equivalent width and luminosity with respect to control samples; this implies a lower amount of ionized gas per unit mass and a lower star formation rate if the source is classified as Hii region. A sizable population of transition objects and of low-luminosity LINERs (≈ 10-20% of all emission line galaxies) are detected among WINGS cluster galaxies. These sources are a factor of ≈1.5 more frequent, or at least as frequent, as in control samples with respect to Hii sources. Transition objects and LINERs in clusters are most affected in terms ofline equivalent width by the environment and appear predominantly consistent with so-called retired galaxies. Shock heating can be a possible gas excitation mechanism that is able to account for observed line ratios. Specific to the cluster environment, we suggest interaction between atomic and molecular gas and the intracluster medium as a possible physical cause of line-emitting shocks. The data whose description is provided in Table B.1, and emission line catalog of the WINGS database are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/599/A83
33 CFR 110.140 - Buzzards Bay, Nantucket Sound, and adjacent waters, Mass.
Code of Federal Regulations, 2014 CFR
2014-07-01
... Phoenix Point; thence 154° along a line which passes 100 yards east of New Bedford Channel Buoys 8, 6, and... through Bird Island Reef Bell Buoy 13; and south of a line bearing 270° from Wings Neck Light. Each vessel... Island Channel 4 Light; thence 129° to a point bearing 209°, approximately 733 yards, from Wings Neck...
33 CFR 110.140 - Buzzards Bay, Nantucket Sound, and adjacent waters, Mass.
Code of Federal Regulations, 2013 CFR
2013-07-01
... Phoenix Point; thence 154° along a line which passes 100 yards east of New Bedford Channel Buoys 8, 6, and... through Bird Island Reef Bell Buoy 13; and south of a line bearing 270° from Wings Neck Light. Each vessel... Island Channel 4 Light; thence 129° to a point bearing 209°, approximately 733 yards, from Wings Neck...
33 CFR 110.140 - Buzzards Bay, Nantucket Sound, and adjacent waters, Mass.
Code of Federal Regulations, 2012 CFR
2012-07-01
... Phoenix Point; thence 154° along a line which passes 100 yards east of New Bedford Channel Buoys 8, 6, and... through Bird Island Reef Bell Buoy 13; and south of a line bearing 270° from Wings Neck Light. Each vessel... Island Channel 4 Light; thence 129° to a point bearing 209°, approximately 733 yards, from Wings Neck...
Federal Register 2010, 2011, 2012, 2013, 2014
2011-04-01
...: Final rule. SUMMARY: We are adopting a new airworthiness directive (AD) for the products listed above. This AD requires installing new in-line fuses for the fuel level float switch and new in-line fuses for... left and right wing forward spars, center wing forward spar, forward auxiliary fuel tank, and aft...
Preliminary noise tests of the engine-over-the-wing concept. i: 30 deg - 60 deg flap position
NASA Technical Reports Server (NTRS)
Reshotko, M.; Olsen, W. A.; Dorsch, R. G.
1972-01-01
The results of preliminary acoustic tests of the engine over the wing concept are summarized. The tests were conducted with a small wing section model (32 cm chord) having two flaps set at the landing position, which is 30 and 60 deg respectively. The engine exhaust was simulated by an air jet from a convergent nozzle having a nominal diameter of 5.1 centimeters. Factors investigated for their effect on noise include nozzle location, wing shielding, flap leakage, nozzle shape, exhaust deflectors, and internally generated exhaust noise.
Mikó, István; Copeland, Robert S.; Balhoff, James P.; Yoder, Matthew J.; Deans, Andrew R.
2014-01-01
We revise two relatively rare ensign wasp genera, whose species are restricted to Sub-Saharan Africa: Afrevania and Trissevania. Afrevania longipetiolata sp. nov., Trissevania heatherae sp. nov., T. hugoi sp. nov., T. mrimaensis sp. nov. and T. slideri sp. nov. are described, males and females of T. anemotis and Afrevania leroyi are redescribed, and an identification key for Trissevaniini is provided. We argue that Trissevania mrimaensis sp. nov. and T. heatherae sp. nov. populations are vulnerable, given their limited distributions and threats from mining activities in Kenya. We hypothesize that these taxa together comprise a monophyletic lineage, Trissevaniini, tr. nov., the members of which share the ability to fold their fore wings along two intersecting fold lines. Although wing folding of this type has been described for the hind wing of some insects four-plane wing folding of the fore wing has never been documented. The wing folding mechanism and the pattern of wing folds of Trissevaniini is shared only with some cockroach species (Blattodea). It is an interesting coincidence that all evaniids are predators of cockroach eggs. The major wing fold lines of Trissevaniini likely are not homologous to any known longitudinal anatomical structures on the wings of other Evaniidae. Members of the new tribe share the presence of a coupling mechanism between the fore wing and the mesosoma that is composed of a setal patch on the mesosoma and the retinaculum of the fore wing. While the setal patch is an evolutionary novelty, the retinaculum, which originally evolved to facilitate fore and hind wing coupling in Hymenoptera, exemplifies morphological exaptation. We also refine and clarify the Semantic Phenotype approach used in previous taxonomic revisions and explore the consequences of merging new with existing data. The way that semantic statements are formulated can evolve in parallel, alongside improvements to the ontologies themselves. PMID:24787704
Kefal, Adnan; Yildiz, Mehmet
2017-11-30
This paper investigated the effect of sensor density and alignment for three-dimensional shape sensing of an airplane-wing-shaped thick panel subjected to three different loading conditions, i.e., bending, torsion, and membrane loads. For shape sensing analysis of the panel, the Inverse Finite Element Method (iFEM) was used together with the Refined Zigzag Theory (RZT), in order to enable accurate predictions for transverse deflection and through-the-thickness variation of interfacial displacements. In this study, the iFEM-RZT algorithm is implemented by utilizing a novel three-node C°-continuous inverse-shell element, known as i3-RZT. The discrete strain data is generated numerically through performing a high-fidelity finite element analysis on the wing-shaped panel. This numerical strain data represents experimental strain readings obtained from surface patched strain gauges or embedded fiber Bragg grating (FBG) sensors. Three different sensor placement configurations with varying density and alignment of strain data were examined and their corresponding displacement contours were compared with those of reference solutions. The results indicate that a sparse distribution of FBG sensors (uniaxial strain measurements), aligned in only the longitudinal direction, is sufficient for predicting accurate full-field membrane and bending responses (deformed shapes) of the panel, including a true zigzag representation of interfacial displacements. On the other hand, a sparse deployment of strain rosettes (triaxial strain measurements) is essentially enough to produce torsion shapes that are as accurate as those of predicted by a dense sensor placement configuration. Hence, the potential applicability and practical aspects of i3-RZT/iFEM methodology is proven for three-dimensional shape-sensing of future aerospace structures.
SMA actuators for morphing wings
NASA Astrophysics Data System (ADS)
Brailovski, V.; Terriault, P.; Georges, T.; Coutu, D.
An experimental morphing laminar wing was developed to prove the feasibility of aircraft fuel consumption reduction through enhancement of the laminar flow regime over the wing extrados. The morphing wing prototype designed for subsonic cruise flight conditions (Mach 0.2 … 0.3; angle of attack - 1 … +2∘), combines three principal subsystems: (1) flexible extrados, (2) rigid intrados and (3) an actuator group located inside the wing box. The morphing capability of the wing relies on controlled deformation of the wing extrados under the action of shape memory alloys (SMA) actuators. A coupled fluid-structure model of the morphing wing was used to evaluate its mechanical and aerodynamic performances in different flight conditions. A 0.5 m chord and 1 m span prototype of the morphing wing was tested in a subsonic wind tunnel. In this work, SMA actuators for morphing wings were modeled using a coupled thermo-mechanical finite element model and they were windtunnel validated. If the thermo-mechanical model of SMA actuators presented in this work is coupled with the previously developed structureaerodynamic model of the morphing wing, it could serve for the optimization of the entire morphing wing system.
The design of supercritical wings by the use of three-dimensional transonic theory
NASA Technical Reports Server (NTRS)
Mann, M. J.
1979-01-01
A procedure was developed for the design of transonic wings by the iterative use of three dimensional, inviscid, transonic analysis methods. The procedure was based on simple principles of supersonic flow and provided the designer with a set of guidelines for the systematic alteration of wing profile shapes to achieve some desired pressure distribution. The method was generally applicable to wing design at conditions involving a large region of supercriterical flow. To illustrate the method, it was applied to the design of a wing for a supercritical maneuvering fighter that operates at high lift and transonic Mach number. The wing profiles were altered to produce a large region of supercritical flow which was terminated by a weak shock wave. The spanwise variation of drag of this wing and some principles for selecting the streamwise pressure distribution are also discussed.
Velocity distributions on two-dimensional wing-duct inlets by conformal mapping
NASA Technical Reports Server (NTRS)
Perl, W; Moses, H E
1948-01-01
The conformal-mapping method of the Cartesian mapping function is applied to the determination of the velocity distribution on arbitrary two-dimensional duct-inlet shapes such as are used in wing installations. An idealized form of the actual wing-duct inlet is analyzed. The effects of leading edge stagger, inlet-velocity ratio, and section lift coefficients on the velocity distribution are included in the analysis. Numerical examples are given and, in part, compared with experimental data.
Automatic Dynamic Aircraft Modeler (ADAM) for the Computer Program NASTRAN
NASA Technical Reports Server (NTRS)
Griffis, H.
1985-01-01
Large general purpose finite element programs require users to develop large quantities of input data. General purpose pre-processors are used to decrease the effort required to develop structural models. Further reduction of effort can be achieved by specific application pre-processors. Automatic Dynamic Aircraft Modeler (ADAM) is one such application specific pre-processor. General purpose pre-processors use points, lines and surfaces to describe geometric shapes. Specifying that ADAM is used only for aircraft structures allows generic structural sections, wing boxes and bodies, to be pre-defined. Hence with only gross dimensions, thicknesses, material properties and pre-defined boundary conditions a complete model of an aircraft can be created.
Influence of wing tip morphology on vortex dynamics of flapping flight
NASA Astrophysics Data System (ADS)
Krishna, Swathi; Mulleners, Karen
2013-11-01
The mechanism of flapping wing flight provides insects with extraordinary flight capabilities. The uniquely shaped wing tips give insects an edge in flight performance and the interaction between the leading edge vortices and wing tip vortices enhance their propelling efficiencies and manoeuvrability. These are qualities that are sought after in current-day Micro Air Vehicles. A detailed understanding of the vortex dynamics of flapping flight and the influence of the wing tip planform is imperative for technical application. An experimental study is conducted to investigate the effects of different wing tip planforms on the formation, evolution and interaction of vortical structures. We thereby focus on the interaction between the coherent structures evolving from the leading edge and the wing tip during pitching and flapping motions.The spatial and temporal evolution of the three-dimensional flow structures are determined using Scanning (Stereo) Particle Image Velocimetry and an in-depth coherent structure analysis. By comparing the vortex dynamics, the aerodynamic performance of various wing tip planforms are evaluated.
Analysis of high aspect ratio jet flap wings of arbitrary geometry.
NASA Technical Reports Server (NTRS)
Lissaman, P. B. S.
1973-01-01
Paper presents a design technique for rapidly computing lift, induced drag, and spanwise loading of unswept jet flap wings of arbitrary thickness, chord, twist, blowing, and jet angle, including discontinuities. Linear theory is used, extending Spence's method for elliptically loaded jet flap wings. Curves for uniformly blown rectangular wings are presented for direct performance estimation. Arbitrary planforms require a simple computer program. Method of reducing wing to equivalent stretched, twisted, unblown planform for hand calculation is also given. Results correlate with limited existing data, and show lifting line theory is reasonable down to aspect ratios of 5.
Theoretical antisymmetric span loading for wings of arbitrary plan form at subsonic speeds
NASA Technical Reports Server (NTRS)
Deyoung, John
1951-01-01
A simplified lifting-surface theory that includes effects of compressibility and spanwise variation of section lift-curve slope is used to provide charts with which antisymmetric loading due to arbitrary antisymmetric angle of attack can be found for wings having symmetric plan forms with a constant spanwise sweep angle of the quarter-chord line. Consideration is given to the flexible wing in roll. Aerodynamic characteristics due to rolling, deflected ailerons, and sideslip of wings with dihedral are considered. Solutions are presented for straight-tapered wings for a range of swept plan forms.
5. 'Stones for Wing Walls, Tunnel Walls, BeltCourse and Coping,' ...
5. 'Stones for Wing Walls, Tunnel Walls, Belt-Course and Coping,' Southern Pacific Standard Plan Tunnels, ca. 1909. - Central Pacific Transcontinental Railroad, Sacramento to Nevada state line, Sacramento, Sacramento County, CA
Eigenspace techniques for active flutter suppression
NASA Technical Reports Server (NTRS)
Garrard, William L.; Liebst, Bradley S.; Farm, Jerome A.
1987-01-01
The use of eigenspace techniques for the design of an active flutter suppression system for a hypothetical research drone is discussed. One leading edge and two trailing edge aerodynamic control surfaces and four sensors (accelerometers) are available for each wing. Full state control laws are designed by selecting feedback gains which place closed loop eigenvalues and shape closed loop eigenvectors so as to stabilize wing flutter and reduce gust loads at the wing root while yielding accepatable robustness and satisfying constrains on rms control surface activity. These controllers are realized by state estimators designed using an eigenvalue placement/eigenvector shaping technique which results in recovery of the full state loop transfer characteristics. The resulting feedback compensators are shown to perform almost as well as the full state designs. They also exhibit acceptable performance in situations in which the failure of an actuator is simulated.
Forward flight of swallowtail butterfly with simple flapping motion.
Tanaka, Hiroto; Shimoyama, Isao
2010-06-01
Unlike other flying insects, the wing motion of swallowtail butterflies is basically limited to flapping because their fore wings partly overlap their hind wings, structurally restricting the feathering needed for active control of aerodynamic force. Hence, it can be hypothesized that the flight of swallowtail butterflies is realized with simple flapping, requiring little feedback control of the feathering angle. To verify this hypothesis, we fabricated an artificial butterfly mimicking the wing motion and wing shape of a swallowtail butterfly and analyzed its flights using images taken with a high-speed video camera. The results demonstrated that stable forward flight could be realized without active feathering or feedback control of the wing motion. During the flights, the artificial butterfly's body moved up and down passively in synchronization with the flapping, and the artificial butterfly followed an undulating flight trajectory like an actual swallowtail butterfly. Without feedback control of the wing motion, the body movement is directly affected by change of aerodynamic force due to the wing deformation; the degree of deformation was determined by the wing venation. Unlike a veinless wing, a mimic wing with veins generated a much higher lift coefficient during the flapping flight than in a steady flow due to the large body motion.
Logistics Implications of Composite Wings
1993-12-01
Composite Wing and Air Logistics Center Locations 33 12 F-15E Strike Eagle Aircraft 34 la F-16C Fighting Falcon Aircraft 35 14 E-3 Sentry...Structure , 12 2 366th Wing Maintenance Concept 41 vOt Foreword The US Air Force has taken the initiative to reorganize into objective wings, at...the Air Force in 1967. He began his Air Force career as an F-102 radar weapon system specialist and worked on the flight line at Ramstein Air Base
2014-06-01
B. Beetle wing colors Whereas most insect wings are rather thin and flexible chitinous structures, in beetles this holds for only one wing pair...symbols). The black line is the dispersion curve for insect chitin . D. Insect photoreceptors Insect vision starts with the absorption of light by the...BD (2012) Sexual dichromatism of the damselfly Calopteryx japonica caused by a melanin- chitin multilayer in the male wing veins. PLoS ONE 7: e49743
Chordwise and compressibility corrections to slender-wing theory
NASA Technical Reports Server (NTRS)
Lomax, Harvard; Sluder, Loma
1952-01-01
Corrections to slender-wing theory are obtained by assuming a spanwise distribution of loading and determining the chordwise variation which satisfies the appropriate integral equation. Such integral equations are set up in terms of the given vertical induced velocity on the center line or, depending on the type of wing plan form, its average value across the span at a given chord station. The chordwise distribution is then obtained by solving these integral equations. Results are shown for flat-plate rectangular, and triangular wings.
NASA Technical Reports Server (NTRS)
Sanger, Eugen
1932-01-01
A method is presented for approximate static calculation, which is based on the customary assumption of rigid ribs, while taking into account the systematic errors in the calculation results due to this arbitrary assumption. The procedure is given in greater detail for semicantilever and cantilever wings with polygonal spar plan form and for wings under direct loading only. The last example illustrates the advantages of the use of influence lines for such wing structures and their practical interpretation.
Wave drag as the objective function in transonic fighter wing optimization
NASA Technical Reports Server (NTRS)
Phillips, P. S.
1984-01-01
The original computational method for determining wave drag in a three dimensional transonic analysis method was replaced by a wave drag formula based on the loss in momentum across an isentropic shock. This formula was used as the objective function in a numerical optimization procedure to reduce the wave drag of a fighter wing at transonic maneuver conditions. The optimization procedure minimized wave drag through modifications to the wing section contours defined by a wing profile shape function. A significant reduction in wave drag was achieved while maintaining a high lift coefficient. Comparisons of the pressure distributions for the initial and optimized wing geometries showed significant reductions in the leading-edge peaks and shock strength across the span.
NASA Technical Reports Server (NTRS)
Montgomery, Raymond C.; Scott, Michael A.; Weston, Robert P.
1998-01-01
This paper represents an initial study on the use of quasi-static shape change devices in aircraft maneuvering. The macroscopic effects and requirements for these devices in flight control are the focus of this study. Groups of devices are postulated to replace the conventional leading-edge flap (LEF) and the all-moving wing tip (AMT) on the tailless LMTAS-ICE (Lockheed Martin Tactical Aircraft Systems - Innovative Control Effectors) configuration. The maximum quasi-static shape changes are 13.8% and 7.7% of the wing section thickness for the LEF and AMT replacement devices, respectively. A Computational Fluid Dynamics (CFD) panel code is used to determine the control effectiveness of groups of these devices. A preliminary design of a wings-leveler autopilot is presented. Initial evaluation at 0.6 Mach at 15,000 ft. altitude is made through batch simulation. Results show small disturbance stability is achieved, however, an increase in maximum distortion is needed to statically offset five degrees of sideslip. This only applies to the specific device groups studied, encouraging future research on optimal device placement.
Kusaba, Kiseki; Otaki, Joji M
2009-02-01
Butterfly wing color-patterns are a phenotypically coordinated array of scales whose color is determined as cellular interpretation outputs for morphogenic signals. Here we investigated distribution patterns of scale shape and size in relation to position and coloration on the hindwings of a nymphalid butterfly Junonia orithya. Most scales had a smooth edge but scales at and near the natural and ectopic eyespot foci and in the postbasal area were jagged. Scale size decreased regularly from the postbasal to distal areas, and eyespots occasionally had larger scales than the background. Reasonable correlations were obtained between the eyespot size and focal scale size in females. Histological and real-time individual observations of the color-pattern developmental sequence showed that the background brown and blue colors expanded from the postbasal to distal areas independently from the color-pattern elements such as eyespots. These data suggest that morphogenic signals for coloration directly or indirectly influence the scale shape and size and that the blue "background" is organized by a long-range signal from an unidentified organizing center in J. orithya.
NASA Technical Reports Server (NTRS)
Spearman, M. L.; Tice, David C.; Braswell, Dorothy O.
1992-01-01
Experimental and theoretical results are presented for a family of aerodynamic configurations for flight Mach numbers as high as Mach 8. All of these generic configurations involved 70-deg sweep delta planform wings of three different areas and three fuselage shapes with circular-to-elliptical cross sections. It is noted that fuselage ellipticity enhances lift-curve slope and maximum L/D, while decreasing static longitudinal stability (especially with smaller wing areas).
The design, analysis and experimental evaluation of an elastic model wing
NASA Technical Reports Server (NTRS)
Cavin, R. K., III; Thisayakorn, C.
1974-01-01
An elastic orbiter model was developed to evaluate the effectiveness of aeroelasticity computer programs. The elasticity properties were introduced by constructing beam-like straight wings for the wind tunnel model. A standard influence coefficient mathematical model was used to estimate aeroelastic effects analytically. In general good agreement was obtained between the empirical and analytical estimates of the deformed shape. However, in the static aeroelasticity case, it was found that the physical wing exhibited less bending and more twist than was predicted by theory.
Design, realization and structural testing of a compliant adaptable wing
NASA Astrophysics Data System (ADS)
Molinari, G.; Quack, M.; Arrieta, A. F.; Morari, M.; Ermanni, P.
2015-10-01
This paper presents the design, optimization, realization and testing of a novel wing morphing concept, based on distributed compliance structures, and actuated by piezoelectric elements. The adaptive wing features ribs with a selectively compliant inner structure, numerically optimized to achieve aerodynamically efficient shape changes while simultaneously withstanding aeroelastic loads. The static and dynamic aeroelastic behavior of the wing, and the effect of activating the actuators, is assessed by means of coupled 3D aerodynamic and structural simulations. To demonstrate the capabilities of the proposed morphing concept and optimization procedure, the wings of a model airplane are designed and manufactured according to the presented approach. The goal is to replace conventional ailerons, thus to achieve controllability in roll purely by morphing. The mechanical properties of the manufactured components are characterized experimentally, and used to create a refined and correlated finite element model. The overall stiffness, strength, and actuation capabilities are experimentally tested and successfully compared with the numerical prediction. To counteract the nonlinear hysteretic behavior of the piezoelectric actuators, a closed-loop controller is implemented, and its capability of accurately achieving the desired shape adaptation is evaluated experimentally. Using the correlated finite element model, the aeroelastic behavior of the manufactured wing is simulated, showing that the morphing concept can provide sufficient roll authority to allow controllability of the flight. The additional degrees of freedom offered by morphing can be also used to vary the plane lift coefficient, similarly to conventional flaps. The efficiency improvements offered by this technique are evaluated numerically, and compared to the performance of a rigid wing.
NASA Technical Reports Server (NTRS)
Anderson, Bianca Trujillo; Meyer, Robert R., Jr.
1990-01-01
The variable sweep transition flight experiment (VSTFE) was conducted on an F-14A variable sweep wing fighter to examine the effect of wing sweep on natural boundary layer transition. Nearly full span upper surface gloves, extending to 60 percent chord, were attached to the F-14 aircraft's wings. The results are presented of the glove 2 flight tests. Glove 2 had an airfoil shape designed for natural laminar flow at a wing sweep of 20 deg. Sample pressure distributions and transition locations are presented with the complete results tabulated in a database. Data were obtained at wing sweeps of 15, 20, 25, 30, and 35 deg, at Mach numbers ranging from 0.60 to 0.79, and at altitudes ranging from 10,000 to 35,000 ft. Results show that a substantial amount of laminar flow was maintained at all the wing sweeps evaluated. The maximum transition Reynolds number obtained was 18.6 x 10(exp 6) at 15 deg of wing sweep, Mach 0.75, and at an altitude of 10,000 ft.
Bolstad, Geir H.; Cassara, Jason A.; Márquez, Eladio; Hansen, Thomas F.; van der Linde, Kim; Houle, David; Pélabon, Christophe
2015-01-01
Precise exponential scaling with size is a fundamental aspect of phenotypic variation. These allometric power laws are often invariant across taxa and have long been hypothesized to reflect developmental constraints. Here we test this hypothesis by investigating the evolutionary potential of an allometric scaling relationship in drosophilid wing shape that is nearly invariant across 111 species separated by at least 50 million years of evolution. In only 26 generations of artificial selection in a population of Drosophila melanogaster, we were able to drive the allometric slope to the outer range of those found among the 111 sampled species. This response was rapidly lost when selection was suspended. Only a small proportion of this reversal could be explained by breakup of linkage disequilibrium, and direct selection on wing shape is also unlikely to explain the reversal, because the more divergent wing shapes produced by selection on the allometric intercept did not revert. We hypothesize that the reversal was instead caused by internal selection arising from pleiotropic links to unknown traits. Our results also suggest that the observed selection response in the allometric slope was due to a component expressed late in larval development and that variation in earlier development did not respond to selection. Together, these results are consistent with a role for pleiotropic constraints in explaining the remarkable evolutionary stability of allometric scaling. PMID:26371319
Forewing structure of the solitary bee Osmia bicornis developing on heavy metal pollution gradient.
Szentgyörgyi, Hajnalka; Moroń, Dawid; Nawrocka, Anna; Tofilski, Adam; Woyciechowski, Michał
2017-10-01
Wild bees in natural conditions can develop under various environmental stressors. Heavy metal pollution of the environment is one of the most widely studied stressors in insects, yet its effect is poorly described in bees. We have measured how pollution of the environment along a zinc, cadmium and lead contamination gradient in Poland affects bee development, using red mason bees (Osmia bicornis) as a model and their forewing asymmetry measures to assess possible developmental instabilities. We have also described wing asymmetry measures in the red mason bee-an important managed pollinator species-for the first time. The development of bee larvae in a contaminated environment did not affect forewing asymmetry measures, but it did lead to a negative correlation of wing size with contamination in females. Bees also showed a clear change in their asymmetry measures between various seasons, suggesting other, unknown environmental factors affecting wing asymmetry more than pollution. Sexes were found to have different forewing shape and size, larger females having larger forewings than the smaller males. The direction of size asymmetry was in favour of the left side in both sexes and also shape differences between the left and right wings showed similar tendencies in males and females. The levels of forewing shape and size asymmetry were smaller in females, making them the more symmetrical sex.
Gaspe, María Sol; Provecho, Yael Mariana; Piccinali, Romina Valeria; Gürtler/, Ricardo Esteban
2015-01-01
House re-invasion by native triatomines after insecticide-based control campaigns represents a major threat for Chagas disease vector control. We conducted a longitudinal intervention study in a rural section (Area III, 407 houses) of Pampa del Indio, northeastern Argentina, and used wing geometric morphometry to compare pre-spray and post-spray (re-infestant bugs) Triatoma infestans populations. The community-wide spraying with pyrethroids reduced the prevalence of house infestation by T. infestans from 31.9% to < 1% during a four-year follow-up, unlike our previous studies in the neighbouring Area I. Two groups of bug collection sites differing in wing shape variables before interventions (including 221 adults from 11 domiciles) were used as a reference for assigning 44 post-spray adults. Wing shape variables from post-spray, high-density bug colonies and pre-spray groups were significantly different, suggesting that re-infestant insects had an external origin. Insects from one house differed strongly in wing shape variables from all other specimens. A further comparison between insects from both areas supported the existence of independent re-infestation processes within the same district. These results point to local heterogeneities in house re-infestation dynamics and emphasise the need to expand the geographic coverage of vector surveillance and control operations to the affected region. PMID:25946158
Ravisankar, Padmapriyadarshini; Lai, Yi-Ting; Sambrani, Nagraj; Tomoyasu, Yoshinori
2016-01-15
Morphological innovation is a fundamental process in evolution, yet its molecular basis is still elusive. Acquisition of elytra, highly modified beetle forewings, is an important innovation that has driven the successful radiation of beetles. Our RNAi screening for candidate genes has identified abrupt (ab) as a potential key player in elytron evolution. In this study, we performed a series of RNA interference (RNAi) experiments in both Tribolium and Drosophila to understand the contributions of ab to the evolution of beetle elytra. We found that (i) ab is essential for proper wing vein patterning both in Tribolium and Drosophila, (ii) ab has gained a novel function in determining the unique elytron shape in the beetle lineage, (iii) unlike Hippo and Insulin, other shape determining pathways, the shape determining function of ab is specific to the elytron and not required in the hindwing, (iv) ab has a previously undescribed role in the Notch signal-associated wing formation processes, which appears to be conserved between beetles and flies. These data suggest that ab has gained a new function during elytron evolution in beetles without compromising the conserved wing-related functions. Gaining a new function without losing evolutionarily conserved functions may be a key theme in the evolution of morphologically novel structures. Copyright © 2015 Elsevier Inc. All rights reserved.
Cicada-Wing-Inspired Self-Cleaning Antireflection Coatings on Polymer Substrates.
Chen, Ying-Chu; Huang, Zhe-Sheng; Yang, Hongta
2015-11-18
The cicada has transparent wings with remarkable self-cleaning properties and high transmittance over the whole visible spectral range, which is derived from periodic conical structures covering the wing surface. Here we report a scalable self-assembly technique for fabricating multifunctional optical coatings that mimic cicada-wing structures. Spin-coated two-dimensional non-close-packed colloidal crystals are utilized as etching masks to pattern subwavelength-structured cone arrays directly on polymer substrates. The resulting gratings exhibit broadband antireflection performance and superhydrophobic properties after surface modification. The dependence of the cone shape and size on the antireflective and self-cleaning properties has also been investigated in this study.
Hypersonic aerodynamic characteristics of a family of power-law, wing body configurations
NASA Technical Reports Server (NTRS)
Townsend, J. C.
1973-01-01
The configurations analyzed are half-axisymmetric, power-law bodies surmounted by thin, flat wings. The wing planform matches the body shock-wave shape. Analytic solutions of the hypersonic small disturbance equations form a basis for calculating the longitudinal aerodynamic characteristics. Boundary-layer displacement effects on the body and the wing upper surface are approximated. Skin friction is estimated by using compressible, laminar boundary-layer solutions. Good agreement was obtained with available experimental data for which the basic theoretical assumptions were satisfied. The method is used to estimate the effects of power-law, fineness ratio, and Mach number variations at full-scale conditions. The computer program is included.
Maginnis, Tara L
2006-07-22
Major morphological structures are sometimes produced not once, but twice. For example, stick insects routinely shed legs to escape a predator or tangled moult, and these legs are subsequently re-grown. Here, I show that in Sipyloidea sipylus, re-growth of a leg during development causes adults to have disproportionately smaller wings and increases wing loading. These morphological consequences of leg regeneration led to significant reductions in several biologically relevant measures of individual flight performance. This previously unrecognized tradeoff between legs and wings reveals the integrated nature of phasmid phenotypes, and I propose how this tradeoff may have shaped phasmid evolution.
Demonstration of Automatically-Generated Adjoint Code for Use in Aerodynamic Shape Optimization
NASA Technical Reports Server (NTRS)
Green, Lawrence; Carle, Alan; Fagan, Mike
1999-01-01
Gradient-based optimization requires accurate derivatives of the objective function and constraints. These gradients may have previously been obtained by manual differentiation of analysis codes, symbolic manipulators, finite-difference approximations, or existing automatic differentiation (AD) tools such as ADIFOR (Automatic Differentiation in FORTRAN). Each of these methods has certain deficiencies, particularly when applied to complex, coupled analyses with many design variables. Recently, a new AD tool called ADJIFOR (Automatic Adjoint Generation in FORTRAN), based upon ADIFOR, was developed and demonstrated. Whereas ADIFOR implements forward-mode (direct) differentiation throughout an analysis program to obtain exact derivatives via the chain rule of calculus, ADJIFOR implements the reverse-mode counterpart of the chain rule to obtain exact adjoint form derivatives from FORTRAN code. Automatically-generated adjoint versions of the widely-used CFL3D computational fluid dynamics (CFD) code and an algebraic wing grid generation code were obtained with just a few hours processing time using the ADJIFOR tool. The codes were verified for accuracy and were shown to compute the exact gradient of the wing lift-to-drag ratio, with respect to any number of shape parameters, in about the time required for 7 to 20 function evaluations. The codes have now been executed on various computers with typical memory and disk space for problems with up to 129 x 65 x 33 grid points, and for hundreds to thousands of independent variables. These adjoint codes are now used in a gradient-based aerodynamic shape optimization problem for a swept, tapered wing. For each design iteration, the optimization package constructs an approximate, linear optimization problem, based upon the current objective function, constraints, and gradient values. The optimizer subroutines are called within a design loop employing the approximate linear problem until an optimum shape is found, the design loop limit is reached, or no further design improvement is possible due to active design variable bounds and/or constraints. The resulting shape parameters are then used by the grid generation code to define a new wing surface and computational grid. The lift-to-drag ratio and its gradient are computed for the new design by the automatically-generated adjoint codes. Several optimization iterations may be required to find an optimum wing shape. Results from two sample cases will be discussed. The reader should note that this work primarily represents a demonstration of use of automatically- generated adjoint code within an aerodynamic shape optimization. As such, little significance is placed upon the actual optimization results, relative to the method for obtaining the results.
NASA Astrophysics Data System (ADS)
Silitonga, Faber Y.; Agoes Moelyadi, M.
2018-04-01
The development of High Altitude Long Endurance (HALE) Unmanned Aerial Vehicle (UAV) has been emerged for both civil and military purposes. Its ability of operating in high altitude with long endurance is important in supporting maritime applications.Preliminary analysis of HALE UAV lift distribution of the wing presented to give decisive consideration for its early development. Ensuring that the generated lift is enough to compensate its own weight. Therotical approach using Pradtl’s non-linear lifting line theory will be compared with modern numerical approach using Computational Fluid Dynamics (CFD). Results of wing lift distribution calculated from both methods will be compared to study the reliability of it. HALE UAV ITB has high aspect ratio wing and will be analyze at cruise flight condition. The result indicates difference between Non-linear Lifting Line and CFD method.
DARPA/AFRL/NASA Smart Wing Second Wind Tunnel Test Results
NASA Technical Reports Server (NTRS)
Scherer, L. B.; Martin, C. A.; West, M.; Florance, J. P.; Wieseman, C. D.; Burner, A. W.; Fleming, G. A.
2001-01-01
To quantify the benefits of smart materials and structures adaptive wing technology, Northrop Grumman Corp. (NGC) built and tested two 16% scale wind tunnel models (a conventional and a "smart" model) of a fighter/attack aircraft under the DARPA/AFRL/NASA Smart Materials and Structures Development - Smart Wing Phase 1. Performance gains quantified included increased pitching moment (C(sub M)), increased rolling moment (C(subl)) and improved pressure distribution. The benefits were obtained for hingeless, contoured trailing edge control surfaces with embedded shape memory alloy (SMA) wires and spanwise wing twist effected by SMA torque tube mechanisms, compared to conventional hinged control surfaces. This paper presents an overview of the results from the second wind tunnel test performed at the NASA Langley Research Center s (LaRC) 16ft Transonic Dynamic Tunnel (TDT) in June 1998. Successful results obtained were: 1) 5 degrees of spanwise twist and 8-12% increase in rolling moment utilizing a single SMA torque tube, 2) 12 degrees of deflection, and 10% increase in rolling moment due to hingeless, contoured aileron, and 3) demonstration of optical techniques for measuring spanwise twist and deflected shape.
Villacís, Anita G; Grijalva, Mario J; Catalá, Silvia S
2010-11-01
Rhodnius ecuadoriensis is an important vector of Chagas disease in Ecuador. Whereas only sylvatic and peridomestic populations are common in Manabi province, this species occupies domestic, peridomestic, and sylvatic habitats in Loja province where high reinfestation of houses was observed. To explore the existence of phenetic changes linked to the domiciliation of the species, this study set out to analyze the wing and antennal phenotypes of R. ecuadoriensis in these two provinces where the vector presents different affinity for domestic habitats. The antennal phenotype and the wing size and shape distinguish the two geographical populations of R. ecuadoriensis. In Manabí, sylvatic and peridomestic specimens were very similar. In Loja, sylvatic and nonsylvatic (domestic and peridomestic) populations showed distinctive characteristics. Remarkable sexual dimorphism of wing and antenna, exclusive of domestic specimens, and high metric disparity in the wing shape of the domestic females point out the existence of a particular situation in this habitat. The results of this phenotypic analysis and previous evidence of behavioral differences support the hypothesis of disruptive selection acting upon R. ecuadoriensis populations.
NASA Technical Reports Server (NTRS)
Skillen, Michael D.; Crossley, William A.
2008-01-01
This report presents an approach for sizing of a morphing aircraft based upon a multi-level design optimization approach. For this effort, a morphing wing is one whose planform can make significant shape changes in flight - increasing wing area by 50% or more from the lowest possible area, changing sweep 30 or more, and/or increasing aspect ratio by as much as 200% from the lowest possible value. The top-level optimization problem seeks to minimize the gross weight of the aircraft by determining a set of "baseline" variables - these are common aircraft sizing variables, along with a set of "morphing limit" variables - these describe the maximum shape change for a particular morphing strategy. The sub-level optimization problems represent each segment in the morphing aircraft's design mission; here, each sub-level optimizer minimizes fuel consumed during each mission segment by changing the wing planform within the bounds set by the baseline and morphing limit variables from the top-level problem.
DARPA/ARFL/NASA Smart Wing second wind tunnel test results
NASA Astrophysics Data System (ADS)
Scherer, Lewis B.; Martin, Christopher A.; West, Mark N.; Florance, Jennifer P.; Wieseman, Carol D.; Burner, Alpheus W.; Fleming, Gary A.
1999-07-01
To quantify the benefits of smart materials and structures adaptive wing technology. Northrop Grumman Corp. built and tested two 16 percent scale wind tunnel models of a fighter/attach aircraft under the DARPA/AFRL/NASA Smart Materials and Structures Development - Smart Wing Phase 1. Performance gains quantified included increased pitching moment, increased rolling moment and improved pressure distribution. The benefits were obtained for hingeless, contoured trailing edge control surfaces with embedded shape memory alloy wires and spanwise wing twist effected by SMA torque tube mechanism, compared to convention hinged control surfaces. This paper presents an overview of the results from the second wind tunnel test performed at the NASA Langley Research Center's 16 ft Transonic Dynamic Tunnel in June 1998. Successful results obtained were: 1) 5 degrees of spanwise twist and 8-12 percent increase in rolling moment utilizing a single SMA torque tube, 2) 12 degrees of deflection, and 10 percent increase in rolling moment due to hingeless, contoured aileron, and 3) demonstration of optical techniques for measuring spanwise twist and deflected shape.
NASA Technical Reports Server (NTRS)
Chwalowski, Pawel; Samareh, Jamshid A.; Horta, Lucas G.; Piatak, David J.; McGowan, Anna-Maria R.
2009-01-01
The conceptual and preliminary design processes for aircraft with large shape changes are generally difficult and time-consuming, and the processes are often customized for a specific shape change concept to streamline the vehicle design effort. Accordingly, several existing reports show excellent results of assessing a particular shape change concept or perturbations of a concept. The goal of the current effort was to develop a multidisciplinary analysis tool and process that would enable an aircraft designer to assess several very different morphing concepts early in the design phase and yet obtain second-order performance results so that design decisions can be made with better confidence. The approach uses an efficient parametric model formulation that allows automatic model generation for systems undergoing radical shape changes as a function of aerodynamic parameters, geometry parameters, and shape change parameters. In contrast to other more self-contained approaches, the approach utilizes off-the-shelf analysis modules to reduce development time and to make it accessible to many users. Because the analysis is loosely coupled, discipline modules like a multibody code can be easily swapped for other modules with similar capabilities. One of the advantages of this loosely coupled system is the ability to use the medium- to high-fidelity tools early in the design stages when the information can significantly influence and improve overall vehicle design. Data transfer among the analysis modules are based on an accurate and automated general purpose data transfer tool. In general, setup time for the integrated system presented in this paper is 2-4 days for simple shape change concepts and 1-2 weeks for more mechanically complicated concepts. Some of the key elements briefly described in the paper include parametric model development, aerodynamic database generation, multibody analysis, and the required software modules as well as examples for a telescoping wing, a folding wing, and a bat-like wing. The paper also includes the verification of a medium-fidelity aerodynamic tool used for the aerodynamic database generation with a steady and unsteady high-fidelity CFD analysis tool for a folding wing example.
Nattero, Julieta; Piccinali, Romina Valeria; Macedo Lopes, Catarina; Hernández, María Laura; Abrahan, Luciana; Lobbia, Patricia Alejandra; Rodríguez, Claudia Susana; Carbajal de la Fuente, Ana Laura
2017-09-06
The Sordida subcomplex (Triatominae) comprises four species, Triatoma garciabesi, T. guasayana, T. patagonica and T. sordida, which differ in epidemiological importance and adaptations to human environments. Some morphological similarities among species make taxonomic identification, population differentiation and species delimitation controversial. Triatoma garciabesi and T. sordida are the most similar species, having been considered alternatively two and a single species until T. garciabesi was re-validated, mostly based on the morphology of male genitalia. More recently, T. sordida from Argentina has been proposed as a new cryptic species distinguishable from T. sordida from Brazil, Bolivia and Paraguay by cytogenetics. We studied linear and geometric morphometry of the head, wings and pronotum in populations of these species aiming to find phenotypic markers for their discrimination, especially between T. sordida and T. garciabesi, and if any set of variables that validates T. sordida from Argentina as a new species. Head width and pronotum length were the linear variables that best differentiated species. Geometric morphometry revealed significant Mahalanobis distances in wing shape between all pairwise comparisons. Triatoma patagonica exhibited the best discrimination and T. garciabesi overlapped the distribution of the other species in the morphometric space of the first two DFA axes. Head shape showed differentiation between all pairs of species except for T. garciabesi and T. sordida. Pronotum shape did not differentiate T. garciabesi from T. guasayana. The comparison between T. garciabesi and T. sordida from Argentina and T. sordida from Brazil and Bolivia revealed low differentiation based on head and pronotum linear measurements. Pronotum and wing shape were different between T. garciabesi and T. sordida from Brazil and Bolivia and T. sordida from Argentina. Head shape did not differentiate T. garciabesi from T. sordida from Argentina. Wing shape best delimited the four species phenotypically. The proposed cryptic species, T. sordida from Argentina, differed from T. sordida from Brazil and Bolivia in all measured shape traits, suggesting that the putative new species may not be cryptic. Additional studies integrating cytogenetic, phenotypic and molecular markers, as well as cross-breeding experiments are needed to confirm if these three entities represent true biological species.
White butterflies as solar photovoltaic concentrators
Shanks, Katie; Senthilarasu, S.; ffrench-Constant, Richard H.; Mallick, Tapas K.
2015-01-01
Man’s harvesting of photovoltaic energy requires the deployment of extensive arrays of solar panels. To improve both the gathering of thermal and photovoltaic energy from the sun we have examined the concept of biomimicry in white butterflies of the family Pieridae. We tested the hypothesis that the V-shaped posture of basking white butterflies mimics the V-trough concentrator which is designed to increase solar input to photovoltaic cells. These solar concentrators improve harvesting efficiency but are both heavy and bulky, severely limiting their deployment. Here, we show that the attachment of butterfly wings to a solar cell increases its output power by 42.3%, proving that the wings are indeed highly reflective. Importantly, and relative to current concentrators, the wings improve the power to weight ratio of the overall structure 17-fold, vastly expanding their potential application. Moreover, a single mono-layer of scale cells removed from the butterflies’ wings maintained this high reflectivity showing that a single layer of scale cell-like structures can also form a useful coating. As predicted, the wings increased the temperature of the butterflies’ thorax dramatically, showing that the V-shaped basking posture of white butterflies has indeed evolved to increase the temperature of their flight muscles prior to take-off. PMID:26227341
NASA Astrophysics Data System (ADS)
Miyake, Yasuhiro; Shimomura, Koichiro; Kawamura, Naritoshi; Koda, Akihiro; Strasser, Patrick; Kojima, Kenji M.; Fujimori, Hiroshi; Makimura, Shunsuke; Ikedo, Yutaka; Kobayashi, Yasushi; Nakamura, Jumpei; Oishi, Yu; Takeshita, Soshi; Adachi, Taihei; Datt Pant, Amba; Okabe, Hirotaka; Matoba, Shiro; Tampo, Motobobu; Hiraishi, Masatoshi; Hamada, Koji; Doiuchi, Shougo; Higemoto, Wataru; Ito, Takashi U.; Kadono, Ryosuke
At J-PARC MUSE (Muon Science Establishment), one graphite target was installed in the proton beam line on the way to the neutron source, from which four sets of the secondary lines were designed to be extracted and extended into two experimental halls (toward the west wing, one decay-surface muon channel (D-Line) and the axial focusing muon channel (U-Line), and towards the east wing one surface muon channel (S-Line) and one fundamental muon channel (H-Line). MUSE has been suffering from many troubles such as the giant earthquake, fire, twice water leakage from the neutron target. Although the proton beam intensity was restricted lower than 200 kW, we have been having a rather stable operation at the MUSE since February, 2016. In this paper, the latest situation on the MUSE is reported.
Santer, Roger D.; Rind, F. Claire; Simmons, Peter J.
2012-01-01
Many arthropods possess escape-triggering neural mechanisms that help them evade predators. These mechanisms are important neuroethological models, but they are rarely investigated using predator-like stimuli because there is often insufficient information on real predator attacks. Locusts possess uniquely identifiable visual neurons (the descending contralateral movement detectors, DCMDs) that are well-studied looming motion detectors. The DCMDs trigger ‘glides’ in flying locusts, which are hypothesised to be appropriate last-ditch responses to the looms of avian predators. To date it has not been possible to study glides in response to stimuli simulating bird attacks because such attacks have not been characterised. We analyse video of wild black kites attacking flying locusts, and estimate kite attack speeds of 10.8±1.4 m/s. We estimate that the loom of a kite’s thorax towards a locust at these speeds should be characterised by a relatively low ratio of half size to speed (l/|v|) in the range 4–17 ms. Peak DCMD spike rate and gliding response occurrence are known to increase as l/|v| decreases for simple looming shapes. Using simulated looming discs, we investigate these trends and show that both DCMD and behavioural responses are strong to stimuli with kite-like l/|v| ratios. Adding wings to looming discs to produce a more realistic stimulus shape did not disrupt the overall relationships of DCMD and gliding occurrence to stimulus l/|v|. However, adding wings to looming discs did slightly reduce high frequency DCMD spike rates in the final stages of object approach, and slightly delay glide initiation. Looming discs with or without wings triggered glides closer to the time of collision as l/|v| declined, and relatively infrequently before collision at very low l/|v|. However, the performance of this system is in line with expectations for a last-ditch escape response. PMID:23209660
NASA Astrophysics Data System (ADS)
Tondji Chendjou, Yvan Wilfried
This Master's thesis is written within the framework of the multidisciplinary international research project CRIAQ MDO-505. This global project consists of the design, manufacture and testing of a morphing wing box capable of changing the shape of the flexible upper skin of a wing using an actuator system installed inside the wing. This changing of the shape generates a delay in the occurrence of the laminar to turbulent transition area, which results in an improvement of the aerodynamic performances of the morphed wing. This thesis is focused on the technologies used to gather the pressure data during the wind tunnel tests, as well as on the post processing methodologies used to characterize the wing airflow. The vibration measurements of the wing and their real-time graphical representation are also presented. The vibration data acquisition system is detailed, and the vibration data analysis confirms the predictions of the flutter analysis performed on the wing prior to wind tunnel testing at the IAR-NRC. The pressure data was collected using 32 highly-sensitive piezoelectric sensors for sensing the pressure fluctuations up to 10 KHz. These sensors were installed along two wing chords, and were further connected to a National Instrument PXI real-time acquisition system. The acquired pressure data was high-pass filtered, analyzed and visualized using Fast Fourier Transform (FFT) and Standard Deviation (SD) approaches to quantify the pressure fluctuations in the wing airflow, as these allow the detection of the laminar to turbulent transition area. Around 30% of the cases tested in the IAR-NRC wind tunnel were optimized for drag reduction by the morphing wing procedure. The obtained pressure measurements results were compared with results obtained by infrared thermography visualization, and were used to validate the numerical simulations. Two analog accelerometers able to sense dynamic accelerations up to +/-16g were installed in both the wing and the aileron boxes to obtain the vibration sensing measurements. The measured accelerations were acquired by an NI real-time acquisition system using LABVIEW software for a real-time graphical visualization. The recorded data were then analyzed and the analysis indicated that no aeroelastic phenomenon occurred on the model during the wind tunnel tests, at speeds of 50 m/s and 80m/s.
Stratmann, A; Fröhlich, E K F; Gebhardt-Henrich, S G; Harlander-Matauschek, A; Würbel, H; Toscano, M J
2016-05-01
The prevalence of keel bone damage as well as external egg parameters of 2 pure lines divergently selected for high (H) and low (L) bone strength were investigated in 2 aviary systems under commercial conditions. A standard LSL hybrid was used as a reference group. Birds were kept mixed per genetic line (77 hens of the H and L line and 201 or 206 hens of the LSL line, respectively, per pen) in 8 pens of 2 aviary systems differing in design. Keel bone status and body mass of 20 focal hens per line and pen were assessed at 17, 18, 23, 30, 36, 43, 52, and 63 wk of age. External egg parameters (i.e., egg mass, eggshell breaking strength, thickness, and mass) were measured using 10 eggs per line at both 38 and 57 wk of age. Body parameters (i.e. tarsus and third primary wing feather length to calculate index of wing loading) were recorded at 38 wk of age and mortality per genetic line throughout the laying cycle. Bone mineral density (BMD) of 15 keel bones per genetic line was measured after slaughter to confirm assignment of the experimental lines. We found a greater BMD in the H compared with the L and LSL lines. Fewer keel bone fractures and deviations, a poorer external egg quality, as well as a lower index of wing loading were found in the H compared with the L line. Mortality was lower and production parameters (e.g., laying performance) were higher in the LSL line compared with the 2 experimental lines. Aviary design affected prevalence of keel bone damage, body mass, and mortality. We conclude that selection of specific bone traits associated with bone strength as well as the related differences in body morphology (i.e., lower index of wing loading) have potential to reduce keel bone damage in commercial settings. Also, the housing environment (i.e., aviary design) may have additive effects. © 2016 Poultry Science Association Inc.
Detection of atmospheric velocity fields in A-type stars
NASA Astrophysics Data System (ADS)
Landstreet, J. D.
1998-10-01
High signal-to-noise spectra with spectral resolution of more than 10(5) have been obtained of one normal B9.5V, one normal A1V, two Am stars, and two HgMn B stars having v sin i less than 6 km s(-1) . These spectra are modeled with LTE line profile synthesis to test the extent to which the spectrum of each star can be modeled correctly with a single set of parameters T_e, log g, chemical abundances, v sin i, and (depth-independent) microturbulent velocity xi . The answer to this question is important for abundance analysis of A and B stars; if conventional line synthesis does not reproduce the line profiles observed in stars of small v sin i, results obtained from such analysis are not likely to be very precise. The comparison of models with observations is then used to search for direct evidence of atmospheric motions, including line-strength dependent broadening, line core shape, and line asymmetries, in order to study how the microturbulence derived from abundance analysis is related to more direct evidence of atmospheric velocity fields. It is found for the three stars with 12,000 >= T_e >= 10,200 K (the normal star 21 Peg and the two HgMn stars 53 Tau and HD 193452) that xi is less than 1 km s(-1) , and line profiles are reproduced accurately by the synthesis with a single set of parameters. The slightly cooler (T_e ~ 9800 K) star HD 72660 has only a slightly stronger surface convective layer than the hotter stars, but for this star xi ~ 2.2 km s(-1) . Strong spectral lines all show significant asymmetry, with the blue line wing deeper than the red wing, and have line bisectors which have curvature towards the blue with a span of about 0.5 to 1.0 km s(-1) . A single model fits all lines satisfactorily. The two Am stars (HD 108642 and 32 Aqr), with T_e ~ 8000 K, are found to have much larger values of xi (4 to 5 km s(-1) ). The strong spectral lines of these two stars are extremely asymmetric, with depressed blue wings, and the bisectors have spans of order 3 km s(-1) . No consistent fit to all lines can be found with a single model of the type used here. It is concluded (a) that classical LTE line synthesis is able to reproduce with considerable accuracy the line profiles of late B and early A stars with T_e above about 9500 K, but that the LTE model with depth-independent microturbulence provides a very poor approximation for cooler A stars, (b) that curve-of-growth microturbulent velocities in A stars are related to directly detectable atmospheric velocity fields, and (c) that the discrepancies between calculated and observed line profiles in stars with temperatures in the vicinity of 8000 K are so large that abundances derived mainly from saturated lines may well contain significant errors. As a by-product, laboratory gf values for Fe II between 3800 and 5300 Angstroms have been combined to form a set of data optimized for internal consistency of the gf values. Based on observations obtained with the Canada-France-Hawaii telescope, operated by the National Research Council of Canada, the Centre National de Recherche Scientifique of France, and the University of Hawaii, and with the 1.52-m telescope of the Observatoire de Haute Provence, operated by the Centre National de Recherche Scientifique of France.
Evidence for a Broad Relativistic Iron Line from the Neutron Star LMXB Ser X-1
NASA Technical Reports Server (NTRS)
Bhattacharyya, Sudip; Strohmayer, Tod E.
2007-01-01
We report on an analysis of XMM-Newton data from the neutron star low mass X-ray binary (LMXB) Serpens X-1 (Ser X-1). Spectral analysis of EPIC PN data indicates that the previously known broad iron Ka emission line in this source has a significantly skewed structure with a moderately extended red wing. The asymmetric shape of the line is well described with the laor and diskline models in XSPEC, which strongly supports an inner accretion disk origin of the line. To our knowledge this is the first strong evidence for a relativistic line in a neutron star LMXB. This finding suggests that the broad lines seen in other neutron star LMXBs likely originate from the inner disk as well. Detailed study of such lines opens up a new way to probe neutron star parameters and their strong gravitational fields. The laor model describes the line from Ser X-1 somewhat better than diskline, and suggests that the inner accretion disk radius is less than 6GM/c(exp 2). This is consistent with the weak magnetic fields of LMXBs, and may point towards a high compactness and rapid spin of the neutron star. Finally, the inferred source inclination angle in the approximate range 50-60 deg is consistent with the lack of dipping from Ser X-1.
Signatures of quiet Sun reconnection events in Ca II, Hα and Fe I
NASA Astrophysics Data System (ADS)
Shetye, J.; Shelyag, S.; Reid, A. L.; Scullion, E.; Doyle, J. G.; Arber, T. D.
2018-06-01
We use observations of quiet Sun (QS) regions in the Hα 6563 Å, Ca II 8542 Å and Fe I 6302 Å lines. We observe brightenings in the wings of the Hα and Ca II combined with observations of the interacting magnetic concentrations observed in the Stokes signals of Fe I. These brightenings are similar to Ellerman bombs (EBs), i.e. impulsive bursts in the wings of the Balmer lines which leave the line cores unaffected. Such enhancements suggest that these events have similar formation mechanisms to the classical EBs found in active regions, with the reduced intensity enhancements found in the QS regions due to a weaker feeding magnetic flux. The observations also show that the quiet Sun Ellerman bombs (QSEBs) are formed at a higher height in the upper photosphere than the photospheric continuum level. Using simulations, we investigate the formation mechanism associated with the events and suggest that these events are driven by the interaction of magnetic field-lines in the upper photospheric regions. The results of the simulation are in agreement with observations when comparing the light-curves, and in most cases we found that the peak in the Ca II 8542 Å wing occurred before the peak in Hα wing. Moreover, in some cases, the line profiles observed in Ca II are asymmetrical with a raised core profile. The source of heating in these events is shown by the MURaM simulations and is suggested to occur 430 km above the photosphere.
Joined-wing research airplane feasibility study
NASA Technical Reports Server (NTRS)
Wolkovitch, J.
1984-01-01
The joined wing is a new type of aircraft configuration which employs tandem wings arranged to form diamond shapes in plan view and front view. Wind-tunnel tests and finite-element structural analyses have shown that the joined wing provides the following advantages over a comparable wing-plus-tail system; lighter weight and higher stiffness, higher span-efficiency factor, higher trimmed maximum lift coefficient, lower wave drag, plus built-in direct lift and direct sideforce control capability. To verify these advantages at full scale a manned research airplane is required. A study has therefore been performed of the feasibility of constructing such an airplane, using the fuselage and engines of the existing NAA AD-1 oblique-wing airplane. Cost and schedule constraints favored converting the AD-1 rather than constructing a totally new airframe. By removing the outboard wing panels the configuration can simulate wings joined at 60, 80, or 100 percent of span. For maximum versatility the aircraft has alternative control surfaces (such as ailerons and elevators on the front and/or rear wings), and a removeable canard to explore canard/joined-wing interactions at high-lift conditions. Design, performance, and flying qualities are discussed.
Kinetic-Energy Distribution of D(2p) Atoms from Analysis of the D Lyman-Alpha Line Profile
NASA Technical Reports Server (NTRS)
Ciocca, M.; Ajello, Joseph M.; Liu, Xianming; Maki, Justin
1997-01-01
The kinetic-energy distribution of D(2p) atoms resulting from electron-impact dissociation of D2 has been measured. A high-resolution vacuum ultraviolet spectrometer was employed for the first measurement of the D Lyman-alpha (D L(alpha)) emission line profiles at 20- and 100-eV excitation energies. Analysis of the deconvoluted line profile of D L(alpha) at 100 eV reveals the existence of a narrow line central peak of 29+/-2 mA full width at half maximum and a broad pedestal wing structure about 190 mA wide. The wings of the line can be used to determine the fast atom distribution. The wings of D L(alpha) arise from dissociative excitation of a series of doubly excited states that cross the Franck-Condon region between 23 and 40 eV. The fast atom distribution at 100-eV electron impact energy spans the energy range from 1 to 10 eV with a peak value near 6 eV. Slow D(2p) atoms characterized by a distribution function with peak energy near 100 meV produce the central peak profile, which is nearly independent of the impact energy. The deconvoluted line profiles of the central peak at 20 eV for dissociative excitation of D2 and H2 are fitted with an analytical function for use in calibration of space flight instrumentation equipped with a D/H absorption cell. The kinetic-energy and line profile results are compared to similar measurements for H2. The absolute cross sections for the line center (slow atoms) and wings (fast atoms) and total emission line profile were measured from threshold to 400 eV. Analytical model coefficients are given for the energy dependence of the measured slow atom cross section.
Three-dimensional vortex wake structure of flapping wings in hovering flight.
Cheng, Bo; Roll, Jesse; Liu, Yun; Troolin, Daniel R; Deng, Xinyan
2014-02-06
Flapping wings continuously create and send vortices into their wake, while imparting downward momentum into the surrounding fluid. However, experimental studies concerning the details of the three-dimensional vorticity distribution and evolution in the far wake are limited. In this study, the three-dimensional vortex wake structure in both the near and far field of a dynamically scaled flapping wing was investigated experimentally, using volumetric three-component velocimetry. A single wing, with shape and kinematics similar to those of a fruitfly, was examined. The overall result of the wing action is to create an integrated vortex structure consisting of a tip vortex (TV), trailing-edge shear layer (TESL) and leading-edge vortex. The TESL rolls up into a root vortex (RV) as it is shed from the wing, and together with the TV, contracts radially and stretches tangentially in the downstream wake. The downwash is distributed in an arc-shaped region enclosed by the stretched tangential vorticity of the TVs and the RVs. A closed vortex ring structure is not observed in the current study owing to the lack of well-established starting and stopping vortex structures that smoothly connect the TV and RV. An evaluation of the vorticity transport equation shows that both the TV and the RV undergo vortex stretching while convecting downwards: a three-dimensional phenomenon in rotating flows. It also confirms that convection and secondary tilting and stretching effects dominate the evolution of vorticity.
Aerodynamic Classification of Swept-Wing Ice Accretion
NASA Technical Reports Server (NTRS)
Diebold, Jeff M.; Broeren, Andy P.; Bragg, Michael B.
2013-01-01
The continued design, certification and safe operation of swept-wing airplanes in icing conditions rely on the advancement of computational and experimental simulation methods for higher fidelity results over an increasing range of aircraft configurations and performance, and icing conditions. The current stateof- the-art in icing aerodynamics is mainly built upon a comprehensive understanding of two-dimensional geometries that does not currently exist for fundamentally three-dimensional geometries such as swept wings. The purpose of this report is to describe what is known of iced-swept-wing aerodynamics and to identify the type of research that is required to improve the current understanding. Following the method used in a previous review of iced-airfoil aerodynamics, this report proposes a classification of swept-wing ice accretion into four groups based upon unique flowfield attributes. These four groups are: ice roughness, horn ice, streamwise ice and spanwise-ridge ice. In the case of horn ice it is shown that a further subclassification of "nominally 3D" or "highly 3D" horn ice may be necessary. For all of the proposed ice-shape classifications, relatively little is known about the three-dimensional flowfield and even less about the effect of Reynolds number and Mach number on these flowfields. The classifications and supporting data presented in this report can serve as a starting point as new research explores swept-wing aerodynamics with ice shapes. As further results are available, it is expected that these classifications will need to be updated and revised.
Aerodynamic Classification of Swept-Wing Ice Accretion
NASA Technical Reports Server (NTRS)
Diebold, Jeff M.; Broeren, Andy P.; Bragg, Michael B.
2013-01-01
The continued design, certification and safe operation of swept-wing airplanes in icing conditions rely on the advancement of computational and experimental simulation methods for higher fidelity results over an increasing range of aircraft configurations and performance, and icing conditions. The current state-of-the-art in icing aerodynamics is mainly built upon a comprehensive understanding of two-dimensional geometries that does not currently exist for fundamentally three-dimensional geometries such as swept wings. The purpose of this report is to describe what is known of iced-swept-wing aerodynamics and to identify the type of research that is required to improve the current understanding. Following the method used in a previous review of iced-airfoil aerodynamics, this report proposes a classification of swept-wing ice accretion into four groups based upon unique flowfield attributes. These four groups are: ice roughness, horn ice, streamwise ice and spanwise-ridge ice. In the case of horn ice it is shown that a further subclassification of nominally 3D or highly 3D horn ice may be necessary. For all of the proposed ice-shape classifications, relatively little is known about the three-dimensional flowfield and even less about the effect of Reynolds number and Mach number on these flowfields. The classifications and supporting data presented in this report can serve as a starting point as new research explores swept-wing aerodynamics with ice shapes. As further results are available, it is expected that these classifications will need to be updated and revised.
Flutter of a Low-Aspect-Ratio Rectangular Wing
NASA Technical Reports Server (NTRS)
Cole, Stanley R.
1989-01-01
A flutter test of a low-aspect-ratio rectangular wing was conducted in the Langley Transonic Dynamics Tunnel (TDT). The model used in this flutter test consisted of a rigid wing mounted to the wind-tunnel wall by a flexible, rectangular beam. The flexible support shaft was connected to the wing root and was cantilever mounted to the wind-tunnel wall. The wing had an aspect ratio of 1.5 based on the wing semispan and an NACA 64A010 airfoil shape. The flutter boundary of the model was determined for a Mach number range of 0.5 to 0.97. The shape of the transonic flutter boundary was determined. Actual flutter points were obtained on both the subsonic and supersonic sides of the flutter bucket. The model exhibited a deep transonic flutter bucket over a narrow range of Mach number. At some Mach numbers, the flutter conditions were extrapolated using a subcritical response technique. In addition to the basic configuration, modifications were made to the model structure such that the first bending frequency was changed without significantly affecting the first torsion frequency. The experiment showed that increasing the bending stiffness of the model support shaft through these modifications lowered the flutter dynamic pressure. Flutter analysis was conducted for the basic model as a comparison with the experimental results. This flutter analysis was conducted with subsonic lifting-surface (kernel function) aerodynamics using the k method for the flutter solution.
Bioinspired morphing wings for extended flight envelope and roll control of small drones.
Di Luca, M; Mintchev, S; Heitz, G; Noca, F; Floreano, D
2017-02-06
Small-winged drones can face highly varied aerodynamic requirements, such as high manoeuvrability for flight among obstacles and high wind resistance for constant ground speed against strong headwinds that cannot all be optimally addressed by a single aerodynamic profile. Several bird species solve this problem by changing the shape of their wings to adapt to the different aerodynamic requirements. Here, we describe a novel morphing wing design composed of artificial feathers that can rapidly modify its geometry to fulfil different aerodynamic requirements. We show that a fully deployed configuration enhances manoeuvrability while a folded configuration offers low drag at high speeds and is beneficial in strong headwinds. We also show that asymmetric folding of the wings can be used for roll control of the drone. The aerodynamic performance of the morphing wing is characterized in simulations, in wind tunnel measurements and validated in outdoor flights with a small drone.
Pressure Distribution Over a Thick, Tapered and Twisted Monoplane Wing Model-NACA 81-J
NASA Technical Reports Server (NTRS)
Wenzinger, Carl J
1932-01-01
This reports presents the results of pressure distribution tests on a thick, tapered and twisted monoplane wing model. The investigation was conducted for the purpose of obtaining data on the aerodynamic characteristics of the new wing and to provide additional information suitable for use in the design of tapered cantilever wings. The tests included angles of attack up to 90 degrees. The span loading over the wing was approximately of elliptical shape, which gave rise to relatively small bending moments about the root. The angle of zero lift for all sections along the span varied only within plus or minus 0.4 degree of the angle of zero lift for the whole wing, resulting in small leading edge loads for the high-speed condition of flight. The results also add to the available information for the study of large angles of attack.
Physical properties of the benchmark models program supercritical wing
NASA Technical Reports Server (NTRS)
Dansberry, Bryan E.; Durham, Michael H.; Bennett, Robert M.; Turnock, David L.; Silva, Walter A.; Rivera, Jose A., Jr.
1993-01-01
The goal of the Benchmark Models Program is to provide data useful in the development and evaluation of aeroelastic computational fluid dynamics (CFD) codes. To that end, a series of three similar wing models are being flutter tested in the Langley Transonic Dynamics Tunnel. These models are designed to simultaneously acquire model response data and unsteady surface pressure data during wing flutter conditions. The supercritical wing is the second model of this series. It is a rigid semispan model with a rectangular planform and a NASA SC(2)-0414 supercritical airfoil shape. The supercritical wing model was flutter tested on a flexible mount, called the Pitch and Plunge Apparatus, that provides a well-defined, two-degree-of-freedom dynamic system. The supercritical wing model and associated flutter test apparatus is described and experimentally determined wind-off structural dynamic characteristics of the combined rigid model and flexible mount system are included.
NASA Technical Reports Server (NTRS)
Gainer, Patrick A.
1961-01-01
A method is described for determining aerodynamic-influence coefficients from wind-tunnel data for calculating the steady-state load distribution on a wing with arbitrary angle-of-attack distribution at supersonic speeds. The method combines linearized theory with empirical adjustments in order to give accurate results over a wide range of angles of attack. The experimented data required are pressure distributions measured on a flat wing of the desired planform at the desired Mach number and over the desired range of angles of attack. The method has been tested by applying it to wind-tunnel data measured at Mach numbers of 1.61 and 2.01 on wings of the same planform but of different surface shapes. Influence coefficients adjusted to fit the flat wing gave good predictions of the spanwise and chord-wise distributions of loadings measured on twisted and cambered wings.
Bioinspired morphing wings for extended flight envelope and roll control of small drones
Heitz, G.; Noca, F.; Floreano, D.
2017-01-01
Small-winged drones can face highly varied aerodynamic requirements, such as high manoeuvrability for flight among obstacles and high wind resistance for constant ground speed against strong headwinds that cannot all be optimally addressed by a single aerodynamic profile. Several bird species solve this problem by changing the shape of their wings to adapt to the different aerodynamic requirements. Here, we describe a novel morphing wing design composed of artificial feathers that can rapidly modify its geometry to fulfil different aerodynamic requirements. We show that a fully deployed configuration enhances manoeuvrability while a folded configuration offers low drag at high speeds and is beneficial in strong headwinds. We also show that asymmetric folding of the wings can be used for roll control of the drone. The aerodynamic performance of the morphing wing is characterized in simulations, in wind tunnel measurements and validated in outdoor flights with a small drone. PMID:28163882
NASA Technical Reports Server (NTRS)
Skillen, Michael D.; Crossley, William A.
2008-01-01
This report documents a series of investigations to develop an approach for structural sizing of various morphing wing concepts. For the purposes of this report, a morphing wing is one whose planform can make significant shape changes in flight - increasing wing area by 50% or more from the lowest possible area, changing sweep 30 or more, and / or increasing aspect ratio by as much as 200% from the lowest possible value. These significant changes in geometry mean that the underlying load-bearing structure changes geometry. While most finite element analysis packages provide some sort of structural optimization capability, these codes are not amenable to making significant changes in the stiffness matrix to reflect the large morphing wing planform changes. The investigations presented here use a finite element code capable of aeroelastic analysis in three different optimization approaches -a "simultaneous analysis" approach, a "sequential" approach, and an "aggregate" approach.
Design and analysis of morphing wing based on SMP composite
NASA Astrophysics Data System (ADS)
Yu, Kai; Yin, Weilong; Sun, Shouhua; Liu, Yanju; Leng, Jinsong
2009-03-01
A new concept of a morphing wing based on shape memory polymer (SMP) and its reinforced composites is proposed in this paper. SMP used in this study is a thermoset styrene-based resin in contrast to normal thermoplastic SMP. During heating, the wing curled on the aircraft can be deployed, providing main lift for a morphing aircraft to realize the stable flight. Aerodynamic characteristics of the deployed morphing wing are calculated by using CFD software. The static deformation of the wing under the air loads is also analyzed by using the finite element method. The results show that the used SMP material can provide enough strength and stiffness for the application. Finally, preliminary testing is conducted to investigate the recovery performances of SMP and its reinforced composites. During the test, the deployment and the wind-resistant ability of the morphing wing are dramatically improved by adding reinforced phase to the SMP.
Aerodynamic performance of a hovering hawkmoth with flexible wings: a computational approach
Nakata, Toshiyuki; Liu, Hao
2012-01-01
Insect wings are deformable structures that change shape passively and dynamically owing to inertial and aerodynamic forces during flight. It is still unclear how the three-dimensional and passive change of wing kinematics owing to inherent wing flexibility contributes to unsteady aerodynamics and energetics in insect flapping flight. Here, we perform a systematic fluid-structure interaction based analysis on the aerodynamic performance of a hovering hawkmoth, Manduca, with an integrated computational model of a hovering insect with rigid and flexible wings. Aerodynamic performance of flapping wings with passive deformation or prescribed deformation is evaluated in terms of aerodynamic force, power and efficiency. Our results reveal that wing flexibility can increase downwash in wake and hence aerodynamic force: first, a dynamic wing bending is observed, which delays the breakdown of leading edge vortex near the wing tip, responsible for augmenting the aerodynamic force-production; second, a combination of the dynamic change of wing bending and twist favourably modifies the wing kinematics in the distal area, which leads to the aerodynamic force enhancement immediately before stroke reversal. Moreover, an increase in hovering efficiency of the flexible wing is achieved as a result of the wing twist. An extensive study of wing stiffness effect on aerodynamic performance is further conducted through a tuning of Young's modulus and thickness, indicating that insect wing structures may be optimized not only in terms of aerodynamic performance but also dependent on many factors, such as the wing strength, the circulation capability of wing veins and the control of wing movements. PMID:21831896
Dewulf, Alexandre; De Meulemeester, Thibaut; Dehon, Manuel; Engel, Michael S; Michez, Denis
2014-01-01
Although bees are one of the major lineages of pollinators and are today quite diverse, few well-preserved fossils are available from which to establish the tempo of their diversification/extinction since the Early Cretaceous. Here we present a reassessment of the taxonomic affinities of Melitta willardiCockerell 1909, preserved as a compression fossil from the Florissant shales of Colorado, USA. Based on geometric morphometric wing shape analyses M. willardi cannot be confidently assigned to the genus Melitta Kirby (Anthophila, Melittidae). Instead, the species exhibits phenotypic affinity with the subfamily Andreninae (Anthophila, Andrenidae), but does not appear to belong to any of the known genera therein. Accordingly, we describe a new genus, Andrenopteryx gen. n., based on wing shape as well as additional morphological features and to accommodate M. willardi. The new combination Andrenopteryx willardi (Cockerell) is established.
Dewulf, Alexandre; De Meulemeester, Thibaut; Dehon, Manuel; Engel, Michael S.; Michez, Denis
2014-01-01
Abstract Although bees are one of the major lineages of pollinators and are today quite diverse, few well-preserved fossils are available from which to establish the tempo of their diversification/extinction since the Early Cretaceous. Here we present a reassessment of the taxonomic affinities of Melitta willardi Cockerell 1909, preserved as a compression fossil from the Florissant shales of Colorado, USA. Based on geometric morphometric wing shape analyses M. willardi cannot be confidently assigned to the genus Melitta Kirby (Anthophila, Melittidae). Instead, the species exhibits phenotypic affinity with the subfamily Andreninae (Anthophila, Andrenidae), but does not appear to belong to any of the known genera therein. Accordingly, we describe a new genus, Andrenopteryx gen. n., based on wing shape as well as additional morphological features and to accommodate M. willardi. The new combination Andrenopteryx willardi (Cockerell) is established. PMID:24715773
Development of Bird-like Micro Aerial Vehicle with Flapping and Feathering Wing Motions
NASA Astrophysics Data System (ADS)
Maglasang, Jonathan; Goto, Norihiro; Isogai, Koji
To investigate the feasibility of a highly efficient flapping system capable of avian maneuvers, such as rapid takeoff, hover and gliding, a full scale bird-like (ornithopter) flapping-wing micro aerial vehicle (MAV) shaped and patterned after a typical pigeon (Columba livia) has been designed and constructed. Both numerical and experimental methods have been used in the development of this vehicle. This flapping-wing micro aerial vehicle utilizes both the flapping and feathering motions of an avian wing by employing a novel flapping-feathering mechanism, which has been synthesized and constructed so as to best describe the properly coordinated flapping and feathering wing motions at phase angle difference of 90° in a horizontal steady level flight condition. This design allows high flapping and feathering amplitudes and is configurable for asymmetric wing motions which are desirable in high-speed flapping flight and maneuvering. The preliminary results indicate its viability as a practical and an efficient flapping-wing micro aerial vehicle.
NASA Technical Reports Server (NTRS)
Clark, L. E.; Richie, C. B.
1977-01-01
The hypersonic aerodynamic characteristics of an air-launched, delta-wing research aircraft concept were investigated at Mach 6. The effect of various components such as nose shape, wing camber, wing location, center vertical tail, wing tip fins, forward delta wing, engine nacelle, and speed brakes was also studied. Tests were conducted with a 0.021 scale model at a Reynolds number, based on model length, of 10.5 million and over an angel of attack range from -4 deg to 20 deg. Results show that most configurations with a center vertical tail have static longitudinal stability at trim, static directional stability at angles of attack up to 12 deg, and static lateral stability throughout the angle of attack range. Configurations with wing tip fins generally have static longitudinal stability at trim, have lateral stability at angles of attack above 8 deg, and are directionally unstable over the angle of attack range.
Upstroke wing flexion and the inertial cost of bat flight
Riskin, Daniel K.; Bergou, Attila; Breuer, Kenneth S.; Swartz, Sharon M.
2012-01-01
Flying vertebrates change the shapes of their wings during the upstroke, thereby decreasing wing surface area and bringing the wings closer to the body than during downstroke. These, and other wing deformations, might reduce the inertial cost of the upstroke compared with what it would be if the wings remained fully extended. However, wing deformations themselves entail energetic costs that could exceed any inertial energy savings. Using a model that incorporates detailed three-dimensional wing kinematics, we estimated the inertial cost of flapping flight for six bat species spanning a 40-fold range of body masses. We estimate that folding and unfolding comprises roughly 44 per cent of the inertial cost, but that the total inertial cost is only approximately 65 per cent of what it would be if the wing remained extended and rigid throughout the wingbeat cycle. Folding and unfolding occurred mostly during the upstroke; hence, our model suggests inertial cost of the upstroke is not less than that of downstroke. The cost of accelerating the metacarpals and phalanges accounted for around 44 per cent of inertial costs, although those elements constitute only 12 per cent of wing weight. This highlights the energetic benefit afforded to bats by the decreased mineralization of the distal wing bones. PMID:22496186
Samara Probe For Remote Imaging
NASA Technical Reports Server (NTRS)
Burke, James D.
1989-01-01
Imaging probe descends through atmosphere of planet, obtaining images of ground surface as it travels. Released from aircraft over Earth or from spacecraft over another planet. Body and single wing shaped like samara - winged seed like those of maple trees. Rotates as descends, providing panoramic view of terrain below. Radio image obtained by video camera to aircraft or spacecraft overhead.
NASA Armstrong Flight Tests Shape Memory Alloy Onboard PTERA Testbed
2017-12-15
PTERA takes off from the Rogers Dry Lakebed on a flight to test the ability of an innovative, lightweight material, called shape memory alloy, to fold the outer portion of an aircraft’s wings in flight.
Probing the Inflow/Out-flow and Accretion Disk of Cyg X-1 in the High State with HETG/Chandra
NASA Technical Reports Server (NTRS)
Feng, Y. X.; Tennant, A. F.; Zhang, S. N.
2003-01-01
Cyg X- 1 was observed in the high state at the conjunction orbital phase (0) with HETG/Chandra. Strong and asymmetric absorption lines of highly ionized species were detected, such as Fe XXV, Fe XXIV, Fe XXIII, Si XIV, S XVI, Ne X, and etc. In the high state the profile of the absorption lines are composed of an extended red wing and a less extended blue wing. The red wings of higher ionized species are more extended than that of lower ionized species. The detection of these lines provides a way to probe the properties of the flow around the companion and the black hole in Cyg X-1 during the high state. A broad emission feature around 6.5 keV was significantly detected from the both spectra of HETG/Chandra and PCA/RXTE. This feature appears to be symmetric and can be fitted with a Gaussian function rather than the Laor disk line model of fluorescent Fe K$ \\alpha$ line from an accretion disk. The implications of these results on the structure of the accretion flow of Cyg X-1 in the high state are discussed.
NASA Technical Reports Server (NTRS)
Hartwig, G
1941-01-01
The spread of the separation of flow on three tapered wings insymmetrical and unsymmetrical flow was observed with silk tufts. By equal thickness and chord distribution the wings manifested a different form of lifting line. The principal result of the study was that the wings alone first disclosed complete breakdown of the flow at the tips, even the one with twist, but that after adding fuselage and engine nacelles, the twisted wing broke down completely first in the wing center. The observed boundary layer motions transverse to the main flow direction were briefly explored as to their possible influence on the spread of the separation. On top of that certain disclosures were afforded in which the transverse motions observed in the boundary layer became perceptible even above the boundary layer.
RADYN Simulations of Non-thermal and Thermal Models of Ellerman Bombs
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hong, Jie; Ding, M. D.; Carlsson, Mats, E-mail: dmd@nju.edu.cn
Ellerman bombs (EBs) are brightenings in the H α line wings that are believed to be caused by magnetic reconnection in the lower atmosphere. To study the response and evolution of the chromospheric line profiles, we perform radiative hydrodynamic simulations of EBs using both non-thermal and thermal models. Overall, these models can generate line profiles that are similar to observations. However, in non-thermal models we find dimming in the H α line wings and continuum when the heating begins, while for the thermal models dimming occurs only in the H α line core, and with a longer lifetime. This differencemore » in line profiles can be used to determine whether an EB is dominated by non-thermal heating or thermal heating. In our simulations, if a higher heating rate is applied, then the H α line will be unrealistically strong and there are still no clear UV burst signatures.« less
RADYN Simulations of Non-thermal and Thermal Models of Ellerman Bombs
NASA Astrophysics Data System (ADS)
Hong, Jie; Carlsson, Mats; Ding, M. D.
2017-08-01
Ellerman bombs (EBs) are brightenings in the Hα line wings that are believed to be caused by magnetic reconnection in the lower atmosphere. To study the response and evolution of the chromospheric line profiles, we perform radiative hydrodynamic simulations of EBs using both non-thermal and thermal models. Overall, these models can generate line profiles that are similar to observations. However, in non-thermal models we find dimming in the Hα line wings and continuum when the heating begins, while for the thermal models dimming occurs only in the Hα line core, and with a longer lifetime. This difference in line profiles can be used to determine whether an EB is dominated by non-thermal heating or thermal heating. In our simulations, if a higher heating rate is applied, then the Hα line will be unrealistically strong and there are still no clear UV burst signatures.
NASA Technical Reports Server (NTRS)
Lomax, Harvard; Heaslet, Max A
1956-01-01
For a given wing and supersonic Mach number, the problem of shaping an adjoining fuselage so that the combination will have a low wave drag is considered. Only fuselages that can be simulated by singularities (multipoles) distributed along the body axis are studied. However, the optimum variations of such singularities are completely specified in terms of the given wing geometry. An application is made to an elliptic wing having a biconvex section, a thickness-chord ratio equal to 0.05 at the root, and an aspect ratio equal to 3. A comparison of the theoretical results with a wind-tunnel experiment is also presented.
Attachment-Line Heating in a Compressible Flow
NASA Astrophysics Data System (ADS)
Reed, Helen; Saric, William
2011-11-01
The attachment-line boundary layer on a swept wing can be subject to either an instability or contamination by wing-root turbulence. A model of the attachment-line boundary layer is first developed including compressibility and wall heating in a Falkner-Skan-Cooke class of 3-D boundary layers with Hartree parameter of 1.0. For cases otherwise subcritical to either contamination or instability, the destabilizing effect of leading-edge heating under a variety of sweep angles and flight conditions is demonstrated. The results correlate with the attachment-line Reynolds number. Because the required heating levels are reasonable and achievable to trip the flow over the wing to turbulent, one possible application of this work is in the establishing of a baseline turbulent flow (on demand) for the calibration of a laminar-flow-control health monitoring system. *Portion based on work under Framework Agreement between Airbus Americas and NIA, and opinions, findings, conclusions do not necessarily reflect views of Airbus or NIA. Support from AFOSR/NASA National Center for Hypersonic Research in Laminar-Turbulent Transition through Grant FA9550-09-1-0341 gratefully acknowledged.
Aerodynamic parameter studies and sensitivity analysis for rotor blades in axial flight
NASA Technical Reports Server (NTRS)
Chiu, Y. Danny; Peters, David A.
1991-01-01
The analytical capability is offered for aerodynamic parametric studies and sensitivity analyses of rotary wings in axial flight by using a 3-D undistorted wake model in curved lifting line theory. The governing equations are solved by both the Multhopp Interpolation technique and the Vortex Lattice method. The singularity from the bound vortices is eliminated through the Hadamard's finite part concept. Good numerical agreement between both analytical methods and finite differences methods are found. Parametric studies were made to assess the effects of several shape variables on aerodynamic loads. It is found, e.g., that a rotor blade with out-of-plane and inplane curvature can theoretically increase lift in the inboard and outboard regions respectively without introducing an additional induced drag.
QCSEE Over-the-Wing Engine Acoustic Data
NASA Technical Reports Server (NTRS)
Bloomer, H. E.; Loeffler, I. J.
1982-01-01
The over the wing (OTW) Quiet, Clean, Short Haul Experimental Engine (QCSEE) was tested at the NASA Lewis Engine Noise Test Facility. A boilerplate (nonflight weight), high throat Mach number, acoustically treated inlet and a D shaped OTW exhaust nozzle with variable position side doors were used in the tests along with wing and flap segments to simulate an installation on a short haul transport aircraft. All of the acoustic test data from 10 configurations are documented in tabular form. Some selected narrowband and 1/3 octave band plots of sound pressure level are presented.
Wing Leading Edge Concepts for Noise Reduction
NASA Technical Reports Server (NTRS)
Shmilovich, Arvin; Yadlin, Yoram; Pitera, David M.
2010-01-01
This study focuses on the development of wing leading edge concepts for noise reduction during high-lift operations, without compromising landing stall speeds, stall characteristics or cruise performance. High-lift geometries, which can be obtained by conventional mechanical systems or morphing structures have been considered. A systematic aerodynamic analysis procedure was used to arrive at several promising configurations. The aerodynamic design of new wing leading edge shapes is obtained from a robust Computational Fluid Dynamics procedure. Acoustic benefits are qualitatively established through the evaluation of the computed flow fields.
NASA Technical Reports Server (NTRS)
Arena, Andrew S., Jr.
2002-01-01
This progress report focuses on the use of the STructural Analysis RoutineS suite program, SOLIDS, input for the AeroStructures Test Wing. The AeroStructures Test Wing project as a whole is described. The use of the SOLIDS code to find the mode shapes of a structure is discussed. The frequencies, and the structural dynamics to which they relate are examined. The results of the CFD predictions are compared to experimental data from a Ground Vibration Test.
Wing flexibility improves bumblebee flight stability.
Mistick, Emily A; Mountcastle, Andrew M; Combes, Stacey A
2016-11-01
Insect wings do not contain intrinsic musculature to change shape, but rather bend and twist passively during flight. Some insect wings feature flexible joints along their veins that contain patches of resilin, a rubber-like protein. Bumblebee wings exhibit a central resilin joint (1m-cu) that has previously been shown to improve vertical force production during hovering flight. In this study, we artificially stiffened bumblebee (Bombus impatiens) wings in vivo by applying a micro-splint to the 1m-cu joint, and measured the consequences for body stability during forward flight in both laminar and turbulent airflow. In laminar flow, bees with stiffened wings exhibited significantly higher mean rotation rates and standard deviation of orientation about the roll axis. Decreasing the wing's flexibility significantly increased its projected surface area relative to the oncoming airflow, likely increasing the drag force it experienced during particular phases of the wing stroke. We hypothesize that higher drag forces on stiffened wings decrease body stability when the left and right wings encounter different flow conditions. Wing splinting also led to a small increase in body rotation rates in turbulent airflow, but this change was not statistically significant, possibly because bees with stiffened wings changed their flight behavior in turbulent flow. Overall, we found that wing flexibility improves flight stability in bumblebees, adding to the growing appreciation that wing flexibility is not merely an inevitable liability in flapping flight, but can enhance flight performance. © 2016. Published by The Company of Biologists Ltd.
Dynamic processes in Be star atmospheres. 2: He I 2P-nD line formation in lambda Eridani (outburst)
NASA Technical Reports Server (NTRS)
Smith, Myron A.; Hubeny, Ivan; Lanz, Thierry; Meylan, Thomas
1994-01-01
The He I lambda 6678 line of early Be stars generally shows violet (V) and red (R) emission whenever hydrogen alpha emission is present, but its use as a diagnostic has been handicapped by a poor understanding of the processes that drive it into emission. In an attempt to address this problem we obtained three series of eschelle spectra of the first two members of the singlet and triplet 2P-nD series of lambda Eri (B2e) during 1992 November 3-5 at Kitt Peak. During these observations lambda 6678 showed substantial emission variability in both the wings and central profile, providing an opportunity to compare its behavior with that of the lambda 4922, lambda 5876, and lambda 4471 lines. We found that the responses of the lines were different in several respects. Whereas the emissions in the V wings of all four lines scaled together, the R wing of the lambda 4922 line invariably responded with increased absorption whenever the R wing of lambda 6678 line showed increased emission. These same trends occurred within the central photospheric profiles. The R-wing behavior shows that much, but not all of the emission in lambda 6678 is caused by matter projected against the stellar disk. The excitation temperatures of the neighboring 2(sup 1) P transitions, lambda 6678 and lambda 4922 must be greater than and less than the photospheric continuum temperature, respectively. We have investigated departures from local thermodynamic equilibrium (LTE) for the He I spectrum in a variety of ad hoc, perturbed model atmospheres. We have found only one way to cause the source function of lambda 6678 to increase so strongly, namely, by increasing the atmospheric temperature in the line formation region to 30,000 - 40,000 K. This effect was discovered by Auer and Mihalas for O3-O4 atmospheric models, but it has not been applied to active B stars. Our models suggest that lambda 6678 emission in Be stars can be used as a sensitive monitor of localized hot spots on these stars' surfaces. The energies involved in heating the active portions of the atmosphere are too high to be produced by gravitational infall. This leaves magnetically induced flares among the few known processes on the surfaces of stars capable of sustaining this energy level.
NASA Astrophysics Data System (ADS)
Mazhukin, V. I.; Nikiforov, M. G.; Fievet, Christian
2006-02-01
A method is proposed for calculating the spectrum of a nonequilibrium plasma, which is based on a nonequilibrium collision—radiation model including all common line broadening mechanisms (natural, pressure, Doppler, and quadratic Stark effect broadening) and supplemented with the energy balance equations for electrons and ions. The nonequilibrium populations of the ground and excited states of neutral atoms and ions for an arbitrary instant of time are found by solving kinetic equations. The shape of each spectral line is determined by its central core calculated in the collision approximation up to the frequency boundary of its applicability, where the central core is 'joined' with the line wings calculated in the quasi-static approximation. The validity of this theoretical model is confirmed by simulations of a number of experimental studies of emission spectra under the conditions of a local thermodynamic equilibrium. It is shown that the calculated and experimental data obtained for the ground-state lines of the first carbon ion and neutral helium and argon atoms are in good agreement. The nonequilibrium spectrum of the optical breakdown in argon is calculated. Mathematical simulations showed that the intensities of nonequilibrium line spectra can be noticeably (by several times) lower than those of equilibrium spectra.
Runaways and weathervanes: The shape of stellar bow shocks
NASA Astrophysics Data System (ADS)
Henney, W. J.; Tarango-Yong, J. A.
2017-11-01
Stellar bow shocks are the result of the supersonic interaction between a stellar wind and its environment. Some of these are "runaways": high-velocity stars that have been ejected from a star cluster. Others are "weather vanes", where it is the local interstellar medium itself that is moving, perhaps as the result of a champagne flow of ionized gas from a nearby HII region. We propose a new two-dimensional classification scheme for bow shapes, which is based on dimensionless geometric ratios that can be estimated from observational images. The two ratios are related to the flatness of the bow’s apex, which we term "planitude" and the openness of its wings, which we term "alatude". We calculate the inclination-dependent tracks on the planitude-alatude plane that are predicted by simple models for the bow shock shape. We also measure the shapes of bow shocks from three different observational datasets: mid-infrared arcs around hot main-sequence stars, far-infrared arcs around luminous cool stars, and emission-line arcs around proplyds and other young stars in the Orion Nebula. Clear differences are found between the different datasets in their distributions on the planitude-alatude plane, which can be used to constrain the physics of the bow shock interaction and emission mechanisms in the different classes of object.
Non-linear unsteady wing theory, part 1. Quasi two-dimensional behavior: Airfoils and slender wings
NASA Technical Reports Server (NTRS)
Mccune, J. E.
1987-01-01
The initial phases of a study of the large-amplitude unsteady aerodynamics of wings in severe maneuver are reported. The research centers on vortex flows, their initiation at wing surfaces, their subsequent convection, and interaction dynamically with wings and control surfaces. The focus is on 2D and quasi-2D aspects of the problem and features the development of an exact nonlinear unsteady airfoil theory as well as an approach to the crossflow problem for slender wing applications including leading-edge separation. The effective use of interactive on-line computing in quantifying and visualizing the nonsteady effects of severe maneuver is demonstrated. Interactive computational work is now possible, in which a maneuver can be initiated and its effects observed and analyzed immediately.
FoilSim: Basic Aerodynamics Software Created
NASA Technical Reports Server (NTRS)
Peterson, Ruth A.
1999-01-01
FoilSim is interactive software that simulates the airflow around various shapes of airfoils. The graphical user interface, which looks more like a video game than a learning tool, captures and holds the students interest. The software is a product of NASA Lewis Research Center s Learning Technologies Project, an educational outreach initiative within the High Performance Computing and Communications Program (HPCCP).This airfoil view panel is a simulated view of a wing being tested in a wind tunnel. As students create new wing shapes by moving slider controls that change parameters, the software calculates their lift. FoilSim also displays plots of pressure or airspeed above and below the airfoil surface.
NASA Technical Reports Server (NTRS)
Ippolito, Corey; Nguyen, Nhan; Lohn, Jason; Dolan, John
2014-01-01
The emergence of advanced lightweight materials is resulting in a new generation of lighter, flexible, more-efficient airframes that are enabling concepts for active aeroelastic wing-shape control to achieve greater flight efficiency and increased safety margins. These elastically shaped aircraft concepts require non-traditional methods for large-scale multi-objective flight control that simultaneously seek to gain aerodynamic efficiency in terms of drag reduction while performing traditional command-tracking tasks as part of a complete guidance and navigation solution. This paper presents results from a preliminary study of a notional multi-objective control law for an aeroelastic flexible-wing aircraft controlled through distributed continuous leading and trailing edge control surface actuators. This preliminary study develops and analyzes a multi-objective control law derived from optimal linear quadratic methods on a longitudinal vehicle dynamics model with coupled aeroelastic dynamics. The controller tracks commanded attack-angle while minimizing drag and controlling wing twist and bend. This paper presents an overview of the elastic aircraft concept, outlines the coupled vehicle model, presents the preliminary control law formulation and implementation, presents results from simulation, provides analysis, and concludes by identifying possible future areas for research
Unconventional missile concepts from consideration of varied mission requirements
NASA Technical Reports Server (NTRS)
Spearman, M. L.
1984-01-01
Missile concepts for volumetric efficiency, minimum carriage constraints, and aerodynamic performance to achieve mission requirements. The mission requirements considered include air to surface roles such as defense suppression or antishipping where payload and range may have priority over high maneuver capability, and air to air and surface to air roles paying attention to good maneuvering capability. The concepts are intended to provide for ease of storage or carriage. The concepts include monoplanes with highly swept, thick delta wings, highly swept delta wings mounted either high or low on a semicircular body, some ring wing and semiring wing arrangements, parasol wing, and elliptical lifting bodies. The missile configurations indicate possible approaches toward resolving problems of carriage and storage while retaining good volumetric and aerodynamic efficiency. The configurations can accomplish a variety of possible missions with relatively simple vehicle shapes.
Transonic Flow Field Analysis for Wing-Fuselage Configurations
NASA Technical Reports Server (NTRS)
Boppe, C. W.
1980-01-01
A computational method for simulating the aerodynamics of wing-fuselage configurations at transonic speeds is developed. The finite difference scheme is characterized by a multiple embedded mesh system coupled with a modified or extended small disturbance flow equation. This approach permits a high degree of computational resolution in addition to coordinate system flexibility for treating complex realistic aircraft shapes. To augment the analysis method and permit applications to a wide range of practical engineering design problems, an arbitrary fuselage geometry modeling system is incorporated as well as methodology for computing wing viscous effects. Configuration drag is broken down into its friction, wave, and lift induced components. Typical computed results for isolated bodies, isolated wings, and wing-body combinations are presented. The results are correlated with experimental data. A computer code which employs this methodology is described.
NASA Technical Reports Server (NTRS)
Bragg, Michael B.
1994-01-01
Two semispan wings, one with a rectangular planform and one with 30 degrees of leading edge sweep were tested. Both had a NACA 0012 airfoil section, and both were tested clean and with simulated glaze ice shapes on their leading edges. Several surface roughness were tested. Each model geometry is documented and each surface roughness is explained. Aerodynamic performance of the wing in the form of sectional lift and integrated three-dimensional lift is documented through pressure measurements obtained from rows of surface pressure taps placed at five span locations on the wing. For the rectangular wing, sectional drag near the midspan is obtained from wake total pressure profiles. The data is presented in tabular and graphical form and is also available on computer disk.
Effects of spanwise flexibility on the performance of flapping flyers in forward flight.
Kodali, Deepa; Medina, Cory; Kang, Chang-Kwon; Aono, Hikaru
2017-11-01
Flying animals possess flexible wings that deform during flight. The chordwise flexibility alters the wing shape, affecting the effective angle of attack and hence the surrounding aerodynamics. However, the effects of spanwise flexibility on the locomotion are inadequately understood. Here, we present a two-way coupled aeroelastic model of a plunging spanwise flexible wing. The aerodynamics is modelled with a two-dimensional, unsteady, incompressible potential flow model, evaluated at each spanwise location of the wing. The two-way coupling is realized by considering the transverse displacement as the effective plunge under the dynamic balance of wing inertia, elastic restoring force and aerodynamic force. The thrust is a result of the competition between the enhancement due to wing deformation and induced drag. The results for a purely plunging spanwise flexible wing agree well with experimental and high-fidelity numerical results from the literature. Our analysis suggests that the wing aspect ratio of the abstracted passerine and goose models corresponds to the optimal aeroelastic response, generating the highest thrust while minimizing the power required to flap the wings. At these optimal aspect ratios, the flapping frequency is near the first spanwise natural frequency of the wing, suggesting that these birds may benefit from the resonance to generate thrust. © 2017 The Author(s).
Flow around a corrugated wing over the range of dragonfly flight
NASA Astrophysics Data System (ADS)
Padinjattayil, Sooraj; Agrawal, Amit
2017-11-01
The dragonfly flight is very much affected by the corrugations on their wings. A PIV based study is conducted on a rigid corrugated wing for a range of Reynolds number 300-12000 and three different angles of attack (5°-15°) to understand the mechanism of dragonfly flight better. The study revealed that the shape of the corrugation plays a key role in generating vortices. The vortices trapped in the valleys of corrugation dictates the shape of a virtual airfoil around the corrugated wing. A fluid roller bearing effect is created over the virtual airfoil when the trapped vortices merge with each other. A travelling wave produced by the moving virtual boundary around the fluid roller bearings avoids the formation of boundary layer on the virtual surface, thereby leading to high aerodynamic performance. It is found that the lift coefficient increases as the number of vortices increases on the suction surface. Also, it is shown that the partially merged co- rotating vortices give higher lift as compared to fully merged vortices. Further, the virtual airfoil formed around the corrugated wing is compared with a superhydrophobic airfoil which exhibits slip on its surface; several similarities in their flow characteristics are observed. The corrugated airfoil performs superior to the superhydrophobic airfoil in the aerodynamic efficiency due to the virtual slip caused by the travelling wave.
NASA Astrophysics Data System (ADS)
Kaloyanova, Valentina B.
Recent research trends have indicated an interest in High-Altitude, Long-Endurance (HALE) aircraft as a low-cost alternative to certain space missions, such as telecommunication relay, environmental sensing and military reconnaissance. HALE missions require a light vehicle flying at low speed in the stratosphere at altitudes of 60,000-80,000 ft, with a continuous loiter time of up to several days. To provide high lift and low drag at these high altitudes, where the air density is low, the wing area should be increased, i.e., high-aspect-ratio wings are necessary. Due to its large span and lightweight, the wing structure is very flexible. To reduce the structural deformation, and increase the total lift in a long-spanned wing, a sensorcraft model with a joined-wing configuration, proposed by AFRL, is employed. The joined-wing encompasses a forward wing, which is swept back with a positive dihedral angle, and connected with an aft wing, which is swept forward. The joined-wing design combines structural strength, high aerodynamic performance and efficiency. As a first step to study the joined-wing structural behavior an 1-D approximation model is developed. The 1-D approximation is a simple structural model created using ANSYS BEAM4 elements to present a possible approach for the aerodynamics-structure coupling. The pressure loads from the aerodynamic analysis are integrated numerically to obtain the resultant aerodynamic forces and moments (spanwise lift and pitching moment distributions, acting at the aerodynamic center). These are applied on the 1-D structural model. A linear static analysis is performed under this equivalent load, and the deformed shape of the 1-D model is used to obtain the deformed shape of the actual 3-D joined wing, i.e. deformed aerodynamic surface grid. To date in the existing studies, only simplified structural models have been examined. In the present work, in addition to the simple 1-D beam model, a semi-monocoque structural model is developed. All stringers, skin panels, ribs and spars are represented by appropriate elements in a finite-element model. Also, the model accounts for the fuel weight and sensorcraft antennae housed within the wings. Linear and nonlinear static analyses under the aerodynamic load are performed. The stress distribution in the wing as well as deformation is explored. Starting with a structural model with uniform mass distribution, a design optimization is performed to achieve a fully stressed design. As the joined-wing structure is prone to buckling, after the design optimization is complete linear and nonlinear bucking analyses are performed to study the global joined-wing structural instability, the load magnitude at which it is expected to occur, and the buckling mode. The buckled shape of the aft wing (which is subjected to compression) is found to resemble that of a fixed-pinned column. The linear buckling analysis overestimates the buckling load. However, even the nonlinear buckling analysis results in a load factor higher than 3, i.e. the wing structure is buckling safe under its current loading conditions. As the region of the joint has a very complicated geometry that has adverse effects in the flow and stress behavior an independent, more finely meshed model (submodel) of the joint region is generated and analyzed. A detailed discussion of the stress distribution obtained in the joint region via the submodeling technique is presented in this study as well. It is found out that compared to its structural response, the joint adverse effects are much more pronounced in its aerodynamic response, so it is suggested for future studies the geometry of the joint to be optimized based on its aerodynamic performance. As this design and analysis study is aimed towards developing a realistic structural representation of the innovative joined-wing configuration, in addition to the "global", or upper-level optimization, a local level design optimization is performed as well. At the lower (local) level detailed models of wing structural panels are used to compute more complex failure modes and to design the details that are not included in the upper (global) level model. Proper coordination between local skin-stringer panel models and the global joined-wing model prevents inconsistency between the upper- (global) and lower- (local) level design models. (Abstract shortened by UMI.)
Wake Characteristics of a Flapping Wing Optimized for both Aerial and Aquatic Flight
NASA Astrophysics Data System (ADS)
Izraelevitz, Jacob; Kotidis, Miranda; Triantafyllou, Michael
2017-11-01
Multiple aquatic bird species (including murres, puffins, and other auks) employ a single actuator to propel themselves in two different fluid media: both flying and swimming using primarily their flapping wings. This impressive design compromise could be adopted by engineered implementations of dual aerial/aquatic robotic platforms, as it offers an existence proof for favorable flow physics. We discuss one realization of a 3D flapping wing actuation system for use in both air and water. The wing oscillates by the root and employs an active in-line motion degree-of-freedom. An experiment-coupled optimization routine generates the wing trajectories, controlling the unsteady forces throughout each flapping cycle. We elucidate the wakes of these wing trajectories using dye visualization, correlating the wake vortex structures with simultaneous force measurements. After optimization, the wing generates the large force envelope necessary for propulsion in both fluid media, and furthermore, demonstrate improved control over the unsteady wake.
2014-01-01
Densely stacked Ag nanoparticles with an average diameter of 199 nm were effectively deposited on TiO2-coated cicada wings (Ag/TiO2-coated wings) from a water-ethanol solution of AgNO3 using ultraviolet light irradiation at room temperature. It was seen that the surfaces of bare cicada wings contained nanopillar array structures. In the optical absorption spectra of the Ag/TiO2-coated wings, the absorption peak due to the localized surface plasmon resonance (LSPR) of Ag nanoparticles was observed at 440 nm. Strong Surface-enhanced Raman scattering (SERS) signals of Rhodamine 6G adsorbed on the Ag/TiO2-coated wings were clearly observed using the 514.5-nm line of an Ar+ laser. The Ag/TiO2-coated wings can be a promising candidate for naturally inspired SERS substrates. PMID:24959110
NASA Astrophysics Data System (ADS)
Tanahashi, Ichiro; Harada, Yoshiyuki
2014-06-01
Densely stacked Ag nanoparticles with an average diameter of 199 nm were effectively deposited on TiO2-coated cicada wings (Ag/TiO2-coated wings) from a water-ethanol solution of AgNO3 using ultraviolet light irradiation at room temperature. It was seen that the surfaces of bare cicada wings contained nanopillar array structures. In the optical absorption spectra of the Ag/TiO2-coated wings, the absorption peak due to the localized surface plasmon resonance (LSPR) of Ag nanoparticles was observed at 440 nm. Strong Surface-enhanced Raman scattering (SERS) signals of Rhodamine 6G adsorbed on the Ag/TiO2-coated wings were clearly observed using the 514.5-nm line of an Ar+ laser. The Ag/TiO2-coated wings can be a promising candidate for naturally inspired SERS substrates.
Flexible flapping wings with self-organized microwrinkles.
Tanaka, Hiroto; Okada, Hiroyuki; Shimasue, Yosuke; Liu, Hao
2015-06-29
Bio-inspired flapping wings with a wrinkled wing membrane were designed and fabricated. The wings consist of carbon fibre-reinforced plastic frames and a polymer film with microscale wrinkles inspired by bird feathers and the corrugations of insect wings. The flexural and tensile stiffness of the wrinkled film can be controlled by modifying the orientations and waveforms of the wrinkles, thereby expanding the design space of flexible wings for micro flapping-wing aerial robots. A self-organization phenomenon was exploited in the fabrication of the microwrinkles such that microscale wrinkles spanning a broad wing area were spontaneously created. The wavy shape of these self-organized wrinkles was used as a mould, and a Parylene film was deposited onto the mould to form a wrinkled wing film. The effect of the waveforms of the wrinkles on the film stiffness was investigated theoretically, computationally and experimentally. Compared with a flat film, the flexural stiffness was increased by two orders of magnitude, and the tensile stiffness was reduced by two orders of magnitude. To demonstrate the effect of the wrinkles on the actual deformation of the flapping wings and the resulting aerodynamic forces, the fabricated wrinkled wings were tested using a tethered electric flapping mechanism. Chordwise unidirectional wrinkles were found to prevent fluttering near the trailing edge and to produce a greater aerodynamic lift compared with a flat wing or a wing with spanwise wrinkles. Our results suggest that the fine stiffness control of the wing film that can be achieved by tuning the microwrinkles can improve the aerodynamic performance of future flapping-wing aerial robots.
Ding, Yong; Xu, Sheng; Zhang, Yue; Wang, Aurelia C; Wang, Melissa H; Xiu, Yonghao; Wong, Ching Ping; Wang, Zhong Lin
2008-09-03
Although butterfly wings and water strider legs have an anti-wetting property, their working conditions are quite different. Water striders, for example, live in a wet environment and their legs need to support their weight and bear the high pressure during motion. In this work, we have focused on the importance of the surface geometrical structures in determining their performance. We have applied an atomic layer deposition technique to coat the surfaces of both butterfly wings and water strider legs with a uniform 30 nm thick hydrophilic Al(2)O(3) film. By keeping the surface material the same, we have studied the effect of different surface roughness/structure on their hydrophobic property. After the surface coating, the butterfly wings changed to become hydrophilic, while the water strider legs still remained super-hydrophobic. We suggest that the super-hydrophobic property of the water strider is due to the special shape of the long inclining spindly cone-shaped setae at the surface. The roughness in the surface can enhance the natural tendency to be hydrophobic or hydrophilic, while the roughness in the normal direction of the surface is favorable for forming a composite interface.
de Souza, João Maria Gomes Alencar; Molina, Wagner Franco; de Almeida, Lúcia Maria; de Gouveia, Milson Bezerra; de Macêdo, Francisco Pepino; Laumann, Raul Alberto; Paranhos, Beatriz Aguiar Jordão
2015-01-01
The sterile insect technique (SIT) is widely utilized in the biological control of fruit flies of the family Tephritidae, particularly against the Mediterranean fruit fly. This study investigated the interaction between mating success and morphometric variation in the wings and the production of acoustic signals among three male groups of Ceratitis capitata (Wiedemann): (1) wild males, (2) irradiated with Co-60 (steriles), and (3) irradiated (steriles) and treated with ginger oil. The canonical variate analysis discriminated two groups (males irradiated and males wild), based on the morphological shape of the wings. Among males that emit buzz signals, wild males obtained copulation more frequently than males in Groups 2 and 3. The individuals of Group 3 achieved more matings than those in Group 2. Wild males displayed lower pulse duration, higher intervals between pulses, and higher dominant frequency. Regarding the reproductive success, the morphological differences in the wings' shape between accepted and nonaccepted males are higher in wild males than in the irradiated ones. The present results can be useful in programs using the sterile insect technique for biological control of C. capitata. PMID:26075293
Planform, aero-structural, and flight control optimization for tailless morphing aircraft
NASA Astrophysics Data System (ADS)
Molinari, Giulio; Arrieta, Andres F.; Ermanni, Paolo
2015-04-01
Tailless airplanes with swept wings rely on variations of the spanwise lift distribution to provide controllability in roll, pitch and yaw. Conventionally, this is achieved utilizing multiple control surfaces, such as elevons, on the wing trailing edge. As every flight condition requires different control moments (e.g. to provide pitching moment equilibrium), these surfaces are practically permanently displaced. Due to their nature, causing discontinuities, corners and gaps, they bear aerodynamic penalties, mostly in terms of shape drag. Shape adaptation, by means of chordwise morphing, has the potential of varying the lift of a wing section by deforming its profile in a way that minimizes the resulting drag. Furthermore, as the shape can be varied differently along the wingspan, the lift distribution can be tailored to each specific flight condition. For this reason, tailless aircraft appear as a prime choice to apply morphing techniques, as the attainable benefits are potentially significant. In this work, we present a methodology to determine the optimal planform, profile shape, and morphing structure for a tailless aircraft. The employed morphing concept is based on a distributed compliance structure, actuated by Macro Fiber Composite (MFC) piezoelectric elements. The multidisciplinary optimization is performed considering the static and dynamic aeroelastic behavior of the resulting structure. The goal is the maximization of the aerodynamic efficiency while guaranteeing the controllability of the plane, by means of morphing, in a set of flight conditions.
Okada, Hirokazu; Ebhardt, H Alexander; Vonesch, Sibylle Chantal; Aebersold, Ruedi; Hafen, Ernst
2016-09-01
The manner by which genetic diversity within a population generates individual phenotypes is a fundamental question of biology. To advance the understanding of the genotype-phenotype relationships towards the level of biochemical processes, we perform a proteome-wide association study (PWAS) of a complex quantitative phenotype. We quantify the variation of wing imaginal disc proteomes in Drosophila genetic reference panel (DGRP) lines using SWATH mass spectrometry. In spite of the very large genetic variation (1/36 bp) between the lines, proteome variability is surprisingly small, indicating strong molecular resilience of protein expression patterns. Proteins associated with adult wing size form tight co-variation clusters that are enriched in fundamental biochemical processes. Wing size correlates with some basic metabolic functions, positively with glucose metabolism but negatively with mitochondrial respiration and not with ribosome biogenesis. Our study highlights the power of PWAS to filter functional variants from the large genetic variability in natural populations.
Passive morphing of flying wing aircraft: Z-shaped configuration
NASA Astrophysics Data System (ADS)
Mardanpour, Pezhman; Hodges, Dewey H.
2014-01-01
High Altitude, Long Endurance (HALE) aircraft can achieve sustained, uninterrupted flight time if they use solar power. Wing morphing of solar powered HALE aircraft can significantly increase solar energy absorbency. An example of the kind of morphing considered in this paper requires the wings to fold so as to orient a solar panel to be hit more directly by the sun's rays at specific times of the day. An example of the kind of morphing considered in this paper requires the wings to fold so as to orient a solar panel that increases the absorption of solar energy by decreasing the angle of incidence of the solar radiation at specific times of the day. In this paper solar powered HALE flying wing aircraft are modeled with three beams with lockable hinge connections. Such aircraft are shown to be capable of morphing passively, following the sun by means of aerodynamic forces and engine thrusts. The analysis underlying NATASHA (Nonlinear Aeroelastic Trim And Stability of HALE Aircraft), a computer program that is based on geometrically exact, fully intrinsic beam equations and a finite-state induced flow model, was extended to include the ability to simulate morphing of the aircraft into a "Z" configuration. Because of the "long endurance" feature of HALE aircraft, such morphing needs to be done without relying on actuators and at as near zero energy cost as possible. The emphasis of this study is to substantially demonstrate the processes required to passively morph a flying wing into a Z-shaped configuration and back again.
Correction of downwash in wind tunnels of circular and elliptic sections
NASA Technical Reports Server (NTRS)
Lotz, Irmgard
1936-01-01
The downwash velocity distribution behind the wing was determined for the free jet and for the closed tunnel of both circular and elliptic cross sections. The wing was placed at the center of the tunnel. The theory makes it possible to determine the downwash at any point in the jet. The computations were performed for points in the plane determined by the jet axis and the center-of-pressure line of the wing. The downwash proved to be proportional to the wing lift and inversely proportional to the cross-sectional area of the tunnel.
The Case for Optically Thick High-Velocity Broad-Line Region Gas in Active Galactic Nuclei
NASA Astrophysics Data System (ADS)
Snedden, Stephanie A.; Gaskell, C. Martin
2007-11-01
A combined analysis of the profiles of the main broad quasar emission lines in both Hubble Space Telescope and optical spectra shows that while the profiles of the strong UV lines are quite similar, there is frequently a strong increase in the Lyα/Hα ratio in the high-velocity gas. We show that the suggestion that the high-velocity gas is optically thin presents many problems. We show that the relative strengths of the high-velocity wings arise naturally in an optically thick BLR component. An optically thick model successfully explains the equivalent widths of the lines, the Lyα/Hα ratios and flatter Balmer decrements in the line wings, the strengths of C III] and the λ1400 blend, and the strong variability in flux of high-velocity, high-ionization lines (especially He II and He I).
Ultraviolet and optical observations of metal deficient red giants and chromospheric models
NASA Technical Reports Server (NTRS)
Duprele, A. K.; Avrett, E. H.; Hartmann, L.; Smith, G.
1984-01-01
Three metal deficient field stars were observed in the ultraviolet and optical spectral regions: HD 165195, HD 110281, and HD 232078. High dispersion spectra near H alpha, and low dispersion, long wavelength IUE spectra were obtained. The H alpha profiles have strong asymmetric emission with absorption cores that are frequently asymmetric. The surface flux of Mg II lines is similar to that of luminous Pop I stars in spite of the lower metal abundance. Semi-empirical atmospheric models suggest that the characteristic emission in the wings of the H alpha line can arise within static chromospheres. Radial expansion gives an asymmetric, blue-shifted H alpha core accompanied by greater emission in the red line wing than the blue wing. Wind models with extended atmospheres suggest mass loss rates - 2 billion M/yr. Thus H alpha provides no evidence that steady mass loss is substantial enough to significantly affect the evolution of stars on the red giant branch of globular clusters.
NASA Technical Reports Server (NTRS)
Queijo, M J; Jaquet, Byron M; Wolhart, Walter D
1954-01-01
Low-speed tests of a model with a wing swept back 35 degrees at the 0.33-chord line and a horizontal tail located well above the extended wing-chord plane indicated static longitudinal instability at moderate angles of attack for all configurations tested. An investigation therefore was made to determine whether the longitudinal stability could be improved by the use of chordwise wing fences, by lowering the horizontal tail, or by a combination of both. The results of the investigation showed that the longitudinal stability characteristics of the model with slats retracted could be improved at moderate angles of attack by placing chordwise wing fences at a spanwise station of about 73 percent of the wing semispan from the plane of symmetry provided the nose of the fence extended slightly beyond or around the wing leading edge.
Biomimetic optimization research on wind noise reduction of an asymmetric cross-section bar.
Zhang, Yingchao; Meng, Weijiang; Fan, Bing; Tang, Wenhui
2016-01-01
In this paper, we used the principle of biomimetics to design two-dimensional and three-dimensional bar sections, and used computational fluid dynamics software to numerically simulate and analyse the aerodynamic noise, to reduce drag and noise. We used the principle of biomimetics to design the cross-section of a bar. An owl wing shape was used for the initial design of the section geometry; then the feathered form of an owl wing, the v-shaped micro-grooves of a shark's skin, the tubercles of a humpback whale's flipper, and the stripy surface of a scallop's shell were used to inspire surface features, added to the initial section and three-dimensional shape. Through computational aeroacoustic simulations, we obtained the aerodynamic characteristics and the noise levels of the models. These biomimetic models dramatically decreased noise levels.
A Parameter Study for Modeling Mg ii h and k Emission during Solar Flares
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rubio da Costa, Fatima; Kleint, Lucia, E-mail: frubio@stanford.edu
2017-06-20
Solar flares show highly unusual spectra in which the thermodynamic conditions of the solar atmosphere are encoded. Current models are unable to fully reproduce the spectroscopic flare observations, especially the single-peaked spectral profiles of the Mg ii h and k lines. We aim to understand the formation of the chromospheric and optically thick Mg ii h and k lines in flares through radiative transfer calculations. We take a flare atmosphere obtained from a simulation with the radiative hydrodynamic code RADYN as input for a radiative transfer modeling with the RH code. By iteratively changing this model atmosphere and varying thermodynamicmore » parameters such as temperature, electron density, and velocity, we study their effects on the emergent intensity spectra. We reproduce the typical single-peaked Mg ii h and k flare spectral shape and approximate the intensity ratios to the subordinate Mg ii lines by increasing either densities, temperatures, or velocities at the line core formation height range. Additionally, by combining unresolved upflows and downflows up to ∼250 km s{sup −1} within one resolution element, we reproduce the widely broadened line wings. While we cannot unambiguously determine which mechanism dominates in flares, future modeling efforts should investigate unresolved components, additional heat dissipation, larger velocities, and higher densities and combine the analysis of multiple spectral lines.« less
A spectroscopic search for colliding stellar winds in O-type close binary systems. IV - Iota Orionis
NASA Technical Reports Server (NTRS)
Gies, Douglas R.; Wiggs, Michael S.; Bagnuolo, William G., Jr.
1993-01-01
We present H-alpha and He I 6678 A line profiles for the eccentric orbit binary Iota Ori. We have applied a tomography algorithm which uses the established orbital velocity curves and intensity ratio to reconstruct the spectral line profiles for each star. The He I profiles appear as pure photospheric lines, and H-alpha shows variable emission in the line core throughout the orbit (which is typical of O giants) and in the blue wing near periastron passage. We show that the blue wing emission is consistent with an origin between the stars which probably results from a dramatic focusing of the primary's stellar wind at periastron. We also present IUE archival spectra of the UV wind lines N V 1240 A and C IV 1550 A.
Spedding, G R; Hedenström, A H; McArthur, J; Rosén, M
2008-01-01
Bird flight occurs over a range of Reynolds numbers (Re; 10(4) < or = Re < or = 10(5), where Re is a measure of the relative importance of inertia and viscosity) that includes regimes where standard aerofoil performance is difficult to predict, compute or measure, with large performance jumps in response to small changes in geometry or environmental conditions. A comparison of measurements of fixed wing performance as a function of Re, combined with quantitative flow visualisation techniques, shows that, surprisingly, wakes of flapping bird wings at moderate flight speeds admit to certain simplifications where their basic properties can be understood through quasi-steady analysis. Indeed, a commonly cited measure of the relative flapping frequency, or wake unsteadiness, the Strouhal number, is seen to be approximately constant in accordance with a simple requirement for maintaining a moderate local angle of attack on the wing. Together, the measurements imply a fine control of boundary layer separation on the wings, with implications for control strategies and wing shape selection by natural and artificial fliers.
O'Hara, R P; Palazotto, A N
2012-12-01
To properly model the structural dynamics of the forewing of the Manduca sexta species, it is critical that the material and structural properties of the biological specimen be understood. This paper presents the results of a morphological study that has been conducted to identify the material and structural properties of a sample of male and female Manduca sexta specimens. The average mass, area, shape, size and camber of the wing were evaluated using novel measurement techniques. Further emphasis is placed on studying the critical substructures of the wing: venation and membrane. The venation cross section is measured using detailed pathological techniques over the entire venation of the wing. The elastic modulus of the leading edge veins is experimentally determined using advanced non-contact structural dynamic techniques. The membrane elastic modulus is randomly sampled over the entire wing to determine global material properties for the membrane using nanoindentation. The data gathered from this morphological study form the basis for the replication of future finite element structural models and engineered biomimetic wings for use with flapping wing micro air vehicles.
NASA Astrophysics Data System (ADS)
Bluman, James Edward
Insect wings are flexible. However, the influence of wing flexibility on the flight dynamics of insects and flapping wing micro air vehicles is unknown. Most studies in the literature consider rigid wings and conclude that the hover equilibrium is unstable. This dissertation shows that a flapping wing flyer with flexible wings exhibits stable natural modes of the open loop system in hover, never reported before. The free-flight insect flight dynamics is modeled for both flexible and rigid wings. Wing mass and inertia are included in the nonlinear equations of motion. The flapping wing aerodynamics are modeled using a quasi-steady model, a well-validated two dimensional Navier Stokes model, and a coupled, two dimensional Navier Stokes - Euler Bernoulli beam model that accurately models the fluid-structure interaction of flexible wings. Hover equilibrium is systematically and efficiently determined with a coupled quasi-steady and Navier-Stokes equation trimmer. The power and stability are reported at hover while parametrically varying the pitch axis location for rigid wings and the structural stiffness for flexible wings. The results indicate that the rigid wings possess an unstable oscillatory mode mainly due to their pitch sensitivity to horizontal velocity perturbations. The flexible wings stabilize this mode primarily by adjusting their wing shape in the presence of perturbations. The wing's response to perturbations generates significantly more horizontal velocity damping and pitch rate damping than in rigid wings. Furthermore, the flexible wings experience substantially less wing wake interaction, which, for rigid wings, is destabilizing. The power required to hover a fruit fly with actively rotating rigid wings varies between 16.9 and 34.2 W/kg. The optimal power occurs when the pitch axis is located at 30% chord, similar to some biological observations. Flexible wings require 23.1 to 38.5 W/kg. However, flexible wings exhibit more stable system dynamics and allow for simpler and lighter designs since they do not require pitch actuation mechanisms. This study is the first to evaluate the impact of wing flexibility on the hovering stability of flapping flyers, which can explain the ranges of flexibility seen in insects and can inform designs of synthetic flapping wing robots.
Flight of Sharovipteryx mirabilis: the world's first delta-winged glider.
Dyke, G J; Nudds, R L; Rayner, J M V
2006-07-01
The 225 million-year-old reptile Sharovipteryx mirabilis was the world's first delta-winged glider; this remarkable animal had a flight surface composed entirely of a hind-limb membrane. We use standard delta-wing aerodynamics to reconstruct the flight of S. mirabilis demonstrating that wing shape could have been controlled simply by protraction of the femora at the knees, and by variation in incidence of a small forelimb canard. Our method has allowed us to address the question of how identifying realistic glide performance can be used to set limits on aerodynamic design in this small animal. Our novel interpretation of the bizarre flight mode of S. mirabilis is the first based directly on interpretation of the fossil itself and the first grounded in aerodynamics.
Aerodynamic consequences of wing morphing during emulated take-off and gliding in birds.
Klaassen van Oorschot, Brett; Mistick, Emily A; Tobalske, Bret W
2016-10-01
Birds morph their wings during a single wingbeat, across flight speeds and among flight modes. Such morphing may allow them to maximize aerodynamic performance, but this assumption remains largely untested. We tested the aerodynamic performance of swept and extended wing postures of 13 raptor species in three families (Accipitridae, Falconidae and Strigidae) using a propeller model to emulate mid-downstroke of flapping during take-off and a wind tunnel to emulate gliding. Based on previous research, we hypothesized that (1) during flapping, wing posture would not affect maximum ratios of vertical and horizontal force coefficients (C V :C H ), and that (2) extended wings would have higher maximum C V :C H when gliding. Contrary to each hypothesis, during flapping, extended wings had, on average, 31% higher maximum C V :C H ratios and 23% higher C V than swept wings across all biologically relevant attack angles (α), and, during gliding, maximum C V :C H ratios were similar for the two postures. Swept wings had 11% higher C V than extended wings in gliding flight, suggesting flow conditions around these flexed raptor wings may be different from those in previous studies of swifts (Apodidae). Phylogenetic affiliation was a poor predictor of wing performance, due in part to high intrafamilial variation. Mass was only significantly correlated with extended wing performance during gliding. We conclude that wing shape has a greater effect on force per unit wing area during flapping at low advance ratio, such as take-off, than during gliding. © 2016. Published by The Company of Biologists Ltd.
Structural dynamics and aerodynamics measurements of biologically inspired flexible flapping wings.
Wu, P; Stanford, B K; Sällström, E; Ukeiley, L; Ifju, P G
2011-03-01
Flapping wing flight as seen in hummingbirds and insects poses an interesting unsteady aerodynamic problem: coupling of wing kinematics, structural dynamics and aerodynamics. There have been numerous studies on the kinematics and aerodynamics in both experimental and computational cases with both natural and artificial wings. These studies tend to ignore wing flexibility; however, observation in nature affirms that passive wing deformation is predominant and may be crucial to the aerodynamic performance. This paper presents a multidisciplinary experimental endeavor in correlating a flapping micro air vehicle wing's aeroelasticity and thrust production, by quantifying and comparing overall thrust, structural deformation and airflow of six pairs of hummingbird-shaped membrane wings of different properties. The results show that for a specific spatial distribution of flexibility, there is an effective frequency range in thrust production. The wing deformation at the thrust-productive frequencies indicates the importance of flexibility: both bending and twisting motion can interact with aerodynamic loads to enhance wing performance under certain conditions, such as the deformation phase and amplitude. By measuring structural deformations under the same aerodynamic conditions, beneficial effects of passive wing deformation can be observed from the visualized airflow and averaged thrust. The measurements and their presentation enable observation and understanding of the required structural properties for a thrust effective flapping wing. The intended passive responses of the different wings follow a particular pattern in correlation to their aerodynamic performance. Consequently, both the experimental technique and data analysis method can lead to further studies to determine the design principles for micro air vehicle flapping wings.
Utilization of Optimization for Design of Morphing Wing Structures for Enhanced Flight
NASA Astrophysics Data System (ADS)
Detrick, Matthew Scott
Conventional aircraft control surfaces constrain maneuverability. This work is a comprehensive study that looks at both smart material and conventional actuation methods to achieve wing twist to potentially improve flight capability using minimal actuation energy while allowing minimal wing deformation under aerodynamic loading. A continuous wing is used in order to reduce drag while allowing the aircraft to more closely approximate the wing deformation used by birds while loitering. The morphing wing for this work consists of a skin supported by an underlying truss structure whose goal is to achieve a given roll moment using less actuation energy than conventional control surfaces. A structural optimization code has been written in order to achieve minimal wing deformation under aerodynamic loading while allowing wing twist under actuation. The multi-objective cost function for the optimization consists of terms that ensure small deformation under aerodynamic loading, small change in airfoil shape during wing twist, a linear variation of wing twist along the length of the wing, small deviation from the desired wing twist, minimal number of truss members, minimal wing weight, and minimal actuation energy. Hydraulic cylinders and a two member linkage driven by a DC motor are tested separately to provide actuation. Since the goal of the current work is simply to provide a roll moment, only one actuator is implemented along the wing span. Optimization is also used to find the best location within the truss structure for the actuator. The active structure produced by optimization is then compared to simulated and experimental results from other researchers as well as characteristics of conventional aircraft.
Su, Weihua; Swei, Sean Shan-Min; Zhu, Guoming G
2016-09-01
In this paper, optimum wing bending and torsion deformations are explored for a mission adaptive, highly flexible morphing aircraft. The complete highly flexible aircraft is modeled using a strain-based geometrically nonlinear beam formulation, coupled with unsteady aerodynamics and 6-dof rigid-body motions. Since there are no conventional discrete control surfaces for trimming the flexible aircraft, the design space for searching the optimum wing geometries is enlarged. To achieve high performance flight, the wing geometry is best tailored according to the specific flight mission needs. In this study, the steady level flight and the coordinated turn flight are considered, and the optimum wing deformations with the minimum drag at these flight conditions are searched by utilizing a modal-based optimization procedure, subject to the trim and other constraints. The numerical study verifies the feasibility of the modal-based optimization approach, and shows the resulting optimum wing configuration and its sensitivity under different flight profiles.
Su, Weihua; Swei, Sean Shan-Min; Zhu, Guoming G.
2018-01-01
In this paper, optimum wing bending and torsion deformations are explored for a mission adaptive, highly flexible morphing aircraft. The complete highly flexible aircraft is modeled using a strain-based geometrically nonlinear beam formulation, coupled with unsteady aerodynamics and 6-dof rigid-body motions. Since there are no conventional discrete control surfaces for trimming the flexible aircraft, the design space for searching the optimum wing geometries is enlarged. To achieve high performance flight, the wing geometry is best tailored according to the specific flight mission needs. In this study, the steady level flight and the coordinated turn flight are considered, and the optimum wing deformations with the minimum drag at these flight conditions are searched by utilizing a modal-based optimization procedure, subject to the trim and other constraints. The numerical study verifies the feasibility of the modal-based optimization approach, and shows the resulting optimum wing configuration and its sensitivity under different flight profiles. PMID:29348697
Optimum Wing Shape of Highly Flexible Morphing Aircraft for Improved Flight Performance
NASA Technical Reports Server (NTRS)
Su, Weihua; Swei, Sean Shan-Min; Zhu, Guoming G.
2016-01-01
In this paper, optimum wing bending and torsion deformations are explored for a mission adaptive, highly flexible morphing aircraft. The complete highly flexible aircraft is modeled using a strain-based geometrically nonlinear beam formulation, coupled with unsteady aerodynamics and six-degrees-of-freedom rigid-body motions. Since there are no conventional discrete control surfaces for trimming the flexible aircraft, the design space for searching the optimum wing geometries is enlarged. To achieve high performance flight, the wing geometry is best tailored according to the specific flight mission needs. In this study, the steady level flight and the coordinated turn flight are considered, and the optimum wing deformations with the minimum drag at these flight conditions are searched by utilizing a modal-based optimization procedure, subject to the trim and other constraints. The numerical study verifies the feasibility of the modal-based optimization approach, and shows the resulting optimum wing configuration and its sensitivity under different flight profiles.
NASA Technical Reports Server (NTRS)
Erickson, Gary E.; Brandon, Jay M.
1987-01-01
An exploratory investigation was conducted of the nonlinear aerodynamic and stability characteristics of a tailless generic fighter configuration featuring a chine-shaped forebody coupled to a slender cropped delta wing in the NASA Langley Research Center's 12-Foot Low-Speed Wind Tunnel. Forebody and wing vortex flow mechanisms were identified through off-body flow visualizations to explain the trends in the longitudinal and lateral-directional characteristics at extreme attitudes (angles of attack and sideslip). The interactions of the vortical motions with centerline and wing-mounted vertical tail surfaces were studied and the flow phenomena were correlated with the configuration forces and moments. Single degree of freedom, free-to-roll tests were used to study the wing rock susceptibility of the generic fighter model. Modifications to the nose region of the chine forebody were examined and fluid mechanisms were established to account for their ineffectiveness in modulating the highly interactive forebody and wing vortex systems.
How do dragonflies recover from falling upside down?
NASA Astrophysics Data System (ADS)
Wang, Z. Jane; Melfi, James, Jr.; Leonardo, Anthony
2014-11-01
We release dragonflies from a magnetic tether so that they fall from an initially upside down orientation. To recover, the dragonflies roll their body 180 degrees every time. This set up offers an effective method for eliciting a stereotypical turn so that we can collect a large amount of data on the same turn. From the wing and body kinematics, we can tease out the strategy dragonflies use to roll their body. We record these flights with three zoomed in high-speed video cameras. By filming at 4000 to 8000fps, we measure the wing twist along each of the four wings as a part of the 3D wing kinematics. The shape of the wing twist depends on the interaction between the aerodynamic torque and the torque exerted by muscles, therefore providing clues on which of their four wings actively participate in creating the turn. By applying dynamic calculations to the measured kinematics, we further deduce the amount of torques dragonflies exert in order to turn.
Interactions between pre-main-sequence objects and molecular clouds. I. Elias 1-12
DOE Office of Scientific and Technical Information (OSTI.GOV)
Levreault, R.M.
1983-02-15
Line profiles of the CO( J = 1 ..-->.. 0), CO( J = 2 ..-->.. 1), /sup 13/CO( J = 1 ..-->.. 0), /sup 13/CO( J = 2 ..-->.. 1), HCO/sup +/( J = 1 ..-->.. 0), and HCO/sup +/( J = 3 ..-->.. 2) transitions have been observed toward the FU Orionis star Elias 1-12. The CO profiles show broad asymmetric line wings, while the /sup 13/CO and HCO/sup +/ profiles show weaker wings. The ratios of various transitions in the line wings are a powerful probe of the physical conditions in the kinematically disturbed gas that produces themore » broad wings. The disturbed gas extends over 0.3 pc and has a total mass of 1.2 M/sub sun/. Its kinetic temperature, as derived from CO( J = 2 ..-->.. 1)/CO( J = 1 ..-->.. 0) and /sup 13/CO( J = 2 ..-->.. 1)//sup 13/CO( J = 1 ..-->.. 0) ratios, is low, only 7-15 K. This temperature, when combined with the HCO/sup 1/( J = 3 ..-->.. 2)/HCO/sup +/( J = 1 ..-->.. 0) ratio, gives a density estimate of 10/sup 6/-10/sup 7/ cm/sup -3/. The HCO/sup +/ abundance in the disturbed gas seems to be normal or somewhat enhanced, in contradiction to theoretical expectations.« less
Flutter analysis of swept-wing subsonic aircraft with parameter studies of composite wings
NASA Technical Reports Server (NTRS)
Housner, J. M.; Stein, M.
1974-01-01
A computer program is presented for the flutter analysis, including the effects of rigid-body roll, pitch, and plunge of swept-wing subsonic aircraft with a flexible fuselage and engines mounted on flexible pylons. The program utilizes a direct flutter solution in which the flutter determinant is derived by using finite differences, and the root locus branches of the determinant are searched for the lowest flutter speed. In addition, a preprocessing subroutine is included which evaluates the variable bending and twisting stiffness properties of the wing by using a laminated, balanced ply, filamentary composite plate theory. The program has been substantiated by comparisons with existing flutter solutions. The program has been applied to parameter studies which examine the effect of filament orientation upon the flutter behavior of wings belonging to the following three classes: wings having different angles of sweep, wings having different mass ratios, and wings having variable skin thicknesses. These studies demonstrated that the program can perform a complete parameter study in one computer run. The program is designed to detect abrupt changes in the lowest flutter speed and mode shape as the parameters are varied.
NASA Astrophysics Data System (ADS)
Marisarla, Soujanya; Ghia, Urmila; "Karman" Ghia, Kirti
2002-11-01
Towards a comprehensive aeroelastic analysis of a joined wing, fluid dynamics and structural analyses are initially performed separately. Steady flow calculations are currently performed using 3-D compressible Navier-Stokes equations. Flow analysis of M6-Onera wing served to validate the software for the fluid dynamics analysis. The complex flow field of the joined wing is analyzed and the prevailing fluid dynamic forces are computed using COBALT software. Currently, these forces are being transferred as fluid loads on the structure. For the structural analysis, several test cases were run considering the wing as a cantilever beam; these served as validation cases. A nonlinear structural analysis of the wing is being performed using ANSYS software to predict the deflections and stresses on the joined wing. Issues related to modeling, and selecting appropriate mesh for the structure were addressed by first performing a linear analysis. The frequencies and mode shapes of the deformed wing are obtained from modal analysis. Both static and dynamic analyses are carried out, and the results obtained are carefully analyzed. Loose coupling between the fluid and structural analyses is currently being examined.
NASA Astrophysics Data System (ADS)
Koreanschi, Andreea
In order to answer the problem of 'how to reduce the aerospace industry's environment footprint?' new morphing technologies were developed. These technologies were aimed at reducing the aircraft's fuel consumption through reduction of the wing drag. The morphing concept used in the present research consists of replacing the conventional aluminium upper surface of the wing with a flexible composite skin for morphing abilities. For the ATR-42 'Morphing wing' project, the wing models were manufactured entirely from composite materials and the morphing region was optimized for flexibility. In this project two rigid wing models and an active morphing wing model were designed, manufactured and wind tunnel tested. For the CRIAQ MDO 505 project, a full scale wing-tip equipped with two types of ailerons, conventional and morphing, was designed, optimized, manufactured, bench and wind tunnel tested. The morphing concept was applied on a real wing internal structure and incorporated aerodynamic, structural and control constraints specific to a multidisciplinary approach. Numerical optimization, aerodynamic analysis and experimental validation were performed for both the CRIAQ MDO 505 full scale wing-tip demonstrator and the ATR-42 reduced scale wing models. In order to improve the aerodynamic performances of the ATR-42 and CRIAQ MDO 505 wing airfoils, three global optimization algorithms were developed, tested and compared. The three algorithms were: the genetic algorithm, the artificial bee colony and the gradient descent. The algorithms were coupled with the two-dimensional aerodynamic solver XFoil. XFoil is known for its rapid convergence, robustness and use of the semi-empirical e n method for determining the position of the flow transition from laminar to turbulent. Based on the performance comparison between the algorithms, the genetic algorithm was chosen for the optimization of the ATR-42 and CRIAQ MDO 505 wing airfoils. The optimization algorithm was improved during the CRIAQ MDO 505 project for convergence speed by introducing a two-step cross-over function. Structural constraints were introduced in the algorithm at each aero-structural optimization interaction, allowing a better manipulation of the algorithm and giving it more capabilities of morphing combinations. The CRIAQ MDO 505 project envisioned a morphing aileron concept for the morphing upper surface wing. For this morphing aileron concept, two optimization methods were developed. The methods used the already developed genetic algorithm and each method had a different design concept. The first method was based on the morphing upper surface concept, using actuation points to achieve the desired shape. The second method was based on the hinge rotation concept of the conventional aileron but applied at multiple nodes along the aileron camber to achieve the desired shape. Both methods were constrained by manufacturing and aerodynamic requirements. The purpose of the morphing aileron methods was to obtain an aileron shape with a smoother pressure distribution gradient during deflection than the conventional aileron. The aerodynamic optimization results were used for the structural optimization and design of the wing, particularly the flexible composite skin. Due to the structural changes performed on the initial wing-tip structure, an aeroelastic behaviour analysis, more specific on flutter phenomenon, was performed. The analyses were done to ensure the structural integrity of the wing-tip demonstrator during wind tunnel tests. Three wind tunnel tests were performed for the CRIAQ MDO 505 wing-tip demonstrator at the IAR-NRC subsonic wind tunnel facility in Ottawa. The first two tests were performed for the wing-tip equipped with conventional aileron. The purpose of these tests was to validate the control system designed for the morphing upper surface, the numerical optimization and aerodynamic analysis and to evaluate the optimization efficiency on the boundary layer behaviour and the wing drag. The third set of wind tunnel tests was performed on the wing-tip equipped with a morphing aileron. The purpose of this test was to evaluate the performances of the morphing aileron, in conjunction with the active morphing upper surface, and their effect on the lift, drag and boundary layer behaviour. Transition data, obtained from Infrared Thermography, and pressure data, extracted from Kulite and pressure taps recordings, were used to validate the numerical optimization and aerodynamic performances of the wing-tip demonstrator. A set of wind tunnel tests was performed on the ATR-42 rigid wing models at the Price-Paidoussis subsonic wind tunnel at Ecole de technologie Superieure. The results from the pressure taps recordings were used to validate the numerical optimization. A second derivative of the pressure distribution method was applied to evaluate the transition region on the upper surface of the wing models for comparison with the numerical transition values. (Abstract shortened by ProQuest.).
A Computational and Experimental Study of Nonlinear Aspects of Induced Drag
NASA Technical Reports Server (NTRS)
Smith, Stephen C.
1996-01-01
Despite the 80-year history of classical wing theory, considerable research has recently been directed toward planform and wake effects on induced drag. Nonlinear interactions between the trailing wake and the wing offer the possibility of reducing drag. The nonlinear effect of compressibility on induced drag characteristics may also influence wing design. This thesis deals with the prediction of these nonlinear aspects of induced drag and ways to exploit them. A potential benefit of only a few percent of the drag represents a large fuel savings for the world's commercial transport fleet. Computational methods must be applied carefully to obtain accurate induced drag predictions. Trefftz-plane drag integration is far more reliable than surface pressure integration, but is very sensitive to the accuracy of the force-free wake model. The practical use of Trefftz plane drag integration was extended to transonic flow with the Tranair full-potential code. The induced drag characteristics of a typical transport wing were studied with Tranair, a full-potential method, and A502, a high-order linear panel method to investigate changes in lift distribution and span efficiency due to compressibility. Modeling the force-free wake is a nonlinear problem, even when the flow governing equation is linear. A novel method was developed for computing the force-free wake shape. This hybrid wake-relaxation scheme couples the well-behaved nature of the discrete vortex wake with viscous-core modeling and the high-accuracy velocity prediction of the high-order panel method. The hybrid scheme produced converged wake shapes that allowed accurate Trefftz-plane integration. An unusual split-tip wing concept was studied for exploiting nonlinear wake interaction to reduced induced drag. This design exhibits significant nonlinear interactions between the wing and wake that produced a 12% reduction in induced drag compared to an equivalent elliptical wing at a lift coefficient of 0.7. The performance of the split-tip wing was also investigated by wing tunnel experiments. Induced drag was determined from force measurements by subtracting the estimated viscous drag, and from an analytical drag-decomposition method using a wake survey. The experimental results confirm the computational prediction.
NASA Astrophysics Data System (ADS)
Ben Mosbah, Abdallah
In order to improve the qualities of wind tunnel tests, and the tools used to perform aerodynamic tests on aircraft wings in the wind tunnel, new methodologies were developed and tested on rigid and flexible wings models. A flexible wing concept is consists in replacing a portion (lower and/or upper) of the skin with another flexible portion whose shape can be changed using an actuation system installed inside of the wing. The main purpose of this concept is to improve the aerodynamic performance of the aircraft, and especially to reduce the fuel consumption of the airplane. Numerical and experimental analyses were conducted to develop and test the methodologies proposed in this thesis. To control the flow inside the test sections of the Price-Paidoussis wind tunnel of LARCASE, numerical and experimental analyses were performed. Computational fluid dynamics calculations have been made in order to obtain a database used to develop a new hybrid methodology for wind tunnel calibration. This approach allows controlling the flow in the test section of the Price-Paidoussis wind tunnel. For the fast determination of aerodynamic parameters, new hybrid methodologies were proposed. These methodologies were used to control flight parameters by the calculation of the drag, lift and pitching moment coefficients and by the calculation of the pressure distribution around an airfoil. These aerodynamic coefficients were calculated from the known airflow conditions such as angles of attack, the mach and the Reynolds numbers. In order to modify the shape of the wing skin, electric actuators were installed inside the wing to get the desired shape. These deformations provide optimal profiles according to different flight conditions in order to reduce the fuel consumption. A controller based on neural networks was implemented to obtain desired displacement actuators. A metaheuristic algorithm was used in hybridization with neural networks, and support vector machine approaches and their combination was optimized, and very good results were obtained in a reduced computing time. The validation of the obtained results has been made using numerical data obtained by the XFoil code, and also by the Fluent code. The results obtained using the methodologies presented in this thesis have been validated with experimental data obtained using the subsonic Price-Paidoussis blow down wind tunnel.
The oscillating wing with aerodynamically balanced elevator
NASA Technical Reports Server (NTRS)
Kussner, H G; Schwartz, I
1941-01-01
The two-dimensional problem of the oscillating wing with aerodynamically balanced elevator is treated in the manner that the wing is replaced by a plate with bends and stages and the airfoil section by a mean line consisting of one or more straights. The computed formulas and tables permit, on these premises, the prediction of the pressure distribution and of the aerodynamic reactions of oscillating elevators and tabs with any position of elevator hinge in respect to elevator leading edge.
Taufour, Valentin; Kaluarachchi, Udhara S.; Kogan, Vladimir G.
2016-08-19
Here, we consider the phase diagram of a ferromagnetic system driven to a quantum phase transition with a tuning parameter $p$. Before being suppressed, the transition becomes of the first order at a tricritical point, from which wings emerge under application of the magnetic field H in the T $-$ p $-$ H phase diagram. We show that the edge of the wings merge with tangent slopes at the tricritical point.
Numerical simulation of the tip vortex off a low-aspect-ratio wing at transonic speed
NASA Technical Reports Server (NTRS)
Mansour, N. N.
1984-01-01
The viscous transonic flow around a low aspect ratio wing was computed by an implicit, three dimensional, thin-layer Navier-Stokes solver. The grid around the geometry of interest is obtained numerically as a solution to a Dirichlet problem for the cube. A low aspect ratio wing with large sweep, twist, taper, and camber is the chosen geometry. The topology chosen to wrap the mesh around the wing with good tip resolution is a C-O type mesh. The flow around the wing was computed for a free stream Mach number of 0.82 at an angle of attack of 5 deg. At this Mach number, an oblique shock forms on the upper surface of the wing, and a tip vortex and three dimensional flow separation off the wind surface are observed. Particle path lines indicate that the three dimensional flow separation on the wing surface is part of the roots of the tip vortex formation. The lifting of the tip vortex before the wing trailing edge is observed by following the trajectory of particles release around the wing tip.
Deconstructing the Essential Elements of Bat Flight
NASA Astrophysics Data System (ADS)
Tafti, Danesh; Viswanath, Kamal; Krishnamurthy, Nagendra
2013-11-01
There are over 1000 bat species worldwide with a wide range of wing morphologies. Bat wing motion is characterized by an active adaptive three-dimensional highly deformable wing surface which is distinctive in its complex kinematics facilitated by the skeletal and skin membrane manipulation, large deviations from the stroke plane, and large wing cambers. In this study we use measured wing kinematics of a fruit bat in a straight line climbing path to study the fluid dynamics and the forces generated by the wing using an Immersed Boundary Method. This is followed by a proper orthogonal decomposition to investigate the dimensional complexity as well as the key kinematic modes used by the bat during a representative flapping cycle. It is shown that the complex wing motion of the fruit bat can mostly be broken down into canonical descriptors of wing motion such as translation, rotation, out of stroke deviation, and cambering, which the bat uses with great efficacy to generate lift and thrust. Research supported through a grant from the Army Research Office (ARO). Bat wing kinemtaics was provided by Dr. Kenny Breuer, Brown University.
NASA Technical Reports Server (NTRS)
Igoe, William B.; Re, Richard J.; Cassetti, Marlowe
1961-01-01
An investigation has been made of the effects of conical wing camber and supersonic body indentation on the aerodynamic characteristics of a wing-body configuration at transonic speeds. Wing aspect ratio was 3.0, taper ratio was 0.1, and quarter-chord line sweepback was 52.5 deg with airfoil sections of 0.03 thickness ratio. The tests were conducted in the Langley 16-foot transonic tunnel at various Mach numbers from 0.80 to 1.05 at angles of attack from -4 deg to 14 deg. The cambered-wing configuration achieved higher lift-drag ratios than a similar plane-wing configuration. The camber also reduced the effects of wing-tip flow separation on the aerodynamic characteristics. In general, no stability or trim changes below wing-tip flow separation resulted from the use of camber. The use of supersonic body indentation improved the lift-drag ratios at Mach numbers from 0.96 to 1.05.
Schmieder, Daniela A.; Benítez, Hugo A.; Borissov, Ivailo M.; Fruciano, Carmelo
2015-01-01
External morphology is commonly used to identify bats as well as to investigate flight and foraging behavior, typically relying on simple length and area measures or ratios. However, geometric morphometrics is increasingly used in the biological sciences to analyse variation in shape and discriminate among species and populations. Here we compare the ability of traditional versus geometric morphometric methods in discriminating between closely related bat species – in this case European horseshoe bats (Rhinolophidae, Chiroptera) – based on morphology of the wing, body and tail. In addition to comparing morphometric methods, we used geometric morphometrics to detect interspecies differences as shape changes. Geometric morphometrics yielded improved species discrimination relative to traditional methods. The predicted shape for the variation along the between group principal components revealed that the largest differences between species lay in the extent to which the wing reaches in the direction of the head. This strong trend in interspecific shape variation is associated with size, which we interpret as an evolutionary allometry pattern. PMID:25965335
Mitigation of bird collisions with transmission lines: Final report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Beaulaurier, D.L.
1981-09-11
In this study removal of overhead groundwires was evaluated as a technique for mitigating bird collisions with transmission lines. Groundwires were removed by BPA from a 500 kV double circuit line at Bybee Lake in Portland, Oregon. Earlier studies at these sites had documented small but measurable collision rates (i.e., No. collisions/No. flights) attributed primarily to collisions with groundwires. Observations of bird flights and searches for dead birds in the vicinity of the lines constituted the primary methods of data collection during pre- and post-removal studies. Field work was conducted from October 1980 through March 1981. A total of sevenmore » dead birds and eight feather spots were found after groundwire removal. Species found were green-winged teal, pintail, greater scaup, American wigeon, glaucous-winged gull, starling, red-winged blackbird and song sparrow. No collisions with transmission lines were observed. During pre-removal studies at these two sites, a total of 53 dead birds and 22 feather spots were found over two years of study. It was necessary to document flight intensity (No. flights/day) during pre- and post-removal studies, in order to determine if the number of dead birds found changed because of groundwire removal or simply because of changes in flight intensity. 41 refs., 18 figs., 22 tabs.« less
NASA Technical Reports Server (NTRS)
Feng, Y. X.; Tennant, A. F.; Zhang, S. N.
2003-01-01
Cygnus X-1 was observed in the high state at the conjunction orbital phase (0) with Chandra High Energy Transmission Grating (HETG). Strong and asymmetric absorption lines of highly ionized species were detected, such as Fe xxv, Fe xxiv, Fe xxiii, Si xiv, S xvi, Ne x, etc. In the high state the profile of the absorption lines is composed of an extended red wing and a less extended blue wing. The red wings of higher ionized species are more extended than those of lower ionized species. The detection of these lines provides a way to probe the properties of the flow around the companion and the black hole in Cyg X-1 during the high state. A broad emission feature around 6.5 keV was significantly detected from the spectra of both the Chandra/HETG and the RXTE/Proportional Counter Array. This feature appears to be symmetric and can be fitted with a Gaussian function rather than the Laor disk line model of the fluorescent Fe K(alpha) line from an accretion disk. The implications of these results on the structure of the accretion flow of Cyg X-1 in the high state are discussed.
Supersonic Wing Optimization Using SpaRibs
NASA Technical Reports Server (NTRS)
Locatelli, David; Mulani, Sameer B.; Liu, Qiang; Tamijani, Ali Y.; Kapania, Rakesh K.
2014-01-01
This research investigates the advantages of using curvilinear spars and ribs, termed SpaRibs, to design a supersonic aircraft wing-box in comparison to the use of classic design concepts that employ straight spars and ribs. The objective is to achieve a more efficient load-bearing mechanism and to passively control the deformation of the structure under the flight loads. Moreover, the use of SpaRibs broadens the design space and allows for natural frequencies and natural mode shape tailoring. The SpaRibs concept is implemented in a new optimization MATLAB-based framework referred to as EBF3SSWingOpt. This optimization scheme performs both the sizing and the shaping of the internal structural elements, connecting the optimizer with the analysis software. The shape of the SpaRibs is parametrically defined using the so called Linked Shape method. Each set of SpaRibs is placed in a one by one square domain of the natural space. The set of curves is subsequently transformed in the physical space for creating the wing structure geometry layout. The shape of each curve of each set is unique; however, mathematical relations link the curvature in an effort to reduce the number of design variables. The internal structure of a High Speed Commercial Transport aircraft concept developed by Boeing is optimized subjected to stress, subsonic flutter and supersonic flutter constraints. The results show that the use of the SpaRibs allows for the reduction of the aircraft's primary structure weight without violating the constraints. A weight reduction of about 15 percent is observed.
NASA Technical Reports Server (NTRS)
Lamar, J. E.
1976-01-01
A new subsonic method has been developed by which the mean camber surface can be determined for trimmed noncoplanar planforms with minimum vortex drag. This method uses a vortex lattice and overcomes previous difficulties with chord loading specification. A Trefftz plane analysis is utilized to determine the optimum span loading for minimum drag, then solved for the mean camber surface of the wing, which provides the required loading. Sensitivity studies, comparisons with other theories, and applications to configurations which include a tandem wing and a wing winglet combination have been made and are presented.
Calculative techniques for transonic flows about certain classes of wing-body combinations, phase 2
NASA Technical Reports Server (NTRS)
Stahara, S. S.; Spreiter, J. R.
1972-01-01
Theoretical analysis and associated computer programs were developed for predicting properties of transonic flows about certain classes of wing-body combinations. The procedures used are based on the transonic equivalence rule and employ either an arbitrarily-specified solution or the local linerization method for determining the nonlifting transonic flow about the equivalent body. The class of wind planform shapes include wings having sweptback trailing edges and finite tip chord. Theoretical results are presented for surface and flow-field pressure distributions for both nonlifting and lifting situations at Mach number one.
An exploratory study of apex fence flaps on a 74 deg delta wing
NASA Technical Reports Server (NTRS)
Wahls, R. A.; Vess, R. J.
1985-01-01
An exploratory wind tunnel investigation was performed to observe the flow field effects produced by vertically deployed apex fences on a planar 74 degree delta wing. The delta shaped fences, each comprising approximately 3.375 percent of the wing area, were affixed along the first 25 percent of the wing leading edge in symmetric as well as asymmetric (i.e., fence on one side only) arrangements. The vortex flow field was visualized at angles of attack from 0 to 20 degrees using helium bubble and oil flow techniques; upper surface pressures were also measured along spanwise rows. The results were used to construct a preliminary description of the vortex patterns and induced pressures associated with vertical apex fence deployment. The objective was to obtain an initial evaluation of the potential of apex fences as vortex devices for subsonic lift modulation as well as lateral directional control of delta wing aircraft.
NASA Technical Reports Server (NTRS)
Jones, R. T.
1950-01-01
The problem of the minimum induced drag of wings having a given lift and a given span is extended to include cases in which the bending moment to be supported by the wing is also given. The theory is limited to lifting surfaces traveling at subsonic speeds. It is found that the required shape of the downwash distribution can be obtained in an elementary way which is applicable to a variety of such problems. Expressions for the minimum drag and the corresponding spanwise load distributions are also given for the case in which the lift and the bending moment about the wing root are fixed while the span is allowed to vary. The results show a 15-percent reduction of the induced drag with a 15-percent increase in span as compared with results for an elliptically loaded wing having the same total lift and bending moment.
Evaluation of Chemical Preparation on Insect Wing Shape for Geometric Morphometrics
Lorenz, Camila; Suesdek, Lincoln
2013-01-01
Geometric morphometrics is an approach that has been increasingly applied in studies with insects. A limiting factor of this technique is that some mosquitoes have wings with dark spots or many scales, which jeopardizes the visualization of landmarks for morphometric analysis. Recently, in some studies, chemically treatment (staining) of the wings was used to improve the viewing of landmarks. In this study, we evaluated whether this method causes deformation of the wing veins and tested whether it facilitates the visualization of the most problematic landmarks. In addition, we tested whether mechanical removal of the scales was sufficient for this purpose. The results showed that the physical and chemical treatments are equally effective in improving visualization of the landmarks. The chemical method did not cause deformation of the wing. Thus, some of these treatments should be performed before beginning geometric morphometric analysis to avoid erroneous landmark digitizing. PMID:24019438
Adaptive smart wing design for military aircraft: requirements, concepts, and payoffs
NASA Astrophysics Data System (ADS)
Kudva, Jayanth N.; Appa, Kari; Van Way, Craig B.; Lockyer, Allen J.
1995-05-01
New developments in smart structures and materials have made it possible to revisit earlier work in adaptive and flexible wing technology, and remove some of the limitations for technology transition to next-generation aircraft. Research performed by Northrop Grumman, under internal funding, has led to a new program sponsored by ARPA to investigate the application of smart structures and materials technologies to twist and adapt and aircraft wing. Conceptual designs are presented based on state-of-the-art materials, including shape memory alloys, piezoelectrics, and fiber optic sensors for incorporation in a proposed smart wing design. Plans are described to demonstrate proof-of-concept on a prototype 1/10 scale -18 model that will be tested in a wind tunnel for final validation. Highlights of the proposed program are summarized with respect to program objectives, requirements, key concept design features, demonstration testing, and smart wing technology payoffs and risks.